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Preface: General Chair

It was fifteen years ago when ACL first came to Asia in 2000. The conference in Hong Kong was a very
excited one and attracted lots of people. It was a great opportunity for a number of Asian NLP researchers
to meet face-to-face in such a large scale meeting. Establishment of AFNLP (Asian Federation of Natural
Language Processing) was discussed soon after this wonderful event, and then AFNLP started [ICNLP
(the International Joint Conference of Natural Language Processing) as a biennial flagship conference of
AFNLP. ACL’s three year regional rotation and IICNLP’s two year cycle meet every six years, and this is
the second joint ACL-IJCNLP conference following the first held in Singapore in 2009. ACL meetings
in Asia and IJNCLPs are now a propelling force of NLP research in Asian regions, and provide valuable
experiences especially to young researchers and students who first attend this size of a big conference.

The success of ACL-IJCNLP owes a great deal to the hard work and dedication of many people. I would
like to thank all of them for their time and contribution to this joint ACL-AFNLP conference.

Priscilla Rasmussen (the ACL Business Manager), Gertjan van Noord (ACL Past President), Chris
Manning (ACL President), Graeme Hirst (ACL Treasurer), Dragomir Radev (ACL Secretary), Keh-Yih
Su (AFNLP Past President), Fam-Fai Wong (AFNLP President), all other ACL and AFNLP Executive
Committee members and ACL-AFNLP Conference Coordinating Committee members (forgive me for
not listing all their names) have always been very helpful and guided me anytime I missed something or
was behind the schedule, and given me appropriate advice. Without their help, I could not fulfill even
half my duty.

I was very lucky to have a wonderful team of chairs, who have done a fantastic job for leading this
conference to an invaluable one. I would like to express my deepest gratitude to Michael Strube and
Chengqing Zong (Program Committee Co-Chairs), Le Sun and Yang Liu (Local Arrangement Co-
Chairs), Hang Li and Sebastian Riedel (Workshop Co-Chairs), Kevin Duh and Eneko Agirre (Tutorial
Co-Chairs), Hsin-His Chen and Katja Markert (System Demonstration Co-Chairs), Wanxiang Che and
Guodong Zhou (Publications Co-Chairs), Stephan Oepen, Chin-Yew Lin and Emily Bender (Student
Research Workshop Faculty Advisors), Kuan-Yu Chen, Angelina Ivanova and Ellie Pavlick (Student
Research Workshop Co-Chairs), Francis Bond (Mentoring Chair), Xianpei Han and Kang Liu (Publicity
Co-Chairs), Zhiyuan Liu (Webmaster), and all the team members of the Local Organizing Committee.
Thanks to their dedicated efforts, we now have a great conference consisting of the Presidential Address
(by Chris Manning), two Keynote Addresses (by Marti Hearst and Jiawei Han), 173 long and 145 short
papers, 12 TACL papers, 7 Student Research Workshop papers, 25 system demonstrations, 8 tutorials,
15 workshops, one collocated conference (CoNLL-2015), and a not yet known Lifetime Achievement
Awardee’s speech.

I am also grateful to our sponsors for their generous contributions. ACL-IJCNLP-2015 is supported by
six Platinum Sponsors (CreditEase, Baidu, Tencent, Alibaba Group, SAMSUNG, and Microsoft), four
Gold Sponsors (Google, Facebook, SinoVoice, and Huawei), three Silver Sponsors (Nuance, Amazon,
and Sogou), one Bronze Sponsor (Yandex), one Oversea Student Fellowship Sponsor (Baobab), and one
Best Paper Sponsor (IBM). I would express special thanks to Yiqun Liu (Local Sponsorship Chair) and
all members of the International Sponsorship Committee (Ting Liu, Hideto Kazawa, Asli Celikyilmaz,
Julia Hochenmaier, and Alessandro Moschitti).

Finally, I would like to thank two keynote speakers, the area chairs of the main conference, the workshop
organizers, the tutorial presenters, the authors of main conference and demo papers, the reviewers for
their contribution, and all the attendees for participation. I hope everyone have a great time and enjoy
this conference.

ACL-IJCNLP 2015 General Chair
Yuji Matsumoto
Nara Institute of Science and Technology
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Preface: Program Committee Co-Chairs

Welcome to the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing of the Asian Federation of Natural
Language Processing (ACL-IJCNLP)! This year ACL-IJCNLP received 692 long paper submissions
and 648 short paper submissions which sets a new record for ACL for both long and short papers! We
are pleased to observe that our community continues to grow. Of the long papers, 173 were accepted for
presentation at ACL-IJCNLP — 105 as oral and 68 as poster presentations. 145 short papers were accepted
— 50 as oral and 95 as poster presentations. In addition, ACL-IJCNLP also features 12 presentations of
papers accepted in the Transactions of the Association for Computational Linguistics (TACL).

The submissions were reviewed under different categories and using different review forms for
empirical/data-driven, theoretical, applications/tools, resources/evaluation, and survey papers. This year
we introduced the item “MENTORING” to the review form to indicate whether a paper needs the help
of a mentor in its writing, organization or presentation. For short papers, following up on last year’s
successful experiences, we also welcomed submissions describing negative results. We are glad to see
that the community is becoming more open towards negative results so that such papers have the chance
to be published, so that other researchers do not fall in the same trap.

We view posters as an integral part of ACL-IJCNLP. Half of the papers have been accepted as posters.
Hence, we spent a great deal of time to ensure that the poster session will be a good experience for
poster presenters and their audience. Following last year’s exciting poster session, we also organized
the posters in two large poster sessions to accommodate the high-quality submissions accepted in poster
presentation format. We hope attendees and authors will benefit from this additional time to present and
have more time to discuss with each other.

ACL-IJCNLP 2015 will have two distinguished invited speakers. Marti Hearst (professor at UC Berkeley
in the School of Information and EECS) and Jiawei Han (Abel Bliss Professor at University of Illinois at
Urbana-Champaign). We are grateful that they accepted our invitation.

There are many individuals to thank for their contributions to ACL-IJCNLP 2015. We would like to
thank the 37 area chairs for their hard work on recruiting reviewers, leading the discussion process, and
carefully ranking the submissions. We would also like to thank the 749 primary and the 137 secondary
reviewers on whose efforts we depended to select high-quality and timely scientific work. This year we
specifically acknowledge around 18.2% of the reviewers who went the extra mile and provided extremely
helpful reviews (their names are marked with a * in the organization section of the proceedings). The
ACL coordinating committee members, including Dragomir Radev, Graeme Hirst, Jian Su, and Gertjan
van Noord were invaluable on various issues relating to the organization. We would like to thank the
prior conference chairs Kristina Toutanova and Hua Wu and their predecessors for their advice. We are
very grateful for the guidance and support of the general chair Yuji Matsumoto, to the ACL Business
Manager Priscilla Rasmussen who knew practically everything, to the local chairs Le Sun and Yang Liu,
the publication chairs Wanxiang Che and Guodong Zhou, and webmaster Zhiyuan Liu. We would also
like to thank Jiajun Zhang who helped with reviewer assignment and numerous other tasks. Rich Gerber
and Paolo Gai from Softconf were extremely responsive to all of our requests, and we are grateful for
that.

We are indebted to the best paper award committee which consisted of Eneko Agirre, Tim Baldwin,
Philipp Koehn, Joakim Nivre, and Yue Zhang. They read the candidate papers, ranked them and provided
comments on a very short notice.

We hope you will enjoy ACL-IJCNLP 2015 in Beijing!

ACL-IJCNLP 2015 Program Co-Chairs
Chengqing Zong, Chinese Academy of Sciences
Michael Strube, Heidelberg Institute for Theoretical Studies
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Alexandersson, Enrique Alfonseca*, Afra Alishahi, Yiannis Aloimonos, David Alvarez-Melis*,
Richard Andersson, Ion Androutsopoulos*, Gabor Angeli*, Yuki Arase*, Cedric Archambeau,
Yasuo Ariki, Ron Artstein*, Yoav Artzi*, Nicholas Asher, Giuseppe Attardi, Michael Auli, AiTi
Aw, Necip Fazil Ayan

Olga Babko-Malaya, JinYeong Bak, Niranjan Balasubramanian, Timothy Baldwin*, Miguel Balles-
teros, David Bamman, Carmen Banea, Srinivas Bangalore, Mohit Bansal, Ken Barker, Marco
Baroni, Loic Barrault, Regina Barzilay, Roberto Basili, Timo Baumann, Frederic Bechet, Barend
Beekhuizen*, Nuria Bel, Anja Belz, Jose Miguel Benedi, Jonathan Berant, Taylor Berg-Kirkpatrick,
Steven Bethard, Suma Bhat*, Archna Bhatia*, Klinton Bicknell, Chris Biemann, Anders Bjorkelund*,
Alan W Black, Nate Blaylock, John Blitzer, Bernd Bohnet, Dan Bohus*, Ondrej Bojar, Gemma
Boleda*, Kalina Bontcheva, Antoine Bordes, Mihaela Bornea, Johan Bos, Alexandre Bouchard,
Johan Boye, Kristy Boyer, S.R.K. Branavan, Anténio Branco, Chris Brew, Ted Briscoe, Chris
Brockett*, Julian Brooke, Eric Brown, Elia Bruni, Paul Buitelaar, Razvan Bunescu, Harry Bunt,
Jill Burstein, Miriam Butt

Elena Cabrio, Aoife Cahill*, Nicoletta Calzolari, Erik Cambria, Marie Candito, Yunbo Cao, Xavier
Carreras*, Tommaso Caselli, Taylor Cassidy, Vittorio Castelli, Asli Celikyilmaz, Daniel Cer,
Christophe Cerisara, Nathanael Chambers*, Yee Seng Chan, Yi Chang, Wanxiang Che, Box-
ing Chen, Chen Chen, Wenliang Chen, Colin Cherry*, David Chiang, Christian Chiarcos, Laura
Chiticariu*, Eunsol Choi, Jinho D. Choi, Key-Sun Choi, Yejin Choi, Monojit Choudhury, Mun-
mun De Choudhury, Grzegorz Chrupata, Jennifer Chu-Carroll, Cindy Chung, Alexander Clark,
Stephen Clark, Ann Clifton, Moreno Coco*, Shay B. Cohen, Trevor Cohn, Nigel Collier, Gao
Cong, Miriam Connor, John Conroy, Paul Cook*, Bonaventura Coppola, Anna Corazza, Mark
Core, Marta R. Costa-jussa, Danilo Croce, Paul Crook, Tim Van De Cruys, Xiaodong Cui

Robert Daland*, Bharath Dandala, Kareem Darwish, Dipanjan Das, Thierry Declerck, Estelle
Delpech, Vera Demberg, John DeNero, Pascal Denis, Leon Derczynski, David DeVault*, Jacob
Devlin, Mona Diab, Marco Dinarelli, Georgiana Dinu, Stefanie Dipper, Dmitriy Dligach, Simon
Dobnik*, Bill Dolan, Mathew Magimai Doss, Doug Downey, Mark Dras, Mark Dredze*, Markus
Dreyer, Gregory Druck*, Lan Du, Xiangyu Duan, Ewan Dunbar*, Benjamin Van Durme*, Greg
Durrett*, Chris Dyer

Matthias Eck, Jens Edlund, Koji Eguchi, Yo Ehara*, Patrick Ehlen, Vladimir Eidelman, Jacob
Eisenstein, Michael Elhadad*, Desmond Elliott, Klaus-Peter Engelbrecht, Erkut Erdem*, Katrin
Erk*, Maxine Eskenazi

Giuseppe Di Fabbrizio, Anthony Fader*, James Fan, Benoit Favre*, Anna Feldman, Naomi Feld-
man, Raquel Fernandez, Katja Filippova, Nicholas FitzGerald, Darja FiSer, Margaret Fleck, Radu
Florian, Antske Fokkens*, David Forsyth, Karén Fort, George Foster, Jennifer Foster, James
Foulds*, Stella Frank, Alexander Fraser, Dayne Freitag*, Guohong Fu
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ley, Cyril Goutte, Amit Goyal, Joao Graca, Brigitte Grau, Agustin Gravano, Edouard Grave*,
Spence Green, Edward Grefenstette, Gregory Grefenstette, Ralph Grishman, Marco Guerini, Curry
Guinn*, Weiwei Guo, Yuhong Guo, Rahul Gupta*, Sonal Gupta, Carlos Gémez-Rodriguez*

Ben Hachey, Barry Haddow, Gholamreza Haffari, Hannaneh Hajishirzi, Dilek Hakkani-Tur, John
Hale, David Hall, Keith Hall, Bo Han, Xianpei Han, Mark Hasegawa-Johnson*, Hany Hassan,
Kenneth Heafield*, Peter Heeman, Ulrich Heid, James Henderson, John Henderson, Karl Moritz
Hermann, Tsutomu Hirao, Keikichi Hirose, Julia Hirschberg, Graeme Hirst, Anna Hjalmarsson,
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Invited Talk: Can Natural Language Processing Become Natural
LanguageCoaching?

Marti A. Hearst
School of Information and EECS, UC Berkeley

Abstract

How we teach and learn is undergoing a revolution, due to changes in technology and connectiv-
ity. Education may be one of the best application areas for advanced NLP techniques, and NLP
researchers have much to contribute to this problem, especially in the areas of learning to write,
mastery learning, and peer learning. In this talk I consider what happens when we convert natural
language processors into natural language coaches.

Biography

Marti Hearst is a Professor at UC Berkeley in the School of Information and EECS. She received
her PhD in CS from UC Berkeley in 1994 and was a member of the research staff at Xerox PARC
form 1994-1997. Her research is in computational linguistics, search user interfaces, information
visualization, and improving learning at scale. Her NLP work includes automatic acquisition of
hypernym relations (“Hearst Patterns”), TextTiling discourse segmentation, abbreviation recogni-
tion, and multiword semantic relations. She wrote the book “Search User Interfaces” (Cambridge)
in 2009, co-founded the ACM Conference on Learning at Scale in 2014, and was named an ACM
Fellow in 2013. She has received four student-initiated Excellence in Teaching Awards, including
in 2014 and 2015.
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Invited Talk: Construction and Mining of Heterogeneous Information
Networks from Text Data

Jiawei Han

Department of Computer Science, University of Illinois at Urbana-Champaign

Abstract

The real-world data are unstructured but interconnected. The majority of such data is in the form
of natural language text. One of the grand challenges is to turn such massive data into actionable
knowledge. In this talk, we present our vision on how to turn massive unstructured, text-rich, but
interconnected data into knowledge. We propose a data-to-network-to-knowledge (i.e., D2N2K)
paradigm, which is to first turn data into relatively structured heterogeneous information networks,
and then mine such text-rich and structure-rich heterogeneous networks to generate useful knowl-
edge. We show why such a paradigm represents a promising direction and present some recent
progress on the development of effective methods for construction and mining of structured het-
erogeneous information networks from text data.
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Jiawei Han is Abel Bliss Professor in the Department of Computer Science, University of Illinois
at Urbana-Champaign. He has been researching into data mining, information network analy-
sis, database systems, and data warehousing, with over 600 journal and conference publications.
He has chaired or served on many program committees of international conferences, including
PC co-chair for KDD, SDM, and ICDM conferences, and Americas Coordinator for VLDB con-
ferences. He also served as the founding Editor-In-Chief of ACM Transactions on Knowledge
Discovery from Data and is serving as the Director of Information Network Academic Research
Center supported by U.S. Army Research Lab, and Director of KnowEnG, an NIH funded Center
of Excellence in Big Data Computing. He is a Fellow of ACM and Fellow of IEEE, and received
2004 ACM SIGKDD Innovations Award, 2005 IEEE Computer Society Technical Achievement
Award, 2009 IEEE Computer Society Wallace McDowell Award, and 2011 Daniel C. Drucker
Eminent Faculty Award at UIUC. His co-authored book “Data Mining: Concepts and Techniques”
has been adopted as a textbook popularly worldwide.
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Conference Program

Sunday, July 26

18:00-21:00

Welcome Reception

Monday, July 27

07:30-18:00

08:45-09:00

09:00-09:40

09:40-10:10

10:10-11:50

Registration

Welcome to ACL-IJCNLP 2015

Presidential Address: Christopher D. Manning
Coffee Break

Session 1: TACL and Long Papers

Session 1A: 10:10-11:50 Machine Translation: Neural Networks

On Using Very Large Target Vocabulary for Neural Machine Translation
Sébastien Jean, Kyunghyun Cho, Roland Memisevic and Yoshua Bengio

Addressing the Rare Word Problem in Neural Machine Translation
Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals and Wojciech Zaremba

Encoding Source Language with Convolutional Neural Network for Machine Trans-
lation

Fandong Meng, Zhengdong Lu, Mingxuan Wang, Hang Li, Wenbin Jiang and Qun
Liu

Statistical Machine Translation Features with Multitask Tensor Networks
Hendra Setiawan, Zhonggiang Huang, Jacob Devlin, Thomas Lamar, Rabih Zbib,
Richard Schwartz and John Makhoul

XX Vil



Monday, July 27 (continued)

Session 1B: 10:10-11:50 Language and Vision/NLP Applications

Describing Images using Inferred Visual Dependency Representations
Desmond Elliott and Arjen de Vries

Text to 3D Scene Generation with Rich Lexical Grounding
Angel Chang, Will Monroe, Manolis Savva, Christopher Potts and Christopher D.
Manning

MultiGranCNN: An Architecture for General Matching of Text Chunks on Multiple
Levels of Granularity
Wenpeng Yin and Hinrich Schiitze

Weakly Supervised Models of Aspect-Sentiment for Online Course Discussion Fo-
rums
Arti Ramesh, Shachi H. Kumar, James Foulds and Lise Getoor

Session 1C: 10:10-11:50 Semantics: Embeddings
[TACL] Improving Distributional Similarity with Lessons Learned from Word Em-
beddings

Omer Levy, Yoav Goldberg, Ido Dagan

Semantically Smooth Knowledge Graph Embedding
Shu Guo, Quan Wang, Bin Wang, Lihong Wang and Li Guo

SensEmbed: Learning Sense Embeddings for Word and Relational Similarity
Ignacio Iacobacci, Mohammad Taher Pilehvar and Roberto Navigli

Revisiting Word Embedding for Contrasting Meaning

Zhigang Chen, Wei Lin, Qian Chen, Xiaoping Chen, Si Wei, Hui Jiang and Xiaodan
Zhu

XXViil



Monday, July 27 (continued)

Session 1D: 10:10-11:50 Machine Learning

Joint Models of Disagreement and Stance in Online Debate
Dhanya Sridhar, James Foulds, Bert Huang, Lise Getoor and Marilyn Walker

Low-Rank Regularization for Sparse Conjunctive Feature Spaces: An Application
to Named Entity Classification
Audi Primadhanty, Xavier Carreras and Ariadna Quattoni

Learning Word Representations by Jointly Modeling Syntagmatic and Paradigmatic
Relations

Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu and Xueqi Cheng

Learning Dynamic Feature Selection for Fast Sequential Prediction

Emma Strubell, Luke Vilnis, Kate Silverstein and Andrew McCallum

Session 1E: 10:10-11:50 Information Extraction 1

Compositional Vector Space Models for Knowledge Base Completion
Arvind Neelakantan, Benjamin Roth and Andrew McCallum

Event Extraction via Dynamic Multi-Pooling Convolutional Neural Networks
Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng and Jun Zhao

Stacked Ensembles of Information Extractors for Knowledge-Base Population
Vidhoon Viswanathan, Nazneen Fatema Rajani, Yinon Bentor and Raymond

Mooney

Generative Event Schema Induction with Entity Disambiguation
Kiem-Hieu Nguyen, Xavier Tannier, Olivier Ferret and Romaric Besancon

XXixX



Monday, July 27 (continued)

11:50-13:20 Lunch Break; Student Lunch

13:20-15:00 Session 2: TACL and Long Papers

Session 2A: 13:20-15:00 Machine Translation

Syntax-based Simultaneous Translation through Prediction of Unseen Syntactic
Constituents
Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki Toda and Satoshi Nakamura

Efficient Top-Down BTG Parsing for Machine Translation Preordering
Tetsuji Nakagawa

Online Multitask Learning for Machine Translation Quality Estimation
José G. C. de Souza, Matteo Negri, Elisa Ricci and Marco Turchi

A Context-Aware Topic Model for Statistical Machine Translation
Jinsong Su, Deyi Xiong, Yang Liu, Xianpei Han, Hongyu Lin, Junfeng Yao and
Min Zhang

Session 2B: 13:20-15:00 Question Answering

Learning Answer-Entailing Structures for Machine Comprehension
Mrinmaya Sachan, Kumar Dubey, Eric Xing and Matthew Richardson

Learning Continuous Word Embedding with Metadata for Question Retrieval in
Community Question Answering
Guangyou Zhou, Tingting He, Jun Zhao and Po Hu

Question Answering over Freebase with Multi-Column Convolutional Neural Net-
works

Li Dong, Furu Wei, Ming Zhou and Ke Xu

[TACL] Higher-order Lexical Semantic Models for Non-factoid Answer Reranking
Daniel Fried, Peter Jansen, Gustave Hahn-Powell, Mihai Surdeanu, Peter Clark
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Monday, July 27 (continued)

Session 2C: 13:20-15:00 Semantics: Distributional Approaches

Hubness and Pollution: Delving into Cross-Space Mapping for Zero-Shot Learning
Angeliki Lazaridou, Georgiana Dinu and Marco Baroni

[TACL] Learning a Compositional Semantics for Freebase with an Open Predicate
Vocabulary
Jayant Krishnamurthy and Tom M. Mitchell

A Generalisation of Lexical Functions for Composition in Distributional Semantics
Antoine Bride, Tim Van de Cruys and Nicholas Asher

Simple Learning and Compositional Application of Perceptually Grounded Word
Meanings for Incremental Reference Resolution
Casey Kennington and David Schlangen

Session 2D: 13:20-15:00 Parsing: Neural Networks

Neural CRF Parsing
Greg Durrett and Dan Klein

An Effective Neural Network Model for Graph-based Dependency Parsing
Wenzhe Pei, Tao Ge and Baobao Chang

Structured Training for Neural Network Transition-Based Parsing
David Weiss, Chris Alberti, Michael Collins and Slav Petrov

Transition-Based Dependency Parsing with Stack Long Short-Term Memory
Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews and Noah A. Smith

XXX1



Monday, July 27 (continued)

15:00-15:30

15:30-16:45

Session 2E: 13:20-15:00 Information Extraction 2

Leveraging Linguistic Structure For Open Domain Information Extraction
Gabor Angeli, Melvin Jose Johnson Premkumar and Christopher D. Manning

Joint Information Extraction and Reasoning: A Scalable Statistical Relational
Learning Approach
William Yang Wang and William W Cohen

A Knowledge-Intensive Model for Prepositional Phrase Attachment
Ndapandula Nakashole and Tom M. Mitchell

A Convolution Kernel Approach to Identifying Comparisons in Text
Maksim Tkachenko and Hady Lauw
Coffee Break

Session 3: TACL and Long Papers

Session 3A: 15:30-16:45 Language Resources

[TACL] A New Corpus and Imitation Learning Framework for Context-Dependent
Semantic Parsing
Andreas Vlachos and Stephen Clark

It Depends: Dependency Parser Comparison Using A Web-based Evaluation Tool
Jinho D. Choi, Joel Tetreault and Amanda Stent

Generating High Quality Proposition Banks for Multilingual Semantic Role Label-
ing

Alan Akbik, laura chiticariu, Marina Danilevsky, Yunyao Li, Shivakumar
Vaithyanathan and Huaiyu Zhu

XXXii



Monday, July 27 (continued)

Session 3B: 15:30-16:45 Sentiment Analysis: Cross-/Multi Lingual

Aligning Opinions: Cross-Lingual Opinion Mining with Dependencies

Mariana S. C. Almeida, Claudia Pinto, Helena Figueira, Pedro Mendes and André
F. T. Martins

Learning to Adapt Credible Knowledge in Cross-lingual Sentiment Analysis
Qiang Chen, Wenjie Li, Yu Lei, Xule Liu and Yanxiang He

Learning Bilingual Sentiment Word Embeddings for Cross-language Sentiment
Classification
HuiWei Zhou, Long Chen, Fulin Shi and Degen Huang

Session 3C: 15:30-16:45 Natural Language Generation

Content Models for Survey Generation: A Factoid-Based Evaluation
Rahul Jha, Catherine Finegan-Dollak, Ben King, Reed Coke and Dragomir Radev

Training a Natural Language Generator From Unaligned Data
Ondrej Dusek and Filip Jurcicek

Event-Driven Headline Generation
Rui Sun, Yue Zhang, Meishan Zhang and Donghong Ji
Session 3D: 15:30-16:45 Spoken Language Processing and Understanding

New Transfer Learning Techniques for Disparate Label Sets
Young-Bum Kim, Karl Stratos, Ruhi Sarikaya and Minwoo Jeong

Matrix Factorization with Knowledge Graph Propagation for Unsupervised Spoken
Language Understanding
Yun-Nung Chen, William Yang Wang, Anatole Gershman and Alexander Rudnicky

Efficient Disfluency Detection with Transition-based Parsing
Shuangzhi Wu, Dongdong Zhang, Ming Zhou and Tiejun Zhao
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Monday, July 27 (continued)

16:45-17:00

17:00-18:00

18:00-21:00

Session 3E: 15:30-16:45 Information Extraction 3/Information Retrieval
S-MART: Novel Tree-based Structured Learning Algorithms Applied to Tweet Entity
Linking

Yi Yang and Ming-Wei Chang

[TACL] Design Challenges for Entity Linking
Xiao Ling, Sameer Singh, Daniel S. Weld

Entity Retrieval via Entity Factoid Hierarchy

Chunliang Lu, Wai Lam and Yi Liao

Short Break

Session 4: Short Papers

Poster and Dinner Session 1: TACL Papers, Long Papers, System Demonstra-
tions

Session P1.01: 18:00-21:00 Poster: Pragmatics

Encoding Distributional Semantics into Triple-Based Knowledge Ranking for Doc-
ument Enrichment

Muyu Zhang, Bing Qin, Mao Zheng, Graeme Hirst and Ting Liu

A Strategic Reasoning Model for Generating Alternative Answers
Jon Stevens, Anton Benz, Sebastian Reufle and Ralf Klabunde

Modeling Argument Strength in Student Essays
Isaac Persing and Vincent Ng

XXX1V



Monday, July 27 (continued)

Session P1.02: 18:00-21:00 Poster: Information Retrieval

Summarization of Multi-Document Topic Hierarchies using Submodular Mixtures
Ramakrishna Bairi, Rishabh Iyer, Ganesh Ramakrishnan and Jeff Bilmes

Learning to Explain Entity Relationships in Knowledge Graphs
Nikos Voskarides, Edgar Meij, Manos Tsagkias, Maarten de Rijke and Wouter
Weerkamp

Session P1.03: 18:00-21:00 Poster: Information Extraction

[TACL] Exploiting Parallel News Streams for Unsupervised Event Extraction
Congle Zhang, Stephen Soderland, Daniel Weld

Bring you to the past: Automatic Generation of Topically Relevant Event Chronicles
Tao Ge, Wenzhe Pei, Heng Ji, Sujian Li, Baobao Chang and Zhifang Sui

Context-aware Entity Morph Decoding
Boliang Zhang, Hongzhao Huang, Xiaoman Pan, Sujian Li, Chin-Yew Lin, Heng
Ji, Kevin Knight, Zhen Wen, Yizhou Sun, Jiawei Han and Bulent Yener

Multi-Objective Optimization for the Joint Disambiguation of Nouns and Named
Entities
Dirk Weissenborn, Leonhard Hennig, Feiyu Xu and Hans Uszkoreit

Building a Scientific Concept Hierarchy Database (SCHBase)
Eytan Adar and Srayan Datta

Sentiment-Aspect Extraction based on Restricted Boltzmann Machines
Linlin Wang, Kang Liu, Zhu Cao, Jun Zhao and Gerard de Melo

Classifying Relations by Ranking with Convolutional Neural Networks
Cicero dos Santos, Bing Xiang and Bowen Zhou

Semantic Representations for Domain Adaptation: A Case Study on the Tree Kernel-
based Method for Relation Extraction
Thien Huu Nguyen, Barbara Plank and Ralph Grishman

Omnia Mutantur, Nihil Interit: Connecting Past with Present by Finding Corre-

sponding Terms across Time
Yating Zhang, Adam Jatowt, Sourav Bhowmick and Katsumi Tanaka
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Monday, July 27 (continued)

Negation and Speculation Identification in Chinese Language
Bowei Zou, Qiaoming Zhu and Guodong Zhou

Learning Relational Features with Backward Random Walks

Ni Lao, Einat Minkov and William Cohen

Session P1.04: 18:00-21:00 Poster: Language and Vision

Learning the Semantics of Manipulation Action

Yezhou Yang, Yiannis Aloimonos, Cornelia Fermuller and Eren Erdal Aksoy
Session P1.05: 18:00-21:00 Poster: Language Resources

Knowledge Graph Embedding via Dynamic Mapping Matrix
Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu and Jun Zhao

How Far are We from Fully Automatic High Quality Grammatical Error Correc-
tion?
Christopher Bryant and Hwee Tou Ng

Session P1.06: 18:00-21:00 Poster: Lexical Semantics and Ontology

Knowledge Portability with Semantic Expansion of Ontology Labels
Mihael Arcan, Marco Turchi and Paul Buitelaar

Automatic disambiguation of English puns
Tristan Miller and Iryna Gurevych

Unsupervised Cross-Domain Word Representation Learning
Danushka Bollegala, Takanori Maehara and Ken-ichi Kawarabayashi

A Unified Multilingual Semantic Representation of Concepts
José Camacho-Collados, Mohammad Taher Pilehvar and Roberto Navigli

XXXVi



Monday, July 27 (continued)
Session P1.07: 18:00-21:00 Poster: Linguistic and Psycholinguistic Aspects of
CL

Demographic Factors Improve Classification Performance
Dirk Hovy

Vector-space calculation of semantic surprisal for predicting word pronunciation
duration
Asad Sayeed, Stefan Fischer and Vera Demberg

Session P1.08: 18:00-21:00 Poster: Machine Learning and Topic Modeling

Efficient Methods for Inferring Large Sparse Topic Hierarchies
Doug Downey, Chandra Bhagavatula and Yi Yang

Trans-dimensional Random Fields for Language Modeling
Bin Wang, Zhijian Ou and Zhiqiang Tan

Gaussian LDA for Topic Models with Word Embeddings
Rajarshi Das, Manzil Zaheer and Chris Dyer
Session P1.09: 18:00-21:00 Poster: Machine Translation

Pairwise Neural Machine Translation Evaluation
Francisco Guzmaén, Shafiq Joty, Lluis Marquez and Preslav Nakov

String-to-Tree Multi Bottom-up Tree Transducers
Nina Seemann, Fabienne Braune and Andreas Maletti

Non-linear Learning for Statistical Machine Translation
Shujian Huang, Huadong Chen, Xin-Yu Dai and Jiajun Chen

Unifying Bayesian Inference and Vector Space Models for Improved Decipherment
Qing Dou, Ashish Vaswani, Kevin Knight and Chris Dyer

Non-projective Dependency-based Pre-Reordering with Recurrent Neural Network

for Machine Translation
Antonio Valerio Miceli Barone and Giuseppe Attardi

XXX Vil



Monday, July 27 (continued)

Session P1.10: 18:00-21:00 Poster: NLP Applications

Detecting Deceptive Groups Using Conversations and Network Analysis
Dian Yu, Yulia Tyshchuk, Heng Ji and William Wallace

WikiKreator: Improving Wikipedia Stubs Automatically
Siddhartha Banerjee and Prasenjit Mitra

Language to Code: Learning Semantic Parsers for If-This-Then-That Recipes
Chris Quirk, Raymond Mooney and Michel Galley

Deep Questions without Deep Understanding
Igor Labutov, Sumit Basu and Lucy Vanderwende

The NL2KR Platform for building Natural Language Translation Systems

Nguyen Vo, Arindam Mitra and Chitta Baral

Session P1.12: 18:00-21:00 Poster: Morphology

Multiple Many-to-Many Sequence Alignment for Combining String-Valued Vari-
ables: A G2P Experiment

Steffen Eger

Session P1.11: 18:00-21:00 Poster: NLP for the Web and Social Media

Tweet Normalization with Syllables
Ke Xu, Yunqging Xia and Chin-Hui Lee

Improving Named Entity Recognition in Tweets via Detecting Non-Standard Words
Chen Li and Yang Liu

XXXViil



Monday, July 27 (continued)

Session P1.13: 18:00-21:00 Poster: Question Answering

A Unified Kernel Approach for Learning Typed Sentence Rewritings
Martin Gleize and Brigitte Grau

Session P1.14: 18:00-21:00 Poster: Semantics

[TACL] From Visual Attributes to Adjectives through Decompositional Distribu-
tional Semantics
Angeliki Lazaridou, Georgiana Dinu, Adam Liska, Marco Baroni

Perceptually Grounded Selectional Preferences
Ekaterina Shutova, Niket Tandon and Gerard de Melo

Joint Case Argument Identification for Japanese Predicate Argument Structure
Analysis
Hiroki Ouchi, Hiroyuki Shindo, Kevin Duh and Yuji Matsumoto

Jointly optimizing word representations for lexical and sentential tasks with the C-
PHRASE model
Nghia The Pham, Germdn Kruszewski, Angeliki Lazaridou and Marco Baroni

Robust Subgraph Generation Improves Abstract Meaning Representation Parsing
Keenon Werling, Gabor Angeli and Christopher D. Manning

Environment-Driven Lexicon Induction for High-Level Instructions
Dipendra Kumar Misra, Kejia Tao, Percy Liang and Ashutosh Saxena

Structural Representations for Learning Relations between Pairs of Texts
Simone Filice, Giovanni Da San Martino and Alessandro Moschitti

XXX1X



Monday, July 27 (continued)

Session P1.15: 18:00-21:00 Poster: Sentiment Analysis

[TACL] Joint Modeling of Opinion Expression Extraction and Attribute Classifica-
tion
Bishan Yang and Claire Cardie

Learning Semantic Representations of Users and Products for Document Level Sen-
timent Classification
Duyu Tang, Bing Qin and Ting Liu

Towards Debugging Sentiment Lexicons
Andrew Schneider and Eduard Dragut

Sparse, Contextually Informed Models for Irony Detection: Exploiting User Com-
munities, Entities and Sentiment
Byron C. Wallace, Do Kook Choe and Eugene Charniak

Sentence-level Emotion Classification with Label and Context Dependence
Shoushan Li, Lei Huang, Rong Wang and Guodong Zhou

Co-training for Semi-supervised Sentiment Classification Based on Dual-view
Bags-of-words Representation
Rui Xia, Cheng Wang, Xin-Yu Dai and Tao Li

Improving social relationships in face-to-face human-agent interactions: when the
agent wants to know user’s likes and dislikes
Caroline Langlet and Chloé Clavel

Learning Word Representations from Scarce and Noisy Data with Embedding Sub-

spaces
Ramoén Astudillo, Silvio Amir, Wang Ling, Mario Silva and Isabel Trancoso
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Monday, July 27 (continued)

Session P1.16: 18:00-21:00 Poster: Spoken Language Processing
Automatic Spontaneous Speech Grading: A Novel Feature Derivation Technique
using the Crowd

Vinay Shashidhar, Nishant Pandey and Varun Aggarwal

Driving ROVER with Segment-based ASR Quality Estimation

Shahab Jalalvand, Matteo Negri, Falavigna Daniele and Marco Turchi

Session P1.17: 18:00-21:00 Poster: Natural Language Generation

A Hierarchical Neural Autoencoder for Paragraphs and Documents

Jiwei Li, Thang Luong and Dan Jurafsky

Session P1.18: 18:00-21:00 Poster: Tagging, Chunking, Parsing
[TACL]Domain Adaptation for Syntactic and Semantic Dependency Parsing Using
Deep Belief Networks

Haitong Yang, Tao Zhuang, Chengqing Zong

Joint Dependency Parsing and Multiword Expression Tokenization
Alexis Nasr, Carlos Ramisch, José Deulofeu and André Valli

End-to-end learning of semantic role labeling using recurrent neural networks
Jie Zhou and Wei Xu

Feature Optimization for Constituent Parsing via Neural Networks
Zhiguo Wang, Haitao Mi and Nianwen Xue

Identifying Cascading Errors using Constraints in Dependency Parsing
Dominick Ng and James R. Curran

A Re-ranking Model for Dependency Parser with Recursive Convolutional Neural
Network
Chenxi Zhu, Xipeng Qiu, Xinchi Chen and Xuanjing Huang

Transition-based Neural Constituent Parsing
Taro Watanabe and Eiichiro Sumita
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Monday, July 27 (continued)

Feature Selection in Kernel Space: A Case Study on Dependency Parsing
Xian Qian and Yang Liu

Semantic Role Labeling Improves Incremental Parsing
Ioannis Konstas and Frank Keller

Discontinuous Incremental Shift-reduce Parsing
Wolfgang Maier

A Neural Probabilistic Structured-Prediction Model for Transition-Based Depen-
dency Parsing

Hao Zhou, Yue Zhang, Shujian Huang and Jiajun Chen

Parsing Paraphrases with Joint Inference
Do Kook Choe and David McClosky

Cross-lingual Dependency Parsing Based on Distributed Representations

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng Wang and Ting Liu

Tuesday, July 28

07:30-18:00 Registration

09:00-10:00 Keynote Address: ‘“Can Natural Language Processing Become Natural Lan-

guage Coaching?” - Marti A. Hearst

Can Natural Language Processing Become Natural Language Coaching?
Marti A. Hearst
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Tuesday, July 28 (continued)

10:00-10:30 Coffee Break

10:30-12:00 Session 5: Short Papers

12:00-13:30 Lunch Break

13:30-14:45 Session 6: Long Papers

Session 6A: 13:30-14:45 Discourse, Pragmatics

Machine Comprehension with Discourse Relations
Karthik Narasimhan and Regina Barzilay

Implicit Role Linking on Chinese Discourse: Exploiting Explicit Roles and Frame-
to-Frame Relations

Ru Li, Juan Wu, Zhiqgiang Wang and Qinghua Chai

Discourse-sensitive Automatic ldentification of Generic Expressions

Annemarie Friedrich and Manfred Pinkal

Session 6B: 13:30-14:45 Machine Learning: Embeddings

Model-based Word Embeddings from Decompositions of Count Matrices
Karl Stratos, Michael Collins and Daniel Hsu

Entity Hierarchy Embedding
Zhiting Hu, Poyao Huang, Yuntian Deng, Yingkai Gao and Eric Xing

Orthogonality of Syntax and Semantics within Distributional Spaces
Jeff Mitchell and Mark Steedman

xliii



Tuesday, July 28 (continued)

Session 6C: 13:30-14:45 Semantics: Semantic Parsing

Scalable Semantic Parsing with Partial Ontologies
Eunsol Choi, Tom Kwiatkowski and Luke Zettlemoyer

Semantic Parsing via Staged Query Graph Generation: Question Answering with
Knowledge Base
Wen-tau Yih, Ming-Wei Chang, Xiaodong He and Jianfeng Gao

Building a Semantic Parser Overnight
Yushi Wang, Jonathan Berant and Percy Liang

Session 6D: 13:30-14:45 Sentiment Analysis: Learning

Predicting Polarities of Tweets by Composing Word Embeddings with Long Short-
Term Memory
Xin Wang, Yuanchao Liu, Chengjie SUN, Baoxun Wang and Xiaolong Wang

Topic Modeling based Sentiment Analysis on Social Media for Stock Market Pre-
diction
Thien Hai Nguyen and Kiyoaki Shirai

Learning Tag Embeddings and Tag-specific Composition Functions in Recursive
Neural Network
Qiao Qian, Bo Tian, Minlie Huang, Yang Liu, Xuan Zhu and Xiaoyan Zhu

Session 6E: 13:30-14:45 Grammar Induction and Annotation
A convex and feature-rich discriminative approach to dependency grammar induc-
tion

Edouard Grave and Noémie Elhadad

Parse Imputation for Dependency Annotations
Jason Mielens, Liang Sun and Jason Baldridge

Probing the Linguistic Strengths and Limitations of Unsupervised Grammar Induc-

tion
Yonatan Bisk and Julia Hockenmaier
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Tuesday, July 28 (continued)

14:45-15:15 Coffee Break

15:15-16:30 Session 7: TACL and Long Papers

Session 7A: 15:15-16:30 Discourse, Coreference

Entity-Centric Coreference Resolution with Model Stacking
Kevin Clark and Christopher D. Manning

Learning Anaphoricity and Antecedent Ranking Features for Coreference Resolu-
tion
Sam Wiseman, Alexander M. Rush, Stuart Shieber and Jason Weston

Transferring Coreference Resolvers with Posterior Regularization

André F. T. Martins

Session 7B: 15:15-16:30 Topic Modeling

Tea Party in the House: A Hierarchical Ideal Point Topic Model and Its Application
to Republican Legislators in the 112th Congress

Viet-An Nguyen, Jordan Boyd-Graber, Philip Resnik and Kristina Miler

KB-LDA: Jointly Learning a Knowledge Base of Hierarchy, Relations, and Facts
Dana Movshovitz-Attias and William W. Cohen

A Computationally Efficient Algorithm for Learning Topical Collocation Models

Zhendong Zhao, Lan Du, Benjamin Borschinger, John K Pate, Massimiliano Cia-
ramita, Mark Steedman and Mark Johnson

xlv



Tuesday, July 28 (continued)

Session 7C: 15:15-16:30 Semantics: Semantic Parsing

[TACL)] Efficient Inference and Structured Learning for Semantic Role Labeling
Oscar Tackstrom, Kuzman Ganchev, Dipanjan Das

Compositional Semantic Parsing on Semi-Structured Tables
Panupong Pasupat and Percy Liang

Graph parsing with s-graph grammars
Jonas Groschwitz, Alexander Koller and Christoph Teichmann
Session 7D: 15:15-16:30 Lexical Semantics

Sparse Overcomplete Word Vector Representations
Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris Dyer and Noah A. Smith

Learning Semantic Word Embeddings based on Ordinal Knowledge Constraints
Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling and Yu Hu

Adding Semantics to Data-Driven Paraphrasing
Ellie Pavlick, Johan Bos, Malvina Nissim, Charley Beller, Benjamin Van Durme
and Chris Callison-Burch

Session 7E: 15:15-16:30 Parsing

Farsing as Reduction
Daniel Fernandez-Gonzalez and André F. T. Martins

Optimal Shift-Reduce Constituent Parsing with Structured Perceptron
Le Quang Thang, Hiroshi Noji and Yusuke Miyao

A Data-Driven, Factorization Parser for CCG Dependency Structures
Yantao Du, Weiwei Sun and Xiaojun Wan
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Tuesday, July 28 (continued)

16:30-19:30

19:45-22:00

Poster and Dinner Session 2: Short Papers, Student Research Workshop Pa-
pers

Social Event

Wednesday, July 29

07:30-18:00

09:00-10:00

10:00-10:30

10:30-11:45

Registration

Keynote Address: ‘“Construction and Mining of Heterogenous Information
Networks from Data” - Jiawei Han

Coffee Break

Session 8: Long Papers

Session 8A: 10:30-11:45 Machine Learning: Neural Networks
Improved Semantic Representations From Tree-Structured Long Short-Term Mem-
ory Networks

Kai Sheng Tai, Richard Socher and Christopher D. Manning

genCNN: A Convolutional Architecture for Word Sequence Prediction
Mingxuan Wang, Zhengdong Lu, Hang Li, Wenbin Jiang and Qun Liu

Neural Responding Machine for Short-Text Conversation
Lifeng Shang, Zhengdong Lu and Hang Li

x1vii



Wednesday, July 29 (continued)

Session 8B: 10:30-11:45 Automatic Summarization

Abstractive Multi-Document Summarization via Phrase Selection and Merging
Lidong Bing, Piji Li, Yi Liao, Wai Lam, Weiwei Guo and Rebecca Passonneau

Joint Graphical Models for Date Selection in Timeline Summarization
Giang Tran, Eelco Herder and Katja Markert

Predicting Salient Updates for Disaster Summarization
Chris Kedzie, Kathleen McKeown and Fernando Diaz
Session 8C: 10:30-11:45 Linguistic and Psycholinguistic Aspects of NLP

Unsupervised Prediction of Acceptability Judgements
Jey Han Lau, Alexander Clark and Shalom Lappin

A Frame of Mind: Using Statistical Models for Detection of Framing and Agenda
Setting Campaigns
Oren Tsur, Dan Calacci and David Lazer

Why discourse affects speakers’ choice of referring expressions

Naho Orita, Eliana Vornov, Naomi Feldman and Hal Daumé III

Session 8D: 10:30-11:45 NLP for the Web: Social Media

Linguistic Harbingers of Betrayal: A Case Study on an Online Strategy Game
Vlad Niculae, Srijan Kumar, Jordan Boyd-Graber and Cristian Danescu-Niculescu-
Mizil

Who caught a cold ? - Identifying the subject of a symptom

Shin Kanouchi, Mamoru Komachi, Naoaki Okazaki, Eiji ARAMAKI and Hiroshi

Ishikawa

Weakly Supervised Role Identification in Teamwork Interactions
Diyi Yang, Miaomiao Wen and Carolyn Rose

x1viii



Wednesday, July 29 (continued)

Session S8E: 10:30-11:45 Text Categorization/Information Retrieval
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On Using Very Large Target Vocabulary for
Neural Machine Translation

Sébastien Jean Kyunghyun Cho
Roland Memisevic
Université de Montréal

Abstract

Neural machine translation, a recently
proposed approach to machine transla-
tion based purely on neural networks,
has shown promising results compared to
the existing approaches such as phrase-
based statistical machine translation. De-
spite its recent success, neural machine
translation has its limitation in handling
a larger vocabulary, as training complex-
ity as well as decoding complexity in-
crease proportionally to the number of tar-
get words. In this paper, we propose
a method based on importance sampling
that allows us to use a very large target vo-
cabulary without increasing training com-
plexity. We show that decoding can be
efficiently done even with the model hav-
ing a very large target vocabulary by se-
lecting only a small subset of the whole
target vocabulary. The models trained
by the proposed approach are empirically
found to match, and in some cases out-
perform, the baseline models with a small
vocabulary as well as the LSTM-based
neural machine translation models. Fur-
thermore, when we use an ensemble of
a few models with very large target vo-
cabularies, we achieve performance com-
parable to the state of the art (measured
by BLEU) on both the English—German
and English—French translation tasks of
WMT’ 14.

1 Introduction

Neural machine translation (NMT) is a recently
introduced approach to solving machine transla-
tion (Kalchbrenner and Blunsom, 2013; Bahdanau
et al., 2015; Sutskever et al., 2014). In neural ma-
chine translation, one builds a single neural net-
work that reads a source sentence and generates

1
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its translation. The whole neural network is jointly
trained to maximize the conditional probability of
a correct translation given a source sentence, us-
ing the bilingual corpus. The NMT models have
shown to perform as well as the most widely used
conventional translation systems (Sutskever et al.,
2014; Bahdanau et al., 2015).

Neural machine translation has a number of
advantages over the existing statistical machine
translation system, specifically, the phrase-based
system (Koehn et al., 2003). First, NMT requires
a minimal set of domain knowledge. For instance,
all of the models proposed in (Sutskever et al.,
2014), (Bahdanau et al., 2015) or (Kalchbrenner
and Blunsom, 2013) do not assume any linguis-
tic property in both source and target sentences
except that they are sequences of words. Sec-
ond, the whole system is jointly trained to maxi-
mize the translation performance, unlike the exist-
ing phrase-based system which consists of many
separately trained features whose weights are then
tuned jointly. Lastly, the memory footprint of the
NMT model is often much smaller than the exist-
ing system which relies on maintaining large ta-
bles of phrase pairs.

Despite these advantages and promising results,
there is a major limitation in NMT compared to
the existing phrase-based approach. That is, the
number of target words must be limited. This is
mainly because the complexity of training and us-
ing an NMT model increases as the number of tar-
get words increases.

A usual practice is to construct a target vo-
cabulary of the K most frequent words (a so-
called shortlist), where K is often in the range of
30k (Bahdanau et al., 2015) to 80k (Sutskever et
al., 2014). Any word not included in this vocab-
ulary is mapped to a special token representing
an unknown word [UNK]. This approach works
well when there are only a few unknown words
in the target sentence, but it has been observed
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that the translation performance degrades rapidly
as the number of unknown words increases (Cho
et al., 2014a; Bahdanau et al., 2015).

In this paper, we propose an approximate train-
ing algorithm based on (biased) importance sam-
pling that allows us to train an NMT model with
a much larger target vocabulary. The proposed al-
gorithm effectively keeps the computational com-
plexity during training at the level of using only
a small subset of the full vocabulary. Once
the model with a very large target vocabulary is
trained, one can choose to use either all the target
words or only a subset of them.

We compare the proposed algorithm against the
baseline shortlist-based approach in the tasks of
English—French and English—German transla-
tion using the NMT model introduced in (Bah-
danau et al., 2015). The empirical results demon-
strate that we can potentially achieve better trans-
lation performance using larger vocabularies, and
that our approach does not sacrifice too much
speed for both training and decoding. Further-
more, we show that the model trained with this al-
gorithm gets the best translation performance yet
achieved by single NMT models on the WMT’ 14
English—French translation task.

2 Neural Machine Translation and
Limited Vocabulary Problem

In this section, we briefly describe an approach
to neural machine translation proposed recently in
(Bahdanau et al., 2015). Based on this descrip-
tion we explain the issue of limited vocabularies
in neural machine translation.

2.1 Neural Machine Translation

Neural machine translation is a recently proposed
approach to machine translation, which uses a sin-
gle neural network trained jointly to maximize
the translation performance (Forcada and Neco,
1997; Kalchbrenner and Blunsom, 2013; Cho et
al., 2014b; Sutskever et al., 2014; Bahdanau et al.,
2015).

Neural machine translation is often imple-
mented as the encoder—decoder network. The en-
coder reads the source sentence © = (z1,...,z7)
and encodes it into a sequence of hidden states
h = (hl,--' ,hT)I

he = f (CUt, ht—l) . (D

Then, the decoder, another recurrent neural net-
work, generates a corresponding translation y =

(y1,--- ,y7) based on the encoded sequence of
hidden states h:

Pyt | y<t, ) < exp{q (yi—1,2e.¢6)},  (2)

where
2zt =4g (yt—la Zt_l,Ct) ) (3)
ct:r(zt_l,hl,...,hT), (4)
and Y<t = (yla oo 7yt71)‘

The whole model is jointly trained to maximize
the conditional log-probability of the correct trans-
lation given a source sentence with respect to the
parameters 6 of the model:

N T,

0" = arg(gnaxz > logp(y;' | vy, a™),
n=1 t=1

where (z",y") is the n-th training pair of sen-
tences, and T}, is the length of the n-th target sen-
tence (y™).

2.1.1 Detailed Description

In this paper, we use a specific implementation of
neural machine translation that uses an attention
mechanism, as recently proposed in (Bahdanau et
al., 2015).

In (Bahdanau et al.,, 2015), the encoder in
Eq. (1) is implemented by a bi-directional recur-
rent neural network such that

hy = [%ﬁﬁt} ;
where
%t =f (iﬁt,%tH) 7715 =f (xt,ﬁt—l) .

They used a gated recurrent unit for f (see, e.g.,
(Cho et al., 2014b)).

The decoder, at each time, computes the con-
text vector ¢; as a convex sum of the hidden states

(h1,...,hy) with the coefficients «q,...,ar
computed by
hi, zp—
at — eXp {a’( t’Zt ]-)} (5)

2k exp{a (e, ze-1)}

where a is a feedforward neural network with a
single hidden layer.

A new hidden state z; of the decoder in Eq. (3) is
computed based on the previous hidden state z;_1,
previous generated symbol y;_; and the computed



context vector ¢;. The decoder also uses the gated
recurrent unit, as the encoder does.

The probability of the next target word in
Eq. (2) is then computed by

1
Pyt | y<t,w) = — exp {Wthb (Yt—1, 2t, ) + bt}

A
(6)

where ¢ is an affine transformation followed by
a nonlinear activation, and w; and b, are respec-
tively the target word vector and the target word
bias. Z is the normalization constant computed by

Z= Y exp {WkT¢(yt—1,Zt70t) +bk}, (7)

k:ypeV

where V is the set of all the target words.

For the detailed description of the implementa-
tion, we refer the reader to the appendix of (Bah-
danau et al., 2015).

2.2 Limited Vocabulary Issue and
Conventional Solutions

One of the main difficulties in training this neu-
ral machine translation model is the computational
complexity involved in computing the target word
probability (Eq. (6)). More specifically, we need
to compute the dot product between the feature
& (Y¢—1, 2, ¢) and the word vector w; as many
times as there are words in a target vocabulary in
order to compute the normalization constant (the
denominator in Eq. (6)). This has to be done for,
on average, 20-30 words per sentence, which eas-
ily becomes prohibitively expensive even with a
moderate number of possible target words. Fur-
thermore, the memory requirement grows linearly
with respect to the number of target words. This
has been a major hurdle for neural machine trans-
lation, compared to the existing non-parametric
approaches such as phrase-based translation sys-
tems.

Recently proposed neural machine translation
models, hence, use a shortlist of 30k to 80k most
frequent words (Bahdanau et al., 2015; Sutskever
et al., 2014). This makes training more feasible,
but comes with a number of problems. First of all,
the performance of the model degrades heavily if
the translation of a source sentence requires many
words that are not included in the shortlist (Cho
et al., 2014a). This also affects the performance
evaluation of the system which is often measured
by BLEU. Second, the first issue becomes more

problematic with languages that have a rich set of
words such as German or other highly inflected
languages.

There are two model-specific approaches to this
issue of large target vocabulary. The first approach
is to stochastically approximate the target word
probability. This has been proposed recently in
(Mnih and Kavukcuoglu, 2013; Mikolov et al.,
2013) based on noise-contrastive estimation (Gut-
mann and Hyvarinen, 2010). In the second ap-
proach, the target words are clustered into multi-
ple classes, or hierarchical classes, and the target
probability p(y:|y<, ) is factorized as a product
of the class probability p(c¢|y<¢, x) and the intra-
class word probability p(y¢|ct, y<t,z). This re-
duces the number of required dot-products into the
sum of the number of classes and the words in a
class. These approaches mainly aim at reducing
the computational complexity during training, but
do not often result in speed-up when decoding a
translation during test time. !

Other than these model-specific approaches,
there exist translation-specific approaches. A
translation-specific approach exploits the proper-
ties of the rare target words. For instance, Luong
et al. proposed such an approach for neural ma-
chine translation (Luong et al., 2015). They re-
place rare words (the words that are not included
in the shortlist) in both source and target sentences
into corresponding (OOV,,) tokens using the word
alignment model. Once a source sentence is trans-
lated, each (OOV,,) in the translation will be re-
placed based on the source word marked by the
corresponding (OOV,,).

It is important to note that the model-
specific approaches and the translation-specific
approaches are often complementary and can be
used together to further improve the translation
performance and reduce the computational com-
plexity.

3 Approximate Learning Approach to
Very Large Target Vocabulary

3.1 Description

In this paper, we propose a model-specific ap-
proach that allows us to train a neural machine
translation model with a very large target vocab-
ulary. With the proposed approach, the compu-

"This is due to the fact that the beam search requires the
conditional probability of every target word at each time step
regardless of the parametrization of the output probability.



tational complexity of training becomes constant
with respect to the size of the target vocabulary.
Furthermore, the proposed approach allows us to
efficiently use a fast computing device with lim-
ited memory, such as a GPU, to train a neural ma-
chine translation model with a much larger target
vocabulary.

As mentioned earlier, the computational inef-
ficiency of training a neural machine translation
model arises from the normalization constant in
Eq. (6). In order to avoid the growing complex-
ity of computing the normalization constant, we
propose here to use only a small subset V' of the
target vocabulary at each update. The proposed
approach is based on the earlier work of (Bengio
and Sénécal, 2008).

Let us consider the gradient of the log-
probability of the output in Eq. (6). The gradient
is composed of a positive and negative part:

Viogp(ye | y<t, x) ®)

=VEW) — Y puk | y<i,2)VE(yr),
kiyr €V

where we define the energy £ as
E(yj) = W]-Tqﬁ (yj-1,2j,¢5) + bj.

The second, or negative, term of the gradient is in
essence the expected gradient of the energy:

Ep[VE(yY)], 9)

where P denotes p(y | y<¢, x).

The main idea of the proposed approach is to
approximate this expectation, or the negative term
of the gradient, by importance sampling with a
small number of samples. Given a predefined pro-
posal distribution @ and a set V/ of samples from
(2, we approximate the expectation in Eq. (9) with

Ep [VE(y)] ~ 2 VE(y),
} kyrev’ Zk'iyk/GV’ Wi )
(10)
where
wr = exp{E(yr) —log Q(yx)}. (1)

This approach allows us to compute the normal-
ization constant during training using only a small
subset of the target vocabulary, resulting in much
lower computational complexity for each param-
eter update. Intuitively, at each parameter update,

we update only the vectors associated with the cor-
rect word wy and with the sampled words in V.
Once training is over, we can use the full target vo-
cabulary to compute the output probability of each
target word.

Although the proposed approach naturally ad-
dresses the computational complexity, using this
approach naively does not guarantee that the num-
ber of parameters being updated for each sen-
tence pair, which includes multiple target words,
is bounded nor can be controlled. This becomes
problematic when training is done, for instance,
on a GPU with limited memory.

In practice, hence, we partition the training cor-
pus and define a subset V' of the target vocabu-
lary for each partition prior to training. Before
training begins, we sequentially examine each tar-
get sentence in the training corpus and accumulate
unique target words until the number of unique tar-
get words reaches the predefined threshold 7. The
accumulated vocabulary will be used for this par-
tition of the corpus during training. We repeat this
until the end of the training set is reached. Let us
refer to the subset of target words used for the ¢-th
partition by V.

This may be understood as having a separate
proposal distribution @); for each partition of the
training corpus. The distribution (); assigns equal
probability mass to all the target words included in
the subset VZ/ , and zero probability mass to all the
other words, i.e.,

1 . !
Qi) — 4 W eV

0 otherwise.

This choice of proposal distribution cancels out
the correction term — log Q(y) from the impor-
tance weight in Eqs. (10)-(11), which makes the
proposed approach equivalent to approximating
the exact output probability in Eq. (6) with

p(yt | y<ta$)
_ €Xp {W;rd) (ytflaztyct) +bt}
D kigeerr XD AWy & (-1, 20, ) + bi |

It should be noted that this choice of () makes the
estimator biased.

The proposed procedure results in speed up
against usual importance sampling, as it exploits
the advantage of modern computers in doing
matrix-matrix vs matrix-vector multiplications.



3.1.1 Informal Discussion on Consequence

The parametrization of the output probability in
Eq. (6) can be understood as arranging the vectors
associated with the target words such that the dot
product between the most likely, or correct, target
word’s vector and the current hidden state is max-
imized. The exponentiation followed by normal-
ization is simply a process in which the dot prod-
ucts are converted into proper probabilities.

As learning continues, therefore, the vectors of
all the likely target words tend to align with each
other but not with the others. This is achieved ex-
actly by moving the vector of the correct word in
the direction of ¢ (y;—1, 2¢, ¢;), while pushing all
the other vectors away, which happens when the
gradient of the logarithm of the exact output prob-
ability in Eq. (6) is maximized. Our approximate
approach, instead, moves the word vectors of the
correct words and of only a subset of sampled tar-
get words (those included in V).

3.2 Decoding

Once the model is trained using the proposed ap-
proximation, we can use the full target vocabulary
when decoding a translation given a new source
sentence. Although this is advantageous as it al-
lows the trained model to utilize the whole vocab-
ulary when generating a translation, doing so may
be too computationally expensive, e.g., for real-
time applications.

Since training puts the target word vectors in the
space so that they align well with the hidden state
of the decoder only when they are likely to be a
correct word, we can use only a subset of candi-
date target words during decoding. This is similar
to what we do during training, except that at test
time, we do not have access to a set of correct tar-
get words.

The most naive way to select a subset of candi-
date target words is to take only the top-K most
frequent target words, where K can be adjusted to
meet the computational requirement. This, how-
ever, effectively cancels out the whole purpose of
training a model with a very large target vocabu-
lary. Instead, we can use an existing word align-
ment model to align the source and target words in
the training corpus and build a dictionary. With the
dictionary, for each source sentence, we construct
a target word set consisting of the K-most fre-
quent words (according to the estimated unigram
probability) and, using the dictionary, at most K’

likely target words for each source word. K and
K’ may be chosen either to meet the computa-
tional requirement or to maximize the translation
performance on the development set. We call a
subset constructed in either of these ways a candi-
date list.

3.3 Source Words for Unknown Words

In the experiments, we evaluate the proposed ap-
proach with the neural machine translation model
called RNNsearch (Bahdanau et al., 2015) (see
Sec. 2.1.1). In this model, as a part of decoding
process, we obtain the alignments between the tar-
get words and source locations via the alignment
model in Eq. (5).

We can use this feature to infer the source word
to which each target word was most aligned (in-
dicated by the largest oy in Eq. (5)). This is
especially useful when the model generated an
[UNK] token. Once a translation is generated
given a source sentence, each [UNK] may be re-
placed using a translation-specific technique based
on the aligned source word. For instance, in the
experiment, we try replacing each [UNK] token
with the aligned source word or its most likely
translation determined by another word alignment
model. Other techniques such as transliteration
may also be used to further improve the perfor-
mance (Koehn, 2010).

4 Experiments

We evaluate the proposed approach in
English—French and English—German trans-
lation tasks. We trained the neural machine
translation models using only the bilingual, paral-
lel corpora made available as a part of WMT’ 14.
For each pair, the datasets we used are:

e English—French:?
— Common Crawl
— News Commentary
- Gigaword
— Europarl v7
- UN

e English—German:
— Common Crawl
— News Commentary
— Europarl v7
2The preprocessed data can be found and down-

loaded from http://www-1lium.univ-lemans.fr/
~schwenk/nnmt-shared-task/README.



H English-French H English-German

H Train ‘ Test H Train ‘ Test
15k 93.5 90.8 88.5 83.8
30k 96.0 94.6 91.8 87.9
50k 97.3 96.3 93.7 90.4
500k || 99.5 99.3 98.4 96.1
All 100.0 | 99.6 100.0 97.3

Table 1: Data coverage (in %) on target-side cor-
pora for different vocabulary sizes. ”All” refers to
all the tokens in the training set.

To ensure fair comparison, the English—French
corpus, which comprises approximately 12 mil-
lion sentences, is identical to the one used in
(Kalchbrenner and Blunsom, 2013; Bahdanau
et al.,, 2015; Sutskever et al., 2014). As for
English—German, the corpus was preprocessed,
in a manner similar to (Peitz et al., 2014; Li et al.,
2014), in order to remove many poorly translated
sentences.

We evaluate the models on the WMT’14 test
set (news-test 2014),> while the concatenation
of news-test-2012 and news-test-2013 is used
for model selection (development set). Table 1
presents data coverage w.r.t. the vocabulary size,
on the target side.

Unless mentioned otherwise, all reported BLEU
scores (Papineni et al., 2002) are computed with
the multi-bleu.perl script* on the cased tokenized
translations.

4.1 Settings

As a baseline for English—French translation, we
use the RNNsearch model proposed by (Bah-
danau et al., 2015), with 30k source and target
words.” Another RNNsearch model is trained for
English—German translation with 50k source and
target words.

For each language pair, we train another set
of RNNsearch models with much larger vocab-
ularies of 500k source and target words, using
the proposed approach. We call these models
RNNsearch-LV. We vary the size of the short-
list used during training (7 in Sec. 3.1). We tried

3To compare with previous submissions, we use the fil-
tered test sets.

‘nttps://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

The authors of (Bahdanau et al., 2015) gave us access to
their trained models. We chose the best one on the validation
set and resumed training.

15k and 30k for English—French, and 15k and
50k for English—German. We later report the re-
sults for the best performance on the development
set, with models generally evaluated every twelve
hours. The training speed is approximately the
same as for RNNsearch. Using a 780 Ti or Titan
Black GPU, we could process 100k mini-batches
of 80 sentences in about 29 and 39 hours respec-
tively for 7 = 15k and 7 = 50k.

For both language pairs, we also trained new
models, with 7 = 15k and 7 = 50k, by reshuffling
the dataset at the beginning of each epoch. While
this causes a non-negligible amount of overhead,
such a change allows words to be contrasted with
different sets of other words each epoch.

To stabilize parameters other than the word em-
beddings, at the end of the training stage, we
freeze the word embeddings and tune only the
other parameters for approximately two more days
after the peak performance on the development set
is observed. This helped increase BLEU scores on
the development set.

We use beam search to generate a translation
given a source. During beam search, we keep
a set of 12 hypotheses and normalize probabili-
ties by the length of the candidate sentences, as in
(Cho et al., 2014a).5 The candidate list is chosen
to maximize the performance on the development
set, for K € {15k, 30k, 50k} and K’ € {10,20}.
As explained in Sec. 3.2, we test using a bilin-
gual dictionary to accelerate decoding and to re-
place unknown words in translations. The bilin-
gual dictionary is built using fast_align (Dyer et
al., 2013). We use the dictionary only if a word
starts with a lowercase letter, and otherwise, we
copy the source word directly. This led to better
performance on the development sets.

Note on ensembles For each language pair, we
began training four models from each of which
two points corresponding to the best and second-
best performance on the development set were col-
lected. We continued training from each point,
while keeping the word embeddings fixed, until
the best development performance was reached,
and took the model at this point as a single model
in an ensemble. This procedure resulted in a to-
tal of eight models from which we averaged the
length-normalized log-probabilities. Since much
of training had been shared, the composition of

These experimental details differ from (Bahdanau et al.,
2015).



H RNNsearch | RNNsearch-LV | Google | Phrase-based SMT

Basic NMT 29.97 (26.58) 32.68 (28.76) 30.6*
+Candidate List - 33.36 (29.32) -
+UNK Replace 33.08 (29.08) 34.11 (29.98) 33.1° | 33.3* 37.03°¢
+Reshuffle (7=50k) - 34.60 (30.53) —
+Ensemble — 37.19 (31.98) 37.5°
(a) English—French
’ H RNNsearch ‘ RNNsearch-LV | Phrase-based SMT
Basic NMT 16.46 (17.13) 16.95 (17.85)
+Candidate List - 17.46 (18.00)
+UNK Replace || 18.97 (19.16) 18.89 (19.03) 20.67°
+Reshuffle — 19.40 (19.37)
+Ensemble - 21.59 (21.06)
(b) English—German

Table 2: The translation performances in BLEU obtained by different models on (a) English—French and
(b) English—German translation tasks. RNNsearch is the model proposed in (Bahdanau et al., 2015),
RNNsearch-LV is the RNNsearch trained with the approach proposed in this paper, and Google is the
LSTM-based model proposed in (Sutskever et al., 2014). Unless mentioned otherwise, we report single-
model RNNsearch-LV scores using 7 = 30k (English—French) and 7 = 50k (English—German).
For the experiments we have run ourselves, we show the scores on the development set as well in the
brackets. (x) (Sutskever et al., 2014), (o) (Luong et al., 2015), (o) (Durrani et al., 2014), (x) Standard
Moses Setting (Cho et al., 2014b), (¢) (Buck et al., 2014).

such ensembles may be sub-optimal. This is sup-
ported by the fact that higher cross-model BLEU
scores (Freitag et al., 2014) are observed for mod-
els that were partially trained together.

4.2 Translation Performance

In Table 2, we present the results obtained by the
trained models with very large target vocabular-
ies, and alongside them, the previous results re-
ported in (Sutskever et al., 2014), (Luong et al.,
2015), (Buck et al., 2014) and (Durrani et al.,
2014). Without translation-specific strategies, we
can clearly see that the RNNsearch-LV outper-
forms the baseline RNNsearch.

In the case of the English—French task,
RNNsearch-LV approached the performance level
of the previous best single neural machine transla-
tion (NMT) model, even without any translation-
specific techniques (Sec. 3.2-3.3). With these,
however, the RNNsearch-LV outperformed it. The
performance of the RNNsearch-LV is also better
than that of a standard phrase-based translation
system (Cho et al., 2014b). Furthermore, by com-
bining 8 models, we were able to achieve a trans-
lation performance comparable to the state of the
art, measured in BLEU.

For English—German, the RNNsearch-LV out-

performed the baseline before unknown word re-
placement, but after doing so, the two systems per-
formed similarly. We could reach higher large-
vocabulary single-model performance by reshuf-
fling the dataset, but this step could potentially
also help the baseline. In this case, we were able
to surpass the previously reported best translation
result on this task by building an ensemble of 8
models.

With 7 = 15k, the RNNsearch-LV performance
worsened a little, with best BLEU scores, with-
out reshuffling, of 33.76 and 18.59 respectively for
English—French and English—German.

The English—German ensemble described in
this paper has also been used for the shared trans-
lation task of the 10" Workshop on Statistical Ma-
chine Translation (WMT’15), where it was ranked
first in terms of BLEU score. The translations by
this ensemble can be found online.’

4.3 Analysis
4.3.1 Decoding Speed

In Table 3, we present the timing information of
decoding for different models. Clearly, decoding
from RNNsearch-LV with the full target vocab-

"http://matrix.statmt.org/matrix/
output/1774?run_id=4079



| CPU* | GPU®

RNNsearch 0.09s | 0.02s
RNNsearch-LV || 0.80s | 0.25 s
RNNsearch-LV

+Candidate list 0.125 ) 0.05s

Table 3: The average per-word decoding time.
Decoding here does not include parameter load-
ing and unknown word replacement. The baseline
uses 30k words. The candidate list is built with
K = 30k and K’ = 10. (%) i7-4820K (single
thread), (o) GTX TITAN Black

ulary is slowest. If we use a candidate list for
decoding each translation, the speed of decoding
substantially improves and becomes close to the
baseline RNNsearch.

A potential issue with using a candidate list is
that for each source sentence, we must re-build a
target vocabulary and subsequently replace a part
of the parameters, which may easily become time-
consuming. We can address this issue, for in-
stance, by building a common candidate list for
multiple source sentences. By doing so, we were
able to match the decoding speed of the baseline
RNNsearch model.

4.3.2 Decoding Target Vocabulary

For English—French (7 = 30k), we evaluate the
influence of the target vocabulary when translat-
ing the test sentences by using the union of a fixed
set of 30k common words and (at most) K likely
candidates for each source word according to the
dictionary. Results are presented in Figure 1. With
K’ = 0 (not shown), the performance of the sys-
tem is comparable to the baseline when not replac-
ing the unknown words (30.12), but there is not as
much improvement when doing so (31.14). As the
large vocabulary model does not predict [UNK] as
much during training, it is less likely to generate
it when decoding, limiting the effectiveness of the
post-processing step in this case. With K/ = 1,
which limits the diversity of allowed uncommon
words, BLEU is not as good as with moderately
larger K', which indicates that our models can, to
some degree, correctly choose between rare alter-
natives. If we rather use K = 50k, as we did
for testing based on validation performance, the
improvement over K’ = 1 is approximately 0.2
BLEU.

When validating the choice of K, we found it
to be correlated with the value of 7 used during

BLEU score

| —  With UNK replacement
— - Without UNK replacement

; T
10° 10! 10% 10%
K

Figure 1: Single-model test BLEU scores
(English—French) with respect to the number of
dictionary entries K’ allowed for each source
word.

training. For example, on the English—French
validation set, with 7 = 15k (and K’ = 10), the
BLEU score is 29.44 with K = 15k, but drops
to 29.19 and 28.84 respectively for K = 30k and
50k. For 7 = 30k, the score increases moder-
ately from K = 15k to K = 50k. A similar
effect was observed for English—German and on
the test sets. As our implementation of importance
sampling does not apply the usual correction to the
gradient, it seems beneficial for the test vocabular-
ies to resemble those used during training.

5 Conclusion

In this paper, we proposed a way to extend the size
of the target vocabulary for neural machine trans-
lation. The proposed approach allows us to train
a model with much larger target vocabulary with-
out any substantial increase in computational com-
plexity. It is based on the earlier work in (Bengio
and Sénécal, 2008) which used importance sam-
pling to reduce the complexity of computing the
normalization constant of the output word proba-
bility in neural language models.

On English—French and English—German
translation tasks, we observed that the neural ma-
chine translation models trained using the pro-
posed method performed as well as, or better
than, those using only limited sets of target words,
even when replacing unknown words. As per-
formance of the RNNsearch-LV models increased
when only a selected subset of the target vocab-
ulary was used during decoding, this makes the
proposed learning algorithm more practical.

When measured by BLEU, our models showed
translation performance comparable to the



state-of-the-art translation systems on both the
English—French task and English—German task.
On the English—French task, a model trained
with the proposed approach outperformed the best
single neural machine translation (NMT) model
from (Luong et al., 2015) by approximately 1
BLEU point. The performance of the ensemble
of multiple models, despite its relatively less
diverse composition, is approximately 0.3 BLEU
points away from the best system (Luong et al.,
2015). On the English—German task, the best
performance of 21.59 BLEU by our model is
higher than that of the previous state of the art
(20.67) reported in (Buck et al., 2014).

Finally, we release the source code used in our
experiments to encourage progress in neural ma-
chine translation.®
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Abstract

Neural Machine Translation (NMT) is a
new approach to machine translation that
has shown promising results that are com-
parable to traditional approaches. A sig-
nificant weakness in conventional NMT
systems is their inability to correctly trans-
late very rare words: end-to-end NMTs
tend to have relatively small vocabularies
with a single unk symbol that represents
every possible out-of-vocabulary (OOV)
word. In this paper, we propose and im-
plement an effective technique to address
this problem. We train an NMT system
on data that is augmented by the output
of a word alignment algorithm, allowing
the NMT system to emit, for each OOV
word in the target sentence, the position of
its corresponding word in the source sen-
tence. This information is later utilized in
a post-processing step that translates every
OOV word using a dictionary. Our exper-
iments on the WMT’ 14 English to French
translation task show that this method pro-
vides a substantial improvement of up to
2.8 BLEU points over an equivalent NMT
system that does not use this technique.
With 37.5 BLEU points, our NMT sys-
tem is the first to surpass the best result
achieved on a WMT’ 14 contest task.

1 Introduction

Neural Machine Translation (NMT) is a novel ap-
proach to MT that has achieved promising results
(Kalchbrenner and Blunsom, 2013; Sutskever et
al., 2014; Cho et al., 2014; Bahdanau et al., 2015;
Jean et al., 2015). An NMT system is a conceptu-
ally simple large neural network that reads the en-

Work done while the authors were in Google. t indicates
equal contribution.
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tire source sentence and produces an output trans-
lation one word at a time. NMT systems are ap-
pealing because they use minimal domain knowl-
edge which makes them well-suited to any prob-
lem that can be formulated as mapping an input
sequence to an output sequence (Sutskever et al.,
2014). In addition, the natural ability of neural
networks to generalize implies that NMT systems
will also generalize to novel word phrases and sen-
tences that do not occur in the training set. In addi-
tion, NMT systems potentially remove the need to
store explicit phrase tables and language models
which are used in conventional systems. Finally,
the decoder of an NMT system is easy to imple-
ment, unlike the highly intricate decoders used by
phrase-based systems (Koehn et al., 2003).

Despite these advantages, conventional NMT
systems are incapable of translating rare words be-
cause they have a fixed modest-sized vocabulary’
which forces them to use the unk symbol to repre-
sent the large number of out-of-vocabulary (OOV)
words, as illustrated in Figure 1. Unsurpris-
ingly, both Sutskever et al. (2014) and Bahdanau
et al. (2015) have observed that sentences with
many rare words tend to be translated much more
poorly than sentences containing mainly frequent
words. Standard phrase-based systems (Koehn et
al., 2007; Chiang, 2007; Cer et al., 2010; Dyer et
al., 2010), on the other hand, do not suffer from the
rare word problem to the same extent because they
can support a much larger vocabulary, and because
their use of explicit alignments and phrase tables
allows them to memorize the translations of even
extremely rare words.

Motivated by the strengths of standard phrase-

'Due to the computationally intensive nature of the soft-
max, NMT systems often limit their vocabularies to be the
top 30K-80K most frequent words in each language. How-
ever, Jean et al. (2015) has very recently proposed an efficient
approximation to the softmax that allows for training NTMs
with very large vocabularies. As discussed in Section 2, this
technique is complementary to ours.

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 11-19,
Beijing, China, July 26-31, 2015. (©2015 Association for Computational Linguistics

woj.zarembal@gmail.com



en: The ecotax portico in Pont-de-Buis , ... [truncated] ..., was taken down on Thursday morning

Jfr: Le portique écotaxe de Pont-de-Buis , ... [truncated] ..., a été démonté jeudi matin

nn: Le unk de unk & unk, ... [truncated] ..., a été pris le jeudi matin

Figure 1: Example of the rare word problem — An English source sentence (en), a human translation to
French (fr), and a translation produced by one of our neural network systems (nn) before handling OOV
words. We highlight words that are unknown to our model. The token unk indicates an OOV word. We
also show a few important alignments between the pair of sentences.

based system, we propose and implement a novel
approach to address the rare word problem of
NMTs. Our approach annotates the training cor-
pus with explicit alignment information that en-
ables the NMT system to emit, for each OOV
word, a “pointer” to its corresponding word in the
source sentence. This information is later utilized
in a post-processing step that translates the OOV
words using a dictionary or with the identity trans-
lation, if no translation is found.

Our experiments confirm that this approach is
effective. On the English to French WMT’14
translation task, this approach provides an im-
provement of up to 2.8 (if the vocabulary is rel-
atively small) BLEU points over an equivalent
NMT system that does not use this technique.
Moreover, our system is the first NMT that out-
performs the winner of a WMT’ 14 task.

2 Neural Machine Translation

A neural machine translation system is any neural
network that maps a source sentence, si, ..., Sp,
to a target sentence, ti,...,t,, where all sen-
tences are assumed to terminate with a special
“end-of-sentence” token <eos>. More con-
cretely, an NMT system uses a neural network to
parameterize the conditional distributions

p(tilt<j, s<n) 1)

for 1 < 5 < m. By doing so, it becomes pos-
sible to compute and therefore maximize the log
probability of the target sentence given the source
sentence

logp(t]s) = Y logp(tjltej,s<n)  (2)
j=1

There are many ways to parameterize these con-
ditional distributions. For example, Kalchbrenner
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and Blunsom (2013) used a combination of a con-
volutional neural network and a recurrent neural
network, Sutskever et al. (2014) used a deep Long
Short-Term Memory (LSTM) model, Cho et al.
(2014) used an architecture similar to the LSTM,
and Bahdanau et al. (2015) used a more elabo-
rate neural network architecture that uses an atten-
tional mechanism over the input sequence, similar
to Graves (2013) and Graves et al. (2014).

In this work, we use the model of Sutskever et
al. (2014), which uses a deep LSTM to encode the
input sequence and a separate deep LSTM to out-
put the translation. The encoder reads the source
sentence, one word at a time, and produces a large
vector that represents the entire source sentence.
The decoder is initialized with this vector and gen-
erates a translation, one word at a time, until it
emits the end-of-sentence symbol <eos>.

None the early work in neural machine transla-
tion systems has addressed the rare word problem,
but the recent work of Jean et al. (2015) has tack-
led it with an efficient approximation to the soft-
max to accommodate for a very large vocabulary
(500K words). However, even with a large vocab-
ulary, the problem with rare words, e.g., names,
numbers, etc., still persists, and Jean et al. (2015)
found that using techniques similar to ours are
beneficial and complementary to their approach.

3 Rare Word Models

Despite the relatively large amount of work done
on pure neural machine translation systems, there
has been no work addressing the OOV problem in
NMT systems, with the notable exception of Jean
et al. (2015)’s work mentioned earlier.

We propose to address the rare word problem
by training the NMT system to track the origins
of the unknown words in the target sentences. If
we knew the source word responsible for each un-



en: The unk; portico in unks

fr: Le unky unk; de unks

Figure 2: Copyable Model — an annotated exam-
ple with two types of unknown tokens: “copyable”
unky, and null unkg.

known target word, we could introduce a post-
processing step that would replace each unk in
the system’s output with a translation of its source
word, using either a dictionary or the identity
translation. For example, in Figure 1, if the
model knows that the second unknown token in
the NMT (line nn) originates from the source word
ecotax, it can perform a word dictionary lookup
to replace that unknown token by écotaxe. Sim-
ilarly, an identity translation of the source word
Pont-de-Buis can be applied to the third un-
known token.

We present three annotation strategies that can
easily be applied to any NMT system (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014,
Cho et al., 2014). We treat the NMT system as
a black box and train it on a corpus annotated by
one of the models below. First, the alignments are
produced with an unsupervised aligner. Next, we
use the alignment links to construct a word dictio-
nary that will be used for the word translations in
the post-processing step.” If a word does not ap-
pear in our dictionary, then we apply the identity
translation.

The first few words of the sentence pair in Fig-
ure 1 (lines en and fr) illustrate our models.

3.1 Copyable Model

In this approach, we introduce multiple tokens
to represent the various unknown words in the
source and in the target language, as opposed to
using only one unk token. We annotate the OOV
words in the source sentence with unk;, unko,
unks, in that order, while assigning repeating un-
known words identical tokens. The annotation
of the unknown words in the target language is
slightly more elaborate: (a) each unknown target
word that is aligned to an unknown source word
is assigned the same unknown token (hence, the

When a source word has multiple translations, we use
the translation with the highest probability. These translation
probabilities are estimated from the unsupervised alignment
links. When constructing the dictionary from these alignment
links, we add a word pair to the dictionary only if its align-
ment count exceeds 100.
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en: The unk portico in unk ...
fr: Le pg unk p_1 unk p; de py unkp_1 ...

Figure 3: Positional All Model — an example of
the PosAll model. Each word is followed by the
relative positional tokens p, or the null token py.

“copy” model) and (b) an unknown target word
that has no alignment or that is aligned with a
known word uses the special null token unkgy. See
Figure 2 for an example. This annotation enables
us to translate every non-null unknown token.

3.2 Positional All Model (PosAll)

The copyable model is limited by its inability to
translate unknown target words that are aligned
to known words in the source sentence, such as
the pair of words, “portico” and “portique”, in our
running example. The former word is known on
the source sentence; whereas latter is not, so it
is labelled with unky. This happens often since
the source vocabularies of our models tend to be
much larger than the target vocabulary since a
large source vocabulary is cheap. This limita-
tion motivated us to develop an annotation model
that includes the complete alignments between the
source and the target sentences, which is straight-
forward to obtain since the complete alignments
are available at training time.

Specifically, we return to using only a single
universal unk token. However, on the target
side, we insert a positional token p, after ev-
ery word. Here, d indicates a relative position
(d=-7,...,—1,0,1,...,7) to denote that a tar-
get word at position j is aligned to a source word
at position ¢ = j — d. Aligned words that are too
far apart are considered unaligned, and unaligned
words rae annotated with a null token p,,. Our an-
notation is illustrated in Figure 3.

3.3 Positional Unknown Model (PosUnk)

The main weakness of the PosAll model is that
it doubles the length of the target sentence. This
makes learning more difficult and slows the speed
of parameter updates by a factor of two. How-
ever, given that our post-processing step is con-
cerned only with the alignments of the unknown
words, so it is more sensible to only annotate the
unknown words. This motivates our positional un-
known model which uses unkpos, tokens (for d
in —7,...,7 or () to simultaneously denote (a)



the fact that a word is unknown and (b) its rela-
tive position d with respect to its aligned source
word. Like the PosAll model, we use the symbol
unkposy for unknown target words that do not
have an alignment. We use the universal unk for
all unknown tokens in the source language. See
Figure 4 for an annotated example.

en: The unk portico in unk ...

fr: Le unkposy) unkpos_q de unkposi ...

Figure 4: Positional Unknown Model — an exam-
ple of the PosUnk model: only aligned unknown
words are annotated with the unkpo s, tokens.

It is possible that despite its slower speed, the
PosAll model will learn better alignments because
it is trained on many more examples of words and
their alignments. However, we show that this is
not the case (see §5.2).

4 Experiments

We evaluate the effectiveness of our OOV mod-
els on the WMT’ 14 English-to-French translation
task. Translation quality is measured with the
BLEU metric (Papineni et al., 2002) on the new-
stest2014 test set (which has 3003 sentences).

4.1 Training Data

To be comparable with the results reported by pre-
vious work on neural machine translation systems
(Sutskever et al., 2014; Cho et al., 2014; Bahdanau
et al., 2015), we train our models on the same
training data of 12M parallel sentences (348M
French and 304M English words), obtained from
(Schwenk, 2014). The 12M subset was selected
from the full WMT’ 14 parallel corpora using the
method proposed in Axelrod et al. (2011).

Due to the computationally intensive nature of
the naive softmax, we limit the French vocabulary
(the rarget language) to the either the 40K or the
80K most frequent French words. On the source
side, we can afford a much larger vocabulary, so
we use the 200K most frequent English words.
The model treats all other words as unknowns.>

We annotate our training data using the three
schemes described in the previous section. The
alignment is computed with the Berkeley aligner
(Liang et al., 2006) using its default settings. We

3When the French vocabulary has 40K words, there are
on average 1.33 unknown words per sentence on the target
side of the test set.
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discard sentence pairs in which the source or the
target sentence exceed 100 tokens.

4.2 Training Details

Our training procedure and hyperparameter
choices are similar to those used by Sutskever et
al. (2014). In more details, we train multi-layer
deep LSTMs, each of which has 1000 cells, with
1000 dimensional embeddings. Like Sutskever et
al. (2014), we reverse the words in the source sen-
tences which has been shown to improve LSTM
memory utilization and results in better transla-
tions of long sentences. Our hyperparameters can
be summarized as follows: (a) the parameters are
initialized uniformly in [-0.08, 0.08] for 4-layer
models and [-0.06, 0.06] for 6-layer models, (b)
SGD has a fixed learning rate of 0.7, (c) we train
for 8 epochs (after 5 epochs, we begin to halve
the learning rate every 0.5 epoch), (d) the size
of the mini-batch is 128, and (e) we rescale the
normalized gradient to ensure that its norm does
not exceed 5 (Pascanu et al., 2012).

We also follow the GPU parallelization scheme
proposed in (Sutskever et al., 2014), allowing us
to reach a training speed of 5.4K words per sec-
ond to train a depth-6 model with 200K source
and 80K target vocabularies ; whereas Sutskever
et al. (2014) achieved 6.3K words per second for
a depth-4 models with 80K source and target vo-
cabularies. Training takes about 10-14 days on an
8-GPU machine.

4.3 A note on BLEU scores

We report BLEU scores based on both: (a) defok-
enized translations, i.e., WMT’ 14 style, to be com-
parable with results reported on the WMT web-
site* and (b) tokenized translations, so as to be
consistent with previous work (Cho et al., 2014;
Bahdanau et al., 2015; Schwenk, 2014; Sutskever
et al., 2014; Jean et al., 2015).°

The existing WMT’14 state-of-the-art system
(Durrani et al.,, 2014) achieves a detokenized
BLEU score of 35.8 on the newstest2014 test set
for English to French language pair (see Table 2).
In terms of the tokenized BLEU, its performance
is 37.0 points (see Table 1).

‘nttp://matrix.statmt.org/matrix
>The tokenizer.perl and multi-bleu.pl
scripts are used to tokenize and score translations.



System Vocab | Corpus | BLEU
State of the art in WMT’ 14 (Durrani et al., 2014) All 36M 37.0
Standard MT + neural components

Schwenk (2014) — neural language model All 12M 33.3

Cho et al. (2014)— phrase table neural features All 12M 34.5
Sutskever et al. (2014) — 5 LSTMs, reranking 1000-best lists All 12M 36.5

Existing end-to-end NMT systems

Bahdanau et al. (2015) — single gated RNN with search 30K 12M | 28.5
Sutskever et al. (2014) — 5 LSTMs 80K 12M 34.8

Jean et al. (2015) — 8 gated RNNs with search + UNK replacement | 500K 12M 37.2

Our end-to-end NMT systems

Single LSTM with 4 layers 40K 12M | 29.5
Single LSTM with 4 layers + PosUnk 40K 12M 31.8 (+2.3)
Single LSTM with 6 layers 40K 12M 304
Single LSTM with 6 layers + PosUnk 40K 12M 32.7 (+2.3)
Ensemble of 8§ LSTMs 40K 12M 34.1
Ensemble of 8 LSTMs + PosUnk 40K 12M 36.9 (+2.8)
Single LSTM with 6 layers 80K 36M | 31.5
Single LSTM with 6 layers + PosUnk 80K 36M 33.1 (+1.6)
Ensemble of 8§ LSTMs 80K 36M 35.6
Ensemble of 8 LSTMs + PosUnk 80K 36M 37.5 (+1.9)

Table 1: Tokenized BLEU on newstest2014 — Translation results of various systems which differ in
terms of: (a) the architecture, (b) the size of the vocabulary used, and (c) the training corpus, either
using the full WMT’14 corpus of 36M sentence pairs or a subset of it with 12M pairs. We highlight
the performance of our best system in bolded text and state the improvements obtained by our technique
of handling rare words (namely, the PosUnk model). Notice that, for a given vocabulary size, the more
accurate systems achieve a greater improvement from the post-processing step. This is the case because
the more accurate models are able to pin-point the origin of an unknown word with greater accuracy,

making the post-processing more useful.

System BLEU
Existing SOTA (Durrani et al., 2014) | 35.8
Ensemble of 8 LSTMs + PosUnk 36.6

Table 2: Detokenized BLEU on newstest2014 —
translation results of the existing state-of-the-art
system and our best system.

4.4 Main Results

We compare our systems to others, including the
current state-of-the-art MT system (Durrani et
al., 2014), recent end-to-end neural systems, as
well as phrase-based baselines with neural com-
ponents.

The results shown in Table 1 demonstrate that
our unknown word translation technique (in par-
ticular, the PosUnk model) significantly improves
the translation quality for both the individual (non-
ensemble) LSTM models and the ensemble mod-

15

els.® For 40K-word vocabularies, the performance
gains are in the range of 2.3-2.8 BLEU points.
With larger vocabularies (80K), the performance
gains are diminished, but our technique can still
provide a nontrivial gains of 1.6-1.9 BLEU points.

It is interesting to observe that our approach is
more useful for ensemble models as compared to
the individual ones. This is because the useful-
ness of the PosUnk model directly depends on the
ability of the NMT to correctly locate, for a given
OOV target word, its corresponding word in the
source sentence. An ensemble of large models
identifies these source words with greater accu-
racy. This is why for the same vocabulary size,
better models obtain a greater performance gain

For the 40K-vocabulary ensemble, we combine 5 mod-
els with 4 layers and 3 models with 6 layers. For the 80K-
vocabulary ensemble, we combine 3 models with 4 layers and
5 models with 6 layers. Two of the depth-6 models are reg-
ularized with dropout, similar to Zaremba et al. (2015) with
the dropout probability set to 0.2.



our post-processing step. e Except for the very re-
cent work of Jean et al. (2015) that employs a sim-
ilar unknown treatment strategy’ as ours, our best
result of 37.5 BLEU outperforms all other NMT
systems by a arge margin, and more importanly,
our system has established a new record on the
WMT’ 14 English to French translation.

5 Analysis

We analyze and quantify the improvement ob-
tained by our rare word translation approach and
provide a detailed comparison of the different
rare word techniques proposed in Section 3. We
also examine the effect of depth on the LSTM
architectures and demonstrate a strong correla-
tion between perplexities and BLEU scores. We
also highlight a few translation examples where
our models succeed in correctly translating OOV
words, and present several failures.

5.1 Rare Word Analysis

To analyze the effect of rare words on translation
quality, we follow Sutskever et al. (Sutskever et al.,
2014) and sort sentences in newstest2014 by the
average inverse frequency of their words. We split
the test sentences into groups where the sentences
within each group have a comparable number of
rare words and evaluate each group independently.
We evaluate our systems before and after translat-
ing the OOV words and compare with the stan-
dard MT systems — we use the best system from
the WMT’ 14 contest (Durrani et al., 2014), and
neural MT systems — we use the ensemble systems
described in (Sutskever et al., 2014) and Section 4.

Rare word translation is challenging for neural
machine translation systems as shown in Figure 5.
Specifically, the translation quality of our model
before applying the postprocessing step is shown
by the green curve, and the current best NMT sys-
tem (Sutskever et al., 2014) is the purple curve.
While (Sutskever et al., 2014) produces better
translations for sentences with frequent words (the
left part of the graph), they are worse than best

"Their unknown replacement method and ours both track
the locations of target unknown words and use a word dictio-
nary to post-process the translation. However, the mechanism
used to achieve the “tracking” behavior is different. Jean et al.
(2015)’s uses the attentional mechanism to track the origins
of all target words, not just the unknown ones. In contrast,
we only focus on tracking unknown words using unsuper-
vised alignments. Our method can be easily applied to any
sequence-to-sequence models since we treat any model as a
blackbox and manipulate only at the input and output levels.
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Figure 5: Rare word translation — On the x-axis,
we order newstest2014 sentences by their aver-
age frequency rank and divide the sentences into
groups of sentences with a comparable prevalence
of rare words. We compute the BLEU score of
each group independently.

system (red curve) on sentences with many rare
words (the right side of the graph). When applying
our unknown word translation technique (purple
curve), we significantly improve the translation
quality of our NMT: for the last group of 500 sen-
tences which have the greatest proportion of OOV
words in the test set, we increase the BLEU score
of our system by 4.8 BLEU points. Overall, our
rare word translation model interpolates between
the SOTA system and the system of Sutskever et
al. (2014), which allows us to outperform the win-
ning entry of WMT’ 14 on sentences that consist
predominantly of frequent words and approach its
performance on sentences with many OOV words.

5.2 Rare Word Models

We examine the effect of the different rare word
models presented in Section 3, namely: (a) Copy-
able — which aligns the unknown words on both
the input and the target side by learning to copy in-
dices, (b) the Positional All (PosAll) — which pre-
dicts the aligned source positions for every target
word, and (c) the Positional Unknown (PosUnk)
— which predicts the aligned source positions for
only the unknown target words.® It is also interest-

81n this section and in section 5.3, all models are trained
on the unreversed sentences, and we use the following hyper-
parameters: we initialize the parameters uniformly in [-0.1,
0.1], the learning rate is 1, the maximal gradient norm is 1,
with a source vocabulary of 90k words, and a target vocab-
ulary of 40k (see Section 4.2 for more details). While these
LSTMs do not achieve the best possible performance, it is
still useful to analyze them.
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Figure 6: Rare word models — translation perfor-
mance of 6-layer LSTMs: a model that uses no
alignment (NoAlign) and the other rare word mod-
els (Copyable, PosAll, PosUnk). For each model,
we show results before (leff) and after (right) the
rare word translation as well as the perplexity (in
parentheses). For PosAll, we report the perplexi-
ties of predicting the words and the positions.

ing to measure the improvement obtained when no
alignment information is used during training. As
such, we include a baseline model with no align-
ment knowledge (NoAlign) in which we simply as-
sume that the 7 unknown word on the target sen-
tence is aligned to the i unknown word in the
source sentence.

From the results in Figure 6, a simple mono-
tone alignment assumption for the NoAlign model
yields a modest gain of 0.8 BLEU points. If we
train the model to predict the alignment, then the
Copyable model offers a slightly better gain of 1.0
BLEU. Note, however, that English and French
have similar word order structure, so it would
be interesting to experiment with other language
pairs, such as English and Chinese, in which the
word order is not as monotonic. These harder lan-
guage pairs potentially imply a smaller gain for the
NoAlign model and a larger gain for the Copyable
model. We leave it for future work.

The positional models (PosAll and PosUnk) im-
prove translation performance by more than 2
BLEU points. This proves that the limitation of the
copyable model, which forces it to align each un-
known output word with an unknown input word,
is considerable. In contrast, the positional mod-
els can align the unknown target words with any
source word, and as a result, post-processing has a
much stronger effect. The PosUnk model achieves
better translation results than the PosAll model
which suggests that it is easier to train the LSTM
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Depth 3 (6.01) Depth 4 (5.71)  Depth 6 (5.46)

Figure 7: Effect of depths — BLEU scores
achieved by PosUnk models of various depths (3,
4, and 6) before and after the rare word transla-
tion. Notice that the PosUnk model is more useful
on more accurate models.

on shorter sequences.

5.3 Other Effects

Deep LSTM architecture — We compare PosUnk
models trained with different number of layers (3,
4, and 6). We observe that the gain obtained by
the PosUnk model increases in tandem with the
overall accuracy of the model, which is consistent
with the idea that larger models can point to the ap-
propriate source word more accurately. Addition-
ally, we observe that on average, each extra LSTM
layer provides roughly 1.0 BLEU point improve-
ment as demonstrated in Figure 7.

26.51
26r
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25¢
24.5¢
24r
23.5¢
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w
-
o

5.8 62 64 66 68
Perplexity
Figure 8: Perplexity vs. BLEU — we show the
correlation by evaluating an LSTM model with 4

layers at various stages of training.

Perplexity and BLEU — Lastly, we find it inter-
esting to observe a strong correlation between the
perplexity (our training objective) and the transla-
tion quality as measured by BLEU. Figure 8 shows
the performance of a 4-layer LSTM, in which we
compute both perplexity and BLEU scores at dif-
ferent points during training. We find that on aver-
age, a reduction of 0.5 perplexity gives us roughly
1.0 BLEU point improvement.



Sentences

An additional 2600 operations including orthopedic and cataract surgery will
help clear a backlog .

En outre , unkposs; opérations supplémentaires , dont la chirurgie unkposs
etla unkposg , permettront de résorber 1’ arriéré .

En outre , 2600 opérations supplémentaires , dont la chirurgie orthopédiques
et la cataracte , permettront de résorber 1’ arriéré .

2600 opérations supplémentaires , notamment dans le domaine de la chirurgie
orthopédique et de la cataracte , aideront a rattraper le retard .

This trader , Richard Usher , left RBS in 2010 and is understand to have be
given leave from his current position as European head of forex spot trading at
JPMorgan .

Ce unkposg , Richard unkposg , a quitté unkpos; en 2010 et a compris qu’
il est autorisé a quitter son poste actuel en tant que leader européen du marché
des points de vente au unkposs .

Ce négociateur , Richard Usher , a quitté RBS en 2070 et a compris qu’ il est
autorisé a quitter son poste actuel en tant que leader européen du marché des
points de vente au JPMorgan .

Ce trader , Richard Usher , a quitté RBS en 2010 et aurait été mis suspendu
de son poste de responsable européen du trading au comptant pour les devises
chez JPMorgan

S1C

trans

+unk

tat

SIC

trans

+unk

tgt

src | But concerns have grown after Mr Mazanga was quoted as saying Renamo was
abandoning the 1992 peace accord .

Mais les inquiétudes se sont accrues apres que M. unkposs a déclaré que la
unkposs unkposs 1’ accord de paix de 1992 .

Mais les inquiétudes se sont accrues apres que M. Mazanga a déclaré que la
Renamo était I’ accord de paix de 1992 .

Mais I’ inquiétude a grandi aprés que M. Mazanga a déclaré que la Renamo

abandonnait I’ accord de paix de 1992 .

trans

+unk

tgt

Table 3: Sample translations — the table shows the source (src) and the translations of our best model
before (trans) and after (+unk) unknown word translations. We also show the human translations (zgt)
and italicize words that are involved in the unknown word translation process.

5.4 Sample Translations aligned with the source word was and not with
abandoning, which resulted in an incorrect trans-

We present three sample translations of our best  |.4i0n in the third sentence.

system (with 37.5 BLEU) in Table 3. In our
first example, the model translates all the un-
known words correctly: 2600, orthopédiques, and
cataracte. It is interesting to observe that the
model can accurately predict an alignment of dis-
tances of 5 and 6 words. The second example
highlights the fact that our model can translate
long sentences reasonably well and that it was able

6 Conclusion

We have shown that a simple alignment-based
technique can mitigate and even overcome one
of the main weaknesses of current NMT systems,
which is their inability to translate words that are
not in their vocabulary. A key advantage of our

to correctly translate the unknown word for JP-
Morgan at the very far end of the source sentence.
Lastly, our examples also reveal several penalties
incurred by our model: (a) incorrect entries in the
word dictionary, as with négociateur vs. trader in
the second example, and (b) incorrect alignment
prediction, such as when unkposs is incorrectly
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technique is the fact that it is applicable to any
NMT system and not only to the deep LSTM
model of Sutskever et al. (2014). A technique like
ours is likely necessary if an NMT system is to
achieve state-of-the-art performance on machine
translation.

We have demonstrated empirically that on the



WMT’ 14 English-French translation task, our
technique yields a consistent and substantial im-
provement of up to 2.8 BLEU points over various
NMT systems of different architectures. Most im-
portantly, with 37.5 BLEU points, we have estab-
lished the first NMT system that outperformed the
best MT system on a WMT’ 14 contest dataset.
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Abstract

The recently proposed neural network
joint model (NNJM) (Devlin et al,
2014) augments the n-gram target lan-
guage model with a heuristically cho-
sen source context window, achieving
state-of-the-art performance in SMT.
In this paper, we give a more Sys-
tematic treatment by summarizing the
relevant source information through a
convolutional architecture guided by
the target information.  With dif-
ferent guiding signals during decod-
ing, our specifically designed convolu-
tion+gating architectures can pinpoint
the parts of a source sentence that are
relevant to predicting a target word,
and fuse them with the context of en-
tire source sentence to form a unified
representation. This representation, to-
gether with target language words, are
fed to a deep neural network (DNN)
to form a stronger NNJM. Experiments
on two NIST Chinese-English trans-
lation tasks show that the proposed
model can achieve significant improve-
ments over the previous NNJM by up
to +1.08 BLEU points on average.

1 Introduction

Learning of continuous space representation
for source language has attracted much at-
tention in both traditional statistical machine
translation (SMT) and neural machine trans-
lation (NMT). Various models, mostly neural
network-based, have been proposed for repre-
senting the source sentence, mainly as the en-
coder part in an encoder-decoder framework
(Bengio et al., 2003; Auli et al., 2013; Kalch-
brenner and Blunsom, 2013; Cho et al., 2014;
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Sutskever et al., 2014). There has been some
quite recent work on encoding only “relevant”
part of source sentence during the decoding
process, most notably neural network joint
model (NNJM) in (Devlin et al., 2014), which
extends the n-grams target language model by
additionally taking a fixed-length window of
source sentence, achieving state-of-the-art per-
formance in statistical machine translation.

In this paper, we propose novel convolu-
tional architectures to dynamically encode the
relevant information in the source language.
Our model covers the entire source sentence,
but can effectively find and properly summa-
rize the relevant parts, guided by the informa-
tion from the target language. With the guiding
signals during decoding, our specifically de-
signed convolution architectures can pinpoint
the parts of a source sentence that are relevant
to predicting a target word, and fuse them with
the context of entire source sentence to form a
unified representation. This representation, to-
gether with target words, are fed to a deep neu-
ral network (DNN) to form a stronger NNJM.
Since our proposed joint model is purely lexi-
calized, it can be integrated into any SMT de-
coder as a feature.

Two variants of the joint model are also
proposed, with coined name tagCNN and
inCNN, with different guiding signals used
from the decoding process. We integrate the
proposed joint models into a state-of-the-art
dependency-to-string translation system (Xie
et al., 2011) to evaluate their effectiveness.
Experiments on NIST Chinese-English trans-
lation tasks show that our model is able
to achieve significant improvements of +2.0
BLEU points on average over the baseline. Our
model also outperforms Devlin et al. (2014)’s
NNIJM by up to +1.08 BLEU points.

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 20-30,
Beijing, China, July 26-31, 2015. (©2015 Association for Computational Linguistics
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Figure 1: Illustration for joint LM based on CNN encoder.

RoadMap: In the remainder of this paper,
we start with a brief overview of joint language
model in Section 2, while the convolutional en-
coders, as the key component of which, will be
described in detail in Section 3. Then in Sec-
tion 4 we discuss the decoding algorithm with
the proposed models. The experiment results
are reported in Section 5, followed by Section 6
and 7 for related work and conclusion.

2 Joint Language Model

Our joint model with CNN encoders can be il-
lustrated in Figure 1 (a) & (b), which consists
1) a CNN encoder, namely tagCNN or :nCNN,
to represent the information in the source sen-
tences, and 2) an NN-based model for predict-
ing the next words, with representations from
CNN encoders and the history words in target
sentence as inputs.

In the joint language model, the probabil-
ity of the target word e,, given previous k
target words {e,_, - e,—_1} and the repre-
sentations from CNN-encoders for source sen-
tence S are

tagCNN:  p(en|¢1(S, {a(en)}), {e}Z:}C)

inCNN:  plen| 62(S, h({e}" 1)), {e}""}),

where ¢1 (95, {a(ey)}) stands for the represen-
tation given by tagCNN with the set of indexes
{a(ey,)} of source words aligned to the target
word e, and ¢2(S, h({e}"~})) stands for the
representation from ¢nCNN with the attention
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signal h({e}z:}c).

Let us use the example in Figure 1, where
the task is to translate the Chinese sentence
Chinese: &7F] 247 HEHe 5 M4 &%
Pinyin: Zhi1li Jixing Gudéhul Y Zongtdng Xudnju

into English. In evaluating a target lan-

guage sequence “holds parliament
and presidential”, with  “holds
parliament and” as the proceeding

words (assume 4-gram LM), and the affiliated
source word! of “presidential” being
“zongtdng” (determined by word align-
ment), tagCNN generates ¢1(S, {4}) (the in-
dex of “Zdngtdng” is 4), and inCNN gener-
ates ¢2(S,h(holds parliament and)).
The DNN  component then  takes
"holds parliament and" and
(p1 or ¢9) as input to give the con-
ditional probability for next word, e.g.,
p("presidential"|¢y, {holds,
parliament, and}).

3 Convolutional Models

We start with the generic architecture for
convolutional encoder, and then proceed to
tagCNN and inCNN as two extensions.

"For an aligned target word, we take its aligned source
words as its affiliated source words. And for an unaligned
word, we inherit its affiliation from the closest aligned
word, with preference given to the right (Devlin et al.,
2014). Since the word alignment is of many-to-many,
one target word may has multi affiliated source words.
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Figure 2: Illustration for the CNN encoders.

3.1 Generic CNN Encoder

The basic architecture is of a generic CNN en-
coder is illustrated in Figure 2 (a), which has a
fixed architecture consisting of six layers:

Layer-0: the input layer, which takes words
in the form of embedding vectors. In our
work, we set the maximum length of sen-
tences to 40 words. For sentences shorter
than that, we put zero padding at the be-
ginning of sentences.

Layer-1: a convolution layer after Layer-0,
with window size = 3. As will be dis-
cussed in Section 3.2 and 3.3, the guid-
ing signal are injected into this layer for
“guided version”.

Layer-2: a local gating layer after Layer-
1, which simply takes a weighted sum
over feature-maps in non-adjacent win-
dow with size = 2.

Layer-3: aconvolution layer after Layer-2, we
perform another convolution with window
size = 3.

Layer-4: we perform a global gating over
feature-maps on Layer-3.

Layer-5: fully connected weights that maps
the output of Layer-4 to this layer as the
final representation.

3.1.1 Convolution

As shown in Figure 2 (a), the convolution in
Layer-1 operates on sliding windows of words
(width kq), and the similar definition of win-
dows carries over to higher layers. Formally,
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for source sentence input x = {x1,--- ,xXn},
the convolution unit for feature map of type- f
(among Fy of them) on Layer-£ is

621737 f:1727”'7FZ (1)
where
o zy’f )(x) gives the output of feature map

of type-f for location ¢ in Layer-/;

w(6f) is the parameters for f on Layer-/;

e o(-) is the Sigmoid activation function;
° ZZ(.Z_I) denotes the segment of Layer-£—1

for the convolution at location 7 , while

T

T T 47T
[x; Xit+1s Xi+2]

concatenates the vectors for 3 words from
sentence input x.

3.1.2 Gating

Previous CNNs, including those for NLP
tasks (Hu et al., 2014; Kalchbrenner et al.,
2014), take a straightforward convolution-
pooling strategy, in which the “fusion” deci-
sions (e.g., selecting the largest one in max-
pooling) are based on the values of feature-
maps. This is essentially a soft template match-
ing, which works for tasks like classification,
but harmful for keeping the composition func-
tionality of convolution, which is critical for
modeling sentences. In this paper, we propose
to use separate gating unit to release the score
function duty from the convolution, and let it
focus on composition.



We take two types of gating: 1) for Layer-
2, we take a local gating with non-overlapping
windows (size = 2) on the feature-maps of con-
volutional Layer-1 for representation of seg-
ments, and 2) for Layer-4, we take a global
gating to fuse all the segments for a global rep-
resentation. We found that this gating strategy
can considerably improve the performance of
both tagCNN and inCNN over pooling.

e Local Gating: On Layer-1, for every gat-
ing window, we first find its original in-
put (before convolution) on Layer-0, and
merge them for the input of the gating net-
work. For example, for the two windows:
word (3,4,5) and word (4,5,6) on Layer-0,
we use concatenated vector consisting of
embedding for word (3,4,5,6) as the input
of the local gating network (a logistic re-
gression model) to determine the weight
for the convolution result of the two win-
dows (on Layer-1), and the weighted sum
are the output of Layer-2.

Global Gating: On Layer-3, for feature-
maps at each location ¢, denoted zgg), the
global gating network (essentially soft-
max, parameterized w,), assigns a nor-

malized weight

T,3) 7,3
w(zg?;)) — Wy % /Zewg z; ’
J
and the gated representation on Layer-
4 is given by the weighted sum

> w(z(3))z(-3).

1
3.1.3 Training of CNN encoders

The CNN encoders, including tagCNN and
tnCNN that will be discussed right below, are
trained in a joint language model described in
Section 2, along with the following parameters

o the embedding of the words on source and
the proceeding words on target;

e the parameters for the DNN of joint lan-
guage model, include the parameters of
soft-max for word probability.

The training procedure is identical to that of
neural network language model, except that the
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parallel corpus is used instead of a monolin-
gual corpus. We seek to maximize the log-
likelihood of training samples, with one sam-
ple for every target word in the parallel corpus.
Optimization is performed with the conven-
tional back-propagation, implemented as sto-
chastic gradient descent (LeCun et al., 1998)
with mini-batches.

3.2 tagCNN

tagCNN inherits the convolution and gating
from generic CNN (as described in Section
3.1), with the only modification in the input
layer. As shown in Figure 2 (b), in tagCNN,
we append an extra tagging bit (0 or 1) to the
embedding of words in the input layer to indi-
cate whether it is one of affiliated words

(AFF) _

NON-AFF

x 17 x [x; 0"

X ]
Those extended word embedding will then be
treated as regular word-embedding in the con-
volutional neural network. This particular en-
coding strategy can be extended to embed more
complicated dependency relation in source lan-
guage, as will be described in Section 5.4.

This particular “tag” will be activated in a
parameterized way during the training for pre-
dicting the target words. In other words, the
supervised signal from the words to predict
will find, through layers of back-propagation,
the importance of the tag bit in the “affiliated
words” in the source language, and learn to put
proper weight on it to make tagged words stand
out and adjust other parameters in tagCNN
accordingly for the optimal predictive perfor-
mance. In doing so, the joint model can pin-
point the parts of a source sentence that are rel-
evant to predicting a target word through the
already learned word alignment.

3.3 inCNN

Unlike tagCNN, which directly tells the loca-
tion of affiliated words to the CNN encoder,
tnCNN sends the information about the pro-
ceeding words in target side to the convolu-
tional encoder to help retrieve the information
relevant for predicting the next word. This is
essentially a particular case of attention model,
analogous to the automatic alignment mecha-
nism in (Bahdanau et al., 2014), where the at-
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Figure 3: Illustration for a dependency tree (a) with three head-dependents relations in shadow,
an example of head-dependents relation rule (b) for the top level of (a), and an example of head
rule (c). “X71:NN” indicates a substitution site that can be replaced by a subtree whose root has
part-of-speech “NN”. The underline denotes a leaf node.

tention signal is from the state of a generative
recurrent neural network (RNN) as decoder.

Basically, the information from proceeding
words, denoted as h({e}""}), is injected into
every convolution window in the source lan-
guage sentence, as illustrated in Figure 2 (c).
More specifically, for the window indexed by
t, the input to convolution is given by the con-
catenated vector

2= [h({e}n=3), ¢, x[ 1, (o]

In this work, we use a DNN to transform
the vector concatenated from word-embedding
for words {e,_j -, e, } into h({e}""}),
with sigmoid activation function. Through lay-
ers of convolution and gating, tnCNN can 1)
retrieve the relevant segments of source sen-
tences, and 2) compose and transform the
retrieved segments into representation recog-
nizable by the DNN in predicting the words
in target language. Different from that of
tagCNN, inCNN uses information from pro-
ceeding words, hence provides complementary
information in the augmented joint language
model of tagCNN. This has been empirically
verified when using feature based on tagCNN
and that based on {nCNN in decoding with
greater improvement.

4 Decoding with the Joint Model

Our joint model is purely lexicalized, and
therefore can be integrated into any SMT de-
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coders as a feature. For a hierarchical SMT
decoder, we adopt the integrating method pro-
posed by Devlin et al. (2014). As inherited
from the n-gram language model for perform-
ing hierarchical decoding, the leftmost and
rightmost n — 1 words from each constituent
should be stored in the state space. We ex-
tend the state space to also include the in-
dexes of the affiliated source words for each
of these edge words. For an aligned target
word, we take its aligned source words as its
affiliated source words. And for an unaligned
word, we use the affiliation heuristic adopted
by Devlin et al. (2014). In this paper, we in-
tegrate the joint model into the state-of-the-art
dependency-to-string machine translation de-
coder as a case study to test the efficacy of our
proposed approaches. We will briefly describe
the dependency-to-string translation model and
then the description of MT system.

4.1 Dependency-to-String Translation

In this paper, we use a state-of-the-art
dependency-to-string (Xie et al., 2011) decoder
(Dep2Str), which is also a hierarchical de-
coder. This dependency-to-string model em-
ploys rules that represent the source side as
head-dependents relations and the target side
as strings. A head-dependents relation (HDR)
is composed of a head and all its dependents
in dependency trees. Figure 3 shows a depen-
dency tree (a) with three HDRs (in shadow),



an example of HDR rule (b) for the top level
of (a), and an example of head rule (c). HDR
rules are constructed from head-dependents re-
lations. HDR rules can act as both translation
rules and reordering rules. And head rules are
used for translating source words.

We adopt the decoder proposed by Meng
et al. (2013) as a variant of Dep2Str trans-
lation that is easier to implement with com-
parable performance. Basically they extract
the HDR rules with GHKM (Galley et al.,
2004) algorithm. For the decoding procedure,
given a source dependency tree 7', the de-
coder transverses 1" in post-order. The bottom-
up chart-based decoding algorithm with cube
pruning (Chiang, 2007; Huang and Chiang,
2007) is used to find the k-best items for each
node.

4.2 MT Decoder

Following Och and Ney (2002), we use a gen-
eral loglinear framework. Let d be a derivation
that convert a source dependency tree into a tar-
get string e. The probability of d is defined as:

P(d) o [T oi(a)™ @)

where ¢; are features defined on derivations
and \; are the corresponding weights. Our de-
coder contains the following features:
Baseline Features:

e translation probabilities and

P(s|t) of HDR rules;

P(t]s)
lexical translation probabilities P gx (t]s)
and P, gx(s|t) of HDR rules;

rule penalty exp(—1);

pseudo translation rule penalty exp(—1);
);

n-gram language model P, y(e);

target word penalty exp(|e

[ ]
Proposed Features:

e n-gram tagCNN joint language model
P, TLM(e);

e n-gram (nCNN joint language model
Pim (6)
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Our baseline decoder contains the first eight
features. The pseudo translation rule (con-
structed according to the word order of a HDR)
is to ensure the complete translation when no
matched rules is found during decoding. The
weights of all these features are tuned via
minimum error rate training (MERT) (Och,
2003). For the dependency-to-string decoder,
we set rule-threshold and stack-threshold to
1073, rule-limit to 100, stack-limit to 200.

S Experiments

The experiments in this Section are designed to
answer the following questions:

1. Are our tagCNN and ¢nCNN joint lan-
guage models able to improve translation
quality, and are they complementary to
each other?

. Do inCNN and tagCNN benefit from
their guiding signal, compared to a
generic CNN?

For tagCNN, is it helpful to embed more
dependency structure, e.g., dependency
head of each affiliated word, as additional
information?

Can our gating strategy improve the per-
formance over max-pooling?

5.1 Setup

Data: Our training data are extracted from
LDC data®. We only keep the sentence pairs
that the length of source part no longer than
40 words, which covers over 90% of the sen-
tence. The bilingual training data consist of
221K sentence pairs, containing 5.0 million
Chinese words and 6.8 million English words.
The development set is NIST MTO03 (795 sen-
tences) and test sets are MTO04 (1499 sen-
tences) and MTO0S5 (917 sentences) after filter-
ing with length limit.

Preprocessing: The word alignments are ob-
tained with GIZA++ (Och and Ney, 2003) on
the corpora in both directions, using the “grow-
diag-final-and” balance strategy (Koehn et al.,
2003). We adopt SRI Language Modeling

>The corpora include LDC2002E18, LDC2003E07,
LDC2003E14, LDC2004T07, LDC2005T06.



Systems | MT04 MTO5 Average
Moses 3433 3175 33.04
Dep2Str 34.89 32.24 33.57

+ BBN-JM (Devlin et al., 2014) | 36.11 32.86 34.49

+ CNN (generic) 36.12*%  33.07* 34.60

+ tagCNN 36.33* 33.37* 34.85

+ inCNN 36.92*% 33.72*% 35.32

+ tagCNN + inCNN 36.94* 34.20* 35.57

Table 1:

BLEU-4 scores (%) on NIST MT04-test and MTO05-test, of Moses (default settings),

dependency-to-string baseline system (Dep2Str), and different features on top of Dep2Str: neural
network joint model (BBN-JM), generic CNN, tagCNN, :nCNN and the combination of tagCNN
and inCNN. The boldface numbers and superscript * indicate that the results are significantly
better (p<0.01) than those of the BBN-JM and the Dep2Str baseline respectively. “+” stands for

adding the corresponding feature to Dep2Str.

Toolkit (Stolcke and others, 2002) to train a
4-gram language model with modified Kneser-
Ney smoothing on the Xinhua portion of the
English Gigaword corpus (306 million words).
We parse the Chinese sentences with Stanford
Parser into projective dependency trees.

Optimization of NN: In training the neural
network, we limit the source and target vocab-
ulary to the most frequent 20K words for both
Chinese and English, covering approximately
97% and 99% of two corpus respectively. All
the out-of-vocabulary words are mapped to a
special token unk. We used stochastic gradient
descent to train the joint model, setting the size
of minibatch to 500. All joint models used a 3-
word target history (i.e., 4-gram LM). The di-
mension of word embedding and the attention
signal h({e}"~}) for inCNN are 100. For the
convolution layers (Layer 1 and Layer 3), we
apply 100 filters. And the final representation
of CNN encoders is a vector with dimension
100. The final DNN layer of our joint model is
the standard multi-layer perceptron with soft-
max at the top layer.

Metric: We use the case-insensitive 4-
gram NIST BLEU? as our evaluation met-
ric, with statistical significance test with sign-
test (Collins et al., 2005) between the proposed
models and two baselines.

3ftp://jaguar.ncsl.nist.gov/mt/
resources/mteval-vllb.pl
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5.2 Setting for Model Comparisons

We use the tagCNN and ¢nCNN joint lan-
guage models as additional decoding fea-
tures to a dependency-to-string baseline sys-
tem (Dep2Str), and compare them to the neu-
ral network joint model with 11 source con-
text words (Devlin et al., 2014). We use
the implementation of an open source toolkit*
with default configuration except the global
settings described in Section 5.1. Since our
tagCNN and inCNN models are source-to-
target and left-to-right (on target side), we only
take the source-to-target and left-to-right type
NNJM in (Devlin et al., 2014) in compari-
son. We call this type NNJM as BBN-JM here-
after. Although the BBN-JM in (Devlin et al.,
2014) is originally tested in the hierarchical
phrase-based (Chiang, 2007) SMT and string-
to-dependency (Shen et al., 2008) SMT, it is
fairly versatile and can be readily integrated
into Dep2Str.

5.3 The Main Results

The main results of different models are given
in Table 1. Before proceeding to more detailed
comparison, we first observe that

e the baseline Dep2Str system gives BLEU
0.5+ higher than the open-source phrase-
based system Moses (Koehn et al., 2007);

e BBN-JM can give about +0.92 BLEU
score over Dep2Str, a result similar as re-
ported in (Devlin et al., 2014).

*http://nlg.isi.edu/software/nplm/



Systems MTO04 MTO05 Average Systems MTO04 MTO05 Average
Dep2str 3489 32.24 33.57 Dep2Str 3489 32.24 33.57
+tagCNN 36.33  33.37 34.85 +inCNN 36.92 33.72 35.32
+tagCNN_dep | 36.54 33.61 35.08 +inCNN-2-pooling | 36.33  32.88 34.61
+inCNN-4-pooling | 36.46 33.01 34.74
Table 2: BLEU-4 scores (%) of tagCNN +inCNN-8-pooling | 36.57 3339  34.98

model with dependency head words as addi-
tional tags (tagCNN _dep).

Clearly from Table 1, tagCNN and inCNN
improve upon the Dep2Str baseline by +1.28
and +1.75 BLEU, outperforming BBN-JM in
the same setting by respectively +0.36 and
+0.83 BLEU, averaged on NIST MTO04 and
MTO05. These indicate that tagCNN and
tnCNN can individually provide discrimina-
tive information in decoding. It is worth not-
ing that tnCNN appears to be more informative
than the affiliated words suggested by the word
alignment (GIZA++). We conjecture that this
is due to the following two facts

e ;nCNN avoids the propagation of mis-
takes and artifacts in the already learned
word alignment;

e the guiding signal in ¢nCNN provides
complementary information to evaluate
the translation.

Moreover, when tagCNN and ¢nCNN are both
used in decoding, it can further increase its
winning margin over BBN-JM to +1.08 BLEU
points (in the last row of Table 1), indicating
that the two models with different guiding sig-
nals are complementary to each other.

The Role of Guiding Signal It is slight sur-
prising that the generic CNN can also achieve
the gain on BLEU similar to that of BBN-
JM, since intuitively generic CNN encodes the
entire sentence and the representations should
in general far from optimal representation for
joint language model. The reason, as we con-
jecture, is CNN yields fairly informative sum-
marization of the sentence (thanks to its so-
phisticated convolution and gating architec-
ture), which makes up some of its loss on
resolution and relevant parts of the source
senescence. That said, the guiding signal in
both tagCNN and inCNN are crucial to the
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Table 3: BLEU-4 scores (%) of :nCNN mod-
els implemented with gating strategy and k&
max-pooling, where & is of {2, 4, 8}.

power of CNN-based encoder, as can be eas-
ily seen from the difference between the BLEU
scores achieved by generic CNN, tagCNN, and
tnCNN. Indeed, with the signal from the al-
ready learned word alignment, tagCNN can
gain +0.25 BLEU over its generic counterpart,
while for ¢nCNN with the guiding signal from
the proceeding words in target, the gain is more
saliently +0.72 BLEU.

5.4 Dependency Head in tagCNN

In this section, we study whether tagCNN can
further benefit from encoding richer depen-
dency structure in source language in the input.
More specifically, the dependency head words
can be used to further improve tagCNN model.
As described in Section 3.2, in tagCNN, we
append a tagging bit (0 or 1) to the embedding
of words in the input layer as tags on whether
they are affiliated source words. To incorpo-
rate dependency head information, we extend
the tagging rule in Section 3.2 to add another
tagging bit (0 or 1) to the word-embedding for
original tagCNN to indicate whether it is part
of dependency heads of the affiliated words.
For example, if x; is the embedding of an af-
filiated source word and x; the dependency
head of word x;, the extended input of tagCNN
would contain

(AFF, NON-HEAD)

i =
(NON-AFF, HEAD)
J

x
x
If the affiliated source word is the root of a
sentence, we only append O as the second tag-
ging bit since the root has no dependency head.
From Table 2, with the help of dependency
head information, we can improve tagCNN by
+0.23 BLEU points averagely on two test sets.



5.5 Gating Vs. Max-pooling

In this section, we investigate to what extent
that our gating strategy can improve the trans-
lation performance over max pooling, with the
comparisons on ¢nCNN model as a case study.
For implementation of ¢nCNN with max-
pooling, we replace the local-gating (Layer-2)
with max-pooling with size 2 (2-pooling for
short), and global gating (Layer-4) with k£ max-
pooling (“k-pooling”), where k is of {2, 4, 8}.
Then, we use the mean of the outputs of k-
pooling as the final input of Layer-5. In do-
ing so, we can guarantee the input dimension
of Layer-5 is the same as the architecture with
gating. From Table 3, we can clearly see
that our gating strategy can improve translation
performance over max-pooling by 0.34~0.71
BLEU points. Moreover, we find 8-pooling
yields performance better than 2-pooling. We
conjecture that this is because the useful rel-
evant parts for translation are mainly concen-
trated on a few words of the source sentence,
which can be better extracted with a larger pool
size.

6 Related Work

The seminal work of neural network language
model (NNLM) can be traced to Bengio et al.
(2003) on monolingual text. It is recently ex-
tended by Devlin et al. (2014) to include ad-
ditional source context (11 source words) in
modeling the target sentence, which is clearly
most related to our work, with however two im-
portant differences: 1) instead of the ad hoc
way of selecting a context window in (Devlin
et al., 2014), our model covers the entire source
sentence and automatically distill the context
relevant for target modeling; 2) our convo-
lutional architecture can effectively leverage
guiding signals of vastly different forms and
nature from the target.

Prior to our model there is also work on
representing source sentences with neural net-
works, including RNN (Cho et al.,, 2014;
Sutskever et al., 2014) and CNN (Kalchbren-
ner and Blunsom, 2013). These work typi-
cally aim to map the entire sentence to a vec-
tor, which will be used later by RNN/LSTM-
based decoder to generate the target sentence.
As demonstrated in Section 5, the representa-

tion learnt this way cannot pinpoint the rele-
vant parts of the source sentences (e.g., words
or phrases level) and therefore is inferior to
be directly integrated into traditional SMT de-
coders.

Our model, especially inCNN, is inspired
by is the automatic alignment model proposed
in (Bahdanau et al., 2014). As the first effort
to apply attention model to machine transla-
tion, it sends the state of a decoding RNN as
attentional signal to the source end to obtain a
weighted sum of embedding of source words
as the summary of relevant context. In con-
trast, 2nCNN uses 1) a different attention sig-
nal extracted from proceeding words in partial
translations, and 2) more importantly, a con-
volutional architecture and therefore a highly
nonlinear way to retrieve and summarize the
relevant information in source.

7 Conclusion and Future Work

We proposed convolutional architectures for
obtaining a guided representation of the entire
source sentence, which can be used to augment
the n-gram target language model. With differ-
ent guiding signals from target side, we devise
tagCNN and :nCNN, both of which are tested
in enhancing a dependency-to-string SMT with
+2.0 BLEU points over baseline and +1.08
BLEU points over the state-of-the-art in (De-
vlin et al., 2014). For future work, we will con-
sider encoding more complex linguistic struc-
tures to further enhance the joint model.

Acknowledgments

Meng, Wang, Jiang and Liu are supported
by National Natural Science Foundation of
China (Contract 61202216). Liu is partially
supported by the Science Foundation Ireland
(Grant 12/CE/12267 and 13/RC/2106) as part
of the ADAPT Centre at Dublin City Univer-
sity. We sincerely thank the anonymous re-
viewers for their thorough reviewing and valu-
able suggestions.

References

[Auli et al.2013] Michael Auli, Michel Galley,
Chris Quirk, and Geoffrey Zweig. 2013. Joint
language and translation modeling with recur-
rent neural networks. In Proceedings of the

28



2013 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1044-1054,
Seattle, Washington, USA, October.

[Bahdanau et al.2014] Dzmitry Bahdanau,
Kyunghyun Cho, and Yoshua Bengio. 2014.
Neural machine translation by jointly learn-

ing to align and translate.  arXiv preprint
arXiv:1409.0473.

[Bengio et al.2003] Yoshua Bengio, Rjean
Ducharme, Pascal Vincent, and Christian
Jauvin.  2003. A neural probabilistic lan-
guage model. Journal OF Machine Learning
Research, 3:1137-1155.

[Chiang2007] David Chiang. 2007. Hierarchical
phrase-based translation. Computational Lin-
guistics, 33(2):201-228.

[Cho et al.2014] Kyunghyun Cho, Bart van Mer-
rienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. 2014. Learning phrase representa-
tions using rnn encoder—decoder for statistical
machine translation. In Proceedings of the 2014
Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1724—
1734, Doha, Qatar, October.

[Collins et al.2005] Michael  Collins, Philipp
Koehn, and Ivona Kuclerova. 2005. Clause
restructuring for statistical machine translation.
In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics,
pages 531-540.

[Devlin et al.2014] Jacob Devlin, Rabih Zbib,
Zhonggiang Huang, Thomas Lamar, Richard
Schwartz, and John Makhoul. 2014. Fast and
robust neural network joint models for statistical
machine translation. In Proceedings of the 52nd
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 1370-1380, Baltimore, Maryland, June.

[Galley et al.2004] Michel Galley, Mark Hopkins,
Kevin Knight, and Daniel Marcu. 2004.
What’s in a translation rule. In Proceedings of
HLT/NAACL, volume 4, pages 273-280. Boston.

[Hu et al.2014] Baotian Hu, Zhengdong Lu, Hang
Li, and Qingcai Chen. 2014. Convolutional
neural network architectures for matching natu-
ral language sentences. In NIPS.

[Huang and Chiang2007] Liang Huang and David
Chiang. 2007. Forest rescoring: Faster de-
coding with integrated language models. In
Annual Meeting-Association For Computational
Linguistics, volume 45, pages 144-151.

[Kalchbrenner and Blunsom2013] Nal Kalchbren-
ner and Phil Blunsom. 2013. Recurrent contin-
uous translation models. In Proceedings of the

2013 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1700-1709,
Seattle, Washington, USA, October.

[Kalchbrenner et al.2014] Nal Kalchbrenner, Ed-
ward Grefenstette, and Phil Blunsom. 2014. A
convolutional neural network for modelling sen-
tences. ACL.

[Klein and Manning2002] Dan Klein and Christo-
pher D Manning. 2002. Fast exact inference
with a factored model for natural language pars-
ing. In Advances in neural information process-
ing systems, volume 15, pages 3—10.

[Koehn et al.2003] Philipp Koehn, Franz Josef Och,
and Daniel Marcu. 2003. Statistical phrase-
based translation. In Proceedings of the 2003
Conference of the North American Chapter
of the Association for Computational Linguis-
tics on Human Language Technology-Volume 1,
pages 48-54.

[Koehn et al.2007] Philipp Koehn, Hieu Hoang,
Alexandra Birch, Chris Callison-Burch, Mar-
cello Federico, Nicola Bertoldi, Brooke Cowan,
Wade Shen, Christine Moran, Richard Zens,
Chris Dyer, Ondrej Bojar, Alexandra Constantin,
and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th Annual Meeting of the Asso-
ciation for Computational Linguistics Compan-
ion Volume Proceedings of the Demo and Poster
Sessions, pages 177-180, Prague, Czech Repub-
lic, June.

[LeCun et al.1998] Y. LeCun, L. Bottou, G. Orr, and
K. Muller. 1998. Efficient backprop. In Neural
Networks: Tricks of the trade. Springer.

[Meng et al.2013] Fandong Meng, Jun Xie, Linfeng
Song, Yajuan Lii, and Qun Liu. 2013. Trans-
lation with source constituency and dependency
trees. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1066—-1076, Seattle, Washington,
USA, October.

[Och and Ney2002] Franz Josef Och and Hermann
Ney. 2002. Discriminative training and max-
imum entropy models for statistical machine
translation. In Proceedings of the 40th Annual
Meeting on Association for Computational Lin-
guistics, pages 295-302.

[Och and Ney2003] Franz Josef Och and Hermann
Ney. 2003. A systematic comparison of vari-
ous statistical alignment models. Computational
linguistics, 29(1):19-51.

[Och2003] Franz Josef Och. 2003. Minimum error
rate training in statistical machine translation. In
Proceedings of the 41st Annual Meeting on As-
sociation for Computational Linguistics-Volume

1, pages 160-167.

29



[Shen et al.2008] Libin Shen, Jinxi Xu, and Ralph
Weischedel. 2008. A new string-to-dependency
machine translation algorithm with a target de-
pendency language model. In Proceedings of
ACL-08: HLT, pages 577-585.

[Stolcke and others2002] Andreas Stolcke et al.
2002. Srilm-an extensible language modeling
toolkit. In Proceedings of the international

conference on spoken language processing, vol-
ume 2, pages 901-904.

[Sutskever et al.2014] Ilya Sutskever, Oriol Vinyals,
and Quoc V. Le. 2014. Sequence to se-
quence learning with neural networks. CoRR,
abs/1409.3215.

[Xie et al.2011] Jun Xie, Haitao Mi, and Qun Liu.
2011. A novel dependency-to-string model for
statistical machine translation. In Proceedings of
the Conference on Empirical Methods in Natural
Language Processing, pages 216-226.

30



Statistical Machine Translation Features with Multitask Tensor Networks

Hendra Setiawan, Zhonggiang Huang, Jacob Devlin™*, Thomas Lamar,
Rabih Zbib, Richard Schwartz and John Makhoul
Raytheon BBN Technologies, 10 Moulton St, Cambridge, MA 02138, USA
tMicrosoft Research, One Microsoft Way, Redmond, WA 98052, USA
{hsetiawa,zhuang,tlamar,rzbib,schwartz,makhoul}@bbn.com
Jjdevlin@microsoft.com

Abstract

We present a three-pronged approach to
improving Statistical Machine Translation
(SMT), building on recent success in the
application of neural networks to SMT.
First, we propose new features based on
neural networks to model various non-
local translation phenomena. Second, we
augment the architecture of the neural net-
work with tensor layers that capture im-
portant higher-order interaction among the
network units. Third, we apply multitask
learning to estimate the neural network
parameters jointly. Each of our proposed
methods results in significant improve-
ments that are complementary. The over-
all improvement is +2.7 and +1.8 BLEU
points for Arabic-English and Chinese-
English translation over a state-of-the-art
system that already includes neural net-
work features.

1 Introduction

Recent advances in applying Neural Networks to
Statistical Machine Translation (SMT) have gen-
erally taken one of two approaches. They ei-
ther develop neural network-based features that
are used to score hypotheses generated from tra-
ditional translation grammars (Sundermeyer et al.,
2014; Devlin et al., 2014; Auli et al., 2013; Le
et al., 2012; Schwenk, 2012), or they implement
the whole translation process as a single neu-
ral network (Bahdanau et al., 2014; Sutskever et
al., 2014). The latter approach, sometimes re-
ferred to as Neural Machine Translation, attempts
to overhaul SMT, while the former capitalizes on
the strength of the current SMT paradigm and
leverages the modeling power of neural networks
to improve the scoring of hypotheses generated

* Research conducted when the author was at BBN.

by phrase-based or hierarchical translation rules.
This paper adopts the former approach, as n-best
scores from state-of-the-art SMT systems often
suggest that these systems can still be significantly
improved with better features.

We build on (Devlin et al., 2014) who proposed
a simple yet powerful feedforward neural network
model that estimates the translation probability
conditioned on the target history and a large win-
dow of source word context. We take advantage
of neural networks’ ability to handle sparsity, and
to infer useful abstract representations automati-
cally. At the same time, we address the challenge
of learning the large set of neural network param-
eters. In particular,

e We develop new Neural Network Features
to model non-local translation phenomena
related to word reordering. Large fully-
lexicalized contexts are used to model these
phenomena effectively, making the use of
neural networks essential. All of the features
are useful individually, and their combination
results in significant improvements (Section
2).

o We use a Tensor Neural Network Architecture
(Yu et al., 2012) to automatically learn com-
plex pairwise interactions between the net-
work nodes. The introduction of the tensor
hidden layer results in more powerful fea-
tures with lower model perplexity and signif-
icantly improved MT performance for all of
neural network features (Section 3).

o We apply Multitask Learning (MTL) (Caru-
ana, 1997) to jointly train related neural net-
work features by sharing parameters. This
allows parameters learned for one feature to
benefit the learning of the other features. This
results in better trained models and achieves
additional MT improvements (Section 4).

We apply the resulting Multitask Tensor Net-
works to the new features and to existing ones,
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obtaining strong experimental results over the
strongest previous results of (Devlin et al., 2014).
We obtain improvements of +2.5 BLEU points
for Arabic-English and +1.8 BLEU points for
Chinese-English on the DARPA BOLT Web Fo-
rum condition. We also obtain improvements of
+2.7 BLEU point for Arabic-English and +1.9
BLEU points for Chinese-English on the NIST
Openl2 test sets over the best previously pub-
lished results in (Devlin et al., 2014). Both the
tensor architecture and multitask learning are gen-
eral techniques that are likely to benefit other neu-
ral network features.

2 New Non-Local SMT Features

Existing SMT features typically focus on local in-
formation in the source sentence, in the target hy-
pothesis, or both. For example, the n-gram lan-
guage model (LM) predicts the next target word
by using previously generated target words as con-
text (local on target), while the lexical translation
model (LTM) predicts the translation of a source
word by taking into account surrounding source
words as context (local on source).

In this work, we focus on non-local transla-
tion phenomena that result from non-monotone re-
ordering, where local context becomes non-local
on the other side. We propose a new set of power-
ful MT features that are motivated by this simple
idea. To facilitate the discussion, we categorize the
features into hypothesis-enumerating features that
estimates a probability for each generated target
word (e.g., n-gram language model), and source-
enumerating features that estimates a probability
for each source word (e.g., lexical translation).

More concretely, we introduce a) Joint Model
with Offset Source Context (JMO), a hypothesis
enumerating feature that predicts the next target
word the source context affiliated to the previous
target words; and b) Translation Context Model
(TCM), a source-enumerating feature that predicts
the context of the translation of a source word
rather than the translation itself. These two mod-
els extend pre-existing features: the Joint (lan-
guage and translation) Model (JM) of (Devlin et
al., 2014) and the LTM respectively respectively.
We use a large lexicalized context for there fea-
tures, making the choice of implementing them as
neural networks essential. We also present neural-
network implementations of pre-existing source-
enumerating features: lexical translation, orien-
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tation and fertility models. We obtain additional
gains from using tensor networks and multitask
learning in the modeling and training of all the fea-
tures.

2.1 Hypothesis-Enumerating Features

As mentioned, hypothesis-enumerating features
score each word in the hypothesis, typically by
conditioning it on a context of n-1 previous tar-
get words as in the n-gram language model. One
recent such model, the joint model of Devlin et al.
(2014) achieves large improvements to the state-
of-the-art SMT by using a large context window
of 11 source words and 3 target words. The Joint
Model with Offset Source Context (JMO) is an
extension of the JM that uses the source words
affiliated with the n-gram target history as con-
text. The source contexts of JM and JMO over-
lap highly when the translation is monotone, but
are complementary when the translation requires
word reordering.

2.1.1 Joint Model with Offset Source Context

Formally, JMO estimates the probability of the tar-
get hypothesis E conditioned on the source sen-
tence F' and a target-to-source affiliation A:

|E|

E|F A HP 61|€Z n+1 a :faikarm)

i—k A;_—m

where e; is the word being predicted; e~ is the
string of n — 1 previously generated words; C,,
to the source context of m source words around
fa,_,» the source word affiliated with e;_j. We
refer to k as the offset parameter. We use the def-
inition of word affiliation introduced in Devlin et
al. (2014). When no source context is used, the
model is equivalent to an n-gram language model,
while an offset parameter of £k = 0 reduces the
model to the JM of Devlin et al. (2014).

When k£ > 0, the IMO captures non-local con-
text in the prediction of the next target word. More
specifically, e;_; and e;, which are local on the
target side, are affiliated to f,, , and f,, which
may be distant from each other on the source side
due to non-monotone translation, even for k = 1.
The offset model captures reordering constraints
by encouraging the predicted target word e; to fit
well with the previous affiliated source word f,,
and its surrounding words. We implement a sep-
arate feature for each value of k, and later train



them jointly via multitask learning. As our ex-
periments in Section 5.2.1 confirm, the history-
affiliated source context results in stronger SMT
improvement than just increasing the number of
surrounding words in JM.

Fig. 1 illustrates the difference between JMO
and JM. Assuming n = 3 and m = 1, then ]M
estimates P(esleq,e3,Cas = {f6, f7,fs}). On
the other hand, for £ = 1, JMOg_; estimates

P(esles, e3,Cay = {fs, f9,f10})
Cr = Cas

Figure 1: Example to illustrate features. f59 is the
source segment, €] is the corresponding transla-
tion and lines refer to the alignment. We show
hypothesis-enumerating features that look at f7
and source-enumerating features that look at es.
We surround the source words affiliated with es
and its n-gram history with a bracket, and sur-
round the source words affiliated with the history
of e; with squares.
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~
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€3 €4

2.2 Source-Enumerating Features

Source-Enumerating Features iterate over words
in the source sentence, including unaligned words,
and assign it a score depending on what as-
pect of translation they are modeling. A source-
enumerating feature can be formulated as follows:

||
P(E|F, A) ~ HP yile; = f4m)

where C is the source context (similar to the
hypothesm enumerating features above) and Y
is the label being predicted by the feature. We
first describe pre-existing source-enumerating fea-
tures: the lexical translation model, the orientation
model and the fertility model, and then discuss a
new feature: Translation Context Model (TCM),
which is an extension of the lexical translation
model.

2.2.1 Pre-existing Features

Lexical Translation model (LTM) estimates the
probability of translating a source word f; to a tar-
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get word I(fj) = ep, given a source context Cj,
bj € B is the source-to-target word affiliation as
defined in (Devlin et al., 2014). When f; is trans-
lated to more than one word, we arbitrarily keep
the left-most one. The target word vocabulary V'
is extended with a NU LL token to accommodate
unaligned source words.

Orientation model (ORI) describes the proba-
bility of orientation of the translation of phrases
surrounding a source word f; relative to its own
translation. We follow (Setiawan et al., 2013)
in modeling the orientation of the left and right
phrases of f; with maximal orientation span (the
longest neighboring phrase consistent with align-
ment), which we denote by L; and R; respec-
tively. Thus, o(fj) = (or,(f;),0r;(fj)), where
or; and op; refer to the orientation of L; and R;
respectively. For unaligned f;, we set o(f;) =
or;(R;), the orientation of R; with respect to L.

Fertility model (FM) models the probability that
a source word f; generates ¢(f;) words in the
hypothesis. Our implemented model only dis-
tinguishes between aligned and unaligned source
words (i.e., ¢(f;) € {0,1}). The generalization of
the model to account for multiple values of ¢(f;)
is straightforward.

2.2.2 Translation Context Model

As with JMO in Section 2.1.1, we aim to cap-
ture translation phenomena that appear local on
the target hypothesis but non-local on the source
side. Here, we do so by extending the LTM
feature to predict not only the translated word
ep;, but also its surrounding context.  For-
mally, we model P(I(f;)|C;), where I(f;)
€b;—ds" " 5 €b;s* €h+d 1S the hypothesis word
window around ep,. In practice, we decompose

+d
TCM further into [ P(ep;+a|C;) and imple-
d=—d

mented each as a separate neural network-based
feature. Note that TCM is equivalent to the LTM
when d = 0. Because of word reordering, a given
hypothesis word in [(f;) might not be affiliated
with f; or even to the words in C;. TCM can model
non-local information in this way.

2.2.3 Combined Model

Since the feature label is undefined for unaligned
source words, we make the model hierarchical,
based on whether the source word is aligned or



not, and thus arrive at the following formulation:
P(U(f)) - Plori(f;)) - P(o(f)) =
P(¢p(fj) = 0) - Plor,;(R;))

+d
P(op(fj) 2 1) 'd/H dP(eb]-er')
'P(OLj (fj)v OR; (fj))
We dropped the common context (C;) for readabil-
ity.

We reuse Fig. 1 to illustrate the source-
enumerating features. Assuming d = 1, the scores
associated with f7 are P(¢(f7r) > 1|C7) for the
FM; P(€4|C7) . P(65‘C7) . P(€6)‘C7) for the TCM,;
and P(o(fr) = (o1, (fr) = RA, or,(fr) = RA))
for the ORI(R A refers to Reverse Adjacent). L7
and R7 (i.e. fs and f$ respectively), the longest
neighboring phrase of f7, are translated in reverse
order and adjacent to es.

3 Tensor Neural Networks

The second part of this work improves SMT by
improving the neural network architecture. Neural
Networks derive their strength from their ability to
learn a high-level representation of the input auto-
matically from data. This high-level representa-
tion is typically constructed layer by layer through
a weighted sum linear operation and a non-linear
activation function. With sufficient training data,
neural networks often achieve state-of-the-art per-
formance on many tasks. This stands in sharp con-
trast to other algorithms that require tedious man-
ual feature engineering. For the features presented
in this paper, the context words are fed to the net-
work network with minimal engineering.

We further strengthen the network’s ability to
learn rich interactions between its units by intro-
ducing tensors in the hidden layers. The multi-
plicative property of the tensor bares a close re-
semblance to collocation of context words which
are useful in many natural language processing
tasks.

In conventional feedforward neural networks,
the output of hidden layer [ is produced by mul-
tiplying the output vector from the previous layer
with a weight matrix (W;) and then applying the
activation function o to the product. Tensor Neu-
ral Networks generalize this formulation by using
a tensor U; of order 3 for the weights. The output
of node k in layer [ is computed as follows:

Wlk] = o (h—1 - Ulk] - hi_y)
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where U,[k], the k-th slice of U, is a square ma-
trix.

In our implementation, we follow (Yu et al.,
2012; Hutchinson et al., 2013) and use a low-rank
approximation of Uj[k] = @Q;[k] - R;[k]”, where
Qi[k], Ri[k] € R™". The output of node k be-
comes:

mlk] = o (1 - Qulk] - Ri[k]" - hi"))

In our experiments, we choose » = 1, and also
apply the non-linear activation function ¢ distribu-
tively. We arrive at the following three equations
for computing the hidden layer outputs (0 < [ <
L):

v = o(l-1-Q)
vy = o(h_1-Ry)
hy = y® UZ

where h;_; is double-projected to v; and vf,
and the two projections are merged using the
Hadamard element-wise product operator .

This formulation allows us to use the same in-
frastructure of the conventional neural networks
by projecting the previous layer to two different
spaces of the same dimensions, then multiply-
ing them element-wise. The only component that
is different from conventional feedforward neural
networks is the multiplicative function, which is
trivially differentiable with respect to the learnable
parameters. Figure 3(b) illustrates the tensor ar-
chitecture for two hidden layers.

The tensor network can learn collocation fea-
tures more easily. For example, it can learn a col-
location feature that is activated only if h;_1 [¢] col-
locates with h;_1[j] by setting U;[k][i][j] to some
positive number. This results in SMT improve-
ments as we describe in Section 5.

4 Multitask Learning

The third part of this paper addresses the challenge
of effectively learning a large number of neural
network parameters without overfitting. The chal-
lenge is even larger for tensor network since they
practically doubles the number of parameters. In
this section, we propose to apply Multitask Learn-
ing (MTL) to partially address this issue. We im-
plement MTL as parameter sharing among the net-
works. This effectively reduces the number of pa-
rameters, and more importantly, it takes advan-
tage of parameters learned for one feature to better
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Figure 2: The network architecture for (a) a conventional feedforward neural network, (b) tensor hidden
layers, and (c) multitask learning with M features that share the embedding and first hidden layers

(t=1).

learn the parameters of the other features. Another
way of looking at this is that MTL facilitates reg-
ularization through learning the other tasks.

MTL is suitable for SMT features as they model
different but closely related aspects of the same
translation process. MTL has long been used by
the wider machine learning community (Caruana,
1997) and more recently for natural language pro-
cessing (Collobert and Weston, 2008; Collobert
et al., 2011). The application of MTL to ma-
chine translation, however, has been much less re-
stricted, which is rather surprising since SMT fea-
tures arise from the same translation task and are
naturally related.

We apply MTL for the features described in
Section 2. We design all the features to also share
the same neural network architecture (in this case,
the tensor architecture described in Section 3) and
the same input, thus resulting in two large neural
networks: one for the hypothesis-enumerating fea-
tures and another for the source-enumerating ones.
This simplifies the implementation of MTL. Us-
ing this setup, it is possible to vary the number
of shared hidden layers ¢ from O (only sharing the
embedding layer) to L — 1 (sharing all the layers
except the output). Note that in principle MTL is
applicable to other set of networks that have differ-
ent architecture or even different input set. With
MTL, the training procedure is the same as that of
standard neural networks.

We use the back propagation algorithm, and use
as the loss function the product of likelihood of
each feature':

'In this and in the other parts of the paper, we add the
normalization regularization term described in (Devlin et al.,

2014) to the loss function to avoid computing the normaliza-
tion constant at model query/decoding time.
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M

Loss = 3 log (P (Y;(X)))
i

where X; is the training sample and Y; is one of

the M models trained. We use the sum of log like-

lihoods since we assume that the features are inde-

pendent.

Fig. 3(c) illustrates MTL between M models
sharing the input embedding layer and the first
hidden layer (tf = 1) compared to the separately-
trained conventional feedforward neural network
and tensor neural network.

5 Experiments

We demonstrate the impact of our work with ex-
tensive MT experiments on Arabic-English and
Chinese-English translation for the DARPA BOLT
Web Forum and the NIST OpenMT12 conditions.

5.1 Baseline MT System

We run our experiments using a state-of-the-art
string-to-dependency hierarchical decoder (Shen
et al., 2010). The baseline we use includes a set
of powerful features as follow:

e Forward and backward rule probabilities
Contextual lexical smoothing (Devlin, 2009)
5-gram Kneser-Ney LM
Dependency LM (Shen et al., 2010)

Length distribution (Shen et al., 2010)

Trait features (Devlin and Matsoukas, 2012)
Factored source syntax (Huang et al., 2013)
Discriminative sparse feature, totaling 50k
features (Chiang et al., 2009)

Neural Network Joint Model (NNJM) and
Neural Network Lexical Translation Model



(NNLTM) (Devlin et al., 2014)
As shown, our baseline system already includes
neural network-based features. NNJM, NNLTM
and use two hidden layers with 500 units and use
embedding of size 200 for each input.

We use the MADA-ARZ tokenizer (Habash et
al., 2013) for Arabic word tokenization. For Chi-
nese tokenization, we use a simple longest-match-
first lexicon-based approach. We align the training
data using GIZA++ (Och and Ney, 2003). For tun-
ing the weights of MT features including the new
features, we use iterative k-best optimization with
an ExpectedBLEU objective function (Rosti et al.,
2010), and decode the test sets after 5 tuning iter-
ation. We report the lower-cased BLEU and TER
scores.

5.2 BOLT Discussion Forum

The bulk of our experiments is on the BOLT Web
Discussion Forum domain, which uses data col-
lected by the LDC. The parallel training data con-
sists of all of the high-quality NIST training cor-
pora, plus an additional 3 million words of trans-
lated forum data. The tuning and test sets consist
of roughly 5000 segments each, with 2 indepen-
dent references for Arabic and 3 for Chinese.

5.2.1 Effects of New Features

We first look at the effects of the proposed features
compared to the baseline system. Table 1 summa-
rizes the primary results of the Arabic-English and
Chinese-English experiments for the BOLT condi-
tion. We show the experimental results related to
hypothesis-enumerating features (HypEn) in rows
S9-S5, those related to source-enumerating fea-
tures (SrcEn) in rows S4-Sy, and the combination
of the two in row S7g. For all the features, we set
the source context length to m = 5 (11-word win-
dow). For JM and JMO, we set the target context
length to n 4. For the offset parameter k of
JMO, we use values 1 to 3. For TCM, we model
one word around the translation (d = 1). Larger
values of d did not result in further gains. The
baseline is comparable to the best results of (De-
vlin et al., 2014).

In rows S3 to S5, we incrementally add a model
with different offset source context, from £ = 1
to k = 3. For AR-EN, adding JMOs with differ-
ent offset source context consistently yields pos-
itive effects in BLEU score, while in ZH-EN, it
yields positive effects in TER score. Utilizing all
offset source contexts “+JMOj<3” (row S5) yields
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around 0.9 BLEU point improvement in AR-EN
and around 0.3 BLEU in ZH-EN compared to
the baseline. The JMO consistently provides bet-
ter improvement compared to a larger JM con-
text (row .S3), validating our hypothesis that using
offset source context captures important non-local
context.

Rows Sg to Sg present the improvements that
result from implementing pre-existing source-
enumerating SMT features as neural networks,
and highlight the contribution of our translation
context model (TCM). This set of experiments is
orthogonal to the HypEn experiments (rows Sa-
S5). Each pre-existing model has a modest pos-
itive cumulative effect on both BLEU and TER.
We see this result as further confirming the cur-
rent trend of casting existing SMT features as neu-
ral network since our baseline already contains
such features. The next row present the results
of adding the translation context model, with one
word surrounding the translation (d = 1). As
shown, TCM yields a positive effect of around
0.5 BLEU and TER improvements in AR-EN and
around 0.2 BLEU and TER improvements in ZH-
EN.

Separately, the set of source-enumerating fea-
tures and the set of target-enumerating features
produce around 1.1 to 1.2 points BLEU gain in
AR-EN and 0.3 to 0.5 points BLEU gain in ZH-
EN. The combination of the two sets produces a
complementary gain in addition to the gains of the
individual models as Row (.57g) shows. The com-
bined gain improves to 1.5 BLEU points in AR-
EN and 0.7 BLEU points in ZH-EN.

System AR-EN ZH-EN

BL | TER | BL | TER
S7: Baseline 432 | 45.0 | 30.2 | 58.3
Sy: S1+IMpc, | 435 ] 450302 | 585
S3: S1+IMOy—; | 439 | 447 | 30.8 | 57.8
Sy: S3+IMOy—y | 439 | 447 | 30.7 | 57.8
Ss: S4+IMOj—3 | 444 | 445|305 | 575
Se: S1+LTM 43.5 | 44.7 [ 30.3 | 58.0
S7: Se+ORI 43.7 | 44.6 | 304 | 57.8
Sg: S7+FERT 43.8 | 44.7 | 30.5 | 57.8
So: Sg+TCM 44.3 | 4421307 | 575

| S10: So+IMOy<s | 44.7 | 44.1 [ 309 | 573 |

Table 1: MT results of various model combination
in BLEU and in TER.



5.2.2 Effects of Tensor Network and
Multitask Learning

We first analyze the impact of tensor architecture
and MTL intrinsically by reporting the models’
average log-likelihood on the validation sets (a
subset of the test set) in Table 2. As mentioned, we
group the models to HypEn (JM and JMOy<3) and
SrcEn (LTM, ORLFERT and TCM) as we perform
MTL on these two groups. Likelihood of these
two groups in the previous subsection are in col-
umn “NN” (for Neural Network), which serves as
a baseline. The application of the tensor architec-
ture improves their likelihood as shown in column
“Tensor” for both languages and models.

Independent MTL
Feat. NN | Tensor | t=0| t=1
L=2|L=3
| HypEn | -8.85 -8.54 | -8.35 -
<C| SrcEn -8.47 -8.32 | -8.10 | -8.09
| HypEn | -11.48 | -11.06 | -10.87 -
N| SrcEn | -10.77 | -10.66 | -10.54 | -10.49

Table 2: Sum of the average log-likelihood of the
models in HypEn and SrcEn. ¢ = 0 refers to MTL
that shares only the embedding layer, while { = 1
shares the first hidden layer as well. L refers to the
network’s depth. Higher value is better.

The likelihoods of the MTL-related experi-
ments are in columns with “MTL” header. We
present two set of results. In the first set (col-
umn “MTL,t=0,L=2"), we run MTL for features
from column “Tensor” by sharing the embedding
layer only (¢ 0). This allows us to isolate
the impact of MTL in the presence of Tensors.
Column “MTL,t=1,1=3" corresponds to the exper-
iment that produces the best intrinsic result, where
each model uses Tensors with three hidden lay-
ers (500x500x500, [ = 3) and the models share
the embedding and the first hidden layers (t = 1).
MTL consistently gives further intrinsic gain com-
pared to tensors. More sharing provides an extra
gain for SrcEn as shown in the last column. Note
that we only experiment with different [ and ¢ for
SrcEn and not for HypEn because the models in
HypEn have different input sets. In our experi-
ments, further sharing and more hidden layers re-
sulted in no further gain. In total, we see a consis-
tent positive effect in intrinsic evaluation from the
tensor networks and multitask learning.

Moving on to MT evaluation, we summarize the
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experiments showing the impact of Tensors and
MTL in Table 3. For MTL, we use L = 3,t = 2
since it gives the best intrinsic score. Employing
tensors instead of regular neural networks gives a
significant and consistent positive impact for all
models and language pairs. For the system with
the baseline features, we use the tensor architec-
ture for both the joint model and the lexical trans-
lation model of Devlin et al. resulting in an im-
provement of around 0.7 BLEU points, and show-
ing the wide applicability of the tensor architec-
ture. On top of this improved baseline, we also ob-
serve an improvement of the same scale for other
models (column “Tensor”), except for HypEn fea-
tures in AR-EN experiment. Moving to MTL ex-
periments, we see improvements, especially from
SrcEn features. MTL gives around 0.5 BLEU
point improvement for AR-EN and around 0.4
BLEU point for ZH-EN. When we employ both
HypEn and SrcEn together, MTL gives around 0.4
BLEU point in AR-EN and 0.2 BLEU point in
ZH-EN. In total, our work results in an improve-
ment of 2.5 BLEU point for AR-EN and 1.8 for
BLEU point in ZH-EN on top of the best results in
(Devlin et al., 2014).

5.3 NIST OpenMT12

Our NIST system is compatible with the
OpenMT12 constrained track, which consists of
10M words of high-quality parallel training for
Arabic, and 25M words for Chinese. The n-gram
LM is trained on 5B words of data from the En-
glish GigaWord. For test, we use the “Arabic-To-
English Original Progress Test” (1378 segments)
and “Chinese-to-English Original Progress Test +
OpenMT12 Current Test” (2190 segments), which
consists of a mix of newswire and web data.
All test segments have 4 references. Our tuning
set contains 5000 segments, and is a mix of the
MTO02-05 eval set as well as additional held-out
parallel data from the training corpora.

We report the experiments for the NIST con-
dition in Table 4. In particular, we investigate
the impact of deploying our new features (column
“Feat”) and demonstrate the effects of the ten-
sor architecture (column “Tensor”) and multitask
learning (column “MTL”). As shown the results
are inline with the BOLT condition where we ob-
serve additive improvements from adding our new
features, applying tensor network and multitask
learning. On Arabic-English, we see a gain of 2.7



Feature set AR-EN ZH-EN

NN | Tensor | MTL | NN | Tensor | MTL
R;: Baseline Features 43.2 43.9 - | 30.2 30.8 -
Ry: Ry + HypEn 44.4 444 | 445 | 30.5 31.5| 31.3
R3: R1 + SrcEn 443 449 | 455 | 30.7 31.5| 31.9
Ry: Ry + HypEn + SrcEn | 44.7 453 | 45.7 | 309 31.8 | 32.0

Table 3: Experimental results to investigate the effects of the new features, DTN and MTL. The top
part shows the BOLT results, while the bottom part shows the NIST results. The best results for each
conditions and each language-pair are in bold. The baselines are in italics. .

Base. | Feat | Tensor | MTL
AR-EN 53.7 | 554|559 56.4
mixed-case | 51.8 | 53.1 | 53.7 54.1
ZH-EN 36.6 | 37.8 | 382 38.5
mixed-case | 34.4 | 35.5 | 359 36.1

Table 4: Experimental results for the NIST condi-
tion. Mixed-case scores are also reported. Base-
lines are in ifalics.

BLEU point and on Chinese-English, we see a 1.9
BLEU point gain. We also report the mixed-cased
BLEU scores for comparison with previous best
published results, i.e. Devlin et al. (2014) report
52.8 BLEU for Arabic-English and 34.7 BLEU for
Chinese-English. Thus, our results are around 1.3-
1.4 BLEU point better. Note that they use addi-
tional rescoring features but we do not.

6 Related Work

Our work is most closely related to Devlin et al.
(2014). They use a simple feedforward neural
network to model two important MT features: A
joint language and translation model, and a lex-
ical translation model. They show very large
improvements on Arabic-English and Chinese-
English web forum and newswire baselines. We
improve on their work in 3 aspects. First, we
model more features using neural networks, in-
cluding two novel ones: a joint model with off-
set source context and a translation context model.
Second, we enhance the neural network architec-
ture by using tensor layers, which allows us to
model richer interactions. Lastly, we improve the
performance of the individual features by training
them using multitask learning. In the remainder
of this section, we describe previous work relat-
ing to the three aspect of our work, namely MT
modeling, neural network architecture and model
learning.

The features we propose in this paper address
the major aspects of SMT modeling that have
informed much of the research since the origi-
nal IBM models (Brown et al., 1993): lexical
translation, reordering, word fertility, and lan-
guage models. Of particular relevance to our work
are approaches that incorporate context-sensitivity
into the models (Carpuat and Wu, 2007), formu-
late reordering as orientation prediction task (Till-
man, 2004) and that use neural network language
models (Bengio et al., 2003; Schwenk, 2010;
Schwenk, 2012), and incorporate source-side con-
text into them (Devlin et al., 2014; Auli et al.,
2013; Le et al., 2012; Schwenk, 2012).

Approaches to incorporating source context into
a neural network model differ mainly in how they
represent the source sentence and in how long is
the history they keep. In terms of representa-
tion of the source sentence, we follow (Devlin et
al., 2014) in using a window around the affiliated
source word. To name some other approaches,
Auli et al. (2013) uses latent semantic analysis and
source sentence embeddings learned from the re-
current neural network; Sundermeyer et al. (2014)
take the representation from a bidirectional LSTM
recurrent neural network; and Kalchbrenner and
Blunsom (2013) employ a convolutional sentence
model. For target context, recent work has tried
to look beyond the classical n-gram history. (Auli
et al., 2013; Sundermeyer et al., 2014) consider
an unbounded history, at the expense of making
their model only applicable for N-best rescoring.
Another recent line of research (Bahdanau et al.,
2014; Sutskever et al., 2014) departs more rad-
ically from conventional feature-based SMT and
implements the MT system as a single neural net-
work. These models use a representation of the
whole input sentence.

We use a feedforward neural network in this
work. Besides feedforward and recurrent net-
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works, other network architectures that have been
applied to SMT include convolutional networks
(Kalchbrenner et al., 2014) and recursive networks
(Socher et al., 2011). The simplicity of feedfor-
ward networks works to our advantage. More
specifically, due to the absence of a feedback loop,
the feedforward architecture allows us to treat
individual decisions independently, which makes
parallelization of the training easy and the query-
ing the network at decoding time straightforward.
The use of tensors in the hidden layers strengthens
the neural network model, allowing us to model
more complex feature interactions like colloca-
tion, which has been long recognized as impor-
tant information for many NLP tasks (e.g. word
sense disambiguation (Lee and Ng, 2002)). The
tensor formulation we use is similar to that of
(Yu et al., 2012; Hutchinson et al., 2013). Ten-
sor Neural Networks have a wide application in
other field, but have only been recently applied in
NLP (Socher et al., 2013; Pei et al., 2014). To
our knowledge, our work is the first to use tensor
networks in SMT.

Our approach to multitask learning is related to
work that is often labeled joint training or transfer
learning. To name a few of these works, Finkel
and Manning (2009) successfully train name en-
tity recognizers and syntactic parsers jointly, and
Singh et al. (2013) train models for coreference
resolution, named entity recognition and relation
extraction jointly. Both efforts are motivated by
the minimization of cascading errors. Our work
is most closely related to Collobert and Weston
(2008; Collobert et al. (2011), who apply multi-
task learning to train neural networks for multi-
ple NLP models: part-of-speech tagging, semantic
role labeling, named-entity recognition and lan-
guage model variations.

7 Conclusion

This paper argues that a relatively simple feedfor-
ward neural network can still provides significant
improvement to Statistical Machine Translation
(SMT). We support this argument by presenting a
multi-pronged approach that addresses modeling,
architectural and learning aspects of pre-existing
neural network-based SMT features. More con-
cretely, we paper present a new set of neural
network-based SMT features to capture important
translation phenomena, extend feedforward neu-
ral network with tensor layers, and apply multi-
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task learning to integrate the SMT features more
tightly. Empirically, all our proposals successfully
produce an improvement over state-of-the-art ma-
chine translation system for Arabic-to-English and
Chinese-to-English and for both BOLT web fo-
rum and NIST conditions. Building on the suc-
cess of this paper, we plan to develop other neural-
network-based features, and to also relax the lim-
iteation of current rule extraction heuristics by
generating translations word-by-word.
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Abstract

The Visual Dependency Representation
(VDR) is an explicit model of the spa-
tial relationships between objects in an im-
age. In this paper we present an approach
to training a VDR Parsing Model without
the extensive human supervision used in
previous work. Our approach is to find
the objects mentioned in a given descrip-
tion using a state-of-the-art object detec-
tor, and to use successful detections to pro-
duce training data. The description of an
unseen image is produced by first predict-
ing its VDR over automatically detected
objects, and then generating the text with
a template-based generation model using
the predicted VDR. The performance of
our approach is comparable to a state-of-
the-art multimodal deep neural network in
images depicting actions.

1 Introduction

Humans typically write the text accompanying an
image, which is a time-consuming and expen-
sive activity. There are many circumstances in
which people are well-suited to this task, such as
captioning news articles (Feng and Lapata, 2008)
where there are complex relationships between the
modalities (Marsh and White, 2003). In this pa-
per we focus on generating literal descriptions,
which are rarely found alongside images because
they describe what can easily be seen by others
(Panofsky, 1939; Shatford, 1986; Hodosh et al.,
2013). A computer that can automatically gen-
erate these literal descriptions, filling the gap left
by humans, may improve access to existing image
collections or increase information access for vi-
sually impaired users.

There has been an upsurge of research in this
area, including models that rely on spatial rela-
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tionships (Farhadi et al., 2010), corpus-based rela-
tionships (Yang et al., 2011), spatial and visual at-
tributes (Kulkarni et al., 2011), n-gram phrase fu-
sion from Web-scale corpora (Li et al., 2011), tree-
substitution grammars (Mitchell et al., 2012), se-
lecting and combining phrases from large image-
description collections (Kuznetsova et al., 2012),
using Visual Dependency Representations to cap-
ture spatial and corpus-based relationships (ElI-
liott and Keller, 2013), and in a generative frame-
work over densely-labelled data (Yatskar et al.,
2014). The most recent developments have fo-
cused on deep learning the relationships between
visual feature vectors and word-embeddings with
language generation models based on recurrent
neural networks or long-short term memory net-
works (Karpathy and Fei-Fei, 2015; Vinyals et al.,
2015; Mao et al., 2015; Fang et al., 2015; Don-
ahue et al., 2015; Lebret et al., 2015). An alter-
native thread of research has focused on directly
pairing images with text, based on kCCA (Hodosh
et al., 2013) or multimodal deep neural networks
(Socher et al., 2014; Karpathy et al., 2014).

We revisit the Visual Dependency Representa-
tion (Elliott and Keller, 2013, VDR), an intermedi-
ate structure that captures the spatial relationships
between objects in an image. Spatial context has
been shown to be useful in object recognition and
naming tasks because humans benefit from the vi-
sual world conforming to their expectations (Bie-
derman et al., 1982; Bar and Ullman, 1996). The
spatial relationships defined in VDR are closely,
but independently, related to cognitively plausible
spatial templates (Logan and Sadler, 1996) and re-
gion connection calculus (Randell et al., 1992).
In the image description task, explicitly modelling
the spatial relationships between observed objects
constrains how an image should be described. An
example can be seen in Figure 1, where the train-
ing VDR identifies the defining relationship be-
tween the man and the laptop, which may be re-

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 42-52,
Beijing, China, July 26-31, 2015. (©2015 Association for Computational Linguistics
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Figure 1: We present an approach to inferring VDR training data from images paired with descriptions
(top), and for generating descriptions from VDR (bottom). Candidates for the subject and object in the
image are extracted from the description. An object detector!searches for the objects and determinis-
tically produces a training instance, which is used to train a VDR Parser to predict the relationships
between objects in unseen images. When an unseen image is presented to the model, we first extract
N-candidate objects for the image. The detected objects are then parsed into a VDR structure, which is
passed into a template-based language generator to produce a description of the image.
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alised as a “using”, “typing”, or “working” rela-
tionship between the objects.

The main limitation of previous research on
VDR has been the reliance on gold-standard train-
ing annotations, which requires trained annota-
tors. We present the first approach to automati-
cally inferring VDR training examples from nat-
ural scenes using only an object detector and an
image description. Ortiz et al. (2015) have re-
cently presented an alternative treatment of VDR
within the context of abstract scenes and phrase-
based machine translation. Figure 1 shows a de-
tailed overview of our approach. At training time,
we learn a VDR Parsing model from representa-
tions that are constructed by searching for the sub-
ject and object in the image. The description of
an unseen image is generated using a template-
based generation model that leverages the VDR
predicted over the top-N objects extracted from an
object detector.

We evaluate our method for inferring VDRs in
an image description experiment on the Pascal1K
(Rashtchian et al., 2010) and VL2K data sets (ElI-
liott and Keller, 2013) against two models: the
bi-directional recurrent neural network (Karpathy
and Fei-Fei, 2015, BRNN) and MIDGE (Mitchell
et al., 2012). The main finding is that the qual-
ity of the descriptions generated by our method

'The image of the R-CNN object detector was modified
with permission from Girshick et al. (2014).
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depends on whether the images depict an action.
In the VLT2K data set of people performing ac-
tions, the performance of our approach is compa-
rable to the BRNN; in the more diverse PascallK
dataset, the BRNN is substantially better than our
method. In a second experiment, we transfer the
VDR-based model from the VLT2K data set to the
Pascal 1K data set without re-training, which im-
proves the descriptions generated in the Pascall1K
data set. This suggests that refining how we ex-
tract training data may yield further improvements
to VDR-based image description.

The code and generated descriptions are avail-
able at http://github.com/elliottd/vdr/.

2 Automatically Inferring VDRs

The Visual Dependency Representation is a struc-
tured representation of an image that explicitly
models the spatial relationships between objects.
In this representation, the spatial relationship be-
tween a pair of objects is encoded with one of the
following eight options: above, below, beside, op-
posite, on, surrounds, infront, and behind. Pre-
vious work on VDR-based image description has
relied on training data from expert human anno-
tators, which is expensive and difficult to scale
to other data sets. In this paper, we describe an
approach to automatically inferring VDRs using
only an object detector and the description of an
image. Our aim is to define an automated version



Relation  Definition

Beside The angle between the subject and
the object is either between 315°
and 45° or 135° and 225°.

Above The angle between the subject and
object is between 225° and 315°.

Below The angle between the subject and
object is between 45° and 135°.

On More than 50% of the subject
overlaps with the object.
Surrounds More than 90% of the subject

overlaps with the object.

Table 1: The cascade of spatial relationships be-
tween objects in VDR. We always use the last
relationship that matches. These definitions are
mostly taken from (Elliott and Keller, 2013), ex-
cept that we remove the 3D relationships. Angles
are defined with respect to the unit circle, which
has 0° on the right. All relations are specific with
respect to the centroid of the bounding boxes.

of the human process used to create gold-standard
data (Elliott and Keller, 2013).

An inferred VDR is constructed by searching
for the subject and object referred to in the descrip-
tion of an image using an object detector. If both
the subject and object can be found in the image,
a VDR is created by attaching the detected subject
to the detected object, given the spatial relation-
ship between the object bounding boxes. The spa-
tial relationships that can be applied between sub-
jects and objects are defined in the cascade defined
in Table 1. The set of relationships was reduced
from eight to six due to the difficulty in predict-
ing the 3D relationships in 2D images (Eigen et
al., 2014). The spatial relation selected for a pair
of objects is determined by applying each tem-
plate defined in Table 1 to the object pair. We use
only the final matching relationship, although fu-
ture work may consider applying multiple match-
ing relationships between objects.

Given a set of inferred VDR training examples,
we train a VDR Parsing Model with the VDR+IMG
feature set using only the inferred examples (EI-
liott et al., 2014). We tried training a model by
combining the inferred and gold-standard VDRs
but this lead to an erratic parsing model that would
regularly predict flat structures instead of object—
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=) person 3.13
c. keyboard 1.22
) laptop 0.77
sofa 0.61
waffle iron 0.47
tape player 0.21
banjo 0.14
accordion -0.16
iPod -0.26
vacuum -0.40

Figure 2: An example of the most confident object
detections from the R-CNN object detector.

object relationships. One possibility for this be-
haviour is the mismatch caused by removing the
infront and behind relationships in the inferred
training data. Another possible explanation is
the gold-standard data contains deeper and more
complex structures than the simple object—object
structures we infer.

2.1 Linguistic Processing

The description of an image is processed to extract
candidates for the mentioned objects. We extract
candidates from the nsubj and dobj tokens in
the dependency parsed description®. If the parsed
description does not contain both a subject and an
object, as defined here, the example is discarded.

2.2 Visual Processing

If the dependency parsed description contains
candidates for the subject and object of an im-
age, we attempt to find these objects in the im-
age. We use the Regions with Convolutional
Neural Network features object detector (Gir-
shick et al., 2014, R-CNN) with the pre-trained
bvlc_reference_ilsrvcl3 detection model
implemented in Caffe (Jia et al., 2014). This ob-
ject detection model is able to detect 200 different
types of objects, with a mean average precision of
31.4% in the ImageNet Large-Scale Visual Recog-
nition Challenge3 (Russakovsky et al., 2014). The
output of the object detector is a bounding box
with real-valued confidence scores, as shown in

>The descriptions are Part-of-Speech tagged using the
Stanford POS Tagger v3.1.0 (Toutanova et al., 2003) with
the english-bidirectional-distsim pre-trained
model. The tagged descriptions are then Dependency Parsed
using Malt Parser v 1.7.2 (Nivre et al., 2007) with the
engmalt.poly-1.7 pre-trained model.

3The state-of-the-art result for this task is 37.2% using a
Network in Network architecture (Lin et al., 2014a); a pre-
trained detection model was not available in the Caffe Model
Zoo at the time of writing.



A man is riding a bike
A boy is using a laptop

(a) on

(b) above

A woman is riding a horse A man is playing a sax

A woman is riding a bike

(c) surrounds

A man is playing a guitar The woman is wearing a helmet

(e) surrounds

(d) surrounds

(f) beside (g) surrounds

Figure 3: Examples of the object detections and automatically inferred VDR. In each example, the object
detector candidates were extracted from the description and the VDR relationships were determined by
the cascade in Table 1. Automatically inferring VDR allows us to learn differences in spatial relationships
from different camera viewpoints, such as people riding bicycles.

Figure 2. The confidence scores are not probabili-
ties and can vary widely across images.

The words in a description that refer to objects
in an image are not always within the constrained
vocabulary of the object labels in the object de-
tection model. We increase the chance of finding
objects with two simple back-offs: by lemmatis-
ing the token, and transforming the token into its
WordNet hypernym parent. If the subject and the
object can be found in the image, we create an in-
ferred VDR from the detections, otherwise we dis-
card this training example.

Figure 3 shows a collection of automatically in-
ferred VDRs. One of the immediate benefits of
VDR, as a representation, is that we can easily in-
terpret the structures extracted from images. An
example of helpful object orientation invariance
can be seen in 3 (b) and (c), where VDR captures
the two different types of spatial relationships be-
tween people and bicycles that are grounded in the
verb “riding”. This type of invariance is useful
and it suggests VDR can model interacting objects
from various viewpoints. We note here the sim-
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ilarities between automatically inferred VDR and
Visual Phrases (Sadeghi and Farhadi, 2011). The
main difference between these models is that VDR
is primarily concerned with object—object interac-
tions for generation and retrieval tasks, whereas
Visual Phrases were intended to model person—
object interactions for activity recognition.

2.3 Building a Language Model

We build a language model using the subjects,
verbs, objects, and spatial relationships from the
successfully constructed training examples. The
subjects and objects take the form of the object de-
tector labels to reduce the effects of sparsity. The
verbs are found as the direct common verb parent
of the subject and object in the dependency parsed
sentence. We stem the verbs using morpha, to re-
duce sparsity, and inflect them in a generated de-
scription with +ing using morphg (Minnen et al.,
2001). The spatial relationship between the sub-
ject and object region is used to help constrain lan-
guage generation to produce descriptions, given
observed spatial contexts in a VDR.
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mee Generator
laptop sofa dHJO vacuum

c=0.14 ¢=-0.40

A person is using a laptop (0.84)
A person is playing a banjo (0.71)

Language

A person is beside a vacuum (0.38 )t
A person is in the image (0.96)*

Figure 4: An overview of VDR-constrained language generation. We extract the top-N objects from an
image using an object detector and predict the spatial relationships between the objects using a VDR
Parser trained over the inferred training data. Descriptions are generated for all parent—child subtrees in
the VDR, and the final text has the highest combined corpus and visual confidence. t: only generated
is there are no verbs between the objects in the language model; *: only generated if there are no verbs

between any pairs of objects in the image.

3 Generating Descriptions

The description of an image is generated using
a template-based language generation model de-
signed to exploit the structure encoded in VDR.
The language generation model extends Elliott
and Keller (2013) with the visual confidence
scores from the object detector. Figure 4 shows
an overview of the generation process.

The top-N objects are extracted from an image
using the pre-trained R-CNN object detector (see
Section 2.2 for more details). We remove non-
maximal detections with the same class label that
overlap by more than 30%. The objects are then
parsed into a VDR structure using the VDR Parser
trained on the automatically inferred training data.
Given the VDR over the set of detected objects, we
generate all possible descriptions of the image that
can be produced in a depth-first traversal of the
VDR. A description is assigned a score that com-
bines the corpus-based evidence and visual con-
fidence of the objects selected for the description.
The descriptions are generated using the following
template:

DT head is v DT child.

In this template, head and child are the labels
of the objects that appear in the head and child po-
sitions of a specific VDR subtree. Vv is a verb de-
termined from a subject-verb-object-spatial rela-
tion model derived from the training data descrip-
tions. This model captures statistics about nouns
that appear as subjects and objects, the verbs be-
tween them, and spatial relationships observed in
the inferred training VDRs. The verb v that satis-
fies the v field is determined as follows:

v = argmax p(v|head, child, spatial) (1)
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p(v|head,child, spatial) =
p(v|head) - p(child|v, head)-
p(spatial|child, v, head)

2

If no verbs were observed between a particular
object—object pair in the training corpus, V is filled
using a back-off that uses the spatial relationship
label between the objects in the VDR.

The object detection confidence values, which
are not probabilities and can vary substantially be-
tween images, are transformed into the range [0,1]
using sgm(conf) = W The final score as-
signed to a description is then used to rank all of
the candidate descriptions, and the highest-scoring
description is assigned to an image:

score(head, v,child, spatial) =
p(vlhead, child, spatial)-
sgm(head) - sgm(child)

3)

If the VDR Parser does not predict any rela-
tionships between objects in an image, which may
happen if all of the objects have never been ob-
served in the training data, we use a back-off tem-
plate to generate the description. In this case, the
most confidently detected object in the image is
used with the following template:

A/An object is in the image.

The number of objects IV objects extracted from
an unseen image is optimised by maximising the
sentence-level Meteor score of the generated de-
scriptions in the development data.

4 Experiments

We evaluate our approach to automatically infer-
ring VDR training data in an automatic image de-
scription experiment. The aim in this task is to



generate a natural language description of an im-
age, which is evaluated directly against multiple
reference descriptions.

4.1 Models

We compare our approach against two state-of-
the-art image description models. MIDGE gener-
ates text based on tree-substitution grammar and
relies on discrete object detections (Mitchell et al.,
2012) for visual input. We make a small modi-
fication to MIDGE so it uses all of the top-N de-
tected objects, regardless of the confidence of the
detections*. BRNN is a multimodal deep neural
network that generates descriptions directly from
vector representations of the image and the de-
scription (Karpathy and Fei-Fei, 2015). The im-
ages are represented by the visual feature vector
extracted from the FC7 layer of the VGG 16-layer
convolutional neural network (Simonyan and Zis-
serman, 2015) and the descriptions are represented
as a word-embedding vector.

4.2 Evaluation Measures

We evaluate the generated descriptions using
sentence-level Meteor (Denkowski and Lavie,
2011) and BLEU4 (Papineni et al., 2002), which
have been shown to have moderate correlation
with humans (Elliott and Keller, 2014). We adopt
a jack-knifing evaluation methodology, which en-
ables us to report human—human results (Lin and
Och, 2004), using MultEval (Clark et al., 2011).

4.3 Data Sets

We perform our experiments on two data sets: Pas-
callK and VLT2K. The Pascal1K data set contains
1,000 images sampled from the PASCAL Object
Detection Challenge data set (Everingham et al.,
2010); each image is paired with five reference de-
scriptions collected from Mechanical Turk. It con-
tains a wide variety of subject matter drawn from
the original 20 PASCAL Detection classes. The
VLT2K data set contains 2,424 images taken from
the trainval 2011 portion of the PASCAL Action
Recognition Challenge; each image is paired with
three reference descriptions, also collected from
Mechanical Turk. We randomly split the images
into 80% training, 10% validation, and 10% test.

*“In personal communication with Margaret Mitchell, she
explained that the object confidence thresholds for MIDGE
were determined by visual inspection on held-out data, which
we decided was not feasible for 200 new detectors.
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VLT2K PascallK
Meteor BLEU Meteor BLEU
VDR 16.0 14.8 7.4 9.0
BRNN 18.6 23.7 12.6 16.0
-genders 16.6 17.4 12.1 15.1
MIDGE 5.5 8.2 3.6 9.1
Human 26.4 23.3 21.7 20.6

Table 2: Sentence-level evaluation of the gen-
erated descriptions. VDR is comparable to
BRNN when the images exclusively depict actions
(VLT2K). In a more diverse data set, BRNN gener-
ates better descriptions (Pascal1K).

4.4 Results

Table 2 shows the results of the image description
experiment. The main finding of our experiments
is that the performance of our proposed approach
VDR depends on the type of images. We found
that VDR is comparable to the deep neural network
BRNN on the VLT2K data set of people perform-
ing actions. This is consistent with the hypothesis
underlying VDR: it is useful to encode the spa-
tial relationships between objects in images. The
difference between the models is increased by the
inability of the object detector used by VDR to pre-
dict bounding boxes for three objects (cameras,
books, and phones) crucial to describing 30% of
the images in this data set. In the more diverse
Pascal1K data set, which does not necessarily de-
pict people performing actions, the deep neural
network generates substantially better descriptions
than VDR and MIDGE. The tree-substitution gram-
mar approach to generating descriptions used by
MIDGE does not perform well on either data set.
There is an obvious discrepancy between the
BLEU4 and Meteor scores for the models. BLEU4
relies on lexical matching between sentences and
thus penalises semantically equivalent descrip-
tions. For example, identifying the gender of
a person is important for generating a good de-
scription. However, object recognizers are not
(yet) able to reliably achieve this distinction, and
we only have a single recogniser for “persons”.
The BRNN generates descriptions with “man” and
“woman”, which leads to higher BLEU scores than
our VDR model, but this is based on corpus statis-
tics than the observed visual information. Me-



VDR is better

VDR: A person is playing a saxophone. VDR: A person is playing a guitar. VDR: A person is playing a drum.
BRNN: A man is playing a guitar BRNN: A man is jumping off a cliff BRNN: A man is standing on a

BRNN is better

VDR: A person is using a computer. VDR: A person is riding a horse. VDR: A person is below sunglasses.

BRNN: A man is jumping on a trampoline BRNN: A group of people riding horses =~ BRNN: A man is reading a book

Equally good

VDR: A person is sitting a table. VDR: A person is using a laptop. VDR: A person is riding a horse.
BRNN: A man is sitting on a chair BRNN: A man is using a computer BRNN: A man is riding a horse
Equally bad

VDR: A person is holding a microphone. VDR: A person is driving a car. VDR: A person is driving a car.
BRNN: A man is taking a picture BRNN: A man is sitting on a phone BRNN: A man is riding a bike

Figure 5: Examples of descriptions generated using VDR and the BRNN in the VLT2K data set. Keen
readers are encouraged to inspect the second image with a magnifying glass or an object detector.
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Figure 6: Optimising the number of detected ob-
jects against generated description Meteor scores
for our model. Improvements are seen until eight
objects, which suggests good descriptions do not
always need the most confident detections.

teor is able to back-off from “man” or “woman”
to “person” and still give partial credit to the de-
scription. If we replace the gendered referents in
the descriptions generated by the BRNN, its perfor-
mance on the VLT2K data set drops by 2.0 Meteor
points and 6.3 BLEU points.

Figure 6 shows the effect of optimising the
number of objects extracted from an image against
the eventual Meteor score of a generated descrip-
tion in the validation data. It can be seen that
the most confidently predicted objects are not al-
ways the most useful objects for generating de-
scriptions. Interestingly, the quality of the de-
scriptions does not significantly decrease with an
increased number of detected objects, suggesting
our model formulation is appropriately discarding
unsuitable detections.

Figure 5 shows examples of the descriptions
generated by VDR and BRNN on the VLT2K val-
idation set. The examples where VDR generates
better descriptions than BRNN are because the
VDR Parser makes good decisions about which
objects are interacting in an image. In the ex-
amples where the BRNN is better than VDR, we
see that the multimodal RNN language model
succeeds at describing intransitive verbs, group
events, and objects not present in the R-CNN ob-
ject detector. Both models generate bad descrip-
tions when the visual input pushes them in the
wrong direction, seen at the bottom of the figure.
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VLT — Pascal

Meteor BLEU
VDR 74— 8.2 9.1 —9.2
BRNN 12.6 — 8.1 16.0— 10.2

Table 3: Sentence-level scores when transferring
models directly between data sets with no retrain-
ing. The VDR-based approach generates better de-
scriptions in the PascallK data set if we transfer
the model from the VLT2K data set.

4.5 Transferring Models

The main reason for the low performance of VDR
on the PascallK data set is that the linguistic and
visual processing steps (Section 2) discard too
many training examples. We found that only 190
of the 4,000 description in the training data were
used to infer VDRs. This was because most of
the descriptions did not contain both a subject and
an object, as required by our method. This ob-
servation led us to perform a second experiment
where we transferred the VDR Parsing and Lan-
guage Generation models between data sets. The
aim of this experiment was to determine whether
VDR simply cannot work on more widely diverse
data sets, or whether the process we defined to
replicate human VDR annotation was too strict.

Table 3 shows the results of the model trans-
fer experiment. In general, neither model is par-
ticularly good at transferring between data sets.
This could be attributed to the shift in the types of
scenes depicted in each data set. However, trans-
ferring VDR from the VLT2K to the Pascal 1K data
set improves the generated descriptions from 7.4
— 8.2 Meteor points. The performance of BRNN
substantially decreases when transferring between
data sets, suggesting that the model may be over-
fitting its training domain.

4.6 Discussion

Notwithstanding the conceptual differences be-
tween multi-modal deep learning and learning an
explicit spatial model of object—object relation-
ships, two key differences between the BRNN and
our approach are the nature visual input and the
language generation models.

The neural network model can readily use the
pre-softmax visual feature vector from any of the
pre-trained models available in the Caffe Model



Zoo, whereas VDR is currently restricted to dis-
crete object detector outputs from those models.
The implication of this is that the VDR-based ap-
proach is unable to describe 30% of the data in
the VLT2K data set. This is due to the object de-
tection model not recognising crucial objects for
three of the action classes: cameras, books, and
telephones. We considered using the VGG-16 pre-
trained model from the ImageNet Recognition and
Localization task in the RCNN object detector,
thus mirroring the detection model used by the
neural network. Frustratingly, this does not seem
possible because none of the 1,000 types of objects
in the recognition task correspond to a person-type
of entity. One approach to alleviating this problem
could be to use weakly-supervised object localisa-
tion (Oquab et al., 2014).

The template-based language generation model
used by VDR lacks the flexibility to describe in-
teresting prepositional phrases or variety within
its current template. An n-gram language gener-
ator, such as the phrase-based approaches of (Or-
tiz et al., 2015; Lebret et al., 2015), that works
within the constraints imposed by VDR structure
may generate better descriptions of images than
the current template.

5 Conclusions

In this paper we showed how to infer useful and re-
liable Visual Dependency Representations of im-
ages without expensive human supervision. Our
approach was based on searching for objects in
images, given a collection of co-occurring descrip-
tions. We evaluated the utility of the representa-
tions on a downstream automatic image descrip-
tion task on two data sets, where the quality of the
generated text largely depended on the data set. In
a large data set of people performing actions, the
descriptions generated by our model were com-
parable to a state-of-the-art multimodal deep neu-
ral network. In a smaller and more diverse data
set, our approach produced poor descriptions be-
cause it was unable to extract enough useful train-
ing examples for the model. In a follow-up exper-
iment that transferred the VDR Parsing and Lan-
guage Generation model between data, we found
improvements in the diverse data set. Our exper-
iments demonstrated that explicitly encoding the
spatial relationships between objects is a useful
way of learning how to describe actions.

There are several fruitful opportunities for fu-
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ture work. The most immediate improvement may
be found with broader coverage object detectors.
It would be useful to search for objects using
multiple pre-trained visual detection models, such
as a 200-class ImageNet Detection model and a
1,000-class ImageNet Recognition and Localisa-
tion model. A second strand of further work would
be to relax the strict mirroring of human annota-
tor behaviour when searching for subjects and ob-
jects in an image. It may be possible to learn good
representations using only the nouns in the POS
tagged description. Our current approach strictly
limits the inferred VDRSs to transitive verbs; im-
ages with descriptions such as “A large cow in a
field” or “A man is walking” are also a focus for
future relaxations of the process for creating train-
ing data. Another direction for future work would
be to use a n-gram based language model con-
strained by the structured predicted in VDR. The
current template based method is limiting the gen-
eration of objects that are being correctly realised
in images.

Tackling the aforementioned future work opens
up opportunities to working with larger and more
diverse data sets such as the Flickr8K (Hodosh et
al., 2013), Flickr30K (Young et al., 2014), and MS
COCO (Lin et al., 2014b) or larger action recogni-
tion data sets such as TUHOI (Le et al., 2014) or
MPII Human Poses (Andriluka et al., 2014).
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Abstract

The ability to map descriptions of scenes
to 3D geometric representations has many
applications in areas such as art, educa-
tion, and robotics. However, prior work
on the text to 3D scene generation task
has used manually specified object cate-
gories and language that identifies them.
We introduce a dataset of 3D scenes an-
notated with natural language descriptions
and learn from this data how to ground tex-
tual descriptions to physical objects. Our
method successfully grounds a variety of
lexical terms to concrete referents, and we
show quantitatively that our method im-
proves 3D scene generation over previ-
ous work using purely rule-based meth-
ods. We evaluate the fidelity and plau-
sibility of 3D scenes generated with our
grounding approach through human judg-
ments. To ease evaluation on this task,
we also introduce an automated metric that
strongly correlates with human judgments.

1 Introduction

We examine the task of text to 3D scene gener-
ation. The ability to map descriptions of scenes
to 3D geometric representations has a wide vari-
ety of applications; many creative industries use
3D scenes. Robotics applications need to interpret
commands referring to real-world environments,
and the ability to visualize scenarios given high-
level descriptions is of great practical use in educa-
tional tools. Unfortunately, 3D scene design user
interfaces are prohibitively complex for novice
users. Prior work has shown the task remains chal-
lenging and time intensive for non-experts, even
with simplified interfaces (Savva et al., 2014).

* The first two authors are listed in alphabetical order.

{...a multicolored table in the
middle of the room...,
...four red and white chairsand a
colorful table, ...}

{...L-shaped room with walls
that have 2 tones of gray...,
A dark room with a pool table...}

M

) E=sass

Figure 1: We learn how to ground references such
as “L-shaped room” to 3D models in a paired cor-
pus of 3D scenes and natural language descrip-
tions. Sentence fragments in bold were identified
as high-weighted references to the shown objects.

Language offers a convenient way for designers
to express their creative goals. Systems that can
interpret natural descriptions to build a visual rep-
resentation allow non-experts to visually express
their thoughts with language, as was demonstrated
by WordsEye, a pioneering work in text to 3D
scene generation (Coyne and Sproat, 2001).

WordsEye and other prior work in this
area (Seversky and Yin, 2006; Chang et al., 2014)
used manually chosen mappings between lan-
guage and objects in scenes. To our knowledge,
we present the first 3D scene generation approach
that learns from data how to map textual terms to
objects. First, we collect a dataset of 3D scenes
along with textual descriptions by people, which
we contribute to the community. We then train
a classifier on a scene discrimination task and
extract high-weight features that ground lexical
terms to 3D models. We integrate our learned
lexical groundings with a rule-based scene gener-
ation approach, and we show through a human-
judgment evaluation that the combination outper-
forms both approaches in isolation. Finally, we
introduce a scene similarity metric that correlates
with human judgments.

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 53-62,
Beijing, China, July 26-31, 2015. (©2015 Association for Computational Linguistics



Scene Template

room
on(00,01)
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“There is a desk and
there is a notepad on
the desk. There is a pen
next to the notepad.”
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Figure 2: Illustration of the text to 3D scene generation pipeline. The input is text describing a scene
(left), which we parse into an abstract scene template representation capturing objects and relations (mid-
dle). The scene template is then used to generate a concrete 3D scene visualizing the input description
(right). The 3D scene is constructed by retrieving and arranging appropriate 3D models.

2 Task Description

In the text to 3D scene generation task, the input
is a natural language description, and the output is
a 3D representation of a plausible scene that fits
the description and can be viewed and rendered
from multiple perspectives. More precisely, given
an utterance x as input, the output is a scene y: an
arrangement of 3D models representing objects at
specified positions and orientations in space.

In this paper, we focus on the subproblem of
lexical grounding of textual terms to 3D model ref-
erents (i.e., choosing 3D models that represent ob-
jects referred to by terms in the input utterance ).
We employ an intermediate scene template repre-
sentation parsed from the input text to capture the
physical objects present in a scene and constraints
between them. This representation is then used to
generate a 3D scene (Figure 2).

A naive approach to scene generation might
use keyword search to retrieve 3D models. How-
ever, such an approach is unlikely to generalize
well in that it fails to capture important object at-
tributes and spatial relations. In order for the gen-
erated scene to accurately reflect the input descrip-
tion, a deep understanding of language describ-
ing environments is necessary. Many challenging
subproblems need to be tackled: physical object
mention detection, estimation of object attributes
such as size, extraction of spatial constraints, and
placement of objects at appropriate relative posi-
tions and orientations. The subproblem of lexical
grounding to 3D models has a larged impact on
the quality of generated scenes, as later stages of
scene generation rely on having a correctly chosen
set of objects to arrange.

Another challenge is that much common knowl-
edge about the physical properties of objects and
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the structure of environments is rarely mentioned
in natural language (e.g., that most tables are sup-
ported on the floor and in an upright orienta-
tion). Unfortunately, common 3D representations
of objects and scenes used in computer graph-
ics specify only geometry and appearance, and
rarely include such information. Prior work in
text to 3D scene generation focused on collecting
manual annotations of object properties and rela-
tions (Rouhizadeh et al., 2011; Coyne et al., 2012),
which are used to drive rule-based generation sys-
tems. Regrettably, the task of scene generation has
not yet benefited from recent related work in NLP.

3 Related Work

There is much prior work in image retrieval given
textual queries; a recent overview is provided
by Siddiquie et al. (2011). The image retrieval
task bears some similarity to our task insofar as
3D scene retrieval is an approach that can approx-
imate 3D scene generation.

However, there are fundamental differences be-
tween 2D images and 3D scenes. Generation in
image space has predominantly focused on com-
position of simple 2D clip art elements, as exem-
plified recently by Zitnick et al. (2013). The task
of composing 3D scenes presents a much higher-
dimensional search space of scene configurations
where finding plausible and desirable configura-
tions is difficult. Unlike prior work in clip art gen-
eration which uses a small pre-specified set of ob-
jects, we ground to a large database of objects that
can occur in various indoor environments: 12490
3D models from roughly 270 categories.



There is a bed and there is a . . There is a table and there are four chairs. There
. There is a chair and a table. .
nightstand next to the bed. are four plates and there are four sandwiches.

~e

e There is a bed with three pillows and a bedside e There is a chair and a circular table in the e dinning room with four plates, four chairs, and

table next to it. middle of a floral print room. four sandwiches

e The room appears to be a bedroom. A blue bed e a corner widow room with a a table and e dark room with two small windows. A
and white nightstand are pushed against the  chair sitting to the east side. rectangular table seating four is in the middle
furthest wall. A window is on the left side. e There's a dresser in the corner of the room, of the room with plates set. There is a set of

e A dark bedroom with a queen bed with blue  and a yellow table with a brown wooden two gray double doors on another wall.
comforter and three pillows. There is a night  chair. e i see a rectangular table in the center of the
stand. One wall is decorated with a large design room. There are 4 chairs around the table and
and another wall has three large windows. 4 plates on the table

Figure 3: Scenes created by participants from seed description sentences (top). Additional descriptions
provided by other participants from the created scene (bottom). Our dataset contains around 19 scenes
per seed sentence, for a total of 1129 scenes. Scenes exhibit variation in the specific objects chosen and
their placement. Each scene is described by 3 or 4 other people, for a total of 4358 descriptions.

3.1 Text to Scene Systems 3.2 Related Tasks

Prior work has generated sentences that describe
2D images (Farhadi et al., 2010; Kulkarni et al.,
2011; Karpathy et al., 2014) and referring expres-
sions for specific objects in images (FitzGerald
et al.,, 2013; Kazemzadeh et al., 2014). How-
ever, generating scenes is currently out of reach
for purely image-based approaches. 3D scene rep-
resentations serve as an intermediate level of struc-
ture between raw image pixels and simpler micro-
cosms (e.g., grid and block worlds). This level of
structure is amenable to the generation task but
still realistic enough to present a variety of chal-
lenges associated with natural scenes.

Pioneering work on the SHRDLU system (Wino-
grad, 1972) demonstrated linguistic manipulation
of objects in 3D scenes. However, the dis-
course domain was restricted to a micro-world
with simple geometric shapes to simplify parsing
and grounding of natural language input. More re-
cently, prototype text to 3D scene generation sys-
tems have been built for broader domains, most
notably the WordsEye system (Coyne and Sproat,
2001) and later work by Seversky and Yin (2006).
Chang et al. (2014) showed it is possible to learn
spatial priors for objects and relations directly

from 3D scene data.
A related line of work focuses on grounding

referring expressions to referents in 3D worlds
) i o with simple colored geometric shapes (Gorniak
physical world. Thls preve'nts' generah.z:f,l.tlon Fo and Roy, 2004; Gorniak and Roy, 2005). More re-
more complex ObJeCt. descriptions, variations in cent work grounds text to object attributes such as
word choice and spelling, and other languages. It ., .4 shape in images (Matuszek et al., 2012;
also forcc.as users to use unnatural. language to ex- Krishnamurthy and Kollar, 2013). Golland et al.
press their 1nte?nt (e.g., the table is two feet to the (2010) ground spatial relationship language in 3D
south of the window). scenes (e.g., to the left of, behind) by learning

We propose reducing reliance on manual lex-  from pairwise object relations provided by crowd-
icons by learning to map descriptions to objects = workers. In contrast, we ground general descrip-
from a corpus of 3D scenes and associated textual  tions to a wide variety of possible objects. The
descriptions. While we find that lexical knowledge = objects in our scenes represent a broader space of
alone is not sufficient to generate high-quality  possible referents than the first two lines of work.
scenes, a learned approach to lexical grounding  Unlike the latter work, our descriptions are pro-
can be used in combination with a rule-based sys-  vided as unrestricted free-form text, rather than
tem for handling compositional knowledge, result-  filling in specific templates of object references
ing in better scenes than either component alone. and fixed spatial relationships.

These systems use manually defined mappings
between language and their representation of the
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4 Dataset

We introduce a new dataset of 1128 scenes and
4284 free-form natural language descriptions of
these scenes.! To create this training set, we
used a simple online scene design interface that
allows users to assemble scenes using available
3D models of common household objects (each
model is annotated with a category label and has
a unique ID). We used a set of 60 seed sentences
describing simple configurations of interior scenes
as prompts and asked workers on the Amazon
Mechanical Turk crowdsourcing platform to cre-
ate scenes corresponding to these seed descrip-
tions. To obtain more varied descriptions for each
scene, we asked other workers to describe each
scene. Figure 3 shows examples of seed descrip-
tion sentences, 3D scenes created by people given
those descriptions, and new descriptions provided
by others viewing the created scenes.

We manually examined a random subset of
the descriptions (approximately 10%) to elimi-
nate spam and unacceptably poor descriptions.
When we identified an unacceptable description,
we also examined all other descriptions by the
same worker, as most poor descriptions came from
a small number of workers. From our sample, we
estimate that less than 3% of descriptions were
spam or unacceptably incoherent. To reflect nat-
ural use, we retained minor typographical and
grammatical errors.

Despite the small set of seed sentences, the
Turker-provided scenes exhibit much variety in the
specific objects used and their placements within
the scene. Over 600 distinct 3D models appear
in at least one scene, and more than 40% of non-
room objects are rotated from their default orienta-
tion, despite the fact that this requires an extra ma-
nipulation in the scene-building interface. The de-
scriptions collected for these scenes are similarly
diverse and usually differ substantially in length
and content from the seed sentences.”

5 Model

To create a model for generating scene templates
from text, we train a classifier to learn lexical

! Available at http://nlp.stanford.edu/data/
text2scene.shtml.

Mean 26.2 words, SD 17.4; versus mean 16.6, SD 7.2
for the seed sentences. If one considers seed sentences to be
the “reference,” the macro-averaged BLEU score (Papineni
et al., 2002) of the Turker descriptions is 12.0.
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groundings. We then combine our learned lexi-
cal groundings with a rule-based scene generation
model. The learned groundings allow us to select
better models, while the rule-based model offers
simple compositionality for handling coreference
and relationships between objects.

5.1 Learning lexical groundings

To learn lexical mappings from examples, we train
a classifier on a related grounding task and ex-
tract the weights of lexical features for use in scene
generation. This classifier learns from a “discrim-
ination” version of our scene dataset, in which
the scene in each scene—description pair is hid-
den among four other distractor scenes sampled
uniformly at random. The training objective is
to maximize the Lj-regularized log likelihood of
this scene discrimination dataset under a one-vs.-
all logistic regression model, using each true scene
and each distractor scene as one example (with
trueldistractor as the output label).

The learned model uses binary-valued fea-
tures indicating the co-occurrence of a unigram
or bigram and an object category or model
ID. For example, features extracted from the
scene-description pair shown in Figure 2 would
include the tuples (desk,modelId:132) and
(the notepad, category :notepad).

To evaluate our learned model’s performance at
discriminating scenes, independently of its use in
scene generation, we split our scene and descrip-
tion corpus (augmented with distractor scenes)
randomly into train, development, and test por-
tions 70%-15%-15% by scene. Using only model
ID features, the classifier achieves a discrimina-
tion accuracy of 0.715 on the test set; adding fea-
tures that use object categories as well as model
IDs improves accuracy to 0.833.

5.2 Rule-based Model

We use the rule-based parsing component de-
scribed in Chang et al. (2014). This system in-
corporates knowledge that is important for scene
generation and not addressed by our learned model
(e.g., spatial relationships and coreference). In
Section 5.3, we describe how we use our learned
model to augment this model.

This rule-based approach is a three-stage pro-
cess using established NLP systems: 1) The input
text is split into multiple sentences and parsed us-
ing the Stanford CoreNLP pipeline (Manning et
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Figure 4: Some examples extracted from the top 20 highest-weight features in our learned model: lexical
terms from the descriptions in our scene corpus are grounded to 3D models within the scene corpus.

al., 2014). Head words of noun phrases are iden-
tified as candidate object categories, filtered using
WordNet (Miller, 1995) to only include physical
objects. 2) References to the same object are col-
lapsed using the Stanford coreference system. 3)
Properties are attached to each object by extract-
ing other adjectives and nouns in the noun phrase.
These properties are later used to query the 3D
model database.

We use the same model database as Chang et al.
(2014) and also extract spatial relations between
objects using the same set of dependency patterns.

5.3 Combined Model

The rule-based parsing model is limited in its abil-
ity to choose appropriate 3D models. We integrate
our learned lexical groundings with this model to
build an improved scene generation system.

Identifying object categories Using the rule-
based model, we extract all noun phrases as po-
tential objects. For each noun phrase p, we extract
features {¢; } and compute the score of a category
¢ being described by the noun phrase as the sum
of the feature weights from the learned model in
Section 5.1:

Score(c|p) = Y bio).
#i€d(p)

where 6; .y is the weight for associating feature
¢; with category c. From categories with a score
higher than T, = 0.5, we select the best-scoring
category as the representative for the noun phrase.
If no category’s score exceeds 7, we use the head
of the noun phrase for the object category.

3D model selection For each object mention
detected in the description, we use the feature
weights from the learned model to select a specific
object to add to the scene. After using dependency
rules to extract spatial relationships and descrip-
tive terms associated with the object, we compute
the score of a 3D model m given the category c and
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text category text category

chair Chair round RoundTable
lamp Lamp laptop Laptop
couch Couch fruit Bowl

vase Vase round table RoundTable
sofa Couch laptop Computer
bed Bed bookshelf Bookcase

Table 1: Top groundings of lexical terms in our
dataset to categories of 3D models in the scenes.

a set of descriptive terms d using a similar sum of
feature weights. As the rule-based system may not
accurately identify the correct set of terms d, we
augment the score with a sum of feature weights
over the entire input description x:

m = argmax \g Z O(i,m) T Aa Z 0i,m)
me{cl 4 eg(d) $i€(x)

For the results shown here, Ay = 0.75 and A\, =
0.25. We select the best-scoring 3D model with
positive score. If no model has positive score, we
assume the object mention was spurious and omit
the object.

6 Learned lexical groundings

By extracting high-weight features from our
learned model, we can visualize specific models
to which lexical terms are grounded (see Figure 4).
These features correspond to high frequency text—
3D model pairs within the scene corpus. Table 1
shows some of the top learned lexical ground-
ings to model database categories. We are able
to recover many simple identity mappings with-
out using lexical similarity features, and we cap-
ture several lexical variants (e.g., sofa for couch).
A few erroneous mappings reflect common co-
occurrences; for example, fruit is mapped to Bowl
due to fruit typically being observed in bowls in
our dataset.
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MTurk sentences:

A round table is in the center of the
room with four chairs around the
table. There is a double window facing
west. A door is on the east side of the
room.

In between the doors and the window,
there is a black couch with red
cushions, two white pillows, and one
black pillow. In front of the couch,
there is a wooden coffee table with a
glass top and two newspapers. Next
to the table, facing the couch, is a
wooden folding chair.

Figure 5: Qualitative comparison of generated scenes for three input descriptions (one Seed and two
MTurk), using the four different methods: random, learned, rule, combo.

7 Experimental Results

We conduct a human judgment experiment to
compare the quality of generated scenes using the
approaches we presented and baseline methods.
To evaluate whether lexical grounding improves
scene generation, we need a method to arrange the
chosen models into 3D scenes. Since 3D scene
layout is not a focus of our work, we use an ap-
proach based on prior work in 3D scene synthesis
and text to scene generation (Fisher et al., 2012;
Chang et al., 2014), simplified by using sampling
rather than a hill climbing strategy.

Conditions We compare five conditions:
{random, learned, rule, combo, human}. The
random condition represents a baseline which
synthesizes a scene with randomly-selected
models, while human represents scenes created by
people. The learned condition takes our learned
lexical groundings, picks the four® most likely
objects, and generates a scene based on them. The
rule and combo conditions use scenes generated
by the rule-based approach and the combined
model, respectively.

Descriptions We consider two sets of input de-
scriptions: {Seeds, MTurk}. The Seeds descrip-
tions are 50 of the initial seed sentences from
which workers were asked to create scenes. These
seed sentences were simple (e.g., There is a desk

3The average number of objects in a scene in our human-
built dataset was 3.9.
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and a chair, There is a plate on a table) and did
not have modifiers describing the objects. The
MTurk descriptions are much more descriptive and
exhibit a wider variety in language (including mis-
spellings and ungrammatical constructs). Our hy-
pothesis was that the rule-based system would per-
form well on the simple Seeds descriptions, but it
would be insufficient for handling the complexi-
ties of the more varied MTurk descriptions. For
these more natural descriptions, we expected our
combination model to perform better. Our experi-
mental results confirm this hypothesis.

7.1 Qualitative Evaluation

Figure 5 shows a qualitative comparison of 3D
scenes generated from example input descriptions
using each of the four methods. In the top row,
the rule-based approach selects a CPU chassis for
computer, while combo and learned select a more
iconic monitor. In the bottom row, the rule-based
approach selects two newspapers and places them
on the floor, while the combined approach cor-
rectly selects a coffee table with two newspapers
on it. The learned model is limited to four objects
and does not have a notion of object identity, so it
often duplicates objects.

7.2 Human Evaluation

We performed an experiment in which people
rated the degree to which scenes match the tex-
tual descriptions from which they were generated.
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The tan couch and the wooden coffee table in the middle of the room and facing away from the windows.

bad good
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Figure 6: Screenshot of the Ul for rating scene-
description match.

Such ratings are a natural way to evaluate how
well our approach can generate scenes from text:
in practical use, a person would provide an input
description and then judge the suitability of the re-
sulting scenes. For the MTurk descriptions, we
randomly sampled 100 descriptions from the de-
velopment split of our dataset.

Procedure During the experiment, each partici-
pant was shown 30 pairs of scene descriptions and
generated 3D scenes drawn randomly from all five
conditions. All participants provided 30 responses
each for a total of 5040 scene-description ratings.
Participants were asked to rate how well the gen-
erated scene matched the input description on a 7-
point Likert scale, with 1 indicating a poor match
and 7 a very good one (see Figure 6). In a sep-
arate task with the same experimental procedure,
we asked other participants to rate the overall plau-
sibility of each generated scene without a refer-
ence description. This plausibility rating measures
whether a method can generate plausible scenes
irrespective of the degree to which the input de-
scription is matched. We used Amazon Mechan-
ical Turk to recruit 168 participants for rating the
match of scenes to descriptions and 63 participants
for rating scene plausibility.

Design The experiment followed a within-
subjects factorial design. The dependent measure
was the Likert rating. Since per-participant and
per-scene variance on the rating is not accounted
for by a standard ANOVA, we use a mixed effects
model which can account for both fixed effects and
random effects to determine the statistical signifi-
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method Seeds MTurk

random 2.03 (1.88-2.18) 1.68 (1.57-1.79)
learned 3.51 (3.23-3.77) 2.61 (2.40-2.84)
rule 5.44 (5.26-5.61) 3.15 (2.91-3.40)
combo 5.23 (4.96-5.44) 3.73 (3.48-3.95)
human 6.06 (5.90-6.19) 5.87 (5.74-6.00)

Table 2: Average scene-description match ratings
across sentence types and methods (95% C.1.).

cance of our results.* We treat the participant and
the specific scene as random effects of varying in-
tercept, and the method condition as the fixed ef-
fect.

Results There was a significant effect of the
method condition on the scene-description match
rating: x2(4, N = 5040) = 1378.2,p < 0.001.
Table 2 summarizes the average scene-description
match ratings and 95% confidence intervals for
all sentence type—condition pairs. All pairwise
differences between ratings were significant un-
der Wilcoxon rank-sum tests with the Bonferroni-
Holm correction (p < 0.05). The scene plausibility
ratings, which were obtained independent of de-
scriptions, indicated that the only significant dif-
ference in plausibility was between scenes cre-
ated by people (human) and all the other condi-
tions. We see that for the simple seed sentences
both the rule-based and combined model approach
the quality of human-created scenes. However,
all methods have significantly lower ratings for
the more complex MTurk sentences. In this more
challenging scenario, the combined model is clos-
est to the manually created scenes and signifi-
cantly outperforms both rule-based and learned
models in isolation.

7.3 Error Analysis

Figure 7 shows some common error cases in our
system. The top left scene was generated with the
rule-based method, the top right with the learned
method, and the bottom two with the combined
approach. At the top left, there is an erroneous
selection of concrete object category (wood logs)
for the four wood chairs reference in the input
description, due to an incorrect head identifica-
tion. At top right, the learned model identifies the

*We used the 1me4 R package and optimized fit with
maximum log-likelihood (Baayen et al., 2008). We report
significance results using the likelihood-ratio (LR) test.
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Figure 7: Common scene generation errors. From
top left clockwise: Wood table and four wood
chairs in the center of the room; There is a black
and brown desk with a table lamp and flowers;
There is a white desk, a black chair, and a lamp
in the corner of the room; There in the middle is a
table, on the table is a cup.

presence of brown desk and lamp but erroneously
picks two desks and two lamps (since we always
pick the top four objects). The scene on the bot-
tom right does not obey the expressed spatial con-
straints (in the corner of the room) since our sys-
tem does not understand the grounding of room
corner and that the top right side is not a good fit
due to the door. In the bottom left, incorrect coref-
erence resolution results in two tables for There in
the middle is a table, on the table is a cup.

7.4 Scene Similarity Metric

We introduce an automated metric for scoring
scenes given a scene template representation, the
aligned scene template similarity (ASTS). Given
a one-to-one alignment A between the nodes of a
scene template and the objects in a scene, let the
alignment penalty J(A) be the sum of the number
of unaligned nodes in the scene template and the
number of unaligned objects in the scene. For the
aligned nodes, we compute a similarity score S per
node pair (n,n') where S(n,n’) = 1 if the model
ID matches, S(n,n') = 0.5 if only the category
matches and O otherwise.

We define the ASTS of a scene with respect to
a scene template to be the maximum alignment
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method Human ASTS
random 1.68 0.08
learned 2.61 0.23
rule 3.15 0.32
combo 3.73 0.44

Table 3: Average human ratings (out of 7) and
aligned scene template similarity scores.

score over all such alignments:

Z(n,n’)eA S(nv n/)
J(A) + |A]

ASTS(s, z) = max

With this definition, we compare average ASTS
scores for each method against average human rat-
ings (Table 3). We test the correlation of the ASTS
metric against human ratings using Pearson’s 7
and Kendall’s rank correlation coefficient .. We
find that ASTS and human ratings are strongly cor-
related (r = 0.70, 7 = 0.49, p < 0.001). This
suggests ASTS scores could be used to train and
algorithmically evaluate scene generation systems
that map descriptions to scene templates.

8 Future Work

Many error cases in our generated scenes resulted
from not interpreting spatial relations. An obvi-
ous improvement would be to expand our learned
lexical grounding approach to include spatial rela-
tions. This would help with spatial language that
is not handled by the rule-based system’s depen-
dency patterns (e.g., around, between, on the east
side). One approach would be to add spatial con-
straints to the definition of our scene similarity
score and use this improved metric in training a
semantic parser to generate scene templates.

To choose objects, our current system uses
information obtained from language—object co-
occurrences and sparse manually-annotated cate-
gory labels; another promising avenue for achiev-
ing better lexical grounding is to propagate cate-
gory labels using geometric and image features to
learn the categories of unlabeled objects. Novel
categories can also be extracted from Turker de-
scriptions. These new labels could be used to im-
prove the annotations in our 3D model database,
enabling a wider range of object types to be used
in scene generation.



Our approach learns object references without
using lexical similarity features or a manually-
assembled lexicon. Thus, we expect that our
method for lexical grounding can facilitate de-
velopment of text-to-scene systems in other lan-
guages. However, additional data collection and
experiments are necessary to confirm this and
identify challenges specific to other languages.

The necessity of handling omitted information
suggests that a model incorporating a more so-
phisticated theory of pragmatic inference could be
beneficial. Another important problem not ad-
dressed here is the role of context and discourse
in interpreting scene descriptions. For example,
several of our collected descriptions include lan-
guage imagining embodied presence in the scene
(e.g., The wooden table is to your right, if you're
entering the room from the doors).

9 Conclusion

Prior work in 3D scene generation relies on purely
rule-based methods to map object references to
concrete 3D objects. We introduce a dataset of 3D
scenes annotated with natural language descrip-
tions which we believe will be of great interest
to the research community. Using this corpus of
scenes and descriptions, we present an approach
that learns from data how to ground textual de-
scriptions to objects.

To evaluate how our grounding approach im-
pacts generated scene quality, we collect human
judgments of generated scenes. In addition, we
present a metric for automatically comparing gen-
erated scene templates to scenes, and we show that
it correlates strongly with human judgments.

We demonstrate that rich lexical grounding can
be learned directly from an unaligned corpus of
3D scenes and natural language descriptions, and
that our model can successfully ground lexical
terms to concrete referents, improving scene gen-
eration over baselines adapted from prior work.
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Abstract

We present MultiGranCNN, a general
deep learning architecture for matching
text chunks. MultiGranCNN supports
multigranular comparability of represen-
tations: shorter sequences in one chunk
can be directly compared to longer se-
quences in the other chunk.  Multi-
GranCNN also contains a flexible and
modularized match feature component
that is easily adaptable to different types
of chunk matching. We demonstrate state-
of-the-art performance of MultiGranCNN
on clause coherence and paraphrase iden-
tification tasks.

1 Introduction

Many natural language processing (NLP) tasks
can be posed as classifying the relationship be-
tween two TEXTCHUNKS (cf. Li et al. (2012),
Bordes et al. (2014b)) where a TEXTCHUNK can
be a sentence, a clause, a paragraph or any other
sequence of words that forms a unit.

Paraphrasing (Figure 1, top) is one task that we
address in this paper and that can be formalized
as classifying a TEXTCHUNK relation. The two
classes correspond to the sentences being (e.g.,
the pair <p, gq*>) or not being (e.g., the pair
<p, q  >) paraphrases of each other. Another
task we look at is clause coherence (Figure 1, bot-
tom). Here the two TEXTCHUNK relation classes
correspond to the second clause being (e.g., the
pair <x, y*>) or not being (e.g., the pair <x,
y~ >) a discourse-coherent continuation of the
first clause. Other tasks that can be formalized
as TEXTCHUNK relations are question answering
(QA) (is the second chunk an answer to the first?),
textual inference (does the first chunk imply the
second?) and machine translation (are the two
chunks translations of each other?).
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PDC will also almost certainly fan the flames of
speculation about Longhorn’s release.
+ PDC will also almost certainly reignite speculation
about release dates of Microsoft ’s new products.
q~ PDC is indifferent to the release of Longhorn.
x The dollar suffered its worst one-day loss in a month,
y ™ falling to 1.7717 marks ... from 1.7925 marks yesterday.

y~ up from 112.78 yen in late New York trading yesterday.

Figure 1: Examples for paraphrasing and clause
coherence tasks

In this paper, we present MultiGranCNN, a gen-
eral architecture for TEXTCHUNK relation classi-
fication. MultiGranCNN can be applied to a broad
range of different TEXTCHUNK relations. This is
a challenge because natural language has a com-
plex structure — both sequential and hierarchical —
and because this structure is usually not parallel
in the two chunks that must be matched, further
increasing the difficulty of the task. A successful
detection algorithm therefore needs to capture not
only the internal structure of TEXTCHUNKS, but
also the rich pattern of their interactions.

MultiGranCNN is based on two innovations
that are critical for successful TEXTCHUNK re-
lation classification. First, the architecture is de-
signed to ensure multigranular comparability. For
general matching, we need the ability to match
short sequences in one chunk with long sequences
in the other chunk. For example, what is expressed
by a single word in one chunk (“reignite” in q*
in the figure) may be expressed by a sequence of
several words in its paraphrase (‘“fan the flames
of” in p). To meet this objective, we learn rep-
resentations for words, phrases and the entire sen-
tence that are all mutually comparable; in particu-
lar, these representations all have the same dimen-
sionality and live in the same space.

Most prior work (e.g., Blacoe and Lapata (2012;
Hu et al. (2014)) has neglected the need for multi-
granular comparability and performed matching
within fixed levels only, e.g., only words were
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matched with words or only sentences with sen-
tences. For a general solution to the problem of
matching, we instead need the ability to match a
unit on a lower level of granularity in one chunk
with a unit on a higher level of granularity in the
other chunk. Unlike (Socher et al., 2011), our
model does not rely on parsing and it can more ex-
haustively search the hypothesis space of possible
matchings, including matchings that correspond to
conflicting segmentations of the input chunks (see
Section 5).

Our second contribution is that MultiGranCNN
contains a flexible and modularized match feature
component. This component computes the ba-
sic features that measure how well phrases of the
two chunks match. We investigate three different
match feature models that demonstrate that a wide
variety of different match feature models can be
implemented. The match feature models can be
swapped in and out of MultiGranCNN, depending
on the characteristics of the task to be solved.

Prior work that has addressed matching tasks
has usually focused on a single task like QA (Bor-
des et al., 2014a; Yu et al., 2014) or paraphrasing
(Socher et al., 2011; Madnani et al., 2012; Ji and
Eisenstein, 2013). The ARC architectures pro-
posed by Hu et al. (2014) are intended to be more
general, but seem to be somewhat limited in their
flexibility to model different matching relations;
e.g., they do not perform well for paraphrasing.

Different match feature models may also be re-
quired by factors other than the characteristics of
the task. If the amount of labeled training data is
small, then we may prefer a match feature model
with few parameters that is robust against overfit-
ting. If there is lots of training data, then a richer
match feature model may be the right choice.
This motivates the need for an architecture like
MultiGranCNN that allows selection of the task-
appropriate match feature model from a range of
different models and its seamless integration into
the architecture.

In remaining parts, Section 2 introduces some
related work; Section 3 gives an overview of the
proposed MultiGranCNN; Section 4 shows how to
learn representations for generalized phrases (g-
phrases); Section 5 describes the three matching
models: DIRECTSIM, INDIRECTSIM and CON-
CAT; Section 6 describes the two 2D pooling
methods: grid-based pooling and phrase-based
pooling; Section 7 describes the match feature
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CNN; Section 8 summarizes the architecture of
MultiGran CNN; and Section 9 presents experi-
ments; finally, Section 10 concludes.

2 Related Work

Paraphrase identification (PI) is a typical task of
sentence matching and it has been frequently stud-
ied (Qiu et al., 2006; Blacoe and Lapata, 2012;
Madnani et al., 2012; Ji and Eisenstein, 2013).
Socher et al. (2011) utilized parsing to model the
hierarchical structure of sentences and uses un-
folding recursive autoencoders to learn represen-
tations for single words and phrases acting as non-
leaf nodes in the tree. The main difference to
MultiGranCNN is that we stack multiple convo-
Iution layers to model flexible phrases and learn
representations for them, and aim to address more
general sentence correspondence. Bach et al.
(2014) claimed that elementary discourse units ob-
tained by segmenting sentences play an important
role in paraphrasing. Their conclusion also en-
dorses (Socher et al., 2011)’s and our work, for
both take interactions between component phrases
into account.

QA is another representative sentence matching
problem. Yu et al. (2014) modeled sentence rep-
resentations in a simplified CNN, finally finding
the match score by projecting question and answer
candidates into the same space. Other relevant QA
work includes (Bordes et al., 2014c; Bordes et al.,
2014a; Yang et al., 2014; Iyyer et al., 2014)

For more general matching, Chopra et al. (2005)
and Liu (2013) used a Siamese architecture of
shared-weight neural networks (NNs) to model
two objects simultaneously, matching their repre-
sentations and then learning a specific type of sen-
tence relation. We adopt parts of their architec-
ture, but we model phrase representations as well
as sentence representations.

Li and Xu (2012) gave a comprehensive intro-
duction to query-document matching and argued
that query and document match at different levels:
term, phrase, word sense, topic, structure etc. This
also applies to sentence matching.

Lu and Li (2013) addressed matching of short
texts. Interactions between the two texts were ob-
tained via LDA (Blei et al., 2003) and were then
the basis for computing a matching score. Com-
pared to MultiGranCNN, drawbacks of this ap-
proach are that LDA parameters are not optimized
for the specific task and that the interactions are



formed on the level of single words only.

Gao et al. (2014) modeled interestingness be-
tween two documents with deep NNs. They
mapped source-target document pairs to feature
vectors in a latent space in such a way that the dis-
tance between the source document and its corre-
sponding interesting target in that space was min-
imized. Interestingness is more like topic rele-
vance, based mainly on the aggregated meaning
of keywords, as opposed to more structural rela-
tionships as is the case for paraphrasing and clause
coherence.

We briefly discussed (Hu et al., 2014)’s ARC in
Section 1. MultiGranCNN is partially inspired by
ARC, but introduces multigranular comparability
(thus enabling crosslevel matching) and supports
a wider range of match feature models.

Our unsupervised learning component (Sec-
tion 4, last paragraph) resembles word2vec
CBOW (Mikolov et al., 2013), but learns repre-
sentations of TEXTCHUNKS as well as words. It
also resembles PV-DM (Le and Mikolov, 2014),
but our TEXTCHUNK representation is derived us-
ing a hierarchical architecture based on convolu-
tion and pooling.

3 Overview of MultiGranCNN

We use convolution-plus-pooling in two differ-
ent components of MultiGranCNN. The first com-
ponent, the generalized phrase CNN (gpCNN),
will be introduced in Section 4. This component
learns representations for generalized phrases (g-
phrases) where a generalized phrase is a general
term for subsequences of all granularities: words,
short phrases, long phrases and the sentence itself.
The gpCNN architecture has L layers of convolu-
tion, corresponding (for L = 2) to words, short
phrases, long phrases and the sentence. We test
different values of L in our experiments. We train
gpCNN on large data in an unsupervised manner
and then fine-tune it on labeled training data.

Using a Siamese configuration, two copies
of gpCNN, one for each of the two input
TEXTCHUNKS, are the input to the match feature
model, presented in Section 5. This model pro-
duces s1 X s matching features, one for each pair
of g-phrases in the two chunks, where s1, so are
the number of g-phrases in the two chunks, respec-
tively.

The s1 X s9 match feature matrix is first reduced
to a fixed size by dynamic 2D pooling. The re-
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sulting fixed size matrix is then the input to the
second convolution-plus-pooling component, the
match feature CNN (mfCNN) whose output is fed
to a multilayer perceptron (MLP) that produces
the final match score. Section 6 will give details.

We use convolution-plus-pooling for both word
sequences and match features because we want to
compute increasingly abstract features at multiple
levels of granularity. To ensure that g-phrases are
mutually comparable when computing the s; X s
match feature matrix, we impose the constraint
that all g-phrase representations live in the same
space and have the same dimensionality.

NCE |;| middle word
1 .
Average LI 77 predicted embedding
( sentence )
representation .rlght context
Max pooling (_J5
long phrase
Convolution representations
Dynamic k- ,
max pooling 77 short phrase
I v s v o o v v AV representations
Convolution
unigram
Input representations

Figure 2: gpCNN: learning g-phrase representa-
tions. This figure only shows two convolution lay-
ers (i.e., L = 2) for saving space.

4 gpCNN: Learning Representations for
g-Phrases

We use several stacked blocks, i.e., convolution-
plus-pooling layers, to extract increasingly ab-
stract features of the TEXTCHUNK. The input to
the first block are the words of the TEXTCHUNK,
represented by CW (Collobert and Weston, 2008)
embeddings. Given a TEXTCHUNK of length |S],
let vector ¢; € R™? be the concatenated embed-
dings of words v;_+1, - - ., v; Where w = 5 is the
filter width, d = 50 is the dimensionality of CW
embeddings and 0 < ¢ < |S| + w. Embeddings
for words v;, ¢ < 1 and i > |S|, are set to zero.
We then generate the representation p; € R? of
the g-phrase v;_y 11, . . ., v; using the convolution



matrix W; € R¥xwd.
Pi = tanh(chi + bl) (D)

where block index [ = 1, bias b; € R?%. We use
wide convolution (i.e., we apply the convolution
matrix W to words v;, @ < 1and i > |S|) because
this makes sure that each word v;, 1 < i < |S|,
can be detected by all weights of W; — as opposed
to only the rightmost (resp. leftmost) weights for
initial (resp. final) words in narrow convolution.

The configuration of convolution layers in fol-
lowing blocks (I > 1) is exactly the same except
that the input vectors c; are not words, but the out-
put of pooling from the previous layer of convo-
lution — as we will explain presently. The con-
figuration is the same (e.g., all W; € Rdxwdy pe-
cause, by design, all g-phrase representations have
the same dimensionality d. This also ensures that
each g-phrase representation can be directly com-
pared with each other g-phrase representation.

We use dynamic k-max pooling to extract the k;
top values from each dimension after convolution
in the [*" block and the kj, top values in the final
block. We set

2)

where [ = 1, -, L is the block index, and oo = 4
is a constant (cf. Kalchbrenner et al. (2014)) that
makes sure a reasonable minimum number of val-
ues is passed on to the next layer. We set ky, = 1
(not 4, cf. Kalchbrenner et al. (2014)) because our
design dictates that all g-phrase representations,
including the representation of the TEXTCHUNK
itself, have the same dimensionality. Example: for
L =4,|S| = 20, the k; are [15, 10, 5, 1].

Dynamic k-max pooling keeps the most impor-
tant features and allows us to stack multiple blocks
to extract hiearchical features: units on consec-
utive layers correspond to larger and larger parts
of the TEXTCHUNK thanks to the subset selection
property of pooling.

For many tasks, labeled data for training
gpCNN is limited. We therefore employ unsu-
pervised training to initialize gpCNN as shown in
Figure 2. Similar to CBOW (Mikolov et al., 2013),
we predict a sampled middle word v; from the av-
erage of seven vectors: the TEXTCHUNK repre-
sentation (the final output of gpCNN) and the three
words to the left and to the right of v;. We use
noise-contrastive estimation (Mnih and Teh, 2012)
for training: 10 noise words are sampled for each
true example.

b = mas(a, [2s[])
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Figure 3: General illustration of match feature
model. In this example, both Sy and S, have 10 g-
phrases, so the match feature matrix F ¢ Rs1%s2
has size 10 x 10.

5 Match Feature Models

Let g1,...,9s, be an enumeration of the s g-
phrases of TEXTCHUNK Sj. Let S, € R%*¢ be
the matrix, constructed by concatenating the four
matrices of unigram, short phrase, long phrase and
sentence representations shown in Figure 2 that
contain the learned representations from Section 4
for these sy, g-phrases; i.e., row Sy; is the learned
representation of g;.

The basic design of a match feature model is
that we produce an s; X So matrix F for a pair
of TEXTCHUNKS S7 and S3, shown in Figure 3.
]?‘i,j is a score that assesses the relationship be-
tween g-phrase g; of S7 and g-phrase g; of S>
with respect to the TEXTCHUNK relation of in-
terest (paraphrasing, clause coherence etc). This
score F; ; 1s computed based on the vector repre-
sentations S1; and Sg; of the two g—phrases.1

We experiment with three different feature
models to compute the match score ]?‘” because
we would like our architecture to address a wide
variety of different TEXTCHUNK relations. We
can model a TEXTCHUNK relation like paraphras-
ing as “for each meaning element in one sentence,
there must be a similar meaning element in the
other sentence”; thus, a good candidate for the
match score ﬁ‘l] is simply vector similarity. In
contrast, similarity is a less promising match score
for clause coherence; for clause coherence, we
want a score that models how good a continuation
one g-phrase is for the other. These considerations
motivate us to define three different match feature
models that we will introduce now.

The first match feature model is DIRECTSIM.

'In response to a reviewer question, recall that s; is the

total number of g-phrases of .S;, so there is only one s1 X s2
matrix, not several on different levels of granularity.



match feature
matrix

Figure 4: CONCAT match feature model

This model computes the match score of two g-
phrases as their similarity using a radial basis
function kernel:

A

—IS7; — So.|I2
£, — exp(—lS1 =Szl
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where we set 3 = 2 (cf. Wu et al. (2013)).
DIRECTSIM is an appropriate feature model for
TEXTCHUNK relations like paraphrasing because
in that case direct similarity features are helpful in
assessing meaning equivalence.

The second match feature model is INDIRECT-
SiM. Instead of computing the similarity di-
rectly as we do for DIRECTSIM, we first trans-
form the representation of the g-phrase in one
TEXTCHUNK using a transformation matrix M €
R4 then compute the match score by inner
product and sigmoid activation:

) 3)

Fij = 0(S1;MSy; +b), )
Our motivation is that for a TEXTCHUNK rela-
tion like clause coherence, the two TEXTCHUNKS
need not have any direct similarity. However, if we
map the representations of TEXTCHUNK .57 into
an appropriate space then we can hope that sim-
ilarity between these transformed representations
of 57 and the representations of TEXTCHUNK S5
do yield useful features. We will see that this hope
is borne out by our experiments.

The third match feature model is CONCAT. This
is a general model that can learn any weighted
combination of the values of the two vectors:

Fz’,j = U(WTem' +b) (®)]
where e; ; € R2? is the concatenation of S;; and
So;. We can learn different combination weights
w to solve different types of TEXTCHUNK match-
ing.

We call this match feature model CONCAT be-
cause we implement it by concatenating g-phrase
vectors to form a tensor as shown in Figure 4.
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The match feature models implement multi-
granular comparability: they match all units in
one TEXTCHUNK with all units in the other
TEXTCHUNK. This is necessary because a gen-
eral solution to matching must match a low-level
unit like “reignite” to a higher-level unit like “fan
the flames of” (Figure 1). Unlike (Socher et al.,
2011), our model does not rely on parsing; there-
fore, it can more exhaustively search the hypoth-
esis space of possible matchings: mfCNN covers
a wide variety of different, possibly overlapping
units, not just those of a single parse tree.

6 Dynamic 2D Pooling

The match feature models generate an s; X s2 ma-
trix. Since it has variable size, we apply two dif-
ferent dynamic 2D pooling methods, grid-based
pooling and phrase-focused pooling, to transform
it to a fixed size matrix.

6.1 Grid-based pooling

We need to map F € R¥*%2 into a matrix F of
fixed size s* x s* where s* is a parameter. Grid-
based pooling divides F into s* x s* nonover-
lapping (dynamic) pools and copies the maximum
value in each dynamic pool to F. This method is
similar to (Socher et al., 2011), but preserves lo-
cality better.

F can be split into equal regions only if both s;
and s, are divisible by s*. Otherwise, for s; > s*
and if s; mod s* = b, the dynamic pools in the
first s* — b splits each have | 2L | rows while the
remaining b splits each have L%J + 1 rows. In
Figure 5, a s; X so = 4 x 5 matrix (left) is split
into s* X s* = 3 x 3 dynamic pools (middle): each
row is split into [1, 1, 2] and each column is split
into [1, 2, 2].

If s1 < s*, we first repeat all rows in batch style
with size s; until no fewer than s* rows remain.
Then the first s* rows are kept and split into s*
dynamic pools. The same principle applies to the
partitioning of columns. In Figure 5 (right), the ar-
eas with dashed lines and dotted lines are repeated
parts for rows and columns, respectively; each cell
is its own dynamic pool.

*

6.2 Phrase-focused pooling

In the match feature matrix F € R%1%52 row ¢
(resp. column j) contains all feature values for g-
phrase g; of S (resp. g; of S>). Phrase-focused
pooling attempts to pick the largest match features
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Figure 5: Partition methods in grid-based pooling. Original matrix with size 4 x 5 is mapped into matrix
with size 3 X 3 and matrix with size 6 x 7, respectively. Each dynamic pool is distinguished by a border

of empty white space around it.

for a g-phrase g on the assumption that they are the
best basis for assessing the relation of g with other
g-phrases. To implement this, we sort the values
of each row 7 (resp. each column j) in decreasing
order giving us a matrix F, € R*1%52 with sorted
rows (resp. FC € R%1*%2 with sorted columns).
Then we concatenate the columns of F,. (resp. the
rows of F.) resulting in list F, = {f7,..., feisot
(resp. Fo = {ff,..., f5s,}) where each f7 (f€)is
an element of ]?‘T (]?‘c). These two lists are merged
into a list F' by interleaving them so that members
from F,. and F, alternate. I is then used to fill the
rows of F' from top to bottom with each row being
filled from left to right.”

7 mfCNN: Match feature CNN

The output of dynamic 2D pooling is further pro-
cessed by the match feature CNN (mfCNN) as de-
picted in Figure 6. mfCNN extracts increasingly
abstract interaction features from lower-level in-
teraction features, using several layers of 2D wide
convolution and fixed-size 2D pooling.

We call the combination of a 2D wide convo-
lution layer and a fixed-size 2D pooling layer a
block, denoted by index b (b = 1,2...). In gen-
eral, let tensor T? € R®*5Xss denote the fea-
ture maps in block b; block b has ¢;, feature maps,
each of size s, x sp (T! = F € R>XS™%") Let
Wb ¢ Revr1xeoxfoxfo be the filter weights of 2D
wide convolution in block b, f; X f3 is then the size
of sliding convolution regions. Then the convolu-
tion is performed as element-wise multiplication

2If F has fewer cells than F, then we simply repeat the
filling procedure to fill all cells.
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between WP and T? as follows:

b1 b
mi—1,j-1 0 ZW l Joiinj— be+b )
(6)
where 0<m<cp11,1 < 4,5 < Sp+fp, bt € Rev+1,

Subsequently, fixed-size 2D pooling selects
dominant features from kj x k; non-overlapping
windows of T?*! to form a tensor as input of
block b + 1:

b+1
m,i,j

(7N

= max(Ty i 1k 0
where 0 < 4,7 < LMJ

Hu et al. (2014) used narrow convolution which
would limit the number of blocks. 2D wide convo-
lution in this work enables to stack multiple blocks
of convolution and pooling to extract higher-level
interaction features. We will study the influence of
the number of blocks on performance below.

For the experiments, we set s* = 40, ¢
50, fo =5,kp=2(0b=1,2,--).

8 MultiGranCNN

We can now describe the overall architecture of
MultiGranCNN. First, using a Siamese configu-
ration, two copies of gpCNN, one for each of
the two input TEXTCHUNKS, produce g-phrase
representations on different levels of abstraction
(Figure 2). Then one of the three match feature
models (DIRECTSIM, CONCAT or INDIRECTSIM)
produces an s; X so match feature matrix, each
cell of which assesses the match of a pair of g-
phrases from the two chunks. This match feature
matrix is reduced to a fixed size matrix by dy-
namic 2D pooling (Section 6). As shown in Fig-
ure 6, the resulting fixed size matrix is the input
for mfCNN, which extracts interaction features of
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Figure 6: mfCNN & MLP for matching score learning. s* = 10, f, = 5, kp = 2, ¢, = 4 in this example.

increasing complexity from the basic interaction
features computed by the match feature model. Fi-
nally, the output of the last block of mfCNN is the
input to an MLP that computes the match score.

MultiGranCNN bears resemblance to previous
work on clause and sentence matching (e.g., Hu
et al. (2014), Socher et al. (2011)), but it is more
general and more flexible. It learns representa-
tions of g-phrases, i.e., representations of parts of
the TEXTCHUNK at multiple granularities, not just
for a single level such as the sentence as ARC-I
does (Hu et al., 2014). MultiGranCNN explores
the space of interactions between the two chunks
more exhaustively by considering interactions be-
tween every unit in one chunk with every other
unit in the other chunk, at all levels of granular-
ity. Finally, MultiGranCNN supports a number of
different match feature models; the corresponding
module can be instantiated in a way that ensures
that match features are best suited to support ac-
curate decisions on the TEXTCHUNK relation task
that needs to be addressed.

9 Experimental Setup and Results

9.1 Training

Suppose the triple (x,y ",y ™) is given and x
matches y ™ better than y~. Then our objective
is the minimization of the following ranking loss:

6,y " y") = max(0, 1+ s(x,y") = s(x,y"))

where s(x,y) is the predicted match score for
(x,y). We use stochastic gradient descent with
Adagrad (Duchi et al., 2011), Lo regularization
and minibatch training.

We set initial learning rate to 0.05, batch size to
70, Ly weight to 5 - 1074,

Recall that we employ unsupervised pretraining
of representations for g-phrases. We can either
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freeze these representations in subsequent super-
vised training; or we can fine-tune them. We study
the performance of both regimes.

9.2 Clause Coherence Task

As introduced by Hu et al. (2014), the clause
coherence task determines for a pair (x,y) of
clauses if the sentence “xy” is a coherent sen-
tence. We construct a clause coherence dataset
as follows (the set used by Hu et al. (2014) is not
yet available). We consider all sentences from En-
glish Gigaword (Parker et al., 2009) that consist of
two comma-separated clauses x and y, with each
clause having between five and 30 words. For each
y, we choose four clauses y’ ...y"”” randomly
from the 1000 second clauses that have the highest
similarity to y, where similarity is cosine similar-
ity of TF-IDF vectors of the clauses; restricting
the alternatives to similar clauses ensures that the
task is hard. The clause coherence task then is to
select y from the sety,y’,...,y"”” as the correct
continuation of x. We create 21 million examples,
each consisting of a first clause x and five second
clauses. This set is divided into a training set of
19 million and development and test sets of one
million each. An example from the training set is
given in Figure 1.

Then, we study the performance variance of
different MultiGranCNN setups from three per-
spectives: a) layers of CNN in both unsuper-
vised (gpCNN) and supervised (mfCNN) training
phases; b) different approaches for clause relation
feature modeling; ¢) dynamic pooling methods for
generating same-sized feature matrices.

Figure 7 (top table) shows that (Hu et al,
2014)’s parameters are good choices for our setup
as well. We get best result when both gpCNN
and mfCNN have three blocks of convolution and



pooling. This suggests that multiple layers of con-
volution succeed in extracting high-level features
that are beneficial for clause coherence.

Figure 7 (2nd table) shows that INDIRECTSIM
and CONCAT have comparable performance and
both outperform DIRECTSIM. DIRECTSIM is ex-
pected to perform poorly because the contents in
the two clauses usually have little or no overlap-
ping meaning. In contrast, we can imagine that
INDIRECTSIM first transforms the first clause x
into a counterpart and then matches this counter-
part with the second clause y. In CONCAT, each
of s1Xxs2 pairs of g-phrases is concatentated and
supervised training can then learn an unrestricted
function to assess the importance of this pair for
clause coherence (cf. Eq. 5). Again, this is clearly
amore promising TEXTCHUNK relation model for
clause coherence than one that relies on DIRECT-
S1M.

ace mfCNN
0 1 2 3
- 0] 38.02 44.08 47.81 4843
Z 14091 4531 51.73 52.13
(:-5 21 43.10 48.06 54.14 54.86
314562 51.77 5597 56.31
match feature model ‘ acc
DIRECTSIM 25.40
INDIRECTSIM 56.31
CONCAT 56.12
freeze g-phrase represenations or not ‘ acc
MultiGranCNN (freeze) 55.79
MultiGranCNN (fine-tune) 56.31
pooling method ‘ acc
dynamic (Socher et al., 2011) | 55.91
grid-based 56.07
phrase-focused 56.31

Figure 7: Effect on dev acc (clause coherence) of
different factors: # convolution blocks, match fea-
ture model, freeze vs. fine-tune, pooling method.

Figure 7 (3rd table) demonstrates that fine-
tuning g-phrase representations gives better per-
formance than freezing them. Also, grid-based
and phrase-focused pooling outperform dynamic
pooling (Socher et al., 2011) (4th table). Phrase-
focused pooling performs best.

Table 1 compares MultiGranCNN to ARC-I and
ARC-II, the architectures proposed by Hu et al.
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(2014). We also test the five baseline systems
from their paper: DeepMatch, WordEmbed, SEN-
MLP, SENNA+MLP, URAE+MLP. For Multi-
GranCNN, we use the best dev set settings: num-
ber of convolution layers in gpCNN and mfCNN
is 3; INDIRECTSIM; phrase-focused pooling. Ta-
ble 1 shows that MultiGranCNN outperforms all
other approaches on clause coherence test set.

9.3 Paraphrase Identification Task

We evaluate paraphrase identification (PI) on the
PAN corpus (http://bit.ly/mt-para, (Madnani et al.,
2012)), consisting of training and test sets of
10,000 and 3000 sentence pairs, respectively. Sen-
tences are about 40 words long on average.

Since PI is a binary classification task, we re-
place the MLP with a logistic regression layer. As
phrase-focused pooling was proven to be optimal,
we directly use phrase-focused pooling in PI task
without comparison, assuming that the choice of
dynamic pooling is task independent.

For parameter selection, we split the PAN train-
ing set into a core training set (core) of size 9000
and a development set (dev) of size 1000. We
then train models on core and select parameters
based on best performance on dev. The best re-
sults on dev are obtained for the following param-
eters: freezing g-phrase representations, DIRECT-
S1M, two convolution layers in gpCNN, no convo-
Iution layers in mfCNN. We use these parameter
settings to train a model on the entire training set
and report performance in Table 2.

We compare MultiGranCNN to ARC-I/II (Hu
et al.,, 2014), and two previous papers reporting
performance on PAN. Madnani et al. (2012) used
a combination of three basic MT metrics (BLEU,
NIST and TER) and five complex MT met-
rics (TERp, METEOR, BADGER, MAXISIM,

model acc
Random Guess | 20.00
DeepMatch 34.17
WordEmbed 38.28
SENMLP 34.57
SENNA+MLP | 42.09
URAE+MLP 27.41
ARC-I 45.04
ARC-II 50.18
MultiGranCNN | 56.27

Table 1: Performance on clause coherence test set.



SEPIA), computed on entire sentences. Bach et
al. (2014) applied MT metrics to elementary dis-
course units. We integrate these eight MT metrics
from prior work.

method acc I
ARC-I 61.4 60.3
ARC-II 64.9 63.5
basic MT metrics 88.6 87.8
+ TERp 91.5 91.2
+ METEOR 92.0 91.8
+ Others 92.3 92.1
(Bach et al., 2014) 934 933
8MT+MultiGranCNN (fine-tune) |94.1 94.0
SMT+MultiGranCNN (freeze) |94.9 94.7

Table 2: Results on PAN. “8MT” = 8 MT metrics

Table 2 shows that MultiGranCNN in combina-
tion with MT metrics obtains state-of-the-art per-
formance on PAN. Freezing weights learned in
unsupervised training (Figure 2) performs better
than fine-tuning them; also, Table 3 shows that the
best result is achieved if no convolution is used
in mfCNN. Thus, the best configuration for para-
phrase identification is to “forward” fixed-size in-
teraction matrices as input to the logistic regres-
sion, without any intermediate convolution layers.

Freezing weights learned in unsupervised train-
ing and no convolution layers in mfCNN both pro-
tect against overfitting. Complex deep neural net-
works are in particular danger of overfitting when
training sets are small as in the case of PAN (cf. Hu
et al. (2014)). In contrast, fine-tuning weights and
several convolution layers were the optimal setup
for clause coherence. For clause coherence, we
have a much larger training set and therefore can
successfully train a much larger number of param-
eters.

Table 3 shows that CONCAT performs badly for
PI while DIRECTSIM and INDIRECTSIM perform
well. We can conceptualize PI as the task of deter-
mining if each meaning element in S; has a simi-
lar meaning element in S5. The s; X s9 DIRECT-
SiM feature model directly models this task and
the s1 X so INDIRECTSIM feature model also mod-
els it, but learning a transformation of g-phrase
representations before applying similarity. In con-
trast, CONCAT can learn arbitrary relations be-
tween parts of the two sentences, a model that
seems to be too unconstrained for PI if insufficient
training resources are available.
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In contrast, for the clause coherence task, con-
catentation worked well and DIRECTSIM worked
poorly and we provided an explanation based on
the specific properties of clause coherence (see
discussion of Figure 7). We conclude from these
results that it is dependent on the task what the best
feature model is for matching two linguistic ob-
jects. Interestingly, INDIRECTSIM performs well
on both tasks. This suggests that INDIRECTSIM is
a general feature model for matching, applicable
to tasks with very different properties.

10 Conclusion

In this paper, we present MultiGranCNN, a gen-
eral deep learning architecture for classifying the
relation between two TEXTCHUNKS. Multi-
GranCNN supports multigranular comparabil-
ity of representations: shorter sequences in one
TEXTCHUNK can be directly compared to longer
sequences in the other TEXTCHUNK. Multi-
GranCNN also contains a flexible and modu-
larized match feature component that is eas-
ily adaptable to different TEXTCHUNK relations.
We demonstrated state-of-the-art performance of
MultiGranCNN on paraphrase identification and
clause coherence tasks.
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B 0 1 2 3
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Abstract

Massive open online courses (MOOCs)
are redefining the education system and
transcending boundaries posed by tradi-
tional courses. With the increase in pop-
ularity of online courses, there is a cor-
responding increase in the need to under-
stand and interpret the communications of
the course participants. Identifying top-
ics or aspects of conversation and inferring
sentiment in online course forum posts
can enable instructor interventions to meet
the needs of the students, rapidly address
course-related issues, and increase student
retention. Labeled aspect-sentiment data
for MOOCs are expensive to obtain and
may not be transferable between courses,
suggesting the need for approaches that do
not require labeled data. We develop a
weakly supervised joint model for aspect-
sentiment in online courses, modeling the
dependencies between various aspects and
sentiment using a recently developed scal-
able class of statistical relational models
called hinge-loss Markov random fields.
We validate our models on posts sam-
pled from twelve online courses, each con-
taining an average of 10,000 posts, and
demonstrate that jointly modeling aspect
with sentiment improves the prediction ac-
curacy for both aspect and sentiment.

1

Massive Open Online Courses (MOOCs) have
emerged as a powerful medium for imparting edu-
cation to a wide geographical population. Discus-
sion forums are the primary means of communica-
tion between MOOC participants (students, TAs,

Introduction
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and instructors). Due to the open nature of these
courses, they attract people from all over the world
leading to large numbers of participants and hence,
large numbers of posts in the discussion forums.
In the courses we worked with, we found that over
the course of the class there were typically over
10,000 posts.

Within this slew of posts, there are valuable
problem-reporting posts that identify issues such
as broken links, audio-visual glitches, and in-
accuracies in the course materials. Automati-
cally identifying these reported problems is impor-
tant for several reasons: i) it is time-consuming
for instructors to manually screen through all of
the posts due to the highly skewed instructor-to-
student ratio in MOQOCs, ii) promptly address-
ing issues could help improve student retention,
and iii) future iterations of the course could ben-
efit from identifying technical and logistical is-
sues currently faced by students. In this paper,
we investigate the problem of determining the
fine-grained topics of posts (which we refer to
as “MOOC aspects”) and the sentiment toward
them, which can potentially be used to improve
the course.

While aspect-sentiment has been widely stud-
ied, the MOOC discussion forum scenario
presents a unique set of challenges. Labeled data
are expensive to obtain, and posts containing fine-
grained aspects occur infrequently in courses and
differ across courses, thereby making it expensive
to get sufficient coverage of all labels. Few distinct
aspects occur per course, and only 5-10% of posts
in a course are relevant. Hence, getting labels for
fine-grained labels involves mining and annotating
posts from a large number of courses. Further, cre-
ating and sharing labeled data is difficult as data
from online courses is governed by IRB regula-
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tions. Privacy restrictions are another reason why
unsupervised/weakly-supervised methods can be
helpful. Lastly, to design a system capable of iden-
tifying all possible MOOC aspects across courses,
we need to develop a system that is not fine-tuned
to any particular course, but can adapt seamlessly
across courses.

To this end, we develop a weakly supervised
system for detecting aspect and sentiment in
MOOC forum posts and validate its effectiveness
on posts sampled from twelve MOOC courses.
Our system can be applied to any MOOC discus-
sion forum with no or minimal modifications.

Our contributions in this paper are as follows:

e We show how to encode weak supervision
in the form of seed words to extract ex-
tract course-specific features in MOOCs us-
ing SeededLDA, a seeded variation of topic
modeling (Jagarlamudi et al., 2012).

Building upon our SeededLDA approach,
we develop a joint model for aspects and
sentiment using the hinge-loss Markov ran-
dom field (HL-MRF) probabilistic modeling
framework. This framework is especially
well-suited for this problem because of its
ability to combine information from multiple
features and jointly reason about aspect and
sentiment.

To validate the effectiveness of our system,
we construct a labeled evaluation dataset by
sampling posts from twelve MOOC courses,
and annotating these posts with fine-grained
MOOC aspects and sentiment via crowd-
sourcing.  The annotation captures fine-
grained aspects of the course such as content,
grading, deadlines, audio and video of lec-
tures and sentiment (i.e., positive, negative,
and neutral) toward the aspect in the post.

e We demonstrate that the proposed HL-MRF
model can predict fine-grained aspects and
sentiment and outperforms the model based
only on SeededLDA.

2 Related Work

To the best of our knowledge, the problem of pre-
dicting aspect and sentiment in MOOC forums has
not yet been addressed in the literature. We review
prior work in related areas here.
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Aspect-Sentiment in Online Reviews It is
valuable to identify the sentiment of online re-
views towards aspects such as hotel cleanliness
and cellphone screen brightness, and sentiment
analysis at the aspect-level has been studied ex-
tensively in this context (Liu and Zhang, 2012).
Several of these methods use latent Dirichlet allo-
cation topic models (Blei et al., 2003) and variants
of it for detecting aspect and sentiment (Lu et al.,
2011; Lin and He, 2009). Liu and Zhang (2012)
provide a comprehensive survey of techniques for
aspect and sentiment analysis. Here, we discuss
works that are closely related to ours.

Titov and McDonald (2008) emphasize the im-
portance of an unsupervised approach for aspect
detection. However, the authors also indicate that
standard LDA (Blei et al., 2003) methods capture
global topics and not necessarily pertinent aspects
— achallenge that we address in this work. Brody
and Elhadad (2010), Titov and McDonald (2008),
and Jo and Oh (2011) apply variations of LDA at
the sentence level for online reviews. We find that
around 90% of MOOC posts have only one aspect,
which makes sentence-level aspect modeling inap-
propriate for our domain.

Most previous approaches for sentiment rely on
manually constructed lexicons of strongly positive
and negative words (Fahrni and Klenner, 2008;
Brody and Elhadad, 2010). These methods are ef-
fective in an online review context, however senti-
ment in MOOC forum posts is often implicit, and
not necessarily indicated by standard lexicons. For
example, the post “Where is my certificate? Wait-
ing over a month for it.” expresses negative sen-
timent toward the certificate aspect, but does not
include any typical negative sentiment words. In
our work, we use a data-driven model-based ap-
proach to discover domain-specific lexicon infor-
mation guided by small sets of seed words.

There has also been substantial work on joint
models for aspect and sentiment (Kim et al., 2013;
Diao et al., 2014; Zhao et al., 2010; Lin et al.,
2012), and we adopt such an approach in this pa-
per. Kim et al. (2013) use a hierarchical aspect-
sentiment model and evaluate it for online reviews.
Mukherjee and Liu (2012) use seed words for dis-
covering aspect-based sentiment topics. Drawing
on the ideas of Mukherjee and Liu (2012) and
Kim et al. (2013), we propose a statistical rela-
tional learning approach that combines the advan-
tages of seed words, aspect hierarchy, and flat



Post 1: I have not received the midterm.
Post 2: No lecture subtitles week, will they be uploaded?
Post 3: I am ... and I am looking forward to learn more ...

Table 1: Example posts from MOOC forums. As-
pect words are highlighted in bold.

aspect-sentiment relationships. It is important to
note that a broad majority of the previous work
on aspect sentiment focuses on the specific chal-
lenges of online review data. As discussed in de-
tail above, MOOC forum data have substantially
different properties, and our approach is the first
to be designed particularly for this domain.

Learning Analytics In another line of research,
there is a growing body of work on the analy-
sis of online courses. Regarding MOOC forum
data, Stump et al. (2013) propose a framework
for taxonomically categorizing forum posts, lever-
aging manual annotations. We differ from their
approach in that we develop an automatic system
to predict MOOC forum categories without using
labeled training data. Ramesh et al. (2014b) cat-
egorize forum posts into three broad categories in
order to predict student engagement. Unlike this
method, our system is capable of fine-grained cat-
egorization and of identifying aspects in MOOCS.
Chaturvedi et al. (2014) focus on predicting in-
structor intervention using lexicon features and
thread features. In contrast, our system is capable
of predicting fine MOOC aspects and sentiment of
discussion forum posts and thus provides a more
informed analysis of MOOC posts.

3 Problem Setting and Data

MOOC participants primarily communicate
through discussion forums, consisting of posts,
which are short pieces of text. Table 1 provides
examples of posts in MOOC forums. Posts / and
2 report issues and feedback for the course, while
post 3 is a social interaction message. Our goal is
to distinguish problem-reporting posts such as /
and 2 from social posts such as 3, and to identify
the issues that are being discussed.

We formalize this task as an aspect-sentiment
prediction problem (Liu and Zhang, 2012). The
issues reported in MOOC forums can be related to
the different elements of the course such as lec-
tures and quizzes, which are referred to as aspects.
The aspects are selected based on MOOC domain
expertise and inspiration from Stump et al. (2013),
aiming to cover common concerns that could ben-
efit from intervention. The task is to predict these
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COARSE-ASPECT FINE-ASPECT Description # of posts

559
215
149
136
69

Content of lectures.
Video of lectures.
Subtitles of lecture.
Audio of lecture.
Delivery of instructor.

LECTURE-CONTENT
LECTURE-VIDEO
LECTURE-SUBTITLES
LECTURE-AUDIO
LECTURE-LECTURER

LECTURE

439
360
329
142

QUIZ-CONTENT
QUIZ-GRADING
QUIZ-SUBMISSION
QUIZ-DEADLINE

Content in quizzes.
Grading of quizzes.
Quiz submission.
Deadline of quizzes.

QuIzZ

CERTIFICATE Course certificates. 194

SOCIAL Social interaction posts. 1187

Table 2: Descriptions of coarse and fine aspects.

aspects for each post, along with the sentiment po-
larity toward the aspect, which we code as posi-
tive, negative, or neutral. The negative-sentiment
posts, along with their aspects, allow us to iden-
tify potentially correctable issues in the course.
As labels are expensive in this scenario, we for-
mulate the task as a weakly supervised prediction
problem. In our work, we assume that a post has
at most one fine-grained aspect, as we found that
this was true for 90% of the posts in our data.
This property is due in part to the brevity of fo-
rum posts, which are much shorter documents than
those considered in other aspect-sentiment scenar-
i0s such as product reviews.

3.1 Aspect Hierarchy

While we do not require labeled data, our ap-
proaches allow the analyst to instead relatively
easily encode a small amount of domain knowl-
edge by seeding the models with a few words re-
lating to each aspect of interest. Hence, we refer
to our approach as weakly supervised. Our models
can further make use of hierarchical structure be-
tween the aspects. The proposed approach is flex-
ible, allowing the aspect seeds and hierarchy to be
selected for a given MOOC domain.

For the purposes of this study, we represent the
MOOC aspects with a two-level hierarchy. We
identify a list of nine fine-grained aspects, which
are grouped into four coarse topics. The coarse
aspects consist of LECTURE, QUIZ, CERTIFICATE,
and SOCIAL topics. Table 2 provides a description
of each of the aspects and also gives the number of
posts in each aspect category after annotation.

As both LECTURE and QUIZ are key coarse-
level aspects in online courses, and more nu-
anced aspect information for these is important
to facilitate instructor interventions, we iden-
tify fine-grained aspects for these coarse aspects.



For LECTURE we identify LECTURE-CONTENT,
LECTURE-VIDEO, LECTURE-AUDIO, LECTURE-
SUBTITLES, and LECTURE-LECTURER as fine
aspects. For QUIZ, we identify the fine as-
pects QUIZ-CONTENT, QUIZ-GRADING, QUIZ-
DEADLINES, and QUIZ-SUBMISSION. We use the
label SOCIAL to refer to social interaction posts
that do not mention a problem-related aspect.

3.2 Dataset

We construct a dataset by sampling posts from
MOOC courses to capture the variety of aspects
discussed in online courses. We include courses
from different disciplines (business, technology,
history, and the sciences) to ensure broad coverage
of aspects. Although we adopt an approach that
does not require labeled data for training, which is
important for most practical MOOC scenarios, in
order to validate our methods we obtain labels for
the sampled posts using Crowdflower,! an online
crowd-sourcing annotation platform. Each post
was annotated by at least 3 annotators. Crowd-
flower calculates confidence in labels by comput-
ing trust scores for annotators using test questions.
Kolhatkar et al. (2013) provide a detailed analysis
of Crowdflower trust calculations and the relation-
ship to inter-annotator agreement. We follow their
recommendations and retain only labels with con-
fidence > 0.5.

4 Aspect-Sentiment Prediction Models

In this section, we develop models and feature-
extraction techniques to address the challenges of
aspect-sentiment prediction for MOOC forums.
We present two weakly-supervised methods—
first, using a seeded topic modeling approach (Ja-
garlamudi et al., 2012) to identify aspects and sen-
timent. Second, building upon this method, we
then introduce a more powerful statistical rela-
tional model which reasons over the seeded LDA
predictions as well as sentiment side-information
to encode hierarchy information and correlations
between sentiment and aspect.

4.1 Seeded LDA Model

Topic models (Blei et al., 2003), which identify
latent semantic themes from text corpora, have
previously been successfully used to discover as-
pects for sentiment analysis (Diao et al., 2014). By
equating the topics, i.e. discrete distributions over

"http://www.crowdflower.com/
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words, with aspects and/or sentiment polarities,
topic models can recover aspect-sentiment predic-
tions. In the MOOC context we are specifically in-
terested in problems with the courses, rather than
general topics which may be identified by a topic
model, such as the topics of the course material.
To guide the topic model to identify aspects of
interest, we use SeededLDA (Jagarlamudi et al.,
2012), a variant of LDA which allows an analyst to
“seed” topics by providing key words that should
belong to the topics.

We construct SeededLDA models by providing
a set of seed words for each of the coarse and fine
aspects in the aspect hierarchy of Table 2. We also
seed topics for positive, negative and neutral sen-
timent polarities. The seed words for coarse topics
are provided in Table 3, and fine aspects in Ta-
ble 4. For the sentiment topics (Table 5), the seed
words for the topic positive are positive words of-
ten found in online courses such as thank, congrat-
ulations, learn, and interest. Similarly, the seed
words for the negative topic are negative in the
context of online courses, such as difficult, error,
issue, problem, and misunderstand.

Additionally, we also use SeededLDA for iso-
lating some common problems in online courses
that are associated with sentiment, such as dif-
ficulty, availability, correctness, and course-
specific seed words from the syllabus as described
in Table 6. Finally, having inferred the Seed-
edLDA model from the data set, for each post p we
predict the most likely aspect and the most likely
sentiment polarity according to the post’s inferred
distribution over topics ().

In our experiments, we tokenize and stem the
posts using NLTK toolkit (Loper and Bird, 2002),
and use a stop word list tuned to online course dis-
cussion forums. The topic model Dirichlet hyper-
parameters are set to & = 0.01, 5 = 0.01 in our ex-
periments. For SeededLDA models corresponding
to the seed sets in Tables 3, 4, and 5, the number
of topics is equal to the number of seeded topics.
For SeededLLDA models corresponding to the seed
words in Tables 6 and 3, we use 10 topics, allow-
ing for some unseeded topics that are not captured
by the seed words.

4.2 Hinge-loss Markov Random Fields

The approach described in the previous section au-
tomatically identifies user-seeded aspects and sen-
timent, but it does not make further use of struc-



LECTURE: lectur, video, download, volum, low, headphon, sound, audio, transcript, subtitl, slide, note

QUIZ: quiz, assignment, question, midterm,exam, submiss, answer, grade, score, grad, midterm, due, deadlin
CERTIFICATE: certif, score, signatur, statement, final, course, pass, receiv, coursera, accomplish, fail
SOCIAL: name, course, introduction, stud, group, everyon, student

Table 3: Seed words for coarse aspects

LECTURE-VIDEO: video, problem, download, play, player, watch, speed, length, long, fast, slow, render, qualiti
LECTURE-AUDIO: volum, low, headphon, sound, audio, hear, maximum, troubl, qualiti, high, loud, heard
LECTURE-LECTURER: professor, fast, speak, pace, follow, speed, slow, accent, absorb, quick, slowli
LECTURE-SUBTITLES: transcript, subtitl, slide, note, lectur, difficult, pdf

LECTURE-CONTENT: typo, error, mistak, wrong, right, incorrect, mistaken

QUIZ-CONTENT: question, challeng, difficult, understand, typo, error, mistak, quiz, assignment
QUIZ-SUBMISSION: submiss, submit, quiz, error, unabl, resubmit

QUIZ-GRADING: answer, question, answer, grade, assignment, quiz, respons ,mark, wrong, score

QUIZ-DEADLINE: due, deadlin, miss, extend, late

Table 4: Seed words for fine aspects

POSITIVE: interest, excit, thank, great, happi, glad, enjoy, forward, insight, opportun, clear, fantast, fascin, learn, hope, congratul

NEGATIVE: problem, difficult, error, issu, unabl, misunderstand, terribl, bother, hate, bad, wrong, mistak, fear, troubl
NEUTRAL: coursera, class, hello, everyon, greet, nam, meet, group, studi, request, join, introduct, question, thank

Table 5: Seed words for sentiment

DIFFICULTY: difficult, understand, ambigu, disappoint, hard, follow, mislead, difficulti, challeng, clear

CONTENT: typo, error, mistak, wrong, right, incorrect, mistaken, score

AVAILABILITY: avail, nowher, find, access, miss, view, download, broken, link, bad, access, deni, miss, permiss
COURSE-1: develop, eclips, sdk, softwar, hardware, accuser, html, platform, environ, lab, ide, java,

COURSE-2: protein, food, gene, vitamin, evolut, sequenc, chromosom, genet, speci, peopl, popul, evolv, mutat, ancestri
COURSE-3: compani, product, industri, strategi, decision, disrupt, technolog, market

Table 6: Seed words for sentiment specific to online courses

ture or dependencies between these values, or any
additional side-information. To address this, we
propose a more powerful approach using hinge-
loss Markov random fields (HL-MRFs), a scalable
class of continuous, conditional graphical mod-
els (Bach et al., 2013). HL-MRFs have achieved
state-of-the-art performance in many domains in-
cluding knowledge graph identification (Pujara et
al., 2013), understanding engagements in MOOCs
(Ramesh et al., 2014a), biomedicine and multi-
relational link prediction (Fakhraei et al., 2014),
and modelling social trust (Huang et al., 2013).
These models can be specified using Probabilistic
Soft Logic (PSL) (Bach et al., 2015), a weighted
first order logical templating language. An exam-
ple of a PSL rule is

A: P(a) A Q(a,b) — R(b),

where P, O, and R are predicates, a and b are vari-
ables, and A is the weight associated with the rule.
The weight of the rule indicates its importance in
the HL-MRF probabilistic model, which defines a
probability density function of the form
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P(Y|X) x exp ( - f: AT¢T(Y7X))
r=1

or(Y,X) = (max{l,(Y,X),0})”, (1)

where ¢,.(Y,X) is a hinge-loss potential corre-
sponding to an instantiation of a rule, and is spec-
ified by a linear function /,, and optional exponent
pr € {1,2}. For example, in our MOOC aspect-
sentiment model, if P and F denote post P and
fine aspect F, then we have predicates SEEDLDA-
FINE(P, F) to denote the value corresponding to
topic F in SeededLDA, and FINE-ASPECT(P, F) is
the target variable denoting the fine aspect of the
post P. A PSL rule to encode that the SeededLDA
topic F suggests that aspect F is present is

A : SEEDLDA-FINE(P, F') — FINE-ASPECT(P, ).

We can generate more complex rules connecting
the different features and target variables, e.g.
A : SEEDLDA-FINE(P, F') A SENTIMENT(P, S)
— FINE-ASPECT(P, F).

This rule encodes a dependency between SENTI-
MENT and FINE-ASPECT, namely that the Seed-



edLDA topic and a strong sentiment score increase
the probability of the fine aspect. The HL-MRF
model uses these rules to encode domain knowl-
edge about dependencies among the predicates.
The continuous value representation further helps
in understanding the confidence of predictions.

4.3 Joint Aspect-Sentiment Prediction using
Probabilistic Soft Logic (PSL-Joint)

In this section, we describe our joint approach to
predicting aspect and sentiment in online discus-
sion forums, leveraging the strong dependence be-
tween aspect and sentiment. We present a system
designed using HL.-MRFs which combines differ-
ent features, accounting for their respective uncer-
tainty, and encodes the dependencies between as-
pect and sentiment in the MOOC context.

Table 7 provides some representative rules from
our model.> The rules can be classified into two
broad categories—1) rules that combine multiple
features, and 2) rules that encode the dependencies
between aspect and sentiment.

4.3.1 Combining Features

The first set of rules in Table 7 combine different
features extracted from the post. SEEDLDA-FINE,
SEEDLDA-COARSE and SEEDLDA-SENTIMENT-
COURSE predicates in rules refer to SeededLDA
posterior distributions using coarse, fine, and
course-specific sentiment seed words respectively.
The strength of our model comes from its abil-
ity to encode different combinations of features
and weight them according to their importance.
The first rule in Table 7 combines the SeededLDA
features from both SEEDLDA-FINE and SEEDLDA-
COARSE to predict the fine aspect. Interpreting
the rule, the fine aspect of the post is more likely
to be LECTURE-LECTURER if the coarse Seed-
edLDA score for the post is LECTURE, and the
fine SeededLDA score for the post is LECTURE-
LECTURER. Similarly, the second rule provides
combinations of some of the other features used
by the model—two different SeededLDA scores
for sentiment, as indicated by seed words in Ta-
bles 5 and 6. The third rule states that certain fine
aspects occur together with certain values of sen-
timent more than others. In online courses, posts
that discuss grading usually talk about grievances
and issues. The rule captures that QUIZ-GRADING
occurs with negative sentiment in most cases.

’Full model available at https://github.com/artir/ramesh-acl15
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4.3.2 Encoding Dependencies Between
Aspect and Sentiment

In addition to combining features, we also en-
code rules to capture the taxonomic dependence
between coarse and fine aspects, and the depen-
dence between aspect and sentiment (Table 7, bot-
tom). Rules 4 and 5 encode pair-wise depen-
dency between FINE-ASPECT and SENTIMENT,
and COARSE-ASPECT and FINE-ASPECT respec-
tively. Rule 4 uses the SeededLDA value for
QUIZ-DEADLINES to predict both SENTIMENT,
and FINE-ASPECT jointly. This together with
other rules for predicting SENTIMENT and FINE-
ASPECT individually creates a constrained satis-
faction problem, forcing aspect and sentiment to
agree with each other. Rule 5 is similar to rule 4,
capturing the taxonomic relationship between tar-
get variables COARSE-ASPECT and FINE-ASPECT.

Thus, by using conjunctions to combine fea-
tures and appropriately weighting these rules, we
account for the uncertainties in the underlying fea-
tures and make them more robust. The combina-
tion of these two different types of weighted rules,
referred to below as PSL-Joint, is able to reason
collectively about aspect and sentiment.

5 Empirical Evaluation

In this section, we present the quantitative and
qualitative results of our models on the annotated
MOOC dataset. Our models do not require labeled
data for training; we use the label annotations only
for evaluation. Tables 8 — 11 show the results
for the SeededLDA and PSL-Joint models. Sta-
tistically significant differences, evaluated using a
paired t-test with a rejection threshold of 0.01, are
typed in bold.

5.1 SeededLDA for Aspect-Sentiment

For SeededLDA, we use the seed words for
coarse, fine, and sentiment given in Tables 3 — 5.
After training the model, we use the SeededLDA
multinomial posterior distribution to predict the
target variables. We use the maximum value in
the posterior for the distribution over topics for
each post to obtain predictions for coarse aspect,
fine aspect, and sentiment. We then calculate pre-
cision, recall and F1 values comparing with our
ground truth labels.



PSL-JOINT RULES

Rules combining features

SEEDLDA-FINE(POST, LECTURE-LECTURER) A SEEDLDA-COARSE(POST, LECTURE) — FINE-ASPECT(POST, LECTURE-LECTURER)
SEEDLDA-SENTIMENT-COURSE(POST, NEGATIVE) A SEEDLDA-SENTIMENT(POST, NEGATIVE) — SENTIMENT(POST, NEGATIVE)
SEEDLDA-SENTIMENT-COURSE(POST, NEGATIVE) A SEEDLDA-FINE(POST, QUIZ-GRADING) — FINE-ASPECT(POST, QUIZ-GRADING)
Encoding dependencies between aspect and sentiment

SEEDLDA-FINE(POST, QUIZ-DEADLINES) A SENTIMENT(POST, NEGATIVE) — FINE-ASPECT(POST, QUIZ-DEADLINES)
SEEDLDA-FINE(POST, QUIZ-SUBMISSION) A FINE-ASPECT(POST, QUIZ-SUBMISSION) — COARSE-ASPECT(POST, QUIZ)

Table 7: Representative rules from PSL-Joint model

Model LECTURE-CONTENT LECTURE-VIDEO LECTURE-AUDIO LECTURE-LECTURER LECTURE-SUBTITLES

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

SEEDEDLDA  0.137  0.057  0.08 0.156 0256 0240 0.684 0.684 0.684 0.037 0.159  0.06 0289  0.631  0.397
PSL-JOINT 0.407 0413 0410 0411 0591 0485 0.635 0537 0582  0.218 0.623  0.323  0.407 053 0.461

Table 8: Precision, recall and F1 scores for LECTURE fine aspects

Model QUIZ-CONTENT QUIZ-SUBMISSION QUIZ-DEADLINES QUIZ-GRADING

Prec Rec. F1 Prec Rec. F1 Prec. Rec. F1 Prec. Rec. F1

SEEDEDLDA  0.042  0.006  0.011 0485 0398 0437 0444  0.141 0214 0524 0.508 0514
PSL-JOINT 0.324 0405  0.36 0.521 0347 0416  0.667 0563 0.611 0572  0.531  0.550

Table 9: Precision, recall and F1 scores for QUIZ fine aspects

Model LECTURE QUIZ CERTIFICATE SOCIAL

Prec Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

SEEDEDLDA 0597  0.673  0.632  0.752  0.583  0.657 0315 0.845 0459 0902 0513  0.654
PSL-JOINT 0.563  0.715 0.630 0.724  0.688 0.706  0.552  0.711 0.621  0.871 0.530  0.659

Table 10: Precision, recall and F1 scores for coarse aspects

Model POSITIVE NEGATIVE NEUTRAL

Prec Rec. F1 Prec. Rec. F1 Prec. Rec. F1

SEEDEDLDA  0.104  0.721  0.182  0.650 0429 0.517 0483 0.282  0.356
PSL-JOINT 0.114 0544 0.189 0.571  0.666  0.615 0.664  0.322  0.434

Table 11: Precision, recall and F1 scores for sentiment

5.2 PSL for Joint Aspect-Sentiment
(PSL-Joint)

Tables 8 and 9 give the results for the fine aspects
under LECTURE and QUIZ. PSL-JOINT performs
better than SEEDEDLDA in most cases, with-
out suffering any statistically significant losses.
Notable cases include the increase in scores
for LECTURE-LECTURER, LECTURE-SUBTITLES,
LECTURE-CONTENT, QUIZ-CONTENT, QUIZ-
GRADING, and QUIZ-DEADLINES, for which the
scores increase by a large margin over Seed-
edLDA. We observe that for LECTURE-CONTENT
and QUIZ-CONTENT, the increase in scores is
more significant than others with SeededLDA per-
forming very poorly. Since both lecture and quiz
content have the same kind of words related to the
course material, SeededLDA is not able to dis-
tinguish between these two aspects. We found
that in 63% of these missed predictions, Seed-

edLDA predicts LECTURE-CONTENT, instead of
QUIZ-CONTENT, and vice versa. In contrast, PSL-
Joint uses both coarse and fine SeededLDA scores
and captures the dependency between a coarse as-
pect and its corresponding fine aspect. There-
fore, PSL-Joint is able to distinguish between
LECTURE-CONTENT and QUIZ-CONTENT. In the
next section, we present some examples of posts
that SEEDEDLDA misclassified but were predicted
correctly by PSL-Joint.

Table 10 presents results for the coarse-aspects.
We observe that PSL-Joint performs better than
SeededLDA for all classes. In particular for CER-
TIFICATE and QUIZ, PSL-Joint exhibits a marked
increase in scores when compared to SeededLDA.
This is also true for sentiment, for which the scores
for NEUTRAL and NEGATIVE sentiment show sig-
nificant improvement (Table 11).



Correct Label PSL SeededLDA

Post

QUIZ-CONTENT QUIZ-CONTENT

QUIZ-CONTENT QUIZ-CONTENT

LECTURE-AUDIO LECTURE-AUDIO

SOCIAL SOCIAL LECTURE-VIDEO

LECTURE-CONTENT

LECTURE-CONTENT

LECTURE-SUBTITLES

There is a typo or other mistake in the assignment instructions (e.g. es-
sential information omitted) Type ID: programming-content Problem ID:
programming-mistake Browser: Chrome 32 OS: Windows 7

There is a typo or other mistake on the page (e.g. factual error informa-
tion omitted) Week 4 Quiz Question 6: Question 6 When a user clicks
on a View that has registered to show a Context Menu which one of the
following methods will be called?

Thanks for the suggestion about downloading the video and referring to
the subtitles. I will give that a try but I would also like to point out that
what the others are saying is true for me too: The audio is just barely
audible even when the volume on my computer is set to 100%.

Let’s start a group for discussing the lecture videos.

Table 12: Example posts that PSL-Joint predicted correctly, but were misclassified by SeededLDA

Predicted Label Second

Prediction

Correct Label

Post

LECTURE-CONTENT QUIZ-CONTENT LECTURE-CONTENT

SOCIAL LECTURE-SUBTITLES SOCIAL

LECTURE-CONTENT QUIZ-CONTENT LECTURE-CONTENT

I have a difference of opinion to the answer for Question 6 too. It differs from
what is presented in lecture 1.

Hello guys!!! T am ... The course materials are extraordinary. The subtitles are
really helpful! Thanks to instructors for giving us all a wonderful opportunity.
As the second lecture video told me I started windows telnet and connected to
the virtual device. Then I typed the same command for sending an sms that the
lecture video told me to. The phone received a message all right and I was able to
open it but the message itself seems to be written with some strange characters.

Table 13: Example posts whose second-best prediction is correct

5.3 Interpreting PSL-Joint Predictions

Table 12 presents some examples of posts that
PSL-Joint predicted correctly, and which Seed-
edLDA misclassified. The first two examples
illustrate that PSL can predict the subtle dif-
ference between LECTURE-CONTENT and QUIZ-
CONTENT. Particularly notable is the third ex-
ample, which contains mention of both subtitles
and audio, but the negative sentiment is associ-
ated with audio rather than subtitles. PSL-Joint
predicts the fine aspect as LECTURE-AUDIO, even
though the underlying SeededLDA feature has a
high score for LECTURE-SUBTITLES. This exam-
ple illustrates the strength of the joint reasoning
approach in PSL-Joint. Finally, in the last exam-
ple, the post mentions starting a group to discuss
videos. This is an ambiguous post containing the
keyword video, while it is in reality a social post
about starting a group. PSL-Joint is able to predict
this because it uses both the sentiment scores as-
sociated with the post and the SeededLDA scores
for fine aspect, and infers that social posts are gen-
erally positive. So, combining the feature values
for social aspect and positive sentiment, it is able
to predict the fine aspect as SOCIAL correctly.

The continuous valued output predictions pro-
duced by PSL-Joint allow us to rank the predicted
variables by output prediction value. Analyzing
the predictions for posts that PSL-Joint misclassi-
fied, we observe that for four out of nine fine as-
pects, more than 70% of the time the correct label

81

is in the top three predictions. And, for all fine
aspects, the correct label is found in the top 3 pre-
dictions around 40% of the time. Thus, using the
top three predictions made by PSL-Joint, we can
understand the fine aspect of the post to a great
extent. Table 13 gives some examples of posts for
which the second best prediction by PSL-Joint is
the correct label. For these examples, we found
that PSL-Joint misses the correct prediction by a
small margin(< 0.2). Since our evaluation scheme
only considers the maximum value to determine
the scores, these examples were treated as misclas-
sified.

5.4 Understanding Instructor Intervention
using PSL-Joint Predictions

In our 3275 annotated posts, the instructor replied
to 787 posts. Of these, 699 posts contain a men-
tion of some MOOC aspect. PSL-Joint predicts
97.8% from those as having an aspect and 46.9%
as the correct aspect. This indicates that PSL-Joint
is capable of identifying the most important posts,
i.e. those that the instructor replied to, with high
accuracy. PSL-Joint’s MOOC aspect predictions
can potentially be used by the instructor to select
a subset of posts to address in order to cover the
main reported issues. We found in our data that
some fine aspects, such as CERTIFICATE, have a
higher percentage of instructor replies than oth-
ers, such as QUIZ-GRADING. Using our system,
instructors can sample from multiple aspect cate-



gories, thereby making sure that all categories of
problems receive attention.

6 Conclusion

In this paper, we developed a weakly supervised
joint probabilistic model (PSL-Joint) for predict-
ing aspect-sentiment in online courses. Our model
provides the ability to conveniently encode do-
main information in the form of seed words, and
weighted logical rules capturing the dependen-
cies between aspects and sentiment. We validated
our approach on an annotated dataset of MOOC
posts sampled from twelve courses. We com-
pared our PSL-Joint probabilistic model to a sim-
pler SeededLDA approach, and demonstrated that
PSL-Joint produced statistically significantly bet-
ter results, exhibiting a 3—5 times improvement in
F1 score in most cases over a system using only
SeededLDA. As further shown by our qualitative
results and instructor reply information, our sys-
tem can potentially be used for understanding stu-
dent requirements and issues, identifying posts for
instructor intervention, increasing student reten-
tion, and improving future iterations of the course.
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Abstract

This paper considers the problem of em-
bedding Knowledge Graphs (KGs) con-
sisting of entities and relations into low-
dimensional vector spaces. Most of the
existing methods perform this task based
solely on observed facts. The only re-
quirement is that the learned embeddings
should be compatible within each individ-
ual fact. In this paper, aiming at further
discovering the intrinsic geometric struc-
ture of the embedding space, we propose
Semantically Smooth Embedding (SSE).
The key idea of SSE is to take full ad-
vantage of additional semantic informa-
tion and enforce the embedding space to
be semantically smooth, i.e., entities be-
longing to the same semantic category will
lie close to each other in the embedding s-
pace. Two manifold learning algorithms
Laplacian Eigenmaps and Locally Linear
Embedding are used to model the smooth-
ness assumption. Both are formulated as
geometrically based regularization terms
to constrain the embedding task. We em-
pirically evaluate SSE in two benchmark
tasks of link prediction and triple classi-
fication, and achieve significant and con-
sistent improvements over state-of-the-art
methods. Furthermore, SSE is a general
framework. The smoothness assumption
can be imposed to a wide variety of em-
bedding models, and it can also be con-
structed using other information besides
entities’ semantic categories.

1 Introduction

Knowledge Graphs (KGs) like WordNet (Miller,
1995), Freebase (Bollacker et al., 2008), and DB-

* Corresponding author: Quan Wang.
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pedia (Lehmann et al., 2014) have become ex-
tremely useful resources for many NLP relat-
ed applications, such as word sense disambigua-
tion (Agirre et al., 2014), named entity recogni-
tion (Magnini et al., 2002), and information ex-
traction (Hoffmann et al., 2011). A KG is a multi-
relational directed graph composed of entities as
nodes and relations as edges. Each edge is repre-
sented as a triple of fact {e;, ry, e;), indicating that
head entity e; and tail entity e; are connected by re-
lation r¢. Although powerful in representing struc-
tured data, the underlying symbolic nature makes
KGs hard to manipulate.

Recently a new research direction called knowl-
edge graph embedding has attracted much atten-
tion (Socher et al., 2013; Bordes et al., 2013; Bor-
des et al., 2014; Lin et al., 2015). It attempts to
embed components of a KG into continuous vector
spaces, so as to simplify the manipulation while
preserving the inherent structure of the original
graph. Specifically, given a KG, entities and re-
lations are first represented in a low-dimensional
vector space, and for each triple, a scoring func-
tion is defined to measure its plausibility in that
space. Then the representations of entities and re-
lations (i.e. embeddings) are learned by maximiz-
ing the total plausibility of observed triples. The
learned embeddings can further be used to benefit
all kinds of tasks, such as KG completion (Socher
et al., 2013; Bordes et al., 2013), relation extrac-
tion (Riedel et al., 2013; Weston et al., 2013), and
entity resolution (Bordes et al., 2014).

To our knowledge, most of existing KG embed-
ding methods perform the embedding task based
solely on observed facts. The only requiremen-
t is that the learned embeddings should be com-
patible within each individual fact. In this pa-
per we propose Semantically Smooth Embedding
(SSE), a new approach which further imposes con-
straints on the geometric structure of the embed-
ding space. The key idea of SSE is to make ful-
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1 use of additional semantic information (i.e. se-
mantic categories of entities) and enforce the em-
bedding space to be semantically smooth—entities
belonging to the same semantic category should
lie close to each other in the embedding space.
This smoothness assumption is closely related to
the local invariance assumption exploited in mani-
fold learning theory, which requires nearby points
to have similar embeddings or labels (Belkin and
Niyogi, 2001). Thus we employ two manifold
learning algorithms Laplacian Eigenmaps (Belkin
and Niyogi, 2001) and Locally Linear Embed-
ding (Roweis and Saul, 2000) to model the s-
moothness assumption. The former requires an
entity to lie close to every other entity in the same
category, while the latter represents that entity as
a linear combination of its nearest neighbors (i.e.
entities within the same category). Both are for-
mulated as manifold regularization terms to con-
strain the KG embedding objective function. As
such, SSE obtains an embedding space which is
semantically smooth and at the same time com-
patible with observed facts.

The advantages of SSE are two-fold: 1) By im-
posing the smoothness assumption, SSE success-
fully captures the semantic correlation between
entities, which exists intrinsically but is over-
looked in previous work on KG embedding. 2)
KGs are typically very sparse, containing a rela-
tively small number of facts compared to the large
number of entities and relations. SSE can effec-
tively deal with data sparsity by leveraging ad-
ditional semantic information. Both aspects lead
to more accurate embeddings in SSE. Moreover,
our approach is quite general. The smoothness as-
sumption can actually be imposed to a wide va-
riety of KG embedding models. Besides seman-
tic categories, other information (e.g. entity sim-
ilarities specified by users or derived from auxil-
iary data sources) can also be used to construc-
t the manifold regularization terms. And besides
KG embedding, similar smoothness assumptions
can also be applied in other embedding tasks (e.g.
word embedding and sentence embedding).

Our main contributions can be summarized as
follows. First, we devise a novel KG embedding
framework that naturally requires the embedding
space to be semantically smooth. As far as we
know, it is the first work that imposes constraints
on the geometric structure of the embedding space
during KG embedding. By leveraging addition-
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al semantic information, our approach can also
deal with the data sparsity issue that commonly
exists in typical KGs. Second, we evaluate our
approach in two benchmark tasks of link predic-
tion and triple classification, and achieve signif-
icant and consistent improvements over state-of-
the-art models.

In the remainder of this paper, we first provide
a brief review of existing KG embedding model-
s in Section 2, and then detail the proposed SSE
framework in Section 3. Experiments and results
are reported in Section 4. Then in Section 5 we
discuss related work, followed by the conclusion
and future work in Section 6.

2 A Brief Review of KG Embedding

KG embedding aims to embed entities and rela-
tions into a continuous vector space and model the
plausibility of each fact in that space. In general, it
consists of three steps: 1) representing entities and
relations, 2) specifying a scoring function, and 3)
learning the latent representations. In the first step,
given a KG, entities are represented as points (i.e.
vectors) in a continuous vector space, and relation-
s as operators in that space, which can be charac-
terized by vectors (Bordes et al., 2013; Bordes et
al., 2014; Wang et al., 2014b), matrices (Bordes et
al., 2011; Jenatton et al., 2012), or tensors (Socher
et al., 2013). In the second step, for each candi-
date fact {e;, rt, ), an energy function f(e;, r, e;)
is further defined to measure its plausibility, with
the corresponding entity and relation representa-
tions as variables. Plausible triples are assumed to
have low energies. Then in the third step, to obtain
the entity and relation representations, a margin-
based ranking loss, i.e.,

£=)" 3 [y+fteirep-fie €], . (1)
tteOt eN+

is minimized. Here, O is the set of observed (i.e.
positive) triples, and " = (e;, r,e;) € O; N+ de-
notes the set of negative triples constructed by re-
placing entities in ", and 1~ = (el’.,rk,e;.) € Ni+;
v > 0 is a margin separating positive and nega-
tive triples; and [x], = max(0, x). The ranking
loss favors lower energies for positive triples than
for negative ones. Stochastic gradient descent (in
mini-batch mode) is adopted to solve the mini-
mization problem. For details please refer to (Bor-
des et al., 2013) and references therein.

Different embedding models differ in the first t-
wo steps: entity/relation representation and energy



Method

| Entity/Relation embeddings

Energy function

TransE (Bordes et al., 2013) e,reR?
SME (lin) (Bordes et al., 2014) e,reR?
SME (bilin) (Bordes et al., 2014) e,r e R’

SE (Bordes et al., 2011) e e RY RY R € R

flei,ri.e)) = lle; + 1 —ejlle, e,
flei,ri,ej) = (Wyre + Woe; + bu)T (Wvlrk +We; + bv)
_ T —
flei,r.e)) = ((EL,XBrk) € + bu) ((vaﬂ'k) e; + bv)
flei i, e)) = IIRZei - R};eijl

Table 1: Existing KG embedding models.

function definition. Three state-of-the-art embed-
ding models, namely TransE (Bordes et al., 2013),
SME (Bordes et al., 2014), and SE (Bordes et al.,
2011), are detailed below. Please refer to (Jenat-
ton et al., 2012; Socher et al., 2013; Wang et al.,
2014b; Lin et al., 2015) for other methods.

TransE (Bordes et al., 2013) represents both en-
tities and relations as vectors in the embedding s-
pace. For a given triple (e;, 1, e;), the relation is
interpreted as a translation vector ry so that the
embedded entities e; and e; can be connected by
r; with low error. The energy function is defined
as f(ei,ri.ej) = le; + ri — €jll¢ /e, where [, /e,
denotes the £;-norm or ¢;-norm.

SME (Bordes et al., 2014) also represents enti-
ties and relations as vectors, but models triples in
a more expressive way. Given a triple {e;, %, ),
it first employs a function g, (-,-) to combine ry
and e;, and g, (-,-) to combine r; and e;. Then,
the energy function is defined as matching g, (-, -)
and g, (-, ) by their dot product, i.e., f(e;, i, €;) =
gu(rr, el g, (ry, e 7). There are two versions of
SME, linear and bilinear (denoted as SME (lin)
and SME (bilin) respectively), obtained by defin-
ing different g, (-,-) and g, (-, -).

SE (Bordes et al., 2011) represents entities as
vectors but relations as matrices. Each relation is
modeled by a left matrix RZ and a right matrix R},
acting as independent projections to head and tail
entities respectively. If a triple {e;, 7, e;) holds,
Rje; and Rlvcej should be close to each other. The
energy function is f(e;, i, e;) = |IRje; — Ryejlle,.
Table 1 summarizes the entity/relation representa-
tions and energy functions used in these models.

3 Semantically Smooth Embedding

The methods introduced above perform the em-
bedding task based solely on observed facts. The
only requirement is that the learned embeddings
should be compatible within each individual fact.
However, they fail to discover the intrinsic geo-
metric structure of the embedding space. To deal
with this limitation, we introduce Semantically S-
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mooth Embedding (SSE) which constrains the em-
bedding task by incorporating geometrically based
regularization terms, constructed by using addi-
tional semantic categories of entities.

3.1 Problem Formulation

Suppose we are given a KG consisting of » entities
and m relations. The facts observed are stored as
a set of triples O = {(ei, Tt eJ-)}. A triple {e;, ri, e;)
indicates that entity ¢; and entity e; are connected
by relation r. In addition, the entities are classi-
fied into multiple semantic categories. Each entity
e is associated with a label ¢, indicating the cate-
gory to which it belongs. SSE aims to embed the
entities and relations into a continuous vector s-
pace which is compatible with the observed facts,
and at the same time semantically smooth.

To make the embedding space compatible with
the observed facts, we make use of the triple set O
and follow the same strategy adopted in previous
methods. That is, we define an energy function
on each candidate triple (e.g. the energy functions
listed in Table 1), and require observed triples to
have lower energies than unobserved ones (i.e. the
margin-based ranking loss defined in Eq. (1)).

To make the embedding space semantically s-
mooth, we further leverage the entity category in-
formation {c,.}, and assume that entities within the
same semantic category should lie close to each
other in the embedding space. This smoothness
assumption is similar to the local invariance as-
sumption exploited in manifold learning theory
(i.e. nearby points are likely to have similar em-
beddings or labels). So we employ two manifold
learning algorithms Laplacian Eigenmaps (Belkin
and Niyogi, 2001) and Locally Linear Embed-
ding (Roweis and Saul, 2000) to model such se-
mantic smoothness, termed as LE and LLE for
short respectively.

3.2 Modeling Semantic Smoothness by LE

Laplacian Eigenmaps (LE) is a manifold learning
algorithm that preserves local invariance between



each two data points (Belkin and Niyogi, 2001).
We borrow the idea of LE and enforce semantic
smoothness by assuming:

Smoothness Assumption 1 If two entities e; and
e;j belong to the same semantic category, they will
have embeddings e; and e; close to each other.

To encode the semantic information, we construct
an adjacency matrix W; € R™" among the enti-
ties, with the i j-th entry defined as:

1,
0,

where c,,/c.; is the category label of entity e;/e;.
Then, we use the following term to measure the
smoothness of the embedding space:

=3 Z Z le; — e,lBw!?,

i=1 j=1

(1) if Ce; = Ce_,'a

Wij otherwise,

where e; and e; are the embeddings of entities e;
and e; respectively. By minimizing R;, we expect
Smoothness Assumption 1: if two entities e; and e;

I _
ij

ejll3)

belong to the same semantic category (i.e. w..

1), the distance between e; and e; (i.e. |le; —
should be small.

We further incorporate R; as a regularization
term into the margin-based ranking loss (i.e. Eq.
(1)) adopted in previous KG embedding methods,
and propose our first SSE model. The new mod-
el performs the embedding task by minimizing the
following objective function:

L=y Yew t)+—ZZ||el—e,||2 .

z+ €Ot eN+

where € (t*,17) = [y+f(e,-, re.ej)—flel, ri, e;.)L is
the ranking loss on the positive-negative triple pair
(t*,17), and N is the total number of such triple
pairs. The first term in £; enforces the resultant
embedding space compatible with all the observed
triples, and the second term further requires that
space to be semantically smooth. Hyperparameter
A; makes a trade-off between the two cases.

The minimization is carried out by stochastic
gradient descent. Given a randomly sampled posi-
tive triple * = (e;, rt, e;) and the associated nega-
tive triple 1~ = (e}, 1%, e}),l the stochastic gradient
w.r.t. e; (s € {i, j,7’, j'}) can be calculated as:

Wl) ls,

!The negative triple is constructed by replacing one of the
entities in the positive triple.

Ve, L1 = Ve, l(t",17)+2,ED -
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where E = [e], €2, - - - ,€,] € R" is a matrix con-
sisting of entity embeddings; D € R™" is a di-
agonal matrix with the i-th entry on the diagonal
being d;; = 7 1w(l), and 1; € R” is a column
vector where the s- th entry is 1 and the others are
0. Other parameters are not included in R;, and
their gradients remain the same as defined in pre-

vious work.

3.3 Modeling Semantic Smoothness by LLE

As opposed to LE which preserves local invari-
ance within data pairs, Locally Linear Embedding
(LLE) expects each data point to be roughly re-
constructed by a linear combination of its nearest
neighbors (Roweis and Saul, 2000). We borrow
the idea of LLE and enforce semantic smoothness
by assuming:

Smoothness Assumption 2 Each entity e; can be
roughly reconstructed by a linear combination of
its nearest neighbors in the embedding space, i.e.,
€ ~ YeeN(, @je€j. Here nearest neighbors refer
to entities belonging to the same semantic catego-
ry with e;.

To model this assumption, for each entity e;, we
randomly sample K entities uniformly from the
category to which e; belongs, denoted as the n-
earest neighbor set N (e;). We construct a weight
matrix W, € R™" by defining:

1,

_ {0,

and normalize the rows so that 27: 1 w?® =1 for
each row i. Note that W, is no longer a symmetric
matrix. The smoothness of the embedding space
can be measured by the reconstruction error:

ifej EN(@,‘),

otherwise,

w2
ij

n 2

Ro= >

i=1

2

Minimizing R; results in Smoothness Assump-
tion 2: each entity can be linearly reconstructed
from its nearest neighbors with low error.

By incorporating R, as a regularization term in-
to the margin-based ranking loss defined in Eq.
(1), we obtain our second SSE model, which per-
forms the embedding task by minimizing:

—Z Zf(t t)+/12

t*eOt EN+

2

w(z)e
ij

-2

ejeN(e)

2



The resultant embedding space is also semanti-
cally smooth and compatible with the observed
triples. Hyperparameter 1, makes a trade-off be-
tween the two cases.

Similar to the first model, stochastic gradien-
t descent is used to solve the minimization prob-
lem. Given a positive triple " = (e;, 7, e;) and
the associated negative triple = = {e/, ¢, e;.), the
gradient w.r.t. es (s € {i, j,i’, j'}) is calculated as:

Ve, L2 = Ve £ (1,17 )+2L,E( - W)l 1-Wao) 1,

where I € R™" is the identity matrix. Other pa-
rameters are not included in R, and their gradi-
ents remain the same as defined in previous work.
To better capture the cohesion within each cate-
gory, during each stochastic step we resample the
nearest neighbors for each entity, uniformly from
the category to which it belongs.

3.4 Advantages and Extensions

The advantages of our approach can be summa-
rized as follows: 1) By incorporating geometri-
cally based regularization terms, the SSE mod-
els are able to capture the semantic correlation
between entities, which exists intrinsically but is
overlooked in previous work. 2) By leveraging ad-
ditional entity category information, the SSE mod-
els can deal with the data sparsity issue that com-
monly exists in most KGs. Both aspects lead to
more accurate embeddings.

Entity category information has also been inves-
tigated in (Nickel et al., 2012; Chang et al., 2014;
Wang et al., 2015), but in different manners. Nick-
el et al. (2012) take categories as pseudo entities
and introduce a specific relation to link entities
to categories. Chang et al. (2014) and Wang et
al. (2015) use entity categories to specify relation-
s’ argument expectations, removing invalid triples
during training and reasoning respectively. None
of them considers the intrinsic geometric structure
of the embedding space.

Actually, our approach is quite general. 1) The
smoothness assumptions can be imposed to a wide
variety of KG embedding models, not only the
ones introduced in Section 2, but also those based
on matrix/tensor factorization (Nickel et al., 2011;
Chang et al., 2013). 2) Besides semantic cate-
gories, other information (e.g. entity similarities
specified by users or derived from auxiliary data
sources) can also be used to construct the mani-
fold regularization terms. 3) Besides KG embed-
ding, similar smoothness assumptions can also be
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L | S
CityCapitalOfCountry AthleteLedSportTeam
CityLocatedInCountry AthletePlaysForTeam
CityLocatedInGeopoliticallocation AthletePlaysInLeague
CityLocatedInState AthletePlaysSport
CountryLocatedInGeopoliticallocation|CoachesInLeague
StateHasCapital CoachesTeam
StateLocatedInCountry TeamPlaysInLeague
StateLocatedInGeopoliticallocation ~ |TeamPlaysSport
Table 2: Relations in L and S

applied in other embedding tasks (e.g. word em-
bedding and sentence embedding).

4 Experiments

We empirically evaluate the proposed SSE models
in two tasks: link prediction (Bordes et al., 2013)
and triple classification (Socher et al., 2013).

4.1 Data Sets

We create three data sets with different sizes using
NELL (Carlson et al., 2010): L .S ,and
N 186.L and S are two small-scale
data sets, both containing 8 relations on the topics
of “location” and “sport” respectively. The corre-
sponding relations are listed in Table 2. N 186 s
a larger data set containing the most frequent 186
relations. On all the data sets, entities appearing
only once are removed. We extract the entity cat-
egory information from a specific relation called
Generalization, and keep non-overlapping cat-
egories.> Categories containing less than 5 entities
on L and S as well as categories con-
taining less than 50 entities on N 186 are fur-
ther removed. Table 3 gives some statistics of the
three data sets, where # Rel./# Ent./# Trip./# Cat.
denotes the number of relations/entities/observed
triples/categories respectively, and # c-Ent. de-
notes the number of entities that have category la-
bels. Note that our SSE models do not require ev-
ery entity to have a category label. From the statis-
tics, we can see that all the three data sets suffer
from the data sparsity issue, containing a relative-
ly small number of observed triples compared to
the number of entities.

On the two small-scale data sets L and
S , triples are split into training/validation/test
sets, with the ratio of 3:1:1. The first set is used
for modeling training, the second for hyperparam-
eter tuning, and the third for evaluation. All ex-
periments are repeated 5 times by drawing new

2If two categories overlap, the smaller one is discarded.



| #Rel. #Ent. #Trip. #Cat. #c-Ent.
L 8 380 718 5 358
S 8 1,520 3,826 4 1,506
N 186 186 14,463 41,134 35 8,590

Table 3: Statistics of data sets.

training/validation/test splits, and results averaged
over the 5 rounds are reported. On N 186 ex-
periments are conducted only once, using a train-
ing/validation/test split with 31,134/5,000/5,000
triples respectively. We will release the data up-
on request.

4.2 Link Prediction

This task is to complete a triple {e;, rt, e;) with ¢;
or e; missing, i.e., predict e; given (ry, e;) or pre-
dict e; given (e;, ry).

Baseline methods. We take TransE, SME (lin),
SME (bilin), and SE as our baselines. We then in-
corporate manifold regularization terms into these
methods to obtain the SSE models. A model
with the LE/LLE regularization term is denoted
as TransE-LE/TransE-LLE for example. We fur-
ther compare our SSE models with the setting pro-
posed by Nickel et al. (2012), which also takes in-
to account the entity category information, but in
a more direct manner. That is, given an entity e
with its category label c., we create a new triple
(e,Generalization, ¢,) and add it into the train-
ing set. Such a method is denoted as TransE-Cat
for example.

Evaluation protocol. For evaluation, we adopt
the same ranking procedure proposed by Bordes et
al. (2013). For each test triple {e;, rt, e;), the head
entity e; is replaced by every entity e in the KG,
and the energy is calculated for the corrupted triple
(e}, rr, ej). Ranking the energies in ascending or-
der, we get the rank of the correct entity e;. Sim-
ilarly, we can get another rank by corrupting the
tail entity e;. Aggregated over all test triples, we
report three metrics: 1) the averaged rank, denoted
as Mean (the smaller, the better); 2) the median of
the ranks, denoted as Median (the smaller, the bet-
ter); and 3) the proportion of ranks no larger than
10, denoted as Hits@ 10 (the higher, the better).

Implementation details. We implement the
methods based on the code provided by Bordes et
al. (2013)3. For all the methods, we create 100
mini-batches on each data set. On L and
S , the dimension of the embedding space d is

3https://github.com/glorotxa/SME

&9

set in the range of {10, 20, 50, 100}, the margin y
is set in the range of {1, 2,5, 10}, and the learning
rate is fixed to 0.1. On N 186, the hyperparame-
ters d and y are fixed to 50 and 1 respectively, and
the learning rate is fixed to 10. In LE and LLE,
the regularization hyperparameters 4; and A, are
tuned in {107*,107,1075,1077,1078}). And the
number of nearest neighbors K in LLE is tuned in
{5,10, 15,20}. The best model is selected by ear-
ly stopping on the validation sets (by monitoring
Mean), with a total of at most 1000 iterations over
the training sets.

Results. Table 4 reports the results on the test
sets of L .S ,and N 186. From the
results, we can see that: 1) SSE (regularized vi-
a either LE or LLE) outperforms all the baselines
on all the data sets and with all the metrics. The
improvements are usually quite significant. The
metric Mean drops by about 10% to 65%, Medi-
an drops by about 5% to 75%, and Hits@10 rises
by about 5% to 190%. This observation demon-
strates the superiority and generality of our ap-
proach. 2) Even if encoded in a direct way (e.g.
TransE-Cat), the entity category information can
still help the baseline methods in the link predic-
tion task. This observation indicates that leverag-
ing additional information is indeed useful in deal-
ing with the data sparsity issue and hence leads to
better performance. 3) Compared to the strategy
which incorporates the entity category information
directly, formulating such information as manifold
regularization terms results in better and more sta-
ble results. The *-Cat models sometimes perfor-
m even worse than the baselines (e.g. TransE-Cat
on S data), while the SSE models consistent-
ly achieve better results. This observation further
demonstrates the superiority of constraining the
geometric structure of the embedding space.

We further visualize and compare the geometric
structures of the embedding spaces learned by tra-
ditional embedding and semantically smooth em-
bedding. We select the 10 largest semantic cate-
gories in N 186 (specified in Figure 1) and the
5,740 entities therein. We take the embeddings
of these entities learned by TransE, TransE-Cat,
TransE-LE, and TransE-LLE, with the optimal hy-
perparameter settings determined in the link pre-
diction task. Then we create 2D plots using t-
SNE (Van der Maaten and Hinton, 2008)*. The
results are shown in Figure 1, where a different

“http://lvdmaaten.github.io/tsne/



L S N 186
Mean Median Hits@10 (%)| Mean Median Hits@10 (%)| Mean Median Hits@10 (%)
TransE 30.94 10.70 50.56 362.66 62.90 43.86 924.37  94.00 16.95
TransE-Cat 28.48 8.90 52.43 320.30 86.40 37.46 657.53  80.50 19.14
TransE-LE 28.59 8.90 53.06 183.10 23.20 45.83 573.55  79.00 20.26
TransE-LLE 28.03 9.20 52.36 231.67 52.40 43.18 535.32 95.00 20.02
SME (lin) 63.01 24.10 40.90 266.50 87.10 32.34 427.86  26.00 35.97
SME (lin)-Cat 41.12  18.30 42.43 263.88 70.80 35.03 309.60 25.00 36.22
SME (lin)-LE 36.19 16.10 43.75 237.38 50.80 38.35 276.94  25.00 37.14
SME (lin)-LLE 38.22 15.60 43.96 241.70 63.70 36.54 252.87 25.00 37.14
SME (bilin) 47.66  20.90 37.85 31449  124.00 33.83 848.39  28.00 35.71
SME (bilin)-Cat 40.75 16.20 42.71 298.09 103.80 35.86 560.76  24.00 37.83
SME (bilin)-LE 3341 14.00 44.24 29790 116.10 38.95 448.31 24.00 37.80
SME (bilin)-LLE| 32.84 13.60 46.25 286.63 110.10 35.67 452.43  28.00 36.51
SE 108.15  69.90 14.72 426.70  242.60 24.72 904.84  44.00 27.81
SE-Cat 88.36  48.20 20.76 435.44  231.00 35.39 529.38  40.00 28.68
SE-LE 36.43 16.00 42.92 252.30 90.50 37.19 456.20 43.00 30.89
SE-LLE 38.47 17.50 42.08 235.44 10540 37.83 447.05 37.00 31.55
Table 4: Link prediction results on the test sets of L S ,and N 186.
® Athlete Politici Chemical City Clothing Country @ Sportsteam @ Journalist ® Televisionstation @® Room

(a) TransE. (b) TransE-Cat.

Figure 1: Embeddings of entities belonging to the 10 largest categories in N

color is used for each category. It is easy to see
that imposing the semantic smoothness assump-
tions helps in capturing the semantic correlation
between entities in the embedding space. Entities
within the same category lie closer to each oth-
er, while entities belonging to different categories
are easily distinguished (see Figure 1(c) and Fig-
ure 1(d)). Incorporating the entity category infor-
mation directly could also helps. But it fails on
some “hard” entities (i.e., those belonging to d-
ifferent categories but mixed together in the cen-
ter of Figure 1(b)). We have conducted the same
experiments with the other methods and observed
similar phenomena.

4.3 Triple Classification

This task is to verify whether a given triple
(e;, i, e) is correct or not. We test our SSE mod-
els in this task, with the same comparison settings
as used in the link prediction task.

Evaluation protocol. We follow the same eval-
uation protocol used in (Socher et al., 2013; Wang
et al., 2014b). To create labeled data for classifica-
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(c) TransE-LE. (d) TransE-LLE.

186 (best viewed in color).

tion, for each triple in the test and validation sets,
we construct a negative triple for it by randomly
corrupting the entities. To corrupt a position (head
or tail), only entities that have appeared in that po-
sition are allowed. During triple classification, a
triple is predicted as positive if the energy is be-
low a relation-specific threshold ¢,; otherwise as
negative. We report two metrics on the test sets:
micro-averaged accuracy and macro-averaged ac-
curacy, denoted as Micro-ACC and Macro-ACC
respectively. The former is a per-triple average,
while the latter is a per-relation average.

Implementation details. We use the same hy-
perparameter settings as in the link prediction task.
The relation-specific threshold d, is determined by
maximizing Micro-ACC on the validation sets. A-
gain, training is limited to at most 1000 iterations,
and the best model is selected by early stopping on
the validation sets (by monitoring Micro-ACC).

Results. Table 5 reports the results on the test
sets of L , S ,and N  186. The results
indicate that: 1) SSE (regularized via either LE or
LLE) performs consistently better than the base-



L S N 186
Micro-ACC Macro-ACC| Micro-ACC Macro-ACC| Micro-ACC Macro-ACC
TransE 86.11 81.66 72.52 73.78 84.21 77.86
TransE-Cat 82.50 77.81 75.09 74.23 87.34 81.27
TransE-LE 86.39 81.50 79.88 77.34 90.32 84.61
TransE-LLE 87.01 83.03 80.29 77.71 90.08 84.50
SME (lin) 75.90 71.82 72.61 71.24 88.54 84.17
SME (lin)-Cat 83.33 80.90 73.52 72.28 91.00 86.20
SME (lin)-LE 84.65 79.33 79.25 74.95 92.44 88.07
SME (lin)-LLE 84.58 79.60 79.45 75.61 92.99 88.68
SME (bilin) 73.06 67.26 71.33 67.78 88.78 84.79
SME (bilin)-Cat 79.38 74.35 75.12 72.41 91.67 86.48
SME (bilin)-LE 83.75 79.66 79.23 76.18 93.37 89.29
SME (bilin)-LLE 83.54 80.36 79.33 75.35 93.64 89.39
SE 65.14 60.01 68.61 63.71 90.18 83.93
SE-Cat 68.61 62.82 67.62 62.17 92.87 87.72
SE-LE 81.67 77.52 81.46 74.72 93.94 88.62
SE-LLE 82.01 77.45 80.25 76.07 93.95 88.54
Table 5: Triple classification results (%) on the test sets of L ,S ,and N  186.

line methods on all the data sets in both metric-
s. The improvements are usually quite substantial.
The metric Micro-ACC rises by about 1% to 25%,
and Macro-ACC by about 2% to 30%. 2) Incorpo-
rating the entity category information directly can
also improve the baselines in the triple classifica-
tion task, again demonstrating the effectiveness of
leveraging additional information to deal with the
data sparsity issue. 3) It is a better choice to in-
corporate the entity category information as man-
ifold regularization terms as opposed to encoding
it directly. The *-Cat models sometimes perfor-
m even worse than the baselines (e.g. TransE-
Caton L data and SE-Cat on S data),
while the SSE models consistently achieve better
results. The observations are similar to those ob-
served during the link prediction task, and further
demonstrate the superiority and generality of our
approach.

5 Related Work

This section reviews two lines of related work: KG
embedding and manifold learning.

KG embedding aims to embed a KG composed
of entities and relations into a low-dimensional
vector space, and model the plausibility of each
fact in that space. Yang et al. (2014) categorized
the literature into three major groups: 1) method-
s based on neural networks, 2) methods based on
matrix/tensor factorization, and 3) methods based
on Bayesian clustering. The first group perform-
s the embedding task using neural network archi-
tectures (Bordes et al., 2013; Bordes et al., 2014;
Socher et al., 2013). Several state-of-the-art neural
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network-based embedding models have been in-
troduced in Section 2. For other work please refer
to (Jenatton et al., 2012; Wang et al., 2014b; Lin et
al., 2015). In the second group, KGs are represent-
ed as tensors, and embedding is performed via ten-
sor factorization or collective matrix factorization
techniques (Singh and Gordon, 2008; Nickel et al.,
2011; Changetal., 2014). The third group embeds
factorized representations of entities and relations
into a nonparametric Bayesian clustering frame-
work, so as to obtain more interpretable embed-
dings (Kemp et al., 2006; Sutskever et al., 2009).
Our work falls into the first group, but differs in
that it further imposes constraints on the geomet-
ric structure of the embedding space, which exists
intrinsically but is overlooked in previous work.
Although this paper focuses on incorporating ge-
ometrically based regularization terms into neural
network architectures, it can be easily extended to
matrix/tensor factorization techniques.

Manifold learning is a geometrically motivat-
ed framework for machine learning, enforcing the
learning model to be smooth w.r.t. the geometric
structure of data (Belkin et al., 2006). Within this
framework, various manifold learning algorithm-
s have been proposed, such as ISOMAP (Tenen-
baum et al., 2000), Laplacian Eigenmaps (Belkin
and Niyogi, 2001), and Locally Linear Embed-
ding (Roweis and Saul, 2000). All these algo-
rithms are based on the so-called local invariance
assumption, i.e., nearby points are likely to have
similar embeddings or labels. Manifold learning
has been widely applied in many different areas,
from dimensionality reduction (Belkin and Niyo-



gi, 2001; Cai et al., 2008) and semi-supervised
learning (Zhou et al., 2004; Zhu and Niyogi,
2005) to recommender systems (Ma et al., 2011)
and community question answering (Wang et al.,
2014a). This paper employs manifold learning al-
gorithms to model the semantic smoothness as-
sumptions in KG embedding.

6 Conclusion and Future Work

In this paper, we have proposed a novel approach
to KG embedding, referred to as Semantically S-
mooth Embedding (SSE). The key idea of SSE is
to impose constraints on the geometric structure of
the embedding space and enforce it to be semanti-
cally smooth. The semantic smoothness assump-
tions are constructed by using entities’ category
information, and then formulated as geometrical-
ly based regularization terms to constrain the em-
bedding task. The embeddings learned in this way
are capable of capturing the semantic correlation
between entities. By leveraging additional infor-
mation besides observed triples, SSE can also deal
with the data sparsity issue that commonly exists
in most KGs. We empirically evaluate SSE in two
benchmark tasks of link prediction and triple clas-
sification. Experimental results show that by in-
corporating the semantic smoothness assumption-
s, SSE significantly and consistently outperforms
state-of-the-art embedding methods, demonstrat-
ing the superiority of our approach. In addition,
our approach is quite general. The smoothness as-
sumptions can actually be imposed to a wide vari-
ety of embedding models, and it can also be con-
structed using other information besides entities’
semantic categories.

As future work, we would like to: 1) Construct
the manifold regularization terms using other da-
ta sources. The only information required to con-
struct the manifold regularization terms is the sim-
ilarity between entities (used to define the adja-
cency matrix in LE and to select nearest neigh-
bors for each entity in LLE). We would try entity
similarities derived in different ways, e.g., spec-
ified by users or calculated from entities’ textual
descriptions. 2) Enhance the efficiency and scala-
bility of SSE. Processing the manifold regulariza-
tion terms can be time- and space-consuming (e-
specially the one induced by the LE algorithm).
We would investigate how to address this prob-
lem, e.g., via the efficient iterative algorithms in-
troduced in (Saul and Roweis, 2003) or via paral-
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lel/distributed computing. 3) Impose the seman-
tic smoothness assumptions on other KG embed-
ding methods (e.g. those based on matrix/tensor
factorization or Bayesian clustering), and even on
other embedding tasks (e.g. word embedding or
sentence embedding).
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Abstract

Word embeddings have recently gained
considerable popularity for modeling
words in different Natural Language
Processing (NLP) tasks including seman-
tic similarity measurement. =~ However,
notwithstanding their success, word
embeddings are by their very nature
unable to capture polysemy, as different
meanings of a word are conflated into a
single representation. In addition, their
learning process usually relies on massive
corpora only, preventing them from taking
advantage of structured knowledge. We
address both issues by proposing a multi-
faceted approach that transforms word
embeddings to the sense level and lever-
ages knowledge from a large semantic
network for effective semantic similarity
measurement. We evaluate our approach
on word similarity and relational similar-
ity frameworks, reporting state-of-the-art
performance on multiple datasets.

1 Introduction

The much celebrated word embeddings represent
a new branch of corpus-based distributional se-
mantic model which leverages neural networks to
model the context in which a word is expected to
appear. Thanks to their high coverage and their
ability to capture both syntactic and semantic in-
formation, word embeddings have been success-
fully applied to a variety of NLP tasks, such as
Word Sense Disambiguation (Chen et al., 2014),
Machine Translation (Mikolov et al., 2013b), Re-
lational Similarity (Mikolov et al., 2013c), Se-
mantic Relatedness (Baroni et al., 2014) and
Knowledge Representation (Bordes et al., 2013).

However, word embeddings inherit two im-
portant limitations from their antecedent corpus-
based distributional models: (1) they are unable to
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model distinct meanings of a word as they conflate
the contextual evidence of different meanings of a
word into a single vector; and (2) they base their
representations solely on the distributional statis-
tics obtained from corpora, ignoring the wealth
of information provided by existing semantic re-
sources.

Several research works have tried to address
these problems. For instance, basing their work
on the original sense discrimination approach of
Reisinger and Mooney (2010), Huang et al. (2012)
applied K-means clustering to decompose word
embeddings into multiple prototypes, each denot-
ing a distinct meaning of the target word. How-
ever, the sense representations obtained are not
linked to any sense inventory, a mapping that con-
sequently has to be carried out either manually,
or with the help of sense-annotated data. Another
line of research investigates the possibility of tak-
ing advantage of existing semantic resources in
word embeddings. A good example is the Relation
Constrained Model (Yu and Dredze, 2014). When
computing word embeddings, this model replaces
the original co-occurrence clues from text corpora
with the relationship information derived from the
Paraphrase Database! (Ganitkevitch et al., 2013,
PPDB), an automatically extracted dataset of para-
phrase pairs.

However, none of these techniques have simul-
taneously solved both above-mentioned issues,
i.e., inability to model polysemy and reliance on
text corpora as the only source of knowledge. We
propose a novel approach, called SENSEMBED,
which addresses both drawbacks by exploiting se-
mantic knowledge for modeling arbitrary word
senses in a large sense inventory. We evaluate our
representation on multiple datasets in two stan-
dard tasks: word-level semantic similarity and re-
lational similarity. Experimental results show that
moving from words to senses, while making use

'http://paraphrase.org/#/download
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of lexical-semantic knowledge bases, makes em-
beddings significantly more powerful, resulting in
consistent performance improvement across tasks.

Our contributions are twofold: (1) we propose
a knowledge-based approach for obtaining contin-
uous representations for individual word senses;
and (2) by leveraging these representations and
lexical-semantic knowledge, we put forward a
semantic similarity measure with state-of-the-art
performance on multiple datasets.

2 Sense Embeddings

Word embeddings are vector space models (VSM)
that represent words as real-valued vectors in a
low-dimensional (relative to the size of the vo-
cabulary) semantic space, usually referred to as
the continuous space language model. The con-
ventional way to obtain such representations is to
compute a term-document occurrence matrix on
large corpora and then reduce the dimensional-
ity of the matrix using techniques such as singu-
lar value decomposition (Deerwester et al., 1990;
Bullinaria and Levy, 2012, SVD). Recent predic-
tive techniques (Bengio et al., 2003; Collobert and
Weston, 2008; Mnih and Hinton, 2007; Turian et
al., 2010; Mikolov et al., 2013a) replace the con-
ventional two-phase approach with a single super-
vised process, usually based on neural networks.

In contrast to word embeddings, which ob-
tain a single model for potentially ambiguous
words, sense embeddings are continuous repre-
sentations of individual word senses. In order to
be able to apply word embeddings techniques to
obtain representations for individual word senses,
large sense-annotated corpora have to be available.
However, manual sense annotation is a difficult
and time-consuming process, i.e., the so-called
knowledge acquisition bottleneck. In fact, the
largest existing manually sense annotated dataset
is the SemCor corpus (Miller et al., 1993), whose
creation dates back to more than two decades
ago. In order to alleviate this issue, we lever-
aged a state-of-the-art Word Sense Disambigua-
tion (WSD) algorithm to automatically generate
large amounts of sense-annotated corpora.

In the rest of Section 2, first, in Section 2.1, we
describe the sense inventory used for SENSEM-
BED. Section 2.2 introduces the corpus and the
disambiguation procedure used to sense annotate
this corpus. Finally in Section 2.3 we discuss
how we leverage the automatically sense-tagged
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dataset for the training of sense embeddings.

2.1 Underlying sense inventory

We selected BabelNet”> (Navigli and Ponzetto,
2012) as our underlying sense inventory. The re-
source is a merger of WordNet with multiple other
lexical resources, the most prominent of which
is Wikipedia. As a result, the manually-curated
information in WordNet is augmented with the
complementary knowledge from collaboratively-
constructed resources, providing a high coverage
of domain-specific terms and named entities and a
rich set of relations. The usage of BabelNet as our
underlying sense inventory provides us with the
advantage of having our sense embeddings read-
ily applicable to multiple sense inventories.

2.2 Generating a sense-annotated corpus

As our corpus we used the September-2014 dump
of the English Wikipedia.? This corpus comprises
texts from various domains and topics and pro-
vides a suitable word coverage. The unprocessed
text of the corpus includes approximately three
billion tokens and more than three million unique
words. We only consider tokens with at least five
occurrences.

As our WSD system, we opted for Babelfy*
(Moro et al., 2014), a state-of-the-art WSD and
Entity Linking algorithm based on BabelNet’s se-
mantic network. Babelfy first models each con-
cept in the network through its corresponding “se-
mantic signature” by leveraging a graph random
walk algorithm. Given an input text, the algo-
rithm uses the generated semantic signatures to
construct a subgraph of the semantic network rep-
resenting the input text. Babelfy then searches
this subgraph for the intended sense of each con-
tent word using an iterative process and a dense
subgraph heuristic. Thanks to its use of Babel-
Net, Babelfy inherently features multilinguality;
hence, our representation approach is equally ap-
plicable to languages other than English. In order
to guarantee high accuracy and to avoid bias to-
wards more frequent senses, we do not consider
those judgements made by Babelfy while backing
off to the most frequent sense, a case that happens
when a certain confidence threshold is not met by
the algorithm. The disambiguated items with high
confidence correspond to more than 50% of all the

nttp://www.babelnet.org/
*http://dumps.wikimedia.org/enwiki/
*http://www.babelfy.org/



bank? banky numbery; number? hood? hood?,
(geographical) (financial) (phone) (acting) (gang) (convertible car)
upstream; commercial_bank?y calls? appearingg torturess taillights?
downstream] financial_institution? dialled? minor_roles? vengeance?y grilley
runsg national_bank} operatorsy, stage_production? badguy? bumpersy
confluence? trust_company? telephone_network?  supporting_roles? brutal fasciay
river? savings_bank? telephony? leading_roles? execution} rear_window?
stream? banking? subscriber?y stage_shows? murders} headlights?

Table 1: Closest senses to two senses of three ambiguous nouns: bank, number, and hood

content words. As a result of the disambiguation
step, we obtain sense-annotated data comprising
around one billion tagged words with at least five
occurrences and 2.5 million unique word senses.

2.3 Learning sense embeddings

The disambiguated text is processed with the
Word2vec (Mikolov et al., 2013a) toolkit>. We ap-
plied Word2vec to produce continuous represen-
tations of word senses based on the distributional
information obtained from the annotated corpus.
For each target word sense, a representation is
computed by maximizing the log likelihood of the
word sense with respect to its context. We opted
for the Continuous Bag of Words (CBOW) archi-
tecture, the objective of which is to predict a single
word (word sense in our case) given its context.
The context is defined by a window, typically with
the size of five words on each side with the para-
graph ending barrier. We used hierarchical soft-
max as our training algorithm. The dimension-
ality of the vectors were set to 400 and the sub-
sampling of frequent words to 1073.

As a result of the learning process, we obtain
vector-based semantic representations for each of
the word senses in the automatically-annotated
corpus. We show in Table 1 some of the closest
senses to six sample word senses: the geographi-
cal and financial senses of river, the performance
and phone number senses of number, and the gang
and car senses of hood.® As can be seen, sense em-
beddings can capture effectively the clear distinc-
tions between different senses of a word. Addi-
tionally, the closest senses are not necessarily con-
strained to the same part of speech. For instance,
the river sense of bank has the adverbs upstream
and downstream and the “move along, of liquid”
sense of the verb run among its closest senses.

Shttp://code.google.com/p/word2vec/
*We follow Navigli (2009) and show the n'" sense of the
word with part of speech x as wordy,.
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Synset Description Synonymous senses

hood?
hoody
hoodg
hood7,

rough or violent youth  hoodlum?, goons, thug?
photography equipment lens_hood?
automotive body parts  bonnets, cowl?, cowling?

car with retractable top convertibley

Table 2: Sample initial senses of the noun hood
(leftmost column) and their synonym expansion
(rightmost column).

3 Similarity Measurement

This Section describes how we leverage the gen-
erated sense embeddings for the computation of
word similarity and relational similarity. We start
the Section by explaining how we associate a
word with its set of corresponding senses and
how we compare pairs of senses in Sections 3.1
and 3.2, respectively. We then illustrate our ap-
proach for measuring word similarity, together
with its knowledge-based enhancement, in Section
3.3, and relational similarity in Section 3.4. Here-
after, we refer to our similarity measurement ap-
proach as SENSEMBED.

3.1 Associating senses with words

In order to be able to utilize our sense embeddings
for a word-level task such as word similarity mea-
surement, we need to associate each word with its
set of relevant senses, each modeled by its corre-
sponding vector. Let S, be the set of senses asso-
ciated with the word w. Our objective is to cover
as many senses as can be associated with the word
w. To this end we first initialize the set S,, by the
word senses of the word w and all its synonymous
word senses, as defined in the BabelNet sense in-
ventory. We show in Table 2 some of the senses
of the noun hood and the synonym expansion for
these senses. We further expand the set S, by re-
peating the same process for the lemma of word w
(if not already in lemma form).



3.2 Vector comparison

For comparing vectors, we use the Tanimoto dis-
tance. The measure is a generalization of Jaccard
similarity for real-valued vectors in [-1, 1]:

Wy - W

T (w,us) = (1)

[ |2 + (|02 — w0y - i
where w) - ws is the dot product of the vectors
w1 and wy and ||wi] is the Euclidean norm of
wi. Rink and Harabagiu (2013) reported consis-
tent improvements when using vector space met-
rics, in particular the Tanimoto distance, on the
SemEval-2012 task on relational similarity (Jur-
gens et al., 2012) in comparison to several other
measures that are designed for probability distri-
butions, such as Jensen-Shannon divergence and
Hellinger distance.

3.3 Word similarity

We show in Algorithm 1 our procedure for mea-
suring the semantic similarity of a pair of input
words w; and wsy. The algorithm also takes as
its inputs the similarity strategy and the weighted
similarity parameter o (Section 3.3.1) along with
a graph vicinity factor flag (Section 3.3.2).

3.3.1 Similarity measurement strategy

We take two strategies for calculating the similar-
ity of the given words w; and we. Let Sy, and
Sw, be the sets of senses associated with the two
respective input words wy and ws, and let $; be the
sense embedding vector of the sense s;. In the first
strategy, which we refer to as closest, we follow
the conventional approach (Budanitsky and Hirst,
2006) and measure the similarity of the two words
as the similarity of their closest senses, i.e.:

)

SiMeiosest (wh w2) = max 7 (517 82)
S1 Eswl
82€$w2

However, taking the similarity of the closest
senses of two words as their overall similarity ig-
nores the fact that the other senses can also con-
tribute to the process of similarity judgement. In
fact, psychological studies suggest that humans,
while judging semantic similarity of a pair of
words, consider different meanings of the two
words and not only the closest ones (Tversky,
1977; Markman and Gentner, 1993). For instance,
the WordSim-353 dataset (Finkelstein et al., 2002)
contains the word pair brother-monk. Despite hav-
ing the religious devotee sense in common, the
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Algorithm 1 Word Similarity
Input: Two words w; and wo

Str, the similarity strategy

Vic, the graph vicinity factor flag

« parameter for the weighted strategy
Output: The similarity between w; and ws

Sw, — getSenses(w), Sy, < getSenses(wa)
if Str is closest then

sim «+— -1
else

sim «— 0
end if
for each s; € S, and 53 € S, do

if Vic is true then

tmp — T*(51,53)

R A A S ey

else

—_ = =
M =2

mmp — T (51,52)
end if
if Str is closest then
sim «— max (sim, tmp)
else
sim «— sim + tmp® X d(s1) X d(s2)
17: end if
18: end for

_ = e
SAN AN

two words are assigned the similarity judgement
of 6.27, which is slightly above the middle point
in the similarity scale [0,10] of the dataset. This
clearly indicates that other non-synonymous, yet
still related, senses of the two words have also
played a role in the similarity judgement. Addi-
tionally, the relatively low score reflects the fact
that the religious devotee sense is not a dominant
meaning of the word brother.

We therefore put forward another similarity
measurement strategy, called weighted, in which
different senses of the two words contribute to
their similarity computation, but the contributions
are scaled according to their relative importance.
To this end, we first leverage sense occurrence fre-
quencies in order to estimate the dominance of
each specific word sense. For each word w, we
first compute the dominance of its sense s € Sy,
by dividing the frequency of s by the overall fre-
quency of all senses associated with w, i.e., Sy:

freq(s)
ZS’GSU, fT6Q(8/)

We further recognize that the importance of a
specific sense of a word can also be triggered by

d(s) = 3)



the word it is being compared with. We model
this by biasing the similarity computation towards
closer senses, by increasing the contribution of
closer senses through a power function with pa-
rameter «. The similarity of a pair of words w;
and w9 according to the weighted strategy is com-
puted as:

Simyeighted (W1, Wa) =

Z Z d(s1) d(s2) T(s1,85)* ¥

S1 Eswl 52 ESwQ

where the o parameter is a real-valued constant
greater than one. We show in Section 4.1.3 how
we tune the value of this parameter.

3.3.2 Enhancing similarity accuracy

Our similarity measurement approach takes ad-
vantage of lexical knowledge at two different lev-
els. First, as we described in Sections 2.2 and
2.3, we use a knowledge-based disambiguation
approach, i.e., Babelfy, which exploits BabelNet’s
semantic network. Second, we put forward a
methodology that leverages the relations in Babel-
Net’s graph for enhancing the accuracy of similar-
ity judgements, to be discussed next.

As a distributional vector representation tech-
nique, our sense embeddings can potentially suffer
from inaccurate modeling of less frequent word
senses. In contrast, our underlying sense inven-
tory provides a full coverage of all its concepts,
with relations that are taken from WordNet and
Wikipedia. In order to make use of the com-
plementary information provided by our lexical
knowledge base and to obtain more accurate sim-
ilarity judgements, we introduce a graph vicin-
ity factor, that combines the structural knowledge
from BabelNet’s semantic network and the distri-
butional representation of sense embeddings. To
this end, for a given sense pair, we scale the
similarity judgement obtained by comparing their
corresponding sense embeddings, based on their
placement in the network. Let E be the set of all
sense-to-sense relations provided by BabelNet’s
semantic network, i.e., £ = {(s;,5;) : 8; — sj}.
Then, the similarity of a pair of words with the
graph vicinity factor in formulas 2 and 4 is com-
puted by replacing 7 with 7%, defined as:

if (31, 82) ek
otherwise

®)
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We show in Section 4.1.3 how we tune the pa-
rameter 3. This procedure is particularly help-
ful for the case of less frequent word senses that
do not have enough contextual information to al-
low an effective representation. For instance, the
SimLex-999 dataset (Hill et al., 2014), which we
use as our tuning dataset (see Section 4.1.3), con-
tains the highly-related pair orthodontist-dentist.
We observed that the intended sense of the noun
orthodontist occurs only 70 times in our anno-
tated corpus. As a result, the obtained represen-
tation was not accurate, resulting in a low similar-
ity score for the pair. The two respective senses
are, however, directly connected in the BabelNet
graph. Hence, the graph vicinity factor scales up
the computed similarity value for the word pair.

3.4 Relational similarity

Relational similarity evaluates the correspondence
between relations (Medin et al., 1990). The task
can be viewed as an analogy problem in which,
given two pairs of words (wg,wp) and (we, wy),
the goal is to compute the extent to which the rela-
tions of w, to wy and w, to w, are similar. Sense
embeddings are suitable candidates for measuring
this type of similarity, as they represent relations
between senses as linear transformations. Given
this property, the relation between a pair of words
can be obtained by subtracting their correspond-
ing normalized embeddings. Following Zhila et al.
(2013), the relational similarity between two pairs
of word (wg, wy) and (we, wq) is accordingly cal-
culated as:

ANALOGY (Wy , Wy, We, Wy) = ©)

T (wh — Wy, Wy — W)

We show the procedure for measuring the rela-
tional similarity in Algorithm 2. The algorithm
first finds the closest senses across the two word
pairs: s and s; for the first pair and sy and s
for the second. The analogy vector representa-
tions are accordingly computed as the difference
between the sense embeddings of the correspond-
ing closest senses. Finally, the relational similarity
is computed as the similarity of the analogy vec-
tors of the two pairs.

4 Experiments

We evaluate our sense-enhanced semantic repre-
sentation on multiple word similarity and related-
ness datasets (Section 4.1), as well as the relational
similarity framework (Section 4.2).



Algorithm 2 Relational Similarity

Input: Two pairs of words wg, wp and w,, wy

Output: The degree of analogy between the two
pairs

: Sw, — getSenses(wg), Sy, «— getSenses(wp)

(s}, 83) < argmaxs,es,,, T (5a, 5h)
sbeswb

Sw, — getSenses(w.), Sy, « getSenses(w,)

(se, 8) < argmaxs,es,,. T (Sc, $a)
SdESwd

return: 7 (sp" — s, , 55" — 5.%)

4.1 Word similarity experiment

Word similarity measurement is one of the most
popular evaluation methods in lexical semantics,
and semantic similarity in particular, with numer-
ous evaluation benchmarks and datasets. Given a
set of word pairs, a system’s task is to provide sim-
ilarity judgments for each pair, and these judge-
ments should ideally be as close as possible to
those given by humans.

4.1.1 Datasets

We evaluate SENSEMBED on standard word simi-
larity and relatedness datasets: the RG-65 (Ruben-
stein and Goodenough, 1965) and the WordSim-
353 (Finkelstein et al., 2002, WS-353) datasets.
Agirre et al. (2009) suggested that the original
WS-353 dataset conflates similarity and related-
ness and divided the dataset into two subsets, each
containing pairs for just one type of association
measure: similarity (the WS-Sim dataset) and re-
latedness (the WS-Rel dataset).

We also evaluate our approach on the YP-130
dataset, which was created by Yang and Powers
(2005) specifically for measuring verb similarity,
and also on the Stanford’s Contextual Word Sim-
ilarities (SCWS), a dataset for measuring word-
in-context similarity (Huang et al., 2012). In the
SCWS dataset each word is provided with the sen-
tence containing it, which helps in pointing out the
intended sense of the corresponding target word.

Finally, we also report results on the MEN
dataset which was recently introduced by Bruni
et al. (2014). MEN contains two sets of English
word pairs, together with human-assigned similar-
ity judgments, obtained by crowdsourcing using
Amazon Mechanical Turk.
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4.1.2 Comparison systems

We compare the performance of our similarity
measure against twelve other approaches. As re-
gards traditional distributional models, we report
the best results computed by Baroni et al. (2014)
for PMI-SVD, a system based on Pointwise Mu-
tual Information (PMI) and SVD-based dimen-
sionality reduction. For word embeddings, we re-
port the results of Pennington et al. (2014, GloVe)
and Collobert and Weston (2008). GloVe is an al-
ternative way for learning embeddings, in which
vector dimensions are made explicit, as opposed
to the opaque meaning of the vector dimensions
in Word2vec. The approach of Collobert and We-
ston (2008) is an embeddings model with a deeper
architecture, designed to preserve more complex
knowledge as distant relations. We also show re-
sults for the word embeddings trained by Baroni
et al. (2014). The authors first constructed a mas-
sive corpus by combining several large corpora.
Then, they trained dozens of different Word2vec
models by varying the system’s training parame-
ters and reported the best performance obtained on
each dataset.

As representatives for graph-based similarity
techniques, we report results for the state-of-the-
art approach of Pilehvar et al. (2013) which is
based on random walks on WordNet’s seman-
tic network. Moreover, we present results for
the graph-based approach of Zesch et al. (2008),
which compares a pair of words based on the path
lengths on Wiktionary’s semantic network.

We also compare our word similarity measure
against the multi-prototype models of Reisinger
and Mooney (2010) and Huang et al. (2012), and
against the approaches of Yu and Dredze (2014)
and Chen et al. (2014), which enhance word em-
beddings with semantic knowledge derived from
PPDB and WordNet, respectively. Finally, we re-
port results for word embeddings, as our baseline,
obtained using the Word2vec toolkit on the same
corpus that was annotated and used for learning
our sense embeddings (cf. Section 2.3).

4.1.3 Parameter tuning

Recall from Sections 3.3.1 and 3.3.2 that our al-
gorithm has two parameters: the o parameter for
the weighted strategy and the 3 parameter for the
graph vicinity factor. We tuned these two parame-
ters on the SimLex-999 dataset (Hill et al., 2014).
We picked SimLex-999 since there are not many
comparison systems in the literature that report re-



Dataset

Measure
RG-65 WS-Sim WS-Rel YP-130 MEN Average

Pilehvar et al. (2013) 0.868 0.677 0.457 0.710 0.690 0.677
Zesch et al. (2008) 0.820 — — 0.710 — —
Collobert and Weston (2008) 0.480 0.610 0.380 — 0.570 —
Word2vec (Baroni et al., 2014) 0.840 0.800 0.700 — 0.800 —
GloVe 0.769 0.666 0.559 0.577 0.763 0.737
ESA 0.749 — — — — —
PMI-SVD 0.738 0.659 0.523 0.337 0.726 0.695
Word2vec 0.732 0.707 0.476 0.343 0.665 0.644
SENSEMBED josest 0.894 0.756 0.645 0.734 0.779 0.769
SENSEMBED ycighted 0.871 0.812 0.703 0.639 0.805 0.794

Table 3: Spearman correlation performance on five word similarity and relatedness datasets.

sults on the dataset. We found the optimal values
for o and 5 to be 8 and 1.6, respectively.

4.1.4 Results

Table 3 shows the experimental results on five
different word similarity and relatedness datasets.
We report the Spearman correlation performance
for the two strategies of our approach as well as
eight other comparison systems. SENSEMBED
proves to be highly reliable on both similarity and
relatedness measurement tasks, obtaining the best
performance on most datasets. In addition, our ap-
proach shows itself to be equally suitable for verb
similarity, as indicated by the results on YP-130.

The rightmost column in the Table shows the
average performance weighted by dataset size.
Between the two similarity measurement strate-
gies, weighted proves to be the more suitable,
achieving the best overall performance on three
datasets and the best mean performance of 0.794
across the two strategies. This indicates that our
assumption of considering all senses of a word in
similarity computation was beneficial.

We report in Table 4 the Spearman correlation
performance of four approaches that are similar
to SENSEMBED: the multi-prototype models of
Reisinger and Mooney (2010) and Huang et al.
(2012), and the semantically enhanced models of
Yu and Dredze (2014) and Chen et al. (2014). We
provide results only on WS-353 and SCWS, since
the above-mentioned approaches do not report
their performance on other datasets. As we can
see from the Table, SENSEMBED outperforms the
other approaches on the WS-353 dataset. How-
ever, our approach lags behind on SCWS, high-
lighting the negative impact of taking the closest
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Measure WS-353 SCWS
Huang et al. (2012) 0.713 0.628
Reisinger and Mooney (2010) 0.770 -

Chen et al. (2014) - 0.662
Yu and Dredze (2014) 0.537 -

Word2vec 0.694 0.642
SENSEMBEDysest 0.714 0.589
SENSEMBED yeighted 0.779 0.624

Table 4: Spearman correlation performance of the
multi-prototype and semantically-enhanced ap-
proaches on the WordSim-353 and the Stanford’s
Contextual Word Similarities datasets.

senses as the intended meanings. In fact, on this
dataset, SENSEMBED,¢ignteqd Provides better per-
formance owing to its taking into account other
senses as well. The better performance of the
multi-prototype systems can be attributed to their
coarse-grained sense inventories which are auto-
matically constructed by means of Word Sense In-
duction.

4.2 Relational similarity experiment

Dataset and evaluation. We take as our bench-
mark the SemEval-2012 task on Measuring De-
grees of Relational Similarity (Jurgens et al.,
2012). The task provides a dataset comprising 79
graded word relations, 10 of which are used for
training and the rest for test. The task evaluated
the participating systems in terms of the Spear-
man correlation and the MaxDiff score (Louviere,
1991).



Setting Dataset
Model
Strategy ~ Vicinity =~ Expansion = RG-65  WS-Sim  WS-Rel YP-130 MEN  Average
Word2vec - - 0.732 0.707 0.476 0.343 0.665 0.644
Word2veceqp - - v 0.700 0.665 0.326 0.621 0.655 0.632
0.825 0.693 0.488 0.492 0.712 0.690
closest v 0.844 0.714 0.562 0.681 0.743 0.728
SENSEMBED v v 0.894 0.756 0.645 0.734 0.779 0.769
0.877 0.776 0.639 0.446 0.783 0.762
weighted v 0.864 0.783 0.665 0.591 0.773 0.761
v v 0.871 0.812 0.703 0.639 0.805 0.794

Table 6: Spearman correlation performance of word embeddings (Word2vec) and SENSEMBED on dif-

ferent semantic similarity and relatedness datasets

Measure MaxDiff Spearman
Com 45.2 0.353
PairDirection 45.2 —
RNN-1600 41.8 0.275
UTD-LDA — 0.334
UTD-NB 394 0.229
UTD-SVM 34.7 0.116
PMI baseline 33.9 0.112
Word2vec 43.2 0.288
SENSEMBED jysest 45.9 0.358

Table 5: Spearman correlation performance of dif-
ferent systems on the SemEval-2012 Task on Re-
lational Similarity.

Comparison systems. We compare our results
against six other systems and the PMI baseline
provided by the task organizers. As for systems
that use word embeddings for measuring rela-
tional similarity, we report results for RNN-1600
(Mikolov et al., 2013c) and PairDirection (Levy
and Goldberg, 2014). We also report results for
UTD-NB and UTD-SVM (Rink and Harabagiu,
2012), which rely on lexical pattern classification
based on Naive Bayes and Support Vector Ma-
chine classifiers, respectively. UTD-LDA (Rink
and Harabagiu, 2013) is another system presented
by the same authors that casts the task as a selec-
tional preferences one. Finally, we show the per-
formance of Com (Zhila et al., 2013), a system that
combines Word2vec, lexical patterns, and knowl-
edge base information. Similarly to the word
similarity experiments, we also report a baseline
based on word embeddings (Word2vec) trained on
the same corpus and with the same settings as
SENSEMBED.
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Results. Table 5 shows the performance of dif-
ferent systems in the task of relational similarity
in terms of the Spearman correlation and MaxDiff
score. A comparison of the results for Word2vec
and SENSEMBED shows the advantage gained by
moving from the word to the sense level. Among
the comparison systems, Com attains the clos-
est performance. However, we note that the sys-
tem is a combination of several methods, whereas
SENSEMBED is based on a single approach.

4.3 Analysis

In order to analyze the impact of the different
components of our similarity measure, we carried
out a series of experiments on our word similar-
ity datasets. We show in Table 6 the experimen-
tal results in terms of Spearman correlation. Per-
formance is reported for the two similarity mea-
surement strategies, i.e., closest and weighted, and
for different system settings with and without the
expansion procedure (cf. Section 3.1) and graph
vicinity factor (cf. Section 3.3.2). As our com-
parison baseline, we also report results for word
embeddings, obtained using the Word2vec toolkit
on the same corpus and with the same configura-
tion (cf. Section 2.3) used for learning the sense
embeddings (Word2vec in the Table). The right-
most column in the Table reports the mean perfor-
mance weighted by dataset size. Word2vec.,,, is
the word embeddings system in which the simi-
larity of the two words is determined in terms of
the closest word embeddings among all the corre-
sponding synonyms obtained with the expansion
procedure (cf. Section 3.1).

A comparison of word and sense embeddings
in the vanilla setting (with neither the expansion
procedure nor graph vicinity factor) indicates the
consistent advantage gained by moving from word



to sense level, irrespective of the dataset and the
similarity measurement strategy. The consistent
improvement shows that the semantic information
provided more than compensates for the inher-
ently imperfect disambiguation. Moreover, the re-
sults indicate the consistent benefit gained by in-
troducing the graph vicinity factor, highlighting
the fact that our combination of the complemen-
tary knowledge from sense embeddings and infor-
mation derived from a semantic network is bene-
ficial. Finally, note that the expansion procedure
leads to performance improvement in most cases
for sense embeddings. In direct contrast, the step
proves harmful in the case of word embeddings,
mainly due to their inability to distinguish individ-
ual word senses.

5 Related Work

Word embeddings were first introduced by Ben-
gio et al. (2003) with the goal of statistical lan-
guage modeling, i.e., learning the joint probabil-
ity function of a sequence of words. The initial
model was a Multilayer Perceptron (MLP) with
two hidden layers: a shared non-linear and a reg-
ular hidden hyperbolic tangent one. Collobert
and Weston (2008) deepened the original neural
model by adding a convolutional layer and an ex-
tra layer for modeling long-distance dependen-
cies. A significant contribution was later made by
Mikolov et al. (2013a), who simplified the original
model by removing the hyperbolic tangent layer
and hence significantly speeding up the training
process. Other related work includes GloVe (Pen-
nington et al., 2014), which is an effort to make the
vector dimensions in word embeddings explicit,
and the approach of Bordes et al. (2013), which
trains word embeddings on the basis of relation-
ship information derived from WordNet.

Several techniques have been proposed for
transforming word embeddings to the sense level.
Chen et al. (2014) leveraged word embeddings in
Word Sense Disambiguation and investigated the
possibility of retrofitting embeddings with the re-
sulting disambiguated words. Guo et al. (2014)
exploited parallel data to automatically generate
sense-annotated data, based on the fact that dif-
ferent senses of a word are usually translated to
different words in another language (Chan and
Ng, 2005). The automatically-generated sense-
annotated data was later used for training sense-
specific word embeddings. Huang et al. (2012)

103

adopted a similar strategy by decomposing each
word’s single-prototype representation into mul-
tiple prototypes, denoting different senses of that
word. To this end, they first gathered the context
for all occurrences of a word and then used spher-
ical K-means to cluster the contexts. Each cluster
was taken as the context for a specific meaning of
the word and hence used to train embeddings for
that specific meaning (i.e., word sense). However,
these techniques either suffer from low coverage
as they can only model word senses that occur in
the parallel data, or require manual intervention
for linking the obtained representations to an ex-
isting sense inventory. In contrast, our approach
enables high coverage and is readily applicable for
the representation of word senses in widely-used
lexical resources, such as WordNet, Wikipedia and
Wiktionary, without needing to resort to additional
manual effort.

6 Conclusions and Future Work

We proposed an approach for obtaining continu-
ous representations of individual word senses, re-
ferred to as sense embeddings. Based on the pro-
posed sense embeddings and the knowledge ob-
tained from a large-scale lexical resource, i.e., Ba-
belNet, we put forward an effective technique,
called SENSEMBED, for measuring semantic sim-
ilarity. We evaluated our approach on multiple
datasets in the tasks of word and relational simi-
larity. Two conclusions can be drawn on the ba-
sis of the experimental results: (1) moving from
word to sense embeddings can significantly im-
prove the effectiveness and accuracy of the rep-
resentations; and (2) a meaningful combination of
sense embeddings and knowledge from a semantic
network can further enhance the similarity judge-
ments. As future work, we intend to utilize our
sense embeddings to perform WSD, as was pro-
posed in Chen et al. (2014), in order to speed up
the process and train sense embeddings on larger
amounts of sense-annotated data.
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Abstract

Contrasting meaning is a basic aspect of
semantics. Recent word-embedding mod-
els based on distributional semantics hy-
pothesis are known to be weak for mod-
eling lexical contrast. We present in this
paper the embedding models that achieve
an F-score of 92% on the widely-used,
publicly available dataset, the GRE “most
contrasting word” questions (Mohammad
et al., 2008). This is the highest perfor-
mance seen so far on this dataset. Sur-
prisingly at the first glance, unlike what
was suggested in most previous work,
where relatedness statistics learned from
corpora is claimed to yield extra gains
over lexicon-based models, we obtained
our best result relying solely on lexical re-
sources (Roget’s and WordNet)—corpora
statistics did not lead to further improve-
ment. However, this should not be sim-
ply taken as that distributional statistics is
not useful. We examine several basic con-
cerns in modeling contrasting meaning to
provide detailed analysis, with the aim to
shed some light on the future directions for
this basic semantics modeling problem.

1 Introduction

Learning good representations of meaning for dif-
ferent granularities of texts is core to human lan-
guage understanding, where a basic problem is
representing the meanings of words. Distributed
representations learned with neural networks have
recently showed to result in significant improve-
ment of performance on a number of language
understanding problems (e.g., speech recognition
and automatic machine translation) and on many
non-language problems (e.g., image recognition).
Distributed representations have been leveraged
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to represent words as in (Collobert et al., 2011;
Mikolov et al., 2013).

Contrasting meaning is a basic aspect of seman-
tics, but it is widely known that word embedding
models based on distributional semantics hypoth-
esis are weak in modeling this—contrasting mean-
ing is often lost in the low-dimensional spaces
based on such a hypothesis, and better models
would be desirable.

Lexical contrast has been modeled in (Lin and
Zhao, 2003; Mohammad et al., 2008; Moham-
mad et al., 2013). The recent literature has also
included research efforts of modeling contrasting
meaning in embedding spaces, leading to state-
of-the-art performances. For example, Yih et al.
(2012) proposed to use polarity-primed latent se-
mantic analysis (LSA), called PILSA, to capture
contrast, which was further used to initialize a neu-
ral network and achieved an F-score of 81% on
the same GRE “most contrasting word” questions
(Mohammad et al., 2008). More recently, Zhang
et al. (2014) proposed a tensor factorization ap-
proach to solving the problem, resulting in a 82%
F-score.

In this paper, we present embedding models that
achieve an F-score of 92% on the GRE dataset,
which outperforms the previous best result (82%)
by a large margin. Unlike what was suggested in
previous work, where relatedness statistics learned
from corpora is often claimed to yield extra gains
over lexicon-based models, we obtained this new
state-of-the-art result relying solely on lexical re-
sources (Roget’s and WordNet), and corpus statis-
tics does not seem to bring further improvement.
To provide a comprehensive understanding, we
constructed our study in a framework that exam-
ines a number of basic concerns in modeling con-
trasting meaning. We hope our efforts would help
shed some light on future directions for this basic
semantic modeling problem.

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 106-115,
Beijing, China, July 26-31, 2015. (©2015 Association for Computational Linguistics



2 Related Work

The terms contrasting, opposite, and antonym
have different definitions in the literature, while
sometimes they are used interchangeably. Follow-
ing (Mohammad et al., 2013), in this paper we re-
fer to opposites as word pairs that “have a strong
binary incompatibility relation with each other or
that are saliently different across a dimension of
meaning”, e.g., day and night. Antonyms are a sub-
set of opposites that are also gradable adjectives,
with same definition as in (Cruse, 1986) as well.
Contrasting word pairs have the broadest mean-
ing among them, referring to word pairs having
“some non-zero degree of binary incompatibility
and/or have some non-zero difference across a di-
mension of meaning.” Therefore by definition, op-
posites are a subset of contrasting word pairs (refer
to (Mohammad et al., 2013) for detailed discus-
sions).

Word Embedding Word embedding models learn
continuous representations for words in a low di-
mensional space (Turney and Pantel, 2010; Hin-
ton and Roweis, 2002; Collobert et al., 2011;
Mikolov et al., 2013; Liu et al., 2015), which is not
new. Linear dimension reduction such as Latent
Semantic Analysis (LSA) has been extensively
used in lexical semantics (see (Turney and Pantel,
2010) for good discussions in vector space mod-
els.) Non-linear models such as those described
in (Roweis and Saul, 2000) and (Tenenbaum et
al., 2000), among many others, can also be ap-
plied to learn word embeddings. A particularly in-
teresting model is stochastic neighbor embedding
(SNE) (Hinton and Roweis, 2002), which explic-
itly enforces that in the embedding space, the dis-
tribution of neighbors of a given word to be similar
to that in the original, uncompressed space. SNE
can learn multiple senses of a word with a mix-
ture component. Recently, neural-network based
model such as those proposed by (Collobert et al.,
2011) and (Mikolov et al., 2013) have attracted ex-
tensive attention; particularly the latter, which can
scale up to handle large corpora efficiently.

Although word embeddings have recently
showed to be superior in some NLP tasks, they
are very weak in distinguishing contrasting mean-
ing, as the models are often based on the
well-known distributional semantics hypothesis—
words in similar context have similar meanings.
Contrasting words have similar context too, so
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contrasting meaning is not distinguished well in
such representations. Better models for contrast-
ing meaning is fundamentally interesting.

Modeling Contrasting Meaning Automatically
detecting contrasting meaning has been studied in
earlier work such as (Lin and Zhao, 2003; Mo-
hammad et al., 2008; Mohammad et al., 2013).
Specifically, as far as the embedding-based meth-
ods are concerned, PILSA (Yih et al., 2012) made
a progress in achieving one of the best results, by
priming LSA to encode contrasting meaning. In
addition, PILSA was also used to initialize a neu-
ral network to get a further improvement on the
GRE benchmark, where an F-score of 81% was
obtained. Another recent method was proposed
by (Zhang et al., 2014), called Bayesian proba-
bilistic tensor factorization. It considered multi-
dimensional semantic information, relations, un-
supervised data structure information in tensor
factorization, and achieved an F-score of 82% on
the GRE questions. These methods employed both
lexical resources and corpora statistics to achieve
their best results. In this paper, we show that us-
ing only lexical resources to construct embedding
systems can achieve significantly better results (an
F-score of 92%). To provide a more comprehen-
sive understanding, we constructed our study in a
framework that examines a number of basic con-
cerns in modeling contrasting meaning within em-
bedding.

Note that sentiment contrast may be viewed as
a specific case of more general semantic contrast
or semantic differentials (Osgood et al., 1957).
Tang et al. (2014) learned sentiment-specific em-
bedding and applied it to sentiment analysis of
tweets, which was often solved with more conven-
tional methods (Zhu et al., 2014b; Kiritchenko et
al., 2014a; Kiritchenko et al., 2014b).

3 The Models

We described in this section the framework in
which we study word embedding for contrasting
meaning. The general aim of the models is to en-
force that in the embedding space, the word pairs
with higher degrees of contrast will be put farther
from each other than those of less contrast. How
to learn this is critical. Figure 1 describes a very
high-level view of the framework.
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Figure 1: A high-level view of the contrasting em-
bedding framework.

3.1 Top Hidden Layer(s)

It is widely recognized that contrasting words,
e.g., good and bad, also intend to appear in sim-
ilar context or co-occur with each other. For ex-
ample, opposite pairs, special cases of contrasting
words, tend to co-occur more often than chance
(Charles and Miller, 1989; Fellbaum, 1995; Mur-
phy and Andrew, 1993). Mohammad et al. (2013),
in addition, proposed a degree of contrast hypoth-
esis, stating that “if a pair of words, A and B, are
contrasting, then their degree of contrast is pro-
portional to their tendency to co-occur in a large
corpus.”

These suggest some non-linear interaction be-
tween distributional relatedness and the degree of
contrast: the increase of relatedness correspond
to the increase of both semantic contrast and se-
mantic closeness; for example, they can form a
U-shaped curve if one plots the word pairs on a
two dimensional plane with y-axis denoting relat-
edness scores, while the most contrasting and (se-
mantically) close pairs lie on the two side of the
x-axis, respectively. In this paper, when combin-
ing word-pair distances learned by different com-
ponents of the contrasting inference layer, we use
some top hidden layer(s) to provide a non-linear
combination. Specifically, we use two hidden lay-
ers, which is able to express complicated func-
tions (Bishop, 2006). We use ten hidden units in
each hidden layer.
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3.2 Stochastic Contrast Embedding (SCE)

Hinton and Roweis (2002) proposed a stochas-
tic neighbor embedding (SNE) framework. Infor-
mally, the objective is to explicitly enforce that in
the learned embedding space, the distribution of
neighbors of a given word w to be similar to the
distribution of its neighbors in the original, un-
compressed space.

In our study, we instead use the concept of
“neighbors” to encode the contrasting pairs, and
we call the model stochastic contrasting embed-
ding (SCE), depicted by the left component of the
contrast inference layer in Figure 1. The model
is different from SNE in three respects. First,
as mentioned above, “neighbors” here are actu-
ally contrasting pairs—we enforce that in the em-
bedding space, the distribution of the contrasting
“neighbors” to be close to the distribution of the
“neighbors” in the original, higher-dimensional
space. The probability of word wj, being contrast-
ing neighbor of the given word w; can be com-
puted as:

eXP(—dik)
(_dzz,m)

where d is some distance metric between w; and
wy, and v is the size of a vocabulary.

Second, we train SCE using only lexical re-
sources but not corpus statistics, so as to explore
the behavior of lexical resources separately (we
will use the relatedness modeling component be-
low to model distributional semantics). Specifi-
cally, we use antonym pairs in lexical resources to
learn contrasting neighbors. Hence in the original
high-dimensional space, all antonyms of a given
word w; have the same probability to be its con-
trasting neighbors. That is, d in Equation (1) takes
a binary score, with value / indicating an antonym
pair and O not. In the embedding space, the cor-
responding probability of wy to be the contrast-
ing neighbor of w; , denoted as ¢; (wg|w;), can be
computed similarly with Equation (1). But since
the embedding is in a continuous space, d is not
binary but can be computed with regular distance
metric such as euclidean and cosine. The objective
is minimizing the KL divergence between p(.) and
a(.)-

Third, semantic closeness or contrast are not in-
dependent. For example, if a pair of words, A and
B, are synonyms, and if the pair of words, A and
C, are contrasting, then A and C is likely to be

ey

i €XD

p1(wg|w;) = 5



contrasting than a random chance. SCE considers
both semantic contrast and closeness. That is, for
a given word w;, we jointly force that in the em-
bedding space, its contrasting neighbors and se-
mantically close neighbors to be similar to those
in the original uncompressed space. These two
objective functions are linearly combined with a
parameter \ and are jointly optimized to learn one
embedding. The value of A is determined on the
development questions of the GRE data. Later in
Section 4, we will discuss how the training pairs of
semantic contrast and closeness are obtained from
lexical resources.

3.3 Marginal Contrast Embedding (MCE) !

In this paper, we use also another training criteria,
motivated by the pairwise ranking approach (Co-
hen et al., 1998). The motivation is to explicitly
enforce the distances between contrasting pairs to
be larger than distances between unrelated word
pairs by a margin, and enforce the distances be-
tween semantically close pairs to be smaller than
unrelated word pairs by another margin. More
specifically, we minimize the following objective
functions:

Objfpeey = >, max{0,a—di,+di;} (2)
(w;,wj;)ES
Objtrcy = Y. max{0,8 —dij + di}

(wi,wg)EA

3)
where A and S are the set of contrasting pairs and
semantically close pairs in lexicons respectively;
d denotes distance function between two words in
the embedding space. The subscript r indicates a
randomly sampled unrelated word. We call this

model Marginal Contrasting Embedding (MCE).
Intuitively, if two words w; and w; are seman-
tically close, the model maximizes Equation (2),
which attempts to force the d; ; (distance between
w; and w;) in the embedding space to be differ-
ent from that of two unrelated words d;, by a
margin «. For each given word pair, we sample
100 random words during training. Similarly, if
two words w; and wy, are contrasting, the model

'We made the code of MCE available at
https://github.com/lukecq1231/mce, as MCE achieved
the best performance according to the experimental results
described later in this paper.
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maximizes Equation (3), which attempts to force
the distance between w; and wy to be different
from that of two unrelated words d; , by a mar-
gin 3. Same as in SCE, these two objective func-
tions are linearly combined with a parameter A and
are jointly optimized to learn one embedding for
each word. This joint objective function attempts
to force the values of d;, (distances of unrelated
pairs) to be in between d; j, (distances of contrast-
ing pairs) and d; ; (distances of semantically close
pairs) by two margins.

3.4 Corpus Relatedness Modeling (CRM)

As discussed in previous work and above as well,
relatedness obtained with corpora based on dis-
tributional hypothesis interplays with semantic
closeness and contrast. Mohammad et al. (2013)
proposed a degree of contrast hypothesis, stating
that “if a pair of words, A and B, are contrast-
ing, then their degree of contrast is proportional
to their tendency to co-occur in a large corpus.” In
embedding, such dependency can be used to help
measure the degree of contrast. Specifically, we
use the skip-gram model (Mikolov et al., 2013) to
learn the relatedness embedding.

As discussed above, through the top hidden lay-
ers, the word embedding and distances learned in
SCE/MCE and CRM, together with that learned
with SDR below, can be used to predict the GRE
“most contrasting word”’ questions. With enough
GRE data, the prediction error may be backpropa-
gated to directly adjust or learn embedding in the
look-up tables. However, given the limited size of
the GRE data, we only employed the top hidden
layers to non-linearly merge the distances between
a word pair that are obtained within each of the
modules in the Contrast Inference Layer. We did
not backpropagate the errors to fine-tune already
learned word embeddings.

Note that embeddings in the look-up tables were
learned independently in different modules in the
contrast inference layer, e.g., in SCE, MCE and
CRM, respectively. And in each module, given the
corresponding objective functions, unconstrained
optimization (e.g., in the paper SGD) was used
to find embeddings that optimize the correspond-
ing objectives. The embeddings were then used
out-of-box and not further fine-tuned. Depend-
ing on experiment settings, embeddings learned in
each module are either used separately or jointly
(through the top hidden lay) to predict test cases.



More details will be discussed in the experiment
section below.

3.5 Semantic Differential Reconstruction
(SDR)

Using factor analysis, Osgood et al. (1957) identi-
fied three dimensions of semantics that account for
most of the variation in the connotative meaning
of adjectives. These three dimensions are evalu-
ative (good-bad), potency (strong-weak), and ac-
tivity(active-passive). We hypothesize that such
information should help reconstruct contrasting
meaning.

The General Inquirer lexicon (Stonel1966) rep-
resents these three factors but has a limited cov-
erage. We used the algorithm of (Turney and
Littman, 2003) to extend the labels to more words
with Google one billion words corpus (refer to
Section 4 for details). For example, to obtain the
evaluative score for a candidate word w, the point-
wise mutual information (PMI) between w and a
set of seed words eval™ and eval~ are computed
respectively, and the evaluative value for w is cal-
culated with:

eval(w) = PMI(w,eval™) — PMI(w, eval ™)

“4)
where eval™ contains predefined positive evalua-
tive words, e.g., good, positive, fortunate, and su-
perior, while eval™ includes negative evaluative
words like passive, slow, treble, and old. The seed
words were selected as described in (Turney and
Littman, 2003) to have a good coverage and to
avoid redundancy at the same time. Similarly, the
potency and activity scores of a word can be ob-
tained. The distances of a word pair on these three
dimensions can therefore be obtained.

4 Experiment Set-Up

Data Our experiment uses the “most contrast-
ing word” questions collected by Mohammad
et al. (2008) from Graduate Record Examination
(GRE), which was originally created by Educa-
tional Testing Service (ETS). Each GRE question
has a target word and five candidate choices; the
task is to identify among the choices the most con-
trasting word with regard to the given target word.
The dataset consists of a development set and a
test set, with 162 and 950 questions, respectively.
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As an example from (Mohammad et al., 2013),
one of the questions has the target word adulter-
ate and the five candidate choices: (A) renounce,
(B) forbid, (C) purify, (D) criticize, and (E) cor-
rect. While in this example the choice correct has
a meaning that is contrasting with that of adulter-
ate, the word purify is the gold answer as it has the
greatest degree of contrast with adulterate.

Lexical Resources In our work, we use two
publicly available lexical resources, WordNet
(Miller, 1995) (version 3.0) and the Roget’s The-
saurus (Kipfer, 2009). We utilized the labeled
antonym relations to obtain more contrasting pairs
under the contrast hypothesis (Mohammad et al.,
2013), by assuming a contrasting pair is related
to a pair of opposites (antonyms here). Specif-
ically in WordNet, we consider the word pairs
with relations other than antonym as semantically
close. In this way, we obtained a thesaurus con-
taining 83,118 words, 494,579 contrasting pairs,
and 368,209 close pairs. Note that we did not only
use synonyms to expand the contrasting pairs. We
will discuss how this affects the performance in
the experiment section.

In the Roget’s Thesaurus, every word or entry
has its synonyms and/or antonyms. We obtained
35,717 antonym pairs and 346,619 synonym pairs,
which consist of 43,409 word types. The antonym
and synonym pairs in Roget’s were combined with
contrasting pairs and semantically close pairs in
WordNet, respectively. And in total, we have
92,339 word types, 520,734 antonym pairs, and
646,433 close pairs.

Google Billion-Word Corpus The corpus used in
our experiment for modeling lexical relatedness in
the CRM component was Google one billion word
corpus (Chelba et al., 2013). Normalization and
tokenization were performed using the scripts dis-
tributed from https://code.google.com/p/1-billion-
word-language-modeling-benchmark/, and sen-
tences were shuffled randomly. We computed em-
bedding for a word if its count in the corpus is
equal to or larger than five, with the method de-
scribed in Section 3.4. Words with counts lower
than five were discarded.

Evaluation Metric Same as in previous work, the
evaluation metric is F-score, where precision is
the percentage of the questions answered correctly
over the questions the models attempt to answer,



and recall is the percentage of the questions that
are answered correctly among all questions.

5 Experiment Results

In training, we used stochastic gradient descent
(SGD) to optimize the objective function, and the
dimension of embedding was set to be 200. In
MCE (Equation 2 and 3) the margins « and (3 are
both set to be 0.4. During testing, when using SCE
or MCE embedding to answer the GRE questions,
we directly calculated distances for a pair between
a question word and a candidate choice in these
two corresponding embedding spaces to report
their performances. We also combined SCE/MCE
with other components in the contrast inference
layer, for which we used ten-fold cross validation
to tune the weights of the top hidden layers on nine
fold and test on the rest and repeated this for ten
times to report the results. As discussed above, er-
rors were not backpropagated to modify word em-
bedding.

5.1 General Performance of the Models

The performance of the models are showed in Ta-
ble 1. For comparison, we list the results reported
in (Yih et al., 2012) and (Zhang et al., 2014). The
table shows that on the GRE dataset, both SCE (a
90% F-score) and MCE (92%) significantly out-
perform the previous best results reported in (Yih
etal., 2012) (81%) and (Zhang et al., 2014) (82%).
The F-score of MCE outperforms that of SCE by
2%, which suggests the ranking criterion fits the
dataset better. In our experiment, we found that
the MCE model achieved robust performances on
different distance metrics, e.g., the cosine simi-
larity and Euclidean distance. In the paper, we
present the results with cosine similarity. SCE is
slightly more sensitive to distance metrics, and the
best performing metric on the development set is
inner product, so we chose that for testing.

Unlike what was suggested in the previous
work, where semantics learned from corpus is
claimed to yield extra gains in performance, we
obtained this result by using solely lexical re-
sources (Roget’s and WordNet) with SCE and
MCE. Using corpus statistics that model distri-
butional hypothesis (MCE+CRM) and utilize se-
mantic differential categories (MCE+CRM+SDR)
does not bring further improvement here (they are
useful in the experiments discussed below in Sec-
tion 5.3).
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5.2 Roles of Lexical Resources

To provide a more detailed comparison, we also
present lexicon lookup results, together with those
reported in (Zhang et al., 2014) and (Yih et al.,
2012). For our lookup results and those copied
here from (Zhang et al., 2014), the methods do not
randomly guess an answer if the target word is in
the vocabulary but none of the choices are, while
the results of (Yih et al., 2012) randomly guess
an answer in this situation. The Encarta thesaurus
used in (Yih et al., 2012) is not publicly available,
so we did not use it in our experiments. We due
the differences among the lookup results on Word-
Net (WordNet lookup) to the differences in prepro-
cessing as well as the way we expanded indirect
contrasting word pairs. As described in Section 4,
we utilized all relations other than antonym pairs
to expand our indirect antonym pairs. These also
have impact on the W&R lookup results (WordNet
and Roget’s pairs are combined). For both set-
tings, our expansion resulted in much better per-
formances.

Whether the differences between the F-scores
of MCE/SCE and that reported in (Zhang et al.,
2014) and (Yih et al., 2012) are also due to the
differences in expanding indirect pairs? To answer
this, we downloaded the word pairs that Zhang et
al. (2014) used to train their models,> but we used
them to train our MCE. The result are presented in
Table 1 and the F-score on test set is 91%, which
is only slightly lower than MCE using our lexicon.
So the extension is very helpful for lookup meth-
ods, but the MCE appears to be able to cover such
information by itself.

SCE and MCE learn contrasting meaning that
is not explicitly encoded in lexical resources. The
experiment results show that such implicit contrast
can be recovered by jointly learning the embed-
ding by using contrasting words and other seman-
tically close words.

To help better understand why corpus statis-
tics does not further help SCE and MCE, we
further demonstrate that most of the target-gold-
answer pairs in the GRE test set are connected
by short paths (with length between 1 to 3).
More specifically, based on breadth-first search,
we found the nearest paths that connect target-
gold-answer pairs, in the graph formed by Word-
Net and Roget’s—each word is a vertex, and con-
trasting words and semantically close words are

*https://github.com/iceboal/word-representations-bptf



Development Set Test Set
Prec. Rec. F; | Prec. Rec. F;
WordNet PILSA (Yih et al., 2012) 0.63 0.62 0.62 | 0.60 0.60 0.60
WordNet MRLSA (Yihetal., 2012) | 0.66 0.65 0.65 | 0.61 0.59 0.60
Encarta lookup (Yih et al., 2012) 0.65 0.61 063 | 061 0.56 0.59
Encarta PILSA (Yih et al., 2012) 0.86 0.81 0.84 | 0.81 0.74 0.77
Encarta MRLSA (Yih et al., 2012) 0.87 0.82 0.84| 0.82 0.74 0.78
WordNet lookup (Yih et al., 2012) 040 040 040]| 042 041 042
WordNet lookup (Zhang et al., 2014) | 0.93 032 048 | 095 0.33 049
WordNet lookup 0.97 037 054 | 097 041 0.58
Roget lookup (Zhang et al., 2014) 1.00 0.35 052|099 031 047
Roget lookup 1.00 032 049 | 097 0.29 044
W&R lookup (Zhang et al., 2014) 1.00 048 0.64 | 098 045 0.62
W&R lookup 098 0.52 0.68 | 097 0.52 0.68
(Mohammad et al., 2008) Best 0.76 0.66 0.70 | 0.76 0.64 0.70
(Yih et al., 2012) Best 0.88 0.87 0.87| 0.81 0.80 0.81
(Zhang et al., 2014) Best 0.88 0.88 0.88 | 0.82 0.82 0.82
SCE 094 093 093 | 090 0.90 0.90
MCE (using zhang et al. lex.) 094 093 094 | 092 091 091
MCE 096 094 095 | 092 0.92 0.92
MCE+CRM 094 093 093 | 090 0.90 0.90
MCE+CRM+SDR 0.04 094 094 | 090 090 0.90

Table 1: Results on the GRE “most contrasting words” questions.

connected with these two types of edges respec-
tively. Then we require the shortest path must have
one and only one contrasting edge. Word pairs that
cannot be connected by such paths are regarded to
have an infinite length of distance.

M1 =2 m3 m>3

39% 54%

Figure 2: Percentages of target-gold-answer word
pairs, categorized by the shortest lengths of paths
connecting them.

The pie graph in Figure 2 shows the percentages
of target-gold-answer word pairs, categorized by
the lengths of shortest paths defined above. We
can see that in the GRE data, the percentage of
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paths with a length larger than three is very small
(1%). It seems that SCE and MCE can learn this
very well. Again, they force semantically close
pairs to be close in the embedding spaces which
“share” similar contrasting pairs.

Figure 3 draws the envelope of histogram of
cosine distance between all target-choice word
pairs in the GRE test set, calculated in the em-
bedding space learned with MCE. The figure in-
tuitively shows how the target-gold-answer pairs
(most contrasting pairs) are discriminated from the
other target-choice pairs. We also plot the MCE
results without using the random sampling de-
picted in Equation (2) and Equation (3), showing
that discriminative power dramatically dropped.
Without the sampling, the F-score achieved on the
test data is 83%.

5.3 Roles of Corpus-based Embedding

However, the findings presented above should not
be simply taken as that distributional hypothesis
is not useful for learning lexical contrast. Our re-
sults and detailed analysis has showed it is due to
the good coverage of the manually created lexi-
cal resources and the capability of the SCE and
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Figure 3: The envelope of histogram of cosine dis-
tance between word pair embeddings in GRE test
set.

MCE models in capturing indirect semantic rela-
tions. There may exist circumstances where the
coverage is be lower, e.g., for resource-poor lan-
guages or social media text where (indirect) out-
of-vocabulary pairs may be frequent.

To simulate the situations, we randomly re-
moved different percentages of words from the
combined thesaurus used above in our experi-
ments, and removed all the corresponding word
pairs. The performances of different models are
showed in Figure 4. It is observed that as the
out of vocabulary (OOV) becomes more serious,
the MCE suffered the most. Using the seman-
tic differential (MCE+SDR) showed to be help-
ful as 50% to 70% lexicon entries are kept. Con-
sidering relatedness learned from corpus together
with MCE (MCE+CRM), i.e., combining MCE
distances with CRM distances for target-choice
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pairs, yielded robust performance—the F-score of
MCE+CRM drops significantly slower than that
of MCE, as we removed lexical entries. We also
combined MCE distances and CRM distances lin-
early (MCE+CRM (linear)), with a coefficient de-
termined with the development set. It showed a
performance worse than that of MCE+CRM when
50%-80% entries kept, while as discussed above,
MCE+CRM combines the two parts with the non-
linear top layers. In general, using corpora statis-
tics make the models more robust as OOV be-
comes more serious. It deserves to note that the
use of corpora here is rather straightforward; more
patterns may be learned from corpora to capture
contrasting expressions as discussed in (Moham-
mad et al., 2013). Also, context such as nega-
tion may change contrasting meaning, e.g., sen-
timent contrast (Kiritchenko et al., 2014b; Zhu et
al., 2014a), in a dramatic and complicated manner,
which has been considered in learning sentiment
contrast (Kiritchenko et al., 2014b).

6 Conclusions

Contrasting meaning is a basic aspect of seman-
tics. In this paper, we present a new state-of-the-
art result, a 92% F-score, on the GRE dataset cre-
ated by (Mohammad et al., 2008), which is widely
used as the benchmark for modeling lexical con-
trast. The result reported here outperforms the
best reported in previous work (82%) by a large
margin. Unlike what was suggested in most pre-
vious work, we show that this performance can be
achieved without relying on corpora statistics. To
provide a more comprehensive understanding, we
constructed our study in a framework that exam-



ines a number of concerns in modeling contrast-
ing meaning. We hope our work could help shed
some light on future directions on this basic se-
mantic problem.

From our own viewpoints, creating more eval-
vation data for measuring further progress in
contrasting-meaning modeling, e.g., handling real
OOV issues, is interesting to us. Also, the de-
gree of contrast may be better formulated as a re-
gression problem rather than a classification prob-
lem, in which finer or even real-valued annotation
would be desirable.
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Abstract

Online debate forums present a valu-
able opportunity for the understanding and
modeling of dialogue. To understand these
debates, a key challenge is inferring the
stances of the participants, all of which
are interrelated and dependent. While
collectively modeling users’ stances has
been shown to be effective (Walker et al.,
2012c¢; Hasan and Ng, 2013), there are
many modeling decisions whose ramifi-
cations are not well understood. To in-
vestigate these choices and their effects,
we introduce a scalable unified probabilis-
tic modeling framework for stance clas-
sification models that 1) are collective,
2) reason about disagreement, and 3) can
model stance at either the author level or
at the post level. We comprehensively
evaluate the possible modeling choices on
eight topics across two online debate cor-
pora, finding accuracy improvements of
up to 11.5 percentage points over a local
classifier. Our results highlight the im-
portance of making the correct modeling
choices for online dialogues, and having a
unified probabilistic modeling framework
that makes this possible.

1 Introduction

Understanding stance and opinion in dialogues
can provide critical insight into the theoretical un-
derpinnings of discourse, argumentation, and sen-
timent. Systems for predicting the stances of indi-
viduals can potentially have positive social impact
and are of practical interest to non-profits, govern-
mental organizations, and companies. For exam-
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Dialogue Turns Stance

User 1: 18. That’s the smoking age thats the shooting age. =~ ANTI

Why do you think they call it ATF?

User 2: Shooting age? I know 7 year old shooters. 18 should ~ ANTI
be the gun purchasing age, but there is really no “shooting”

age.

User 1: I know. I was just pointing out that the logic used to
propose a 21 year “shooting age” was inconsistent.

ANTI

User 2: I see. I dont think its really fair that you can join the ~ ANTI
army at 18 and use handguns and military weapons, but you

cant purchase a handgun until 21.

Figure 1: Example of a debate dialogue turn be-
tween two users on the gun control topic, from
4FORUMS.COM.

ple, stance predictions may be used to target pub-
lic awareness and advocacy campaigns, direct po-
litical fundraising and get-out-the vote efforts, and
improve personalized recommendations.

Online debate websites are a particularly rich
source of argumentative dialogic data (Fig. 1). On
these websites, users debate and share their opin-
ions on a variety of social and political issues.
Previous work (Somasundaran and Wiebe, 2010;
Walker et al., 2012c) has shown that stance clas-
sification in online debates is a challenging prob-
lem. While collective approaches that jointly pre-
dict user stance seem promising (Walker et al.,
2012c; Hasan and Ng, 2013), the rich structure of
online debate forums necessitates many modeling
choices. For example, users publish opinions and
reply and respond to each others’ posts. In so do-
ing, they may agree or disagree with either all or
a portion of another user’s post, suggesting that
collective classifiers for stance may benefit from
text-based disagreement modeling. Furthermore,
one can model stance either at the author level—
assuming that an author’s stance is based on all of
their posts on a topic (Burfoot et al., 2011)—or at
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the post level—assuming that an author’s stance
is post-specific and may vary across posts (Hasan
and Ng, 2013). These decisions can drastically
change the nature of stance models, so understand-
ing their implications is critical.

In this paper, we develop a flexible modeling
framework for stance classification using proba-
bilistic soft logic (PSL) (Bach et al., 2013; Bach
et al.,, 2015), a recently introduced probabilis-
tic modeling framework.! PSL is a probabilis-
tic programming system that allows models to be
specified using a declarative, rule-like language.
The resulting models are a special form of con-
ditional random field, called a hinge-loss Markov
random field, which admits highly scalable exact
inference (Bach et al.,, 2013). Modeling stance
in large, richly connected online debate forums
requires a careful exploration of many modeling
choices. This complex domain especially benefits
from PSL’s flexibility and scalability. PSL makes
it easy to develop model variations and extensions,
as one can readily incorporate new factors captur-
ing additional intuitions about dependencies in a
domain.

We evaluate our models on data from two
debate sites, 4FORUMS and CREATEDEBATE
(Walker et al., 2012b; Hasan and Ng, 2013), which
we describe in detail in Section 2. Our experi-
mental results show that there are important rami-
fications of several modeling decisions, including
whether to use collective or non-collective mod-
els, to represent stance at the post level or the au-
thor level, and how to model disagreement. We
find that with appropriate modeling choices, our
approach leads to improvements of up to 11.5 per-
centage points of accuracy over simple classifica-
tion approaches.

Our contributions include (1) a flexible, unified
framework for modeling online debates, (2) ex-
tensive experimental study of many possible mod-
els on eight forum datasets, collected across two
different debate websites, and (3) general model-
ing recommendations resulting from our empirical
studies.

2 Online Debate Forums

Online debate forums represent richly structured
argumentative dialogues. On these forums, users
debate with each other in discussion threads on a

'PSL is an open-source Java toolkit, available here:
http://psl.cs.umd.edu.
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variety of topics or issues, such as gun control, gay
marriage, and marijuana legalization. Each dis-
cussion consists of a number of posts, which are
short text documents authored by users of the fo-
rum. A post is either a reply to a previous post,
or it is the start (root) of a thread. As users en-
gage with each other, a thread branches out into
a tree of argumentative interactions between the
users. Forum users often post numerous times
and across multiple discussions and topics, which
creates a richly structured interaction graph. On-
line debates present different challenges than more
controlled dialogic settings such as congressional
debates. Posts are short and informal, there is lim-
ited external information about authors, and de-
bate topics admit many modes of argumentation
ranging from serious, to tangential, to sarcastic.
The reply graph in online debates also has sub-
stantially different semantics to networks in other
debate settings, such as the graph of speaker men-
tions in congressional debates. To illustrate this
setting, Fig. 1 shows an example dialogue between
two users who are debating their opinions on the
topic of gun control.

In the context of online debate forums, stance
classification (Thomas et al., 2006; Somasundaran
and Wiebe, 2009) is the task of assigning stance
labels with respect to a discussion topic, either at
the level of the user or the level of the post. Stance
is typically treated as a binary classification prob-
lem, with labels PRO and ANTI. In Fig. 1, both
users’ stances toward gun control are ANTI.

Previous work on stance in online debates has
shown that contextual information given by reply
links is important for stance classification (Walker
et al., 2012a), and that collective classification of-
ten outperforms methods which treat each post
independently. Hasan and Ng (2013) use condi-
tional random fields (CRFs) to encourage opposite
stances between sequences of posts, and Walker et
al. (2012c) use MaxCut over explicitly given re-
buttal links between posts to separate them into
PRO and ANTI clusters. Sridhar et al. (2014) use
hinge-loss Markov random fields (HL-MRFs) to
encourage consistency between post level stance
labels and observed post-level textual agreements
and disagreements.

While the first two approaches leverage rebuttal
or reply links, they model reply links as being in-
dicative of opposite stances. However, as shown in
Fig. 1, responses—even rebuttals—can occur be-



tween users with the same stance, which suggests
the benefit of a more nuanced treatment of reply
links. The approach of Sridhar et al. (2014) con-
siders text-based agreement annotations between
posts, though it requires that reply links are la-
beled. Accurate reply polarity labels are likely to
be as expensive to obtain as the stance labels that
we aim to predict. Noisy or sparse reply labels are
cheaper, though likely to reduce performance. In
this work, we show how to reason over uncertain
reply label predictions to improve stance classifi-
cation.

Also in the online debate setting, Hasan and Ng
(2014) show the benefits of joint modeling to clas-
sify post-level stance and the authors’ reasons for
their stances. In contrast, in this work we focus on
the dependencies between stance and polarity of
replies.

In the context of opinion subgroup discov-
ery, Abu-Jbara and Radev (2013) demonstrate
the effectiveness of clustering users by opinion-
target similarity. In contrast, Murakami and Ray-
mond (2010) use simple recurring patterns such
as “that’s a good idea” to categorize reply links
as agree, disagree or neutral, prior to using Max-
Cut for subgroup clustering of comment streams
on government websites. This approach improves
over a MaxCut approach that casts all reply links
as disagreements. Building on this work, Lu et al.
(2012) model unsupervised discovery of support-
ing and opposing groups of users for topics in on-
line military forums. They improve upon a Max-
Cut baseline by formulating a linear program (LP)
to combine multiple textual and reply-link signals,
suggesting the benefits of jointly modeling textual
and reply-link features.

In a different line of work, while Somasundaran
and Wiebe (2010) do not use relational informa-
tion between users or posts, their approach shows
the benefit of modeling opinions and their targets
at a fine-grained level using relational sentiment
analysis techniques. Similarly, Wang and Cardie
(2014) demonstrate the effectiveness of using sen-
timent analysis to identify disputes on Wikipedia
Talk pages. Boltuzi¢ and Snajder (2014) and
Ghosh et al. (2014) study various linguistic fea-
tures to model stance and agreement interactions
respectively.

In the congressional debate setting, approaches
using CRFs and similar collective techniques such
as minimum-cut have also leveraged reply link
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4FORUMS CREATEDEBATE

336
19

Users per topic

Posts per user, per topic

2511
134

Words per user, per topic

Words per post

Distinct reply links
per user, per topic

Stance labels given for Users Posts

% Post-level reply links 71.6 73.9

have opposite-stance users

% Author-level reply links
have opposite-stance users

Table 1: Structural statistics averages for 4Fo-
RUMS and CREATEDEBATE.

polarity for improvements in stance classification
(Thomas et al., 2006; Bansal et al., 2008; Bal-
ahur et al., 2009; Burfoot et al., 2011). How-
ever, these methods rely heavily on features spe-
cific to the congressional setting in order to pre-
dict link polarity, and make little use of textual
features. In contrast, Abbott et al. (2011) use a
range of linguistic features from the text of posts
and their parents to classify agreement or disagree-
ment between posts on the online debate website
4FORUMS.CcOM, without the goal of classifying
stance.

In this work, we study datasets from two on-
line debate websites: 4FORUMS.COM, from the
Internet Argument Corpus (Walker et al., 2012b),
and CREATEDEBATE.COM (Hasan and Ng, 2013).
Table 1 shows statistics about these datasets in-
cluding the average number of users per dis-
cussion topic and average number of posts au-
thored. The best stance classification accuracy to
date for online debate forums ranges from 70.1%
on CONVINCEME.NET to 75.4% on CREATEDE-
BATE.COM (Walker et al., 2012¢; Hasan and Ng,
2013). The web interface for CONVINCEME.NET
enforces opposite stances for reply posts, making
this dataset inapplicable for text-based disagree-
ment modeling, and so we do not consider it in
our experiments. In the more typical online debate
forum corpora that we study, the presence of a re-
ply, or even a textual disagreement between posts,
does not necessarily indicate opposite stance (e.g.
in gun control debates on 4Forums, 23% of dis-
agreements correspond with same stance).

For our unified framework, we specify a hinge-
loss Markov random field to reason jointly about
stance and reply-link polarity labels. A closely
related line of work focuses on improving struc-



tured prediction with domain knowledge modeled
as constraints in the objective function (Chang et
al., 2012; Ganchev et al., 2010; Mann and Mc-
Callum, 2010). Though more often used in semi-
supervised settings, constraint-based learning can
be especially appropriate for supervised learning
when commonly used feature functions for linear
models do not capture the richness of the data.
Our HL-MRF formulation admits highly expres-
sive features while maintaining a convex objec-
tive, thereby enjoying both tractability and a fully
probabilistic interpretation.

3 Modeling Choices

We face multiple modeling decisions that may
impact predictive performance when classifying
stance in online debates. A key contribution of
this work is the exploration of the ramifications of
these choices. We consider the following varia-
tions on modeling: collective (C) versus local (L)
classifiers, whether to explicitly model disagree-
ment (D), and author-level (A) versus post-level
(P) models.

Collective versus Local. Both collective and
non-collective methods for stance prediction re-
quire a strong local text classifier. The methods
proposed in this paper build upon the state-of-the-
art local classification approach of Walker et al.
(2012a), which trains a supervised classifier us-
ing features including n-grams, lexical category
counts, and text lengths. We use logistic regres-
sion for the local classifier. These models will be
referred to as local (L). In collective (C) classifi-
cation approaches for stance prediction, the stance
labels are all predicted jointly, leveraging relation-
ships along the graph of replies. The simplest
way to make use of reply links is to encode that
the stance of posts (or authors) that reply to each
other is likely to be opposite (Walker et al., 2012c;
Hasan and Ng, 2013). Collective approaches at-
tempt to find the most likely joint stance labeling
that is consistent with both the local classifier’s
predictions and the alternation of stance along re-
sponse threads. The alternating stance assumption
is not necessarily a hard constraint, and may po-
tentially be overridden by the local predictions. C
and L models can be constructed with A or P-level
granularity as described below, resulting in four
modeling combinations.
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Modeling Disagreement. As seen in Fig. 1 and
Table 1, the assumption that reply links corre-
spond to opposite stance is not always correct.
This suggests the potential benefit of more nu-
anced models of agreement and disagreement. A
natural disagreement modeling approach is to pre-
dict the polarity of reply links jointly with stance.

There are two variants of reply link polarity to
consider. In textual disagreement, replying posts
are coded as expressing agreement or disagree-
ment with the text of the parent post. This may
not correspond to a disagreement in stance rela-
tive to the thread topic. Some forum interfaces
support user self-labeling of post reply links as re-
buttals or agreements, thereby explicitly provid-
ing textual disagreement labels for posts. Alter-
natively, in the stance disagreement variant, reply
links denote either same or opposite stance be-
tween users (posts). In Fig. 1, User 1 and User
2 disagree in text but have the same stance. For
collective modeling of stance and disagreement, it
is useful to consider the stance disagreement vari-
ant which identifies opposite and same-stance re-
ply links, and jointly encourage stance predictions
to be consistent with the disagreement predictions.

As with the local classification of stance, we can
construct local classifiers for stance disagreement.
In this work, for each reply link instance, we use a
copy of the local stance classification features for
each author/post at the ends of the reply link. The
linguistic features further include discourse mark-
ers such as “actually” and “because” from the dis-
agreement classifier of Abbott et al. (2011). Addi-
tionally, we use textual disagreement as a feature
for stance disagreementwhen available. When re-
ply links are not explicitly labeled as rebuttals or
agreements, or only rebuttals are known, we in-
stead predict textual disagreement using the fea-
tures given above, trained on a separate data set
with textual-disagreement labels.

Finally, with a stance disagreement classifier in
hand, we can build collective models that predict
stance based on predicted stance disagreement po-
larity. We denote these models as disagreement
(D). When applied at one of A or P-level model-
ing, this yields two more possible modeling con-
figurations. These models are certainly more com-
plex than others we consider, but their design is
consistent with intuition about the nature of dis-
course, so the added complexity may yield better
accuracy.



All models: Collective models only:

Disagreement models only:

localPro(X1) — pro(X1) disagree(X1, X2) A pro(X1) — - pro(X2) localDisagree(X1, X2) — disagree(X1, X2)
= localPro(X1) — - pro(X1) disagree(X1, X2) A — pro(X1) — pro(X2) = localDisagree(X1, X2) — —disagree(X1, X2)
- disagree(X1, X2) A pro(X1) — pro(X2) pro(X1) A = pro(X2) — disagree(X1, X2)
- disagree(X1, X2) A = pro(X1) — - pro(X2) pro(X1) A pro(X2) — —disagree(X1, X2)

disagree(X1, X2)

=1

= pro(X1) A = pro(X2) — —disagree(X1, X2)

Figure 2: PSL rules to define the collective classification models, both for post-level and author-level
models. Each X is an author or a post, depending on the level of granularity that the model is applied
at. The disagree(X, X2) predicates apply to post reply links, and to pairs of authors connected by reply

links.

Author-Level versus Post-Level. When model-
ing debates, stance classifiers can predict either
the stance of a debate participant (i.e. an author
(A)) (Burfoot et al., 2011), or the stance expressed
by a specific dialogue act (i.e. a post (P)) (Hasan
and Ng, 2013). The choice of prediction target
may depend on the downstream goal, such as user
modeling or the study of the dialogic expression
of disagreement. From a philosophical perspec-
tive, authors are individuals who hold opinions,
while posts are not. A post is simply a piece of
text which may or may not express the opinions of
its author.

Nevertheless, given a prediction target, either
author or post, it may be beneficial to consider
modeling at a different level of granularity. For
example, Hasan and Ng (2013) find that post-level
prediction accuracy can be improved by “clamp-
ing” all posts by a given author to the same
stance in order to smooth their labels. Alterna-
tively, author-level predictions may potentially be
improved by first treating each post separately,
thereby effectively giving a classifier more train-
ing examples, i.e. the number of posts instead of
the number of authors. With this procedure, a fi-
nal author-level prediction can be obtained by av-
eraging the predictions over the posts for the au-
thor, trading the noisiness of post-level instances
against the smoothing afforded by the final ag-
gregation. When designing a stance classifier,
the modeler must decide the level of granularity
for the prediction target and find the best model
therein.

4 A Collective Classification Framework

To study these choices, we build a flexible
stance classification framework that implements
the above variations using probabilistic soft logic
(PSL) (Bach et al., 2015; Bach et al., 2013), a re-
cently introduced probabilistic programming sys-
tem. Like other probabilistic modeling frame-
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works, notably Markov logic (Richardson and
Domingos, 2006), PSL uses a logic-like language
for defining the potential functions for a condi-
tional random field. However, unlike Markov
logic, PSL makes inference tractable, even in the
loopy author-level networks and the very large
post-level networks of online debates.

PSL’s tractability arises from the use of a special
class of conditional random field models referred
to as hinge-loss MRFs (HL-MRFs), which admit
efficient, scalable and exact maximum a posteriori
(MAP) inference (Bach et al., 2013). These mod-
els are defined over continuous random variables,
and MAP inference is a convex optimization prob-
lem over these variables. Formally, a hinge-loss
MREF defines a probability density function of the
form

M
PYIX) = Zesp (= D Mo (Y, X)), ()
r=1

where the entries of Y and X are in [0,1], A is a
vector of weight parameters, Z is a normalization
constant, and
or(Y,X) = (max{l,.(Y,X),0})” (2
is a hinge-loss potential specified by a linear func-
tion [, and optional exponent p, € {1,2}. Given
a collection of first-order PSL rules, each instan-
tiation of the rules maps to a hinge-loss poten-
tial function as in Equation 2, and the potential
functions define an HL-MRF model. For exam-
ple, a = b = max(a — b,0), where a and b are
ground variables, and max(a — b,0) is a convex
relaxation of logical implication, and which can
be understood as its distance to satisfaction. For a
full description of PSL, see (Bach et al., 2015).
The models we introduce are specified by the
PSL rules in Fig. 2, with both post-level and
author-level models following the same design.
We denote the different modeling choices with the



letters defined in Section 3. First, local logistic
regression classifiers output stance probabilities
based on textual features of posts or authors. All
of the models begin with these real-valued stance
predictions, encoded by the observed predicate lo-
calPro(X;). The rules listed for all models en-
courage the inferred global predictions pro(X;) to
match these local predictions.

This defines the local classification models L,
which are HL-MRFs with node potentials and no
edge potentials, and which are equivalent to the
local classifiers. The collective models extend the
L models by adding edge potentials which en-
courage the stance labels to respect disagreement
relationships along reply links. Specifically, ev-
ery reply link between authors (for author-level
models) or between posts (for post-level mod-
els) z1 and x9 is associated with a latent vari-
able disagree(x1, x2). The rules encourage the
global stance variables to respect the polarity of
the disagreement variables (same stance, or op-
posite stance) and while also trying to match the
stance classifiers. For the models that do not ex-
plicitly model disagreement, it is assumed that ev-
ery reply edge constitutes a disagreement, i.e. dis-
agree(zr1,x2) = 1. These models are denoted C.

Otherwise, the disagreement variables are en-
couraged to match binary-valued predictions from
the local disagreement classifiers. We binarize
the predictions of the disagreement classifiers to
encourage propagation. The disagreement vari-
ables are modeled jointly with the stance variables,
and label information propagates in both direc-
tions between stance and disagreement variables.
The full joint stance/disagreement collective mod-
els are denoted D. In the following, the models are
denoted by pairs of letters according to their col-
lectivity level and modeling granularity. For ex-
ample, AC denotes collective classification per-
formed at the author level, without joint model-
ing of disagreement. To train these models and
use them for prediction, weight learning and MAP
inference are performed using the structured per-
ceptron algorithm and ADMM algorithm of Bach
et al. (2013).

5 Experimental Evaluation

The goals of our experiments were to validate the
proposed collective modeling framework, and to
make substantive conclusions about the merits of
the different possible modeling options described
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in Section 3. To this end, we evaluated the mod-
els on eight topics from 4FORUMS.CcOM (Walker
et al., 2012b) and CREATEDEBATE.COM (Hasan
and Ng, 2013), for classification tasks at both the
author level and the post level. With comparison
to Hasan and Ng (2013), our collective models (C)
are essentially equivalent to their CRF, up to the
form of the CRF potential function, which is not
explicitly specified in the paper. A further goal
of our experiments was to determine whether the
modeling options in our more general CRF could
improve performance over models with this struc-
ture.

On average, each topic-wise data set contains
hundreds of authors and thousands of posts. The
4FORUMS data sets are annotated for stance at the
author level, while CREATEDEBATE has stance la-
bels at the post level. To perform post-level evalu-
ations on 4FORUMS we apply author labels to the
posts of each author, and on CREATEDEBATE we
computed author labels by selecting the majority
label of their posts. For 4FORUMS, since post-
level stance labels correspond directly to author-
level stance labels, we use averages of post-level
predictions as the local classifier output for au-
thors. Section 2 includes an overview of these de-
bate forum data sets.

In the experiments, classification accuracy
was estimated via five repeats of 5-fold cross-
validation. In each fold, we ran logistic regres-
sion using the scikit-learn software package,’ us-
ing the default settings, except for the L1 regu-
larization trade-off parameter C' which was tuned
on a within-fold hold-out set consisting of 20%
of the discussions within the fold. For the collec-
tive models, weight learning was performed on the
same in-fold tuning sets. We trained via 700 itera-
tions of structured perceptron, and ran the ADMM
MAP inference algorithm to convergence at test
time. On average, weight learning and inference
took around 1 minute per fold.

The full results for author-level and post-level
predictions are given in Table 2 and Table 3, re-
spectively. In the tables, entries in bold identify
statistically significant differences from the local
classifier baseline under a paired ¢-test with sig-
nificance level = 0.05. These results are sum-
marized in Fig. 3, which shows box plots for the
six possible models, computed over the final cross-
validated accuracy scores of each of the four data

%Available at http: //scikit—learn.org/.
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author stance prediction task, computed over the final

results for each of the four data sets per forum. Note that we expect significant variation in these plots,
as the data sets are of varying degrees of difficulty.

sets from each forum. The overall trends can be
seen by reading the box plots in each figure from
left to right. In general, collective models out-
perform local models, and modeling disagreement
further improves accuracy. Author-level model-
ing is typically better than post-level, even for
the post-level prediction task. The improvements
shown by collective models and author-level mod-
els are consistent with Hasan and Ng (2013)’s con-
clusion about the benefits of user-level constraints.
This may suggest that posts only provide relatively
noisy observations of the underlying author-level
stance. Modeling at the author level results in
more stable predictions, as noisy posts are pooled
together. But here we also show that the full joint
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disagreement model at the author level, AD, per-
forms the best overall, for both prediction tasks
and for both forums, gaining up to 11.5 percentage
points of post-level accuracy over the local post-
level classifier.

A closer analysis reveals some subtleties. When
comparing D models with C models in Fig. 3, dis-
agreement modeling makes a much bigger differ-
ence at the author level than at the post level. This
is likely impacted by the level of class imbalance
for disagreement classification in the different lev-
els of modeling. Disagreement, rather than agree-
ment, between authors prompts many responses.
Thus, reply links are more likely disagreements
when measured at the post level, as seen in Ta-



4FORUMS CREATEDEBATE
Models  Abortion Evolution Gay Gun Abortion Gay Marijuana ~ Obama
Marriage Control Rights
PL 619+43 76639 T720£3.6 664+46 664+52 70250 T741£65 63.8+L8.7
PC 634+59 746+41 T737+£43 68355 687+57 72.6+56 T754+£74 66.1+8S5
PD 63054 76742 T737+£46 67950 695+57 732+59 T47£7.0 66.1+8.5
AL 649+42 773+29 745+£29 67.1+45 652+65 695+44 T740£6.6 59.0x+75
AC 66.0 5.0 744+42 757+£51 615£56 65870 73.6£35 T739+76 625=£83
AD 658 +44 787+33 77.1+44 671+£54 674x+75 T740+£53 T748+75 63.0L83

Table 2: Author stance classification accuracy and standard deviation for 4FORUMS (leff) and CREAT-
EDEBATE (right), estimated via 5 repeats of 5-fold cross-validation. Bolded figures indicate statistically
significant (o« = 0.05) improvement over AL, the baseline model for the author stance classification task.

4FORUMS CREATEDEBATE
Models  Abortion Evolution Gay Gun Abortion Gay Marijuana ~ Obama
Marriage Control Rights
PL 66.1 £25 724+42 69.0+27 67.8+35 602432 62.7+44 68.1+61 594160
PC 705+25 741+38 732+31 69.1£3.0 62.8+38 66.1 49 68779 61.1=£6.6
PD 69.7+25 739+40 725+3.0 68.8+3.0 62.6=L4.1 66.2+54 69.1+74 61.0=£6.6
AL 747+71 73.0£57 703+£6.0 68.7+53 61.6+98 63.7+53 66767 59.7+13.6
AC 768 81 68353 727+£11.1 469+£80 634+124 712+84 669£9.0 63.7+156
AD 770 £89 803+55 805+85 654+83 668+122 7277+89 69.0+83 635£163

Table 3: Post stance classification accuracy and standard deviations for 4FORUMS (left) and CREAT-
EDEBATE (right), estimated via 5 repeats of 5-fold cross-validation. Bolded figures indicate statistically
significant (o« = 0.05) improvement over PL, the baseline model for the post stance classification task.

ble 1. Therefore, enforcing disagreement may be
a better assumption at the post level, and the nu-
anced disagreement model is not necessary in this
case. The overall improvements in accuracy from
disagreement modeling for post-level models were
small.

On the other hand, the assumption that re-
ply edges constitute disagreement is less accurate
when modeling at the author level (see Table 1).
In this case, the full joint disagreement model is
necessary to obtain good performance. In an ex-
treme example, the two datasets with the lowest
disagreement rates at the author level are evolution
(44.4%) and gun control (50.7%) from 4FORUMS.
The AC classifier performed very poorly for these
data sets, dropping to 46.9% accuracy in one in-
stance, as the “opposite stance” assumption did
not hold (Tables 2 and 3). The full joint disagree-
ment model AD performed much better, in fact
achieving an outstanding accuracy rates of 80.3%
and 80.5% for posts on evolution and gay marriage
respectively. To illustrate the benefits of author-
level disagreement modeling, Fig. 4 shows a post
for an author whose stance towards gun control is
correctly predicted by AD but not the AC model,
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Text Stance

Post: T agree with everything except the last part. Safe gun
storage is very important, and sensible storage requirements
have two important factors.

Reply: I can agree with this. And in case it seemed otherwise,
I know full well how to store guns safely, and why it’s nec-
essary. My point was that I don’t like the idea of such a law,
especially when you consider the problem of enforcement.

ANTI

ANTI

Figure 4: A post-reply pair by 4FORUMS.COM au-
thors whose gun control stance is correctly pre-
dicted by AD, but not by AC.

along with a subsequent reply. The authors largely
agree with each other’s views, which the joint dis-
agreement model leverages, while the simpler col-
lective model encourages opposite stance due to
the presence of reply links between them.

To summarize our conclusions from these ex-
periments, the results suggest that author-level
modeling is the preferred strategy, regardless of
the prediction task. In this scenario, it is essen-
tial to explicitly model disagreement in the collec-
tive classifier. Our top performing AD model sta-
tistically significantly outperforms the respective
prediction task baseline on 6 out of 8 topics for
both tasks with p-values less than 0.001. Based on
our experimental results, we recommend the full



author-disagreement model AD as the classifier of
choice.

6 Discussion and Future Work

The prediction of user stance in online debate fo-
rums is a valuable task, and modeling debate di-
alogue is complex and requires many decisions
such collective or non-collective reasoning, nu-
anced or naive use of disagreement information,
and post versus author-level modeling granularity.
We systematically explore each choice, and in do-
ing so build a unified joint framework that incor-
porates each salient decision. Our method uses a
hinge-loss Markov random field to encourage con-
sistency between local classifier predictions for
stance and disagreement information. We find that
modeling at the author level gives better predic-
tive performance regardless of the granularity of
the prediction task, and that nuanced disagreement
modeling is of particular importance for author-
level collective modeling. The resulting collective
classifier gives improved predictive performance
over both the simple non-collective and standard
collective approaches, with a running time over-
head of only a few minutes, thanks to the efficient
nature of hinge-loss MRFs.

There are many directions for future work. Our
results have found that collective reasoning can
also be beneficial at the post level, as previously
reported by Hasan and Ng (2013). It is likely that
a multi-level model for a combination of post- and
author-level collective modeling of both stance
and disagreement could bring further improve-
ments in performance. It would also be informa-
tive to explore dynamic models which elucidate
trends of opinions over time. Another direction is
to model influence between users in online debate
forums, and to identify the most influential users
who are able to convince other users to change
their opinions. Finally, we note that stance and
disagreement classification are both challenging
and important problems, and going forward, there
is likely to be much room for improvement in these
prediction tasks.
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Abstract

Entity classification, like many other
important problems in NLP, involves
learning classifiers over sparse high-
dimensional feature spaces that result
from the conjunction of elementary fea-
tures of the entity mention and its context.
In this paper we develop a low-rank reg-
ularization framework for training max-
entropy models in such sparse conjunctive
feature spaces. Our approach handles con-
junctive feature spaces using matrices and
induces an implicit low-dimensional rep-
resentation via low-rank constraints. We
show that when learning entity classifiers
under minimal supervision, using a seed
set, our approach is more effective in con-
trolling model capacity than standard tech-
niques for linear classifiers.

1 Introduction

Many important problems in NLP involve learn-
ing classifiers over sparse high-dimensional fea-
ture spaces that result from the conjunction of el-
ementary features. For example, to classify an en-
tity in a document, it is standard to exploit features
of the left and right context in which the entity oc-
curs as well as spelling features of the entity men-
tion itself. These sets of features can be grouped
into vectors which we call elementary feature vec-
tors. In our example, there will be one elementary
feature vector for the left context, one for the right
context and one for the features of the mention.
Observe that, when the elementary vectors consist
of binary indicator features, the outer product of
any pair of vectors represents all conjunctions of
the corresponding elementary features.

Xavier Carreras
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Ideally, we would like to train a classifier that
can leverage all conjunctions of elementary fea-
tures, since among them there might be some
that are discriminative for the classification task at
hand. However, allowing for such expressive high
dimensional feature space comes at a cost: data
sparsity becomes a key challenge and controlling
the capacity of the model is crucial to avoid over-
fitting the training data.

The problem of data sparsity is even more se-
vere when the goal is to train classifiers with min-
imal supervision, i.e. small training sets. For ex-
ample, in the entity classification setting we might
be interested in training a classifier using only a
small set of examples of each entity class. This
is a typical scenario in an industrial setting, where
developers are interested in classifying entities ac-
cording to their own classification schema and can
only provide a handful of examples of each class.

A standard approach to control the capacity of a
linear classifier is to use ¢; or {5 regularization on
the parameter vector. However, this type of regu-
larization does not seem to be effective when deal-
ing with sparse conjunctive feature spaces. The
main limitation is that ¢ and /5 regularization can
not let the model give weight to conjunctions that
have not been observed at training. Without such
ability it is unlikely that the model will generalize
to novel examples, where most of the conjunctions
will be unseen in the training set.

Of course, one could impose a strong prior on
the weight vector so that it assigns weight to un-
seen conjunctions, but how can we build such a
prior? What kind of reasonable constraints can we
put on unseen conjunctions?

Another common approach to handle high di-
mensional conjunctive feature spaces is to manu-
ally design the feature function so that it includes
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only a subset of “relevant” conjunctions. But de-
signing such a feature function can be time con-
suming and one might need to design a new fea-
ture function for each classification task. Ide-
ally, we would have a learning algorithm that does
not require such feature engineering and that it
can automatically leverage rich conjunctive fea-
ture spaces.

In this paper we present a solution to this prob-
lem by developing a regularization framework
specifically designed for sparse conjunctive fea-
ture spaces. Our approach results in a more effec-
tive way of controlling model capacity and it does
not require feature engineering.

Our strategy is based on:

e Employing tensors to define the scoring func-
tion of a max-entropy model as a multilinear
form that computes weighted inner products
between elementary vectors.

e Forcing the model to induce low-dimensional
embeddings of elementary vectors via low-
rank regularization on the tensor parameters.

The proposed regularization framework is based
on a simple conceptual trick. The standard ap-
proach to handle conjunctive feature spaces in
NLP is to regard the parameters of the linear
model as long vectors computing an inner prod-
uct with a high dimensional feature representation
that lists explicitly all possible conjunctions. In-
stead, the parameters of our the model will be ten-
sors and the compatibility score between an input
pattern and a class will be defined as the sum of
multilinear functions over elementary vectors.

We then show that the rank! of the tensor has a
very natural interpretation. It can be seen as the
intrinsic dimensionality of a latent embedding of
the elementary feature vectors. Thus by impos-
ing a low-rank penalty on the tensor parameters
we are encouraging the model to induce a low-
dimensional projection of the elementary feature
vectors . Using the rank itself as a regularization
constraint in the learning algorithm would result
in a non-convex optimization. Instead, we follow
a standard approach which is to use the nuclear
norm as a convex relaxation of the rank.

In summary the main contributions of this paper
are:

!There are many ways of defining the rank of a tensor. In
this paper we matricize tensors into matrices and use the rank

of the resulting matrix. Matricization is also referred to as
unfolding.
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e We develop a new regularization frame-
work for training max-entropy models in
high-dimensional sparse conjunctive feature
spaces. Since the proposed regularization im-
plicitly induces a low dimensional embed-
ding of feature vectors, our algorithm can
also be seen as a way of implicitly learning
a latent variable model.

We present a simple convex learning al-
gorithm for training the parameters of the
model.

e We conduct experiments on learning entity
classifiers with minimal supervision. Our re-
sults show that the proposed regularization
framework is better for sparse conjunctive
feature spaces than standard /> and ¢; reg-
ularization. These results make us conclude
that encouraging the max-entropy model to
operate on a low-dimensional space is an ef-
fective way of controlling the capacity of the
model an ensure good generalization.

2 Entity Classification with Log-linear
Models

The formulation we develop in this paper applies
to any prediction task whose inputs are some form
of tuple. We focus on classification of entity men-
tions, or entities in the context of a sentence. For-
mally, our input objects are tuples x (l,e,r)
consisting of an entity e, a left context [ and a right
context 7. The goal is to classify x into one entity
class in the set ).
We will use log-linear models of the form:

exp{sa (.I', y)}

>y expise(x, )}

where sy : X x ) — R is a scoring function of
entity tuples with a candidate class, and 6 are the
parameters of this function, to be specified below.
In the literature it is common to employ a
feature-based linear model. That is, one defines a
feature function ¢ : X — {0, 1}" that represents
entity tuples in an n-dimensional binary feature
space?, and the model has a weight vector for each
class, § = {wy}ycy. Then sp(z,y) = ¢(z) - wy.

Pr(y | z;0) = ey

In general, all models in this paper accept real-valued
feature functions. But we focus on binary indicator features
because in practice these are the standard type of features in
NLP classifiers, and the ones we use here. In fact, in this pa-
per we develop feature spaces based on products of elemen-
tary feature functions, in which case the resulting representa-
tions correspond to conjunctions of the elementary features.



3 Low-rank Entity Classification Models

In this section we propose a specific family of
models for classifying entity tuples.

3.1 A Low-rank Model of Left-Right
Contexts

We start from the observation that when repre-
senting tuple objects such as x (l,e,r) with
features, we often depart from a feature represen-
tation of each element of the tuple. Hence, let
¢1 and ¢, be two feature functions representing
left and right contexts, with binary dimensions d;
and dy respectively. For now, we will define a
model that ignores the entity mention e and makes
predictions using context features. It is natural
to define conjunctions of left and right features.
Hence, in its most general form, one can define
a matrix W, € R%>% for each class, such that
6 = {Wy},cy and the score is:

so({l,e,7),y) = ¢1(1) T Wy (r)

2)

Note that this corresponds to a feature-based
linear model operating in the product space of ¢,
and ¢, that is, the score has one term for each pair
of features: >, ; ¢1(1)[t] ¢u(r)[j] Wyl[i, j]. Note
also that it is trivial to include elementary features
of ¢ and ¢, in addition to conjunctions, by having
a constant dimension in each of the two represen-
tations set to 1.

In all, the model in Eq. (2) is very expressive,
with the caveat that it can easily overfit the data,
specially when we work only with a handful of la-
beled examples. The standard way to control the
capacity of a linear model is via ¢; or /5 regular-
ization.

Regarding our parameters as matrices allows us
to control the capacity of the model via regulariz-
ers that favor parameter matrices with low rank.
To see the effect of these regularizers, consider
that W, has rank k, and let W, = UyZyV;,r
be the singular value decomposition, where U, €
R4** and V,, € R%** are orthonormal projec-
tions and X, € R**k is a diagonal matrix of sin-
gular values. We can rewrite the score function as

so((le,7),y) = (1) TUy) By (Vy ()
3)
In words, the rank k is the intrinsic dimensionality
of the inner product behind the score function. A
low-rank regularizer will favor parameter matrices
that have low intrinsic dimensionality. Below we
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describe a convex optimization for low-rank mod-
els using nuclear norm regularization.

3.2 Adding Entity Features

The model above classifies entities based only on
the context. Here we propose an extension to make
use of features of the entity. Let 7 be a set of pos-
sible entity feature tags, i.e. tags that describe an
entity, such as ISCAPITALIZED, CONTAINSDIG-
ITS, SINGLETOKEN, ... Let ¢, be a feature func-
tion representing entities. For this case, to simplify
our expression, we will use a set notation and de-
note by ¢e(e) C 7 the set of feature tags that de-
scribe e. Our model will be defined with one pa-
rameter matrix per feature tag and class label, i.e.
0 = {W, , }te7 yey- The model form is:

39(<l,€,7">,y) = Z ¢l(l)TWt,y .¢r(T)-
tE€¢e(e)
4)

3.3 Learning with Low-rank Constraints

In this section we describe a convex procedure to
learn models of the above form that have low rank.
We will define an objective that combines a loss
and a regularization term.

Our first observation is that our parameters are
a tensor with up to four axes, namely left and right
context representations, entity features, and entity
classes. While a matrix has a clear definition of
rank, it is not the case for general tensors, and
there exist various definitions in the literature. The
technique that we use is based on matricization of
the tensor, that is, turning the tensor into a matrix
that has the same parameters as the tensor but or-
ganized in two axes. This is done by partitioning
the tensor axes into two sets, one for matrix rows
and another for columns. Once the tensor has been
turned into a matrix, we can use the standard def-
inition of matrix rank. A main advantage of this
approach is that we can make use of standard rou-
tines like singular value decomposition (SVD) to
decompose the matricized tensor. This is the main
reason behind our choice.

In general, different ways of partitioning the
tensor axes will lead to different notions of intrin-
sic dimensions. In our case we choose the left con-
text axes as the row dimension, and the rest of axes
as the column dimension.? In this section, we will

3In preliminary experiments we tried variations, such as
having right prefixes in the columns, and left prefixes, entity

tags and classes in the rows. We only observer minor, non-
significant variations in the results.



denote as W the matricized version of the param-
eters 6 of our models.

The second observation is that minimizing the
rank of a matrix is a non-convex problem. We
make use of a convex relaxation based on the nu-
clear norm (Srebro and Shraibman, 2005). The
nuclear norm* of a matrix W, denoted |W/||,, is
the sum of its singular values: [|[W|, = >, %;;
where W = UXV | is the singular value decom-
position of W. This norm has been used in several
applications in machine learning as a convex sur-
rogate for imposing low rank, e.g. (Srebro et al.,
2004).

Thus, the nuclear norm is used as a regularizer.
With this, we define our objective as follows:

(&)

)

argmin L(W) + 7R(W)
w

where L(W) is a convex loss function, R(W) is a
regularizer, and 7 is a constant that trades off error
and capacity. In experiments we will compare nu-
clear norm regularization with ¢; and ¢, regulariz-
ers. In all cases we use the negative log-likelihood
as loss function, denoting the training data as D:

2.

(Le,r),y)eD

L(W) _IOgPr(y | <l,€,7“>;W)
(6)
To solve the objective in Eq. (5) we use a simple
optimization scheme known as forward-backward
splitting (FOBOS) (Duchi and Singer, 2009). In
a series of iterations, this algorithm performs a
gradient update followed by a proximal projec-
tion of the parameters. Such projection depends
on the regularizer used: for ¢; it thresholds the pa-
rameters; for ¢ it scales them; and for nuclear-
norm regularization it thresholds the singular val-
ues. This means that, for nuclear norm regulariza-
tion, each iteration requires to decompose W us-
ing SVD. See (Madhyastha et al., 2014) for details
about this optimization for a related application.

4 Related Work

The main aspect of our approach is the use of
a spectral penalty (i.e., the rank) to control the
capacity of multilinear functions parameterized
by matrices or tensors. Quattoni et al. (2014)
used nuclear-norm regularization to learn latent-
variable max-margin sequence taggers. Mad-
hyastha et al. (2014) defined bilexical distribu-

* Also known as the trace norm.
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tions parameterized by matrices which result lex-
ical embeddings tailored for a particular linguis-
tic relation. Like in our case, the low-dimensional
latent projections in these papers are learned im-
plicitly by imposing low-rank constraints on the
predictions of the model.

Lei et al. (2014) also use low-rank tensor learn-
ing in the context of dependency parsing, where
like in our case dependencies are represented by
conjunctive feature spaces. While the motivation
is similar, their technical solution is different. We
use the technique of matricization of a tensor com-
bined with a nuclear-norm relaxation to obtain a
convex learning procedure. In their case they ex-
plicitly look for a low-dimensional factorization of
the tensor using a greedy alternating optimization.

Also recently, Yao et al. (2013) have framed
entity classification as a low-rank matrix comple-
tion problem. The idea is based on the fact that if
two entities (in rows) have similar descriptions (in
columns) they should have similar classes. The
low-rank structure of the matrix defines intrin-
sic representations of entities and feature descrip-
tions. The same idea was applied to relation ex-
traction (Riedel et al., 2013), using a matrix of
entity pairs times descriptions that corresponds to
a matricization of an entity-entity-description ten-
sor. Very recently Singh et al. (2015) explored al-
ternative ways of applying low-rank constraints to
tensor-based relation extraction.

Another aspect of this paper is training entity
classification models using minimal supervision,
which has been addressed by multiple works in
the literature. A classical successful approach
for this problem is to use co-training (Blum and
Mitchell, 1998): learn two classifiers that use dif-
ferent views of the data by using each other’s pre-
dictions. In the same line, Collins and Singer
(1999) trained entity classifiers by bootstraping
from an initial set of seeds, using a boosting ver-
sion of co-training. Seed sets have also been ex-
ploited by graphical model approaches. Haghighi
and Klein (2006) define a graphical model that is
soft-constrained such that the prediction for an un-
labeled example agrees with the labels of seeds
that are distributionally similar. Li et al. (2010)
present a Bayesian approach to expand an initial
seed set, with the goal of creating a gazetteer.

Another approach to entity recognition that, like

in our case, learns projections of contextual fea-
tures is the method by Ando and Zhang (2005).



Class Nb Mentions
10-30 Seed 10-30  40-120 640-1920 All

PER clinton, dole, arafat, yeltsin, wasim akram, lebed, dutroux, waqar you- 334 747 3,133 6,516
nis, mushtaq ahmed, croft

LOC u.s., england, germany, britain, australia, france, spain, pakistan, italy, 1,384 2,885 5,812 6,159
china

ORG reuters, u.n., oakland, puk, osce, cincinnati, eu, nato, ajax, honda 295 699 3,435 5,271

MISC russian, german, british, french, dutch, english, israeli, european, iraqi, 611 1326 3,085 3,205
australian

(0] year, percent, thursday, government, police, results, tuesday, soccer, 5,326 11,595 31,071 36,673

president, monday, friday, people, minister, sunday, division, week,
time, state, market, years, officials, group, company, saturday, match,

at, world, home, august, standings

Table 1: For each entity class, the seed of entities for the 10-30 set, together with the number of mentions
in the training data that involve entities in the seed for various sizes of the seeds.

They define a set of auxiliary tasks, which can be
supervised using unlabeled data, and find a projec-
tion of the data that works well as input represen-
tation for the auxiliary tasks. This representation
is then used for the target task.

More recently Neelakantan and Collins (2014)
presented another approach to gazetteer expansion
using an initial seed. A novel aspect is the use
of Canonical Correlation Analysis (CCA) to com-
pute embeddings of entity contexts, that are used
by the named entity classifier. Like in our case,
their method learns a compressed representation
of contexts that helps prediction.

S Experiments

In this section we evaluate our regulariza-
tion framework for training models in high-
dimensional sparse conjunctive feature spaces. We
run experiments on learning entity classifiers with
minimal supervision. We focus on classification of
unseen entities to highlight the ability of the reg-
ularizer to generalize over conjunctions that are
not observed at training. We simulate minimal
supervision using the CoNLL-2003 Shared Task
data (Tjong Kim Sang and De Meulder, 2003), and
compare the performance to ¢; and ¢5 regularizers.

5.1 Minimal Supervision Task

We use a minimal supervision setting where we
provide the algorithm a seed of entities for each
class, that is, a list of entities that is representative
for that class. The assumption is that any men-
tion of an entity in the seed is a positive example
for the corresponding class. Given unlabeled data
and a seed of entities for each class, the goal is
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to learn a model that correctly classifies mentions
of entities that are not in the seed. In addition to
standard entity classes, we also consider a special
non-entity class, which is part of the classification
but is excluded from evaluation.

Note that named entity classification for unseen
entities is a challenging problem. Even in the stan-
dard fully-supervised scenario, when we measure
the performance of state-of-the-art methods on un-
seen entities, the F1 values are in the range of 60%.
This represents a significant drop with respect to
the standard metrics for named entity recognition,
which consider all entity mentions of the test set
irrespective of whether they appear in the training
data or not, and where F1 values at 90% levels are
obtained (e.g. (Ratinov and Roth, 2009)). This
suggests that part of the success of state-of-the-art
models is in storing known entities together with
their type (in the form of gazetteers or directly in
lexicalized parameters of the model).

5.2 Setting

We use the CoNLL-2003 English data, which is
annotated with four types: person (PER), location
(LOC), organization (ORG), and miscellaneous
(MISC). In addition, the data is tagged with parts-
of-speech (PoS), and we compute word clusters
running the Brown clustering algorithm (Brown et
al., 1992) on the words in the training set.

We consider annotated entity phrases as candi-
date entities, and all single nouns that are not part
of an entity as candidate non-entities (O). Both
candidate entities and non-entities will be referred
to as candidates in the remaining of this section.
We lowercase all candidates and remove the am-



Features Window Bag-of-words N-grams
Lexical Cluster || Lexical Cluster
1 13.63  14.59 13.63  14.59
Elementary features of left and right contexts 2 1549 13.86 13.08 13.54
3 12.18  14.45 12.14  13.28
1 1290 13.75 1290 13.75
Only full conjunctions of left and right contexts 2 8.59 8.85 1231 1243
3 8.57 10.59 10.15  10.49
1 1530 16.98 1530 16.98
Elementary features and all conjunctions of left and right contexts 2 13.26 12.89 1428 15.33
3 11.87 11.54 1394 13.15

Table 2: Average-F1 of classification of unseen entity candidates on development data, using the 10-30
training seed and /5 regularization, for different conjunctive spaces (elementary only, full conjunctions,
all). Bag-of-words elementary features contain all clusters/PoS in separate windows to the left and to
the right of the candidate. N-grams elementary features contain all n-grams of clusters/PoS in separate
left and right windows (e.g. for size 3 it includes unigrams, bigrams and trigrams on each side).

biguous ones (i.e., those with more than one label
in different mentions).?

To simulate a minimal supervision, we create
supervision seeds by picking the n most frequent
training candidates for entity types, and the m
most frequent candidate non-entities. We create
seeds of various sizes n-m, namely 10-30, 40-120,
640-1920, as well as all of the candidates. For
each seed, the training set consists of all training
mentions that involve entities in the seed. Table 1
shows the smaller seed, as well as the number of
mentions for each seed size.

For evaluation we use the development and test
sections of the data, but we remove the instances
of candidates in the training data (i.e., that are in
the all seed). We do not remove instances that are
ambiguous in the tests. © As evaluation metric we
use the average F1 score computed over all entity
types, excluding the non-entity type.

5In the CONLL-2003 English training set, only 235 can-
didates are ambiguous out of 13,441 candidates, i.e. less than
2%. This suggests that in this data the difficulty behind the
task is in recognizing and classifying unseen entities, and not
in disambiguating known entities in a certain context.

® After removing the ambiguous candidates from the train-
ing data, and removing candidates seen in the training from
the development and test sets, this is the number of mentions
(and number of unique candidates in parenthesis) in the data
used in our experiments:

training dev. test
PER 6,516 (3,489) | 1,040 (762) | 1,342 (925)
LOC 6,159 ( 987) 176 (128) 246 (160)
ORG 5,271 (2,149) 400 (273) 638 (358)
MISC 3,205 ( 760) 177 (142) 213 (152)
(0] 36,673 (5,821) 951 (671) 995 (675)
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5.3 Context Representations

We refer to context as the sequence of tokens be-
fore (left context) and after (right context) a can-
didate mention in a sentence. Different classifiers
can be built using different representations of the
contexts. For example we can change the window
size of the context sequence (i.e., for a window
size of 1 we only use the last token before the men-
tion and the first token after the mention). We can
treat the left and right contexts independently of
each other, we can treat them as a unique combi-
nation, or we can use both. We can also choose to
use the word form of a token, its PoS tag, a word
cluster, or a combination of these.

Table 2 compares different context represen-
tations and their performance in classifying un-
seen candidates using maximum-entropy classi-
fiers trained with Mallet (McCallum, 2002) with
{9 regularization, using the 10-30 seed. We use
the lexical representation (the word itself) and a
word cluster representation of the context tokens
and use a window size of one to three. We use
two types of features: bag-of-words features (1-
grams of tokens in the specified window) and n-
gram features (with n smaller or equal to the win-
dow size). The performance of using word clusters
is comparable, and sometimes better, to using lexi-
cal representations. Moreover, using a longer win-
dow, in this case, does not necessarily result in bet-
ter performance. ’ In the rest of the experiments

"Our learner and feature configuration, using 2 regular-
ization, obtains state-of-the-art results on the standard evalu-
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Figure 1: Average F1 of classification of unseen entity candidates on development data, with respect to
the size of the seed. NN refers to models with nuclear norm regularization, L1 and L2 refer to ¢; and
£ regularization. Each plot corresponds to a different conjunctive feature space with respect to window
size (1 or 2), context representation (cluster with/out PoS), using entity features or not, and combining
or not full conjunctions with lower-order conjunctions and elementary features.

cap=1, cap=0: whether the first letter of the entity candidate is uppercase, or not

all-low=1, all-low=0: whether all letters of the candidate are lowercase letters, or not

all-cap1=1, all-cap1=0: whether all letters of the candidate are uppercase letters, or not

all-cap2=1, all-cap2=0: whether all letters of the candidate are uppercase letters and periods, or not
num-tokens=1, num-tokens=2, num-tok>2: whether the candidate consists of one token, two or more
dummy: a tag that holds for any entity candidate, used to capture context features alone

Table 3: The 12 entity tags used to represent entity candidates. The tags all-cap1 and all-cap2 are from
(Neelakantan and Collins, 2014).
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PER LOC ORG MISC AVG
PREC REC Fl | PREC REC Fl PREC REC Fl1 | PREC REC Fl F1

o | £ | 6569 6540 6555 | 1538 2358 1862 | 5933 1944 2928 | 2336 3005 2628 | 3493
2| & | 6554 6480 6517 | 1512 2317 1830 | 60.82 1850 2837 | 2330 30.52 2642 | 34.56
T NN | 7241 7452 7345 | 1489 2155 1761 | 4909 2116 1761 | 3140 3803 3440 | 38.76
o | £ | 7216 4407 5472 | 1338 4024 2008 | 4889 31.19 38.09 | 22.03 3568 27.24 | 35.03
g Lo | 7175 4489 5523 | 13.61 41.87 20.54 | 49.39 3150 3847 | 21.64 3099 2548 | 34.93
T I NN | 7516 6133 6754 | 13.08 2073 1604 | 49.03 3574 4134 | 2997 4742 3673 | 40.41
S| & | 7952 6227 6985 | 2359 4431 3079 | 5578 47.65 5139 | 1981 3005 23.88 | 43.98
E Ly | 7862 6555 7149 | 2655 4350 3297 | 60.19 49.06 54.06 | 21.73 3192 2586 | 46.10
Z | NN | 8073 8055 80.64 | 5191 4431 47.81 | 5382 5408 5395 | 2914 5117 37.14 | 54.88
£y | 7558 7248 7400 | 32.84 3618 3443 | 5728 4624 51.17 | 27.93 29.11 2851 | 47.03

Z| & | 7659 7077 7357 | 3421 3699 3555 | 57.79 50.00 53.61 | 2893 3286 30.77 | 48.37
NN | 73.83 90.84 8146 | 6496 36.18 4648 | 72.11 4498 5541 | 37.20 43.66 40.17 | 55.88

Table 4: Results on the test for models trained with different sizes of the seed, using the parameters
and features that obtain the best evaluation results the development set. NN refers to nuclear norm
regularization, L1 and L2 refer to ¢; and /5 regularization. Only test entities unseen at training are
considered. Avg. F1 is over PER, LOC, ORG and MISC, excluding O.

we will use the elementary features that are more
predictive and compact: clusters and PoS tags in
windows of size at most 2.

5.4 Comparing Regularizers

We compare the performance of models trained
using the nuclear norm regularizer with models
trained using ¢ and /2 regularizers. To train each
model, we validate the regularization parameter
and the number of iterations on development data,
trying a wide range of values. The best performing
configuration is then used for the comparison.
Figure 1 shows results on the development set
for different feature sets. We started representing
context using cluster labels, as it is the most com-
pact representation obtaining good results in pre-
liminary experiments. We tried several conjunc-
tions: a conjunction of the left and right context,
as well as conjunctions of left and right contexts
and features of the candidate entity. We also tried
all different conjunction combinations of the con-
texts and the candidate entity features, as well as
adding PoS tags to represent contexts. To repre-
sent an entity candidate we use standard traits of
the spelling of the mention, such as capitalization,
ation. Using our richest feature set, the model obtains 76.76
of accuracy in the development, for the task of classifing enti-
ties with correct boundaries. If we add features capturing the
full entity and its tokens, then the accuracy is 87.63, which
is similar to state-of-the-art performance (the best results in
literature typically exploit additional gazetteers). Since our

evaluation focuses on unknown entities, our features do not
include information about the word tokens of entites.
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Figure 2: Avg. F1 on development for increasing
dimensions, using the low-rank model in Figure 1e
trained with all seeds.

the existence of symbols, as well as the number of
tokens in the candidate. See Table 3 for the defini-
tion of the features describing entity candidates.

We observe that for most conjunction settings
our regularizer performs better than the ¢; and
{5 regularizers. Using the best model from each
regularizer, we evaluated on the test set. Table
4 shows the test results. For all seed sets, the
nuclear norm regularizer obtains the best aver-
age F1 performance. This shows that encourag-
ing the max-entropy model to operate on a low-
dimensional space is effective. Moreover, Figure
2 shows model performance as a function of the
number of dimensions of the intrinsic projection.
The model obtains a good performance even if
only a few intrinsic dimensions are used.

Figure 3 shows the parameter matrix of the low-
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Figure 3: Parameter matrix of the low-rank model in Figure 1f trained with the 10-30 seed, with respect to
observations of the associated features in training and development. Non-white conjunctions correspond
to non-zero weights: black is for conjunctions seen in both the training and development sets; blue is for
those seen in training but not in the development; red indicates that the conjunctions were observed only
in the development; yellow is for those not observed in training nor development.

rank model in Figure 1f trained with the 10-30
seed, with respect to observed features in training
and development data. Many of the conjunctions
of the development set were never observed in the
training set. Our regularizer framework is able to
propagate weights from the conjunctive features
seen in training to unseen conjunctive features that
are close to each other in the projected space (these
are the yellow and red cells in the matrix). In con-
trast, 1 and ¢ regularization techniques can not
put weight on unseen conjunctions.

6 Conclusion

We have developed a low-rank regularization
framework for training max-entropy models in
sparse conjunctive feature spaces. Our formula-
tion is based on using tensors to parameterize clas-
sifiers. We control the capacity of the model using
the nuclear-norm of a matricization of the tensor.
Overall, our formulation results in a convex proce-
dure for training model parameters.

We have experimented with these techniques in
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the context of learning entity classifiers. Com-
pared to ¢ and ¢ penalties, the low-rank model
obtains better performance, without the need to
manually specify feature conjunctions. In our
analysis, we have illustrated how the low-rank ap-
proach can assign non-zero weights to conjunc-
tions that were unobserved at training, but are sim-
ilar to observed conjunctions with respect to the
low-dimensional projection of their elements.

We have used matricization of a tensor to define
its rank, using a fixed transformation of the tensor
into a matrix. Future work should explore how to
combine efficiently different transformations.
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Abstract

Vector space representation of words has
been widely used to capture fine-grained
linguistic regularities, and proven to be
successful in various natural language pro-
cessing tasks in recent years. However,
existing models for learning word repre-
sentations focus on either syntagmatic or
paradigmatic relations alone. In this pa-
per, we argue that it is beneficial to jointly
modeling both relations so that we can not
only encode different types of linguistic
properties in a unified way, but also boost
the representation learning due to the mu-
tual enhancement between these two types
of relations. We propose two novel dis-
tributional models for word representation
using both syntagmatic and paradigmatic
relations via a joint training objective. The
proposed models are trained on a public
Wikipedia corpus, and the learned rep-
resentations are evaluated on word anal-
ogy and word similarity tasks. The re-
sults demonstrate that the proposed mod-
els can perform significantly better than
all the state-of-the-art baseline methods on
both tasks.

1 Introduction

Vector space models of language represent each
word with a real-valued vector that captures both
semantic and syntactic information of the word.
The representations can be used as basic features
in a variety of applications, such as information re-
trieval (Manning et al., 2008), named entity recog-
nition (Collobert et al., 2011), question answer-
ing (Tellex et al., 2003), disambiguation (Schiitze,
1998), and parsing (Socher et al., 2011).

A common paradigm for acquiring such repre-
sentations is based on the distributional hypothe-
sis (Harris, 1954; Firth, 1957), which states that
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syntagmatic

/_\

The wolf is a fierce animal.
I paradigmatic
The tger s a fierce animal.

\_/

syntagmatic

Figure 1: Example for syntagmatic and paradig-
matic relations.

words occurring in similar contexts tend to have
similar meanings. Based on this hypothesis, vari-
ous models on learning word representations have
been proposed during the last two decades.

According to the leveraged distributional infor-
mation, existing models can be grouped into two
categories (Sahlgren, 2008). The first category
mainly concerns the syntagmatic relations among
the words, which relate the words that co-occur
in the same text region. For example, “wolf” is
close to “fierce” since they often co-occur in a sen-
tence, as shown in Figure 1. This type of models
learn the distributional representations of words
based on the text region that the words occur in, as
exemplified by Latent Semantic Analysis (LSA)
model (Deerwester et al., 1990) and Non-negative
Matrix Factorization (NMF) model (Lee and Se-
ung, 1999). The second category mainly cap-
tures paradigmatic relations, which relate words
that occur with similar contexts but may not co-
occur in the text. For example, “wolf” is close
to “tiger” since they often have similar context
words. This type of models learn the word rep-
resentations based on the surrounding words, as
exemplified by the Hyperspace Analogue to Lan-
guage (HAL) model (Lund et al., 1995), Con-
tinuous Bag-of-Words (CBOW) model and Skip-
Gram (SG) model (Mikolov et al., 2013a).

In this work, we argue that it is important to
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take both syntagmatic and paradigmatic relations
into account to build a good distributional model.
Firstly, in distributional meaning acquisition, it
is expected that a good representation should be
able to encode a bunch of linguistic properties.
For example, it can put semantically related words
close (e.g., “microsoft” and “office”), and also be
able to capture syntactic regularities like “big is
to bigger as deep is to deeper”. Obviously, these
linguistic properties are related to both syntag-
matic and paradigmatic relations, and cannot be
well modeled by either alone. Secondly, syntag-
matic and paradigmatic relations are complimen-
tary rather than conflicted in representation learn-
ing. That is relating the words that co-occur within
the same text region (e.g., “wolf” and “fierce” as
well as “tiger” and “fierce”) can better relate words
that occur with similar contexts (e.g., “wolf” and
“tiger”), and vice versa.

Based on the above analysis, we propose two
new distributional models for word representa-
tion using both syntagmatic and paradigmatic re-
lations. Specifically, we learn the distributional
representations of words based on the text region
(i.e., the document) that the words occur in as well
as the surrounding words (i.e., word sequences
within some window size). By combining these
two types of relations either in a parallel or a hier-
archical way, we obtain two different joint training
objectives for word representation learning. We
evaluate our new models in two tasks, i.e., word
analogy and word similarity. The experimental
results demonstrate that the proposed models can
perform significantly better than all of the state-of-
the-art baseline methods in both of the tasks.

2 Related Work

The distributional hypothesis has provided the
foundation for a class of statistical methods
for word representation learning. According to
the leveraged distributional information, existing
models can be grouped into two categories, i.e.,
syntagmatic models and paradigmatic models.

Syntagmatic models concern combinatorial re-
lations between words (i.e., syntagmatic rela-
tions), which relate words that co-occur within the
same text region (e.g., sentence, paragraph or doc-
ument).

For example, sentences have been used as the
text region to acquire co-occurrence information
by (Rubenstein and Goodenough, 1965; Miller
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and Charles, 1991). However, as pointed our by
Picard (1999), the smaller the context regions are
that we use to collect syntagmatic information,
the worse the sparse-data problem will be for the
resulting representation. Therefore, syntagmatic
models tend to favor the use of larger text regions
as context. Specifically, a document is often taken
as a natural context of a word following the liter-
ature of information retrieval. In these methods, a
words-by-documents co-occurrence matrix is built
to collect the distributional information, where the
entry indicates the (normalized) frequency of a
word in a document. A low-rank decomposition
is then conducted to learn the distributional word
representations. For example, LSA (Deerwester et
al., 1990) employs singular value decomposition
by assuming the decomposed matrices to be or-
thogonal. In (Lee and Seung, 1999), non-negative
matrix factorization is conducted over the words-
by-documents matrix to learn the word represen-
tations.

Paradigmatic models concern substitutional
relations between words (i.e., paradigmatic rela-
tions), which relate words that occur in the same
context but may not at the same time. Unlike
syntagmatic model, paradigmatic models typically
collect distributional information in a words-by-
words co-occurrence matrix, where entries indi-
cate how many times words occur together within
a context window of some size.

For example, the Hyperspace Analogue to Lan-
guage (HAL) model (Lund et al., 1995) con-
structed a high-dimensional vector for words
based on the word co-occurrence matrix from a
large corpus of text. However, a major problem
with HAL is that the similarity measure will be
dominated by the most frequent words due to its
weight scheme. Various methods have been pro-
posed to address the drawback of HAL. For exam-
ple, the Correlated Occurrence Analogue to Lexi-
cal Semantic (COALS) (Rohde et al., 2006) trans-
formed the co-occurrence matrix by an entropy or
correlation based normalization. Bullinaria and
Levy (2007), and Levy and Goldberg (2014b) sug-
gested that positive pointwise mutual information
(PPMI) is a good transformation. More recently,
Lebret and Collobert (2014) obtained the word
representations through a Hellinger PCA (HPCA)
of the words-by-words co-occurrence matrix. Pen-
nington et al. (2014) explicitly factorizes the
words-by-words co-occurrence matrix to obtain



the Global Vectors (GloVe) for word representa-
tion.

Alternatively, neural probabilistic language
models (NPLMs) (Bengio et al., 2003) learn word
representations by predicting the next word given
previously seen words. Unfortunately, the training
of NPLMs is quite time consuming, since com-
puting probabilities in such model requires nor-
malizing over the entire vocabulary. Recently,
Mnih and Teh (2012) applied Noise Contrastive
Estimation (NCE) to approximately maximize the
probability of the softmax in NPLM. Mikolov
et al. (2013a) further proposed continuous bag-
of-words (CBOW) and skip-gram (SG) models,
which use a simple single-layer architecture based
on inner product between two word vectors. Both
models can be learned efficiently via a simple vari-
ant of Noise Contrastive Estimation, i.e., Negative
sampling (NS) (Mikolov et al., 2013b).

3 Our Models

In this paper, we argue that it is important to jointly
model both syntagmatic and paradigmatic rela-
tions to learn good word representations. In this
way, we not only encode different types of linguis-
tic properties in a unified way, but also boost the
representation learning due to the mutual enhance-
ment between these two types of relations.

We propose two joint models that learn the dis-
tributional representations of words based on both
the text region that the words occur in (i.e., syntag-
matic relations) and the surrounding words (i.e.,
paradigmatic relations). To model syntagmatic re-
lations, we follow the previous work (Deerwester
et al., 1990; Lee and Seung, 1999) to take docu-
ment as a nature text region of a word. To model
paradigmatic relations, we are inspired by the re-
cent work from Mikolov et al. (Mikolov et al.,
2013a; Mikolov et al., 2013b), where simple mod-
els over word sequences are introduced for effi-
cient and effective word representation learning.

In the following, we introduce the notations
used in this paper, followed by detailed model de-
scriptions, ending with some discussions of the
proposed models.

3.1 Notation

Before presenting our models, we first list the no-
tations used in this paper. Let D={d,...,dn}
denote a corpus of N documents over the
word vocabulary W. The contexts for word
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Figure 2: The framework for PDC model. Four
words (“the”, “cat”, “on” and “the”) are used to
predict the center word (“sat”). Besides, the doc-
ument in which the word sequence occurs is also

used to predict the center word (“sat”).

wieW (ie. i-th word in document d,) are
the words surrounding it in an L-sized window
(Cfpsee s Ol Ciygs iy p) € H, where el €
W,je{i—L,...,i—1,i+1,...,i+L}. Each doc-
ument d € D, each word w € W and each con-
text ¢ € W is associated with a vector d € RE ,
@ € RE and & € RX, respectively, where K is
the embedding dimensionality. The entries in the
vectors are treated as parameters to be learned.

3.2 Parallel Document Context Model

The first proposed model architecture is shown in
Figure 2. In this model, a target word is predicted
by its surrounding context, as well as the docu-
ment it occurs in. The former prediction task cap-
tures the paradigmatic relations, since words with
similar context will tend to have similar represen-
tations. While the latter prediction task models the
syntagmatic relations, since words co-occur in the
same document will tend to have similar represen-
tations. More detailed analysis on this will be pre-
sented in Section 3.4. The model can be viewed
as an extension of CBOW model (Mikolov et
al., 2013a), by adding an extra document branch.
Since both the context and document are parallel
in predicting the target word, we call this model
the Parallel Document Context (PDC) model.

More formally, the objective function of PDC



model is the log likelihood of all words

logp wi|hi')+log p(wi'|dn))

HMZ

where h' denotes the projection of w;'’s contexts,
defined as

(2

flep,..

where f(-) can be sum, average, concatenate or
max pooling of context vectors!. In this paper, we
use average, as that of word2vec tool.

We use softmax function to define the probabil-
ities p(w}'|h}) and p(w}'|dy) as follows:
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where hz? denotes projected vector of w;'’s con-
texts.

To learn the model, we adopt the negative sam-
pling technique (Mikolov et al., 2013b) for effi-
cient learning since the original objective is in-
tractable for direct optimization. The negative
sampling actually defines an alternate training ob-
jective function as follows

N
(= Z Z (log J(w_;”~h_;-”)—|— log o (wi-d,

i
n=1wled,

)

T 3)
+k-Eyp, logo(w - hl)
+k-Ey~p,, log o(w - d, n))

where o(z) = 1/(1 + exp(—=x)), k is the num-

ber of “negative” samples, w’ denotes the sampled
word, and P,y denotes the distribution of negative
word samples. We use stochastic gradient descent
(SGD) for optimization, and the gradient is calcu-
lated via back-propagation algorithm.

3.3 Hierarchical Document Context Model

Since the above PDC model can be viewed as an
extension of CBOW model, it is natural to in-
troduce the same document-word prediction layer
into the SG model. This becomes our second

"Note that the context window size L can be a function of
the target word wj'. In this paper, we use the same strategy

as word2vec tools which uniformly samples from the set
{172a"' 7L}
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Figure 3: The framework for HDC model. The
document is used to predict the target word (‘“‘sat”).
Then, the word (“sat”) is used to predict the sur-
rounding words (“the”, “cat”, “on” and “the”).

model architecture as shown in Figure 3. Specif-
ically, the document is used to predict a target
word, and the target word is further used to pre-
dict its surrounding context words. Since the pre-
diction is conducted in a hierarchical manner, we
name this model the Hierarchical Document Con-
text (HDC) model. Similar as the PDC model,
the syntagmatic relation in HDC is modeled by
the document-word prediction layer and the word-
context prediction layer models the paradigmatic
relation.

Formally, the objective function of HDC model
is the log likelihood of all words:
)

where p(w]'|d,,) is defined the same as in Equa-
tion (2), and p(cff|wy') is also defined by a softmax
function as follows:

i+L
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Similarly, we adopt the negative sampling tech-
nique for learning, which defines the following
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where k is the number of the negative samples, ¢/
and w’ denotes the sampled context and word re-
spectively, and P,. and P, denotes the distribu-
tion of negative context and word samples respec-
tively>. We also employ SGD for optimization,
and calculate the gradient via back-propagation al-
gorithm.

3.4 Discussions

In this section we first show how PDC and HDC
models capture the syntagmatic and paradigmatic
relations from the viewpoint of matrix factoriza-
tion. We then talk about the relationship of our
models with previous work.

As pointed out in (Sahlgren, 2008), to capture
syntagmatic relations, the implementational basis
is to collect text data in a words-by-documents co-
occurrence matrix in which the entry indicates the
(normalized) frequency of occurrence of a word
in a document (or, some other type of text region,
e.g., a sentence). While the implementational ba-
sis for paradigmatic relations is to collect text data
in a words-by-words co-occurrence matrix that is
populated by counting how many times words oc-
cur together within the context window. We now
take the proposed PDC model as an example to
show how it achieves these goals, and similar re-
sults can be shown for HDC model.

The objective function of PDC with negative
sampling in Equation (3) can be decomposed into
the following two parts:

0= Z Z(#(w, h)-log o (i - )

weWheH 4)
+'l{“’?'%{:(h)'pnw(w)l()g 0(71175))
l=>"> " (#(w,d)-log o(i - d)
deD wew (5)

ke d|-pu (w)l0g o —i-d))
where # (-, -) denotes the number of times the pair

() appears in D, #(h)=3_,cy #(w,h), |d|

2P, is not necessary to be the same as Py .
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denotes the length of document d, the objective
function ¢; corresponds to the context-word pre-
diction task and ¢y corresponds to the document-
word prediction task.

Following the idea introduced by (Levy and
Goldberg, 2014a), it is easy to show that the so-
Iution of the objective function ¢; follows that

#(w, h)
#(h) - pow(w)

and the solution of the objective function ¢y fol-
lows that

—

@ - h = log( ) —logk

-

- d'=log( 129 _

—logk
4] P (@)

It reveals that the PDC model with negative sam-
pling is actually factorizing both a words-by-
contexts co-occurrence matrix and a words-by-
documents co-occurrence matrix simultaneously.
In this way, we can see that the implementational
basis of the PDC model is consistent with that of
syntagmatic and paradigmatic models. In other
words, PDC can indeed capture both syntagmatic
and paradigmatic relations by processing the right
distributional information. Please notice that the
PDC model is not equivalent to direct combina-
tion of existing matrix factorization methods, due
to the fact that the matrix entries defined in PDC
model are more complicated than the simple co-
occurrence frequency (Lee and Seung, 1999).

When considering existing models, one may
connect our models to the Distributed Memory
model of Paragraph Vectors (PV-DM) and the Dis-
tributed Bag of Words version of Paragraph Vec-
tors (PV-DBOW) (Le and Mikolov, 2014). How-
ever, both of them are quite different from our
models. In PV-DM, the paragraph vector and con-
text vectors are averaged or concatenated to pre-
dict the next word. Therefore, the objective func-
tion of PV-DM can no longer decomposed as the
PDC model as shown in Equation (4) and (5).
In other words, although PV-DM leverages both
paragraph and context information, it is unclear
how these information is collected and used in
this model. As for PV-DBOW, it simply lever-
ages paragraph vector to predict words in the para-
graph. It is easy to show that it only uses the
words-by-documents co-occurrence matrix, and
thus only captures syntagmatic relations.

Another close work is the Global Context-
Aware Neural Language Model (GCANLM for



short) (Huang et al., 2012). The model defines
two scoring components that contribute to the fi-
nal score of a (word sequence, document) pair.
The architecture of GCANLM seems similar to
our PDC model, but exhibits lots of differences
as follows: (1) GCANLM employs neural net-
works as components while PDC resorts to simple
model structure without non-linear hidden layers;
(2) GCANLM uses weighted average of all word
vectors to represent the document, which turns
out to model words-by-words co-occurrence (i.e.,
paradigmatic relations) again rather than words-
by-documents co-occurrence (i.e., syntagmatic re-
lations); (3) GCANLM is a language model which
predicts the next word given the preceding words,
while PDC model leverages both preceding and
succeeding contexts for prediction.

4 Experiments

In this section, we first describe our experimen-
tal settings including the corpus, hyper-parameter
selections, and baseline methods. Then we com-
pare our models with baseline methods on two
tasks, i.e., word analogy and word similarity. Af-
ter that, we conduct some case studies to show
that our model can better capture both syntagmatic
and paradigmatic relations and how it improves
the performances on semantic tasks.

4.1 Experimental Settings

We select Wikipedia, the largest online knowl-
edge base, to train our models. We adopt the
publicly available April 2010 dump® (Shaoul and
Westbury, 2010), which is also used by (Huang et
al., 2012; Luong et al., 2013; Neelakantan et al.,
2014). The corpus in total has 3,035,070 articles
and about 1 billion tokens. In preprocessing, we
lowercase the corpus, remove pure digit words and
non-English characters®.

Following the practice in (Pennington et al.,
2014), we set context window size as 10 and use
10 negative samples. The noise distributions for
context and words are set as the same as used
in (Mikolov et al., 2013a), pny(w) o< #(w)%7.
We also adopt the same linear learning rate strat-
egy described in (Mikolov et al., 2013a), where
the initial learning rate of PDC model is 0.05, and

*http://www.psych.ualberta.ca/~westburylab/downloads/
westburylab.wikicorp.download.html

“We ignore the words less than 20 occurrences during
training.
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Table 1: Corpora used in baseline models.

model

corpus size

C&W Wikipedia 2007 + Reuters RCV 1 0.85B
HPCA Wikipedia 2012 1.6B
GloVe Wikipedia 2014+ Gigaword5 6B
GCANLM, CBOW, SG Wikipedia 2010 1B

PV-DBOW, PV-DM

HDC is 0.025. No additional regularization is used
in our models’.

We compare our models with various state-of-
the-art models including C&W (Collobert et al.,
2011), GCANLM (Huang et al., 2012), CBOW,
SG (Mikolov et al., 2013a), GloVe (Pennington et
al., 2014), PV-DM, PV-DBOW (Le and Mikolov,
2014) and HPCA (Lebret and Collobert, 2014).
For C&W, GCANLMS®, GloVe and HPCA, we use
the word embeddings they provided. For CBOW
and SG model, we reimplement these two mod-
els since the original word2vec tool uses SGD
but cannot shuffle the data. Besides, we also im-
plement PV-DM and PV-DBOW models due to
(Le and Mikolov, 2014) has not released source
codes. We train these four models on the same
dataset with the same hyper-parameter settings as
our models for fair comparison. The statistics of
the corpora used in baseline models are shown
in Table 1. Moreover, since different papers re-
port different dimensionality, to be fair, we con-
duct evaluations on three dimensions (i.e., 50, 100,
300) to cover the publicly available results’.

4.2 Word Analogy

The word analogy task is introduced by Mikolov et
al. (2013a) to quantitatively evaluate the linguistic
regularities between pairs of word representations.
The task consists of questions like “a is to b as c is
to 7, where __ is missing and must be guessed
from the entire vocabulary. To answer such ques-
tions, we need to find a word vector Z, which is
the closest to b — @ + ¢ according to the cosine
similarity:
arg max (5+57d')-f
reW,x#a
T#£b, T#cC
The question is judged as correctly answered only
if x is exactly the answer word in the evaluation
3Codes avaiable at http://www.bigdatalab.ac.cn/benchma
rk/bm/bd?code=PDC, http://www.bigdatalab.ac.cn/benchma
rk/bm/bd?code=HDC.
®Here, we use GCANLM's single-prototype embedding.
’C&W and GCANLM only released the vectors with 50

dimensions, and HPCA released vectors with 50 and 100 di-
mensions.



Table 2: Results on the word analogy task. Un-
derlined scores are the best within groups of the
same dimensionality, while bold scores are the
best overall.

model size dim semantic syntactic total
C&W 0.85B 50 9.33 11.33 1098
GCANLM 1B 50 2.6 10.7 7.34
HPCA 1.6B 50 3.36 9.89 72
GloVe 6B 50 48.46 4524  46.22
CBOW 1B 50 54.38 49.64 52.01
SG 1B 50 53.73 46.12  49.04
PV-DBOW 1B 50 55.02 44.17 49.34
PV-DM 1B 50 45.08 4322 44.25
PDC 1B 50 61.21 54.55 57.88
HDC 1B 50 57.8 49.74 5341
HPCA 1.6B 100 4.16 1573 10.79
GloVe 6B 100 65.34 61.51 63.11
CBOW IB 100 70.73 63.01 66.87
SG 1B 100 67.66 59.72  63.45
PV-DBOW 1B 100 67.49 56.29 61.51
PV-DM IB 100 57.72 58.81 58.45
PDC 1B 100 72.77 67.68 70.35
HDC 1B 100 69.57 63.75  66.67
GloVe 6B 300 77.44 67.75 71.7
CBOW 1B 300 76.2 68.44  72.39
SG 1B 300 78.9 65.72  71.88
PV-DBOW 1B 300 66.85 58.5  62.08
PV-DM 1B 300 56.88 68.35 63.39
PDC 1B 300 79.55 69.71 74.76
HDC 1B 300 79.67 67.1 73.13

set. The evaluation metric for this task is the per-
centage of questions answered correctly.

The dataset contains 5 types of semantic analo-
gies and 9 types of syntactic analogies®. The se-
mantic analogy contains 8,869 questions, typi-
cally about people and place like “Beijing is to
China as Paris is to France”, while the syntac-
tic analogy contains 10,675 questions, mostly on
forms of adjectives or verb tense, such as “good is
to better as bad to worse”.

Result Table 2 shows the results on word
analogy task. As we can see that CBOW, SG
and GloVe are much stronger baselines as com-
pare with C&W, GCANLM and HPCA. Even so,
our PDC model still performs significantly bet-
ter than these state-of-the-art methods (p-value
< 0.01), especially with smaller vector dimen-
sionality. More interestingly, by only training
on 1 billion words, our models can outperform
the GloVe model which is trained on 6 billion

8http://code.google.com/p/word2vec/source/browse/trunk
/questions-words.txt
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words. The results demonstrate that by model-
ing both syntagmatic and paradigmatic relations,
we can learn better word representations capturing
linguistic regularities.

Besides, CBOW, SG and PV-DBOW can be
viewed as sub-models of our proposed models,
since they use either context (i.e., paradigmatic re-
lations) or document (i.e., syntagmatic relations)
alone to predict the target word. By comparing
with these sub-models, we can see that the PDC
and HDC models can perform significantly better
on both syntactic and semantic subtasks. It shows
that by jointly modeling the two relations, one can
boost the representation learning and better cap-
ture both semantic and syntactic regularities.

4.3 Word Similarity

Besides the word analogy task, we also evalu-
ate our models on three different word similar-
ity tasks, including WordSim-353 (Finkelstein et
al., 2002), Stanford’s Contextual Word Similari-
ties (SCWS) (Huang et al., 2012) and rare word
(RW) (Luong et al., 2013). These datasets contain
word paris together with human assigned similar-
ity scores. We compute the Spearman rank corre-
lation between similarity scores based on learned
word representations and the human judgements.
In all experiments, we removed the word pairs that
cannot be found in the vocabulary.

Results Figure 4 shows results on three differ-
ent word similarity datasets. First of all, our pro-
posed PDC model always achieves the best per-
formances on the three tasks. Besides, if we com-
pare the PDC and HDC models with their cor-
responding sub-models (i.e., CBOW and SG) re-
spectively, we can see performance gain by adding
syntagmatic information via document. This gain
becomes even larger for rare words with low di-
mensionality as shown on RW dataset. More-
over, on the SCWS dataset, our PDC model us-
ing the single-prototype representations under di-
mensionality 50 can achieve a comparable result
(65.63) to the state-of-the-art GCANLM (65.7 as
the best performance reported in (Huang et al.,
2012)) which uses multi-prototype vectors®.

4.4 Case Study

Here we conduct some case studies to (1) gain
some intuition on how these two relations affect

“Note, in Figure 4, the performance of GCANLM is com-
puted based on their released single-prototype vectors.
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Figure 4: Spearman rank correlation on three datasets. Results are grouped by dimensionality.

Table 3: Target words and their 5 most similar

words under different representations. Words in
italic often co-occur with the target words, while

words in bold are substitutable to the target words.
feynman

einstein, schwinger, bohm, bethe

CBOW o
relativity

SG schwinger, quantum, bethe, einstein
semiclassical

PDC geometrodynamics, bethe, semiclassical
schwinger, perturbative

HDC schv.vingef', electrodynamics, bethe
semiclassical, quantum

PV-DBOW physicists, S{mcel:ime, geometrodynamics
tachyons, einstein

moon

CBOW earth, moons, pluto, sun, nebula

SG earth, sun, mars, planet, aquarius

PDC sun, moons, [unar, heavens, earth

HDC earth, sun, mars, planet, heavens

PV-DBOW  [lunar, moons, celestial, sun, ecliptic

the representation learning, and (2) analyze why
the joint model can perform better.

To show how syntagmatic and paradigmatic
relations affect the learned representations, we
present the 5 most similar words (by cosine simi-
larity with 50-dimensional vectors) to a given tar-
get word under the PDC and HDC models, as well
as three sub-models, i.e., CBOW, SG, and PV-
DBOW. The results are shown in table 3, where
words in italic are those often co-occurred with
the target word (i.e., syntagmatic relations), while
words in bold are whose substitutable to the target
word (i.e., paradigmatic relation).

Clearly, top words from CBOW and SG mod-
els are more under paradigmatic relations, while
those from PV-DBOW model are more under syn-
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CBOW PDC

deep deep

deeper .

deeper

.
crevasses

.
crevasses

Figure 5: The 3-D embedding of learned word
vectors of “deep”, “deeper” and ““crevasses” under

>

CBOW and PDC models.

tagmatic relations, which is quite consistent with
the model design. By modeling both relations, the
top words from PDC and HDC models become
more diverse, i.e., more syntagmatic relations than
CBOW and SG models, and more paradigmatic re-
lations than PV-DBOW model. The results reveal
that the word representations learned by PDC and
HDC models are more balanced with respect to the
two relations as compared with sub-models.

The next question is why learning a joint model
can work better on previous tasks? We first take
one example from the word analogy task, which is
the question “big is to bigger as deep is to __”
with the correct answer as “deeper”. Our PDC
model produce the right answer but the CBOW
model fails with the answer “shallower”. We thus
embedding the learned word vectors from the two
models into a 3-D space to illustrate and analyze
the reason.

As shown in Figure 5, we can see that by jointly
modeling two relations, PDC model not only re-
quires that “deep” to be close to “deeper” (in co-
sine similarity), but also requires that “deep” and
“deeper” to be close to “crevasses”. The additional



requirements further drag these three words closer
as compared with those from the CBOW model,
and this make our model outperform the CBOW
model on this question. As for the word similarity
tasks, we find that the word pairs are either syntag-
matic (e.g., “bank” and “money”) or paradigmatic
(e.g., “left” and “abandon”). It is, therefore, not
surprising to see that a more balanced representa-
tion can achieve much better performance than a
biased representation.

5 Conclusion

Existing work on word representations models ei-
ther syntagmatic or paradigmatic relations. In this
paper, we propose two novel distributional models
for word representation, using both syntagmatic
and paradigmatic relations via a joint training ob-
jective. The experimental results on both word
analogy and word similarity tasks show that the
proposed joint models can learn much better word
representations than the state-of-the-art methods.

Several directions remain to be explored. In
this paper, the syntagmatic and paradigmatic rela-
tions are equivalently important in both PDC and
HDC models. An interesting question would then
be whether and how we can add different weights
for syntagmatic and paradigmatic relations. Be-
sides, we may also try to learn the multi-prototype
word representations for polysemous words based
on our proposed models.
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Abstract

We present paired learning and inference
algorithms for significantly reducing com-
putation and increasing speed of the vector
dot products in the classifiers that are at the
heart of many NLP components. This is
accomplished by partitioning the features
into a sequence of templates which are or-
dered such that high confidence can of-
ten be reached using only a small fraction
of all features. Parameter estimation is
arranged to maximize accuracy and early
confidence in this sequence. Our approach
is simpler and better suited to NLP than
other related cascade methods. We present
experiments in left-to-right part-of-speech
tagging, named entity recognition, and
transition-based dependency parsing. On
the typical benchmarking datasets we can
preserve POS tagging accuracy above 97%
and parsing LAS above 88.5% both with
over a five-fold reduction in run-time, and
NER F1 above 88 with more than 2x in-
crease in speed.

1 Introduction

Many NLP tasks such as part-of-speech tagging,
parsing and named entity recognition have become
sufficiently accurate that they are no longer solely
an object of research, but are also widely deployed
in production systems. These systems can be run
on billions of documents, making the efficiency
of inference a significant concern—impacting not
only wall-clock running time but also computer
hardware budgets and the carbon footprint of data
centers.

This paper describes a paired learning and infer-
ence approach for significantly reducing computa-
tion and increasing speed while preserving accu-
racy in the linear classifiers typically used in many
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NLP tasks. The heart of the prediction computa-
tion in these models is a dot-product between a
dense parameter vector and a sparse feature vec-
tor. The bottleneck in these models is then often
a combination of feature extraction and numeri-
cal operations, each of which scale linearly in the
size of the feature vector. Feature extraction can
be even more expensive than the dot products, in-
volving, for example, walking sub-graphs, lexicon
lookup, string concatenation and string hashing.
We note, however, that in many cases not all of
these features are necessary for accurate predic-
tion. For example, in part-of-speech tagging if we
see the word “the,” there is no need to perform a
large dot product or many string operations; we
can accurately label the word a DETERMINER us-
ing the word identity feature alone. In other cases
two features are sufficient: when we see the word
“hits” preceded by a CARDINAL (e.g. “two hits”)
we can be confident that it is a NOUN.

We present a simple yet novel approach to im-
prove processing speed by dynamically determin-
ing on a per-instance basis how many features are
necessary for a high-confidence prediction. Our
features are divided into a set of feature templates,
such as current-token or previous-tag in the case of
POS tagging. At training time, we determine an
ordering on the templates such that we can approx-
imate model scores at test time by incrementally
calculating the dot product in template ordering.
We then use a running confidence estimate for the
label prediction to determine how many terms of
the sum to compute for a given instance, and pre-
dict once confidence reaches a certain threshold.

In similar work, cascades of increasingly com-
plex and high-recall models have been used for
both structured and unstructured prediction. Viola
and Jones (2001) use a cascade of boosted mod-
els to perform face detection. Weiss and Taskar
(2010) add increasingly higher-order dependen-
cies to a graphical model while filtering the out-
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put domain to maintain tractable inference. While
most traditional cascades pass instances down to
layers with increasingly higher recall, we use a
single model and accumulate the scores from each
additional template until a label is predicted with
sufficient confidence, in a stagewise approxima-
tion of the full model score. Our technique applies
to any linear classifier-based model over feature
templates without changing the model structure or
decreasing prediction speed.

Most similarly to our work, Weiss and Taskar
(2013) improve performance for several structured
vision tasks by dynamically selecting features at
runtime. However, they use a reinforcement learn-
ing approach whose computational tradeoffs are
better suited to vision problems with expensive
features. Obtaining a speedup on tasks with com-
paratively cheap features, such as part-of-speech
tagging or transition-based parsing, requires an
approach with less overhead. In fact, the most at-
tractive aspect of our approach is that it speeds up
methods that are already among the fastest in NLP.

We apply our method to left-to-right part-of-
speech tagging in which we achieve accuracy
above 97% on the Penn Treebank WSJ corpus
while running more than five times faster than our
97.2% baseline. We also achieve a five-fold in-
crease in transition-based dependency parsing on
the WSJ corpus while achieving an LAS just 1.5%
lower than our 90.3% baseline. Named entity
recognition also shows significant speed increases.
We further demonstrate that our method can be
tuned for 2.5 — 3.5x multiplicative speedups with
nearly no loss in accuracy.

2 Classification and Structured
Prediction

Our algorithm speeds up prediction for multiclass
classification problems where the label set can be
tractably enumerated and scored, and the per-class
scores of input features decompose as a sum over
multiple feature templates. Frequently, classifica-
tion problems in NLP are solved through the use of
linear classifiers, which compute scores for input-
label pairs using a dot product. These meet our ad-
ditive scoring criteria, and our acceleration meth-
ods are directly applicable.

However, in this work we are interested
in speeding up structured prediction problems,
specifically part-of-speech (POS) tagging and de-
pendency parsing. We apply our classification
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algorithms to these problems by reducing them
to sequential prediction (Daumé III et al., 2009).
For POS tagging, we describe a sentence’s part of
speech annotation by the left-to-right sequence of
tagging decisions for individual tokens (Giménez
and Marquez, 2004). Similarly, we implement our
parser with a classifier that generates a sequence
of shift-reduce parsing transitions (Nivre, 2009).
The use of sequential prediction to solve these
problems and others has a long history in prac-
tice as well as theory. Searn (Daumé III et al.,
2009) and DAgger (Ross et al., 2011) are two pop-
ular principled frameworks for reducing sequen-
tial prediction to classification by learning a clas-
sifier on additional synthetic training data. How-
ever, as we do in our experiments, practitioners of-
ten see good results by training on the gold stan-
dard labels with an off-the-shelf classification al-
gorithm, as though classifying IID data (Bengtson
and Roth, 2008; Choi and Palmer, 2012).
Classifier-based approaches to structured pre-
diction are faster than dynamic programming
since they consider only a subset of candidate out-
put structures in a greedy manner. For exam-
ple, the Stanford CoreNLP classifier-based part-
of-speech tagger provides a 6.5x speed advantage
over their dynamic programming-based model,
with little reduction in accuracy. Because our
methods are designed for the greedy sequential
prediction regime, we can provide further speed
increases to the fastest inference methods in NLP.

3 Linear models

Our base classifier for sequential prediction tasks
will be a linear model. Given an input x € X', a set
of labels ), a feature map ®(z,y), and a weight
vector w, a linear model predicts the highest-
scoring label

)

y" = argmax w - ®(z,y).
yey
The parameter w is usually learned by minimizing
aregularized (R) sum of loss functions (¢) over the
training examples indexed by ¢

w* = arg minZE(mi, Yi, W) + R(w).
w .
7
In this paper, we partition the features into a set
of feature templates, so that the weights, feature
function, and dot product factor as

W(I)(x7y)zzwj(pj(‘r7y) (2)
J



for some set of feature templates {®;(z,y)}.

Our goal is to approximate the dot products in
(1) sufficiently for purposes of prediction, while
using as few terms of the sum in (2) as possible.

4 Method

We accomplish this goal by developing paired
learning and inference procedures for feature-
templated classifiers that optimize both accuracy
and inference speed, using a process of dynamic
feature selection. Since many decisions are easy
to make in the presence of strongly predictive fea-
tures, we would like our model to use fewer tem-
plates when it is more confident. For a fixed,
learned ordering of feature templates, we build up
a vector of class scores incrementally over each
prefix of the sequence of templates, which we call
the prefix scores. Once we reach a stopping crite-
rion based on class confidence (margin), we stop
computing prefix scores, and predict the current
highest scoring class. Our aim is to train each pre-
fix to be as good a classifier as possible without
the following templates, minimizing the number
of templates needed for accurate predictions.

Given this method for performing fast inference
on an ordered set of feature templates, it remains
to choose the ordering. In Section 4.5, we de-
velop several methods for picking template order-
ings, based on ideas from group sparsity (Yuan and
Lin, 2006; Swirszcz et al., 2009), and other tech-
niques for feature subset-selection (Kohavi and
John, 1997).

4.1 Definitions

Given a model that computes scores additively
over template-specific scoring functions as in (2),
parameters w, and an observation x € X, we can
define the i’th prefix score for label y € ) as:

i
Piy(z,w) =Y w; &;(z,y),
j=1

or P, when the choice of observations and
weights is clear from context. Abusing notation
we also refer to the vector containing all 7’th prefix
scores for observation z associated to each label in
Y as P;(xz,w), or P; when this is unambiguous.

Given a parameter m > 0, called the margin,
we define a function h on prefix scores:

h(P;,y) = max{0, mix P,y — Py +m}
y'#y

148

Algorithm 1 Inference

Input: template parameters {w; }¥_, margin m
and optional (for train time) true label y
Initialize: i =1
while [ > 0A 7 < kdo
| = max, h(P;,y') (test) or h(P;,y) (train)
1—1+1
end while
return {P; };'-:1 (train) or max, P; , (test)

Algorithm 2 Parameter Learning

Input: examples {(z;,y;)}, margin m
Initialize: parameters wop = 0,7 =1
while : < N do
prefixes « Infer(z;,y;, Wi, m)
g; < ComputeGradient(prefixes)
w;+1 < UpdateParameters(w;, g;)
—1+1
end while
return wy

This is the familiar structured hinge loss func-
tion as in structured support vector machines
(Tsochantaridis et al., 2004), which has a mini-
mum at 0 if and only if class y is ranked ahead of
all other classes by at least m.

Using this notation, the condition that some la-
bel y be ranked first by a margin can be writ-
ten as h(F;,y) = 0, and the condition that any
class be ranked first by a margin can be written as
max, h(P;,y’) = 0.

4.2 Inference

As described in Algorithm 1, at test time we com-
pute prefixes until some label is ranked ahead of
all other labels with a margin m, then predict with
that label. At train time, we predict until the cor-
rect label is ranked ahead with margin m, and re-
turn the whole set of prefixes for use by the learn-
ing algorithm. If no prefix scores have a margin,
then we predict with the final prefix score involv-
ing all the feature templates.

4.3 Learning

We split learning into two subproblems: first,
given an ordered sequence of feature templates
and our inference procedure, we wish to learn pa-
rameters that optimize accuracy while using as few
of those templates as possible. Second, given a
method for training feature templated classifiers,



we want to learn an ordering of templates that op-
timizes accuracy.

We wish to optimize several different objec-
tives during learning: template parameters should
have strong predictive power on their own, but also
work well when combined with the scores from
later templates. Additionally, we want to encour-
age well-calibrated confidence scores that allow us
to stop prediction early without significant reduc-
tion in generalization ability.

4.4 Learning the parameters

To learn parameters that encourage the use of few
feature templates, we look at the model as out-
putting not a single prediction but a sequence of
prefix predictions {P;}. For each training ex-
ample, each feature template receives a number
of hinge-loss gradients equal to its distance from
the index where the margin requirement is finally
reached. This is equivalent to treating each prefix
as its own model for which we have a hinge loss
function, and learning all models simultaneously.
Our high-level approach is described in Algorithm
2.

Concretely, for k feature templates we opti-
mize the following structured max-margin objec-
tive (with the dependence of P’s on w written ex-
plicitly where helpful):

w* = arg min Z 0z, y,w)
(z.y)

6(15 Y, W) = Z h(PZ(xv W)7 y)
=1

iy = ZEI{nfrz}Z s.t. h(P,y)=0
The per-example gradient of this objective for
weights w; corresponding to feature template ®;
then corresponds to
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87“,], = ;‘I)j(ﬂf,yloss(l%y)) — (I)j(x,y).

where we define

yloss(Piv y) = arg max PLy/ -_m - I(y/ — y)’
y/

where [ is an indicator function of the label y, used
to define loss-augmented inference.

We add an {5 regularization term to the objec-
tive, and tune the margin m and the regularization

strength to tradeoff between speed and accuracy.
In our experiments, we used a development set to
choose a regularizer and margin that reduced test-
time speed as much as possible without decreasing
accuracy. We then varied the margin for that same
model at test time to achieve larger speed gains at
the cost of accuracy. In all experiments, the mar-
gin with which the model was trained corresponds
to the largest margin reported, i.e. that with the
highest accuracy.

4.5 Learning the template ordering

We examine three approaches to learning the tem-
plate ordering.

4.5.1 Group Lasso and Group Orthogonal
Matching Pursuit

The Group Lasso regularizer (Yuan and Lin, 2006)
penalizes the sum of ¢5-norms of weights of fea-
ture templates (different from what is commonly
called “f3” regularization, penalizing squared /o
norms), »_.¢;|lwi||2, where ¢; is a weight for
each template. This regularizer encourages entire
groups of weights to be set to 0, whose templates
can then be discarded from the model. By vary-
ing the strength of the regularizer, we can learn an
ordering of the importance of each template for a
given model. The included groups for a given reg-
ularization strength are nearly always subsets of
one another (technical conditions for this to be true
are given in Hastie et al. (2007)). The sequence
of solutions for varied regularization strength is
called the regularization path, and by slight abuse
of terminology we use this to refer to the induced
template ordering.

An alternative and related approach to learn-
ing template orderings is based on the Group Or-
thogonal Matching Pursuit (GOMP) algorithm for
generalized linear models (Swirszcz et al., 2009;
Lozano et al., 2011), with a few modifications for
the setting of high-dimensional, sparse NLP data
(described in Appendix B). Orthogonal matching
pursuit algorithms are a set of stagewise feature
selection techniques similar to forward stagewise
regression (Hastie et al., 2007) and LARS (Efron
et al.,, 2004). At each stage, GOMP effectively
uses each feature template to perform a linear re-
gression to fit the gradient of the loss function.
This attempts to find the correlation of each fea-
ture subset with the residual of the model. It then
adds the feature template that best fits this gradi-
ent, and retrains the model. The main weakness of



this method is that it fits the gradient of the training
error which can rapidly overfit for sparse, high-
dimensional data. Ultimately, we would prefer to
use a development set for feature selection.

4.5.2 Wrapper Method

The wrapper method (Kohavi and John, 1997)
is a meta-algorithm for feature selection, usually
based on a validation set. We employ it in a stage-
wise approach to learning a sequence of templates.
Given an ordering of the initial sub-sequence and
a learning procedure, we add each remaining tem-
plate to our ordering and estimate parameters, se-
lecting as the next template the one that gives the
highest increase in development set performance.
We begin the procedure with no templates, and re-
peat the procedure until we have a total ordering
over the set of feature templates. When learning
the ordering we use the same hyperparameters as
will be used during final training.

While simpler than the Lasso and Matching
Pursuit approaches, we empirically found this ap-
proach to outperform the others, due to the neces-
sity of using a development set to select features
for our high-dimensional application areas.

5 Related Work

Our work is primarily inspired by previous re-
search on cascades of classifiers; however, it dif-
fers significantly by approximating the score of a
single linear model—scoring as few of its features
as possible to obtain sufficient confidence.

We pose and address the question of whether a
single, interacting set of parameters can be learned
such that they efficiently both (1) provide high ac-
curacy and (2) good confidence estimates through-
out their use in the lengthening prefixes of the
feature template sequence. (These two require-
ments are both incorporated into our novel param-
eter estimation algorithm.) In contrast, other work
(Weiss and Taskar, 2013; He et al., 2013) learns
a separate classifier to determine when to add fea-
tures. Such heavier-weight approaches are unsuit-
able for our setting, where the core classifier’s fea-
tures and scoring are already so cheap that adding
complex decision-making would cause too much
computational overhead.

Other previous work on cascades uses a se-
ries of increasingly complex models, such as the
Viola-Jones face detection cascade of classifiers
(2001), which applies boosted trees trained on
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subsets of features in increasing order of complex-
ity as needed, aiming to reject many sub-image
windows early in processing. We allow scores
from each layer to directly affect the final predic-
tion, avoiding duplicate incorporation of evidence.

Our work is also related to the field of learn-
ing and inference under test-time budget con-
straints (Grubb and Bagnell, 2012; Trapeznikov
and Saligrama, 2013). However, common ap-
proaches to this problem also employ auxiliary
models to rank which feature to add next, and
are generally suited for problems where features
are expensive to compute (e.g vision) and the ex-
tra computation of an auxiliary pruning-decision
model is offset by substantial reduction in fea-
ture computations (Weiss and Taskar, 2013). Our
method uses confidence scores directly from the
model, and so requires no additional computation,
making it suitable for speeding up classifier-based
NLP methods that are already very fast and have
relatively cheap features.

Some cascaded approaches strive at each stage
to prune the number of possible output structures
under consideration, whereas in our case we fo-
cus on pruning the input features. For example,
Xu et al. (2013) learn a tree of classifiers that sub-
divides the set of classes to minimize average test-
time cost. Chen et al. (2012) similarly use a linear
cascade instead of a tree. Weiss and Taskar (2010)
prune output labels in the context of structured
prediction through a cascade of increasingly com-
plex models, and Rush and Petrov (2012) success-
fully apply these structured prediction cascades to
the task of graph-based dependency parsing.

In the context of NLP, He et al. (2013) describe
a method for dynamic feature template selection
at test time in graph-based dependency parsing.
Their technique is particular to the parsing task—
making a binary decision about whether to lock in
edges in the dependency graph at each stage, and
enforcing parsing-specific, hard-coded constraints
on valid subsequent edges. Furthermore, as de-
scribed above, they employ an auxiliary model to
select features.

He and Eisner (2012) share our goal to speed
test time prediction by dynamically selecting fea-
tures, but they also learn an additional model on
top of a fixed base model, rather than using the
training objective of the model itself.

While our comparisons above focus on other
methods of dynamic feature selection, there also



exists related work in the field of general (static)
feature selection. The most relevant results come
from the applications of group sparsity, such as
the work of Martins et al. (2011) in Group Lasso
for NLP problems. The Group Lasso regularizer
(Yuan and Lin, 2006) sparsifies groups of feature
weights (e.g. feature templates), and has been
used to speed up test-time prediction by remov-
ing entire templates from the model. The key dif-
ference between this work and ours is that we se-
lect our templates based on the test-time difficulty
of the inference problem, while the Group Lasso
must do so at train time. In Appendix A, we com-
pare against Group Lasso and show improvements
in accuracy and speed.

Note that non-grouped approaches to selecting
sparse feature subsets, such as boosting and ¢; reg-
ularization, do not achieve our goal of fast test-
time prediction in NLP models, as they would
not zero-out entire templates, and still require the
computation of a feature for every template for ev-
ery test instance.

6 Experimental Results

We present experiments on three NLP tasks
for which greedy sequence labeling has been
a successful solution: part-of-speech tagging,
transition-based dependency parsing and named
entity recognition. In all cases our method
achieves multiplicative speedups at test time with
little loss in accuracy.

6.1 Part-of-speech tagging

We conduct our experiments on classifier-based
greedy part-of-speech tagging. Our baseline tag-
ger uses the same features described in Choi and
Palmer (2012). We evaluate our models on the
Penn Treebank WSJ corpus (Marcus et al., 1993),
employing the typical split of sections used for
part-of-speech tagging: 0-18 train, 19-21 devel-
opment, 22-24 test. The parameters of our mod-
els are learned using AdaGrad (Duchi et al., 2011)
with {5 regularization via regularized dual averag-
ing (Xiao, 2009), and we used random search on
the development set to select hyperparameters.
This baseline model (baseline) tags at a rate
of approximately 23,000 tokens per second on a
2010 2.1GHz AMD Opteron machine with ac-
curacy comparable to similar taggers (Giménez
and Marquez, 2004; Choi and Palmer, 2012;
Toutanova et al., 2003). On the same machine
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| Model/m  Tok. Unk. Feat. Speed
Baseline 97.22 88.63 46 1x

Stagewise ~ 96.54 83.63 9.50 2.74
Fixed 89.88 56.25 1 16.16x
Fixed 94.66 60.59 3 9.54x
Fixed 96.16 87.09 5 7.02x
Fixed 96.88 88.81 10  3.82x
Dynamic/15 96.09 83.12 1.92  10.36x
Dynamic/35 97.02 8826 4.33 5.22x
Dynamic/45 97.16 88.84 5.87 3.97x
Dynamic/50 97.21 88.95 6.89 3.41x

Table 1: Comparison of our models using differ-
ent margins m, with speeds measured relative to
the baseline. We train a model as accurate as the
baseline while tagging 3.4x tokens/sec, and in an-
other model maintain > 97% accuracy while tag-
ging 5.2x, and > 96% accuracy with a speedup of
10.3x.

the greedy Stanford CoreNLP left3words part-of-
speech tagger also tags at approximately 23,000
tokens per second. Significantly higher absolute
speeds for all methods can be attained on more
modern machines.

We include additional baselines that divide the
features into templates, but train the templates’ pa-
rameters more simply than our algorithm. The
stagewise baseline learns the model parameters
for each of the templates in order, starting with
only one template—once each template has been
trained for a fixed number of iterations, that tem-
plate’s parameters are fixed and we add the next
one. We also create a separately-trained baseline
model for each fixed prefix of the feature templates
(fixed). This shows that our speedups are not sim-
ply due to superfluous features in the later tem-
plates.

Our main results are shown in Table 1. We in-
crease the speed of our baseline POS tagger by a
factor of 5.2x without falling below 97% test ac-
curacy. By tuning our training method to more
aggressively prune templates, we achieve speed-
ups of over 10x while providing accuracy higher
than 96%. It is worth noting that the results for
our method (dynamic) are all obtained from a
single trained model (with hyperparameters opti-
mized for m = 50, which we observed gave a
good speedup with nearly no lossin accuracy on
the development set), the only difference being
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Figure 1: Left-hand plot depicts test accuracy as a function of the average number of templates used
to predict. Right-hand plot shows speedup as a function of accuracy. Our model consistently achieves
higher accuracy while using fewer templates resulting in the best ratio of speed to accuracy.

that we varied the margin at test time. Superior
results for m # 50 could likely be obtained by op-
timizing hyperparameters for the desired margin.

Results show our method (dynamic) learns to
dynamically select the number of templates, often
using only a small fraction. The majority of test
tokens can be tagged using only the first few tem-
plates: just over 40% use one template, and 75%
require at most four templates, while maintaining
97.17% accuracy. On average 6.71 out of 46 tem-
plates are used, though a small set of complicated
instances never surpass the margin and use all 46
templates. The right hand plot of Figure 1 shows
speedup vs. accuracy for various settings of the
confidence margin m.

The left plot in Figure 1 depicts accuracy as a
function of the number of templates used at test
time. We present results for both varying the
number of templates directly (dashed) and margin
(solid). The baseline model trained on all tem-
plates performs very poorly when using margin-
based inference, since its training objective does
not learn to predict with only prefixes. When pre-
dicting using a fixed subset of templates, we use a
different baseline model for each one of the 46 to-
tal template prefixes, learned with only those fea-
tures; we then compare the test accuracy of our
dynamic model using template prefix 7 to the base-
line model trained on the fixed prefix ¢. Our model
performs just as well as these separately trained
models, demonstrating that our objective learns
weights that allow each prefix to act as its own
high-quality classifier.
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6.1.1 Learning the template ordering

As described in Section 4.5, we experimented on
part-of-speech tagging with three different algo-
rithms for learning an ordering of feature tem-
plates: Group Lasso, Group Orthogonal Matching
Pursuit (GOMP), and the wrapper method. For
the case of Group Lasso, this corresponds to the
experimental setup used when evaluating Group
Lasso for NLP in Martins et al. (2011). As detailed
in the part-of-speech tagging experiments of Ap-
pendix A, we found the wrapper method to work
best in our dynamic prediction setting. Therefore,
we use it in our remaining experiments in pars-
ing and named entity recognition. Essentially, the
Group Lasso picks small templates too early in
the ordering by penalizing template norms, and
GOMP picks large templates too early by overfit-
ting the train error.

6.2 Transition-based dependency parsing

We base our parsing experiments on the greedy,
non-projective transition-based dependency parser
described in Choi and Palmer (2011). Our model
uses a total of 60 feature templates based mainly
on the word form, POS tag, lemma and assigned
head label of current and previous input and stack
tokens, and parses about 300 sentences/second on
a modest 2.1GHz AMD Opteron machine.

We train our parser on the English Penn Tree-
Bank, learning the parameters using AdaGrad and
the parsing split, training on sections 2-21, testing
on section 23 and using section 22 for develop-
ment and the Stanford dependency framework (de



Ayg Number Templates Used VS. LAS

Model/m LAS UAS Feat. Speed
Baseline 90.31 91.83 60 1x

Fixed 65.99 70.78 1 27.5x
Fixed 86.87 88.81 10 5.51x
Fixed 88.76  90.51 20 2.83x
Fixed 89.04 90.71 30 1.87x
Dynamic/6.5 88.63 90.36 7.81  5.16x
Dynamic/7.1 89.07 90.73 857  4.66x
Dynamic/10  90.16 91.70 13.27 3.17x
Dynamic/11  90.27 91.80 15.83 2.71x
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Figure 2: Parsing speedup as a function of accu-
racy. Our model achieves the highest accuracy
while using the fewest feature templates.

Marneffe and Manning, 2008). POS tags were au-
tomatically generated via 10-way jackknifing us-
ing the baseline POS model described in the pre-
vious section, trained with AdaGrad using /> reg-
ularization, with parameters tuned on the develop-
ment set to achieve 97.22 accuracy on WSJ sec-
tions 22-24. Lemmas were automatically gener-
ated using the ClearNLP morphological analyzer.
We measure accuracy using labeled and unlabeled
attachment scores excluding punctuation, achiev-
ing a labeled score of 90.31 and unlabeled score
of 91.83, which are comparable to similar greedy
parsers (Choi and Palmer, 2011; Honnibal and
Goldberg, 2013).

Our experimental setup is the same as for part-
of-speech tagging. We compare our model (dy-
namic) to both a single baseline model trained on
all features, and a set of 60 models each trained
on a prefix of feature templates. Our experiments
vary the margin used during prediction (solid) as
well as the number of templates used (dashed).

As in part-of-speech tagging, we observe sig-
nificant test-time speedups when applying our
method of dynamic feature selection to depen-
dency parsing. With a loss of only 0.04 labeled at-
tachment score (LAS), our model produces parses
2.7 times faster than the baseline. As listed in Ta-
ble 2, with a more aggressive margin our model
can parse more than 3 times faster while remain-
ing above 90% LAS, and more than 5 times faster
while maintaining accuracy above 88.5%.

In Figure 2 we see not only that our dynamic
model consistently achieves higher accuracy while

153

Table 2: Comparison of our baseline and tem-
plated models using varying margins m and num-
bers of templates.

using fewer templates, but also that our model (dy-
namic, dashed) performs exactly as well as sep-
arate models trained on each prefix of templates
(baseline, dashed), demonstrating again that our
training objective is successful in learning a single
model that can predict as well as possible using
any prefix of feature templates while successfully
selecting which of these prefixes to use on a per-
example basis.

6.3 Named entity recognition

We implement a greedy left-to-right named entity
recognizer based on Ratinov and Roth (2009) us-
ing a total of 46 feature templates, including sur-
face features such as lemma and capitalization,
gazetteer look-ups, and each token’s extended pre-
diction history, as described in (Ratinov and Roth,
2009). Training, tuning, and evaluation are per-
formed on the CoNLL 2003 English data set with
the BILOU encoding to denote label spans.

Our baseline model achieves F1 scores of 88.35
and 93.37 on the test and development sets, re-
spectively, and tags at a rate of approximately
5300 tokens per second on the hardware described
in the experiments above. We achieve a 2.3x
speedup while maintaining F1 score above 88 on
the test set.

7 Conclusions and Future Work

By learning to dynamically select the most predic-
tive features at test time, our algorithm provides
significant speed improvements to classifier-based
structured prediction algorithms, which them-
selves already comprise the fastest methods in
NLP. Further, these speed gains come at very lit-



Model/m Test F1 Feat. Speed
Baseline 88.35 46 1x
Fixed 65.05 1 19.08x
Fixed 85.00 10 2.14x
Fixed 85.81 13 1.87x
Dynamic/3.0 87.62 7.23  2.59x
Dynamic/4.0 88.20 945 2.32x
Dynamic/5.0 88.23 12.96 1.96x

Table 3: Comparison of our baseline and tem-
plated NER models using varying margin m and
number of templates.

tle extra implementation cost and can easily be
combined with existing state-of-the-art systems.
Future work will remove the fixed ordering for
feature templates, and dynamically add additional
features based on the current scores of different la-
bels.
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Abstract

Knowledge base (KB) completion adds
new facts to a KB by making inferences
from existing facts, for example by infer-
ring with high likelihood nationality(X,Y)
from bornin(X,Y). Most previous methods
infer simple one-hop relational synonyms
like this, or use as evidence a multi-hop re-
lational path treated as an atomic feature,
like bornin(X,Z) — containedIn(Z,Y). This
paper presents an approach that reasons
about conjunctions of multi-hop relations
non-atomically, composing the implica-
tions of a path using a recurrent neural
network (RNN) that takes as inputs vec-
tor embeddings of the binary relation in
the path. Not only does this allow us
to generalize to paths unseen at training
time, but also, with a single high-capacity
RNN, to predict new relation types not
seen when the compositional model was
trained (zero-shot learning). We assem-
ble a new dataset of over 52M relational
triples, and show that our method im-
proves over a traditional classifier by 11%,
and a method leveraging pre-trained em-
beddings by 7%.

1 Introduction

Constructing large knowledge bases (KBs) sup-
ports downstream reasoning about resolved enti-
ties and their relations, rather than the noisy tex-
tual evidence surrounding their natural language
mentions. For this reason KBs have been of in-
creasing interest in both industry and academia
(Bollacker et al., 2008; Suchanek et al., 2007;
Carlson et al., 2010). Such KBs typically con-
tain many millions of facts, most of them (en-
tity 1,relation,entity2) “triples” (also known as bi-
nary relations) such as (Barack Obama, presi-
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dentOf, USA) and (Brad Pitt, marriedTo, Angelina
Jolie).

However, even the largest KBs are woefully in-
complete (Min et al., 2013), missing many impor-
tant facts, and therefore damaging their usefulness
in downstream tasks. Ironically, these missing
facts can frequently be inferred from other facts al-
ready in the KB, thus representing a sort of incon-
sistency that can be repaired by the application of
an automated process. The addition of new triples
by leveraging existing triples is typically known as
KB completion.

Early work on this problem focused on learn-
ing symbolic rules. For example, Schoenmack-
ers et al. (2010) learns Horn clauses predictive of
new binary relations by exhausitively exploring re-
lational paths of increasing length, and selecting
those surpassing an accuracy threshold. (A “path”
is a sequence of triples in which the second entity
of each triple matches the first entity of the next
triple.) Lao et al. (2011) introduced the Path Rank-
ing Algorithm (PRA), which greatly improves ef-
ficiency and robustness by replacing exhaustive
search with random walks, and using unique paths
as features in a per-target-relation binary classifier.
A typical predictive feature learned by PRA is that
CountryOfHeadquarters(X, Y) is implied by Is-
BasedIn(X,A) and StateLocatedIn(A, B) and Coun-
tryLocatedIn(B, Y). Given IsBasedIn(Microsoft,
Seattle), StateLocatedIn(Seattle, Washington) and
CountryLocatedIn(Washington, USA), we can in-
fer the fact CountryOfHeadquarters(Microsoft,
USA) using the predictive feature. In later work,
Lao et al. (2012) greatly increase available raw
material for paths by augmenting KB-schema rela-
tions with relations defined by the text connecting
mentions of entities in a large corpus (also known
as OpenlE relations (Banko et al., 2007)).

However, these symbolic methods can produce
many millions of distinct paths, each of which is
categorically distinct, treated by PRA as a dis-
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tinct feature. (See Figure 1.) Even putting aside
the OpenlE relations, this limits the applicability
of these methods to modern KBs that have thou-
sands of relation types, since the number of dis-
tinct paths increases rapidly with the number of re-
lation types. If textually-defined OpenlE relations
are included, the problem is obviously far more
severe.

Better generalization can be gained by operat-
ing on embedded vector representations of rela-
tions, in which vector similarity can be interpreted
as semantic similarity. For example, Bordes et al.
(2013) learn low-dimensional vector representa-
tions of entities and KB relations, such that vector
differences between two entities should be close
to the vectors associated with their relations. This
approach can find relation synonyms, and thus per-
form a kind of one-to-one, non-path-based relation
prediction for KB completion. Similarly Nickel
et al. (2011) and Socher et al. (2013a) perform
KB completion by learning embeddings of rela-
tions, but based on matrices or tensors. Universal
schema (Riedel et al., 2013) learns to perform rela-
tion prediction cast as matrix completion (likewise
using vector embeddings), but predicts textually-
defined OpenlE relations as well as KB relations,
and embeds entity-pairs in addition to individual
entities. Like all of the above, it also reasons
about individual relations, not the evidence of a
connected path of relations.

This paper proposes an approach combining the
advantages of (a) reasoning about conjunctions of
relations connected in a path, and (b) generaliza-
tion through vector embeddings, and (c) reasoning
non-atomically and compositionally about the el-
ements of the path, for further generalization.

Our method uses recurrent neural networks
(RNNs) (Werbos, 1990) to compose the semantics
of relations in an arbitrary-length path. At each
path-step it consumes both the vector embedding
of the next relation, and the vector representing the
path-so-far, then outputs a composed vector (rep-
resenting the extended path-so-far), which will be
the input to the next step. After consuming a path,
the RNN should output a vector in the semantic
neighborhood of the relation between the first and
last entity of the path. For example, after con-
suming the relation vectors along the path Melinda
Gates — Bill Gates — Microsoft — Seattle, our
method produces a vector very close to the rela-
tion livesin.
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headquartered in in the U.S. state of state part of

headquarters located in located in the state of state in the NW region of
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based in in state democratic state in

Figure 1: Semantically similar paths connecting entity pair
(Microsoft, USA).

Our compositional approach allow us at test
time to make predictions from paths that were un-
seen during training, because of the generaliza-
tion provided by vector neighborhoods, and be-
cause they are composed in non-atomic fashion.
This allows our model to seamlessly perform in-
ference on many millions of paths in the KB graph.
In most of our experiments, we learn a separate
RNN for predicting each relation type, but alterna-
tively, by learning a single high-capacity composi-
tion function for all relation types, our method can
perform zero-shot learning—predicting new rela-
tion types for which the composition function was
never explicitly trained.

Related to our work, new versions of PRA
(Gardner et al., 2013; Gardner et al., 2014) use
pre-trained vector representations of relations to
alleviate its feature explosion problem—but the
core mechanism continues to be a classifier based
on atomic-path features. In the 2013 work many
paths are collapsed by clustering paths accord-
ing to their relations’ embeddings, and substitut-
ing cluster ids for the original relation types. In
the 2014 work unseen paths are mapped to nearby
paths seen at training time, where nearness is mea-
sured using the embeddings. Neither is able to per-
form zero-shot learning since there must be a clas-
sifer for each predicted relation type. Furthermore
their pre-trained vectors do not have the opportu-
nity to be tuned to the KB completion task because
the two sub-tasks are completely disentangled.

An additional contribution of our work is a
new large-scale data set of over 52 million triples,
and its preprocessing for purposes of path-based
KB completion (can be downloaded from http:
//1iesl.cs.umass.edu/downloads/
inferencerules/release.tar.gz). The
dataset is build from the combination of Freebase
(Bollacker et al., 2008) and Google’s entity
linking in ClueWeb (Orr et al., 2013). Rather than
Gardner’s 1000 distinct paths per relation type, we
have over 2 million. Rather than Gardner’s 200
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Figure 2: Vector Representations of the paths are computed
by applying the composition function recursively.

entity pairs, we use over 10k. All experimental
comparisons below are performed on this new
data set.

On this challenging large-scale dataset our com-
positional method outperforms PRA (Lao et al.,
2012), and Cluster PRA (Gardner et al., 2013) by
11% and 7% respectively. A further contribution
of our work is a new, surprisingly strong baseline
method using classifiers of path bigram features,
which beats PRA and Cluster PRA, and statisti-
cally ties our compositional method. Our analysis
shows that our method has substantially different
strengths than the new baseline, and the combi-
nation of the two yields a 15% improvement over
Gardner et al. (2013). We also show that our zero-
shot model is indeed capable of predicting new un-
seen relation types.

2 Background

We give background on PRA which we use to ob-
tain a set of paths connecting the entity pairs and
the RNN model which we employ to model the
composition function.

2.1 Path Ranking Algorithm

Since it is impractical to exhaustively obtain the
set of all paths connecting an entity pair in the
large KB graph, we use PRA (Lao et al., 2011)
to obtain a set of paths connecting the entity pairs.
Given a training set of entity pairs for a relation,
PRA heuristically finds a set of paths by perform-
ing random walks from the source and target nodes
keeping the most common paths. We use PRA to
find millions of distinct paths per relation type. We
do not use the random walk probabilities given by
PRA since using it did not yield improvements in
our experiments.
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2.2 Recurrent Neural Networks

Recurrent neural network (RNN) (Werbos, 1990)
is a neural network that constructs vector repre-
sentation for sequences (of any length). For exam-
ple, a RNN model can be used to construct vec-
tor representations for phrases or sentences (of any
length) in natural language by applying a compo-
sition function (Mikolov et al., 2010; Sutskever
et al.,, 2014; Vinyals et al., 2014). The vector
representation of a phrase (w;, ws) consisting of
words wy and wy is given by f(Wv(wy); v(w2)])
where v(w) € R? is the vector representation of
w, f is an element-wise non linearity function,
[a; b] represents the concatenation two vectors a
and b along with a bias term, and W € R4*2*d+1
is the composition matrix. This operation can
be repeated to construct vector representations of
longer phrases.

3 Recurrent Neural Networks for KB
Completion

This paper proposes a RNN model for KB comple-
tion that reasons on the paths connecting an entity
pair to predict missing relation types. The vec-
tor representations of the paths (of any length) in
the KB graph are computed by applying the com-
position function recursively as shown in Figure
2. To compute the vector representations for the
higher nodes in the tree, the composition function
consumes the vector representation of the node’s
two children nodes and outputs a new vector of the
same dimension. Predictions about missing rela-
tion types are made by comparing the vector repre-
sentation of the path with the vector representation
of the relation using the sigmoid function.

We represent each binary relation using a d-
dimensional real valued vector. We model com-
position using recurrent neural networks (Werbos,
1990). We learn a separate composition matrix for
every relation that is predicted.

Let v,.(0) € R? be the vector representation of
relation 0 and v, (7) € RY be the vector represen-
tation of path w. v, (7) denotes the relation vec-
tor if path 7 is of length one. To predict relation
& = CountryOfHeadquarters, the vector represen-
tation of the path m = IsBasedIn — StateLocate-
dIn containing two relations IsBasedIn and State-
LocatedIn is computed by (Figure 2),

p()
f(Wslvy(IsBasedlIn); v, (StateLocatedln)))



where f = sigmoid is the element-wise non-
linearity function, W5 € R%2d+1 is the compo-
sition matrix for § = CountryOfHeadquarters and
[a; b] represents the concatenation of two vectors
a € R% b € R? along with a bias feature to get a
new vector [a; b] € R24+1,

The vector representation of the path II = Is-
BasedIn — StateLocatedIn — CountryLocatedIn
in Figure 2 is computed similarly by,

up(1I)
f(Ws[vp(7); v ( CountryLocatedIn)])

where v, () is the vector representation of path Is-
BasedIn — StateLocatedIn. While computing the
vector representation of a path we always traverse
left to right, composing the relation vector in the
right with the accumulated path vector in the left'.
This makes our model a recurrent neural network
(Werbos, 1990).

Finally, we make a prediction regarding Coun-
tryOfHeadquarters(Microsoft, USA) using the
path II = IsBasedIn — StateLocatedIn — Coun-
tryLocatedIn by comparing the vector represen-
tation of the path (v,(II)) with the vector repre-
sentation of the relation CountryOfHeadquarters
(vy(CountryOfHeadquarters)) using the sigmoid
function.

3.1 Model Training

We train the model with the existing facts in a
KB using them as positive examples and nega-
tive examples are obtained by treating the unob-
served instances as negative examples (Mintz et
al., 2009; Lao et al., 2011; Riedel et al., 2013; Bor-
des et al., 2013). Unlike in previous work that use
RNNs(Socher et al., 2011; Iyyer et al., 2014; Irsoy
and Cardie, 2014), a challenge with using them
for our task is that among the set of paths connect-
ing an entity pair, we do not observe which of the
path(s) is predictive of a relation. We select the
path that is closest to the relation type to be pre-
dicted in the vector space. This not only allows
for faster training (compared to marginalization)
but also gives improved performance. This tech-
nique has been successfully used in models other
than RNNs previously (Weston et al., 2013; Nee-
lakantan et al., 2014).

!we did not get significant improvements when we tried
more sophisticated ordering schemes for computing the path
representations.
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Algorithm 1 Training Algorithm of RNN model for rela-
tion §

I: Input: Ag = Agr U Ay, @5, number of itera-
tions 7', mini-batch size B

2: Initialize v,, Ws randomly

3 fort=1,2,...,Tdo

4: Vo, =0, VWs=0and b =10

5: for A = (v,0) € A; do

6: fx = arg maX,cq, (y) Up(m).vr(5)
7: Accumulate gradients to Vu,., VW
8: using path ).

9: b=b+1

10: if b = B then

11: Gradient Update for v,., Ws

12: Vo, =0,VWs =0and b =0
13: end if

14: end for

15: if b > 0 then

16: Gradient Update for v,., Ws

17: end if

18: end for

19: Output: v, Wi

We assume that we are given a KB (for exam-
ple, Freebase enriched with SVO triples) contain-
ing a set of entity pairs T, set of relations A and
a set of observed facts AT where VA = (v,4) €
At(y € T,§ € A) indicates a positive fact that
entity pair -y is in relation §. Let ®5(+y) denote the
set of paths connecting entity pair 7y given by PRA
for predicting relation J.

In our task, we only observe the set of paths
connecting an entity pair but we do not observe
which of the path(s) is predictive of the fact. We
treat this as a latent variable (u) for the fact \)
and we assign ) the path whose vector represen-
tation has maximum dot product with the vector
representation of the relation to be predicted. For
example, y for the fact A = (v,d) € AT is given
by,

ey = arg max vy (7)., (6)
meds(y)

During training, we assign p) using the current
parameter estimates. We use the same procedure
to assign p for unobserved facts that are used as
negative examples during training.

We train a separate RNN model for predicting
each relation and the parameters of the model for
predicting relation 6 € A are © = {v,(w)Vw €
A, Ws}. Given a training set consisting of posi-



tive (A;) and negative (Ay) instances? for relation
0, the parameters are trained to maximize the log
likelihood of the training set with L-2 regulariza-
tion.

©* = arg max Z P(yy=1;0)+
© )\:('y,é)EA(;+
> P(ya=0;0)-p|O]

A=(7,0)EAy

where ¥, is a binary random variable which takes
the value 1 if the fact A is true and O otherwise, and
the probability of a fact P(y, = 1;©) is given by,

P(yy = 1;0) = sigmoid(vy(pr).vr(0))
where py = arg max vp(m).v,(0)
TEDs(7)
and P(yy = 0;0) = 1 — P(yy = 1;0). The
relation vectors and the composition matrix are
initialized randomly. We train the network us-

ing backpropagation through structure (Goller and
Kiichler, 1996).

4 Zero-shot KB Completion

The KB completion task involves predicting facts
on thousands of relations types and it is highly de-
sirable that a method can infer facts about relation
types without directly training for them. Given the
vector representation of the relations, we show that
our model described in the previous section is ca-
pable of predicting relational facts without explic-
itly training for the target (or test) relation types
(zero-shot learning).

In zero-shot or zero-data learning (Larochelle et
al., 2008; Palatucci et al., 2009), some labels or
classes are not available during training the model
and only a description of those classes are given
at prediction time. We make two modifications to
the model described in the previous section, (1)
learn a general composition matrix, and (2) fix re-
lation vectors with pre-trained vectors, so that we
can predict relations that are unseen during train-
ing. This ability of the model to generalize to un-
seen relations is beyond the capabilities of all pre-
vious methods for KB inference (Schoenmackers
et al., 2010; Lao et al., 2011; Gardner et al., 2013;
Gardner et al., 2014).

We learn a general composition matrix for all
relations instead of learning a separate composi-
tion matrix for every relation to be predicted. So,

2we sub-sample a portion of the set of all unobserved in-
stances.
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for example, the vector representation of the path
m = IsBasedIn — StateLocatedIn containing two
relations IsBasedIn and StateLocatedIn is com-
puted by (Figure 2),

vp()
f(W v, (IsBasedln); v, (StateLocatedIn)])

where W € R%24+1 is the general composition
matrix.

We initialize the vector representat