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Preface: General Chair

It was fifteen years ago when ACL first came to Asia in 2000. The conference in Hong Kong was a very
excited one and attracted lots of people. It was a great opportunity for a number of Asian NLP researchers
to meet face-to-face in such a large scale meeting. Establishment of AFNLP (Asian Federation of Natural
Language Processing) was discussed soon after this wonderful event, and then AFNLP started IJCNLP
(the International Joint Conference of Natural Language Processing) as a biennial flagship conference of
AFNLP. ACL’s three year regional rotation and IJCNLP’s two year cycle meet every six years, and this is
the second joint ACL-IJCNLP conference following the first held in Singapore in 2009. ACL meetings
in Asia and IJNCLPs are now a propelling force of NLP research in Asian regions, and provide valuable
experiences especially to young researchers and students who first attend this size of a big conference.

The success of ACL-IJCNLP owes a great deal to the hard work and dedication of many people. I would
like to thank all of them for their time and contribution to this joint ACL-AFNLP conference.

Priscilla Rasmussen (the ACL Business Manager), Gertjan van Noord (ACL Past President), Chris
Manning (ACL President), Graeme Hirst (ACL Treasurer), Dragomir Radev (ACL Secretary), Keh-Yih
Su (AFNLP Past President), Fam-Fai Wong (AFNLP President), all other ACL and AFNLP Executive
Committee members and ACL-AFNLP Conference Coordinating Committee members (forgive me for
not listing all their names) have always been very helpful and guided me anytime I missed something or
was behind the schedule, and given me appropriate advice. Without their help, I could not fulfill even
half my duty.

I was very lucky to have a wonderful team of chairs, who have done a fantastic job for leading this
conference to an invaluable one. I would like to express my deepest gratitude to Michael Strube and
Chengqing Zong (Program Committee Co-Chairs), Le Sun and Yang Liu (Local Arrangement Co-
Chairs), Hang Li and Sebastian Riedel (Workshop Co-Chairs), Kevin Duh and Eneko Agirre (Tutorial
Co-Chairs), Hsin-His Chen and Katja Markert (System Demonstration Co-Chairs), Wanxiang Che and
Guodong Zhou (Publications Co-Chairs), Stephan Oepen, Chin-Yew Lin and Emily Bender (Student
Research Workshop Faculty Advisors), Kuan-Yu Chen, Angelina Ivanova and Ellie Pavlick (Student
Research Workshop Co-Chairs), Francis Bond (Mentoring Chair), Xianpei Han and Kang Liu (Publicity
Co-Chairs), Zhiyuan Liu (Webmaster), and all the team members of the Local Organizing Committee.
Thanks to their dedicated efforts, we now have a great conference consisting of the Presidential Address
(by Chris Manning), two Keynote Addresses (by Marti Hearst and Jiawei Han), 173 long and 145 short
papers, 12 TACL papers, 7 Student Research Workshop papers, 25 system demonstrations, 8 tutorials,
15 workshops, one collocated conference (CoNLL-2015), and a not yet known Lifetime Achievement
Awardee’s speech.

I am also grateful to our sponsors for their generous contributions. ACL-IJCNLP-2015 is supported by
six Platinum Sponsors (CreditEase, Baidu, Tencent, Alibaba Group, SAMSUNG, and Microsoft), four
Gold Sponsors (Google, Facebook, SinoVoice, and Huawei), three Silver Sponsors (Nuance, Amazon,
and Sogou), one Bronze Sponsor (Yandex), one Oversea Student Fellowship Sponsor (Baobab), and one
Best Paper Sponsor (IBM). I would express special thanks to Yiqun Liu (Local Sponsorship Chair) and
all members of the International Sponsorship Committee (Ting Liu, Hideto Kazawa, Asli Celikyilmaz,
Julia Hochenmaier, and Alessandro Moschitti).

Finally, I would like to thank two keynote speakers, the area chairs of the main conference, the workshop
organizers, the tutorial presenters, the authors of main conference and demo papers, the reviewers for
their contribution, and all the attendees for participation. I hope everyone have a great time and enjoy
this conference.

ACL-IJCNLP 2015 General Chair
Yuji Matsumoto
Nara Institute of Science and Technology
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Preface: Program Committee Co-Chairs

Welcome to the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing of the Asian Federation of Natural
Language Processing (ACL-IJCNLP)! This year ACL-IJCNLP received 692 long paper submissions
and 648 short paper submissions which sets a new record for ACL for both long and short papers! We
are pleased to observe that our community continues to grow. Of the long papers, 173 were accepted for
presentation at ACL-IJCNLP – 105 as oral and 68 as poster presentations. 145 short papers were accepted
– 50 as oral and 95 as poster presentations. In addition, ACL-IJCNLP also features 12 presentations of
papers accepted in the Transactions of the Association for Computational Linguistics (TACL).

The submissions were reviewed under different categories and using different review forms for
empirical/data-driven, theoretical, applications/tools, resources/evaluation, and survey papers. This year
we introduced the item “MENTORING” to the review form to indicate whether a paper needs the help
of a mentor in its writing, organization or presentation. For short papers, following up on last year’s
successful experiences, we also welcomed submissions describing negative results. We are glad to see
that the community is becoming more open towards negative results so that such papers have the chance
to be published, so that other researchers do not fall in the same trap.

We view posters as an integral part of ACL-IJCNLP. Half of the papers have been accepted as posters.
Hence, we spent a great deal of time to ensure that the poster session will be a good experience for
poster presenters and their audience. Following last year’s exciting poster session, we also organized
the posters in two large poster sessions to accommodate the high-quality submissions accepted in poster
presentation format. We hope attendees and authors will benefit from this additional time to present and
have more time to discuss with each other.

ACL-IJCNLP 2015 will have two distinguished invited speakers. Marti Hearst (professor at UC Berkeley
in the School of Information and EECS) and Jiawei Han (Abel Bliss Professor at University of Illinois at
Urbana-Champaign). We are grateful that they accepted our invitation.

There are many individuals to thank for their contributions to ACL-IJCNLP 2015. We would like to
thank the 37 area chairs for their hard work on recruiting reviewers, leading the discussion process, and
carefully ranking the submissions. We would also like to thank the 749 primary and the 137 secondary
reviewers on whose efforts we depended to select high-quality and timely scientific work. This year we
specifically acknowledge around 18.2% of the reviewers who went the extra mile and provided extremely
helpful reviews (their names are marked with a * in the organization section of the proceedings). The
ACL coordinating committee members, including Dragomir Radev, Graeme Hirst, Jian Su, and Gertjan
van Noord were invaluable on various issues relating to the organization. We would like to thank the
prior conference chairs Kristina Toutanova and Hua Wu and their predecessors for their advice. We are
very grateful for the guidance and support of the general chair Yuji Matsumoto, to the ACL Business
Manager Priscilla Rasmussen who knew practically everything, to the local chairs Le Sun and Yang Liu,
the publication chairs Wanxiang Che and Guodong Zhou, and webmaster Zhiyuan Liu. We would also
like to thank Jiajun Zhang who helped with reviewer assignment and numerous other tasks. Rich Gerber
and Paolo Gai from Softconf were extremely responsive to all of our requests, and we are grateful for
that.

We are indebted to the best paper award committee which consisted of Eneko Agirre, Tim Baldwin,
Philipp Koehn, Joakim Nivre, and Yue Zhang. They read the candidate papers, ranked them and provided
comments on a very short notice.

We hope you will enjoy ACL-IJCNLP 2015 in Beijing!

ACL-IJCNLP 2015 Program Co-Chairs
Chengqing Zong, Chinese Academy of Sciences
Michael Strube, Heidelberg Institute for Theoretical Studies
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Student Co-Chairs (Student Research Workshop)
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Primary Reviewers

Reviewers who are acknowledged by the program committee for providing one or more outstand-
ing reviews are marked with “*”.

Ahmed Abbasi, Omri Abend*, Stergos Afantenos, Eneko Agirre*, Željko Agić*, Cem Akkaya, Jan
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Alexandersson, Enrique Alfonseca*, Afra Alishahi, Yiannis Aloimonos, David Alvarez-Melis*,
Richard Andersson, Ion Androutsopoulos*, Gabor Angeli*, Yuki Arase*, Cedric Archambeau,
Yasuo Ariki, Ron Artstein*, Yoav Artzi*, Nicholas Asher, Giuseppe Attardi, Michael Auli, AiTi
Aw, Necip Fazil Ayan

Olga Babko-Malaya, JinYeong Bak, Niranjan Balasubramanian, Timothy Baldwin*, Miguel Balles-
teros, David Bamman, Carmen Banea, Srinivas Bangalore, Mohit Bansal, Ken Barker, Marco
Baroni, Loïc Barrault, Regina Barzilay, Roberto Basili, Timo Baumann, Frederic Bechet, Barend
Beekhuizen*, Núria Bel, Anja Belz, Jose Miguel Benedi, Jonathan Berant, Taylor Berg-Kirkpatrick,
Steven Bethard, Suma Bhat*, Archna Bhatia*, Klinton Bicknell, Chris Biemann, Anders Björkelund*,
Alan W Black, Nate Blaylock, John Blitzer, Bernd Bohnet, Dan Bohus*, Ondrej Bojar, Gemma
Boleda*, Kalina Bontcheva, Antoine Bordes, Mihaela Bornea, Johan Bos, Alexandre Bouchard,
Johan Boye, Kristy Boyer, S.R.K. Branavan, António Branco, Chris Brew, Ted Briscoe, Chris
Brockett*, Julian Brooke, Eric Brown, Elia Bruni, Paul Buitelaar, Razvan Bunescu, Harry Bunt,
Jill Burstein, Miriam Butt

Elena Cabrio, Aoife Cahill*, Nicoletta Calzolari, Erik Cambria, Marie Candito, Yunbo Cao, Xavier
Carreras*, Tommaso Caselli, Taylor Cassidy, Vittorio Castelli, Asli Celikyilmaz, Daniel Cer,
Christophe Cerisara, Nathanael Chambers*, Yee Seng Chan, Yi Chang, Wanxiang Che, Box-
ing Chen, Chen Chen, Wenliang Chen, Colin Cherry*, David Chiang, Christian Chiarcos, Laura
Chiticariu*, Eunsol Choi, Jinho D. Choi, Key-Sun Choi, Yejin Choi, Monojit Choudhury, Mun-
mun De Choudhury, Grzegorz Chrupała, Jennifer Chu-Carroll, Cindy Chung, Alexander Clark,
Stephen Clark, Ann Clifton, Moreno Coco*, Shay B. Cohen, Trevor Cohn, Nigel Collier, Gao
Cong, Miriam Connor, John Conroy, Paul Cook*, Bonaventura Coppola, Anna Corazza, Mark
Core, Marta R. Costa-jussà, Danilo Croce, Paul Crook, Tim Van De Cruys, Xiaodong Cui

Robert Daland*, Bharath Dandala, Kareem Darwish, Dipanjan Das, Thierry Declerck, Estelle
Delpech, Vera Demberg, John DeNero, Pascal Denis, Leon Derczynski, David DeVault*, Jacob
Devlin, Mona Diab, Marco Dinarelli, Georgiana Dinu, Stefanie Dipper, Dmitriy Dligach, Simon
Dobnik*, Bill Dolan, Mathew Magimai Doss, Doug Downey, Mark Dras, Mark Dredze*, Markus
Dreyer, Gregory Druck*, Lan Du, Xiangyu Duan, Ewan Dunbar*, Benjamin Van Durme*, Greg
Durrett*, Chris Dyer

Matthias Eck, Jens Edlund, Koji Eguchi, Yo Ehara*, Patrick Ehlen, Vladimir Eidelman, Jacob
Eisenstein, Michael Elhadad*, Desmond Elliott, Klaus-Peter Engelbrecht, Erkut Erdem*, Katrin
Erk*, Maxine Eskenazi

Giuseppe Di Fabbrizio, Anthony Fader*, James Fan, Benoit Favre*, Anna Feldman, Naomi Feld-
man, Raquel Fernandez, Katja Filippova, Nicholas FitzGerald, Darja Fišer, Margaret Fleck, Radu
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Michel Galley, Michael Gamon*, Kuzman Ganchev, Juri Ganitkevitch, Jianfeng Gao, Qin Gao,
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Hale, David Hall, Keith Hall, Bo Han, Xianpei Han, Mark Hasegawa-Johnson*, Hany Hassan,
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Hieu Hoang, Julia Hockenmaier, Johannes Hoffart, Veronique Hoste, Dirk Hovy*, Yuening Hu,
Fei Huang (Facebook), Fei Huang (Temple University), Liang Huang, Ruihong Huang, Xuanjing
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Invited Talk: Can Natural Language Processing Become Natural
LanguageCoaching?

Marti A. Hearst
School of Information and EECS, UC Berkeley

Abstract

How we teach and learn is undergoing a revolution, due to changes in technology and connectiv-
ity. Education may be one of the best application areas for advanced NLP techniques, and NLP
researchers have much to contribute to this problem, especially in the areas of learning to write,
mastery learning, and peer learning. In this talk I consider what happens when we convert natural
language processors into natural language coaches.
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tion, and multiword semantic relations. She wrote the book “Search User Interfaces” (Cambridge)
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in 2014 and 2015.
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Invited Talk: Construction and Mining of Heterogeneous Information
Networks from Text Data

Jiawei Han
Department of Computer Science, University of Illinois at Urbana-Champaign

Abstract

The real-world data are unstructured but interconnected. The majority of such data is in the form
of natural language text. One of the grand challenges is to turn such massive data into actionable
knowledge. In this talk, we present our vision on how to turn massive unstructured, text-rich, but
interconnected data into knowledge. We propose a data-to-network-to-knowledge (i.e., D2N2K)
paradigm, which is to first turn data into relatively structured heterogeneous information networks,
and then mine such text-rich and structure-rich heterogeneous networks to generate useful knowl-
edge. We show why such a paradigm represents a promising direction and present some recent
progress on the development of effective methods for construction and mining of structured het-
erogeneous information networks from text data.
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Eminent Faculty Award at UIUC. His co-authored book “Data Mining: Concepts and Techniques”
has been adopted as a textbook popularly worldwide.
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Ondřej Dušek and Filip Jurcicek

Event-Driven Headline Generation
Rui Sun, Yue Zhang, Meishan Zhang and Donghong Ji

Session 3D: 15:30–16:45 Spoken Language Processing and Understanding

New Transfer Learning Techniques for Disparate Label Sets
Young-Bum Kim, Karl Stratos, Ruhi Sarikaya and Minwoo Jeong

Matrix Factorization with Knowledge Graph Propagation for Unsupervised Spoken
Language Understanding
Yun-Nung Chen, William Yang Wang, Anatole Gershman and Alexander Rudnicky

Efficient Disfluency Detection with Transition-based Parsing
Shuangzhi Wu, Dongdong Zhang, Ming Zhou and Tiejun Zhao

xxxiii



Monday, July 27 (continued)

Session 3E: 15:30–16:45 Information Extraction 3/Information Retrieval

S-MART: Novel Tree-based Structured Learning Algorithms Applied to Tweet Entity
Linking
Yi Yang and Ming-Wei Chang

[TACL] Design Challenges for Entity Linking
Xiao Ling, Sameer Singh, Daniel S. Weld

Entity Retrieval via Entity Factoid Hierarchy
Chunliang Lu, Wai Lam and Yi Liao

16:45–17:00 Short Break

17:00–18:00 Session 4: Short Papers

18:00–21:00 Poster and Dinner Session 1: TACL Papers, Long Papers, System Demonstra-
tions

Session P1.01: 18:00–21:00 Poster: Pragmatics

Encoding Distributional Semantics into Triple-Based Knowledge Ranking for Doc-
ument Enrichment
Muyu Zhang, Bing Qin, Mao Zheng, Graeme Hirst and Ting Liu

A Strategic Reasoning Model for Generating Alternative Answers
Jon Stevens, Anton Benz, Sebastian Reuße and Ralf Klabunde

Modeling Argument Strength in Student Essays
Isaac Persing and Vincent Ng

xxxiv



Monday, July 27 (continued)

Session P1.02: 18:00–21:00 Poster: Information Retrieval

Summarization of Multi-Document Topic Hierarchies using Submodular Mixtures
Ramakrishna Bairi, Rishabh Iyer, Ganesh Ramakrishnan and Jeff Bilmes

Learning to Explain Entity Relationships in Knowledge Graphs
Nikos Voskarides, Edgar Meij, Manos Tsagkias, Maarten de Rijke and Wouter
Weerkamp

Session P1.03: 18:00–21:00 Poster: Information Extraction

[TACL] Exploiting Parallel News Streams for Unsupervised Event Extraction
Congle Zhang, Stephen Soderland, Daniel Weld

Bring you to the past: Automatic Generation of Topically Relevant Event Chronicles
Tao Ge, Wenzhe Pei, Heng Ji, Sujian Li, Baobao Chang and Zhifang Sui

Context-aware Entity Morph Decoding
Boliang Zhang, Hongzhao Huang, Xiaoman Pan, Sujian Li, Chin-Yew Lin, Heng
Ji, Kevin Knight, Zhen Wen, Yizhou Sun, Jiawei Han and Bulent Yener

Multi-Objective Optimization for the Joint Disambiguation of Nouns and Named
Entities
Dirk Weissenborn, Leonhard Hennig, Feiyu Xu and Hans Uszkoreit

Building a Scientific Concept Hierarchy Database (SCHBase)
Eytan Adar and Srayan Datta

Sentiment-Aspect Extraction based on Restricted Boltzmann Machines
Linlin Wang, Kang Liu, Zhu Cao, Jun Zhao and Gerard de Melo

Classifying Relations by Ranking with Convolutional Neural Networks
Cicero dos Santos, Bing Xiang and Bowen Zhou

Semantic Representations for Domain Adaptation: A Case Study on the Tree Kernel-
based Method for Relation Extraction
Thien Huu Nguyen, Barbara Plank and Ralph Grishman

Omnia Mutantur, Nihil Interit: Connecting Past with Present by Finding Corre-
sponding Terms across Time
Yating Zhang, Adam Jatowt, Sourav Bhowmick and Katsumi Tanaka

xxxv



Monday, July 27 (continued)

Negation and Speculation Identification in Chinese Language
Bowei Zou, Qiaoming Zhu and Guodong Zhou

Learning Relational Features with Backward Random Walks
Ni Lao, Einat Minkov and William Cohen

Session P1.04: 18:00–21:00 Poster: Language and Vision

Learning the Semantics of Manipulation Action
Yezhou Yang, Yiannis Aloimonos, Cornelia Fermuller and Eren Erdal Aksoy

Session P1.05: 18:00–21:00 Poster: Language Resources

Knowledge Graph Embedding via Dynamic Mapping Matrix
Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu and Jun Zhao

How Far are We from Fully Automatic High Quality Grammatical Error Correc-
tion?
Christopher Bryant and Hwee Tou Ng

Session P1.06: 18:00–21:00 Poster: Lexical Semantics and Ontology

Knowledge Portability with Semantic Expansion of Ontology Labels
Mihael Arcan, Marco Turchi and Paul Buitelaar

Automatic disambiguation of English puns
Tristan Miller and Iryna Gurevych

Unsupervised Cross-Domain Word Representation Learning
Danushka Bollegala, Takanori Maehara and Ken-ichi Kawarabayashi

A Unified Multilingual Semantic Representation of Concepts
José Camacho-Collados, Mohammad Taher Pilehvar and Roberto Navigli

xxxvi



Monday, July 27 (continued)

Session P1.07: 18:00–21:00 Poster: Linguistic and Psycholinguistic Aspects of
CL

Demographic Factors Improve Classification Performance
Dirk Hovy

Vector-space calculation of semantic surprisal for predicting word pronunciation
duration
Asad Sayeed, Stefan Fischer and Vera Demberg

Session P1.08: 18:00–21:00 Poster: Machine Learning and Topic Modeling

Efficient Methods for Inferring Large Sparse Topic Hierarchies
Doug Downey, Chandra Bhagavatula and Yi Yang

Trans-dimensional Random Fields for Language Modeling
Bin Wang, Zhijian Ou and Zhiqiang Tan

Gaussian LDA for Topic Models with Word Embeddings
Rajarshi Das, Manzil Zaheer and Chris Dyer

Session P1.09: 18:00–21:00 Poster: Machine Translation

Pairwise Neural Machine Translation Evaluation
Francisco Guzmán, Shafiq Joty, Lluís Màrquez and Preslav Nakov

String-to-Tree Multi Bottom-up Tree Transducers
Nina Seemann, Fabienne Braune and Andreas Maletti

Non-linear Learning for Statistical Machine Translation
Shujian Huang, Huadong Chen, Xin-Yu Dai and Jiajun Chen

Unifying Bayesian Inference and Vector Space Models for Improved Decipherment
Qing Dou, Ashish Vaswani, Kevin Knight and Chris Dyer

Non-projective Dependency-based Pre-Reordering with Recurrent Neural Network
for Machine Translation
Antonio Valerio Miceli Barone and Giuseppe Attardi

xxxvii



Monday, July 27 (continued)

Session P1.10: 18:00–21:00 Poster: NLP Applications

Detecting Deceptive Groups Using Conversations and Network Analysis
Dian Yu, Yulia Tyshchuk, Heng Ji and William Wallace

WikiKreator: Improving Wikipedia Stubs Automatically
Siddhartha Banerjee and Prasenjit Mitra

Language to Code: Learning Semantic Parsers for If-This-Then-That Recipes
Chris Quirk, Raymond Mooney and Michel Galley

Deep Questions without Deep Understanding
Igor Labutov, Sumit Basu and Lucy Vanderwende

The NL2KR Platform for building Natural Language Translation Systems
Nguyen Vo, Arindam Mitra and Chitta Baral

Session P1.12: 18:00–21:00 Poster: Morphology

Multiple Many-to-Many Sequence Alignment for Combining String-Valued Vari-
ables: A G2P Experiment
Steffen Eger

Session P1.11: 18:00–21:00 Poster: NLP for the Web and Social Media

Tweet Normalization with Syllables
Ke Xu, Yunqing Xia and Chin-Hui Lee

Improving Named Entity Recognition in Tweets via Detecting Non-Standard Words
Chen Li and Yang Liu

xxxviii



Monday, July 27 (continued)

Session P1.13: 18:00–21:00 Poster: Question Answering

A Unified Kernel Approach for Learning Typed Sentence Rewritings
Martin Gleize and Brigitte Grau

Session P1.14: 18:00–21:00 Poster: Semantics

[TACL] From Visual Attributes to Adjectives through Decompositional Distribu-
tional Semantics
Angeliki Lazaridou, Georgiana Dinu, Adam Liska, Marco Baroni

Perceptually Grounded Selectional Preferences
Ekaterina Shutova, Niket Tandon and Gerard de Melo

Joint Case Argument Identification for Japanese Predicate Argument Structure
Analysis
Hiroki Ouchi, Hiroyuki Shindo, Kevin Duh and Yuji Matsumoto

Jointly optimizing word representations for lexical and sentential tasks with the C-
PHRASE model
Nghia The Pham, Germán Kruszewski, Angeliki Lazaridou and Marco Baroni

Robust Subgraph Generation Improves Abstract Meaning Representation Parsing
Keenon Werling, Gabor Angeli and Christopher D. Manning

Environment-Driven Lexicon Induction for High-Level Instructions
Dipendra Kumar Misra, Kejia Tao, Percy Liang and Ashutosh Saxena

Structural Representations for Learning Relations between Pairs of Texts
Simone Filice, Giovanni Da San Martino and Alessandro Moschitti

xxxix



Monday, July 27 (continued)

Session P1.15: 18:00–21:00 Poster: Sentiment Analysis

[TACL] Joint Modeling of Opinion Expression Extraction and Attribute Classifica-
tion
Bishan Yang and Claire Cardie

Learning Semantic Representations of Users and Products for Document Level Sen-
timent Classification
Duyu Tang, Bing Qin and Ting Liu

Towards Debugging Sentiment Lexicons
Andrew Schneider and Eduard Dragut

Sparse, Contextually Informed Models for Irony Detection: Exploiting User Com-
munities, Entities and Sentiment
Byron C. Wallace, Do Kook Choe and Eugene Charniak

Sentence-level Emotion Classification with Label and Context Dependence
Shoushan Li, Lei Huang, Rong Wang and Guodong Zhou

Co-training for Semi-supervised Sentiment Classification Based on Dual-view
Bags-of-words Representation
Rui Xia, Cheng Wang, Xin-Yu Dai and Tao Li

Improving social relationships in face-to-face human-agent interactions: when the
agent wants to know user’s likes and dislikes
Caroline Langlet and Chloé Clavel

Learning Word Representations from Scarce and Noisy Data with Embedding Sub-
spaces
Ramón Astudillo, Silvio Amir, Wang Ling, Mario Silva and Isabel Trancoso

xl



Monday, July 27 (continued)

Session P1.16: 18:00–21:00 Poster: Spoken Language Processing

Automatic Spontaneous Speech Grading: A Novel Feature Derivation Technique
using the Crowd
Vinay Shashidhar, Nishant Pandey and Varun Aggarwal

Driving ROVER with Segment-based ASR Quality Estimation
Shahab Jalalvand, Matteo Negri, Falavigna Daniele and Marco Turchi

Session P1.17: 18:00–21:00 Poster: Natural Language Generation

A Hierarchical Neural Autoencoder for Paragraphs and Documents
Jiwei Li, Thang Luong and Dan Jurafsky

Session P1.18: 18:00–21:00 Poster: Tagging, Chunking, Parsing

[TACL]Domain Adaptation for Syntactic and Semantic Dependency Parsing Using
Deep Belief Networks
Haitong Yang, Tao Zhuang, Chengqing Zong

Joint Dependency Parsing and Multiword Expression Tokenization
Alexis Nasr, Carlos Ramisch, José Deulofeu and André Valli

End-to-end learning of semantic role labeling using recurrent neural networks
Jie Zhou and Wei Xu

Feature Optimization for Constituent Parsing via Neural Networks
Zhiguo Wang, Haitao Mi and Nianwen Xue

Identifying Cascading Errors using Constraints in Dependency Parsing
Dominick Ng and James R. Curran

A Re-ranking Model for Dependency Parser with Recursive Convolutional Neural
Network
Chenxi Zhu, Xipeng Qiu, Xinchi Chen and Xuanjing Huang

Transition-based Neural Constituent Parsing
Taro Watanabe and Eiichiro Sumita

xli



Monday, July 27 (continued)

Feature Selection in Kernel Space: A Case Study on Dependency Parsing
Xian Qian and Yang Liu

Semantic Role Labeling Improves Incremental Parsing
Ioannis Konstas and Frank Keller

Discontinuous Incremental Shift-reduce Parsing
Wolfgang Maier

A Neural Probabilistic Structured-Prediction Model for Transition-Based Depen-
dency Parsing
Hao Zhou, Yue Zhang, Shujian Huang and Jiajun Chen

Parsing Paraphrases with Joint Inference
Do Kook Choe and David McClosky

Cross-lingual Dependency Parsing Based on Distributed Representations
Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng Wang and Ting Liu

Tuesday, July 28

07:30–18:00 Registration

09:00–10:00 Keynote Address: “Can Natural Language Processing Become Natural Lan-
guage Coaching?” - Marti A. Hearst

Can Natural Language Processing Become Natural Language Coaching?
Marti A. Hearst

xlii



Tuesday, July 28 (continued)

10:00–10:30 Coffee Break

10:30–12:00 Session 5: Short Papers

12:00–13:30 Lunch Break

13:30–14:45 Session 6: Long Papers

Session 6A: 13:30–14:45 Discourse, Pragmatics

Machine Comprehension with Discourse Relations
Karthik Narasimhan and Regina Barzilay

Implicit Role Linking on Chinese Discourse: Exploiting Explicit Roles and Frame-
to-Frame Relations
Ru Li, Juan Wu, Zhiqiang Wang and Qinghua Chai

Discourse-sensitive Automatic Identification of Generic Expressions
Annemarie Friedrich and Manfred Pinkal

Session 6B: 13:30–14:45 Machine Learning: Embeddings

Model-based Word Embeddings from Decompositions of Count Matrices
Karl Stratos, Michael Collins and Daniel Hsu

Entity Hierarchy Embedding
Zhiting Hu, Poyao Huang, Yuntian Deng, Yingkai Gao and Eric Xing

Orthogonality of Syntax and Semantics within Distributional Spaces
Jeff Mitchell and Mark Steedman

xliii



Tuesday, July 28 (continued)

Session 6C: 13:30–14:45 Semantics: Semantic Parsing

Scalable Semantic Parsing with Partial Ontologies
Eunsol Choi, Tom Kwiatkowski and Luke Zettlemoyer

Semantic Parsing via Staged Query Graph Generation: Question Answering with
Knowledge Base
Wen-tau Yih, Ming-Wei Chang, Xiaodong He and Jianfeng Gao

Building a Semantic Parser Overnight
Yushi Wang, Jonathan Berant and Percy Liang

Session 6D: 13:30–14:45 Sentiment Analysis: Learning

Predicting Polarities of Tweets by Composing Word Embeddings with Long Short-
Term Memory
Xin Wang, Yuanchao Liu, Chengjie SUN, Baoxun Wang and Xiaolong Wang

Topic Modeling based Sentiment Analysis on Social Media for Stock Market Pre-
diction
Thien Hai Nguyen and Kiyoaki Shirai

Learning Tag Embeddings and Tag-specific Composition Functions in Recursive
Neural Network
Qiao Qian, Bo Tian, Minlie Huang, Yang Liu, Xuan Zhu and Xiaoyan Zhu

Session 6E: 13:30–14:45 Grammar Induction and Annotation

A convex and feature-rich discriminative approach to dependency grammar induc-
tion
Edouard Grave and Noémie Elhadad

Parse Imputation for Dependency Annotations
Jason Mielens, Liang Sun and Jason Baldridge

Probing the Linguistic Strengths and Limitations of Unsupervised Grammar Induc-
tion
Yonatan Bisk and Julia Hockenmaier

xliv



Tuesday, July 28 (continued)

14:45–15:15 Coffee Break

15:15–16:30 Session 7: TACL and Long Papers

Session 7A: 15:15–16:30 Discourse, Coreference

Entity-Centric Coreference Resolution with Model Stacking
Kevin Clark and Christopher D. Manning

Learning Anaphoricity and Antecedent Ranking Features for Coreference Resolu-
tion
Sam Wiseman, Alexander M. Rush, Stuart Shieber and Jason Weston

Transferring Coreference Resolvers with Posterior Regularization
André F. T. Martins

Session 7B: 15:15–16:30 Topic Modeling

Tea Party in the House: A Hierarchical Ideal Point Topic Model and Its Application
to Republican Legislators in the 112th Congress
Viet-An Nguyen, Jordan Boyd-Graber, Philip Resnik and Kristina Miler

KB-LDA: Jointly Learning a Knowledge Base of Hierarchy, Relations, and Facts
Dana Movshovitz-Attias and William W. Cohen

A Computationally Efficient Algorithm for Learning Topical Collocation Models
Zhendong Zhao, Lan Du, Benjamin Börschinger, John K Pate, Massimiliano Cia-
ramita, Mark Steedman and Mark Johnson

xlv



Tuesday, July 28 (continued)

Session 7C: 15:15–16:30 Semantics: Semantic Parsing

[TACL] Efficient Inference and Structured Learning for Semantic Role Labeling
Oscar Täckström, Kuzman Ganchev, Dipanjan Das

Compositional Semantic Parsing on Semi-Structured Tables
Panupong Pasupat and Percy Liang

Graph parsing with s-graph grammars
Jonas Groschwitz, Alexander Koller and Christoph Teichmann

Session 7D: 15:15–16:30 Lexical Semantics

Sparse Overcomplete Word Vector Representations
Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris Dyer and Noah A. Smith

Learning Semantic Word Embeddings based on Ordinal Knowledge Constraints
Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling and Yu Hu

Adding Semantics to Data-Driven Paraphrasing
Ellie Pavlick, Johan Bos, Malvina Nissim, Charley Beller, Benjamin Van Durme
and Chris Callison-Burch

Session 7E: 15:15–16:30 Parsing

Parsing as Reduction
Daniel Fernández-González and André F. T. Martins

Optimal Shift-Reduce Constituent Parsing with Structured Perceptron
Le Quang Thang, Hiroshi Noji and Yusuke Miyao

A Data-Driven, Factorization Parser for CCG Dependency Structures
Yantao Du, Weiwei Sun and Xiaojun Wan

xlvi



Tuesday, July 28 (continued)

16:30–19:30 Poster and Dinner Session 2: Short Papers, Student Research Workshop Pa-
pers

19:45–22:00 Social Event

Wednesday, July 29

07:30–18:00 Registration

09:00–10:00 Keynote Address: “Construction and Mining of Heterogenous Information
Networks from Data” - Jiawei Han

10:00–10:30 Coffee Break

10:30–11:45 Session 8: Long Papers

Session 8A: 10:30–11:45 Machine Learning: Neural Networks

Improved Semantic Representations From Tree-Structured Long Short-Term Mem-
ory Networks
Kai Sheng Tai, Richard Socher and Christopher D. Manning

genCNN: A Convolutional Architecture for Word Sequence Prediction
Mingxuan Wang, Zhengdong Lu, Hang Li, Wenbin Jiang and Qun Liu

Neural Responding Machine for Short-Text Conversation
Lifeng Shang, Zhengdong Lu and Hang Li

xlvii



Wednesday, July 29 (continued)

Session 8B: 10:30–11:45 Automatic Summarization

Abstractive Multi-Document Summarization via Phrase Selection and Merging
Lidong Bing, Piji Li, Yi Liao, Wai Lam, Weiwei Guo and Rebecca Passonneau

Joint Graphical Models for Date Selection in Timeline Summarization
Giang Tran, Eelco Herder and Katja Markert

Predicting Salient Updates for Disaster Summarization
Chris Kedzie, Kathleen McKeown and Fernando Diaz

Session 8C: 10:30–11:45 Linguistic and Psycholinguistic Aspects of NLP

Unsupervised Prediction of Acceptability Judgements
Jey Han Lau, Alexander Clark and Shalom Lappin

A Frame of Mind: Using Statistical Models for Detection of Framing and Agenda
Setting Campaigns
Oren Tsur, Dan Calacci and David Lazer

Why discourse affects speakers’ choice of referring expressions
Naho Orita, Eliana Vornov, Naomi Feldman and Hal Daumé III

Session 8D: 10:30–11:45 NLP for the Web: Social Media

Linguistic Harbingers of Betrayal: A Case Study on an Online Strategy Game
Vlad Niculae, Srijan Kumar, Jordan Boyd-Graber and Cristian Danescu-Niculescu-
Mizil

Who caught a cold ? - Identifying the subject of a symptom
Shin Kanouchi, Mamoru Komachi, Naoaki Okazaki, Eiji ARAMAKI and Hiroshi
Ishikawa

Weakly Supervised Role Identification in Teamwork Interactions
Diyi Yang, Miaomiao Wen and Carolyn Rose

xlviii



Wednesday, July 29 (continued)

Session 8E: 10:30–11:45 Text Categorization/Information Retrieval

Deep Unordered Composition Rivals Syntactic Methods for Text Classification
Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber and Hal Daumé III

SOLAR: Scalable Online Learning Algorithms for Ranking
Jialei Wang, Ji Wan, Yongdong Zhang and Steven Hoi

Text Categorization as a Graph Classification Problem
Francois Rousseau, Emmanouil Kiagias and Michalis Vazirgiannis

11:45–13:00 Lunch Break

13:00–14:30 ACL Business Meeting

14:35–15:25 Session 9: TACL and Long papers

Session 9A: 14:35–15:25 Multilinguality

Inverted indexing for cross-lingual NLP
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Sébastien Jean Kyunghyun Cho
Roland Memisevic
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Abstract

Neural machine translation, a recently
proposed approach to machine transla-
tion based purely on neural networks,
has shown promising results compared to
the existing approaches such as phrase-
based statistical machine translation. De-
spite its recent success, neural machine
translation has its limitation in handling
a larger vocabulary, as training complex-
ity as well as decoding complexity in-
crease proportionally to the number of tar-
get words. In this paper, we propose
a method based on importance sampling
that allows us to use a very large target vo-
cabulary without increasing training com-
plexity. We show that decoding can be
efficiently done even with the model hav-
ing a very large target vocabulary by se-
lecting only a small subset of the whole
target vocabulary. The models trained
by the proposed approach are empirically
found to match, and in some cases out-
perform, the baseline models with a small
vocabulary as well as the LSTM-based
neural machine translation models. Fur-
thermore, when we use an ensemble of
a few models with very large target vo-
cabularies, we achieve performance com-
parable to the state of the art (measured
by BLEU) on both the English→German
and English→French translation tasks of
WMT’14.

1 Introduction

Neural machine translation (NMT) is a recently
introduced approach to solving machine transla-
tion (Kalchbrenner and Blunsom, 2013; Bahdanau
et al., 2015; Sutskever et al., 2014). In neural ma-
chine translation, one builds a single neural net-
work that reads a source sentence and generates

its translation. The whole neural network is jointly
trained to maximize the conditional probability of
a correct translation given a source sentence, us-
ing the bilingual corpus. The NMT models have
shown to perform as well as the most widely used
conventional translation systems (Sutskever et al.,
2014; Bahdanau et al., 2015).

Neural machine translation has a number of
advantages over the existing statistical machine
translation system, specifically, the phrase-based
system (Koehn et al., 2003). First, NMT requires
a minimal set of domain knowledge. For instance,
all of the models proposed in (Sutskever et al.,
2014), (Bahdanau et al., 2015) or (Kalchbrenner
and Blunsom, 2013) do not assume any linguis-
tic property in both source and target sentences
except that they are sequences of words. Sec-
ond, the whole system is jointly trained to maxi-
mize the translation performance, unlike the exist-
ing phrase-based system which consists of many
separately trained features whose weights are then
tuned jointly. Lastly, the memory footprint of the
NMT model is often much smaller than the exist-
ing system which relies on maintaining large ta-
bles of phrase pairs.

Despite these advantages and promising results,
there is a major limitation in NMT compared to
the existing phrase-based approach. That is, the
number of target words must be limited. This is
mainly because the complexity of training and us-
ing an NMT model increases as the number of tar-
get words increases.

A usual practice is to construct a target vo-
cabulary of the K most frequent words (a so-
called shortlist), where K is often in the range of
30k (Bahdanau et al., 2015) to 80k (Sutskever et
al., 2014). Any word not included in this vocab-
ulary is mapped to a special token representing
an unknown word [UNK]. This approach works
well when there are only a few unknown words
in the target sentence, but it has been observed
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that the translation performance degrades rapidly
as the number of unknown words increases (Cho
et al., 2014a; Bahdanau et al., 2015).

In this paper, we propose an approximate train-
ing algorithm based on (biased) importance sam-
pling that allows us to train an NMT model with
a much larger target vocabulary. The proposed al-
gorithm effectively keeps the computational com-
plexity during training at the level of using only
a small subset of the full vocabulary. Once
the model with a very large target vocabulary is
trained, one can choose to use either all the target
words or only a subset of them.

We compare the proposed algorithm against the
baseline shortlist-based approach in the tasks of
English→French and English→German transla-
tion using the NMT model introduced in (Bah-
danau et al., 2015). The empirical results demon-
strate that we can potentially achieve better trans-
lation performance using larger vocabularies, and
that our approach does not sacrifice too much
speed for both training and decoding. Further-
more, we show that the model trained with this al-
gorithm gets the best translation performance yet
achieved by single NMT models on the WMT’14
English→French translation task.

2 Neural Machine Translation and
Limited Vocabulary Problem

In this section, we briefly describe an approach
to neural machine translation proposed recently in
(Bahdanau et al., 2015). Based on this descrip-
tion we explain the issue of limited vocabularies
in neural machine translation.

2.1 Neural Machine Translation
Neural machine translation is a recently proposed
approach to machine translation, which uses a sin-
gle neural network trained jointly to maximize
the translation performance (Forcada and Ñeco,
1997; Kalchbrenner and Blunsom, 2013; Cho et
al., 2014b; Sutskever et al., 2014; Bahdanau et al.,
2015).

Neural machine translation is often imple-
mented as the encoder–decoder network. The en-
coder reads the source sentence x = (x1, . . . , xT )
and encodes it into a sequence of hidden states
h = (h1, · · · , hT ):

ht = f (xt, ht−1) . (1)

Then, the decoder, another recurrent neural net-
work, generates a corresponding translation y =

(y1, · · · , yT ′) based on the encoded sequence of
hidden states h:

p(yt | y<t, x) ∝ exp {q (yt−1, zt, ct)} , (2)

where

zt = g (yt−1, zt−1, ct) , (3)

ct = r (zt−1, h1, . . . , hT ) , (4)

and y<t = (y1, . . . , yt−1).
The whole model is jointly trained to maximize

the conditional log-probability of the correct trans-
lation given a source sentence with respect to the
parameters θ of the model:

θ∗ = arg max
θ

N∑
n=1

Tn∑
t=1

log p(ynt | yn<t, xn),

where (xn, yn) is the n-th training pair of sen-
tences, and Tn is the length of the n-th target sen-
tence (yn).

2.1.1 Detailed Description
In this paper, we use a specific implementation of
neural machine translation that uses an attention
mechanism, as recently proposed in (Bahdanau et
al., 2015).

In (Bahdanau et al., 2015), the encoder in
Eq. (1) is implemented by a bi-directional recur-
rent neural network such that

ht =
[←−
h t;
−→
h t

]
,

where

←−
h t = f

(
xt,
←−
h t+1

)
,
−→
h t = f

(
xt,
−→
h t−1

)
.

They used a gated recurrent unit for f (see, e.g.,
(Cho et al., 2014b)).

The decoder, at each time, computes the con-
text vector ct as a convex sum of the hidden states
(h1, . . . , hT ) with the coefficients α1, . . . , αT
computed by

αt =
exp {a (ht, zt−1)}∑
k exp {a (hk, zt−1)} , (5)

where a is a feedforward neural network with a
single hidden layer.

A new hidden state zt of the decoder in Eq. (3) is
computed based on the previous hidden state zt−1,
previous generated symbol yt−1 and the computed
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context vector ct. The decoder also uses the gated
recurrent unit, as the encoder does.

The probability of the next target word in
Eq. (2) is then computed by

p(yt | y<t, x) =
1
Z

exp
{
w>t φ (yt−1, zt, ct) + bt

}
,

(6)

where φ is an affine transformation followed by
a nonlinear activation, and wt and bt are respec-
tively the target word vector and the target word
bias. Z is the normalization constant computed by

Z =
∑

k:yk∈V
exp

{
w>k φ (yt−1, zt, ct) + bk

}
, (7)

where V is the set of all the target words.
For the detailed description of the implementa-

tion, we refer the reader to the appendix of (Bah-
danau et al., 2015).

2.2 Limited Vocabulary Issue and
Conventional Solutions

One of the main difficulties in training this neu-
ral machine translation model is the computational
complexity involved in computing the target word
probability (Eq. (6)). More specifically, we need
to compute the dot product between the feature
φ (yt−1, zt, ct) and the word vector wt as many
times as there are words in a target vocabulary in
order to compute the normalization constant (the
denominator in Eq. (6)). This has to be done for,
on average, 20–30 words per sentence, which eas-
ily becomes prohibitively expensive even with a
moderate number of possible target words. Fur-
thermore, the memory requirement grows linearly
with respect to the number of target words. This
has been a major hurdle for neural machine trans-
lation, compared to the existing non-parametric
approaches such as phrase-based translation sys-
tems.

Recently proposed neural machine translation
models, hence, use a shortlist of 30k to 80k most
frequent words (Bahdanau et al., 2015; Sutskever
et al., 2014). This makes training more feasible,
but comes with a number of problems. First of all,
the performance of the model degrades heavily if
the translation of a source sentence requires many
words that are not included in the shortlist (Cho
et al., 2014a). This also affects the performance
evaluation of the system which is often measured
by BLEU. Second, the first issue becomes more

problematic with languages that have a rich set of
words such as German or other highly inflected
languages.

There are two model-specific approaches to this
issue of large target vocabulary. The first approach
is to stochastically approximate the target word
probability. This has been proposed recently in
(Mnih and Kavukcuoglu, 2013; Mikolov et al.,
2013) based on noise-contrastive estimation (Gut-
mann and Hyvarinen, 2010). In the second ap-
proach, the target words are clustered into multi-
ple classes, or hierarchical classes, and the target
probability p(yt|y<t, x) is factorized as a product
of the class probability p(ct|y<t, x) and the intra-
class word probability p(yt|ct, y<t, x). This re-
duces the number of required dot-products into the
sum of the number of classes and the words in a
class. These approaches mainly aim at reducing
the computational complexity during training, but
do not often result in speed-up when decoding a
translation during test time.1

Other than these model-specific approaches,
there exist translation-specific approaches. A
translation-specific approach exploits the proper-
ties of the rare target words. For instance, Luong
et al. proposed such an approach for neural ma-
chine translation (Luong et al., 2015). They re-
place rare words (the words that are not included
in the shortlist) in both source and target sentences
into corresponding 〈OOVn〉 tokens using the word
alignment model. Once a source sentence is trans-
lated, each 〈OOVn〉 in the translation will be re-
placed based on the source word marked by the
corresponding 〈OOVn〉.

It is important to note that the model-
specific approaches and the translation-specific
approaches are often complementary and can be
used together to further improve the translation
performance and reduce the computational com-
plexity.

3 Approximate Learning Approach to
Very Large Target Vocabulary

3.1 Description

In this paper, we propose a model-specific ap-
proach that allows us to train a neural machine
translation model with a very large target vocab-
ulary. With the proposed approach, the compu-

1This is due to the fact that the beam search requires the
conditional probability of every target word at each time step
regardless of the parametrization of the output probability.
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tational complexity of training becomes constant
with respect to the size of the target vocabulary.
Furthermore, the proposed approach allows us to
efficiently use a fast computing device with lim-
ited memory, such as a GPU, to train a neural ma-
chine translation model with a much larger target
vocabulary.

As mentioned earlier, the computational inef-
ficiency of training a neural machine translation
model arises from the normalization constant in
Eq. (6). In order to avoid the growing complex-
ity of computing the normalization constant, we
propose here to use only a small subset V ′ of the
target vocabulary at each update. The proposed
approach is based on the earlier work of (Bengio
and Sénécal, 2008).

Let us consider the gradient of the log-
probability of the output in Eq. (6). The gradient
is composed of a positive and negative part:

∇ log p(yt | y<t, x) (8)

=∇E(yt)−
∑

k:yk∈V
p(yk | y<t, x)∇E(yk),

where we define the energy E as

E(yj) = w>j φ (yj−1, zj , cj) + bj .

The second, or negative, term of the gradient is in
essence the expected gradient of the energy:

EP [∇E(y)] , (9)

where P denotes p(y | y<t, x).
The main idea of the proposed approach is to

approximate this expectation, or the negative term
of the gradient, by importance sampling with a
small number of samples. Given a predefined pro-
posal distribution Q and a set V ′ of samples from
Q, we approximate the expectation in Eq. (9) with

EP [∇E(y)] ≈
∑

k:yk∈V ′

ωk∑
k′:yk′∈V ′ ωk′

∇E(yk),

(10)

where

ωk = exp {E(yk)− logQ(yk)} . (11)

This approach allows us to compute the normal-
ization constant during training using only a small
subset of the target vocabulary, resulting in much
lower computational complexity for each param-
eter update. Intuitively, at each parameter update,

we update only the vectors associated with the cor-
rect word wt and with the sampled words in V ′.
Once training is over, we can use the full target vo-
cabulary to compute the output probability of each
target word.

Although the proposed approach naturally ad-
dresses the computational complexity, using this
approach naively does not guarantee that the num-
ber of parameters being updated for each sen-
tence pair, which includes multiple target words,
is bounded nor can be controlled. This becomes
problematic when training is done, for instance,
on a GPU with limited memory.

In practice, hence, we partition the training cor-
pus and define a subset V ′ of the target vocabu-
lary for each partition prior to training. Before
training begins, we sequentially examine each tar-
get sentence in the training corpus and accumulate
unique target words until the number of unique tar-
get words reaches the predefined threshold τ . The
accumulated vocabulary will be used for this par-
tition of the corpus during training. We repeat this
until the end of the training set is reached. Let us
refer to the subset of target words used for the i-th
partition by V ′i .

This may be understood as having a separate
proposal distribution Qi for each partition of the
training corpus. The distribution Qi assigns equal
probability mass to all the target words included in
the subset V ′i , and zero probability mass to all the
other words, i.e.,

Qi(yk) =


1

|V ′
i | if yt ∈ V ′i

0 otherwise.

This choice of proposal distribution cancels out
the correction term − logQ(yk) from the impor-
tance weight in Eqs. (10)–(11), which makes the
proposed approach equivalent to approximating
the exact output probability in Eq. (6) with

p(yt | y<t, x)

=
exp

{
w>t φ (yt−1, zt, ct) + bt

}∑
k:yk∈V ′ exp

{
w>k φ (yt−1, zt, ct) + bk

} .
It should be noted that this choice of Q makes the
estimator biased.

The proposed procedure results in speed up
against usual importance sampling, as it exploits
the advantage of modern computers in doing
matrix-matrix vs matrix-vector multiplications.
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3.1.1 Informal Discussion on Consequence

The parametrization of the output probability in
Eq. (6) can be understood as arranging the vectors
associated with the target words such that the dot
product between the most likely, or correct, target
word’s vector and the current hidden state is max-
imized. The exponentiation followed by normal-
ization is simply a process in which the dot prod-
ucts are converted into proper probabilities.

As learning continues, therefore, the vectors of
all the likely target words tend to align with each
other but not with the others. This is achieved ex-
actly by moving the vector of the correct word in
the direction of φ (yt−1, zt, ct), while pushing all
the other vectors away, which happens when the
gradient of the logarithm of the exact output prob-
ability in Eq. (6) is maximized. Our approximate
approach, instead, moves the word vectors of the
correct words and of only a subset of sampled tar-
get words (those included in V ′).

3.2 Decoding

Once the model is trained using the proposed ap-
proximation, we can use the full target vocabulary
when decoding a translation given a new source
sentence. Although this is advantageous as it al-
lows the trained model to utilize the whole vocab-
ulary when generating a translation, doing so may
be too computationally expensive, e.g., for real-
time applications.

Since training puts the target word vectors in the
space so that they align well with the hidden state
of the decoder only when they are likely to be a
correct word, we can use only a subset of candi-
date target words during decoding. This is similar
to what we do during training, except that at test
time, we do not have access to a set of correct tar-
get words.

The most naı̈ve way to select a subset of candi-
date target words is to take only the top-K most
frequent target words, where K can be adjusted to
meet the computational requirement. This, how-
ever, effectively cancels out the whole purpose of
training a model with a very large target vocabu-
lary. Instead, we can use an existing word align-
ment model to align the source and target words in
the training corpus and build a dictionary. With the
dictionary, for each source sentence, we construct
a target word set consisting of the K-most fre-
quent words (according to the estimated unigram
probability) and, using the dictionary, at most K ′

likely target words for each source word. K and
K ′ may be chosen either to meet the computa-
tional requirement or to maximize the translation
performance on the development set. We call a
subset constructed in either of these ways a candi-
date list.

3.3 Source Words for Unknown Words
In the experiments, we evaluate the proposed ap-
proach with the neural machine translation model
called RNNsearch (Bahdanau et al., 2015) (see
Sec. 2.1.1). In this model, as a part of decoding
process, we obtain the alignments between the tar-
get words and source locations via the alignment
model in Eq. (5).

We can use this feature to infer the source word
to which each target word was most aligned (in-
dicated by the largest αt in Eq. (5)). This is
especially useful when the model generated an
[UNK] token. Once a translation is generated
given a source sentence, each [UNK] may be re-
placed using a translation-specific technique based
on the aligned source word. For instance, in the
experiment, we try replacing each [UNK] token
with the aligned source word or its most likely
translation determined by another word alignment
model. Other techniques such as transliteration
may also be used to further improve the perfor-
mance (Koehn, 2010).

4 Experiments

We evaluate the proposed approach in
English→French and English→German trans-
lation tasks. We trained the neural machine
translation models using only the bilingual, paral-
lel corpora made available as a part of WMT’14.
For each pair, the datasets we used are:

• English→French:2

– Common Crawl
– News Commentary
– Gigaword
– Europarl v7
– UN

• English→German:
– Common Crawl
– News Commentary
– Europarl v7

2The preprocessed data can be found and down-
loaded from http://www-lium.univ-lemans.fr/
˜schwenk/nnmt-shared-task/README.
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English-French English-German
Train Test Train Test

15k 93.5 90.8 88.5 83.8
30k 96.0 94.6 91.8 87.9
50k 97.3 96.3 93.7 90.4
500k 99.5 99.3 98.4 96.1
All 100.0 99.6 100.0 97.3

Table 1: Data coverage (in %) on target-side cor-
pora for different vocabulary sizes. ”All” refers to
all the tokens in the training set.

To ensure fair comparison, the English→French
corpus, which comprises approximately 12 mil-
lion sentences, is identical to the one used in
(Kalchbrenner and Blunsom, 2013; Bahdanau
et al., 2015; Sutskever et al., 2014). As for
English→German, the corpus was preprocessed,
in a manner similar to (Peitz et al., 2014; Li et al.,
2014), in order to remove many poorly translated
sentences.

We evaluate the models on the WMT’14 test
set (news-test 2014),3 while the concatenation
of news-test-2012 and news-test-2013 is used
for model selection (development set). Table 1
presents data coverage w.r.t. the vocabulary size,
on the target side.

Unless mentioned otherwise, all reported BLEU
scores (Papineni et al., 2002) are computed with
the multi-bleu.perl script4 on the cased tokenized
translations.

4.1 Settings

As a baseline for English→French translation, we
use the RNNsearch model proposed by (Bah-
danau et al., 2015), with 30k source and target
words.5 Another RNNsearch model is trained for
English→German translation with 50k source and
target words.

For each language pair, we train another set
of RNNsearch models with much larger vocab-
ularies of 500k source and target words, using
the proposed approach. We call these models
RNNsearch-LV. We vary the size of the short-
list used during training (τ in Sec. 3.1). We tried

3To compare with previous submissions, we use the fil-
tered test sets.

4https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

5The authors of (Bahdanau et al., 2015) gave us access to
their trained models. We chose the best one on the validation
set and resumed training.

15k and 30k for English→French, and 15k and
50k for English→German. We later report the re-
sults for the best performance on the development
set, with models generally evaluated every twelve
hours. The training speed is approximately the
same as for RNNsearch. Using a 780 Ti or Titan
Black GPU, we could process 100k mini-batches
of 80 sentences in about 29 and 39 hours respec-
tively for τ = 15k and τ = 50k.

For both language pairs, we also trained new
models, with τ = 15k and τ = 50k, by reshuffling
the dataset at the beginning of each epoch. While
this causes a non-negligible amount of overhead,
such a change allows words to be contrasted with
different sets of other words each epoch.

To stabilize parameters other than the word em-
beddings, at the end of the training stage, we
freeze the word embeddings and tune only the
other parameters for approximately two more days
after the peak performance on the development set
is observed. This helped increase BLEU scores on
the development set.

We use beam search to generate a translation
given a source. During beam search, we keep
a set of 12 hypotheses and normalize probabili-
ties by the length of the candidate sentences, as in
(Cho et al., 2014a).6 The candidate list is chosen
to maximize the performance on the development
set, for K ∈ {15k, 30k, 50k} and K ′ ∈ {10, 20}.
As explained in Sec. 3.2, we test using a bilin-
gual dictionary to accelerate decoding and to re-
place unknown words in translations. The bilin-
gual dictionary is built using fast align (Dyer et
al., 2013). We use the dictionary only if a word
starts with a lowercase letter, and otherwise, we
copy the source word directly. This led to better
performance on the development sets.

Note on ensembles For each language pair, we
began training four models from each of which
two points corresponding to the best and second-
best performance on the development set were col-
lected. We continued training from each point,
while keeping the word embeddings fixed, until
the best development performance was reached,
and took the model at this point as a single model
in an ensemble. This procedure resulted in a to-
tal of eight models from which we averaged the
length-normalized log-probabilities. Since much
of training had been shared, the composition of

6These experimental details differ from (Bahdanau et al.,
2015).
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RNNsearch RNNsearch-LV Google Phrase-based SMT
Basic NMT 29.97 (26.58) 32.68 (28.76) 30.6?

33.3∗ 37.03•
+Candidate List – 33.36 (29.32) –
+UNK Replace 33.08 (29.08) 34.11 (29.98) 33.1◦

+Reshuffle (τ=50k) – 34.60 (30.53) –
+Ensemble – 37.19 (31.98) 37.5◦

(a) English→French

RNNsearch RNNsearch-LV Phrase-based SMT
Basic NMT 16.46 (17.13) 16.95 (17.85)

20.67�
+Candidate List – 17.46 (18.00)

+UNK Replace 18.97 (19.16) 18.89 (19.03)

+Reshuffle – 19.40 (19.37)

+Ensemble – 21.59 (21.06)
(b) English→German

Table 2: The translation performances in BLEU obtained by different models on (a) English→French and
(b) English→German translation tasks. RNNsearch is the model proposed in (Bahdanau et al., 2015),
RNNsearch-LV is the RNNsearch trained with the approach proposed in this paper, and Google is the
LSTM-based model proposed in (Sutskever et al., 2014). Unless mentioned otherwise, we report single-
model RNNsearch-LV scores using τ = 30k (English→French) and τ = 50k (English→German).
For the experiments we have run ourselves, we show the scores on the development set as well in the
brackets. (?) (Sutskever et al., 2014), (◦) (Luong et al., 2015), (•) (Durrani et al., 2014), (∗) Standard
Moses Setting (Cho et al., 2014b), (�) (Buck et al., 2014).

such ensembles may be sub-optimal. This is sup-
ported by the fact that higher cross-model BLEU
scores (Freitag et al., 2014) are observed for mod-
els that were partially trained together.

4.2 Translation Performance

In Table 2, we present the results obtained by the
trained models with very large target vocabular-
ies, and alongside them, the previous results re-
ported in (Sutskever et al., 2014), (Luong et al.,
2015), (Buck et al., 2014) and (Durrani et al.,
2014). Without translation-specific strategies, we
can clearly see that the RNNsearch-LV outper-
forms the baseline RNNsearch.

In the case of the English→French task,
RNNsearch-LV approached the performance level
of the previous best single neural machine transla-
tion (NMT) model, even without any translation-
specific techniques (Sec. 3.2–3.3). With these,
however, the RNNsearch-LV outperformed it. The
performance of the RNNsearch-LV is also better
than that of a standard phrase-based translation
system (Cho et al., 2014b). Furthermore, by com-
bining 8 models, we were able to achieve a trans-
lation performance comparable to the state of the
art, measured in BLEU.

For English→German, the RNNsearch-LV out-

performed the baseline before unknown word re-
placement, but after doing so, the two systems per-
formed similarly. We could reach higher large-
vocabulary single-model performance by reshuf-
fling the dataset, but this step could potentially
also help the baseline. In this case, we were able
to surpass the previously reported best translation
result on this task by building an ensemble of 8
models.

With τ = 15k, the RNNsearch-LV performance
worsened a little, with best BLEU scores, with-
out reshuffling, of 33.76 and 18.59 respectively for
English→French and English→German.

The English→German ensemble described in
this paper has also been used for the shared trans-
lation task of the 10th Workshop on Statistical Ma-
chine Translation (WMT’15), where it was ranked
first in terms of BLEU score. The translations by
this ensemble can be found online.7

4.3 Analysis

4.3.1 Decoding Speed
In Table 3, we present the timing information of
decoding for different models. Clearly, decoding
from RNNsearch-LV with the full target vocab-

7http://matrix.statmt.org/matrix/
output/1774?run_id=4079
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CPU? GPU◦

RNNsearch 0.09 s 0.02 s
RNNsearch-LV 0.80 s 0.25 s
RNNsearch-LV

0.12 s 0.05 s
+Candidate list

Table 3: The average per-word decoding time.
Decoding here does not include parameter load-
ing and unknown word replacement. The baseline
uses 30k words. The candidate list is built with
K = 30k and K ′ = 10. (?) i7-4820K (single
thread), (◦) GTX TITAN Black

ulary is slowest. If we use a candidate list for
decoding each translation, the speed of decoding
substantially improves and becomes close to the
baseline RNNsearch.

A potential issue with using a candidate list is
that for each source sentence, we must re-build a
target vocabulary and subsequently replace a part
of the parameters, which may easily become time-
consuming. We can address this issue, for in-
stance, by building a common candidate list for
multiple source sentences. By doing so, we were
able to match the decoding speed of the baseline
RNNsearch model.

4.3.2 Decoding Target Vocabulary

For English→French (τ = 30k), we evaluate the
influence of the target vocabulary when translat-
ing the test sentences by using the union of a fixed
set of 30k common words and (at most) K ′ likely
candidates for each source word according to the
dictionary. Results are presented in Figure 1. With
K ′ = 0 (not shown), the performance of the sys-
tem is comparable to the baseline when not replac-
ing the unknown words (30.12), but there is not as
much improvement when doing so (31.14). As the
large vocabulary model does not predict [UNK] as
much during training, it is less likely to generate
it when decoding, limiting the effectiveness of the
post-processing step in this case. With K ′ = 1,
which limits the diversity of allowed uncommon
words, BLEU is not as good as with moderately
larger K ′, which indicates that our models can, to
some degree, correctly choose between rare alter-
natives. If we rather use K = 50k, as we did
for testing based on validation performance, the
improvement over K ′ = 1 is approximately 0.2
BLEU.

When validating the choice of K, we found it
to be correlated with the value of τ used during
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Figure 1: Single-model test BLEU scores
(English→French) with respect to the number of
dictionary entries K ′ allowed for each source
word.

training. For example, on the English→French
validation set, with τ = 15k (and K ′ = 10), the
BLEU score is 29.44 with K = 15k, but drops
to 29.19 and 28.84 respectively for K = 30k and
50k. For τ = 30k, the score increases moder-
ately from K = 15k to K = 50k. A similar
effect was observed for English→German and on
the test sets. As our implementation of importance
sampling does not apply the usual correction to the
gradient, it seems beneficial for the test vocabular-
ies to resemble those used during training.

5 Conclusion

In this paper, we proposed a way to extend the size
of the target vocabulary for neural machine trans-
lation. The proposed approach allows us to train
a model with much larger target vocabulary with-
out any substantial increase in computational com-
plexity. It is based on the earlier work in (Bengio
and Sénécal, 2008) which used importance sam-
pling to reduce the complexity of computing the
normalization constant of the output word proba-
bility in neural language models.

On English→French and English→German
translation tasks, we observed that the neural ma-
chine translation models trained using the pro-
posed method performed as well as, or better
than, those using only limited sets of target words,
even when replacing unknown words. As per-
formance of the RNNsearch-LV models increased
when only a selected subset of the target vocab-
ulary was used during decoding, this makes the
proposed learning algorithm more practical.

When measured by BLEU, our models showed
translation performance comparable to the
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state-of-the-art translation systems on both the
English→French task and English→German task.
On the English→French task, a model trained
with the proposed approach outperformed the best
single neural machine translation (NMT) model
from (Luong et al., 2015) by approximately 1
BLEU point. The performance of the ensemble
of multiple models, despite its relatively less
diverse composition, is approximately 0.3 BLEU
points away from the best system (Luong et al.,
2015). On the English→German task, the best
performance of 21.59 BLEU by our model is
higher than that of the previous state of the art
(20.67) reported in (Buck et al., 2014).

Finally, we release the source code used in our
experiments to encourage progress in neural ma-
chine translation.8
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Abstract

Neural Machine Translation (NMT) is a
new approach to machine translation that
has shown promising results that are com-
parable to traditional approaches. A sig-
nificant weakness in conventional NMT
systems is their inability to correctly trans-
late very rare words: end-to-end NMTs
tend to have relatively small vocabularies
with a single unk symbol that represents
every possible out-of-vocabulary (OOV)
word. In this paper, we propose and im-
plement an effective technique to address
this problem. We train an NMT system
on data that is augmented by the output
of a word alignment algorithm, allowing
the NMT system to emit, for each OOV
word in the target sentence, the position of
its corresponding word in the source sen-
tence. This information is later utilized in
a post-processing step that translates every
OOV word using a dictionary. Our exper-
iments on the WMT’14 English to French
translation task show that this method pro-
vides a substantial improvement of up to
2.8 BLEU points over an equivalent NMT
system that does not use this technique.
With 37.5 BLEU points, our NMT sys-
tem is the first to surpass the best result
achieved on a WMT’14 contest task.

1 Introduction

Neural Machine Translation (NMT) is a novel ap-
proach to MT that has achieved promising results
(Kalchbrenner and Blunsom, 2013; Sutskever et
al., 2014; Cho et al., 2014; Bahdanau et al., 2015;
Jean et al., 2015). An NMT system is a conceptu-
ally simple large neural network that reads the en-

∗Work done while the authors were in Google. † indicates
equal contribution.

tire source sentence and produces an output trans-
lation one word at a time. NMT systems are ap-
pealing because they use minimal domain knowl-
edge which makes them well-suited to any prob-
lem that can be formulated as mapping an input
sequence to an output sequence (Sutskever et al.,
2014). In addition, the natural ability of neural
networks to generalize implies that NMT systems
will also generalize to novel word phrases and sen-
tences that do not occur in the training set. In addi-
tion, NMT systems potentially remove the need to
store explicit phrase tables and language models
which are used in conventional systems. Finally,
the decoder of an NMT system is easy to imple-
ment, unlike the highly intricate decoders used by
phrase-based systems (Koehn et al., 2003).

Despite these advantages, conventional NMT
systems are incapable of translating rare words be-
cause they have a fixed modest-sized vocabulary1

which forces them to use the unk symbol to repre-
sent the large number of out-of-vocabulary (OOV)
words, as illustrated in Figure 1. Unsurpris-
ingly, both Sutskever et al. (2014) and Bahdanau
et al. (2015) have observed that sentences with
many rare words tend to be translated much more
poorly than sentences containing mainly frequent
words. Standard phrase-based systems (Koehn et
al., 2007; Chiang, 2007; Cer et al., 2010; Dyer et
al., 2010), on the other hand, do not suffer from the
rare word problem to the same extent because they
can support a much larger vocabulary, and because
their use of explicit alignments and phrase tables
allows them to memorize the translations of even
extremely rare words.

Motivated by the strengths of standard phrase-

1Due to the computationally intensive nature of the soft-
max, NMT systems often limit their vocabularies to be the
top 30K-80K most frequent words in each language. How-
ever, Jean et al. (2015) has very recently proposed an efficient
approximation to the softmax that allows for training NTMs
with very large vocabularies. As discussed in Section 2, this
technique is complementary to ours.
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en: The ecotax portico in Pont-de-Buis , . . . [truncated] . . . , was taken down on Thursday morning

fr: Le portique écotaxe de Pont-de-Buis , . . . [truncated] . . . , a été démonté jeudi matin

nn: Le unk de unk à unk , . . . [truncated] . . . , a été pris le jeudi matin

✟✟✟✟
❍❍❍❍

❆
❆

❅
❅

✂
✂

✑
✑✑

✟✟✟✟

Figure 1: Example of the rare word problem – An English source sentence (en), a human translation to
French (fr), and a translation produced by one of our neural network systems (nn) before handling OOV
words. We highlight words that are unknown to our model. The token unk indicates an OOV word. We
also show a few important alignments between the pair of sentences.

based system, we propose and implement a novel
approach to address the rare word problem of
NMTs. Our approach annotates the training cor-
pus with explicit alignment information that en-
ables the NMT system to emit, for each OOV
word, a “pointer” to its corresponding word in the
source sentence. This information is later utilized
in a post-processing step that translates the OOV
words using a dictionary or with the identity trans-
lation, if no translation is found.

Our experiments confirm that this approach is
effective. On the English to French WMT’14
translation task, this approach provides an im-
provement of up to 2.8 (if the vocabulary is rel-
atively small) BLEU points over an equivalent
NMT system that does not use this technique.
Moreover, our system is the first NMT that out-
performs the winner of a WMT’14 task.

2 Neural Machine Translation

A neural machine translation system is any neural
network that maps a source sentence, s1, . . . , sn,
to a target sentence, t1, . . . , tm, where all sen-
tences are assumed to terminate with a special
“end-of-sentence” token <eos>. More con-
cretely, an NMT system uses a neural network to
parameterize the conditional distributions

p(tj |t<j, s≤n) (1)

for 1 ≤ j ≤ m. By doing so, it becomes pos-
sible to compute and therefore maximize the log
probability of the target sentence given the source
sentence

log p(t|s) =
m∑

j=1

log p (tj|t<j , s≤n) (2)

There are many ways to parameterize these con-
ditional distributions. For example, Kalchbrenner

and Blunsom (2013) used a combination of a con-
volutional neural network and a recurrent neural
network, Sutskever et al. (2014) used a deep Long
Short-Term Memory (LSTM) model, Cho et al.
(2014) used an architecture similar to the LSTM,
and Bahdanau et al. (2015) used a more elabo-
rate neural network architecture that uses an atten-
tional mechanism over the input sequence, similar
to Graves (2013) and Graves et al. (2014).

In this work, we use the model of Sutskever et
al. (2014), which uses a deep LSTM to encode the
input sequence and a separate deep LSTM to out-
put the translation. The encoder reads the source
sentence, one word at a time, and produces a large
vector that represents the entire source sentence.
The decoder is initialized with this vector and gen-
erates a translation, one word at a time, until it
emits the end-of-sentence symbol <eos>.

None the early work in neural machine transla-
tion systems has addressed the rare word problem,
but the recent work of Jean et al. (2015) has tack-
led it with an efficient approximation to the soft-
max to accommodate for a very large vocabulary
(500K words). However, even with a large vocab-
ulary, the problem with rare words, e.g., names,
numbers, etc., still persists, and Jean et al. (2015)
found that using techniques similar to ours are
beneficial and complementary to their approach.

3 Rare Word Models

Despite the relatively large amount of work done
on pure neural machine translation systems, there
has been no work addressing the OOV problem in
NMT systems, with the notable exception of Jean
et al. (2015)’s work mentioned earlier.

We propose to address the rare word problem
by training the NMT system to track the origins
of the unknown words in the target sentences. If
we knew the source word responsible for each un-
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en: The unk1 portico in unk2 . . .

fr: Le unk∅ unk1 de unk2 . . .

Figure 2: Copyable Model – an annotated exam-
ple with two types of unknown tokens: “copyable”
unkn and null unk∅.

known target word, we could introduce a post-
processing step that would replace each unk in
the system’s output with a translation of its source
word, using either a dictionary or the identity
translation. For example, in Figure 1, if the
model knows that the second unknown token in
the NMT (line nn) originates from the source word
ecotax, it can perform a word dictionary lookup
to replace that unknown token by écotaxe. Sim-
ilarly, an identity translation of the source word
Pont-de-Buis can be applied to the third un-
known token.

We present three annotation strategies that can
easily be applied to any NMT system (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014;
Cho et al., 2014). We treat the NMT system as
a black box and train it on a corpus annotated by
one of the models below. First, the alignments are
produced with an unsupervised aligner. Next, we
use the alignment links to construct a word dictio-
nary that will be used for the word translations in
the post-processing step.2 If a word does not ap-
pear in our dictionary, then we apply the identity
translation.

The first few words of the sentence pair in Fig-
ure 1 (lines en and fr) illustrate our models.

3.1 Copyable Model

In this approach, we introduce multiple tokens
to represent the various unknown words in the
source and in the target language, as opposed to
using only one unk token. We annotate the OOV
words in the source sentence with unk1, unk2,
unk3, in that order, while assigning repeating un-
known words identical tokens. The annotation
of the unknown words in the target language is
slightly more elaborate: (a) each unknown target
word that is aligned to an unknown source word
is assigned the same unknown token (hence, the

2When a source word has multiple translations, we use
the translation with the highest probability. These translation
probabilities are estimated from the unsupervised alignment
links. When constructing the dictionary from these alignment
links, we add a word pair to the dictionary only if its align-
ment count exceeds 100.

en: The unk portico in unk . . .

fr: Le p0 unk p−1 unk p1 de p∅ unk p−1 . . .

Figure 3: Positional All Model – an example of
the PosAll model. Each word is followed by the
relative positional tokens pd or the null token p∅.

“copy” model) and (b) an unknown target word
that has no alignment or that is aligned with a
known word uses the special null token unk∅. See
Figure 2 for an example. This annotation enables
us to translate every non-null unknown token.

3.2 Positional All Model (PosAll)

The copyable model is limited by its inability to
translate unknown target words that are aligned
to known words in the source sentence, such as
the pair of words, “portico” and “portique”, in our
running example. The former word is known on
the source sentence; whereas latter is not, so it
is labelled with unk∅. This happens often since
the source vocabularies of our models tend to be
much larger than the target vocabulary since a
large source vocabulary is cheap. This limita-
tion motivated us to develop an annotation model
that includes the complete alignments between the
source and the target sentences, which is straight-
forward to obtain since the complete alignments
are available at training time.

Specifically, we return to using only a single
universal unk token. However, on the target
side, we insert a positional token pd after ev-
ery word. Here, d indicates a relative position
(d = −7, . . . ,−1, 0, 1, . . . , 7) to denote that a tar-
get word at position j is aligned to a source word
at position i = j − d. Aligned words that are too
far apart are considered unaligned, and unaligned
words rae annotated with a null token pn. Our an-
notation is illustrated in Figure 3.

3.3 Positional Unknown Model (PosUnk)

The main weakness of the PosAll model is that
it doubles the length of the target sentence. This
makes learning more difficult and slows the speed
of parameter updates by a factor of two. How-
ever, given that our post-processing step is con-
cerned only with the alignments of the unknown
words, so it is more sensible to only annotate the
unknown words. This motivates our positional un-
known model which uses unkposd tokens (for d
in −7, . . . , 7 or ∅) to simultaneously denote (a)
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the fact that a word is unknown and (b) its rela-
tive position d with respect to its aligned source
word. Like the PosAll model, we use the symbol
unkpos∅ for unknown target words that do not
have an alignment. We use the universal unk for
all unknown tokens in the source language. See
Figure 4 for an annotated example.

en: The unk portico in unk . . .

fr: Le unkpos1 unkpos−1 de unkpos1 . . .

Figure 4: Positional Unknown Model – an exam-
ple of the PosUnk model: only aligned unknown
words are annotated with the unkposd tokens.

It is possible that despite its slower speed, the
PosAll model will learn better alignments because
it is trained on many more examples of words and
their alignments. However, we show that this is
not the case (see §5.2).

4 Experiments

We evaluate the effectiveness of our OOV mod-
els on the WMT’14 English-to-French translation
task. Translation quality is measured with the
BLEU metric (Papineni et al., 2002) on the new-
stest2014 test set (which has 3003 sentences).

4.1 Training Data
To be comparable with the results reported by pre-
vious work on neural machine translation systems
(Sutskever et al., 2014; Cho et al., 2014; Bahdanau
et al., 2015), we train our models on the same
training data of 12M parallel sentences (348M
French and 304M English words), obtained from
(Schwenk, 2014). The 12M subset was selected
from the full WMT’14 parallel corpora using the
method proposed in Axelrod et al. (2011).

Due to the computationally intensive nature of
the naive softmax, we limit the French vocabulary
(the target language) to the either the 40K or the
80K most frequent French words. On the source
side, we can afford a much larger vocabulary, so
we use the 200K most frequent English words.
The model treats all other words as unknowns.3

We annotate our training data using the three
schemes described in the previous section. The
alignment is computed with the Berkeley aligner
(Liang et al., 2006) using its default settings. We

3When the French vocabulary has 40K words, there are
on average 1.33 unknown words per sentence on the target
side of the test set.

discard sentence pairs in which the source or the
target sentence exceed 100 tokens.

4.2 Training Details

Our training procedure and hyperparameter
choices are similar to those used by Sutskever et
al. (2014). In more details, we train multi-layer
deep LSTMs, each of which has 1000 cells, with
1000 dimensional embeddings. Like Sutskever et
al. (2014), we reverse the words in the source sen-
tences which has been shown to improve LSTM
memory utilization and results in better transla-
tions of long sentences. Our hyperparameters can
be summarized as follows: (a) the parameters are
initialized uniformly in [-0.08, 0.08] for 4-layer
models and [-0.06, 0.06] for 6-layer models, (b)
SGD has a fixed learning rate of 0.7, (c) we train
for 8 epochs (after 5 epochs, we begin to halve
the learning rate every 0.5 epoch), (d) the size
of the mini-batch is 128, and (e) we rescale the
normalized gradient to ensure that its norm does
not exceed 5 (Pascanu et al., 2012).

We also follow the GPU parallelization scheme
proposed in (Sutskever et al., 2014), allowing us
to reach a training speed of 5.4K words per sec-
ond to train a depth-6 model with 200K source
and 80K target vocabularies ; whereas Sutskever
et al. (2014) achieved 6.3K words per second for
a depth-4 models with 80K source and target vo-
cabularies. Training takes about 10-14 days on an
8-GPU machine.

4.3 A note on BLEU scores

We report BLEU scores based on both: (a) detok-
enized translations, i.e., WMT’14 style, to be com-
parable with results reported on the WMT web-
site4 and (b) tokenized translations, so as to be
consistent with previous work (Cho et al., 2014;
Bahdanau et al., 2015; Schwenk, 2014; Sutskever
et al., 2014; Jean et al., 2015).5

The existing WMT’14 state-of-the-art system
(Durrani et al., 2014) achieves a detokenized
BLEU score of 35.8 on the newstest2014 test set
for English to French language pair (see Table 2).
In terms of the tokenized BLEU, its performance
is 37.0 points (see Table 1).

4http://matrix.statmt.org/matrix
5The tokenizer.perl and multi-bleu.pl

scripts are used to tokenize and score translations.
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System Vocab Corpus BLEU
State of the art in WMT’14 (Durrani et al., 2014) All 36M 37.0

Standard MT + neural components
Schwenk (2014) – neural language model All 12M 33.3
Cho et al. (2014)– phrase table neural features All 12M 34.5
Sutskever et al. (2014) – 5 LSTMs, reranking 1000-best lists All 12M 36.5

Existing end-to-end NMT systems
Bahdanau et al. (2015) – single gated RNN with search 30K 12M 28.5
Sutskever et al. (2014) – 5 LSTMs 80K 12M 34.8
Jean et al. (2015) – 8 gated RNNs with search + UNK replacement 500K 12M 37.2

Our end-to-end NMT systems
Single LSTM with 4 layers 40K 12M 29.5
Single LSTM with 4 layers + PosUnk 40K 12M 31.8 (+2.3)
Single LSTM with 6 layers 40K 12M 30.4
Single LSTM with 6 layers + PosUnk 40K 12M 32.7 (+2.3)
Ensemble of 8 LSTMs 40K 12M 34.1
Ensemble of 8 LSTMs + PosUnk 40K 12M 36.9 (+2.8)
Single LSTM with 6 layers 80K 36M 31.5
Single LSTM with 6 layers + PosUnk 80K 36M 33.1 (+1.6)
Ensemble of 8 LSTMs 80K 36M 35.6
Ensemble of 8 LSTMs + PosUnk 80K 36M 37.5 (+1.9)

Table 1: Tokenized BLEU on newstest2014 – Translation results of various systems which differ in
terms of: (a) the architecture, (b) the size of the vocabulary used, and (c) the training corpus, either
using the full WMT’14 corpus of 36M sentence pairs or a subset of it with 12M pairs. We highlight
the performance of our best system in bolded text and state the improvements obtained by our technique
of handling rare words (namely, the PosUnk model). Notice that, for a given vocabulary size, the more
accurate systems achieve a greater improvement from the post-processing step. This is the case because
the more accurate models are able to pin-point the origin of an unknown word with greater accuracy,
making the post-processing more useful.

System BLEU
Existing SOTA (Durrani et al., 2014) 35.8
Ensemble of 8 LSTMs + PosUnk 36.6

Table 2: Detokenized BLEU on newstest2014 –
translation results of the existing state-of-the-art
system and our best system.

4.4 Main Results

We compare our systems to others, including the
current state-of-the-art MT system (Durrani et
al., 2014), recent end-to-end neural systems, as
well as phrase-based baselines with neural com-
ponents.

The results shown in Table 1 demonstrate that
our unknown word translation technique (in par-
ticular, the PosUnk model) significantly improves
the translation quality for both the individual (non-
ensemble) LSTM models and the ensemble mod-

els.6 For 40K-word vocabularies, the performance
gains are in the range of 2.3-2.8 BLEU points.
With larger vocabularies (80K), the performance
gains are diminished, but our technique can still
provide a nontrivial gains of 1.6-1.9 BLEU points.

It is interesting to observe that our approach is
more useful for ensemble models as compared to
the individual ones. This is because the useful-
ness of the PosUnk model directly depends on the
ability of the NMT to correctly locate, for a given
OOV target word, its corresponding word in the
source sentence. An ensemble of large models
identifies these source words with greater accu-
racy. This is why for the same vocabulary size,
better models obtain a greater performance gain

6For the 40K-vocabulary ensemble, we combine 5 mod-
els with 4 layers and 3 models with 6 layers. For the 80K-
vocabulary ensemble, we combine 3 models with 4 layers and
5 models with 6 layers. Two of the depth-6 models are reg-
ularized with dropout, similar to Zaremba et al. (2015) with
the dropout probability set to 0.2.
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our post-processing step. e Except for the very re-
cent work of Jean et al. (2015) that employs a sim-
ilar unknown treatment strategy7 as ours, our best
result of 37.5 BLEU outperforms all other NMT
systems by a arge margin, and more importanly,
our system has established a new record on the
WMT’14 English to French translation.

5 Analysis

We analyze and quantify the improvement ob-
tained by our rare word translation approach and
provide a detailed comparison of the different
rare word techniques proposed in Section 3. We
also examine the effect of depth on the LSTM
architectures and demonstrate a strong correla-
tion between perplexities and BLEU scores. We
also highlight a few translation examples where
our models succeed in correctly translating OOV
words, and present several failures.

5.1 Rare Word Analysis

To analyze the effect of rare words on translation
quality, we follow Sutskever et al. (Sutskever et al.,
2014) and sort sentences in newstest2014 by the
average inverse frequency of their words. We split
the test sentences into groups where the sentences
within each group have a comparable number of
rare words and evaluate each group independently.
We evaluate our systems before and after translat-
ing the OOV words and compare with the stan-
dard MT systems – we use the best system from
the WMT’14 contest (Durrani et al., 2014), and
neural MT systems – we use the ensemble systems
described in (Sutskever et al., 2014) and Section 4.

Rare word translation is challenging for neural
machine translation systems as shown in Figure 5.
Specifically, the translation quality of our model
before applying the postprocessing step is shown
by the green curve, and the current best NMT sys-
tem (Sutskever et al., 2014) is the purple curve.
While (Sutskever et al., 2014) produces better
translations for sentences with frequent words (the
left part of the graph), they are worse than best

7Their unknown replacement method and ours both track
the locations of target unknown words and use a word dictio-
nary to post-process the translation. However, the mechanism
used to achieve the “tracking” behavior is different. Jean et al.
(2015)’s uses the attentional mechanism to track the origins
of all target words, not just the unknown ones. In contrast,
we only focus on tracking unknown words using unsuper-
vised alignments. Our method can be easily applied to any
sequence-to-sequence models since we treat any model as a
blackbox and manipulate only at the input and output levels.
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Figure 5: Rare word translation – On the x-axis,
we order newstest2014 sentences by their aver-
age frequency rank and divide the sentences into
groups of sentences with a comparable prevalence
of rare words. We compute the BLEU score of
each group independently.

system (red curve) on sentences with many rare
words (the right side of the graph). When applying
our unknown word translation technique (purple
curve), we significantly improve the translation
quality of our NMT: for the last group of 500 sen-
tences which have the greatest proportion of OOV
words in the test set, we increase the BLEU score
of our system by 4.8 BLEU points. Overall, our
rare word translation model interpolates between
the SOTA system and the system of Sutskever et
al. (2014), which allows us to outperform the win-
ning entry of WMT’14 on sentences that consist
predominantly of frequent words and approach its
performance on sentences with many OOV words.

5.2 Rare Word Models
We examine the effect of the different rare word
models presented in Section 3, namely: (a) Copy-
able – which aligns the unknown words on both
the input and the target side by learning to copy in-
dices, (b) the Positional All (PosAll) – which pre-
dicts the aligned source positions for every target
word, and (c) the Positional Unknown (PosUnk)
– which predicts the aligned source positions for
only the unknown target words.8 It is also interest-

8In this section and in section 5.3, all models are trained
on the unreversed sentences, and we use the following hyper-
parameters: we initialize the parameters uniformly in [-0.1,
0.1], the learning rate is 1, the maximal gradient norm is 1,
with a source vocabulary of 90k words, and a target vocab-
ulary of 40k (see Section 4.2 for more details). While these
LSTMs do not achieve the best possible performance, it is
still useful to analyze them.
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Figure 6: Rare word models – translation perfor-
mance of 6-layer LSTMs: a model that uses no
alignment (NoAlign) and the other rare word mod-
els (Copyable, PosAll, PosUnk). For each model,
we show results before (left) and after (right) the
rare word translation as well as the perplexity (in
parentheses). For PosAll, we report the perplexi-
ties of predicting the words and the positions.

ing to measure the improvement obtained when no
alignment information is used during training. As
such, we include a baseline model with no align-
ment knowledge (NoAlign) in which we simply as-
sume that the ith unknown word on the target sen-
tence is aligned to the ith unknown word in the
source sentence.

From the results in Figure 6, a simple mono-
tone alignment assumption for the NoAlign model
yields a modest gain of 0.8 BLEU points. If we
train the model to predict the alignment, then the
Copyable model offers a slightly better gain of 1.0
BLEU. Note, however, that English and French
have similar word order structure, so it would
be interesting to experiment with other language
pairs, such as English and Chinese, in which the
word order is not as monotonic. These harder lan-
guage pairs potentially imply a smaller gain for the
NoAlign model and a larger gain for the Copyable
model. We leave it for future work.

The positional models (PosAll and PosUnk) im-
prove translation performance by more than 2
BLEU points. This proves that the limitation of the
copyable model, which forces it to align each un-
known output word with an unknown input word,
is considerable. In contrast, the positional mod-
els can align the unknown target words with any
source word, and as a result, post-processing has a
much stronger effect. The PosUnk model achieves
better translation results than the PosAll model
which suggests that it is easier to train the LSTM
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Figure 7: Effect of depths – BLEU scores
achieved by PosUnk models of various depths (3,
4, and 6) before and after the rare word transla-
tion. Notice that the PosUnk model is more useful
on more accurate models.

on shorter sequences.

5.3 Other Effects

Deep LSTM architecture – We compare PosUnk
models trained with different number of layers (3,
4, and 6). We observe that the gain obtained by
the PosUnk model increases in tandem with the
overall accuracy of the model, which is consistent
with the idea that larger models can point to the ap-
propriate source word more accurately. Addition-
ally, we observe that on average, each extra LSTM
layer provides roughly 1.0 BLEU point improve-
ment as demonstrated in Figure 7.
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Figure 8: Perplexity vs. BLEU – we show the
correlation by evaluating an LSTM model with 4
layers at various stages of training.

Perplexity and BLEU – Lastly, we find it inter-
esting to observe a strong correlation between the
perplexity (our training objective) and the transla-
tion quality as measured by BLEU. Figure 8 shows
the performance of a 4-layer LSTM, in which we
compute both perplexity and BLEU scores at dif-
ferent points during training. We find that on aver-
age, a reduction of 0.5 perplexity gives us roughly
1.0 BLEU point improvement.
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Sentences
src An additional 2600 operations including orthopedic and cataract surgery will

help clear a backlog .
trans En outre , unkpos1 opérations supplémentaires , dont la chirurgie unkpos5

et la unkpos6 , permettront de résorber l’ arriéré .
+unk En outre , 2600 opérations supplémentaires , dont la chirurgie orthopédiques

et la cataracte , permettront de résorber l’ arriéré .
tgt 2600 opérations supplémentaires , notamment dans le domaine de la chirurgie

orthopédique et de la cataracte , aideront à rattraper le retard .
src This trader , Richard Usher , left RBS in 2010 and is understand to have be

given leave from his current position as European head of forex spot trading at
JPMorgan .

trans Ce unkpos0 , Richard unkpos0 , a quitté unkpos1 en 2010 et a compris qu’
il est autorisé à quitter son poste actuel en tant que leader européen du marché
des points de vente au unkpos5 .

+unk Ce négociateur , Richard Usher , a quitté RBS en 2010 et a compris qu’ il est
autorisé à quitter son poste actuel en tant que leader européen du marché des
points de vente au JPMorgan .

tgt Ce trader , Richard Usher , a quitté RBS en 2010 et aurait été mis suspendu
de son poste de responsable européen du trading au comptant pour les devises
chez JPMorgan

src But concerns have grown after Mr Mazanga was quoted as saying Renamo was
abandoning the 1992 peace accord .

trans Mais les inquiétudes se sont accrues après que M. unkpos3 a déclaré que la
unkpos3 unkpos3 l’ accord de paix de 1992 .

+unk Mais les inquiétudes se sont accrues après que M. Mazanga a déclaré que la
Renamo était l’ accord de paix de 1992 .

tgt Mais l’ inquiétude a grandi après que M. Mazanga a déclaré que la Renamo
abandonnait l’ accord de paix de 1992 .

Table 3: Sample translations – the table shows the source (src) and the translations of our best model
before (trans) and after (+unk) unknown word translations. We also show the human translations (tgt)
and italicize words that are involved in the unknown word translation process.

5.4 Sample Translations

We present three sample translations of our best
system (with 37.5 BLEU) in Table 3. In our
first example, the model translates all the un-
known words correctly: 2600, orthopédiques, and
cataracte. It is interesting to observe that the
model can accurately predict an alignment of dis-
tances of 5 and 6 words. The second example
highlights the fact that our model can translate
long sentences reasonably well and that it was able
to correctly translate the unknown word for JP-
Morgan at the very far end of the source sentence.
Lastly, our examples also reveal several penalties
incurred by our model: (a) incorrect entries in the
word dictionary, as with négociateur vs. trader in
the second example, and (b) incorrect alignment
prediction, such as when unkpos3 is incorrectly

aligned with the source word was and not with
abandoning, which resulted in an incorrect trans-
lation in the third sentence.

6 Conclusion

We have shown that a simple alignment-based
technique can mitigate and even overcome one
of the main weaknesses of current NMT systems,
which is their inability to translate words that are
not in their vocabulary. A key advantage of our
technique is the fact that it is applicable to any
NMT system and not only to the deep LSTM
model of Sutskever et al. (2014). A technique like
ours is likely necessary if an NMT system is to
achieve state-of-the-art performance on machine
translation.

We have demonstrated empirically that on the
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WMT’14 English-French translation task, our
technique yields a consistent and substantial im-
provement of up to 2.8 BLEU points over various
NMT systems of different architectures. Most im-
portantly, with 37.5 BLEU points, we have estab-
lished the first NMT system that outperformed the
best MT system on a WMT’14 contest dataset.
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Abstract
The recently proposed neural network
joint model (NNJM) (Devlin et al.,
2014) augments the n-gram target lan-
guage model with a heuristically cho-
sen source context window, achieving
state-of-the-art performance in SMT.
In this paper, we give a more sys-
tematic treatment by summarizing the
relevant source information through a
convolutional architecture guided by
the target information. With dif-
ferent guiding signals during decod-
ing, our specifically designed convolu-
tion+gating architectures can pinpoint
the parts of a source sentence that are
relevant to predicting a target word,
and fuse them with the context of en-
tire source sentence to form a unified
representation. This representation, to-
gether with target language words, are
fed to a deep neural network (DNN)
to form a stronger NNJM. Experiments
on two NIST Chinese-English trans-
lation tasks show that the proposed
model can achieve significant improve-
ments over the previous NNJM by up
to +1.08 BLEU points on average.

1 Introduction

Learning of continuous space representation
for source language has attracted much at-
tention in both traditional statistical machine
translation (SMT) and neural machine trans-
lation (NMT). Various models, mostly neural
network-based, have been proposed for repre-
senting the source sentence, mainly as the en-
coder part in an encoder-decoder framework
(Bengio et al., 2003; Auli et al., 2013; Kalch-
brenner and Blunsom, 2013; Cho et al., 2014;

Sutskever et al., 2014). There has been some
quite recent work on encoding only “relevant”
part of source sentence during the decoding
process, most notably neural network joint
model (NNJM) in (Devlin et al., 2014), which
extends the n-grams target language model by
additionally taking a fixed-length window of
source sentence, achieving state-of-the-art per-
formance in statistical machine translation.

In this paper, we propose novel convolu-
tional architectures to dynamically encode the
relevant information in the source language.
Our model covers the entire source sentence,
but can effectively find and properly summa-
rize the relevant parts, guided by the informa-
tion from the target language. With the guiding
signals during decoding, our specifically de-
signed convolution architectures can pinpoint
the parts of a source sentence that are relevant
to predicting a target word, and fuse them with
the context of entire source sentence to form a
unified representation. This representation, to-
gether with target words, are fed to a deep neu-
ral network (DNN) to form a stronger NNJM.
Since our proposed joint model is purely lexi-
calized, it can be integrated into any SMT de-
coder as a feature.

Two variants of the joint model are also
proposed, with coined name tagCNN and
inCNN, with different guiding signals used
from the decoding process. We integrate the
proposed joint models into a state-of-the-art
dependency-to-string translation system (Xie
et al., 2011) to evaluate their effectiveness.
Experiments on NIST Chinese-English trans-
lation tasks show that our model is able
to achieve significant improvements of +2.0
BLEU points on average over the baseline. Our
model also outperforms Devlin et al. (2014)’s
NNJM by up to +1.08 BLEU points.
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(a) tagCNN (b) inCNN

Figure 1: Illustration for joint LM based on CNN encoder.

RoadMap: In the remainder of this paper,
we start with a brief overview of joint language
model in Section 2, while the convolutional en-
coders, as the key component of which, will be
described in detail in Section 3. Then in Sec-
tion 4 we discuss the decoding algorithm with
the proposed models. The experiment results
are reported in Section 5, followed by Section 6
and 7 for related work and conclusion.

2 Joint Language Model

Our joint model with CNN encoders can be il-
lustrated in Figure 1 (a) & (b), which consists
1) a CNN encoder, namely tagCNN or inCNN,
to represent the information in the source sen-
tences, and 2) an NN-based model for predict-
ing the next words, with representations from
CNN encoders and the history words in target
sentence as inputs.

In the joint language model, the probabil-
ity of the target word en, given previous k
target words {en−k, · · ·, en−1} and the repre-
sentations from CNN-encoders for source sen-
tence S are

tagCNN: p(en|φ1(S, {a(en)}), {e}n−1
n−k)

inCNN: p(en|φ2(S, h({e}n−1
n−k)), {e}n−1

n−k),

where φ1(S, {a(en)}) stands for the represen-
tation given by tagCNN with the set of indexes
{a(en)} of source words aligned to the target
word en, and φ2(S, h({e}n−1

n−k)) stands for the
representation from inCNN with the attention

signal h({e}n−1
n−k).

Let us use the example in Figure 1, where
the task is to translate the Chinese sentence

into English. In evaluating a target lan-
guage sequence “holds parliament
and presidential”, with “holds
parliament and” as the proceeding
words (assume 4-gram LM), and the affiliated
source word1 of “presidential” being
“Zǒngtǒng” (determined by word align-
ment), tagCNN generates φ1(S, {4}) (the in-
dex of “Zǒngtǒng” is 4), and inCNN gener-
ates φ2(S, h(holds parliament and)).
The DNN component then takes
"holds parliament and" and
(φ1 or φ2) as input to give the con-
ditional probability for next word, e.g.,
p("presidential"|φ1|2, {holds,
parliament, and}).
3 Convolutional Models

We start with the generic architecture for
convolutional encoder, and then proceed to
tagCNN and inCNN as two extensions.

1For an aligned target word, we take its aligned source
words as its affiliated source words. And for an unaligned
word, we inherit its affiliation from the closest aligned
word, with preference given to the right (Devlin et al.,
2014). Since the word alignment is of many-to-many,
one target word may has multi affiliated source words.
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Figure 2: Illustration for the CNN encoders.

3.1 Generic CNN Encoder
The basic architecture is of a generic CNN en-
coder is illustrated in Figure 2 (a), which has a
fixed architecture consisting of six layers:

Layer-0: the input layer, which takes words
in the form of embedding vectors. In our
work, we set the maximum length of sen-
tences to 40 words. For sentences shorter
than that, we put zero padding at the be-
ginning of sentences.

Layer-1: a convolution layer after Layer-0,
with window size = 3. As will be dis-
cussed in Section 3.2 and 3.3, the guid-
ing signal are injected into this layer for
“guided version”.

Layer-2: a local gating layer after Layer-
1, which simply takes a weighted sum
over feature-maps in non-adjacent win-
dow with size = 2.

Layer-3: a convolution layer after Layer-2, we
perform another convolution with window
size = 3.

Layer-4: we perform a global gating over
feature-maps on Layer-3.

Layer-5: fully connected weights that maps
the output of Layer-4 to this layer as the
final representation.

3.1.1 Convolution
As shown in Figure 2 (a), the convolution in
Layer-1 operates on sliding windows of words
(width k1), and the similar definition of win-
dows carries over to higher layers. Formally,

for source sentence input x = {x1, · · · ,xN},
the convolution unit for feature map of type-f
(among F` of them) on Layer-` is

z
(`,f)
i (x) = σ(w(`,f)ẑ(`−1)

i + b(`,f)),
` = 1, 3, f = 1, 2, · · · , F` (1)

where

• z(`,f)
i (x) gives the output of feature map

of type-f for location i in Layer-`;

• w(`,f) is the parameters for f on Layer-`;

• σ(·) is the Sigmoid activation function;

• ẑ(`−1)
i denotes the segment of Layer-`−1

for the convolution at location i , while

ẑ(0)
i

def= [x>i , x>i+1, x>i+2]
>

concatenates the vectors for 3 words from
sentence input x.

3.1.2 Gating
Previous CNNs, including those for NLP
tasks (Hu et al., 2014; Kalchbrenner et al.,
2014), take a straightforward convolution-
pooling strategy, in which the “fusion” deci-
sions (e.g., selecting the largest one in max-
pooling) are based on the values of feature-
maps. This is essentially a soft template match-
ing, which works for tasks like classification,
but harmful for keeping the composition func-
tionality of convolution, which is critical for
modeling sentences. In this paper, we propose
to use separate gating unit to release the score
function duty from the convolution, and let it
focus on composition.
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We take two types of gating: 1) for Layer-
2, we take a local gating with non-overlapping
windows (size = 2) on the feature-maps of con-
volutional Layer-1 for representation of seg-
ments, and 2) for Layer-4, we take a global
gating to fuse all the segments for a global rep-
resentation. We found that this gating strategy
can considerably improve the performance of
both tagCNN and inCNN over pooling.

• Local Gating: On Layer-1, for every gat-
ing window, we first find its original in-
put (before convolution) on Layer-0, and
merge them for the input of the gating net-
work. For example, for the two windows:
word (3,4,5) and word (4,5,6) on Layer-0,
we use concatenated vector consisting of
embedding for word (3,4,5,6) as the input
of the local gating network (a logistic re-
gression model) to determine the weight
for the convolution result of the two win-
dows (on Layer-1), and the weighted sum
are the output of Layer-2.

• Global Gating: On Layer-3, for feature-
maps at each location i, denoted z(3)

i , the
global gating network (essentially soft-
max, parameterized wg), assigns a nor-
malized weight

ω(z(3)
i ) = ew

>
g z

(3)
i /

∑
j

ew
>
g z

(3)
j ,

and the gated representation on Layer-
4 is given by the weighted sum∑

i ω(z(3)
i )z(3)

i .

3.1.3 Training of CNN encoders
The CNN encoders, including tagCNN and
inCNN that will be discussed right below, are
trained in a joint language model described in
Section 2, along with the following parameters

• the embedding of the words on source and
the proceeding words on target;

• the parameters for the DNN of joint lan-
guage model, include the parameters of
soft-max for word probability.

The training procedure is identical to that of
neural network language model, except that the

parallel corpus is used instead of a monolin-
gual corpus. We seek to maximize the log-
likelihood of training samples, with one sam-
ple for every target word in the parallel corpus.
Optimization is performed with the conven-
tional back-propagation, implemented as sto-
chastic gradient descent (LeCun et al., 1998)
with mini-batches.

3.2 tagCNN

tagCNN inherits the convolution and gating
from generic CNN (as described in Section
3.1), with the only modification in the input
layer. As shown in Figure 2 (b), in tagCNN,
we append an extra tagging bit (0 or 1) to the
embedding of words in the input layer to indi-
cate whether it is one of affiliated words

x(AFF)
i = [x>i 1]>, x(NON-AFF)

j = [x>j 0]>.

Those extended word embedding will then be
treated as regular word-embedding in the con-
volutional neural network. This particular en-
coding strategy can be extended to embed more
complicated dependency relation in source lan-
guage, as will be described in Section 5.4.

This particular “tag” will be activated in a
parameterized way during the training for pre-
dicting the target words. In other words, the
supervised signal from the words to predict
will find, through layers of back-propagation,
the importance of the tag bit in the “affiliated
words” in the source language, and learn to put
proper weight on it to make tagged words stand
out and adjust other parameters in tagCNN
accordingly for the optimal predictive perfor-
mance. In doing so, the joint model can pin-
point the parts of a source sentence that are rel-
evant to predicting a target word through the
already learned word alignment.

3.3 inCNN

Unlike tagCNN, which directly tells the loca-
tion of affiliated words to the CNN encoder,
inCNN sends the information about the pro-
ceeding words in target side to the convolu-
tional encoder to help retrieve the information
relevant for predicting the next word. This is
essentially a particular case of attention model,
analogous to the automatic alignment mecha-
nism in (Bahdanau et al., 2014), where the at-
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举行/VV

智利/NN 选举/NN

总统/NN

与/CC国会/NN

Chinese:  智利   举行        国会      与       总统            选举
English:  Chile   holds  parliament  and  presidential   elections

举行

智利 X1:NN

(a)

(b)

Chile    holds    X1

举行

(c)

holds

Figure 3: Illustration for a dependency tree (a) with three head-dependents relations in shadow,
an example of head-dependents relation rule (b) for the top level of (a), and an example of head
rule (c). “X1:NN” indicates a substitution site that can be replaced by a subtree whose root has
part-of-speech “NN”. The underline denotes a leaf node.

tention signal is from the state of a generative
recurrent neural network (RNN) as decoder.

Basically, the information from proceeding
words, denoted as h({e}n−1

n−k), is injected into
every convolution window in the source lan-
guage sentence, as illustrated in Figure 2 (c).
More specifically, for the window indexed by
t, the input to convolution is given by the con-
catenated vector

ẑt = [h({e}n−1
n−k), x>t , x>t+1, x>t+2]

>.

In this work, we use a DNN to transform
the vector concatenated from word-embedding
for words {en−k · · · , en−k} into h({e}n−1

n−k),
with sigmoid activation function. Through lay-
ers of convolution and gating, inCNN can 1)
retrieve the relevant segments of source sen-
tences, and 2) compose and transform the
retrieved segments into representation recog-
nizable by the DNN in predicting the words
in target language. Different from that of
tagCNN, inCNN uses information from pro-
ceeding words, hence provides complementary
information in the augmented joint language
model of tagCNN. This has been empirically
verified when using feature based on tagCNN
and that based on inCNN in decoding with
greater improvement.

4 Decoding with the Joint Model

Our joint model is purely lexicalized, and
therefore can be integrated into any SMT de-

coders as a feature. For a hierarchical SMT
decoder, we adopt the integrating method pro-
posed by Devlin et al. (2014). As inherited
from the n-gram language model for perform-
ing hierarchical decoding, the leftmost and
rightmost n− 1 words from each constituent
should be stored in the state space. We ex-
tend the state space to also include the in-
dexes of the affiliated source words for each
of these edge words. For an aligned target
word, we take its aligned source words as its
affiliated source words. And for an unaligned
word, we use the affiliation heuristic adopted
by Devlin et al. (2014). In this paper, we in-
tegrate the joint model into the state-of-the-art
dependency-to-string machine translation de-
coder as a case study to test the efficacy of our
proposed approaches. We will briefly describe
the dependency-to-string translation model and
then the description of MT system.

4.1 Dependency-to-String Translation

In this paper, we use a state-of-the-art
dependency-to-string (Xie et al., 2011) decoder
(Dep2Str), which is also a hierarchical de-
coder. This dependency-to-string model em-
ploys rules that represent the source side as
head-dependents relations and the target side
as strings. A head-dependents relation (HDR)
is composed of a head and all its dependents
in dependency trees. Figure 3 shows a depen-
dency tree (a) with three HDRs (in shadow),
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an example of HDR rule (b) for the top level
of (a), and an example of head rule (c). HDR
rules are constructed from head-dependents re-
lations. HDR rules can act as both translation
rules and reordering rules. And head rules are
used for translating source words.

We adopt the decoder proposed by Meng
et al. (2013) as a variant of Dep2Str trans-
lation that is easier to implement with com-
parable performance. Basically they extract
the HDR rules with GHKM (Galley et al.,
2004) algorithm. For the decoding procedure,
given a source dependency tree T , the de-
coder transverses T in post-order. The bottom-
up chart-based decoding algorithm with cube
pruning (Chiang, 2007; Huang and Chiang,
2007) is used to find the k-best items for each
node.

4.2 MT Decoder

Following Och and Ney (2002), we use a gen-
eral loglinear framework. Let d be a derivation
that convert a source dependency tree into a tar-
get string e. The probability of d is defined as:

P (d) ∝
∏
i

φi(d)λi (2)

where φi are features defined on derivations
and λi are the corresponding weights. Our de-
coder contains the following features:
Baseline Features:

• translation probabilities P (t|s) and
P (s|t) of HDR rules;

• lexical translation probabilities PLEX(t|s)
and PLEX(s|t) of HDR rules;

• rule penalty exp(−1);

• pseudo translation rule penalty exp(−1);

• target word penalty exp(|e|);
• n-gram language model PLM(e);

Proposed Features:

• n-gram tagCNN joint language model
PTLM(e);

• n-gram inCNN joint language model
PILM(e).

Our baseline decoder contains the first eight
features. The pseudo translation rule (con-
structed according to the word order of a HDR)
is to ensure the complete translation when no
matched rules is found during decoding. The
weights of all these features are tuned via
minimum error rate training (MERT) (Och,
2003). For the dependency-to-string decoder,
we set rule-threshold and stack-threshold to
10−3, rule-limit to 100, stack-limit to 200.

5 Experiments

The experiments in this Section are designed to
answer the following questions:

1. Are our tagCNN and inCNN joint lan-
guage models able to improve translation
quality, and are they complementary to
each other?

2. Do inCNN and tagCNN benefit from
their guiding signal, compared to a
generic CNN?

3. For tagCNN, is it helpful to embed more
dependency structure, e.g., dependency
head of each affiliated word, as additional
information?

4. Can our gating strategy improve the per-
formance over max-pooling?

5.1 Setup
Data: Our training data are extracted from
LDC data2. We only keep the sentence pairs
that the length of source part no longer than
40 words, which covers over 90% of the sen-
tence. The bilingual training data consist of
221K sentence pairs, containing 5.0 million
Chinese words and 6.8 million English words.
The development set is NIST MT03 (795 sen-
tences) and test sets are MT04 (1499 sen-
tences) and MT05 (917 sentences) after filter-
ing with length limit.

Preprocessing: The word alignments are ob-
tained with GIZA++ (Och and Ney, 2003) on
the corpora in both directions, using the “grow-
diag-final-and” balance strategy (Koehn et al.,
2003). We adopt SRI Language Modeling

2The corpora include LDC2002E18, LDC2003E07,
LDC2003E14, LDC2004T07, LDC2005T06.
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Systems MT04 MT05 Average
Moses 34.33 31.75 33.04
Dep2Str 34.89 32.24 33.57

+ BBN-JM (Devlin et al., 2014) 36.11 32.86 34.49
+ CNN (generic) 36.12* 33.07* 34.60
+ tagCNN 36.33* 33.37* 34.85
+ inCNN 36.92* 33.72* 35.32
+ tagCNN + inCNN 36.94* 34.20* 35.57

Table 1: BLEU-4 scores (%) on NIST MT04-test and MT05-test, of Moses (default settings),
dependency-to-string baseline system (Dep2Str), and different features on top of Dep2Str: neural
network joint model (BBN-JM), generic CNN, tagCNN, inCNN and the combination of tagCNN
and inCNN. The boldface numbers and superscript ∗ indicate that the results are significantly
better (p<0.01) than those of the BBN-JM and the Dep2Str baseline respectively. “+” stands for
adding the corresponding feature to Dep2Str.

Toolkit (Stolcke and others, 2002) to train a
4-gram language model with modified Kneser-
Ney smoothing on the Xinhua portion of the
English Gigaword corpus (306 million words).
We parse the Chinese sentences with Stanford
Parser into projective dependency trees.

Optimization of NN: In training the neural
network, we limit the source and target vocab-
ulary to the most frequent 20K words for both
Chinese and English, covering approximately
97% and 99% of two corpus respectively. All
the out-of-vocabulary words are mapped to a
special token UNK. We used stochastic gradient
descent to train the joint model, setting the size
of minibatch to 500. All joint models used a 3-
word target history (i.e., 4-gram LM). The di-
mension of word embedding and the attention
signal h({e}n−1

n−k) for inCNN are 100. For the
convolution layers (Layer 1 and Layer 3), we
apply 100 filters. And the final representation
of CNN encoders is a vector with dimension
100. The final DNN layer of our joint model is
the standard multi-layer perceptron with soft-
max at the top layer.

Metric: We use the case-insensitive 4-
gram NIST BLEU3 as our evaluation met-
ric, with statistical significance test with sign-
test (Collins et al., 2005) between the proposed
models and two baselines.

3ftp://jaguar.ncsl.nist.gov/mt/
resources/mteval-v11b.pl

5.2 Setting for Model Comparisons
We use the tagCNN and inCNN joint lan-
guage models as additional decoding fea-
tures to a dependency-to-string baseline sys-
tem (Dep2Str), and compare them to the neu-
ral network joint model with 11 source con-
text words (Devlin et al., 2014). We use
the implementation of an open source toolkit4

with default configuration except the global
settings described in Section 5.1. Since our
tagCNN and inCNN models are source-to-
target and left-to-right (on target side), we only
take the source-to-target and left-to-right type
NNJM in (Devlin et al., 2014) in compari-
son. We call this type NNJM as BBN-JM here-
after. Although the BBN-JM in (Devlin et al.,
2014) is originally tested in the hierarchical
phrase-based (Chiang, 2007) SMT and string-
to-dependency (Shen et al., 2008) SMT, it is
fairly versatile and can be readily integrated
into Dep2Str.

5.3 The Main Results
The main results of different models are given
in Table 1. Before proceeding to more detailed
comparison, we first observe that

• the baseline Dep2Str system gives BLEU
0.5+ higher than the open-source phrase-
based system Moses (Koehn et al., 2007);

• BBN-JM can give about +0.92 BLEU
score over Dep2Str, a result similar as re-
ported in (Devlin et al., 2014).

4http://nlg.isi.edu/software/nplm/
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Systems MT04 MT05 Average
Dep2str 34.89 32.24 33.57
+tagCNN 36.33 33.37 34.85
+tagCNN dep 36.54 33.61 35.08

Table 2: BLEU-4 scores (%) of tagCNN
model with dependency head words as addi-
tional tags (tagCNN dep).

Clearly from Table 1, tagCNN and inCNN
improve upon the Dep2Str baseline by +1.28
and +1.75 BLEU, outperforming BBN-JM in
the same setting by respectively +0.36 and
+0.83 BLEU, averaged on NIST MT04 and
MT05. These indicate that tagCNN and
inCNN can individually provide discrimina-
tive information in decoding. It is worth not-
ing that inCNN appears to be more informative
than the affiliated words suggested by the word
alignment (GIZA++). We conjecture that this
is due to the following two facts

• inCNN avoids the propagation of mis-
takes and artifacts in the already learned
word alignment;

• the guiding signal in inCNN provides
complementary information to evaluate
the translation.

Moreover, when tagCNN and inCNN are both
used in decoding, it can further increase its
winning margin over BBN-JM to +1.08 BLEU
points (in the last row of Table 1), indicating
that the two models with different guiding sig-
nals are complementary to each other.

The Role of Guiding Signal It is slight sur-
prising that the generic CNN can also achieve
the gain on BLEU similar to that of BBN-
JM, since intuitively generic CNN encodes the
entire sentence and the representations should
in general far from optimal representation for
joint language model. The reason, as we con-
jecture, is CNN yields fairly informative sum-
marization of the sentence (thanks to its so-
phisticated convolution and gating architec-
ture), which makes up some of its loss on
resolution and relevant parts of the source
senescence. That said, the guiding signal in
both tagCNN and inCNN are crucial to the

Systems MT04 MT05 Average
Dep2Str 34.89 32.24 33.57
+inCNN 36.92 33.72 35.32
+inCNN-2-pooling 36.33 32.88 34.61
+inCNN-4-pooling 36.46 33.01 34.74
+inCNN-8-pooling 36.57 33.39 34.98

Table 3: BLEU-4 scores (%) of inCNN mod-
els implemented with gating strategy and k
max-pooling, where k is of {2, 4, 8}.

power of CNN-based encoder, as can be eas-
ily seen from the difference between the BLEU
scores achieved by generic CNN, tagCNN, and
inCNN. Indeed, with the signal from the al-
ready learned word alignment, tagCNN can
gain +0.25 BLEU over its generic counterpart,
while for inCNN with the guiding signal from
the proceeding words in target, the gain is more
saliently +0.72 BLEU.

5.4 Dependency Head in tagCNN

In this section, we study whether tagCNN can
further benefit from encoding richer depen-
dency structure in source language in the input.
More specifically, the dependency head words
can be used to further improve tagCNN model.
As described in Section 3.2, in tagCNN, we
append a tagging bit (0 or 1) to the embedding
of words in the input layer as tags on whether
they are affiliated source words. To incorpo-
rate dependency head information, we extend
the tagging rule in Section 3.2 to add another
tagging bit (0 or 1) to the word-embedding for
original tagCNN to indicate whether it is part
of dependency heads of the affiliated words.
For example, if xi is the embedding of an af-
filiated source word and xj the dependency
head of word xi, the extended input of tagCNN
would contain

x(AFF, NON-HEAD)
i = [x>i 1 0]>

x(NON-AFF, HEAD)
j = [x>j 0 1]>

If the affiliated source word is the root of a
sentence, we only append 0 as the second tag-
ging bit since the root has no dependency head.
From Table 2, with the help of dependency
head information, we can improve tagCNN by
+0.23 BLEU points averagely on two test sets.
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5.5 Gating Vs. Max-pooling

In this section, we investigate to what extent
that our gating strategy can improve the trans-
lation performance over max pooling, with the
comparisons on inCNN model as a case study.
For implementation of inCNN with max-
pooling, we replace the local-gating (Layer-2)
with max-pooling with size 2 (2-pooling for
short), and global gating (Layer-4) with k max-
pooling (“k-pooling”), where k is of {2, 4, 8}.
Then, we use the mean of the outputs of k-
pooling as the final input of Layer-5. In do-
ing so, we can guarantee the input dimension
of Layer-5 is the same as the architecture with
gating. From Table 3, we can clearly see
that our gating strategy can improve translation
performance over max-pooling by 0.34∼0.71
BLEU points. Moreover, we find 8-pooling
yields performance better than 2-pooling. We
conjecture that this is because the useful rel-
evant parts for translation are mainly concen-
trated on a few words of the source sentence,
which can be better extracted with a larger pool
size.

6 Related Work

The seminal work of neural network language
model (NNLM) can be traced to Bengio et al.
(2003) on monolingual text. It is recently ex-
tended by Devlin et al. (2014) to include ad-
ditional source context (11 source words) in
modeling the target sentence, which is clearly
most related to our work, with however two im-
portant differences: 1) instead of the ad hoc
way of selecting a context window in (Devlin
et al., 2014), our model covers the entire source
sentence and automatically distill the context
relevant for target modeling; 2) our convo-
lutional architecture can effectively leverage
guiding signals of vastly different forms and
nature from the target.

Prior to our model there is also work on
representing source sentences with neural net-
works, including RNN (Cho et al., 2014;
Sutskever et al., 2014) and CNN (Kalchbren-
ner and Blunsom, 2013). These work typi-
cally aim to map the entire sentence to a vec-
tor, which will be used later by RNN/LSTM-
based decoder to generate the target sentence.
As demonstrated in Section 5, the representa-

tion learnt this way cannot pinpoint the rele-
vant parts of the source sentences (e.g., words
or phrases level) and therefore is inferior to
be directly integrated into traditional SMT de-
coders.

Our model, especially inCNN, is inspired
by is the automatic alignment model proposed
in (Bahdanau et al., 2014). As the first effort
to apply attention model to machine transla-
tion, it sends the state of a decoding RNN as
attentional signal to the source end to obtain a
weighted sum of embedding of source words
as the summary of relevant context. In con-
trast, inCNN uses 1) a different attention sig-
nal extracted from proceeding words in partial
translations, and 2) more importantly, a con-
volutional architecture and therefore a highly
nonlinear way to retrieve and summarize the
relevant information in source.

7 Conclusion and Future Work

We proposed convolutional architectures for
obtaining a guided representation of the entire
source sentence, which can be used to augment
the n-gram target language model. With differ-
ent guiding signals from target side, we devise
tagCNN and inCNN, both of which are tested
in enhancing a dependency-to-string SMT with
+2.0 BLEU points over baseline and +1.08
BLEU points over the state-of-the-art in (De-
vlin et al., 2014). For future work, we will con-
sider encoding more complex linguistic struc-
tures to further enhance the joint model.
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Abstract

We present a three-pronged approach to
improving Statistical Machine Translation
(SMT), building on recent success in the
application of neural networks to SMT.
First, we propose new features based on
neural networks to model various non-
local translation phenomena. Second, we
augment the architecture of the neural net-
work with tensor layers that capture im-
portant higher-order interaction among the
network units. Third, we apply multitask
learning to estimate the neural network
parameters jointly. Each of our proposed
methods results in significant improve-
ments that are complementary. The over-
all improvement is +2.7 and +1.8 BLEU
points for Arabic-English and Chinese-
English translation over a state-of-the-art
system that already includes neural net-
work features.

1 Introduction

Recent advances in applying Neural Networks to
Statistical Machine Translation (SMT) have gen-
erally taken one of two approaches. They ei-
ther develop neural network-based features that
are used to score hypotheses generated from tra-
ditional translation grammars (Sundermeyer et al.,
2014; Devlin et al., 2014; Auli et al., 2013; Le
et al., 2012; Schwenk, 2012), or they implement
the whole translation process as a single neu-
ral network (Bahdanau et al., 2014; Sutskever et
al., 2014). The latter approach, sometimes re-
ferred to as Neural Machine Translation, attempts
to overhaul SMT, while the former capitalizes on
the strength of the current SMT paradigm and
leverages the modeling power of neural networks
to improve the scoring of hypotheses generated

∗* Research conducted when the author was at BBN.

by phrase-based or hierarchical translation rules.
This paper adopts the former approach, as n-best
scores from state-of-the-art SMT systems often
suggest that these systems can still be significantly
improved with better features.

We build on (Devlin et al., 2014) who proposed
a simple yet powerful feedforward neural network
model that estimates the translation probability
conditioned on the target history and a large win-
dow of source word context. We take advantage
of neural networks’ ability to handle sparsity, and
to infer useful abstract representations automati-
cally. At the same time, we address the challenge
of learning the large set of neural network param-
eters. In particular,
• We develop new Neural Network Features

to model non-local translation phenomena
related to word reordering. Large fully-
lexicalized contexts are used to model these
phenomena effectively, making the use of
neural networks essential. All of the features
are useful individually, and their combination
results in significant improvements (Section
2).
• We use a Tensor Neural Network Architecture

(Yu et al., 2012) to automatically learn com-
plex pairwise interactions between the net-
work nodes. The introduction of the tensor
hidden layer results in more powerful fea-
tures with lower model perplexity and signif-
icantly improved MT performance for all of
neural network features (Section 3).
• We apply Multitask Learning (MTL) (Caru-

ana, 1997) to jointly train related neural net-
work features by sharing parameters. This
allows parameters learned for one feature to
benefit the learning of the other features. This
results in better trained models and achieves
additional MT improvements (Section 4).

We apply the resulting Multitask Tensor Net-
works to the new features and to existing ones,
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obtaining strong experimental results over the
strongest previous results of (Devlin et al., 2014).
We obtain improvements of +2.5 BLEU points
for Arabic-English and +1.8 BLEU points for
Chinese-English on the DARPA BOLT Web Fo-
rum condition. We also obtain improvements of
+2.7 BLEU point for Arabic-English and +1.9
BLEU points for Chinese-English on the NIST
Open12 test sets over the best previously pub-
lished results in (Devlin et al., 2014). Both the
tensor architecture and multitask learning are gen-
eral techniques that are likely to benefit other neu-
ral network features.

2 New Non-Local SMT Features

Existing SMT features typically focus on local in-
formation in the source sentence, in the target hy-
pothesis, or both. For example, the n-gram lan-
guage model (LM) predicts the next target word
by using previously generated target words as con-
text (local on target), while the lexical translation
model (LTM) predicts the translation of a source
word by taking into account surrounding source
words as context (local on source).

In this work, we focus on non-local transla-
tion phenomena that result from non-monotone re-
ordering, where local context becomes non-local
on the other side. We propose a new set of power-
ful MT features that are motivated by this simple
idea. To facilitate the discussion, we categorize the
features into hypothesis-enumerating features that
estimates a probability for each generated target
word (e.g., n-gram language model), and source-
enumerating features that estimates a probability
for each source word (e.g., lexical translation).

More concretely, we introduce a) Joint Model
with Offset Source Context (JMO), a hypothesis
enumerating feature that predicts the next target
word the source context affiliated to the previous
target words; and b) Translation Context Model
(TCM), a source-enumerating feature that predicts
the context of the translation of a source word
rather than the translation itself. These two mod-
els extend pre-existing features: the Joint (lan-
guage and translation) Model (JM) of (Devlin et
al., 2014) and the LTM respectively respectively.
We use a large lexicalized context for there fea-
tures, making the choice of implementing them as
neural networks essential. We also present neural-
network implementations of pre-existing source-
enumerating features: lexical translation, orien-

tation and fertility models. We obtain additional
gains from using tensor networks and multitask
learning in the modeling and training of all the fea-
tures.

2.1 Hypothesis-Enumerating Features

As mentioned, hypothesis-enumerating features
score each word in the hypothesis, typically by
conditioning it on a context of n-1 previous tar-
get words as in the n-gram language model. One
recent such model, the joint model of Devlin et al.
(2014) achieves large improvements to the state-
of-the-art SMT by using a large context window
of 11 source words and 3 target words. The Joint
Model with Offset Source Context (JMO) is an
extension of the JM that uses the source words
affiliated with the n-gram target history as con-
text. The source contexts of JM and JMO over-
lap highly when the translation is monotone, but
are complementary when the translation requires
word reordering.

2.1.1 Joint Model with Offset Source Context
Formally, JMO estimates the probability of the tar-
get hypothesis E conditioned on the source sen-
tence F and a target-to-source affiliationA:

P (E|F,A) ≈
|E|∏
i=1

P (ei|ei−n+1
i−1 , Cai−k

= f
ai−k+m
ai−k−m )

where ei is the word being predicted; ei−n+1
i−1 is the

string of n− 1 previously generated words; Cai−k

to the source context of m source words around
fai−k

, the source word affiliated with ei−k. We
refer to k as the offset parameter. We use the def-
inition of word affiliation introduced in Devlin et
al. (2014). When no source context is used, the
model is equivalent to an n-gram language model,
while an offset parameter of k = 0 reduces the
model to the JM of Devlin et al. (2014).

When k > 0, the JMO captures non-local con-
text in the prediction of the next target word. More
specifically, ei−k and ei, which are local on the
target side, are affiliated to fai−k

and fai which
may be distant from each other on the source side
due to non-monotone translation, even for k = 1.
The offset model captures reordering constraints
by encouraging the predicted target word ei to fit
well with the previous affiliated source word fai−k

and its surrounding words. We implement a sep-
arate feature for each value of k, and later train
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them jointly via multitask learning. As our ex-
periments in Section 5.2.1 confirm, the history-
affiliated source context results in stronger SMT
improvement than just increasing the number of
surrounding words in JM.

Fig. 1 illustrates the difference between JMO
and JM. Assuming n = 3 and m = 1, then JM
estimates P (e5|e4, e3, Ca5 = {f6, f7, f8}). On
the other hand, for k = 1 , JMOk=1 estimates
P (e5|e4, e3, Ca4 = {f8, f9, f10}).

f9f5. . .

e5 e6e4 e7e3. . . . . .

C7 = Ca5

. . .
︷ ︸︸ ︷
f6 f7 f8

Figure 1: Example to illustrate features. f9
5 is the

source segment, e73 is the corresponding transla-
tion and lines refer to the alignment. We show
hypothesis-enumerating features that look at f7

and source-enumerating features that look at e5.
We surround the source words affiliated with e5
and its n-gram history with a bracket, and sur-
round the source words affiliated with the history
of e5 with squares.

2.2 Source-Enumerating Features
Source-Enumerating Features iterate over words
in the source sentence, including unaligned words,
and assign it a score depending on what as-
pect of translation they are modeling. A source-
enumerating feature can be formulated as follows:

P (E|F,A) ≈
|F |∏
j=1

P (Yj |Cj = f j+mj−m )

where Caj is the source context (similar to the
hypothesis-enumerating features above) and Yj
is the label being predicted by the feature. We
first describe pre-existing source-enumerating fea-
tures: the lexical translation model, the orientation
model and the fertility model, and then discuss a
new feature: Translation Context Model (TCM),
which is an extension of the lexical translation
model.

2.2.1 Pre-existing Features
Lexical Translation model (LTM) estimates the
probability of translating a source word fj to a tar-

get word l(fj) = ebj given a source context Cj ,
bj ∈ B is the source-to-target word affiliation as
defined in (Devlin et al., 2014). When fj is trans-
lated to more than one word, we arbitrarily keep
the left-most one. The target word vocabulary V
is extended with a NULL token to accommodate
unaligned source words.

Orientation model (ORI) describes the proba-
bility of orientation of the translation of phrases
surrounding a source word fj relative to its own
translation. We follow (Setiawan et al., 2013)
in modeling the orientation of the left and right
phrases of fj with maximal orientation span (the
longest neighboring phrase consistent with align-
ment), which we denote by Lj and Rj respec-
tively. Thus, o(fj) = 〈oLj (fj), oRj (fj)〉, where
oLj and oRj refer to the orientation of Lj and Rj
respectively. For unaligned fj , we set o(fj) =
oLj (Rj), the orientation of Rj with respect to Lj .

Fertility model (FM) models the probability that
a source word fj generates φ(fj) words in the
hypothesis. Our implemented model only dis-
tinguishes between aligned and unaligned source
words (i.e., φ(fj) ∈ {0, 1}). The generalization of
the model to account for multiple values of φ(fi)
is straightforward.

2.2.2 Translation Context Model

As with JMO in Section 2.1.1, we aim to cap-
ture translation phenomena that appear local on
the target hypothesis but non-local on the source
side. Here, we do so by extending the LTM
feature to predict not only the translated word
ebj , but also its surrounding context. For-
mally, we model P (l(fj)|Cj), where l(fj) =
ebj−d, · · · , ebj , · · · ebj+d is the hypothesis word
window around ebj . In practice, we decompose

TCM further into
+d∏

d′=−d
P (ebj+d′ |Cj) and imple-

mented each as a separate neural network-based
feature. Note that TCM is equivalent to the LTM
when d = 0. Because of word reordering, a given
hypothesis word in l(fj) might not be affiliated
with fj or even to the words in Cj . TCM can model
non-local information in this way.

2.2.3 Combined Model

Since the feature label is undefined for unaligned
source words, we make the model hierarchical,
based on whether the source word is aligned or
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not, and thus arrive at the following formulation:

P (l(fj)) · P (ori(fj)) · P (φ(fj)) =
P (φp(fj) = 0) · P (oLj (Rj))

P (φp(fj) ≥ 1) ·
+d∏

d′=−d
P (ebj+d′)

·P (oLj (fj), oRj (fj))

We dropped the common context (Cj) for readabil-
ity.

We reuse Fig. 1 to illustrate the source-
enumerating features. Assuming d = 1, the scores
associated with f7 are P (φ(f7) ≥ 1|C7) for the
FM; P (e4|C7) ·P (e5|C7) ·P (e6)|C7) for the TCM;
and P (o(f7) = 〈oL7(f7) = RA, oR7(f7) = RA〉)
for the ORI(RA refers to Reverse Adjacent). L7

and R7 (i.e. f6 and f9
8 respectively), the longest

neighboring phrase of f7, are translated in reverse
order and adjacent to e5.

3 Tensor Neural Networks

The second part of this work improves SMT by
improving the neural network architecture. Neural
Networks derive their strength from their ability to
learn a high-level representation of the input auto-
matically from data. This high-level representa-
tion is typically constructed layer by layer through
a weighted sum linear operation and a non-linear
activation function. With sufficient training data,
neural networks often achieve state-of-the-art per-
formance on many tasks. This stands in sharp con-
trast to other algorithms that require tedious man-
ual feature engineering. For the features presented
in this paper, the context words are fed to the net-
work network with minimal engineering.

We further strengthen the network’s ability to
learn rich interactions between its units by intro-
ducing tensors in the hidden layers. The multi-
plicative property of the tensor bares a close re-
semblance to collocation of context words which
are useful in many natural language processing
tasks.

In conventional feedforward neural networks,
the output of hidden layer l is produced by mul-
tiplying the output vector from the previous layer
with a weight matrix (Wl) and then applying the
activation function σ to the product. Tensor Neu-
ral Networks generalize this formulation by using
a tensor Ul of order 3 for the weights. The output
of node k in layer l is computed as follows:

hl[k] = σ
(
hl−1 · Ul[k] · hTl−1

)

where Ul[k], the k-th slice of Ul, is a square ma-
trix.

In our implementation, we follow (Yu et al.,
2012; Hutchinson et al., 2013) and use a low-rank
approximation of Ul[k] = Ql[k] · Rl[k]T , where
Ql[k], Rl[k] ∈ Rn×r. The output of node k be-
comes:

hl[k] = σ
(
hl−1 ·Ql[k] ·Rl[k]T · hTl−1

)
In our experiments, we choose r = 1, and also

apply the non-linear activation function σ distribu-
tively. We arrive at the following three equations
for computing the hidden layer outputs (0 < l <
L):

vl = σ (hl−1 ·Ql)
v′l = σ (hl−1 ·Rl)
hl = vl ⊗ v′l

where hl−1 is double-projected to vl and v′l,
and the two projections are merged using the
Hadamard element-wise product operator ⊗.

This formulation allows us to use the same in-
frastructure of the conventional neural networks
by projecting the previous layer to two different
spaces of the same dimensions, then multiply-
ing them element-wise. The only component that
is different from conventional feedforward neural
networks is the multiplicative function, which is
trivially differentiable with respect to the learnable
parameters. Figure 3(b) illustrates the tensor ar-
chitecture for two hidden layers.

The tensor network can learn collocation fea-
tures more easily. For example, it can learn a col-
location feature that is activated only if hl−1[i] col-
locates with hl−1[j] by setting Ul[k][i][j] to some
positive number. This results in SMT improve-
ments as we describe in Section 5.

4 Multitask Learning

The third part of this paper addresses the challenge
of effectively learning a large number of neural
network parameters without overfitting. The chal-
lenge is even larger for tensor network since they
practically doubles the number of parameters. In
this section, we propose to apply Multitask Learn-
ing (MTL) to partially address this issue. We im-
plement MTL as parameter sharing among the net-
works. This effectively reduces the number of pa-
rameters, and more importantly, it takes advan-
tage of parameters learned for one feature to better
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Figure 2: The network architecture for (a) a conventional feedforward neural network, (b) tensor hidden
layers, and (c) multitask learning with M features that share the embedding and first hidden layers
(t = 1).

learn the parameters of the other features. Another
way of looking at this is that MTL facilitates reg-
ularization through learning the other tasks.

MTL is suitable for SMT features as they model
different but closely related aspects of the same
translation process. MTL has long been used by
the wider machine learning community (Caruana,
1997) and more recently for natural language pro-
cessing (Collobert and Weston, 2008; Collobert
et al., 2011). The application of MTL to ma-
chine translation, however, has been much less re-
stricted, which is rather surprising since SMT fea-
tures arise from the same translation task and are
naturally related.

We apply MTL for the features described in
Section 2. We design all the features to also share
the same neural network architecture (in this case,
the tensor architecture described in Section 3) and
the same input, thus resulting in two large neural
networks: one for the hypothesis-enumerating fea-
tures and another for the source-enumerating ones.
This simplifies the implementation of MTL. Us-
ing this setup, it is possible to vary the number
of shared hidden layers t from 0 (only sharing the
embedding layer) to L − 1 (sharing all the layers
except the output). Note that in principle MTL is
applicable to other set of networks that have differ-
ent architecture or even different input set. With
MTL, the training procedure is the same as that of
standard neural networks.

We use the back propagation algorithm, and use
as the loss function the product of likelihood of
each feature1:

1In this and in the other parts of the paper, we add the
normalization regularization term described in (Devlin et al.,
2014) to the loss function to avoid computing the normaliza-
tion constant at model query/decoding time.

Loss =
∑
i

M∑
j

log (P (Yj(Xi)))

where Xi is the training sample and Yj is one of
theM models trained. We use the sum of log like-
lihoods since we assume that the features are inde-
pendent.

Fig. 3(c) illustrates MTL between M models
sharing the input embedding layer and the first
hidden layer (t = 1) compared to the separately-
trained conventional feedforward neural network
and tensor neural network.

5 Experiments

We demonstrate the impact of our work with ex-
tensive MT experiments on Arabic-English and
Chinese-English translation for the DARPA BOLT
Web Forum and the NIST OpenMT12 conditions.

5.1 Baseline MT System

We run our experiments using a state-of-the-art
string-to-dependency hierarchical decoder (Shen
et al., 2010). The baseline we use includes a set
of powerful features as follow:
• Forward and backward rule probabilities
• Contextual lexical smoothing (Devlin, 2009)
• 5-gram Kneser-Ney LM
• Dependency LM (Shen et al., 2010)
• Length distribution (Shen et al., 2010)
• Trait features (Devlin and Matsoukas, 2012)
• Factored source syntax (Huang et al., 2013)
• Discriminative sparse feature, totaling 50k

features (Chiang et al., 2009)
• Neural Network Joint Model (NNJM) and

Neural Network Lexical Translation Model
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(NNLTM) (Devlin et al., 2014)
As shown, our baseline system already includes
neural network-based features. NNJM, NNLTM
and use two hidden layers with 500 units and use
embedding of size 200 for each input.

We use the MADA-ARZ tokenizer (Habash et
al., 2013) for Arabic word tokenization. For Chi-
nese tokenization, we use a simple longest-match-
first lexicon-based approach. We align the training
data using GIZA++ (Och and Ney, 2003). For tun-
ing the weights of MT features including the new
features, we use iterative k-best optimization with
an ExpectedBLEU objective function (Rosti et al.,
2010), and decode the test sets after 5 tuning iter-
ation. We report the lower-cased BLEU and TER
scores.

5.2 BOLT Discussion Forum

The bulk of our experiments is on the BOLT Web
Discussion Forum domain, which uses data col-
lected by the LDC. The parallel training data con-
sists of all of the high-quality NIST training cor-
pora, plus an additional 3 million words of trans-
lated forum data. The tuning and test sets consist
of roughly 5000 segments each, with 2 indepen-
dent references for Arabic and 3 for Chinese.

5.2.1 Effects of New Features
We first look at the effects of the proposed features
compared to the baseline system. Table 1 summa-
rizes the primary results of the Arabic-English and
Chinese-English experiments for the BOLT condi-
tion. We show the experimental results related to
hypothesis-enumerating features (HypEn) in rows
S2-S5, those related to source-enumerating fea-
tures (SrcEn) in rows S6-S9, and the combination
of the two in row S10. For all the features, we set
the source context length to m = 5 (11-word win-
dow). For JM and JMO, we set the target context
length to n = 4. For the offset parameter k of
JMO, we use values 1 to 3. For TCM, we model
one word around the translation (d = 1). Larger
values of d did not result in further gains. The
baseline is comparable to the best results of (De-
vlin et al., 2014).

In rows S3 to S5, we incrementally add a model
with different offset source context, from k = 1
to k = 3. For AR-EN, adding JMOs with differ-
ent offset source context consistently yields pos-
itive effects in BLEU score, while in ZH-EN, it
yields positive effects in TER score. Utilizing all
offset source contexts “+JMOk≤3” (row S5) yields

around 0.9 BLEU point improvement in AR-EN
and around 0.3 BLEU in ZH-EN compared to
the baseline. The JMO consistently provides bet-
ter improvement compared to a larger JM con-
text (row S2), validating our hypothesis that using
offset source context captures important non-local
context.

Rows S6 to S9 present the improvements that
result from implementing pre-existing source-
enumerating SMT features as neural networks,
and highlight the contribution of our translation
context model (TCM). This set of experiments is
orthogonal to the HypEn experiments (rows S2-
S5). Each pre-existing model has a modest pos-
itive cumulative effect on both BLEU and TER.
We see this result as further confirming the cur-
rent trend of casting existing SMT features as neu-
ral network since our baseline already contains
such features. The next row present the results
of adding the translation context model, with one
word surrounding the translation (d = 1). As
shown, TCM yields a positive effect of around
0.5 BLEU and TER improvements in AR-EN and
around 0.2 BLEU and TER improvements in ZH-
EN.

Separately, the set of source-enumerating fea-
tures and the set of target-enumerating features
produce around 1.1 to 1.2 points BLEU gain in
AR-EN and 0.3 to 0.5 points BLEU gain in ZH-
EN. The combination of the two sets produces a
complementary gain in addition to the gains of the
individual models as Row (S10) shows. The com-
bined gain improves to 1.5 BLEU points in AR-
EN and 0.7 BLEU points in ZH-EN.

System
AR-EN ZH-EN

BL TER BL TER
S1: Baseline 43.2 45.0 30.2 58.3
S2: S1+JMLC8 43.5 45.0 30.2 58.5
S3: S1+JMOk=1 43.9 44.7 30.8 57.8
S4: S3+JMOk=2 43.9 44.7 30.7 57.8
S5: S4+JMOk=3 44.4 44.5 30.5 57.5
S6: S1+LTM 43.5 44.7 30.3 58.0
S7: S6+ORI 43.7 44.6 30.4 57.8
S8: S7+FERT 43.8 44.7 30.5 57.8
S9: S8+TCM 44.3 44.2 30.7 57.5
S10: S9+JMOk≤3 44.7 44.1 30.9 57.3

Table 1: MT results of various model combination
in BLEU and in TER.
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5.2.2 Effects of Tensor Network and
Multitask Learning

We first analyze the impact of tensor architecture
and MTL intrinsically by reporting the models’
average log-likelihood on the validation sets (a
subset of the test set) in Table 2. As mentioned, we
group the models to HypEn (JM and JMOk≤3) and
SrcEn (LTM, ORI,FERT and TCM) as we perform
MTL on these two groups. Likelihood of these
two groups in the previous subsection are in col-
umn “NN” (for Neural Network), which serves as
a baseline. The application of the tensor architec-
ture improves their likelihood as shown in column
“Tensor” for both languages and models.

Feat.
Independent MTL
NN Tensor t = 0 t = 1

L = 2 L = 3

A
R HypEn -8.85 -8.54 -8.35 -

SrcEn -8.47 -8.32 -8.10 -8.09

Z
H HypEn -11.48 -11.06 -10.87 -

SrcEn -10.77 -10.66 -10.54 -10.49

Table 2: Sum of the average log-likelihood of the
models in HypEn and SrcEn. t = 0 refers to MTL
that shares only the embedding layer, while t = 1
shares the first hidden layer as well. L refers to the
network’s depth. Higher value is better.

The likelihoods of the MTL-related experi-
ments are in columns with “MTL” header. We
present two set of results. In the first set (col-
umn “MTL,t=0,L=2”), we run MTL for features
from column “Tensor” by sharing the embedding
layer only (t = 0). This allows us to isolate
the impact of MTL in the presence of Tensors.
Column “MTL,t=1,l=3” corresponds to the exper-
iment that produces the best intrinsic result, where
each model uses Tensors with three hidden lay-
ers (500x500x500, l = 3) and the models share
the embedding and the first hidden layers (t = 1).
MTL consistently gives further intrinsic gain com-
pared to tensors. More sharing provides an extra
gain for SrcEn as shown in the last column. Note
that we only experiment with different l and t for
SrcEn and not for HypEn because the models in
HypEn have different input sets. In our experi-
ments, further sharing and more hidden layers re-
sulted in no further gain. In total, we see a consis-
tent positive effect in intrinsic evaluation from the
tensor networks and multitask learning.

Moving on to MT evaluation, we summarize the

experiments showing the impact of Tensors and
MTL in Table 3. For MTL, we use L = 3, t = 2
since it gives the best intrinsic score. Employing
tensors instead of regular neural networks gives a
significant and consistent positive impact for all
models and language pairs. For the system with
the baseline features, we use the tensor architec-
ture for both the joint model and the lexical trans-
lation model of Devlin et al. resulting in an im-
provement of around 0.7 BLEU points, and show-
ing the wide applicability of the tensor architec-
ture. On top of this improved baseline, we also ob-
serve an improvement of the same scale for other
models (column “Tensor”), except for HypEn fea-
tures in AR-EN experiment. Moving to MTL ex-
periments, we see improvements, especially from
SrcEn features. MTL gives around 0.5 BLEU
point improvement for AR-EN and around 0.4
BLEU point for ZH-EN. When we employ both
HypEn and SrcEn together, MTL gives around 0.4
BLEU point in AR-EN and 0.2 BLEU point in
ZH-EN. In total, our work results in an improve-
ment of 2.5 BLEU point for AR-EN and 1.8 for
BLEU point in ZH-EN on top of the best results in
(Devlin et al., 2014).

5.3 NIST OpenMT12

Our NIST system is compatible with the
OpenMT12 constrained track, which consists of
10M words of high-quality parallel training for
Arabic, and 25M words for Chinese. The n-gram
LM is trained on 5B words of data from the En-
glish GigaWord. For test, we use the “Arabic-To-
English Original Progress Test” (1378 segments)
and “Chinese-to-English Original Progress Test +
OpenMT12 Current Test” (2190 segments), which
consists of a mix of newswire and web data.
All test segments have 4 references. Our tuning
set contains 5000 segments, and is a mix of the
MT02-05 eval set as well as additional held-out
parallel data from the training corpora.

We report the experiments for the NIST con-
dition in Table 4. In particular, we investigate
the impact of deploying our new features (column
“Feat”) and demonstrate the effects of the ten-
sor architecture (column “Tensor”) and multitask
learning (column “MTL”). As shown the results
are inline with the BOLT condition where we ob-
serve additive improvements from adding our new
features, applying tensor network and multitask
learning. On Arabic-English, we see a gain of 2.7
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Feature set
AR-EN ZH-EN

NN Tensor MTL NN Tensor MTL
R1: Baseline Features 43.2 43.9 - 30.2 30.8 -
R2: R1 + HypEn 44.4 44.4 44.5 30.5 31.5 31.3
R3: R1 + SrcEn 44.3 44.9 45.5 30.7 31.5 31.9
R4: R1 + HypEn + SrcEn 44.7 45.3 45.7 30.9 31.8 32.0

Table 3: Experimental results to investigate the effects of the new features, DTN and MTL. The top
part shows the BOLT results, while the bottom part shows the NIST results. The best results for each
conditions and each language-pair are in bold. The baselines are in italics. .

Base. Feat Tensor MTL
AR-EN 53.7 55.4 55.9 56.4
mixed-case 51.8 53.1 53.7 54.1
ZH-EN 36.6 37.8 38.2 38.5
mixed-case 34.4 35.5 35.9 36.1

Table 4: Experimental results for the NIST condi-
tion. Mixed-case scores are also reported. Base-
lines are in italics.

BLEU point and on Chinese-English, we see a 1.9
BLEU point gain. We also report the mixed-cased
BLEU scores for comparison with previous best
published results, i.e. Devlin et al. (2014) report
52.8 BLEU for Arabic-English and 34.7 BLEU for
Chinese-English. Thus, our results are around 1.3-
1.4 BLEU point better. Note that they use addi-
tional rescoring features but we do not.

6 Related Work

Our work is most closely related to Devlin et al.
(2014). They use a simple feedforward neural
network to model two important MT features: A
joint language and translation model, and a lex-
ical translation model. They show very large
improvements on Arabic-English and Chinese-
English web forum and newswire baselines. We
improve on their work in 3 aspects. First, we
model more features using neural networks, in-
cluding two novel ones: a joint model with off-
set source context and a translation context model.
Second, we enhance the neural network architec-
ture by using tensor layers, which allows us to
model richer interactions. Lastly, we improve the
performance of the individual features by training
them using multitask learning. In the remainder
of this section, we describe previous work relat-
ing to the three aspect of our work, namely MT
modeling, neural network architecture and model
learning.

The features we propose in this paper address
the major aspects of SMT modeling that have
informed much of the research since the origi-
nal IBM models (Brown et al., 1993): lexical
translation, reordering, word fertility, and lan-
guage models. Of particular relevance to our work
are approaches that incorporate context-sensitivity
into the models (Carpuat and Wu, 2007), formu-
late reordering as orientation prediction task (Till-
man, 2004) and that use neural network language
models (Bengio et al., 2003; Schwenk, 2010;
Schwenk, 2012), and incorporate source-side con-
text into them (Devlin et al., 2014; Auli et al.,
2013; Le et al., 2012; Schwenk, 2012).

Approaches to incorporating source context into
a neural network model differ mainly in how they
represent the source sentence and in how long is
the history they keep. In terms of representa-
tion of the source sentence, we follow (Devlin et
al., 2014) in using a window around the affiliated
source word. To name some other approaches,
Auli et al. (2013) uses latent semantic analysis and
source sentence embeddings learned from the re-
current neural network; Sundermeyer et al. (2014)
take the representation from a bidirectional LSTM
recurrent neural network; and Kalchbrenner and
Blunsom (2013) employ a convolutional sentence
model. For target context, recent work has tried
to look beyond the classical n-gram history. (Auli
et al., 2013; Sundermeyer et al., 2014) consider
an unbounded history, at the expense of making
their model only applicable for N-best rescoring.
Another recent line of research (Bahdanau et al.,
2014; Sutskever et al., 2014) departs more rad-
ically from conventional feature-based SMT and
implements the MT system as a single neural net-
work. These models use a representation of the
whole input sentence.

We use a feedforward neural network in this
work. Besides feedforward and recurrent net-
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works, other network architectures that have been
applied to SMT include convolutional networks
(Kalchbrenner et al., 2014) and recursive networks
(Socher et al., 2011). The simplicity of feedfor-
ward networks works to our advantage. More
specifically, due to the absence of a feedback loop,
the feedforward architecture allows us to treat
individual decisions independently, which makes
parallelization of the training easy and the query-
ing the network at decoding time straightforward.
The use of tensors in the hidden layers strengthens
the neural network model, allowing us to model
more complex feature interactions like colloca-
tion, which has been long recognized as impor-
tant information for many NLP tasks (e.g. word
sense disambiguation (Lee and Ng, 2002)). The
tensor formulation we use is similar to that of
(Yu et al., 2012; Hutchinson et al., 2013). Ten-
sor Neural Networks have a wide application in
other field, but have only been recently applied in
NLP (Socher et al., 2013; Pei et al., 2014). To
our knowledge, our work is the first to use tensor
networks in SMT.

Our approach to multitask learning is related to
work that is often labeled joint training or transfer
learning. To name a few of these works, Finkel
and Manning (2009) successfully train name en-
tity recognizers and syntactic parsers jointly, and
Singh et al. (2013) train models for coreference
resolution, named entity recognition and relation
extraction jointly. Both efforts are motivated by
the minimization of cascading errors. Our work
is most closely related to Collobert and Weston
(2008; Collobert et al. (2011), who apply multi-
task learning to train neural networks for multi-
ple NLP models: part-of-speech tagging, semantic
role labeling, named-entity recognition and lan-
guage model variations.

7 Conclusion

This paper argues that a relatively simple feedfor-
ward neural network can still provides significant
improvement to Statistical Machine Translation
(SMT). We support this argument by presenting a
multi-pronged approach that addresses modeling,
architectural and learning aspects of pre-existing
neural network-based SMT features. More con-
cretely, we paper present a new set of neural
network-based SMT features to capture important
translation phenomena, extend feedforward neu-
ral network with tensor layers, and apply multi-

task learning to integrate the SMT features more
tightly. Empirically, all our proposals successfully
produce an improvement over state-of-the-art ma-
chine translation system for Arabic-to-English and
Chinese-to-English and for both BOLT web fo-
rum and NIST conditions. Building on the suc-
cess of this paper, we plan to develop other neural-
network-based features, and to also relax the lim-
iteation of current rule extraction heuristics by
generating translations word-by-word.
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Abstract

The Visual Dependency Representation
(VDR) is an explicit model of the spa-
tial relationships between objects in an im-
age. In this paper we present an approach
to training a VDR Parsing Model without
the extensive human supervision used in
previous work. Our approach is to find
the objects mentioned in a given descrip-
tion using a state-of-the-art object detec-
tor, and to use successful detections to pro-
duce training data. The description of an
unseen image is produced by first predict-
ing its VDR over automatically detected
objects, and then generating the text with
a template-based generation model using
the predicted VDR. The performance of
our approach is comparable to a state-of-
the-art multimodal deep neural network in
images depicting actions.

1 Introduction

Humans typically write the text accompanying an
image, which is a time-consuming and expen-
sive activity. There are many circumstances in
which people are well-suited to this task, such as
captioning news articles (Feng and Lapata, 2008)
where there are complex relationships between the
modalities (Marsh and White, 2003). In this pa-
per we focus on generating literal descriptions,
which are rarely found alongside images because
they describe what can easily be seen by others
(Panofsky, 1939; Shatford, 1986; Hodosh et al.,
2013). A computer that can automatically gen-
erate these literal descriptions, filling the gap left
by humans, may improve access to existing image
collections or increase information access for vi-
sually impaired users.

There has been an upsurge of research in this
area, including models that rely on spatial rela-

tionships (Farhadi et al., 2010), corpus-based rela-
tionships (Yang et al., 2011), spatial and visual at-
tributes (Kulkarni et al., 2011), n-gram phrase fu-
sion from Web-scale corpora (Li et al., 2011), tree-
substitution grammars (Mitchell et al., 2012), se-
lecting and combining phrases from large image-
description collections (Kuznetsova et al., 2012),
using Visual Dependency Representations to cap-
ture spatial and corpus-based relationships (El-
liott and Keller, 2013), and in a generative frame-
work over densely-labelled data (Yatskar et al.,
2014). The most recent developments have fo-
cused on deep learning the relationships between
visual feature vectors and word-embeddings with
language generation models based on recurrent
neural networks or long-short term memory net-
works (Karpathy and Fei-Fei, 2015; Vinyals et al.,
2015; Mao et al., 2015; Fang et al., 2015; Don-
ahue et al., 2015; Lebret et al., 2015). An alter-
native thread of research has focused on directly
pairing images with text, based on kCCA (Hodosh
et al., 2013) or multimodal deep neural networks
(Socher et al., 2014; Karpathy et al., 2014).

We revisit the Visual Dependency Representa-
tion (Elliott and Keller, 2013, VDR), an intermedi-
ate structure that captures the spatial relationships
between objects in an image. Spatial context has
been shown to be useful in object recognition and
naming tasks because humans benefit from the vi-
sual world conforming to their expectations (Bie-
derman et al., 1982; Bar and Ullman, 1996). The
spatial relationships defined in VDR are closely,
but independently, related to cognitively plausible
spatial templates (Logan and Sadler, 1996) and re-
gion connection calculus (Randell et al., 1992).
In the image description task, explicitly modelling
the spatial relationships between observed objects
constrains how an image should be described. An
example can be seen in Figure 1, where the train-
ing VDR identifies the defining relationship be-
tween the man and the laptop, which may be re-
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A man is using a laptop
- - -

nsubj dobj

bike? -2.3

...

person? 3.5

laptop? 1.2

...

CNN
person laptop

beside

VDR
Parser

R-CNN

person laptop

beside

VDR
Parser

A person is
using a laptop

Language
Generator

Figure 1: We present an approach to inferring VDR training data from images paired with descriptions
(top), and for generating descriptions from VDR (bottom). Candidates for the subject and object in the
image are extracted from the description. An object detector1searches for the objects and determinis-
tically produces a training instance, which is used to train a VDR Parser to predict the relationships
between objects in unseen images. When an unseen image is presented to the model, we first extract
N-candidate objects for the image. The detected objects are then parsed into a VDR structure, which is
passed into a template-based language generator to produce a description of the image.

alised as a “using”, “typing”, or “working” rela-
tionship between the objects.

The main limitation of previous research on
VDR has been the reliance on gold-standard train-
ing annotations, which requires trained annota-
tors. We present the first approach to automati-
cally inferring VDR training examples from nat-
ural scenes using only an object detector and an
image description. Ortiz et al. (2015) have re-
cently presented an alternative treatment of VDR
within the context of abstract scenes and phrase-
based machine translation. Figure 1 shows a de-
tailed overview of our approach. At training time,
we learn a VDR Parsing model from representa-
tions that are constructed by searching for the sub-
ject and object in the image. The description of
an unseen image is generated using a template-
based generation model that leverages the VDR
predicted over the top-N objects extracted from an
object detector.

We evaluate our method for inferring VDRs in
an image description experiment on the Pascal1K
(Rashtchian et al., 2010) and VL2K data sets (El-
liott and Keller, 2013) against two models: the
bi-directional recurrent neural network (Karpathy
and Fei-Fei, 2015, BRNN) and MIDGE (Mitchell
et al., 2012). The main finding is that the qual-
ity of the descriptions generated by our method

1The image of the R-CNN object detector was modified
with permission from Girshick et al. (2014).

depends on whether the images depict an action.
In the VLT2K data set of people performing ac-
tions, the performance of our approach is compa-
rable to the BRNN; in the more diverse Pascal1K
dataset, the BRNN is substantially better than our
method. In a second experiment, we transfer the
VDR-based model from the VLT2K data set to the
Pascal1K data set without re-training, which im-
proves the descriptions generated in the Pascal1K
data set. This suggests that refining how we ex-
tract training data may yield further improvements
to VDR-based image description.

The code and generated descriptions are avail-
able at http://github.com/elliottd/vdr/.

2 Automatically Inferring VDRs

The Visual Dependency Representation is a struc-
tured representation of an image that explicitly
models the spatial relationships between objects.
In this representation, the spatial relationship be-
tween a pair of objects is encoded with one of the
following eight options: above, below, beside, op-
posite, on, surrounds, infront, and behind. Pre-
vious work on VDR-based image description has
relied on training data from expert human anno-
tators, which is expensive and difficult to scale
to other data sets. In this paper, we describe an
approach to automatically inferring VDRs using
only an object detector and the description of an
image. Our aim is to define an automated version
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Relation Definition

Beside The angle between the subject and
the object is either between 315◦

and 45◦ or 135◦ and 225◦.
Above The angle between the subject and

object is between 225◦ and 315◦.
Below The angle between the subject and

object is between 45◦ and 135◦.
On More than 50% of the subject

overlaps with the object.
Surrounds More than 90% of the subject

overlaps with the object.

Table 1: The cascade of spatial relationships be-
tween objects in VDR. We always use the last
relationship that matches. These definitions are
mostly taken from (Elliott and Keller, 2013), ex-
cept that we remove the 3D relationships. Angles
are defined with respect to the unit circle, which
has 0◦ on the right. All relations are specific with
respect to the centroid of the bounding boxes.

of the human process used to create gold-standard
data (Elliott and Keller, 2013).

An inferred VDR is constructed by searching
for the subject and object referred to in the descrip-
tion of an image using an object detector. If both
the subject and object can be found in the image,
a VDR is created by attaching the detected subject
to the detected object, given the spatial relation-
ship between the object bounding boxes. The spa-
tial relationships that can be applied between sub-
jects and objects are defined in the cascade defined
in Table 1. The set of relationships was reduced
from eight to six due to the difficulty in predict-
ing the 3D relationships in 2D images (Eigen et
al., 2014). The spatial relation selected for a pair
of objects is determined by applying each tem-
plate defined in Table 1 to the object pair. We use
only the final matching relationship, although fu-
ture work may consider applying multiple match-
ing relationships between objects.

Given a set of inferred VDR training examples,
we train a VDR Parsing Model with the VDR+IMG

feature set using only the inferred examples (El-
liott et al., 2014). We tried training a model by
combining the inferred and gold-standard VDRs
but this lead to an erratic parsing model that would
regularly predict flat structures instead of object–

person 3.13
c. keyboard 1.22
laptop 0.77
sofa 0.61
waffle iron 0.47
tape player 0.21
banjo 0.14
accordion -0.16
iPod -0.26
vacuum -0.40

Figure 2: An example of the most confident object
detections from the R-CNN object detector.

object relationships. One possibility for this be-
haviour is the mismatch caused by removing the
infront and behind relationships in the inferred
training data. Another possible explanation is
the gold-standard data contains deeper and more
complex structures than the simple object–object
structures we infer.

2.1 Linguistic Processing
The description of an image is processed to extract
candidates for the mentioned objects. We extract
candidates from the nsubj and dobj tokens in
the dependency parsed description2. If the parsed
description does not contain both a subject and an
object, as defined here, the example is discarded.

2.2 Visual Processing
If the dependency parsed description contains
candidates for the subject and object of an im-
age, we attempt to find these objects in the im-
age. We use the Regions with Convolutional
Neural Network features object detector (Gir-
shick et al., 2014, R-CNN) with the pre-trained
bvlc reference ilsrvc13 detection model
implemented in Caffe (Jia et al., 2014). This ob-
ject detection model is able to detect 200 different
types of objects, with a mean average precision of
31.4% in the ImageNet Large-Scale Visual Recog-
nition Challenge3 (Russakovsky et al., 2014). The
output of the object detector is a bounding box
with real-valued confidence scores, as shown in

2The descriptions are Part-of-Speech tagged using the
Stanford POS Tagger v3.1.0 (Toutanova et al., 2003) with
the english-bidirectional-distsim pre-trained
model. The tagged descriptions are then Dependency Parsed
using Malt Parser v 1.7.2 (Nivre et al., 2007) with the
engmalt.poly-1.7 pre-trained model.

3The state-of-the-art result for this task is 37.2% using a
Network in Network architecture (Lin et al., 2014a); a pre-
trained detection model was not available in the Caffe Model
Zoo at the time of writing.
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A boy is using a laptop

(a) on

A man is riding a bike

(b) above

A woman is riding a bike

(c) surrounds

A woman is riding a horse

(d) surrounds

A man is playing a sax

(e) surrounds

A man is playing a guitar

(f) beside

The woman is wearing a helmet

(g) surrounds

Figure 3: Examples of the object detections and automatically inferred VDR. In each example, the object
detector candidates were extracted from the description and the VDR relationships were determined by
the cascade in Table 1. Automatically inferring VDR allows us to learn differences in spatial relationships
from different camera viewpoints, such as people riding bicycles.

Figure 2. The confidence scores are not probabili-
ties and can vary widely across images.

The words in a description that refer to objects
in an image are not always within the constrained
vocabulary of the object labels in the object de-
tection model. We increase the chance of finding
objects with two simple back-offs: by lemmatis-
ing the token, and transforming the token into its
WordNet hypernym parent. If the subject and the
object can be found in the image, we create an in-
ferred VDR from the detections, otherwise we dis-
card this training example.

Figure 3 shows a collection of automatically in-
ferred VDRs. One of the immediate benefits of
VDR, as a representation, is that we can easily in-
terpret the structures extracted from images. An
example of helpful object orientation invariance
can be seen in 3 (b) and (c), where VDR captures
the two different types of spatial relationships be-
tween people and bicycles that are grounded in the
verb “riding”. This type of invariance is useful
and it suggests VDR can model interacting objects
from various viewpoints. We note here the sim-

ilarities between automatically inferred VDR and
Visual Phrases (Sadeghi and Farhadi, 2011). The
main difference between these models is that VDR
is primarily concerned with object–object interac-
tions for generation and retrieval tasks, whereas
Visual Phrases were intended to model person–
object interactions for activity recognition.

2.3 Building a Language Model
We build a language model using the subjects,
verbs, objects, and spatial relationships from the
successfully constructed training examples. The
subjects and objects take the form of the object de-
tector labels to reduce the effects of sparsity. The
verbs are found as the direct common verb parent
of the subject and object in the dependency parsed
sentence. We stem the verbs using morpha, to re-
duce sparsity, and inflect them in a generated de-
scription with +ing using morphg (Minnen et al.,
2001). The spatial relationship between the sub-
ject and object region is used to help constrain lan-
guage generation to produce descriptions, given
observed spatial contexts in a VDR.
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person laptop sofa banjo vacuum
c=3.12 c=0.77 c=0.61 c=0.14 c=-0.40

beside

root

beside
besideVDR

Parser
A person is using a laptop (0.84)
A person is playing a banjo (0.71)
A person is beside a vacuum (0.38)†

A person is in the image (0.96)⋆

Language
Generator

Figure 4: An overview of VDR-constrained language generation. We extract the top-N objects from an
image using an object detector and predict the spatial relationships between the objects using a VDR
Parser trained over the inferred training data. Descriptions are generated for all parent–child subtrees in
the VDR, and the final text has the highest combined corpus and visual confidence. †: only generated
is there are no verbs between the objects in the language model; ⋆: only generated if there are no verbs
between any pairs of objects in the image.

3 Generating Descriptions

The description of an image is generated using
a template-based language generation model de-
signed to exploit the structure encoded in VDR.
The language generation model extends Elliott
and Keller (2013) with the visual confidence
scores from the object detector. Figure 4 shows
an overview of the generation process.

The top-N objects are extracted from an image
using the pre-trained R-CNN object detector (see
Section 2.2 for more details). We remove non-
maximal detections with the same class label that
overlap by more than 30%. The objects are then
parsed into a VDR structure using the VDR Parser
trained on the automatically inferred training data.
Given the VDR over the set of detected objects, we
generate all possible descriptions of the image that
can be produced in a depth-first traversal of the
VDR. A description is assigned a score that com-
bines the corpus-based evidence and visual con-
fidence of the objects selected for the description.
The descriptions are generated using the following
template:

DT head is V DT child.

In this template, head and child are the labels
of the objects that appear in the head and child po-
sitions of a specific VDR subtree. V is a verb de-
termined from a subject-verb-object-spatial rela-
tion model derived from the training data descrip-
tions. This model captures statistics about nouns
that appear as subjects and objects, the verbs be-
tween them, and spatial relationships observed in
the inferred training VDRs. The verb v that satis-
fies the V field is determined as follows:

v = arg max
v

p(v|head, child, spatial) (1)

p(v|head,child, spatial) =
p(v|head) · p(child|v, head)·
p(spatial|child, v, head)

(2)

If no verbs were observed between a particular
object–object pair in the training corpus, V is filled
using a back-off that uses the spatial relationship
label between the objects in the VDR.

The object detection confidence values, which
are not probabilities and can vary substantially be-
tween images, are transformed into the range [0,1]
using sgm(conf) = 1

1+e−conf . The final score as-
signed to a description is then used to rank all of
the candidate descriptions, and the highest-scoring
description is assigned to an image:

score(head, v,child, spatial) =
p(v|head, child, spatial)·
sgm(head) · sgm(child)

(3)

If the VDR Parser does not predict any rela-
tionships between objects in an image, which may
happen if all of the objects have never been ob-
served in the training data, we use a back-off tem-
plate to generate the description. In this case, the
most confidently detected object in the image is
used with the following template:

A/An object is in the image.

The number of objects N objects extracted from
an unseen image is optimised by maximising the
sentence-level Meteor score of the generated de-
scriptions in the development data.

4 Experiments

We evaluate our approach to automatically infer-
ring VDR training data in an automatic image de-
scription experiment. The aim in this task is to
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generate a natural language description of an im-
age, which is evaluated directly against multiple
reference descriptions.

4.1 Models
We compare our approach against two state-of-
the-art image description models. MIDGE gener-
ates text based on tree-substitution grammar and
relies on discrete object detections (Mitchell et al.,
2012) for visual input. We make a small modi-
fication to MIDGE so it uses all of the top-N de-
tected objects, regardless of the confidence of the
detections4. BRNN is a multimodal deep neural
network that generates descriptions directly from
vector representations of the image and the de-
scription (Karpathy and Fei-Fei, 2015). The im-
ages are represented by the visual feature vector
extracted from the FC7 layer of the VGG 16-layer
convolutional neural network (Simonyan and Zis-
serman, 2015) and the descriptions are represented
as a word-embedding vector.

4.2 Evaluation Measures
We evaluate the generated descriptions using
sentence-level Meteor (Denkowski and Lavie,
2011) and BLEU4 (Papineni et al., 2002), which
have been shown to have moderate correlation
with humans (Elliott and Keller, 2014). We adopt
a jack-knifing evaluation methodology, which en-
ables us to report human–human results (Lin and
Och, 2004), using MultEval (Clark et al., 2011).

4.3 Data Sets
We perform our experiments on two data sets: Pas-
cal1K and VLT2K. The Pascal1K data set contains
1,000 images sampled from the PASCAL Object
Detection Challenge data set (Everingham et al.,
2010); each image is paired with five reference de-
scriptions collected from Mechanical Turk. It con-
tains a wide variety of subject matter drawn from
the original 20 PASCAL Detection classes. The
VLT2K data set contains 2,424 images taken from
the trainval 2011 portion of the PASCAL Action
Recognition Challenge; each image is paired with
three reference descriptions, also collected from
Mechanical Turk. We randomly split the images
into 80% training, 10% validation, and 10% test.

4In personal communication with Margaret Mitchell, she
explained that the object confidence thresholds for MIDGE
were determined by visual inspection on held-out data, which
we decided was not feasible for 200 new detectors.

VLT2K Pascal1K
Meteor BLEU Meteor BLEU

VDR 16.0 14.8 7.4 9.0
BRNN 18.6 23.7 12.6 16.0
-genders 16.6 17.4 12.1 15.1

MIDGE 5.5 8.2 3.6 9.1

Human 26.4 23.3 21.7 20.6

Table 2: Sentence-level evaluation of the gen-
erated descriptions. VDR is comparable to
BRNN when the images exclusively depict actions
(VLT2K). In a more diverse data set, BRNN gener-
ates better descriptions (Pascal1K).

4.4 Results
Table 2 shows the results of the image description
experiment. The main finding of our experiments
is that the performance of our proposed approach
VDR depends on the type of images. We found
that VDR is comparable to the deep neural network
BRNN on the VLT2K data set of people perform-
ing actions. This is consistent with the hypothesis
underlying VDR: it is useful to encode the spa-
tial relationships between objects in images. The
difference between the models is increased by the
inability of the object detector used by VDR to pre-
dict bounding boxes for three objects (cameras,
books, and phones) crucial to describing 30% of
the images in this data set. In the more diverse
Pascal1K data set, which does not necessarily de-
pict people performing actions, the deep neural
network generates substantially better descriptions
than VDR and MIDGE. The tree-substitution gram-
mar approach to generating descriptions used by
MIDGE does not perform well on either data set.

There is an obvious discrepancy between the
BLEU4 and Meteor scores for the models. BLEU4
relies on lexical matching between sentences and
thus penalises semantically equivalent descrip-
tions. For example, identifying the gender of
a person is important for generating a good de-
scription. However, object recognizers are not
(yet) able to reliably achieve this distinction, and
we only have a single recogniser for “persons”.
The BRNN generates descriptions with “man” and
“woman”, which leads to higher BLEU scores than
our VDR model, but this is based on corpus statis-
tics than the observed visual information. Me-
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VDR is better

VDR: A person is playing a saxophone.

BRNN: A man is playing a guitar

VDR: A person is playing a guitar.

BRNN: A man is jumping off a cliff
VDR: A person is playing a drum.

BRNN: A man is standing on a

BRNN is better

VDR: A person is using a computer.

BRNN: A man is jumping on a trampoline

VDR: A person is riding a horse.

BRNN: A group of people riding horses

VDR: A person is below sunglasses.

BRNN: A man is reading a book

Equally good

VDR: A person is sitting a table.

BRNN: A man is sitting on a chair
VDR: A person is using a laptop.

BRNN: A man is using a computer

VDR: A person is riding a horse.

BRNN: A man is riding a horse

Equally bad

VDR: A person is holding a microphone.

BRNN: A man is taking a picture
VDR: A person is driving a car.

BRNN: A man is sitting on a phone

VDR: A person is driving a car.

BRNN: A man is riding a bike

Figure 5: Examples of descriptions generated using VDR and the BRNN in the VLT2K data set. Keen
readers are encouraged to inspect the second image with a magnifying glass or an object detector.
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Figure 6: Optimising the number of detected ob-
jects against generated description Meteor scores
for our model. Improvements are seen until eight
objects, which suggests good descriptions do not
always need the most confident detections.

teor is able to back-off from “man” or “woman”
to “person” and still give partial credit to the de-
scription. If we replace the gendered referents in
the descriptions generated by the BRNN, its perfor-
mance on the VLT2K data set drops by 2.0 Meteor
points and 6.3 BLEU points.

Figure 6 shows the effect of optimising the
number of objects extracted from an image against
the eventual Meteor score of a generated descrip-
tion in the validation data. It can be seen that
the most confidently predicted objects are not al-
ways the most useful objects for generating de-
scriptions. Interestingly, the quality of the de-
scriptions does not significantly decrease with an
increased number of detected objects, suggesting
our model formulation is appropriately discarding
unsuitable detections.

Figure 5 shows examples of the descriptions
generated by VDR and BRNN on the VLT2K val-
idation set. The examples where VDR generates
better descriptions than BRNN are because the
VDR Parser makes good decisions about which
objects are interacting in an image. In the ex-
amples where the BRNN is better than VDR, we
see that the multimodal RNN language model
succeeds at describing intransitive verbs, group
events, and objects not present in the R-CNN ob-
ject detector. Both models generate bad descrip-
tions when the visual input pushes them in the
wrong direction, seen at the bottom of the figure.

VLT → Pascal
Meteor BLEU

VDR 7.4 → 8.2 9.1 → 9.2
BRNN 12.6 → 8.1 16.0 → 10.2

Table 3: Sentence-level scores when transferring
models directly between data sets with no retrain-
ing. The VDR-based approach generates better de-
scriptions in the Pascal1K data set if we transfer
the model from the VLT2K data set.

4.5 Transferring Models
The main reason for the low performance of VDR
on the Pascal1K data set is that the linguistic and
visual processing steps (Section 2) discard too
many training examples. We found that only 190
of the 4,000 description in the training data were
used to infer VDRs. This was because most of
the descriptions did not contain both a subject and
an object, as required by our method. This ob-
servation led us to perform a second experiment
where we transferred the VDR Parsing and Lan-
guage Generation models between data sets. The
aim of this experiment was to determine whether
VDR simply cannot work on more widely diverse
data sets, or whether the process we defined to
replicate human VDR annotation was too strict.

Table 3 shows the results of the model trans-
fer experiment. In general, neither model is par-
ticularly good at transferring between data sets.
This could be attributed to the shift in the types of
scenes depicted in each data set. However, trans-
ferring VDR from the VLT2K to the Pascal1K data
set improves the generated descriptions from 7.4
→ 8.2 Meteor points. The performance of BRNN

substantially decreases when transferring between
data sets, suggesting that the model may be over-
fitting its training domain.

4.6 Discussion
Notwithstanding the conceptual differences be-
tween multi-modal deep learning and learning an
explicit spatial model of object–object relation-
ships, two key differences between the BRNN and
our approach are the nature visual input and the
language generation models.

The neural network model can readily use the
pre-softmax visual feature vector from any of the
pre-trained models available in the Caffe Model
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Zoo, whereas VDR is currently restricted to dis-
crete object detector outputs from those models.
The implication of this is that the VDR-based ap-
proach is unable to describe 30% of the data in
the VLT2K data set. This is due to the object de-
tection model not recognising crucial objects for
three of the action classes: cameras, books, and
telephones. We considered using the VGG-16 pre-
trained model from the ImageNet Recognition and
Localization task in the RCNN object detector,
thus mirroring the detection model used by the
neural network. Frustratingly, this does not seem
possible because none of the 1,000 types of objects
in the recognition task correspond to a person-type
of entity. One approach to alleviating this problem
could be to use weakly-supervised object localisa-
tion (Oquab et al., 2014).

The template-based language generation model
used by VDR lacks the flexibility to describe in-
teresting prepositional phrases or variety within
its current template. An n-gram language gener-
ator, such as the phrase-based approaches of (Or-
tiz et al., 2015; Lebret et al., 2015), that works
within the constraints imposed by VDR structure
may generate better descriptions of images than
the current template.

5 Conclusions

In this paper we showed how to infer useful and re-
liable Visual Dependency Representations of im-
ages without expensive human supervision. Our
approach was based on searching for objects in
images, given a collection of co-occurring descrip-
tions. We evaluated the utility of the representa-
tions on a downstream automatic image descrip-
tion task on two data sets, where the quality of the
generated text largely depended on the data set. In
a large data set of people performing actions, the
descriptions generated by our model were com-
parable to a state-of-the-art multimodal deep neu-
ral network. In a smaller and more diverse data
set, our approach produced poor descriptions be-
cause it was unable to extract enough useful train-
ing examples for the model. In a follow-up exper-
iment that transferred the VDR Parsing and Lan-
guage Generation model between data, we found
improvements in the diverse data set. Our exper-
iments demonstrated that explicitly encoding the
spatial relationships between objects is a useful
way of learning how to describe actions.

There are several fruitful opportunities for fu-

ture work. The most immediate improvement may
be found with broader coverage object detectors.
It would be useful to search for objects using
multiple pre-trained visual detection models, such
as a 200-class ImageNet Detection model and a
1,000-class ImageNet Recognition and Localisa-
tion model. A second strand of further work would
be to relax the strict mirroring of human annota-
tor behaviour when searching for subjects and ob-
jects in an image. It may be possible to learn good
representations using only the nouns in the POS
tagged description. Our current approach strictly
limits the inferred VDRs to transitive verbs; im-
ages with descriptions such as “A large cow in a
field” or “A man is walking” are also a focus for
future relaxations of the process for creating train-
ing data. Another direction for future work would
be to use a n-gram based language model con-
strained by the structured predicted in VDR. The
current template based method is limiting the gen-
eration of objects that are being correctly realised
in images.

Tackling the aforementioned future work opens
up opportunities to working with larger and more
diverse data sets such as the Flickr8K (Hodosh et
al., 2013), Flickr30K (Young et al., 2014), and MS
COCO (Lin et al., 2014b) or larger action recogni-
tion data sets such as TUHOI (Le et al., 2014) or
MPII Human Poses (Andriluka et al., 2014).
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Abstract

The ability to map descriptions of scenes
to 3D geometric representations has many
applications in areas such as art, educa-
tion, and robotics. However, prior work
on the text to 3D scene generation task
has used manually specified object cate-
gories and language that identifies them.
We introduce a dataset of 3D scenes an-
notated with natural language descriptions
and learn from this data how to ground tex-
tual descriptions to physical objects. Our
method successfully grounds a variety of
lexical terms to concrete referents, and we
show quantitatively that our method im-
proves 3D scene generation over previ-
ous work using purely rule-based meth-
ods. We evaluate the fidelity and plau-
sibility of 3D scenes generated with our
grounding approach through human judg-
ments. To ease evaluation on this task,
we also introduce an automated metric that
strongly correlates with human judgments.

1 Introduction

We examine the task of text to 3D scene gener-
ation. The ability to map descriptions of scenes
to 3D geometric representations has a wide vari-
ety of applications; many creative industries use
3D scenes. Robotics applications need to interpret
commands referring to real-world environments,
and the ability to visualize scenarios given high-
level descriptions is of great practical use in educa-
tional tools. Unfortunately, 3D scene design user
interfaces are prohibitively complex for novice
users. Prior work has shown the task remains chal-
lenging and time intensive for non-experts, even
with simplified interfaces (Savva et al., 2014).

∗The first two authors are listed in alphabetical order.

{...L-shaped room with walls 
that have 2 tones of gray...,

A dark room with a pool table...}

{...a multicolored table in the 
middle of the room ,

...four red and white chairs and a 
colorful table, ...}

Figure 1: We learn how to ground references such
as “L-shaped room” to 3D models in a paired cor-
pus of 3D scenes and natural language descrip-
tions. Sentence fragments in bold were identified
as high-weighted references to the shown objects.

Language offers a convenient way for designers
to express their creative goals. Systems that can
interpret natural descriptions to build a visual rep-
resentation allow non-experts to visually express
their thoughts with language, as was demonstrated
by WordsEye, a pioneering work in text to 3D
scene generation (Coyne and Sproat, 2001).

WordsEye and other prior work in this
area (Seversky and Yin, 2006; Chang et al., 2014)
used manually chosen mappings between lan-
guage and objects in scenes. To our knowledge,
we present the first 3D scene generation approach
that learns from data how to map textual terms to
objects. First, we collect a dataset of 3D scenes
along with textual descriptions by people, which
we contribute to the community. We then train
a classifier on a scene discrimination task and
extract high-weight features that ground lexical
terms to 3D models. We integrate our learned
lexical groundings with a rule-based scene gener-
ation approach, and we show through a human-
judgment evaluation that the combination outper-
forms both approaches in isolation. Finally, we
introduce a scene similarity metric that correlates
with human judgments.
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 There is a desk and 
there is a notepad on 

the desk. There is a pen 
next to the notepad. 

Scene TemplateInput Text

on(o0,o1)

3D Scene

o0

room

on(o1,o2)

Parsing

o0 – category:room, modelId:420

o1 – category:desk, modelId:132

o2 – category:notepad, modelId:343

o3 – category:pen, modelId:144

on(o1,o3)
next_to(o3,o2)

o1

desk

o3

pen

o2

notepad

Generation

Figure 2: Illustration of the text to 3D scene generation pipeline. The input is text describing a scene
(left), which we parse into an abstract scene template representation capturing objects and relations (mid-
dle). The scene template is then used to generate a concrete 3D scene visualizing the input description
(right). The 3D scene is constructed by retrieving and arranging appropriate 3D models.

2 Task Description

In the text to 3D scene generation task, the input
is a natural language description, and the output is
a 3D representation of a plausible scene that fits
the description and can be viewed and rendered
from multiple perspectives. More precisely, given
an utterance x as input, the output is a scene y: an
arrangement of 3D models representing objects at
specified positions and orientations in space.

In this paper, we focus on the subproblem of
lexical grounding of textual terms to 3D model ref-
erents (i.e., choosing 3D models that represent ob-
jects referred to by terms in the input utterance x).
We employ an intermediate scene template repre-
sentation parsed from the input text to capture the
physical objects present in a scene and constraints
between them. This representation is then used to
generate a 3D scene (Figure 2).

A naı̈ve approach to scene generation might
use keyword search to retrieve 3D models. How-
ever, such an approach is unlikely to generalize
well in that it fails to capture important object at-
tributes and spatial relations. In order for the gen-
erated scene to accurately reflect the input descrip-
tion, a deep understanding of language describ-
ing environments is necessary. Many challenging
subproblems need to be tackled: physical object
mention detection, estimation of object attributes
such as size, extraction of spatial constraints, and
placement of objects at appropriate relative posi-
tions and orientations. The subproblem of lexical
grounding to 3D models has a larged impact on
the quality of generated scenes, as later stages of
scene generation rely on having a correctly chosen
set of objects to arrange.

Another challenge is that much common knowl-
edge about the physical properties of objects and

the structure of environments is rarely mentioned
in natural language (e.g., that most tables are sup-
ported on the floor and in an upright orienta-
tion). Unfortunately, common 3D representations
of objects and scenes used in computer graph-
ics specify only geometry and appearance, and
rarely include such information. Prior work in
text to 3D scene generation focused on collecting
manual annotations of object properties and rela-
tions (Rouhizadeh et al., 2011; Coyne et al., 2012),
which are used to drive rule-based generation sys-
tems. Regrettably, the task of scene generation has
not yet benefited from recent related work in NLP.

3 Related Work

There is much prior work in image retrieval given
textual queries; a recent overview is provided
by Siddiquie et al. (2011). The image retrieval
task bears some similarity to our task insofar as
3D scene retrieval is an approach that can approx-
imate 3D scene generation.

However, there are fundamental differences be-
tween 2D images and 3D scenes. Generation in
image space has predominantly focused on com-
position of simple 2D clip art elements, as exem-
plified recently by Zitnick et al. (2013). The task
of composing 3D scenes presents a much higher-
dimensional search space of scene configurations
where finding plausible and desirable configura-
tions is difficult. Unlike prior work in clip art gen-
eration which uses a small pre-specified set of ob-
jects, we ground to a large database of objects that
can occur in various indoor environments: 12490
3D models from roughly 270 categories.
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There is a table and there are four chairs. There 
are four plates and there are four sandwiches.

There is a chair and a table.
There is a bed and there is a
nightstand next to the bed.

 dinning room with four plates, four chairs, and 
four sandwiches

 dark room with two small windows. A 
rectangular table seating four is in the middle 
of the room with plates set. There is a set of 
two gray double doors on another wall.

 i see a rectangular table in the center of the 
room. There are 4 chairs around the table and 
4 plates on the table

 There is a chair and a circular table in the 
middle of a floral print room.

 a corner widow room with a a table and 
chair sitting to the east side.

 There's a dresser in the corner of the room, 
and a yellow table with a brown wooden 
chair.

 There is a bed with three pillows and a bedside 
table next to it.

 The room appears to be a bedroom. A blue bed 
and white nightstand are pushed against the 
furthest wall. A window is on the left side.

 A dark bedroom with a queen bed with blue 
comforter and three pillows. There is a night 
stand. One wall is decorated with a large design 
and another wall has three large windows.

Figure 3: Scenes created by participants from seed description sentences (top). Additional descriptions
provided by other participants from the created scene (bottom). Our dataset contains around 19 scenes
per seed sentence, for a total of 1129 scenes. Scenes exhibit variation in the specific objects chosen and
their placement. Each scene is described by 3 or 4 other people, for a total of 4358 descriptions.

3.1 Text to Scene Systems

Pioneering work on the SHRDLU system (Wino-
grad, 1972) demonstrated linguistic manipulation
of objects in 3D scenes. However, the dis-
course domain was restricted to a micro-world
with simple geometric shapes to simplify parsing
and grounding of natural language input. More re-
cently, prototype text to 3D scene generation sys-
tems have been built for broader domains, most
notably the WordsEye system (Coyne and Sproat,
2001) and later work by Seversky and Yin (2006).
Chang et al. (2014) showed it is possible to learn
spatial priors for objects and relations directly
from 3D scene data.

These systems use manually defined mappings
between language and their representation of the
physical world. This prevents generalization to
more complex object descriptions, variations in
word choice and spelling, and other languages. It
also forces users to use unnatural language to ex-
press their intent (e.g., the table is two feet to the
south of the window).

We propose reducing reliance on manual lex-
icons by learning to map descriptions to objects
from a corpus of 3D scenes and associated textual
descriptions. While we find that lexical knowledge
alone is not sufficient to generate high-quality
scenes, a learned approach to lexical grounding
can be used in combination with a rule-based sys-
tem for handling compositional knowledge, result-
ing in better scenes than either component alone.

3.2 Related Tasks

Prior work has generated sentences that describe
2D images (Farhadi et al., 2010; Kulkarni et al.,
2011; Karpathy et al., 2014) and referring expres-
sions for specific objects in images (FitzGerald
et al., 2013; Kazemzadeh et al., 2014). How-
ever, generating scenes is currently out of reach
for purely image-based approaches. 3D scene rep-
resentations serve as an intermediate level of struc-
ture between raw image pixels and simpler micro-
cosms (e.g., grid and block worlds). This level of
structure is amenable to the generation task but
still realistic enough to present a variety of chal-
lenges associated with natural scenes.

A related line of work focuses on grounding
referring expressions to referents in 3D worlds
with simple colored geometric shapes (Gorniak
and Roy, 2004; Gorniak and Roy, 2005). More re-
cent work grounds text to object attributes such as
color and shape in images (Matuszek et al., 2012;
Krishnamurthy and Kollar, 2013). Golland et al.
(2010) ground spatial relationship language in 3D
scenes (e.g., to the left of, behind) by learning
from pairwise object relations provided by crowd-
workers. In contrast, we ground general descrip-
tions to a wide variety of possible objects. The
objects in our scenes represent a broader space of
possible referents than the first two lines of work.
Unlike the latter work, our descriptions are pro-
vided as unrestricted free-form text, rather than
filling in specific templates of object references
and fixed spatial relationships.
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4 Dataset

We introduce a new dataset of 1128 scenes and
4284 free-form natural language descriptions of
these scenes.1 To create this training set, we
used a simple online scene design interface that
allows users to assemble scenes using available
3D models of common household objects (each
model is annotated with a category label and has
a unique ID). We used a set of 60 seed sentences
describing simple configurations of interior scenes
as prompts and asked workers on the Amazon
Mechanical Turk crowdsourcing platform to cre-
ate scenes corresponding to these seed descrip-
tions. To obtain more varied descriptions for each
scene, we asked other workers to describe each
scene. Figure 3 shows examples of seed descrip-
tion sentences, 3D scenes created by people given
those descriptions, and new descriptions provided
by others viewing the created scenes.

We manually examined a random subset of
the descriptions (approximately 10%) to elimi-
nate spam and unacceptably poor descriptions.
When we identified an unacceptable description,
we also examined all other descriptions by the
same worker, as most poor descriptions came from
a small number of workers. From our sample, we
estimate that less than 3% of descriptions were
spam or unacceptably incoherent. To reflect nat-
ural use, we retained minor typographical and
grammatical errors.

Despite the small set of seed sentences, the
Turker-provided scenes exhibit much variety in the
specific objects used and their placements within
the scene. Over 600 distinct 3D models appear
in at least one scene, and more than 40% of non-
room objects are rotated from their default orienta-
tion, despite the fact that this requires an extra ma-
nipulation in the scene-building interface. The de-
scriptions collected for these scenes are similarly
diverse and usually differ substantially in length
and content from the seed sentences.2

5 Model

To create a model for generating scene templates
from text, we train a classifier to learn lexical

1Available at http://nlp.stanford.edu/data/
text2scene.shtml.

2Mean 26.2 words, SD 17.4; versus mean 16.6, SD 7.2
for the seed sentences. If one considers seed sentences to be
the “reference,” the macro-averaged BLEU score (Papineni
et al., 2002) of the Turker descriptions is 12.0.

groundings. We then combine our learned lexi-
cal groundings with a rule-based scene generation
model. The learned groundings allow us to select
better models, while the rule-based model offers
simple compositionality for handling coreference
and relationships between objects.

5.1 Learning lexical groundings

To learn lexical mappings from examples, we train
a classifier on a related grounding task and ex-
tract the weights of lexical features for use in scene
generation. This classifier learns from a “discrim-
ination” version of our scene dataset, in which
the scene in each scene–description pair is hid-
den among four other distractor scenes sampled
uniformly at random. The training objective is
to maximize the L2-regularized log likelihood of
this scene discrimination dataset under a one-vs.-
all logistic regression model, using each true scene
and each distractor scene as one example (with
true/distractor as the output label).

The learned model uses binary-valued fea-
tures indicating the co-occurrence of a unigram
or bigram and an object category or model
ID. For example, features extracted from the
scene-description pair shown in Figure 2 would
include the tuples (desk,modelId:132) and
(the notepad,category:notepad).

To evaluate our learned model’s performance at
discriminating scenes, independently of its use in
scene generation, we split our scene and descrip-
tion corpus (augmented with distractor scenes)
randomly into train, development, and test por-
tions 70%-15%-15% by scene. Using only model
ID features, the classifier achieves a discrimina-
tion accuracy of 0.715 on the test set; adding fea-
tures that use object categories as well as model
IDs improves accuracy to 0.833.

5.2 Rule-based Model

We use the rule-based parsing component de-
scribed in Chang et al. (2014). This system in-
corporates knowledge that is important for scene
generation and not addressed by our learned model
(e.g., spatial relationships and coreference). In
Section 5.3, we describe how we use our learned
model to augment this model.

This rule-based approach is a three-stage pro-
cess using established NLP systems: 1) The input
text is split into multiple sentences and parsed us-
ing the Stanford CoreNLP pipeline (Manning et
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red cup round yellow 
table

green room black top tan love seat black bed open window

Figure 4: Some examples extracted from the top 20 highest-weight features in our learned model: lexical
terms from the descriptions in our scene corpus are grounded to 3D models within the scene corpus.

al., 2014). Head words of noun phrases are iden-
tified as candidate object categories, filtered using
WordNet (Miller, 1995) to only include physical
objects. 2) References to the same object are col-
lapsed using the Stanford coreference system. 3)
Properties are attached to each object by extract-
ing other adjectives and nouns in the noun phrase.
These properties are later used to query the 3D
model database.

We use the same model database as Chang et al.
(2014) and also extract spatial relations between
objects using the same set of dependency patterns.

5.3 Combined Model
The rule-based parsing model is limited in its abil-
ity to choose appropriate 3D models. We integrate
our learned lexical groundings with this model to
build an improved scene generation system.

Identifying object categories Using the rule-
based model, we extract all noun phrases as po-
tential objects. For each noun phrase p, we extract
features {ϕi} and compute the score of a category
c being described by the noun phrase as the sum
of the feature weights from the learned model in
Section 5.1:

Score(c | p) =
∑

ϕi∈ϕ(p)

θ(i,c),

where θ(i,c) is the weight for associating feature
ϕi with category c. From categories with a score
higher than Tc = 0.5, we select the best-scoring
category as the representative for the noun phrase.
If no category’s score exceeds Tc, we use the head
of the noun phrase for the object category.

3D model selection For each object mention
detected in the description, we use the feature
weights from the learned model to select a specific
object to add to the scene. After using dependency
rules to extract spatial relationships and descrip-
tive terms associated with the object, we compute
the score of a 3D model m given the category c and

text category text category

chair Chair round RoundTable
lamp Lamp laptop Laptop
couch Couch fruit Bowl
vase Vase round table RoundTable
sofa Couch laptop Computer
bed Bed bookshelf Bookcase

Table 1: Top groundings of lexical terms in our
dataset to categories of 3D models in the scenes.

a set of descriptive terms d using a similar sum of
feature weights. As the rule-based system may not
accurately identify the correct set of terms d, we
augment the score with a sum of feature weights
over the entire input description x:

m = arg max
m∈{c}

λd

∑
ϕi∈ϕ(d)

θ(i,m) + λx

∑
ϕi∈ϕ(x)

θ(i,m)

For the results shown here, λd = 0.75 and λx =
0.25. We select the best-scoring 3D model with
positive score. If no model has positive score, we
assume the object mention was spurious and omit
the object.

6 Learned lexical groundings

By extracting high-weight features from our
learned model, we can visualize specific models
to which lexical terms are grounded (see Figure 4).
These features correspond to high frequency text–
3D model pairs within the scene corpus. Table 1
shows some of the top learned lexical ground-
ings to model database categories. We are able
to recover many simple identity mappings with-
out using lexical similarity features, and we cap-
ture several lexical variants (e.g., sofa for Couch).
A few erroneous mappings reflect common co-
occurrences; for example, fruit is mapped to Bowl

due to fruit typically being observed in bowls in
our dataset.
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Description

In between the doors and the window, 
there is a black couch with red 
cushions, two white pillows, and one 
black pillow. In front of the couch, 
there is a wooden coffee table with a 
glass top and two newspapers. Next 
to the table, facing the couch, is a 
wooden folding chair.

random rulelearned combo

A round table is in the center of the 
room with four chairs around the 
table. There is a double window facing 
west. A door is on the east side of the 
room.

There is a desk and a computer.

Seed sentence:

MTurk sentences:

Figure 5: Qualitative comparison of generated scenes for three input descriptions (one Seed and two
MTurk), using the four different methods: random, learned, rule, combo.

7 Experimental Results

We conduct a human judgment experiment to
compare the quality of generated scenes using the
approaches we presented and baseline methods.
To evaluate whether lexical grounding improves
scene generation, we need a method to arrange the
chosen models into 3D scenes. Since 3D scene
layout is not a focus of our work, we use an ap-
proach based on prior work in 3D scene synthesis
and text to scene generation (Fisher et al., 2012;
Chang et al., 2014), simplified by using sampling
rather than a hill climbing strategy.

Conditions We compare five conditions:
{random, learned, rule, combo, human}. The
random condition represents a baseline which
synthesizes a scene with randomly-selected
models, while human represents scenes created by
people. The learned condition takes our learned
lexical groundings, picks the four3 most likely
objects, and generates a scene based on them. The
rule and combo conditions use scenes generated
by the rule-based approach and the combined
model, respectively.

Descriptions We consider two sets of input de-
scriptions: {Seeds, MTurk}. The Seeds descrip-
tions are 50 of the initial seed sentences from
which workers were asked to create scenes. These
seed sentences were simple (e.g., There is a desk

3The average number of objects in a scene in our human-
built dataset was 3.9.

and a chair, There is a plate on a table) and did
not have modifiers describing the objects. The
MTurk descriptions are much more descriptive and
exhibit a wider variety in language (including mis-
spellings and ungrammatical constructs). Our hy-
pothesis was that the rule-based system would per-
form well on the simple Seeds descriptions, but it
would be insufficient for handling the complexi-
ties of the more varied MTurk descriptions. For
these more natural descriptions, we expected our
combination model to perform better. Our experi-
mental results confirm this hypothesis.

7.1 Qualitative Evaluation

Figure 5 shows a qualitative comparison of 3D
scenes generated from example input descriptions
using each of the four methods. In the top row,
the rule-based approach selects a CPU chassis for
computer, while combo and learned select a more
iconic monitor. In the bottom row, the rule-based
approach selects two newspapers and places them
on the floor, while the combined approach cor-
rectly selects a coffee table with two newspapers
on it. The learned model is limited to four objects
and does not have a notion of object identity, so it
often duplicates objects.

7.2 Human Evaluation

We performed an experiment in which people
rated the degree to which scenes match the tex-
tual descriptions from which they were generated.
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Figure 6: Screenshot of the UI for rating scene-
description match.

Such ratings are a natural way to evaluate how
well our approach can generate scenes from text:
in practical use, a person would provide an input
description and then judge the suitability of the re-
sulting scenes. For the MTurk descriptions, we
randomly sampled 100 descriptions from the de-
velopment split of our dataset.

Procedure During the experiment, each partici-
pant was shown 30 pairs of scene descriptions and
generated 3D scenes drawn randomly from all five
conditions. All participants provided 30 responses
each for a total of 5040 scene-description ratings.
Participants were asked to rate how well the gen-
erated scene matched the input description on a 7-
point Likert scale, with 1 indicating a poor match
and 7 a very good one (see Figure 6). In a sep-
arate task with the same experimental procedure,
we asked other participants to rate the overall plau-
sibility of each generated scene without a refer-
ence description. This plausibility rating measures
whether a method can generate plausible scenes
irrespective of the degree to which the input de-
scription is matched. We used Amazon Mechan-
ical Turk to recruit 168 participants for rating the
match of scenes to descriptions and 63 participants
for rating scene plausibility.

Design The experiment followed a within-
subjects factorial design. The dependent measure
was the Likert rating. Since per-participant and
per-scene variance on the rating is not accounted
for by a standard ANOVA, we use a mixed effects
model which can account for both fixed effects and
random effects to determine the statistical signifi-

method Seeds MTurk

random 2.03 (1.88 – 2.18) 1.68 (1.57 – 1.79)

learned 3.51 (3.23 – 3.77) 2.61 (2.40 – 2.84)

rule 5.44 (5.26 – 5.61) 3.15 (2.91 – 3.40)

combo 5.23 (4.96 – 5.44) 3.73 (3.48 – 3.95)

human 6.06 (5.90 – 6.19) 5.87 (5.74 – 6.00)

Table 2: Average scene-description match ratings
across sentence types and methods (95% C.I.).

cance of our results.4 We treat the participant and
the specific scene as random effects of varying in-
tercept, and the method condition as the fixed ef-
fect.

Results There was a significant effect of the
method condition on the scene-description match
rating: χ2(4, N = 5040) = 1378.2, p < 0.001.
Table 2 summarizes the average scene-description
match ratings and 95% confidence intervals for
all sentence type–condition pairs. All pairwise
differences between ratings were significant un-
der Wilcoxon rank-sum tests with the Bonferroni-
Holm correction (p< 0.05). The scene plausibility
ratings, which were obtained independent of de-
scriptions, indicated that the only significant dif-
ference in plausibility was between scenes cre-
ated by people (human) and all the other condi-
tions. We see that for the simple seed sentences
both the rule-based and combined model approach
the quality of human-created scenes. However,
all methods have significantly lower ratings for
the more complex MTurk sentences. In this more
challenging scenario, the combined model is clos-
est to the manually created scenes and signifi-
cantly outperforms both rule-based and learned
models in isolation.

7.3 Error Analysis

Figure 7 shows some common error cases in our
system. The top left scene was generated with the
rule-based method, the top right with the learned
method, and the bottom two with the combined
approach. At the top left, there is an erroneous
selection of concrete object category (wood logs)
for the four wood chairs reference in the input
description, due to an incorrect head identifica-
tion. At top right, the learned model identifies the

4We used the lme4 R package and optimized fit with
maximum log-likelihood (Baayen et al., 2008). We report
significance results using the likelihood-ratio (LR) test.
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Figure 7: Common scene generation errors. From
top left clockwise: Wood table and four wood
chairs in the center of the room; There is a black
and brown desk with a table lamp and flowers;
There is a white desk, a black chair, and a lamp
in the corner of the room; There in the middle is a
table, on the table is a cup.

presence of brown desk and lamp but erroneously
picks two desks and two lamps (since we always
pick the top four objects). The scene on the bot-
tom right does not obey the expressed spatial con-
straints (in the corner of the room) since our sys-
tem does not understand the grounding of room
corner and that the top right side is not a good fit
due to the door. In the bottom left, incorrect coref-
erence resolution results in two tables for There in
the middle is a table, on the table is a cup.

7.4 Scene Similarity Metric

We introduce an automated metric for scoring
scenes given a scene template representation, the
aligned scene template similarity (ASTS). Given
a one-to-one alignment A between the nodes of a
scene template and the objects in a scene, let the
alignment penalty J(A) be the sum of the number
of unaligned nodes in the scene template and the
number of unaligned objects in the scene. For the
aligned nodes, we compute a similarity score S per
node pair (n, n′) where S(n, n′) = 1 if the model
ID matches, S(n, n′) = 0.5 if only the category
matches and 0 otherwise.

We define the ASTS of a scene with respect to
a scene template to be the maximum alignment

method Human ASTS

random 1.68 0.08
learned 2.61 0.23
rule 3.15 0.32
combo 3.73 0.44

Table 3: Average human ratings (out of 7) and
aligned scene template similarity scores.

score over all such alignments:

ASTS(s, z) = max
A

∑
(n,n′)∈A S(n, n′)
J(A) + |A| .

With this definition, we compare average ASTS
scores for each method against average human rat-
ings (Table 3). We test the correlation of the ASTS
metric against human ratings using Pearson’s r
and Kendall’s rank correlation coefficient rτ . We
find that ASTS and human ratings are strongly cor-
related (r = 0.70, rτ = 0.49, p < 0.001). This
suggests ASTS scores could be used to train and
algorithmically evaluate scene generation systems
that map descriptions to scene templates.

8 Future Work

Many error cases in our generated scenes resulted
from not interpreting spatial relations. An obvi-
ous improvement would be to expand our learned
lexical grounding approach to include spatial rela-
tions. This would help with spatial language that
is not handled by the rule-based system’s depen-
dency patterns (e.g., around, between, on the east
side). One approach would be to add spatial con-
straints to the definition of our scene similarity
score and use this improved metric in training a
semantic parser to generate scene templates.

To choose objects, our current system uses
information obtained from language–object co-
occurrences and sparse manually-annotated cate-
gory labels; another promising avenue for achiev-
ing better lexical grounding is to propagate cate-
gory labels using geometric and image features to
learn the categories of unlabeled objects. Novel
categories can also be extracted from Turker de-
scriptions. These new labels could be used to im-
prove the annotations in our 3D model database,
enabling a wider range of object types to be used
in scene generation.
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Our approach learns object references without
using lexical similarity features or a manually-
assembled lexicon. Thus, we expect that our
method for lexical grounding can facilitate de-
velopment of text-to-scene systems in other lan-
guages. However, additional data collection and
experiments are necessary to confirm this and
identify challenges specific to other languages.

The necessity of handling omitted information
suggests that a model incorporating a more so-
phisticated theory of pragmatic inference could be
beneficial. Another important problem not ad-
dressed here is the role of context and discourse
in interpreting scene descriptions. For example,
several of our collected descriptions include lan-
guage imagining embodied presence in the scene
(e.g., The wooden table is to your right, if you’re
entering the room from the doors).

9 Conclusion

Prior work in 3D scene generation relies on purely
rule-based methods to map object references to
concrete 3D objects. We introduce a dataset of 3D
scenes annotated with natural language descrip-
tions which we believe will be of great interest
to the research community. Using this corpus of
scenes and descriptions, we present an approach
that learns from data how to ground textual de-
scriptions to objects.

To evaluate how our grounding approach im-
pacts generated scene quality, we collect human
judgments of generated scenes. In addition, we
present a metric for automatically comparing gen-
erated scene templates to scenes, and we show that
it correlates strongly with human judgments.

We demonstrate that rich lexical grounding can
be learned directly from an unaligned corpus of
3D scenes and natural language descriptions, and
that our model can successfully ground lexical
terms to concrete referents, improving scene gen-
eration over baselines adapted from prior work.

Acknowledgments

We thank Katherine Breeden for valuable feed-
back. The authors gratefully acknowledge the sup-
port of the Defense Advanced Research Projects
Agency (DARPA) Deep Exploration and Filter-
ing of Text (DEFT) Program under Air Force Re-
search Laboratory (AFRL) contract no. FA8750-
13-2-0040, the National Science Foundation un-
der grant no. IIS 1159679, the Department of

the Navy, Office of Naval Research, under grant
no. N00014-10-1-0109, and the Stanford Grad-
uate Fellowship fund. Any opinions, findings,
and conclusions or recommendations expressed in
this material are those of the authors and do not
necessarily reflect the views of the National Sci-
ence Foundation, the Office of Naval Research,
DARPA, AFRL, or the US government.

References
R.H. Baayen, D.J. Davidson, and D.M. Bates. 2008.

Mixed-effects modeling with crossed random effects
for subjects and items. Journal of Memory and Lan-
guage, 59(4):390–412.

Angel X. Chang, Manolis Savva, and Christopher D.
Manning. 2014. Learning spatial knowledge for
text to 3D scene generation. In Proceedings of
Empirical Methods in Natural Language Processing
(EMNLP).

Bob Coyne and Richard Sproat. 2001. WordsEye: an
automatic text-to-scene conversion system. In Pro-
ceedings of the 28th Annual Conference on Com-
puter Graphics and Interactive Techniques.

Bob Coyne, Alexander Klapheke, Masoud
Rouhizadeh, Richard Sproat, and Daniel Bauer.
2012. Annotation tools and knowledge represen-
tation for a text-to-scene system. Proceedings of
COLING 2012: Technical Papers.

Ali Farhadi, Mohsen Hejrati, Mohammad Amin
Sadeghi, Peter Young, Cyrus Rashtchian, Julia
Hockenmaier, and David Forsyth. 2010. Every pic-
ture tells a story: Generating sentences from images.
In Computer Vision–ECCV 2010.

Matthew Fisher, Daniel Ritchie, Manolis Savva,
Thomas Funkhouser, and Pat Hanrahan. 2012.
Example-based synthesis of 3D object arrange-
ments. ACM Transactions on Graphics (TOG),
31(6):135.

Nicholas FitzGerald, Yoav Artzi, and Luke Zettle-
moyer. 2013. Learning distributions over logical
forms for referring expression generation. In Pro-
ceedings of Empirical Methods in Natural Language
Processing (EMNLP).

Dave Golland, Percy Liang, and Dan Klein. 2010.
A game-theoretic approach to generating spatial de-
scriptions. In Proceedings of Empirical Methods in
Natural Language Processing (EMNLP).

Peter Gorniak and Deb Roy. 2004. Grounded semantic
composition for visual scenes. Journal of Artificial
Intelligence Research (JAIR), 21(1):429–470.

Peter Gorniak and Deb Roy. 2005. Probabilistic
grounding of situated speech using plan recognition
and reference resolution. In Proceedings of the 7th
International Conference on Multimodal Interfaces.

61



Andrej Karpathy, Armand Joulin, and Li Fei-Fei. 2014.
Deep fragment embeddings for bidirectional image
sentence mapping. In Advances in Neural Informa-
tion Processing Systems.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten,
and Tamara L. Berg. 2014. ReferItGame: Refer-
ring to objects in photographs of natural scenes. In
Proceedings of Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Jayant Krishnamurthy and Thomas Kollar. 2013.
Jointly learning to parse and perceive: Connecting
natural language to the physical world. Transac-
tions of the Association for Computational Linguis-
tics, 1:193–206.

Girish Kulkarni, Visruth Premraj, Sagnik Dhar, Siming
Li, Yejin Choi, Alexander C. Berg, and Tamara L.
Berg. 2011. Baby talk: Understanding and gener-
ating simple image descriptions. In IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics: System Demonstrations.

Cynthia Matuszek, Nicholas FitzGerald, Luke Zettle-
moyer, Liefeng Bo, and Dieter Fox. 2012. A joint
model of language and perception for grounded at-
tribute learning. In International Conference on Ma-
chine Learning (ICML).

George A. Miller. 1995. WordNet: A lexical
database for English. Communications of the ACM,
38(11):39–41.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting of the Association for
Computational Linguistics.

Masoud Rouhizadeh, Margit Bowler, Richard Sproat,
and Bob Coyne. 2011. Collecting semantic data by
Mechanical Turk for the lexical knowledge resource
of a text-to-picture generating system. In Proceed-
ings of the Ninth International Conference on Com-
putational Semantics.

Manolis Savva, Angel X. Chang, Gilbert Bernstein,
Christopher D. Manning, and Pat Hanrahan. 2014.
On being the right scale: Sizing large collections of
3D models. In SIGGRAPH Asia 2014 Workshop
on Indoor Scene Understanding: Where Graphics
meets Vision.

Lee M. Seversky and Lijun Yin. 2006. Real-time au-
tomatic 3D scene generation from natural language
voice and text descriptions. In Proceedings of the
14th Annual ACM International Conference on Mul-
timedia.
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Abstract

We present MultiGranCNN, a general
deep learning architecture for matching
text chunks. MultiGranCNN supports
multigranular comparability of represen-
tations: shorter sequences in one chunk
can be directly compared to longer se-
quences in the other chunk. Multi-
GranCNN also contains a flexible and
modularized match feature component
that is easily adaptable to different types
of chunk matching. We demonstrate state-
of-the-art performance of MultiGranCNN
on clause coherence and paraphrase iden-
tification tasks.

1 Introduction

Many natural language processing (NLP) tasks
can be posed as classifying the relationship be-
tween two TEXTCHUNKS (cf. Li et al. (2012),
Bordes et al. (2014b)) where a TEXTCHUNK can
be a sentence, a clause, a paragraph or any other
sequence of words that forms a unit.

Paraphrasing (Figure 1, top) is one task that we
address in this paper and that can be formalized
as classifying a TEXTCHUNK relation. The two
classes correspond to the sentences being (e.g.,
the pair <p, q+>) or not being (e.g., the pair
<p, q−>) paraphrases of each other. Another
task we look at is clause coherence (Figure 1, bot-
tom). Here the two TEXTCHUNK relation classes
correspond to the second clause being (e.g., the
pair <x, y+>) or not being (e.g., the pair <x,
y−>) a discourse-coherent continuation of the
first clause. Other tasks that can be formalized
as TEXTCHUNK relations are question answering
(QA) (is the second chunk an answer to the first?),
textual inference (does the first chunk imply the
second?) and machine translation (are the two
chunks translations of each other?).

p
PDC will also almost certainly fan the flames of
speculation about Longhorn’s release.

q+ PDC will also almost certainly reignite speculation
about release dates of Microsoft ’s new products.

q− PDC is indifferent to the release of Longhorn.
x The dollar suffered its worst one-day loss in a month,
y+ falling to 1.7717 marks . . . from 1.7925 marks yesterday.
y− up from 112.78 yen in late New York trading yesterday.

Figure 1: Examples for paraphrasing and clause
coherence tasks

In this paper, we present MultiGranCNN, a gen-
eral architecture for TEXTCHUNK relation classi-
fication. MultiGranCNN can be applied to a broad
range of different TEXTCHUNK relations. This is
a challenge because natural language has a com-
plex structure – both sequential and hierarchical –
and because this structure is usually not parallel
in the two chunks that must be matched, further
increasing the difficulty of the task. A successful
detection algorithm therefore needs to capture not
only the internal structure of TEXTCHUNKS, but
also the rich pattern of their interactions.

MultiGranCNN is based on two innovations
that are critical for successful TEXTCHUNK re-
lation classification. First, the architecture is de-
signed to ensure multigranular comparability. For
general matching, we need the ability to match
short sequences in one chunk with long sequences
in the other chunk. For example, what is expressed
by a single word in one chunk (“reignite” in q+

in the figure) may be expressed by a sequence of
several words in its paraphrase (“fan the flames
of” in p). To meet this objective, we learn rep-
resentations for words, phrases and the entire sen-
tence that are all mutually comparable; in particu-
lar, these representations all have the same dimen-
sionality and live in the same space.

Most prior work (e.g., Blacoe and Lapata (2012;
Hu et al. (2014)) has neglected the need for multi-
granular comparability and performed matching
within fixed levels only, e.g., only words were
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matched with words or only sentences with sen-
tences. For a general solution to the problem of
matching, we instead need the ability to match a
unit on a lower level of granularity in one chunk
with a unit on a higher level of granularity in the
other chunk. Unlike (Socher et al., 2011), our
model does not rely on parsing and it can more ex-
haustively search the hypothesis space of possible
matchings, including matchings that correspond to
conflicting segmentations of the input chunks (see
Section 5).

Our second contribution is that MultiGranCNN
contains a flexible and modularized match feature
component. This component computes the ba-
sic features that measure how well phrases of the
two chunks match. We investigate three different
match feature models that demonstrate that a wide
variety of different match feature models can be
implemented. The match feature models can be
swapped in and out of MultiGranCNN, depending
on the characteristics of the task to be solved.

Prior work that has addressed matching tasks
has usually focused on a single task like QA (Bor-
des et al., 2014a; Yu et al., 2014) or paraphrasing
(Socher et al., 2011; Madnani et al., 2012; Ji and
Eisenstein, 2013). The ARC architectures pro-
posed by Hu et al. (2014) are intended to be more
general, but seem to be somewhat limited in their
flexibility to model different matching relations;
e.g., they do not perform well for paraphrasing.

Different match feature models may also be re-
quired by factors other than the characteristics of
the task. If the amount of labeled training data is
small, then we may prefer a match feature model
with few parameters that is robust against overfit-
ting. If there is lots of training data, then a richer
match feature model may be the right choice.
This motivates the need for an architecture like
MultiGranCNN that allows selection of the task-
appropriate match feature model from a range of
different models and its seamless integration into
the architecture.

In remaining parts, Section 2 introduces some
related work; Section 3 gives an overview of the
proposed MultiGranCNN; Section 4 shows how to
learn representations for generalized phrases (g-
phrases); Section 5 describes the three matching
models: DIRECTSIM, INDIRECTSIM and CON-
CAT; Section 6 describes the two 2D pooling
methods: grid-based pooling and phrase-based
pooling; Section 7 describes the match feature

CNN; Section 8 summarizes the architecture of
MultiGran CNN; and Section 9 presents experi-
ments; finally, Section 10 concludes.

2 Related Work

Paraphrase identification (PI) is a typical task of
sentence matching and it has been frequently stud-
ied (Qiu et al., 2006; Blacoe and Lapata, 2012;
Madnani et al., 2012; Ji and Eisenstein, 2013).
Socher et al. (2011) utilized parsing to model the
hierarchical structure of sentences and uses un-
folding recursive autoencoders to learn represen-
tations for single words and phrases acting as non-
leaf nodes in the tree. The main difference to
MultiGranCNN is that we stack multiple convo-
lution layers to model flexible phrases and learn
representations for them, and aim to address more
general sentence correspondence. Bach et al.
(2014) claimed that elementary discourse units ob-
tained by segmenting sentences play an important
role in paraphrasing. Their conclusion also en-
dorses (Socher et al., 2011)’s and our work, for
both take interactions between component phrases
into account.

QA is another representative sentence matching
problem. Yu et al. (2014) modeled sentence rep-
resentations in a simplified CNN, finally finding
the match score by projecting question and answer
candidates into the same space. Other relevant QA
work includes (Bordes et al., 2014c; Bordes et al.,
2014a; Yang et al., 2014; Iyyer et al., 2014)

For more general matching, Chopra et al. (2005)
and Liu (2013) used a Siamese architecture of
shared-weight neural networks (NNs) to model
two objects simultaneously, matching their repre-
sentations and then learning a specific type of sen-
tence relation. We adopt parts of their architec-
ture, but we model phrase representations as well
as sentence representations.

Li and Xu (2012) gave a comprehensive intro-
duction to query-document matching and argued
that query and document match at different levels:
term, phrase, word sense, topic, structure etc. This
also applies to sentence matching.

Lu and Li (2013) addressed matching of short
texts. Interactions between the two texts were ob-
tained via LDA (Blei et al., 2003) and were then
the basis for computing a matching score. Com-
pared to MultiGranCNN, drawbacks of this ap-
proach are that LDA parameters are not optimized
for the specific task and that the interactions are
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formed on the level of single words only.
Gao et al. (2014) modeled interestingness be-

tween two documents with deep NNs. They
mapped source-target document pairs to feature
vectors in a latent space in such a way that the dis-
tance between the source document and its corre-
sponding interesting target in that space was min-
imized. Interestingness is more like topic rele-
vance, based mainly on the aggregated meaning
of keywords, as opposed to more structural rela-
tionships as is the case for paraphrasing and clause
coherence.

We briefly discussed (Hu et al., 2014)’s ARC in
Section 1. MultiGranCNN is partially inspired by
ARC, but introduces multigranular comparability
(thus enabling crosslevel matching) and supports
a wider range of match feature models.

Our unsupervised learning component (Sec-
tion 4, last paragraph) resembles word2vec
CBOW (Mikolov et al., 2013), but learns repre-
sentations of TEXTCHUNKS as well as words. It
also resembles PV-DM (Le and Mikolov, 2014),
but our TEXTCHUNK representation is derived us-
ing a hierarchical architecture based on convolu-
tion and pooling.

3 Overview of MultiGranCNN

We use convolution-plus-pooling in two differ-
ent components of MultiGranCNN. The first com-
ponent, the generalized phrase CNN (gpCNN),
will be introduced in Section 4. This component
learns representations for generalized phrases (g-
phrases) where a generalized phrase is a general
term for subsequences of all granularities: words,
short phrases, long phrases and the sentence itself.
The gpCNN architecture has L layers of convolu-
tion, corresponding (for L = 2) to words, short
phrases, long phrases and the sentence. We test
different values of L in our experiments. We train
gpCNN on large data in an unsupervised manner
and then fine-tune it on labeled training data.

Using a Siamese configuration, two copies
of gpCNN, one for each of the two input
TEXTCHUNKS, are the input to the match feature
model, presented in Section 5. This model pro-
duces s1× s2 matching features, one for each pair
of g-phrases in the two chunks, where s1, s2 are
the number of g-phrases in the two chunks, respec-
tively.

The s1×s2 match feature matrix is first reduced
to a fixed size by dynamic 2D pooling. The re-

sulting fixed size matrix is then the input to the
second convolution-plus-pooling component, the
match feature CNN (mfCNN) whose output is fed
to a multilayer perceptron (MLP) that produces
the final match score. Section 6 will give details.

We use convolution-plus-pooling for both word
sequences and match features because we want to
compute increasingly abstract features at multiple
levels of granularity. To ensure that g-phrases are
mutually comparable when computing the s1× s2
match feature matrix, we impose the constraint
that all g-phrase representations live in the same
space and have the same dimensionality.

Figure 2: gpCNN: learning g-phrase representa-
tions. This figure only shows two convolution lay-
ers (i.e., L = 2) for saving space.

4 gpCNN: Learning Representations for
g-Phrases

We use several stacked blocks, i.e., convolution-
plus-pooling layers, to extract increasingly ab-
stract features of the TEXTCHUNK. The input to
the first block are the words of the TEXTCHUNK,
represented by CW (Collobert and Weston, 2008)
embeddings. Given a TEXTCHUNK of length |S|,
let vector ci ∈ Rwd be the concatenated embed-
dings of words vi−w+1, . . . , vi where w = 5 is the
filter width, d = 50 is the dimensionality of CW
embeddings and 0 < i < |S| + w. Embeddings
for words vi, i < 1 and i > |S|, are set to zero.
We then generate the representation pi ∈ Rd of
the g-phrase vi−w+1, . . . , vi using the convolution
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matrix Wl ∈ Rd×wd:

pi = tanh(Wlci + bl) (1)

where block index l = 1, bias bl ∈ Rd. We use
wide convolution (i.e., we apply the convolution
matrix Wl to words vi, i < 1 and i > |S|) because
this makes sure that each word vi, 1 ≤ i ≤ |S|,
can be detected by all weights of Wl – as opposed
to only the rightmost (resp. leftmost) weights for
initial (resp. final) words in narrow convolution.

The configuration of convolution layers in fol-
lowing blocks (l > 1) is exactly the same except
that the input vectors ci are not words, but the out-
put of pooling from the previous layer of convo-
lution – as we will explain presently. The con-
figuration is the same (e.g., all Wl ∈ Rd×wd) be-
cause, by design, all g-phrase representations have
the same dimensionality d. This also ensures that
each g-phrase representation can be directly com-
pared with each other g-phrase representation.

We use dynamic k-max pooling to extract the kl
top values from each dimension after convolution
in the lth block and the kL top values in the final
block. We set

kl = max(α, dL− l
L
|S|e) (2)

where l = 1, · · · , L is the block index, and α = 4
is a constant (cf. Kalchbrenner et al. (2014)) that
makes sure a reasonable minimum number of val-
ues is passed on to the next layer. We set kL = 1
(not 4, cf. Kalchbrenner et al. (2014)) because our
design dictates that all g-phrase representations,
including the representation of the TEXTCHUNK

itself, have the same dimensionality. Example: for
L = 4, |S| = 20, the ki are [15, 10, 5, 1].

Dynamic k-max pooling keeps the most impor-
tant features and allows us to stack multiple blocks
to extract hiearchical features: units on consec-
utive layers correspond to larger and larger parts
of the TEXTCHUNK thanks to the subset selection
property of pooling.

For many tasks, labeled data for training
gpCNN is limited. We therefore employ unsu-
pervised training to initialize gpCNN as shown in
Figure 2. Similar to CBOW (Mikolov et al., 2013),
we predict a sampled middle word vi from the av-
erage of seven vectors: the TEXTCHUNK repre-
sentation (the final output of gpCNN) and the three
words to the left and to the right of vi. We use
noise-contrastive estimation (Mnih and Teh, 2012)
for training: 10 noise words are sampled for each
true example.

Figure 3: General illustration of match feature
model. In this example, both S1 and S2 have 10 g-
phrases, so the match feature matrix F̂ ∈ Rs1×s2
has size 10× 10.

5 Match Feature Models

Let g1, . . . , gsk
be an enumeration of the sk g-

phrases of TEXTCHUNK Sk. Let Sk ∈ Rsk×d be
the matrix, constructed by concatenating the four
matrices of unigram, short phrase, long phrase and
sentence representations shown in Figure 2 that
contain the learned representations from Section 4
for these sk g-phrases; i.e., row Ski is the learned
representation of gi.

The basic design of a match feature model is
that we produce an s1 × s2 matrix F̂ for a pair
of TEXTCHUNKS S1 and S2, shown in Figure 3.
F̂i,j is a score that assesses the relationship be-
tween g-phrase gi of S1 and g-phrase gj of S2

with respect to the TEXTCHUNK relation of in-
terest (paraphrasing, clause coherence etc). This
score F̂i,j is computed based on the vector repre-
sentations S1i and S2j of the two g-phrases.1

We experiment with three different feature
models to compute the match score F̂i,j because
we would like our architecture to address a wide
variety of different TEXTCHUNK relations. We
can model a TEXTCHUNK relation like paraphras-
ing as “for each meaning element in one sentence,
there must be a similar meaning element in the
other sentence”; thus, a good candidate for the
match score F̂i,j is simply vector similarity. In
contrast, similarity is a less promising match score
for clause coherence; for clause coherence, we
want a score that models how good a continuation
one g-phrase is for the other. These considerations
motivate us to define three different match feature
models that we will introduce now.

The first match feature model is DIRECTSIM.
1In response to a reviewer question, recall that si is the

total number of g-phrases of Si, so there is only one s1 × s2
matrix, not several on different levels of granularity.
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Figure 4: CONCAT match feature model

This model computes the match score of two g-
phrases as their similarity using a radial basis
function kernel:

F̂i,j = exp(
−||S1i − S2j ||2

2β
) (3)

where we set β = 2 (cf. Wu et al. (2013)).
DIRECTSIM is an appropriate feature model for
TEXTCHUNK relations like paraphrasing because
in that case direct similarity features are helpful in
assessing meaning equivalence.

The second match feature model is INDIRECT-
SIM. Instead of computing the similarity di-
rectly as we do for DIRECTSIM, we first trans-
form the representation of the g-phrase in one
TEXTCHUNK using a transformation matrix M ∈
Rd×d, then compute the match score by inner
product and sigmoid activation:

F̂i,j = σ(S1iMST
2j + b), (4)

Our motivation is that for a TEXTCHUNK rela-
tion like clause coherence, the two TEXTCHUNKS

need not have any direct similarity. However, if we
map the representations of TEXTCHUNK S1 into
an appropriate space then we can hope that sim-
ilarity between these transformed representations
of S1 and the representations of TEXTCHUNK S2

do yield useful features. We will see that this hope
is borne out by our experiments.

The third match feature model is CONCAT. This
is a general model that can learn any weighted
combination of the values of the two vectors:

F̂i,j = σ(wTei,j + b) (5)

where ei,j ∈ R2d is the concatenation of S1i and
S2j . We can learn different combination weights
w to solve different types of TEXTCHUNK match-
ing.

We call this match feature model CONCAT be-
cause we implement it by concatenating g-phrase
vectors to form a tensor as shown in Figure 4.

The match feature models implement multi-
granular comparability: they match all units in
one TEXTCHUNK with all units in the other
TEXTCHUNK. This is necessary because a gen-
eral solution to matching must match a low-level
unit like “reignite” to a higher-level unit like “fan
the flames of” (Figure 1). Unlike (Socher et al.,
2011), our model does not rely on parsing; there-
fore, it can more exhaustively search the hypoth-
esis space of possible matchings: mfCNN covers
a wide variety of different, possibly overlapping
units, not just those of a single parse tree.

6 Dynamic 2D Pooling

The match feature models generate an s1×s2 ma-
trix. Since it has variable size, we apply two dif-
ferent dynamic 2D pooling methods, grid-based
pooling and phrase-focused pooling, to transform
it to a fixed size matrix.

6.1 Grid-based pooling

We need to map F̂ ∈ Rs1×s2 into a matrix F of
fixed size s∗ × s∗ where s∗ is a parameter. Grid-
based pooling divides F̂ into s∗ × s∗ nonover-
lapping (dynamic) pools and copies the maximum
value in each dynamic pool to F. This method is
similar to (Socher et al., 2011), but preserves lo-
cality better.

F̂ can be split into equal regions only if both s1
and s2 are divisible by s∗. Otherwise, for s1 > s∗

and if s1 mod s∗ = b, the dynamic pools in the
first s∗ − b splits each have

⌊
s1
s∗
⌋

rows while the
remaining b splits each have

⌊
s1
s∗
⌋

+ 1 rows. In
Figure 5, a s1 × s2 = 4 × 5 matrix (left) is split
into s∗×s∗ = 3×3 dynamic pools (middle): each
row is split into [1, 1, 2] and each column is split
into [1, 2, 2].

If s1 < s∗, we first repeat all rows in batch style
with size s1 until no fewer than s∗ rows remain.
Then the first s∗ rows are kept and split into s∗

dynamic pools. The same principle applies to the
partitioning of columns. In Figure 5 (right), the ar-
eas with dashed lines and dotted lines are repeated
parts for rows and columns, respectively; each cell
is its own dynamic pool.

6.2 Phrase-focused pooling

In the match feature matrix F̂ ∈ Rs1×s2 , row i
(resp. column j) contains all feature values for g-
phrase gi of S1 (resp. gj of S2). Phrase-focused
pooling attempts to pick the largest match features
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Figure 5: Partition methods in grid-based pooling. Original matrix with size 4× 5 is mapped into matrix
with size 3× 3 and matrix with size 6× 7, respectively. Each dynamic pool is distinguished by a border
of empty white space around it.

for a g-phrase g on the assumption that they are the
best basis for assessing the relation of g with other
g-phrases. To implement this, we sort the values
of each row i (resp. each column j) in decreasing
order giving us a matrix F̂r ∈ Rs1×s2 with sorted
rows (resp. F̂c ∈ Rs1×s2 with sorted columns).
Then we concatenate the columns of F̂r (resp. the
rows of F̂c) resulting in list Fr = {f r1 , . . . , f rs1s2}
(resp. Fc = {f c1 , . . . , f cs1s2}) where each f r (f c) is
an element of F̂r (F̂c). These two lists are merged
into a list F by interleaving them so that members
from Fr and Fc alternate. F is then used to fill the
rows of F from top to bottom with each row being
filled from left to right.2

7 mfCNN: Match feature CNN

The output of dynamic 2D pooling is further pro-
cessed by the match feature CNN (mfCNN) as de-
picted in Figure 6. mfCNN extracts increasingly
abstract interaction features from lower-level in-
teraction features, using several layers of 2D wide
convolution and fixed-size 2D pooling.

We call the combination of a 2D wide convo-
lution layer and a fixed-size 2D pooling layer a
block, denoted by index b (b = 1, 2 . . .). In gen-
eral, let tensor Tb ∈ Rcb×sb×sb denote the fea-
ture maps in block b; block b has cb feature maps,
each of size sb × sb (T1 = F ∈ R1×s∗×s∗). Let
Wb ∈ Rcb+1×cb×fb×fb be the filter weights of 2D
wide convolution in block b, fb×fb is then the size
of sliding convolution regions. Then the convolu-
tion is performed as element-wise multiplication

2If F̂ has fewer cells than F, then we simply repeat the
filling procedure to fill all cells.

between Wb and Tb as follows:

T̂b+1
m,i−1,j−1 = σ(

∑
Wb

m,:,:,:T
b
:,i−fb:i,j−fb:j

+bbm)
(6)

where 0≤m<cb+1, 1 ≤ i, j < sb+fb, bb ∈ Rcb+1 .
Subsequently, fixed-size 2D pooling selects

dominant features from kb × kb non-overlapping
windows of T̂b+1 to form a tensor as input of
block b+ 1:

Tb+1
m,i,j = max(T̂b+1

m,ikb:(i+1)kb,jkb:(j+1)kb
) (7)

where 0 ≤ i, j < b sb+fb−1
kb
c.

Hu et al. (2014) used narrow convolution which
would limit the number of blocks. 2D wide convo-
lution in this work enables to stack multiple blocks
of convolution and pooling to extract higher-level
interaction features. We will study the influence of
the number of blocks on performance below.

For the experiments, we set s∗ = 40, cb =
50, fb = 5, kb = 2 (b = 1, 2, · · ·).
8 MultiGranCNN

We can now describe the overall architecture of
MultiGranCNN. First, using a Siamese configu-
ration, two copies of gpCNN, one for each of
the two input TEXTCHUNKS, produce g-phrase
representations on different levels of abstraction
(Figure 2). Then one of the three match feature
models (DIRECTSIM, CONCAT or INDIRECTSIM)
produces an s1 × s2 match feature matrix, each
cell of which assesses the match of a pair of g-
phrases from the two chunks. This match feature
matrix is reduced to a fixed size matrix by dy-
namic 2D pooling (Section 6). As shown in Fig-
ure 6, the resulting fixed size matrix is the input
for mfCNN, which extracts interaction features of
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Figure 6: mfCNN & MLP for matching score learning. s∗ = 10, fb = 5, kb = 2, cb = 4 in this example.

increasing complexity from the basic interaction
features computed by the match feature model. Fi-
nally, the output of the last block of mfCNN is the
input to an MLP that computes the match score.

MultiGranCNN bears resemblance to previous
work on clause and sentence matching (e.g., Hu
et al. (2014), Socher et al. (2011)), but it is more
general and more flexible. It learns representa-
tions of g-phrases, i.e., representations of parts of
the TEXTCHUNK at multiple granularities, not just
for a single level such as the sentence as ARC-I
does (Hu et al., 2014). MultiGranCNN explores
the space of interactions between the two chunks
more exhaustively by considering interactions be-
tween every unit in one chunk with every other
unit in the other chunk, at all levels of granular-
ity. Finally, MultiGranCNN supports a number of
different match feature models; the corresponding
module can be instantiated in a way that ensures
that match features are best suited to support ac-
curate decisions on the TEXTCHUNK relation task
that needs to be addressed.

9 Experimental Setup and Results

9.1 Training
Suppose the triple (x,y+,y−) is given and x
matches y+ better than y−. Then our objective
is the minimization of the following ranking loss:

l(x,y+,y−) = max(0, 1 + s(x,y−)− s(x,y+))

where s(x,y) is the predicted match score for
(x,y). We use stochastic gradient descent with
Adagrad (Duchi et al., 2011), L2 regularization
and minibatch training.

We set initial learning rate to 0.05, batch size to
70, L2 weight to 5 · 10−4.

Recall that we employ unsupervised pretraining
of representations for g-phrases. We can either

freeze these representations in subsequent super-
vised training; or we can fine-tune them. We study
the performance of both regimes.

9.2 Clause Coherence Task

As introduced by Hu et al. (2014), the clause
coherence task determines for a pair (x,y) of
clauses if the sentence “xy” is a coherent sen-
tence. We construct a clause coherence dataset
as follows (the set used by Hu et al. (2014) is not
yet available). We consider all sentences from En-
glish Gigaword (Parker et al., 2009) that consist of
two comma-separated clauses x and y, with each
clause having between five and 30 words. For each
y, we choose four clauses y′ . . .y′′′′ randomly
from the 1000 second clauses that have the highest
similarity to y, where similarity is cosine similar-
ity of TF-IDF vectors of the clauses; restricting
the alternatives to similar clauses ensures that the
task is hard. The clause coherence task then is to
select y from the set y,y′, . . . ,y′′′′ as the correct
continuation of x. We create 21 million examples,
each consisting of a first clause x and five second
clauses. This set is divided into a training set of
19 million and development and test sets of one
million each. An example from the training set is
given in Figure 1.

Then, we study the performance variance of
different MultiGranCNN setups from three per-
spectives: a) layers of CNN in both unsuper-
vised (gpCNN) and supervised (mfCNN) training
phases; b) different approaches for clause relation
feature modeling; c) dynamic pooling methods for
generating same-sized feature matrices.

Figure 7 (top table) shows that (Hu et al.,
2014)’s parameters are good choices for our setup
as well. We get best result when both gpCNN
and mfCNN have three blocks of convolution and
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pooling. This suggests that multiple layers of con-
volution succeed in extracting high-level features
that are beneficial for clause coherence.

Figure 7 (2nd table) shows that INDIRECTSIM

and CONCAT have comparable performance and
both outperform DIRECTSIM. DIRECTSIM is ex-
pected to perform poorly because the contents in
the two clauses usually have little or no overlap-
ping meaning. In contrast, we can imagine that
INDIRECTSIM first transforms the first clause x
into a counterpart and then matches this counter-
part with the second clause y. In CONCAT, each
of s1×s2 pairs of g-phrases is concatentated and
supervised training can then learn an unrestricted
function to assess the importance of this pair for
clause coherence (cf. Eq. 5). Again, this is clearly
a more promising TEXTCHUNK relation model for
clause coherence than one that relies on DIRECT-
SIM.

acc
mfCNN

0 1 2 3

gp
C

N
N 0 38.02 44.08 47.81 48.43

1 40.91 45.31 51.73 52.13
2 43.10 48.06 54.14 54.86
3 45.62 51.77 55.97 56.31

match feature model acc
DIRECTSIM 25.40
INDIRECTSIM 56.31
CONCAT 56.12

freeze g-phrase represenations or not acc
MultiGranCNN (freeze) 55.79
MultiGranCNN (fine-tune) 56.31

pooling method acc
dynamic (Socher et al., 2011) 55.91
grid-based 56.07
phrase-focused 56.31

Figure 7: Effect on dev acc (clause coherence) of
different factors: # convolution blocks, match fea-
ture model, freeze vs. fine-tune, pooling method.

Figure 7 (3rd table) demonstrates that fine-
tuning g-phrase representations gives better per-
formance than freezing them. Also, grid-based
and phrase-focused pooling outperform dynamic
pooling (Socher et al., 2011) (4th table). Phrase-
focused pooling performs best.

Table 1 compares MultiGranCNN to ARC-I and
ARC-II, the architectures proposed by Hu et al.

(2014). We also test the five baseline systems
from their paper: DeepMatch, WordEmbed, SEN-
MLP, SENNA+MLP, URAE+MLP. For Multi-
GranCNN, we use the best dev set settings: num-
ber of convolution layers in gpCNN and mfCNN
is 3; INDIRECTSIM; phrase-focused pooling. Ta-
ble 1 shows that MultiGranCNN outperforms all
other approaches on clause coherence test set.

9.3 Paraphrase Identification Task

We evaluate paraphrase identification (PI) on the
PAN corpus (http://bit.ly/mt-para, (Madnani et al.,
2012)), consisting of training and test sets of
10,000 and 3000 sentence pairs, respectively. Sen-
tences are about 40 words long on average.

Since PI is a binary classification task, we re-
place the MLP with a logistic regression layer. As
phrase-focused pooling was proven to be optimal,
we directly use phrase-focused pooling in PI task
without comparison, assuming that the choice of
dynamic pooling is task independent.

For parameter selection, we split the PAN train-
ing set into a core training set (core) of size 9000
and a development set (dev) of size 1000. We
then train models on core and select parameters
based on best performance on dev. The best re-
sults on dev are obtained for the following param-
eters: freezing g-phrase representations, DIRECT-
SIM, two convolution layers in gpCNN, no convo-
lution layers in mfCNN. We use these parameter
settings to train a model on the entire training set
and report performance in Table 2.

We compare MultiGranCNN to ARC-I/II (Hu
et al., 2014), and two previous papers reporting
performance on PAN. Madnani et al. (2012) used
a combination of three basic MT metrics (BLEU,
NIST and TER) and five complex MT met-
rics (TERp, METEOR, BADGER, MAXISIM,

model acc
Random Guess 20.00
DeepMatch 34.17
WordEmbed 38.28
SENMLP 34.57
SENNA+MLP 42.09
URAE+MLP 27.41
ARC-I 45.04
ARC-II 50.18
MultiGranCNN 56.27

Table 1: Performance on clause coherence test set.
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SEPIA), computed on entire sentences. Bach et
al. (2014) applied MT metrics to elementary dis-
course units. We integrate these eight MT metrics
from prior work.

method acc F1

ARC-I 61.4 60.3
ARC-II 64.9 63.5
basic MT metrics 88.6 87.8
+ TERp 91.5 91.2
+ METEOR 92.0 91.8
+ Others 92.3 92.1
(Bach et al., 2014) 93.4 93.3
8MT+MultiGranCNN (fine-tune) 94.1 94.0
8MT+MultiGranCNN (freeze) 94.9 94.7

Table 2: Results on PAN. “8MT” = 8 MT metrics

Table 2 shows that MultiGranCNN in combina-
tion with MT metrics obtains state-of-the-art per-
formance on PAN. Freezing weights learned in
unsupervised training (Figure 2) performs better
than fine-tuning them; also, Table 3 shows that the
best result is achieved if no convolution is used
in mfCNN. Thus, the best configuration for para-
phrase identification is to “forward” fixed-size in-
teraction matrices as input to the logistic regres-
sion, without any intermediate convolution layers.

Freezing weights learned in unsupervised train-
ing and no convolution layers in mfCNN both pro-
tect against overfitting. Complex deep neural net-
works are in particular danger of overfitting when
training sets are small as in the case of PAN (cf. Hu
et al. (2014)). In contrast, fine-tuning weights and
several convolution layers were the optimal setup
for clause coherence. For clause coherence, we
have a much larger training set and therefore can
successfully train a much larger number of param-
eters.

Table 3 shows that CONCAT performs badly for
PI while DIRECTSIM and INDIRECTSIM perform
well. We can conceptualize PI as the task of deter-
mining if each meaning element in S1 has a simi-
lar meaning element in S2. The s1 × s2 DIRECT-
SIM feature model directly models this task and
the s1×s2 INDIRECTSIM feature model also mod-
els it, but learning a transformation of g-phrase
representations before applying similarity. In con-
trast, CONCAT can learn arbitrary relations be-
tween parts of the two sentences, a model that
seems to be too unconstrained for PI if insufficient
training resources are available.

In contrast, for the clause coherence task, con-
catentation worked well and DIRECTSIM worked
poorly and we provided an explanation based on
the specific properties of clause coherence (see
discussion of Figure 7). We conclude from these
results that it is dependent on the task what the best
feature model is for matching two linguistic ob-
jects. Interestingly, INDIRECTSIM performs well
on both tasks. This suggests that INDIRECTSIM is
a general feature model for matching, applicable
to tasks with very different properties.

10 Conclusion

In this paper, we present MultiGranCNN, a gen-
eral deep learning architecture for classifying the
relation between two TEXTCHUNKS. Multi-
GranCNN supports multigranular comparabil-
ity of representations: shorter sequences in one
TEXTCHUNK can be directly compared to longer
sequences in the other TEXTCHUNK. Multi-
GranCNN also contains a flexible and modu-
larized match feature component that is eas-
ily adaptable to different TEXTCHUNK relations.
We demonstrated state-of-the-art performance of
MultiGranCNN on paraphrase identification and
clause coherence tasks.
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N
N 0 92.7 92.9 92.9 93.9
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3 94.5 94.0 93.6 92.9

match feature model acc F1

DIRECTSIM 94.9 94.7
INDIRECTSIM 94.7 94.5
CONCAT 93.0 92.9

Table 3: Effect on dev F1 (PI) of different factors:
# convolution blocks, match feature model.
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Abstract
Massive open online courses (MOOCs)
are redefining the education system and
transcending boundaries posed by tradi-
tional courses. With the increase in pop-
ularity of online courses, there is a cor-
responding increase in the need to under-
stand and interpret the communications of
the course participants. Identifying top-
ics or aspects of conversation and inferring
sentiment in online course forum posts
can enable instructor interventions to meet
the needs of the students, rapidly address
course-related issues, and increase student
retention. Labeled aspect-sentiment data
for MOOCs are expensive to obtain and
may not be transferable between courses,
suggesting the need for approaches that do
not require labeled data. We develop a
weakly supervised joint model for aspect-
sentiment in online courses, modeling the
dependencies between various aspects and
sentiment using a recently developed scal-
able class of statistical relational models
called hinge-loss Markov random fields.
We validate our models on posts sam-
pled from twelve online courses, each con-
taining an average of 10,000 posts, and
demonstrate that jointly modeling aspect
with sentiment improves the prediction ac-
curacy for both aspect and sentiment.

1 Introduction

Massive Open Online Courses (MOOCs) have
emerged as a powerful medium for imparting edu-
cation to a wide geographical population. Discus-
sion forums are the primary means of communica-
tion between MOOC participants (students, TAs,

and instructors). Due to the open nature of these
courses, they attract people from all over the world
leading to large numbers of participants and hence,
large numbers of posts in the discussion forums.
In the courses we worked with, we found that over
the course of the class there were typically over
10,000 posts.

Within this slew of posts, there are valuable
problem-reporting posts that identify issues such
as broken links, audio-visual glitches, and in-
accuracies in the course materials. Automati-
cally identifying these reported problems is impor-
tant for several reasons: i) it is time-consuming
for instructors to manually screen through all of
the posts due to the highly skewed instructor-to-
student ratio in MOOCs, ii) promptly address-
ing issues could help improve student retention,
and iii) future iterations of the course could ben-
efit from identifying technical and logistical is-
sues currently faced by students. In this paper,
we investigate the problem of determining the
fine-grained topics of posts (which we refer to
as “MOOC aspects”) and the sentiment toward
them, which can potentially be used to improve
the course.

While aspect-sentiment has been widely stud-
ied, the MOOC discussion forum scenario
presents a unique set of challenges. Labeled data
are expensive to obtain, and posts containing fine-
grained aspects occur infrequently in courses and
differ across courses, thereby making it expensive
to get sufficient coverage of all labels. Few distinct
aspects occur per course, and only 5-10% of posts
in a course are relevant. Hence, getting labels for
fine-grained labels involves mining and annotating
posts from a large number of courses. Further, cre-
ating and sharing labeled data is difficult as data
from online courses is governed by IRB regula-
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tions. Privacy restrictions are another reason why
unsupervised/weakly-supervised methods can be
helpful. Lastly, to design a system capable of iden-
tifying all possible MOOC aspects across courses,
we need to develop a system that is not fine-tuned
to any particular course, but can adapt seamlessly
across courses.

To this end, we develop a weakly supervised
system for detecting aspect and sentiment in
MOOC forum posts and validate its effectiveness
on posts sampled from twelve MOOC courses.
Our system can be applied to any MOOC discus-
sion forum with no or minimal modifications.

Our contributions in this paper are as follows:

• We show how to encode weak supervision
in the form of seed words to extract ex-
tract course-specific features in MOOCs us-
ing SeededLDA, a seeded variation of topic
modeling (Jagarlamudi et al., 2012).

• Building upon our SeededLDA approach,
we develop a joint model for aspects and
sentiment using the hinge-loss Markov ran-
dom field (HL-MRF) probabilistic modeling
framework. This framework is especially
well-suited for this problem because of its
ability to combine information from multiple
features and jointly reason about aspect and
sentiment.

• To validate the effectiveness of our system,
we construct a labeled evaluation dataset by
sampling posts from twelve MOOC courses,
and annotating these posts with fine-grained
MOOC aspects and sentiment via crowd-
sourcing. The annotation captures fine-
grained aspects of the course such as content,
grading, deadlines, audio and video of lec-
tures and sentiment (i.e., positive, negative,
and neutral) toward the aspect in the post.

• We demonstrate that the proposed HL-MRF
model can predict fine-grained aspects and
sentiment and outperforms the model based
only on SeededLDA.

2 Related Work

To the best of our knowledge, the problem of pre-
dicting aspect and sentiment in MOOC forums has
not yet been addressed in the literature. We review
prior work in related areas here.

Aspect-Sentiment in Online Reviews It is
valuable to identify the sentiment of online re-
views towards aspects such as hotel cleanliness
and cellphone screen brightness, and sentiment
analysis at the aspect-level has been studied ex-
tensively in this context (Liu and Zhang, 2012).
Several of these methods use latent Dirichlet allo-
cation topic models (Blei et al., 2003) and variants
of it for detecting aspect and sentiment (Lu et al.,
2011; Lin and He, 2009). Liu and Zhang (2012)
provide a comprehensive survey of techniques for
aspect and sentiment analysis. Here, we discuss
works that are closely related to ours.

Titov and McDonald (2008) emphasize the im-
portance of an unsupervised approach for aspect
detection. However, the authors also indicate that
standard LDA (Blei et al., 2003) methods capture
global topics and not necessarily pertinent aspects
— a challenge that we address in this work. Brody
and Elhadad (2010), Titov and McDonald (2008),
and Jo and Oh (2011) apply variations of LDA at
the sentence level for online reviews. We find that
around 90% of MOOC posts have only one aspect,
which makes sentence-level aspect modeling inap-
propriate for our domain.

Most previous approaches for sentiment rely on
manually constructed lexicons of strongly positive
and negative words (Fahrni and Klenner, 2008;
Brody and Elhadad, 2010). These methods are ef-
fective in an online review context, however senti-
ment in MOOC forum posts is often implicit, and
not necessarily indicated by standard lexicons. For
example, the post “Where is my certificate? Wait-
ing over a month for it.” expresses negative sen-
timent toward the certificate aspect, but does not
include any typical negative sentiment words. In
our work, we use a data-driven model-based ap-
proach to discover domain-specific lexicon infor-
mation guided by small sets of seed words.

There has also been substantial work on joint
models for aspect and sentiment (Kim et al., 2013;
Diao et al., 2014; Zhao et al., 2010; Lin et al.,
2012), and we adopt such an approach in this pa-
per. Kim et al. (2013) use a hierarchical aspect-
sentiment model and evaluate it for online reviews.
Mukherjee and Liu (2012) use seed words for dis-
covering aspect-based sentiment topics. Drawing
on the ideas of Mukherjee and Liu (2012) and
Kim et al. (2013), we propose a statistical rela-
tional learning approach that combines the advan-
tages of seed words, aspect hierarchy, and flat
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Post 1: I have not received the midterm.
Post 2: No lecture subtitles week, will they be uploaded?
Post 3: I am ... and I am looking forward to learn more ...

Table 1: Example posts from MOOC forums. As-
pect words are highlighted in bold.

aspect-sentiment relationships. It is important to
note that a broad majority of the previous work
on aspect sentiment focuses on the specific chal-
lenges of online review data. As discussed in de-
tail above, MOOC forum data have substantially
different properties, and our approach is the first
to be designed particularly for this domain.

Learning Analytics In another line of research,
there is a growing body of work on the analy-
sis of online courses. Regarding MOOC forum
data, Stump et al. (2013) propose a framework
for taxonomically categorizing forum posts, lever-
aging manual annotations. We differ from their
approach in that we develop an automatic system
to predict MOOC forum categories without using
labeled training data. Ramesh et al. (2014b) cat-
egorize forum posts into three broad categories in
order to predict student engagement. Unlike this
method, our system is capable of fine-grained cat-
egorization and of identifying aspects in MOOCS.
Chaturvedi et al. (2014) focus on predicting in-
structor intervention using lexicon features and
thread features. In contrast, our system is capable
of predicting fine MOOC aspects and sentiment of
discussion forum posts and thus provides a more
informed analysis of MOOC posts.

3 Problem Setting and Data

MOOC participants primarily communicate
through discussion forums, consisting of posts,
which are short pieces of text. Table 1 provides
examples of posts in MOOC forums. Posts 1 and
2 report issues and feedback for the course, while
post 3 is a social interaction message. Our goal is
to distinguish problem-reporting posts such as 1
and 2 from social posts such as 3, and to identify
the issues that are being discussed.

We formalize this task as an aspect-sentiment
prediction problem (Liu and Zhang, 2012). The
issues reported in MOOC forums can be related to
the different elements of the course such as lec-
tures and quizzes, which are referred to as aspects.
The aspects are selected based on MOOC domain
expertise and inspiration from Stump et al. (2013),
aiming to cover common concerns that could ben-
efit from intervention. The task is to predict these

COARSE-ASPECT FINE-ASPECT Description # of posts

LECTURE

LECTURE-CONTENT Content of lectures. 559
LECTURE-VIDEO Video of lectures. 215
LECTURE-SUBTITLES Subtitles of lecture. 149
LECTURE-AUDIO Audio of lecture. 136
LECTURE-LECTURER Delivery of instructor. 69

QUIZ
QUIZ-CONTENT Content in quizzes. 439
QUIZ-GRADING Grading of quizzes. 360
QUIZ-SUBMISSION Quiz submission. 329
QUIZ-DEADLINE Deadline of quizzes. 142

CERTIFICATE Course certificates. 194

SOCIAL Social interaction posts. 1187

Table 2: Descriptions of coarse and fine aspects.

aspects for each post, along with the sentiment po-
larity toward the aspect, which we code as posi-
tive, negative, or neutral. The negative-sentiment
posts, along with their aspects, allow us to iden-
tify potentially correctable issues in the course.
As labels are expensive in this scenario, we for-
mulate the task as a weakly supervised prediction
problem. In our work, we assume that a post has
at most one fine-grained aspect, as we found that
this was true for 90% of the posts in our data.
This property is due in part to the brevity of fo-
rum posts, which are much shorter documents than
those considered in other aspect-sentiment scenar-
ios such as product reviews.

3.1 Aspect Hierarchy

While we do not require labeled data, our ap-
proaches allow the analyst to instead relatively
easily encode a small amount of domain knowl-
edge by seeding the models with a few words re-
lating to each aspect of interest. Hence, we refer
to our approach as weakly supervised. Our models
can further make use of hierarchical structure be-
tween the aspects. The proposed approach is flex-
ible, allowing the aspect seeds and hierarchy to be
selected for a given MOOC domain.

For the purposes of this study, we represent the
MOOC aspects with a two-level hierarchy. We
identify a list of nine fine-grained aspects, which
are grouped into four coarse topics. The coarse
aspects consist of LECTURE, QUIZ, CERTIFICATE,
and SOCIAL topics. Table 2 provides a description
of each of the aspects and also gives the number of
posts in each aspect category after annotation.

As both LECTURE and QUIZ are key coarse-
level aspects in online courses, and more nu-
anced aspect information for these is important
to facilitate instructor interventions, we iden-
tify fine-grained aspects for these coarse aspects.
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For LECTURE we identify LECTURE-CONTENT,
LECTURE-VIDEO, LECTURE-AUDIO, LECTURE-
SUBTITLES, and LECTURE-LECTURER as fine
aspects. For QUIZ, we identify the fine as-
pects QUIZ-CONTENT, QUIZ-GRADING, QUIZ-
DEADLINES, and QUIZ-SUBMISSION. We use the
label SOCIAL to refer to social interaction posts
that do not mention a problem-related aspect.

3.2 Dataset

We construct a dataset by sampling posts from
MOOC courses to capture the variety of aspects
discussed in online courses. We include courses
from different disciplines (business, technology,
history, and the sciences) to ensure broad coverage
of aspects. Although we adopt an approach that
does not require labeled data for training, which is
important for most practical MOOC scenarios, in
order to validate our methods we obtain labels for
the sampled posts using Crowdflower,1 an online
crowd-sourcing annotation platform. Each post
was annotated by at least 3 annotators. Crowd-
flower calculates confidence in labels by comput-
ing trust scores for annotators using test questions.
Kolhatkar et al. (2013) provide a detailed analysis
of Crowdflower trust calculations and the relation-
ship to inter-annotator agreement. We follow their
recommendations and retain only labels with con-
fidence > 0.5.

4 Aspect-Sentiment Prediction Models

In this section, we develop models and feature-
extraction techniques to address the challenges of
aspect-sentiment prediction for MOOC forums.
We present two weakly-supervised methods—
first, using a seeded topic modeling approach (Ja-
garlamudi et al., 2012) to identify aspects and sen-
timent. Second, building upon this method, we
then introduce a more powerful statistical rela-
tional model which reasons over the seeded LDA
predictions as well as sentiment side-information
to encode hierarchy information and correlations
between sentiment and aspect.

4.1 Seeded LDA Model

Topic models (Blei et al., 2003), which identify
latent semantic themes from text corpora, have
previously been successfully used to discover as-
pects for sentiment analysis (Diao et al., 2014). By
equating the topics, i.e. discrete distributions over
1http://www.crowdflower.com/

words, with aspects and/or sentiment polarities,
topic models can recover aspect-sentiment predic-
tions. In the MOOC context we are specifically in-
terested in problems with the courses, rather than
general topics which may be identified by a topic
model, such as the topics of the course material.
To guide the topic model to identify aspects of
interest, we use SeededLDA (Jagarlamudi et al.,
2012), a variant of LDA which allows an analyst to
“seed” topics by providing key words that should
belong to the topics.

We construct SeededLDA models by providing
a set of seed words for each of the coarse and fine
aspects in the aspect hierarchy of Table 2. We also
seed topics for positive, negative and neutral sen-
timent polarities. The seed words for coarse topics
are provided in Table 3, and fine aspects in Ta-
ble 4. For the sentiment topics (Table 5), the seed
words for the topic positive are positive words of-
ten found in online courses such as thank, congrat-
ulations, learn, and interest. Similarly, the seed
words for the negative topic are negative in the
context of online courses, such as difficult, error,
issue, problem, and misunderstand.

Additionally, we also use SeededLDA for iso-
lating some common problems in online courses
that are associated with sentiment, such as dif-
ficulty, availability, correctness, and course-
specific seed words from the syllabus as described
in Table 6. Finally, having inferred the Seed-
edLDA model from the data set, for each post pwe
predict the most likely aspect and the most likely
sentiment polarity according to the post’s inferred
distribution over topics θ(p).

In our experiments, we tokenize and stem the
posts using NLTK toolkit (Loper and Bird, 2002),
and use a stop word list tuned to online course dis-
cussion forums. The topic model Dirichlet hyper-
parameters are set to α = 0.01, β = 0.01 in our ex-
periments. For SeededLDA models corresponding
to the seed sets in Tables 3, 4, and 5, the number
of topics is equal to the number of seeded topics.
For SeededLDA models corresponding to the seed
words in Tables 6 and 3, we use 10 topics, allow-
ing for some unseeded topics that are not captured
by the seed words.

4.2 Hinge-loss Markov Random Fields

The approach described in the previous section au-
tomatically identifies user-seeded aspects and sen-
timent, but it does not make further use of struc-
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LECTURE: lectur, video, download, volum, low, headphon, sound, audio, transcript, subtitl, slide, note
QUIZ: quiz, assignment, question, midterm,exam, submiss, answer, grade, score, grad, midterm, due, deadlin
CERTIFICATE: certif, score, signatur, statement, final, course, pass, receiv, coursera, accomplish, fail
SOCIAL: name, course, introduction, stud, group, everyon, student

Table 3: Seed words for coarse aspects

LECTURE-VIDEO: video, problem, download, play, player, watch, speed, length, long, fast, slow, render, qualiti
LECTURE-AUDIO: volum, low, headphon, sound, audio, hear, maximum, troubl, qualiti, high, loud, heard
LECTURE-LECTURER: professor, fast, speak, pace, follow, speed, slow, accent, absorb, quick, slowli
LECTURE-SUBTITLES: transcript, subtitl, slide, note, lectur, difficult, pdf
LECTURE-CONTENT: typo, error, mistak, wrong, right, incorrect, mistaken
QUIZ-CONTENT: question, challeng, difficult, understand, typo, error, mistak, quiz, assignment
QUIZ-SUBMISSION: submiss, submit, quiz, error, unabl, resubmit
QUIZ-GRADING: answer, question, answer, grade, assignment, quiz, respons ,mark, wrong, score
QUIZ-DEADLINE: due, deadlin, miss, extend, late

Table 4: Seed words for fine aspects

POSITIVE: interest, excit, thank, great, happi, glad, enjoy, forward, insight, opportun, clear, fantast, fascin, learn, hope, congratul
NEGATIVE: problem, difficult, error, issu, unabl, misunderstand, terribl, bother, hate, bad, wrong, mistak, fear, troubl
NEUTRAL: coursera, class, hello, everyon, greet, nam, meet, group, studi, request, join, introduct, question, thank

Table 5: Seed words for sentiment

DIFFICULTY: difficult, understand, ambigu, disappoint, hard, follow, mislead, difficulti, challeng, clear
CONTENT: typo, error, mistak, wrong, right, incorrect, mistaken, score
AVAILABILITY: avail, nowher, find, access, miss, view, download, broken, link, bad, access, deni, miss, permiss
COURSE-1: develop, eclips, sdk, softwar, hardware, accuser, html, platform, environ, lab, ide, java,
COURSE-2: protein, food, gene, vitamin, evolut, sequenc, chromosom, genet, speci, peopl, popul, evolv, mutat, ancestri
COURSE-3: compani, product, industri, strategi, decision, disrupt, technolog, market

Table 6: Seed words for sentiment specific to online courses

ture or dependencies between these values, or any
additional side-information. To address this, we
propose a more powerful approach using hinge-
loss Markov random fields (HL-MRFs), a scalable
class of continuous, conditional graphical mod-
els (Bach et al., 2013). HL-MRFs have achieved
state-of-the-art performance in many domains in-
cluding knowledge graph identification (Pujara et
al., 2013), understanding engagements in MOOCs
(Ramesh et al., 2014a), biomedicine and multi-
relational link prediction (Fakhraei et al., 2014),
and modelling social trust (Huang et al., 2013).
These models can be specified using Probabilistic
Soft Logic (PSL) (Bach et al., 2015), a weighted
first order logical templating language. An exam-
ple of a PSL rule is

λ : P (a) ∧Q(a, b)→ R(b),

where P, Q, and R are predicates, a and b are vari-
ables, and λ is the weight associated with the rule.
The weight of the rule indicates its importance in
the HL-MRF probabilistic model, which defines a
probability density function of the form

P (Y|X) ∝ exp
(
−

M∑
r=1

λrφr(Y,X)
)

φr(Y,X) = (max{lr(Y,X), 0})ρr , (1)

where φr(Y,X) is a hinge-loss potential corre-
sponding to an instantiation of a rule, and is spec-
ified by a linear function lr and optional exponent
ρr ∈ {1, 2}. For example, in our MOOC aspect-
sentiment model, if P and F denote post P and
fine aspect F, then we have predicates SEEDLDA-
FINE(P, F) to denote the value corresponding to
topic F in SeededLDA, and FINE-ASPECT(P, F) is
the target variable denoting the fine aspect of the
post P. A PSL rule to encode that the SeededLDA
topic F suggests that aspect F is present is

λ : SEEDLDA-FINE(P, F )→ FINE-ASPECT(P, F ).

We can generate more complex rules connecting
the different features and target variables, e.g.

λ : SEEDLDA-FINE(P, F ) ∧ SENTIMENT(P, S)
→ FINE-ASPECT(P, F ).

This rule encodes a dependency between SENTI-
MENT and FINE-ASPECT, namely that the Seed-

78



edLDA topic and a strong sentiment score increase
the probability of the fine aspect. The HL-MRF
model uses these rules to encode domain knowl-
edge about dependencies among the predicates.
The continuous value representation further helps
in understanding the confidence of predictions.

4.3 Joint Aspect-Sentiment Prediction using
Probabilistic Soft Logic (PSL-Joint)

In this section, we describe our joint approach to
predicting aspect and sentiment in online discus-
sion forums, leveraging the strong dependence be-
tween aspect and sentiment. We present a system
designed using HL-MRFs which combines differ-
ent features, accounting for their respective uncer-
tainty, and encodes the dependencies between as-
pect and sentiment in the MOOC context.

Table 7 provides some representative rules from
our model.2 The rules can be classified into two
broad categories—1) rules that combine multiple
features, and 2) rules that encode the dependencies
between aspect and sentiment.

4.3.1 Combining Features
The first set of rules in Table 7 combine different
features extracted from the post. SEEDLDA-FINE,
SEEDLDA-COARSE and SEEDLDA-SENTIMENT-
COURSE predicates in rules refer to SeededLDA
posterior distributions using coarse, fine, and
course-specific sentiment seed words respectively.
The strength of our model comes from its abil-
ity to encode different combinations of features
and weight them according to their importance.
The first rule in Table 7 combines the SeededLDA
features from both SEEDLDA-FINE and SEEDLDA-
COARSE to predict the fine aspect. Interpreting
the rule, the fine aspect of the post is more likely
to be LECTURE-LECTURER if the coarse Seed-
edLDA score for the post is LECTURE, and the
fine SeededLDA score for the post is LECTURE-
LECTURER. Similarly, the second rule provides
combinations of some of the other features used
by the model—two different SeededLDA scores
for sentiment, as indicated by seed words in Ta-
bles 5 and 6. The third rule states that certain fine
aspects occur together with certain values of sen-
timent more than others. In online courses, posts
that discuss grading usually talk about grievances
and issues. The rule captures that QUIZ-GRADING

occurs with negative sentiment in most cases.

2Full model available at https://github.com/artir/ramesh-acl15

4.3.2 Encoding Dependencies Between
Aspect and Sentiment

In addition to combining features, we also en-
code rules to capture the taxonomic dependence
between coarse and fine aspects, and the depen-
dence between aspect and sentiment (Table 7, bot-
tom). Rules 4 and 5 encode pair-wise depen-
dency between FINE-ASPECT and SENTIMENT,
and COARSE-ASPECT and FINE-ASPECT respec-
tively. Rule 4 uses the SeededLDA value for
QUIZ-DEADLINES to predict both SENTIMENT,
and FINE-ASPECT jointly. This together with
other rules for predicting SENTIMENT and FINE-
ASPECT individually creates a constrained satis-
faction problem, forcing aspect and sentiment to
agree with each other. Rule 5 is similar to rule 4,
capturing the taxonomic relationship between tar-
get variables COARSE-ASPECT and FINE-ASPECT.

Thus, by using conjunctions to combine fea-
tures and appropriately weighting these rules, we
account for the uncertainties in the underlying fea-
tures and make them more robust. The combina-
tion of these two different types of weighted rules,
referred to below as PSL-Joint, is able to reason
collectively about aspect and sentiment.

5 Empirical Evaluation

In this section, we present the quantitative and
qualitative results of our models on the annotated
MOOC dataset. Our models do not require labeled
data for training; we use the label annotations only
for evaluation. Tables 8 – 11 show the results
for the SeededLDA and PSL-Joint models. Sta-
tistically significant differences, evaluated using a
paired t-test with a rejection threshold of 0.01, are
typed in bold.

5.1 SeededLDA for Aspect-Sentiment

For SeededLDA, we use the seed words for
coarse, fine, and sentiment given in Tables 3 – 5.
After training the model, we use the SeededLDA
multinomial posterior distribution to predict the
target variables. We use the maximum value in
the posterior for the distribution over topics for
each post to obtain predictions for coarse aspect,
fine aspect, and sentiment. We then calculate pre-
cision, recall and F1 values comparing with our
ground truth labels.
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PSL-JOINT RULES

Rules combining features
SEEDLDA-FINE(POST, LECTURE-LECTURER) ∧ SEEDLDA-COARSE(POST, LECTURE) → FINE-ASPECT(POST, LECTURE-LECTURER)

SEEDLDA-SENTIMENT-COURSE(POST, NEGATIVE) ∧ SEEDLDA-SENTIMENT(POST, NEGATIVE) → SENTIMENT(POST, NEGATIVE)

SEEDLDA-SENTIMENT-COURSE(POST, NEGATIVE)∧ SEEDLDA-FINE(POST, QUIZ-GRADING) → FINE-ASPECT(POST, QUIZ-GRADING)
Encoding dependencies between aspect and sentiment
SEEDLDA-FINE(POST, QUIZ-DEADLINES) ∧ SENTIMENT(POST, NEGATIVE) → FINE-ASPECT(POST, QUIZ-DEADLINES)

SEEDLDA-FINE(POST, QUIZ-SUBMISSION) ∧ FINE-ASPECT(POST, QUIZ-SUBMISSION) → COARSE-ASPECT(POST, QUIZ)

Table 7: Representative rules from PSL-Joint model

Model LECTURE-CONTENT LECTURE-VIDEO LECTURE-AUDIO LECTURE-LECTURER LECTURE-SUBTITLES
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

SEEDEDLDA 0.137 0.057 0.08 0.156 0.256 0.240 0.684 0.684 0.684 0.037 0.159 0.06 0.289 0.631 0.397
PSL-JOINT 0.407 0.413 0.410 0.411 0.591 0.485 0.635 0.537 0.582 0.218 0.623 0.323 0.407 0.53 0.461

Table 8: Precision, recall and F1 scores for LECTURE fine aspects

Model QUIZ-CONTENT QUIZ-SUBMISSION QUIZ-DEADLINES QUIZ-GRADING
Prec Rec. F1 Prec Rec. F1 Prec. Rec. F1 Prec. Rec. F1

SEEDEDLDA 0.042 0.006 0.011 0.485 0.398 0.437 0.444 0.141 0.214 0.524 0.508 0.514
PSL-JOINT 0.324 0.405 0.36 0.521 0.347 0.416 0.667 0.563 0.611 0.572 0.531 0.550

Table 9: Precision, recall and F1 scores for QUIZ fine aspects

Model LECTURE QUIZ CERTIFICATE SOCIAL
Prec Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

SEEDEDLDA 0.597 0.673 0.632 0.752 0.583 0.657 0.315 0.845 0.459 0.902 0.513 0.654
PSL-JOINT 0.563 0.715 0.630 0.724 0.688 0.706 0.552 0.711 0.621 0.871 0.530 0.659

Table 10: Precision, recall and F1 scores for coarse aspects

Model POSITIVE NEGATIVE NEUTRAL
Prec Rec. F1 Prec. Rec. F1 Prec. Rec. F1

SEEDEDLDA 0.104 0.721 0.182 0.650 0.429 0.517 0.483 0.282 0.356
PSL-JOINT 0.114 0.544 0.189 0.571 0.666 0.615 0.664 0.322 0.434

Table 11: Precision, recall and F1 scores for sentiment

5.2 PSL for Joint Aspect-Sentiment
(PSL-Joint)

Tables 8 and 9 give the results for the fine aspects
under LECTURE and QUIZ. PSL-JOINT performs
better than SEEDEDLDA in most cases, with-
out suffering any statistically significant losses.
Notable cases include the increase in scores
for LECTURE-LECTURER, LECTURE-SUBTITLES,
LECTURE-CONTENT, QUIZ-CONTENT, QUIZ-
GRADING, and QUIZ-DEADLINES, for which the
scores increase by a large margin over Seed-
edLDA. We observe that for LECTURE-CONTENT

and QUIZ-CONTENT, the increase in scores is
more significant than others with SeededLDA per-
forming very poorly. Since both lecture and quiz
content have the same kind of words related to the
course material, SeededLDA is not able to dis-
tinguish between these two aspects. We found
that in 63% of these missed predictions, Seed-

edLDA predicts LECTURE-CONTENT, instead of
QUIZ-CONTENT, and vice versa. In contrast, PSL-
Joint uses both coarse and fine SeededLDA scores
and captures the dependency between a coarse as-
pect and its corresponding fine aspect. There-
fore, PSL-Joint is able to distinguish between
LECTURE-CONTENT and QUIZ-CONTENT. In the
next section, we present some examples of posts
that SEEDEDLDA misclassified but were predicted
correctly by PSL-Joint.

Table 10 presents results for the coarse-aspects.
We observe that PSL-Joint performs better than
SeededLDA for all classes. In particular for CER-
TIFICATE and QUIZ, PSL-Joint exhibits a marked
increase in scores when compared to SeededLDA.
This is also true for sentiment, for which the scores
for NEUTRAL and NEGATIVE sentiment show sig-
nificant improvement (Table 11).
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Correct Label PSL SeededLDA Post

QUIZ-CONTENT QUIZ-CONTENT LECTURE-CONTENT There is a typo or other mistake in the assignment instructions (e.g. es-
sential information omitted) Type ID: programming-content Problem ID:
programming-mistake Browser: Chrome 32 OS: Windows 7

QUIZ-CONTENT QUIZ-CONTENT LECTURE-CONTENT There is a typo or other mistake on the page (e.g. factual error informa-
tion omitted) Week 4 Quiz Question 6: Question 6 When a user clicks
on a View that has registered to show a Context Menu which one of the
following methods will be called?

LECTURE-AUDIO LECTURE-AUDIO LECTURE-SUBTITLES Thanks for the suggestion about downloading the video and referring to
the subtitles. I will give that a try but I would also like to point out that
what the others are saying is true for me too: The audio is just barely
audible even when the volume on my computer is set to 100%.

SOCIAL SOCIAL LECTURE-VIDEO Let’s start a group for discussing the lecture videos.

Table 12: Example posts that PSL-Joint predicted correctly, but were misclassified by SeededLDA

Correct Label Predicted Label Second Post
Prediction

LECTURE-CONTENT QUIZ-CONTENT LECTURE-CONTENT I have a difference of opinion to the answer for Question 6 too. It differs from
what is presented in lecture 1.

SOCIAL LECTURE-SUBTITLES SOCIAL Hello guys!!! I am ... The course materials are extraordinary. The subtitles are
really helpful! Thanks to instructors for giving us all a wonderful opportunity.

LECTURE-CONTENT QUIZ-CONTENT LECTURE-CONTENT As the second lecture video told me I started windows telnet and connected to
the virtual device. Then I typed the same command for sending an sms that the
lecture video told me to. The phone received a message all right and I was able to
open it but the message itself seems to be written with some strange characters.

Table 13: Example posts whose second-best prediction is correct

5.3 Interpreting PSL-Joint Predictions

Table 12 presents some examples of posts that
PSL-Joint predicted correctly, and which Seed-
edLDA misclassified. The first two examples
illustrate that PSL can predict the subtle dif-
ference between LECTURE-CONTENT and QUIZ-
CONTENT. Particularly notable is the third ex-
ample, which contains mention of both subtitles
and audio, but the negative sentiment is associ-
ated with audio rather than subtitles. PSL-Joint
predicts the fine aspect as LECTURE-AUDIO, even
though the underlying SeededLDA feature has a
high score for LECTURE-SUBTITLES. This exam-
ple illustrates the strength of the joint reasoning
approach in PSL-Joint. Finally, in the last exam-
ple, the post mentions starting a group to discuss
videos. This is an ambiguous post containing the
keyword video, while it is in reality a social post
about starting a group. PSL-Joint is able to predict
this because it uses both the sentiment scores as-
sociated with the post and the SeededLDA scores
for fine aspect, and infers that social posts are gen-
erally positive. So, combining the feature values
for social aspect and positive sentiment, it is able
to predict the fine aspect as SOCIAL correctly.

The continuous valued output predictions pro-
duced by PSL-Joint allow us to rank the predicted
variables by output prediction value. Analyzing
the predictions for posts that PSL-Joint misclassi-
fied, we observe that for four out of nine fine as-
pects, more than 70% of the time the correct label

is in the top three predictions. And, for all fine
aspects, the correct label is found in the top 3 pre-
dictions around 40% of the time. Thus, using the
top three predictions made by PSL-Joint, we can
understand the fine aspect of the post to a great
extent. Table 13 gives some examples of posts for
which the second best prediction by PSL-Joint is
the correct label. For these examples, we found
that PSL-Joint misses the correct prediction by a
small margin(< 0.2). Since our evaluation scheme
only considers the maximum value to determine
the scores, these examples were treated as misclas-
sified.

5.4 Understanding Instructor Intervention
using PSL-Joint Predictions

In our 3275 annotated posts, the instructor replied
to 787 posts. Of these, 699 posts contain a men-
tion of some MOOC aspect. PSL-Joint predicts
97.8% from those as having an aspect and 46.9%
as the correct aspect. This indicates that PSL-Joint
is capable of identifying the most important posts,
i.e. those that the instructor replied to, with high
accuracy. PSL-Joint’s MOOC aspect predictions
can potentially be used by the instructor to select
a subset of posts to address in order to cover the
main reported issues. We found in our data that
some fine aspects, such as CERTIFICATE, have a
higher percentage of instructor replies than oth-
ers, such as QUIZ-GRADING. Using our system,
instructors can sample from multiple aspect cate-
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gories, thereby making sure that all categories of
problems receive attention.

6 Conclusion

In this paper, we developed a weakly supervised
joint probabilistic model (PSL-Joint) for predict-
ing aspect-sentiment in online courses. Our model
provides the ability to conveniently encode do-
main information in the form of seed words, and
weighted logical rules capturing the dependen-
cies between aspects and sentiment. We validated
our approach on an annotated dataset of MOOC
posts sampled from twelve courses. We com-
pared our PSL-Joint probabilistic model to a sim-
pler SeededLDA approach, and demonstrated that
PSL-Joint produced statistically significantly bet-
ter results, exhibiting a 3–5 times improvement in
F1 score in most cases over a system using only
SeededLDA. As further shown by our qualitative
results and instructor reply information, our sys-
tem can potentially be used for understanding stu-
dent requirements and issues, identifying posts for
instructor intervention, increasing student reten-
tion, and improving future iterations of the course.
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Abstract

This paper considers the problem of em-
bedding Knowledge Graphs (KGs) con-
sisting of entities and relations into low-
dimensional vector spaces. Most of the
existing methods perform this task based
solely on observed facts. The only re-
quirement is that the learned embeddings
should be compatible within each individ-
ual fact. In this paper, aiming at further
discovering the intrinsic geometric struc-
ture of the embedding space, we propose
Semantically Smooth Embedding (SSE).
The key idea of SSE is to take full ad-
vantage of additional semantic informa-
tion and enforce the embedding space to
be semantically smooth, i.e., entities be-
longing to the same semantic category will
lie close to each other in the embedding s-
pace. Two manifold learning algorithms
Laplacian Eigenmaps and Locally Linear
Embedding are used to model the smooth-
ness assumption. Both are formulated as
geometrically based regularization terms
to constrain the embedding task. We em-
pirically evaluate SSE in two benchmark
tasks of link prediction and triple classi-
fication, and achieve significant and con-
sistent improvements over state-of-the-art
methods. Furthermore, SSE is a general
framework. The smoothness assumption
can be imposed to a wide variety of em-
bedding models, and it can also be con-
structed using other information besides
entities’ semantic categories.

1 Introduction

Knowledge Graphs (KGs) like WordNet (Miller,
1995), Freebase (Bollacker et al., 2008), and DB-

∗Corresponding author: Quan Wang.

pedia (Lehmann et al., 2014) have become ex-
tremely useful resources for many NLP relat-
ed applications, such as word sense disambigua-
tion (Agirre et al., 2014), named entity recogni-
tion (Magnini et al., 2002), and information ex-
traction (Hoffmann et al., 2011). A KG is a multi-
relational directed graph composed of entities as
nodes and relations as edges. Each edge is repre-
sented as a triple of fact ⟨ei, rk, e j⟩, indicating that
head entity ei and tail entity e j are connected by re-
lation rk. Although powerful in representing struc-
tured data, the underlying symbolic nature makes
KGs hard to manipulate.

Recently a new research direction called knowl-
edge graph embedding has attracted much atten-
tion (Socher et al., 2013; Bordes et al., 2013; Bor-
des et al., 2014; Lin et al., 2015). It attempts to
embed components of a KG into continuous vector
spaces, so as to simplify the manipulation while
preserving the inherent structure of the original
graph. Specifically, given a KG, entities and re-
lations are first represented in a low-dimensional
vector space, and for each triple, a scoring func-
tion is defined to measure its plausibility in that
space. Then the representations of entities and re-
lations (i.e. embeddings) are learned by maximiz-
ing the total plausibility of observed triples. The
learned embeddings can further be used to benefit
all kinds of tasks, such as KG completion (Socher
et al., 2013; Bordes et al., 2013), relation extrac-
tion (Riedel et al., 2013; Weston et al., 2013), and
entity resolution (Bordes et al., 2014).

To our knowledge, most of existing KG embed-
ding methods perform the embedding task based
solely on observed facts. The only requiremen-
t is that the learned embeddings should be com-
patible within each individual fact. In this pa-
per we propose Semantically Smooth Embedding
(SSE), a new approach which further imposes con-
straints on the geometric structure of the embed-
ding space. The key idea of SSE is to make ful-
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l use of additional semantic information (i.e. se-
mantic categories of entities) and enforce the em-
bedding space to be semantically smooth—entities
belonging to the same semantic category should
lie close to each other in the embedding space.
This smoothness assumption is closely related to
the local invariance assumption exploited in mani-
fold learning theory, which requires nearby points
to have similar embeddings or labels (Belkin and
Niyogi, 2001). Thus we employ two manifold
learning algorithms Laplacian Eigenmaps (Belkin
and Niyogi, 2001) and Locally Linear Embed-
ding (Roweis and Saul, 2000) to model the s-
moothness assumption. The former requires an
entity to lie close to every other entity in the same
category, while the latter represents that entity as
a linear combination of its nearest neighbors (i.e.
entities within the same category). Both are for-
mulated as manifold regularization terms to con-
strain the KG embedding objective function. As
such, SSE obtains an embedding space which is
semantically smooth and at the same time com-
patible with observed facts.

The advantages of SSE are two-fold: 1) By im-
posing the smoothness assumption, SSE success-
fully captures the semantic correlation between
entities, which exists intrinsically but is over-
looked in previous work on KG embedding. 2)
KGs are typically very sparse, containing a rela-
tively small number of facts compared to the large
number of entities and relations. SSE can effec-
tively deal with data sparsity by leveraging ad-
ditional semantic information. Both aspects lead
to more accurate embeddings in SSE. Moreover,
our approach is quite general. The smoothness as-
sumption can actually be imposed to a wide va-
riety of KG embedding models. Besides seman-
tic categories, other information (e.g. entity sim-
ilarities specified by users or derived from auxil-
iary data sources) can also be used to construc-
t the manifold regularization terms. And besides
KG embedding, similar smoothness assumptions
can also be applied in other embedding tasks (e.g.
word embedding and sentence embedding).

Our main contributions can be summarized as
follows. First, we devise a novel KG embedding
framework that naturally requires the embedding
space to be semantically smooth. As far as we
know, it is the first work that imposes constraints
on the geometric structure of the embedding space
during KG embedding. By leveraging addition-

al semantic information, our approach can also
deal with the data sparsity issue that commonly
exists in typical KGs. Second, we evaluate our
approach in two benchmark tasks of link predic-
tion and triple classification, and achieve signif-
icant and consistent improvements over state-of-
the-art models.

In the remainder of this paper, we first provide
a brief review of existing KG embedding model-
s in Section 2, and then detail the proposed SSE
framework in Section 3. Experiments and results
are reported in Section 4. Then in Section 5 we
discuss related work, followed by the conclusion
and future work in Section 6.

2 A Brief Review of KG Embedding

KG embedding aims to embed entities and rela-
tions into a continuous vector space and model the
plausibility of each fact in that space. In general, it
consists of three steps: 1) representing entities and
relations, 2) specifying a scoring function, and 3)
learning the latent representations. In the first step,
given a KG, entities are represented as points (i.e.
vectors) in a continuous vector space, and relation-
s as operators in that space, which can be charac-
terized by vectors (Bordes et al., 2013; Bordes et
al., 2014; Wang et al., 2014b), matrices (Bordes et
al., 2011; Jenatton et al., 2012), or tensors (Socher
et al., 2013). In the second step, for each candi-
date fact ⟨ei, rk, e j⟩, an energy function f (ei, rk, e j)
is further defined to measure its plausibility, with
the corresponding entity and relation representa-
tions as variables. Plausible triples are assumed to
have low energies. Then in the third step, to obtain
the entity and relation representations, a margin-
based ranking loss, i.e.,

L=
∑
t+∈O

∑
t−∈Nt+

[
γ+ f (ei, rk, e j)− f (e′i , rk, e′j)

]
+
, (1)

is minimized. Here, O is the set of observed (i.e.
positive) triples, and t+ = ⟨ei, rk, e j⟩ ∈ O; Nt+ de-
notes the set of negative triples constructed by re-
placing entities in t+, and t− = ⟨e′i , rk, e′j⟩ ∈ Nt+ ;
γ > 0 is a margin separating positive and nega-
tive triples; and [x]+ = max(0, x). The ranking
loss favors lower energies for positive triples than
for negative ones. Stochastic gradient descent (in
mini-batch mode) is adopted to solve the mini-
mization problem. For details please refer to (Bor-
des et al., 2013) and references therein.

Different embedding models differ in the first t-
wo steps: entity/relation representation and energy
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Method Entity/Relation embeddings Energy function

TransE (Bordes et al., 2013) e, r ∈ Rd f (ei, rk, e j) = ∥ei + rk − e j∥ℓ1/ℓ2
SME (lin) (Bordes et al., 2014) e, r ∈ Rd f (ei, rk, e j) = (Wu1rk +Wu2ei + bu)T

(
Wv1rk +Wv2e j + bv

)
SME (bilin) (Bordes et al., 2014) e, r ∈ Rd f (ei, rk, e j) =

((
Wu×̄3rk

)
ei + bu

)T ((
Wv×̄3rk

)
e j + bv

)
SE (Bordes et al., 2011) e ∈ Rd, Ru,Rv ∈ Rd×d f (ei, rk, e j) = ∥Ru

kei − Rv
ke j∥ℓ1

Table 1: Existing KG embedding models.

function definition. Three state-of-the-art embed-
ding models, namely TransE (Bordes et al., 2013),
SME (Bordes et al., 2014), and SE (Bordes et al.,
2011), are detailed below. Please refer to (Jenat-
ton et al., 2012; Socher et al., 2013; Wang et al.,
2014b; Lin et al., 2015) for other methods.

TransE (Bordes et al., 2013) represents both en-
tities and relations as vectors in the embedding s-
pace. For a given triple ⟨ei, rk, e j⟩, the relation is
interpreted as a translation vector rk so that the
embedded entities ei and e j can be connected by
rk with low error. The energy function is defined
as f (ei, rk, e j) = ∥ei + rk − e j∥ℓ1/ℓ2 , where ∥·∥ℓ1/ℓ2
denotes the ℓ1-norm or ℓ2-norm.

SME (Bordes et al., 2014) also represents enti-
ties and relations as vectors, but models triples in
a more expressive way. Given a triple ⟨ei, rk, e j⟩,
it first employs a function gu (·, ·) to combine rk

and ei, and gv (·, ·) to combine rk and e j. Then,
the energy function is defined as matching gu (·, ·)
and gv (·, ·) by their dot product, i.e., f (ei, rk, e j) =
gu(rk, ei)T gv(rk, e j). There are two versions of
SME, linear and bilinear (denoted as SME (lin)
and SME (bilin) respectively), obtained by defin-
ing different gu (·, ·) and gv (·, ·).

SE (Bordes et al., 2011) represents entities as
vectors but relations as matrices. Each relation is
modeled by a left matrix Ru

k and a right matrix Rv
k,

acting as independent projections to head and tail
entities respectively. If a triple ⟨ei, rk, e j⟩ holds,
Ru

kei and Rv
ke j should be close to each other. The

energy function is f (ei, rk, e j) = ∥Ru
kei − Rv

ke j∥ℓ1 .
Table 1 summarizes the entity/relation representa-
tions and energy functions used in these models.

3 Semantically Smooth Embedding

The methods introduced above perform the em-
bedding task based solely on observed facts. The
only requirement is that the learned embeddings
should be compatible within each individual fact.
However, they fail to discover the intrinsic geo-
metric structure of the embedding space. To deal
with this limitation, we introduce Semantically S-

mooth Embedding (SSE) which constrains the em-
bedding task by incorporating geometrically based
regularization terms, constructed by using addi-
tional semantic categories of entities.

3.1 Problem Formulation

Suppose we are given a KG consisting of n entities
and m relations. The facts observed are stored as
a set of triples O =

{
⟨ei, rk, e j⟩

}
. A triple ⟨ei, rk, e j⟩

indicates that entity ei and entity e j are connected
by relation rk. In addition, the entities are classi-
fied into multiple semantic categories. Each entity
e is associated with a label ce indicating the cate-
gory to which it belongs. SSE aims to embed the
entities and relations into a continuous vector s-
pace which is compatible with the observed facts,
and at the same time semantically smooth.

To make the embedding space compatible with
the observed facts, we make use of the triple set O
and follow the same strategy adopted in previous
methods. That is, we define an energy function
on each candidate triple (e.g. the energy functions
listed in Table 1), and require observed triples to
have lower energies than unobserved ones (i.e. the
margin-based ranking loss defined in Eq. (1)).

To make the embedding space semantically s-
mooth, we further leverage the entity category in-
formation {ce}, and assume that entities within the
same semantic category should lie close to each
other in the embedding space. This smoothness
assumption is similar to the local invariance as-
sumption exploited in manifold learning theory
(i.e. nearby points are likely to have similar em-
beddings or labels). So we employ two manifold
learning algorithms Laplacian Eigenmaps (Belkin
and Niyogi, 2001) and Locally Linear Embed-
ding (Roweis and Saul, 2000) to model such se-
mantic smoothness, termed as LE and LLE for
short respectively.

3.2 Modeling Semantic Smoothness by LE

Laplacian Eigenmaps (LE) is a manifold learning
algorithm that preserves local invariance between
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each two data points (Belkin and Niyogi, 2001).
We borrow the idea of LE and enforce semantic
smoothness by assuming:
Smoothness Assumption 1 If two entities ei and
e j belong to the same semantic category, they will
have embeddings ei and e j close to each other.

To encode the semantic information, we construct
an adjacency matrix W1 ∈ Rn×n among the enti-
ties, with the i j-th entry defined as:

w(1)
i j =

1, if cei = ce j ,

0, otherwise,

where cei /ce j is the category label of entity ei/e j.
Then, we use the following term to measure the
smoothness of the embedding space:

R1 =
1
2

n∑
i=1

n∑
j=1

∥ei − e j∥22w(1)
i j ,

where ei and e j are the embeddings of entities ei

and e j respectively. By minimizing R1, we expect
Smoothness Assumption 1: if two entities ei and e j

belong to the same semantic category (i.e. w(1)
i j =

1), the distance between ei and e j (i.e. ∥ei − e j∥22)
should be small.

We further incorporate R1 as a regularization
term into the margin-based ranking loss (i.e. Eq.
(1)) adopted in previous KG embedding methods,
and propose our first SSE model. The new mod-
el performs the embedding task by minimizing the
following objective function:

L1=
1
N

∑
t+∈O

∑
t−∈Nt+

ℓ
(
t+, t−

)
+
λ1

2

n∑
i=1

n∑
j=1

∥ei− e j∥22w(1)
i j ,

where ℓ
(
t+, t−

)
=
[
γ+ f (ei, rk, e j)− f (e′i , rk, e′j)

]
+

is
the ranking loss on the positive-negative triple pair(
t+, t−

)
, and N is the total number of such triple

pairs. The first term in L1 enforces the resultant
embedding space compatible with all the observed
triples, and the second term further requires that
space to be semantically smooth. Hyperparameter
λ1 makes a trade-off between the two cases.

The minimization is carried out by stochastic
gradient descent. Given a randomly sampled posi-
tive triple t+ = ⟨ei, rk, e j⟩ and the associated nega-
tive triple t− = ⟨e′i , rk, e′j⟩,1 the stochastic gradient
w.r.t. es (s ∈ {i, j, i′, j′}) can be calculated as:

∇esL1 = ∇esℓ
(
t+, t−

)
+ 2λ1E (D −W1) 1s,

1The negative triple is constructed by replacing one of the
entities in the positive triple.

where E = [e1, e2, · · · , en] ∈ Rd×n is a matrix con-
sisting of entity embeddings; D ∈ Rn×n is a di-
agonal matrix with the i-th entry on the diagonal
being dii =

∑n
j=1 w(1)

i j ; and 1s ∈ Rn is a column
vector where the s-th entry is 1 and the others are
0. Other parameters are not included in R1, and
their gradients remain the same as defined in pre-
vious work.

3.3 Modeling Semantic Smoothness by LLE

As opposed to LE which preserves local invari-
ance within data pairs, Locally Linear Embedding
(LLE) expects each data point to be roughly re-
constructed by a linear combination of its nearest
neighbors (Roweis and Saul, 2000). We borrow
the idea of LLE and enforce semantic smoothness
by assuming:

Smoothness Assumption 2 Each entity ei can be
roughly reconstructed by a linear combination of
its nearest neighbors in the embedding space, i.e.,
ei ≈ ∑e j∈N(ei) α je j. Here nearest neighbors refer
to entities belonging to the same semantic catego-
ry with ei.

To model this assumption, for each entity ei, we
randomly sample K entities uniformly from the
category to which ei belongs, denoted as the n-
earest neighbor set N (ei). We construct a weight
matrix W2 ∈ Rn×n by defining:

w(2)
i j =

1, if e j ∈ N (ei) ,
0, otherwise,

and normalize the rows so that
∑n

j=1 w(2)
i j = 1 for

each row i. Note that W2 is no longer a symmetric
matrix. The smoothness of the embedding space
can be measured by the reconstruction error:

R2 =

n∑
i=1

∥∥∥∥∥∥∥ei − ∑
e j∈N(ei)

w(2)
i j e j

∥∥∥∥∥∥∥
2

2

.

Minimizing R2 results in Smoothness Assump-
tion 2: each entity can be linearly reconstructed
from its nearest neighbors with low error.

By incorporating R2 as a regularization term in-
to the margin-based ranking loss defined in Eq.
(1), we obtain our second SSE model, which per-
forms the embedding task by minimizing:

L2=
1
N

∑
t+∈O

∑
t−∈Nt+

ℓ
(
t+, t−

)
+λ2

n∑
i=1

∥∥∥∥∥∥∥ei − ∑
e j∈N(ei)

w(2)
i j e j

∥∥∥∥∥∥∥
2

2

.
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The resultant embedding space is also semanti-
cally smooth and compatible with the observed
triples. Hyperparameter λ2 makes a trade-off be-
tween the two cases.

Similar to the first model, stochastic gradien-
t descent is used to solve the minimization prob-
lem. Given a positive triple t+ = ⟨ei, rk, e j⟩ and
the associated negative triple t− = ⟨e′i , rk, e′j⟩, the
gradient w.r.t. es (s ∈ {i, j, i′, j′}) is calculated as:

∇esL2 = ∇esℓ
(
t+, t−

)
+2λ2E (I −W2)T (I −W2) 1s,

where I ∈ Rn×n is the identity matrix. Other pa-
rameters are not included in R2, and their gradi-
ents remain the same as defined in previous work.
To better capture the cohesion within each cate-
gory, during each stochastic step we resample the
nearest neighbors for each entity, uniformly from
the category to which it belongs.

3.4 Advantages and Extensions
The advantages of our approach can be summa-
rized as follows: 1) By incorporating geometri-
cally based regularization terms, the SSE mod-
els are able to capture the semantic correlation
between entities, which exists intrinsically but is
overlooked in previous work. 2) By leveraging ad-
ditional entity category information, the SSE mod-
els can deal with the data sparsity issue that com-
monly exists in most KGs. Both aspects lead to
more accurate embeddings.

Entity category information has also been inves-
tigated in (Nickel et al., 2012; Chang et al., 2014;
Wang et al., 2015), but in different manners. Nick-
el et al. (2012) take categories as pseudo entities
and introduce a specific relation to link entities
to categories. Chang et al. (2014) and Wang et
al. (2015) use entity categories to specify relation-
s’ argument expectations, removing invalid triples
during training and reasoning respectively. None
of them considers the intrinsic geometric structure
of the embedding space.

Actually, our approach is quite general. 1) The
smoothness assumptions can be imposed to a wide
variety of KG embedding models, not only the
ones introduced in Section 2, but also those based
on matrix/tensor factorization (Nickel et al., 2011;
Chang et al., 2013). 2) Besides semantic cate-
gories, other information (e.g. entity similarities
specified by users or derived from auxiliary data
sources) can also be used to construct the mani-
fold regularization terms. 3) Besides KG embed-
ding, similar smoothness assumptions can also be

Location Sport

CityCapitalOfCountry AthleteLedSportTeam
CityLocatedInCountry AthletePlaysForTeam
CityLocatedInGeopoliticallocation AthletePlaysInLeague
CityLocatedInState AthletePlaysSport
CountryLocatedInGeopoliticallocation CoachesInLeague
StateHasCapital CoachesTeam
StateLocatedInCountry TeamPlaysInLeague
StateLocatedInGeopoliticallocation TeamPlaysSport

Table 2: Relations in Location and Sport.

applied in other embedding tasks (e.g. word em-
bedding and sentence embedding).

4 Experiments

We empirically evaluate the proposed SSE models
in two tasks: link prediction (Bordes et al., 2013)
and triple classification (Socher et al., 2013).

4.1 Data Sets
We create three data sets with different sizes using
NELL (Carlson et al., 2010): Location, Sport, and
Nell186. Location and Sport are two small-scale
data sets, both containing 8 relations on the topics
of “location” and “sport” respectively. The corre-
sponding relations are listed in Table 2. Nell186 is
a larger data set containing the most frequent 186
relations. On all the data sets, entities appearing
only once are removed. We extract the entity cat-
egory information from a specific relation called
Generalization, and keep non-overlapping cat-
egories.2 Categories containing less than 5 entities
on Location and Sport as well as categories con-
taining less than 50 entities on Nell186 are fur-
ther removed. Table 3 gives some statistics of the
three data sets, where # Rel./# Ent./# Trip./# Cat.
denotes the number of relations/entities/observed
triples/categories respectively, and # c-Ent. de-
notes the number of entities that have category la-
bels. Note that our SSE models do not require ev-
ery entity to have a category label. From the statis-
tics, we can see that all the three data sets suffer
from the data sparsity issue, containing a relative-
ly small number of observed triples compared to
the number of entities.

On the two small-scale data sets Location and
Sport, triples are split into training/validation/test
sets, with the ratio of 3:1:1. The first set is used
for modeling training, the second for hyperparam-
eter tuning, and the third for evaluation. All ex-
periments are repeated 5 times by drawing new

2If two categories overlap, the smaller one is discarded.
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# Rel. # Ent. # Trip. # Cat. # c-Ent.

Location 8 380 718 5 358
Sport 8 1,520 3,826 4 1,506
Nell186 186 14,463 41,134 35 8,590

Table 3: Statistics of data sets.

training/validation/test splits, and results averaged
over the 5 rounds are reported. On Nell186 ex-
periments are conducted only once, using a train-
ing/validation/test split with 31,134/5,000/5,000
triples respectively. We will release the data up-
on request.

4.2 Link Prediction
This task is to complete a triple ⟨ei, rk, e j⟩ with ei

or e j missing, i.e., predict ei given (rk, e j) or pre-
dict e j given (ei, rk).

Baseline methods. We take TransE, SME (lin),
SME (bilin), and SE as our baselines. We then in-
corporate manifold regularization terms into these
methods to obtain the SSE models. A model
with the LE/LLE regularization term is denoted
as TransE-LE/TransE-LLE for example. We fur-
ther compare our SSE models with the setting pro-
posed by Nickel et al. (2012), which also takes in-
to account the entity category information, but in
a more direct manner. That is, given an entity e
with its category label ce, we create a new triple
⟨e, Generalization, ce⟩ and add it into the train-
ing set. Such a method is denoted as TransE-Cat
for example.

Evaluation protocol. For evaluation, we adopt
the same ranking procedure proposed by Bordes et
al. (2013). For each test triple ⟨ei, rk, e j⟩, the head
entity ei is replaced by every entity e′i in the KG,
and the energy is calculated for the corrupted triple
⟨e′i , rk, e j⟩. Ranking the energies in ascending or-
der, we get the rank of the correct entity ei. Sim-
ilarly, we can get another rank by corrupting the
tail entity e j. Aggregated over all test triples, we
report three metrics: 1) the averaged rank, denoted
as Mean (the smaller, the better); 2) the median of
the ranks, denoted as Median (the smaller, the bet-
ter); and 3) the proportion of ranks no larger than
10, denoted as Hits@10 (the higher, the better).

Implementation details. We implement the
methods based on the code provided by Bordes et
al. (2013)3. For all the methods, we create 100
mini-batches on each data set. On Location and
Sport, the dimension of the embedding space d is

3https://github.com/glorotxa/SME

set in the range of {10, 20, 50, 100}, the margin γ
is set in the range of {1, 2, 5, 10}, and the learning
rate is fixed to 0.1. On Nell186, the hyperparame-
ters d and γ are fixed to 50 and 1 respectively, and
the learning rate is fixed to 10. In LE and LLE,
the regularization hyperparameters λ1 and λ2 are
tuned in {10−4, 10−5, 10−6, 10−7, 10−8}. And the
number of nearest neighbors K in LLE is tuned in
{5, 10, 15, 20}. The best model is selected by ear-
ly stopping on the validation sets (by monitoring
Mean), with a total of at most 1000 iterations over
the training sets.

Results. Table 4 reports the results on the test
sets of Location, Sport, and Nell186. From the
results, we can see that: 1) SSE (regularized vi-
a either LE or LLE) outperforms all the baselines
on all the data sets and with all the metrics. The
improvements are usually quite significant. The
metric Mean drops by about 10% to 65%, Medi-
an drops by about 5% to 75%, and Hits@10 rises
by about 5% to 190%. This observation demon-
strates the superiority and generality of our ap-
proach. 2) Even if encoded in a direct way (e.g.
TransE-Cat), the entity category information can
still help the baseline methods in the link predic-
tion task. This observation indicates that leverag-
ing additional information is indeed useful in deal-
ing with the data sparsity issue and hence leads to
better performance. 3) Compared to the strategy
which incorporates the entity category information
directly, formulating such information as manifold
regularization terms results in better and more sta-
ble results. The *-Cat models sometimes perfor-
m even worse than the baselines (e.g. TransE-Cat
on Sport data), while the SSE models consistent-
ly achieve better results. This observation further
demonstrates the superiority of constraining the
geometric structure of the embedding space.

We further visualize and compare the geometric
structures of the embedding spaces learned by tra-
ditional embedding and semantically smooth em-
bedding. We select the 10 largest semantic cate-
gories in Nell186 (specified in Figure 1) and the
5,740 entities therein. We take the embeddings
of these entities learned by TransE, TransE-Cat,
TransE-LE, and TransE-LLE, with the optimal hy-
perparameter settings determined in the link pre-
diction task. Then we create 2D plots using t-
SNE (Van der Maaten and Hinton, 2008)4. The
results are shown in Figure 1, where a different

4http://lvdmaaten.github.io/tsne/

89



Location Sport Nell186
Mean Median Hits@10 (%) Mean Median Hits@10 (%) Mean Median Hits@10 (%)

TransE 30.94 10.70 50.56 362.66 62.90 43.86 924.37 94.00 16.95
TransE-Cat 28.48 8.90 52.43 320.30 86.40 37.46 657.53 80.50 19.14
TransE-LE 28.59 8.90 53.06 183.10 23.20 45.83 573.55 79.00 20.26
TransE-LLE 28.03 9.20 52.36 231.67 52.40 43.18 535.32 95.00 20.02
SME (lin) 63.01 24.10 40.90 266.50 87.10 32.34 427.86 26.00 35.97
SME (lin)-Cat 41.12 18.30 42.43 263.88 70.80 35.03 309.60 25.00 36.22
SME (lin)-LE 36.19 16.10 43.75 237.38 50.80 38.35 276.94 25.00 37.14
SME (lin)-LLE 38.22 15.60 43.96 241.70 63.70 36.54 252.87 25.00 37.14
SME (bilin) 47.66 20.90 37.85 314.49 124.00 33.83 848.39 28.00 35.71
SME (bilin)-Cat 40.75 16.20 42.71 298.09 103.80 35.86 560.76 24.00 37.83
SME (bilin)-LE 33.41 14.00 44.24 297.90 116.10 38.95 448.31 24.00 37.80
SME (bilin)-LLE 32.84 13.60 46.25 286.63 110.10 35.67 452.43 28.00 36.51
SE 108.15 69.90 14.72 426.70 242.60 24.72 904.84 44.00 27.81
SE-Cat 88.36 48.20 20.76 435.44 231.00 35.39 529.38 40.00 28.68
SE-LE 36.43 16.00 42.92 252.30 90.50 37.19 456.20 43.00 30.89
SE-LLE 38.47 17.50 42.08 235.44 105.40 37.83 447.05 37.00 31.55

Table 4: Link prediction results on the test sets of Location, Sport, and Nell186.

Athlete Politicianus Chemical City Clothing Country Sportsteam Journalist Televisionstation Room

 

 

(a) TransE.
 

 

(b) TransE-Cat.
 

 

(c) TransE-LE.
 

 

(d) TransE-LLE.

Figure 1: Embeddings of entities belonging to the 10 largest categories in Nell186 (best viewed in color).

color is used for each category. It is easy to see
that imposing the semantic smoothness assump-
tions helps in capturing the semantic correlation
between entities in the embedding space. Entities
within the same category lie closer to each oth-
er, while entities belonging to different categories
are easily distinguished (see Figure 1(c) and Fig-
ure 1(d)). Incorporating the entity category infor-
mation directly could also helps. But it fails on
some “hard” entities (i.e., those belonging to d-
ifferent categories but mixed together in the cen-
ter of Figure 1(b)). We have conducted the same
experiments with the other methods and observed
similar phenomena.

4.3 Triple Classification

This task is to verify whether a given triple
⟨ei, rk, e j⟩ is correct or not. We test our SSE mod-
els in this task, with the same comparison settings
as used in the link prediction task.

Evaluation protocol. We follow the same eval-
uation protocol used in (Socher et al., 2013; Wang
et al., 2014b). To create labeled data for classifica-

tion, for each triple in the test and validation sets,
we construct a negative triple for it by randomly
corrupting the entities. To corrupt a position (head
or tail), only entities that have appeared in that po-
sition are allowed. During triple classification, a
triple is predicted as positive if the energy is be-
low a relation-specific threshold δr; otherwise as
negative. We report two metrics on the test sets:
micro-averaged accuracy and macro-averaged ac-
curacy, denoted as Micro-ACC and Macro-ACC
respectively. The former is a per-triple average,
while the latter is a per-relation average.

Implementation details. We use the same hy-
perparameter settings as in the link prediction task.
The relation-specific threshold δr is determined by
maximizing Micro-ACC on the validation sets. A-
gain, training is limited to at most 1000 iterations,
and the best model is selected by early stopping on
the validation sets (by monitoring Micro-ACC).

Results. Table 5 reports the results on the test
sets of Location, Sport, and Nell186. The results
indicate that: 1) SSE (regularized via either LE or
LLE) performs consistently better than the base-
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Location Sport Nell186
Micro-ACC Macro-ACC Micro-ACC Macro-ACC Micro-ACC Macro-ACC

TransE 86.11 81.66 72.52 73.78 84.21 77.86
TransE-Cat 82.50 77.81 75.09 74.23 87.34 81.27
TransE-LE 86.39 81.50 79.88 77.34 90.32 84.61
TransE-LLE 87.01 83.03 80.29 77.71 90.08 84.50
SME (lin) 75.90 71.82 72.61 71.24 88.54 84.17
SME (lin)-Cat 83.33 80.90 73.52 72.28 91.00 86.20
SME (lin)-LE 84.65 79.33 79.25 74.95 92.44 88.07
SME (lin)-LLE 84.58 79.60 79.45 75.61 92.99 88.68
SME (bilin) 73.06 67.26 71.33 67.78 88.78 84.79
SME (bilin)-Cat 79.38 74.35 75.12 72.41 91.67 86.48
SME (bilin)-LE 83.75 79.66 79.23 76.18 93.37 89.29
SME (bilin)-LLE 83.54 80.36 79.33 75.35 93.64 89.39
SE 65.14 60.01 68.61 63.71 90.18 83.93
SE-Cat 68.61 62.82 67.62 62.17 92.87 87.72
SE-LE 81.67 77.52 81.46 74.72 93.94 88.62
SE-LLE 82.01 77.45 80.25 76.07 93.95 88.54

Table 5: Triple classification results (%) on the test sets of Location, Sport, and Nell186.

line methods on all the data sets in both metric-
s. The improvements are usually quite substantial.
The metric Micro-ACC rises by about 1% to 25%,
and Macro-ACC by about 2% to 30%. 2) Incorpo-
rating the entity category information directly can
also improve the baselines in the triple classifica-
tion task, again demonstrating the effectiveness of
leveraging additional information to deal with the
data sparsity issue. 3) It is a better choice to in-
corporate the entity category information as man-
ifold regularization terms as opposed to encoding
it directly. The *-Cat models sometimes perfor-
m even worse than the baselines (e.g. TransE-
Cat on Location data and SE-Cat on Sport data),
while the SSE models consistently achieve better
results. The observations are similar to those ob-
served during the link prediction task, and further
demonstrate the superiority and generality of our
approach.

5 Related Work

This section reviews two lines of related work: KG
embedding and manifold learning.

KG embedding aims to embed a KG composed
of entities and relations into a low-dimensional
vector space, and model the plausibility of each
fact in that space. Yang et al. (2014) categorized
the literature into three major groups: 1) method-
s based on neural networks, 2) methods based on
matrix/tensor factorization, and 3) methods based
on Bayesian clustering. The first group perform-
s the embedding task using neural network archi-
tectures (Bordes et al., 2013; Bordes et al., 2014;
Socher et al., 2013). Several state-of-the-art neural

network-based embedding models have been in-
troduced in Section 2. For other work please refer
to (Jenatton et al., 2012; Wang et al., 2014b; Lin et
al., 2015). In the second group, KGs are represent-
ed as tensors, and embedding is performed via ten-
sor factorization or collective matrix factorization
techniques (Singh and Gordon, 2008; Nickel et al.,
2011; Chang et al., 2014). The third group embeds
factorized representations of entities and relations
into a nonparametric Bayesian clustering frame-
work, so as to obtain more interpretable embed-
dings (Kemp et al., 2006; Sutskever et al., 2009).
Our work falls into the first group, but differs in
that it further imposes constraints on the geomet-
ric structure of the embedding space, which exists
intrinsically but is overlooked in previous work.
Although this paper focuses on incorporating ge-
ometrically based regularization terms into neural
network architectures, it can be easily extended to
matrix/tensor factorization techniques.

Manifold learning is a geometrically motivat-
ed framework for machine learning, enforcing the
learning model to be smooth w.r.t. the geometric
structure of data (Belkin et al., 2006). Within this
framework, various manifold learning algorithm-
s have been proposed, such as ISOMAP (Tenen-
baum et al., 2000), Laplacian Eigenmaps (Belkin
and Niyogi, 2001), and Locally Linear Embed-
ding (Roweis and Saul, 2000). All these algo-
rithms are based on the so-called local invariance
assumption, i.e., nearby points are likely to have
similar embeddings or labels. Manifold learning
has been widely applied in many different areas,
from dimensionality reduction (Belkin and Niyo-
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gi, 2001; Cai et al., 2008) and semi-supervised
learning (Zhou et al., 2004; Zhu and Niyogi,
2005) to recommender systems (Ma et al., 2011)
and community question answering (Wang et al.,
2014a). This paper employs manifold learning al-
gorithms to model the semantic smoothness as-
sumptions in KG embedding.

6 Conclusion and Future Work

In this paper, we have proposed a novel approach
to KG embedding, referred to as Semantically S-
mooth Embedding (SSE). The key idea of SSE is
to impose constraints on the geometric structure of
the embedding space and enforce it to be semanti-
cally smooth. The semantic smoothness assump-
tions are constructed by using entities’ category
information, and then formulated as geometrical-
ly based regularization terms to constrain the em-
bedding task. The embeddings learned in this way
are capable of capturing the semantic correlation
between entities. By leveraging additional infor-
mation besides observed triples, SSE can also deal
with the data sparsity issue that commonly exists
in most KGs. We empirically evaluate SSE in two
benchmark tasks of link prediction and triple clas-
sification. Experimental results show that by in-
corporating the semantic smoothness assumption-
s, SSE significantly and consistently outperforms
state-of-the-art embedding methods, demonstrat-
ing the superiority of our approach. In addition,
our approach is quite general. The smoothness as-
sumptions can actually be imposed to a wide vari-
ety of embedding models, and it can also be con-
structed using other information besides entities’
semantic categories.

As future work, we would like to: 1) Construct
the manifold regularization terms using other da-
ta sources. The only information required to con-
struct the manifold regularization terms is the sim-
ilarity between entities (used to define the adja-
cency matrix in LE and to select nearest neigh-
bors for each entity in LLE). We would try entity
similarities derived in different ways, e.g., spec-
ified by users or calculated from entities’ textual
descriptions. 2) Enhance the efficiency and scala-
bility of SSE. Processing the manifold regulariza-
tion terms can be time- and space-consuming (e-
specially the one induced by the LE algorithm).
We would investigate how to address this prob-
lem, e.g., via the efficient iterative algorithms in-
troduced in (Saul and Roweis, 2003) or via paral-

lel/distributed computing. 3) Impose the seman-
tic smoothness assumptions on other KG embed-
ding methods (e.g. those based on matrix/tensor
factorization or Bayesian clustering), and even on
other embedding tasks (e.g. word embedding or
sentence embedding).
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Abstract

Word embeddings have recently gained
considerable popularity for modeling
words in different Natural Language
Processing (NLP) tasks including seman-
tic similarity measurement. However,
notwithstanding their success, word
embeddings are by their very nature
unable to capture polysemy, as different
meanings of a word are conflated into a
single representation. In addition, their
learning process usually relies on massive
corpora only, preventing them from taking
advantage of structured knowledge. We
address both issues by proposing a multi-
faceted approach that transforms word
embeddings to the sense level and lever-
ages knowledge from a large semantic
network for effective semantic similarity
measurement. We evaluate our approach
on word similarity and relational similar-
ity frameworks, reporting state-of-the-art
performance on multiple datasets.

1 Introduction

The much celebrated word embeddings represent
a new branch of corpus-based distributional se-
mantic model which leverages neural networks to
model the context in which a word is expected to
appear. Thanks to their high coverage and their
ability to capture both syntactic and semantic in-
formation, word embeddings have been success-
fully applied to a variety of NLP tasks, such as
Word Sense Disambiguation (Chen et al., 2014),
Machine Translation (Mikolov et al., 2013b), Re-
lational Similarity (Mikolov et al., 2013c), Se-
mantic Relatedness (Baroni et al., 2014) and
Knowledge Representation (Bordes et al., 2013).

However, word embeddings inherit two im-
portant limitations from their antecedent corpus-
based distributional models: (1) they are unable to

model distinct meanings of a word as they conflate
the contextual evidence of different meanings of a
word into a single vector; and (2) they base their
representations solely on the distributional statis-
tics obtained from corpora, ignoring the wealth
of information provided by existing semantic re-
sources.

Several research works have tried to address
these problems. For instance, basing their work
on the original sense discrimination approach of
Reisinger and Mooney (2010), Huang et al. (2012)
applied K-means clustering to decompose word
embeddings into multiple prototypes, each denot-
ing a distinct meaning of the target word. How-
ever, the sense representations obtained are not
linked to any sense inventory, a mapping that con-
sequently has to be carried out either manually,
or with the help of sense-annotated data. Another
line of research investigates the possibility of tak-
ing advantage of existing semantic resources in
word embeddings. A good example is the Relation
Constrained Model (Yu and Dredze, 2014). When
computing word embeddings, this model replaces
the original co-occurrence clues from text corpora
with the relationship information derived from the
Paraphrase Database1 (Ganitkevitch et al., 2013,
PPDB), an automatically extracted dataset of para-
phrase pairs.

However, none of these techniques have simul-
taneously solved both above-mentioned issues,
i.e., inability to model polysemy and reliance on
text corpora as the only source of knowledge. We
propose a novel approach, called SENSEMBED,
which addresses both drawbacks by exploiting se-
mantic knowledge for modeling arbitrary word
senses in a large sense inventory. We evaluate our
representation on multiple datasets in two stan-
dard tasks: word-level semantic similarity and re-
lational similarity. Experimental results show that
moving from words to senses, while making use

1http://paraphrase.org/#/download
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of lexical-semantic knowledge bases, makes em-
beddings significantly more powerful, resulting in
consistent performance improvement across tasks.

Our contributions are twofold: (1) we propose
a knowledge-based approach for obtaining contin-
uous representations for individual word senses;
and (2) by leveraging these representations and
lexical-semantic knowledge, we put forward a
semantic similarity measure with state-of-the-art
performance on multiple datasets.

2 Sense Embeddings

Word embeddings are vector space models (VSM)
that represent words as real-valued vectors in a
low-dimensional (relative to the size of the vo-
cabulary) semantic space, usually referred to as
the continuous space language model. The con-
ventional way to obtain such representations is to
compute a term-document occurrence matrix on
large corpora and then reduce the dimensional-
ity of the matrix using techniques such as singu-
lar value decomposition (Deerwester et al., 1990;
Bullinaria and Levy, 2012, SVD). Recent predic-
tive techniques (Bengio et al., 2003; Collobert and
Weston, 2008; Mnih and Hinton, 2007; Turian et
al., 2010; Mikolov et al., 2013a) replace the con-
ventional two-phase approach with a single super-
vised process, usually based on neural networks.

In contrast to word embeddings, which ob-
tain a single model for potentially ambiguous
words, sense embeddings are continuous repre-
sentations of individual word senses. In order to
be able to apply word embeddings techniques to
obtain representations for individual word senses,
large sense-annotated corpora have to be available.
However, manual sense annotation is a difficult
and time-consuming process, i.e., the so-called
knowledge acquisition bottleneck. In fact, the
largest existing manually sense annotated dataset
is the SemCor corpus (Miller et al., 1993), whose
creation dates back to more than two decades
ago. In order to alleviate this issue, we lever-
aged a state-of-the-art Word Sense Disambigua-
tion (WSD) algorithm to automatically generate
large amounts of sense-annotated corpora.

In the rest of Section 2, first, in Section 2.1, we
describe the sense inventory used for SENSEM-
BED. Section 2.2 introduces the corpus and the
disambiguation procedure used to sense annotate
this corpus. Finally in Section 2.3 we discuss
how we leverage the automatically sense-tagged

dataset for the training of sense embeddings.

2.1 Underlying sense inventory
We selected BabelNet2 (Navigli and Ponzetto,
2012) as our underlying sense inventory. The re-
source is a merger of WordNet with multiple other
lexical resources, the most prominent of which
is Wikipedia. As a result, the manually-curated
information in WordNet is augmented with the
complementary knowledge from collaboratively-
constructed resources, providing a high coverage
of domain-specific terms and named entities and a
rich set of relations. The usage of BabelNet as our
underlying sense inventory provides us with the
advantage of having our sense embeddings read-
ily applicable to multiple sense inventories.

2.2 Generating a sense-annotated corpus
As our corpus we used the September-2014 dump
of the English Wikipedia.3 This corpus comprises
texts from various domains and topics and pro-
vides a suitable word coverage. The unprocessed
text of the corpus includes approximately three
billion tokens and more than three million unique
words. We only consider tokens with at least five
occurrences.

As our WSD system, we opted for Babelfy4

(Moro et al., 2014), a state-of-the-art WSD and
Entity Linking algorithm based on BabelNet’s se-
mantic network. Babelfy first models each con-
cept in the network through its corresponding “se-
mantic signature” by leveraging a graph random
walk algorithm. Given an input text, the algo-
rithm uses the generated semantic signatures to
construct a subgraph of the semantic network rep-
resenting the input text. Babelfy then searches
this subgraph for the intended sense of each con-
tent word using an iterative process and a dense
subgraph heuristic. Thanks to its use of Babel-
Net, Babelfy inherently features multilinguality;
hence, our representation approach is equally ap-
plicable to languages other than English. In order
to guarantee high accuracy and to avoid bias to-
wards more frequent senses, we do not consider
those judgements made by Babelfy while backing
off to the most frequent sense, a case that happens
when a certain confidence threshold is not met by
the algorithm. The disambiguated items with high
confidence correspond to more than 50% of all the

2http://www.babelnet.org/
3http://dumps.wikimedia.org/enwiki/
4http://www.babelfy.org/
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bankn
1 bankn

2 numbern
4 numbern

3 hoodn
1 hoodn

12

(geographical) (financial) (phone) (acting) (gang) (convertible car)

upstreamr
1 commercial bankn

1 callsn
1 appearingv

6 torturesn
5 taillightsn

1

downstreamr
1 financial institutionn

1 dialledv
1 minor rolesn

1 vengeancen
1 grillen

2

runsv
6 national bankn

1 operatorn20 stage productionn
1 badguyn

1 bumpern2
confluencen

1 trust companyn
1 telephone networkn

1 supporting rolesn
1 brutala1 fascian

2

rivern1 savings bankn
1 telephonyn

1 leading rolesn
1 executionn

1 rear windown
1

streamn
1 bankingn

1 subscribern2 stage showsn
1 murdersn

1 headlightsn
1

Table 1: Closest senses to two senses of three ambiguous nouns: bank, number, and hood

content words. As a result of the disambiguation
step, we obtain sense-annotated data comprising
around one billion tagged words with at least five
occurrences and 2.5 million unique word senses.

2.3 Learning sense embeddings
The disambiguated text is processed with the
Word2vec (Mikolov et al., 2013a) toolkit5. We ap-
plied Word2vec to produce continuous represen-
tations of word senses based on the distributional
information obtained from the annotated corpus.
For each target word sense, a representation is
computed by maximizing the log likelihood of the
word sense with respect to its context. We opted
for the Continuous Bag of Words (CBOW) archi-
tecture, the objective of which is to predict a single
word (word sense in our case) given its context.
The context is defined by a window, typically with
the size of five words on each side with the para-
graph ending barrier. We used hierarchical soft-
max as our training algorithm. The dimension-
ality of the vectors were set to 400 and the sub-
sampling of frequent words to 10−3.

As a result of the learning process, we obtain
vector-based semantic representations for each of
the word senses in the automatically-annotated
corpus. We show in Table 1 some of the closest
senses to six sample word senses: the geographi-
cal and financial senses of river, the performance
and phone number senses of number, and the gang
and car senses of hood.6 As can be seen, sense em-
beddings can capture effectively the clear distinc-
tions between different senses of a word. Addi-
tionally, the closest senses are not necessarily con-
strained to the same part of speech. For instance,
the river sense of bank has the adverbs upstream
and downstream and the “move along, of liquid”
sense of the verb run among its closest senses.

5http://code.google.com/p/word2vec/
6We follow Navigli (2009) and show the nth sense of the

word with part of speech x as wordx
n.

Synset Description Synonymous senses

hoodn
1 rough or violent youth hoodlumn

1 , goonn
2 , thugn

1

hoodn
4 photography equipment lens hoodn

1

hoodn
9 automotive body parts bonnetn2 , cowln1 , cowlingn

1

hoodn
12 car with retractable top convertiblen

1

Table 2: Sample initial senses of the noun hood
(leftmost column) and their synonym expansion
(rightmost column).

3 Similarity Measurement

This Section describes how we leverage the gen-
erated sense embeddings for the computation of
word similarity and relational similarity. We start
the Section by explaining how we associate a
word with its set of corresponding senses and
how we compare pairs of senses in Sections 3.1
and 3.2, respectively. We then illustrate our ap-
proach for measuring word similarity, together
with its knowledge-based enhancement, in Section
3.3, and relational similarity in Section 3.4. Here-
after, we refer to our similarity measurement ap-
proach as SENSEMBED.

3.1 Associating senses with words

In order to be able to utilize our sense embeddings
for a word-level task such as word similarity mea-
surement, we need to associate each word with its
set of relevant senses, each modeled by its corre-
sponding vector. Let Sw be the set of senses asso-
ciated with the word w. Our objective is to cover
as many senses as can be associated with the word
w. To this end we first initialize the set Sw by the
word senses of the word w and all its synonymous
word senses, as defined in the BabelNet sense in-
ventory. We show in Table 2 some of the senses
of the noun hood and the synonym expansion for
these senses. We further expand the set Sw by re-
peating the same process for the lemma of word w
(if not already in lemma form).
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3.2 Vector comparison
For comparing vectors, we use the Tanimoto dis-
tance. The measure is a generalization of Jaccard
similarity for real-valued vectors in [-1, 1]:

T ( ~w1, ~w2) =
~w1 · ~w2

‖ ~w1‖2 + ‖ ~w2‖2 − ~w1 · ~w2
(1)

where ~w1 · ~w2 is the dot product of the vectors
~w1 and ~w2 and ‖ ~w1‖ is the Euclidean norm of
~w1. Rink and Harabagiu (2013) reported consis-
tent improvements when using vector space met-
rics, in particular the Tanimoto distance, on the
SemEval-2012 task on relational similarity (Jur-
gens et al., 2012) in comparison to several other
measures that are designed for probability distri-
butions, such as Jensen-Shannon divergence and
Hellinger distance.

3.3 Word similarity
We show in Algorithm 1 our procedure for mea-
suring the semantic similarity of a pair of input
words w1 and w2. The algorithm also takes as
its inputs the similarity strategy and the weighted
similarity parameter α (Section 3.3.1) along with
a graph vicinity factor flag (Section 3.3.2).

3.3.1 Similarity measurement strategy
We take two strategies for calculating the similar-
ity of the given words w1 and w2. Let Sw1 and
Sw2 be the sets of senses associated with the two
respective input wordsw1 andw2, and let ~si be the
sense embedding vector of the sense si. In the first
strategy, which we refer to as closest, we follow
the conventional approach (Budanitsky and Hirst,
2006) and measure the similarity of the two words
as the similarity of their closest senses, i.e.:

Simclosest (w1, w2) = max
s1∈Sw1
s2∈Sw2

T (~s1, ~s2) (2)

However, taking the similarity of the closest
senses of two words as their overall similarity ig-
nores the fact that the other senses can also con-
tribute to the process of similarity judgement. In
fact, psychological studies suggest that humans,
while judging semantic similarity of a pair of
words, consider different meanings of the two
words and not only the closest ones (Tversky,
1977; Markman and Gentner, 1993). For instance,
the WordSim-353 dataset (Finkelstein et al., 2002)
contains the word pair brother-monk. Despite hav-
ing the religious devotee sense in common, the

Algorithm 1 Word Similarity
Input: Two words w1 and w2

Str, the similarity strategy
Vic, the graph vicinity factor flag
α parameter for the weighted strategy

Output: The similarity between w1 and w2

1: Sw1 ← getSenses(w1), Sw2 ← getSenses(w2)
2: if Str is closest then
3: sim← -1
4: else
5: sim← 0
6: end if
7: for each s1 ∈ Sw1 and s2 ∈ Sw2 do
8: if Vic is true then
9: tmp← T ∗(~s1,~s2)

10: else
11: tmp← T (~s1,~s2)
12: end if
13: if Str is closest then
14: sim← max (sim, tmp)
15: else
16: sim← sim + tmpα × d(s1) × d(s2)
17: end if
18: end for

two words are assigned the similarity judgement
of 6.27, which is slightly above the middle point
in the similarity scale [0,10] of the dataset. This
clearly indicates that other non-synonymous, yet
still related, senses of the two words have also
played a role in the similarity judgement. Addi-
tionally, the relatively low score reflects the fact
that the religious devotee sense is not a dominant
meaning of the word brother.

We therefore put forward another similarity
measurement strategy, called weighted, in which
different senses of the two words contribute to
their similarity computation, but the contributions
are scaled according to their relative importance.
To this end, we first leverage sense occurrence fre-
quencies in order to estimate the dominance of
each specific word sense. For each word w, we
first compute the dominance of its sense s ∈ Sw
by dividing the frequency of s by the overall fre-
quency of all senses associated with w, i.e., Sw:

d(s) =
freq(s)∑

s′∈Sw
freq(s′)

(3)

We further recognize that the importance of a
specific sense of a word can also be triggered by
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the word it is being compared with. We model
this by biasing the similarity computation towards
closer senses, by increasing the contribution of
closer senses through a power function with pa-
rameter α. The similarity of a pair of words w1

and w2 according to the weighted strategy is com-
puted as:

Simweighted (w1, w2) =∑
s1∈Sw1

∑
s2∈Sw2

d(s1) d(s2) T (~s1, ~s2)α (4)

where the α parameter is a real-valued constant
greater than one. We show in Section 4.1.3 how
we tune the value of this parameter.

3.3.2 Enhancing similarity accuracy
Our similarity measurement approach takes ad-
vantage of lexical knowledge at two different lev-
els. First, as we described in Sections 2.2 and
2.3, we use a knowledge-based disambiguation
approach, i.e., Babelfy, which exploits BabelNet’s
semantic network. Second, we put forward a
methodology that leverages the relations in Babel-
Net’s graph for enhancing the accuracy of similar-
ity judgements, to be discussed next.

As a distributional vector representation tech-
nique, our sense embeddings can potentially suffer
from inaccurate modeling of less frequent word
senses. In contrast, our underlying sense inven-
tory provides a full coverage of all its concepts,
with relations that are taken from WordNet and
Wikipedia. In order to make use of the com-
plementary information provided by our lexical
knowledge base and to obtain more accurate sim-
ilarity judgements, we introduce a graph vicin-
ity factor, that combines the structural knowledge
from BabelNet’s semantic network and the distri-
butional representation of sense embeddings. To
this end, for a given sense pair, we scale the
similarity judgement obtained by comparing their
corresponding sense embeddings, based on their
placement in the network. Let E be the set of all
sense-to-sense relations provided by BabelNet’s
semantic network, i.e., E = {(si, sj) : si − sj}.
Then, the similarity of a pair of words with the
graph vicinity factor in formulas 2 and 4 is com-
puted by replacing T with T ∗, defined as:

T ∗(~s1, ~s2) =

{
T (~s1, ~s2)× β, if (s1, s2) ∈ E
T (~s1, ~s2)× β−1, otherwise

(5)

We show in Section 4.1.3 how we tune the pa-
rameter β. This procedure is particularly help-
ful for the case of less frequent word senses that
do not have enough contextual information to al-
low an effective representation. For instance, the
SimLex-999 dataset (Hill et al., 2014), which we
use as our tuning dataset (see Section 4.1.3), con-
tains the highly-related pair orthodontist-dentist.
We observed that the intended sense of the noun
orthodontist occurs only 70 times in our anno-
tated corpus. As a result, the obtained represen-
tation was not accurate, resulting in a low similar-
ity score for the pair. The two respective senses
are, however, directly connected in the BabelNet
graph. Hence, the graph vicinity factor scales up
the computed similarity value for the word pair.

3.4 Relational similarity
Relational similarity evaluates the correspondence
between relations (Medin et al., 1990). The task
can be viewed as an analogy problem in which,
given two pairs of words (wa, wb) and (wc, wd),
the goal is to compute the extent to which the rela-
tions of wa to wb and wc to wd are similar. Sense
embeddings are suitable candidates for measuring
this type of similarity, as they represent relations
between senses as linear transformations. Given
this property, the relation between a pair of words
can be obtained by subtracting their correspond-
ing normalized embeddings. Following Zhila et al.
(2013), the relational similarity between two pairs
of word (wa, wb) and (wc, wd) is accordingly cal-
culated as:

ANALOGY( ~wa, ~wb, ~wc, ~wd) =
T ( ~wb − ~wa, ~wd − ~wc)

(6)

We show the procedure for measuring the rela-
tional similarity in Algorithm 2. The algorithm
first finds the closest senses across the two word
pairs: s∗a and s∗b for the first pair and s∗c and s∗d
for the second. The analogy vector representa-
tions are accordingly computed as the difference
between the sense embeddings of the correspond-
ing closest senses. Finally, the relational similarity
is computed as the similarity of the analogy vec-
tors of the two pairs.

4 Experiments

We evaluate our sense-enhanced semantic repre-
sentation on multiple word similarity and related-
ness datasets (Section 4.1), as well as the relational
similarity framework (Section 4.2).
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Algorithm 2 Relational Similarity
Input: Two pairs of words wa, wb and wc, wd
Output: The degree of analogy between the two

pairs

1: Swa ← getSenses(wa), Swb
← getSenses(wb)

2: (s∗a, s∗b )← argmaxsa∈Swa
sb∈Swb

T (~sa, ~sb)

3: Swc ← getSenses(wc), Swd
← getSenses(wd)

4: (s∗c , s∗d)← argmaxsc∈Swc
sd∈Swd

T (~sc, ~sd)

5: return: T (~sb∗ − ~sa
∗ , ~sd∗ − ~sc

∗)

4.1 Word similarity experiment

Word similarity measurement is one of the most
popular evaluation methods in lexical semantics,
and semantic similarity in particular, with numer-
ous evaluation benchmarks and datasets. Given a
set of word pairs, a system’s task is to provide sim-
ilarity judgments for each pair, and these judge-
ments should ideally be as close as possible to
those given by humans.

4.1.1 Datasets

We evaluate SENSEMBED on standard word simi-
larity and relatedness datasets: the RG-65 (Ruben-
stein and Goodenough, 1965) and the WordSim-
353 (Finkelstein et al., 2002, WS-353) datasets.
Agirre et al. (2009) suggested that the original
WS-353 dataset conflates similarity and related-
ness and divided the dataset into two subsets, each
containing pairs for just one type of association
measure: similarity (the WS-Sim dataset) and re-
latedness (the WS-Rel dataset).

We also evaluate our approach on the YP-130
dataset, which was created by Yang and Powers
(2005) specifically for measuring verb similarity,
and also on the Stanford’s Contextual Word Sim-
ilarities (SCWS), a dataset for measuring word-
in-context similarity (Huang et al., 2012). In the
SCWS dataset each word is provided with the sen-
tence containing it, which helps in pointing out the
intended sense of the corresponding target word.

Finally, we also report results on the MEN
dataset which was recently introduced by Bruni
et al. (2014). MEN contains two sets of English
word pairs, together with human-assigned similar-
ity judgments, obtained by crowdsourcing using
Amazon Mechanical Turk.

4.1.2 Comparison systems
We compare the performance of our similarity
measure against twelve other approaches. As re-
gards traditional distributional models, we report
the best results computed by Baroni et al. (2014)
for PMI-SVD, a system based on Pointwise Mu-
tual Information (PMI) and SVD-based dimen-
sionality reduction. For word embeddings, we re-
port the results of Pennington et al. (2014, GloVe)
and Collobert and Weston (2008). GloVe is an al-
ternative way for learning embeddings, in which
vector dimensions are made explicit, as opposed
to the opaque meaning of the vector dimensions
in Word2vec. The approach of Collobert and We-
ston (2008) is an embeddings model with a deeper
architecture, designed to preserve more complex
knowledge as distant relations. We also show re-
sults for the word embeddings trained by Baroni
et al. (2014). The authors first constructed a mas-
sive corpus by combining several large corpora.
Then, they trained dozens of different Word2vec
models by varying the system’s training parame-
ters and reported the best performance obtained on
each dataset.

As representatives for graph-based similarity
techniques, we report results for the state-of-the-
art approach of Pilehvar et al. (2013) which is
based on random walks on WordNet’s seman-
tic network. Moreover, we present results for
the graph-based approach of Zesch et al. (2008),
which compares a pair of words based on the path
lengths on Wiktionary’s semantic network.

We also compare our word similarity measure
against the multi-prototype models of Reisinger
and Mooney (2010) and Huang et al. (2012), and
against the approaches of Yu and Dredze (2014)
and Chen et al. (2014), which enhance word em-
beddings with semantic knowledge derived from
PPDB and WordNet, respectively. Finally, we re-
port results for word embeddings, as our baseline,
obtained using the Word2vec toolkit on the same
corpus that was annotated and used for learning
our sense embeddings (cf. Section 2.3).

4.1.3 Parameter tuning
Recall from Sections 3.3.1 and 3.3.2 that our al-
gorithm has two parameters: the α parameter for
the weighted strategy and the β parameter for the
graph vicinity factor. We tuned these two parame-
ters on the SimLex-999 dataset (Hill et al., 2014).
We picked SimLex-999 since there are not many
comparison systems in the literature that report re-
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Measure Dataset

RG-65 WS-Sim WS-Rel YP-130 MEN Average

Pilehvar et al. (2013) 0.868 0.677 0.457 0.710 0.690 0.677
Zesch et al. (2008) 0.820 — — 0.710 — —
Collobert and Weston (2008) 0.480 0.610 0.380 — 0.570 —
Word2vec (Baroni et al., 2014) 0.840 0.800 0.700 — 0.800 —
GloVe 0.769 0.666 0.559 0.577 0.763 0.737
ESA 0.749 — — — — —
PMI-SVD 0.738 0.659 0.523 0.337 0.726 0.695

Word2vec 0.732 0.707 0.476 0.343 0.665 0.644
SENSEMBEDclosest 0.894 0.756 0.645 0.734 0.779 0.769
SENSEMBEDweighted 0.871 0.812 0.703 0.639 0.805 0.794

Table 3: Spearman correlation performance on five word similarity and relatedness datasets.

sults on the dataset. We found the optimal values
for α and β to be 8 and 1.6, respectively.

4.1.4 Results
Table 3 shows the experimental results on five
different word similarity and relatedness datasets.
We report the Spearman correlation performance
for the two strategies of our approach as well as
eight other comparison systems. SENSEMBED

proves to be highly reliable on both similarity and
relatedness measurement tasks, obtaining the best
performance on most datasets. In addition, our ap-
proach shows itself to be equally suitable for verb
similarity, as indicated by the results on YP-130.

The rightmost column in the Table shows the
average performance weighted by dataset size.
Between the two similarity measurement strate-
gies, weighted proves to be the more suitable,
achieving the best overall performance on three
datasets and the best mean performance of 0.794
across the two strategies. This indicates that our
assumption of considering all senses of a word in
similarity computation was beneficial.

We report in Table 4 the Spearman correlation
performance of four approaches that are similar
to SENSEMBED: the multi-prototype models of
Reisinger and Mooney (2010) and Huang et al.
(2012), and the semantically enhanced models of
Yu and Dredze (2014) and Chen et al. (2014). We
provide results only on WS-353 and SCWS, since
the above-mentioned approaches do not report
their performance on other datasets. As we can
see from the Table, SENSEMBED outperforms the
other approaches on the WS-353 dataset. How-
ever, our approach lags behind on SCWS, high-
lighting the negative impact of taking the closest

Measure WS-353 SCWS

Huang et al. (2012) 0.713 0.628
Reisinger and Mooney (2010) 0.770 –
Chen et al. (2014) – 0.662
Yu and Dredze (2014) 0.537 –

Word2vec 0.694 0.642
SENSEMBEDclosest 0.714 0.589
SENSEMBEDweighted 0.779 0.624

Table 4: Spearman correlation performance of the
multi-prototype and semantically-enhanced ap-
proaches on the WordSim-353 and the Stanford’s
Contextual Word Similarities datasets.

senses as the intended meanings. In fact, on this
dataset, SENSEMBEDweighted provides better per-
formance owing to its taking into account other
senses as well. The better performance of the
multi-prototype systems can be attributed to their
coarse-grained sense inventories which are auto-
matically constructed by means of Word Sense In-
duction.

4.2 Relational similarity experiment

Dataset and evaluation. We take as our bench-
mark the SemEval-2012 task on Measuring De-
grees of Relational Similarity (Jurgens et al.,
2012). The task provides a dataset comprising 79
graded word relations, 10 of which are used for
training and the rest for test. The task evaluated
the participating systems in terms of the Spear-
man correlation and the MaxDiff score (Louviere,
1991).
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Model Setting Dataset

Strategy Vicinity Expansion RG-65 WS-Sim WS-Rel YP-130 MEN Average

Word2vec – – 0.732 0.707 0.476 0.343 0.665 0.644
Word2vecexp – – X 0.700 0.665 0.326 0.621 0.655 0.632

SENSEMBED

closest
0.825 0.693 0.488 0.492 0.712 0.690

X 0.844 0.714 0.562 0.681 0.743 0.728
X X 0.894 0.756 0.645 0.734 0.779 0.769

weighted
0.877 0.776 0.639 0.446 0.783 0.762

X 0.864 0.783 0.665 0.591 0.773 0.761
X X 0.871 0.812 0.703 0.639 0.805 0.794

Table 6: Spearman correlation performance of word embeddings (Word2vec) and SENSEMBED on dif-
ferent semantic similarity and relatedness datasets.

Measure MaxDiff Spearman

Com 45.2 0.353
PairDirection 45.2 —
RNN-1600 41.8 0.275
UTD-LDA — 0.334
UTD-NB 39.4 0.229
UTD-SVM 34.7 0.116
PMI baseline 33.9 0.112

Word2vec 43.2 0.288
SENSEMBEDclosest 45.9 0.358

Table 5: Spearman correlation performance of dif-
ferent systems on the SemEval-2012 Task on Re-
lational Similarity.

Comparison systems. We compare our results
against six other systems and the PMI baseline
provided by the task organizers. As for systems
that use word embeddings for measuring rela-
tional similarity, we report results for RNN-1600
(Mikolov et al., 2013c) and PairDirection (Levy
and Goldberg, 2014). We also report results for
UTD-NB and UTD-SVM (Rink and Harabagiu,
2012), which rely on lexical pattern classification
based on Naı̈ve Bayes and Support Vector Ma-
chine classifiers, respectively. UTD-LDA (Rink
and Harabagiu, 2013) is another system presented
by the same authors that casts the task as a selec-
tional preferences one. Finally, we show the per-
formance of Com (Zhila et al., 2013), a system that
combines Word2vec, lexical patterns, and knowl-
edge base information. Similarly to the word
similarity experiments, we also report a baseline
based on word embeddings (Word2vec) trained on
the same corpus and with the same settings as
SENSEMBED.

Results. Table 5 shows the performance of dif-
ferent systems in the task of relational similarity
in terms of the Spearman correlation and MaxDiff
score. A comparison of the results for Word2vec
and SENSEMBED shows the advantage gained by
moving from the word to the sense level. Among
the comparison systems, Com attains the clos-
est performance. However, we note that the sys-
tem is a combination of several methods, whereas
SENSEMBED is based on a single approach.

4.3 Analysis

In order to analyze the impact of the different
components of our similarity measure, we carried
out a series of experiments on our word similar-
ity datasets. We show in Table 6 the experimen-
tal results in terms of Spearman correlation. Per-
formance is reported for the two similarity mea-
surement strategies, i.e., closest and weighted, and
for different system settings with and without the
expansion procedure (cf. Section 3.1) and graph
vicinity factor (cf. Section 3.3.2). As our com-
parison baseline, we also report results for word
embeddings, obtained using the Word2vec toolkit
on the same corpus and with the same configura-
tion (cf. Section 2.3) used for learning the sense
embeddings (Word2vec in the Table). The right-
most column in the Table reports the mean perfor-
mance weighted by dataset size. Word2vecexp is
the word embeddings system in which the simi-
larity of the two words is determined in terms of
the closest word embeddings among all the corre-
sponding synonyms obtained with the expansion
procedure (cf. Section 3.1).

A comparison of word and sense embeddings
in the vanilla setting (with neither the expansion
procedure nor graph vicinity factor) indicates the
consistent advantage gained by moving from word
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to sense level, irrespective of the dataset and the
similarity measurement strategy. The consistent
improvement shows that the semantic information
provided more than compensates for the inher-
ently imperfect disambiguation. Moreover, the re-
sults indicate the consistent benefit gained by in-
troducing the graph vicinity factor, highlighting
the fact that our combination of the complemen-
tary knowledge from sense embeddings and infor-
mation derived from a semantic network is bene-
ficial. Finally, note that the expansion procedure
leads to performance improvement in most cases
for sense embeddings. In direct contrast, the step
proves harmful in the case of word embeddings,
mainly due to their inability to distinguish individ-
ual word senses.

5 Related Work

Word embeddings were first introduced by Ben-
gio et al. (2003) with the goal of statistical lan-
guage modeling, i.e., learning the joint probabil-
ity function of a sequence of words. The initial
model was a Multilayer Perceptron (MLP) with
two hidden layers: a shared non-linear and a reg-
ular hidden hyperbolic tangent one. Collobert
and Weston (2008) deepened the original neural
model by adding a convolutional layer and an ex-
tra layer for modeling long-distance dependen-
cies. A significant contribution was later made by
Mikolov et al. (2013a), who simplified the original
model by removing the hyperbolic tangent layer
and hence significantly speeding up the training
process. Other related work includes GloVe (Pen-
nington et al., 2014), which is an effort to make the
vector dimensions in word embeddings explicit,
and the approach of Bordes et al. (2013), which
trains word embeddings on the basis of relation-
ship information derived from WordNet.

Several techniques have been proposed for
transforming word embeddings to the sense level.
Chen et al. (2014) leveraged word embeddings in
Word Sense Disambiguation and investigated the
possibility of retrofitting embeddings with the re-
sulting disambiguated words. Guo et al. (2014)
exploited parallel data to automatically generate
sense-annotated data, based on the fact that dif-
ferent senses of a word are usually translated to
different words in another language (Chan and
Ng, 2005). The automatically-generated sense-
annotated data was later used for training sense-
specific word embeddings. Huang et al. (2012)

adopted a similar strategy by decomposing each
word’s single-prototype representation into mul-
tiple prototypes, denoting different senses of that
word. To this end, they first gathered the context
for all occurrences of a word and then used spher-
ical K-means to cluster the contexts. Each cluster
was taken as the context for a specific meaning of
the word and hence used to train embeddings for
that specific meaning (i.e., word sense). However,
these techniques either suffer from low coverage
as they can only model word senses that occur in
the parallel data, or require manual intervention
for linking the obtained representations to an ex-
isting sense inventory. In contrast, our approach
enables high coverage and is readily applicable for
the representation of word senses in widely-used
lexical resources, such as WordNet, Wikipedia and
Wiktionary, without needing to resort to additional
manual effort.

6 Conclusions and Future Work

We proposed an approach for obtaining continu-
ous representations of individual word senses, re-
ferred to as sense embeddings. Based on the pro-
posed sense embeddings and the knowledge ob-
tained from a large-scale lexical resource, i.e., Ba-
belNet, we put forward an effective technique,
called SENSEMBED, for measuring semantic sim-
ilarity. We evaluated our approach on multiple
datasets in the tasks of word and relational simi-
larity. Two conclusions can be drawn on the ba-
sis of the experimental results: (1) moving from
word to sense embeddings can significantly im-
prove the effectiveness and accuracy of the rep-
resentations; and (2) a meaningful combination of
sense embeddings and knowledge from a semantic
network can further enhance the similarity judge-
ments. As future work, we intend to utilize our
sense embeddings to perform WSD, as was pro-
posed in Chen et al. (2014), in order to speed up
the process and train sense embeddings on larger
amounts of sense-annotated data.
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Abstract

Contrasting meaning is a basic aspect of
semantics. Recent word-embedding mod-
els based on distributional semantics hy-
pothesis are known to be weak for mod-
eling lexical contrast. We present in this
paper the embedding models that achieve
an F-score of 92% on the widely-used,
publicly available dataset, the GRE “most
contrasting word” questions (Mohammad
et al., 2008). This is the highest perfor-
mance seen so far on this dataset. Sur-
prisingly at the first glance, unlike what
was suggested in most previous work,
where relatedness statistics learned from
corpora is claimed to yield extra gains
over lexicon-based models, we obtained
our best result relying solely on lexical re-
sources (Roget’s and WordNet)—corpora
statistics did not lead to further improve-
ment. However, this should not be sim-
ply taken as that distributional statistics is
not useful. We examine several basic con-
cerns in modeling contrasting meaning to
provide detailed analysis, with the aim to
shed some light on the future directions for
this basic semantics modeling problem.

1 Introduction

Learning good representations of meaning for dif-
ferent granularities of texts is core to human lan-
guage understanding, where a basic problem is
representing the meanings of words. Distributed
representations learned with neural networks have
recently showed to result in significant improve-
ment of performance on a number of language
understanding problems (e.g., speech recognition
and automatic machine translation) and on many
non-language problems (e.g., image recognition).
Distributed representations have been leveraged

to represent words as in (Collobert et al., 2011;
Mikolov et al., 2013).

Contrasting meaning is a basic aspect of seman-
tics, but it is widely known that word embedding
models based on distributional semantics hypoth-
esis are weak in modeling this—contrasting mean-
ing is often lost in the low-dimensional spaces
based on such a hypothesis, and better models
would be desirable.

Lexical contrast has been modeled in (Lin and
Zhao, 2003; Mohammad et al., 2008; Moham-
mad et al., 2013). The recent literature has also
included research efforts of modeling contrasting
meaning in embedding spaces, leading to state-
of-the-art performances. For example, Yih et al.
(2012) proposed to use polarity-primed latent se-
mantic analysis (LSA), called PILSA, to capture
contrast, which was further used to initialize a neu-
ral network and achieved an F-score of 81% on
the same GRE “most contrasting word” questions
(Mohammad et al., 2008). More recently, Zhang
et al. (2014) proposed a tensor factorization ap-
proach to solving the problem, resulting in a 82%
F-score.

In this paper, we present embedding models that
achieve an F-score of 92% on the GRE dataset,
which outperforms the previous best result (82%)
by a large margin. Unlike what was suggested in
previous work, where relatedness statistics learned
from corpora is often claimed to yield extra gains
over lexicon-based models, we obtained this new
state-of-the-art result relying solely on lexical re-
sources (Roget’s and WordNet), and corpus statis-
tics does not seem to bring further improvement.
To provide a comprehensive understanding, we
constructed our study in a framework that exam-
ines a number of basic concerns in modeling con-
trasting meaning. We hope our efforts would help
shed some light on future directions for this basic
semantic modeling problem.
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2 Related Work

The terms contrasting, opposite, and antonym
have different definitions in the literature, while
sometimes they are used interchangeably. Follow-
ing (Mohammad et al., 2013), in this paper we re-
fer to opposites as word pairs that “have a strong
binary incompatibility relation with each other or
that are saliently different across a dimension of
meaning”, e.g., day and night. Antonyms are a sub-
set of opposites that are also gradable adjectives,
with same definition as in (Cruse, 1986) as well.
Contrasting word pairs have the broadest mean-
ing among them, referring to word pairs having
“some non-zero degree of binary incompatibility
and/or have some non-zero difference across a di-
mension of meaning.” Therefore by definition, op-
posites are a subset of contrasting word pairs (refer
to (Mohammad et al., 2013) for detailed discus-
sions).

Word Embedding Word embedding models learn
continuous representations for words in a low di-
mensional space (Turney and Pantel, 2010; Hin-
ton and Roweis, 2002; Collobert et al., 2011;
Mikolov et al., 2013; Liu et al., 2015), which is not
new. Linear dimension reduction such as Latent
Semantic Analysis (LSA) has been extensively
used in lexical semantics (see (Turney and Pantel,
2010) for good discussions in vector space mod-
els.) Non-linear models such as those described
in (Roweis and Saul, 2000) and (Tenenbaum et
al., 2000), among many others, can also be ap-
plied to learn word embeddings. A particularly in-
teresting model is stochastic neighbor embedding
(SNE) (Hinton and Roweis, 2002), which explic-
itly enforces that in the embedding space, the dis-
tribution of neighbors of a given word to be similar
to that in the original, uncompressed space. SNE
can learn multiple senses of a word with a mix-
ture component. Recently, neural-network based
model such as those proposed by (Collobert et al.,
2011) and (Mikolov et al., 2013) have attracted ex-
tensive attention; particularly the latter, which can
scale up to handle large corpora efficiently.

Although word embeddings have recently
showed to be superior in some NLP tasks, they
are very weak in distinguishing contrasting mean-
ing, as the models are often based on the
well-known distributional semantics hypothesis—
words in similar context have similar meanings.
Contrasting words have similar context too, so

contrasting meaning is not distinguished well in
such representations. Better models for contrast-
ing meaning is fundamentally interesting.

Modeling Contrasting Meaning Automatically
detecting contrasting meaning has been studied in
earlier work such as (Lin and Zhao, 2003; Mo-
hammad et al., 2008; Mohammad et al., 2013).
Specifically, as far as the embedding-based meth-
ods are concerned, PILSA (Yih et al., 2012) made
a progress in achieving one of the best results, by
priming LSA to encode contrasting meaning. In
addition, PILSA was also used to initialize a neu-
ral network to get a further improvement on the
GRE benchmark, where an F-score of 81% was
obtained. Another recent method was proposed
by (Zhang et al., 2014), called Bayesian proba-
bilistic tensor factorization. It considered multi-
dimensional semantic information, relations, un-
supervised data structure information in tensor
factorization, and achieved an F-score of 82% on
the GRE questions. These methods employed both
lexical resources and corpora statistics to achieve
their best results. In this paper, we show that us-
ing only lexical resources to construct embedding
systems can achieve significantly better results (an
F-score of 92%). To provide a more comprehen-
sive understanding, we constructed our study in a
framework that examines a number of basic con-
cerns in modeling contrasting meaning within em-
bedding.

Note that sentiment contrast may be viewed as
a specific case of more general semantic contrast
or semantic differentials (Osgood et al., 1957).
Tang et al. (2014) learned sentiment-specific em-
bedding and applied it to sentiment analysis of
tweets, which was often solved with more conven-
tional methods (Zhu et al., 2014b; Kiritchenko et
al., 2014a; Kiritchenko et al., 2014b).

3 The Models

We described in this section the framework in
which we study word embedding for contrasting
meaning. The general aim of the models is to en-
force that in the embedding space, the word pairs
with higher degrees of contrast will be put farther
from each other than those of less contrast. How
to learn this is critical. Figure 1 describes a very
high-level view of the framework.
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Figure 1: A high-level view of the contrasting em-
bedding framework.

3.1 Top Hidden Layer(s)

It is widely recognized that contrasting words,
e.g., good and bad, also intend to appear in sim-
ilar context or co-occur with each other. For ex-
ample, opposite pairs, special cases of contrasting
words, tend to co-occur more often than chance
(Charles and Miller, 1989; Fellbaum, 1995; Mur-
phy and Andrew, 1993). Mohammad et al. (2013),
in addition, proposed a degree of contrast hypoth-
esis, stating that “if a pair of words, A and B, are
contrasting, then their degree of contrast is pro-
portional to their tendency to co-occur in a large
corpus.”

These suggest some non-linear interaction be-
tween distributional relatedness and the degree of
contrast: the increase of relatedness correspond
to the increase of both semantic contrast and se-
mantic closeness; for example, they can form a
U-shaped curve if one plots the word pairs on a
two dimensional plane with y-axis denoting relat-
edness scores, while the most contrasting and (se-
mantically) close pairs lie on the two side of the
x-axis, respectively. In this paper, when combin-
ing word-pair distances learned by different com-
ponents of the contrasting inference layer, we use
some top hidden layer(s) to provide a non-linear
combination. Specifically, we use two hidden lay-
ers, which is able to express complicated func-
tions (Bishop, 2006). We use ten hidden units in
each hidden layer.

3.2 Stochastic Contrast Embedding (SCE)
Hinton and Roweis (2002) proposed a stochas-
tic neighbor embedding (SNE) framework. Infor-
mally, the objective is to explicitly enforce that in
the learned embedding space, the distribution of
neighbors of a given word w to be similar to the
distribution of its neighbors in the original, un-
compressed space.

In our study, we instead use the concept of
“neighbors” to encode the contrasting pairs, and
we call the model stochastic contrasting embed-
ding (SCE), depicted by the left component of the
contrast inference layer in Figure 1. The model
is different from SNE in three respects. First,
as mentioned above, “neighbors” here are actu-
ally contrasting pairs—we enforce that in the em-
bedding space, the distribution of the contrasting
“neighbors” to be close to the distribution of the
“neighbors” in the original, higher-dimensional
space. The probability of word wk being contrast-
ing neighbor of the given word wi can be com-
puted as:

p1(wk|wi) =
exp(−d2

i,k)∑v
m6=i exp(−d2

i,m)
(1)

where d is some distance metric between wi and
wk, and v is the size of a vocabulary.

Second, we train SCE using only lexical re-
sources but not corpus statistics, so as to explore
the behavior of lexical resources separately (we
will use the relatedness modeling component be-
low to model distributional semantics). Specifi-
cally, we use antonym pairs in lexical resources to
learn contrasting neighbors. Hence in the original
high-dimensional space, all antonyms of a given
word wi have the same probability to be its con-
trasting neighbors. That is, d in Equation (1) takes
a binary score, with value 1 indicating an antonym
pair and 0 not. In the embedding space, the cor-
responding probability of wk to be the contrast-
ing neighbor of wi , denoted as q1(wk|wi), can be
computed similarly with Equation (1). But since
the embedding is in a continuous space, d is not
binary but can be computed with regular distance
metric such as euclidean and cosine. The objective
is minimizing the KL divergence between p(.) and
q(.).

Third, semantic closeness or contrast are not in-
dependent. For example, if a pair of words, A and
B, are synonyms, and if the pair of words, A and
C, are contrasting, then A and C is likely to be
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contrasting than a random chance. SCE considers
both semantic contrast and closeness. That is, for
a given word wi, we jointly force that in the em-
bedding space, its contrasting neighbors and se-
mantically close neighbors to be similar to those
in the original uncompressed space. These two
objective functions are linearly combined with a
parameter λ and are jointly optimized to learn one
embedding. The value of λ is determined on the
development questions of the GRE data. Later in
Section 4, we will discuss how the training pairs of
semantic contrast and closeness are obtained from
lexical resources.

3.3 Marginal Contrast Embedding (MCE) 1

In this paper, we use also another training criteria,
motivated by the pairwise ranking approach (Co-
hen et al., 1998). The motivation is to explicitly
enforce the distances between contrasting pairs to
be larger than distances between unrelated word
pairs by a margin, and enforce the distances be-
tween semantically close pairs to be smaller than
unrelated word pairs by another margin. More
specifically, we minimize the following objective
functions:

Objs(mce) =
∑

(wi,wj)∈S
max{0, α−di,r+di,j} (2)

Obja(mce) =
∑

(wi,wk)∈A
max{0, β − di,k + di,r}

(3)
where A and S are the set of contrasting pairs and
semantically close pairs in lexicons respectively;
d denotes distance function between two words in
the embedding space. The subscript r indicates a
randomly sampled unrelated word. We call this
model Marginal Contrasting Embedding (MCE).

Intuitively, if two words wi and wj are seman-
tically close, the model maximizes Equation (2),
which attempts to force the di,j (distance between
wi and wj) in the embedding space to be differ-
ent from that of two unrelated words di,r by a
margin α. For each given word pair, we sample
100 random words during training. Similarly, if
two words wi and wk are contrasting, the model

1We made the code of MCE available at
https://github.com/lukecq1231/mce, as MCE achieved
the best performance according to the experimental results
described later in this paper.

maximizes Equation (3), which attempts to force
the distance between wi and wk to be different
from that of two unrelated words di,r by a mar-
gin β. Same as in SCE, these two objective func-
tions are linearly combined with a parameter λ and
are jointly optimized to learn one embedding for
each word. This joint objective function attempts
to force the values of di,r (distances of unrelated
pairs) to be in between di,k (distances of contrast-
ing pairs) and di,j (distances of semantically close
pairs) by two margins.

3.4 Corpus Relatedness Modeling (CRM)

As discussed in previous work and above as well,
relatedness obtained with corpora based on dis-
tributional hypothesis interplays with semantic
closeness and contrast. Mohammad et al. (2013)
proposed a degree of contrast hypothesis, stating
that “if a pair of words, A and B, are contrast-
ing, then their degree of contrast is proportional
to their tendency to co-occur in a large corpus.” In
embedding, such dependency can be used to help
measure the degree of contrast. Specifically, we
use the skip-gram model (Mikolov et al., 2013) to
learn the relatedness embedding.

As discussed above, through the top hidden lay-
ers, the word embedding and distances learned in
SCE/MCE and CRM, together with that learned
with SDR below, can be used to predict the GRE
“most contrasting word”’ questions. With enough
GRE data, the prediction error may be backpropa-
gated to directly adjust or learn embedding in the
look-up tables. However, given the limited size of
the GRE data, we only employed the top hidden
layers to non-linearly merge the distances between
a word pair that are obtained within each of the
modules in the Contrast Inference Layer. We did
not backpropagate the errors to fine-tune already
learned word embeddings.

Note that embeddings in the look-up tables were
learned independently in different modules in the
contrast inference layer, e.g., in SCE, MCE and
CRM, respectively. And in each module, given the
corresponding objective functions, unconstrained
optimization (e.g., in the paper SGD) was used
to find embeddings that optimize the correspond-
ing objectives. The embeddings were then used
out-of-box and not further fine-tuned. Depend-
ing on experiment settings, embeddings learned in
each module are either used separately or jointly
(through the top hidden lay) to predict test cases.
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More details will be discussed in the experiment
section below.

3.5 Semantic Differential Reconstruction
(SDR)

Using factor analysis, Osgood et al. (1957) identi-
fied three dimensions of semantics that account for
most of the variation in the connotative meaning
of adjectives. These three dimensions are evalu-
ative (good-bad), potency (strong-weak), and ac-
tivity(active-passive). We hypothesize that such
information should help reconstruct contrasting
meaning.

The General Inquirer lexicon (Stone1966) rep-
resents these three factors but has a limited cov-
erage. We used the algorithm of (Turney and
Littman, 2003) to extend the labels to more words
with Google one billion words corpus (refer to
Section 4 for details). For example, to obtain the
evaluative score for a candidate wordw, the point-
wise mutual information (PMI) between w and a
set of seed words eval+ and eval− are computed
respectively, and the evaluative value for w is cal-
culated with:

eval(w) = PMI(w, eval+)− PMI(w, eval−)
(4)

where eval+ contains predefined positive evalua-
tive words, e.g., good, positive, fortunate, and su-
perior, while eval− includes negative evaluative
words like passive, slow, treble, and old. The seed
words were selected as described in (Turney and
Littman, 2003) to have a good coverage and to
avoid redundancy at the same time. Similarly, the
potency and activity scores of a word can be ob-
tained. The distances of a word pair on these three
dimensions can therefore be obtained.

4 Experiment Set-Up

Data Our experiment uses the “most contrast-
ing word” questions collected by Mohammad
et al. (2008) from Graduate Record Examination
(GRE), which was originally created by Educa-
tional Testing Service (ETS). Each GRE question
has a target word and five candidate choices; the
task is to identify among the choices the most con-
trasting word with regard to the given target word.
The dataset consists of a development set and a
test set, with 162 and 950 questions, respectively.

As an example from (Mohammad et al., 2013),
one of the questions has the target word adulter-
ate and the five candidate choices: (A) renounce,
(B) forbid, (C) purify, (D) criticize, and (E) cor-
rect. While in this example the choice correct has
a meaning that is contrasting with that of adulter-
ate, the word purify is the gold answer as it has the
greatest degree of contrast with adulterate.

Lexical Resources In our work, we use two
publicly available lexical resources, WordNet
(Miller, 1995) (version 3.0) and the Roget’s The-
saurus (Kipfer, 2009). We utilized the labeled
antonym relations to obtain more contrasting pairs
under the contrast hypothesis (Mohammad et al.,
2013), by assuming a contrasting pair is related
to a pair of opposites (antonyms here). Specif-
ically in WordNet, we consider the word pairs
with relations other than antonym as semantically
close. In this way, we obtained a thesaurus con-
taining 83,118 words, 494,579 contrasting pairs,
and 368,209 close pairs. Note that we did not only
use synonyms to expand the contrasting pairs. We
will discuss how this affects the performance in
the experiment section.

In the Roget’s Thesaurus, every word or entry
has its synonyms and/or antonyms. We obtained
35,717 antonym pairs and 346,619 synonym pairs,
which consist of 43,409 word types. The antonym
and synonym pairs in Roget’s were combined with
contrasting pairs and semantically close pairs in
WordNet, respectively. And in total, we have
92,339 word types, 520,734 antonym pairs, and
646,433 close pairs.

Google Billion-Word Corpus The corpus used in
our experiment for modeling lexical relatedness in
the CRM component was Google one billion word
corpus (Chelba et al., 2013). Normalization and
tokenization were performed using the scripts dis-
tributed from https://code.google.com/p/1-billion-
word-language-modeling-benchmark/, and sen-
tences were shuffled randomly. We computed em-
bedding for a word if its count in the corpus is
equal to or larger than five, with the method de-
scribed in Section 3.4. Words with counts lower
than five were discarded.

Evaluation Metric Same as in previous work, the
evaluation metric is F-score, where precision is
the percentage of the questions answered correctly
over the questions the models attempt to answer,
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and recall is the percentage of the questions that
are answered correctly among all questions.

5 Experiment Results

In training, we used stochastic gradient descent
(SGD) to optimize the objective function, and the
dimension of embedding was set to be 200. In
MCE (Equation 2 and 3) the margins α and β are
both set to be 0.4. During testing, when using SCE
or MCE embedding to answer the GRE questions,
we directly calculated distances for a pair between
a question word and a candidate choice in these
two corresponding embedding spaces to report
their performances. We also combined SCE/MCE
with other components in the contrast inference
layer, for which we used ten-fold cross validation
to tune the weights of the top hidden layers on nine
fold and test on the rest and repeated this for ten
times to report the results. As discussed above, er-
rors were not backpropagated to modify word em-
bedding.

5.1 General Performance of the Models

The performance of the models are showed in Ta-
ble 1. For comparison, we list the results reported
in (Yih et al., 2012) and (Zhang et al., 2014). The
table shows that on the GRE dataset, both SCE (a
90% F-score) and MCE (92%) significantly out-
perform the previous best results reported in (Yih
et al., 2012) (81%) and (Zhang et al., 2014) (82%).
The F-score of MCE outperforms that of SCE by
2%, which suggests the ranking criterion fits the
dataset better. In our experiment, we found that
the MCE model achieved robust performances on
different distance metrics, e.g., the cosine simi-
larity and Euclidean distance. In the paper, we
present the results with cosine similarity. SCE is
slightly more sensitive to distance metrics, and the
best performing metric on the development set is
inner product, so we chose that for testing.

Unlike what was suggested in the previous
work, where semantics learned from corpus is
claimed to yield extra gains in performance, we
obtained this result by using solely lexical re-
sources (Roget’s and WordNet) with SCE and
MCE. Using corpus statistics that model distri-
butional hypothesis (MCE+CRM) and utilize se-
mantic differential categories (MCE+CRM+SDR)
does not bring further improvement here (they are
useful in the experiments discussed below in Sec-
tion 5.3).

5.2 Roles of Lexical Resources

To provide a more detailed comparison, we also
present lexicon lookup results, together with those
reported in (Zhang et al., 2014) and (Yih et al.,
2012). For our lookup results and those copied
here from (Zhang et al., 2014), the methods do not
randomly guess an answer if the target word is in
the vocabulary but none of the choices are, while
the results of (Yih et al., 2012) randomly guess
an answer in this situation. The Encarta thesaurus
used in (Yih et al., 2012) is not publicly available,
so we did not use it in our experiments. We due
the differences among the lookup results on Word-
Net (WordNet lookup) to the differences in prepro-
cessing as well as the way we expanded indirect
contrasting word pairs. As described in Section 4,
we utilized all relations other than antonym pairs
to expand our indirect antonym pairs. These also
have impact on the W&R lookup results (WordNet
and Roget’s pairs are combined). For both set-
tings, our expansion resulted in much better per-
formances.

Whether the differences between the F-scores
of MCE/SCE and that reported in (Zhang et al.,
2014) and (Yih et al., 2012) are also due to the
differences in expanding indirect pairs? To answer
this, we downloaded the word pairs that Zhang et
al. (2014) used to train their models,2 but we used
them to train our MCE. The result are presented in
Table 1 and the F-score on test set is 91%, which
is only slightly lower than MCE using our lexicon.
So the extension is very helpful for lookup meth-
ods, but the MCE appears to be able to cover such
information by itself.

SCE and MCE learn contrasting meaning that
is not explicitly encoded in lexical resources. The
experiment results show that such implicit contrast
can be recovered by jointly learning the embed-
ding by using contrasting words and other seman-
tically close words.

To help better understand why corpus statis-
tics does not further help SCE and MCE, we
further demonstrate that most of the target-gold-
answer pairs in the GRE test set are connected
by short paths (with length between 1 to 3).
More specifically, based on breadth-first search,
we found the nearest paths that connect target-
gold-answer pairs, in the graph formed by Word-
Net and Roget’s—each word is a vertex, and con-
trasting words and semantically close words are

2https://github.com/iceboal/word-representations-bptf
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Development Set Test Set
Prec. Rec. F1 Prec. Rec. F1

WordNet PILSA (Yih et al., 2012) 0.63 0.62 0.62 0.60 0.60 0.60
WordNet MRLSA (Yih et al., 2012) 0.66 0.65 0.65 0.61 0.59 0.60
Encarta lookup (Yih et al., 2012) 0.65 0.61 0.63 0.61 0.56 0.59
Encarta PILSA (Yih et al., 2012) 0.86 0.81 0.84 0.81 0.74 0.77
Encarta MRLSA (Yih et al., 2012) 0.87 0.82 0.84 0.82 0.74 0.78
WordNet lookup (Yih et al., 2012) 0.40 0.40 0.40 0.42 0.41 0.42
WordNet lookup (Zhang et al., 2014) 0.93 0.32 0.48 0.95 0.33 0.49
WordNet lookup 0.97 0.37 0.54 0.97 0.41 0.58
Roget lookup (Zhang et al., 2014) 1.00 0.35 0.52 0.99 0.31 0.47
Roget lookup 1.00 0.32 0.49 0.97 0.29 0.44
W&R lookup (Zhang et al., 2014) 1.00 0.48 0.64 0.98 0.45 0.62
W&R lookup 0.98 0.52 0.68 0.97 0.52 0.68
(Mohammad et al., 2008) Best 0.76 0.66 0.70 0.76 0.64 0.70
(Yih et al., 2012) Best 0.88 0.87 0.87 0.81 0.80 0.81
(Zhang et al., 2014) Best 0.88 0.88 0.88 0.82 0.82 0.82
SCE 0.94 0.93 0.93 0.90 0.90 0.90
MCE (using zhang et al. lex.) 0.94 0.93 0.94 0.92 0.91 0.91
MCE 0.96 0.94 0.95 0.92 0.92 0.92
MCE+CRM 0.94 0.93 0.93 0.90 0.90 0.90
MCE+CRM+SDR 0.04 0.94 0.94 0.90 0.90 0.90

Table 1: Results on the GRE “most contrasting words” questions.

connected with these two types of edges respec-
tively. Then we require the shortest path must have
one and only one contrasting edge. Word pairs that
cannot be connected by such paths are regarded to
have an infinite length of distance.

Figure 2: Percentages of target-gold-answer word
pairs, categorized by the shortest lengths of paths
connecting them.

The pie graph in Figure 2 shows the percentages
of target-gold-answer word pairs, categorized by
the lengths of shortest paths defined above. We
can see that in the GRE data, the percentage of

paths with a length larger than three is very small
(1%). It seems that SCE and MCE can learn this
very well. Again, they force semantically close
pairs to be close in the embedding spaces which
“share” similar contrasting pairs.

Figure 3 draws the envelope of histogram of
cosine distance between all target-choice word
pairs in the GRE test set, calculated in the em-
bedding space learned with MCE. The figure in-
tuitively shows how the target-gold-answer pairs
(most contrasting pairs) are discriminated from the
other target-choice pairs. We also plot the MCE
results without using the random sampling de-
picted in Equation (2) and Equation (3), showing
that discriminative power dramatically dropped.
Without the sampling, the F-score achieved on the
test data is 83%.

5.3 Roles of Corpus-based Embedding

However, the findings presented above should not
be simply taken as that distributional hypothesis
is not useful for learning lexical contrast. Our re-
sults and detailed analysis has showed it is due to
the good coverage of the manually created lexi-
cal resources and the capability of the SCE and
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Figure 4: The effect of removing lexicon items.
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Figure 3: The envelope of histogram of cosine dis-
tance between word pair embeddings in GRE test
set.

MCE models in capturing indirect semantic rela-
tions. There may exist circumstances where the
coverage is be lower, e.g., for resource-poor lan-
guages or social media text where (indirect) out-
of-vocabulary pairs may be frequent.

To simulate the situations, we randomly re-
moved different percentages of words from the
combined thesaurus used above in our experi-
ments, and removed all the corresponding word
pairs. The performances of different models are
showed in Figure 4. It is observed that as the
out of vocabulary (OOV) becomes more serious,
the MCE suffered the most. Using the seman-
tic differential (MCE+SDR) showed to be help-
ful as 50% to 70% lexicon entries are kept. Con-
sidering relatedness learned from corpus together
with MCE (MCE+CRM), i.e., combining MCE
distances with CRM distances for target-choice

pairs, yielded robust performance—the F-score of
MCE+CRM drops significantly slower than that
of MCE, as we removed lexical entries. We also
combined MCE distances and CRM distances lin-
early (MCE+CRM (linear)), with a coefficient de-
termined with the development set. It showed a
performance worse than that of MCE+CRM when
50%–80% entries kept, while as discussed above,
MCE+CRM combines the two parts with the non-
linear top layers. In general, using corpora statis-
tics make the models more robust as OOV be-
comes more serious. It deserves to note that the
use of corpora here is rather straightforward; more
patterns may be learned from corpora to capture
contrasting expressions as discussed in (Moham-
mad et al., 2013). Also, context such as nega-
tion may change contrasting meaning, e.g., sen-
timent contrast (Kiritchenko et al., 2014b; Zhu et
al., 2014a), in a dramatic and complicated manner,
which has been considered in learning sentiment
contrast (Kiritchenko et al., 2014b).

6 Conclusions

Contrasting meaning is a basic aspect of seman-
tics. In this paper, we present a new state-of-the-
art result, a 92% F-score, on the GRE dataset cre-
ated by (Mohammad et al., 2008), which is widely
used as the benchmark for modeling lexical con-
trast. The result reported here outperforms the
best reported in previous work (82%) by a large
margin. Unlike what was suggested in most pre-
vious work, we show that this performance can be
achieved without relying on corpora statistics. To
provide a more comprehensive understanding, we
constructed our study in a framework that exam-
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ines a number of concerns in modeling contrast-
ing meaning. We hope our work could help shed
some light on future directions on this basic se-
mantic problem.

From our own viewpoints, creating more eval-
uation data for measuring further progress in
contrasting-meaning modeling, e.g., handling real
OOV issues, is interesting to us. Also, the de-
gree of contrast may be better formulated as a re-
gression problem rather than a classification prob-
lem, in which finer or even real-valued annotation
would be desirable.
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Abstract

Online debate forums present a valu-
able opportunity for the understanding and
modeling of dialogue. To understand these
debates, a key challenge is inferring the
stances of the participants, all of which
are interrelated and dependent. While
collectively modeling users’ stances has
been shown to be effective (Walker et al.,
2012c; Hasan and Ng, 2013), there are
many modeling decisions whose ramifi-
cations are not well understood. To in-
vestigate these choices and their effects,
we introduce a scalable unified probabilis-
tic modeling framework for stance clas-
sification models that 1) are collective,
2) reason about disagreement, and 3) can
model stance at either the author level or
at the post level. We comprehensively
evaluate the possible modeling choices on
eight topics across two online debate cor-
pora, finding accuracy improvements of
up to 11.5 percentage points over a local
classifier. Our results highlight the im-
portance of making the correct modeling
choices for online dialogues, and having a
unified probabilistic modeling framework
that makes this possible.

1 Introduction

Understanding stance and opinion in dialogues
can provide critical insight into the theoretical un-
derpinnings of discourse, argumentation, and sen-
timent. Systems for predicting the stances of indi-
viduals can potentially have positive social impact
and are of practical interest to non-profits, govern-
mental organizations, and companies. For exam-

Dialogue Turns Stance

User 1: 18. That’s the smoking age thats the shooting age.
Why do you think they call it ATF?

ANTI

User 2: Shooting age? I know 7 year old shooters. 18 should
be the gun purchasing age, but there is really no ”shooting”
age.

ANTI

User 1: I know. I was just pointing out that the logic used to
propose a 21 year ”shooting age” was inconsistent.

ANTI

User 2: I see. I dont think its really fair that you can join the
army at 18 and use handguns and military weapons, but you
cant purchase a handgun until 21.

ANTI

Figure 1: Example of a debate dialogue turn be-
tween two users on the gun control topic, from
4FORUMS.COM.

ple, stance predictions may be used to target pub-
lic awareness and advocacy campaigns, direct po-
litical fundraising and get-out-the vote efforts, and
improve personalized recommendations.

Online debate websites are a particularly rich
source of argumentative dialogic data (Fig. 1). On
these websites, users debate and share their opin-
ions on a variety of social and political issues.
Previous work (Somasundaran and Wiebe, 2010;
Walker et al., 2012c) has shown that stance clas-
sification in online debates is a challenging prob-
lem. While collective approaches that jointly pre-
dict user stance seem promising (Walker et al.,
2012c; Hasan and Ng, 2013), the rich structure of
online debate forums necessitates many modeling
choices. For example, users publish opinions and
reply and respond to each others’ posts. In so do-
ing, they may agree or disagree with either all or
a portion of another user’s post, suggesting that
collective classifiers for stance may benefit from
text-based disagreement modeling. Furthermore,
one can model stance either at the author level—
assuming that an author’s stance is based on all of
their posts on a topic (Burfoot et al., 2011)—or at

116



the post level—assuming that an author’s stance
is post-specific and may vary across posts (Hasan
and Ng, 2013). These decisions can drastically
change the nature of stance models, so understand-
ing their implications is critical.

In this paper, we develop a flexible modeling
framework for stance classification using proba-
bilistic soft logic (PSL) (Bach et al., 2013; Bach
et al., 2015), a recently introduced probabilis-
tic modeling framework.1 PSL is a probabilis-
tic programming system that allows models to be
specified using a declarative, rule-like language.
The resulting models are a special form of con-
ditional random field, called a hinge-loss Markov
random field, which admits highly scalable exact
inference (Bach et al., 2013). Modeling stance
in large, richly connected online debate forums
requires a careful exploration of many modeling
choices. This complex domain especially benefits
from PSL’s flexibility and scalability. PSL makes
it easy to develop model variations and extensions,
as one can readily incorporate new factors captur-
ing additional intuitions about dependencies in a
domain.

We evaluate our models on data from two
debate sites, 4FORUMS and CREATEDEBATE

(Walker et al., 2012b; Hasan and Ng, 2013), which
we describe in detail in Section 2. Our experi-
mental results show that there are important rami-
fications of several modeling decisions, including
whether to use collective or non-collective mod-
els, to represent stance at the post level or the au-
thor level, and how to model disagreement. We
find that with appropriate modeling choices, our
approach leads to improvements of up to 11.5 per-
centage points of accuracy over simple classifica-
tion approaches.

Our contributions include (1) a flexible, unified
framework for modeling online debates, (2) ex-
tensive experimental study of many possible mod-
els on eight forum datasets, collected across two
different debate websites, and (3) general model-
ing recommendations resulting from our empirical
studies.

2 Online Debate Forums

Online debate forums represent richly structured
argumentative dialogues. On these forums, users
debate with each other in discussion threads on a

1PSL is an open-source Java toolkit, available here:
http://psl.cs.umd.edu.

variety of topics or issues, such as gun control, gay
marriage, and marijuana legalization. Each dis-
cussion consists of a number of posts, which are
short text documents authored by users of the fo-
rum. A post is either a reply to a previous post,
or it is the start (root) of a thread. As users en-
gage with each other, a thread branches out into
a tree of argumentative interactions between the
users. Forum users often post numerous times
and across multiple discussions and topics, which
creates a richly structured interaction graph. On-
line debates present different challenges than more
controlled dialogic settings such as congressional
debates. Posts are short and informal, there is lim-
ited external information about authors, and de-
bate topics admit many modes of argumentation
ranging from serious, to tangential, to sarcastic.
The reply graph in online debates also has sub-
stantially different semantics to networks in other
debate settings, such as the graph of speaker men-
tions in congressional debates. To illustrate this
setting, Fig. 1 shows an example dialogue between
two users who are debating their opinions on the
topic of gun control.

In the context of online debate forums, stance
classification (Thomas et al., 2006; Somasundaran
and Wiebe, 2009) is the task of assigning stance
labels with respect to a discussion topic, either at
the level of the user or the level of the post. Stance
is typically treated as a binary classification prob-
lem, with labels PRO and ANTI. In Fig. 1, both
users’ stances toward gun control are ANTI.

Previous work on stance in online debates has
shown that contextual information given by reply
links is important for stance classification (Walker
et al., 2012a), and that collective classification of-
ten outperforms methods which treat each post
independently. Hasan and Ng (2013) use condi-
tional random fields (CRFs) to encourage opposite
stances between sequences of posts, and Walker et
al. (2012c) use MaxCut over explicitly given re-
buttal links between posts to separate them into
PRO and ANTI clusters. Sridhar et al. (2014) use
hinge-loss Markov random fields (HL-MRFs) to
encourage consistency between post level stance
labels and observed post-level textual agreements
and disagreements.

While the first two approaches leverage rebuttal
or reply links, they model reply links as being in-
dicative of opposite stances. However, as shown in
Fig. 1, responses—even rebuttals—can occur be-
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tween users with the same stance, which suggests
the benefit of a more nuanced treatment of reply
links. The approach of Sridhar et al. (2014) con-
siders text-based agreement annotations between
posts, though it requires that reply links are la-
beled. Accurate reply polarity labels are likely to
be as expensive to obtain as the stance labels that
we aim to predict. Noisy or sparse reply labels are
cheaper, though likely to reduce performance. In
this work, we show how to reason over uncertain
reply label predictions to improve stance classifi-
cation.

Also in the online debate setting, Hasan and Ng
(2014) show the benefits of joint modeling to clas-
sify post-level stance and the authors’ reasons for
their stances. In contrast, in this work we focus on
the dependencies between stance and polarity of
replies.

In the context of opinion subgroup discov-
ery, Abu-Jbara and Radev (2013) demonstrate
the effectiveness of clustering users by opinion-
target similarity. In contrast, Murakami and Ray-
mond (2010) use simple recurring patterns such
as “that’s a good idea” to categorize reply links
as agree, disagree or neutral, prior to using Max-
Cut for subgroup clustering of comment streams
on government websites. This approach improves
over a MaxCut approach that casts all reply links
as disagreements. Building on this work, Lu et al.
(2012) model unsupervised discovery of support-
ing and opposing groups of users for topics in on-
line military forums. They improve upon a Max-
Cut baseline by formulating a linear program (LP)
to combine multiple textual and reply-link signals,
suggesting the benefits of jointly modeling textual
and reply-link features.

In a different line of work, while Somasundaran
and Wiebe (2010) do not use relational informa-
tion between users or posts, their approach shows
the benefit of modeling opinions and their targets
at a fine-grained level using relational sentiment
analysis techniques. Similarly, Wang and Cardie
(2014) demonstrate the effectiveness of using sen-
timent analysis to identify disputes on Wikipedia
Talk pages. Boltužić and Šnajder (2014) and
Ghosh et al. (2014) study various linguistic fea-
tures to model stance and agreement interactions
respectively.

In the congressional debate setting, approaches
using CRFs and similar collective techniques such
as minimum-cut have also leveraged reply link

4FORUMS CREATEDEBATE

Users per topic 336 311

Posts per user, per topic 19 4

Words per user, per topic 2511 476

Words per post 134 124

Distinct reply links 6 3
per user, per topic

Stance labels given for Users Posts

%Post-level reply links 71.6 73.9
have opposite-stance users

%Author-level reply links 52.0 68.9
have opposite-stance users

Table 1: Structural statistics averages for 4FO-
RUMS and CREATEDEBATE.

polarity for improvements in stance classification
(Thomas et al., 2006; Bansal et al., 2008; Bal-
ahur et al., 2009; Burfoot et al., 2011). How-
ever, these methods rely heavily on features spe-
cific to the congressional setting in order to pre-
dict link polarity, and make little use of textual
features. In contrast, Abbott et al. (2011) use a
range of linguistic features from the text of posts
and their parents to classify agreement or disagree-
ment between posts on the online debate website
4FORUMS.COM, without the goal of classifying
stance.

In this work, we study datasets from two on-
line debate websites: 4FORUMS.COM, from the
Internet Argument Corpus (Walker et al., 2012b),
and CREATEDEBATE.COM (Hasan and Ng, 2013).
Table 1 shows statistics about these datasets in-
cluding the average number of users per dis-
cussion topic and average number of posts au-
thored. The best stance classification accuracy to
date for online debate forums ranges from 70.1%
on CONVINCEME.NET to 75.4% on CREATEDE-
BATE.COM (Walker et al., 2012c; Hasan and Ng,
2013). The web interface for CONVINCEME.NET

enforces opposite stances for reply posts, making
this dataset inapplicable for text-based disagree-
ment modeling, and so we do not consider it in
our experiments. In the more typical online debate
forum corpora that we study, the presence of a re-
ply, or even a textual disagreement between posts,
does not necessarily indicate opposite stance (e.g.
in gun control debates on 4Forums, 23% of dis-
agreements correspond with same stance).

For our unified framework, we specify a hinge-
loss Markov random field to reason jointly about
stance and reply-link polarity labels. A closely
related line of work focuses on improving struc-
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tured prediction with domain knowledge modeled
as constraints in the objective function (Chang et
al., 2012; Ganchev et al., 2010; Mann and Mc-
Callum, 2010). Though more often used in semi-
supervised settings, constraint-based learning can
be especially appropriate for supervised learning
when commonly used feature functions for linear
models do not capture the richness of the data.
Our HL-MRF formulation admits highly expres-
sive features while maintaining a convex objec-
tive, thereby enjoying both tractability and a fully
probabilistic interpretation.

3 Modeling Choices

We face multiple modeling decisions that may
impact predictive performance when classifying
stance in online debates. A key contribution of
this work is the exploration of the ramifications of
these choices. We consider the following varia-
tions on modeling: collective (C) versus local (L)
classifiers, whether to explicitly model disagree-
ment (D), and author-level (A) versus post-level
(P) models.

Collective versus Local. Both collective and
non-collective methods for stance prediction re-
quire a strong local text classifier. The methods
proposed in this paper build upon the state-of-the-
art local classification approach of Walker et al.
(2012a), which trains a supervised classifier us-
ing features including n-grams, lexical category
counts, and text lengths. We use logistic regres-
sion for the local classifier. These models will be
referred to as local (L). In collective (C) classifi-
cation approaches for stance prediction, the stance
labels are all predicted jointly, leveraging relation-
ships along the graph of replies. The simplest
way to make use of reply links is to encode that
the stance of posts (or authors) that reply to each
other is likely to be opposite (Walker et al., 2012c;
Hasan and Ng, 2013). Collective approaches at-
tempt to find the most likely joint stance labeling
that is consistent with both the local classifier’s
predictions and the alternation of stance along re-
sponse threads. The alternating stance assumption
is not necessarily a hard constraint, and may po-
tentially be overridden by the local predictions. C
and L models can be constructed with A or P-level
granularity as described below, resulting in four
modeling combinations.

Modeling Disagreement. As seen in Fig. 1 and
Table 1, the assumption that reply links corre-
spond to opposite stance is not always correct.
This suggests the potential benefit of more nu-
anced models of agreement and disagreement. A
natural disagreement modeling approach is to pre-
dict the polarity of reply links jointly with stance.

There are two variants of reply link polarity to
consider. In textual disagreement, replying posts
are coded as expressing agreement or disagree-
ment with the text of the parent post. This may
not correspond to a disagreement in stance rela-
tive to the thread topic. Some forum interfaces
support user self-labeling of post reply links as re-
buttals or agreements, thereby explicitly provid-
ing textual disagreement labels for posts. Alter-
natively, in the stance disagreement variant, reply
links denote either same or opposite stance be-
tween users (posts). In Fig. 1, User 1 and User
2 disagree in text but have the same stance. For
collective modeling of stance and disagreement, it
is useful to consider the stance disagreement vari-
ant which identifies opposite and same-stance re-
ply links, and jointly encourage stance predictions
to be consistent with the disagreement predictions.

As with the local classification of stance, we can
construct local classifiers for stance disagreement.
In this work, for each reply link instance, we use a
copy of the local stance classification features for
each author/post at the ends of the reply link. The
linguistic features further include discourse mark-
ers such as “actually” and “because” from the dis-
agreement classifier of Abbott et al. (2011). Addi-
tionally, we use textual disagreement as a feature
for stance disagreementwhen available. When re-
ply links are not explicitly labeled as rebuttals or
agreements, or only rebuttals are known, we in-
stead predict textual disagreement using the fea-
tures given above, trained on a separate data set
with textual-disagreement labels.

Finally, with a stance disagreement classifier in
hand, we can build collective models that predict
stance based on predicted stance disagreement po-
larity. We denote these models as disagreement
(D). When applied at one of A or P-level model-
ing, this yields two more possible modeling con-
figurations. These models are certainly more com-
plex than others we consider, but their design is
consistent with intuition about the nature of dis-
course, so the added complexity may yield better
accuracy.
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All models: Collective models only: Disagreement models only:

localPro(X1) → pro(X1) disagree(X1, X2) ∧ pro(X1) → ¬ pro(X2) localDisagree(X1, X2) → disagree(X1, X2)
¬ localPro(X1) → ¬ pro(X1) disagree(X1, X2) ∧ ¬ pro(X1) → pro(X2) ¬ localDisagree(X1, X2) → ¬ disagree(X1, X2)

¬ disagree(X1, X2) ∧ pro(X1) → pro(X2) pro(X1) ∧ ¬ pro(X2) → disagree(X1, X2)
¬ disagree(X1, X2) ∧ ¬ pro(X1) → ¬ pro(X2) pro(X1) ∧ pro(X2) → ¬ disagree(X1, X2)

disagree(X1, X2) = 1 ¬ pro(X1) ∧ ¬ pro(X2) → ¬ disagree(X1, X2)

Figure 2: PSL rules to define the collective classification models, both for post-level and author-level
models. Each X is an author or a post, depending on the level of granularity that the model is applied
at. The disagree(X1, X2) predicates apply to post reply links, and to pairs of authors connected by reply
links.

Author-Level versus Post-Level. When model-
ing debates, stance classifiers can predict either
the stance of a debate participant (i.e. an author
(A)) (Burfoot et al., 2011), or the stance expressed
by a specific dialogue act (i.e. a post (P)) (Hasan
and Ng, 2013). The choice of prediction target
may depend on the downstream goal, such as user
modeling or the study of the dialogic expression
of disagreement. From a philosophical perspec-
tive, authors are individuals who hold opinions,
while posts are not. A post is simply a piece of
text which may or may not express the opinions of
its author.

Nevertheless, given a prediction target, either
author or post, it may be beneficial to consider
modeling at a different level of granularity. For
example, Hasan and Ng (2013) find that post-level
prediction accuracy can be improved by “clamp-
ing” all posts by a given author to the same
stance in order to smooth their labels. Alterna-
tively, author-level predictions may potentially be
improved by first treating each post separately,
thereby effectively giving a classifier more train-
ing examples, i.e. the number of posts instead of
the number of authors. With this procedure, a fi-
nal author-level prediction can be obtained by av-
eraging the predictions over the posts for the au-
thor, trading the noisiness of post-level instances
against the smoothing afforded by the final ag-
gregation. When designing a stance classifier,
the modeler must decide the level of granularity
for the prediction target and find the best model
therein.

4 A Collective Classification Framework

To study these choices, we build a flexible
stance classification framework that implements
the above variations using probabilistic soft logic
(PSL) (Bach et al., 2015; Bach et al., 2013), a re-
cently introduced probabilistic programming sys-
tem. Like other probabilistic modeling frame-

works, notably Markov logic (Richardson and
Domingos, 2006), PSL uses a logic-like language
for defining the potential functions for a condi-
tional random field. However, unlike Markov
logic, PSL makes inference tractable, even in the
loopy author-level networks and the very large
post-level networks of online debates.

PSL’s tractability arises from the use of a special
class of conditional random field models referred
to as hinge-loss MRFs (HL-MRFs), which admit
efficient, scalable and exact maximum a posteriori
(MAP) inference (Bach et al., 2013). These mod-
els are defined over continuous random variables,
and MAP inference is a convex optimization prob-
lem over these variables. Formally, a hinge-loss
MRF defines a probability density function of the
form

P (Y|X) =
1
Z exp

(
−

M∑
r=1

λrφr(Y,X)
)

, (1)

where the entries of Y and X are in [0, 1], λ is a
vector of weight parameters, Z is a normalization
constant, and

φr(Y,X) = (max{lr(Y,X), 0})ρr (2)

is a hinge-loss potential specified by a linear func-
tion lr and optional exponent ρr ∈ {1, 2}. Given
a collection of first-order PSL rules, each instan-
tiation of the rules maps to a hinge-loss poten-
tial function as in Equation 2, and the potential
functions define an HL-MRF model. For exam-
ple, a ⇒ b , max(a − b, 0), where a and b are
ground variables, and max(a − b, 0) is a convex
relaxation of logical implication, and which can
be understood as its distance to satisfaction. For a
full description of PSL, see (Bach et al., 2015).

The models we introduce are specified by the
PSL rules in Fig. 2, with both post-level and
author-level models following the same design.
We denote the different modeling choices with the
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letters defined in Section 3. First, local logistic
regression classifiers output stance probabilities
based on textual features of posts or authors. All
of the models begin with these real-valued stance
predictions, encoded by the observed predicate lo-
calPro(Xi). The rules listed for all models en-
courage the inferred global predictions pro(Xi) to
match these local predictions.

This defines the local classification models L,
which are HL-MRFs with node potentials and no
edge potentials, and which are equivalent to the
local classifiers. The collective models extend the
L models by adding edge potentials which en-
courage the stance labels to respect disagreement
relationships along reply links. Specifically, ev-
ery reply link between authors (for author-level
models) or between posts (for post-level mod-
els) x1 and x2 is associated with a latent vari-
able disagree(x1, x2). The rules encourage the
global stance variables to respect the polarity of
the disagreement variables (same stance, or op-
posite stance) and while also trying to match the
stance classifiers. For the models that do not ex-
plicitly model disagreement, it is assumed that ev-
ery reply edge constitutes a disagreement, i.e. dis-
agree(x1, x2) = 1. These models are denoted C.

Otherwise, the disagreement variables are en-
couraged to match binary-valued predictions from
the local disagreement classifiers. We binarize
the predictions of the disagreement classifiers to
encourage propagation. The disagreement vari-
ables are modeled jointly with the stance variables,
and label information propagates in both direc-
tions between stance and disagreement variables.
The full joint stance/disagreement collective mod-
els are denoted D. In the following, the models are
denoted by pairs of letters according to their col-
lectivity level and modeling granularity. For ex-
ample, AC denotes collective classification per-
formed at the author level, without joint model-
ing of disagreement. To train these models and
use them for prediction, weight learning and MAP
inference are performed using the structured per-
ceptron algorithm and ADMM algorithm of Bach
et al. (2013).

5 Experimental Evaluation

The goals of our experiments were to validate the
proposed collective modeling framework, and to
make substantive conclusions about the merits of
the different possible modeling options described

in Section 3. To this end, we evaluated the mod-
els on eight topics from 4FORUMS.COM (Walker
et al., 2012b) and CREATEDEBATE.COM (Hasan
and Ng, 2013), for classification tasks at both the
author level and the post level. With comparison
to Hasan and Ng (2013), our collective models (C)
are essentially equivalent to their CRF, up to the
form of the CRF potential function, which is not
explicitly specified in the paper. A further goal
of our experiments was to determine whether the
modeling options in our more general CRF could
improve performance over models with this struc-
ture.

On average, each topic-wise data set contains
hundreds of authors and thousands of posts. The
4FORUMS data sets are annotated for stance at the
author level, while CREATEDEBATE has stance la-
bels at the post level. To perform post-level evalu-
ations on 4FORUMS we apply author labels to the
posts of each author, and on CREATEDEBATE we
computed author labels by selecting the majority
label of their posts. For 4FORUMS, since post-
level stance labels correspond directly to author-
level stance labels, we use averages of post-level
predictions as the local classifier output for au-
thors. Section 2 includes an overview of these de-
bate forum data sets.

In the experiments, classification accuracy
was estimated via five repeats of 5-fold cross-
validation. In each fold, we ran logistic regres-
sion using the scikit-learn software package,2 us-
ing the default settings, except for the L1 regu-
larization trade-off parameter C which was tuned
on a within-fold hold-out set consisting of 20%
of the discussions within the fold. For the collec-
tive models, weight learning was performed on the
same in-fold tuning sets. We trained via 700 itera-
tions of structured perceptron, and ran the ADMM
MAP inference algorithm to convergence at test
time. On average, weight learning and inference
took around 1 minute per fold.

The full results for author-level and post-level
predictions are given in Table 2 and Table 3, re-
spectively. In the tables, entries in bold identify
statistically significant differences from the local
classifier baseline under a paired t-test with sig-
nificance level α = 0.05. These results are sum-
marized in Fig. 3, which shows box plots for the
six possible models, computed over the final cross-
validated accuracy scores of each of the four data

2Available at http://scikit-learn.org/.
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Figure 3: Overall accuracies per model for the author stance prediction task, computed over the final
results for each of the four data sets per forum. Note that we expect significant variation in these plots,
as the data sets are of varying degrees of difficulty.

sets from each forum. The overall trends can be
seen by reading the box plots in each figure from
left to right. In general, collective models out-
perform local models, and modeling disagreement
further improves accuracy. Author-level model-
ing is typically better than post-level, even for
the post-level prediction task. The improvements
shown by collective models and author-level mod-
els are consistent with Hasan and Ng (2013)’s con-
clusion about the benefits of user-level constraints.
This may suggest that posts only provide relatively
noisy observations of the underlying author-level
stance. Modeling at the author level results in
more stable predictions, as noisy posts are pooled
together. But here we also show that the full joint

disagreement model at the author level, AD, per-
forms the best overall, for both prediction tasks
and for both forums, gaining up to 11.5 percentage
points of post-level accuracy over the local post-
level classifier.

A closer analysis reveals some subtleties. When
comparing D models with C models in Fig. 3, dis-
agreement modeling makes a much bigger differ-
ence at the author level than at the post level. This
is likely impacted by the level of class imbalance
for disagreement classification in the different lev-
els of modeling. Disagreement, rather than agree-
ment, between authors prompts many responses.
Thus, reply links are more likely disagreements
when measured at the post level, as seen in Ta-
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4FORUMS CREATEDEBATE

Models Abortion Evolution Gay Gun Abortion Gay Marijuana Obama
Marriage Control Rights

PL 61.9 ± 4.3 76.6 ± 3.9 72.0 ± 3.6 66.4 ± 4.6 66.4 ± 5.2 70.2 ± 5.0 74.1 ± 6.5 63.8 ± 8.7
PC 63.4 ± 5.9 74.6 ± 4.1 73.7 ± 4.3 68.3 ± 5.5 68.7 ± 5.7 72.6 ± 5.6 75.4 ± 7.4 66.1 ± 8.5
PD 63.0 ± 5.4 76.7 ± 4.2 73.7 ± 4.6 67.9 ± 5.0 69.5 ± 5.7 73.2 ± 5.9 74.7 ± 7.0 66.1 ± 8.5
AL 64.9 ± 4.2 77.3 ± 2.9 74.5 ± 2.9 67.1 ± 4.5 65.2 ± 6.5 69.5 ± 4.4 74.0 ± 6.6 59.0 ± 7.5
AC 66.0 ± 5.0 74.4 ± 4.2 75.7 ± 5.1 61.5 ± 5.6 65.8 ± 7.0 73.6 ± 3.5 73.9 ± 7.6 62.5 ± 8.3
AD 65.8 ± 4.4 78.7 ± 3.3 77.1 ± 4.4 67.1 ± 5.4 67.4 ± 7.5 74.0 ± 5.3 74.8 ± 7.5 63.0 ± 8.3

Table 2: Author stance classification accuracy and standard deviation for 4FORUMS (left) and CREAT-
EDEBATE (right), estimated via 5 repeats of 5-fold cross-validation. Bolded figures indicate statistically
significant (α = 0.05) improvement over AL, the baseline model for the author stance classification task.

4FORUMS CREATEDEBATE

Models Abortion Evolution Gay Gun Abortion Gay Marijuana Obama
Marriage Control Rights

PL 66.1 ± 2.5 72.4 ± 4.2 69.0 ± 2.7 67.8 ± 3.5 60.2 ± 3.2 62.7 ± 4.4 68.1 ± 6.1 59.4 ± 6.0
PC 70.5 ± 2.5 74.1 ± 3.8 73.2 ± 3.1 69.1 ± 3.0 62.8 ± 3.8 66.1 ± 4.9 68.7 ± 7.9 61.1 ± 6.6
PD 69.7 ± 2.5 73.9 ± 4.0 72.5 ± 3.0 68.8 ± 3.0 62.6 ± 4.1 66.2 ± 5.4 69.1 ± 7.4 61.0 ± 6.6
AL 74.7 ± 7.1 73.0 ± 5.7 70.3 ± 6.0 68.7 ± 5.3 61.6 ± 9.8 63.7 ± 5.3 66.7 ± 6.7 59.7 ± 13.6
AC 76.8 ± 8.1 68.3 ± 5.3 72.7 ± 11.1 46.9 ± 8.0 63.4 ± 12.4 71.2 ± 8.4 66.9 ± 9.0 63.7 ± 15.6
AD 77.0 ± 8.9 80.3 ± 5.5 80.5 ± 8.5 65.4 ± 8.3 66.8 ± 12.2 72.7 ± 8.9 69.0 ± 8.3 63.5 ± 16.3

Table 3: Post stance classification accuracy and standard deviations for 4FORUMS (left) and CREAT-
EDEBATE (right), estimated via 5 repeats of 5-fold cross-validation. Bolded figures indicate statistically
significant (α = 0.05) improvement over PL, the baseline model for the post stance classification task.

ble 1. Therefore, enforcing disagreement may be
a better assumption at the post level, and the nu-
anced disagreement model is not necessary in this
case. The overall improvements in accuracy from
disagreement modeling for post-level models were
small.

On the other hand, the assumption that re-
ply edges constitute disagreement is less accurate
when modeling at the author level (see Table 1).
In this case, the full joint disagreement model is
necessary to obtain good performance. In an ex-
treme example, the two datasets with the lowest
disagreement rates at the author level are evolution
(44.4%) and gun control (50.7%) from 4FORUMS.
The AC classifier performed very poorly for these
data sets, dropping to 46.9% accuracy in one in-
stance, as the “opposite stance” assumption did
not hold (Tables 2 and 3). The full joint disagree-
ment model AD performed much better, in fact
achieving an outstanding accuracy rates of 80.3%
and 80.5% for posts on evolution and gay marriage
respectively. To illustrate the benefits of author-
level disagreement modeling, Fig. 4 shows a post
for an author whose stance towards gun control is
correctly predicted by AD but not the AC model,

Text Stance

Post: I agree with everything except the last part. Safe gun
storage is very important, and sensible storage requirements
have two important factors.

ANTI

Reply: I can agree with this. And in case it seemed otherwise,
I know full well how to store guns safely, and why it’s nec-
essary. My point was that I don’t like the idea of such a law,
especially when you consider the problem of enforcement.

ANTI

Figure 4: A post-reply pair by 4FORUMS.COM au-
thors whose gun control stance is correctly pre-
dicted by AD, but not by AC.

along with a subsequent reply. The authors largely
agree with each other’s views, which the joint dis-
agreement model leverages, while the simpler col-
lective model encourages opposite stance due to
the presence of reply links between them.

To summarize our conclusions from these ex-
periments, the results suggest that author-level
modeling is the preferred strategy, regardless of
the prediction task. In this scenario, it is essen-
tial to explicitly model disagreement in the collec-
tive classifier. Our top performing AD model sta-
tistically significantly outperforms the respective
prediction task baseline on 6 out of 8 topics for
both tasks with p-values less than 0.001. Based on
our experimental results, we recommend the full
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author-disagreement model AD as the classifier of
choice.

6 Discussion and Future Work

The prediction of user stance in online debate fo-
rums is a valuable task, and modeling debate di-
alogue is complex and requires many decisions
such collective or non-collective reasoning, nu-
anced or naive use of disagreement information,
and post versus author-level modeling granularity.
We systematically explore each choice, and in do-
ing so build a unified joint framework that incor-
porates each salient decision. Our method uses a
hinge-loss Markov random field to encourage con-
sistency between local classifier predictions for
stance and disagreement information. We find that
modeling at the author level gives better predic-
tive performance regardless of the granularity of
the prediction task, and that nuanced disagreement
modeling is of particular importance for author-
level collective modeling. The resulting collective
classifier gives improved predictive performance
over both the simple non-collective and standard
collective approaches, with a running time over-
head of only a few minutes, thanks to the efficient
nature of hinge-loss MRFs.

There are many directions for future work. Our
results have found that collective reasoning can
also be beneficial at the post level, as previously
reported by Hasan and Ng (2013). It is likely that
a multi-level model for a combination of post- and
author-level collective modeling of both stance
and disagreement could bring further improve-
ments in performance. It would also be informa-
tive to explore dynamic models which elucidate
trends of opinions over time. Another direction is
to model influence between users in online debate
forums, and to identify the most influential users
who are able to convince other users to change
their opinions. Finally, we note that stance and
disagreement classification are both challenging
and important problems, and going forward, there
is likely to be much room for improvement in these
prediction tasks.
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Filip Boltužić and Jan Šnajder. 2014. Back up your
stance: recognizing arguments in online discussions.
In ACL Workshop on Argumentation Mining.

Clinton Burfoot, Steven Bird, and Timothy Baldwin.
2011. Collective classification of congressional
floor-debate transcripts. In ACL.

Ming-Wei Chang, Lev Ratinov, and Dan Roth. 2012.
Structured learning with constrained conditional
models. Machine learning, 88(3):399–431.

Kuzman Ganchev, Joao Graça, Jennifer Gillenwater,
and Ben Taskar. 2010. Posterior regularization for
structured latent variable models. Machine Learn-
ing, 11:2001–2049.

Debanjan Ghosh, Smaranda Muresan, Nina Wacholder,
Mark Aakhus, and Matthew Mitsui. 2014. Analyz-
ing argumentative discourse units in online interac-
tions. In ACL Workshop on Argumentation Mining.

Kazi Saidul Hasan and Vincent Ng. 2013. Stance clas-
sification of ideological debates: Data, models, fea-
tures, and constraints. International Joint Confer-
ence on Natural Language Processing.

124



Kazi Saidul Hasan and Vincent Ng. 2014. Why are
you taking this stance? Identifying and classifying
reasons in ideological debates. In EMNLP.

Y. Lu, H. Wang, C. Zhai, and D. Roth. 2012. Unsuper-
vised discovery of opposing opinion networks from
forum discussions. In CIKM.

Gideon S Mann and Andrew McCallum. 2010. Gener-
alized expectation criteria for semi-supervised learn-
ing with weakly labeled data. Machine Learning,
11:955–984.

Akiko Murakami and Rudy Raymond. 2010. Support
or Oppose? Classifying positions in online debates
from reply activities and opinion expressions. In
ACL.

Matthew Richardson and Pedro Domingos. 2006.
Markov logic networks. Machine learning, 62(1-2).

Swapna Somasundaran and Janyce Wiebe. 2009. Rec-
ognizing stances in online debates. In ACL and
AFNLP.

Swapna Somasundaran and Janyce Wiebe. 2010. Rec-
ognizing stances in ideological on-line debates. In
NAACL HLT 2010 Workshop on Computational Ap-
proaches to Analysis and Generation of Emotion in
Text.

Dhanya Sridhar, Lise Getoor, and Marilyn Walker.
2014. Collective stance classification of posts in
online debate forums. In ACL Joint Workshop on
Social Dynamics and Personal Attributes in Social
Media.

Matt Thomas, Bo Pang, and Lillian Lee. 2006. Get out
the vote: Determining support or opposition from
Congressional floor-debate transcripts. In EMNLP.

Marilyn Walker, Pranav Anand, Rob Abbott, Jean E.
Fox Tree, Craig Martell, and Joseph King. 2012a.
That’s your evidence?: Classifying stance in online
political debate. Decision Support Sciences.

Marilyn Walker, Pranav Anand, Robert Abbott, and
Jean E. Fox Tree. 2012b. A corpus for research
on deliberation and debate. In LREC.

Marilyn Walker, Pranav Anand, Robert Abbott, and
Richard Grant. 2012c. Stance classification using
dialogic properties of persuasion. In NAACL.

Lu Wang and Claire Cardie. 2014. A piece of my
mind: A sentiment analysis approach for online dis-
pute detection. In ACL.

125



Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 126–135,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Low-Rank Regularization for Sparse Conjunctive Feature Spaces:
An Application to Named Entity Classification

Audi Primadhanty
Universitat Politècnica de Catalunya
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Abstract

Entity classification, like many other
important problems in NLP, involves
learning classifiers over sparse high-
dimensional feature spaces that result
from the conjunction of elementary fea-
tures of the entity mention and its context.
In this paper we develop a low-rank reg-
ularization framework for training max-
entropy models in such sparse conjunctive
feature spaces. Our approach handles con-
junctive feature spaces using matrices and
induces an implicit low-dimensional rep-
resentation via low-rank constraints. We
show that when learning entity classifiers
under minimal supervision, using a seed
set, our approach is more effective in con-
trolling model capacity than standard tech-
niques for linear classifiers.

1 Introduction

Many important problems in NLP involve learn-
ing classifiers over sparse high-dimensional fea-
ture spaces that result from the conjunction of el-
ementary features. For example, to classify an en-
tity in a document, it is standard to exploit features
of the left and right context in which the entity oc-
curs as well as spelling features of the entity men-
tion itself. These sets of features can be grouped
into vectors which we call elementary feature vec-
tors. In our example, there will be one elementary
feature vector for the left context, one for the right
context and one for the features of the mention.
Observe that, when the elementary vectors consist
of binary indicator features, the outer product of
any pair of vectors represents all conjunctions of
the corresponding elementary features.

Ideally, we would like to train a classifier that
can leverage all conjunctions of elementary fea-
tures, since among them there might be some
that are discriminative for the classification task at
hand. However, allowing for such expressive high
dimensional feature space comes at a cost: data
sparsity becomes a key challenge and controlling
the capacity of the model is crucial to avoid over-
fitting the training data.

The problem of data sparsity is even more se-
vere when the goal is to train classifiers with min-
imal supervision, i.e. small training sets. For ex-
ample, in the entity classification setting we might
be interested in training a classifier using only a
small set of examples of each entity class. This
is a typical scenario in an industrial setting, where
developers are interested in classifying entities ac-
cording to their own classification schema and can
only provide a handful of examples of each class.

A standard approach to control the capacity of a
linear classifier is to use `1 or `2 regularization on
the parameter vector. However, this type of regu-
larization does not seem to be effective when deal-
ing with sparse conjunctive feature spaces. The
main limitation is that `1 and `2 regularization can
not let the model give weight to conjunctions that
have not been observed at training. Without such
ability it is unlikely that the model will generalize
to novel examples, where most of the conjunctions
will be unseen in the training set.

Of course, one could impose a strong prior on
the weight vector so that it assigns weight to un-
seen conjunctions, but how can we build such a
prior? What kind of reasonable constraints can we
put on unseen conjunctions?

Another common approach to handle high di-
mensional conjunctive feature spaces is to manu-
ally design the feature function so that it includes
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only a subset of “relevant” conjunctions. But de-
signing such a feature function can be time con-
suming and one might need to design a new fea-
ture function for each classification task. Ide-
ally, we would have a learning algorithm that does
not require such feature engineering and that it
can automatically leverage rich conjunctive fea-
ture spaces.

In this paper we present a solution to this prob-
lem by developing a regularization framework
specifically designed for sparse conjunctive fea-
ture spaces. Our approach results in a more effec-
tive way of controlling model capacity and it does
not require feature engineering.

Our strategy is based on:

• Employing tensors to define the scoring func-
tion of a max-entropy model as a multilinear
form that computes weighted inner products
between elementary vectors.

• Forcing the model to induce low-dimensional
embeddings of elementary vectors via low-
rank regularization on the tensor parameters.

The proposed regularization framework is based
on a simple conceptual trick. The standard ap-
proach to handle conjunctive feature spaces in
NLP is to regard the parameters of the linear
model as long vectors computing an inner prod-
uct with a high dimensional feature representation
that lists explicitly all possible conjunctions. In-
stead, the parameters of our the model will be ten-
sors and the compatibility score between an input
pattern and a class will be defined as the sum of
multilinear functions over elementary vectors.

We then show that the rank1 of the tensor has a
very natural interpretation. It can be seen as the
intrinsic dimensionality of a latent embedding of
the elementary feature vectors. Thus by impos-
ing a low-rank penalty on the tensor parameters
we are encouraging the model to induce a low-
dimensional projection of the elementary feature
vectors . Using the rank itself as a regularization
constraint in the learning algorithm would result
in a non-convex optimization. Instead, we follow
a standard approach which is to use the nuclear
norm as a convex relaxation of the rank.

In summary the main contributions of this paper
are:

1There are many ways of defining the rank of a tensor. In
this paper we matricize tensors into matrices and use the rank
of the resulting matrix. Matricization is also referred to as
unfolding.

• We develop a new regularization frame-
work for training max-entropy models in
high-dimensional sparse conjunctive feature
spaces. Since the proposed regularization im-
plicitly induces a low dimensional embed-
ding of feature vectors, our algorithm can
also be seen as a way of implicitly learning
a latent variable model.

• We present a simple convex learning al-
gorithm for training the parameters of the
model.

• We conduct experiments on learning entity
classifiers with minimal supervision. Our re-
sults show that the proposed regularization
framework is better for sparse conjunctive
feature spaces than standard `2 and `1 reg-
ularization. These results make us conclude
that encouraging the max-entropy model to
operate on a low-dimensional space is an ef-
fective way of controlling the capacity of the
model an ensure good generalization.

2 Entity Classification with Log-linear
Models

The formulation we develop in this paper applies
to any prediction task whose inputs are some form
of tuple. We focus on classification of entity men-
tions, or entities in the context of a sentence. For-
mally, our input objects are tuples x = 〈l, e, r〉
consisting of an entity e, a left context l and a right
context r. The goal is to classify x into one entity
class in the set Y .

We will use log-linear models of the form:

Pr(y | x; θ) =
exp{sθ(x, y)}∑
y′ exp{sθ(x, y′)} (1)

where sθ : X × Y → R is a scoring function of
entity tuples with a candidate class, and θ are the
parameters of this function, to be specified below.

In the literature it is common to employ a
feature-based linear model. That is, one defines a
feature function φ : X → {0, 1}n that represents
entity tuples in an n-dimensional binary feature
space2, and the model has a weight vector for each
class, θ = {wy}y∈Y . Then sθ(x, y) = φ(x) ·wy.

2In general, all models in this paper accept real-valued
feature functions. But we focus on binary indicator features
because in practice these are the standard type of features in
NLP classifiers, and the ones we use here. In fact, in this pa-
per we develop feature spaces based on products of elemen-
tary feature functions, in which case the resulting representa-
tions correspond to conjunctions of the elementary features.
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3 Low-rank Entity Classification Models

In this section we propose a specific family of
models for classifying entity tuples.

3.1 A Low-rank Model of Left-Right
Contexts

We start from the observation that when repre-
senting tuple objects such as x = 〈l, e, r〉 with
features, we often depart from a feature represen-
tation of each element of the tuple. Hence, let
φl and φr be two feature functions representing
left and right contexts, with binary dimensions d1

and d2 respectively. For now, we will define a
model that ignores the entity mention e and makes
predictions using context features. It is natural
to define conjunctions of left and right features.
Hence, in its most general form, one can define
a matrix Wy ∈ Rd1×d2 for each class, such that
θ = {Wy}y∈Y and the score is:

sθ(〈l, e, r〉, y) = φl(l)>Wyφr(r) . (2)

Note that this corresponds to a feature-based
linear model operating in the product space of φl

and φr, that is, the score has one term for each pair
of features:

∑
i,j φl(l)[i] φr(r)[j] Wy[i, j]. Note

also that it is trivial to include elementary features
of φl and φr, in addition to conjunctions, by having
a constant dimension in each of the two represen-
tations set to 1.

In all, the model in Eq. (2) is very expressive,
with the caveat that it can easily overfit the data,
specially when we work only with a handful of la-
beled examples. The standard way to control the
capacity of a linear model is via `1 or `2 regular-
ization.

Regarding our parameters as matrices allows us
to control the capacity of the model via regulariz-
ers that favor parameter matrices with low rank.
To see the effect of these regularizers, consider
that Wy has rank k, and let Wy = UyΣyV>y
be the singular value decomposition, where Uy ∈
Rd1×k and Vy ∈ Rd2×k are orthonormal projec-
tions and Σy ∈ Rk×k is a diagonal matrix of sin-
gular values. We can rewrite the score function as

sθ(〈l, e, r〉, y) = (φl(l)>Uy) Σy (V>y φr(r)) .
(3)

In words, the rank k is the intrinsic dimensionality
of the inner product behind the score function. A
low-rank regularizer will favor parameter matrices
that have low intrinsic dimensionality. Below we

describe a convex optimization for low-rank mod-
els using nuclear norm regularization.

3.2 Adding Entity Features
The model above classifies entities based only on
the context. Here we propose an extension to make
use of features of the entity. Let T be a set of pos-
sible entity feature tags, i.e. tags that describe an
entity, such as ISCAPITALIZED, CONTAINSDIG-
ITS, SINGLETOKEN, . . . Let φe be a feature func-
tion representing entities. For this case, to simplify
our expression, we will use a set notation and de-
note by φe(e) ⊆ T the set of feature tags that de-
scribe e. Our model will be defined with one pa-
rameter matrix per feature tag and class label, i.e.
θ = {Wt,y}t∈T ,y∈Y . The model form is:

sθ(〈l, e, r〉, y) =
∑

t∈φe(e)

φl(l)>Wt,y .φr(r).

(4)

3.3 Learning with Low-rank Constraints
In this section we describe a convex procedure to
learn models of the above form that have low rank.
We will define an objective that combines a loss
and a regularization term.

Our first observation is that our parameters are
a tensor with up to four axes, namely left and right
context representations, entity features, and entity
classes. While a matrix has a clear definition of
rank, it is not the case for general tensors, and
there exist various definitions in the literature. The
technique that we use is based on matricization of
the tensor, that is, turning the tensor into a matrix
that has the same parameters as the tensor but or-
ganized in two axes. This is done by partitioning
the tensor axes into two sets, one for matrix rows
and another for columns. Once the tensor has been
turned into a matrix, we can use the standard def-
inition of matrix rank. A main advantage of this
approach is that we can make use of standard rou-
tines like singular value decomposition (SVD) to
decompose the matricized tensor. This is the main
reason behind our choice.

In general, different ways of partitioning the
tensor axes will lead to different notions of intrin-
sic dimensions. In our case we choose the left con-
text axes as the row dimension, and the rest of axes
as the column dimension.3 In this section, we will

3In preliminary experiments we tried variations, such as
having right prefixes in the columns, and left prefixes, entity
tags and classes in the rows. We only observer minor, non-
significant variations in the results.

128



denote as W the matricized version of the param-
eters θ of our models.

The second observation is that minimizing the
rank of a matrix is a non-convex problem. We
make use of a convex relaxation based on the nu-
clear norm (Srebro and Shraibman, 2005). The
nuclear norm4 of a matrix W, denoted ‖W‖?, is
the sum of its singular values: ‖W‖? =

∑
i Σi,i

where W = UΣV> is the singular value decom-
position of W. This norm has been used in several
applications in machine learning as a convex sur-
rogate for imposing low rank, e.g. (Srebro et al.,
2004).

Thus, the nuclear norm is used as a regularizer.
With this, we define our objective as follows:

argmin
W

L(W) + τR(W) , (5)

where L(W) is a convex loss function,R(W) is a
regularizer, and τ is a constant that trades off error
and capacity. In experiments we will compare nu-
clear norm regularization with `1 and `2 regulariz-
ers. In all cases we use the negative log-likelihood
as loss function, denoting the training data as D:

L(W) =
∑

(〈l,e,r〉,y)∈D
− log Pr(y | 〈l, e, r〉; W) .

(6)
To solve the objective in Eq. (5) we use a simple

optimization scheme known as forward-backward
splitting (FOBOS) (Duchi and Singer, 2009). In
a series of iterations, this algorithm performs a
gradient update followed by a proximal projec-
tion of the parameters. Such projection depends
on the regularizer used: for `1 it thresholds the pa-
rameters; for `2 it scales them; and for nuclear-
norm regularization it thresholds the singular val-
ues. This means that, for nuclear norm regulariza-
tion, each iteration requires to decompose W us-
ing SVD. See (Madhyastha et al., 2014) for details
about this optimization for a related application.

4 Related Work

The main aspect of our approach is the use of
a spectral penalty (i.e., the rank) to control the
capacity of multilinear functions parameterized
by matrices or tensors. Quattoni et al. (2014)
used nuclear-norm regularization to learn latent-
variable max-margin sequence taggers. Mad-
hyastha et al. (2014) defined bilexical distribu-

4Also known as the trace norm.

tions parameterized by matrices which result lex-
ical embeddings tailored for a particular linguis-
tic relation. Like in our case, the low-dimensional
latent projections in these papers are learned im-
plicitly by imposing low-rank constraints on the
predictions of the model.

Lei et al. (2014) also use low-rank tensor learn-
ing in the context of dependency parsing, where
like in our case dependencies are represented by
conjunctive feature spaces. While the motivation
is similar, their technical solution is different. We
use the technique of matricization of a tensor com-
bined with a nuclear-norm relaxation to obtain a
convex learning procedure. In their case they ex-
plicitly look for a low-dimensional factorization of
the tensor using a greedy alternating optimization.

Also recently, Yao et al. (2013) have framed
entity classification as a low-rank matrix comple-
tion problem. The idea is based on the fact that if
two entities (in rows) have similar descriptions (in
columns) they should have similar classes. The
low-rank structure of the matrix defines intrin-
sic representations of entities and feature descrip-
tions. The same idea was applied to relation ex-
traction (Riedel et al., 2013), using a matrix of
entity pairs times descriptions that corresponds to
a matricization of an entity-entity-description ten-
sor. Very recently Singh et al. (2015) explored al-
ternative ways of applying low-rank constraints to
tensor-based relation extraction.

Another aspect of this paper is training entity
classification models using minimal supervision,
which has been addressed by multiple works in
the literature. A classical successful approach
for this problem is to use co-training (Blum and
Mitchell, 1998): learn two classifiers that use dif-
ferent views of the data by using each other’s pre-
dictions. In the same line, Collins and Singer
(1999) trained entity classifiers by bootstraping
from an initial set of seeds, using a boosting ver-
sion of co-training. Seed sets have also been ex-
ploited by graphical model approaches. Haghighi
and Klein (2006) define a graphical model that is
soft-constrained such that the prediction for an un-
labeled example agrees with the labels of seeds
that are distributionally similar. Li et al. (2010)
present a Bayesian approach to expand an initial
seed set, with the goal of creating a gazetteer.

Another approach to entity recognition that, like
in our case, learns projections of contextual fea-
tures is the method by Ando and Zhang (2005).

129



Class Nb Mentions
10-30 Seed 10-30 40-120 640-1920 All

PER clinton, dole, arafat, yeltsin, wasim akram, lebed, dutroux, waqar you-
nis, mushtaq ahmed, croft

334 747 3,133 6,516

LOC u.s., england, germany, britain, australia, france, spain, pakistan, italy,
china

1,384 2,885 5,812 6,159

ORG reuters, u.n., oakland, puk, osce, cincinnati, eu, nato, ajax, honda 295 699 3,435 5,271
MISC russian, german, british, french, dutch, english, israeli, european, iraqi,

australian
611 1326 3,085 3,205

O year, percent, thursday, government, police, results, tuesday, soccer,
president, monday, friday, people, minister, sunday, division, week,
time, state, market, years, officials, group, company, saturday, match,
at, world, home, august, standings

5,326 11,595 31,071 36,673

Table 1: For each entity class, the seed of entities for the 10-30 set, together with the number of mentions
in the training data that involve entities in the seed for various sizes of the seeds.

They define a set of auxiliary tasks, which can be
supervised using unlabeled data, and find a projec-
tion of the data that works well as input represen-
tation for the auxiliary tasks. This representation
is then used for the target task.

More recently Neelakantan and Collins (2014)
presented another approach to gazetteer expansion
using an initial seed. A novel aspect is the use
of Canonical Correlation Analysis (CCA) to com-
pute embeddings of entity contexts, that are used
by the named entity classifier. Like in our case,
their method learns a compressed representation
of contexts that helps prediction.

5 Experiments

In this section we evaluate our regulariza-
tion framework for training models in high-
dimensional sparse conjunctive feature spaces. We
run experiments on learning entity classifiers with
minimal supervision. We focus on classification of
unseen entities to highlight the ability of the reg-
ularizer to generalize over conjunctions that are
not observed at training. We simulate minimal
supervision using the CoNLL-2003 Shared Task
data (Tjong Kim Sang and De Meulder, 2003), and
compare the performance to `1 and `2 regularizers.

5.1 Minimal Supervision Task

We use a minimal supervision setting where we
provide the algorithm a seed of entities for each
class, that is, a list of entities that is representative
for that class. The assumption is that any men-
tion of an entity in the seed is a positive example
for the corresponding class. Given unlabeled data
and a seed of entities for each class, the goal is

to learn a model that correctly classifies mentions
of entities that are not in the seed. In addition to
standard entity classes, we also consider a special
non-entity class, which is part of the classification
but is excluded from evaluation.

Note that named entity classification for unseen
entities is a challenging problem. Even in the stan-
dard fully-supervised scenario, when we measure
the performance of state-of-the-art methods on un-
seen entities, the F1 values are in the range of 60%.
This represents a significant drop with respect to
the standard metrics for named entity recognition,
which consider all entity mentions of the test set
irrespective of whether they appear in the training
data or not, and where F1 values at 90% levels are
obtained (e.g. (Ratinov and Roth, 2009)). This
suggests that part of the success of state-of-the-art
models is in storing known entities together with
their type (in the form of gazetteers or directly in
lexicalized parameters of the model).

5.2 Setting

We use the CoNLL-2003 English data, which is
annotated with four types: person (PER), location
(LOC), organization (ORG), and miscellaneous
(MISC). In addition, the data is tagged with parts-
of-speech (PoS), and we compute word clusters
running the Brown clustering algorithm (Brown et
al., 1992) on the words in the training set.

We consider annotated entity phrases as candi-
date entities, and all single nouns that are not part
of an entity as candidate non-entities (O). Both
candidate entities and non-entities will be referred
to as candidates in the remaining of this section.
We lowercase all candidates and remove the am-
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Features Window
Bag-of-words N-grams

Lexical Cluster Lexical Cluster

Elementary features of left and right contexts
1 13.63 14.59 13.63 14.59
2 15.49 13.86 13.08 13.54
3 12.18 14.45 12.14 13.28

Only full conjunctions of left and right contexts
1 12.90 13.75 12.90 13.75
2 8.59 8.85 12.31 12.43
3 8.57 10.59 10.15 10.49

Elementary features and all conjunctions of left and right contexts
1 15.30 16.98 15.30 16.98
2 13.26 12.89 14.28 15.33
3 11.87 11.54 13.94 13.15

Table 2: Average-F1 of classification of unseen entity candidates on development data, using the 10-30
training seed and `2 regularization, for different conjunctive spaces (elementary only, full conjunctions,
all). Bag-of-words elementary features contain all clusters/PoS in separate windows to the left and to
the right of the candidate. N-grams elementary features contain all n-grams of clusters/PoS in separate
left and right windows (e.g. for size 3 it includes unigrams, bigrams and trigrams on each side).

biguous ones (i.e., those with more than one label
in different mentions).5

To simulate a minimal supervision, we create
supervision seeds by picking the n most frequent
training candidates for entity types, and the m
most frequent candidate non-entities. We create
seeds of various sizes n-m, namely 10-30, 40-120,
640-1920, as well as all of the candidates. For
each seed, the training set consists of all training
mentions that involve entities in the seed. Table 1
shows the smaller seed, as well as the number of
mentions for each seed size.

For evaluation we use the development and test
sections of the data, but we remove the instances
of candidates in the training data (i.e., that are in
the all seed). We do not remove instances that are
ambiguous in the tests. 6 As evaluation metric we
use the average F1 score computed over all entity
types, excluding the non-entity type.

5In the CoNLL-2003 English training set, only 235 can-
didates are ambiguous out of 13,441 candidates, i.e. less than
2%. This suggests that in this data the difficulty behind the
task is in recognizing and classifying unseen entities, and not
in disambiguating known entities in a certain context.

6After removing the ambiguous candidates from the train-
ing data, and removing candidates seen in the training from
the development and test sets, this is the number of mentions
(and number of unique candidates in parenthesis) in the data
used in our experiments:

training dev. test
PER 6,516 (3,489) 1,040 (762) 1,342 (925)
LOC 6,159 ( 987) 176 (128) 246 (160)
ORG 5,271 (2,149) 400 (273) 638 (358)
MISC 3,205 ( 760) 177 (142) 213 (152)

O 36,673 (5,821) 951 (671) 995 (675)

5.3 Context Representations

We refer to context as the sequence of tokens be-
fore (left context) and after (right context) a can-
didate mention in a sentence. Different classifiers
can be built using different representations of the
contexts. For example we can change the window
size of the context sequence (i.e., for a window
size of 1 we only use the last token before the men-
tion and the first token after the mention). We can
treat the left and right contexts independently of
each other, we can treat them as a unique combi-
nation, or we can use both. We can also choose to
use the word form of a token, its PoS tag, a word
cluster, or a combination of these.

Table 2 compares different context represen-
tations and their performance in classifying un-
seen candidates using maximum-entropy classi-
fiers trained with Mallet (McCallum, 2002) with
`2 regularization, using the 10-30 seed. We use
the lexical representation (the word itself) and a
word cluster representation of the context tokens
and use a window size of one to three. We use
two types of features: bag-of-words features (1-
grams of tokens in the specified window) and n-
gram features (with n smaller or equal to the win-
dow size). The performance of using word clusters
is comparable, and sometimes better, to using lexi-
cal representations. Moreover, using a longer win-
dow, in this case, does not necessarily result in bet-
ter performance. 7 In the rest of the experiments

7Our learner and feature configuration, using `2 regular-
ization, obtains state-of-the-art results on the standard evalu-
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(a) Only full conjunctions of left-right contexts (cluster),
window size = 1
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(b) Only full conjunctions of entity tags and left-right contexts
(cluster), window size = 1
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(c) Elementary features and all conjunctions of entity tags and
left-right contexts (cluster), window size = 1
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(d) Elementary features and all conjunctions of entity tags and
left-right contexts (cluster), window size = 2
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(e) Elementary features and all conjunctions of entity tags and
left-right contexts (cluster & PoS), window size = 1
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(f) Elementary features and all conjunctions of entity tags and
left-right contexts (cluster & PoS), window size = 2

Figure 1: Average F1 of classification of unseen entity candidates on development data, with respect to
the size of the seed. NN refers to models with nuclear norm regularization, L1 and L2 refer to `1 and
`2 regularization. Each plot corresponds to a different conjunctive feature space with respect to window
size (1 or 2), context representation (cluster with/out PoS), using entity features or not, and combining
or not full conjunctions with lower-order conjunctions and elementary features.

• cap=1, cap=0: whether the first letter of the entity candidate is uppercase, or not
• all-low=1, all-low=0: whether all letters of the candidate are lowercase letters, or not
• all-cap1=1, all-cap1=0: whether all letters of the candidate are uppercase letters, or not
• all-cap2=1, all-cap2=0: whether all letters of the candidate are uppercase letters and periods, or not
• num-tokens=1, num-tokens=2, num-tok>2: whether the candidate consists of one token, two or more
• dummy: a tag that holds for any entity candidate, used to capture context features alone

Table 3: The 12 entity tags used to represent entity candidates. The tags all-cap1 and all-cap2 are from
(Neelakantan and Collins, 2014).
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PER LOC ORG MISC AVG
F1PREC REC F1 PREC REC F1 PREC REC F1 PREC REC F1

10
-3

0

`1 65.69 65.40 65.55 15.38 23.58 18.62 59.33 19.44 29.28 23.36 30.05 26.28 34.93

`1 65.54 64.80 65.17 15.12 23.17 18.30 60.82 18.50 28.37 23.30 30.52 26.42 34.56

NN 72.41 74.52 73.45 14.89 21.55 17.61 49.09 21.16 17.61 31.40 38.03 34.40 38.76

40
-1

20

`1 72.16 44.07 54.72 13.38 40.24 20.08 48.89 31.19 38.09 22.03 35.68 27.24 35.03

`2 71.75 44.89 55.23 13.61 41.87 20.54 49.39 31.50 38.47 21.64 30.99 25.48 34.93

NN 75.16 61.33 67.54 13.08 20.73 16.04 49.03 35.74 41.34 29.97 47.42 36.73 40.41

64
0-

19
20 `1 79.52 62.27 69.85 23.59 44.31 30.79 55.78 47.65 51.39 19.81 30.05 23.88 43.98

`2 78.62 65.55 71.49 26.55 43.50 32.97 60.19 49.06 54.06 21.73 31.92 25.86 46.10

NN 80.73 80.55 80.64 51.91 44.31 47.81 53.82 54.08 53.95 29.14 51.17 37.14 54.88

A
ll

`1 75.58 72.48 74.00 32.84 36.18 34.43 57.28 46.24 51.17 27.93 29.11 28.51 47.03

`2 76.59 70.77 73.57 34.21 36.99 35.55 57.79 50.00 53.61 28.93 32.86 30.77 48.37

NN 73.83 90.84 81.46 64.96 36.18 46.48 72.11 44.98 55.41 37.20 43.66 40.17 55.88

Table 4: Results on the test for models trained with different sizes of the seed, using the parameters
and features that obtain the best evaluation results the development set. NN refers to nuclear norm
regularization, L1 and L2 refer to `1 and `2 regularization. Only test entities unseen at training are
considered. Avg. F1 is over PER, LOC, ORG and MISC, excluding O.

we will use the elementary features that are more
predictive and compact: clusters and PoS tags in
windows of size at most 2.

5.4 Comparing Regularizers
We compare the performance of models trained
using the nuclear norm regularizer with models
trained using `1 and `2 regularizers. To train each
model, we validate the regularization parameter
and the number of iterations on development data,
trying a wide range of values. The best performing
configuration is then used for the comparison.

Figure 1 shows results on the development set
for different feature sets. We started representing
context using cluster labels, as it is the most com-
pact representation obtaining good results in pre-
liminary experiments. We tried several conjunc-
tions: a conjunction of the left and right context,
as well as conjunctions of left and right contexts
and features of the candidate entity. We also tried
all different conjunction combinations of the con-
texts and the candidate entity features, as well as
adding PoS tags to represent contexts. To repre-
sent an entity candidate we use standard traits of
the spelling of the mention, such as capitalization,

ation. Using our richest feature set, the model obtains 76.76
of accuracy in the development, for the task of classifing enti-
ties with correct boundaries. If we add features capturing the
full entity and its tokens, then the accuracy is 87.63, which
is similar to state-of-the-art performance (the best results in
literature typically exploit additional gazetteers). Since our
evaluation focuses on unknown entities, our features do not
include information about the word tokens of entites.
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Figure 2: Avg. F1 on development for increasing
dimensions, using the low-rank model in Figure 1e
trained with all seeds.

the existence of symbols, as well as the number of
tokens in the candidate. See Table 3 for the defini-
tion of the features describing entity candidates.

We observe that for most conjunction settings
our regularizer performs better than the `1 and
`2 regularizers. Using the best model from each
regularizer, we evaluated on the test set. Table
4 shows the test results. For all seed sets, the
nuclear norm regularizer obtains the best aver-
age F1 performance. This shows that encourag-
ing the max-entropy model to operate on a low-
dimensional space is effective. Moreover, Figure
2 shows model performance as a function of the
number of dimensions of the intrinsic projection.
The model obtains a good performance even if
only a few intrinsic dimensions are used.

Figure 3 shows the parameter matrix of the low-
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O PER LOC ORG MISC

Cluster

PoS

(a) Full parameter matrix of the low-rank model. The ticks in x-axis indicate the space for different entity types, while the ticks
in y-axis indicate the space for different prefix context representations.
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cap=1
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(b) The subblock for PER entity type and PoS representation of the prefixes. The ticks in x-axis indicate the space of the entity
features used, while the tick in y-axis indicates an example of a frequently observed prefix for this entity type.

Figure 3: Parameter matrix of the low-rank model in Figure 1f trained with the 10-30 seed, with respect to
observations of the associated features in training and development. Non-white conjunctions correspond
to non-zero weights: black is for conjunctions seen in both the training and development sets; blue is for
those seen in training but not in the development; red indicates that the conjunctions were observed only
in the development; yellow is for those not observed in training nor development.

rank model in Figure 1f trained with the 10-30
seed, with respect to observed features in training
and development data. Many of the conjunctions
of the development set were never observed in the
training set. Our regularizer framework is able to
propagate weights from the conjunctive features
seen in training to unseen conjunctive features that
are close to each other in the projected space (these
are the yellow and red cells in the matrix). In con-
trast, `1 and `2 regularization techniques can not
put weight on unseen conjunctions.

6 Conclusion

We have developed a low-rank regularization
framework for training max-entropy models in
sparse conjunctive feature spaces. Our formula-
tion is based on using tensors to parameterize clas-
sifiers. We control the capacity of the model using
the nuclear-norm of a matricization of the tensor.
Overall, our formulation results in a convex proce-
dure for training model parameters.

We have experimented with these techniques in

the context of learning entity classifiers. Com-
pared to `1 and `2 penalties, the low-rank model
obtains better performance, without the need to
manually specify feature conjunctions. In our
analysis, we have illustrated how the low-rank ap-
proach can assign non-zero weights to conjunc-
tions that were unobserved at training, but are sim-
ilar to observed conjunctions with respect to the
low-dimensional projection of their elements.

We have used matricization of a tensor to define
its rank, using a fixed transformation of the tensor
into a matrix. Future work should explore how to
combine efficiently different transformations.
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Abstract

Vector space representation of words has
been widely used to capture fine-grained
linguistic regularities, and proven to be
successful in various natural language pro-
cessing tasks in recent years. However,
existing models for learning word repre-
sentations focus on either syntagmatic or
paradigmatic relations alone. In this pa-
per, we argue that it is beneficial to jointly
modeling both relations so that we can not
only encode different types of linguistic
properties in a unified way, but also boost
the representation learning due to the mu-
tual enhancement between these two types
of relations. We propose two novel dis-
tributional models for word representation
using both syntagmatic and paradigmatic
relations via a joint training objective. The
proposed models are trained on a public
Wikipedia corpus, and the learned rep-
resentations are evaluated on word anal-
ogy and word similarity tasks. The re-
sults demonstrate that the proposed mod-
els can perform significantly better than
all the state-of-the-art baseline methods on
both tasks.

1 Introduction

Vector space models of language represent each
word with a real-valued vector that captures both
semantic and syntactic information of the word.
The representations can be used as basic features
in a variety of applications, such as information re-
trieval (Manning et al., 2008), named entity recog-
nition (Collobert et al., 2011), question answer-
ing (Tellex et al., 2003), disambiguation (Schütze,
1998), and parsing (Socher et al., 2011).

A common paradigm for acquiring such repre-
sentations is based on the distributional hypothe-
sis (Harris, 1954; Firth, 1957), which states that

iswolfThe a fierce animal.

istigerThe a fierce animal.

syntagmatic

syntagmatic

paradigmatic

Figure 1: Example for syntagmatic and paradig-
matic relations.

words occurring in similar contexts tend to have
similar meanings. Based on this hypothesis, vari-
ous models on learning word representations have
been proposed during the last two decades.

According to the leveraged distributional infor-
mation, existing models can be grouped into two
categories (Sahlgren, 2008). The first category
mainly concerns the syntagmatic relations among
the words, which relate the words that co-occur
in the same text region. For example, “wolf” is
close to “fierce” since they often co-occur in a sen-
tence, as shown in Figure 1. This type of models
learn the distributional representations of words
based on the text region that the words occur in, as
exemplified by Latent Semantic Analysis (LSA)
model (Deerwester et al., 1990) and Non-negative
Matrix Factorization (NMF) model (Lee and Se-
ung, 1999). The second category mainly cap-
tures paradigmatic relations, which relate words
that occur with similar contexts but may not co-
occur in the text. For example, “wolf” is close
to “tiger” since they often have similar context
words. This type of models learn the word rep-
resentations based on the surrounding words, as
exemplified by the Hyperspace Analogue to Lan-
guage (HAL) model (Lund et al., 1995), Con-
tinuous Bag-of-Words (CBOW) model and Skip-
Gram (SG) model (Mikolov et al., 2013a).

In this work, we argue that it is important to
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take both syntagmatic and paradigmatic relations
into account to build a good distributional model.
Firstly, in distributional meaning acquisition, it
is expected that a good representation should be
able to encode a bunch of linguistic properties.
For example, it can put semantically related words
close (e.g., “microsoft” and “office”), and also be
able to capture syntactic regularities like “big is
to bigger as deep is to deeper”. Obviously, these
linguistic properties are related to both syntag-
matic and paradigmatic relations, and cannot be
well modeled by either alone. Secondly, syntag-
matic and paradigmatic relations are complimen-
tary rather than conflicted in representation learn-
ing. That is relating the words that co-occur within
the same text region (e.g., “wolf” and “fierce” as
well as “tiger” and “fierce”) can better relate words
that occur with similar contexts (e.g., “wolf” and
“tiger”), and vice versa.

Based on the above analysis, we propose two
new distributional models for word representa-
tion using both syntagmatic and paradigmatic re-
lations. Specifically, we learn the distributional
representations of words based on the text region
(i.e., the document) that the words occur in as well
as the surrounding words (i.e., word sequences
within some window size). By combining these
two types of relations either in a parallel or a hier-
archical way, we obtain two different joint training
objectives for word representation learning. We
evaluate our new models in two tasks, i.e., word
analogy and word similarity. The experimental
results demonstrate that the proposed models can
perform significantly better than all of the state-of-
the-art baseline methods in both of the tasks.

2 Related Work

The distributional hypothesis has provided the
foundation for a class of statistical methods
for word representation learning. According to
the leveraged distributional information, existing
models can be grouped into two categories, i.e.,
syntagmatic models and paradigmatic models.

Syntagmatic models concern combinatorial re-
lations between words (i.e., syntagmatic rela-
tions), which relate words that co-occur within the
same text region (e.g., sentence, paragraph or doc-
ument).

For example, sentences have been used as the
text region to acquire co-occurrence information
by (Rubenstein and Goodenough, 1965; Miller

and Charles, 1991). However, as pointed our by
Picard (1999), the smaller the context regions are
that we use to collect syntagmatic information,
the worse the sparse-data problem will be for the
resulting representation. Therefore, syntagmatic
models tend to favor the use of larger text regions
as context. Specifically, a document is often taken
as a natural context of a word following the liter-
ature of information retrieval. In these methods, a
words-by-documents co-occurrence matrix is built
to collect the distributional information, where the
entry indicates the (normalized) frequency of a
word in a document. A low-rank decomposition
is then conducted to learn the distributional word
representations. For example, LSA (Deerwester et
al., 1990) employs singular value decomposition
by assuming the decomposed matrices to be or-
thogonal. In (Lee and Seung, 1999), non-negative
matrix factorization is conducted over the words-
by-documents matrix to learn the word represen-
tations.

Paradigmatic models concern substitutional
relations between words (i.e., paradigmatic rela-
tions), which relate words that occur in the same
context but may not at the same time. Unlike
syntagmatic model, paradigmatic models typically
collect distributional information in a words-by-
words co-occurrence matrix, where entries indi-
cate how many times words occur together within
a context window of some size.

For example, the Hyperspace Analogue to Lan-
guage (HAL) model (Lund et al., 1995) con-
structed a high-dimensional vector for words
based on the word co-occurrence matrix from a
large corpus of text. However, a major problem
with HAL is that the similarity measure will be
dominated by the most frequent words due to its
weight scheme. Various methods have been pro-
posed to address the drawback of HAL. For exam-
ple, the Correlated Occurrence Analogue to Lexi-
cal Semantic (COALS) (Rohde et al., 2006) trans-
formed the co-occurrence matrix by an entropy or
correlation based normalization. Bullinaria and
Levy (2007), and Levy and Goldberg (2014b) sug-
gested that positive pointwise mutual information
(PPMI) is a good transformation. More recently,
Lebret and Collobert (2014) obtained the word
representations through a Hellinger PCA (HPCA)
of the words-by-words co-occurrence matrix. Pen-
nington et al. (2014) explicitly factorizes the
words-by-words co-occurrence matrix to obtain
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the Global Vectors (GloVe) for word representa-
tion.

Alternatively, neural probabilistic language
models (NPLMs) (Bengio et al., 2003) learn word
representations by predicting the next word given
previously seen words. Unfortunately, the training
of NPLMs is quite time consuming, since com-
puting probabilities in such model requires nor-
malizing over the entire vocabulary. Recently,
Mnih and Teh (2012) applied Noise Contrastive
Estimation (NCE) to approximately maximize the
probability of the softmax in NPLM. Mikolov
et al. (2013a) further proposed continuous bag-
of-words (CBOW) and skip-gram (SG) models,
which use a simple single-layer architecture based
on inner product between two word vectors. Both
models can be learned efficiently via a simple vari-
ant of Noise Contrastive Estimation, i.e., Negative
sampling (NS) (Mikolov et al., 2013b).

3 Our Models

In this paper, we argue that it is important to jointly
model both syntagmatic and paradigmatic rela-
tions to learn good word representations. In this
way, we not only encode different types of linguis-
tic properties in a unified way, but also boost the
representation learning due to the mutual enhance-
ment between these two types of relations.

We propose two joint models that learn the dis-
tributional representations of words based on both
the text region that the words occur in (i.e., syntag-
matic relations) and the surrounding words (i.e.,
paradigmatic relations). To model syntagmatic re-
lations, we follow the previous work (Deerwester
et al., 1990; Lee and Seung, 1999) to take docu-
ment as a nature text region of a word. To model
paradigmatic relations, we are inspired by the re-
cent work from Mikolov et al. (Mikolov et al.,
2013a; Mikolov et al., 2013b), where simple mod-
els over word sequences are introduced for effi-
cient and effective word representation learning.

In the following, we introduce the notations
used in this paper, followed by detailed model de-
scriptions, ending with some discussions of the
proposed models.

3.1 Notation

Before presenting our models, we first list the no-
tations used in this paper. Let D={d1, . . . , dN}
denote a corpus of N documents over the
word vocabulary W . The contexts for word

sat
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the cat

sat
on the. . .

cat
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cn
i−1

cn
i+1

cn
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cn
i−2

dn

wn
i
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Figure 2: The framework for PDC model. Four
words (“the”, “cat”, “on” and “the”) are used to
predict the center word (“sat”). Besides, the doc-
ument in which the word sequence occurs is also
used to predict the center word (“sat”).

wn
i ∈W (i.e. i-th word in document dn) are

the words surrounding it in an L-sized window
(cn

i−L, . . . , cn
i−1, c

n
i+1, . . . , c

n
i+L) ∈ H , where cn

j ∈
W, j∈{i−L, . . . , i−1, i+1, . . . , i+L}. Each doc-
ument d ∈ D, each word w ∈ W and each con-
text c ∈ W is associated with a vector d⃗ ∈ RK ,
w⃗ ∈ RK and c⃗ ∈ RK , respectively, where K is
the embedding dimensionality. The entries in the
vectors are treated as parameters to be learned.

3.2 Parallel Document Context Model

The first proposed model architecture is shown in
Figure 2. In this model, a target word is predicted
by its surrounding context, as well as the docu-
ment it occurs in. The former prediction task cap-
tures the paradigmatic relations, since words with
similar context will tend to have similar represen-
tations. While the latter prediction task models the
syntagmatic relations, since words co-occur in the
same document will tend to have similar represen-
tations. More detailed analysis on this will be pre-
sented in Section 3.4. The model can be viewed
as an extension of CBOW model (Mikolov et
al., 2013a), by adding an extra document branch.
Since both the context and document are parallel
in predicting the target word, we call this model
the Parallel Document Context (PDC) model.

More formally, the objective function of PDC
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model is the log likelihood of all words

ℓ =
N∑

n=1

∑
wn

i ∈dn

(
log p(wn

i |hn
i )+ log p(wn

i |dn)
)

where hn
i denotes the projection of wn

i ’s contexts,
defined as

hn
i = f(cn

i−L, . . . , cn
i−1, c

n
i+1, . . . , c

n
i+L)

where f(·) can be sum, average, concatenate or
max pooling of context vectors1. In this paper, we
use average, as that of word2vec tool.

We use softmax function to define the probabil-
ities p(wn

i |hn
i ) and p(wn

i |dn) as follows:

p(wn
i |hn

i ) =
exp(w⃗n

i · h⃗n
i )∑

w∈W exp(w⃗ · h⃗n
i )

(1)

p(wn
i |dn) =

exp(w⃗n
i · d⃗n)∑

w∈W exp(w⃗ · d⃗n)
(2)

where h⃗n
i denotes projected vector of wn

i ’s con-
texts.

To learn the model, we adopt the negative sam-
pling technique (Mikolov et al., 2013b) for effi-
cient learning since the original objective is in-
tractable for direct optimization. The negative
sampling actually defines an alternate training ob-
jective function as follows

ℓ=
N∑

n=1

∑
wn

i ∈dn

(
log σ(w⃗n

i ·h⃗n
i )+ log σ(w⃗n

i ·d⃗n)

+ k · Ew′∼Pnw log σ(w⃗′ · h⃗n
i )

+ k · Ew′∼Pnw log σ(w⃗′ · d⃗n)
)

(3)

where σ(x) = 1/(1 + exp(−x)), k is the num-
ber of “negative” samples, w′ denotes the sampled
word, and Pnw denotes the distribution of negative
word samples. We use stochastic gradient descent
(SGD) for optimization, and the gradient is calcu-
lated via back-propagation algorithm.

3.3 Hierarchical Document Context Model
Since the above PDC model can be viewed as an
extension of CBOW model, it is natural to in-
troduce the same document-word prediction layer
into the SG model. This becomes our second

1Note that the context window size L can be a function of
the target word wn

i . In this paper, we use the same strategy
as word2vec tools which uniformly samples from the set
{1, 2, · · · , L}.
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Figure 3: The framework for HDC model. The
document is used to predict the target word (“sat”).
Then, the word (“sat”) is used to predict the sur-
rounding words (“the”, “cat”, “on” and “the”).

model architecture as shown in Figure 3. Specif-
ically, the document is used to predict a target
word, and the target word is further used to pre-
dict its surrounding context words. Since the pre-
diction is conducted in a hierarchical manner, we
name this model the Hierarchical Document Con-
text (HDC) model. Similar as the PDC model,
the syntagmatic relation in HDC is modeled by
the document-word prediction layer and the word-
context prediction layer models the paradigmatic
relation.

Formally, the objective function of HDC model
is the log likelihood of all words:

ℓ=
N∑

n=1

∑
wn

i ∈dn

( i+L∑
j=i−L

j ̸=i

log p(cn
j |wn

i )+ log p(wn
i |dn)

)

where p(wn
i |dn) is defined the same as in Equa-

tion (2), and p(cn
j |wn

i ) is also defined by a softmax
function as follows:

p(cn
j |wn

i ) =
exp(c⃗n

j · w⃗n
i )∑

c∈W exp(c⃗ · w⃗n
i )

Similarly, we adopt the negative sampling tech-
nique for learning, which defines the following
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training objective function

ℓ =
N∑

n=1

∑
wn

i ∈dn

( i+L∑
j=i−L

j ̸=i

(
log σ(c⃗n

j · w⃗n
i )

+ k · Ec′∼Pnc log σ(c⃗′ · w⃗n
i )

)
+ log σ(w⃗n

i ·d⃗n) + k·Ew′∼Pnw log σ(w⃗′·d⃗n)
)

where k is the number of the negative samples, c′

and w′ denotes the sampled context and word re-
spectively, and Pnc and Pnw denotes the distribu-
tion of negative context and word samples respec-
tively2. We also employ SGD for optimization,
and calculate the gradient via back-propagation al-
gorithm.

3.4 Discussions
In this section we first show how PDC and HDC
models capture the syntagmatic and paradigmatic
relations from the viewpoint of matrix factoriza-
tion. We then talk about the relationship of our
models with previous work.

As pointed out in (Sahlgren, 2008), to capture
syntagmatic relations, the implementational basis
is to collect text data in a words-by-documents co-
occurrence matrix in which the entry indicates the
(normalized) frequency of occurrence of a word
in a document (or, some other type of text region,
e.g., a sentence). While the implementational ba-
sis for paradigmatic relations is to collect text data
in a words-by-words co-occurrence matrix that is
populated by counting how many times words oc-
cur together within the context window. We now
take the proposed PDC model as an example to
show how it achieves these goals, and similar re-
sults can be shown for HDC model.

The objective function of PDC with negative
sampling in Equation (3) can be decomposed into
the following two parts:

ℓ1=
∑

w∈W

∑
h∈H

(
#(w, h)· log σ(w⃗ · h⃗)

+k·#(h)·pnw(w)log σ(−w⃗·⃗h)
) (4)

ℓ2=
∑
d∈D

∑
w∈W

(
#(w, d)· log σ(w⃗ · d⃗)

+k·|d|·pnw(w)log σ(−w⃗·d⃗)
) (5)

where #(·, ·) denotes the number of times the pair
(·, ·) appears in D, #(h)=

∑
w∈W #(w, h), |d|

2Pnc is not necessary to be the same as Pnw.

denotes the length of document d, the objective
function ℓ1 corresponds to the context-word pre-
diction task and ℓ2 corresponds to the document-
word prediction task.

Following the idea introduced by (Levy and
Goldberg, 2014a), it is easy to show that the so-
lution of the objective function ℓ1 follows that

w⃗ · h⃗ = log(
#(w, h)

#(h) · pnw(w)
)− log k

and the solution of the objective function ℓ2 fol-
lows that

w⃗ · d⃗ = log(
#(w, d)

|d| · pnw(w)
)− log k

It reveals that the PDC model with negative sam-
pling is actually factorizing both a words-by-
contexts co-occurrence matrix and a words-by-
documents co-occurrence matrix simultaneously.
In this way, we can see that the implementational
basis of the PDC model is consistent with that of
syntagmatic and paradigmatic models. In other
words, PDC can indeed capture both syntagmatic
and paradigmatic relations by processing the right
distributional information. Please notice that the
PDC model is not equivalent to direct combina-
tion of existing matrix factorization methods, due
to the fact that the matrix entries defined in PDC
model are more complicated than the simple co-
occurrence frequency (Lee and Seung, 1999).

When considering existing models, one may
connect our models to the Distributed Memory
model of Paragraph Vectors (PV-DM) and the Dis-
tributed Bag of Words version of Paragraph Vec-
tors (PV-DBOW) (Le and Mikolov, 2014). How-
ever, both of them are quite different from our
models. In PV-DM, the paragraph vector and con-
text vectors are averaged or concatenated to pre-
dict the next word. Therefore, the objective func-
tion of PV-DM can no longer decomposed as the
PDC model as shown in Equation (4) and (5).
In other words, although PV-DM leverages both
paragraph and context information, it is unclear
how these information is collected and used in
this model. As for PV-DBOW, it simply lever-
ages paragraph vector to predict words in the para-
graph. It is easy to show that it only uses the
words-by-documents co-occurrence matrix, and
thus only captures syntagmatic relations.

Another close work is the Global Context-
Aware Neural Language Model (GCANLM for
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short) (Huang et al., 2012). The model defines
two scoring components that contribute to the fi-
nal score of a (word sequence, document) pair.
The architecture of GCANLM seems similar to
our PDC model, but exhibits lots of differences
as follows: (1) GCANLM employs neural net-
works as components while PDC resorts to simple
model structure without non-linear hidden layers;
(2) GCANLM uses weighted average of all word
vectors to represent the document, which turns
out to model words-by-words co-occurrence (i.e.,
paradigmatic relations) again rather than words-
by-documents co-occurrence (i.e., syntagmatic re-
lations); (3) GCANLM is a language model which
predicts the next word given the preceding words,
while PDC model leverages both preceding and
succeeding contexts for prediction.

4 Experiments

In this section, we first describe our experimen-
tal settings including the corpus, hyper-parameter
selections, and baseline methods. Then we com-
pare our models with baseline methods on two
tasks, i.e., word analogy and word similarity. Af-
ter that, we conduct some case studies to show
that our model can better capture both syntagmatic
and paradigmatic relations and how it improves
the performances on semantic tasks.

4.1 Experimental Settings

We select Wikipedia, the largest online knowl-
edge base, to train our models. We adopt the
publicly available April 2010 dump3 (Shaoul and
Westbury, 2010), which is also used by (Huang et
al., 2012; Luong et al., 2013; Neelakantan et al.,
2014). The corpus in total has 3, 035, 070 articles
and about 1 billion tokens. In preprocessing, we
lowercase the corpus, remove pure digit words and
non-English characters4.

Following the practice in (Pennington et al.,
2014), we set context window size as 10 and use
10 negative samples. The noise distributions for
context and words are set as the same as used
in (Mikolov et al., 2013a), pnw(w) ∝ #(w)0.75.
We also adopt the same linear learning rate strat-
egy described in (Mikolov et al., 2013a), where
the initial learning rate of PDC model is 0.05, and

3http://www.psych.ualberta.ca/∼westburylab/downloads/
westburylab.wikicorp.download.html

4We ignore the words less than 20 occurrences during
training.

Table 1: Corpora used in baseline models.
model corpus size
C&W Wikipedia 2007 + Reuters RCV1 0.85B
HPCA Wikipedia 2012 1.6B
GloVe Wikipedia 2014+ Gigaword5 6B
GCANLM, CBOW, SG

Wikipedia 2010 1B
PV-DBOW, PV-DM

HDC is 0.025. No additional regularization is used
in our models5.

We compare our models with various state-of-
the-art models including C&W (Collobert et al.,
2011), GCANLM (Huang et al., 2012), CBOW,
SG (Mikolov et al., 2013a), GloVe (Pennington et
al., 2014), PV-DM, PV-DBOW (Le and Mikolov,
2014) and HPCA (Lebret and Collobert, 2014).
For C&W, GCANLM6, GloVe and HPCA, we use
the word embeddings they provided. For CBOW
and SG model, we reimplement these two mod-
els since the original word2vec tool uses SGD
but cannot shuffle the data. Besides, we also im-
plement PV-DM and PV-DBOW models due to
(Le and Mikolov, 2014) has not released source
codes. We train these four models on the same
dataset with the same hyper-parameter settings as
our models for fair comparison. The statistics of
the corpora used in baseline models are shown
in Table 1. Moreover, since different papers re-
port different dimensionality, to be fair, we con-
duct evaluations on three dimensions (i.e., 50, 100,
300) to cover the publicly available results7.

4.2 Word Analogy
The word analogy task is introduced by Mikolov et
al. (2013a) to quantitatively evaluate the linguistic
regularities between pairs of word representations.
The task consists of questions like “a is to b as c is
to ”, where is missing and must be guessed
from the entire vocabulary. To answer such ques-
tions, we need to find a word vector x⃗, which is
the closest to b⃗ − a⃗ + c⃗ according to the cosine
similarity:

arg max
x∈W,x ̸=a
x ̸=b, x ̸=c

(⃗b + c⃗− a⃗) · x⃗

The question is judged as correctly answered only
if x is exactly the answer word in the evaluation

5Codes avaiable at http://www.bigdatalab.ac.cn/benchma
rk/bm/bd?code=PDC, http://www.bigdatalab.ac.cn/benchma
rk/bm/bd?code=HDC.

6Here, we use GCANLM’s single-prototype embedding.
7C&W and GCANLM only released the vectors with 50

dimensions, and HPCA released vectors with 50 and 100 di-
mensions.
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Table 2: Results on the word analogy task. Un-
derlined scores are the best within groups of the
same dimensionality, while bold scores are the
best overall.
model size dim semantic syntactic total
C&W 0.85B 50 9.33 11.33 10.98
GCANLM 1B 50 2.6 10.7 7.34
HPCA 1.6B 50 3.36 9.89 7.2
GloVe 6B 50 48.46 45.24 46.22
CBOW 1B 50 54.38 49.64 52.01
SG 1B 50 53.73 46.12 49.04
PV-DBOW 1B 50 55.02 44.17 49.34
PV-DM 1B 50 45.08 43.22 44.25
PDC 1B 50 61.21 54.55 57.88
HDC 1B 50 57.8 49.74 53.41
HPCA 1.6B 100 4.16 15.73 10.79
GloVe 6B 100 65.34 61.51 63.11
CBOW 1B 100 70.73 63.01 66.87
SG 1B 100 67.66 59.72 63.45
PV-DBOW 1B 100 67.49 56.29 61.51
PV-DM 1B 100 57.72 58.81 58.45
PDC 1B 100 72.77 67.68 70.35
HDC 1B 100 69.57 63.75 66.67
GloVe 6B 300 77.44 67.75 71.7
CBOW 1B 300 76.2 68.44 72.39
SG 1B 300 78.9 65.72 71.88
PV-DBOW 1B 300 66.85 58.5 62.08
PV-DM 1B 300 56.88 68.35 63.39
PDC 1B 300 79.55 69.71 74.76
HDC 1B 300 79.67 67.1 73.13

set. The evaluation metric for this task is the per-
centage of questions answered correctly.

The dataset contains 5 types of semantic analo-
gies and 9 types of syntactic analogies8. The se-
mantic analogy contains 8, 869 questions, typi-
cally about people and place like “Beijing is to
China as Paris is to France”, while the syntac-
tic analogy contains 10, 675 questions, mostly on
forms of adjectives or verb tense, such as “good is
to better as bad to worse”.

Result Table 2 shows the results on word
analogy task. As we can see that CBOW, SG
and GloVe are much stronger baselines as com-
pare with C&W, GCANLM and HPCA. Even so,
our PDC model still performs significantly bet-
ter than these state-of-the-art methods (p-value
< 0.01), especially with smaller vector dimen-
sionality. More interestingly, by only training
on 1 billion words, our models can outperform
the GloVe model which is trained on 6 billion

8http://code.google.com/p/word2vec/source/browse/trunk
/questions-words.txt

words. The results demonstrate that by model-
ing both syntagmatic and paradigmatic relations,
we can learn better word representations capturing
linguistic regularities.

Besides, CBOW, SG and PV-DBOW can be
viewed as sub-models of our proposed models,
since they use either context (i.e., paradigmatic re-
lations) or document (i.e., syntagmatic relations)
alone to predict the target word. By comparing
with these sub-models, we can see that the PDC
and HDC models can perform significantly better
on both syntactic and semantic subtasks. It shows
that by jointly modeling the two relations, one can
boost the representation learning and better cap-
ture both semantic and syntactic regularities.

4.3 Word Similarity

Besides the word analogy task, we also evalu-
ate our models on three different word similar-
ity tasks, including WordSim-353 (Finkelstein et
al., 2002), Stanford’s Contextual Word Similari-
ties (SCWS) (Huang et al., 2012) and rare word
(RW) (Luong et al., 2013). These datasets contain
word paris together with human assigned similar-
ity scores. We compute the Spearman rank corre-
lation between similarity scores based on learned
word representations and the human judgements.
In all experiments, we removed the word pairs that
cannot be found in the vocabulary.

Results Figure 4 shows results on three differ-
ent word similarity datasets. First of all, our pro-
posed PDC model always achieves the best per-
formances on the three tasks. Besides, if we com-
pare the PDC and HDC models with their cor-
responding sub-models (i.e., CBOW and SG) re-
spectively, we can see performance gain by adding
syntagmatic information via document. This gain
becomes even larger for rare words with low di-
mensionality as shown on RW dataset. More-
over, on the SCWS dataset, our PDC model us-
ing the single-prototype representations under di-
mensionality 50 can achieve a comparable result
(65.63) to the state-of-the-art GCANLM (65.7 as
the best performance reported in (Huang et al.,
2012)) which uses multi-prototype vectors9.

4.4 Case Study

Here we conduct some case studies to (1) gain
some intuition on how these two relations affect

9Note, in Figure 4, the performance of GCANLM is com-
puted based on their released single-prototype vectors.
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Figure 4: Spearman rank correlation on three datasets. Results are grouped by dimensionality.

Table 3: Target words and their 5 most similar
words under different representations. Words in
italic often co-occur with the target words, while
words in bold are substitutable to the target words.

feynman

CBOW
einstein, schwinger, bohm, bethe
relativity

SG
schwinger, quantum, bethe, einstein
semiclassical

PDC
geometrodynamics, bethe, semiclassical
schwinger, perturbative

HDC
schwinger, electrodynamics, bethe
semiclassical, quantum

PV-DBOW
physicists, spacetime, geometrodynamics
tachyons, einstein

moon
CBOW earth, moons, pluto, sun, nebula
SG earth, sun, mars, planet, aquarius
PDC sun, moons, lunar, heavens, earth
HDC earth, sun, mars, planet, heavens
PV-DBOW lunar, moons, celestial, sun, ecliptic

the representation learning, and (2) analyze why
the joint model can perform better.

To show how syntagmatic and paradigmatic
relations affect the learned representations, we
present the 5 most similar words (by cosine simi-
larity with 50-dimensional vectors) to a given tar-
get word under the PDC and HDC models, as well
as three sub-models, i.e., CBOW, SG, and PV-
DBOW. The results are shown in table 3, where
words in italic are those often co-occurred with
the target word (i.e., syntagmatic relations), while
words in bold are whose substitutable to the target
word (i.e., paradigmatic relation).

Clearly, top words from CBOW and SG mod-
els are more under paradigmatic relations, while
those from PV-DBOW model are more under syn-

0

0

0

deep
deeper

crevasses

CBOW

0

0

0

deep

deeper

crevasses

PDC

Figure 5: The 3-D embedding of learned word
vectors of “deep”, “deeper” and “crevasses” under
CBOW and PDC models.

tagmatic relations, which is quite consistent with
the model design. By modeling both relations, the
top words from PDC and HDC models become
more diverse, i.e., more syntagmatic relations than
CBOW and SG models, and more paradigmatic re-
lations than PV-DBOW model. The results reveal
that the word representations learned by PDC and
HDC models are more balanced with respect to the
two relations as compared with sub-models.

The next question is why learning a joint model
can work better on previous tasks? We first take
one example from the word analogy task, which is
the question “big is to bigger as deep is to ”
with the correct answer as “deeper”. Our PDC
model produce the right answer but the CBOW
model fails with the answer “shallower”. We thus
embedding the learned word vectors from the two
models into a 3-D space to illustrate and analyze
the reason.

As shown in Figure 5, we can see that by jointly
modeling two relations, PDC model not only re-
quires that “deep” to be close to “deeper” (in co-
sine similarity), but also requires that “deep” and
“deeper” to be close to “crevasses”. The additional

143



requirements further drag these three words closer
as compared with those from the CBOW model,
and this make our model outperform the CBOW
model on this question. As for the word similarity
tasks, we find that the word pairs are either syntag-
matic (e.g., “bank” and “money”) or paradigmatic
(e.g., “left” and “abandon”). It is, therefore, not
surprising to see that a more balanced representa-
tion can achieve much better performance than a
biased representation.

5 Conclusion

Existing work on word representations models ei-
ther syntagmatic or paradigmatic relations. In this
paper, we propose two novel distributional models
for word representation, using both syntagmatic
and paradigmatic relations via a joint training ob-
jective. The experimental results on both word
analogy and word similarity tasks show that the
proposed joint models can learn much better word
representations than the state-of-the-art methods.

Several directions remain to be explored. In
this paper, the syntagmatic and paradigmatic rela-
tions are equivalently important in both PDC and
HDC models. An interesting question would then
be whether and how we can add different weights
for syntagmatic and paradigmatic relations. Be-
sides, we may also try to learn the multi-prototype
word representations for polysemous words based
on our proposed models.
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Abstract

We present paired learning and inference
algorithms for significantly reducing com-
putation and increasing speed of the vector
dot products in the classifiers that are at the
heart of many NLP components. This is
accomplished by partitioning the features
into a sequence of templates which are or-
dered such that high confidence can of-
ten be reached using only a small fraction
of all features. Parameter estimation is
arranged to maximize accuracy and early
confidence in this sequence. Our approach
is simpler and better suited to NLP than
other related cascade methods. We present
experiments in left-to-right part-of-speech
tagging, named entity recognition, and
transition-based dependency parsing. On
the typical benchmarking datasets we can
preserve POS tagging accuracy above 97%
and parsing LAS above 88.5% both with
over a five-fold reduction in run-time, and
NER F1 above 88 with more than 2x in-
crease in speed.

1 Introduction

Many NLP tasks such as part-of-speech tagging,
parsing and named entity recognition have become
sufficiently accurate that they are no longer solely
an object of research, but are also widely deployed
in production systems. These systems can be run
on billions of documents, making the efficiency
of inference a significant concern—impacting not
only wall-clock running time but also computer
hardware budgets and the carbon footprint of data
centers.

This paper describes a paired learning and infer-
ence approach for significantly reducing computa-
tion and increasing speed while preserving accu-
racy in the linear classifiers typically used in many

NLP tasks. The heart of the prediction computa-
tion in these models is a dot-product between a
dense parameter vector and a sparse feature vec-
tor. The bottleneck in these models is then often
a combination of feature extraction and numeri-
cal operations, each of which scale linearly in the
size of the feature vector. Feature extraction can
be even more expensive than the dot products, in-
volving, for example, walking sub-graphs, lexicon
lookup, string concatenation and string hashing.
We note, however, that in many cases not all of
these features are necessary for accurate predic-
tion. For example, in part-of-speech tagging if we
see the word “the,” there is no need to perform a
large dot product or many string operations; we
can accurately label the word a DETERMINER us-
ing the word identity feature alone. In other cases
two features are sufficient: when we see the word
“hits” preceded by a CARDINAL (e.g. “two hits”)
we can be confident that it is a NOUN.

We present a simple yet novel approach to im-
prove processing speed by dynamically determin-
ing on a per-instance basis how many features are
necessary for a high-confidence prediction. Our
features are divided into a set of feature templates,
such as current-token or previous-tag in the case of
POS tagging. At training time, we determine an
ordering on the templates such that we can approx-
imate model scores at test time by incrementally
calculating the dot product in template ordering.
We then use a running confidence estimate for the
label prediction to determine how many terms of
the sum to compute for a given instance, and pre-
dict once confidence reaches a certain threshold.

In similar work, cascades of increasingly com-
plex and high-recall models have been used for
both structured and unstructured prediction. Viola
and Jones (2001) use a cascade of boosted mod-
els to perform face detection. Weiss and Taskar
(2010) add increasingly higher-order dependen-
cies to a graphical model while filtering the out-
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put domain to maintain tractable inference. While
most traditional cascades pass instances down to
layers with increasingly higher recall, we use a
single model and accumulate the scores from each
additional template until a label is predicted with
sufficient confidence, in a stagewise approxima-
tion of the full model score. Our technique applies
to any linear classifier-based model over feature
templates without changing the model structure or
decreasing prediction speed.

Most similarly to our work, Weiss and Taskar
(2013) improve performance for several structured
vision tasks by dynamically selecting features at
runtime. However, they use a reinforcement learn-
ing approach whose computational tradeoffs are
better suited to vision problems with expensive
features. Obtaining a speedup on tasks with com-
paratively cheap features, such as part-of-speech
tagging or transition-based parsing, requires an
approach with less overhead. In fact, the most at-
tractive aspect of our approach is that it speeds up
methods that are already among the fastest in NLP.

We apply our method to left-to-right part-of-
speech tagging in which we achieve accuracy
above 97% on the Penn Treebank WSJ corpus
while running more than five times faster than our
97.2% baseline. We also achieve a five-fold in-
crease in transition-based dependency parsing on
the WSJ corpus while achieving an LAS just 1.5%
lower than our 90.3% baseline. Named entity
recognition also shows significant speed increases.
We further demonstrate that our method can be
tuned for 2.5 � 3.5x multiplicative speedups with
nearly no loss in accuracy.

2 Classification and Structured
Prediction

Our algorithm speeds up prediction for multiclass
classification problems where the label set can be
tractably enumerated and scored, and the per-class
scores of input features decompose as a sum over
multiple feature templates. Frequently, classifica-
tion problems in NLP are solved through the use of
linear classifiers, which compute scores for input-
label pairs using a dot product. These meet our ad-
ditive scoring criteria, and our acceleration meth-
ods are directly applicable.

However, in this work we are interested
in speeding up structured prediction problems,
specifically part-of-speech (POS) tagging and de-
pendency parsing. We apply our classification

algorithms to these problems by reducing them
to sequential prediction (Daumé III et al., 2009).
For POS tagging, we describe a sentence’s part of
speech annotation by the left-to-right sequence of
tagging decisions for individual tokens (Giménez
and Màrquez, 2004). Similarly, we implement our
parser with a classifier that generates a sequence
of shift-reduce parsing transitions (Nivre, 2009).

The use of sequential prediction to solve these
problems and others has a long history in prac-
tice as well as theory. Searn (Daumé III et al.,
2009) and DAgger (Ross et al., 2011) are two pop-
ular principled frameworks for reducing sequen-
tial prediction to classification by learning a clas-
sifier on additional synthetic training data. How-
ever, as we do in our experiments, practitioners of-
ten see good results by training on the gold stan-
dard labels with an off-the-shelf classification al-
gorithm, as though classifying IID data (Bengtson
and Roth, 2008; Choi and Palmer, 2012).

Classifier-based approaches to structured pre-
diction are faster than dynamic programming
since they consider only a subset of candidate out-
put structures in a greedy manner. For exam-
ple, the Stanford CoreNLP classifier-based part-
of-speech tagger provides a 6.5x speed advantage
over their dynamic programming-based model,
with little reduction in accuracy. Because our
methods are designed for the greedy sequential
prediction regime, we can provide further speed
increases to the fastest inference methods in NLP.

3 Linear models

Our base classifier for sequential prediction tasks
will be a linear model. Given an input x 2 X , a set
of labels Y , a feature map �(x, y), and a weight
vector w, a linear model predicts the highest-
scoring label

y⇤ = arg max
y2Y

w · �(x, y). (1)

The parameter w is usually learned by minimizing
a regularized (R) sum of loss functions (`) over the
training examples indexed by i

w⇤ = arg min
w

X
i

`(xi, yi,w) + R(w).

In this paper, we partition the features into a set
of feature templates, so that the weights, feature
function, and dot product factor as

w · �(x, y) =
X

j

wj · �j(x, y) (2)
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for some set of feature templates {�j(x, y)}.
Our goal is to approximate the dot products in

(1) sufficiently for purposes of prediction, while
using as few terms of the sum in (2) as possible.

4 Method

We accomplish this goal by developing paired
learning and inference procedures for feature-
templated classifiers that optimize both accuracy
and inference speed, using a process of dynamic
feature selection. Since many decisions are easy
to make in the presence of strongly predictive fea-
tures, we would like our model to use fewer tem-
plates when it is more confident. For a fixed,
learned ordering of feature templates, we build up
a vector of class scores incrementally over each
prefix of the sequence of templates, which we call
the prefix scores. Once we reach a stopping crite-
rion based on class confidence (margin), we stop
computing prefix scores, and predict the current
highest scoring class. Our aim is to train each pre-
fix to be as good a classifier as possible without
the following templates, minimizing the number
of templates needed for accurate predictions.

Given this method for performing fast inference
on an ordered set of feature templates, it remains
to choose the ordering. In Section 4.5, we de-
velop several methods for picking template order-
ings, based on ideas from group sparsity (Yuan and
Lin, 2006; Swirszcz et al., 2009), and other tech-
niques for feature subset-selection (Kohavi and
John, 1997).

4.1 Definitions
Given a model that computes scores additively
over template-specific scoring functions as in (2),
parameters w, and an observation x 2 X , we can
define the i’th prefix score for label y 2 Y as:

Pi,y(x,w) =
iX

j=1

wj · �j(x, y),

or Pi,y when the choice of observations and
weights is clear from context. Abusing notation
we also refer to the vector containing all i’th prefix
scores for observation x associated to each label in
Y as Pi(x,w), or Pi when this is unambiguous.

Given a parameter m > 0, called the margin,
we define a function h on prefix scores:

h(Pi, y) = max{0, max
y0 6=y

Pi,y0 � Pi,y + m}

Algorithm 1 Inference

Input: template parameters {wi}k
i=1, margin m

and optional (for train time) true label y
Initialize: i = 1
while l > 0 ^ i  k do

l = maxy0 h(Pi, y
0) (test) or h(Pi, y) (train)

i i + 1
end while
return {Pj}i

j=1 (train) or maxy0 Pi,y0 (test)

Algorithm 2 Parameter Learning

Input: examples {(xi, yi)}N
i , margin m

Initialize: parameters w0 = 0, i = 1
while i  N do

prefixes  Infer(xi, yi, wi, m)
gi  ComputeGradient(prefixes)
wi+1  UpdateParameters(wi, gi)
i i + 1

end while
return wN

This is the familiar structured hinge loss func-
tion as in structured support vector machines
(Tsochantaridis et al., 2004), which has a mini-
mum at 0 if and only if class y is ranked ahead of
all other classes by at least m.

Using this notation, the condition that some la-
bel y be ranked first by a margin can be writ-
ten as h(Pi, y) = 0, and the condition that any
class be ranked first by a margin can be written as
maxy0 h(Pi, y

0) = 0.

4.2 Inference

As described in Algorithm 1, at test time we com-
pute prefixes until some label is ranked ahead of
all other labels with a margin m, then predict with
that label. At train time, we predict until the cor-
rect label is ranked ahead with margin m, and re-
turn the whole set of prefixes for use by the learn-
ing algorithm. If no prefix scores have a margin,
then we predict with the final prefix score involv-
ing all the feature templates.

4.3 Learning

We split learning into two subproblems: first,
given an ordered sequence of feature templates
and our inference procedure, we wish to learn pa-
rameters that optimize accuracy while using as few
of those templates as possible. Second, given a
method for training feature templated classifiers,
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we want to learn an ordering of templates that op-
timizes accuracy.

We wish to optimize several different objec-
tives during learning: template parameters should
have strong predictive power on their own, but also
work well when combined with the scores from
later templates. Additionally, we want to encour-
age well-calibrated confidence scores that allow us
to stop prediction early without significant reduc-
tion in generalization ability.

4.4 Learning the parameters
To learn parameters that encourage the use of few
feature templates, we look at the model as out-
putting not a single prediction but a sequence of
prefix predictions {Pi}. For each training ex-
ample, each feature template receives a number
of hinge-loss gradients equal to its distance from
the index where the margin requirement is finally
reached. This is equivalent to treating each prefix
as its own model for which we have a hinge loss
function, and learning all models simultaneously.
Our high-level approach is described in Algorithm
2.

Concretely, for k feature templates we opti-
mize the following structured max-margin objec-
tive (with the dependence of P ’s on w written ex-
plicitly where helpful):

w⇤ = arg min
w

X
(x,y)

`(x, y, w)

`(x, y, w) =
i⇤yX

i=1

h(Pi(x, w), y)

i⇤y = min
i2{1..k}

i s.t. h(Pi, y) = 0

The per-example gradient of this objective for
weights wj corresponding to feature template �j

then corresponds to

@`

@wj
=

i⇤yX
i=j

�j(x, yloss(Pi, y))� �j(x, y).

where we define

yloss(Pi, y) = arg max
y0

Pi,y0 �m · I(y0 = y),

where I is an indicator function of the label y, used
to define loss-augmented inference.

We add an `2 regularization term to the objec-
tive, and tune the margin m and the regularization

strength to tradeoff between speed and accuracy.
In our experiments, we used a development set to
choose a regularizer and margin that reduced test-
time speed as much as possible without decreasing
accuracy. We then varied the margin for that same
model at test time to achieve larger speed gains at
the cost of accuracy. In all experiments, the mar-
gin with which the model was trained corresponds
to the largest margin reported, i.e. that with the
highest accuracy.

4.5 Learning the template ordering

We examine three approaches to learning the tem-
plate ordering.

4.5.1 Group Lasso and Group Orthogonal
Matching Pursuit

The Group Lasso regularizer (Yuan and Lin, 2006)
penalizes the sum of `2-norms of weights of fea-
ture templates (different from what is commonly
called “`2” regularization, penalizing squared `2
norms),

P
i cikwik2, where ci is a weight for

each template. This regularizer encourages entire
groups of weights to be set to 0, whose templates
can then be discarded from the model. By vary-
ing the strength of the regularizer, we can learn an
ordering of the importance of each template for a
given model. The included groups for a given reg-
ularization strength are nearly always subsets of
one another (technical conditions for this to be true
are given in Hastie et al. (2007)). The sequence
of solutions for varied regularization strength is
called the regularization path, and by slight abuse
of terminology we use this to refer to the induced
template ordering.

An alternative and related approach to learn-
ing template orderings is based on the Group Or-
thogonal Matching Pursuit (GOMP) algorithm for
generalized linear models (Swirszcz et al., 2009;
Lozano et al., 2011), with a few modifications for
the setting of high-dimensional, sparse NLP data
(described in Appendix B). Orthogonal matching
pursuit algorithms are a set of stagewise feature
selection techniques similar to forward stagewise
regression (Hastie et al., 2007) and LARS (Efron
et al., 2004). At each stage, GOMP effectively
uses each feature template to perform a linear re-
gression to fit the gradient of the loss function.
This attempts to find the correlation of each fea-
ture subset with the residual of the model. It then
adds the feature template that best fits this gradi-
ent, and retrains the model. The main weakness of
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this method is that it fits the gradient of the training
error which can rapidly overfit for sparse, high-
dimensional data. Ultimately, we would prefer to
use a development set for feature selection.

4.5.2 Wrapper Method
The wrapper method (Kohavi and John, 1997)
is a meta-algorithm for feature selection, usually
based on a validation set. We employ it in a stage-
wise approach to learning a sequence of templates.
Given an ordering of the initial sub-sequence and
a learning procedure, we add each remaining tem-
plate to our ordering and estimate parameters, se-
lecting as the next template the one that gives the
highest increase in development set performance.
We begin the procedure with no templates, and re-
peat the procedure until we have a total ordering
over the set of feature templates. When learning
the ordering we use the same hyperparameters as
will be used during final training.

While simpler than the Lasso and Matching
Pursuit approaches, we empirically found this ap-
proach to outperform the others, due to the neces-
sity of using a development set to select features
for our high-dimensional application areas.

5 Related Work

Our work is primarily inspired by previous re-
search on cascades of classifiers; however, it dif-
fers significantly by approximating the score of a
single linear model—scoring as few of its features
as possible to obtain sufficient confidence.

We pose and address the question of whether a
single, interacting set of parameters can be learned
such that they efficiently both (1) provide high ac-
curacy and (2) good confidence estimates through-
out their use in the lengthening prefixes of the
feature template sequence. (These two require-
ments are both incorporated into our novel param-
eter estimation algorithm.) In contrast, other work
(Weiss and Taskar, 2013; He et al., 2013) learns
a separate classifier to determine when to add fea-
tures. Such heavier-weight approaches are unsuit-
able for our setting, where the core classifier’s fea-
tures and scoring are already so cheap that adding
complex decision-making would cause too much
computational overhead.

Other previous work on cascades uses a se-
ries of increasingly complex models, such as the
Viola-Jones face detection cascade of classifiers
(2001), which applies boosted trees trained on

subsets of features in increasing order of complex-
ity as needed, aiming to reject many sub-image
windows early in processing. We allow scores
from each layer to directly affect the final predic-
tion, avoiding duplicate incorporation of evidence.

Our work is also related to the field of learn-
ing and inference under test-time budget con-
straints (Grubb and Bagnell, 2012; Trapeznikov
and Saligrama, 2013). However, common ap-
proaches to this problem also employ auxiliary
models to rank which feature to add next, and
are generally suited for problems where features
are expensive to compute (e.g vision) and the ex-
tra computation of an auxiliary pruning-decision
model is offset by substantial reduction in fea-
ture computations (Weiss and Taskar, 2013). Our
method uses confidence scores directly from the
model, and so requires no additional computation,
making it suitable for speeding up classifier-based
NLP methods that are already very fast and have
relatively cheap features.

Some cascaded approaches strive at each stage
to prune the number of possible output structures
under consideration, whereas in our case we fo-
cus on pruning the input features. For example,
Xu et al. (2013) learn a tree of classifiers that sub-
divides the set of classes to minimize average test-
time cost. Chen et al. (2012) similarly use a linear
cascade instead of a tree. Weiss and Taskar (2010)
prune output labels in the context of structured
prediction through a cascade of increasingly com-
plex models, and Rush and Petrov (2012) success-
fully apply these structured prediction cascades to
the task of graph-based dependency parsing.

In the context of NLP, He et al. (2013) describe
a method for dynamic feature template selection
at test time in graph-based dependency parsing.
Their technique is particular to the parsing task—
making a binary decision about whether to lock in
edges in the dependency graph at each stage, and
enforcing parsing-specific, hard-coded constraints
on valid subsequent edges. Furthermore, as de-
scribed above, they employ an auxiliary model to
select features.

He and Eisner (2012) share our goal to speed
test time prediction by dynamically selecting fea-
tures, but they also learn an additional model on
top of a fixed base model, rather than using the
training objective of the model itself.

While our comparisons above focus on other
methods of dynamic feature selection, there also
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exists related work in the field of general (static)
feature selection. The most relevant results come
from the applications of group sparsity, such as
the work of Martins et al. (2011) in Group Lasso
for NLP problems. The Group Lasso regularizer
(Yuan and Lin, 2006) sparsifies groups of feature
weights (e.g. feature templates), and has been
used to speed up test-time prediction by remov-
ing entire templates from the model. The key dif-
ference between this work and ours is that we se-
lect our templates based on the test-time difficulty
of the inference problem, while the Group Lasso
must do so at train time. In Appendix A, we com-
pare against Group Lasso and show improvements
in accuracy and speed.

Note that non-grouped approaches to selecting
sparse feature subsets, such as boosting and `1 reg-
ularization, do not achieve our goal of fast test-
time prediction in NLP models, as they would
not zero-out entire templates, and still require the
computation of a feature for every template for ev-
ery test instance.

6 Experimental Results

We present experiments on three NLP tasks
for which greedy sequence labeling has been
a successful solution: part-of-speech tagging,
transition-based dependency parsing and named
entity recognition. In all cases our method
achieves multiplicative speedups at test time with
little loss in accuracy.

6.1 Part-of-speech tagging

We conduct our experiments on classifier-based
greedy part-of-speech tagging. Our baseline tag-
ger uses the same features described in Choi and
Palmer (2012). We evaluate our models on the
Penn Treebank WSJ corpus (Marcus et al., 1993),
employing the typical split of sections used for
part-of-speech tagging: 0-18 train, 19-21 devel-
opment, 22-24 test. The parameters of our mod-
els are learned using AdaGrad (Duchi et al., 2011)
with `2 regularization via regularized dual averag-
ing (Xiao, 2009), and we used random search on
the development set to select hyperparameters.

This baseline model (baseline) tags at a rate
of approximately 23,000 tokens per second on a
2010 2.1GHz AMD Opteron machine with ac-
curacy comparable to similar taggers (Giménez
and Màrquez, 2004; Choi and Palmer, 2012;
Toutanova et al., 2003). On the same machine

Model/m Tok. Unk. Feat. Speed

Baseline 97.22 88.63 46 1x
Stagewise 96.54 83.63 9.50 2.74
Fixed 89.88 56.25 1 16.16x
Fixed 94.66 60.59 3 9.54x
Fixed 96.16 87.09 5 7.02x
Fixed 96.88 88.81 10 3.82x
Dynamic/15 96.09 83.12 1.92 10.36x
Dynamic/35 97.02 88.26 4.33 5.22x
Dynamic/45 97.16 88.84 5.87 3.97x
Dynamic/50 97.21 88.95 6.89 3.41x

Table 1: Comparison of our models using differ-
ent margins m, with speeds measured relative to
the baseline. We train a model as accurate as the
baseline while tagging 3.4x tokens/sec, and in an-
other model maintain > 97% accuracy while tag-
ging 5.2x, and > 96% accuracy with a speedup of
10.3x.

the greedy Stanford CoreNLP left3words part-of-
speech tagger also tags at approximately 23,000
tokens per second. Significantly higher absolute
speeds for all methods can be attained on more
modern machines.

We include additional baselines that divide the
features into templates, but train the templates’ pa-
rameters more simply than our algorithm. The
stagewise baseline learns the model parameters
for each of the templates in order, starting with
only one template—once each template has been
trained for a fixed number of iterations, that tem-
plate’s parameters are fixed and we add the next
one. We also create a separately-trained baseline
model for each fixed prefix of the feature templates
(fixed). This shows that our speedups are not sim-
ply due to superfluous features in the later tem-
plates.

Our main results are shown in Table 1. We in-
crease the speed of our baseline POS tagger by a
factor of 5.2x without falling below 97% test ac-
curacy. By tuning our training method to more
aggressively prune templates, we achieve speed-
ups of over 10x while providing accuracy higher
than 96%. It is worth noting that the results for
our method (dynamic) are all obtained from a
single trained model (with hyperparameters opti-
mized for m = 50, which we observed gave a
good speedup with nearly no lossin accuracy on
the development set), the only difference being
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Figure 1: Left-hand plot depicts test accuracy as a function of the average number of templates used
to predict. Right-hand plot shows speedup as a function of accuracy. Our model consistently achieves
higher accuracy while using fewer templates resulting in the best ratio of speed to accuracy.

that we varied the margin at test time. Superior
results for m 6= 50 could likely be obtained by op-
timizing hyperparameters for the desired margin.

Results show our method (dynamic) learns to
dynamically select the number of templates, often
using only a small fraction. The majority of test
tokens can be tagged using only the first few tem-
plates: just over 40% use one template, and 75%
require at most four templates, while maintaining
97.17% accuracy. On average 6.71 out of 46 tem-
plates are used, though a small set of complicated
instances never surpass the margin and use all 46
templates. The right hand plot of Figure 1 shows
speedup vs. accuracy for various settings of the
confidence margin m.

The left plot in Figure 1 depicts accuracy as a
function of the number of templates used at test
time. We present results for both varying the
number of templates directly (dashed) and margin
(solid). The baseline model trained on all tem-
plates performs very poorly when using margin-
based inference, since its training objective does
not learn to predict with only prefixes. When pre-
dicting using a fixed subset of templates, we use a
different baseline model for each one of the 46 to-
tal template prefixes, learned with only those fea-
tures; we then compare the test accuracy of our
dynamic model using template prefix i to the base-
line model trained on the fixed prefix i. Our model
performs just as well as these separately trained
models, demonstrating that our objective learns
weights that allow each prefix to act as its own
high-quality classifier.

6.1.1 Learning the template ordering

As described in Section 4.5, we experimented on
part-of-speech tagging with three different algo-
rithms for learning an ordering of feature tem-
plates: Group Lasso, Group Orthogonal Matching
Pursuit (GOMP), and the wrapper method. For
the case of Group Lasso, this corresponds to the
experimental setup used when evaluating Group
Lasso for NLP in Martins et al. (2011). As detailed
in the part-of-speech tagging experiments of Ap-
pendix A, we found the wrapper method to work
best in our dynamic prediction setting. Therefore,
we use it in our remaining experiments in pars-
ing and named entity recognition. Essentially, the
Group Lasso picks small templates too early in
the ordering by penalizing template norms, and
GOMP picks large templates too early by overfit-
ting the train error.

6.2 Transition-based dependency parsing

We base our parsing experiments on the greedy,
non-projective transition-based dependency parser
described in Choi and Palmer (2011). Our model
uses a total of 60 feature templates based mainly
on the word form, POS tag, lemma and assigned
head label of current and previous input and stack
tokens, and parses about 300 sentences/second on
a modest 2.1GHz AMD Opteron machine.

We train our parser on the English Penn Tree-
Bank, learning the parameters using AdaGrad and
the parsing split, training on sections 2–21, testing
on section 23 and using section 22 for develop-
ment and the Stanford dependency framework (de
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Figure 2: Parsing speedup as a function of accu-
racy. Our model achieves the highest accuracy
while using the fewest feature templates.

Marneffe and Manning, 2008). POS tags were au-
tomatically generated via 10-way jackknifing us-
ing the baseline POS model described in the pre-
vious section, trained with AdaGrad using `2 reg-
ularization, with parameters tuned on the develop-
ment set to achieve 97.22 accuracy on WSJ sec-
tions 22-24. Lemmas were automatically gener-
ated using the ClearNLP morphological analyzer.
We measure accuracy using labeled and unlabeled
attachment scores excluding punctuation, achiev-
ing a labeled score of 90.31 and unlabeled score
of 91.83, which are comparable to similar greedy
parsers (Choi and Palmer, 2011; Honnibal and
Goldberg, 2013).

Our experimental setup is the same as for part-
of-speech tagging. We compare our model (dy-
namic) to both a single baseline model trained on
all features, and a set of 60 models each trained
on a prefix of feature templates. Our experiments
vary the margin used during prediction (solid) as
well as the number of templates used (dashed).

As in part-of-speech tagging, we observe sig-
nificant test-time speedups when applying our
method of dynamic feature selection to depen-
dency parsing. With a loss of only 0.04 labeled at-
tachment score (LAS), our model produces parses
2.7 times faster than the baseline. As listed in Ta-
ble 2, with a more aggressive margin our model
can parse more than 3 times faster while remain-
ing above 90% LAS, and more than 5 times faster
while maintaining accuracy above 88.5%.

In Figure 2 we see not only that our dynamic
model consistently achieves higher accuracy while

Model/m LAS UAS Feat. Speed

Baseline 90.31 91.83 60 1x
Fixed 65.99 70.78 1 27.5x
Fixed 86.87 88.81 10 5.51x
Fixed 88.76 90.51 20 2.83x
Fixed 89.04 90.71 30 1.87x
Dynamic/6.5 88.63 90.36 7.81 5.16x
Dynamic/7.1 89.07 90.73 8.57 4.66x
Dynamic/10 90.16 91.70 13.27 3.17x
Dynamic/11 90.27 91.80 15.83 2.71x

Table 2: Comparison of our baseline and tem-
plated models using varying margins m and num-
bers of templates.

using fewer templates, but also that our model (dy-
namic, dashed) performs exactly as well as sep-
arate models trained on each prefix of templates
(baseline, dashed), demonstrating again that our
training objective is successful in learning a single
model that can predict as well as possible using
any prefix of feature templates while successfully
selecting which of these prefixes to use on a per-
example basis.

6.3 Named entity recognition
We implement a greedy left-to-right named entity
recognizer based on Ratinov and Roth (2009) us-
ing a total of 46 feature templates, including sur-
face features such as lemma and capitalization,
gazetteer look-ups, and each token’s extended pre-
diction history, as described in (Ratinov and Roth,
2009). Training, tuning, and evaluation are per-
formed on the CoNLL 2003 English data set with
the BILOU encoding to denote label spans.

Our baseline model achieves F1 scores of 88.35
and 93.37 on the test and development sets, re-
spectively, and tags at a rate of approximately
5300 tokens per second on the hardware described
in the experiments above. We achieve a 2.3x
speedup while maintaining F1 score above 88 on
the test set.

7 Conclusions and Future Work

By learning to dynamically select the most predic-
tive features at test time, our algorithm provides
significant speed improvements to classifier-based
structured prediction algorithms, which them-
selves already comprise the fastest methods in
NLP. Further, these speed gains come at very lit-
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Model/m Test F1 Feat. Speed

Baseline 88.35 46 1x
Fixed 65.05 1 19.08x
Fixed 85.00 10 2.14x
Fixed 85.81 13 1.87x
Dynamic/3.0 87.62 7.23 2.59x
Dynamic/4.0 88.20 9.45 2.32x
Dynamic/5.0 88.23 12.96 1.96x

Table 3: Comparison of our baseline and tem-
plated NER models using varying margin m and
number of templates.

tle extra implementation cost and can easily be
combined with existing state-of-the-art systems.
Future work will remove the fixed ordering for
feature templates, and dynamically add additional
features based on the current scores of different la-
bels.
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Abstract

Knowledge base (KB) completion adds
new facts to a KB by making inferences
from existing facts, for example by infer-
ring with high likelihood nationality(X,Y)
from bornIn(X,Y). Most previous methods
infer simple one-hop relational synonyms
like this, or use as evidence a multi-hop re-
lational path treated as an atomic feature,
like bornIn(X,Z)→ containedIn(Z,Y). This
paper presents an approach that reasons
about conjunctions of multi-hop relations
non-atomically, composing the implica-
tions of a path using a recurrent neural
network (RNN) that takes as inputs vec-
tor embeddings of the binary relation in
the path. Not only does this allow us
to generalize to paths unseen at training
time, but also, with a single high-capacity
RNN, to predict new relation types not
seen when the compositional model was
trained (zero-shot learning). We assem-
ble a new dataset of over 52M relational
triples, and show that our method im-
proves over a traditional classifier by 11%,
and a method leveraging pre-trained em-
beddings by 7%.

1 Introduction

Constructing large knowledge bases (KBs) sup-
ports downstream reasoning about resolved enti-
ties and their relations, rather than the noisy tex-
tual evidence surrounding their natural language
mentions. For this reason KBs have been of in-
creasing interest in both industry and academia
(Bollacker et al., 2008; Suchanek et al., 2007;
Carlson et al., 2010). Such KBs typically con-
tain many millions of facts, most of them (en-
tity1,relation,entity2) “triples” (also known as bi-
nary relations) such as (Barack Obama, presi-

dentOf, USA) and (Brad Pitt, marriedTo, Angelina
Jolie).

However, even the largest KBs are woefully in-
complete (Min et al., 2013), missing many impor-
tant facts, and therefore damaging their usefulness
in downstream tasks. Ironically, these missing
facts can frequently be inferred from other facts al-
ready in the KB, thus representing a sort of incon-
sistency that can be repaired by the application of
an automated process. The addition of new triples
by leveraging existing triples is typically known as
KB completion.

Early work on this problem focused on learn-
ing symbolic rules. For example, Schoenmack-
ers et al. (2010) learns Horn clauses predictive of
new binary relations by exhausitively exploring re-
lational paths of increasing length, and selecting
those surpassing an accuracy threshold. (A “path”
is a sequence of triples in which the second entity
of each triple matches the first entity of the next
triple.) Lao et al. (2011) introduced the Path Rank-
ing Algorithm (PRA), which greatly improves ef-
ficiency and robustness by replacing exhaustive
search with random walks, and using unique paths
as features in a per-target-relation binary classifier.
A typical predictive feature learned by PRA is that
CountryOfHeadquarters(X, Y) is implied by Is-
BasedIn(X,A) and StateLocatedIn(A, B) and Coun-
tryLocatedIn(B, Y). Given IsBasedIn(Microsoft,
Seattle), StateLocatedIn(Seattle, Washington) and
CountryLocatedIn(Washington, USA), we can in-
fer the fact CountryOfHeadquarters(Microsoft,
USA) using the predictive feature. In later work,
Lao et al. (2012) greatly increase available raw
material for paths by augmenting KB-schema rela-
tions with relations defined by the text connecting
mentions of entities in a large corpus (also known
as OpenIE relations (Banko et al., 2007)).

However, these symbolic methods can produce
many millions of distinct paths, each of which is
categorically distinct, treated by PRA as a dis-
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tinct feature. (See Figure 1.) Even putting aside
the OpenIE relations, this limits the applicability
of these methods to modern KBs that have thou-
sands of relation types, since the number of dis-
tinct paths increases rapidly with the number of re-
lation types. If textually-defined OpenIE relations
are included, the problem is obviously far more
severe.

Better generalization can be gained by operat-
ing on embedded vector representations of rela-
tions, in which vector similarity can be interpreted
as semantic similarity. For example, Bordes et al.
(2013) learn low-dimensional vector representa-
tions of entities and KB relations, such that vector
differences between two entities should be close
to the vectors associated with their relations. This
approach can find relation synonyms, and thus per-
form a kind of one-to-one, non-path-based relation
prediction for KB completion. Similarly Nickel
et al. (2011) and Socher et al. (2013a) perform
KB completion by learning embeddings of rela-
tions, but based on matrices or tensors. Universal
schema (Riedel et al., 2013) learns to perform rela-
tion prediction cast as matrix completion (likewise
using vector embeddings), but predicts textually-
defined OpenIE relations as well as KB relations,
and embeds entity-pairs in addition to individual
entities. Like all of the above, it also reasons
about individual relations, not the evidence of a
connected path of relations.

This paper proposes an approach combining the
advantages of (a) reasoning about conjunctions of
relations connected in a path, and (b) generaliza-
tion through vector embeddings, and (c) reasoning
non-atomically and compositionally about the el-
ements of the path, for further generalization.

Our method uses recurrent neural networks
(RNNs) (Werbos, 1990) to compose the semantics
of relations in an arbitrary-length path. At each
path-step it consumes both the vector embedding
of the next relation, and the vector representing the
path-so-far, then outputs a composed vector (rep-
resenting the extended path-so-far), which will be
the input to the next step. After consuming a path,
the RNN should output a vector in the semantic
neighborhood of the relation between the first and
last entity of the path. For example, after con-
suming the relation vectors along the path Melinda
Gates → Bill Gates → Microsoft → Seattle, our
method produces a vector very close to the rela-
tion livesIn.

        founded in

        headquartered in

        headquarters located in

based in

in the U.S.  state of 

located in the state of 

beautiful city in

in state

state in the NW region of  

located in country 

state part of

democratic state in 

Microsoft Seattle Washington
IsBasedIn StateLocatedIn CountryLocatedIn

CountryOfHeadquarters

USA

………… ………… …………

Figure 1: Semantically similar paths connecting entity pair
(Microsoft, USA).

Our compositional approach allow us at test
time to make predictions from paths that were un-
seen during training, because of the generaliza-
tion provided by vector neighborhoods, and be-
cause they are composed in non-atomic fashion.
This allows our model to seamlessly perform in-
ference on many millions of paths in the KB graph.
In most of our experiments, we learn a separate
RNN for predicting each relation type, but alterna-
tively, by learning a single high-capacity composi-
tion function for all relation types, our method can
perform zero-shot learning—predicting new rela-
tion types for which the composition function was
never explicitly trained.

Related to our work, new versions of PRA
(Gardner et al., 2013; Gardner et al., 2014) use
pre-trained vector representations of relations to
alleviate its feature explosion problem—but the
core mechanism continues to be a classifier based
on atomic-path features. In the 2013 work many
paths are collapsed by clustering paths accord-
ing to their relations’ embeddings, and substitut-
ing cluster ids for the original relation types. In
the 2014 work unseen paths are mapped to nearby
paths seen at training time, where nearness is mea-
sured using the embeddings. Neither is able to per-
form zero-shot learning since there must be a clas-
sifer for each predicted relation type. Furthermore
their pre-trained vectors do not have the opportu-
nity to be tuned to the KB completion task because
the two sub-tasks are completely disentangled.

An additional contribution of our work is a
new large-scale data set of over 52 million triples,
and its preprocessing for purposes of path-based
KB completion (can be downloaded from http:
//iesl.cs.umass.edu/downloads/
inferencerules/release.tar.gz). The
dataset is build from the combination of Freebase
(Bollacker et al., 2008) and Google’s entity
linking in ClueWeb (Orr et al., 2013). Rather than
Gardner’s 1000 distinct paths per relation type, we
have over 2 million. Rather than Gardner’s 200
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Microsoft Seattle WashingtonIsBasedIn StateLocatedIn USACountryLocatedIn

Compositon

Compositon

CountryOfHeadquarters
~

Figure 2: Vector Representations of the paths are computed
by applying the composition function recursively.

entity pairs, we use over 10k. All experimental
comparisons below are performed on this new
data set.

On this challenging large-scale dataset our com-
positional method outperforms PRA (Lao et al.,
2012), and Cluster PRA (Gardner et al., 2013) by
11% and 7% respectively. A further contribution
of our work is a new, surprisingly strong baseline
method using classifiers of path bigram features,
which beats PRA and Cluster PRA, and statisti-
cally ties our compositional method. Our analysis
shows that our method has substantially different
strengths than the new baseline, and the combi-
nation of the two yields a 15% improvement over
Gardner et al. (2013). We also show that our zero-
shot model is indeed capable of predicting new un-
seen relation types.

2 Background

We give background on PRA which we use to ob-
tain a set of paths connecting the entity pairs and
the RNN model which we employ to model the
composition function.

2.1 Path Ranking Algorithm

Since it is impractical to exhaustively obtain the
set of all paths connecting an entity pair in the
large KB graph, we use PRA (Lao et al., 2011)
to obtain a set of paths connecting the entity pairs.
Given a training set of entity pairs for a relation,
PRA heuristically finds a set of paths by perform-
ing random walks from the source and target nodes
keeping the most common paths. We use PRA to
find millions of distinct paths per relation type. We
do not use the random walk probabilities given by
PRA since using it did not yield improvements in
our experiments.

2.2 Recurrent Neural Networks
Recurrent neural network (RNN) (Werbos, 1990)
is a neural network that constructs vector repre-
sentation for sequences (of any length). For exam-
ple, a RNN model can be used to construct vec-
tor representations for phrases or sentences (of any
length) in natural language by applying a compo-
sition function (Mikolov et al., 2010; Sutskever
et al., 2014; Vinyals et al., 2014). The vector
representation of a phrase (w1, w2) consisting of
words w1 and w2 is given by f(W [v(w1); v(w2)])
where v(w) ∈ Rd is the vector representation of
w, f is an element-wise non linearity function,
[a; b] represents the concatenation two vectors a
and b along with a bias term, and W ∈ Rd×2∗d+1

is the composition matrix. This operation can
be repeated to construct vector representations of
longer phrases.

3 Recurrent Neural Networks for KB
Completion

This paper proposes a RNN model for KB comple-
tion that reasons on the paths connecting an entity
pair to predict missing relation types. The vec-
tor representations of the paths (of any length) in
the KB graph are computed by applying the com-
position function recursively as shown in Figure
2. To compute the vector representations for the
higher nodes in the tree, the composition function
consumes the vector representation of the node’s
two children nodes and outputs a new vector of the
same dimension. Predictions about missing rela-
tion types are made by comparing the vector repre-
sentation of the path with the vector representation
of the relation using the sigmoid function.

We represent each binary relation using a d-
dimensional real valued vector. We model com-
position using recurrent neural networks (Werbos,
1990). We learn a separate composition matrix for
every relation that is predicted.

Let vr(δ) ∈ Rd be the vector representation of
relation δ and vp(π) ∈ Rd be the vector represen-
tation of path π. vp(π) denotes the relation vec-
tor if path π is of length one. To predict relation
δ = CountryOfHeadquarters, the vector represen-
tation of the path π = IsBasedIn → StateLocate-
dIn containing two relations IsBasedIn and State-
LocatedIn is computed by (Figure 2),

vp(π) =
f(Wδ[vr(IsBasedIn); vr(StateLocatedIn)])
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where f = sigmoid is the element-wise non-
linearity function, Wδ ∈ Rd∗2d+1 is the compo-
sition matrix for δ = CountryOfHeadquarters and
[a; b] represents the concatenation of two vectors
a ∈ Rd, b ∈ Rd along with a bias feature to get a
new vector [a; b] ∈ R2d+1.

The vector representation of the path Π = Is-
BasedIn → StateLocatedIn → CountryLocatedIn
in Figure 2 is computed similarly by,

vp(Π) =
f(Wδ[vp(π); vr( CountryLocatedIn)])

where vp(π) is the vector representation of path Is-
BasedIn→ StateLocatedIn. While computing the
vector representation of a path we always traverse
left to right, composing the relation vector in the
right with the accumulated path vector in the left1.
This makes our model a recurrent neural network
(Werbos, 1990).

Finally, we make a prediction regarding Coun-
tryOfHeadquarters(Microsoft, USA) using the
path Π = IsBasedIn → StateLocatedIn → Coun-
tryLocatedIn by comparing the vector represen-
tation of the path (vp(Π)) with the vector repre-
sentation of the relation CountryOfHeadquarters
(vr(CountryOfHeadquarters)) using the sigmoid
function.

3.1 Model Training

We train the model with the existing facts in a
KB using them as positive examples and nega-
tive examples are obtained by treating the unob-
served instances as negative examples (Mintz et
al., 2009; Lao et al., 2011; Riedel et al., 2013; Bor-
des et al., 2013). Unlike in previous work that use
RNNs(Socher et al., 2011; Iyyer et al., 2014; Irsoy
and Cardie, 2014), a challenge with using them
for our task is that among the set of paths connect-
ing an entity pair, we do not observe which of the
path(s) is predictive of a relation. We select the
path that is closest to the relation type to be pre-
dicted in the vector space. This not only allows
for faster training (compared to marginalization)
but also gives improved performance. This tech-
nique has been successfully used in models other
than RNNs previously (Weston et al., 2013; Nee-
lakantan et al., 2014).

1we did not get significant improvements when we tried
more sophisticated ordering schemes for computing the path
representations.

Algorithm 1 Training Algorithm of RNN model for rela-
tion δ

1: Input: Λδ = Λ+
δ ∪ Λ−δ ,Φδ, number of itera-

tions T , mini-batch size B
2: Initialize vr,Wδ randomly
3: for t = 1, 2, . . . , T do
4: ∇vr = 0, ∇Wδ = 0 and b = 0
5: for λ = (γ, δ) ∈ Λδ do
6: µλ = arg maxπ∈Φδ(γ) vp(π).vr(δ)
7: Accumulate gradients to∇vr, ∇Wδ

8: using path µλ.
9: b = b+ 1

10: if b = B then
11: Gradient Update for vr,Wδ

12: ∇vr = 0,∇Wδ = 0 and b = 0
13: end if
14: end for
15: if b > 0 then
16: Gradient Update for vr,Wδ

17: end if
18: end for
19: Output: vr,Wδ

We assume that we are given a KB (for exam-
ple, Freebase enriched with SVO triples) contain-
ing a set of entity pairs Γ, set of relations ∆ and
a set of observed facts Λ+ where ∀λ = (γ, δ) ∈
Λ+(γ ∈ Γ, δ ∈ ∆) indicates a positive fact that
entity pair γ is in relation δ. Let Φδ(γ) denote the
set of paths connecting entity pair γ given by PRA
for predicting relation δ.

In our task, we only observe the set of paths
connecting an entity pair but we do not observe
which of the path(s) is predictive of the fact. We
treat this as a latent variable (µλ for the fact λ)
and we assign µλ the path whose vector represen-
tation has maximum dot product with the vector
representation of the relation to be predicted. For
example, µλ for the fact λ = (γ, δ) ∈ Λ+ is given
by,

µλ = arg max
π∈Φδ(γ)

vp(π).vr(δ)

During training, we assign µλ using the current
parameter estimates. We use the same procedure
to assign µλ for unobserved facts that are used as
negative examples during training.

We train a separate RNN model for predicting
each relation and the parameters of the model for
predicting relation δ ∈ ∆ are Θ = {vr(ω)∀ω ∈
∆, Wδ}. Given a training set consisting of posi-
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tive (Λ+
δ ) and negative (Λ−δ ) instances2 for relation

δ, the parameters are trained to maximize the log
likelihood of the training set with L-2 regulariza-
tion.

Θ∗ = arg max
Θ

∑
λ=(γ,δ)∈Λ+

δ

P (yλ = 1; Θ)+

∑
λ=(γ,δ)∈Λ−δ

P (yλ = 0; Θ)− ρ‖Θ‖2

where yλ is a binary random variable which takes
the value 1 if the fact λ is true and 0 otherwise, and
the probability of a fact P (yλ = 1; Θ) is given by,

P (yλ = 1; Θ) = sigmoid(vp(µλ).vr(δ))
where µλ = arg max

π∈Φδ(γ)
vp(π).vr(δ)

and P (yλ = 0; Θ) = 1 − P (yλ = 1; Θ). The
relation vectors and the composition matrix are
initialized randomly. We train the network us-
ing backpropagation through structure (Goller and
Küchler, 1996).

4 Zero-shot KB Completion

The KB completion task involves predicting facts
on thousands of relations types and it is highly de-
sirable that a method can infer facts about relation
types without directly training for them. Given the
vector representation of the relations, we show that
our model described in the previous section is ca-
pable of predicting relational facts without explic-
itly training for the target (or test) relation types
(zero-shot learning).

In zero-shot or zero-data learning (Larochelle et
al., 2008; Palatucci et al., 2009), some labels or
classes are not available during training the model
and only a description of those classes are given
at prediction time. We make two modifications to
the model described in the previous section, (1)
learn a general composition matrix, and (2) fix re-
lation vectors with pre-trained vectors, so that we
can predict relations that are unseen during train-
ing. This ability of the model to generalize to un-
seen relations is beyond the capabilities of all pre-
vious methods for KB inference (Schoenmackers
et al., 2010; Lao et al., 2011; Gardner et al., 2013;
Gardner et al., 2014).

We learn a general composition matrix for all
relations instead of learning a separate composi-
tion matrix for every relation to be predicted. So,

2we sub-sample a portion of the set of all unobserved in-
stances.

for example, the vector representation of the path
π = IsBasedIn→ StateLocatedIn containing two
relations IsBasedIn and StateLocatedIn is com-
puted by (Figure 2),

vp(π) =
f(W [vr(IsBasedIn); vr(StateLocatedIn)])

where W ∈ Rd∗2d+1 is the general composition
matrix.

We initialize the vector representations of the
binary relations (vr) using the representations
learned in Riedel et al. (2013) and do not update
them during training. The relation vectors are not
updated because at prediction time we would be
predicting relation types which are never seen dur-
ing training and hence their vectors would never
get updated. We learn only the general composi-
tion matrix in this model. We train a single model
for a set of relation types by replacing the sigmoid
function with a softmax function while computing
probabilities and the parameters of the composi-
tion matrix are learned using the available train-
ing data containing instances of few relations. The
other aspects of the model remain unchanged.

To predict facts whose relation types are unseen
during training, we compute the vector represen-
tation of the path using the general composition
matrix and compute the probability of the fact us-
ing the pre-trained relation vector. For example,
using the vector representation of the path Π = Is-
BasedIn → StateLocatedIn → CountryLocatedIn
in Figure 2, we can predict any relation irrespec-
tive of whether they are seen at training by com-
paring it with the pre-trained relation vectors.

5 Experiments

The hyperparameters of all the models were tuned
on the same held-out development data. All the
neural network models are trained for 150 itera-
tions using 50 dimensional relation vectors, and
we set the L2-regularizer and learning rate to
0.0001 and 0.1 respectively. We halved the learn-
ing rate after every 60 iterations and use mini-
batches of size 20. The neural networks and the
classifiers were optimized using AdaGrad (Duchi
et al., 2011).

5.1 Data

We ran experiments on Freebase (Bollacker et al.,
2008) enriched with information from ClueWeb.
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Entities 18M
Freebase triples 40M
ClueWeb triples 12M
Relations 25,994
Relation types tested 46
Avg. paths/relation 2.3M
Avg. training facts/relation 6638
Avg. positive test instances/relation 3492
Avg. negative test instances/relation 43,160

Table 1: Statistics of our dataset.

We use the publicly available entity links to Free-
base in the ClueWeb dataset (Orr et al., 2013).
Hence, we create nodes only for Freebase enti-
ties in our KB graph. We remove facts containing
/type/object/type as they do not give useful pre-
dictive information for our task. We get triples
from ClueWeb by considering sentences that con-
tain two entities linked to Freebase. We extract the
phrase between the two entities and treat them as
the relation types. For phrases that are of length
greater than four we keep only the first and last
two words. This helps us to avoid the time con-
suming step of dependency parsing the sentence
to get the relation type. These triples are similar to
facts obtained by OpenIE (Banko et al., 2007). To
reduce noise, we select relation types that occur at
least 50 times. We evaluate on 46 relation types in
Freebase that have the most number of instances.
The methods are evaluated on a subset of facts in
Freebase that were hidden during training. Table
1 shows important statistics of our dataset.

5.2 Predictive Paths

Table 2 shows predictive paths for 4 relations
learned by the RNN model. The high quality of
unseen paths is indicative of the fact that the RNN
model is able to generalize to paths that are never
seen during training.

5.3 Results

Using our dataset, we compare the performance of
the following methods:
PRA Classifier is the method in Lao et al. (2012)
which trains a logistic regression classifier by cre-
ating a feature for every path type.
Cluster PRA Classifier is the method in Gard-
ner et al. (2013) which replaces relation types from
ClueWeb triples with their cluster membership in
the KB graph before the path finding step. Af-

ter this step, their method proceeds in exactly the
same manner as Lao et al. (2012) training a logis-
tic regression classifier by creating a feature for
every path type. We use pre-trained relation vec-
tors from Riedel et al. (2013) and use k-means
clustering to cluster the relation types to 25 clus-
ters as done in Gardner et al. (2013).
Composition-Add uses a simple element-wise ad-
dition followed by sigmoid non-linearity as the
composition function similar to Yang et al. (2014).
RNN-random is the supervised RNN model de-
scribed in section 3 with the relation vectors ini-
tialized randomly.
RNN is the supervised RNN model described in
section 3 with the relation vectors initialized using
the method in Riedel et al. (2013).
PRA Classifier-b is our simple extension to the
method in Lao et al. (2012) which additionally
uses bigrams in the path as features. We add a
special start and stop symbol to the path before
computing the bigram features.
Cluster PRA Classifier-b is our simple extension
to the method in Gardner et al. (2013) which ad-
ditionally uses bigram features computed as previ-
ously described.
RNN + PRA Classifier combines the predictions
of RNN and PRA Classifier. We combine the pre-
dictions by assigning the score of a fact as the sum
of their rank in the two models after sorting them
in ascending order.
RNN + PRA Classifier-b combines the predictions
of RNN and PRA Classifier-b using the technique
described previously.

Table 3 shows the results of our experiments.
The method described in Gardner et al. (2014) is
not included in the table since the publicly avail-
able implementation does not scale to our large
dataset. First, we show that it is better to train the
models using all the path types instead of using
only the top 1, 000 path types as done in previous
work (Gardner et al., 2013; Gardner et al., 2014).
We can see that the RNN model performs signif-
icantly better than the baseline methods of Lao et
al. (2012) and Gardner et al. (2013). The perfor-
mance of the RNN model is not affected by initial-
ization since using random vectors and pre-trained
vectors results in similar performance.

A surprising result is the impressive perfor-
mance of our simple extension to the classifier
approach. After the addition of bigram features,
the naive PRA method is as effective as the Clus-
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Relation: /book/written work/original language/ (book “x” written in language “y”)
Seen paths:
/book/written work/previous in series→ /book/written work/author→ /people/person/nationality→ /people/person/nationality−1

→ /people/person/languages
/book/written work/author→ /people/ethnicity/people−1→ /people/ethnicity/languages spoken
Unseen paths:
”in”−1 - ”writer”−1→ /people/person/nationality−1→ /people/person/languages
/book/written work/author→ addresses→ /people/person/nationality−1→ /people/person/languages
Relation: /people/person/place of birth/ (person “x” born in place “y”)
Seen paths:
“was,born,in”→ /location/mailing address/citytown−1→ /location/mailing address/state province region
“from”→ /location/location/contains−1

Unseen paths:
“born,in”→ /location/location/contains→ “near”−1

“was,born,in”→ commonly,known,as−1

Relation: /geography/river/cities/ (river “x” flows through or borders “y”)
Seen paths:
“at”→ /location/location/contains−1

“meets,the”→ /transportation/bridge/body of water spanned−1→ /location/location/contains−1→ “in”
Unseen paths:
/geography/lake/outflow−1→ /location/location/contains−1

/geography/lake/outflow−1→ /location/location/contains−1→ “near”
Relation: /people/family/members/ (person “y” part of family “x”)
Seen paths:
/royalty/monarch/royal line−1→ /people/person/children→ /royalty/monarch/royal line
→ /royalty/royal line/monarchs from this line
/royalty/royal line/monarchs from this line→ /people/person/parents−1→ /people/person/parents−1→ /people/person/parents−1

Unseen paths:
/royalty/monarch/royal line−1→ “leader”−1→ “king”→ “was,married,to”−1

“of,the”−1→ “but,also,of”→ “married”→ “defended”−1

Table 2: Predictive paths, according to the RNN model, for 4 target relations. Two examples of seen and
unseen paths are shown for each target relation. Inverse relations are marked by −1, i.e, r(x, y) =⇒
r−1(y, x), ∀(x, y) ∈ r. Relations within quotes are OpenIE (textual) relation types.

train with
top 1000 paths

train with
all paths

Method MAP MAP
PRA Classifier 43.46 51.31
Cluster PRA Classifier 46.26 53.23
Composition-Add 40.23 45.37
RNN-random 45.52 56.91
RNN 46.61 56.95
PRA Classifier-b 48.09 58.13
Cluster PRA Classifier-b 48.72 58.02
RNN + PRA Classifier 49.92 58.42
RNN + PRA Classifier-b 51.94 61.17

Table 3: Results comparing different methods on 46 types. All the methods perform better when trained
using all the paths than training using the top 1, 000 paths. When training with all the paths, RNN
performs significantly (p < 0.005) better than PRA Classifier and Cluster PRA Classifier. The small
difference in performance between RNN and both PRA Classifier-b and Cluster PRA Classifier-b is not
statistically significant. The best results are obtained by combining the predictions of RNN with PRA
Classifier-b which performs significantly (p < 10−5) better than both PRA Classifier-b and Cluster PRA
Classifier-b.

ter PRA method. The small difference in perfor-
mance between RNN and both PRA Classifier-b
and Cluster PRA Classifier-b is not statistically
significant. We conjecture that our method has

substantially different strengths than the new base-
line. While the classifier with bigram features has
an ability to accurately memorize important local
structure, the RNN model generalizes better to un-
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train with
top 1000 paths

train with
all paths

Method MAP MAP
RNN 43.82 50.10
zero-shot 19.28 20.61
Random 7.59

Table 4: Results comparing the zero-shot model
with supervised RNN and a random baseline on
10 types. RNN is the fully supervised model de-
scribed in section 3 while zero-shot is the model
described in section 4. The zero-shot model with-
out explicitly training for the target relation types
achieves impressive results by performing signifi-
cantly (p < 0.05) better than a random baseline.

seen paths that are very different from the paths
seen is training. Empirically, combining the pre-
dictions of RNN and PRA Classifier-b achieves a
statistically significant gain over PRA Classifier-b.

5.3.1 Zero-shot
Table 4 shows the results of the zero-shot model
described in section 4 compared with the fully su-
pervised RNN model (section 3) and a baseline
that produces a random ordering of the test facts.
We evaluate on randomly selected 10 (out of 46)
relation types, hence for the fully supervised ver-
sion we train 10 RNNs, one for each relation type.
For evaluating the zero-shot model, we randomly
split the relations into two sets of equal size and
train a zero-shot model on one set and test on the
other set. So, in this case we have two RNNs
making predictions on relation types that they have
never seen during training. As expected, the fully
supervised RNN outperforms the zero-shot model
by a large margin but the zero-shot model with-
out using any direct supervision clearly performs
much better than a random baseline.

5.3.2 Discussion
To investigate whether the performance of the
RNNs were affected by multiple local optima is-
sues, we combined the predictions of five different
RNNs trained using all the paths. Apart from RNN
and RNN-random, we trained three more RNNs
with different random initialization and the perfor-
mance of the three RNNs individually are 57.09,
57.11 and 56.91. The performance of the ensem-
ble is 59.16 and their performance stopped im-
proving after using three RNNs. So, this indicates
that even though multiple local optima affects the

performance, it is likely not the only issue since
the performance of the ensemble is still less than
the performance of RNN + PRA Classifier-b.

We suspect the RNN model does not capture
some of the important local structure as well as
the classifier using bigram features. To overcome
this drawback, in future work, we plan to explore
compositional models that have a longer memory
(Hochreiter and Schmidhuber, 1997; Cho et al.,
2014; Mikolov et al., 2014). We also plan to in-
clude vector representations for the entities and
develop models that address the issue of polysemy
in verb phrases (Cheng et al., 2014).

6 Related Work

KB Completion includes methods such as Lin
and Pantel (2001), Yates and Etzioni (2007) and
Berant et al. (2011) that learn inference rules of
length one. Schoenmackers et al. (2010) learn
general inference rules by considering the set of
all paths in the KB and selecting paths that sat-
isfy a certain precision threshold. Their method
does not scale well to modern KBs and also de-
pends on carefully tuned thresholds. Lao et al.
(2011) train a simple logistic regression classifier
with NELL KB paths as features to perform KB
completion while Gardner et al. (2013) and Gard-
ner et al. (2014) extend it by using pre-trained re-
lation vectors to overcome feature sparsity. Re-
cently, Yang et al. (2014) learn inference rules us-
ing simple element-wise addition or multiplication
as the composition function.
Compositional Vector Space Models have been
developed to represent phrases and sentences in
natural language as vectors (Mitchell and Lap-
ata, 2008; Baroni and Zamparelli, 2010; Yesse-
nalina and Cardie, 2011). Neural networks have
been successfully used to learn vector representa-
tions of phrases using the vector representations
of the words in that phrase. Recurrent neural net-
works have been used for many tasks such as lan-
guage modeling (Mikolov et al., 2010), machine
translation (Sutskever et al., 2014) and parsing
(Vinyals et al., 2014). Recursive neural networks,
a more general version of the recurrent neural net-
works have been used for many tasks like pars-
ing (Socher et al., 2011), sentiment classification
(Socher et al., 2012; Socher et al., 2013c; Irsoy
and Cardie, 2014), question answering (Iyyer et
al., 2014) and natural language logical semantics
(Bowman et al., 2014). Our overall approach is
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similar to RNNs with attention (Bahdanau et al.,
2014; Graves, 2013) since we select a path among
the set of paths connecting the entity pair to make
the final prediction.
Zero-shot or zero-data learning was introduced
in Larochelle et al. (2008) for character recogni-
tion and drug discovery. Palatucci et al. (2009)
perform zero-shot learning for neural decoding
while there has been plenty of work in this direc-
tion for image recognition (Socher et al., 2013b;
Frome et al., 2013; Norouzi et al., 2014).

7 Conclusion

We develop a compositional vector space
model for knowledge base completion using
recurrent neural networks. In our challeng-
ing large-scale dataset available at http:
//iesl.cs.umass.edu/downloads/
inferencerules/release.tar.gz,
our method outperforms two baseline methods
and performs competitively with a modified
stronger baseline. The best results are obtained
by combining the predictions of our model with
the predictions of the modified baseline which
achieves a 15% improvement over Gardner et
al. (2013). We also show that our model has the
ability to perform zero-shot inference.
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Abstract

Traditional approaches to the task of ACE
event extraction primarily rely on elabo-
rately designed features and complicated
natural language processing (NLP) tools.
These traditional approaches lack gener-
alization, take a large amount of human
effort and are prone to error propaga-
tion and data sparsity problems. This
paper proposes a novel event-extraction
method, which aims to automatically ex-
tract lexical-level and sentence-level fea-
tures without using complicated NLP
tools. We introduce a word-representation
model to capture meaningful semantic reg-
ularities for words and adopt a framework
based on a convolutional neural network
(CNN) to capture sentence-level clues.
However, CNN can only capture the most
important information in a sentence and
may miss valuable facts when considering
multiple-event sentences. We propose a
dynamic multi-pooling convolutional neu-
ral network (DMCNN), which uses a dy-
namic multi-pooling layer according to
event triggers and arguments, to reserve
more crucial information. The experimen-
tal results show that our approach signif-
icantly outperforms other state-of-the-art
methods.

1 Introduction

Event extraction is an important and challenging
task in Information Extraction (IE), which aims
to discover event triggers with specific types and
their arguments. Current state-of-the-art methods
(Li et al., 2014; Li et al., 2013; Hong et al., 2011;
Liao and Grishman, 2010; Ji and Grishman, 2008)
often use a set of elaborately designed features
that are extracted by textual analysis and linguistic

knowledge. In general, we can divide the features
into two categories: lexical features and contex-
tual features.

Lexical features contain part-of-speech tags
(POS), entity information, and morphology fea-
tures (e.g., token, lemma, etc.), which aim to cap-
ture semantics or the background knowledge of
words. For example, consider the following sen-
tence with an ambiguous word beats:

S1: Obama beats McCain.
S2: Tyson beats his opponent .
In S1, beats is a trigger of type Elect. However,

in S2, beats is a trigger of type Attack, which is
more common than type Elect. Because of the am-
biguity, a traditional approach may mislabel beats
in S1 as a trigger of Attack. However, if we have
the priori knowledge that Obama and McCain are
presidential contenders, we have ample evidence
to predict that beats is a trigger of type Elect. We
call these knowledge lexical-level clues. To repre-
sent such features, the existing methods (Hong et
al., 2011) often rely on human ingenuity, which
is a time-consuming process and lacks general-
ization. Furthermore, traditional lexical features
in previous methods are a one-hot representation,
which may suffer from the data sparsity problem
and may not be able to adequately capture the se-
mantics of the words (Turian et al., 2010).

To identify events and arguments more pre-
cisely, previous methods often captured contex-
tual features, such as syntactic features, which aim
to understand how facts are tied together from a
larger field of view. For example, in S3, there are
two events that share three arguments as shown
in Figure 1. From the dependency relation of
nsubj between the argument cameraman and trig-
ger died, we can induce a Victim role to cam-
eraman in the Die event. We call such infor-
mation sentence-level clues. However, the argu-
ment word cameraman and its trigger word fired
are in different clauses, and there is no direct de-
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In Baghdad ,   a cameraman died when   an American tank fired on   the Palestine  Hotel.

prep_in

det nsubj nsubj

advcl
advmod

det
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prep_on
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nn

Figure 1: Event mentions and syntactic parser results of S3. The upper side shows two event mentions
that share three arguments: the Die event mention, triggered by “died”, and the Attack event mention,
triggered by “fired”. The lower side shows the collapsed dependency results.

pendency path between them. Thus it is difficult
to find the Target role between them using tradi-
tional dependency features. In addition, extracting
such features depends heavily on the performance
of pre-existing NLP systems, which could suffer
from error propagation.

S3: In Baghdad, a cameraman died when an
American tank fired on the Palestine Hotel.

To correctly attach cameraman to fired as a Tar-
get argument, we must exploit internal semantics
over the entire sentence such that the Attack event
results in Die event. Recent improvements of
convolutional neural networks (CNNs) have been
proven to be efficient for capturing syntactic and
semantics between words within a sentence (Col-
lobert et al., 2011; Kalchbrenner and Blunsom,
2013; Zeng et al., 2014) for NLP tasks. CNNs
typically use a max-pooling layer, which applies
a max operation over the representation of an en-
tire sentence to capture the most useful informa-
tion. However, in event extraction, one sentence
may contain two or more events, and these events
may share the argument with different roles. For
example, there are two events in S3, namely, the
Die event and Attack event. If we use a traditional
max-pooling layer and only keep the most impor-
tant information to represent the sentence, we may
obtain the information that depicts “a cameraman
died” but miss the information about “American
tank fired on the Palestine Hotel”, which is impor-
tant for predicting the Attack event and valuable
for attaching cameraman to fired as an Target ar-
gument. In our experiments, we found that such
multiple-event sentences comprise 27.3% of our
dataset, which is a phenomenon we cannot ignore.

In this paper, we propose a dynamic multi-
pooling convolutional neural network (DMCNN)
to address the problems stated above. To capture

lexical-level clues and reduce human effort, we
introduce a word-representation model (Mikolov
et al., 2013b), which has been shown to be able
to capture the meaningful semantic regularities of
words (Bengio et al., 2003; Erhan et al., 2010;
Mikolov et al., 2013a). To capture sentence-level
clues without using complicated NLP tools, and
to reserve information more comprehensively, we
devise a dynamic multi-pooling layer for CNN,
which returns the maximum value in each part of
the sentence according to event triggers and argu-
ments. In summary, the contributions of this paper
are as follows:

• We present a novel framework for event
extraction, which can automatically induce
lexical-level and sentence-level features from
plain texts without complicated NLP prepro-
cessing.

• We devise a dynamic multi-pooling convolu-
tional neural network (DMCNN), which aims
to capture more valuable information within
a sentence for event extraction.

• We conduct experiments on a widely used
ACE2005 event extraction dataset, and the
experimental results show that our approach
outperforms other state-of-the-art methods.

2 Event Extraction Task

In this paper, we focus on the event extraction task
defined in Automatic Content Extraction1 (ACE)
evaluation, where an event is defined as a specific
occurrence involving participants. First, we in-
troduce some ACE terminology to understand this
task more easily:

1http://projects.ldc.upenn.edu/ace/
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• Event mention: a phrase or sentence within
which an event is described, including a trig-
ger and arguments.

• Event trigger: the main word that most
clearly expresses the occurrence of an event
(An ACE event trigger is typically a verb or a
noun).

• Event argument: an entity mention, tempo-
ral expression or value (e.g. Job-Title) that is
involved in an event (viz., participants).

• Argument role: the relationship between an
argument to the event in which it participates.

Given an English text document, an event ex-
traction system should predict event triggers with
specific subtypes and their arguments for each sen-
tence. The upper side of figure 1 depicts the event
triggers and their arguments for S3 in Section 1.
ACE defines 8 event types and 33 subtypes, such
as Attack or Elect.

Although event extraction depends on name
identification and entity mention co-reference, it
is another difficult task in ACE evaluation and not
the focus in the event extraction task. Thus, in this
paper, we directly leverage the entity label pro-
vided by the ACE, following most previous works
(Hong et al., 2011; Liao and Grishman, 2010; Ji
and Grishman, 2008).

3 Methodology

In this paper, event extraction is formulated as a
two-stage, multi-class classification via dynamic
multi-pooling convolutional neural networks with
the automatically learned features. The first stage
is called trigger classification, in which we use a
DMCNN to classify each word in a sentence to
identify trigger words. If one sentence has trig-
gers, the second stage is conducted, which applies
a similar DMCNN to assign arguments to trig-
gers and align the roles of the arguments. We call
this argument classification. Because the second
stage is more complicated, we first describe the
methodology of argument classification in Section
3.1∼3.4 and then illustrate the difference between
the DMCNNs that are used for trigger classifica-
tion and those used for argument classification in
Section 3.5.

Figure 2 describes the architecture of argu-
ment classification, which primarily involves the
following four components: (i) word-embedding

learning, which reveals the embedding vectors of
words in an unsupervised manner; (ii) lexical-level
feature representation, which directly uses embed-
ding vectors of words to capture lexical clues; (iii)
sentence-level feature extraction, which proposes
a DMCNN to learn the compositional semantic
features of sentences; and (iv) argument classi-
fier output, which calculates a confidence score for
each argument role candidate.

3.1 Word Embedding Learning and
Lexical-Level Feature Representation

Lexical-level features serve as important clues for
event extraction (Hong et al., 2011; Li et al.,
2013). Traditional lexical-level features primar-
ily include lemma, synonyms and POS tag of the
candidate words. The quality of such features
depends strongly on the results of existing NLP
tools and human ingenuity. Additionally, the tra-
ditional features remain unsatisfactory for captur-
ing the semantics of words, which are important
in event extraction, as showed in S1 and S2. As
Erhan et al. (2010) reported, word embeddings
learned from a significant amount of unlabeled
data are more powerful for capturing the mean-
ingful semantic regularities of words. This paper
uses unsupervised pre-trained word embedding as
the source of base features. We select the word
embeddings of candidate words (candidate trigger,
candidate argument) and the context tokens (left
and right tokens of the candidate words). Then, all
of these word embeddings are concatenated into
the lexical-level features vector L to represent the
lexical-level features in argument classification.

In this work, we use the Skip-gram model to
pre-train the word embedding. This model is the
state-of-the-art model in many NLP tasks (Baroni
et al., 2014). The Skip-gram model trains the
embeddings of words w1, w2...wm by maximizing
the average log probability,

1
m

m∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt) (1)

where c is the size of the training window. Basi-
cally, p(wt+j |wt) is defined as,

p(wt+j |wt) =
exp(e

′T
t+jet)∑m

w=1 exp(e′T
w et)

(2)

wherem is the vocabulary of the unlabeled text. e
′
i

is another embedding for ei, see Morin and Bengio
(2005) for details.

169



...adiedwhenanAmericantankon...

Sentence Feature Input Convolutional Dynamic Multi-poolingFeature map 1Feature map 2Feature map 3
11max(c )

12max(c )

13max(c )

Embedding Learning Lexical Level Feature Representation Classifier OutputCWF PF EF
......

Sentence Level Feature Extraction

Figure 2: The architecture for the stage of argument classification in the event extraction. It illustrates
the processing of one instance with the predict trigger fired and the candidate argument cameraman.

3.2 Extracting Sentence-Level Features
Using a DMCNN

The CNN, with max-pooling layers, is a good
choice to capture the semantics of long-distance
words within a sentence (Collobert et al., 2011).
However, as noted in the section 1, traditional
CNN is incapable of addressing the event extrac-
tion problem. Because a sentence may contain
more than one event, using only the most impor-
tant information to represent a sentence, as in the
traditional CNN, will miss valuable clues. To re-
solve this problem, we propose a DMCNN to ex-
tract the sentence-level features. The DMCNN
uses a dynamic multi-pooling layer to obtain a
maximum value for each part of a sentence, which
is split by event triggers and event arguments.
Thus, the DMCNN is expected to capture more
valuable clues compared to traditional CNN meth-
ods.

3.2.1 Input
This subsection illustrates the input needed for a
DMCNN to extract sentence-level features. The
semantic interactions between the predicted trig-
ger words and argument candidates are crucial for
argument classification. Therefore, we propose
three types of input that the DMCNN uses to cap-
ture these important clues:

• Context-word feature (CWF): Similar to
Kalchbrenner et al. (2014) and Collobert et
al. (2011), we take all the words of the whole
sentence as the context. CWF is the vector of
each word token transformed by looking up
word embeddings.

• Position feature (PF): It is necessary to spec-

ify which words are the predicted trigger or
candidate argument in the argument classi-
fication. Thus, we proposed the PF, which
is defined as the relative distance of the cur-
rent word to the predicted trigger or candidate
argument. For example, in S3, the relative
distances of tank to the candidate argument
cameraman is 5. To encode the position fea-
ture, each distance value is also represented
by an embedding vector. Similar to word em-
bedding, Distance Values are randomly ini-
tialized and optimized through back propaga-
tion.

• Event-type feature (EF): The event type of a
current trigger is valuable for argument clas-
sification (Ahn, 2006; Hong et al., 2011; Liao
and Grishman, 2010; Li et al., 2013), so we
encode event type predicted in the trigger
classification stage as an important clue for
the DMCNN, as in the PF.

Figure 2 assumes that word embedding has size
dw = 4, position embedding has size dp = 1
and event-type embedding has size de = 1. Let
xi ∈ Rd be the d-dimensional vector representa-
tion corresponding to the i-th word in the sentence,
where d = dw + dp ∗ 2 + de. A sentence of length
n is represented as follows:

x1:n = x1 ⊕ x2 ⊕ ...⊕ xn (3)

where ⊕ is the concatenation operator. Thus,
combined word embedding, position embedding
and event-type embedding transform an instance
as a matrix X ∈ Rn×d. Then, X is fed into the
convolution part.
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3.2.2 Convolution
The convolution layer aims to capture the compo-
sitional semantics of a entire sentence and com-
press these valuable semantics into feature maps.
In general, let xi:i+j refer to the concatenation of
words xi, xi+1, ..., xi+j . A convolution operation
involves a filter w ∈ Rh×d, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h−1 by the following operator,

ci = f(w · xi:i+h−1 + b) (4)

where b ∈ R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This fil-
ter is applied to each possible window of words in
the sentence x1:h, x2:h+1, ..., xn−h+1:n to produce
a feature map ci where the index i ranges from 1
to n− h+ 1.

We have described the process of how one fea-
ture map is extracted from one filter. To capture
different features, it usually use multiple filters in
the convolution. Assuming that we use m filters
W = w1, w2, ..., wm, the convolution operation
can be expressed as:

cji = f(wj · xi:i+h−1 + bj) (5)

where j ranges from 1 tom. The convolution result
is a matrix C ∈ Rm×(n−h+1).

3.2.3 Dynamic Multi-Pooling
To extract the most important features (max value)
within each feature map, traditional CNNs (Col-
lobert et al., 2011; Kim, 2014; Zeng et al., 2014)
take one feature map as a pool and only get one
max value for each feature map. However, sin-
gle max-pooling is not sufficient for event extrac-
tion. Because in the task of this paper, one sen-
tence may contain two or more events, and one
argument candidate may play a different role with
a different trigger. To make an accurate predic-
tion, it is necessary to capture the most valuable
information with regard to the change of the can-
didate words. Thus, we split each feature map
into three parts according to the candidate argu-
ment and predicted trigger in the argument clas-
sification stage. Instead of using one max value
for an entire feature map to represent the sen-
tence, we keep the max value of each split part and
call it dynamic multi-pooling. Compared to tra-
ditional max-pooling, dynamic multi-pooling can

reserve more valuable information without miss-
ing the max-pooling value.

As shown in Figure 2, the feature map output cj
is divided into three sections cj1, cj2, cj3 by “cam-
eraman” and “fired”. The dynamic multi-pooling
can be expressed as formula 6,where 1 ≤ j ≤ m
and 1 ≤ i ≤ 3.

pji = max(cji) (6)

Through the dynamic multi-pooling layer, we
obtain the pji for each feature map. Then, we
concatenate all pji to form a vector P ∈ R3m,
which can be considered as higher-level features
(sentence-level features).

3.3 Output

The automatically learned lexical and sentence-
level features mentioned above are concatenated
into a single vector F = [L,P ]. To compute the
confidence of each argument role, the feature vec-
tor F ∈ R3m+dl , where m is the number of the
feature map and dl is the dimension of the lexical-
level features, is fed into a classifier.

O = WsF + bs (7)

Ws ∈ Rn1×(3m+dl) is the transformation ma-
trix and O ∈ Rn1 is the final output of the net-
work, where n1 is equal to the number of the ar-
gument role including the “None role” label for
the candidate argument which don’t play any role
in the event. For regularization, we also employ
dropout(Hinton et al., 2012) on the penultimate
layer, which can prevent the co-adaptation of hid-
den units by randomly dropping out a proportion p
of the hidden units during forward and backprop-
agation.

3.4 Training

We define all of the parameters for the stage
of argument classification to be trained as θ =
(E,PF1, PF2, EF,W, b,WS , bs). Specifically, E
is the word embedding, PF1 and PF2 are the posi-
tion embedding,EF is the embedding of the event
type, W and b are the parameter of the filter, Ws

and bs are all of the parameters of the output layer.
Given an input example s, the network with pa-

rameter θ outputs the vector O, where the i-th
componentOi contains the score for argument role
i. To obtain the conditional probability p(i|x, θ),
we apply a softmax operation over all argument
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role types:

p(i|x, θ) =
eoi

n1∑
k=1

eok

(8)

Given all of our (suppose T) training examples
(xi; yi), we can then define the objective function
as follows:

J (θ) =
T∑
i=1

log p(y(i)|x(i), θ) (9)

To compute the network parameter θ, we max-
imize the log likelihood J (θ) through stochastic
gradient descent over shuffled mini-batches with
the Adadelta (Zeiler, 2012) update rule.

3.5 Model for Trigger Classification
In the above sections, we presented our model and
features for argument classification. The method
proposed above is also suitable for trigger classi-
fication, but the task only need to find triggers in
the sentence, which is less complicated than argu-
ment classification. Thus we can used a simplified
version of DMCNN.

In the trigger classification, we only use the can-
didate trigger and its left and right tokens in the
lexical-level feature representation. In the feature
representation of the sentence level, we use the
same CWF as does in argument classification, but
we only use the position of the candidate trigger to
embed the position feature. Furthermore, instead
of splitting the sentence into three parts, the sen-
tence is split into two parts by a candidate trigger.
Except for the above change in the features and
model, we classify a trigger as the classification of
an argument. Both stages form the framework of
the event extraction.

4 Experiments

4.1 Dataset and Evaluation Metric
We utilized the ACE 2005 corpus as our dataset.
For comparison, as the same as Li et al. (2013),
Hong et al. (2011) and Liao and Grishman (2010),
we used the same test set with 40 newswire articles
and the same development set with 30 other docu-
ments randomly selected from different genres and
the rest 529 documents are used for training. Sim-
ilar to previous work (Li et al., 2013; Hong et al.,
2011; Liao and Grishman, 2010; Ji and Grishman,
2008), we use the following criteria to judge the
correctness of each predicted event mention:

• A trigger is correct if its event subtype and
offsets match those of a reference trigger.

• An argument is correctly identified if its event
subtype and offsets match those of any of the
reference argument mentions.

• An argument is correctly classified if its event
subtype, offsets and argument role match
those of any of the reference argument men-
tions.

Finally we use Precision (P ), Recall (R) and F
measure (F1) as the evaluation metrics.

4.2 Our Method vs. State-of-the-art Methods

We select the following state-of-the-art methods
for comparison.
1) Li’s baseline is the feature-based system pro-
posed by Li et al. (2013), which only employs
human-designed lexical features, basic features
and syntactic features.
2) Liao’s cross-event is the method proposed by
Liao and Grishman (2010), which uses document-
level information to improve the performance of
ACE event extraction.
3) Hong’s cross-entity is the method proposed by
Hong et al. (2011), which extracts event by using
cross-entity inference. To the best of our knowl-
edge, it is the best-reported feature-based system
in the literature based on gold standards argument
candidates.
4) Li’s structure is the method proposed by Li et
al. (2013), which extracts events based on struc-
ture prediction. It is the best-reported structure-
based system.

Following Li et al. (2013), we tuned the
model parameters on the development through
grid search. Moreover, in different stages of event
extraction, we adopted different parameters in the
DMCNN. Specifically, in the trigger classification,
we set the window size as 3, the number of the
feature map as 200, the batch size as 170 and the
dimension of the PF as 5. In the argument classi-
fication, we set the window size as 3, the number
of the feature map as 300, the batch size as 20 and
the dimension of the PF and EF as 5. Stochastic
gradient descent over shuffled mini-batches with
the Adadelta update rule(Zeiler, 2012) is used for
training and testing processes. It mainly contains
two parameters p and ε. We set p = 0.95 and
ε = 1e−6. For the dropout operation, we set the
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Methods Trigger
Identification(%)

Trigger Identification
+ Classification(%)

Argument
Identification(%)

Argument
Role(%)

P R F P R F P R F P R F
Li’s baseline 76.2 60.5 67.4 74.5 59.1 65.9 74.1 37.4 49.7 65.4 33.1 43.9
Liao’s cross-event N/A 68.7 68.9 68.8 50.9 49.7 50.3 45.1 44.1 44.6
Hong’s cross-entity N/A 72.9 64.3 68.3 53.4 52.9 53.1 51.6 45.5 48.3
Li’s structure 76.9 65.0 70.4 73.7 62.3 67.5 69.8 47.9 56.8 64.7 44.4 52.7
DMCNN model 80.4 67.7 73.5 75.6 63.6 69.1 68.8 51.9 59.1 62.2 46.9 53.5

Table 1: Overall performance on blind test data

rate = 0.5. We train the word embedding using
the Skip-gram algorithm 2 on the NYT corpus 3.

Table 1 shows the overall performance on the
blind test dataset. From the results, we can see
that the DMCNN model we proposed with the
automatically learned features achieves the best
performance among all of the compared meth-
ods. DMCNN can improve the best F1 (Li et
al., 2013) in the state-of-the-arts for trigger clas-
sification by 1.6% and argument role classifica-
tion by 0.8%. This demonstrates the effective-
ness of the proposed method. Moreover, a com-
parison of Liao’s cross-event with Li’s baseline il-
lustrates that Liao’s cross-event achieves a better
performance. We can also make the same obser-
vation when comparing Hong’s cross-entity with
Liao’s cross-event and comparing Li’s structure
with Hong’s cross-entity. It proves that richer
feature sets lead to better performance when us-
ing traditional human-designed features. How-
ever, our method could obtain further better re-
sults on the condition of only using automatically
learned features from original words. Specifically,
compared to Hong’s cross-entity, it gains 0.8% im-
provement on trigger classification F1 and 5.2%
improvement on argument classification F1. We
believe the reason is that the features we automati-
cally learned can capture more meaningful seman-
tic regularities of words. Remarkably, compared
to Li’s structure, our approach with sentence and
lexical features achieves comparable performance
even though we do not use complicated NLP tools.

4.3 Effect of The DMCNN on Extracting
Sentence-Level Features

In this subsection, we prove the effectiveness of
the proposed DMCNN for sentence-level feature
extraction. We specifically select two methods as
baselines for comparison with our DMCNN: Em-
beddings+T and CNN. Embeddings+T uses word

2https://code.google.com/p/word2vec/
3https://catalog.ldc.upenn.edu/LDC2008T19

embeddings as lexical-level features and tradi-
tional sentence-level features based on human de-
sign (Li et al., 2013). A CNN is similar to a
DMCNN, except that it uses a standard convolu-
tional neural network with max-pooling to capture
sentence-level features. By contrast, a DMCNN
uses the dynamic multi-pooling layer in the net-
work instead of the max-pooling layer in a CNN.
Moreover, to prove that a DMCNN could capture
more precise sentence-level features, especially
for those sentences with multiple events, we divide
the testing data into two parts according the event
number in a sentence (single event and multiple
events) and perform evaluations separately. Table
2 shows the proportion of sentences with multiple
events or a single event and the proportion of argu-
ments that attend one event or more events within
one sentence in our dataset. Table 3 shows the re-
sults.

Stage 1/1 (%) 1/N (%)
Trigger 72.7 27.3

Argument 76.8 23.2

Table 2: The proportion of multiple events within
one sentence. 1/1 means that one sentence only
has one trigger or one argument plays a role in one
sentence; otherwise, 1/N is used.

Table 3 illustrates that the methods based on
convolutional neural networks (CNN and DM-
CNN) outperform Embeddings+T. It proves that
convolutional neural networks could be more ef-
fective than traditional human-design strategies
for sentence-level feature extraction. In table 3, for
all sentences, our method achieves improvements
of approximately 2.8% and 4.6% over the CNN.
The results prove the effectiveness of the dynamic
multi-pooling layer. Interestingly, the DMCNN
yields a 7.8% improvement for trigger classifica-
tion on the sentences with multiple events. This
improvement is larger than in sentences with a sin-
gle event. Similar observations can be made for
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the argument classification results. This demon-
strates that the proposed DMCNN can effectively
capture more valuable clues than the CNN with
max-pooling, especially when one sentence con-
tains more than one event.

Stage Method 1/1 1/N all
F1 F1 F1

Trigger
Embedding+T 68.1 25.5 59.8

CNN 72.5 43.1 66.3
DMCNN 74.3 50.9 69.1

Argument
Embedding+T 37.4 15.5 32.6

CNN 51.6 36.6 48.9
DMCNN 54.6 48.7 53.5

Table 3: Comparison of the event extraction scores
obtained for the Traditional, CNN and DMCNN
models

4.4 Effect of Word Embedding on Extracting
Lexical-Level Features

This subsection studies the effectiveness of our
word embedding for lexical features. For compar-
ison purposes, we select the baseline described by
Li et al. (2013) as the traditional method, which
uses traditional lexical features, such as n-grams,
POS tags and some entity information. In con-
trast, we only use word embedding as our lexical
feature. Moreover, to prove that word embedding
could capture more valuable semantics, especially
for those words in the test data that never appear
to be the same event type or argument role in the
training data, we divide the triggers and arguments
in the testing data into two parts (1: appearing in
testing data only, or 2: appearing in both testing
and training data with the same event type or argu-
ment role) and perform evaluations separately. For
triggers, 34.9% of the trigger words in the test data
never appear to be the same event type in the train-
ing data. This proportion is 83.1% for arguments.
The experimental results are shown in Table 4.

Table 4 illustrates that for all situations, our
method makes significant improvements com-
pared with the traditional lexical features in the
classification of both the trigger and argument.
For situation B, the lexical-level features extracted
from word embedding yield a 18.8% improvement
for trigger classification and an 8.5% improvement
for argument classification. This occurs because
the baseline only uses discrete features, so they
suffer from data sparsity and could not adequately
handle a situation in which a trigger or argument
does not appear in the training data.

Stage Method A B All
F1 F1 F1

Trigger Traditional 68.8 14.3 61.2
Ours 70.7 33.1 64.9

Argument Traditional 58.5 22.2 34.6
Ours 59.5 30.7 40.2

Table 4: Comparison of the results for the tradi-
tional lexical feature and our lexical feature. A de-
notes the triggers or arguments appearing in both
training and test datasets, and B indicates all other
cases.

4.5 Lexical features vs. Sentence Features

To compare the effectiveness of different levels of
features, we extract events by using lexical fea-
tures and sentence features separately. The results
obtained using the DMCNN are shown in table
5. Interestingly, in the trigger-classification stage,
the lexical features play an effective role, whereas
the sentence features play a more important role in
the argument-classification stage. The best results
are achieved when we combine lexical-level and
sentence-level features. This observation demon-
strates that both of the two-level features are im-
portant for event extraction.

Feature Trigger Argument
F1 F1

Lexical 64.9 40.2
Sentence 63.8 50.7
Combine 69.1 53.5

Table 5: Comparison of the trigger-classification
score and argument-classification score obtained
by lexical-level features, sentence-level features
and a combination of both

5 Related Work

Event extraction is one of important topics in NLP.
Many approaches have been explored for event ex-
traction. Nearly all of the ACE event extraction
use supervised paradigm. We further divide super-
vised approaches into feature-based methods and
structure-based methods.

In feature-based methods, a diverse set of strate-
gies has been exploited to convert classification
clues (such as sequences and parse trees) into
feature vectors. Ahn (2006) uses the lexical
features(e.g., full word, pos tag), syntactic fea-
tures (e.g., dependency features) and external-
knowledge features(WordNet) to extract the event.
Inspired by the hypothesis of “One Sense Per Dis-
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course”(Yarowsky, 1995), Ji and Grishman (2008)
combined global evidence from related documents
with local decisions for the event extraction. To
capture more clues from the texts, Gupta and Ji
(2009), Liao and Grishman (2010) and Hong et al.
(2011) proposed the cross-event and cross-entity
inference for the ACE event task. Although these
approaches achieve high performance, feature-
based methods suffer from the problem of select-
ing a suitable feature set when converting the clas-
sification clues into feature vectors.

In structure-based methods, researchers treat
event extraction as the task of predicting the struc-
ture of the event in a sentence. McClosky et al.
(2011) casted the problem of biomedical event ex-
traction as a dependency parsing problem. Li et
al. (2013) presented a joint framework for ACE
event extraction based on structured perceptron
with beam search. To use more information from
the sentence, Li et al. (2014) proposed to extract
entity mentions, relations and events in ACE task
based on the unified structure. These methods
yield relatively high performance. However, the
performance of these methods depend strongly on
the quality of the designed features and endure the
errors in the existing NLP tools.

6 Conclusion

This paper proposes a novel event extraction
method, which can automatically extract lexical-
level and sentence-level features from plain texts
without complicated NLP preprocessing. A word-
representation model is introduced to capture lex-
ical semantic clues and a dynamic multi-pooling
convolutional neural network (DMCNN) is de-
vised to encode sentence semantic clues. The ex-
perimental results prove the effectiveness of the
proposed method.
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Abstract

We present results on using stacking to en-
semble multiple systems for the Knowl-
edge Base Population English Slot Fill-
ing (KBP-ESF) task. In addition to us-
ing the output and confidence of each sys-
tem as input to the stacked classifier, we
also use features capturing how well the
systems agree about the provenance of
the information they extract. We demon-
strate that our stacking approach outper-
forms the best system from the 2014 KBP-
ESF competition as well as alternative en-
sembling methods employed in the 2014
KBP Slot Filler Validation task and several
other ensembling baselines. Additionally,
we demonstrate that including provenance
information further increases the perfor-
mance of stacking.

1 Introduction

Using ensembles of multiple systems is a stan-
dard approach to improving accuracy in machine
learning (Dietterich, 2000). Ensembles have been
applied to a wide variety of problems in natural
language processing, including parsing (Hender-
son and Brill, 1999), word sense disambiguation
(Pedersen, 2000), and sentiment analysis (White-
head and Yaeger, 2010). This paper presents a de-
tailed study of ensembling methods for the TAC
Knowledge Base Population (KBP) English Slot
Filling (ESF) task (Surdeanu, 2013; Surdeanu and
Ji, 2014).

We demonstrate new state-of-the-art results on
this KBP task using stacking (Wolpert, 1992),
which trains a final classifier to optimally com-
bine the results of multiple systems. We present
results for stacking all systems that competed in
both the 2013 and 2014 KBP-ESF tracks, training

∗ These authors contributed equally

on 2013 data and testing on 2014 data. The re-
sulting stacked ensemble outperforms all systems
in the 2014 competition, obtaining an F1 of 48.6%
compared to 39.5% for the best performing system
in the most recent competition.

Although the associated KBP Slot Filler Val-
idation (SFV) Track (Wang et al., 2013; Yu et
al., 2014; Sammons et al., 2014) is officially fo-
cused on improving the precision of individual ex-
isting systems by filtering their results, frequently
participants in this track also combine the results
of multiple systems and also report increased re-
call through this use of ensembling. However,
SFV participants have not employed stacking, and
we demonstrate that our stacking approach out-
performs existing published SFV ensembling sys-
tems.

KBP ESF systems must also provide prove-
nance information, i.e. each extracted slot-filler
must include a pointer to a document passage that
supports it (Surdeanu and Ji, 2014). Some SFV
systems have used this provenance information to
help filter and combine extractions (Sammons et
al., 2014). Therefore, we also explored enhancing
our stacking approach by including additional in-
put features that capture provenance information.
By including features that quantify how much the
ensembled systems agree on provenance, we fur-
ther improved our F1 score for the 2014 ESF task
to 50.1%.

The remainder of the paper is organized as fol-
lows. Section 2 provides background information
on existing KBP-ESF systems and stacking. Sec-
tion 3 provides general background on the KBP-
ESF task. Section 4 describes our stacking ap-
proach, including how provenance information is
used. Section 5 presents comprehensive exper-
iments comparing this approach to existing re-
sults and several additional baselines, demonstrat-
ing new state-of-the-art results on KBP-ESF. Sec-
tion 6 reviews prior related work on ensembling
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for information extraction. Section 7 presents our
final conclusions and proposed directions for fu-
ture research.

2 Background

For the past few years, NIST has been conducting
the English Slot Filling (ESF) Task in the Knowl-
edge Base Population (KBP) track among various
other tasks as a part of the Text Analysis Con-
ference(TAC)(Surdeanu, 2013; Surdeanu and Ji,
2014). In the ESF task, the goal is to fill spe-
cific slots of information for a given set of query
entities (people or organizations) based on a sup-
plied text corpus. The participating systems em-
ploy a variety of techniques in different stages
of the slot filling pipeline, such as entity search,
relevant document extraction, relation modeling
and inference. In 2014, the top performing sys-
tem, DeepDive with Expert Advice from Stanford
University (Wazalwar et al., 2014), employed dis-
tant supervision (Mintz et al., 2009) and Markov
Logic Networks (Domingos et al., 2008) in their
learning and inferencing system. Another system,
RPI BLENDER (Hong et al., 2014), used a re-
stricted fuzzy matching technique in a framework
that learned event triggers and employed them to
extract relations from documents.

Given the diverse set of slot-filling systems
available, it is interesting to explore methods for
ensembling these systems. In this regard, TAC
also conducts a Slot Filler Validation (SFV) task
who goal is to improve the slot-filling performance
using the output of existing systems. The input
for this task is the set of outputs from all slot-
filling systems and the expected output is a filtered
set of slot fills. As with the ESF task, partici-
pating systems employ a variety of techniques to
perform validation. For instance, RPI BLENDER
used a Multi-dimensional Truth Finding model
(Yu et al., 2014) which is an unsupervised vali-
dation approach based on computing multidimen-
sional credibility scores. The UI CCG system
(Sammons et al., 2014) developed two different
validation systems using entailment and majority
voting.

However, stacking (Sigletos et al., 2005;
Wolpert, 1992) has not previously been employed
for ensembling KBP-ESF systems. In stacking, a
meta-classifier is learned from the output of multi-
ple underlying systems. In our work, we translate
this to the context of ensembling slot filling sys-

tems and build a stacked meta-classifier that learns
to combine the results from individual slot filling
systems. We detail our stacking approach for en-
sembling existing slot filling systems in Section 4.

3 Overview of KBP Slot Filling Task

The goal of the TAC KBP-ESF task (Surdeanu,
2013; Surdeanu and Ji, 2014) is to collect infor-
mation (fills) about specific attributes (slots) for a
set of entities (queries) from a given corpus. The
queries vary in each year of the task and can be
either a person (PER) or an organization (ORG)
entity. The slots are fixed and are listed in Ta-
ble 1 by entity type. Some slots (like per:age) are
single-valued while others (like per:children) are
list-valued i.e., they can take multiple slot fillers.

3.1 Input and Output

The input for the task is a set of queries and the
corpus in which to look for information. The
queries are provided in an XML format containing
basic information including an ID for the query,
the name of the entity, and the type of entity (PER
or ORG). The corpus consists of documents for-
mat from discussion forums, newswire and the In-
ternet. Each document is identified by a unique
document ID.

The output for the task is a set of slot fills for
each input query. Depending on the type, each
query should have a NIL or one or more lines of
output for each of the corresponding slots. The
output line for each slot fill contains the fields
shown in Table 2. The query ID in Column 1
should match the ID of the query given as input.
The slot name (Column 2) is one of the slots listed
in Table 1 based on entity type. Run ID (Column
3) is a unique identifier for each system. Column
4 contains a NIL filler if the system could not find
any relevant slot filler. Otherwise, it contains the
relation provenance. Provenance is of the form
docid:startoffset-endoffset, where docid specifies
a source document from the corpus and the offsets
demarcate the text in this document supporting the
relation. The offsets correspond to the spans of
the candidate document that describe the relation
between the query entity and the extracted slot
filler. Column 5 contains the extracted slot filler.
Column 6 is a filler provenance that is similar in
format to relation provenance but in this case the
offset corresponds to the portion of the document
containing the extracted filler. Column 7 is a confi-
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Person Organization
per:alternate names per:cause of death org:country of headquarters org:founded by
per:date of birth per:countries of residence org:stateorprovince of headquarters org:date dissolved
per:age per:statesorprovinces of residence org:city of headquarters org:website
per:parents per:cities of residence org:shareholders org:date founded
per:spouse per:schools attended org:top members employees org:members
per:city of birth per:city of death org:political religious affiliation org:member of
per:origin per:stateorprovince of death org:number of employees members org:subsidiaries
per:other family per:country of death org:alternate names org:parents
per:title per:employee or member of
per:religion per:stateorprovince of birth
per:children per:country of birth
per:siblings per:date of death
per:charges

Table 1: Slots for PER and ORG queries

dence score which systems can provide to indicate
their certainty in the extracted information.

3.2 Scoring

The scoring for the ESF task is carried out as fol-
lows. The responses from all slot-filling systems
are pooled and a key file is generated by having
human assessors judge the correctness of these re-
sponses. In addition, LDC includes a manual key
of fillers that were determined by human judges.
Using the union of these keys as the gold standard,
precision, recall, and F1 scores are computed.

Column Field Description
Column 1 Query ID
Column 2 Slot name
Column 3 Run ID
Column 4 NIL or Relation Provenance
Column 5 Slot filler
Column 6 Filler Provenance
Column 7 Confidence score

Table 2: SF Output line fields

4 Ensembling Slot-Filling Systems

Given a set of query entities and a fixed set of slots,
the goal of ensembling is to effectively combine
the output of different slot-filling systems. The in-
put to the ensembling system is the output of in-
dividual systems (in the format described in previ-
ous section) containing slot fillers and additional
information such as provenance and confidence
scores. The output of the ensembling system is
similar to the output of an individual system, but
it productively aggregates the slot fillers from dif-
ferent systems.

4.1 Algorithm

This section describes our ensembling approach
which trains a final binary classifier using features
that help judge the reliability and thus correctness
of individual slot fills. In a final post-processing
step, the slot fills that get classified as “correct” by
the classifier are kept while the others are set to
NIL.

4.1.1 Stacking
Stacking is a popular ensembling method in ma-
chine learning (Wolpert, 1992) and has been suc-
cessfully used in many applications including the
top performing systems in the Netflix competition
(Sill et al., 2009). The idea is to employ multiple
learners and combine their predictions by training
a “meta-classifier” to weight and combine multi-
ple models using their confidence scores as fea-
tures. By training on a set of supervised data that
is disjoint from that used to train the individual
models, it learns how to combine their results into
an improved ensemble model. We employ a single
classifier to train and test on all slot types using an
L1-regularized SVM with a linear kernel (Fan et
al., 2008).

4.1.2 Using Provenance
As discussed above, each system provides prove-
nance information for every non-NIL slot filler.
There are two kinds of provenance provided: the
relation provenance and the filler provenance. In
our algorithm, we only use the filler provenance
for a given slot fill. This is because of the changes
in the output formats for the ESF task from 2013 to
2014. Specifically, the 2013 specification requires
separate entity and justification provenance fields,
but the 2014 collapses these into a single relation
provenance field. An additional filler provenance
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field is common to both specifications. Hence,
we use the filler provenance that is common be-
tween 2013 and 2014 formats. As described ear-
lier, every provenance has a docid and startoffset-
endoffset that gives information about the docu-
ment and offset in the document from where the
slot fill has been extracted. The UI-CCG SFV sys-
tem Sammons et al. (2014) effectively used this
provenance information to help validate and filter
slot fillers. This motivated us to use provenance
in our stacking approach as additional features as
input to the meta-classifier.

We use provenance in two ways, first using
the docid information, and second using the off-
set information. We use the docids to define a
document-based provenance score in the follow-
ing way: for a given query and slot, if N sys-
tems provide answers and a maximum of n of
those systems give the same docid in their filler
provenance, then the document provenance score
for those n slot fills is n/N . Similarly, other slot
fills are given lower scores based on the fraction of
systems whose provenance document agree with
theirs. Since this provenance score is weighted
by the number of systems that refer to the same
provenance, it measures the reliability of a slot
fill based on the document from where it was ex-
tracted.

Our second provenance measure uses offsets.
The degree of overlap among the various systems’
offsets can also be a good indicator of the reliabil-
ity of the slot fill. The Jaccard similarity coeffi-
cient is a statistical measure of similarity between
sets and is thus useful in measuring the degree of
overlap among the offsets of systems. Slot fills
have variable lengths and thus the provenance off-
set ranges are variable too. A metric such as the
Jaccard coefficient captures the overlapping off-
sets along with normalizing based on the union
and thus resolving the problem with variable offset
ranges. For a given query and slot, if N systems
that attempt to fill it have the same docid in their
document provenance, then the offset provenance
(OP) score for a slot fill by a system x is calculated
as follows:

OP (x) =
1
|N | ×

∑
i∈N,i6=x

|offsets(i) ∩ offsets(x)|
|offsets(i) ∪ offsets(x)|

Per our definition, systems that extract slot fills
from different documents for the same query slot
have zero overlap among offsets. We note that the

offset provenance is always used along with the
document provenance and thus useful in discrim-
inating slot fills extracted from a different docu-
ment for the same query slot. Like the document
provenance score, the offset provenance score is
also a weighted feature and is a measure of relia-
bility of a slot fill based on the offsets in the docu-
ment from where it is extracted. Unlike past SFV
systems that use provenance for validation, our ap-
proach does not need access to the large corpus of
documents from where the slot fills are extracted
and is thus very computationally inexpensive.

4.2 Eliminating Slot-Filler Aliases

When combining the output of different ESF sys-
tems, it is possible that some slot-filler entities
might overlap with each other. An ESF system
could extract a filler F1 for a slot S while another
ESF system extracts another filler F2 for the same
slot S. If the extracted fillers F1 and F2 are aliases
(i.e. different names for the same entity), the scor-
ing system for the TAC KBP SF task considers
them redundant and penalizes the precision of the
system.

In order to eliminate aliases from the output of
ensembled system, we employ a technique derived
by inverting the scheme used by the LSV ESF sys-
tem (Roth et al., 2013) for query expansion. LSV
ESF uses a Wikipedia anchor-text model (Roth
and Klakow, 2010) to generate aliases for given
query entities. By including aliases for query
names, the ESF system increase the number of
candidate sentences fetched for the query.

To eliminate filler aliases, we apply the same
technique to generate aliases for all slot fillers of
a given query and slot type. Given a slot filler,
we obtain the Wikipedia page that is most likely
linked to the filler text. Then, we obtain the anchor
texts and their respective counts from all other
Wikipedia pages that link to this page. Using these
counts, we choose top N (we use N=10 as in
LSV) and pick the corresponding anchor texts as
aliases for the given slot filler. Using the gener-
ated aliases, we then verify if any of the slot fillers
are redundant with respect to these aliases. This
scheme is not applicable to slot types whose fillers
are not entities (like date or age). Therefore, sim-
pler matching schemes are used to eliminate re-
dundancies for these slot types.
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Common systems dataset All 2014 SFV systems dataset

Figure 1: Precision-Recall curves for identifying the best voting performance on the two datasets

5 Experimental Evaluation

This section describes a comprehensive set of ex-
periments evaluating ensembling for the KBP ESF
task. Our experiments are divided into two sub-
sets based on the datasets they employ. Since
our stacking approach relies on 2013 SFV data
for training, we build a dataset of one run for ev-
ery team that participated in both the 2013 and
2014 competitions and call it the common systems
dataset. There are 10 common teams of the 17
teams that participated in ESF 2014. The other
dataset comprises of all 2014 SFV systems (in-
cluding all runs of all 17 teams that participated in
2014). There are 10 systems in the common sys-
tems dataset, while there are 65 systems in the all
2014 SFV dataset. Table 3 gives a list of the com-
mon systems for 2013 and 2014 ESF task. ESF
systems do change from year to year and it’s not a
perfect comparison, but systems generally get bet-
ter every year and thus we are probably only un-
derperforming.

Common Systems
LSV
IIRG

UMass IESL
Stanford

BUPT PRIS
RPI BLENDER

CMUML
NYU

Compreno
UWashington

Table 3: Common teams for 2013 and 2014 ESF

5.1 Methodology and Results

For our unsupervised ensembling baselines, we
evaluate on both the common systems dataset as
well as the entire 2014 SFV dataset. We compare
our stacking approach to three unsupervised base-
lines. The first is Union which takes the combina-
tion of values for all systems to maximize recall.
If the slot type is list-valued, it classifies all slot
fillers as correct and always includes them. If the
slot type is single-valued, if only one systems at-
tempts to answer it, then it includes that system’s
slot fill. Otherwise if multiple systems produce
a response, it only includes the slot fill with the
highest confidence value as correct and discards
the rest.

The second baseline is Voting. For this ap-
proach, we vary the threshold on the number of
systems that must agree on a slot fill from one
to all. This gradually changes the system from
the union to intersection of the slot fills, and we
identify the threshold that results in the highest
F1 score. We learn a threshold on the 2013 SFV
dataset (containing 52 systems) that results in the
best F1 score. We use this threshold for the voting
baseline on 2014 SFV dataset. As we did for the
2013 common systems dataset, we learn a thresh-
old on the 2013 common systems that results in the
best F1 score and use this threshold for the voting
baseline on 2014 common systems.

The third baseline is an “oracle threshold” ver-
sion of Voting. Since the best threshold for 2013
may not necessarily be the best threshold for 2014,
we identify the best threshold for 2014 by plot-
ting a Precision-Recall curve and finding the best
F1 score for the voting baseline on both the SFV
and common systems datasets. Figure 1 shows the
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Figure 2: Our system pipeline for evaluating supervised ensembling approaches

Baseline Precision Recall F1
Union 0.067 0.762 0.122

Voting (threshold learned on 2013 data) 0.641 0.288 0.397
Voting (optimal threshold for 2014 data) 0.547 0.376 0.445

Table 4: Performance of baselines on all 2014 SFV dataset (65 systems)

Approach Precision Recall F1
Union 0.176 0.647 0.277

Voting (threshold learned on 2013 data) 0.694 0.256 0.374
Best ESF system in 2014 (Stanford) 0.585 0.298 0.395

Voting (optimal threshold for 2014 data) 0.507 0.383 0.436
Stacking 0.606 0.402 0.483

Stacking + Relation 0.607 0.406 0.486
Stacking + Provenance (document) 0.499 0.486 0.492

Stacking + Provenance (document) + Relation 0.653 0.400 0.496
Stacking + Provenance (document and offset) + Relation 0.541 0.466 0.501

Table 5: Performance on the common systems dataset (10 systems) for various configurations. All
approaches except the Stanford system are our implementations.

Precision-Recall curve for two datasets for finding
the best possible F1 score using the voting base-
line. We find that for the common systems dataset,
a threshold of 3 (of 10) systems gives the best F1
score, while for the entire 2014 SFV dataset, a
threshold of 10 (of 65) systems gives the highest
F1. Note that this gives an upper bound on the
best results that can be achieved with voting, as-
suming an optimal threshold is chosen. Since the
upper bound can not be predicted without using
the 2014 dataset, this baseline has an unfair ad-
vantage. Table 4 shows the performance of all 3
baselines on the all 2014 SFV systems dataset.

For all our supervised ensembling approaches,
we train on the 2013 SFV data and test on the
2014 data for the common systems. We have
5 different supervised approaches. Our first ap-
proach is stacking the common systems using
their confidence scores to learn a classifier. As
discussed earlier, in stacking we train a meta-
classifier that combines the systems using their
confidence scores as features. Since the com-
mon systems dataset has 10 systems, this classifier

uses 10 features. The second approach also pro-
vides stacking with a nominal feature giving the
relation name (as listed in Table 1) for the given
slot instance. This allows the system to learn dif-
ferent evidence-combining functions for different
slot types if the classifier finds this useful. For
our third approach, we also provide the document
provenance feature described in Section 4.1. Al-
together this approach has 11 features (10 confi-
dence score + 1 document provenance score). The
fourth approach uses confidences, the document
provenance feature, and a one-hot encoding of the
relation name for the slot instance. Our final ap-
proach also includes the offset provenance (OP)
feature discussed in Section 4.1. There are alto-
gether 13 features in this approach. All our su-
pervised approaches use the Weka package (Hall
et al., 2009) for training the meta-classifier, using
an L1-regularized SVM with a linear kernel (other
classifiers gave similar results). Figure 2 shows
our system pipeline for evaluating supervised en-
sembling approaches. Table 5 gives the perfor-
mance of all our supervised approaches as well as
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our unsupervised baselines for the common sys-
tems dataset.

Analysis by Surdeanu and Ji (2014) suggests
that 2014 ESF queries are more difficult than those
for 2013. They compare two systems by running
both on 2013 and 2014 data and find there is a con-
siderable drop in the performance of both the sys-
tems. We note that they run the same exact system
on 2013 and 2014 data. Thus, in order to have a
better understanding of our results, we plot a learn-
ing curve by training on different sizes of the 2013
SFV data and using the scorer to measure the F1
score on the 2014 SFV data for the 10 common
systems. Figure 3 shows the learning curve thus
obtained. Although there are certain parts of the
dataset when the F1 score drops which we sus-
pect is due to overfitting the 2013 data, there is
still a strong correlation between the 2013 training
data size and F1 score on the 2014 dataset. Thus
we can infer that training on 2013 data is useful
even though the 2013 and 2014 data are fairly dif-
ferent. Although the queries change, the common
systems remain more-or-less the same and stack-
ing enables a meta-classifier to weigh those com-
mon systems based on their 2013 performance.

Figure 3: Learning curve for training on 2013 and
testing on 2014 common systems dataset

To further validate our approach, we divide the
2013 SFV data based on the systems that extracted
those slot fills. Then we sort the systems, from
higher to lower, based on the number of false pos-
itives produced by them in the ensembling ap-
proach. Next we train a classifier in an incremen-
tal fashion adding one system’s slot fills for train-
ing at each step and analyzing the performance on
2014 data. This allows us to analyze the results
at the system level. Figure 4 shows the plot of

F1 score vs. the number of systems at each step.
The figure shows huge improvement in F1 score
at steps 6 and 7. At step 6 the Stanford system
is added to the pool of systems which is the best
performing ESF system in 2014 and fourth best
in 2013. At step 7, the UMass system is added
to the pool and, although the system on it own
is weak, it boosts the performance of our ensem-
bling approach. This is because the UMass system
alone contributes approximately 24% of the 2013
training data (Singh et al., 2013). Thus adding
this one system significantly improves the training
step leading to better performance. We also no-
tice that our system becomes less conservative at
this step and has higher recall. The reason for this
is that the systems from 1 to 5 had very high pre-
cision and low recall whereas from system 6 on-
wards the systems have high recall. Thus adding
the UMass system enables our meta-classifier to
have a higher recall for small decrease in precision
and thus boosting the overall F1 measure. With-
out it, the classifier produces high precision but
low recall and decreases the overall F1 score by
approximately 6 points.

Figure 4: Incrementally training on 2013 by
adding a system at each step and testing on 2014
common systems dataset

We also experimented with cross validation
within the 2014 dataset. Since we used only 2014
data for this experiment, we also included the rela-
tion provenance as discussed in Section 4.1.2. Ta-
ble 6 shows the results on 10-fold cross-validation
on 2014 data with only the filler provenance and
with both the filler and relation provenance. The
performance of using only the filler provenance is
slightly worse than training on 2013 because the
2014 SFV data has many fewer instances but uses
more systems for learning compared to the 2013

183



Approach Precision Recall F1
Stacking + Filler provenance + Relation 0.606 0.415 0.493

Stacking + Filler and Relation provenance + Relation 0.609 0.434 0.506

Table 6: 10-fold Cross-Validation on 2014 SFV dataset (65 systems)

Baseline Precision Recall F1
Union 0.054 0.877 0.101

Voting (threshold learned on 2013 data) 0.637 0.406 0.496
Voting (optimal threshold for 2014 data) 0.539 0.526 0.533

Table 7: Baseline performance on all 2014 SFV dataset (65 systems) using unofficial scorer

Approach Precision Recall F1
Union 0.177 0.922 0.296

Voting (threshold learned on 2013 data) 0.694 0.256 0.374
Best published SFV result in 2014 (UIUC) 0.457 0.507 0.481
Voting (optimal threshold for 2014 data) 0.507 0.543 0.525

Stacking + Provenance(document) 0.498 0.688 0.578
Stacking 0.613 0.562 0.586

Stacking + Relation 0.613 0.567 0.589
Stacking + Provenance (document and offset) + Relation 0.541 0.661 0.595

Stacking + Provenance (document) + Relation 0.659 0.56 0.606

Table 8: Performance on the common systems dataset (10 systems) for various configurations using the
unofficial scorer. All approaches except the UIUC system are our implementations.

SFV data.

The TAC KBP official scoring key for the ESF
task includes human annotated slot fills along with
the pooled slot fills obtained by all participating
systems. However, Sammons et al. (2014) use
an unofficial scoring key in their paper that does
not include human annotated slot fills. In order
to compare to their results, we also present results
using the same unofficial key. Table 7 gives the
performance of our baseline systems on the 2014
SFV dataset using the unofficial key for scoring.
We note that our Union does not produce a recall
of 1.0 on the unofficial scorer due to our single-
valued slot selection strategy for multiple systems.
As discussed earlier for the single-valued slot, we
include the slot fill with highest confidence (which
may not necessarily be correct) and thus may not
match the unofficial scorer.

Table 8 gives the performance of all our super-
vised approaches along with the baselines on the
common systems dataset using the unofficial key
for scoring. UIUC is one of the two teams par-
ticipating in the SFV 2014 task and the only team
to report results, but they report 6 different sys-

tem configurations and we show their best perfor-
mance.

5.2 Discussion

Our results indicate that stacking with provenance
information and relation type gives the best perfor-
mance using both the official ESF scorer as well
as the unofficial scorer that excludes the human-
generated slot fills. Our stacking approach that
uses the 10 systems common between 2013 and
2014 also outperforms the ensembling baselines
that have the advantage of using all 65 of the 2014
systems. Our stacking approach would presum-
ably perform even better if we had access to 2013
training data for all 2014 systems.

Of course, the best-performing ESF system for
2014 did not have access to the pooled slot fills
of all participating systems. Although pooling
the results has an advantage, naive pooling meth-
ods such as the ensembling baselines, in particu-
lar the voting approach, do not perform as well as
our stacked ensembles. Our best approach outper-
forms the best baseline for both the datasets by at
least 6 F1 points using both the official and unof-
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ficial scorer.
As expected the Union baseline has the highest

recall. Among the supervised approaches, stack-
ing with document provenance produces the high-
est precision and is significantly higher (approx-
imately 5%) than the approach that produces the
second highest precision. As discussed earlier, we
also scored our approaches on the unofficial scorer
so that we can compare our results to the UIUC
system that was the best performer in the 2014
SFV task. Our best approach beats their best sys-
tem configuration by a F1 score of 12 points. Our
stacking approach also outperforms them on pre-
cision and recall by a large margin.

6 Related Work

Our system is part of a body of work on increas-
ing the performance of relation extraction through
ensemble methods.

The use of stacked generalization for informa-
tion extraction has been demonstrated to outper-
form both majority voting and weighted voting
methods (Sigletos et al., 2005). In relation ex-
traction, a stacked classifier effectively combines
a supervised, closed-domain Conditional Ran-
dom Field-based relation extractor with an open-
domain CRF Open IE system, yielding a 10% in-
crease in precision without harming recall (Banko
et al., 2008). To our knowledge, we are the first to
apply stacking to KBP and the first to use prove-
nance as a feature in a stacking approach.

Many KBP SFV systems cast validation as
a single-document problem and apply a vari-
ety of techniques, such as rule-based consistency
checks (Angeli et al., 2013), and techniques from
the well-known Recognizing Textual Entailment
(RTE) task (Cheng et al., 2013; Sammons et al.,
2014). In contrast, the 2013 JHUAPL system ag-
gregates the results of many different extractors
using a constraint optimization framework, ex-
ploiting confidence values reported by each input
system (Wang et al., 2013). A second approach in
the UI CCG system (Sammons et al., 2014) aggre-
gates results of multiple systems by using majority
voting.

In the database, web-search, and data-mining
communities, a line of research into “truth-
finding” or “truth-discovery” methods addresses
the related problem of combining evidence for
facts from multiple sources, each with a latent
credibility (Yin et al., 2008). The RPI BLENDER

KBP system (Yu et al., 2014) casts SFV in this
framework, using a graph propagation method that
modeled the credibility of systems, sources, and
response values. However they only report scores
on the 2013 SFV data which contain less com-
plicated and easier queries compared to the 2014
data. Therefore, we cannot directly compare our
system’s performance to theirs.

Google’s Knowledge Vault system (Dong et al.,
2014) combines the output of four diverse extrac-
tion methods by building a boosted decision stump
classifier (Reyzin and Schapire, 2006). For each
proposed fact, the classifier considers both the
confidence value of each extractor and the number
of responsive documents found by the extractor.
A separate classifier is trained for each predicate,
and Platt Scaling (Platt, 1999) is used to calibrate
confidence scores.

7 Conclusion

This paper has presented experimental results
showing that stacking is a very promising ap-
proach to ensembling KBP systems. From our
literature survey, we observe that we are the first
to employ stacking and combine it with prove-
nance information to ensemble KBP systems. Our
stacked meta-classifier provides an F1 score of
50.1% on 2014 KBP ESF, outperforming the best
ESF and SFV systems from the 2014 competition,
and thereby achieving a new state-of-the-art for
this task. We found that provenance features in-
creased accuracy, highlighting the importance of
provenance information (even without accessing
the source corpus) in addition to confidence scores
for ensembling information extraction systems.
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Abstract

This paper presents a generative model to
event schema induction. Previous meth-
ods in the literature only use head words
to represent entities. However, elements
other than head words contain useful in-
formation. For instance, an armed man
is more discriminative than man. Our
model takes into account this information
and precisely represents it using proba-
bilistic topic distributions. We illustrate
that such information plays an important
role in parameter estimation. Mostly, it
makes topic distributions more coherent
and more discriminative. Experimental
results on benchmark dataset empirically
confirm this enhancement.

1 Introduction

Information Extraction was initially defined (and
is still defined) by the MUC evaluations (Grish-
man and Sundheim, 1996) and more specifically
by the task of template filling. The objective of
this task is to assign event roles to individual tex-
tual mentions. A template defines a specific type
of events (e.g. earthquakes), associated with se-
mantic roles (or slots) hold by entities (for earth-
quakes, their location, date, magnitude and the
damages they caused (Jean-Louis et al., 2011)).

Schema induction is the task of learning these
templates with no supervision from unlabeled text.
We focus here on event schema induction and con-
tinue the trend of generative models proposed ear-
lier for this task. The idea is to group together
entities corresponding to the same role in an event
template based on the similarity of the relations
that these entities hold with predicates. For ex-
ample, in a corpus about terrorist attacks, enti-
ties that are objects of verbs to kill, to attack can
be grouped together and characterized by a role

named VICTIM. The output of this identification
operation is a set of clusters of which members
are both words and relations, associated with their
probability (see an example later in Figure 4).
These clusters are not labeled but each of them
represents an event slot.

Our approach here is to improve this initial idea
by entity disambiguation. Some ambiguous enti-
ties, such as man or soldier, can match two differ-
ent slots (victim or perpetrator). An entity such as
terrorist can be mixed up with victims when arti-
cles relate that a terrorist has been killed by police
(and thus is object of to kill). Our hypothesis is
that the immediate context of entities is helpful for
disambiguating them. For example, the fact that
man is associated with armed, dangerous, heroic
or innocent can lead to a better attribution and def-
inition of roles. We then introduce relations be-
tween entities and their attributes in the model by
means of syntactic relations.

The document level, which is generally a cen-
ter notion in topic modeling, is not used in our
generative model. This results in a simpler, more
intuitive model, where observations are generated
from slots, that are defined by probabilistic dis-
tributions on entities, predicates and syntactic at-
tributes. This model offers room for further exten-
sions since multiple observations on an entity can
be represented in the same manner.

Model parameters are estimated by Gibbs sam-
pling. We evaluate the performance of this ap-
proach by an automatic and empiric mapping be-
tween slots from the system and slots from the ref-
erence in a way similar to previous work in the
domain.

The rest of this paper is organized as follows:
Section 2 briefly presents previous work; in Sec-
tion 3, we detail our entity and relation represen-
tation; we describe our generative model in Sec-
tion 4, before presenting our experiments and eval-
uations in Section 5.
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2 Related Work

Despite efforts made for making template fill-
ing as generic as possible, it still depends heav-
ily on the type of events. Mixing generic
processes with a restrictive number of domain-
specific rules (Freedman et al., 2011) or exam-
ples (Grishman and He, 2014) is a way to reduce
the amount of effort needed for adapting a sys-
tem to another domain. The approaches of On-
demand information extraction (Hasegawa et al.,
2004; Sekine, 2006) and Preemptive Information
Extraction (Shinyama and Sekine, 2006) tried to
overcome this difficulty in another way by exploit-
ing templates induced from representative docu-
ments selected by queries.

Event schema induction takes root in work
on the acquisition from text of knowledge struc-
tures, such as the Memory Organization Pack-
ets (Schank, 1980), used by early text under-
standing systems (DeJong, 1982) and more re-
cently by Ferret and Grau (1997). First attempts
for applying such processes to schema induc-
tion have been made in the fields of Informa-
tion Extraction (Collier, 1998), Automatic Sum-
marization (Harabagiu, 2004) and event Question-
Answering (Filatova et al., 2006; Filatova, 2008).

More recently, work after (Hasegawa et al.,
2004) has developed weakly supervised forms
of Information Extraction including schema in-
duction in their objectives. However, they have
been mainly applied to binary relation extraction
in practice (Eichler et al., 2008; Rosenfeld and
Feldman, 2007; Min et al., 2012). In parallel,
several approaches were proposed for perform-
ing specifically schema induction in already ex-
isting frameworks: clause graph clustering (Qiu
et al., 2008), event sequence alignment (Reg-
neri et al., 2010) or LDA-based approach relying
on FrameNet-like semantic frames (Bejan, 2008).
More event-specific generative models were pro-
posed by Chambers (2013) and Cheung et al.
(2013). Finally, Chambers and Jurafsky (2008),
Chambers and Jurafsky (2009), Chambers and Ju-
rafsky (2011), improved by Balasubramanian et al.
(2013), and Chambers (2013) focused specifically
on the induction of event roles and the identifica-
tion of chains of events for building representa-
tions from texts by exploiting coreference resolu-
tion or the temporal ordering of events. All this
work is also linked to work about the induction of
scripts from texts, more or less closely linked to

Attributes Head Triggers
#1 [armed:amod] man [attack:nsubj,

kill:nsubj]
#2 [police:nn] station [attack:dobj]
#3 [] policeman [kill:dobj]
#4 [innocent:amod, man [wound:dobj]

young:amod]

Figure 1: Entity representation as tuples of ([at-
tributes], head, [triggers]).

events, such as (Frermann et al., 2014), (Pichotta
and Mooney, 2014) or (Modi and Titov, 2014).

The work we present in this article is in line
with Chambers (2013), which will be described in
more details in Section 5, together with a quanti-
tative and qualitative comparison.

3 Entity Representation

An entity is represented as a triple containing: a
head word h, a list A of attribute relations and a
list T of trigger relations. Consider the following
example:

(1) Two armed men attacked the police station
and killed a policeman. An innocent young
man was also wounded.

As illustrated in Figure 1, four entities, equiva-
lent to four separated triples, are generated from
the text above. Head words are extracted from
noun phrases. A trigger relation is composed
of a predicate (attack, kill, wound) and a depen-
dency type (subject, object). An attribute rela-
tion is composed of an argument (armed, police,
young) and a dependency type (adjectival, nomi-
nal or verbal modifier). In the relationship to trig-
gers, a head word is argument, but in the relation-
ship to attributes, it is predicate. We use Stanford
NLP toolkit (Manning et al., 2014) for parsing and
coreference resolution.

A head word is extracted if it is a nominal or
proper noun and it is related to at least one trig-
ger; pronouns are omitted. A trigger of an head
word is extracted if it is a verb or an eventive noun
and the head word serves as its subject, object, or
preposition. We use the categories noun.EVENT
and noun.ACT in WordNet as a list of eventive
nouns. A head word can have more than one trig-
ger. These multiple relations can come from a syn-
tactic coordination inside a single sentence, as it
is the case in the first sentence of the illustrating
example. They can also represent a coreference
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Figure 2: Generative model for event induction.

chain across sentences, as we use coreference res-
olution to merge the triggers of mentions corefer-
ing to the same entity in a document. Coreferences
are useful sources for event induction (Chambers
and Jurafsky, 2011; Chambers, 2013). Finally, an
attribute is extracted if it is an adjective, a noun or
a verb and serves as an adjective, verbal or nom-
inal modifier of a head word. If there are several
modifiers, only the closest to the head word is se-
lected. This “best selection” heuristic allows to
omit non-discriminative attributes for the entity.

4 Generative Model

4.1 Model Description
Figure 2 shows the plate notation of our model.
For each triple representing an entity e, the model
first assigns a slot s for the entity from an uni-
form distribution uni(1,K). Its head word h is
then generated from a multinominal distribution
πs. Each ti of event trigger relations Te is gen-
erated from a multinominal distribution φs. Each
aj of attribute relations Ae is similarly generated
from a multinominal distribution θs. The distri-
butions θ, π, and φ are generated from Dirichlet
priors dir(α), dir(β) and dir(γ) respectively.

Given a set of entities E, our model (π, φ, θ) is
defined by

Pπ,φ,θ(E) =
∏
e∈E

Pπ,φ,θ(e) (2)

where the probability of each entity e is defined by

Pπ,φ,θ(e) = P (s)
× P (h|s)
×

∏
t∈Te

P (t|s)

×
∏
a∈Ae

P (a|s) (3)

The generative story is as follows:

for slot s← 1 to K do
Generate an attribute distribution θs from a
Dirichlet prior dir(α);
Generate a head distribution πs from a Dirichlet
prior dir(β);
Generate a trigger distribution φs from a Dirichlet
prior dir(γ);

end
for entity e ∈ E do

Generate a slot s from a uniform distribution
uni(1,K);
Generate a head h from a multinominal distribution
πs;
for i← 1 to |Te| do

Generate a trigger ti from a multinominal
distribution φs;

end
for j ← 1 to |Ae| do

Generate an attribute aj from a multinominal
distribution φs;

end
end

4.2 Parameter Estimation
For parameter estimation, we use the Gibbs sam-
pling method (Griffiths, 2002). The slot variable
s is sampled by integrating out all the other vari-
ables.

Previous models (Cheung et al., 2013; Cham-
bers, 2013) are based on document-level topic
modeling, which originated from models such as
Latent Dirichlet Allocation (Blei et al., 2003).
Our model is, instead, independent from docu-
ment contexts. Its input is a sequence of entity
triples. Document boundary is only used in a post-
processing step of filtering (see Section 5.3 for
more details). There is a universal slot distribu-
tion instead of each slot distribution for one doc-
ument. Furthermore, slot prior is ignored by us-
ing a uniform distribution as a particular case of
categorical probability. Sampling-based slot as-
signment could depend on initial states and ran-
dom seeds. In our implementation of Gibbs sam-
pling, we use 2,000 burn-in of overall 10,000 it-
erations. The purpose of burn-in is to assure that
parameters converge to a stable state before esti-
mating the probability distributions. Moreover, an
interval step of 100 is applied between consecutive
samples in order to avoid too strong coherence.

Particularly, for tracking changes in probabili-
ties resulting from attribute relations, we ran in
the first stage a specific burn-in with only heads
and trigger relations. This stable state was then
used as initialization for the second burn-in in
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Figure 3: Probability convergence when using attributes in sampling. The use of attributes is started
at point 50 (i.e., 50% of burn-in phase). The dotted line shows convergence without attributes; the
continuous line shows convergence with attributes.

which attributes, heads, and triggers were used al-
together. This specific experimental setting made
us understand how the attributes modified distri-
butions. We observed that non-ambiguous words
or relations (i.e. explode, murder:nsubj) were only
slightly modified whereas probabilities of ambigu-
ous words such as man, soldier or triggers such as
kill:dobj or attack:nsubj converged smoothly to a
different stable state that was semantically more
coherent. For instance, the model interestingly re-
alized that even if a terrorist was killed (e.g. by
police), he was not actually a real victim of an at-
tack. Figure 3 shows probability convergences of
terrorist and kill:dobj given ATTACK victim and
ATTACK perpetrator.

5 Evaluations

In order to compare with related work, we eval-
uated our method on the Message Understanding
Conference (MUC-4) corpus (Sundheim, 1991)
using precision, recall and F-score as conventional

metrics for template extraction.
In what follows, we first introduce the MUC-

4 corpus (Section 5.1.1), we detail the mapping
technique between learned slots and reference
slots (5.1.2) as well as the hyper-parameters of
our model (5.1.3). Next, we present a first exper-
iment (Section 5.2) showing how using attribute
relations improves overall results. The second ex-
periment (Section 5.3) studies the impact of doc-
ument classification. We then compare our re-
sults with previous approaches, more particularly
with Chambers (2013), from both quantitative and
qualitative points of view (Section 5.4). Finally,
Section 5.5 is dedicated to error analysis, with a
special emphasis on sources of false positives.

5.1 Experimental Setups
5.1.1 Datasets
The MUC-4 corpus contains 1,700 news articles
about terrorist incidents happening in Latin Amer-
ica. The corpus is divided into 1,300 documents
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for the development set and four test sets, each
containing 100 documents.

We follow the rules in the literature to guarantee
comparable results (Patwardhan and Riloff, 2007;
Chambers and Jurafsky, 2011). The evaluation fo-
cuses on four template types – ARSON, ATTACK,
BOMBING, KIDNAPPING – and four slots – Perpe-
trator, Instrument, Target, and Victim. Perpetrator
is merged from Perpetrator Individual and Perpe-
trator Organization. The matching between sys-
tem answers and references is based on head word
matching. A head word is defined as the right-
most word of the phrase or as the right-most word
of the first ‘of’ if the phrase contains any. Op-
tional templates and slots are ignored when calcu-
lating recall. Template types are ignored in eval-
uation: this means that a perpetrator of BOMBING

in the answers could be compared to a perpetrator
of ARSON, ATTACK, BOMBING or KIDNAPPING in
the reference.

5.1.2 Slot Mapping
The model learns K slots and assigns each entity
in a document to one of the learned slots. Slot
mapping consists in matching each reference slot
to an equivalent learned slot.

Note that among the K learned slots, some are
irrelevant while others, sometimes of high quality,
contain entities that are not part of the reference
(spatio-temporal information, protagonist context,
etc.). For this reason, it makes sense to have much
more learned slots than expected event slots.

Similarly to previous work in the literature, we
implemented an automatic empirical-driven slot
mapping. Each reference slot was mapped to
the learned slot that performed the best on the
task of template extraction according to the F-
score metric. Here, two identical slots of two
different templates, such as ATTACK victim and
KIDNAPPING victim, must to be mapped sepa-
rately. Figure 4 shows the most common words of
two learned slots which were mapped to BOMB-
ING instrument and KIDNAPPING victim. This
mapping is then kept for testing.

5.1.3 Parameter Tuning
We first tuned hyper-parameters of the models on
the development set. The number of slots was set
to K = 35. Dirichlet priors were set to α = 0.1,
β = 1 and γ = 0.1. The model was learned from
the whole dataset. Slot mapping was done on tst1
and tst2. Outputs from tst3 and tst4 were eval-

BOMBING instrument
Attributes Heads Triggers

car:nn bomb explode:nsubj
powerful:amod fire hear:dobj
explosive:amod explosion place:dobj

dynamite:nn blow cause:nsubj
heavy:amod charge set:dobj

KIDNAPPING victim
Attributes Heads Triggers

several:amod people arrest:dobj
other:amod person kidnap:dobj

responsible:amod man release:dobj
military:amod member kill:dobj
young:amod leader identify:prep as

Figure 4: Attribute, head and trigger distributions
learned by the model HT+A for learned slots that
were mapped to BOMBING instrument and KID-
NAPPING victim.

uated using references and were averaged across
ten runs.

5.2 Experiment 1: Using Entity Attributes
In this experiment, two versions of our model are
compared: HT+A uses entity heads, event trigger
relations and entity attribute relations. HT uses
only entity heads and event triggers and omits at-
tributes.

We studied the gain brought by attribute re-
lations with a focus on their effect when coref-
erence information was available or was miss-
ing. The variations on the model input are named
single, multi and coref. Single input has only
one event trigger for each entity. A text like
an armed man attacked the police station and
killed a policeman results in two triples for the
entity man: (armed:amod, man, attack:nsubj) and
(armed:amod, man, kill:nsubj). In multi input, one
entity can have several event triggers, leading for
the text above to the triple (armed:amod, man, [at-
tack:nsubj, kill:nsubj]). The coref input is richer
than multi in that, in addition to triggers from the
same sentence, triggers linked to the same coref-
ered entity are merged together. For instance, if
man in the above example corefers with he in
He was arrested three hours later, the merged
triple becomes (armed:amod, man, [attack:nsubj,
kill:nsubj, arrest:dobj]). The plate notations of
these model+data combinations are given in Fig-
ure 5.

Table 1 shows a consistent improvement when
using attributes, both with and without corefer-
ences. The best performance of 40.62 F-score is
obtained by the full model on inputs with coref-
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Figure 5: Model variants (Dirichlet priors are omitted for simplicity): 5a) HT model ran on single data.
This model is equivalent to 5b) with T=1; 5b) HT model ran on multi data; 5c) HT+A model ran on
single data; 5d) HT+A model ran on multi data.

Data HT HT+A
P R F P R F

Single 29.59 51.17 37.48 30.22 52.41 38.33
Multi 29.32 52.21 37.52 30.82 51.68 38.55
Coref 39.99 53.53 40.01 32.42 54.59 40.62

Table 1: Improvement from using attributes.

erences. Using both attributes in the model and
coreference to generate input data results in a gain
of 3 F-score points.

5.3 Experiment 2: Document Classification
In the second experiment, we evaluated our model
with a post-processing step of document classifi-
cation.

The MUC-4 corpus contains many “irrelevant”
documents. A document is irrelevant if it contains
no template. Among 1,300 documents in the de-
velopment set, 567 are irrelevant. The most chal-
lenging part is that there are many terrorist entities,
e.g. bomb, force, guerrilla, occurring in irrelevant
documents. That makes filtering out those docu-
ments important, but difficult. As document clas-

sification is not explicitly performed by our model,
a post-processing step is needed. Document clas-
sification is expected to reduce false positives in ir-
relevant documents while not dramatically reduc-
ing recall.

Given a document d with slot-assigned entities
and a set of mapped slots Sm resulting from slot
mapping, we have to decide whether this docu-
ment is relevant or not. We define the relevance
score of a document as:

relevance(d) =
∑

e∈d:se∈Sm

∑
t∈Te

P (t|se)∑
e∈d

∑
t∈Te

P (t|se)
(4)

where e is an entity in the document d; se is the
slot value assigned to e; and t is an event trigger in
the list of triggers Te.

The equation (4) defines the score of an entity as
the sum of the conditional probabilities of triggers
given a slot. The relevance score of the document
is proportional to the score of the entities assigned
to mapped slots. If this relevance score is higher
than a threshold λ, then the document is consid-
ered as relevant. The value of λ = 0.02 was tuned
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System P R F
HT+A 32.42 54.59 40.62
HT+A + doc. classification 35.57 53.89 42.79
HT+A + oracle classification 44.58 54.59 49.08

Table 2: Improvement from document classifica-
tion as post-processing.

on the development set by maximizing the F-score
of document classification.

Table 2 shows the improvement when applying
document classification. The precision increases
as false positives from irrelevant documents are fil-
tered out. The loss of recall comes from relevant
documents that are mistakenly filtered out. How-
ever, this loss is not significant and the overall F-
score finally increases by 5%. We also compare
our results to an “oracle” classifier that would re-
move all irrelevant documents while preserving all
relevant ones. The performance of this oracle clas-
sification shows that there are some room for fur-
ther improvement from document classification.

Irrelevant document filtering is a technique ap-
plied by most supervised and unsupervised ap-
proaches. Supervised methods prefer relevance
detection at sentence or phrase-level (Patwardhan
and Riloff, 2009; Patwardhan and Riloff, 2007).
As for several unsupervised methods, Chambers
(2013) includes document classification in his
topic model. Chambers and Jurafsky (2011) and
Cheung et al. (2013) use the learned clusters to
classify documents by estimating the relevance of
a document with respect to a template from post-
hoc statistics about event triggers.

5.4 Comparison to State-of-the-Art
For comparing in more depth our results to the
state-of-the-art in the literature. we reimple-
mented the method proposed in Chambers (2013)
and integrated our attribute distributions into his
model (as shown in Figure 6).

The main differences between this model and
ours are the following:

1. The full template model of Chambers (2013)
adds a distribution ψ linking events to docu-
ments. This makes the model more complex
and maybe less intuitive since there is no rea-
son to connect documents and slots (a docu-
ment may contain references to several tem-
plates and slot mapping does not depend on
document level). A benefit of this document

System P R F
Cheung et al. (2013) 32 37 34
Chambers and Jurafsky (2011) 48 25 33
Chambers (2013) (paper values) 41 41 41
HT+A + doc. classification 36 54 43

Table 3: Comparison to state-of-the-art unsuper-
vised systems.

distribution is that it leads to a free classifi-
cation of irrelevant documents, thus avoid-
ing a pre- or post-processing for classifica-
tion. However, this issue of document rel-
evance is very specific to the MUC corpus
and the evaluation method; In a more general
use case, there would be no “irrelevant” doc-
uments, only documents on various topics.

2. Each entity is linked to an event variable e.
This event generates a predicate for each
entity mention (recall that mentions of an
entity are all occurrences of this entity in
the documents, for example in a corefer-
ence chain). Our work instead focus on
the fact that a probabilistic model could
have multiple observations at the same po-
sition. Multiple triggers and multiple at-
tributes are treated equally. The sources
of multiple attributes and multiple triggers
are not only from document-level corefer-
ences but also from dependency relations (or
even from domain-level entity coreferences if
available). Hence, our model arguably gener-
alizes better in terms of both modeling and
input data.

3. Chambers (2013) applies a heuristic con-
straint during the sampling process, impos-
ing that subject and object of the same predi-
cate (e.g. kill:nsubj and kill:dobj) are not dis-
tributed into the same slot. Our model does
not require this heuristic.

Some details concerning data preprocessing and
model parameters are not fully specified by Cham-
bers (2013); for this reason, our implementation
of the model (applied on the same data) leads
to slightly different results than those published.
That is why we present the two results here (pa-
per values in Table 3, reimplementation values in
Table 4).

Table 3 shows that our model outperforms the
others on recall by a large margin. It achieves the
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Figure 6: Variation of Chambers (2013) model: 6a) Original model; 6b) Original model + attribute
distributions.

Chambers (2013) P R F
Original reimpl. 38.65 42.68 40.56
Original reimpl. + Attribute 39.25 43.68 41.31

Table 4: Performance on reimplementation of
Chambers (2013).

best overall F-score. In addition, as stated by our
experiments, precision could be further improved
by more sophisticated document classification. In-
terestingly, using attributes also proves to be use-
ful in the model proposed by Chambers (2013) (as
shown in Table 4).

5.5 Error Analysis
We performed an error analysis on the output of
HT+A + doc. classification to detect the origin
of false positives (FPs). 38% of FPs are mentions
that never occur in the reference. Within this 38%,
attacker and killer are among the most frequent er-
rors. These words could refer to a perpetrator of an
attack. These mentions, however, do not occur in
the reference, possibly because human annotators
consider them as too generic terms. Apart from
such generic terms, other assignments are obvious
errors of the system, e.g. window, door or wall as
physical target; action or massacre as perpetrator;
explosion or shooting as instrument. These kinds
of errors are due to the fact that in our model, as in
the one of Chambers (2013), the number of slots
is fixed and is not equivalent to the real number of
reference slots.

On the other hand, 62% of FPs are mentions of

entities that occur at least once in the reference.
On top of the list are perpetrators such as guer-
rilla, group and rebel. The model is capable of as-
signing guerrilla to attribution slot if it is accom-
panied by a trigger like announce:nsubj. How-
ever, triggers that describe quasi-terrorism events
(e.g. menace, threatening, military conflict) are
also grouped into perpetrator slots. Similarly,
mentions of frequent words such as bomb (instru-
ment), building, house, office (targets) tend to be
systematically grouped into these slots, regardless
of their relations. Increasing the number of slots
(to sharpen their content) does not help overall.
This is due to the fact that the MUC corpus is
very small and is biased towards terrorism events.
Adding a higher level of template type as in Cham-
bers (2013) partially solves the problem but makes
recall decrease (as shown in Table 3).

6 Conclusions and Perspectives

We presented a generative model for representing
the roles played by the entities in an event tem-
plate. We focused on using immediate contexts of
entities and proposed a simpler and more effective
model than those proposed in previous work. We
evaluated this model on the MUC-4 corpus.

Even if our results outperform other unsuper-
vised approaches, we are still far from results ob-
tained by supervised systems. Improvements can
be obtained by several ways. First, the character-
istics of the MUC-4 corpus are a limiting factor.
The corpus is small and roles are similar from a
template to another, which does not reflect reality.
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A bigger corpus, even partially annotated but pre-
senting a better variety of templates, could lead to
very different approaches.

As we showed, our model comes with a unified
representation of all types of relations. This opens
the way to the use of multiple types of relations
(syntactic, semantic, thematic, etc.) to refine the
clusters.

Last but not least, the evaluation protocol, that
became a kind of de facto standard, is very much
imperfect. Most notably, the way of finally map-
ping with reference slots can have a great influence
on the results.
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Abstract

Simultaneous translation is a method to
reduce the latency of communication
through machine translation (MT) by di-
viding the input into short segments be-
fore performing translation. However,
short segments pose problems for syntax-
based translation methods, as it is diffi-
cult to generate accurate parse trees for
sub-sentential segments. In this paper,
we perform the first experiments applying
syntax-based SMT to simultaneous trans-
lation, and propose two methods to pre-
vent degradations in accuracy: a method to
predict unseen syntactic constituents that
help generate complete parse trees, and a
method that waits for more input when the
current utterance is not enough to gener-
ate a fluent translation. Experiments on
English-Japanese translation show that the
proposed methods allow for improvements
in accuracy, particularly with regards to
word order of the target sentences.

1 Introduction

Speech translation is an application of machine
translation (MT) that converts utterances from the
speaker’s language into the listener’s language.
One of the most identifying features of speech
translation is the fact that it must be performed
in real time while the speaker is speaking, and
thus it is necessary to split a constant stream
of words into translatable segments before start-
ing the translation process. Traditionally, speech
translation assumes that each segment corresponds
to a sentence, and thus performs sentence bound-
ary detection before translation (Matusov et al.,
2006). However, full sentences can be long, par-
ticularly in formal speech such as lectures, and
if translation does not start until explicit ends of

Figure 1: Simultaneous translation where the
source sentence is segmented after “I think” and
translated according to (a) the standard method,
(b) Grissom II et al. (2014)’s method of final verb
prediction, and (c) our method of predicting syn-
tactic constituents.

sentences, listeners may be forced to wait a con-
siderable time until receiving the result of trans-
lation. For example, when the speaker continues
to talk for 10 seconds, listeners must wait at least
10 seconds to obtain the result of translation. This
is the major factor limiting simultaneity in tradi-
tional speech translation systems.

Simultaneous translation (Section 2) avoids this
problem by starting to translate before observing
the whole sentence, as shown in Figure 1 (a).
However, as translation starts before the whole
sentence is observed, translation units are often
not syntactically or semantically complete, and the
performance may suffer accordingly. The dele-
terious effect of this missing information is less
worrying in largely monotonic language pairs (e.g.
English-French), but cannot be discounted in syn-
tactically distant language pairs (e.g. English-
Japanese) that often require long-distance reorder-
ing beyond translation units.

One way to avoid this problem of missing infor-
mation is to explicitly predict information needed
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Figure 2: Process of English-Japanese simultaneous translation with sentence segmentation.

to translate the content accurately. An ambitious
first step in this direction was recently proposed
by Grissom II et al. (2014), who describe a method
that predicts sentence-final verbs using reinforce-
ment learning (e.g. Figure 1 (b)). This approach
has the potential to greatly decrease the delay
in translation from verb-final languages to verb-
initial languages (such as German-English), but is
also limited to only this particular case.

In this paper, we propose a more general
method that focuses on a different variety of in-
formation: unseen syntactic constituents. This
method is motivated by our desire to apply trans-
lation models that use source-side parsing, such
as tree-to-string (T2S) translation (Huang et al.,
2006) or syntactic pre-ordering (Xia and McCord,
2004), which have been shown to greatly improve
translation accuracy over syntactically divergent
language pairs. However, conventional methods
for parsing are not directly applicable to the par-
tial sentences that arise in simultaneous MT. The
reason for this, as explained in detail in Section
3, is that parsing methods generally assume that
they are given input that forms a complete syntac-
tic phrase. Looking at the example in Figure 1,
after the speaker has spoken the words “I think”
we have a partial sentence that will only be com-
plete once we observe the following SBAR. Our
method attempts to predict exactly this informa-
tion, as shown in Figure 1 (c), guessing the re-
maining syntactic constituents that will allow us
to acquire a proper parse tree.

Specifically the method consists of two parts:
First, we propose a method that trains a statisti-
cal model to predict future syntactic constituents
based on features of the input segment (Section 4).
Second, we demonstrate how to apply this syntac-

tic prediction to MT, including the proposal of a
heuristic method that examines whether a future
constituent has the potential to cause a reordering
problem during translation, and wait for more in-
put in these cases (Section 5).

Based on the proposed method, we perform ex-
periments in simultaneous translation of English-
Japanese talks (Section 6). As this is the first work
applying T2S translation to simultaneous MT, we
first compare T2S to more traditional phrase-based
techniques. We find that T2S translation is effec-
tive with longer segments, but drops off quickly
with shorter segments, justifying the need for tech-
niques to handle translation when full context is
not available. We then compare the proposed
method of predicting syntactic constituents, and
find that it improves translation results, particu-
larly with respect to word ordering in the output
sentences.

2 Simultaneous Translation

In simultaneous translation, we assume that we are
given an incoming stream of words f , which we
are expected to translate. As the f is long, we
would like to begin translating before we reach the
end of the stream. Previous methods to do so can
generally be categorized into incremental decod-
ing methods, and sentence segmentation methods.

In incremental decoding, each incoming word is
fed into the decoder one-by-one, and the decoder
updates the search graph with the new words and
decides whether it should begin translation. Incre-
mental decoding methods have been proposed for
phrase-based (Sankaran et al., 2010; Yarmoham-
madi et al., 2013; Finch et al., 2014) and hierar-
chical phrase-based (Siahbani et al., 2014) SMT
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models.1 Incremental decoding has the advantage
of using information about the decoding graph in
the choice of translation timing, but also requires
significant changes to the internal workings of the
decoder, precluding the use of standard decoding
tools or techniques.

Sentence segmentation methods (Figure 2)
provide a simpler alternative by first divid-
ing f into subsequences of 1 or more words
[f (1), . . . , f (N)]. These segments are then trans-
lated with a traditional decoder into output se-
quences [e(1), . . . , e(N)], which each are output as
soon as translation finishes. Many methods have
been proposed to perform segmentation, includ-
ing the use of prosodic boundaries (Fügen et al.,
2007; Bangalore et al., 2012), predicting punc-
tuation marks (Rangarajan Sridhar et al., 2013),
reordering probabilities of phrases (Fujita et al.,
2013), or models to explicitly optimize translation
accuracy (Oda et al., 2014). Previous work often
assumes that f is a single sentence, and focus on
sub-sentential segmentation, an approach we fol-
low in this work.

Sentence segmentation methods have the obvi-
ous advantage of allowing for translation as soon
as a segment is decided. However, the use of the
shorter segments also makes it necessary to trans-
late while part of the utterance is still unknown. As
a result, segmenting sentences more aggressively
often results in a decrease translation accuracy.
This is a problem in phrase-based MT, the frame-
work used in the majority of previous research on
simultaneous translation. However, it is an even
larger problem when performing translation that
relies on parsing the input sentence. We describe
the problems caused by parsing a segment f (n),
and solutions, in the following section.

3 Parsing Incomplete Sentences

3.1 Difficulties in Incomplete Parsing

In standard phrase structure parsing, the parser as-
sumes that each input string is a complete sen-
tence, or at least a complete phrase. For example,
Figure 3 (a) shows the phrase structure of the com-
plete sentence “this is a pen.” However, in the case
of simultaneous translation, each translation unit

1There is also one previous rule-based system that uses
syntax in incremental translation, but it is language specific
and limited domain (Ryu et al., 2006), and thus difficult to
compare with our SMT-based system. It also does not predict
unseen constituents, relying only on the observed segment.

Figure 3: Phrase structures with surrounding syn-
tactic constituents.

is not necessarily segmented in a way that guar-
antees that the translation unit is a complete sen-
tence, so each translation unit should be treated
not as a whole, but as a part of a spoken sentence.
As a result, the parser input may be an incomplete
sequence of words (e.g. “this is,” “is a”), and a
standard parser will generate an incorrect parse as
shown in Figures 3(b) and 3(c).

The proposed method solves this problem by
supplementing unseen syntactic constituents be-
fore and after the translation unit. For example,
considering parse trees for the complete sentence
in Figure 3(a), we see that a noun phrase (NP) can
be placed after the translation unit “this is.” If we
append the syntactic constituent NP as a “black
box” before parsing, we can create a syntactically
desirable parse tree as shown in Figure 3(d1) We
also can construct another tree as shown in Fig-
ure 3(d2) by appending two constituents DT and
NN . For the other example “is a,” we can create
the parse tree in Figure 3(e1) by appending NP
before the unit and NN after the unit, or can cre-
ate the tree in Figure 3(e2) by appending only NN
after the unit.

3.2 Formulation of Incomplete Parsing

A typical model for phrase structure parsing is the
probabilistic context-free grammar (PCFG). Pars-
ing is performed by finding the parse tree T that
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maximizes the PCFG probability given a sequence
of words w ≡ [w1, w2, · · · , wn] as shown by Eq.
(2):

T ∗ ≡ arg max
T

Pr(T |w) (1)

≃ arg max
T

[∑
(X→[Y,···])∈T

log Pr(X → [Y, · · ·]) +

∑
(X→wi)∈T

log Pr(X → wi) ], (2)

where Pr(X → [Y, · · ·]) represents the genera-
tive probabilities of the sequence of constituents
[Y, · · ·] given a parent constituent X , and Pr(X →
wi) represents the generative probabilities of each
word wi (1 ≤ i ≤ n) given a parent constituent
X .

To consider parsing of incomplete sentences
with appended syntactic constituents, We define
L ≡ [L|L|, · · · , L2, L1] as the sequence of pre-
ceding syntactic constituents of the translation unit
and R ≡ [R1, R2, · · · , R|R|] as the sequence of
following syntactic constituents of the translation
unit. For the example Figure 3(d1), we assume
that L = [ ] and R = [ NP ].

We assume that both sequences of syntactic
constituents L and R are predicted based on the
sequence of words w before the main parsing step.
Thus, the whole process of parsing incomplete
sentences can be described as the combination of
predicting both sequences of syntactic constituents
represented by Eq. (3) and (4) and parsing with
predicted syntactic constituents represented by Eq.
(5):

L∗ ≡ arg max
L

Pr(L|w), (3)

R∗ ≡ arg max
R

Pr(R|w), (4)

T ∗ ≡ arg max
T

Pr(T |L∗,w, R∗). (5)

Algorithmically, parsing with predicted syntac-
tic constituents can be achieved by simply treating
each syntactic constituent as another word in the
input sequence and using a standard parsing algo-
rithm such as the CKY algorithm. In this process,
the only difference between syntactic constituents
and normal words is the probability, which we de-
fine as follows:

Pr(X → Y ) ≡
{

1, if Y = X
0, otherwise.

(6)

It should be noted that here L refers to syntac-
tic constituents that have already been seen in the
past. Thus, it is theoretically possible to store past
parse trees as history and generate L based on this
history, or condition Eq. 3 based on this infor-
mation. However, deciding which part of trees to
use as L is not trivial, and applying this approach
requires that we predict L and R using different
methods. Thus, in this study, we use the same
method to predict both sequences of constituents
for simplicity.

In the next section, we describe the actual
method used to create a predictive model for these
strings of syntactic constituents.

4 Predicting Syntactic Constituents

In order to define which syntactic constituents
should be predicted by our model, we assume that
each final parse tree generated by w, L and R
must satisfy the following conditions:

1. The parse tree generated by w, L and R must
be “complete.” Defining this formally, this
means that the root node of the parse tree for
the segment must correspond to a node in the
parse tree for the original complete sentence.

2. Each parse tree contains only L, w and R as
terminal symbols.

3. The number of nodes is the minimum neces-
sary to satisfy these conditions.

As shown in the Figure 3, there is ambiguity re-
garding syntactic constituents to be predicted (e.g.
we can choose either [ NP ] or [ DT , NN ] as R
for w = [ “this”, “is” ]). These conditions avoid
ambiguity of which syntactic constituents should
predicted for partial sentences in the training data.
Looking at the example, Figures 3(d1) and 3(e1)
satisfy these conditions, but 3(d2) and 3(e2) do
not.

Figure 4 shows the statistics of the lengths of
L and R sequences extracted according to these
criteria for all substrings of the WSJ datasets 2 to
23 of the Penn Treebank (Marcus et al., 1993), a
standard training set for English syntactic parsers.
From the figure we can see that lengths of up to 2
constituents cover the majority of cases for both L
and R, but a significant number of cases require
longer strings. Thus methods that predict a fixed
number of constituents are not appropriate here. In
Algorithm 1, we show the method we propose to
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Figure 4: Statistics of numbers of syntactic con-
stituents to be predicted.

predict R for constituent sequences of an arbitrary
length. Here ++ represents the concatenation of
two sequences.

First, our method forcibly parses the input se-
quence w and retrieves a potentially incorrect
parse tree T ′, which is used to calculate features
for the prediction model. The next syntactic con-
stituent R+ is then predicted using features ex-
tracted from w, T ′, and the predicted sequence
history R∗. This prediction is repeated recurrently
until the end-of-sentence symbol (“nil” in Algo-
rithm 1) is predicted as the next symbol.

In this study, we use a multi-label classifier
based on linear SVMs (Fan et al., 2008) to predict
new syntactic constituents with features shown
in Table 1. We treat the input sequence w and
predicted syntactic constituents R∗ as a concate-
nated sequence w ++R∗. For example, if we have
w = [ this, is, a ] and R∗ = [ NN ], then the
word features “3 rightmost 1-grams” will take the
values “is,” “a,” and NN . Tags of semi-terminal
nodes in T ′ are used as part-of-speech (POS) tags
for corresponding words and the POS of each pre-
dicted syntactic constituent is simply its tag. “nil”
is used when some information is not available.
For example, if we have w = [ this, is ] and
R∗ = [ ] then “3 rightmost 1-grams” will take the
values “nil,” “this,” and “is.” Algorithm 1 and Ta-
ble 1 shows the method used to predict R∗ but L∗

can be predicted by performing the prediction pro-
cess in the reverse order.

5 Tree-to-string SMT with Syntactic
Constituents

Once we have created a tree from the sequence
L∗ ++w ++R∗ by performing PCFG parsing with
predicted syntactic constituents according to Eqs.
(2), (5), and (6), the next step is to use this tree in
translation. In this section, we focus specifically

Algorithm 1 Prediction algorithm for following
constituents R∗

T ′ ← arg max
T

Pr(T |w)

R∗ ← [ ]
loop

R+ ← arg max
R

Pr(R|T ′, R∗)

if R+ = nil then
return R∗

end if
R∗ ← R∗ ++[R+]

end loop

Table 1: Features used in predicting syntactic con-
stituents.

Type Feature
Words 3 leftmost 1,2-grams in w ++R∗

3 rightmost 1,2-grams in w ++R∗

Left/rightmost pair in w ++R∗

POS Same as “Words”
Parse Tag of the root node

Tags of children of the root node
Pairs of root and children nodes

Length |w|
|R∗|

on T2S translation, which we use in our experi-
ments, but it is likely that similar methods are ap-
plicable to other uses of source-side syntax such
as pre-ordering as well.

It should be noted that using these trees in T2S
translation models is not trivial because each esti-
mated syntactic constituent should be treated as an
aggregated entity representing all possibilities of
subtrees rooted in such a constituent. Specifically,
there are two problems: the possibility of reorder-
ing an as-of-yet unseen syntactic constituent into
the middle of the translated sentence, and the cal-
culation of language model probabilities consider-
ing syntactic constituent tags.

With regards to the first problem of reordering,
consider the example of English-Japanese transla-
tion in Figure 5(b), where a syntactic constituent
PP is placed at the end of the English sequence
(R∗), but the corresponding entity in the Japanese
translation result should be placed in the middle of
the sentence. In this case, if we attempt to translate
immediately, we will have to omit the as-of-yet
unknown PP from our translation and translate it
later, resulting in an unnatural word ordering in the
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(a) (b)

Figure 5: Waiting for the next translation unit.

target sentence.2

Thus, if any of the syntactic constituents in R
are placed anywhere other than the end of the
translation result, we can assume that this is a hint
that the current segmentation boundary is not ap-
propriate. Based on this intuition, we propose a
heuristic method that ignores segmentation bound-
aries that result in a translation of this type, and in-
stead wait for the next translation unit, helping to
avoid problems due to inappropriate segmentation
boundaries. Algorithm 2 formally describes this
waiting method.

The second problem of language model proba-
bilities arises because we are attempting to gener-
ate a string of words, some of which are not actual
words but tags representing syntactic constituents.
Creating a language model that contains probabil-
ities for these tags in the appropriate places is not
trivial, so for simplicity, we simply assume that ev-
ery syntactic constituent tag is an unknown word,
and that the output of translation consists of both
translated normal words and non-translated tags as
shown in Figure 5. We relegate a more complete
handling of these tags to future work.

2It is also potentially possible to create a predictive model
for the actual content of the PP as done for sentence-final
verbs by Grissom II et al. (2014), but the space of potential
prepositional phrases is huge, and we leave this non-trivial
task for future work.

Algorithm 2 Waiting algorithm for T2S SMT
w ← [ ]
loop

w ← w ++NextSegment()
L∗ ← arg max

L
Pr(L|w)

R∗ ← arg max
R

Pr(R|w)

T ∗ ← arg max
T

Pr(T |L∗, w, R∗)

e∗ ← arg max
e

Pr(e|T ∗)

if elements of R∗ are rightmost in e∗ then
Output(e∗)
w ← [ ]

end if
end loop

6 Experiments

6.1 Experiment Settings
We perform 2 types of experiments to evaluate the
effectiveness of the proposed methods.

6.1.1 Predicting Syntactic Constituents
In the first experiment, we evaluate prediction ac-
curacies of unseen syntactic constituents L and R.
To do so, we train a predictive model as described
in Section 4 using an English treebank and evalu-
ate its performance. To create training and testing
data, we extract all substrings w s.t. |w| ≥ 2 in
the Penn Treebank and calculate the correspond-
ing syntactic constituents L and R by according
to the original trees and substring w. We use the
90% of the extracted data for training a classifier
and the remaining 10% for testing estimation re-
call, precision and F-measure. We use the Ckylark
parser(Oda et al., 2015) to generate T ′ from w.

6.1.2 Simultaneous Translation
Next, we evaluate the performance of T2S si-
multaneous translation adopting the two proposed
methods. We use data of TED talks from the
English-Japanese section of WIT3 (Cettolo et al.,
2012), and also append dictionary entries and ex-
amples in Eijiro3 to the training data to increase
the vocabulary of the translation model. The total
number of sentences/entries is 2.49M (WIT3, Ei-
jiro), 998 (WIT3), and 468 (WIT3) sentences for
training, development, and testing respectively.

We use the Stanford Tokenizer4 for English
tokenization, KyTea (Neubig et al., 2011) for

3http://eijiro.jp/
4http://nlp.stanford.edu/software/tokenizer.shtml
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Japanese tokenization, GIZA++ (Och and Ney,
2003) to construct word alignment, and KenLM
(Heafield et al., 2013) to generate a 5-gram target
language model. We use the Ckylark parser, which
we modified to implement the parsing method of
Section 3.2, to generate T ∗ from L∗, w and R∗.

We use Travatar (Neubig, 2013) to train the T2S
translation model used in the proposed method,
and also Moses (Koehn et al., 2007) to train
phrase-based translation models that serve as a
baseline. Each translation model is tuned us-
ing MERT (Och, 2003) to maximize BLEU (Pa-
pineni et al., 2002). We evaluate translation ac-
curacies by BLEU and also RIBES (Isozaki et
al., 2010), a reordering-focused metric which has
achieved high correlation with human evaluation
on English-Japanese translation tasks.

We perform tests using two different sentence
segmentation methods. The first is n-words seg-
mentation (Rangarajan Sridhar et al., 2013), a sim-
ple heuristic that simply segments the input ev-
ery n words. This method disregards syntactic
and semantic units in the original sentence, al-
lowing us to evaluate the robustness of translation
against poor segmentation boundaries. The second
method is the state-of-the-art segmentation strat-
egy proposed by Oda et al. (2014), which finds
segmentation boundaries that optimize the accu-
racy of the translation output. We use BLEU+1
(Lin and Och, 2004) as the objective of this seg-
mentation strategy.

We evaluate the following baseline and pro-
posed methods:

PBMT is a baseline using phrase-based SMT.

T2S uses T2S SMT with parse trees generated
from only w.

T2S-Tag further predicts unseen syntactic con-
stituents according to Section 4. Before eval-
uation, all constituent tags are simply deleted
from the output.

T2S-Wait uses T2S-Tag and adds the waiting
strategy described in Section 5.

We also show PBMT-Sent and T2S-Sent which
are full sentence-based PBMT and T2S systems.

6.2 Results
6.2.1 Predicting Syntactic Constituents
Table 2 shows the recall, precision, and F-measure
of the estimated L and R sequences. The table

Table 2: Performance of syntactic constituent pre-
diction.

Target P % R % F %
L (ordered) 31.93 7.27 11.85

(unordered) 51.21 11.66 19.00
R (ordered) 51.12 33.78 40.68

(unordered) 52.77 34.87 42.00

shows results of two evaluation settings, where
the order of generated constituents is considered
or not.

We can see that in each case recall is lower than
the corresponding precision and the performance
of L differs between ordered and unordered re-
sults. These trends result from the fact that the
model generates fewer constituents than exist in
the test data. However, this trend is not entirely un-
expected because it is not possible to completely
accurately guess syntactic constituents from every
substring w. For example, parts of the sentence
“in the next 18 minutes” can generate the sequence
“in the next CD NN ” and “ IN DT JJ 18 min-
utes,” but the constituents CD in the former case
and DT and JJ in the latter case are not neces-
sary in all situations. In contrast, NN and IN
will probably be inserted most cases. As a result,
the appearance of such ambiguous constituents in
the training data is less consistent than that of nec-
essary syntactic constituents, and thus the predic-
tion model avoids generating such ambiguous con-
stituents.

6.2.2 Simultaneous Translation
Next, we evaluate the translation results achieved
by the proposed method. Figures 6 and 7 show the
relationship between the mean number of words in
the translation segments and translation accuracy
of BLEU and RIBES respectively. Each horizon-
tal axis of these graphs indicates the mean number
of words in translation units that are used to gen-
erate the actual translation output, and these can
be assumed to be proportional to the mean waiting
time for listeners. In cases except T2S-Wait, these
values are equal to the mean length of translation
unit generated by the segmentation strategies, and
in the case of T2S-Wait, this value shows the length
of the translation units concatenated by the waiting
strategy. First looking at the full sentence results
(rightmost points in each graph), we can see that
T2S greatly outperforms PBMT on full sentences,
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(a) n-words segmentation (b) optimized segmentation

Figure 6: Mean #words and BLEU scores of each method.

(a) n-words segmentation (b) optimized segmentation

Figure 7: Mean #words and RIBES scores of each method.

underlining the importance of considering syntax
for this language pair.

Turning to simultaneous translation, we first
consider the case of n-words segmentation, which
will demonstrate robustness of each method to
poorly formed translation segments. When we
compare PBMT and T2S, we can see that T2S is
superior for longer segments, but on shorter seg-
ments performance is greatly reduced, dropping
below that of PBMT in BLEU at an average of 6
words, and RIBES at an average of 4 words. This
trend is reasonable, considering that shorter trans-
lation units will result in syntactically inconsistent
units and thus incorrect parse trees. Next look-
ing at the results for T2S-Tag, we can see that in
the case of the n-words segmentation, it is able
to maintain the same translation performance of
PBMT, even at the shorter settings. Furthermore,
T2S-Wait also maintains the same performance
of T2S-Tag in BLEU and achieves much higher
performance than any of the other methods in
RIBES, particularly with regards to shorter trans-
lation units. This result shows that the method of
waiting for more input in the face of potential re-

ordering problems is highly effective in maintain-
ing the correct ordering of the output.

In the case of the optimized segmentation,
all three T2S methods maintain approximately
the same performance, consistently outperforming
PBMT in RIBES, and crossing in BLEU around 5-
6 words. From this, we can hypothesize that the
optimized segmentation strategy learns features
that maintain some syntactic consistency, which
plays a similar role to the proposed method. How-
ever, RIBES scores for T2S-Wait is still generally
higher than the other methods, demonstrating that
waiting maintains its reordering advantage even in
the optimized segmentation case.

7 Conclusion and Future Work

In this paper, we proposed the first method to
apply SMT using source syntax to simultaneous
translation. Especially, we proposed methods to
maintain the syntactic consistency of translation
units by predicting unseen syntactic constituents,
and waiting until more input is available when it is
necessary to achieve good translation results. Ex-
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periments on an English-Japanese TED talk trans-
lation task demonstrate that our methods are more
robust to short, inconsistent translation segments.

As future work, we are planning to devise
more sophisticated methods for language model-
ing using constituent tags, and ways to incorpo-
rate previously translated segments into the esti-
mation process for left-hand constituents. Next,
our method to predict additional constituents does
not target the grammatically correct translation
units for which L = [ ] and R = [ ], although
there is still room for improvement in this assump-
tion. In addition, we hope to expand the meth-
ods proposed here to a more incremental setting,
where both parsing and decoding are performed
incrementally, and the information from these pro-
cesses can be reflected in the decision of segmen-
tation boundaries.
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Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proc. ACL.

Chin-Yew Lin and Franz Josef Och. 2004. ORANGE:
a method for evaluating automatic evaluation met-
rics for machine translation. In Proc. COLING.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large anno-
tated corpus of english: The Penn treebank. Com-
putational linguistics, 19(2).

Evgeny Matusov, Arne Mauser, and Hermann Ney.
2006. Automatic sentence segmentation and punc-
tuation prediction for spoken language translation.
In Proc. IWSLT.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise prediction for robust, adaptable
japanese morphological analysis. In Proc. ACL-
HLT.

Graham Neubig. 2013. Travatar: A forest-to-string
machine translation engine based on tree transduc-
ers. In Proc. ACL.

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models. Computational linguistics.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proc. ACL.

Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki
Toda, and Satoshi Nakamura. 2014. Optimiz-
ing segmentation strategies for simultaneous speech
translation. In Proc. ACL.

Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki
Toda, and Satoshi Nakamura. 2015. Ckylark: A
more robust PCFG-LA parser. In Proc. NAACL-
HLT.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proc. ACL.

206



Vivek Kumar Rangarajan Sridhar, John Chen, Srinivas
Bangalore, Andrej Ljolje, and Rathinavelu Chengal-
varayan. 2013. Segmentation strategies for stream-
ing speech translation. In Proc. NAACL-HLT.

Koichiro Ryu, Shigeki Matsubara, and Yasuyoshi In-
agaki. 2006. Simultaneous english-japanese spo-
ken language translation based on incremental de-
pendency parsing and transfer. In Proc. COLING.

Baskaran Sankaran, Ajeet Grewal, and Anoop Sarkar.
2010. Incremental decoding for phrase-based statis-
tical machine translation. In Proc. WMT.

Maryam Siahbani, Ramtin Mehdizadeh Seraj,
Baskaran Sankaran, and Anoop Sarkar. 2014.
Incremental translation using hierarchical phrase-
based translation system. In Proc. SLT.

Fei Xia and Michael McCord. 2004. Improving
a statistical MT system with automatically learned
rewrite patterns. In Proc. COLING.

Mahsa Yarmohammadi, Vivek Kumar Rangara-
jan Sridhar, Srinivas Bangalore, and Baskaran
Sankaran. 2013. Incremental segmentation and
decoding strategies for simultaneous translation. In
Proc. IJCNLP.

207



Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 208–218,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Efficient Top-Down BTG Parsing for Machine Translation Preordering

Tetsuji Nakagawa
Google Japan Inc.

tnaka@google.com

Abstract

We present an efficient incremental top-
down parsing method for preordering
based on Bracketing Transduction Gram-
mar (BTG). The BTG-based preordering
framework (Neubig et al., 2012) can be
applied to any language using only par-
allel text, but has the problem of compu-
tational efficiency. Our top-down parsing
algorithm allows us to use the early up-
date technique easily for the latent vari-
able structured Perceptron algorithm with
beam search, and solves the problem.

Experimental results showed that the top-
down method is more than 10 times faster
than a method using the CYK algorithm.
A phrase-based machine translation sys-
tem with the top-down method had statis-
tically significantly higher BLEU scores
for 7 language pairs without relying on
supervised syntactic parsers, compared to
baseline systems using existing preorder-
ing methods.

1 Introduction

The difference of the word order between source
and target languages is one of major problems in
phrase-based statistical machine translation. In or-
der to cope with the issue, many approaches have
been studied. Distortion models consider word re-
ordering in decoding time using such as distance
(Koehn et al., 2003) and lexical information (Till-
man, 2004). Another direction is to use more com-
plex translation models such as hierarchical mod-
els (Chiang, 2007). However, these approaches
suffer from the long-distance reordering issue and
computational complexity.

Preordering (reordering-as-preprocessing) (Xia
and McCord, 2004; Collins et al., 2005) is another
approach for tackling the problem, which modifies

the word order of an input sentence in a source lan-
guage to have the word order in a target language
(Figure 1(a)).

Various methods for preordering have been
studied, and a method based on Bracketing Trans-
duction Grammar (BTG) was proposed by Neubig
et al. (2012). It reorders source sentences by han-
dling sentence structures as latent variables. The
method can be applied to any language using only
parallel text. However, the method has the prob-
lem of computational efficiency.

In this paper, we propose an efficient incremen-
tal top-down BTG parsing method which can be
applied to preordering. Model parameters can
be learned using latent variable Perceptron with
the early update technique (Collins and Roark,
2004), since the parsing method provides an easy
way for checking the reachability of each parser
state to valid final states. We also try to use
forced-decoding instead of word alignment based
on Expectation Maximization (EM) algorithms in
order to create better training data for preorder-
ing. In experiments, preordering using the top-
down parsing algorithm was faster and gave higher
BLEU scores than BTG-based preordering using
the CYK algorithm. Compared to existing pre-
ordering methods, our method had better or com-
parable BLEU scores without using supervised
parsers.

2 Previous Work

2.1 Preordering for Machine Translation

Many preordering methods which use syntactic
parse trees have been proposed, because syntac-
tic information is useful for determining the word
order in a target language, and it can be used to
restrict the search space against all the possible
permutations. Preordering methods using manu-
ally created rules on parse trees have been stud-
ied (Collins et al., 2005; Xu et al., 2009), but
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Figure 1: An example of preordering.

linguistic knowledge for a language pair is nec-
essary to create such rules. Preordering methods
which automatically create reordering rules or uti-
lize statistical classifiers have also been studied
(Xia and McCord, 2004; Li et al., 2007; Gen-
zel, 2010; Visweswariah et al., 2010; Yang et al.,
2012; Miceli Barone and Attardi, 2013; Lerner
and Petrov, 2013; Jehl et al., 2014). These meth-
ods rely on source-side parse trees and cannot be
applied to languages where no syntactic parsers
are available.

There are preordering methods that do not need
parse trees. They are usually trained only on auto-
matically word-aligned parallel text. It is possible
to mine parallel text from the Web (Uszkoreit et
al., 2010; Antonova and Misyurev, 2011), and the
preordering systems can be trained without man-
ually annotated language resources. Tromble and
Eisner (2009) studied preordering based on a Lin-
ear Ordering Problem by defining a pairwise pref-
erence matrix. Khalilov and Sima’an (2010) pro-
posed a method which swaps adjacent two words
using a maximum entropy model. Visweswariah
et al. (2011) regarded the preordering problem as
a Traveling Salesman Problem (TSP) and applied
TSP solvers for obtaining reordered words. These
methods do not consider sentence structures.

DeNero and Uszkoreit (2011) presented a pre-
ordering method which builds a monolingual pars-
ing model and a tree reordering model from par-
allel text. Neubig et al. (2012) proposed to train
a discriminative BTG parser for preordering di-
rectly from word-aligned parallel text by handling
underlying parse trees with latent variables. This
method is explained in detail in the next subsec-
tion. These two methods can use sentence struc-
tures for designing feature functions to score per-
mutations.

Figure 2: Bracketing transduction grammar.

2.2 BTG-based Preordering

Neubig et al. (2012) proposed a BTG-based pre-
ordering method. Bracketing Transduction Gram-
mar (BTG) (Wu, 1997) is a binary synchronous
context-free grammar with only one non-terminal
symbol, and has three types of rules (Figure 2):
Straight which keeps the order of child nodes,
Inverted which reverses the order, and Terminal
which generates a terminal symbol.1

BTG can express word reordering. For exam-
ple, the word reordering in Figure 1(a) can be rep-
resented with the BTG parse tree in Figure 1(b).2

Therefore, the task to reorder an input source sen-
tence can be solved as a BTG parsing task to find
an appropriate BTG tree.

In order to find the best BTG tree among all
the possible ones, a score function is defined. Let
Φ(m) denote the vector of feature functions for
the BTG tree node m, and Λ denote the vector of
feature weights. Then, for a given source sentence
x, the best BTG tree ẑ and the reordered sentence
x′ can be obtained as follows:

ẑ = argmax
z∈Z(x)

∑
m∈Nodes(z)

Λ · Φ(m), (1)

x′ = Proj(ẑ), (2)

where Z(x) is the set of all the possible BTG trees
for x, Nodes(z) is the set of all the nodes in the
tree z, and Proj(z) is the function which gener-
ates a reordered sentence from the BTG tree z.

The method was shown to improve transla-
tion performance. However, it has a problem of
processing speed. The CYK algorithm, whose
computational complexity is O(n3) for a sen-

1Although Terminal produces a pair of source and target
words in the original BTG (Wu, 1997), the target-side words
are ignored here because both the input and the output of pre-
ordering systems are in the source language. In (Wu, 1997),
(DeNero and Uszkoreit, 2011) and (Neubig et al., 2012), Ter-
minal can produce multiple words. Here, we produce only
one word.

2There may be more than one BTG tree which repre-
sents the same word reordering (e.g., the word reordering
C3B2A1 to A1B2C3 has two possible BTG trees), and there
are permutations which cannot be represented with BTG
(e.g., B2D4A1C3 to A1B2C3D4, which is called the 2413
pattern).
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Figure 3: Top-down BTG parsing.

(0) ⟨[[0, 5)], [], 0⟩
(1) ⟨[[0, 2), [2, 5)], [(2, S)], v1⟩
(2) ⟨[[0, 2), [3, 5)], [(2, S), (3, I)], v2⟩
(3) ⟨[[0, 2)], [(2, S), (3, I), (4, I)], v3⟩
(4) ⟨[], [(2, S), (3, I), (4, I), (1, S)], v4⟩

Table 1: Parser states in top-down parsing.

tence of length n, is used to find the best parse
tree. Furthermore, due to the use of a complex
loss function, the complexity at training time is
O(n5) (Neubig et al., 2012). Since the compu-
tational cost is prohibitive, some techniques like
cube pruning and cube growing have been applied
(Neubig et al., 2012; Na and Lee, 2013). In this
study, we propose a top-down parsing algorithm
in order to achieve fast BTG-based preordering.

3 Preordering with Incremental
Top-Down BTG Parsing

3.1 Parsing Algorithm

We explain an incremental top-down BTG parsing
algorithm using Figure 3, which illustrates how a
parse tree is built for the example sentence in Fig-
ure 1. At the beginning, a tree (span) which covers
all the words in the sentence is considered. Then,
a span which covers more than one word is split
in each step, and the node type (Straight or In-
verted) for the splitting point is determined. The
algorithm terminates after (n − 1) iterations for a
sentence with n words, because there are (n − 1)
positions which can be split.

We consider that the incremental parser has a
parser state in each step, and define the state
as a triple ⟨P, C, v⟩. P is a stack of unre-
solved spans. A span denoted by [p, q) covers
the words xp · · ·xq−1 for an input word sequence
x = x0 · · ·x|x|−1. C is a list of past parser ac-
tions. A parser action denoted by (r, o) represents
the action to split a span at the position between
xr−1 and xr with the node type o ∈ {S, I}, where
S and I indicate Straight and Inverted respectively.
v is the score of the state, which is the sum of the

Input: Sentence x, feature weights Λ, beam width k.
Output: BTG parse tree.

1: S0 ← {⟨[[0, |x|)], [], 0⟩ } // Initial state.
2: for i := 1, · · · , |x| − 1 do
3: S ← {} // Set of the next states.
4: foreach s ∈ Si−1 do
5: S ← S ∪ τx,Λ(s) // Generate next states.
6: Si ← Topk(S) // Select k-best states.
7: ŝ = argmaxs∈S|x|−1

Score(s)

8: return Tree(ŝ)

9: function τx,Λ(⟨P, C, v⟩)
10: [p, q)← P.pop()
11: S ← {}
12: for r := p + 1, · · · , q do
13: P ′ ← P
14: if r − p > 1 then
15: P ′.push([p, r))
16: if q − r > 1 then
17: P ′.push([r, q))
18: vS ← v + Λ · Φ(x, C, p, q, r, S)
19: vI ← v + Λ · Φ(x, C, p, q, r, I)
20: CS ← C; CS.append((r, S))
21: CI ← C; CI.append((r, I))
22: S ← S ∪ {⟨P ′, CS, vS⟩, ⟨P ′, CI, vI⟩}
23: return S

Figure 4: Top-down BTG parsing with beam
search.

scores for the nodes constructed so far. Parsing
starts with the initial state ⟨[[0, |x|)], [], 0⟩, because
there is one span covering all the words at the be-
ginning. In each step, a span is popped from the
top of the stack, and a splitting point in the span
and its node type are determined. The new spans
generated by the split are pushed onto the stack if
their lengths are greater than 1, and the action is
added to the list. On termination, the parser has
the final state ⟨[], [c0, · · · , c|x|−2], v⟩, because the
stack is empty and there are (|x| − 1) actions in
total. The parse tree can be obtained from the list
of actions. Table 1 shows the parser state for each
step in Figure 3.

The top-down parsing method can be used with
beam search as shown in Figure 4. τx,Λ(s) is a
function which returns the set of all the possi-
ble next states for the state s. Topk(S) returns
the top k states from S in terms of their scores,
Score(s) returns the score of the state s, and
Tree(s) returns the BTG parse tree constructed
from s. Φ(x,C, p, q, r, o) is the feature vector for
the node created by splitting the span [p, q) at r
with the node type o, and is explained in Sec-
tion 3.3.

3.2 Learning Algorithm

Model parameters Λ are estimated from training
examples. We assume that each training example
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consists of a sentence x and its word order in a
target language y = y0 · · · y|x|−1, where yi is the
position of xi in the target language. For exam-
ple, the example sentence in Figure 1(a) will have
y = 0, 1, 4, 3, 2. y can have ambiguities. Multiple
words can be reordered to the same position on
the target side. The words whose target positions
are unknown are indicated by position −1, and we
consider such words can appear at any position.3

For example, the word alignment in Figure 5 gives
the target side word positions y = −1, 2, 1, 0, 0.

Statistical syntactic parsers are usually trained
on tree-annotated corpora. However, corpora an-
notated with BTG parse trees are unavailable, and
only the gold standard permutation y is available.
Neubig et al. (2012) proposed to train BTG parsers
for preordering by regarding BTG trees behind
word reordering as latent variables, and we use
latent variable Perceptron (Sun et al., 2009) to-
gether with beam search. In latent variable Percep-
tron, among the examples whose latent variables
are compatible with a gold standard label, the one
with the highest score is picked up as a positive
example. Such an approach was used for pars-
ing with multiple correct actions (Goldberg and
Elhadad, 2010; Sartorio et al., 2013).

Figure 6 describes the training algorithm.4

Φ(x, s) is the feature vector for all the nodes in
the partial parse tree at the state s, and τx,Λ,y(s)
is the set of all the next states for the state s.
The algorithm adopts the early update technique
(Collins and Roark, 2004) which terminates incre-
mental parsing if a correct state falls off the beam,
and there is no possibility to obtain a correct out-
put. Huang et al. (2012) proposed the violation-
fixing Perceptron framework which is guaranteed
to converge even if inexact search is used, and
also showed that early update is a special case
of the framework. We define that a parser state
is valid if the state can reach a final state whose
BTG parse tree is compatible with y. Since this
is a latent variable setting in which multiple states
can reach correct final states, early update occurs
when all the valid states fall off the beam (Ma et
al., 2013; Yu et al., 2013). In order to use early up-
date, we need to check the validity of each parser

3In (Neubig et al., 2012), the positions of such words were
fixed by heuristics. In this study, the positions are not fixed,
and all the possibilities are considered by latent variables.

4Although the simple Perceptron algorithm is used for ex-
planation, we actually used the Passive Aggressive algorithm
(Crammer et al., 2006) with the parameter averaging tech-
nique (Freund and Schapire, 1999).

state. We extend the parser state to the four tu-
ple ⟨P, A, v, w⟩, where w ∈ {true, false} is the
validity of the state. We remove training exam-
ples which cannot be represented with BTG be-
forehand and set w of the initial state to true. The
function V alid(s) in Figure 6 returns the validity
of state s. One advantage of the top-down pars-
ing algorithm is that it is easy to track the validity
of each state. The validity of a state can be cal-
culated using the following property, and we can
implement the function τx,Λ,y(s) by modifying the
function τx,Λ(s) in Figure 4.

Lemma 1. When a valid state s, which has [p, q)
in the top of the stack, transitions to a state s′ by
the action (r, o), s′ is also valid if and only if the
following condition holds:

∀i ∈ {p, · · · , r − 1} yi = −1 ∨
∀i ∈ {r, · · · , q − 1} yi = −1 ∨(

o = S ∧ max
i=p,··· ,r−1

yi ̸=−1

yi ≤ min
i=r,··· ,q−1

yi ̸=−1

yi

)
∨

(
o = I ∧ max

i=r,··· ,q−1
yi ̸=−1

yi ≤ min
i=p,··· ,r−1

yi ̸=−1

yi

)
. (3)

Proof. Let πi denote the position of xi after re-
ordering by BTG parsing. If Condition (3) does
not hold, there are i and j which satisfy πi <
πj ∧ yi > yj ∧ yi ̸= −1∧ yj ̸= −1, and πi and πj

are not compatible with y. Therefore, s′ is valid
only if Condition (3) holds.

When Condition (3) holds, a valid permutation
can be obtained if the spans [p, r) and [r, q) are
BTG-parsable. They are BTG-parsable as shown
below. Let us assume that y does not have am-
biguities. The class of the permutations which
can be represented by BTG is known as separable
permutations in combinatorics. It can be proven
(Bose et al., 1998) that a permutation is a sepa-
rable permutation if and only if it contains nei-
ther the 2413 nor the 3142 patterns. Since s is
valid, y is a separable permutation. y does not con-
tain the 2413 nor the 3142 patterns, and any sub-
sequence of y also does not contain the patterns.
Thus, [p, r) and [r, q) are separable permutations.
The above argument holds even if y has ambigui-
ties (duplicated positions or unaligned words). In
such a case, we can always make a word order y′

which specializes y and has no ambiguities (e.g.,
y′ = 2, 1.0, 0.0, 0.1, 1.1 for y = −1, 1, 0, 0, 1),
because s is valid, and there is at least one BTG
parse tree which licenses y. Any subsequence in
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Figure 5: An example of word reordering with am-
biguities.

y′ is a separable permutation, and [p, r) and [r, q)
are separable permutations. Therefore, s′ is valid
if Condition (3) holds.

For dependency parsing and constituent pars-
ing, incremental bottom-up parsing methods have
been studied (Yamada and Matsumoto, 2003;
Nivre, 2004; Goldberg and Elhadad, 2010; Sagae
and Lavie, 2005). Our top-down approach is
contrastive to the bottom-up approaches. In the
bottom-up approaches, spans which cover individ-
ual words are considered at the beginning, then
they are merged into larger spans in each step, and
a span which covers all the words is obtained at
the end. In the top-down approach, a span which
covers all the words is considered at the begin-
ning, then spans are split into smaller spans in
each step, and spans which cover individual words
are obtained at the end. The top-down BTG pars-
ing method has the advantage that the validity of
parser states can be easily tracked.

The computational complexity of the top-down
parsing algorithm is O(kn2) for sentence length n
and beam width k, because in Line 5 of Figure 4,
which is repeated at most k(n − 1) times, at most
2(n − 1) parser states are generated, and their
scores are calculated. The learning algorithm uses
the same decoding algorithm as in the parsing
phase, and has the same time complexity. Note
that the validity of a parser state can be calculated
in O(1) by pre-calculating mini=p,··· ,r∧yi ̸=−1 yi,
maxi=p,··· ,r∧yi ̸=−1 yi, mini=r,··· ,q−1∧yi ̸=−1 yi,
and maxi=r,··· ,q−1∧yi ̸=−1 yi for all r for the span
[p, q) when it is popped from the stack.

3.3 Features

We assume that each word xi in a sentence has
three attributes: word surface form xw

i , part-of-
speech (POS) tag xp

i and word class xc
i (Sec-

tion 4.1 explains how xp
i and xc

i are obtained).
Table 2 lists the features generated for the node

which is created by splitting the span [p, q) with
the action (r, o). o’ is the node type of the par-
ent node, d ∈ {left, right} indicates whether this
node is the left-hand-side or the right-hand-side
child of the parent node, and Balance(p, q, r) re-

Input: Training data {⟨xl, yl⟩}L−1
l=0 ,

number of iterations T , beam width k.
Output: Feature weights Λ.

1: Λ← 0
2: for t := 0, · · · , T − 1 do
3: for l := 0, · · · , L− 1 do
4: S0 ← {⟨[[0, |xl|)], [], 0, true⟩}
5: for i := 1, · · · , |xl| − 1 do
6: S ← {}
7: foreach s ∈ Si−1 do
8: S ← S ∪ τxl,Λ,yl(s)
9: Si ← Topk(S)

10: ŝ ← argmaxs∈S Score(s)
11: s∗ ← argmaxs∈S∧V alid(s) Score(s)

12: if s∗ /∈ Si then
13: break // Early update.
14: if ŝ ̸= s∗ then
15: Λ← Λ + Φ(xl, s∗)− Φ(xl, ŝ)
16: return Λ

Figure 6: A training algorithm for latent variable
Perceptron with beam search.

turns a value among {‘<’, ‘=’, ‘>’} according to
the relation of the lengths of [p, r) and [r, q). The
baseline feature templates are those used by Neu-
big et al. (2012), and the additional feature tem-
plates are extended features that we introduce in
this study. The top-down parser is fast, and allows
us to use a larger number of features.

In order to make the feature generation efficient,
the attributes of all the words are converted to their
64-bit hash values beforehand, and concatenating
the attributes is executed not as string manipula-
tion but as faster integer calculation to generate a
hash value by merging two hash values. The hash
values are used as feature names. Therefore, when
accessing feature weights stored in a hash table
using the feature names as keys, the keys can be
used as their hash values. This technique is differ-
ent from the hashing trick (Ganchev and Dredze,
2008) which directly uses hash values as indices,
and no noticeable differences in accuracy were ob-
served by using this technique.

3.4 Training Data for Preordering

As described in Section 3.2, each training example
has y which represents correct word positions after
reordering. However, only word alignment data is
generally available, and we need to convert it to
y. Let Ai denote the set of indices of the target-
side words which are aligned to the source-side
word xi. We define an order relation between two
words:

xi ≤ xj ⇔ ∀a ∈ Ai \Aj , ∀b ∈ Aj a ≤ b ∧
∀a ∈ Ai, ∀b ∈ Aj \Ai a ≤ b. (4)
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Baseline Feature Template
o(q − p), oBalance(p, q, r),
oxw

p−1, ox
w
p , oxw

r−1, ox
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r , oxw

q−1, ox
w
q , oxw

p xw
q−1, ox

w
r−1x

w
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oxp
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p
p, oxp
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p
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p
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p−1, ox

c
p, oxc

r−1, ox
c
r, ox

c
q−1, ox

c
q, ox

c
pxc

q−1, ox
c
r−1x

c
r.

Additional Feature Template
o min(r − p, 5)min(q − r, 5), oo′, oo′d,
oxw

p−1x
w
p , oxw

p xw
r−1, ox

w
p xw

r , oxw
r−1x

w
q−1, ox

w
r xw

q−1, ox
w
q−1x

w
q ,

oxw
r−2x

w
r−1x

w
r , oxw

p xw
r−1x

w
r , oxw

r−1x
w
r xw

q−1, ox
w
r−1x

w
r xw

r+1,
oxw

p xw
r−1x

w
r xw

q−1,
oo′dxw

p , oo′dxw
r−1, oo

′dxw
r , oo′dxw

q−1, oo
′dxw

p xw
q−1,

oxp
p−1x

p
p, oxp

pxp
r−1, ox

p
pxp

r , oxp
r−1x

p
q−1, ox

p
rxp

q−1, ox
p
q−1x

p
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oxp
r−2x

p
r−1x

p
r , oxp

pxp
r−1x

p
r , oxp

r−1x
p
rxp

q−1, ox
p
r−1x

p
rxp

r+1,
oxp

pxp
r−1x

p
rxp

q−1,
oo′dxp

p, oo′dxp
r−1, oo

′dxp
r , oo′dxp

q−1, oo
′dxp

pxp
q−1,

oxc
p−1x

c
p, oxc

pxc
r−1, ox

c
pxc

r, ox
c
r−1x

c
q−1, ox

c
rx

c
q−1, ox

c
q−1x

c
q,

oxc
r−2x

c
r−1x

c
r, ox

c
pxc

r−1x
c
r, ox

c
r−1x

c
rx

c
q−1, ox

c
r−1x

c
rx

c
r+1,

oxc
pxc

r−1x
c
rx

c
q−1,

oo′dxc
p, oo′dxc

r−1, oo
′dxc

r, oo
′dxc

q−1, oo
′dxc

pxc
q−1.

Table 2: Feature templates.

Then, we sort x using the order relation and as-
sign the position of xi in the sorted result to yi.
If there are two words xi and xj in x which sat-
isfy neither xi ≤ xj nor xj ≤ xi (that is, x does
not make a totally ordered set with the order rela-
tion), then x cannot be sorted, and the example is
removed from the training data. −1 is assigned to
the words which do not have aligned target words.
Two words xi and xj are regarded to have the same
position if xi ≤ xj and xj ≤ xi.

The quality of training data is important to
make accurate preordering systems, but automat-
ically word-aligned data by EM algorithms tend
to have many wrong alignments. We use forced-
decoding in order to make training data for pre-
ordering. Given a parallel sentence pair and a
phrase table, forced-decoding tries to translate the
source sentence to the target sentence, and pro-
duces phrase alignments. We train the parameters
for forced-decoding using the same parallel data
used for training the final translation system. In-
frequent phrase translations are pruned when the
phrase table is created, and forced-decoding does
not always succeed for the parallel sentences in the
training data. Forced-decoding tends to succeed
for shorter sentences, and the phrase-alignment
data obtained by forced-decoding is biased to con-
tain more shorter sentences. Therefore, we apply
the following processing for the output of forced-
decoding to make training data for preordering:

1. Remove sentences which contain less than 3
or more than 50 words.

2. Remove sentences which contain less than 3
phrase alignments.

3. Remove sentences if they contain word 5-
grams which appear in other sentences in or-
der to drop boilerplates.

4. Lastly, randomly resample sentences from
the pool of filtered sentences to make the
distribution of the sentence lengths follow a
normal distribution with the mean of 20 and
the standard deviation of 8. The parame-
ters were determined from randomly sampled
sentences from the Web.

4 Experiments

4.1 Experimental Settings

We conduct experiments for 12 language pairs:
Dutch (nl)-English (en), en-nl, en-French (fr), en-
Japanese (ja), en-Spanish (es), fr-en, Hindi (hi)-en,
ja-en, Korean (ko)-en, Turkish (tr)-en, Urdu (ur)-
en and Welsh (cy)-en.

We use a phrase-based statistical machine trans-
lation system which is similar to (Och and Ney,
2004). The decoder adopts the regular distance
distortion model, and also incorporates a maxi-
mum entropy based lexicalized phrase reordering
model (Zens and Ney, 2006). The distortion limit
is set to 5 words. Word alignments are learned
using 3 iterations of IBM Model-1 (Brown et al.,
1993) and 3 iterations of the HMM alignment
model (Vogel et al., 1996). Lattice-based mini-
mum error rate training (MERT) (Macherey et al.,
2008) is applied to optimize feature weights. 5-
gram language models trained on sentences col-
lected from various sources are used.

The translation system is trained with parallel
sentences automatically collected from the Web.
The parallel data for each language pair consists
of around 400 million source and target words. In
order to make the development data for MERT and
test data (3,000 and 5,000 sentences respectively
for each language), we created parallel sentences
by randomly collecting English sentences from the
Web, and translating them by humans into each
language.

As an evaluation metric for translation quality,
BLEU (Papineni et al., 2002) is used. As intrin-
sic evaluation metrics for preordering, Fuzzy Re-
ordering Score (FRS) (Talbot et al., 2011) and
Kendall’s τ (Kendall, 1938; Birch et al., 2010;
Isozaki et al., 2010) are used. Let ρi denote the po-
sition in the input sentence of the (i+1)-th token in
a preordered word sequence excluding unaligned
words in the gold-standard evaluation data. For
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en-ja ja-en
Training Preordering FRS τ Training Preordering FRS τ
(min.) (sent./sec.) (min.) (sent./sec.)

Top-Down (EM-100k) 63 87.8 77.83 87.78 81 178.4 74.60 83.78
Top-Down (Basic Feat.) (EM-100k) 9 475.1 75.25 87.26 9 939.0 73.56 83.66
Lader (EM-100k) 1562 4.3 75.41 86.85 2087 12.3 74.89 82.15

Table 3: Speed and accuracy of preordering.

en-ja ja-en
FRS τ BLEU FRS τ BLEU

Top-Down (Manual-8k) 81.57 90.44 18.13 79.26 86.47 14.26
(EM-10k) 74.79 85.87 17.07 72.51 82.65 14.55

(EM-100k) 77.83 87.78 17.66 74.60 83.78 14.84
(Forced-10k) 76.10 87.45 16.98 75.36 83.96 14.78

(Forced-100k) 78.76 89.22 17.88 76.58 85.25 15.54
Lader (EM-100k) 75.41 86.85 17.40 74.89 82.15 14.59
No-Preordering 46.17 65.07 13.80 59.35 65.30 10.31
Manual-Rules 80.59 90.30 18.68 73.65 81.72 14.02
Auto-Rules 64.13 84.17 16.80 60.60 75.49 12.59
Classifier 80.89 90.61 18.53 74.24 82.83 13.90

Table 4: Performance of preordering for various training data. Bold BLEU scores indicate no statistically
significant difference at p < 0.05 from the best system (Koehn, 2004).

example, the preordering result “New York I to
went” for the gold-standard data in Figure 5 has
ρ = 3, 4, 2, 1. Then FRS and τ are calculated as
follows:

FRS =
B

|ρ|+ 1
, (5)

B =
|ρ|−2∑
i=0

δ(yρi=yρi+1 ∨ yρi+1=yρi+1) +

δ(yρ0=0) + δ(yρ|ρ|−1
= max

i
yi), (6)

τ =

∑|ρ|−2
i=0

∑|ρ|−1
j=i+1 δ(yρi ≤ yρj )

1
2 |ρ|(|ρ| − 1)

, (7)

where δ(X) is the Kronecker’s delta function
which returns 1 if X is true or 0 otherwise. These
scores are calculated for each sentence, and are av-
eraged over all sentences in test data. As above,
FRS can be calculated as the precision of word bi-
grams (B is the number of the word bigrams which
exist both in the system output and the gold stan-
dard data). This formulation is equivalent to the
original formulation based on chunk fragmenta-
tion by Talbot et al. (2011). Equation (6) takes
into account the positions of the beginning and the
ending words (Neubig et al., 2012). Kendall’s τ is
equivalent to the (normalized) crossing alignment
link score used by Genzel (2010).

We prepared three types of training data for
learning model parameters of BTG-based pre-
ordering:

Manual-8k Manually word-aligned 8,000 sen-

tence pairs.
EM-10k, EM-100k These are the data obtained

with the EM-based word alignment learn-
ing. From the word alignment result
for phrase translation extraction described
above, 10,000 and 100,000 sentence pairs
were randomly sampled. Before the sam-
pling, the data filtering procedure 1 and 3
in Section 3.4 were applied, and also sen-
tences were removed if more than half of
source words do not have aligned target
words. Word alignment was obtained by
symmetrizing source-to-target and target-to-
source word alignment with the INTERSEC-
TION heuristic.5

Forced-10k, Forced-100k These are 10,000 and
100,000 word-aligned sentence pairs ob-
tained with forced-decoding as described in
Section 3.4.

As test data for intrinsic evaluation of preordering,
we manually word-aligned 2,000 sentence pairs
for en-ja and ja-en.

Several preordering systems were prepared in
order to compare the following six systems:

No-Preordering This is a system without pre-
ordering.

Manual-Rules This system uses the preordering
method based on manually created rules (Xu

5In our preliminary experiments, the UNION and GROW-
DIAG-FINAL heuristics were also applied to generate the
training data for preordering, but INTERSECTION per-
formed the best.
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No- Manual- Auto- Classifier Lader Top-Down Top-Down
Preordering Rules Rules (EM-100k) (EM-100k) (Forced-100k)

nl-en 34.01 - 34.24 35.42 33.83 35.49 35.51
en-nl 25.33 - 25.59 25.99 25.30 25.82 25.66
en-fr 25.86 - 26.39 26.35 26.50 26.75 26.81
en-ja 13.80 18.68 16.80 18.53 17.40 17.66 17.88
en-es 29.50 - 29.63 30.09 29.70 30.26 30.24
fr-en 32.33 - 32.09 32.28 32.43 33.00 32.99
hi-en 19.86 - - - 24.24 24.98 24.97
ja-en 10.31 14.02 12.59 13.90 14.59 14.84 15.54
ko-en 14.13 - 15.86 19.46 18.65 19.67 19.88
tr-en 18.26 - - - 22.80 23.91 24.18
ur-en 14.48 - - - 16.62 17.65 18.32
cy-en 41.68 - - - 41.79 41.95 41.86

Table 5: BLEU score comparison.

Distortion No- Manual- Auto- Classifier Lader Top-Down Top-Down
Limit Preordering Rules Rules (EM-100k) (EM-100k) (Forced-100k)

en-ja 5 13.80 18.68 16.80 18.53 17.40 17.66 17.88
en-ja 0 11.99 18.34 16.87 18.31 16.95 17.36 17.88
ja-en 5 10.31 14.02 12.59 13.90 14.59 14.84 15.54
ja-en 0 10.03 12.43 11.33 13.09 14.38 14.72 15.34

Table 6: BLEU scores for different distortion limits.

et al., 2009). We made 43 precedence rules
for en-ja, and 24 for ja-en.

Auto-Rules This system uses the rule-based pre-
ordering method which automatically learns
the rules from word-aligned data using the
Variant 1 learning algorithm described in
(Genzel, 2010). 27 to 36 rules were automat-
ically learned for each language pair.

Classifier This system uses the preordering
method based on statistical classifiers (Lerner
and Petrov, 2013), and the 2-step algorithm
was implemented.

Lader This system uses Latent Derivation Re-
orderer (Neubig et al., 2012), which is a
BTG-based preordering system using the
CYK algorithm.6 The basic feature templates
in Table 2 are used as features.

Top-Down This system uses the preordering sys-
tem described in Section 3.

Among the six systems, Manual-Rules, Auto-
Rules and Classifier need dependency parsers for
source languages. A dependency parser based
on the shift-reduce algorithm with beam search
(Zhang and Nivre, 2011) is used. The dependency
parser and all the preordering systems need POS
taggers. A supervised POS tagger based on condi-
tional random fields (Lafferty et al., 2001) trained
with manually POS annotated data is used for nl,
en, fr, ja and ko. For other languages, we use a
POS tagger based on POS projection (Täckström

6lader 0.1.4. http://www.phontron.com/lader/

et al., 2013) which does not need POS annotated
data. Word classes in Table 2 are obtained by us-
ing Brown clusters (Koo et al., 2008) (the number
of classes is set to 256). For both Lader and Top-
Down, the beam width is set to 20, and the number
of training iterations of online learning is set to 20.

The CPU time shown in this paper is measured
using Intel Xeon 3.20GHz with 32GB RAM.

4.2 Results

4.2.1 Training and Preordering Speed
Table 3 shows the training time and preordering
speed together with the intrinsic evaluation met-
rics. In this experiment, both Top-Down and Lader
were trained using the EM-100k data. Compared
to Lader, Top-Down was faster: more than 20
times in training, and more than 10 times in pre-
ordering. Top-down had higher preordering ac-
curacy in FRS and τ for en-ja. Although Lader
uses sophisticated loss functions, Top-Down uses
a larger number of features.

Top-Down (Basic feats.) is the top-down
method using only the basic feature templates in
Table 2. It was much faster but less accurate
than Top-Down using the additional features. Top-
Down (Basic feats.) and Lader use exactly the
same features. However, there are differences in
the two systems, and they had different accuracies.
Top-Down uses the beam search-based top-down
method for parsing and the Passive-Aggressive al-
gorithm for parameter estimation, and Lader uses
the CYK algorithm with cube pruning and an on-
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line SVM algorithm. Especially, Lader optimizes
FRS in the default setting, and it may be the reason
that Lader had higher FRS.

4.2.2 Performance of Preordering for
Various Training Data

Table 4 shows the preordering accuracy and BLEU
scores when Top-Down was trained with various
data. The best BLEU score for Top-Down was ob-
tained by using manually annotated data for en-
ja and 100k forced-decoding data for ja-en. The
performance was improved by increasing the data
size.

4.2.3 End-to-End Evaluation for Various
Language Pairs

Table 5 shows the BLEU score of each system for
12 language pairs. Some blank fields mean that
the results are unavailable due to the lack of rules
or dependency parsers. For all the language pairs,
Top-Down had higher BLEU scores than Lader.
For ja-en and ur-en, using Forced-100k instead
of EM-100k for Top-Down improved the BLEU
scores by more than 0.6, but it did not always im-
proved.

Manual-Rules performed the best for en-ja, but
it needs manually created rules and is difficult
to be applied to many language pairs. Auto-
Rules and Classifier had higher scores than No-
Preordering except for fr-en, but cannot be applied
to the languages with no available dependency
parsers. Top-Down (Forced-100k) can be applied
to any language, and had statistically significantly
better BLEU scores than No-Preordering, Manual-
Rules, Auto-Rules, Classifier and Lader for 7 lan-
guage pairs (en-fr, fr-en, hi-en, ja-en, ko-en, tr-en
and ur-en), and similar performance for other lan-
guage pairs except for en-ja, without dependency
parsers trained with manually annotated data.

In all the experiments so far, the decoder was
allowed to reorder even after preordering was car-
ried out. In order to see the performance without
reordering after preordering, we conducted exper-
iments by setting the distortion limit to 0. Table 6
shows the results. The effect of the distortion lim-
its varies for language pairs and preordering meth-
ods. The BLEU scores of Top-Down were not af-
fected largely even when relying only on preorder-
ing.

5 Conclusion

In this paper, we proposed a top-down BTG pars-
ing method for preordering. The method in-
crementally builds parse trees by splitting larger
spans into smaller ones. The method provides an
easy way to check the validity of each parser state,
which allows us to use early update for latent vari-
able Perceptron with beam search. In the exper-
iments, it was shown that the top-down parsing
method is more than 10 times faster than a CYK-
based method. The top-down method had better
BLEU scores for 7 language pairs without relying
on supervised syntactic parsers compared to other
preordering methods. Future work includes devel-
oping a bottom-up BTG parser with latent vari-
ables, and comparing the results to the top-down
parser.

References
Alexandra Antonova and Alexey Misyurev. 2011.

Building a Web-Based Parallel Corpus and Filtering
Out Machine-Translated Text. In Proceedings of the
4th Workshop on Building and Using Comparable
Corpora: Comparable Corpora and the Web, pages
136–144.

Alexandra Birch, Miles Osborne, and Phil Blunsom.
2010. Metrics for MT Evaluation: Evaluating Re-
ordering. Machine Translation, 24(1):15–26.

Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw.
1998. Pattern matching for permutations. Informa-
tion Processing Letters, 65(5):277–283.

Peter F. Brown, Vincent J. Della Pietra, Stephen
A. Della Pietra, and Robert L. Mercer. 1993.
The Mathematics of Statistical Machine Translation:
Parameter Estimation. Computational Linguistics,
19(2):263–311.

David Chiang. 2007. Hierarchical Phrase-Based
Translation. Computational Linguistics, 33(2):201–
228.

Michael Collins and Brian Roark. 2004. Incremental
Parsing with the Perceptron Algorithm. In Proceed-
ings of the 42nd Annual Meeting of the Association
for Computational Linguistics, pages 111–118.

Michael Collins, Philipp Koehn, and Ivona Kucerova.
2005. Clause Restructuring for Statistical Machine
Translation. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Lin-
guistics, pages 531–540.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. On-
line Passive-Aggressive Algorithms. Journal of Ma-
chine Learning Research, 7:551–585.

John DeNero and Jakob Uszkoreit. 2011. Inducing
Sentence Structure from Parallel Corpora for Re-
ordering. In Proceedings of the 2011 Conference on

216



Empirical Methods in Natural Language Process-
ing, pages 193–203.

Yoav Freund and Robert E. Schapire. 1999. Large
Margin Classification Using the Perceptron Algo-
rithm. Machine Learning, 37(3):277–296.

Kuzman Ganchev and Mark Dredze. 2008. Small Sta-
tistical Models by Random Feature Mixing. In Pro-
ceedings of the ACL-08: HLT Workshop on Mobile
Language Processing, pages 19–20.

Dmitriy Genzel. 2010. Automatically Learning
Source-side Reordering Rules for Large Scale Ma-
chine Translation. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics,
pages 376–384.

Yoav Goldberg and Michael Elhadad. 2010. An Ef-
ficient Algorithm for Easy-first Non-directional De-
pendency Parsing. In Human Language Technolo-
gies: The 2010 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 742–750.

Liang Huang, Suphan Fayong, and Yang Guo. 2012.
Structured Perceptron with Inexact Search. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
142–151.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito
Sudoh, and Hajime Tsukada. 2010. Automatic
Evaluation of Translation Quality for Distant Lan-
guage Pairs. In Proceedings of the 2010 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 944–952.
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Abstract
We present a method for predicting ma-
chine translation output quality geared to
the needs of computer-assisted translation.
These include the capability to: i) con-
tinuously learn and self-adapt to a stream
of data coming from multiple translation
jobs, ii) react to data diversity by ex-
ploiting human feedback, and iii) leverage
data similarity by learning and transferring
knowledge across domains. To achieve
these goals, we combine two supervised
machine learning paradigms, online and
multitask learning, adapting and unifying
them in a single framework. We show
the effectiveness of our approach in a re-
gression task (HTER prediction), in which
online multitask learning outperforms the
competitive online single-task and pooling
methods used for comparison. This in-
dicates the feasibility of integrating in a
CAT tool a single QE component capa-
ble to simultaneously serve (and continu-
ously learn from) multiple translation jobs
involving different domains and users.

1 Introduction

Even if not perfect, machine translation (MT) is
now getting reliable enough to support and speed-
up human translation. Thanks to this progress,
the work of professional translators is gradually
shifting from full translation from scratch to MT
post-editing. Advanced computer-assisted trans-
lation (CAT) tools1 provide a natural framework
for this activity by proposing, for each segment in
a source document, one or more suggestions ob-
tained either from a translation memory (TM) or
from an MT engine. In both cases, accurate mech-
anisms to indicate the reliability of a suggestion

1See for instance the open source MateCat tool (Federico
et al., 2014).

are extremely useful to let the user decide whether
to post-edit a given suggestion or ignore it and
translate the source segment from scratch. How-
ever, while scoring TM matches relies on standard
methods based on fuzzy matching, predicting the
quality of MT suggestions at run-time and without
references is still an open issue.

This is the goal of MT quality estimation (QE),
which aims to predict the quality of an automatic
translation as a function of the estimated number
of editing operations or the time required for man-
ual correction (Specia et al., 2009; Soricut and
Echihabi, 2010; Bach et al., 2011; Mehdad et al.,
2012). So far, QE has been mainly approached
in controlled settings where homogeneous train-
ing and test data is used to learn and evaluate static
predictors. Cast in this way, however, it does not
fully reflect (nor exploit) the working conditions
posed by the CAT framework, in which:

1. The QE module is exposed to a continuous
stream of data. The amount of such data and
the tight schedule of multiple, simultaneous
translation jobs prevents from (theoretically
feasible but impractical) complete re-training
procedures in a batch fashion and advocate
for continuous learning methods.

2. The input data can be diverse in nature. Con-
tinuous learning should be sensitive to such
differences, in a way that each translation job
and user is supported by a reactive model that
is robust to variable working conditions.

3. The input data can show similarities with
previous observations. Continuous learning
should leverage such similarities, so that QE
can capitalize from all the previously pro-
cessed segments even if they come from dif-
ferent domains, genres or users.

While previous QE research disregarded these
challenges or addressed them in isolation, our
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work tackles them in a single unifying framework
based on the combination of two paradigms: on-
line and multitask learning. The former provides
continuous learning capabilities that allow the QE
model to be robust and self-adapt to a stream of
potentially diverse data. The latter provides the
model with the capability to exploit the similari-
ties between data coming from different sources.
Along this direction our contributions are:

• The first application of online multitask
learning to QE, geared to the challenges
posed by CAT technology. In this framework,
our models are trained to predict MT quality
in terms of HTER (Snover et al., 2006).2

• The extension of current online multitask
learning methods to regression. Prior works
in the machine learning field applied this
paradigm to classification problems, but its
use for HTER estimation requires real-valued
predictions. To this aim, we propose a new
regression algorithm that, at the same time,
handles positive and negative transfer and
performs online weight updates.

• A comparison between online multitask and
alternative, state-of-the-art online learning
strategies. Our experiments, carried out in a
realistic scenario involving a stream of data
from four domains, lead to consistent results
that prove the effectiveness of our approach.

2 Related Work

In recent years, sentence-level QE has been
mainly investigated in controlled evaluation sce-
narios such as those proposed by the shared tasks
organized within the WMT workshop on SMT
(Callison-Burch et al., 2012; Bojar et al., 2013;
Bojar et al., 2014). In this framework, systems
trained from a collection of (source, target, label)
instances are evaluated based on their capability
to predict the correct label3 for new, unseen test
items. Compared to our application scenario, the
shared tasks setting differs in two main aspects.

2The HTER is the minimum edit distance between a trans-
lation suggestion and its manually post-edited version in the
[0,1] interval. Edit distance is calculated as the number of
edits (word insertions, deletions, substitutions, and shifts) di-
vided by the number of words in the reference.

3Possible label types include post-editing effort scores
(e.g. 1-5 Likert scores indicating the estimated percentage
of MT output that has to be corrected), HTER values, and
post-editing time (e.g. seconds per word).

First, the data used are substantially homogeneous
(usually they come from the same domain, and tar-
get translations are produced by the same MT sys-
tem). Second, training and test are carried out as
distinct, sequential phases. Instead, in the CAT en-
vironment, a QE component should ideally serve,
adapt to and continuously learn from simultaneous
translation jobs involving different MT engines,
domains, genres and users (Turchi et al., 2013).

These challenges have been separately ad-
dressed from different perspectives in few recent
works. Huang et al. (2014) proposed a method
to adaptively train a QE model for document-
specific MT post-editing. Adaptability, however,
is achieved in a batch fashion, by re-training an ad
hoc QE component for each document to be trans-
lated. The adaptive approach proposed by Turchi
et al. (2014) overcomes the limitations of batch
methods by applying an online learning protocol
to continuously learn from a stream of (potentially
heterogeneous) data. Experimental results suggest
the effectiveness of online learning as a way to ex-
ploit user feedback to tailor QE predictions to their
quality standards and to cope with the heterogene-
ity of data coming from different domains. How-
ever, though robust to user and domain changes,
the method is solely driven by the distance com-
puted between predicted and true labels, and it
does not exploit any notion of similarity between
tasks (e.g. domains, users, MT engines).

On the other way round, task relatedness is suc-
cessfully exploited by Cohn and Specia (2013),
who apply multitask learning to jointly learn from
data obtained from several annotators with differ-
ent levels of expertise and reliability. A similar ap-
proach is adopted by de Souza et al. (2014a), who
apply multitask learning to cope with situations in
which a QE model has to be trained with scarce
data from multiple domains/genres, different from
the actual test domain. The two methods signifi-
cantly outperform both individual single-task (in-
domain) models and single pooled models. How-
ever, operating in batch learning mode, none of
them provides the continuous learning capabilities
desirable in the CAT framework.

The idea that online and multitask learning can
complement each other if combined is suggested
by (de Souza et al., 2014b), who compared the two
learning paradigms in the same experimental set-
ting. So far, however, empirical evidence of this
complementarity is still lacking.
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3 Online Multitask Learning for QE

Online learning takes place in a stepwise fash-
ion. At each step, the learner processes an instance
(in our case a feature vector extracted from source
and target sentences) and predicts a label for it (in
our case an HTER value). After the prediction, the
learner receives the “true” label (in our case the ac-
tual HTER computed from a human post-edition)
and computes a loss that indicates the distance be-
tween the predicted and the true label. Before go-
ing to the next step, the weights are updated ac-
cording to the suffered loss.

Multitask learning (MTL) aims to simultane-
ously learn models for a set of possibly related
tasks by exploiting their relationships. By do-
ing this, improved generalization capabilities are
obtained over models trained on the different
tasks in isolation (single-task learning – STL).
The relationships among tasks are provided by a
shared structure, which can encode three types
of relationships based on their correlation (Zhang
and Yeung, 2010). Positive correlation indicates
that the tasks are related and knowledge transfer
should lead to similar model parameters. Negative
correlation indicates that the tasks are likely to be
unrelated and knowledge transfer should force an
increase in the distance between model parame-
ters. No correlation indicates that the tasks are in-
dependent and no knowledge transfer should take
place. In our case, a task is a set of (instance, la-
bel) pairs obtained from source sentences coming
from different translation jobs, together with their
translations produced by several MT systems and
the relative post-editions from various translators.
In this paper the terms task and domain are used
interchangeably.

Early MTL methods model only positive cor-
relation (Caruana, 1997; Argyriou et al., 2008),
which results in a positive knowledge transfer be-
tween all the tasks, with the risk of impairing each
other’s performance when they are unrelated or
negatively correlated. Other methods (Jacob et
al., 2009; Zhong and Kwok, 2012; Yan et al.,
2014) cluster tasks into different groups and share
knowledge only among those in the same cluster,
thus implicitly identifying outlier tasks. A third
class of algorithms considers all the three types of
relationships by learning task interaction via the
covariance of task-specific weights (Bonilla et al.,
2008; Zhang and Yeung, 2010). All these meth-

ods, however, learn the task relationships in batch
mode. To overcome this limitation, recent works
propose the “lifelong learning” paradigm (Eaton
and Ruvolo, 2013; Ruvolo and Eaton, 2014), in
which all the instances of a task are given to
the learner sequentially and the previously learned
tasks are leveraged to improve generalization for
future tasks. This approach, however, is not ap-
plicable to our scenario as it assumes that all the
instances of each task are processed as separate
blocks.

In this paper we propose a novel MTL algorithm
for QE that learns the structure shared by differ-
ent tasks in an online fashion and from an input
stream of instances from all the tasks. To this aim,
we extend the online passive aggressive (PA) al-
gorithm (Crammer et al., 2006) to the multitask
scenario, learning a set of task-specific regression
models. The multitask component of our method
is given by an “interaction matrix” that defines to
which extent each encoded task can “borrow” and
“lend” knowledge from and to the other tasks. Op-
posite to previous methods (Cavallanti et al., 2010)
that assume fixed dependencies among tasks, we
propose to learn the interaction matrix instance-
by-instance from the data. To this aim we follow
the recent work of Saha et al. (2011), extending it
to a regression setting. The choice of PA is mo-
tivated by practical reasons. Indeed, by provid-
ing the best trade-off between accuracy and com-
putational time (He and Wang, 2012) compared
to other algorithms such as OnlineSVR (Parrella,
2007), it represents a good solution to meet the de-
mand of efficiency posed by the CAT framework.

3.1 Passive Aggressive Algorithm
PA follows the typical online learning proto-
col. At each round t the learner receives an in-
stance, xt ∈ Rd (d is the number of features),
and predicts the label ŷt according to a function
parametrized by a set weights wt ∈ Rd. Next,
the learner receives the true label yt, computes the
ε-insensitive loss, `ε, measuring the deviation be-
tween the prediction ŷt and the true label yt and
updates the weights. The weights are updated by
solving the optimization problem:

wt = arg min
w

CPA(w) + Cξ (1)

s.t. `ε(w, (xt, yt)) ≤ ξ and ξ ≥ 0

where CPA(w) = 1
2 ||w − wt−1||2 and `ε is the

ε-insensitive hinge loss defined as:
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`ε(w, (x, y)) =

{
0, if |y −w · x| ≤ ε
|y −w · x| − ε, otherwise

(2)

The loss is zero when the absolute difference be-
tween the prediction and the true label is smaller
or equal to ε, and grows linearly with this differ-
ence otherwise. The ε parameter is given as input
and regulates the sensitivity to mistakes. The slack
variable ξ acts as an upper-bound to the loss, while
the C parameter is introduced to control the ag-
gressiveness of the weights update. High C values
lead to more aggressive weight updates. However,
when the labels present some degree of noise (a
common situation in MT QE), they might cause
the learner to drastically change the weight vector
in a wrong direction. In these situations, setting C
to small values is desirable. As shown in (Cram-
mer et al., 2006), a closed form solution for the
weights update in Eq.1 can be derived as:

wt = wt−1 + sgn(yt − ŷt)τtxt (3)

with τt = min(C, `t
||xt||2 ) and `t = `ε(w, (xt, yt)).

3.2 Passive Aggressive MTL Algorithm
Our Passive Aggressive Multitask Learning
(PAMTL) algorithm extends the traditional PA for
regression to multitask learning. Our approach is
inspired by the Online Task Relationship Learning
algorithm proposed by Saha et al. (2011) which,
however, is only defined for classification.

The learning process considers one instance at
each round t. The random sequence of instances
belongs to a fixed set ofK tasks and the goal of the
algorithm is to learnK linear models, one for each
task, parametrized by weight vectors w̃t,k, k ∈
{1, . . . ,K}. Moreover, the algorithm also learns
a positive semidefinite matrix Ω ∈ RK×K , mod-
eling the relationship among tasks. Algorithm 1
summarizes our approach. At each round t, the
learner receives a pair (xt, it) where xt ∈ Rd is an
instance and it ∈ {1, . . . ,K} is the task identifier.
Each incoming instance is transformed to a com-
pound vector φt = [0, . . . , 0,xt, 0, . . . , 0] ∈ RKd.
Then, the algorithm predicts the HTER score cor-
responding to the label ŷ by using the weight vec-
tor w̃t. The weight vector is a compound vector
w̃t = [w̃t,1, . . . , w̃t,K ] ∈ RKd, where w̃t,k ∈
Rd , k ∈ {1, . . . ,K}. Next, the learner receives
the true HTER label y and computes the loss `ε
(Eq. 2) for round t.

Algorithm 1 PA Multitask Learning (PAMTL)
Input: instances from K tasks, number of rounds R > 0,
ε > 0, C > 0
Output: w and Ω, learned after T rounds

Initialization: Ω = 1
K
× Ik, w = 0

for t = 1 to T do
receive instance (xt, it)
compute φt from xt
predict HTER ŷt = (w̃T

t · φt)
receive true HTER label yt
compute `t (Eq. 2)
compute τt = min(C, `t

||φt||2 )

/* update weights */
w̃t = w̃t−1 + sgn(yt − ŷt)τt(Ωt−1 ⊗ Id)

−1φt
/* update task matrix */
if t > R then

update Ωt with Eq. 6 or Eq. 7
end if

end for

We propose to update the weights by solving:

w̃t,Ωt = argmin
w,Ω�0

CMTL(w,Ω) + Cξ +D(Ω,Ωt−1)

s.t. `ε(w, (xt, yt)) ≤ ξ, ξ ≥ 0 (4)

The first term models the joint dependencies
between the task weights and the interaction
matrix and it is defined as CMTL(w,Ω) =
1
2(w − w̃t)TΩ⊗(w − w̃t), where Ω⊗ = Ω ⊗
Id. The function D(·) represents the diver-
gence between a pair of positive definite matri-
ces. Similar to (Saha et al., 2011), to define
D(·) we also consider the family of Bregman di-
vergences and specifically the LogDet and the
Von Neumann divergences. Given two matri-
ces X,Y ∈ Rn×n, the LogDet divergence is
DLD(X,Y) = tr(XY−1) − log |XY−1| − n,
while the Von Neumann divergence is computed
asDV N (X,Y) = tr(X log X−Y log Y−X+Y).

The optimization process to solve Eq.4 is per-
formed with an alternate scheme: first, with a
fixed Ω, we compute w; then, given w we opti-
mize for Ω. The closed-form solution for updating
w, which we derived similarly to the PA update
(Crammer et al., 2006), becomes:

w̃t = w̃t−1 + sgn(yt − ŷt)τt(Ωt−1 ⊗ Id)
−1φt (5)

In practice, the interaction matrix works as a learn-
ing rate when updating the weights of each task.
Similarly, following previous works (Tsuda et al.,
2005), the update steps for the interaction matrix
Ω can be easily derived. For the Log-Det diver-
gence we have:

Ωt = (Ωt−1 + η sym(W̃T
t−1W̃t−1))

−1 (6)
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while for the Von Neumann we obtain:

Ωt = exp(log Ωt−1 − η sym(W̃T
t−1W̃t−1)) (7)

where W̃t ∈ Rd×K is a matrix obtained by
column-wise reshaping the weight vector w̃t,
sym(X) = (X + XT )/2 and η is the learning
rate parameter. The sequence of steps to compute
Ωt and w̃t is summarized in Algorithm 1. Impor-
tantly, the weight vector is updated at each round
t, while Ωt is initialized to a diagonal matrix and
it is only computed after R iterations. In this way,
at the beginning, the tasks are assumed to be in-
dependent and the task-specific regression mod-
els are learned in isolation. Then, after R rounds,
the interaction matrix is updated and the weights
are refined considering tasks dependencies. This
leads to a progressive increase in the correlation
of weight vectors of related tasks. In the follow-
ing, PAMTLvn refers to PAMTL with the Von
Neumann updates and PAMTLld to PAMTL with
LogDet updates.

4 Experimental Setting

In this section, we describe the data used in our ex-
periments, the features extracted from the source
and target sentences, the evaluation metric and the
baselines used for comparison.

Data. We experiment with English-French
datasets coming from Technology Entertainment
Design talks (TED), Information Technology
manuals (IT) and Education Material (EM). All
datasets provide a set of tuples composed by
(source, translation and post-edited translation).

The TED dataset is distributed in the Trace cor-
pus4 and includes, as source sentences, the sub-
titles of several talks spanning a range of topics
presented in the TED conferences. Translations
were generated by two different MT systems: a
phrase-based statistical MT system and a commer-
cial rule-based system. Post-editions were col-
lected from four different translators, as described
by Wisniewski et al. (2013).

The IT manuals data come from two language
service providers, henceforth LSP1 and LSP2.
The ITLSP1 tuples belong to a software manual
translated by an SMT system trained using the
Moses toolkit (Koehn et al., 2007). The post-
editions were produced by one professional trans-

4http://anrtrace.limsi.fr/trace_
postedit.tar.bz2

Domain No. Vocab. Avg. Snt.
tokens Size Length

TED src 20,048 3,452 20
TED tgt 21,565 3,940 22
ITLSP1 src 12,791 2,013 13
ITLSP1 tgt 13,626 2,321 13
EM src 15,327 3,200 15
EM tgt 17,857 3,149 17
ITLSP2 src 15,128 2,105 13
ITLSP2 tgt 17,109 2,104 14

Table 1: Data statistics for each domain.

lator. The ITLSP2 data includes a software man-
ual from the automotive industry; its source sen-
tences are translated with an adaptive proprietary
MT system and post-edited by several profes-
sional translators. The EM corpus is also pro-
vided by LSP2 and regards educational material
(e.g. courseware and assessments) of various text
styles. The translations and post-editions are pro-
duced in the same way as for ITLSP2. The ITLSP2

and the EM datasets are derived from the Au-
todesk Post-Editing Data corpus.5

In total, we end up with four domains (TED,
ITLSP1, EM and ITLSP2), which allows us to eval-
uate the PAMTL algorithm in realistic conditions
where the QE component is exposed to a contin-
uous stream of heterogeneous data. Each domain
is composed by 1,000 tuples formed by: i) the En-
glish source sentence, ii) its automatic translation
in French, and iii) a real-valued quality label ob-
tained by computing the HTER between the trans-
lation and the post-edition with the TERCpp open
source tool.6

Table 1 reports some macro-indicators (num-
ber of tokens, vocabulary size, average sentence
length) that give an idea about the similarities and
differences between domains. Although they con-
tain data from different software manuals, similar
vocabulary size and sentence lengths for the two
IT domains seem to reflect some commonalities in
their technical style and jargon. Larger values for
TED and EM evidence a higher lexical variability
in the topics that compose these domains and the
expected stylistic differences featured by speech
transcriptions and non-technical writing. Over-
all, these numbers suggest a possible dissimilar-

5https://autodesk.app.box.com/
Autodesk-PostEditing

6http://sourceforge.net/projects/
tercpp/
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Figure 1: Validation curves for the R parameter.

ity between ITLSP1 and ITLSP2 and the other two
domains, which might make knowledge transfer
across them more difficult and QE model reactiv-
ity to domain changes particularly important.

Features. Our models are trained using the 17
baseline features proposed in (Specia et al., 2009),
extracted with the online version of the QuEst fea-
ture extractor (Shah et al., 2014). These features
take into account the complexity of the source sen-
tence (e.g. number of tokens, number of transla-
tions per source word) and the fluency of the trans-
lation (e.g. language model probabilities). Their
description is available in (Callison-Burch et al.,
2012). The results of previous WMT QE shared
tasks have shown that these features are particu-
larly competitive in the HTER prediction task.

Baselines. We compare the performance of
PAMTL against three baselines: i) pooling mean,
ii) pooling online single task learning (STLpool)
and iii) in-domain online single task learning
(STLin). The pooling mean is obtained by assign-
ing a fixed prediction value to each test point. This
value is the average HTER computed on the entire
pool of training data. Although assigning the same
prediction to each test instance would be useless
in real applications, we compare against the mean
baseline since it is often hard to beat in regression
tasks, especially when dealing with heterogeneous
data distributions (Rubino et al., 2013).

The two online single task baselines implement
the PA algorithm described in Section 3.1. The
choice of PA is to make them comparable to our
method, so that we can isolate more precisely the
contribution of multitask learning. STLpool results
are obtained by a single model trained on the entire

Figure 2: Learning curves for all the domains,
computed by calculating the mean MAE (↓) of the
four domains.

pool of available training data presented in random
order. STLin results are obtained by separately
training one model for each domain. These repre-
sent two alternative strategies for the integration of
QE in the CAT framework. The former would al-
low a single model to simultaneously support mul-
tiple translation jobs in different domains, without
any notion about their relations. The latter would
lead to a more complex architecture, organized as
a pool of independent, specialized QE modules.

Evaluation metric. The performance of our re-
gression models is evaluated in terms of mean ab-
solute error (MAE), a standard error measure for
regression problems commonly used also for QE
(Callison-Burch et al., 2012). The MAE is the av-
erage of the absolute errors ei = |ŷi − yi|, where
ŷi is the prediction of the model and yi is the true
value for the ith instance. As it is an error mea-
sure, lower values indicate better performance (↓).

5 Results and Discussion

In this Section we evaluate the proposed PAMTL
algorithm. First, by analyzing how the number of
rounds R impacts on the performance of our ap-
proach, we empirically find the value that will be
used to train the model. Then, the learned model
is run on test data and compared against the base-
lines. Performance is analyzed both by averag-
ing the MAE results computed on all the domains,
and by separately discussing in-domain behavior.
Finally, the capability of the algorithm to learn
task correlations and, in turn, transfer knowledge
across them, is analysed by presenting the correla-
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Figure 3: Learning curves showing MAE (↓) variations for each domain.

tion matrix of the task weights.
For the evaluation, we uniformly sample 700 in-

stances from each domain for training, leaving the
remaining 300 instances for test. The training sets
of all the domains are concatenated and shuffled
to create a random sequence of points. To inves-
tigate the impact of different amounts of data on
the learning process, we create ten subsets of 10
to 100% of the training data. We optimize the pa-
rameters of all the models with a grid search pro-
cedure using 5-fold cross-validation. This process
is repeated for 30 different train/test splits over the
whole data. Results are presented with 95% confi-
dence bands.7

Analysis of the R parameter. We empirically
study the influence of the number of instances re-
quired to start updating the interaction matrix (the
R parameter in Algorithm 1). For that, we per-
form a set of experiments where R is initialized
with nine different values (expressed as percent-
age of training data). Figure 1 shows the val-
idation curves obtained in cross-validation over
the training data using the LogDet and Von Neu-
mann updates. The curves report the performance
(MAE) difference between STLin and PAMTLld

7Confidence bands are used to show whether performance
differences between the models are statistically significant.

(black curve) and STLin and PAMTLvn (grey
curve). The higher the difference, the better. The
PAMTLvn curve differs from PAMTLld one only
for small values ofR (< 20), showing that the two
divergences are substantially equivalent. It is in-
teresting to note that with only 20% of the training
data (R = 20), PAMTL is able to find a stable
set of weights and to effectively update the inter-
action matrix. Larger values of R harm the perfor-
mance, indicating that the interaction matrix up-
dates require a reasonable amount of points to reli-
ably transfer knowledge across tasks. We use this
observation to set R for our final experiment, in
which we evaluate the methods over the test data.

Evaluation on test data. Global evaluation re-
sults are summarized in Figure 2, which shows
five curves: one for each baseline (Mean, STLin,
STLpool) and two for the proposed online mul-
titask method (PAMTLvn and PAMTLld). The
curves are computed by calculating the average
MAE achieved with different amounts of data on
each domain’s test set.

The results show that PAMTLld and PAMTLvn
have similar trends (confirming the substantial
equivalence previously observed), and that both
outperform all the baselines in a statistically sig-
nificant manner. This holds for all the training set
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sizes we experimented with. The maximum im-
provement over the baselines (+1.3 MAE) is ob-
served with 60% of the training data when com-
paring PAMTLvn with STLin. Even if this is the
best baseline, also with 100% of the data its results
are not competitive and of limited interest with re-
spect to our application scenario (the integration of
effective QE models in the CAT framework). In-
deed, despite the STLin downward error trend, it’s
worth remarking that an increased competitive-
ness would come at the cost of: i) collecting large
amounts of annotated data and ii) integrating the
model in a complex CAT architecture organized
as a pool of independent QE components. Under
the tested conditions, it is also evident that the al-
ternative strategy of using a single QE component
to simultaneously serve multiple translation jobs is
not viable. Indeed, STLpool is the worst perform-
ing baseline, with a constant distance of around 2
MAE points from the best PAMTL model for al-
most all the training set sizes. The fact that, with
increasing amounts of data, the STLpool predic-
tions get close to those of the simple mean base-
line indicates its limitations to cope with the noise
introduced by a continuous stream of diverse data.
The capability to handle such stream by exploit-
ing task relationships makes PAMTL a much bet-
ter solution for our purposes.

Per-domain analysis. Figure 3 shows the MAE
results achieved on each target domain by the most
competitive baseline (STLin) and the proposed on-
line multitask method (PAMTLvn, PAMTLld).

For all the domains, the behavior of PAMTLld
and PAMTLvn is consistent and almost identi-
cal. With both divergences, the improvement of
PAMTL over online single task learning becomes
statistically significant when using more than 30%
of the training data (210 instances). Interestingly,
in all the plots, with 20% of the training data
(140 instances for each domain, i.e. a total of
560 instances adding data from all the domains),
PATML results are comparable to those achieved
by STLin with 80% of the training data (i.e. 560
in-domain instances). This confirms that PATML
can effectively leverage data heterogeneity, and
that a limited amount of in-domain data is suf-
ficient to make it competitive. Nevertheless, for
all domains except EM, the PATML and STLin
curves converge to comparable performance when
trained with 100% of the data. This is not surpris-
ing if we consider that EM has a varied vocabulary

Figure 4: Correlation among the weights predicted
by PATMLvn using all the training data.

(see Table 1), which may be evidence of the pres-
ence of different topics, increasing its similarity
with other domains. The same assumption should
also hold for TED, given that its source sentences
belong to talks about different topics. The results
for the TED domain, however, do not present the
same degree of improvement as for EM.

To better understand the relationships learned
by the PAMTL models, we compute the corre-
lation between the weights inferred for each do-
main (as performed by Saha et al. (2011)). Fig-
ure 4 shows the correlations computed on the task
weights learned by PATMLvn with all the train-
ing data. In the matrix, EM is the domain that
presents the highest correlation with all the others.
Instead, TED and ITLSP2 are the less correlated
with the other domains (even though, being close
to the other IT domain, ITLSP2 can share knowl-
edge with it). This explains why the improvement
measured on TED is smaller compared to EM. Al-
though there is no canonical way to measure cor-
relation among domains, the weights correlation
matrix and the improvements achieved by PAMTL
show the capability of the method to identify task
relationships and exploit them to improve the gen-
eralization properties of the model.

6 Conclusion

We addressed the problem of developing qual-
ity estimation models suitable for integration in
computer-assisted translation technology. In this
framework, on-the-fly MT quality prediction for a
stream of heterogeneous data coming from differ-
ent domains/users/MT systems represents a major
challenge. On one side, processing such stream
calls for supervised solutions that avoid the bot-
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tleneck of periodically retraining the QE models
in a batch fashion. On the other side, handling
data heterogeneity requires the capability to lever-
age data similarities and dissimilarities. While
previous works addressed these two problems in
isolation, by proposing approaches respectively
based on online and multitask learning, our so-
lution unifies the two paradigms in a single on-
line multitask approach. To this aim, we devel-
oped a novel regression algorithm, filling a gap
left by current online multitask learning methods
that only operate in classification mode. Our ap-
proach, which is based on the passive aggressive
algorithm, has been successfully evaluated against
strong online single-task competitors in a scenario
involving four domains. Our future objective is
to extend our evaluation to streams of data com-
ing from a larger number of domains. Finding
reasonably-sized datasets for this purpose is cur-
rently difficult. However, we are confident that the
gradual shift of the translation industry towards
human MT post-editing will not only push for fur-
ther research on these problems, but also provide
data for larger scale evaluations in a short time.

To allow for replicability of our results and
promote further research on QE, the features ex-
tracted from our data, the computed labels and
the source code of the method are available at
https://github.com/jsouza/pamtl.
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Ondřej Bojar, Christian Buck, Chris Callison-Burch,
Christian Federmann, Barry Haddow, Philipp
Koehn, Christof Monz, Matt Post, Radu Soricut, and
Lucia Specia. 2013. Findings of the 2013 Work-
shop on Statistical Machine Translation. In Eighth

Workshop on Statistical Machine Translation, pages
1–44, Sofia, Bulgaria, August.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Aleš
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Abstract

Lexical selection is crucial for statistical ma-
chine translation. Previous studies separately
exploit sentence-level contexts and document-
level topics for lexical selection, neglecting
their correlations. In this paper, we propose
a context-aware topic model for lexical selec-
tion, which not only models local contexts and
global topics but also captures their correla-
tions. The model uses target-side translations
as hidden variables to connect document top-
ics and source-side local contextual words. In
order to learn hidden variables and distribu-
tions from data, we introduce a Gibbs sam-
pling algorithm for statistical estimation and
inference. A new translation probability based
on distributions learned by the model is inte-
grated into a translation system for lexical se-
lection. Experiment results on NIST Chinese-
English test sets demonstrate that 1) our model
significantly outperforms previous lexical se-
lection methods and 2) modeling correlations
between local words and global topics can fur-
ther improve translation quality.

1 Introduction

Lexical selection is a very important task in statis-
tical machine translation (SMT). Given a sentence
in the source language, lexical selection statistically
predicts translations for source words, based on vari-
ous translation knowledge. Most conventional SMT
systems (Koehn et al., 2003; Galley et al., 2006;
Chiang, 2007) exploit very limited context informa-
tion contained in bilingual rules for lexical selection.

∗Corresponding author.

{stance,  attitude ...}lìchǎng

duì    gāi    wèntí    zhōngguó  bǎochí    zhōnglì    lìchǎng

[Economy topic,  Politics topic ...]

{problem,  issue ...}wèntí 

Figure 1: A Chinese-English translation example to il-
lustrate the effect of local contexts and global topics as
well as their correlations on lexical selection. Each black
line indicates a set of translation candidates for a Chinese
content word (within a dotted box). Green lines point to
translations that are favored by local contexts while blue
lines show bidirectional associations between global top-
ics and their consistent target-side translations.

Previous studies that explore richer information for
lexical selection can be divided into two categories:
1) incorporating sentence-level contexts (Chan et al.,
2007; Carpuat and Wu, 2007; Hasan et al., 2008;
Mauser et al., 2009; He et al., 2008; Shen et al.,
2009) or 2) integrating document-level topics (Xi-
ao et al., 2011; Ture et al., 2012; Xiao et al., 2012;
Eidelman et al., 2012; Hewavitharana et al., 2013;
Xiong et al., 2013; Hasler et al., 2014a; Hasler et al.,
2014b) into SMT. The methods in these two strands
have shown their effectiveness on lexical selection.

However, correlations between sentence- and
document-level contexts have never been explored
before. It is clear that local contexts and global top-
ics are often highly correlated. Consider a Chinese-
English translation example presented in Figure 1.
On the one hand, if local contexts suggest that the
source word “á|/lı̀chǎng” should be translated in-
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to “stance”, they will also indicate that the topic
of the document where the example sentence oc-
curs is about politics. The politics topic can be fur-
ther used to enable the decoder to select a correc-
t translation “issue” for another source word “¯
K/wèntǐ”, which is consistent with this topic. On
the other hand, if we know that this document main-
ly focuses on the politics topic, the candiate trans-
lation “stance” will be more compatible with the
context of “á|/lı̀chǎng” than the candiate transla-
tion “attitude”. This is because neighboring source-
side words “¥I/zhōnguó” and “¥á/zhōnglı̀” of-
ten occur in documents that are about international
politics. We believe that such correlations between
local contextual words and global topics can be used
to further improve lexical selection.

In this paper, we propose a unified framework to
jointly model local contexts, global topics as well as
their correlations for lexical selection. Specifically,

• First, we present a context-aware topic mod-
el (CATM) to exploit the features mentioned
above for lexical selection in SMT. To the best
of our knowledge, this is the first work to joint-
ly model both local and global contexts for lex-
ical selection in a topic model.

• Second, we present a Gibbs sampling algorith-
m to learn various distributions that are related
to topics and translations from data. The trans-
lation probabilities derived from our model are
integrated into SMT to allow collective lexical
selection with both local and global informtion.

We validate the effectiveness of our model on a
state-of-the-art phrase-based translation system. Ex-
periment results on the NIST Chinese-English trans-
lation task show that our model significantly outper-
forms previous lexical selection methods.

2 Context-Aware Topic Model

In this section, we describe basic assumptions and
elaborate the proposed context-aware topic model.

2.1 Basic Assumptions

In CATM, we assume that each source document d
consists of two types of words: topical words which
are related to topics of the document and contextual

words which affect translation selections of topical
words.

As topics of a document are usually represented
by content words in it, we choose source-side nouns,
verbs, adjectives and adverbs as topical words. For
contextual words, we use all words in a source sen-
tence as contextual words. We assume that they are
generated by target-side translations of other words
than themselves. Note that a source word may be
both topical and contextual. For each topical word,
we identify its candidate translations from training
corpus according to word alignments between the
source and target language. We allow a target trans-
lation to be a phrase of length no more than 3 words.
We refer to these translations of source topical word-
s as target-side topical items, which can be either
words or phrases. In the example shown in Figure
1, all source words within dotted boxes are topical
words. Topical word “á|/lı̀chǎng” is supposed to
be translated into a target-side topical item “stance”,
which is collectively suggested by neighboring con-
textual words “ ¥I/zhōngguó”, “¥á/zhōnglı̀”
and the topic of the corresponding document.

In our model, all target-side topical items in a doc-
ument are generated according to the following two
assumptions:

• Topic consistency assumption: All target-side
topical items in a document should be consis-
tent with the topic distribution of the document.
For example, the translations “issue”, “stance”
tend to occur in documents about politics topic.

• Context compatibility assumption: For a top-
ical word, its translation (i.e., the counter-
part target-side topical item) should be com-
patible with its neighboring contextual word-
s. For instance, the translation “stance” of
“á|/lı̀chǎng” is closely related to contextu-
al words “¥I/zhōnguó” and “¥á/zhōnglı̀”.

2.2 Model
The graphical representation of CATM, which visu-
alizes the generative process of training data D, is
shown in Figure 2. Notations of CATM are present-
ed in Table 1. In CATM, each document d can be
generated in the following three steps1:

1In the following description,Dir(.),Mult(.) andUnif(.)
denote Dirichlet, Multinomial and Uniform distributions, re-
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Symbol Meaning
α hyperparameter for θ
β hyperparameter for φ
γ hyperparameter for ψ
δ hyperparameter for ξ
f topical word
c contextual word
ẽ target-side topical item

ẽ′
a sampled target-side topical item used to
generate a source-side contextual word

θ the topic distribution of document

φ
the distribution of a topic over target-side
topical items

ψ

the translation probability distribution of a
target-side topical item over source-side topical
words

ξ

the generation probability distribution of a
target-side topical item over source-side
contextual words

Nz topic number
Nd document number
Nf the number of topical words
Nc the number of contextual words
Nẽ the number of target-side topical items
Nf,d the number of topical words in d
Nc,d the number of contextual words in d

Table 1: Notations in CATM.

1. Sample a topic distribution θd∼Dir(α).
2. For each position i that corresponds to a topical

word fi in the document:
(a) Sample a topic zi∼Mult(θd).
(b) Conditioned on the topic zi, sample a

target-side topical item ẽi∼Mult(φzi).
(c) Conditioned on the target-side topi-

cal item ẽi, sample the topical word
fi∼Mult(ψẽi).

3. For each position j that corresponds to a contex-
tual word cj in the document:
(a) Collect all target-side topical items ẽs that

are translations of neighboring topical
words within a window centered at cj
(window size ws).

(b) Randomly sample an item from ẽs,
ẽ′j∼Unif(ẽs).

(c) Conditioned on the sampled target-side
topical item ẽ′j , sample the contextual
word cj∼Mult(ξẽ′j ).

To better illustrate CATM, let us revisit the example
in Figure 1. We describe how CATM generates top-

spectively.

Nd

Nc,dNf,d

Nẽ

α

θ

z

ẽ ẽ′

f c

ψγ δξ

Nz

β

ϕ

Figure 2: Graphical representation of our model.

ical words “¯K/wèntı́”, “á|/lı̀chǎng”, and con-
textual word “¥á/zhōnglı̀” in the following steps:

Step 1: The model generates a topic dis-
tribution for the corresponding document as
{economy0.25, politics0.75}.

Step 2: Based on the topic distribution, we
choose “economy” and “politics” as topic assign-
ments for “¯K/wèntı́” and “á|/lı̀chǎng” respec-
tively; Then, according to the distributions of the t-
wo topics over target-side topical items, we generate
target-side topical items “issue” and “stance”; Final-
ly, according to the translation probability distribu-
tions of these two topical items over source-side top-
ical words, we generate source-side topical words
“¯K/wèntı́” and “á|/lı̀chǎng” for them respec-
tively.

Step 3: For the contextual word “¥á/zhōnglı̀”,
we first collect target-side topical items of its neigh-
boring topical words such as “¯K/wèntı́”, “�
±/bǎochı́” and “á|/lı̀chǎng” to form a target-
side topical item set {“issue”,“keep”, “stance”},
from which we randomly sample one item “stance”.
Next, according to the generation probability dis-
tribution of “stance” over source contextual words,
we finally generate the source contextual word “¥
á/zhōnglı̀”.

In the above generative process, all target-side
topical items are generated from the underlying top-
ics of a source document, which guarantees that se-
lected target translations are topic-consistent. Ad-
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ditionally, each source contextual word is derived
from a target-side topical item given its generation
probability distribution. This makes selected target
translations also compatible with source-side local
contextual words. In this way, global topics, topical
words, local contextual words and target-side topi-
cal items are highly correlated in CATM that exactly
captures such correlations for lexical selection.

3 Parameter Estimation and Inference

We propose a Gibbs sampling algorithm to learn var-
ious distributions described in the previous section.
Details of the learning and inference process are p-
resented in this section.

3.1 The Probability of Training Corpus
According to CATM, the total probability of train-
ing data D given hyperparameters α, β, γ and δ is
computed as follows:

P (D;α, β, γ, δ) =
∏
d

P (fd, cd;α, β, γ, δ)

=
∏
d

∑̃
ed

P (ẽd|α, β)P (fd|ẽd, γ)P (cd|ẽd, δ)

=
∫
φ P (φ|β)

∫
ψ P (ψ|γ)

∏
d

∑̃
ed

P (fd|ẽd, ψ)

× ∫ξ P (ξ|δ) ∑̃
e′d

P (ẽ′d|ẽd)p(cd|ẽ′d, ξ)

× ∫θ P (θ|α)P (ẽd|θ, φ)dθdξdψdφ (1)

where fd and ẽd denote the sets of topical words and
their target-side topical item assignments in docu-
ment d, cd and ẽ′d are the sets of contextual word-
s and their target-side topical item assignments in
document d.

3.2 Parameter Estimation via Gibbs Sampling
The joint distribution in Eq. (1) is intractable to
compute because of coupled hyperparameters and
hidden variables. Following Han et al, (2012),
we adapt the well-known Gibbs sampling algorith-
m (Griffiths and Steyvers, 2004) to our model. We
compute the joint posterior distribution of hidden
variables, denoted by P (z, ẽ, ẽ′|D), and then use this
distribution to 1) estimate θ, φ, ψ and ξ, and 2) pre-
dict translations and topics of all documents in D.

Specifically, we derive the joint posterior distribu-
tion from Eq. (1) as:

P (z, ẽ, ẽ′|D) ∝ P (z)P (ẽ|z)P (f|ẽ)P (ẽ′|ẽ)P (c|ẽ′) (2)

Based on the equation above, we construct a Markov
chain that converges to P (z, ẽ, ẽ′|D), where each s-
tate is an assignment of a hidden variable (includ-
ing topic assignment to a topical word, target-side
topical item assignment to a source topical or con-
textual word.). Then, we sequentially sample each
assignment according to the following three condi-
tional assignment distributions:

1. P (zi = z|z−i, ẽ, ẽ′,D): topic assignment dis-
tribution of a topical word given z−i that denotes all
topic assignments but zi, ẽ and ẽ′ that are target-side
topical item assignments. It is updated as follows:

P (zi = z|z−i, ẽ, ẽ′,D) ∝
CDZ(−i)dz + α

CDZ(−i)d∗+Nzα
×

CZẼ(−i)zẽ + β

CZẼ(−i)z∗+Nẽβ
(3)

where the topic assignment to a topical word is de-
termined by the probability that this topic appears in
document d (the 1st term) and the probability that
the selected item ẽ occurs in this topic (the 2nd ter-
m).

2. P (ẽi = ẽ|z, ẽ−i, ẽ′,D): target-side topical item
assignment distribution of a source topical word giv-
en the current topic assignments z, the current item
assignments of all other topical words ẽ−i, and the
current item assignments of contextual words ẽ′. It
is updated as follows:

P (ẽi = ẽ|z, ẽ−i, ẽ′,D) ∝
CZẼ(−i)zẽ + β

CZẼ(−i)z∗ +Nẽβ

×
CẼF(−i)ẽf + γ

CẼF(−i)ẽ∗ +Nfγ
× (

CWẼ
(−i)wẽ + 1

CWẼ
(−i)wẽ

)C
WẼ′
wẽ (4)

where the target-side topical item assignment to a
topical word is determined by the probability that
this item is from the topic z (the 1st term), the prob-
ability that this item is translated into the topical
word f (the 2nd term) and the probability of con-
textual words within a ws word window centered at
the topical word f , which influence the selection of
the target-side topical item ẽ (the 3rd term). It is
very important to note that we use a parallel corpus
to train the model. Therefore we directly identify
target-side topical items for source topical words via
word alignments rather than sampling.
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3. P (ẽ′i = ẽ|z, ẽ, ẽ′−i,D): target-side topical item
assignment distribution for a contextual word given
the current topic assignments z, the current item as-
signments of topical words ẽ, and the current item
assignments of all other contextual words ẽ′−i. It is
updated as follows:

P (ẽ′i = ẽ|z, ẽ, ẽ′−i,D) ∝
CWẼ
wẽ

CWẼ
w∗
×

CẼC(−i)ẽc + δ

CẼC(−i)ẽ∗ +Nc δ
(5)

where the target-side topical item assignment used
to generate a contextual word is determined by the
probability of this item being assigned to generate
contextual words within a surface window of size
ws (the 1st term) and the probability that contextu-
al words occur in the context of this item (the 2nd
term).

In all above formulas,CDZdz is the number of times
that topic z has been assigned for all topical words
in document d, CDZd∗ =

∑
z C

DZ
dz is the topic number

in document d, and CZẼzẽ , CẼFẽf , CWẼ
wẽ , CWẼ′

wẽ and

CẼCẽc have similar explanations. Based on the above
marginal distributions, we iteratively update all as-
signments of corpus D until the constructed Markov
chain converges. Model parameters are estimated
using these final assignments.

3.3 Inference on Unseen Documents
For a new document, we first predict its topics and
target-side topical items using the incremental Gibb-
s sampling algorithm described in (Kataria et al.,
2011). In this algorithm, we iteratively update top-
ic assignments and translation assignments of an
unseen document following the same process de-
scribed in Section 3.2, but with estimated model pa-
rameters.

Once we obtain these assignments, we estimate
lexical translation probabilities based on the sam-
pled counts of target-side topical items. Formal-
ly, for the position i in the document correspond-
ing to the content word f , we collect the sampled
count that translation ẽ generates f , denoted by
Csam(ẽ, f). This count can be normalized to form a
new translation probability in the following way:

p(ẽ|f) =
Csam(ẽ, f) + k

Csam + k ·Nẽ,f
(6)

where Csam is the total number of samples during
inference and Nẽ,f is the number of candidate trans-
lations of f . Here we apply add-k smoothing to re-
fine this translation probability, where k is a tunable
global smoothing constant. Under the framework of
log-linear model (Och and Ney, 2002), we use this
translation probability as a new feature to improve
lexical selection in SMT.

4 Experiments

In order to examine the effectiveness of our mod-
el, we carried out several groups of experiments on
Chinese-to-English translation.

4.1 Setup
Our bilingual training corpus is from the FBIS cor-
pus and the Hansards part of LDC2004T07 cor-
pus (1M parallel sentences, 54.6K documents, with
25.2M Chinese words and 29M English words).
We first used ZPar toolkit2 and Stanford toolkit3 to
preprocess (i.e., word segmenting, PoS tagging) the
Chinese and English parts of training corpus, and
then word-aligned them using GIZA++ (Och and
Ney, 2003) with the option “grow-diag-final-and”.
We chose the NIST evaluation set of MT05 as the
development set, and the sets of MT06/MT08 as test
sets. On average, these three sets contain 17.2, 13.9
and 14.1 content words per sentence, respectively.
We trained a 5-gram language model on the Xinhua
portion of Gigaword corpus using the SRILM Toolk-
it (Stolcke, 2002).

Our baseline system is a state-of-the-art SMT sys-
tem, which adapts bracketing transduction gram-
mars (Wu, 1997) to phrasal translation and equip-
s itself with a maximum entropy based reordering
model (MEBTG) (Xiong et al., 2006). We used the
toolkit4 developed by Zhang (2004) to train the re-
ordering model with the following parameters: it-
eration number iter=200 and Gaussian prior g=1.0.
During decoding, we set the ttable-limit as 20, the
stack-size as 100. The translation quality is eval-
uated by case-insensitive BLEU-4 (Papineni et al.,
2002) metric. Finally, we conducted paired boot-
strap sampling (Koehn, 2004) to test the significance
in BLEU score differences.

2http://people.sutd.edu.sg/∼yue zhang/doc/index.html
3http://nlp.stanford.edu/software
4http://homepages.inf.ed.ac.uk/lzhang10/maxenttoolkit.html
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Model MT05
CATM (± 6w) 33.35
CATM (± 8w) 33.43
CATM (± 10w) 33.42
CATM (± 12w) 33.49
CATM (± 14w) 33.30

Table 2: Experiment results on the development set using
different window sizes ws.

To train CATM, we set the topic number Nz as
25.5 For hyperparameters α and β, we empirically
set α=50/Nz and β=0.1, as implemented in (Grif-
fiths and Steyvers, 2004). Following Han et al.
(2012), we set γ and δ as 1.0/Nf and 2000/Nc, re-
spectively. During the training process, we ran 400
iterations of the Gibbs sampling algorithm. For doc-
uments to be translated, we first ran 300 rounds in a
burn-in step to let the probability distributions con-
verge, and then ran 1500 rounds where we collected
independent samples every 5 rounds. The longest
training time of CATM is less than four days on our
server using 4GB RAM and one core of 3.2GHz
CPU. As for the smoothing constant k in Eq. (6),
we set its values to 0.5 according to the performance
on the development set in additional experiments.

4.2 Impact of Window Size ws
Our first group of experiments were conducted on
the development set to investigate the impact of the
window size ws. We gradually varied window size
from 6 to 14 with an increment of 2.

Experiment results are shown in Table 2. We
achieve the best performance when ws=12. This
suggests that a ?12-word window context is suf-
ficient for predicting target-side translations for am-
biguous source-side topical words. We therefore set
ws=12 for all experiments thereafter.

4.3 Overall Performance

In the second group of experiments, in addition to
the conventional MEBTG system, we also compared
CATM with the following two models:

Word Sense Disambiguation Model (WSDM)
(Chan et al., 2007). This model improves lexical s-
election in SMT by exploiting local contexts. For

5We try different topic numbers from 25 to 100 with an in-
crement of 25 each time. We find thatNz=25 produces a slight-
ly better performance than other values on the development set.

each content word, we construct a MaxEnt-based
classifier incorporating local collocation and sur-
rounding word features, which are also adopted by
Chan et al. (2007). For each candidate translation
ẽ of topical word f , we use WSDM to estimate
the context-specific translation probability P (ẽ|f),
which is used as a new feature in SMT system.

Topic-specific Lexicon Translation Model
(TLTM) (Zhao and Xing, 2007). This model
focuses on the utilization of document-level context.
We adapted it to estimate a lexicon translation
probability as follows:

p(f |ẽ, d) ∝ p(ẽ|f, d) · p(f |d)
=
∑
z
p(ẽ|f, z) · p(f |z) · p(z|d) (7)

where p(ẽ|f, z) is the lexical translation probabil-
ity conditioned on topic z, which can be calculat-
ed according to the principle of maximal likelihood,
p(f |z) is the generation probability of word f from
topic z, and p(z|d) denotes the posterior topic distri-
bution of document d.

Note that our CATM is proposed for lexical se-
lection on content words. To show the strong effec-
tiveness of our model, we also compared it against
the full-fledged variants of the above-mentioned two
models that are built for all source words. We refer
to them as WSDM (All) and TLTM (All), respec-
tively.

Table 3 displays BLEU scores of different lexical
selection models. All models outperform the base-
line. Although we only use CATM to predict trans-
lations for content words, CATM achieves an aver-
age BLEU score of 26.77 on the two test sets, which
is higher than that of the baseline by 1.18 BLEU
points. This improvement is statistically significant
at p<0.01. Furthermore, we also find that our model
performs better than WSDM and TLTM with signif-
icant improvements. Finally, even if WSDM (All)
and TLTM (all) are built for all source words, they
are still no better than than CATM that selects de-
sirable translations for content words. These exper-
iment results strongly demonstrate the advantage of
CATM over previous lexical selection models.

5 Analysis

In order to investigate why CATM is able to outper-
form previous models that explore only local contex-
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Model Local Context Global Topic MT06 MT08 Avg
Baseline × × 29.66↓↓ 21.52↓↓ 25.59
WSDM

√ × 30.62↓ 22.05↓↓ 26.34
WSDM (All)

√ × 30.92 22.27 26.60
TLTM × √

30.27↓↓ 21.70↓↓ 25.99
TLTM (All) × √

30.33↓↓ 21.58↓↓ 25.96
CATM

√ √
30.97 22.56 26.77

Table 3: Experiment results on the test sets. Avg = average BLEU scores. WSDM (All) and TLTM (All) are models
built for all source words. ↓: significantly worse than CATM (p<0.05), ↓↓: significantly worse than CATM (p<0.01)

.

tual words or global topics, we take a deep look in-
to topics, topical items and contextual words learned
by CATM and empirically analyze the effect of mod-
eling correlations between local contextual words
and global topics on lexical selection.

5.1 Outputs of CATM

We present some examples of topics learned by
CATM in Table 4. We also list five target-side topi-
cal items with the highest probabilities for each top-
ic, and the most probable five contextual words for
each target-side topical item. These examples clear-
ly show that target-side topical items tightly connect
global topics and local contextual words by captur-
ing their correlations.

5.2 Effect of Correlation Modeling

Compared to previous lexical selection models,
CATM jointly models both local contextual words
and global topics. Such a joint modeling also en-
ables CATM to capture their inner correlations at the
model level. In order to examine the effect of corre-
lation modeling on lexical selection, we compared
CATM with its three variants: � CATM (Contex-
t) that only uses local context information. We de-
termined target-side topical items for content words
in this variant by setting the probability distribution
that a topic generates a target-side topical item to be
uniform;� CATM (Topic) that explores only glob-
al topic information. We identified target-side topi-
cal items for content words in the model by setting
ws as 0, i.e., no local contextual words being used
at all. � CATM (Log-linear) is the combination
of the above-mentioned two variants (� and�) in
a log-linear manner, which does not capture corre-
lations between local contextual words and global
topics at the model level.

Model MT06 MT08 Avg
CATM (Context) 30.46 ↓↓ 22.02 ↓↓ 26.24

CATM (Topic) 30.20 ↓↓ 21.90 ↓↓ 26.05
CATM (Log-linear) 30.59 ↓ 22.24 ↓ 26.42

CATM 30.97 22.56 26.77

Table 5: Experiment results on the test sets. CATM (Log-
linear) is the combination of CATM (Context) and CATM
(Topic) in a log-linear manner.

Results in Table 5 show that CATM performs sig-
nificantlly better than both CATM (Topic) and CAT-
M (Context). Even compared with CATM (Log-
linear), CATM still achieves a significant improve-
ment of 0.35 BLEU points (p<0.05). This validates
the effectiveness of capturing correlations for lexical
selection at the model level.

6 Related Work

Our work is partially inspired by (Han and Sun,
2012), where an entity-topic model is presented for
entity linking. We successfully adapt this work to
lexical selection in SMT. The related work mainly
includes the following two strands.

(1) Lexical Selection in SMT. In order to explore
rich context information for lexical selection, some
researchers propose trigger-based lexicon models to
capture long-distance dependencies (Hasan et al.,
2008; Mauser et al., 2009), and many more re-
searchers build classifiers to select desirable trans-
lations during decoding (Chan et al., 2007; Carpuat
and Wu, 2007; He et al., 2008; Liu et al., 2008).
Along this line, Shen et al. (2009) introduce four
new linguistic and contextual features for translation
selection in SMT. Recently, we have witnessed an
increasing efforts in exploiting document-level con-
text information to improve lexical selection. Xiao
et al. (2011) impose a hard constraint to guarantee
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Topic Target-side
Topical Items Source-side Contextual Words

refugee

UNHCR J¬(refugee) �¯?(office) ;
(commissioner) ¯Ö(affair) p?(high-level)
republic é�(union) ¬Ì(democracy) �?(government) �d=(Islam) ¥�(Central Africa)
refugee J¬(refugee) �£(return) 6l�¤(displaced) e�(repatriate) �o(protect)
Kosovo r÷Fæ(Metohija) ¸S(territory) �Å(crisis) Û³(situation) l��æ(Serbia)
federal �ÚI(republic) Hd.Å(Yugoslavia) �¢»(Kosovo) �?(government) �Û(authority)

military

military *	
(observer) 1Ä(action) {I(USA) <
(personnel) Üè(army)
missile ��(defense) XÚ(system) {I(USA) u�(launch) q(*)

United States ¥I(China) F�(Japan) ��(Taiwan) �¯(military) NMD(National Missile Defense)
system éÜI(United Nations) ïá(build) I(country) I[(country) &E(information)

war Ô�(war) |(∗) ­.(world) uÄ(wage) °�(gulf)

economy

country uÐ¥(developing) u�(developed) �³(Africa) uÐ(development) ¥(China)
development �±Y(sustainable) ²L(economy) r?(promote) �¬(society) ¯�(situation)
international �¬(society) |�(organization) Ü�(coorporation) I[(country) éÜI(United Nations)

economic �¬(society) uÐ(development) O�(growth) I[(country) �¥z(globalization)
trade uÐ(development) IS(international) ­.(world) Ý](investment) :(point)

cross-strait
relation

Taiwan ¥I(China) �º(mainland) �Û(authority) {I(USA) Ó�(compatriot)
China `(say) {I(USA) ��(Taiwan) �K(principle) ü(*)

relation uÐ(development) W(*) ¥(China) ü(*) I(country)
cross-strait ü(*) 'X(relation) ��(Taiwan) W(*) �6(exchange)

issue )û(settlement) ?Ø(discuss) ¯K(issue) ­�(important) ��(Taiwan)

Table 4: Examples of topics, topical items and contextual words learned by CATM with Nz=25 and Ws=12. Chinese
words that do not have direct English translations are denoted with ”*”. Here “q” and “|” are Chinese quantifiers
for missile and war, respectively; “ü” and “W” together means cross-starit.

the document-level translation consistency. Ture et
al. (2012) soften this consistency constraint by in-
tegrating three counting features into decoder. Also
relevant is the work of Xiong et al.(2013), who use
three different models to capture lexical cohesion for
document-level SMT.

(2) SMT with Topic Models. In this strand, Zhao
and Xing (2006, 2007) first present a bilingual top-
ical admixture formalism for word alignment in
SMT. Tam et al. (2007) and Ruiz et al. (2012) apply
topic model into language model adaptation. Su et
al. (2012) conduct translation model adaptation with
monolingual topic information. Gong et al. (2010)
and Xiao et al. (2012) introduce topic-based similar-
ity models to improve SMT system. Axelrod et al.
(2012) build topic-specific translation models from
the TED corpus and select topic-relevant data from
the UN corpus to improve coverage. Eidelman et al.
(2012) incorporate topic-specific lexical weights in-
to translation model. Hewavitharana et al. (2013)
propose an incremental topic based translation mod-
el adaptation approach that satisfies the causality
constraint imposed by spoken conversations. Hasler
et al. (2014) present a new bilingual variant of LDA
to compute topic-adapted, probabilistic phrase trans-
lation features. They also use a topic model to learn

latent distributional representations of different con-
text levels of a phrase pair (Hasler et al., 2014b).

In the studies mentioned above, those by Zhao
and Xing (2006), Zhao and Xing (2007), Hasler et
al. (2014a), and Hasler et al. (2014b) are most relat-
ed to our work. However, they all perform dynam-
ic translation model adaptation with topic models.
Significantly different from them, we propose a new
topic model that exploits both local contextual word-
s and global topics for lexical selection. To the best
of our knowledge, this is first attempt to capture cor-
relations between local words and global topics for
better lexical selection at the model level.

7 Conclusion and Future Work

This paper has presented a novel context-aware topic
model for lexical selection in SMT. Jointly modeling
local contexts, global topics and their correlations in
a unified framework, our model provides an effec-
tive way to capture context information at differen-
t levels for better lexical selection in SMT. Experi-
ment results not only demonstrate the effectiveness
of the proposed topic model, but also show that lex-
ical selection benefits from correlation modeling.

In the future, we want to extend our model from
the word level to the phrase level. We also plan to
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improve our model with monolingual corpora.
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Abstract

Understanding open-domain text is one
of the primary challenges in NLP. Ma-
chine comprehension evaluates the sys-
tem’s ability to understand text through
a series of question-answering tasks on
short pieces of text such that the correct
answer can be found only in the given text.
For this task, we posit that there is a hid-
den (latent) structure that explains the rela-
tion between the question, correct answer,
and text. We call this the answer-entailing
structure; given the structure, the correct-
ness of the answer is evident. Since the
structure is latent, it must be inferred. We
present a unified max-margin framework
that learns to find these hidden structures
(given a corpus of question-answer pairs),
and uses what it learns to answer machine
comprehension questions on novel texts.
We extend this framework to incorporate
multi-task learning on the different sub-
tasks that are required to perform machine
comprehension. Evaluation on a publicly
available dataset shows that our frame-
work outperforms various IR and neural-
network baselines, achieving an overall
accuracy of 67.8% (vs. 59.9%, the best
previously-published result.)

1 Introduction

Developing an ability to understand natural lan-
guage is a long-standing goal in NLP and holds the
promise of revolutionizing the way in which peo-
ple interact with machines and retrieve informa-
tion (e.g., for scientific endeavor). To evaluate this
ability, Richardson et al. (2013) proposed the task
of machine comprehension (MCTest), along with

∗*Work started while the first two authors were interns at
Microsoft Research, Redmond.

a dataset for evaluation. Machine comprehension
evaluates a machine’s understanding by posing a
series of reading comprehension questions and as-
sociated texts, where the answer to each question
can be found only in its associated text. Solutions
typically focus on some semantic interpretation of
the text, possibly with some form of probabilistic
or logical inference, in order to answer the ques-
tions. Despite significant recent interest (Burges,
2013; Weston et al., 2014; Weston et al., 2015),
the problem remains unsolved.

In this paper, we propose an approach for ma-
chine comprehension. Our approach learns latent
answer-entailing structures that can help us an-
swer questions about a text. The answer-entailing
structures in our model are closely related to the
inference procedure often used in various mod-
els for MT (Blunsom and Cohn, 2006), RTE
(MacCartney et al., 2008), paraphrase (Yao et al.,
2013b), QA (Yih et al., 2013), etc. and correspond
to the best (latent) alignment between a hypoth-
esis (formed from the question and a candidate
answer) with appropriate snippets in the text that
are required to answer the question. An example
of such an answer-entailing structure is given in
Figure 1. The key difference between the answer-
entailing structures considered here and the align-
ment structures considered in previous works is
that we can align multiple sentences in the text
to the hypothesis. The sentences in the text con-
sidered for alignment are not restricted to occur
contiguously in the text. To allow such a dis-
contiguous alignment, we make use of the docu-
ment structure; in particular, we take help from
rhetorical structure theory (Mann and Thomp-
son, 1988) and event and entity coreference links
across sentences. Modelling the inference proce-
dure via answer-entailing structures is a crude yet
effective and computationally inexpensive proxy
to model the semantics needed for the problem.
Learning these latent structures can also be bene-
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Figure 1: The answer-entailing structure for an example from MCTest500 dataset. The question and answer candidate are
combined to generate a hypothesis sentence. Then latent alignments are found between the hypothesis and the appropriate
snippets in the text. The solid red lines show the word alignments from the hypothesis words to the passage words, the dashed
black lines show auxiliary co-reference links in the text and the labelled dotted black arrows show the RST relation (elaboration)
between the two sentences. Note that the two sentences do not have to be contiguous sentences in the text. We provide some
more examples of answer-entailing structures in the supplementary.

ficial as they can assist a human in verifying the
correctness of the answer, eliminating the need to
read a lengthy document.

The overall model is trained in a max-margin
fashion using a latent structural SVM (LSSVM)
where the answer-entailing structures are latent.
We also extend our LSSVM to multi-task set-
tings using a top-level question-type classification.
Many QA systems include a question classifica-
tion component (Li and Roth, 2002; Zhang and
Lee, 2003), which typically divides the questions
into semantic categories based on the type of the
question or answers expected. This helps the sys-
tem impose some constraints on the plausible an-
swers. Machine comprehension can benefit from
such a pre-classification step, not only to constrain
plausible answers, but also to allow the system to
use different processing strategies for each cate-
gory. Recently, Weston et al. (2015) defined a
set of 20 sub-tasks in the machine comprehen-
sion setting, each referring to a specific aspect of
language understanding and reasoning required to
build a machine comprehension system. They in-
clude fact chaining, negation, temporal and spatial
reasoning, simple induction, deduction and many
more. We use this set to learn to classify ques-
tions into the various machine comprehension sub-
tasks, and show that this task classification fur-
ther improves our performance on MCTest. By
using the multi-task setting, our learner is able to
exploit the commonality among tasks where pos-
sible, while having the flexibility to learn task-
specific parameters where needed. To the best of
our knowledge, this is the first use of multi-task
learning in a structured prediction model for QA.

We provide experimental validation for our
model on a real-world dataset (Richardson et al.,

2013) and achieve superior performance vs. a
number of IR and neural network baselines.

2 The Problem

Machine comprehension requires us to answer
questions based on unstructured text. We treat this
as selecting the best answer from a set of can-
didate answers. The candidate answers may be
pre-defined, as is the case in multiple-choice ques-
tion answering, or may be undefined but restricted
(e.g., to yes, no, or any noun phrase in the text).
Machine Comprehension as Textual Entail-
ment: Let for each question qi ∈ Q, ti be the
unstructured text and Ai = {ai1, . . . , aim} be
the set of candidate answers to the question. We
cast the machine comprehension task as a tex-
tual entailment task by converting each question-
answer candidate pair (qi, ai,j) into a hypothe-
sis statement hij . For example, the question
“What did Alyssa eat at the restaurant?” and
answer candidate “Catfish” in Figure 1 can be
combined to achieve a hypothesis “Alyssa ate
Catfish at the restaurant”. We use the question
matching/rewriting rules described in Cucerzan
and Agichtein (2005) to achieve this transforma-
tion. For each question qi, the machine com-
prehension task reduces to picking the hypothe-
sis ĥi that has the highest likelihood of being en-
tailed by the text among the set of hypotheses
hi = {hi1, . . . , him} generated for that question.
Let h∗i ∈ hi be the correct hypothesis. Now let us
define the latent answer-entailing structures.

3 Latent Answer-Entailing Structures

The latent answer-entailing structures help the
model in providing evidence for the correct hy-
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pothesis. We consider the quality of a one-to-
one word alignment from a hypothesis to snippets
in the text as a proxy for the evidence. Hypoth-
esis words are aligned to a unique text word in
the text or an empty word. For example, in Fig-
ure 1, all words but “at” are aligned to a word
in the text. The word “at” can be assumed to be
aligned to an empty word and it has no effect on
the model. Learning these alignment edges typi-
cally helps a model decompose the input and out-
put structures into semantic constituents and de-
termine which constituents should be compared to
each other. These alignments can then be used to
generate more effective features.

The alignment depends on two things: (a) snip-
pets in the text to be aligned to the hypothesis
and (b) word alignment from the hypothesis to the
snippets. We explore three variants of the snippets
in the text to be aligned to the hypothesis. The
choice of these snippets composed with the word
alignment is the resulting hidden structure called
an answer-entailing structure.
1. Sentence Alignment: The simplest variant is to
find a single sentence in the text that best aligns to
the hypothesis. This is the structure considered in
a majority of previous works in RTE (MacCartney
et al., 2008) and QA (Yih et al., 2013) as they only
reason on single sentence length texts.
2. Subset Alignment: Here we find a subset of sen-
tences from the text (instead of just one sentence)
that best aligns with the hypothesis.
3. Subset+ Alignment: This is the same as above
except that the best subset is an ordered set.

4 Method

A natural solution is to treat MCTest as a
structured prediction problem of ranking the
hypotheses hi such that the correct hypothesis
is at the top of this ranking. This induces a
constraint on the ranking structure that the correct
hypothesis is ranked above the other competing
hypotheses. For each text ti and hypotheses
set hi, let Yi be the set of possible orderings
of the hypotheses. Let y∗i ∈ Yi be a correct
ranking (such that the correct hypothesis is at
the top of this ranking). Let the set of possible
answer-entailing structures for each text hypoth-
esis pair (ti,hi) be denoted by Zi. For each text
ti, with hypotheses set hi, an ordering of the
hypotheses y ∈ Yi, and hidden structure z ∈ Zi.
we define a scoring function Scorew(ti,hi, z,y)

parameterized by a weight vector w such
that we have the prediction rule: (ŷi, ẑi) =
arg maxy∈Yi,z∈Zi

Scorew(ti,hi, z,y). The
learning task is to find w such that the predicted
ordering ŷi is close to the optimal ordering
y∗i . Mathematically this can be written as
minw

1
2‖w‖2 + C

∑
i ∆(y∗i , z

∗
i , ŷi, ẑi) where

z∗i = arg maxz∈Zi Scorew(ti,hi, z,y∗i ) and
∆ is the loss function between the predicted
and the actual ranking and latent structure.
We simplify the loss function and assume
it to be independent of the hidden structure
(∆(y∗i , z

∗
i , ŷi, ẑi) = ∆(y∗i , ŷi)) and use a lin-

ear scoring function: Scorew(ti,hi, z,y) =
wTφ(ti,hi, z,y) where φ is a feature map
dependent on the text ti, the hypothesis set hi, an
ordering of answers y and a hidden structure z.
We use a convex upper bound of the loss function
(Yu and Joachims, 2009) to rewrite the objective:

min
w

1
2
‖w‖2 − C

∑
i

wTφ(ti,hi, z∗i ,y
∗
i ) (1)

+C
n∑
i=1

max
y∈Yi,z∈Zi

{wTφ(ti,hi, z,y) + ∆(y∗i ,y)}

This problem can be solved using Concave-
Convex Programming (Yuille and Rangarajan,
2003) with the cutting plane algorithm for struc-
tural SVM (Finley and Joachims, 2008). We use
phi partial order (Joachims, 2006; Dubey et al.,
2009) which has been used in previous structural
ranking literature to incorporate ranking structure
in the feature vector φ:

φ(ti,hi, z,y) =
∑

j:hij 6=h∗i
cj(y)(ψ(ti, h∗i , z

∗
i )

−ψ(ti, hij , zj)) (2)

where, cj(y) = 1 if h∗i is above hij in the ranking
y else −1. We use pair preference (Chakrabarti et
al., 2008) as the ranking loss ∆(y∗i ,y). Here, ψ
is the feature vector defined for a text, hypothesis
and answer-entailing structure.
Solution: We substitute the feature map definition
(2) into Equation 1, leading to our LSSVM formu-
lation. We consider the optimization as an alter-
nating minimization problem where we alternate
between getting the best zij and ψ for each text-
hypothesis pair given w (inference) and then solv-
ing for the weights w given ψ to obtain an opti-
mal ordering of the hypothesis (learning). The step
for solving for the weights is similar to rankSVM
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(Joachims, 2002). Algorithm 1 describes our over-
all procedure Here, we use beam search for infer-

Algorithm 1 Alternate Minimization for LSSVM
1: Initialize w
2: repeat
3: zij = arg maxz wTψ(ti, hij , z) ∀i, j
4: Compute ψ for each i, j
5: Ci = ∅ ∀i
6: repeat
7: for i = 1, . . . , n do
8: r(y) = wTφ(ti,hi, z,y) +

∆(y∗i ,y)−wTφ(ti,hi, z∗i ,y
∗
i )

9: ŷi = arg maxy∈Yi r(y)
10: ξi = max{0,maxy∈Ui r(y)}
11: if r(ŷi) > ξi + ε then
12: Ci = Ci ∪ ŷi

Solve : min
w,ξ

1
2
‖w‖2 + C

∑
i

ξi

∀i,∀y ∈ Ci : wTφ(ti,hi, z∗i ,y
∗
i )

≥ wTφ(ti,hi, z,y) + ∆(y∗i ,y)− ξi
13: until no change in any Ci
14: until Convergence

ring the latent structure zij in step 3. Also, note
that in step 3, when the answer-entailing structures
are “Subset” or “Subset+”, we can always get a
higher score by considering a larger subset of sen-
tences. To discourage this, we add a penalty on the
score proportional to the size of the subset.
Multi-task Latent Structured Learning: Ma-
chine comprehension is a complex task which of-
ten requires us to interpret questions, the kind of
answers they seek as well as the kinds of inference
required to solve them. Many approaches in QA
(Moldovan et al., 2003; Ferrucci, 2012) solve this
by having a top-level classifier that categorizes the
complex task into a variety of sub-tasks. The sub-
tasks can correspond to various categories of ques-
tions that can be asked or various facets of text un-
derstanding that are required to do well at machine
comprehension in its entirety.It is well known that
learning a sub-task together with other related sub-
tasks leads to a better solution for each sub-task.
Hence, we consider learning classifications of the
sub-tasks and then using multi-task learning.

We extend our LSSVM to multi-task settings.
Let S be the number of sub-tasks. We assume
that the predictor w for each subtask s is par-

titioned into two parts: a parameter w0 that is
globally shared across each subtasks and a pa-
rameter vs that is locally used to provide for the
variations within the particular subtask: w =
w0 + vs. Mathematically we define the scoring
function for text ti, hypothesis set hi of the sub-
task s to be Scorew0,v,s(ti,hi, z,y) = (w0 +
vs)Tφ(ti,hi, z,y). The objective in this case is

min
w0,v

λ2‖w0‖2 +
λ1

S

S∑
s=1

‖vs‖2 (3)

S∑
s=1

n∑
i=1

max
y∈Yi,z∈Zi

{(w0 + vs)Tφ(ti,hi, z,y)

+ ∆(y∗i ,y)} − C
∑
i

(w0 + vs)Tφ(t,hi, z∗i ,y
∗
i )

Now, we extend a trick that Evgeniou and Pon-
til (2004) used on linear SVM to reformulate this
problem into an objective that looks like (1). Such
reformulation will help in using algorithm 1 to
solve the multi-task problem as well. Lets define a
new feature map Φs, one for each sub-task s using
the old feature map φ as:

Φs(ti,hi, z,y) = (
φ(ti,hi, z,y)

µ
,0, . . . ,0︸ ︷︷ ︸

s−1

,

φ(ti,hi, z,y),0, . . . ,0︸ ︷︷ ︸
S−s

)

where µ = Sλ2
λ1

and the 0 denotes the zero
vector of the same size as φ. Also define our
new predictor as w = (

√
µw0,v1, . . . ,vS).

Using this formulation we can show that
wTΦs(ti,hi, z,y) = (w0 + vs)Tφ(ti,hi, z,y)
and ‖w‖2 =

∑
s ‖vs‖2 + µ‖w0‖2. Hence, if we

now define the objective (1) but use the new fea-
ture map and w then we will get back our multi-
task objective (3). Thus we can use the same setup
as before for multi-task learning after appropri-
ately changing the feature map. We will explore
a few definitions of sub-tasks in our experiments.
Features: Recall that our features had the form
ψ(t, h, z) where the hypothesis h was itself
formed from a question q and answer candidate a.
Given an answer-entailing structure z, we induce
the following features based on word level sim-
ilarity of aligned words: (a) Limited word-level
surface-form matching and (b) Semantic word
form matching: Word similarity for synonymy us-
ing SENNA word vectors (Collobert et al., 2011),
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“Antonymy” ‘Class-Inclusion’ or ‘Is-A’ relations
using Wordnet (Fellbaum, 1998). We compute ad-
ditional features of the aforementioned kinds to
match named entities and events. We also add
features for matching local neighborhood in the
aligned structure: features for matching bigrams,
trigrams, dependencies, semantic roles, predicate-
argument structure as well as features for match-
ing global structure: a tree kernel for matching
syntactic representations of entire sentences us-
ing Srivastava and Hovy (2013). The local and
global features can use the RST and coreference
links enabling inference across sentences. For in-
stance, in the example shown in figure 1, the coref-
erence link connecting the two “restaurant” words
brings the snippets “Alyssa enjoyed the” and “had
a special on catfish” closer making these features
more effective. The answer-entailing structures
should be intuitively similar to the question but
also the answer. Hence, we add features that are
the product of features for the text-question match
and text-answer match.
String edit Features: In addition to looking for
features on exact word/phrase match, we also add
features using two paraphrase databases ParaPara
(Chan et al., 2011) and DIRT (Lin and Pantel,
2001). The ParaPara database contains strings of
the form string1 → string2 like “total lack of”→
“lack of”, “is one of” → “among”, etc. Simi-
larly, the DIRT database contains paraphrases of
the form “If X decreases Y then X reduces Y”, “If
X causes Y then X affects Y”, etc. Whenever we
have a substring in the text can be transformed into
another using these two databases, we keep match
features for the substring with a higher score (ac-
cording to w) and ignore the other substring.
The sentences with discourse relations are related
to each other by means of substitution, ellipsis,
conjunction and lexical cohesion, etc (Mann and
Thompson, 1988) and can help us answer certain
kinds of questions (Jansen et al., 2014). As an ex-
ample, the “cause” relation between sentences in
the text can often give cues that can help us an-
swer “why” or “how” questions. Hence, we add
additional features - conjunction of the RST label
and the question word - to our feature vector. Sim-
ilarly, the entity and event co-reference relations
can allows the system to reason about repeating
entities or events through all the sentences they get
mentioned in. Thus, we add additional features of
the aforementioned types by replacing entity men-

tions with their first mentions.
Subset+ Features: We add an additional set of fea-
tures which match the first sentence in the ordered
set to the question and the last sentence in the or-
dered set to the answer. This helps in the case
when a certain portion of the text is targeted by
the question but then it must be used in combina-
tion with another sentence to answer the question.
For instance, in Figure 1, sentence 2 mentions the
target of the question but the answer can only be
given when in combination with sentence 1.
Negation We empirically found that one key lim-
itation in our formulation is its inability to handle
negation (both in questions and text). Negation
is especially hurtful to our model as it not only
results in poor performance on questions that re-
quire us to reason with negated facts, it provides
our model with a wrong signal (facts usually align
well with their negated versions). We use a simple
heuristic to overcome the negation problem. We
detect negation (either in the hypothesis or a sen-
tence in the text snippet aligned to it) using a small
set of manually defined rules that test for presence
of words such as “not”, “n’t”, etc. Then, we flip
the partial order - i.e. the correct hypothesis is now
ranked below the other competing hypotheses. For
inference at test time, we also invert the prediction
rule i.e. we predict the hypothesis (answer) that
has the least score under the model.

5 Experiments

Datasets: We use two datasets for our evaluation.
(1) First is the MCTest-500 dataset 1, a freely
available set of 500 stories (split into 300 train,
50 dev and 150 test) and associated questions
(Richardson et al., 2013). The stories are fictional
so the answers can be found only in the story it-
self. The stories and questions are carefully lim-
ited, thereby minimizing the world knowledge re-
quired for this task. Yet, the task is challenging for
most modern NLP systems. Each story in MCTest
has four multiple choice questions, each with four
answer choices. Each question has only one cor-
rect answer. Furthermore, questions are also anno-
tated with ‘single’ and ‘multiple’ labels. The ques-
tions annotated ‘single’ only require one sentence
in the story to answer them. For ‘multiple’ ques-
tions it should not be possible to find the answer
to the question in any individual sentence of the
passage. In a sense, the ‘multiple’ questions are

1http://research.microsoft.com/mct
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harder than the ‘single’ questions as they typically
require complex lexical analysis, some inference
and some form of limited reasoning. Cucerzan-
converted questions can also be downloaded from
the MCTest website.

(2) The second dataset is a synthetic dataset
released under the bAbI project2 (Weston et al.,
2015). The dataset presents a set of 20 ‘tasks’,
each testing a different aspect of text understand-
ing and reasoning in the QA setting, and hence
can be used to test and compare capabilities of
learning models in a fine-grained manner. For
each ‘task’, 1000 questions are used for training
and 1000 for testing. The ‘tasks’ refer to question
categories such as questions requiring reasoning
over single/two/three supporting facts or two/three
arg. relations, yes/no questions, counting ques-
tions, etc. Candidate answers are not provided but
the answers are typically constrained to a small
set: either yes or no or entities already appear-
ing in the text, etc. We write simple rules to con-
vert the question and answer candidate pairs to hy-
potheses. 3

Baselines: We have five baselines. (1) The first
three baselines are inspired from Richardson et
al. (2013). The first baseline (called SW) uses
a sliding window and matches a bag of words
constructed from the question and hypothesized
answer to the text. (2) Since this ignores long
range dependencies, the second baseline (called
SW+D) accounts for intra-word distances as well.
As far as we know, SW+D is the best previ-
ously published result on this task.4 (3) The
third baseline (called RTE) uses textual entail-
ment to answer MCTest questions. For this base-
line, MCTest is again re-casted as an RTE task
by converting each question-answer pair into a
statement (using Cucerzan and Agichtein (2005))
and then selecting the answer whose statement
has the highest likelihood of being entailed by the

2https://research.facebook.com/researchers/1543934539189348
3Note that the bAbI dataset is artificial and not meant for

open-domain machine comprehension. It is a toy dataset gen-
erated from a simulated world. Due to its restrictive nature,
we do not use it directly in evaluating our method vs. other
open-domain machine comprehension methods. However,
it provides benefit in identifying interesting subtasks of ma-
chine comprehension. As will be seen, we are able to lever-
age the dataset both to improve our multi-task learning algo-
rithm, as well as to analyze the strengths and weaknesses of
our model.

4We also construct two additional baselines (LSTM and
QUANTA) for comparison in this paper both of which achieve
superior performance to SW+D.

story. 5 (4) The fourth baseline (called LSTM)
is taken from Weston et al. (2015). The base-
line uses LSTMs (Hochreiter and Schmidhuber,
1997) to accomplish the task. LSTMs have re-
cently achieved state-of-the-art results in a vari-
ety of tasks due to their ability to model long-
term context information as opposed to other neu-
ral networks based techniques. (5) The fifth base-
line (called QANTA)6 is taken from Iyyer et al.
(2014). QANTA too uses a recursive neural net-
work for question answering.
Task Classification for MultiTask Learning:
We consider three alternative task classifications
for our experiments. First, we look at question
classification. We use a simple question classi-
fication based on the question word (what, why,
what, etc.). We call this QClassification. Next, we
also use a question/answer classification7 from Li
and Roth (2002). This classifies questions into dif-
ferent semantic classes based on the possible se-
mantic types of the answers sought. We call this
QAClassification. Finally, we also learn a clas-
sifier for the 20 tasks in the Machine Compre-
hension gamut described in Weston et al. (2015).
The classification algorithm (called TaskClassifi-
cation) was built on the bAbI training set. It is
essentially a Naive-Bayes classifier and uses only
simple unigram and bigram features for the ques-
tion and answer. The tasks typically correspond
to different strategies when looking for an answer
in the machine comprehension setting. In our ex-
periments we will see that learning these strategies
is better than learning the question answer classi-
fication which is in turn better than learning the
question classification.
Results: We compare multiple variants of our
LSSVM8 where we consider a variety of answer-
entailing structures and our modification for nega-
tion and multi-task LSSVM, where we consider
three kinds of task classification strategies against
the baselines on the MCTest dataset. We con-
sider two evaluation metrics: accuracy (propor-
tion of questions correctly answered) and NDCG4

5The BIUTEE system (Stern and Dagan, 2012)
available under the Excitement Open Platform
http://hltfbk.github.io/Excitement-Open-Platform/ was
used for recognizing textual entailment.

6http://cs.umd.edu/ miyyer/qblearn/
7http://cogcomp.cs.illinois.edu/Data/QA/QC/
8We tune the SVM regularization parameter C and the

penalty factor on the subset size on the development set. We
use a beam of size 5 in our experiments. We use Stanford
CoreNLP and the HILDA parser (Feng and Hirst, 2014) for
linguistic preprocessing.
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Figure 2: Comparison of variations of our method against several baselines on the MCTest-500 dataset. The figure shows two
statistics, accuracy (on the left) and NDCG4 (on the right) on the test set of MCTest-500. All differences between the baselines
and LSSVMs, the improvement due to negation and the improvements due to multi-task learning are significant (p < 0.01)
using the two-tailed paired T-test. The exact numbers are available in the supplementary.

(Järvelin and Kekäläinen, 2002). Unlike classifi-
cation accuracy which evaluates if the prediction is
correct or not, NDCG4, being a measure of rank-
ing quality, evaluates the position of the correct
answer in our predicted ranking.

Figure 2 describes the comparison on MCTest.
We can observe that all the LSSVM models have
a better performance than all the five baselines
(including LSTMs and RNNs which are state-of-
the-art for many other NLP tasks) on both met-
rics. Very interestingly, LSSVMs have a consid-
erable improvement over the baselines for “mul-
tiple” questions. We posit that this is because of
our answer-entailing structure alignment strategy
which is a weak proxy to the deep semantic in-
ference procedure required for machine compre-
hension. The RTE baseline achieves the best per-
formance on the “single” questions. This is per-
haps because the RTE community has almost en-
tirely focused on single sentence text hypothesis
pairs for a long time. However, RTE fares pretty
poorly on the “multiple” questions indicating that
of-the-shelf RTE systems cannot perform infer-
ence across large texts.

Figure 2 also compares the performance of
LSSVM variants when various answer-entailing
structures are considered. Here we observe a clear
benefit of using the alignment to the best subset
structure over alignment to best sentence structure.
We furthermore see improvements when the best
subset alignment structure is augmented with the
subset+ features. We can observe that the negation
heuristic also helps, especially for “single” ques-
tions (majority of negation cases in the MCTest
dataset are for the “single” questions).

It is also interesting to see that the multi-task
learners show a substantial boost over the sin-
gle task SSVM. Also, it can be observed that
the multi-task learner greatly benefits if we can
learn a separation between the various strategies
needed to learn an overarching list of subtasks re-
quired to solve the machine comprehension task. 9

The multi-task method (TaskClassification) which
uses the Weston style categorization does better

9Note that this is despite the fact that the classifier in not
learned on the MCTest dataset but the bAbI detaset! This hints
at the fact that the task classification proposed in Weston et
al. (2015) is more general and broadly also makes sense for
other machine comprehension settings such as MCTest.
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than the multi-task method (QAClassification) that
learns the question answer classification. QAClas-
sification in turn performs better than multi-task
method (QClassification) that learns the question
classification only.

6 Strengths and Weaknesses

A good question to be asked is how good is struc-
ture alignment as a proxy to the semantics of the
problem? In this section, we attempt to tease out
the strengths and limitations of such a structure
alignment approach for machine comprehension.
To do so, we evaluate our methods on various tasks
in the bAbl dataset.For the bAbI dataset, we add
additional features inspired from the “task” dis-
tinction to handle specific “tasks”.

In our experiments, we observed a similar gen-
eral pattern of improvement of LSSVM over the
baselines as well as the improvement due to multi-
task learning. Again task classification helped
the multi-task learner the most and the QA clas-
sification helped more than the QClassification.
It is interesting here to look at the performance
within the sub-tasks. Negation improved the per-
formance for three sub-tasks, namely, the tasks
of modelling “yes/no questions”, “simple nega-
tions” and “indefinite knowledge” (the “Indefinite
Knowledge” sub-task tests the ability to model
statements that describe possibilities rather than
certainties). Each of these sub-tasks contain a sig-
nificant number of negation cases. Our models do
especially well on questions requiring reasoning
over one and two supporting facts, two arg. rela-
tions, indefinite knowledge, basic and compound
coreference and conjunction. Our models achieve
lower accuracy better than the baselines on two
sub-tasks, namely “path finding” and “agent mo-
tivations”. Our model along with the baselines
do not do too well on the “counting” sub-task, al-
though we get slightly better scores. The “count-
ing” sub-task (which asks about the number of ob-
jects with a certain property) requires the inference
to have an ability to perform simple counting op-
erations. The “path finding” sub-task requires the
inference to reason about the spatial path between
locations (e.g. Pittsburgh is located on the west
of New York). The “agents motivations” sub-task
asks questions such as ‘why an agent performs
a certain action’. As inference is cheaply mod-
elled via alignment structure, we lack the ability
to deeply reason about facts or numbers. This is

an important challenge for future work.

7 Related Work

The field of QA is quite rich. Most QA evaluations
such as TREC have typically focused on short
factoid questions. The solutions proposed have
ranged from various IR based approaches (Mittal
and Mittal, 2011) that treat this as a problem of re-
trieval from existing knowledge bases and perform
some shallow inference to NLP approaches that
learn a similarity between the question and a set of
candidate answers (Yih et al., 2013). A majority of
these approaches do not focus on doing any deeper
inference. However, the task of machine compre-
hension requires an ability to perform inference
over paragraph length texts to seek the answer.
This is challenging for most IR and NLP tech-
niques. In this paper, we presented a strategy for
learning answer-entailing structures that helped us
perform inference over much longer texts by treat-
ing this as a structured input-output problem.

The approach of treating a problem as one of
mapping structured inputs to structured outputs is
common across many NLP applications. Exam-
ples include word or phrase alignment for bitexts
in MT (Blunsom and Cohn, 2006), text-hypothesis
alignment in RTE (Sammons et al., 2009; Mac-
Cartney et al., 2008; Yao et al., 2013a; Sultan
et al., 2014), question-answer alignment in QA
(Berant et al., 2013; Yih et al., 2013; Yao and
Van Durme, 2014), etc. Again all of these ap-
proaches align local parts of the input to local parts
of the output. In this work, we extended the word
alignment formalism to align multiple sentences
in the text to the hypothesis. We also incorpo-
rated the document structure (rhetorical structures
(Mann and Thompson, 1988)) and co-reference to
help us perform inference over longer documents.

QA has had a long history of using pipeline
models that extract a limited number of high-level
features from induced representations of question-
answer pairs, and then built a classifier using some
labelled corpora. On the other hand we learnt
these structures and performed machine com-
prehension jointly through a unified max-margin
framework. We note that there exist some recent
models such as Yih et al. (2013) that do model QA
by automatically defining some kind of alignment
between the question and answer snippets and use
a similar structured input-output model. However,
they are limited to single sentence answers.
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Another advantage of our approach is its sim-
ple and elegant extension to multi-task settings.
There has been a rich vein of work in multi-task
learning for SVMs in the ML community. Evge-
niou and Pontil (2004) proposed a multi-task SVM
formulation assuming that the multi-task predictor
w factorizes as the sum of a shared and a task-
specific component. We used the same idea to
propose a multi-task variant of Latent Structured
SVMs. This allows us to use the single task SVM
in the multi-task setting with a different feature
mapping. This is much simpler than other compet-
ing approaches such as Zhu et al. (2011) proposed
in the literature for multi-task LSSVM.

8 Conclusion

In this paper, we addressed the problem of ma-
chine comprehension which tests language under-
standing through multiple choice question answer-
ing tasks. We posed the task as an extension to
RTE. Then, we proposed a solution by learning la-
tent alignment structures between texts and the hy-
potheses in the equivalent RTE setting. The task
requires solving a variety of sub-tasks so we ex-
tended our technique to a multi-task setting. Our
technique showed empirical improvements over
various IR and neural network baselines. The la-
tent structures while effective are cheap proxies
to the reasoning and language understanding re-
quired for this task and have their own limitations.
We also discuss strengths and limitations of our
model in a more fine-grained analysis. In the fu-
ture, we plan to use logic-like semantic represen-
tations of texts, questions and answers and explore
approaches to perform structured inference over
richer semantic representations.
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Abstract

Community question answering (cQA)
has become an important issue due to the
popularity of cQA archives on the web.
This paper is concerned with the problem
of question retrieval. Question retrieval
in cQA archives aims to find the exist-
ing questions that are semantically equiv-
alent or relevant to the queried questions.
However, the lexical gap problem brings
about new challenge for question retrieval
in cQA. In this paper, we propose to learn
continuous word embeddings with meta-
data of category information within cQA
pages for question retrieval. To deal with
the variable size of word embedding vec-
tors, we employ the framework of fisher
kernel to aggregated them into the fixed-
length vectors. Experimental results on
large-scale real world cQA data set show
that our approach can significantly out-
perform state-of-the-art translation models
and topic-based models for question re-
trieval in cQA.

1 Introduction

Over the past few years, a large amount of user-
generated content have become an important in-
formation resource on the web. These include
the traditional Frequently Asked Questions (FAQ)
archives and the emerging community question
answering (cQA) services, such as Yahoo! An-
swers1, Live QnA2, and Baidu Zhidao3. The con-
tent in these web sites is usually organized as ques-
tions and lists of answers associated with meta-
data like user chosen categories to questions and
askers’ awards to the best answers. This data made

1http://answers.yahoo.com/
2http://qna.live.com/
3http://zhidao.baidu.com/

cQA archives valuable resources for various tasks
like question-answering (Jeon et al., 2005; Xue et
al., 2008) and knowledge mining (Adamic et al.,
2008), etc.

One fundamental task for reusing content in
cQA is finding similar questions for queried ques-
tions, as questions are the keys to accessing the
knowledge in cQA. Then the best answers of
these similar questions will be used to answer the
queried questions. Many studies have been done
along this line (Jeon et al., 2005; Xue et al., 2008;
Duan et al., 2008; Lee et al., 2008; Bernhard and
Gurevych, 2009; Cao et al., 2010; Zhou et al.,
2011; Singh, 2012; Zhang et al., 2014a). One big
challenge for question retrieval in cQA is the lexi-
cal gap between the queried questions and the ex-
isting questions in the archives. Lexical gap means
that the queried questions may contain words that
are different from, but related to, the words in the
existing questions. For example shown in (Zhang
et al., 2014a), we find that for a queried question
“how do I get knots out of my cats fur?”, there
are good answers under an existing question “how
can I remove a tangle in my cat’s fur?” in Yahoo!
Answers. Although the two questions share few
words in common, they have very similar mean-
ings, it is hard for traditional retrieval models (e.g.,
BM25 (Robertson et al., 1994)) to determine their
similarity. This lexical gap has become a major
barricade preventing traditional IR models (e.g.,
BM25) from retrieving similar questions in cQA.

To address the lexical gap problem in cQA, pre-
vious work in the literature can be divided into two
groups. The first group is the translation models,
which leverage the question-answer pairs to learn
the semantically related words to improve tradi-
tional IR models (Jeon et al., 2005; Xue et al.,
2008; Zhou et al., 2011). The basic assumption is
that question-answer pairs are “parallel texts” and
relationship of words (or phrases) can be estab-
lished through word-to-word (or phrase-to-phrase)

250



translation probabilities (Jeon et al., 2005; Xue
et al., 2008; Zhou et al., 2011). Experimental
results show that translation models obtain state-
of-the-art performance for question retrieval in
cQA. However, questions and answers are far from
“parallel” in practice, questions and answers are
highly asymmetric on the information they con-
tain (Zhang et al., 2014a). The second group is
the topic-based models (Cai et al., 2011; Ji et al.,
2012), which learn the latent topics aligned across
the question-answer pairs to alleviate the lexical
gap problem, with the assumption that a question
and its paired answers share the same topic distri-
bution. However, questions and answers are het-
erogeneous in many aspects, they do not share the
same topic distribution in practice.

Inspired by the recent success of continuous
space word representations in capturing the se-
mantic similarities in various natural language
processing tasks, we propose to incorporate an
embedding of words in a continuous space for
question representations. Due to the ability of
word embeddings, we firstly transform words in
a question into continuous vector representations
by looking up tables. These word embeddings are
learned in advance using a continuous skip-gram
model (Mikolov et al., 2013), or other continuous
word representation learning methods. Once the
words are embedded in a continuous space, one
can view a question as a Bag-of-Embedded-Words
(BoEW). Then, the variable-cardinality BoEW
will be aggregated into a fixed-length vector by
using the Fisher kernel (FK) framework of (Clin-
chant and Perronnin, 2013; Sanchez et al., 2013).
Through the two steps, the proposed approach can
map a question into a length invariable compact
vector, which can be efficiently and effectively for
large-scale question retrieval task in cQA.

We test the proposed approach on large-scale
Yahoo! Answers data and Baidu Zhidao data. Ya-
hoo! Answers and Baidu Zhidao represent the
largest and most popular cQA archives in English
and Chinese, respectively. We conduct both quan-
titative and qualitative evaluations. Experimental
results show that our approach can significantly
outperform state-of-the-art translation models and
topic-based models for question retrieval in cQA.

Our contribution in this paper are three-fold: (1)
we represent a question as a bag-of-embedded-
words (BoEW) in a continuous space; (2) we in-
troduce a novel method to aggregate the variable-

cardinality BoEW into a fixed-length vector by us-
ing the FK. The FK is just one possible way to sub-
sequently transform this bag representation into
a fixed-length vector which is more amenable to
large-scale processing; (3) an empirical verifica-
tion of the efficacy of the proposed framework on
large-scale English and Chinese cQA data.

The rest of this paper is organized as follows.
Section 2 summarizes the related work. Section 3
describes our proposed framework for question re-
trieval. Section 4 reports the experimental results.
Finally, we conclude the paper in Section 5.

2 Related Work

2.1 Question Retrieval in cQA

Significant research efforts have been conducted
over the years in attempt to improve question re-
trieval in cQA (Jeon et al., 2005; Xue et al., 2008;
Lee et al., 2008; Duan et al., 2008; Bernhard and
Gurevych, 2009; Cao et al., 2010; Zhou et al.,
2011; Singh, 2012; Zhang et al., 2014a). Most
of these works focus on finding similar questions
for the user queried questions. The major chal-
lenge for question retrieval in cQA is the lexical
gap problem. Jeon et al. (2005) proposed a word-
based translation model for automatically fixing
the lexical gap problem. Xue et al. (2008) pro-
posed a word-based translation language model
for question retrieval. Lee et al. (2008) tried to
further improve the translation probabilities based
on question-answer pairs by selecting the most im-
portant terms to build compact translation mod-
els. Bernhard and Gurevych (2009) proposed to
use as a parallel training data set the definitions
and glosses provided for the same term by differ-
ent lexical semantic resources. In order to improve
the word-based translation model with some con-
textual information, Riezler et al. (2007) and Zhou
et al. (2011) proposed a phrase-based translation
model for question and answer retrieval. The
phrase-based translation model can capture some
contextual information in modeling the transla-
tion of phrases as a whole, thus the more accurate
translations can better improve the retrieval per-
formance. Singh (2012) addressed the lexical gap
issues by extending the lexical word-based trans-
lation model to incorporate semantic information
(entities).

In contrast to the works described above that as-
sume question-answer pairs are “parallel text”, our
paper deals with the lexical gap by learning con-
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tinuous word embeddings in capturing the simi-
larities without any assumptions, which is much
more reasonable in practice.

Besides, some other studies model the semantic
relationship between questions and answers with
deep linguistic analysis (Duan et al., 2008; Wang
et al., 2009; Wang et al., 2010; Ji et al., 2012;
Zhang et al., 2014a) or a learning to rank strat-
egy (Surdeanu et al., 2008; Carmel et al., 2014).
Recently, Cao et al. (2010) and Zhou et al. (2013)
exploited the category metadata within cQA pages
to further improve the performance. On the con-
trary, we focus on the representation learning for
questions, with a different solution with those pre-
vious works.

2.2 Word Embedding Learning

Representation of words as continuous vectors has
attracted increasing attention in the area of nat-
ural language processing (NLP). Recently, a se-
ries of works applied deep learning techniques to
learn high-quality word representations. Bengio
et al. (2003) proposed a probabilistic neural net-
work language model (NNLM) for word represen-
tations. Furthermore, Mikolov et al. (2013) pro-
posed efficient neural network models for learn-
ing word representations, including the continu-
ous skip-gram model and the continuous bag-of-
word model (CBOW), both of which are unsu-
pervised models learned from large-scale text cor-
pora. Besides, there are also a large number of
works addressing the task of learning word repre-
sentations (Huang et al., 2012; Maas et al., 2011;
Turian et al., 2010).

Nevertheless, since most the existing works
learned word representations mainly based on
the word co-occurrence information, the obtained
word embeddings cannot capture the relationship
between two syntactically or semantically similar
words if either of them yields very little context in-
formation. On the other hand, even though amount
of context could be noisy or biased such that they
cannot reflect the inherent relationship between
words and further mislead the training process.
Most recently, Yu et al. (2014) used semantic prior
knowledge to improve word representations. Xu
et al. (2014) used the knowledge graph to advance
the learning of word embeddings. In contrast to
all the aforementioned works, in this paper, we
present a general method to leverage the metadata
of category information within cQA pages to fur-

ther improve the word embedding representations.
To our knowledge, it is the first work to learn word
embeddings with metadata on cQA data set.

3 Our Approach

In this Section, we describe the proposed ap-
proach: learning continuous word embedding with
metadata for question retrieval in cQA. The pro-
posed framework consists of two steps: (1) word
embedding learning step: given a cQA data collec-
tion, questions are treated as the basic units. For
each word in a question, we firstly transform it to a
continuous word vector through the looking up ta-
bles. Once the word embeddings are learned, each
question is represented by a variable-cardinality
word embedding vector (also called BoEW); (2)
fisher vector generation step: which uses a genera-
tive model in the FK framework to generate fisher
vectors (FVs) by aggregating the BoEWs for all
the questions. Question retrieval can be performed
through calculating the similarity between the FVs
of a queried question and an existing question in
the archive.

From the framework, we can see that although
the word embedding learning computations and
generative model estimation are time consuming,
they can run only once in advance. Meanwhile, the
computational requirements of FV generation and
similarity calculation are limited. Hence, the pro-
posed framework can efficiently achieve the large-
scale question retrieval task.

3.1 Word Embedding Learning
In this paper, we consider a context-aware pre-
dicting model, more specifically, the Skip-gram
model (Mikolov et al., 2013) for learning word
embeddings, since it is much more efficient as well
as memory-saving than other approaches.4 Skip-
gram is recently proposed for learning word rep-
resentations using a neural network model, whose
underlying idea is that similar words should have
similar contexts. In the Skip-gram model (see Fig-
ure 1), a sliding window is employed on the input
text stream to generate the training data, and l in-
dicates the context window size to be 2l + 1. In
each slide window, the model aims to use the cen-
tral word wk as input to predict the context words.
Let Md×N denote the learned embedding matrix,

4Note that although we use the skip-gram model as an ex-
ample to illustrate our approach, the similar framework can
be developed on the basis of any other word embedding mod-
els.
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word embedding of 

Figure 1: The continuous skip-gram model.

where N is the vocabulary size and d is the di-
mension of word embeddings. Each column of M
represents the embedding of a word. Letwk is first
mapped to its embedding ewk by selecting the cor-
responding column vector of M . The probability
of its context word wk+j is then computed using a
log-linear softmax function:

p(wk+j |wk; θ) =
exp(eTwk+jewk)∑N
w=1 exp(eTwewk)

(1)

where θ are the parameters we should learned, k =
1 · · · d, and j ∈ [−l, l]. Then, the log-likelihood
over the entire training data can be computed as:

J(θ) =
∑

(wk,wk+j)

logp(wk+j |wk; θ) (2)

To calculate the prediction errors for back prop-
agation, we need to compute the derivative of
p(wk+j |wk; θ), whose computation cost is pro-
portional to the vocabulary size N . As N is of-
ten very large, it is difficult to directly compute
the derivative. To deal this problem, Mikolov
et al. (2013) proposed a simple negative sam-
pling method, which generates r noise samples
for each input word to estimate the target word,
in which r is a very small number compared with
N . Therefore, the training time yields linear scale
to the number of noise samples and it becomes
independent of the vocabulary size. Suppose the
frequency of word w is u(w), then the proba-
bility of sampling w is usually set to p(w) ∝
u(w)3/4 (Mikolov et al., 2013).

3.2 Metadata Powered Model
After briefing the skip-gram model, we introduce
how we equip it with the metadata information.
In cQA sites, there are several metadata, such as
“category”,“voting” and so on. In this paper, we
only consider the metadata of category informa-
tion for word embedding learning. All questions
in cQA are usually organized into a hierarchy of

categories. When an user asks a question, the user
typically required to choose a category label for
the question from a predefined hierarchy of cate-
gories (Cao et al., 2010; Zhou et al., 2013). Pre-
vious work in the literature has demonstrated the
effectiveness of the category information for ques-
tion retrieval (Cao et al., 2010; Zhou et al., 2013).
On the contrary, we argue that the category infor-
mation benefits the word embedding learning in
this work. The basic idea is that category informa-
tion encodes the attributes or properties of words,
from which we can group similar words according
to their categories. Here, a word’s category is as-
signed based on the questions it appeared in. For
example, a question “What are the security issues
with java?” is under the category of “Computers
& Internet → Security”, we simply put the cate-
gory of a word java as “Computers & Internet→
Security”. Then, we may require the representa-
tions of words that belong to the same category to
be close to each other.

Let s(wk, wi) be the similarity score between
wk and wi. Under the above assumption, we
use the following heuristic to constrain the simi-
lar scores:

s(wk, wi) =
{

1 if c(wk) = c(wi)
0 otherwise

(3)

where c(wk) denotes the category of wk. If the
central word wk shares the same category with the
word wi, their similarity score will become 1, oth-
erwise, we set to 0. Then we encode the category
information using a regularization function Ec:

Ec =
N∑
k=1

N∑
i=1

s(wk, wi)d(wk, wi) (4)

where d(wk, wi) is the distance for the words in
the embedding space and s(wk, wi) serves as a
weighting function. Again, for simplicity, we de-
fine d(wk, wi) as the Euclidean distance between
wk and wi.

We combine the skip-gram objective function
and the regularization function derived from the
metadata of category information, we get the fol-
lowing combined objective Jc that incorporates
category information into the word representation
learning process:

Jc = J(θ) + βEc (5)

where β is the combination coefficient. Our goal
is to maximize the combined objective Jc, which

253



……

……

…

Figure 2: The continuous skip-gram model with
metadata of category information, called M-NET.

can be optimized using back propagation neural
networks. We call this model as metadata powered
model (see Figure 2), and denote it by M-NET for
easy of reference.

In the implementation, we optimize the regu-
larization function derived from the metadata of
category information along with the training pro-
cess of the skip-gram model. During the pro-
cedure of learning word representations from the
context words in the sliding window, if the central
word wk hits the category information, the cor-
responding optimization process of the metadata
powered regularization function will be activated.
Therefore, we maximize the weighted Euclidean
distance between the representation of the central
word and that of its similar words according to the
objective function in Equation (5).

3.3 Fisher Vector Generation

Once the word embeddings are learned, ques-
tions can be represented by variable length sets
of word embedding vectors, which can be viewed
as BoEWs. Semantic level similarities between
queried questions and the existing questions rep-
resented by BoEWs can be captured more accu-
rately than previous bag-of-words (BoW) meth-
ods. However, since BoEWs are variable-size sets
of word embeddings and most of the index meth-
ods in information retrieval field are not suitable
for this kinds of issues, BoEWs cannot be directly
used for large-scale question retrieval task.

Given a cQA data collection Q = {qi, 1 ≤ i ≤
|Q|}, where qi is the ith question and |Q| is the
number of questions in the data collection. The ith
question qi is composed by a sequence of words
wi = {wij , 1 ≤ j ≤ Ni}, where Ni denotes the
length of qi. Through looking up table (word em-
bedding matrix) of M , the ith question qi can be
represented by Ewi = {ewij , 1 ≤ j ≤ Ni}, where
ewij is the word embedding of wij . According to
the framework of FK (Clinchant and Perronnin,

2013; Sanchez et al., 2013; Zhang et al., 2014b),
questions are modeled by a probability density
function. In this work, we use Gaussian mixture
model (GMM) to do it. We assume that the con-
tinuous word embedding Ewi for question qi have
been generated by a “universal” (e.g., question-
independent) probability density function (pdf).
As is a common practice, we choose this pdf to be
a GMM since any continuous distribution can be
approximated with arbitrary precision by a mix-
ture of Gaussian. In what follows, the pdf is de-
noted uλ where λ = {θi, µi,Σi, i = 1 · · ·K}
is the set of parameters of the GMM. θi, µi and
Σi denote respectively the mixture weight, mean
vector and covariance matrix of Gaussian i. For
computational reasons, we assume that the covari-
ance matrices are diagonal and denote σ2

i the vari-
ance vector of Gaussian i, e.g., σ2

i = diag(
∑

i).
In real applications, the GMM is estimated of-
fline with a set of continuous word embeddings
extracted from a representative set of questions.
The parameters λ are estimated through the op-
timization of a Maximum Likelihood (ML) crite-
rion using the Expectation-Maximization (EM) al-
gorithm. In the following, we follow the notations
used in (Sanchez et al., 2013).

Given uλ, one can characterize the question qi
using the following score function:

Gqiλ = 5Ni
λ loguλ(qi) (6)

where Gqiλ is a vector whose size depends only on
the number of parameters in λ. Assuming that the
word embedding ewij is iid (a simplifying assump-
tion), we get:

Gqiλ =
Ni∑
j=1

5λloguλ(ewij ) (7)

Following the literature (Sanchez et al., 2013),
we propose to measure the similarity between two
questions qi and qj using the FK:

K(qi, qj) = G
qTi
λ F−1

λ G
qj
λ (8)

where Fλ is the Fisher Information Matrix (FIM)
of uλ:

Fλ = Eqi∼uλ
[
GqiλG

qTi
λ

]
(9)

Since Fλ is symmetric and positive definite,
F−1
λ can be transformed to LTλLλ based on the

Cholesky decomposition. Hence,KFK(qi, qj) can
rewritten as follows:

KFK(qi, qj) = GqTiλ G
qj
λ (10)
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where

Gqiλ = LλG
qi
λ = Lλ 5λ loguλ(qi) (11)

In (Sanchez et al., 2013), Gqiλ refers to as the
Fisher Vector (FV) of qi. The dot product between
FVs can be used to calculate the semantic simi-
larities. Based on the specific probability density
function, GMM, FV of qi is respect to the mean µ
and standard deviation σ of all the mixed Gaussian
distributions. Let γj(k) be the soft assignment of
the jth word embedding ewij in qi to Guassian k
(uk):

γj(k) = p(k|ewij )
θiuk(ewij )∑K
j=1 θkuk(ewij )

(12)

Mathematical derivations lead to:

Gqiµ,k =
1

Ni

√
θi

Ni∑
j=1

γj(k)
[ewij − µk

σk

]
(13)

Gqiσ,k =
1

Ni

√
2θi

Ni∑
j=1

γj(k)
[(ewij − µk)2

σ2
k

− 1
]

The division by the vector σk should be under-
stood as a term-by-term operation. The final gradi-
ent vector Gqiλ is the concatenation of the Gqiµ,k and
Gqiσ,k vectors for k = 1 · · ·K. Let d denote the di-
mensionality of the continuous word embeddings
and K be the number of Gaussians. The final
fisher vector Gqiλ is therefore 2Kd-dimensional.

4 Experiments

In this section, we present the experiments to eval-
uate the performance of the proposed method for
question retrieval.

4.1 Data Set and Evaluation Metrics
We collect the data sets from Yahoo! Answers
and Baidu Zhidao. Yahoo! Answers and Baidu
Zhidao represent the largest and the most popu-
lar cQA archives in English and Chinese, respec-
tively. More specifically, we utilized the resolved
questions at Yahoo! Answers and Baidu Zhidao.
The questions include 10 million items from Ya-
hoo! Answers and 8 million items from Baidu
Zhidao (also called retrieval data). Each resolved
question consists of three fields: “title”, “descrip-
tion” and “answers”, as well as some metadata,
such as “category”. For question retrieval, we use
only the “title” field and “category” metadata. It

#queries #candidate #relevant
Yahoo data 1,000 13,000 2,671
Baidu data 1,000 8,000 2,104

Table 1: Statistics on the manually labeled data.

is assumed that the titles of questions already pro-
vide enough semantic information for understand-
ing users’ information needs (Duan et al., 2008).
We develop two test sets, one for “Yahoo data”,
and the other for “Baidu data”. In order to create
the test sets, we collect some extra questions that
have been posted more recently than the retrieval
data, and randomly sample 1, 000 questions for
Yahoo! Answers and Baidu Zhidao, respectively.
We take those questions as queries. All questions
are lowercased and stemmed. Stopwords5 are also
removed.

We separately index all data from Yahoo! An-
swers and Baidu Zhidao using an open source
Lucene with the BM25 scoring function6. For
each query from Yahoo! Answers and Baidu Zhi-
dao, we retrieve the several candidate questions
from the corresponding indexed data by using the
BM25 ranking algorithm in Lucene. On average,
each query from Yahoo! Answers has 13 candi-
date questions and the average number of candi-
date questions for Baidu Zhidao is 8.

We recruit students to label the relevance of
the candidate questions regarding to the queries.
Specifically, for each type of language, we let
three native students. Given a candidate question,
a student is asked to label it with “relevant” or “ir-
relevant”. If a candidate question is considered
semantically similar to the query, the student will
label it as “relevant”; otherwise, the student will
label it as “irrelevant”. As a result, each candi-
date question gets three labels and the majority of
the label is taken as the final decision for a query-
candidate pair. We randomly split each of the two
labeled data sets into a validation set and a test set
with a ration 1 : 3. The validation set is used for
tuning parameters of different models, while the
test set is used for evaluating how well the models
ranked relevant candidates in contrast to irrelevant
candidates. Table 1 presents the manually labeled
data.

Please note that rather than evaluate both re-
trieval and ranking capability of different meth-

5http://truereader.com/manuals/onix/stopwords1.html
6We use the BM25 implementation provided by Apache

Lucene (http://lucene.apache.org/), using the default parame-
ter setting (k1 = 1.2, b = 0.75)
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ods like the existing work (Cao et al., 2010), we
compare them in a ranking task. This may lose
recall for some methods, but it can enable large-
scale evaluation.

In order to evaluate the performance of dif-
ferent models, we employ Mean Average Preci-
sion (MAP), Mean Reciprocal Rank (MRR), R-
Precision (R-Prec), and Precision at K (P@5) as
evaluation measures. These measures are widely
used in the literature for question retrieval in
cQA (Cao et al., 2010).

4.2 Parameter Setting

In our experiments, we train the word embeddings
on another large-scale data set from cQA sites. For
English, we train the word embeddings on the Ya-
hoo! Webscope dataset7. For Chinese, we train the
word embeddings on a data set with 1 billion web
pages from Baidu Zhidao. These two data sets do
not intersect with the above mentioned retrieval
data. Little pre-processing is conducted for the
training of word embeddings. The resulting text is
tokenized using the Stanford tokenizer,8, and ev-
ery word is converted to lowercase. Since the pro-
posed framework has no limits in using which of
the word embedding learning methods, we only
consider the following two representative meth-
ods: Skip-gram (baseline) and M-NET. To train the
word embedding using these two methods, we ap-
ply the same setting for their common parameters.
Specifically, the count of negative samples r is set
to 3; the context window size l is set to 5; each
model is trained through 1 epoch; the learning rate
is initialized as 0.025 and is set to decrease linearly
so that it approached zero at the end of training.

Besides, the combination weight β used in M-
NET also plays an important role in producing
high quality word embedding. Overemphasizing
the weight of the original objective of Skip-gram
may result in weakened influence of metadata,
while putting too large weight on metadata pow-
ered objective may hurt the generality of learned
word embedding. Based on our experience, it is
a better way to decode the objective combination
weight of the Skip-gram model and metadata in-
formation based on the scale of their respective
derivatives during optimization. Finally, we set
β = 0.001 empirically. Note that if the parameter

7The Yahoo! Webscope dataset Yahoo answers com-
prehensive questions and answers version 1.0.2, available at
http://reseach.yahoo.com/Academic Relations.

8http://nlp.stanford.edu/software/tokenizer.shtml

is optimized on the validation set, the final perfor-
mance can be further improved.

For parameter K used in FV, we do an exper-
iment on the validation data set to determine the
best value among 1, 2, 4, · · · , 64 in terms of MAP.
As a result, we set K = 16 in the experiments
empirically as this setting yields the best perfor-
mance.

4.3 Main Results

In this subsection, we present the experimental re-
sults on the test sets of Yahoo data and Baidu data.
We compare the baseline word embedding trained
by Skip-gram against this trained by M-NET. The
dimension of word embedding is set as 50,100 and
300. Since the motivation of this paper attempts to
tackle the lexical gap problem for queried ques-
tions and questions in the archive, we also com-
pare them with the two groups of methods which
also address the lexical gap in the literature. The
first group is the translation models: word-based
translation model (Jeon et al., 2005), word-based
translation language model (Xue et al., 2008),
and phrase-based translation model (Zhou et al.,
2011). We implement those three translation mod-
els based on the original papers and train those
models with (question, best answer) pairs from the
Yahoo! Webscope dataset Yahoo answers and the
1 billion web pages of Baidu Zhidao for English
and Chinese, respectively. Training the translation
models with different pairs (e.g., question-best an-
swer, question-description, question-answer) may
achieve inconsistent performance on Yahoo data
and Baidu data, but its comparison and analysis
are beyond the scope of this paper. The second
group is the topic-based methods: unsupervised
question-answer topic model (Ji et al., 2012) and
supervised question-answer topic model (Zhang et
al., 2014a). We re-implement these two topic-
based models and tune the parameter settings on
our data set. Besides, we also introduce a baseline
language model (LM) (Zhai and Lafferty, 2001)
for comparison.

Table 2 shows the question retrieval perfor-
mance by using different evaluation metrics. From
this table, we can see that learning continu-
ous word embedding representations (Skip-gram
+ FV, M-NET + FV) for question retrieval can
outperform the translation-based approaches and
topic-based approaches on all evaluation metrics.
We conduct a statistical test (t-test), the results
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Model dim
Yahoo data Baidu data

MAP MRR R-Prec P@5 MAP MRR R-Prec P@5
LM (baseline) - 0.435 0.472 0.381 0.305 0.392 0.413 0.325 0.247

(Jeon et al., 2005) - 0.463 0.495 0.396 0.332 0.414 0.428 0.341 0.256
(Xue et al., 2008) - 0.518 0.560 0.423 0.346 0.431 0.435 0.352 0.264
(Zhou et al., 2011) - 0.536 0.587 0.439 0.361 0.448 0.450 0.367 0.273

(Ji et al., 2012) - 0.508 0.544 0.405 0.324 0.425 0.431 0.349 0.258
(Zhang et al., 2014a) - 0.527 0.572 0.433 0.350 0.443 0.446 0.358 0.265

Skip-gram + FV
50 0.532 0.583 0.437 0.358 0.447 0.450 0.366 0.272

100 0.544 0.605† 0.440 0.363 0.454 0.457 0.373 0.274
300 0.550† 0.619† 0.444 0.365 0.460† 0.464† 0.374 0.277

M-NET + FV
50 0.548† 0.612† 0.441 0.363 0.459† 0.462† 0.374 0.276

100 0.562‡ 0.628‡ 0.452† 0.367‡ 0.468‡ 0.471 0.378† 0.280†

300 0.571‡ 0.643‡ 0.455‡ 0.374‡ 0.475‡ 0.477‡ 0.385‡ 0.283‡

Table 2: Evaluation results on Yahoo data and Baidu data, where dim denotes the dimension of the
word embeddings. The bold formate indicates the best results for question retrieval. † indicates that
the difference between the results of our proposed approach (Skip-gram + FV, M-NET + FV) and other
methods are mildly significant with p < 0.08 under a t-test; ‡ indicates the comparisons are statistically
significant with p < 0.05.

show that the improvements between the pro-
posed M-NET + FV and the two groups of com-
pared methods (translation-based approaches and
topic-based approaches) are statistically signifi-
cant (p < 0.05), while the improvements be-
tween Skip-gram + FV and the translation-based
approaches are mildly significant (p < 0.08).
Moreover, the metadata of category information
powered model (M-NET + FV) outperforms the
baseline skip-gram model (Skip-gram + FV) and
yields the largest improvements. These results can
imply that the metadata powered word embedding
is of higher quality than the baseline model with
no metadata information regularization. Besides,
we also note that setting higher dimension brings
more improvements for question retrieval task.

Translation-based methods significantly outper-
form LM, which demonstrate that matching ques-
tions with the semantically related translation
words or phrases from question-answer pairs can
effectively address the word lexical gap problem.
Besides, we also note that phrase-based translation
model is more effective because it captures some
contextual information in modeling the transla-
tion of phrases as a whole. More precise transla-
tion can be determined for phrases than for words.
Similar observation has also been found in the pre-
vious work (Zhou et al., 2011).

On both data sets, topic-based models achieve
comparable performance with the translation-

based models and but they perform better than
LM. The results demonstrate that learning the
latent topics aligned across the question-answer
pairs can be an alternative for bridging lexical gap
problem for question retrieval.

5 Conclusion

This paper proposes to learn continuous vector
representations for question retrieval in cQA. We
firstly introduce a new metadata powered word
embedding method, called M-NET, to leverage the
category information within cQA pages to obtain
word representations. Once the words are embed-
ded in a continuous space, we treat each ques-
tion as a BoEW. Then, the variable size BoEWs
are aggregated into fixed-length vectors by using
FK. Finally, the dot product between FVs are used
to calculate the semantic similarities for question
retrieval. Experiments on large-scale real world
cQA data demonstrate that the efficacy of the pro-
posed approach. For the future work, we will
explore how to incorporate more types of meta-
data information, such as the user ratings, like sig-
nals and Poll and Survey signals, into the learning
process to obtain more powerful word representa-
tions.
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. J. Mach. Learn. Res., 3.

Delphine Bernhard and Iryna Gurevych. 2009. Com-
bining lexical semantic resources with question &
answer archives for translation-based answer find-
ing. In Proceedings of ACL-IJCNLP.

Li Cai, Guangyou Zhou, Kang Liu, and Jun Zhao.
2011. Learning the latent topics for question re-
trieval in community qa. In Proceedings of IJCNLP,
pages 273–281.

Xin Cao, Gao Cong, Bin Cui, and Christian S. Jensen.
2010. A generalized framework of exploring cate-
gory information for question retrieval in commu-
nity question answer archives. In Proceedings of
WWW, pages 201–210.

David Carmel, Avihai Mejer, Yuval Pinter, and Idan
Szpektor. 2014. Improving term weighting for com-
munity question answering search using syntactic
analysis. In Proceedings of CIKM, pages 351–360.

Stephane Clinchant and Florent Perronnin. 2013. Ag-
gregating continuous word embeddings for informa-
tion retrieval. In Proceedings of the Workshop on
Continuous Vector Space Models and their Compo-
sitionality, pages 100–109.

Huizhong Duan, Yunbo Cao, Chin yew Lin, and Yong
Yu. 2008. Searching questions by identifying ques-
tion topic and question focus. In Proceedings of
ACL.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of ACL, pages 873–882.

Jiwoon Jeon, W. Bruce Croft, and Joon Ho Lee. 2005.
Finding similar questions in large question and an-
swer archives. In Proceedings of CIKM.

Zongcheng Ji, Fei Xu, Bin Wang, and Ben He. 2012.
Question-answer topic model for question retrieval
in community question answering. In Proceedings
of CIKM, pages 2471–2474.

Jung-Tae Lee, Sang-Bum Kim, Young-In Song, and
Hae-Chang Rim. 2008. Bridging lexical gaps be-
tween queries and questions on large online q&a col-
lections with compact translation models. In Pro-
ceedings of EMNLP, pages 410–418.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of ACL, pages 142–150.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proceedings of NIPS, pages 3111–3119.

Stefan Riezler, Er Vasserman, Ioannis Tsochantaridis,
Vibhu Mittal, and Yi Liu. 2007. Statistical machine
translation for query expansion in answer retrieval.
In Proceedings of ACL.

S. Robertson, S. Walker, S. Jones, M. Hancock-
Beaulieu, and M. Gatford. 1994. Okapi at trec-3.
In Proceedings of TREC, pages 109–126.

Jorge Sanchez, Florent Perronnin, Thomas Mensink,
and Jakob J. Verbeek. 2013. Image classification
with the fisher vector: Theory and practice. Interna-
tional Journal of Computer Vision, pages 222–245.

A. Singh. 2012. Entity based q&a retrieval. In Pro-
ceedings of EMNLP, pages 1266–1277.

M. Surdeanu, M. Ciaramita, and H. Zaragoza. 2008.
Learning to rank answers on large online qa collec-
tions. In Proceedings of ACL, pages 719–727.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and general
method for semi-supervised learning. In Proceed-
ings of ACL.

Kai Wang, Zhaoyan Ming, and Tat-Seng Chua. 2009.
A syntactic tree matching approach to finding sim-
ilar questions in community-based qa services. In
Proceedings of SIGIR, pages 187–194.

B. Wang, X. Wang, C. Sun, B. Liu, and L. Sun. 2010.
Modeling semantic relevance for question-answer
pairs in web social communities. In ACL.

Chang Xu, Yalong Bai, Jiang Bian, Bin Gao, Gang
Wang, Xiaoguang Liu, and Tie-Yan Liu. 2014. Rc-
net: A general framework for incorporating knowl-
edge into word representations. In Proceedings of
CIKM, pages 1219–1228.

Xiaobing Xue, Jiwoon Jeon, and W. Bruce Croft. 2008.
Retrieval models for question and answer archives.
In Proceedings of SIGIR, pages 475–482.

258



Mo Yu and Mark Dredze. 2014. Improving lexical em-
beddings with semantic knowledge. In Proceedings
of ACL, pages 545–550.

Chengxiang Zhai and John Lafferty. 2001. A study
of smoothing methods for language models applied
to ad hoc information retrieval. In Proceedings of
SIGIR, pages 334–342.

Kai Zhang, Wei Wu, Haocheng Wu, Zhoujun Li, and
Ming Zhou. 2014a. Question retrieval with high
quality answers in community question answering.
In Proceedings of CIKM, pages 371–380.

Qi Zhang, Jihua Kang, Jin Qian, and Xuanjing Huang.
2014b. Continuous word embeddings for detect-
ing local text reuses at the semantic level. In Pro-
ceedings of the 37th International ACM SIGIR Con-
ference on Research & Development in Information
Retrieval, SIGIR ’14, pages 797–806.

Guangyou Zhou, Li Cai, Jun Zhao, and Kang Liu.
2011. Phrase-based translation model for question
retrieval in community question answer archives. In
Proceedings of ACL, pages 653–662.

Guangyou Zhou, Yubo Chen, Daojian Zeng, and Jun
Zhao. 2013. Towards faster and better retrieval
models for question search. In Proceedings of
CIKM, pages 2139–2148.

259



Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 260–269,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Question Answering over Freebase with
Multi-Column Convolutional Neural Networks

Li Dong†∗ Furu Wei‡ Ming Zhou‡ Ke Xu†
†SKLSDE Lab, Beihang University, Beijing, China

‡Microsoft Research, Beijing, China
donglixp@gmail.com {fuwei,mingzhou}@microsoft.com

kexu@nlsde.buaa.edu.cn

Abstract

Answering natural language questions
over a knowledge base is an important and
challenging task. Most of existing sys-
tems typically rely on hand-crafted fea-
tures and rules to conduct question under-
standing and/or answer ranking. In this pa-
per, we introduce multi-column convolu-
tional neural networks (MCCNNs) to un-
derstand questions from three different as-
pects (namely, answer path, answer con-
text, and answer type) and learn their dis-
tributed representations. Meanwhile, we
jointly learn low-dimensional embeddings
of entities and relations in the knowledge
base. Question-answer pairs are used to
train the model to rank candidate answers.
We also leverage question paraphrases to
train the column networks in a multi-task
learning manner. We use FREEBASE as
the knowledge base and conduct exten-
sive experiments on the WEBQUESTIONS

dataset. Experimental results show that
our method achieves better or comparable
performance compared with baseline sys-
tems. In addition, we develop a method
to compute the salience scores of question
words in different column networks. The
results help us intuitively understand what
MCCNNs learn.

1 Introduction

Automatic question answering systems return the
direct and exact answers to natural language ques-
tions. In recent years, the development of large-
scale knowledge bases, such as FREEBASE (Bol-
lacker et al., 2008), provides a rich resource to
answer open-domain questions. However, how

∗Contribution during internship at Microsoft Research.

to understand questions and bridge the gap be-
tween natural languages and structured semantics
of knowledge bases is still very challenging.

Up to now, there are two mainstream methods
for this task. The first one is based on seman-
tic parsing (Berant et al., 2013; Berant and Liang,
2014) and the other relies on information extrac-
tion over the structured knowledge base (Yao and
Van Durme, 2014; Bordes et al., 2014a; Bordes
et al., 2014b). The semantic parsers learn to un-
derstand natural language questions by converting
them into logical forms. Then, the parse results
are used to generate structured queries to search
knowledge bases and obtain the answers. Re-
cent works mainly focus on using question-answer
pairs, instead of annotated logical forms of ques-
tions, as weak training signals (Liang et al., 2011;
Krishnamurthy and Mitchell, 2012) to reduce an-
notation costs. However, some of them still as-
sume a fixed and pre-defined set of lexical trig-
gers which limit their domains and scalability ca-
pability. In addition, they need to manually de-
sign features for semantic parsers. The second
approach uses information extraction techniques
for open question answering. These methods re-
trieve a set of candidate answers from the knowl-
edge base, and the extract features for the question
and these candidates to rank them. However, the
method proposed by Yao and Van Durme (2014)
relies on rules and dependency parse results to ex-
tract hand-crafted features for questions. More-
over, some methods (Bordes et al., 2014a; Bordes
et al., 2014b) use the summation of question word
embeddings to represent questions, which ignores
word order information and cannot process com-
plicated questions.

In this paper, we introduce the multi-column
convolutional neural networks (MCCNNs) to au-
tomatically analyze questions from multiple as-
pects. Specifically, the model shares the same
word embeddings to represent question words.
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MCCNNs use different column networks to ex-
tract answer types, relations, and context informa-
tion from the input questions. The entities and
relations in the knowledge base (namely FREE-
BASE in our experiments) are also represented as
low-dimensional vectors. Then, a score layer is
employed to rank candidate answers according to
the representations of questions and candidate an-
swers. The proposed information extraction based
method utilizes question-answer pairs to automat-
ically learn the model without relying on manually
annotated logical forms and hand-crafted features.
We also do not use any pre-defined lexical triggers
and rules. In addition, the question paraphrases
are also used to train networks and generalize for
the unseen words in a multi-task learning manner.
We have conducted extensive experiments on WE-
BQUESTIONS. Experimental results illustrate that
our method outperforms several baseline systems.

The contributions of this paper are three-fold:

• We introduce multi-column convolutional
neural networks for question understanding
without relying on hand-crafted features and
rules, and use question paraphrases to train
the column networks and word vectors in a
multi-task learning manner;

• We jointly learn low-dimensional embed-
dings for the entities and relations in FREE-
BASE with question-answer pairs as supervi-
sion signals;

• We conduct extensive experiments on the
WEBQUESTIONS dataset, and provide some
intuitive interpretations for MCCNNs by de-
veloping a method to detect salient question
words in the different column networks.

2 Related Work

The state-of-the-art methods for question answer-
ing over a knowledge base can be classified into
two classes, i.e., semantic parsing based and in-
formation retrieval based.

Semantic parsing based approaches aim at
learning semantic parsers which parse natural lan-
guage questions into logical forms and then query
knowledge base to lookup answers. The most im-
portant step is mapping questions into predefined
logical forms, such as combinatory categorial
grammar (Cai and Yates, 2013) and dependency-
based compositional semantics (Liang et al.,

2011). Some semantic parsing based systems
required manually annotated logical forms to
train the parsers (Zettlemoyer and Collins, 2005;
Kwiatkowski et al., 2010). These annotations are
relatively expensive. So recent works (Liang et
al., 2011; Kwiatkowski et al., 2013; Berant et al.,
2013; Berant and Liang, 2014; Bao et al., 2014;
Reddy et al., 2014) mainly aimed at using weak
supervision (question-answer pairs) to effectively
train semantic parsers. These methods achieved
comparable results without using logical forms an-
notated by experts. However, some methods relied
on lexical triggers or manually defined features.

On the other hand, information retrieval based
systems retrieve a set of candidate answers and
then conduct further analysis to obtain answers.
Their main difference is how to select correct an-
swers from the candidate set. Yao and Van Durme
(2014) used rules to extract question features from
dependency parse of questions, and used rela-
tions and properties in the retrieved topic graph
as knowledge base features. Then, the production
of these two kinds of features was fed into a lo-
gistic regression model to classify the question’s
candidate answers into correct/wrong. In contrast,
we do not use rules, dependency parse results, or
hand-crafted features for question understanding.
Some other works (Bordes et al., 2014a; Bordes
et al., 2014b) learned low-dimensional vectors for
question words and knowledge base constitutes,
and used the sum of vectors to represent questions
and candidate answers. However, simple vector
addition ignores word order information and high-
order n-grams. For example, the question repre-
sentations of who killed A and who A killed are
same in the vector addition model. We instead
use multi-column convolutional neural networks
which are more powerful to process complicated
question patterns. Moreover, our multi-column
network architecture distinguishes between infor-
mation of answer type, answer path and answer
context by learning multiple column networks,
while the addition model mixes them together.

Another line of related work is applying deep
learning techniques for the question answering
task. Grefenstette et al. (2014) proposed a deep
architecture to learn a semantic parser from anno-
tated logic forms of questions. Iyyer et al. (2014)
introduced dependency-tree recursive neural net-
works for the quiz bowl game which asked play-
ers to answer an entity for a given paragraph. Yu et
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al. (2014) proposed a bigram model based on con-
volutional neural networks to select answer sen-
tences from text data. The model learned a simi-
larity function between questions and answer sen-
tences. Yih et al. (2014) used convolutional neu-
ral networks to answer single-relation questions
on REVERB (Fader et al., 2011). However, the
system worked on relation-entity triples instead of
more structured knowledge bases. For instance,
the question shown in Figure 1 is answered by us-
ing several triples in FREEBASE. Also, we can
utilize richer information (such as entity types) in
structured knowledge bases.

3 Setup

Given a natural language question q = w1 . . . wn,
we retrieve related entities and properties from
FREEBASE and use them as the candidate answers
Cq. Our goal is to score these candidates and pre-
dict answers. For instance, the correct output of
the question when did Avatar release in UK is
2009-12-17. It should be noted that there may
be several correct answers for a question. In or-
der to train the model, we use question-answer
pairs without annotated logic forms. We further
describe the datasets used in our work as follows:
WebQuestions This dataset (Berant et al., 2013)
contains 3,778 training instances and 2,032 test
instances. We further split the training instances
into the training set and the development set by
80%/20%. The questions were collected by query-
ing the Google Suggest API. A breadth-first search
beginning with wh- was conducted. Then, answers
were annotated in Amazon Mechanical Turk. All
the answers can be found in FREEBASE.
Freebase It is a large-scale knowledge base that
consists of general facts (Bollacker et al., 2008).
These facts are organized as subject-property-
object triples. For example, the fact Avatar is
directed by James Cameron is represented by
(/m/0bth54, film.film.directed by, /m/03 gd) in
RDF format. The preprocess method presented
in (Bordes et al., 2014a) was used to make FREE-
BASE fit in memory. Specifically, we kept the
triples where one of the entities appeared in the
training/development set of WEBQUESTIONS or
CLUEWEB extractions provided in (Lin et al.,
2012), and removed the entities appearing less
than five times. Then, we obtained 18M triples
that contained 2.9M entities and 7k relation types.
As described in (Bordes et al., 2014a), this prepro-

cess method does not ease the task because WE-
BQUESTIONS only contains about 2k entities.
WikiAnswers Fader et al. (2013) extracted the
similar questions on WIKIANSWERS and used
them as question paraphrases. There are 350,000
paraphrase clusters which contain about two mil-
lion questions. They are used to generalize for un-
seen words and question patterns.

4 Methods

The overview of our framework is shown in
Figure 1. For instance, for the question when
did Avatar release in UK, the related nodes of
the entity Avatar are queried from FREEBASE.
These related nodes are regarded as candidate an-
swers (Cq). Then, for every candidate answer a,
the model predicts a score S (q, a) to determine
whether it is a correct answer or not.

We use multi-column convolutional neural net-
works (MCCNNs) to learn representations of
questions. The models share the same word em-
beddings, and have multiple columns of convolu-
tional neural networks. The number of columns
is set to three in our QA task. These columns
are used to analyze different aspects of a ques-
tion, i.e., answer path, answer context, and answer
type. The vector representations learned by these
columns are denoted as f1 (q) , f2 (q) , f3 (q). We
also learn embeddings for the candidate answers
appeared in FREEBASE. For every candidate an-
swer a, we compute its vector representations and
denote them as g1 (a) ,g2 (a) ,g3 (a). These three
vectors correspond to the three aspects used in
question understanding. Using these vector rep-
resentations defined for questions and answers, we
can compute the score for the question-answer pair
(q, a). Specifically, the scoring function S (q, a) is
defined as:

S (q, a) =

f1 (q)Tg1 (a)︸ ︷︷ ︸
answer path

+ f2 (q)Tg2 (a)︸ ︷︷ ︸
answer context

+ f3 (q)Tg3 (a)︸ ︷︷ ︸
answer type

(1)
where fi (q) and gi (a) have the same dimension.
As shown in Figure 1, the score layer computes
scores and adds them together.

4.1 Candidate Generation

The first step is to retrieve candidate answers from
FREEBASE for a question. Questions should con-
tain an identified entity that can be linked to the
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Figure 1: Overview for the question-answer pair (when did Avatar release in UK, 2009-12-17). Left:
network architecture for question understanding. Right: embedding candidate answers.

knowledge base. We use the Freebase Search
API (Bollacker et al., 2008) to query named en-
tities in a question. If there is not any named en-
tity, noun phrases are queried. We use the top one
entity in the ranked list returned by the API. This
entity resolution method was also used in (Yao and
Van Durme, 2014). Better methods can be devel-
oped, while it is not the focus of this paper. Then,
all the 2-hops nodes of the linked entity are re-
garded as the candidate answers. We denote the
candidate set for the question q as Cq.

4.2 MCCNNs for Question Understanding

MCCNNs use multiple convolutional neural net-
works to learn different aspects of questions from
shared input word embeddings. For every single
column, the network structure presented in (Col-
lobert et al., 2011) is used to tackle the variable-
length questions.

We present the model in the left part of Figure 1.
Specifically, for the question q = w1 . . . wn, the
lookup layer transforms every word into a vector
wj = Wvu(wj), where Wv ∈ Rdv×|V | is the
word embedding matrix, u(wj) ∈ {0, 1}|V | is the
one-hot representation ofwj , and |V | is the vocab-
ulary size. The word embeddings are parameters,
and are updated in the training process.

Then, the convolutional layer computes repre-
sentations of the words in sliding windows. For
the i-th column of MCCNNs, the convolutional
layer computes n vectors for question q. The j-

th vector is:

x(i)
j = h

(
W(i)

[
wT
j−s . . .w

T
j . . .w

T
j+s

]T
+ b(i)

)
(2)

where (2s + 1) is the window size, W(i) ∈
Rdq×(2s+1)dv is the weight matrix of convolutional
layer, b(i) ∈ Rdq×1 is the bias vector, and h (·) is
the nonlinearity function (such as softsign, tanh,
and sigmoid). Paddings are used for left and right
absent words.

Finally, a max-pooling layer is followed to ob-
tain the fixed-size vector representations of ques-
tions. The max-pooling layer in the i-th column
of MCCNNs computes the representation of the
question q via:

fi (q) = max
j=1,...,n

{x(i)
j } (3)

where max{·} is an element-wise operator over
vectors.

4.3 Embedding Candidate Answers
Vector representations g1 (a) ,g2 (a) ,g3 (a) are
learned for the candidate answer a. The vectors
are employed to represent different aspects of a.
The embedding methods are described as follows:
Answer Path The answer path is the set of
relations between the answer node and the entity
asked in question. As shown in Figure 1, the
2-hops path between the entity Avatar and the
correct answer is (film.film.release date s,
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film.film regional release date.release date).
The vector representation g1(a) is computed
via g1(a) = 1

‖up(a)‖1 Wpup(a), where ‖·‖1
is 1-norm, up(a) ∈ R|R|×1 is a binary vector
which represents the presence or absence of every
relation in the answer path, Wp ∈ Rdq×|R| is
the parameter matrix, and |R| is the number
of relations. In other words, the embeddings
of relations that appear on the answer path are
averaged.
Answer Context The 1-hop entities and relations
connected to the answer path are regarded as the
answer context. It is used to deal with constraints
in questions. For instance, as shown in Figure 1,
the release date of Avatar in UK is asked, so
it is not enough that only the triples on answer
path are considered. With the help of context in-
formation, the release date in UK has a higher
score than in USA. The context representation is
g2(a) = 1

‖uc(a)‖1 Wcuc(a), where Wc ∈ Rdq×|C|

is the parameter matrix, uc(a) ∈ R|C|×1 is a bi-
nary vector expressing the presence or absence of
context nodes, and |C| is the number of entities
and relations which appear in answer context.
Answer Type Type information in FREEBASE is
an important clue to score candidate answers. As
illustrated in Figure 1, the type of 2009-12-17
is datetime, and the type of James Cameron is
people.person and film.producer. For the ex-
ample question when did Avatar release in UK,
the candidate answers whose types are datetime
should be assigned with higher scores than others.
The vector representation is defined as g3(a) =

1
‖ut(a)‖1 Wtut(a), where Wt ∈ Rdq×|T | is the

matrix of type embeddings, ut(a) ∈ R|T |×1 is a
binary vector which indicates the presence or ab-
sence of answer types, and |T | is the number of
types. In our implementation, we use the relation
common.topic.notable types to query types. If
a candidate answer is a property value, we instead
use its value type (e.g., float, string, datetime).

4.4 Model Training

For every correct answer a ∈ Aq of the question
q, we randomly sample k wrong answers a′ from
the set of candidate answers Cq, and use them as
negative instances to estimate parameters. To be
more specific, the hinge loss is considered for pairs
(q, a) and (q, a′):

l
(
q, a, a′

)
=
(
m− S(q, a) + S(q, a′)

)
+ (4)

where S(·, ·) is the scoring function defined in
Equation (1),m is the margin parameter employed
to regularize the gap between two scores, and
(z)+ = max{0, z}. The objective function is:

min
∑
q

1
|Aq|

∑
a∈Aq

∑
a′∈Rq

l
(
q, a, a′

)
(5)

where |Aq| is the number of correct answers, and
Rq ⊆ Cq \Aq is the set of k wrong answers.

The back-propagation algorithm (Rumelhart et
al., 1986) is used to train the model. It back-
propagates errors from top to the other layers.
Derivatives are calculated and gathered to update
parameters. The AdaGrad algorithm (Duchi et al.,
2011) is then employed to solve this non-convex
optimization problem. Moreover, the max-norm
regularization (Srebro and Shraibman, 2005; Sri-
vastava et al., 2014) is used for the column vectors
of parameter matrices.

4.5 Inference

During the test, we retrieve all the candidate an-
swers Cq for the question q. For every candidate
â, we compute its score S(q, â). Then, the candi-
date answers with the highest scores are regarded
as predicted results.

Because there may be more than one correct
answers for some questions, we need a criterion
to determine the score threshold. Specifically, the
following equation is used to determine outputs:

Âq = {â | â ∈ Cq and
max
a′∈Cq

{S(q, a′)} − S(q, â) < m} (6)

where m is the margin defined in Equation (4).
The candidates whose scores are not far from the
best answer are regarded as predicted results.

Some questions may have a large set of can-
didate answers. So we use a heuristic method to
prune their candidate sets. To be more specific, if
the number of candidates on the same answer path
is greater than 200, we randomly keep 200 candi-
dates for this path. Then, we score and rank all
these generated candidate answers together. If one
of the candidates on the pruned path is regarded as
a predicted answer, we further score the other can-
didates that are pruned on this path and determine
the final results.
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4.6 Question Paraphrases for Multi-Task
Learning

We use the question paraphrases dataset WIKIAN-
SWERS to generalize for words and question pat-
terns which are unseen in the training set of
question-answer pairs. The question understand-
ing results of paraphrases should be same. Con-
sequently, the representations of two paraphrases
computed by the same column of MCCNNs
should be similar. We use dot similarity to define
the hinge loss lp (q1, q2, q3) as:

lp (q1, q2, q3) =
3∑
i=1

(
mp − fi (q1)

Tfi (q2) + fi (q1)
Tfi (q3)

)
+

(7)
where q1, q2 are questions in the same paraphrase
cluster P , q3 is randomly sampled from another
cluster, and mp is the margin. The objective func-
tion is defined as:

min
∑
P

∑
q1,q2∈P

∑
q3∈RP

lp (q1, q2, q3) (8)

where RP contains kp questions which are ran-
domly sampled from other clusters. The same op-
timization algorithm described in Section 4.4 is
used to update parameters.

5 Experiments

In order to evaluate the model, we use the dataset
WEBQUESTIONS (Section 3) to conduct experi-
ments.
Settings The development set is used to select
hyper-parameters in the experiments. The nonlin-
earity function f = tanh is employed. The di-
mension of word vectors is set to 25. They are ini-
tialized by the pre-trained word embeddings pro-
vided in (Turian et al., 2010). The window size
of MCCNNs is 5. The dimension of the pooling
layers and the dimension of answer embeddings
are set to 64. The parameters are initialized by
the techniques described in (Bengio, 2012). The
max value used for max-norm regularization is 3.
The initial learning rate used in AdaGrad is set to
0.01. A mini-batch consists of 10 question-answer
pairs, and every question-answer pair has k nega-
tive samples that are randomly sampled from its
candidate set. The margin values in Equation (4)
and Equation (7) is set to m = 0.5 and mp = 0.1.

Method F1 P@1
(Berant et al., 2013) 31.4 -
(Berant and Liang, 2014) 39.9 -
(Bao et al., 2014) 37.5 -
(Yao and Van Durme, 2014) 33.0 -
(Bordes et al., 2014a) 39.2 40.4
(Bordes et al., 2014b) 29.7 31.3
MCCNN (our) 40.8 45.1

Table 1: Evaluation results on the test split of WE-
BQUESTIONS.

5.1 Experimental Results

The evaluation metrics macro F1 score (Berant et
al., 2013) and precision @ 1 (Bordes et al., 2014a)
are reported. We use the official evaluation script
provided by Berant et al. (2013) to compute the F1
score. Notably, the F1 score defined in (Yao and
Van Durme, 2014) is slightly different from others
(how to compute scores for the questions without
predicted results). We instead use the original def-
inition in experiments.

As shown in Table 1, our method achieves bet-
ter or comparable results than baseline methods on
WEBQUESTIONS. To be more specific, the first
three rows are semantic parsing based methods,
and the other baselines are information extraction
based methods. These approaches except (Bordes
et al., 2014a; Bordes et al., 2014b) rely on hand-
crafted features and predefined rules. The results
show that automatically question understanding
can be as good as the models using manually de-
signed features. Besides, our multi-column convo-
lutional neural networks based model outperforms
the methods that use the sum of word embeddings
as question representations (Bordes et al., 2014a;
Bordes et al., 2014b).

5.2 Model Analysis

We also conduct ablation experiments to compare
the results using different experiment settings. As
shown in Table 2, the abbreviation w/o means re-
moving a particular part from the model. We
find that answer path information is most impor-
tant among these three columns, and answer type
information is more important than answer con-
text information. The reason is that answer path
and answer type are more direct clues for ques-
tions, but answer context is used to handle addi-
tional constraints in questions which are less com-
mon in the dataset. Moreover, we compare to the
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Setting F1 P@1
all 40.8 45.1
w/o path 32.5 37.1
w/o type 37.7 40.9
w/o context 39.1 41.0
w/o multi-column 38.4 41.8
w/o paraphrase 40.0 43.9
1-hop 29.3 32.2

Table 2: Evaluation results of different set-
tings on the test split of WEBQUESTIONS. w/o
path/type/context: without using the specific col-
umn. w/o multi-column: tying parameters of mul-
tiple columns. w/o paraphrase: without using
question paraphrases for training. 1-hop: using 1-
hop paths to generate candidate answers.

model using single-column networks (w/o multi-
column), i.e., tying the parameters of different
columns. The results indicate that using multiple
columns to understand questions from different
aspects improves the performance. Besides, we
find that using question paraphrases in a multi-task
learning manner contributes to the performance.
In addition, we evaluate the results only using 1-
hop paths to generate candidate answers. Com-
pared to using 2-hops paths, we find that the per-
formance drops significantly. This indicates only
using the nodes directly connected to the queried
entity in FREEBASE cannot handle many ques-
tions.

5.3 Salient Words Detection

In order to analyze the model, we detect salient
words in questions. The salience score of a ques-
tion word depends on how much the word affects
the computation of question representation. In
other words, if a word plays more important role
in the model, its salience score should be larger.

We compute several salience scores for a same
word to illustrate its importance in different
columns of networks. For the i-th column, the
salience score of word wj in the question q = wn1
is defined as:

ei(wj) =
∥∥∥fi (wn1 )− fi

(
wj−1

1 w′jw
n
j+1

)∥∥∥
2

(9)

where the word wj is replaced with w′j , and ‖·‖2
denotes Euclidean norm. In practice, we replace
wj with several stop words (such as is, to, and a),
and then compute their average score.

what type of  car does weston drive

what countries speak german as   a  first language

who is  the current leader of cuba today

where is  the microsoft located Answer Path
Answer Type
Answer Context

Figure 2: Salient words detection results for ques-
tions. From left to right, the three bars of every
word correspond to salience scores in answer path
column, answer type column, and answer context
column, respectively. The salience scores are nor-
malized by the max values of different columns.

As shown in Figure 2, we compute salience
scores for several questions, and normalize them
by the max values in different columns. We clearly
see that these words play different roles in a ques-
tion. The overall conclusion is that the wh- words
(such as what, who and where) tend to be impor-
tant for question understanding. Moreover, nouns
dependent of the wh- words and verbs are impor-
tant clues to obtain question representations. For
instance, the figure demonstrates that the nouns
type/country/leader and the verbs speak/located
are salient in the columns of networks. These
observations agree with previous works (Li and
Roth, 2002). Some manually defined rules (Yao
and Van Durme, 2014) used in the question an-
swering task are also based on them.

5.4 Examples
Question representations computed by different
columns of MCCNNs are used to query their most
similar neighbors. We use cosine similarity in ex-
periments. This experiment demonstrates whether
the model learns different aspects of questions.
For example, if a column of networks is employed
to analyze answer types, the answer types of near-
est questions should be same as the query.

As shown in Table 3, these three columns of ta-
ble correspond to different columns of networks.
To be more specific, the first column is used to
process answer path. We find that the model
learns different question patterns for the same
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Column 1 (Answer Path) Column 2 (Answer Type) Column 3 (Answer Context)
what to do in hollywood can this weekend
what to do in midland tx this weekend
what to do in cancun with family
what to do at fairfield can
what to see in downtown asheville nc
what to see in toronto top 10

where be george washington originally from
where be george washington carver from
where be george bush from
where be the thame river source
where be the main headquarters of google
in what town do ned kelly and he family grow up

where do charle draw go to college
where do kevin love go to college
where do pauley perrette go to college
where do kevin jame go to college
where do charle draw go to high school
where do draw bree go to college wikianswer

who found collegehumor
who found the roanoke settlement
who own skywest
who start mary kay
who be the owner of kfc
who own wikimedium foundation

who be the leader of north korea today
who be the leader of syrium now
who be the leader of cuba 2012
who be the leader of france 2012
who be the current leader of cuba today
who be the minority leader of the house of representative now

who be judy garland father
who be clint eastwood date
who be emma stone father
who be robin robert father
who miley cyrus engage to
who be chri cooley marry to

what type of money do japanese use
what kind of money do japanese use
what type of money do jamaica use
what type of currency do brazil use
what type of money do you use in cuba
what money do japanese use

what be the two official language of paraguay
what be the local language of israel
what be the four official language of nigerium
what be the official language of jamaica
what be the dominant language of jamaica
what be the official language of brazil now

what be the timezone in vancouver
what be my timezone in californium
what be los angeles california time zone
what be my timezone in oklahoma
what be my timezone in louisiana
what be the time zone in france

Table 3: Using question representations obtained by different column networks to query the nearest
neighbors. From left to right, the three columns are used to analyze information about answer path,
answer type, and answer context, respectively. Lemmatization is used to better show question patterns.

path. For instance, the vector representations of
“who found/own/start *” and “who be the owner
of *” obtained by the first column are similar. The
second column is employed to extract answer type
information from questions. The answer types
of example questions in Table 3 are same, while
they may ask different relations. The third col-
umn learns to embed question information into an-
swer context. We find that the similar questions
are clustered together by this column.

5.5 Error Analysis

We investigate the predicted results on the devel-
opment set, and show several error causes as fol-
lows.
Candidate Generation Some entity mentions in
questions are linked incorrectly, hence we can-
not obtain the desired candidate answers. As
described in (Yao and Van Durme, 2014), the
Freebase Search API returned correct entities for
86.4% of questions in top one results. Because
some questions use the abbreviation or a part of
its mention to express an entity. For example, it
is not trivial to link jfk to John F. Kennedy in the
question “where did jfk and his wife live”. A bet-
ter entity retrieval step should be developed for the
open question answering scenario.
Time-Aware Questions We need to compare date
values for some time-aware questions. For in-
stance, to answer the question “who is johnny
cash’s first wife”, we have to know the order of
several marriages by comparing the marriage date.
Its correct response should contain only one en-
tity (vivian liberto). However, our system addi-

tionally outputs june carter cash who is his sec-
ond wife, because both the candidate answers are
connected to johnny cash by the relation peo-
ple.person.spouse s. In order to solve this is-
sue, we need to define some ad-hoc operators used
for comparisons or develop more advanced se-
mantic representations.
Ambiguous Questions Some questions are am-
biguous to obtain their correct representations. For
example, the question what has anna kendrick
been in is used to ask what movies she has played
in. This question does not have explicit clue words
to indicate the meanings, so it is difficult to rank
the candidates. Moreover, the question who is
aidan quinn is employed to ask what his occupa-
tion is. It also lacks sufficient clues for question
understanding, and using who is to ask occupation
is rare in the training data.

6 Conclusion and Future Work

This paper presents a method for question answer-
ing over FREEBASE using multi-column convo-
lutional neural networks (MCCNNs). MCCNNs
share the same word embeddings, and use multi-
ple columns of convolutional neural networks to
learn the representations of different aspects of
questions. Accordingly, we use low-dimensional
embeddings to represent multiple aspects of can-
didate answers, i.e., answer path, answer type,
and answer context. We estimate the parame-
ters from question-answer pairs, and use question
paraphrases to train the columns of MCCNNs in
a multi-task learning manner. Experimental re-
sults on WEBQUESTIONS show that our approach
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achieves better or comparable performance com-
paring with baselines. There are several interest-
ing directions that are worth exploring in the fu-
ture. For instance, we are integrating more exter-
nal knowledge source, such as CLUEWEB (Lin et
al., 2012), to train MCCNNs in a multi-task learn-
ing manner. Furthermore, as our model is capable
of detecting the most important words in a ques-
tion, it would be interesting to use the results to
mine effective question patterns.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. J. Mach. Learn. Res., 12:2493–2537,
November.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. JMLR, 12:2121–2159,
July.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP ’11, pages 1535–1545, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2013. Paraphrase-driven learning for open question
answering. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1608–1618. Asso-
ciation for Computational Linguistics.

Edward Grefenstette, Phil Blunsom, Nando de Freitas,
and Moritz Karl Hermann, 2014. Proceedings of the
ACL 2014 Workshop on Semantic Parsing, chapter A
Deep Architecture for Semantic Parsing, pages 22–
27. Association for Computational Linguistics.

Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino,
Richard Socher, and Hal Daumé III. 2014. A neural
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Abstract

Zero-shot methods in language, vision and
other domains rely on a cross-space map-
ping function that projects vectors from
the relevant feature space (e.g., visual-
feature-based image representations) to a
large semantic word space (induced in
an unsupervised way from corpus data),
where the entities of interest (e.g., objects
images depict) are labeled with the words
associated to the nearest neighbours of the
mapped vectors. Zero-shot cross-space
mapping methods hold great promise as a
way to scale up annotation tasks well be-
yond the labels in the training data (e.g.,
recognizing objects that were never seen
in training). However, the current perfor-
mance of cross-space mapping functions
is still quite low, so that the strategy is
not yet usable in practical applications.
In this paper, we explore some general
properties, both theoretical and empirical,
of the cross-space mapping function, and
we build on them to propose better meth-
ods to estimate it. In this way, we attain
large improvements over the state of the
art, both in cross-linguistic (word trans-
lation) and cross-modal (image labeling)
zero-shot experiments.

1 Introduction

In many supervised problems, the parameters of
a classification function are estimated on (x, y)
pairs, where x is a vector representing a training
instance in some feature space, and y is the label
assigned to the instance. For example, in image
labeling x contains visual features extracted from
a picture and y is the name of the object depicted
in the picture (Grauman and Leibe, 2011). Since
each label is treated as an unanalyzed primitive,

this approach requires ad-hoc annotation for each
label of interest, and it will not scale up to chal-
lenges where the potential label set is vast (for ex-
ample, bilingual dictionary induction, where the
label set corresponds to the full vocabulary of the
target language).

Zero-shot methods (Palatucci et al., 2009) ad-
dress the scalability problem by building on the
observation that the labels of interest are often
words (or longer linguistic expressions), which
stand in a semantic similarity relation to each
other. Moreover, distributional approaches allow
us to estimate very large semantic word spaces
in an efficient and unsupervised manner, using
just unannotated text corpora as input (Turney and
Pantel, 2010). Extensive evidence has shown that
the similarity estimates obtained by representing
words as vectors in such corpus-induced seman-
tic spaces are extremely accurate (Baroni et al.,
2014). Under the assumption that the domain of
interest (e.g., objects in pictures, words in a source
language) exhibits comparable similarity structure
to that manifested in language, we can rephrase the
learning task, from inducing multiple functions
from the source feature space onto independent
atomic labels, to that of estimating a single cross-
space mapping function from vectors in the source
feature space onto vectors for the corresponding
word labels in distributional semantic space. The
induced function can then also be applied to a
data-point whose label was not used for training.
The word corresponding to the nearest neighbour
of the mapped vector in the latter space is used
as the label of the data point. Zero-shot learn-
ing using distributional semantic spaces was origi-
nally proposed for brain signal decoding (Mitchell
et al., 2008), but it has since been extensively ap-
plied in other domains, including image labeling
(Frome et al., 2013; Lazaridou et al., 2014; Socher
et al., 2013) and bilingual dictionary/phrase table
induction (Dinu and Baroni, 2014; Mikolov et al.,
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2013a), the two applications we focus on here.

Effective zero-shot learning by cross-space
mapping could get us through the manual anno-
tation bottleneck that hampers many applications.
However, in practice, the accuracy in label re-
trieval with current mapping methods is still too
low for practical uses. In image labeling, when
a search space of realistic size is considered, ac-
curacy is just above 1% (which is still well above
chance for large search spaces). In bilingual lex-
icon induction, accuracy reaches values around
30% (across words of varying frequency), which
are definitely more encouraging, but still indicate
that only 1 word in 3 will be translated correctly.

In this article, we look at some general prop-
erties of the linear cross-modal mapping function
standardly used for zero-shot learning, in order
to achieve a better understanding of its shortcom-
ings, and improve its quality by devising meth-
ods to overcome them. First, when the mapping
function is estimated with least-squares error tech-
niques, we observe a systematic increase in hub-
ness (Radovanović et al., 2010b), that is, in the
tendency of some vectors (“hubs”) to appear in the
top neighbour lists of many test items. We connect
hubness to least-squares estimation, and we show
how it is greatly mitigated when the mapping func-
tion is estimated with a max-margin ranking loss
instead. Still, switching to max-margin greatly
improves accuracy in the cross-linguistic context,
but not for vision-to-language mapping. In the
cross-modal setting, we observe indeed a differ-
ent problem, that we name (training instance) pol-
lution: The neighbourhoods of mapped test items
are “polluted” by the target vectors used in train-
ing. This suggests that cross-modal mapping
suffers from overfitting issues, and consequently
from poor generalization power. Taking inspi-
ration from domain adaptation, which addresses
similar generalization concerns, and self-learning,
we propose a technique to augment the training
data with automatically constructed examples that
force the function to generalize better. Having
shown the advantages of a ranking loss, our fi-
nal contribution is the adaptation of some insights
from the max-margin literature to our setting, in
particular concerning the choice of negative ex-
amples. This leads to further accuracy improve-
ments. We thus conclude the paper by reporting
zero-shot performances in both cross-modal and
cross-language settings that are well above the cur-

cross-linguistic cross-modal
former state of art 33.0 0.5
standard mapping 29.7 1.1
max-margin - §3 39.4 1.9
data augmentation - §4 NA 3.7
negative evidence - §5 40.2 5.6

Table 1: Roadmap. Proposed changes to cross-
space mapping training and resulting percentage
Precision @1 in our two experimental setups.

rent state of the art. Table 1 provides a roadmap
and summary of our results.

2 Experimental Setup

Cross-linguistic experiments In the cross-
linguistic experiments, we learn a mapping from
the semantic space of language A to the semantic
space of language B, which can then be used for
translating words outside the training set. Specifi-
cally, given the vector representation of a word in
language A, we apply the mapping to obtain an
estimate of the vector representation of its mean-
ing in language B, returning the nearest neigh-
bour of the mapped vector in the B space as can-
didate translation. We focus on translating from
English to Italian and adopt the setup (word vec-
tors, training and test data) of Dinu et al. (2015).
For a set of 200K words, 300-dimensional vectors
were built using the word2vec toolkit,1 choosing
the CBOW method.2 CBOW, which learns to pre-
dict a target word from the ones surrounding it,
produces state-of-the-art results in many linguis-
tic tasks (Baroni et al., 2014). The word vectors
were induced from corpora of 2.8 and 1.6 billion
tokens, respectively, for English and Italian.3 The
train and test English-to-Italian translation pairs
were extracted from a Europarl-derived dictionary
(Tiedemann, 2012).4 The 5K most frequent trans-
lation pairs were used for training, while the test
set includes 1.5K English words equally split into
5 frequency bins. The search for the correct trans-
lation is performed in a semantic space of 200K

1https://code.google.com/p/word2vec/
2Other hyperparameters, which we adopted without fur-

ther tuning, include a context window size of 5 words to
either side of the target, setting the sub-sampling option to
1e-05 and estimating the probability of target words by neg-
ative sampling, drawing 10 samples from the noise distribu-
tion (Mikolov et al., 2013b).

3Corpus sources: http://wacky.sslmit.unibo.
it, http://www.natcorp.ox.ac.uk

4http://opus.lingfil.uu.se/
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Italian words.5

Cross-modal experiments In the cross-modal
experiments, we induce a mapping from visual
to linguistic space. Specifically, given an image,
we apply the mapping to its visual vector repre-
sentation to obtain an estimate of its representa-
tion in linguistic space, where the word associated
to the nearest neighbour is retrieved as the image
label. Similarly to translation pairs in the cross-
linguistic setup, we create a list of “visual transla-
tion” pairs between images and their correspond-
ing noun labels. Our starting point are the 5.1K
labels in ImageNet (Deng et al., 2009) that oc-
cur at least 500 times in our English corpus and
have concreteness score ≥5, according to Turney
et al. (2011). For each label, we sample 100 pic-
tures from its ImageNet entry, and associate each
picture with the 4094-dimensional layer (fc7) at
the top of the pre-trained convolutional neural net-
work model of Krizhevsky et al. (2012), using the
Caffe toolkit (Jia et al., 2014). The target word
space is identical to the English space used in the
cross-linguistic experiment. Finally, we use 75%
of the labels (and the respective images) for train-
ing and the remaining 25% of the labels for test-
ing.6 From the 127.5K images corresponding to
test labels, we sample 1K images as our test set.
For zero-shot evaluation purposes, the search for
the correct label is performed in the space of 5.1K
possible labels, unless otherwise specified. How-
ever, when quantifying hubness and pollution, in
order to have a setting comparable to that of cross-
language mapping, we use the full set of 200K En-
glish words as search space.

Learning objectives We assume that we have
cross-space “translation” pairs available for a set
of |Tr| items (xi,yi) = {xi ∈ Rd1,yi ∈ Rd2}.
Moreover, following previous work, we assume
that the mapping function is linear. For estimat-
ing its parameters W ∈ Rd1×d2, we consider two
objectives. The first is L2-penalized least squares

5Faithful to the zero-shot setup, in our experiments there
is never any overlap between train and test words; however,
to make the task more challenging, we include the train words
in the search space, except where expressly indicated.

6At training time, we average the 100 vectors associated
to a label into a single representation, to reduce training set
size while minimizing information loss. At test time, as nor-
mally done, we present the model with single image visual
vectors.

(ridge):

Ŵ = argmin
W∈Rd1×d2

‖XW −Y‖+ λ‖W‖,

which has an analytical solution.
The second objective is a margin-based rank-

ing loss (max-margin) similar in spirit to the one
used in similar cross-modal experiments with WS-
ABIE (Weston et al., 2011) and DeViSE (Frome
et al., 2013). The loss for a given pair of train-
ing items (xi,yi) and the corresponding mapping-
based prediction ŷi = Wxi is defined as

k∑
j 6=i

max{0, γ + dist(ŷi,yi)− dist(ŷi,yj)},

where dist is a distance measure, in our case the
inverse cosine, and γ and k are tunable hyperpa-
rameters denoting the margin and the number of
negative examples, respectively. Intuitively, the
goal of the max-margin objective is to rank the
correct translation yi of xi higher than any other
possible translation yj . In theory, the summation
in the equation could range over all possible la-
bels, but in practice this is too expensive (e.g., in
the cross-linguistic experiments the search space
contains 200K candidate labels!), and it is usually
computed over just a portion of the label space.
In Weston et al. (2011), the authors propose an
efficient way of selecting negative examples, in
which they randomly sample, for each training
item, labels from the complete set, and pick as
negative sample the first label violating the mar-
gin. This guarantees that there will be exactly as
many weight updates as training items. Another
possibility is proposed in Mikolov et al. (2013b),
where negative samples are picked from a non-
item specific distribution (e.g., the uniform distri-
bution).7 For the experiments in Sections 3 and
4, we follow a more general setup in which the
size of the margin and number of negative sam-
ples is tuned for each task. In this way, for a
sufficiently large margin and number of negative
samples, we increase the probability of perform-
ing a weight update per training item. We estimate
the mapping parameters W with stochastic gradi-
ent descent and per-parameter learning rates tuned
with Adagrad (Duchi et al., 2011). The tuning of
hyperparameters γ and k is performed on a ran-
dom 25% subset of the training data.

7The notion of negative samples is not unique to margin-
based learning; in Mikolov et al. (2013b), the authors used it
to efficiently estimate a word probability distribution.
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Figure 1: Hubness distribution in cross-linguistic (left) and cross-modal (right) search spaces. The
hubness score (N20) is computed on the top-20 neighbour lists of the test items, using their original
(gold), ridge- or max-margin-mapped vectors as query terms.

3 Hubness

High-dimensional spaces are often affected by
hubness (Radovanović et al., 2010b; Radovanović
et al., 2010a), that is, they contain certain ele-
ments – hubs – that are near many other points
in space without being similar to the latter in any
meaningful way. As recently noted by Dinu et
al. (2015), the hubness problem is greatly exacer-
bated when one looks at the nearest neighbours of
vectors that have been mapped across spaces with
ridge.8 Given a set of query vectors with the cor-
responding top-k nearest neighbour lists, we can
quantify the degree of hubness of an item in the
search space (parameterized by k) by the number
of lists in which it occurs. Nk(y), the hubness at k
of an item y, is computed as follows:

Nk(y) = |{x ∈ T|y ∈ NNk(x, S)}|,

where S denotes the search space, T denotes the
set of query items and NNk(x,S) denotes the k
nearest neighbors of x in S.

Figure 1 reports N20 distributions across the
cross-linguistic and cross-modal search spaces,
using the respective test items as query vectors.
The blue line shows the distributions for the
“gold” vectors (that is, the vectors in the target
space we would like to approximate). The red line
shows the same distributions when neighbours are

8Dinu et al. (2015) observe, but do not attempt to under-
stand hubness, as we do here. They propose to address it with
methods to re-rank neighbour lists, which are less general and
should be largely complementary to our effort to improve es-
timation of the cross-mapping function.

Cross-linguistic Cross-modal
blockmonthon (50) smilodon (40)
hashim (28) pintle (33)
akayev (27) knurled (27)
autogiustificazione (27) handwheel (24)
limassol (26) circlip (23)
regulars (26) black-footed (23)
18 (25) flatbread (22)

Table 2: Top ridge hubs, together with N20

scores. Note that cross-linguistic hubs are sup-
posed to be Italian words.

queried for the ridge-mapped test vectors (ignore
black lines for now). In both spaces, when the
query vectors are mapped, hubness increases dra-
matically. The largest hubs for the original test
items occur in 15 neighbour lists or less. With
the mapped vectors, we find hubs occurring in
40 lists or more. The figure also shows that, in
both spaces, we observe more points with smaller
but non-negligible N20 (e.g., around 10) when
mapped vectors are queried. In both spaces, the
difference in hubness is very significant according
to a cross-tab test (p<10−30). Finally, as Table 2
shows, the largest hubs are by no means terms that
we might expect to occur as neighbours of many
other items on semantic grounds (e.g., very gen-
eral terms), but rather very specific and rare words
whose high hubness cannot possibly be a genuine
semantic property.

Causes of hubness Why should the mapping
function lead to an increase in hubness? We con-
jecture that this is due to an intrinsic property of
least-squares estimation. Given the training ma-
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trices X and Y, and the projection matrix W ob-
tained by minimizing squared error, each column
ŷ∗,i of Ŷ = XW is the orthogonal projection of
y∗,i, the corresponding Y column onto the col-
umn space of X (Strang, 2003, Ch. 4). Conse-
quently, y∗,i = εi + ŷ∗,i, where the εi error vector
is orthogonal to ŷ∗,i. It follows that ||y∗,i||2 ≥=
||ŷ∗,i||2. Since y∗,i and ŷ∗,i have equal means (be-
cause the error terms in εi must sum to 0), it imme-
diately follows from the squared length inequality
that ŷ∗,i has lower or equal variance to y∗,i. Since
this holds for all columns of Ŷ, it follows in turn
that the set of mapped vectors in Ŷ has lower or
equal variance to the corresponding set of origi-
nal vectors in Y. Coming back to hubness, a set
of lower variance points (such as the mapped vec-
tors) will result in higher hubness since the points
will on average be closer to each other. The prob-
lem is likely to be further exacerbated by the prop-
erty of least-squares to ignore relative distances
between points (the objective only aims at mak-
ing predicted and observed vectors look like each
other),

Strictly, the theoretical result only holds for the
training points. However, to the extent that the
training set is representative of what will be en-
countered in the test set, it should also extend
to test data (and if training and testing data are
very different, the mapping function will gener-
alize very poorly anyway). Moreover, the result
holds for a pure least-squares solution, without the
ridge L2 regularization term. Whether it also ap-
plies to ridge-based estimates will depend on the
relative impact of the least-squares and L2 terms
on the final solution (and it is not excluded that
the L2 term might also independently reduce vari-
ance, of course). Empirically, we find that, in-
deed, lower variance also characterizes test vectors
mapped with a ridge-estimated function.

Interestingly, in the literature on cross-space
mapping we find that authors choose a different
cost function than ridge, without motivating the
choice. Socher et al. (2014) mention in pass-
ing that max-margin outperforms a least-squared-
error cost for cross-modal mapping.

Max-margin as a solution to hubness Re-
ferring back to Figure 1, we see that when
ridge estimation is replaced by max-margin (black
line), there is a considerable decrease in hub-
ness in both settings. This is directly reflected
in a large increase in performance in our cross-

linguistic (English-to-Italian) zero-shot task (left
two columns of Table 3), with the largest im-
provement for the all important P@1 measure
(equivalent to accuracy).9 These results are well
above the current best cross-language accuracy for
cross-modal mapping without added orthographic
cues (33%), attained by Mikolov et al. (2013a).10

The absolute performance figures are low in the
challenging cross-modal setting, but here too we
observe a considerable improvement in accuracy
when max-margin is applied. Indeed, we are al-
ready above the cross-modal zero-shot mapping
state of the art for a search space of similar size
(0.5% accuracy in Frome et al. (2013)). Still, the
improvement over ridge (while present) is not as
large for the less strict (higher ranks) performance
scores.

Table 4 confirms that the improvement brought
about by max-margin is indeed (at least partially)
due to hubness reduction. A large proportion
of vectors retrieved as top-1 predictions (trans-
lations/labels) are hubs when mapping is trained
with ridge, but the proportion drops dramatically
with max-margin. Still, more than 1/5 top predic-
tions for cross-modal mapping with max-margin
are hubs (vs. less than 1/10 for the original vec-
tors). Now, the mathematical properties we re-
viewed above suggest that, for least-squares es-
timation, hubness is caused by general reduced
variance of the space after mapping. Thus, hubs
should be vectors that are near the mean of the
space. The first row of Table 5 confirms that
the hubs found in the neighbourhoods of ridge-
mapped query terms are items that tend to be
closer to the search space mean vector, and that
this effect is radically reduced with max-margin
estimation. However, the second row of the table
shows another factor at play, that has a major role
in the cross-modal setting, and it is only partially
addressed by max-margin estimation: Namely, in
vision-to-language mapping, there is a strong ten-
dency for hubs (that, recall, have an important ef-
fect on performance, as they enter many nearest
neighbour lists) to be close to a training data point.

9We have no realistic upper-bound estimate, but due to
different word senses, synonymy, etc., it is certainly not
100%.

10Although the numbers are not fully comparable because
of different language pairs and various methodological de-
tails, their method is essentially equivalent to our ridge ap-
proach we are clearly outperforming.
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Cross-linguistic Cross-modal
ridge max-margin ridge max-margin

P@1 29.7 38.4 1.1 1.9
P@5 44.2 54.2 4.8 5.4
P@10 49.1 60.4 7.9 9.0

Table 3: Ridge vs. max-margin in zero-
shot experiments. Precision @N results cross-
linguistically (test items: 1.5K, search space:
200K) and cross-modally (test items: 1K, search
space: 5.1K).

Cross-linguistic Cross-modal
ridge max-margin gold ridge max-margin gold
19.6 9.8 0.6 55.8 21.6 7.8

Table 4: Hubs as top predictions. Percentage of
top-1 neighbours of test vectors in zero-shot ex-
periments of Table 3 with N20 > 5.

Cross-linguistic Cross-modal
cosine with ridge max-margin ridge max-margin

full-space mean 0.21 0.06 0.13 -0.01
training point 0.15 0.12 0.34 0.24

Table 5: Properties of hubs. Spearman ρ of
N20 scores with cosines to mean vector of full
search space (top) and nearest training item (bot-
tom), across all search space elements. All corre-
lations significant (p<0.001) except cross-modal
max-margin hubness/full-space mean.

4 Pollution

The quantitative results and post-hoc analysis of
hubs in Section 3 suggest that cross-modal map-
ping is facing a serious generalization problem. To
get a better grasp of the phenomenon, we define a
binary measure of (training data) pollution for a
queried item x and parameterized by k, such that
pollution is 1 if x has a (target) training item y
among its k nearest neighbours, 0 otherwise. For-
mally:

Npol
k,S(x) = [[∃y ∈ YTr : y ∈ NNk,S(x)]],

where YTr is the matrix of target vectors used in
training, NNk,S(y) denotes the top k neighbors of
y in search space S, and [[z]] is an indicator func-
tion.11

11Pollution is of course an effect of overfitting, but we use
this more specific term to refer to the tendency of training
vectors to “pollute” nearest neighbour lists of mapped vec-
tors.

The average pollution Npol
1,S of all test items in

the cross-modal experiment, when |S|=200K is
18%, which indicates that in 1/5 of cases the re-
turned label is that of a training point. The equiv-
alent statistic in the cross-linguistic experiment
drops to 8.7% (words tend to be more varied than
the set of concrete, imageable concepts used for
image annotation tasks, and so the cross-linguistic
training set is probably less uniform than the one
used in the vision-to-language setting).

The real extent of the generalization problem
in the cross-modal setup becomes more obvious
if we restrict the search space to labels effectively
associated to an image in our data set (|S|=5.1K).
In this case, the average pollution Npol

1,S across all
test items jumps to 88%, that is, the vast major-
ity of test images are annotated with a label com-
ing from the training data. Clearly, there is a seri-
ous problem of overfitting to the training subspace.
While we came to this observation by inspecting
the properties of hubs, other work in zero-shot
for image labeling has indirectly noted the same.
Frome et al. (2013) empirically showed that the
performance of the system is higher when remov-
ing training labels from the search space, while
Norouzi et al. (2014) proposed a zero-shot method
that avoids explicit cross-modal mapping.

Adapting to the full search space by data
augmentation High training-data pollution in-
dicates that cross-modal mapping does not gener-
alize well beyond the kind of data points it encoun-
tered in learning. This is a special case of the data-
set bias problem (Torralba and Efros, 2011) and,
given that the latter has been addressed as a do-
main adaptation problem (Gong et al., 2012; Don-
ahue et al., 2013), we adopt here a similar view.
Self-training has been successfully used for do-
main adaptation in NLP, e.g., in syntactic parsing.
Given the limited amount of syntactically anno-
tated data coming from monotonous sources (e.g.,
the Wall Street Journal), parsers show a big drop
in performance when applied to different domains
(e.g., reviews), since training and test domains dif-
fer dramatically, thus affecting their generalization
performance. In a nutshell, the idea behind self-
training (McClosky et al., 2006; Reichart and Rap-
poport, 2007) is to use manually annotated data
(xA

i , .., x
A
N, y

A
i , .., y

A
N) from domain A to train a

parser, feed the trained parser with data xB
i , .., x

B
K

from domain B in order to obtain their automated
annotations ŷB

i , .., ŷ
B
K and then retrain the parser
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dolphin tarantula highland

whale anteater whisky
orca arachnid lowland
porpoise spider bagpipe
cetacean opossum glen
shark scorpion distillery

Table 6: Visual chimeras for dolphin, tarantula
and highland.

with a combination of “clean” data from domain
A and “noisy” data from domain B.

In our setup, self-training would be applied by
labeling a larger set of images with a cross-modal
mapping function estimated on the initial train-
ing data, and then using both sources of labeled
data to retrain the function. Although the idea
of self-training for inducing cross-modal map-
ping functions is appealing, especially given the
vast amount of unlabeled data available out there,
the very low performance of current cross-modal
mapping functions makes the effort questionable.
We would like to exploit unannotated data repre-
sentative of the search space, without relying on
the output of cross-modal mapping for their an-
notation. One way to achieve this is to use data
augmentation techniques that are representative of
the search space. Data augmentation is popular
in computer vision, where it is performed (among
others) by data jittering, visual sampling or image
perturbations. It has proven beneficial for both
“deep” (Krizhevsky et al., 2012; Zeiler and Fer-
gus, 2014) and “shallow” (Chatfield et al., 2014)
systems, and it was recently introduced to NLP
tasks (Zhang and LeCun, 2015).

Specifically, in order to train the mapping func-
tion using both annotated data and points that are
representative of the full search space, we rely on
a form of data augmentation that we call visual
chimera creation. For every item yi /∈ YTr in the
search space S, we use linguistic similarity as a
proxy of visual similarity, and create its visual vec-
tor x̂i by averaging the visual vectors correspond-
ing to the nearest words in language space that do
occur as labels in the training set. Table 6 presents
some examples of visual chimeras. For yi=dol-
phin, the visual vectors of other cetacean mam-

none chimera-5 chimera-10
P@1 1.9 3.7 3.2
P@5 5.4 10.9 10.5
P@10 9.0 15.8 15.9

Table 7: Cross-modal zero-shot experiment
with data augmentation. Labeling precision @N
with no data augmentation (none) and when us-
ing top 5 (chimera-5) and top 10 (chimera-10) near-
est neighbors from training set of each item in the
search space to build the corresponding chimeras
(1K test items, 5.1K search space).

mals are averaged to create the chimera x̂i. Since
linguistic similarity is not always determined by
visual factors, the method also produces noisy data
points. For yi=tarantula, opossums enter the pic-
ture, while for yi=highland images of “topically”
similar concepts are used (e.g., bagpipe).

Table 7 reports cross-modal zero-shot labeling
when training with max-margin and data augmen-
tation. We experiment with visual chimeras con-
structed using 5 vs. 10 nearest neighbours. While
the examples above suggest that the process injects
some noise in the training data, we also observe a
decrease of pollution Npol

1,S from 88% when using
the “clean” training data, to 71% and 73% when
expanding them with chimeras (for chimera-5 and
chimera-10, respectively). Reflecting this drop in
pollution, we see large improvements in precision
at all levels, when chimeras are used (no big dif-
ferences between 5 or 10 neighbours).

The improvements brought about by the
chimera method are robust. First, Table 8 reports
performance when the search space excludes the
training labels, showing that data augmentation is
beneficial beyond mitigating the bias in favor of
the latter. In this setup, chimera-5 is clearly out-
performing chimera-10 (longer neighbour lists will
include more noise), and we focus on it from here
on.

All experiments up to here follow the stan-
dard cross-modal zero-shot protocol, in which the
search space is given by the union of the test and
training labels, or a subset thereof. Next, we make
the task more challenging by increasing it with 1K
extra elements acting as distractors. The distrac-
tors are either randomly sampled from our usual
200K English word space, or, in the most chal-
lenging scenario, picked among those words, in
the same space, that are among the top-5 near-
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none chimera-5 chimera-10
P@1 6.7 9.3 8.3
P@5 21.7 25.2 21.3
P@10 29.9 34.3 29.7

Table 8: Cross-modal zero-shot experiment
with data augmentation, disjoint train/search
spaces. Same setup as Table 8, but search space
excludes training elements (1K test items, 1K
search space).

random related
none chimera-5 none chimera-5

P@1 0.8 3.3 1.9 2.8
P@5 5.3 9.0 4.8 8.8
P@10 8.8 13.3 7.9 12.6

Table 9: Cross-modal zero-shot experiment
with data augmentation, enlarged search space.
Labeling precision @N with no data augmenta-
tion (none) and when using top 5 (chimera-5) near-
est neighbors from training set of each item in the
search space to build the corresponding chimeras.
Test items: 1K. Search space: 5.1K+1K extra dis-
tractors from a 200K word space, either randomly
picked (random), or related to the training items.

est neighbours of a training element. Again, we
create one visual chimera for each label in the
search space. Results are presented in Table 9.
As expected, performance is negatively affected
with both plain and data-augmented models, but
the latter is still better in absolute terms. While
chimera-5 undergoes a larger drop when the search
contains many elements similar to the training data
(“related” column), which is explained by the fact
that visual chimeras will often include the distrac-
tor items of this setup, it appears to be more resis-
tant against random labels, which in many cases
are words that bear no resemblance to the training
data (e.g., naushad, yamato, 13-14). The picture
when using no data augmentation is exactly the
opposite, with the model being more harmed, at
P@1, by the random labels.

Finally, Table 10 presents results in the cross-
linguistic setup, when applying the same data aug-
mentation technique. In this case, we augment
the 5K training elements with 11.5K chimeras, for
the 1.5K test elements and 10K randomly sam-
pled distractors. For these 11.5K elements, we as-
sociate their Italian (target space) label yi with a

none chimera-5
P@1 38.4 31.1
P@5 54.2 46.1
P@10 60.4 51.3

Table 10: Cross-linguistic zero-shot experiment
with data augmentation. Translation precision
@N when learning with max-margin and no data
augmentation (none) or data augmentation using
the top 5 (chimera-5) nearest neighbors of 11.5K
items in the 200K-word search space (1.5K test
items).

cat
dog

truck

Figure 2: Looking for intruders. We pick truck
rather than dog as negative example for cat.

“pseudo-translation” vector x̂i obtained by averag-
ing the vectors of the English (source space) trans-
lations of the nearest Italian words to yi included
in the training set. Results, in Table 10, show that
in this case our data augmentation method is ac-
tually hampering performance. We saw that pol-
lution affects the cross-linguistic setup much less
than it affects the cross-modal one, and we con-
jecture that, consequently, in the translation task,
there is not a large-enough generalization gain to
make up for the extra noise introduced by augmen-
tation.

5 Picking informative negative examples

An interesting feature of the ranking max-margin
objective lies in its active use of negative exam-
ples. While previous work in cross-space map-
ping has paid little attention to the properties that
negative samples should possess, this has not gone
unnoticed in the NLP literature on structured pre-
diction tasks. Smith and Eisner (2005) propose a
contrastive estimation framework in the context of
POS-tagging, in which positive evidence derived
from gold sentence annotations is extended with
negative evidence derived by various neighbour-
hood functions that corrupt the data in particular
ways (e.g., by deleting 1 word).

Having shown the effectiveness of max-margin
estimation in the previous sections, we now take
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Cross-linguistic Cross-modal
random intruder random intruder

P@1 38.4 40.2 3.7 5.6
P@5 54.2 55.5 10.9 12.4
P@10 60.4 61.8 15.8 17.8

Table 11: Random vs. intruding negative exam-
ples. Zero-shot precision @N results when cross-
space function is estimated using max-margin with
random or “intruder” negative examples, cross-
linguistically (test items: 1.5K, search space:
200K) and cross-modally (test items: 1K, search
space: 5.1K).

a first step towards engineering the negative evi-
dence exploited by this method, in the context of
inducing cross-space mapping functions. In par-
ticular, our idea is that, given a training instance
xi, an informative negative example would be near
the mapped vector ŷi, but far from the actual gold
target space vector yi. Intuitively, such “intruders”
correspond to cases where the mapping function
is getting the predictions seriously wrong, and thus
they should be very informative in “correcting” the
function mapping trajectories. This can seen as a
vector-space interpretation of the max-loss update
protocol (Crammer et al., 2006) that picks nega-
tive samples expected to harm performance more.
Figure 2 illustrates the idea with a cartoon exam-
ple. If cat is the gold target vector yi and ŷi the
corresponding mapped vector, then we are going
to pick truck as negative example, since it is an in-
truder (near the mapped vector, far from the gold
one).

More formally, at each step of stochastic gra-
dient descent, given a source space vector xi, its
target gold label/translation yi in YTr and the
mapped vector ŷi, we compute sj = cos(ŷi, yj) −
cos(yi, yj), for all vectors yj in YTr s.t. j 6= i, and
pick as negative example for xi the vector with the
largest sj.

Table 11 presents zero-shot mapping results
when intruding negative examples are used for
max-margin estimation. For cross-modal map-
ping, we apply data augmentation as described in
the previous section. While the absolute perfor-
mance increase is relatively small (less than 2% in
both setups), it is consistent. Furthermore, the pro-
posed protocol results in lower Npol

1,S pollution in
the cross-modal setup (from 71% to 63%). Finally,
we observe that the learning behaviour of the two
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Figure 3: Learning curve with random or in-
truding negative samples in the cross-linguistic
experiment.

protocols (intruders vs. random) is different; the
intruder approach is already achieving good perfor-
mance after just few training epochs, since it can
rely on more informative negative samples (see
Figure 3).

6 Conclusion

We have considered some general mathemati-
cal and empirical properties of linear cross-space
mapping functions, suggesting one well-known
(max-margin estimation) and two new (chimera
augmentation and “intruder” negative sample ad-
justment) methods to improve their performance.
With them, we achieve results well above the state
of the art in both the cross-linguistic and the cross-
modal setting. Both chimera and the intruder
methods are flexible, and we plan to explore them
further in future research. In particular, we want
to devise more semantically-motivated methods to
select chimera components and negative samples.
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Abstract

Over the last two decades, numerous algo-
rithms have been developed that success-
fully capture something of the semantics
of single words by looking at their distri-
bution in text and comparing these distri-
butions in a vector space model. How-
ever, it is not straightforward to construct
meaning representations beyond the level
of individual words – i.e. the combina-
tion of words into larger units – using dis-
tributional methods. Our contribution is
twofold. First of all, we carry out a large-
scale evaluation, comparing different com-
position methods within the distributional
framework for the cases of both adjective-
noun and noun-noun composition, making
use of a newly developed dataset. Sec-
ondly, we propose a novel method for
composition, which generalises the ap-
proach by Baroni and Zamparelli (2010).
The performance of our novel method is
also evaluated on our new dataset and
proves competitive with the best methods.

1 Introduction

In the course of the last two decades, there has
been a growing interest in distributional meth-
ods for lexical semantics (Landauer and Dumais,
1997; Lin, 1998; Turney and Pantel, 2010). These
methods are based on the distributional hypothe-
sis (Harris, 1954), according to which words that
appear in the same contexts tend to be similar in
meaning. Inspired by Harris’ hypothesis, numer-
ous researchers have developed algorithms that try
to capture the semantics of individual words by
looking at their distribution in a large corpus.

Compared to manual studies common to formal
semantics, distributional semantics offers substan-
tially larger coverage since it is able to analyze

massive amounts of empirical data. However, it is
not trivial to combine the algebraic objects created
by distributional semantics to get a sensible distri-
butional representation for more complex expres-
sions, consisting of several words. On the other
hand, the formalism of the λ -calculus provides us
with general, advanced and efficient methods for
composition that can model meaning composition
not only of simple phrases, but also more com-
plex phenomena such as coercion or composition
with fine-grained types (Asher, 2011; Luo, 2010;
Bassac et al., 2010). Despite continued efforts to
find a general method for composition and various
approaches for the composition of specific syntac-
tic structures (e.g. adjective-noun composition, or
the composition of transitive verbs and direct ob-
jects (Mitchell and Lapata, 2008; Coecke et al.,
2010; Baroni and Zamparelli, 2010)), the model-
ing of compositionality is still an important chal-
lenge for distributional semantics. Moreover, the
validation of proposed methods for composition
has used relatively small datasets of human sim-
ilarity judgements (Mitchell and Lapata, 2008).1

Although such studies comparing similarity judge-
ments have their merits, it would be interesting to
have studies that evaluate methods for composi-
tion on a larger scale, using a larger test set of dif-
ferent specific compositions. Such an evaluation
would allow us to evaluate more thoroughly the
different methods of composition that have been
proposed. This is one of the goals of this paper.

To achieve this goal, we make use of two dif-
ferent resources. We have constructed a dataset
for French containing a large number of pairs
of a compositional expression (adjective-noun)
and a single noun that is semantically close or
identical to the composed expression. These
pairs have been extracted semi-automatically from

1A notable exception is (Marelli et al., 2014), who pro-
pose a large-scale evaluation dataset for composition at the
sentence level.
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the French Wiktionary. We have also used
the Semeval 2013 dataset of phrasal similarity
judgements for English with similar pairs ex-
tracted semi-automatically from the English Wik-
tionary to construct a dataset for English for both
adjective-noun and noun-noun composition. This
affords us a cross-linguistic comparison of the
methods.

These data sets provide a substantial evalua-
tion of the performance of different compositional
methods. We have tested three different methods
of composition proposed in the literature, viz. the
additive and multiplicative model (Mitchell and
Lapata, 2008), as well as the lexical function ap-
proach (Baroni and Zamparelli, 2010).

The two first methods are entirely general, and
take as input automatically constructed vectors for
adjectives and nouns. The method by Baroni and
Zamparelli, on the other hand, requires the acqui-
sition of a particular function for each adjective,
represented by a matrix. The second goal of our
paper is to generalise the functional approach in
order to eliminate the need for an individual func-
tion for each adjective. To this goal, we automat-
ically learn a generalised lexical function, based
on Baroni and Zamparelli’s approach. This gener-
alised function combines with an adjective vector
and a noun vector in a generalised way. The per-
formance of our novel generalised lexical function
approach is evaluated on our test sets and proves
competitive with the best, extant methods.

Our paper is organized as follows. First, we dis-
cuss the different compositional models that we
have evaluated in our study, briefly revisiting the
different existing methods for composition, fol-
lowed by a description of our generalisation of the
lexical function approach. Next, we report on our
evaluation method and its results. The results sec-
tion is followed by a section that discusses work
related to ours. Lastly, we draw conclusions and
lay out some avenues for future work.

2 Composition methods

2.1 Simple Models of Composition

In this section, we describe the composition mod-
els for the adjective-noun case. The extension of
these models to the noun-noun case is straight-
forward; one just needs to replace the adjective
by the subordinate noun. Admittedly, choosing
which noun is subordinate in noun-noun compo-
sition may be an interesting problem but it is out-

side the scope of this paper. We tested three sim-
ple models of composition: a baseline method that
discounts the contribution of the adjective com-
pletely, and the additive and multiplicative models
of composition. The baseline method is defined as
follows:

Compbaseline(adj, noun) = noun

The additive model adds the point-wise values
of the adjective vector adj and noun vector noun
using independent coefficients to provide a result
for the composition:

Compadditive(adj, noun) = α noun+β adj

The multiplicative model consists in a point-
wise multiplication of the vectors adj and noun:

Compmultiplicative(adj, noun) = noun⊗adj
with (noun⊗adj)i = nouni×adji

2.2 The lexical function model
Baroni and Zamparelli’s (2010) lexical func-
tion model (LF) is somewhat more complex.
Adjective-noun composition is modeled as the
functional application of an adjective meaning
(represented as a matrix) to a noun meaning (rep-
resented as a vector). Thus, the combination of
an adjective and noun is the product of the matrix
ADJ and the vector noun as shown in Figure 1.

Baroni and Zamparelli propose learning an ad-
jective’s matrix from examples of the vectors
for adj noun obtained directly from the corpus.
These vectors adj noun are obtained in the same
way as vectors representing a single word: when
the adjective-noun combination occurs, we ob-
serve its context and construct the vector from
those observations. As an illustration, consider
the example in 2. The word name appears three
times modified by an adjective in the following
excerpt from Oscar Wilde’s The Importance of
Being Earnest. This informs us about the co-
occurrence frequencies of three vectors: one for
divine name, another for nice name, and one for
charming name.

Once the adj noun vectors have been created
for a given adjective, we are able to calculate the
ADJ matrix using a least squares regression that
minimizes the equation ADJ×adj noun− noun.
More formally, the problem is the following:

Find ADJ s.t.
∑noun(ADJ×noun−adj noun)2

is minimal
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Figure 1: Lexical Function Composition

Jack: Personally, darling, to speak quite candidly, I don’t much care about the name of Ernest . . . I don’t think the
name suits me at all.
Gwendolen: It suits you perfectly. It is a divine [name]. It has a music of its own. It produces vibrations.
Jack: Well, really, Gwendolen, I must say that I think there are lots of other much nicer [names]. I think Jack, for
instance, is a charming [name].

Figure 2: Excerpt from Oscar Wilde’s The Importance of Being Earnest

For our example, we would minimize, among oth-
ers DIVINE×divine name−name to get the ma-
trix for DIVINE.

LF requires a large corpus, because we have
to observe a sufficient number of examples of the
adjective and noun combined, which are perforce
less exemplified than the presence of the noun or
adjective in isolation. In Figure 2, each of the oc-
currences of ‘name’ can contribute to the informa-
tion in the vector name but none can contribute to
the vector evanescent name.

Baroni and Zamparelli (2010) offer an expla-
nation of how to cope with the potential sparse
data problem for learning matrices for adjectives.
Moreover, recent evaluations of LF show that ex-
istent corpora have enough data for it to provide a
semantics for the most frequent adjectives and ob-
tain better results than other methods (Dinu et al.,
2013b).

Nevertheless, LF has limitations in treating rel-
atively rare adjectives. For example, the adjective
‘evanescent’ appears 359 times in the UKWaC cor-
pus (Baroni et al., 2009). This is enough to gen-
erate a vector for evanescent, but may not be suf-
ficient to generate a sufficient number of vectors
evanescent noun to build the matrix EVANES-
CENT. More importantly, for noun-noun combi-
nations, one may need to have a LF for a com-
bination. To get the meaning of blood dona-
tion campaign in the LF approach, the matrix
BLOOD DONATION must be combined to the vec-
tor campaign. Learning this matrix would require
to build vectors blood donation noun for many
nouns. Even if it were possible, the issue would
arise again for blood donation campaign plan,
then for blood donation campaign plan meeting
and so forth.

In addition, LF’s approach to adjectival mean-
ing and composition has a theoretical drawback.
Like Montague Grammar, it supposes that the ef-
fect of an adjective on a noun meaning is specific
to the adjective (Kamp, 1975). However, recent
studies suggest that the Montague approach over-
generalises from the worst case, and that the vast
majority of adjectives in the world’s languages
are subsective, suggesting that the modification of
nominal meaning that results from their compo-
sition with a noun follows general principles (Par-
tee, 2010; Asher, 2011) that are independent of the
presence or absence of examples of association.

2.3 Generalised LF

To solve these problems, we generalise LF and re-
place individual matrices for adjectival meanings
by a single lexical function: a tensor for adjectival
composition A .2 Our proposal is that adjective-
noun composition is carried out by multiplying the
tensor A with the vector for the adjective adj, fol-
lowed by a multiplication with the vector noun,
c.f. Figure 3.

The product of the tensor A and the vector adj
yields a matrix dependent of the adjective that is
multiplied with the vector noun. This matrix cor-
responds to the LF matrix ADJ. As indicated in
Figure 4, we obtain A with the help of matrices
obtained from the LF approach, and from vectors
for single words easily obtained in distributional
semantics; we perform a least square regression
minimizing the norm of the matrices generated by
the equations in Figure 4. Formally, the problem
is

2A tensor generalises a matrix to several dimensions. We
use a tensor in three modes. For an introduction to tensors,
see (Kolda and Bader, 2009).
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Figure 3: Composition in the generalised lexical function model

Find A s.t.
∑adj(A ×adj−ADJ)2

is minimal
Note that our tensor is not just the compilation of
the information found in the LF matrices: the ad-
jective mode of our tensor has a limited number
of dimensions, whereas the LF approach creates a
separate matrix for each individual adjective. This
reduction forces the model to generalise, and we
hypothesise that this generalisation allows us to
make proper noun modifications even in the light
of sparse data.

Our approach requires learning a significant
number of matrices ADJ. This is not a problem,
since FRWaC and UKWaC provide sufficient data
for the LF approach to generate matrices for a sig-
nificant number of adjectives. For example, the
2000th most frequent adjective in FRWaC (‘fas-
ciste’) has more than 4000 occurrences.

To return to our example of blood donation
campaign, once the tensor N for noun-noun
composition is learned, our approach requires
only the knowledge of the vectors blood, dona-
tion and campaign. We would then perform the
following computations:

blood donation = (N ×blood)×donation
blood donation campaign =

(N ×blood donation)× campaign
and this allows us to avoid the sparse data prob-
lem for the LF approach in generating the matrix
BLOOD DONATION.

Once we have obtained the tensor A , we verify
experimentally its relevance to composition, in or-
der to check whether a tensor optimising the equa-
tions in Figure 4 would be semantically interest-
ing.

3 Evaluation

3.1 Tasks description

In order to evaluate the different composition
methods, we constructed test sets for French and
English, inspired by the work of Zanzotto et al.

(2010) and the SEMEVAL-2013 task evaluating
phrasal semantics (Korkontzelos et al., 2013). The
task is to make a judgement about the semantic
similarity of a short word sequence (an adjective-
noun combination) and a single noun. This is im-
portant, as composition models need to be able to
treat word sequences of arbitrary length. Formally,
the task is presented as:

With comp = composition(adj, noun1)
Evaluate similarity(comp, noun2)

where the ‘composition’ function is carried out
by the different composition models. ‘Similarity’
needs to be a binary function, with return val-
ues ‘similar’ and ‘non-similar’. Note, however,
that the distributional approach yields a continu-
ous similarity value (such as the cosine similar-
ity between two vectors). In order to determine
which cosine values correspond to ‘similar’ and
which cosine values correspond to ‘non-similar’,
we looked at a number of examples from a de-
velopment set. More precisely, we carried out a
logistic regression on 50 positive and 50 negative
examples (separate from our test set) in order to
automatically learn the threshold at which a pair
is considered to be similar. Finally, we decided to
use balanced test sets containing as many positive
instances as negative ones.

The test set is constructed in a semi-automatic
way, making use of the canonical phrasing of dic-
tionary definitions. Take for example the defini-
tion of bassoon in the English Wiktionary3, pre-
sented in Figure 5. It is quite straightforward
to extract the pair (musical instrument,bassoon)
from this definition. Using a large dictionary
(such as Wiktionary), it is then possible to ex-
tract a large number of positive – i.e. similar –
(adjective noun,noun) pairs.

For the construction of our test set for French,
we downloaded all entries of the French Wik-
tionary (Wiktionnaire) and annotated them with

3http://en.wiktionary.org/wiki/bassoon, ac-
cessed on 26 February 2015.
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Find tensor A by minimizing:

A djective × r
e
d
− RED , A djective ×

s
l
o
w
− SLOW . . .

Figure 4: Learning the A djective tensor

bassoon /b@"su:n/ (plural bassoons)

1. A musical instrument in the woodwind family, having a double reed and, playing in the tenor and
bass ranges.

Figure 5: Definition of bassoon, extracted from the English Wiktionary

part of speech tags, using the French part of speech
tagger MElt (Denis et al., 2010). Next, we ex-
tracted all definitions that start with an adjective-
noun combination. As a final step, we filtered all
instances containing words that appear too infre-
quently in our FRWaC corpus.4

The automatically extracted instances were then
checked manually, and all instances that were con-
sidered incorrect were rejected. This gave us a fi-
nal test set of 714 positive examples.

We also created an initial set of negative ex-
amples, where we combined an existing combi-
nation of adjective noun1 (extracted from the
French Wiktionary), with a randomly selected
noun noun2. Again, we verified manually that the
resulting (adjective noun1, noun2) pairs con-
stituted actual negative examples. We then cre-
ated a second set of negative examples by ran-
domly selecting two nouns (noun1,noun2) and
one adjective adjective. The resulting pairs
(adjective noun1, noun2) were verified man-
ually.

In addition to our new test set for French, we
also experimented with the original test set of the
SEMEVAL-2013 task evaluation phrasal semantics
for English. However, the original test set lacked
human oversight as ‘manly behavior’ was consid-
ered similar to ‘testosterone’ for example. We thus
hand-checked the test set ourselves and extracted
652 positive pairs.

The negative pairs from the original SEMEVAL-
2013 are a combination of a random noun and a

4i.e. less than 200 times for adjectives and less than 1500
times for nouns

random adjective-noun compositon found in the
English Wiktionary. We used it as our first set
of English negative examples as it is similar in
construction to our first set of negative examples
in French. In addition, we created a completely
random negative test set for English in the same
fashion we did for the second negative test set for
French.

Finally, the original test set also contains noun-
noun compounds so we also created a test set for
that. This gave us 226 positive and negative pairs
for the noun-noun composition.

3.2 Semantic space construction

In this section, we describe the construction of our
semantic space. Our semantic space for French
was built using the FRWaC corpus (Baroni et al.,
2009) – about 1,6 billion words of web texts –
which has been tagged with MElt tagger (Denis et
al., 2010) and parsed with MaltParser (Nivre et al.,
2006a), trained on a dependency-based version of
the French treebank (Candito et al., 2010). Our
semantic space for English has been built using
the UKWaC corpus (Baroni et al., 2009), which
consists of about 2 billion words extracted from
the web. The corpus has been part of speech
tagged and lemmatized with Stanford Part-Of-
Speech Tagger (Toutanova and Manning, 2000;
Toutanova et al., 2003), and parsed with Malt-
Parser (Nivre et al., 2006b) trained on sections
2-21 of the Wall Street Journal section of the
Penn Treebank extended with about 4000 ques-

285



positive examples random negative examples Wiktionary-based negative examples

(mot court, abréviation) (importance fortuit, gamme) (jugement favorable, discorde)
‘short word’, ‘abbreviation’ ‘accidental importance’, ‘range’ ‘favorable judgement’, ‘discord’
(ouvrage littéraire, essai) (penchant autoritaire, ile) (circonscription administratif , fumier)

‘literary work’, ‘essay’ ‘authoritarian slope’, isle’ ‘administrative district’, ‘manure’
(compagnie honorifique, ordre) (auspice aviaire, ponton) (mention honorable, renne)

‘honorary company’, ‘order’ ‘avian omen’, ‘pontoon’ ‘honorable mention’, ‘reindeer’

Table 1: A number of examples from our test set for French

tions from the QuestionBank5.
For both corpora, we extracted the lemmas of

all nouns, adjectives and (bag of words) context
words. We only kept those lemmas that consist of
alphabetic characters.6 We then selected the 10K

most frequent lemmas for each category (nouns,
adjectives, context words), making sure to include
all the words from the test set. As a final step,
we created our semantic space vectors using ad-
jectives and nouns as instances, and bag of words
context words as features. The resulting vectors
were weighted using positive point-wise mutual
information (ppmi, (Church and Hanks, 1990)),
and all vectors were normalized to unit length.

We then compared the different composition
methods on different versions of the same seman-
tic space (both for French and English): the full
semantic space, a reduced version of the space to
300 dimensions using singular value decomposi-
tion (svd, (Golub and Van Loan, 1996)), and a re-
duced version of the space to 300 dimensions us-
ing non-negative matrix factorization (nmf, (Lee
and Seung, 2000)). We did so in order to test each
method in its optimal conditions. In fact:

• A non-reduced space contains more informa-
tion. This might be beneficial for methods
that are able to take advantage of the full se-
mantic space (viz. the additive et multiplica-
tive model). On the other hand, to be able
to use the non-reduced space for the lexical
function approach, one would have to learn
matrices of size 10K ×10K for each adjec-
tive. This would be problematic in terms of
computing time and data sparseness, as we
previously noted. The same goes for our gen-

5http://maltparser.org/mco/english_parser/
engmalt.html

6This step generally filters out dates, numbers and punc-
tuation, which have little interest for the distributional ap-
proach.

eralised approach.

• Previous research has indicated that the lexi-
cal function approach is able to achieve bet-
ter results using a reduced space with svd. On
the other hand, the negative values that result
from svd are detrimental for the multiplica-
tive approach.

• An nmf -reduced semantic space is not detri-
mental for the multiplicative approach.

In order to determine the best parameters for the
additive model, we tested this model for different
values of α and β where α +β = 17 on a develop-
ment set and kept the values with the best results:
α = 0.4, β = 0.6.

3.3 Data used for regression
The LF approach and its generalisation need data
in order to perform the least square regression. We
thus created a semantic space for adjective noun
and noun noun vectors using the most frequent
ones in a similar way to how we created them
in 3.2. Then we solved the equations in 2.2 and
forth. Even though the regression data were dis-
joint from the test sets, for each pair, we removed
some of the data that may cause overfitting.

For the lexical function tests, we remove the
adjective noun vector corresponding to the test
pair from the regression data. For example, we
do not use short word to learn SHORT for the
(short word, abbrevation) pair.

For the generalised lexical function tests, we use
the full regression data to learn the lexical func-
tions used to train the tensor. However, we re-
move the ADJECTIVE matrix corresponding to the
test pair from the (tensor) regression data. For ex-
ample, we do not use SHORT to learn A for the
(short word, abbreviation) pair.

7Since the vectors are normalized (cf. 3.2), this condition
does not affect the generality of our test.
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Table 2: Percentage of correctly classified pairs for (adjective noun1,noun2) for both French and English
spaces.

baseline multiplicative additive LF generalised LF
fr en fr en fr en fr en fr en

non-reduced 0.83 0.81 0.86 0.86 0.88 0.86 N/A N/A

svd 0.79 0.79 0.55 0.59 0.84 0.78 0.93 0.92 0.91 0.88
nmf 0.78 0.78 0.83 0.77 0.79 0.84 0.90 0.86 0.88 0.85

(a) Negative examples are created randomly.

baseline multiplicative additive LF generalised LF
fr en fr en fr en fr en fr en

non-reduced 0.80 0.79 0.83 0.81 0.85 0.80 N/A N/A

svd 0.78 0.77 0.54 0.48 0.83 0.78 0.84 0.79 0.81 0.77
nmf 0.78 0.78 0.79 0.78 0.83 0.82 0.82 0.82 0.81 0.80

(b) Negative examples are created from existing pairs.

Table 3: Percentage of correctly classified pairs for (noun2 noun1,noun3) with negative examples from
existing pairs. Only the English space is tested.

English space baseline multiplicative additive LF generalised LF

non-reduced 0.77 0.80 0.84 N/A N/A

svd 0.78 0.49 0.86 0.83 0.82
nmf 0.79 0.82 0.86 0.85 0.83

3.4 Results

In this section, we present how the various models
perform on our test sets.

3.4.1 General results
Tables 2 & 3 give an overview of the results. Note
first that the baseline approach, which compares
only the two nouns and ignores the subordinate
adjective or noun, does relatively well on the task
(∼ 80% accuracy). This reflects the fact that the
head noun in our pairs extracted from definitions
is close to (and usually a super type of) the noun
to be defined.

In addition, we observe that the multiplicative
method performs badly, as expected, on the se-
mantic space reduced with svd. This confirms the
incompatibility of this method with the negative
values generated by svd. Indeed, multiplying two
vectors with negative values term by term may
yield a third vector very far away from the other
two. Such a combination does not support the sub-
sectivity of most our test pairs. Apart from that,
svd and nmf reductions do not affect the methods
much.

Moreover, we observe that the multiplicative
model performs better than the baseline but is
bested by the additive model. We also see that
additive and lexical functions often yield similar
performance.

Finally, the generalised lexical function is
slightly less accurate than the lexical functions.
This is an expected consequence of generalisa-
tion. Nevertheless, the generalised lexical function
yields sound results confirming our intuition that
we can represent adjective-noun (or noun-noun)
combinations by one function.

3.4.2 Adjective-noun

With random negative pairs (Table 2a), we ob-
serve that the lexical function model obtains the
best results for the svd space. This result is sig-
nificantly better than any other method on any
of the spaces—e.g.,for French space, χ2 = 33.49,
p< 0.01 when compared to the additive model for
the non-reduced space which performs second.

However, with non-random negative pairs (Ta-
ble 2b), LF and the additive model obtain scores
that are globally equivalent for their best respec-
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tive conditions — in French 0.85 for the additive
non-reduced model vs. 0.84 for the LF svd model,
a difference that is not significant (χ2 = 0.20,
p< 0.05).

This seems to indicate that LF is especially ef-
ficient at separating out nonsense combinations.
This may be caused by the fact that lexical func-
tions learn from actual pairs. Thus, when an
adjective noun combination is bizarre, the ADJEC-
TIVE matrix has not been optimized to interact
with the noun vector and may lead to complete
non-sense — Which is a good thing because hu-
mans would analyze the combination as such.

Finally, similar results in French and English
confirm the intuition that distributional methods
(and its composition models) are independent of
the idiosyncrasies of a particular language; in par-
ticular they are as efficient for French as for En-
glish.

3.4.3 Noun-noun
The noun-noun tests (Table 3) yields similar re-
sults to the adjective-noun tests. This is not so
surprising since noun noun compounds in English
also obey a roughly subsective property: a base-
ball field is still a field (though a cricket pitch is
perhaps not so obviously a pitch). We can see that
the accuracy increase from the baseline is higher
compared to adjective-noun test on the same exact
spaces (Table 2b, right values). This may be due
to the fact that the subordinate noun in noun-noun
combinations is more important than the adjective
subordinate in adjective-noun combination.

4 Related work

Many researchers have already studied and evalu-
ated different composition models within a distri-
butional approach. One of the first studies eval-
uating compositional phenomena in a systematic
way is Mitchell and Lapata’s (2008) approach.
They explore a number of different models for
vector composition, of which vector addition (the
sum of each feature) and vector multiplication (the
element-wise multiplication of each feature) are
the most important. They evaluate their models
on a noun-verb phrase similarity task. Human an-
notators were asked to judge the similarity of two
composed pairs (by attributing a certain score).
The model’s task is then to reproduce the human
judgements. Their results show that the multi-
plicative model yields the best results, along with

a weighted combination of the additive and multi-
plicative model. The authors redid their study us-
ing a larger test set in Mitchell and Lapata (2010)
(adjective-noun composition was also included),
and they confirmed their initial results.

Baroni and Zamparelli (2010) evaluate their
lexical function model within a somewhat dif-
ferent context. They evaluated their model
by looking at its capacity of reconstructing the
adjective noun vectors that have not been seen
during training. Their results show that their lexi-
cal function model obtains the best results for the
reconstruction of the original co-occurrence vec-
tors, followed by the additive model. We observe
the same tendency in our evaluation results for
French, although our results for English show a
different picture. We would like to explore this
discordance further in future work.

Grefenstette et al. (2013) equally propose a gen-
eralisation of the lexical function model that uses
tensors. Their goal is to model transitive verbs,
and the way we acquire our tensor is similar to
theirs. In fact, they use the LF approach in or-
der to learn VERB OBJECT matrices that may
be multiplied by a subject vector to obtain the
subject verb object vector. In a second step, they
learn a tensor for each individual verb, which is
similar to how we learn our adjective tensor A .

Coecke et al. (2010) present an abstract theo-
retical framework in which a sentence vector is a
function of the Kronecker product of its word vec-
tors, which allows for greater interaction between
the different word features. A number of instan-
tiations of the framework – where the key idea
is that relational words (e.g. adjectives or verbs)
have a rich (multi-dimensional) structure that acts
as a filter on their arguments – are tested exper-
imentally in Grefenstette and Sadrzadeh (2011a)
and Grefenstette and Sadrzadeh (2011b). The au-
thors evaluated their models using a similarity task
that is similar to the one used by Mitchell & La-
pata. However, they use more complex compo-
sitional expressions: rather than using composi-
tions of two words (such as a verb and an object),
they use simple transitive phrases (subject-verb-
object). They show that their instantiations of the
categorical model reach better results than the ad-
ditive and multiplicative models on their transitive
similarity task.

Socher et al. (2012) present a compositional
model based on a recursive neural network. Each
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node in a syntactic tree is assigned both a vector
and a matrix; the vector captures the actual mean-
ing of the constituent, while the matrix models
the way it changes the meaning of neighbouring
words and phrases. They use an extrinsic evalu-
ation, using the model for a sentiment prediction
task. They show that their model gets better re-
sults than the additive, multiplicative, and lexical
function approach. Other researchers, however,
have published different results. Blacoe and La-
pata (2012) evaluated the additive and multiplica-
tive model, as well as Socher et al.’s (2012) ap-
proach on two different tasks: Mitchell & Lapata’s
(2010) similarity task and a paraphrase detection
task. They find that the additive and multiplica-
tive models reach better scores than Socher et al.’s
model.

Tensors have been used before to model differ-
ent aspects of natural language. Giesbrecht (2010)
describes a tensor factorization model for the con-
struction of a distributional model that is sensitive
to word order. And Van de Cruys (2010) uses a
tensor factorization model in order to construct a
three-way selectional preference model of verbs,
subjects, and objects.

5 Conclusion

We have developed a new method of composition
and tested it in comparison with different com-
position methods assuming a distributional ap-
proach. We developed a test set for French pair-
ing nouns with adjective noun combinations very
similar in meaning from the French Wiktionary.
We also used an existing SEMEVAL-2013 set to
create a similar test set for English both for ad-
jective noun combination and noun noun combi-
nation. Our tests confirm that the lexical func-
tion approach by Baroni and Zamparelli performs
well compared to other methods of composition,
but only when the negative examples are con-
structed randomly. Our generalised lexical func-
tion approach fares almost equally well. It also
has the advantage of being constructed from au-
tomatically acquired adjectival and noun vectors,
and offers the additional advantage of countering
data sparseness. However, the lexical function
approach claims to perform well on more subtle
cases — e.g. non-subsective combinations such
as stone lion. Our test sets does not contain such
cases, and so we cannot draw any conclusion on
this claim.

In future work, we would like to test differ-
ent sizes of dimensionality reduction, in order to
optimize our generalised lexical function model.
Moreover, it is possible that better results may be
obtained by proposing multiple generalised lexi-
cal functions, rather than a single one. We could,
e.g., try to separate the intersective adjectives from
non-intersective adjectives. And finally, we would
like to further explore the performance of the lex-
ical function model and generalised lexical func-
tion model on different datasets, which involve
more complex compositional phenomena.
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Abstract

An elementary way of using language is
to refer to objects. Often, these objects
are physically present in the shared envi-
ronment and reference is done via men-
tion of perceivable properties of the ob-
jects. This is a type of language use that is
modelled well neither by logical semantics
nor by distributional semantics, the former
focusing on inferential relations between
expressed propositions, the latter on simi-
larity relations between words or phrases.
We present an account of word and phrase
meaning that is perceptually grounded,
trainable, compositional, and ‘dialogue-
plausible’ in that it computes meanings
word-by-word. We show that the approach
performs well (with an accuracy of 65%
on a 1-out-of-32 reference resolution task)
on direct descriptions and target/landmark
descriptions, even when trained with less
than 800 training examples and automati-
cally transcribed utterances.

1 Introduction

The most basic, fundamental site of language use
is co-located dialogue (Fillmore, 1975; Clark,
1996) and referring to objects, as in Example (1),
is a common occurrence in such a co-located set-
ting.

(1) The green book on the left next to the mug.

Logical semantics (Montague, 1973; Gamut,
1991; Partee et al., 1993) has little to say about
this process – its focus is on the construction of
syntactically manipulable objects that model infer-
ential relations; here, e.g. the inference that there
are (at least) two objects. Vector space approaches
to distributional semantics (Turney and Pantel,
2010) similarly focuses on something else, namely

semantic similarity relations between words or
phrases (e.g. finding closeness for “coloured tome
on the right of the cup”). Neither approach by it-
self says anything about processing; typically, the
assumption in applications is that fully presented
phrases are being processed.

Lacking in these approaches is a notion of
grounding of symbols in features of the world
(Harnad, 1990).1 In this paper, we present an ac-
count of word and phrase meaning that is (a) per-
ceptually grounded in that it provides a link be-
tween words and (computer) vision features of real
images, (b) trainable, as that link is learned from
examples of language use, (c) compositional in
that the meaning of phrases is a function of that
of its parts and composition is driven by structural
analysis, and (d) ‘dialogue-plausible’ in that it
computes meanings incrementally, word-by-word
and can work with noisy input from an automatic
speech recogniser (ASR). We show that the ap-
proach performs well (with an accuracy of 65%
on a reference resolution task out of 32 objects) on
direct descriptions as well as target/landmark de-
scriptions, even when trained with little data (less
than 800 training examples).

In the following section we will give a back-
ground on reference resolution, followed by a de-
scription of our model. We will then describe the
data we used and explain our evaluations. We fin-
ish by giving results, providing some additional
analysis, and discussion.

2 Background: Reference Resolution

Reference resolution (RR) is the task of resolving
referring expressions (REs; as in Example (1)) to
a referent, the entity to which they are intended to
refer. Following Kennington et al. (2015a), this
can be formalised as a function frr that, given a
representation U of the RE and a representationW

1But see discussion below of recent extensions of these
approaches taking this into account.
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of the (relevant aspects of the) world, returns I∗,
the identifier of one the objects in the world that is
the referent of the RE. A number of recent papers
have used stochastic models for frr where, given
W andU , a distribution over a specified set of can-
didate entities in W is obtained and the probabil-
ity assigned to each entity represents the strength
of belief that it is the referent. The referent is then
the argmax:

I∗ = argmax
I

P (I|U,W ) (1)

Recently, generative approaches, including our
own, have been presented (Funakoshi et al., 2012;
Kennington et al., 2013; Kennington et al., 2014;
Kennington et al., 2015b; Engonopoulos et al.,
2013) which model U as words or ngrams and
the world W as a set of objects in a virtual game
board, represented as a set properties or concepts
(in some cases, extra-linguistic or discourse as-
pects were also modelled in W , such as deixis).
In Matuszek et al. (2014), W was represented as a
distribution over properties of tangible objects and
U was a Combinatory Categorical Grammar parse.
In all of these approaches, the objects are distinct
and represented via symbolically specified prop-
erties, such as colour and shape. The set of prop-
erties is either read directly from the world if it
is virtual, or computed (i.e., discretised) from the
real world objects.

In this paper, we learn a mapping from W to
U directly, without mediating symbolic properties;
such a mapping is a kind of perceptual ground-
ing of meaning between W and U . Situated RR

is a convenient setting for learning perceptually-
grounded meaning, as objects that are referred to
are physically present, are described by the RE,
and have visual features that can be computation-
ally extracted and represented.

Further comparison to related work will be dis-
cussed in Section 5.

3 Modelling Reference to Visible Objects

Overview As a representative of the kind of
model explained above with formula (1), we want
our model to compute a probability distribution
over candidate objects, given a RE (or rather, pos-
sibly just a prefix of it). We break this task down
into components: The basis of our model is a
model of word meaning as a function from per-
ceptual features of a given object to a judgement

about how well a word and that object “fit to-
gether”. (See Section 5 for discussion of prior uses
of this “words as classifiers”-approach.) This can
(loosely) be seen as corresponding to the inten-
sion of a word, which for example in Montague’s
approach is similarly modelled as a function, but
from possible worlds to extensions (Gamut, 1991).
We model two different types of words / word
meanings: those picking out properties of single
objects (e.g., “green” in “the green book”), follow-
ing Kennington et al. (2015a), and those picking
out relations of two objects (e.g., “next to” in (1)),
going beyond Kennington et al. (2015a). These
word meanings are learned from instances of lan-
guage use.

The second component then is the application
of these word meanings in the context of an actual
reference and within a phrase. This application
gives the desired result of a probability distribu-
tion over candidate objects, where the probability
expresses the strength of belief in the object falling
in the extension of the expression. Here we model
two different types of composition, of what we call
simple references and relational references. These
applications are strictly compositional in the sense
that the meanings of the more complex construc-
tions are a function of those of their parts.

Word Meanings The first type of word (or
rather, word meaning) we model picks out a sin-
gle object via its visual properties. (At least, this
is what we use here; any type of feature could be
used.) To model this, we train for each word w
from our corpus of REs a binary logistic regression
classifier that takes a representation of a candidate
object via visual features (x) and returns a proba-
bility pw for it being a good fit to the word (where
w is the weight vector that is learned and σ is the
logistic function):

pw(x) = σ(wᵀx + b) (2)

Formalising the correspondence mentioned
above, the intension of a word can in this approach
then be seen as the classifier itself, a function from
a representation of an object to a probability:

[[w]]obj = λx.pw(x) (3)

(Where [[w]] denotes the meaning of w, and x is
of the type of feature given by fobj , the function
computing a feature representation for a given ob-
ject.)
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We train these classifiers using a corpus of REs
(further described in Section 4), coupled with rep-
resentations of the scenes in which they were used
and an annotation of the referent of that scene. The
setting was restricted to reference to single ob-
jects. To get positive training examples, we pair
each word of a RE with the features of the refer-
ent. To get negative training examples, we pair the
word with features of (randomly picked) other ob-
jects present in the same scene, but not referred to
by it. This selection of negative examples makes
the assumption that the words from the RE apply
only to the referent. This is wrong as a strict rule,
as other objects could have similar visual features
as the referent; for this to work, however, this has
to be the case only more often than it is not.

The second type of word that we model ex-
presses a relation between objects. Its meaning is
trained in a similar fashion, except that it is pre-
sented a vector of features of a pair of objects,
such as their euclidean distance, vertical and hor-
izontal differences, and binary features denoting
higher than/lower than and left/right relationships.

Application and Composition The model just
described gives us a prediction for a pair of word
and object (or pair of objects). What we wanted,
however, is a distribution over all candidate ob-
jects in a given utterance situation, and not only for
individual words, but for (incrementally growing)
REs. Again as mentioned above, we model two
types of application and composition. First, what
we call ‘simple references’—which roughly cor-
responds to simple NPs—that refer only by men-
tioning properties of the referent (e.g. “the red
cross on the left”). To get a distribution for a sin-
gle word, we apply the word classifier (the inten-
sion) to all candidate objects and normalise; this
can then be seen as the extension of the word in a
given (here, visual) discourse universe W , which
provides the candidate objects (xi is the feature
vector for object i, normalize() vectorized nor-
malisation, and I a random variable ranging over
the candidates):

[[w]]Wobj =

normalize(([[w]]obj(x1), . . . , [[w]]obj(xk))) =

normalize((pw(x1), . . . , pw(xk))) = P (I|w) (4)

In effect, this combines the individual classifiers
into something like a multi-class logistic regres-
sion / maximum entropy model—but, nota bene,
only for application. The training regime did not

need to make any assumptions about the number
of objects present, as it trained classifiers for a 2-
class problem (how well does this given object fit
to the word?). The multi-class nature is also indi-
cated in Figure 1, which shows multiple applica-
tions of the logistic regression network for a word,
and a normalisation layer on top.

�(w|x1 + b) �(w|x2 + b) �(w|x3 + b)

x1 x2 x3

Figure 1: Representation as network with normalisation
layer.

To compose the evidence from individual words
w1, . . . , wk into a prediction for a ‘simple’ RE

[srw1, . . . , wk] (where the bracketing indicates the
structural assumption that the words belong to
one, possibly incomplete, ‘simple reference’), we
average the contributions of its constituent words.
The averaging function avg() over distributions
then is the contribution of the construction ‘sim-
ple reference (phrase)’, sr, and the meaning of the
whole phrase is the application of the meaning of
the construction to the meaning of the words:

[[[srw1, . . . , wk]]]W = [[sr]]W [[w1, . . . , wk]]W =

avg([[w1]]
W , . . . , [[wk]]W ) (5)

where avg() is defined as
avg([[w1]]

W , [[w2]]
W ) = Pavg(I|w1, w2)

with Pavg(I = i|w1, w2) =

1

2
(P (I = i|w1) + P (I = i|w2)) for i ∈ I (6)

The averaging function is inherently incre-
mental, in the sense that avg(a, b, c) =
avg(avg(a, b), c) and hence it can be extended “on
the right”. This represents an incremental model
where new information from the current increment
is added to what is already known, resulting in an
intersective way of composing the meaning of the
phrase. This cannot account for all constructions
(such as negation or generally quantification), of
course; we leave exploring other constructions that
could occur even in our ‘simple references’ to fu-
ture work.
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Relational references such as in Exam-
ple (1) from the introduction have a more
complex structure, being a relation between a
(simple) reference to a landmark and a (sim-
ple) reference to a target. This structure is
indicated abstractly in the following ‘parse’:
[rel[srw1, . . . , wk][rr1, . . . , rn][srw′1, . . . , w′m]],
where the w are the target words, r the relational
expression words, and w′ the landmark words.

As mentioned above, the relational expression
similarly is treated as a classifier (in fact, techni-
cally we contract expressions such as “to the left
of” into a single token and learn one classifier for
it), but expressing a judgement for pairs of objects.
It can be applied to a specific scene with a set of
candidate objects (and hence, candidate pairs) in a
similar way by applying the classifier to all pairs
and normalising, resulting in a distribution over
pairs:

[[r]]W = P (R1, R2|r) (7)

We expect the meaning of the phrase to be a
function of the meaning of the constituent parts
(the simple references, the relation expression, and
the construction), that is:

[[[rel[srw1, . . . , wk][rr][srw
′
1, . . . , w

′
m]]]] =

[[rel]]([[sr]][[w1 . . . wk]], [[r]], [[sr]][[w′
1 . . . w

′
m]]) (8)

(dropping the indicator for concrete application,
W on [[ ]], for reasons of space and readability).

What is the contribution of the relational con-
struction, [[rel]]? Intuitively, what we want to
express here is that the belief in an object be-
ing the intended referent should combine the ev-
idence from the simple reference to the land-
mark object (e.g., “the mug” in (1)), from the
simple (but presumably deficient) reference to
the target object (“the green book on the left”),
and that for the relation between them (“next
to”). Instead of averaging (that is, combining
additively), as for sr, we combine this evidence
multiplicatively here: If the target constituent
contributes P (It|w1, . . . , wk), the landmark con-
stituent P (Il|w′1, . . . , w′m), and the relation ex-
pression P (R1, R2|r), with Il, It, R1 and R2 all
having the same domain, the set of all candidate
objects, then the combination is
P (R1|w1, . . . , wk, r, w

′
1, . . . , w

′
m) =∑

R2

∑
Il

∑
It

P (R1, R2|r) ∗ P (Il|w′
1, . . . , w

′
m)∗

P (It|w1, . . . , wk) ∗ P (R1|It) ∗ P (R2|Il) (9)

The last two factors force identity on the elements
of the pair and target and landmark, respectively
(they are not learnt, but rather set to be 0 unless
the values ofR and I are equal), and so effectively
reduce the summations so that all pairs need to be
evaluated only once. The contribution of the con-
struction then is this multiplication of the contri-
butions of the parts, together with the factors en-
forcing that the pairs being evaluated by the rela-
tion expression consist of the objects evaluated by
target and landmark expression, respectively.

In the following section, we will explain the
data we collected and used to evaluate our model,
the evaluation procedure, and the results.

4 Experiments

Figure 2: Example episode for phase-2 where the target is
outlined in green (solid arrow added here for presentation),
the landmark outlined in blue (dashed arrow).

Data We evaluated our model using data we col-
lected in a Wizard-of-Oz setting (that is, a hu-
man/computer interaction setting where parts of
the functionality of the computer system were pro-
vided by a human experimentor). Participants
were seated in front of a table with 36 Pen-
tomino puzzle pieces that were randomly placed
with some space between them, as shown in
Figure 2. Above the table was a camera that
recorded a video feed of the objects, processed
using OpenCV (Pulli et al., 2012) to segment the
objects (see below for details); of those, one (or
one pair) was chosen randomly by the experiment
software. The video image was presented to the
participant on a display placed behind the table,
but with the randomly selected piece (or pair of
pieces) indicated by an overlay).

The task of the participant was to refer to that
object using only speech, as if identifying it for a
friend sitting next to the participant. The wizard
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(experimentor) had an identical screen depicting
the scene but not the selected object. The wiz-
ard listened to the participant’s RE and clicked on
the object she thought was being referred on her
screen. If it was the target object, a tone sounded
and a new object was randomly chosen. This con-
stituted a single episode. If a wrong object was
clicked, a different tone sounded, the episode was
flagged, and a new episode began. At varied in-
tervals, the participant was instructed to “shuffle”
the board between episodes by moving around the
pieces.

The first half of the allotted time constituted
phase-1. After phase-1 was complete, instructions
for phase-2 were explained: the screen showed the
target and also a landmark object, outlined in blue,
near the target (again, see Figure 2). The partici-
pant was to refer to the target using the landmark.
(In the instructions, the concepts of landmark and
target were explained in general terms.) All other
instructions remained the same as phase-1. The
target’s identifier, which was always known be-
forehand, was always recorded. For phase-2, the
landmark’s identifier was also recorded.

Nine participants (6 female, 3 male; avg. age
of 22) took part in the study; the language of
the study was German. Phase-1 for one partici-
pant and phase-2 for another participant were not
used due to misunderstanding and a technical diffi-
culty. This produced a corpus of 870 non-flagged
episodes in total. Even though each episode had
36 objects in the scene, all objects were not always
recognised by the computer vision processing. On
average, 32 objects were recognized.

To obtain transcriptions, we used Google Web
Speech (with a word error rate of 0.65, as deter-
mined by comparing to a hand transcribed sample)
This resulted in 1587 distinct words, with 15.53
words on average per episode. The objects were
not manipulated in any way during an episode, so
the episode was guaranteed to remain static during
a RE and a single image is sufficient to represent
the layout of one episode’s scene. Each scene was
processed using computer vision techniques to ob-
tain low-level features for each (detected) object in
the scene which were used for the word classifiers.

We annotated each episode’s RE with a simple
tagging scheme that segmented the RE into words
that directly referred to the target, words that di-
rectly referred to the landmark (or multiple land-
marks, in some cases) and the relation words. For

certain word types, additional information about
the word was included in the tag if it described
colour, shape, or spatial placement (denoted con-
tributing REs in the evaluations below). The direc-
tion of certain relation words was normalised (e.g.,
left-of should always denote a landmark-target re-
lation). This represents a minimal amount of “syn-
tactic” information needed for the application of
the classifiers and the composition of the phrase
meanings. We leave applying a syntactic parser to
future work. An example RE in the original Ger-
man (as recognised by the ASR), English gloss,
and tags for each word is given in (2).

(2) a. grauer stein über dem grünen m unten links
b. gray block above the green m bottom left
c. tc ts r l lc ls tf tf

To obtain visual features of each object, we used
the same simple computer-vision pipeline of ob-
ject segmentation and contour reconstruction as
used by Kennington et al. (2015a), providing us
with RGB representations for the colour and fea-
tures such as skewness, number of edges etc. for
the shapes.

Procedure We break down our data as follows:
episodes where the target was referred directly
via a ‘simple reference’ construction (DD; 410
episodes) and episodes where a target was referred
via a landmark relation (RD; 460 episodes). We
also test with either knowledge about structure
(simple or relational reference) provided (ST) or
not (WO, for “words-only”). All results shown are
from 10-fold cross validations averaged over 10
runs; where for evaluations labelled RD the train-
ing data always includes all of DD plus 9 folds of
RD, testing on RD. The sets address the following
questions:

• how well does the sr model work on its own
with just words? – DD.WO

• how well does the sr model work when it
knows about REs? – DD.ST

• how well does the sr model work when it
knows about REs, but not about relations? –
RD.ST (sr)
• how well does the model learn relation words

after it has learned about sr? RD.ST (r)
• how well does the rr model work (together

with the sr)? RD.ST with DD.ST (rr)

Words were stemmed using the NLTK (Loper
and Bird, 2002) Snowball Stemmer, reducing the
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vocabulary size to 1306. Due to sparsity, for rela-
tion words with a token count of less than 4 (found
by ranging over values in a held-out set) relational
features were piped into an UNK relation, which
was used for unseen relations during evaluation
(we assume the UNK relation would learn a gen-
eral notion of ‘nearness’). For the individual word
classifiers, we always paired one negative example
with one positive example.

For this evaluation, word classifiers for sr were
given the following features: RGB values, HSV
values, x and y coordinates of the centroids, eu-
clidean distance of centroid from the center, and
number of edges. The relation classifiers received
information relating two objects, namely the eu-
clidean distance between them, the vertical and
horizontal distances, and two binary features that
denoted if the landmark was higher than/lower
than or left/right of the target.
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Figure 3: Results of our evaluation.

Metrics for Evaluation To give a picture of the
overall performance of the model, we report accu-
racy (how often was the argmax the gold target)
and mean reciprocal rank (MRR) of the gold tar-
get in the distribution over all the objects (like ac-
curacy, higher MRR values are better; values range
between 0 and 1). The use of MRR is motivated by
the assumption that in general, a good rank for the
correct object is desirable, even if it doesn’t reach
the first position, as when integrated in a dialogue
system this information might still be useful to for-
mulate clarification questions.

Results Figure 3 shows the results. (Random
baseline of 1/32 or 3% not shown in plot.) DD.WO

shows how well the sr model performs using the
whole utterances and not just the REs. (Note that

all evaluations are on noisy ASR transcriptions.)
DD.ST adds structure by only considering words
that are part of the actual RE, improving the re-
sults further. The remaining sets evaluate the con-
tributions of the rr model. RD.ST (sr) does this
indirectly, by including the target and landmark
simple references, but not the model for the rela-
tions; the task here is to resolve target and land-
mark SRs as they are. This provides the baseline
for the next two evaluations, which include the re-
lation model. In RD.ST (sr+r), the model learns
SRs from DD data and only relations from RD. The
performance is substantially better than the base-
line without the relation model. Performance is
best finally for RD.ST (rr), where the landmark
and target SRs in the training portion of RD also
contribute to the word models.

The mean reciprocal rank scores follow a sim-
ilar pattern and show that even though the target
object was not the argmax of the distribution, on
average it was high in the distribution. For all eval-
uations, the average standard deviation across the
10 runs was very small (0.01), meaning the model
was fairly stable, despite the possibility of one run
having randomly chosen more discriminating neg-
ative examples. Our conclusion from these exper-
iments is that despite the small amount of training
data and noise from ASR as well as the scene, the
model is robust and yields respectable results.
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Figure 5: Incremental results: average rank improves over
time

Incremental Results Figure 5 shows how our
rr model processes incrementally, by giving the
average rank of the (gold) target at each increment
for the REs with the most common length in our
data (13 words, of which there were 64 examples).
A system that works incrementally would have a
monotonically decreasing average rank as the ut-
terance unfolds. The overall trend as shown in that
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Figure 4: Each plot represents how well selected words fit assumptions about their lexical semantics: the leftmost plot ecke
(corner) yields higher probabilities as objects are closer to the corner; the middle plot grün (green) yields higher probabilities
when the colour spectrum values are nearer to green; the rightmost plot über (above) yields higher probabilities when targets
are nearer to a landmark set in the middle.

Figure is as expected. There is a slight increase
between 6-7, though very small (a difference of
0.09). Overall, these results seem to show that our
model indeed works intersectively and “zooms in”
on the intended referent.

4.1 Further Analysis
Analysis of Selected Words We analysed sev-
eral individual word classifiers to determine how
well their predictions match assumptions about
their lexical semantics. For example, for the spa-
tial word Ecke (corner), we would expect its clas-
sifier to return high probabilities if features related
to an object’s position (e.g., x and y coordinates,
distance from the center) are near corners of the
scene. The leftmost plot in Figure 4 shows that
this is indeed the case; by holding all non-position
features constant and ranging over all points on
the screen, we can see that the classifier gives high
probabilities around the edges, particularly in the
four corners, and very low probabilities in the mid-
dle region. Similarly for the colour word grün,
the centre plot in Figure 4 (overlaid with a colour
spectrum) shows high probabilities are given when
presented with the colour green, as expected. Sim-
ilarly, for the relational word über (above), by
treating the center point as the landmark and rang-
ing over all other points on the plot for the target,
the über classifier gives high probabilities when
directly above the center point, with linear nega-
tive growth as the distance from the landmark in-
creases.

Note that we selected the type of feature to vary
here for presentation; all classifiers get the full fea-
ture set and learn automatically to “ignore” the ir-
relevant features (e.g., that for grün does not re-
spond to variations in positional features). They
do this wuite well, but we noticed some ‘blurring’,
due to not all combinations of colours and shape
being represented in the objects in the training set.

Analysis of Incremental Processing Figure 6
finally shows the interpretation of the RE in Ex-
ample (2) in the scene from Figure 2. The top
row depicts the distribution over objects (true tar-
get shown in red) after the relation word unten
(bottom) is uttered; the second row that for land-
mark objects, after the landmark description be-
gins (dem grünen m / the green m). The third row
(target objects), ceases to change after the rela-
tional word is uttered, but continues again as ad-
ditional target words are uttered (unten links / bot-
tom left). While the true target is ranked highly
already on the basis of the target SR alone, it is
only when the relational information is added (top
row) that it becomes argmax.

Discussion We did not explore how well our
model could handle generalised quantifiers, such
as all (e.g., all the red objects) or a specific num-
ber of objects (e.g., the two green Ts). We specu-
late that one could see as the contribution of words
such as all or two a change to how the distribution
is evaluated (“return the n top candidates”). Our
model also doesn’t yet directly handle more de-
scriptive REs like the cross in the top-right corner
on the left, as left is learned as a global term, or
negation (the cross that’s not red). We leave ex-
ploring such constructions to future work.

5 Related Work

Kelleher et al. (2005) approached RR us-
ing perceptually-grounded models, focusing on
saliency and discourse context. In Gorniak and
Roy (2004), descriptions of objects were used to
learn a perceptually-grounded meaning with focus
on spatial terms such as on the left. Steels and
Belpaeme (2005) used neural networks to connect
language with colour terms by interacting with hu-
mans. Larsson (2013) is closest in spirit to what
we are attempting here; he provides a detailed
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grauer stein über dem grünen m unten links

Figure 6: A depiction of the model working incrementally for the RE in Example (2): the distribution over objects for relation
is row 1, landmark is row 2, target is row 3.

formal semantics for similarly descriptive terms,
where parts of the semantics are modelled by a
perceptual classifier. These approaches had lim-
ited lexicons (where we attempt to model all words
in our corpus), and do not process incrementally,
which we do here.

Recent efforts in multimodal distributional se-
mantics have also looked at modelling word mean-
ing based on visual context. Originally, vector
space distributional semantics focused words in
the context of other words (Turney and Pantel,
2010); recent multimodal approaches also con-
sider low-level features from images. Bruni et
al. (2012) and Bruni et al. (2014) for example
model word meaning by word and visual con-
text; each modality is represented by a vector,
fused by concatenation. Socher et al. (2014)
and Kiros et al. (2014) present approaches where
words/phrases and images are mapped into the
same high-dimensional space. While these ap-
proaches similarly provide a link between words
and images, they are typically tailored towards
a different setting (the words being descriptions
of the whole image, and not utterance intended
to perform a function within a visual situation).
We leave more detailed exploration of similarities
and differences to future work and only note for
now that our approach, relying on much simpler
classifiers (log-linear, basically), works with much
smaller data sets and additionally seem to pro-
vide an easier interface to more traditional ways
of composition (see Section 3 above).

The issue of semantic compositionality is also
actively discussed in the distributional semantics
literature (see, e.g., (Mitchell and Lapata, 2010;
Erk, 2013; Lewis and Steedman, 2013; Paperno

et al., 2014)), investigating how to combine vec-
tors. This could be seen as composition on the
level of intensions (if one sees distributional rep-
resentations as intensions, as is variously hinted
at, e.g. Erk (2013)). In our approach, composition
is done on the extensional level (by interpolating
distributions over candidate objects).

We do not see our approach as being in op-
position to these attempts. Rather, we envision
a system of semantics that combines traditional
symbolic expressions (on which inferences can
be modelled via syntactic calculi) with distributed
representations (which model conceptual knowl-
edge / semantic networks, as well as encyclopedic
knowledge) and with our action-based (namely,
identification in the environment via perceptual
information) semantics. This line of approach
is connected to a number of recent works (e.g.,
(Erk, 2013; Lewis and Steedman, 2013; Larsson,
2013)); for now, exploring its ramifications is left
for future work.

6 Conclusion

In this paper, we presented a model of reference
resolution that learns a perceptually-grounded
meaning of words, including relational words. The
model is simple, compositional, and robust despite
low amounts of training data and noisy modalities.
Our model is not without limitations; it so far only
handles definite descriptions, yet there are other
ways to refer to real-world objects, such as via pro-
nouns and deixis. A unified model that can handle
all of these, similar in spirit perhaps to Funakoshi
et al. (2012), but with perceptual groundings, is
left for future work. Our approach could also ben-
efit from improved object segmentation and repre-
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sentation.
Our next steps with this model is to handle com-

positional structures without relying on our closed
tag set (e.g., using a syntactic parser). We also
plan to test our model in a natural, interactive dia-
logue system.
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Abstract

This paper describes a parsing model that
combines the exact dynamic programming
of CRF parsing with the rich nonlinear fea-
turization of neural net approaches. Our
model is structurally a CRF that factors
over anchored rule productions, but in-
stead of linear potential functions based
on sparse features, we use nonlinear po-
tentials computed via a feedforward neu-
ral network. Because potentials are still
local to anchored rules, structured infer-
ence (CKY) is unchanged from the sparse
case. Computing gradients during learn-
ing involves backpropagating an error sig-
nal formed from standard CRF sufficient
statistics (expected rule counts). Us-
ing only dense features, our neural CRF
already exceeds a strong baseline CRF
model (Hall et al., 2014). In combination
with sparse features, our system1 achieves
91.1 F1 on section 23 of the Penn Tree-
bank, and more generally outperforms the
best prior single parser results on a range
of languages.

1 Introduction

Neural network-based approaches to structured
NLP tasks have both strengths and weaknesses
when compared to more conventional models,
such conditional random fields (CRFs). A key
strength of neural approaches is their ability to
learn nonlinear interactions between underlying
features. In the case of unstructured output spaces,
this capability has led to gains in problems rang-
ing from syntax (Chen and Manning, 2014; Be-
linkov et al., 2014) to lexical semantics (Kalch-
brenner et al., 2014; Kim, 2014). Neural methods
are also powerful tools in the case of structured

1System available at http://nlp.cs.berkeley.edu

output spaces. Here, past work has often relied on
recurrent architectures (Henderson, 2003; Socher
et al., 2013; İrsoy and Cardie, 2014), which can
propagate information through structure via real-
valued hidden state, but as a result do not admit ef-
ficient dynamic programming (Socher et al., 2013;
Le and Zuidema, 2014). However, there is a nat-
ural marriage of nonlinear induced features and
efficient structured inference, as explored by Col-
lobert et al. (2011) for the case of sequence mod-
eling: feedforward neural networks can be used to
score local decisions which are then “reconciled”
in a discrete structured modeling framework, al-
lowing inference via dynamic programming.

In this work, we present a CRF constituency
parser based on these principles, where individ-
ual anchored rule productions are scored based
on nonlinear features computed with a feedfor-
ward neural network. A separate, identically-
parameterized replicate of the network exists for
each possible span and split point. As input, it
takes vector representations of words at the split
point and span boundaries; it then outputs scores
for anchored rules applied to that span and split
point. These scores can be thought of as non-
linear potentials analogous to linear potentials in
conventional CRFs. Crucially, while the network
replicates are connected in a unified model, their
computations factor along the same substructures
as in standard CRFs.

Prior work on parsing using neural network
models has often sidestepped the problem of struc-
tured inference by making sequential decisions
(Henderson, 2003; Chen and Manning, 2014;
Tsuboi, 2014) or by doing reranking (Socher et
al., 2013; Le and Zuidema, 2014); by contrast, our
framework permits exact inference via CKY, since
the model’s structured interactions are purely dis-
crete and do not involve continuous hidden state.
Therefore, we can exploit a neural net’s capac-
ity to learn nonlinear features without modifying
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Figure 1: Neural CRF model. On the right, each
anchored rule (r, s) in the tree is independently
scored by a function φ, so we can perform in-
ference with CKY to compute marginals or the
Viterbi tree. On the left, we show the process
for scoring an anchored rule with neural features:
words in fw (see Figure 2) are embedded, then fed
through a neural network with one hidden layer to
compute dense intermediate features, whose con-
junctions with sparse rule indicator features fo are
scored according to parameters W .

our core inference mechanism, allowing us to use
tricks like coarse pruning that make inference ef-
ficient in the purely sparse model. Our model can
be trained by gradient descent exactly as in a con-
ventional CRF, with the gradient of the network
parameters naturally computed by backpropagat-
ing a difference of expected anchored rule counts
through the network for each span and split point.

Using dense learned features alone, the neu-
ral CRF model obtains high performance, out-
performing the CRF parser of Hall et al. (2014).
When sparse indicators are used in addition, the
resulting model gets 91.1 F1 on section 23 of
the Penn Treebank, outperforming the parser of
Socher et al. (2013) as well as the Berkeley Parser
(Petrov and Klein, 2007) and matching the dis-
criminative parser of Carreras et al. (2008). The
model also obtains the best single parser results
on nine other languages, again outperforming the
system of Hall et al. (2014).

2 Model

Figure 1 shows our neural CRF model. The
model decomposes over anchored rules, and it
scores each of these with a potential function; in
a standard CRF, these potentials are typically lin-
ear functions of sparse indicator features, whereas

reflected  the  flip  side  of  the  Stoltzman  personality  .

reflected   the  side  of   personality  .

i j k

[[PreviousWord = reflected]], [[SpanLength = 7]], …fs

NP PP

NP
r = NP      NP PP!

fw

v(fw)

Figure 2: Example of an anchored rule production
for the rule NP→ NP PP. From the anchoring s =
(i, j, k), we extract either sparse surface features
fs or a sequence of word indicators fw which are
embedded to form a vector representation v(fw)
of the anchoring’s lexical properties.

in our approach they are nonlinear functions of
word embeddings.2 Section 2.1 describes our no-
tation for anchored rules, and Section 2.2 talks
about how they are scored. We then discuss spe-
cific choices of our featurization (Section 2.3) and
the backbone grammar used for structured infer-
ence (Section 2.4).

2.1 Anchored Rules
The fundamental units that our parsing models
consider are anchored rules. As shown in Fig-
ure 2, we define an anchored rule as a tuple (r, s),
where r is an indicator of the rule’s identity and
s = (i, j, k) indicates the span (i, k) and split
point j of the rule.3 A tree T is simply a collec-
tion of anchored rules subject to the constraint that
those rules form a tree. All of our parsing models
are CRFs that decompose over anchored rule pro-
ductions and place a probability distribution over
trees conditioned on a sentence w as follows:

P (T |w) ∝ exp

 ∑
(r,s)∈T

φ(w, r, s)


2Throughout this work, we will primarily consider two

potential functions: linear functions of sparse indicators and
nonlinear neural networks over dense, continuous features.
Although other modeling choices are possible, these two
points in the design space reflect common choices in NLP,
and past work has suggested that nonlinear functions of indi-
cators or linear functions of dense features may perform less
well (Wang and Manning, 2013).

3For simplicity of exposition, we ignore unary rules; how-
ever, they are easily supported in this framework by simply
specifying a null value for the split point.
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where φ is a scoring function that considers the
input sentence and the anchored rule in question.
Figure 1 shows this scoring process schematically.
As we will see, the module on the left can be be
a neural net, a linear function of surface features,
or a combination of the two, as long as it provides
anchored rule scores, and the structured inference
component is the same regardless (CKY).

A PCFG estimated with maximum likelihood
has φ(w, r, s) = logP (r|parent(r)), which is in-
dependent of the anchoring s and the words w ex-
cept for preterminal productions; a basic discrimi-
native parser might let this be a learned parameter
but still disregard the surface information. How-
ever, surface features can capture useful syntactic
cues (Finkel et al., 2008; Hall et al., 2014). Con-
sider the example in Figure 2: the proposed parent
NP is preceded by the word reflected and followed
by a period, which is a surface context character-
istic of NPs or PPs in object position. Beginning
with the and ending with personality are typical
properties of NPs as well, and the choice of the
particular rule NP → NP PP is supported by the
fact that the proposed child PP begins with of. This
information can be captured with sparse features
(fs in Figure 2) or, as we describe below, with a
neural network taking lexical context as input.

2.2 Scoring Anchored Rules
Following Hall et al. (2014), our baseline sparse
scoring function takes the following bilinear form:

φsparse(w, r, s;W ) = fs(w, s)>Wfo(r)

where fo(r) ∈ {0, 1}no is a sparse vector of
features expressing properties of r (such as the
rule’s identity or its parent label) and fs(w, s) ∈
{0, 1}ns is a sparse vector of surface features as-
sociated with the words in the sentence and the
anchoring, as shown in Figure 2. W is a ns × no
matrix of weights.4 The scoring of a particular an-
chored rule is depicted in Figure 3a; note that sur-
face features and rule indicators are conjoined in a
systematic way.

The role of fs can be equally well played by a
vector of dense features learned via a neural net-

4A more conventional expression of the scoring function
for a CRF is φ(w, r, s) = θ>f(w, r, s), with a vector θ for
the parameters and a single feature extractor f that jointly
inspects the surface and the rule. However, when the feature
representation conjoins each rule r with surface properties of
the sentence in a systematic way (an assumption that holds in
our case as well as for standard CRF models for POS tagging
and NER), this is equivalent to our formalism.

foW foW

fs

Wij = weight([[fs,i ^ fo,j ]])

a) b)

fw

v(fw)

h

� = f>
s Wfo � = g(Hv(fw))>Wfo

Figure 3: Our sparse (left) and neural (right) scor-
ing functions for CRF parsing. fs and fw are
raw surface feature vectors for the sparse and neu-
ral models (respectively) extracted over anchored
spans with split points. (a) In the sparse case,
we multiply fs by a weight matrix W and then
a sparse output vector fo to score the rule produc-
tion. (b) In the neural case, we first embed fw and
then transform it with a one-layer neural network
in order to produce an intermediate feature repre-
sentation h before combining with W and fo.

work. We will now describe how to compute these
features, which represent a transformation of sur-
face lexical indicators fw. Define fw(w, s) ∈ Nnw

to be a function that produces a fixed-length se-
quence of word indicators based on the input sen-
tence and the anchoring. This vector of word
identities is then passed to an embedding function
v : N → Rne and the dense representations of
the words are subsequently concatenated to form
a vector we denote by v(fw).5 Finally, we mul-
tiply this by a matrix H ∈ Rnh×(nwne) of real-
valued parameters and pass it through an elemen-
twise nonlinearity g(·). We use rectified linear
units g(x) = max(x, 0) and discuss this choice
more in Section 6.

Replacing fs with the end result of this compu-
tation h(w, s;H) = g(Hv(fw(w, s))), our scor-
ing function becomes

φneural(w, r, s;H,W ) = h(w, s;H)>Wfo(r)

as shown in Figure 3b. For a fixed H , this model
can be viewed as a basic CRF with dense input fea-
tures. By learning H , we learn intermediate fea-
ture representations that provide the model with

5Embedding words allows us to use standard pre-trained
vectors more easily and tying embeddings across word posi-
tions substantially reduces the number of model parameters.
However, embedding features rather than words has also been
shown to be effective (Chen et al., 2014).
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more discriminating power. Also note that it is
possible to use deeper networks or more sophis-
ticated architectures here; we will return to this in
Section 6.

Our two models can be easily combined:

φ(w, r, s;W1, H,W2) = φsparse(w, r, s;W1)
+ φneural(w, r, s;H,W2)

Weights for each component of the scoring func-
tion can be learned fully jointly and inference pro-
ceeds as before.

2.3 Features

We take fs to be the set of features described in
Hall et al. (2014). At the preterminal layer, the
model considers prefixes and suffixes up to length
5 of the current word and neighboring words, as
well as the words’ identities. For nonterminal pro-
ductions, we fire indicators on the words6 before
and after the start, end, and split point of the an-
chored rule (as shown in Figure 2) as well as on
two other span properties, span length and span
shape (an indicator of where capitalized words,
numbers, and punctuation occur in the span).

For our neural model, we take fw for all pro-
ductions (preterminal and nonterminal) to be the
words surrounding the beginning and end of a span
and the split point, as shown in Figure 2; in partic-
ular, we look two words in either direction around
each point of interest, meaning the neural net takes
12 words as input.7 For our word embeddings v,
we use pre-trained word vectors from Bansal et al.
(2014). We compare with other sources of word
vectors in Section 5. Contrary to standard practice,
we do not update these vectors during training; we
found that doing so did not provide an accuracy
benefit and slowed down training considerably.

2.4 Grammar Refinements

A recurring issue in discriminative constituency
parsing is the granularity of annotation in the base
grammar (Finkel et al., 2008; Petrov and Klein,
2008; Hall et al., 2014). Using finer-grained sym-
bols in our rules r gives the model greater capacity,
but also introduces more parameters into W and

6The model actually uses the longest suffix of each word
occurring at least 100 times in the training set, up to the entire
word. Removing this abstraction of rare words harms perfor-
mance.

7The sparse model did not benefit from using this larger
neighborhood, so improvements from the neural net are not
simply due to considering more lexical context.

increases the ability to overfit. Following Hall et
al. (2014), we use grammars with very little anno-
tation: we use no horizontal Markovization for any
of experiments, and all of our English experiments
with the neural CRF use no vertical Markovization
(V = 0). This also has the benefit of making the
system much faster, due to the smaller state space
for dynamic programming. We do find that using
parent annotation (V = 1) is useful on other lan-
guages (see Section 7.2), but this is the only gram-
mar refinement we consider.

3 Learning

To learn weights for our neural model, we maxi-
mize the conditional log likelihood of our D train-
ing trees T ∗:

L(H,W ) =
D∑
i=1

logP (T ∗i |wi;H,W )

Because we are using rectified linear units as our
nonlinearity, our objective is not everywhere dif-
ferentiable. The interaction of the parameters and
the nonlinearity also makes the objective non-
convex. However, in spite of this, we can still fol-
low subgradients to optimize this objective, as is
standard practice.

Recall that h(w, s;H) are the hidden layer ac-
tivations. The gradient of W takes the standard
form of log-linear models:

∂L
∂W

=

 ∑
(r,s)∈T ∗

h(w, s;H)fo(r)>

−
∑

T

P (T |w;H,W )
∑

(r,s)∈T
h(w, s;H)fo(r)>


Note that the outer products give matrices of fea-
ture counts isomorphic to W . The second expres-
sion can be simplified to be in terms of expected
feature counts. To update H , we use standard
backpropagation by first computing:

∂L
∂h

=

 ∑
(r,s)∈T ∗

Wfo(r)

−
∑

T

P (T |w;H,W )
∑

(r,s)∈T
Wfo(r)


Since h is the output of the neural network, we can
then apply the chain rule to compute gradients for
H and any other parameters in the neural network.
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Learning uses Adadelta (Zeiler, 2012), which
has been employed in past work (Kim, 2014). We
found that Adagrad (Duchi et al., 2011) performed
equally well with tuned regularization and step
size parameters, but Adadelta worked better out
of the box. We set the momentum term ρ = 0.95
(as suggested by Zeiler (2012)) and did not reg-
ularize the weights at all. We used a minibatch
size of 200 trees, although the system was not par-
ticularly sensitive to this. For each treebank, we
trained for either 10 passes through the treebank
or 1000 minibatches, whichever is shorter.

We initialized the output weight matrix W to
zero. To break symmetry, the lower level neural
network parameters H were initialized with each
entry being independently sampled from a Gaus-
sian with mean 0 and variance 0.01; Gaussian per-
formed better than uniform initialization, but the
variance was not important.

4 Inference

Our baseline and neural model both score an-
chored rule productions. We can use CKY in the
standard fashion to compute either expected an-
chored rule counts EP (T |w)[(r, s)] or the Viterbi
tree arg maxT P (T |w).

We speed up inference by using a coarse prun-
ing pass. We follow Hall et al. (2014) and
prune according to an X-bar grammar with head-
outward binarization, ruling out any constituent
whose max marginal probability is less than e−9.
With this pruning, the number of spans and split
points to be considered is greatly reduced; how-
ever, we still need to compute the neural network
activations for each remaining span and split point,
of which there may be thousands for a given sen-
tence.8 We can improve efficiency further by not-
ing that the same word will appear in the same po-
sition in a large number of span/split point combi-
nations, and cache the contribution to the hidden
layer caused by that word (Chen and Manning,
2014). Computing the hidden layer then simply
requires adding nw vectors together and applying
the nonlinearity, instead of a more costly matrix
multiply.

Because the number of rule indicators no is
fairly large (approximately 4000 in the Penn Tree-
bank), the multiplication byW in the model is also

8One reason we did not choose to include the rule identity
fo as an input to the network is that it requires computing an
even larger number of network activations, since we cannot
reuse them across rules over the same span and split point.

expensive. However, because only a small number
of rules can apply to a given span and split point,
fo is sparse and we can selectively compute the
terms necessary for the final bilinear product.

Our combined sparse and neural model trains on
the Penn Treebank in 24 hours on a single machine
with a parallelized CPU implementation. For ref-
erence, the purely sparse model with a parent-
annotated grammar (necessary for the best results)
takes around 15 hours on the same machine.

5 System Ablations

Table 1 shows results on section 22 (the develop-
ment set) of the English Penn Treebank (Marcus
et al., 1993), computed using evalb. Full test re-
sults and comparisons to other systems are shown
in Table 4. We compare variants of our system
along two axes: whether they use standard linear
sparse features, nonlinear dense features from the
neural net, or both, and whether any word repre-
sentations (vectors or clusters) are used.

Sparse vs. neural The neural CRF (line (d) in
Table 1) on its own outperforms the sparse CRF
(a, b) even when the sparse CRF has a more heav-
ily annotated grammar. This is a surprising re-
sult: the features in the sparse CRF have been
carefully engineered to capture a range of linguis-
tic phenomena (Hall et al., 2014), and there is
no guarantee that word vectors will capture the
same. For example, at the POS tagging layer,
the sparse model looks at prefixes and suffixes of
words, which give the model access to morphol-
ogy for predicting tags of unknown words, which
typically have regular inflection patterns. By con-
trast, the neural model must rely on the geometry
of the vector space exposing useful regularities.
At the same time, the strong performance of the
combination of the two systems (g) indicates that
not only are both featurization approaches high-
performing on their own, but that they have com-
plementary strengths.

Unlabeled data Much attention has been paid
to the choice of word vectors for various NLP
tasks, notably whether they capture more syntac-
tic or semantic phenomena (Bansal et al., 2014;
Levy and Goldberg, 2014). We primarily use vec-
tors from Bansal et al. (2014), who train the skip-
gram model of Mikolov et al. (2013) using con-
texts from dependency links; a similar approach
was also suggested by Levy and Goldberg (2014).
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Sparse Neural V Word Reps F1 len ≤ 40 F1 all

Hall et al. (2014), V = 1 90.5

a X 0 89.89 89.22
b X 1 90.82 90.13
c X 1 Brown 90.80 90.17

d X 0 Bansal 90.97 90.44
e X 0 Collobert 90.25 89.63
f X 0 PTB 89.34 88.99

g X X 0 Bansal 92.04 91.34
h X X 0 PTB 91.39 90.91

Table 1: Results of our sparse CRF, neural CRF,
and combined parsing models on section 22 of
the Penn Treebank. Systems are broken down
by whether local potentials come from sparse
features and/or the neural network (the primary
contribution of this work), their level of vertical
Markovization, and what kind of word represen-
tations they use. The neural CRF (d) outperforms
the sparse CRF (a, b) even when a more heavily
annotated grammar is used, and the combined ap-
proach (g) is substantially better than either indi-
vidual model. The contribution of the neural ar-
chitecture cannot be replaced by Brown clusters
(c), and even word representations learned just on
the Penn Treebank are surprisingly effective (f, h).

However, as these embeddings are trained on a
relatively small corpus (BLLIP minus the Penn
Treebank), it is natural to wonder whether less-
syntactic embeddings trained on a larger corpus
might be more useful. This is not the case: line
(e) in Table 1 shows the performance of the neu-
ral CRF using the Wikipedia-trained word embed-
dings of Collobert et al. (2011), which do not per-
form better than the vectors of Bansal et al. (2014).

To isolate the contribution of continuous word
representations themselves, we also experimented
with vectors trained on just the text from the train-
ing set of the Penn Treebank using the skip-gram
model with a window size of 1. While these vec-
tors are somewhat lower performing on their own
(f), they still provide a surprising and noticeable
gain when stacked on top of sparse features (h),
again suggesting that dense and sparse represen-
tations have complementary strengths. This result
also reinforces the notion that the utility of word
vectors does not come primarily from importing
information about out-of-vocabulary words (An-
dreas and Klein, 2014).

Since the neural features incorporate informa-
tion from unlabeled data, we should provide the

F1 len ≤ 40 ∆

Neural CRF 90.97 —

Nonlinearity
ReLU 90.97 —
Tanh 90.74 −0.23
Cube 89.94 −1.03

Depth
0 HL 90.54 −0.43
1 HL 90.97 —
2 HL 90.58 −0.39

Embed output 88.81 −2.16

Table 2: Exploration of other implementation
choices in the feedforward neural network on sen-
tences of length ≤ 40 from section 22 of the Penn
Treebank. Rectified linear units perform better
than tanh or cubic units, a network with one hid-
den layer performs best, and embedding the output
feature vector gives worse performance.

sparse model with similar information for a true
apples-to-apples comparison. Brown clusters have
been shown to be effective vehicles in the past
(Koo et al., 2008; Turian et al., 2010; Bansal et al.,
2014). We can incorporate Brown clusters into the
baseline CRF model in an analogous way to how
embedding features are used in the dense model:
surface features are fired on Brown cluster iden-
tities (we use prefixes of length 4 and 10) of key
words. We use the Brown clusters from Koo et al.
(2008), which are trained on the same data as the
vectors of Bansal et al. (2014). However, Table 1
shows that these features provide no benefit to the
baseline model, which suggests either that it is dif-
ficult to learn reliable weights for these as sparse
features or that different regularities are being cap-
tured by the word embeddings.

6 Design Choices

The neural net design space is large, so we wish
to analyze the particular design choices we made
for this system by examining the performance of
several variants of the neural net architecture used
in our system. Table 2 shows development re-
sults from potential alternate architectural choices,
which we now discuss.

Choice of nonlinearity The choice of nonlin-
earity g has been frequently discussed in the neural
network literature. Our choice g(x) = max(x, 0),
a rectified linear unit, is increasingly popular in
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computer vision (Krizhevsky et al., 2012). g(x) =
tanh(x) is a traditional nonlinearity widely used
throughout the history of neural nets (Bengio et
al., 2003). g(x) = x3 (cube) was found to be most
successful by Chen and Manning (2014).

Table 2 compares the performance of these
three nonlinearities. We see that rectified linear
units perform the best, followed by tanh units,
followed by cubic units.9 One drawback of tanh
as an activation function is that it is easily “satu-
rated” if the input to the unit is too far away from
zero, causing the backpropagation of derivatives
through that unit to essentially cease; this is known
to cause problems for training, requiring special
purpose machinery for use in deep networks (Ioffe
and Szegedy, 2015).

Depth Given that we are using rectified linear
units, it bears asking whether or not our imple-
mentation is improving substantially over linear
features of the continuous input. We can use the
embedding vector of an anchored span v(fw) di-
rectly as input to a basic linear CRF, as shown in
Figure 4a. Table 1 shows that the purely linear ar-
chitecture (0 HL) performs surprisingly well, but
is still less effective than the network with one hid-
den layer. This agrees with the results of Wang
and Manning (2013), who noted that dense fea-
tures typically benefit from nonlinear modeling.
We also compare against a two-layer neural net-
work, but find that this also performs worse than
the one-layer architecture.

Densifying output features Overall, it appears
beneficial to use dense representations of surface
features; a natural question that one might ask is
whether the same technique can be applied to the
sparse output feature vector fo. We can apply the
approach of Srikumar and Manning (2014) and
multiply the sparse output vector by a dense matrix
K, giving the following scoring function (shown
in Figure 4b):

φ(w, r, s;H,W,K) = g(Hv(fw(w, s)))>WKfo(r)

where W is now nh × noe and K is noe × no.
WK can be seen a low-rank approximation of the
original W at the output layer, similar to low-rank
factorizations of parameter matrices used in past

9The performance of cube decreased substantially late in
learning; it peaked at around 90.52. Dropout may be useful
for alleviating this type of overfitting, but in our experiments
we did not find dropout to be beneficial overall.

foW

W

h

a) b)

foKfo

� = g(Hv(fw))>WKfo� = v(fw)>Wfo

fw

v(fw)

fw

v(fw)

Figure 4: Two additional forms of the scoring
function. a) Linear version of the dense model,
equivalent to a CRF with continuous-valued input
features. b) Version of the dense model where out-
puts are also embedded according to a learned ma-
trix K.

work (Lei et al., 2014). This approach saves us
from having to learn a separate row of W for ev-
ery rule in the grammar; if rules are given similar
embeddings, then they will behave similarly ac-
cording to the model.

We experimented with noe = 20 and show the
results in Table 2. Unfortunately, this approach
does not seem to work well for parsing. Learn-
ing the output representation was empirically very
unstable, and it also required careful initialization.
We tried Gaussian initialization (as in the rest of
our model) and initializing the model by clustering
rules either randomly or according to their parent
symbol. The latter is what is shown in the table,
and gave substantially better performance. We hy-
pothesize that blurring distinctions between output
classes may harm the model’s ability to differenti-
ate between closely-related symbols, which is re-
quired for good parsing performance. Using pre-
trained rule embeddings at this layer might also
improve performance of this method.

7 Test Results

We evaluate our system under two conditions:
first, on the English Penn Treebank, and second,
on the nine languages used in the SPMRL 2013
and 2014 shared tasks.

7.1 Penn Treebank

Table 4 reports results on section 23 of the Penn
Treebank (PTB). We focus our comparison on sin-
gle parser systems as opposed to rerankers, ensem-
bles, or self-trained methods (though these are also
mentioned for context). First, we compare against
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Arabic Basque French German Hebrew Hungarian Korean Polish Swedish Avg

Dev, all lengths

Hall et al. (2014) 78.89 83.74 79.40 83.28 88.06 87.44 81.85 91.10 75.95 83.30
This work* 80.68 84.37 80.65 85.25 89.37 89.46 82.35 92.10 77.93 84.68

Test, all lengths

Berkeley 79.19 70.50 80.38 78.30 86.96 81.62 71.42 79.23 79.18 78.53
Berkeley-Tags 78.66 74.74 79.76 78.28 85.42 85.22 78.56 86.75 80.64 80.89

Crabbé and Seddah (2014) 77.66 85.35 79.68 77.15 86.19 87.51 79.35 91.60 82.72 83.02
Hall et al. (2014) 78.75 83.39 79.70 78.43 87.18 88.25 80.18 90.66 82.00 83.17

This work* 80.24 85.41 81.25 80.95 88.61 90.66 82.23 92.97 83.45 85.08

Reranked ensemble

2014 Best 81.32 88.24 82.53 81.66 89.80 91.72 83.81 90.50 85.50 86.12

Table 3: Results for the nine treebanks in the SPMRL 2013/2014 Shared Tasks; all values are F-scores
for sentences of all lengths using the version of evalb distributed with the shared task. Our parser
substantially outperforms the strongest single parser results on this dataset (Hall et al., 2014; Crabbé and
Seddah, 2014). Berkeley-Tags is an improved version of the Berkeley parser designed for the shared task
(Seddah et al., 2013). 2014 Best is a reranked ensemble of modified Berkeley parsers and constitutes the
best published numbers on this dataset (Björkelund et al., 2013; Björkelund et al., 2014).

F1 all

Single model, PTB only

Hall et al. (2014) 89.2
Berkeley 90.1

Carreras et al. (2008) 91.1
Shindo et al. (2012) single 91.1

Single model, PTB + vectors/clusters

Zhu et al. (2013) 91.3
This work* 91.1

Extended conditions

Charniak and Johnson (2005) 91.5
Socher et al. (2013) 90.4

Vinyals et al. (2014) single 90.5
Vinyals et al. (2014) ensemble 91.6
Shindo et al. (2012) ensemble 92.4

Table 4: Test results on section 23 of the Penn
Treebank. We compare to several categories of
parsers from the literatures. We outperform strong
baselines such as the Berkeley Parser (Petrov and
Klein, 2007) and the CVG Stanford parser (Socher
et al., 2013) and we match the performance of so-
phisticated generative (Shindo et al., 2012) and
discriminative (Carreras et al., 2008) parsers.

four parsers trained only on the PTB with no aux-
iliary data: the CRF parser of Hall et al. (2014),
the Berkeley parser (Petrov and Klein, 2007), the
discriminative parser of Carreras et al. (2008), and

the single TSG parser of Shindo et al. (2012). To
our knowledge, the latter two systems are the high-
est performing in this PTB-only, single parser data
condition; we match their performance at 91.1 F1,
though we also use word vectors computed from
unlabeled data. We further compare to the shift-
reduce parser of Zhu et al. (2013), which uses un-
labeled data in the form of Brown clusters. Our
method achieves performance close to that of their
parser.

We also compare to the compositional vector
grammar (CVG) parser of Socher et al. (2013)
as well as the LSTM-based parser of Vinyals et
al. (2014). The conditions these parsers are op-
erating under are slightly different: the former is
a reranker on top of the Stanford Parser (Klein
and Manning, 2003) and the latter trains on much
larger amounts of data parsed by a product of
Berkeley parsers (Petrov, 2010). Regardless, we
outperform the CVG parser as well as the single
parser results from Vinyals et al. (2014).

7.2 SPMRL

We also examine the performance of our
parser on other languages, specifically the
nine morphologically-rich languages used in the
SPMRL 2013/2014 shared tasks (Seddah et al.,
2013; Seddah et al., 2014). We train word vec-
tors on the monolingual data distributed with the
SPMRL 2014 shared task (typically 100M-200M
tokens per language) using the skip-gram ap-
proach of word2vec with a window size of 1
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(Mikolov et al., 2013).10 Here we use V = 1
in the backbone grammar, which we found to be
beneficial overall. Table 3 shows that our system
improves upon the performance of the parser from
Hall et al. (2014) as well as the top single parser
from the shared task (Crabbé and Seddah, 2014),
with robust improvements on all languages.

8 Conclusion

In this work, we presented a CRF parser that
scores anchored rule productions using dense in-
put features computed from a feedforward neu-
ral net. Because the neural component is mod-
ularized, we can easily integrate it into a pre-
existing learning and inference framework based
around dynamic programming of a discrete parse
chart. Our combined neural and sparse model
gives strong performance both on English and on
other languages.

Our system is publicly available at
http://nlp.cs.berkeley.edu.
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Abstract

Most existing graph-based parsing models
rely on millions of hand-crafted features,
which limits their generalization ability
and slows down the parsing speed. In this
paper, we propose a general and effective
Neural Network model for graph-based
dependency parsing. Our model can auto-
matically learn high-order feature combi-
nations using only atomic features by ex-
ploiting a novel activation function tanh-
cube. Moreover, we propose a simple yet
effective way to utilize phrase-level infor-
mation that is expensive to use in conven-
tional graph-based parsers. Experiments
on the English Penn Treebank show that
parsers based on our model perform better
than conventional graph-based parsers.

1 Introduction

Dependency parsing is essential for computers to
understand natural languages, whose performance
may have a direct effect on many NLP applica-
tion. Due to its importance, dependency parsing,
has been studied for tens of years. Among a vari-
ety of dependency parsing approaches (McDonald
et al., 2005; McDonald and Pereira, 2006; Car-
reras, 2007; Koo and Collins, 2010; Zhang and
Nivre, 2011), graph-based models seem to be one
of the most successful solutions to the challenge
due to its ability of scoring the parsing decisions
on whole-tree basis. Typical graph-based models
factor the dependency tree into subgraphs, rang-
ing from the smallest edge (first-order) to a con-
trollable bigger subgraph consisting of more than
one single edge (second-order and third order),
and score the whole tree by summing scores of the
subgraphs. In these models, subgraphs are usually
represented as a high-dimensional feature vectors

∗Corresponding author

which are fed into a linear model to learn the fea-
ture weight for scoring the subgraphs.

In spite of their advantages, conventional graph-
based models rely heavily on an enormous num-
ber of hand-crafted features, which brings about
serious problems. First, a mass of features could
put the models in the risk of overfitting and slow
down the parsing speed, especially in the high-
order models where combinational features cap-
turing interactions between head, modifier, sib-
lings and (or) grandparent could easily explode
the feature space. In addition, feature design re-
quires domain expertise, which means useful fea-
tures are likely to be neglected due to a lack of
domain knowledge. As a matter of fact, these two
problems exist in most graph-based models, which
have stuck the development of dependency parsing
for a few years.

To ease the problem of feature engineering, we
propose a general and effective Neural Network
model for graph-based dependency parsing in this
paper. The main advantages of our model are as
follows:

• Instead of using large number of hand-crafted
features, our model only uses atomic fea-
tures (Chen et al., 2014) such as word uni-
grams and POS-tag unigrams. Feature com-
binations and high-order features are auto-
matically learned with our novel activation
function tanh-cube, thus alleviating the heavy
burden of feature engineering in conven-
tional graph-based models (McDonald et al.,
2005; McDonald and Pereira, 2006; Koo and
Collins, 2010). Not only does it avoid the risk
of overfitting but also it discovers useful new
features that have never been used in conven-
tional parsers.

• We propose to exploit phrase-level informa-
tion through distributed representation for
phrases (phrase embeddings). It not only en-
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Figure 1: First-order and Second-order factoriza-
tion strategy. Here h stands for head word, m
stands for modifier word and s stands for the sib-
ling of m.

ables our model to exploit richer context in-
formation that previous work did not consider
due to the curse of dimension but also cap-
tures inherent correlations between phrases.

• Unlike other neural network based models
(Chen et al., 2014; Le and Zuidema, 2014)
where an additional parser is needed for ei-
ther extracting features (Chen et al., 2014) or
generating k-best list for reranking (Le and
Zuidema, 2014), both training and decoding
in our model are performed based on our neu-
ral network architecture in an effective way.

• Our model does not impose any change to
the decoding process of conventional graph-
based parsing model. First-order, second-
order and higher order models can be easily
implemented using our model.

We implement three effective models with in-
creasing expressive capabilities. The first model
is a simple first-order model that uses only atomic
features and does not use any combinational fea-
tures. Despite its simpleness, it outperforms
conventional first-order model (McDonald et al.,
2005) and has a faster parsing speed. To fur-
ther strengthen our parsing model, we incorpo-
rate phrase embeddings into the model, which
significantly improves the parsing accuracy. Fi-
nally, we extend our first-order model to a second-
order model that exploits interactions between two
adjacent dependency edges as in McDonald and
Pereira (2006) thus further improves the model
performance.

We evaluate our models on the English Penn
Treebank. Experiment results show that both our
first-order and second-order models outperform
the corresponding conventional models.

2 Neural Network Model

A dependency tree is a rooted, directed tree span-
ning the whole sentence. Given a sentence x,
graph-based models formulates the parsing pro-
cess as a searching problem:

y∗(x) = arg max
ŷ∈Y (x)

Score(x, ŷ(x); θ) (1)

where y∗(x) is tree with highest score, Y (x) is
the set of all trees compatible with x, θ are model
parameters and Score(x, ŷ(x); θ) represents how
likely that a particular tree ŷ(x) is the correct anal-
ysis for x. However, the size of Y (x) is expo-
nential large, which makes it impractical to solve
equation (1) directly. Previous work (McDonald et
al., 2005; McDonald and Pereira, 2006; Koo and
Collins, 2010) assumes that the score of ŷ(x) fac-
tors through the scores of subgraphs c of ŷ(x) so
that efficient algorithms can be designed for de-
coding:

Score(x, ŷ(x); θ) =
∑
c∈ŷ(x)

ScoreF (x, c; θ) (2)

Figure 1 gives two examples of commonly used
factorization strategy proposed by Mcdonald et.al
(2005) and Mcdonald and Pereira (2006). The
simplest subgraph uses a first-order factorization
(McDonald et al., 2005) which decomposes a de-
pendency tree into single dependency arcs (Fig-
ure 1(a)). Based on the first-order model, second-
order factorization (McDonald and Pereira, 2006)
(Figure 1(b)) brings sibling information into de-
coding. Specifically, a sibling part consists of a
triple of indices (h,m, s) where (h,m) and (h, s)
are dependencies and s andm are successive mod-
ifiers to the same side of h.

The most common choice for ScoreF (x, c; θ),
which is the score function for subgraph c in the
tree, is a simple linear function:

ScoreF (x, c; θ) = w · f(x, c) (3)

where f(x, c) is the feature representation of sub-
graph c andw is the corresponding weight vector.
However, the effectiveness of this function relies
heavily on the design of feature vector f(x, c). In
previous work (McDonald et al., 2005; McDonald
and Pereira, 2006), millions of hand-crafted fea-
tures were used to capture context and structure
information in the subgraph which not only lim-
its the model’s ability to generalize well but only
slows down the parsing speed.
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Figure 2: Architecture of the Neural Network

In our work, we propose a neural network
model for scoring subgraph c in the tree:

ScoreF (x, c; θ) = NN(x, c) (4)

where NN is our scoring function based on neu-
ral network (Figure 2). As we will show in the fol-
lowing sections, it alleviates the heavy burden of
feature engineering in conventional graph-based
models and achieves better performance by auto-
matically learning useful information in the data.

The effectiveness of our neural network de-
pends on five key components: Feature Em-
beddings, Phrase Embeddings, Direction-specific
transformation, Learning Feature Combinations
and Max-Margin Training.

2.1 Feature Embeddings

As shown in Figure 2, part of the input to the neu-
ral network is feature representation of the sub-
graph. Instead of using millions of features as in
conventional models, we only use use atomic fea-
tures (Chen et al., 2014) such as word unigrams
and POS-tag unigrams, which are less likely to be
sparse. The detailed atomic features we use will
be described in Section 3. Unlike conventional
models, the atomic features in our model are trans-
formed into their corresponding distributed repre-
sentations (feature embeddings).

The idea of distributed representation for sym-
bolic data is one of the most important reasons
why neural network works in NLP tasks. It is
shown that similar features will have similar em-
beddings which capture the syntactic and seman-
tic information behind features (Bengio et al.,

Figure 3: Illustration for phrase embeddings. h,m
and x0 to x6 are words in the sentence.

2003; Collobert et al., 2011; Schwenk et al., 2012;
Mikolov et al., 2013; Socher et al., 2013; Pei et al.,
2014).

Formally, we have a feature dictionaryD of size
|D|. Each feature f ∈ D is represented as a real-
valued vector (feature embedding) Embed(f) ∈
Rd where d is the dimensionality of the vector
space. All feature embeddings stacking together
forms the embedding matrix M ∈ Rd×|D|. The
embedding matrix M is initialized randomly and
trained by our model (Section 2.6).

2.2 Phrase Embeddings

Context information of word pairs1 such as the de-
pendency pair (h,m) has been widely believed to
be useful in graph-based models (McDonald et al.,
2005; McDonald and Pereira, 2006). Given a sen-
tence x, the context for h and m includes three
context parts: prefix, infix and suffix, as illustrated
in Figure 3. We call these parts phrases in our
work.

Context representation in conventional mod-
els are limited: First, phrases cannot be used as
features directly because of the data sparseness
problem. Therefore, phrases are backed off to
low-order representation such as bigrams and tri-
grams. For example, Mcdonald et.al (2005) used
tri-gram features of infix between head-modifier
pair (h,m). Sometimes even tri-grams are expen-
sive to use, which is the reason why Mcdonald and
Pereira (2006) chose to ignore features over triples
of words in their second-order model to prevent
from exploding the size of the feature space. Sec-

1A word pair is not limited to the dependency pair (h,m).
It could be any pair with particular relation (e.g., sibling pair
(s,m) in Figure 1). Figure 3 only uses (h,m) as an example.
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ond, bigrams or tri-grams are lexical features thus
cannot capture syntactic and semantic information
behind phrases. For instance, “hit the ball” and
“kick the football” should have similar represen-
tations because they share similar syntactic struc-
tures, but lexical tri-grams will fail to capture their
similarity.

Unlike previous work, we propose to use
distributed representation (phrase embedding) of
phrases to capture phrase-level information. We
use a simple yet effective way to calculate phrase
embeddings from word (POS-tag) embeddings.
As shown in Figure 3, we average the word em-
beddings in prefix, infix and suffix respectively and
get three global word-phrase embeddings. For
pairs where no prefix or suffix exists, the corre-
sponding embedding is set to zero. We also get
three global POS-phrase embeddings which are
calculated in the same way as words. These em-
beddings are then concatenated with feature em-
beddings and fed to the following hidden layer.

Phrase embeddings provide panorama represen-
tation of the context, allowing our model to cap-
ture richer context information compared with the
back-off tri-gram representation. Moreover, as
a distributed representation, phrase embeddings
perform generalization over specific phrases, thus
better capture the syntactic and semantic informa-
tion than back-off tri-grams.

2.3 Direction-specific Transformation
In dependency representation of sentence, the
edge direction indicates which one of the words is
the head h and which one is the modifier m. Un-
like previous work (McDonald et al., 2005; Mc-
Donald and Pereira, 2006) that models the edge
direction as feature to be conjoined with other fea-
tures, we model the edge direction with direction-
specific transformation.

As shown in Figure 2, the parameters in hidden
layer (W d

h , bdh) and the output layer (W d
o , bdo) are

bound with index d ∈ {0, 1} which indicates the
direction between head and modifier (0 for left arc
and 1 for right arc). In this way, the model can
learn direction-specific parameters and automati-
cally capture the interactions between edge direc-
tion and other features.

2.4 Learning Feature Combination
The key to the success of graph-based dependency
parsing is the design of features, especially com-
binational features. Effective as these features are,

as we have said in Section 1, they are prone to
overfitting and hard to design. In our work, we
introduce a new activation function that can auto-
matically learn these feature combinations.

As shown in Figure 2, we first concatenate the
embeddings into a single vector a. Then a is fed
into the next layer which performs linear trans-
formation followed by an element-wise activation
function g:

h = g(W d
ha+ bdh) (5)

Our new activation function g is defined as fol-
lows:

g(l) = tanh(l3 + l) (6)

where l is the result of linear transformation and
tanh is the hyperbolic tangent activation function
widely used in neural networks. We call this new
activation function tanh-cube.

As we can see, without the cube term, tanh-cube
would be just the same as the conventional non-
linear transformation in most neural networks.
The cube extension is added to enhance the abil-
ity to capture complex interactions between input
features. Intuitively, the cube term in each hid-
den unit directly models feature combinations in a
multiplicative way:

(w1a1 + w2a2 + ...+ wnan + b)3 =∑
i,j,k

(wiwjwk)aiajak +
∑
i,j

b(wiwj)aiaj ...

These feature combinations are hand-designed in
conventional graph-based models but our model
learns these combinations automatically and en-
codes them in the model parameters.

Similar ideas were also proposed in previous
works (Socher et al., 2013; Pei et al., 2014; Chen
and Manning, 2014). Socher et.al (2013) and
Pei et.al (2014) used a tensor-based activation
function to learn feature combinations. However,
tensor-based transformation is quite slow even
with tensor factorization (Pei et al., 2014). Chen
and Manning (2014) proposed to use cube func-
tion g(l) = l3 which inspires our tanh-cube func-
tion. Compared with cube function, tanh-cube has
three advantages:

• The cube function is unbounded, making the
activation output either too small or too big if
the norm of input l is not properly controlled,
especially in deep neural network. On the
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contrary, tanh-cube is bounded by the tanh
function thus safer to use in deep neural net-
work.

• Intuitively, the behavior of cube function re-
sembles the “polynomial kernel” in SVM.
In fact, SVM can be seen as a special one-
hidden-layer neural network where the ker-
nel function that performs non-linear trans-
formation is seen as a hidden layer and sup-
port vectors as hidden units. Compared with
cube function, tanh-cube combines the power
of “kernel function” with the tanh non-linear
transformation in neural network.

• Last but not least, as we will show in Section
4, tanh-cube converges faster than the cube
function although the rigorous proof is still
open to investigate.

2.5 Model Output
After the non-linear transformation of hidden
layer, the score of the subgraph c is calculated in
the output layer using a simple linear function:

ScoreF (x, c) = W d
o h+ bdo (7)

The output score ScoreF (x, c) ∈ R|L| is a score
vector where |L| is the number of dependency
types and each dimension of ScoreF (x, c) is the
score for each kind of dependency type of head-
modifier pair (i.e. (h,m) in Figure 1).

2.6 Max-Margin Training
The parameters of our model are θ =
{W d

h , b
d
h,W

d
o , b

d
o,M}. All parameters are

initialized with uniform distribution within (-0.01,
0.01).

For model training, we use the Max-Margin cri-
terion. Given a training instance (x, y), we search
for the dependency tree with the highest score
computed as equation (1) in Section 2. The object
of Max-Margin training is that the highest scor-
ing tree is the correct one: y∗ = y and its score
will be larger up to a margin to other possible tree
ŷ ∈ Y (x):

Score(x, y; θ) ≥ Score(x, ŷ; θ) +4(y, ŷ)

The structured margin loss4(y, ŷ) is defined as:

4(y, ŷ) =
n∑
j

κ1{h(y, xj) 6= h(ŷ, xj)}

1-order-atomic

h−2.w, h−1.w, h.w, h1.w, h2.w
h−2.p, h−1.p, h.p, h1.p, h2.p
m−2.w, m−1.w, m.w, m1.w, m2.w
m−2.p, m−1.p, m.p, m1.p, m2.p
dis(h, m)

1-order-phrase + hm prefix.w, hm infix.w, hm suffix.w
+ hm prefix.p, hm infix.p, hm suffix.p

2-order-phrase
+ s−2.w, s−1.w, s.w, s1.w, s2.w
+ s−2.p, s−1.p, s.p, s1.p, s2.p
+ sm infix.w, sm infix.p

Table 1: Features in our three models. w is
short for word and p for POS-tag. h indicates
head and m indicates modifier. The subscript rep-
resents the relative position to the center word.
dis(h,m) is the distance between head and modi-
fier. hm prefix, hm infix and hm suffix are phrases
for head-modifier pair (h,m). s indicates the sib-
ling in second-order model. sm infix is the infix
phrase between sibling pair (s,m)

where n is the length of sentence x, h(y, xj) is the
head (with type) for the j-th word of x in tree y and
κ is a discount parameter. The loss is proportional
to the number of word with an incorrect head and
edge type in the proposed tree. This leads to the
regularized objective function for m training ex-
amples:

J(θ) =
1
m

m∑
i=1

li(θ) +
λ

2
||θ||2

li(θ) = max
ŷ∈Y (xi)

(Score(xi, ŷ; θ) +4(yi, ŷ))

−Score(xi, yi; θ)) (8)

We use the diagonal variant of AdaGrad (Duchi
et al., 2011) with minibatchs (batch size = 20)
to minimize the object function. We also apply
dropout (Hinton et al., 2012) with 0.5 rate to the
hidden layer.

3 Model Implementation

Base on our Neural Network model, we present
three model implementations with increasing ex-
pressive capabilities in this section.

3.1 First-order models

We first implement two first-order models: 1-
order-atomic and 1-order-phrase. We use the
Eisner (2000) algorithm for decoding. The first
two rows of Table 1 list the features we use in these
two models.

1-order-atomic only uses atomic features as
shown in the first row of Table 1. Specifically, the
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Models Dev Test
Speed (sent/s)

UAS LAS UAS LAS

First-order

MSTParser-1-order 92.01 90.77 91.60 90.39 20
1-order-atomic-rand 92.00 90.71 91.62 90.41 55
1-order-atomic 92.19 90.94 92.14 90.92 55
1-order-phrase-rand 92.47 91.19 92.25 91.05 26
1-order-phrase 92.82 91.48 92.59 91.37 26

Second-order
MSTParser-2-order 92.70 91.48 92.30 91.06 14
2-order-phrase-rand 93.39 92.10 92.99 91.79 10
2-order-phrase 93.57 92.29 93.29 92.13 10

Third-order (Koo and Collins, 2010) 93.49 N/A 93.04 N/A N/A

Table 2: Comparison with conventional graph-based models.

head word and its local neighbor words that are
within the distance of 2 are selected as the head’s
word unigram features. The modifier’s word un-
igram features is extracted in the same way. We
also use the POS-tags of the corresponding word
features and the distance between head and modi-
fier as additional atomic features.

We then improved 1-order-atomic to 1-order-
phrase by incorporating additional phrase embed-
dings. The three phrase embeddings of head-
modifier pair (h,m): hm prefix, hm infix and
hm suffix are calculated as in Section 2.2.

3.2 Second-order model

Our model can be easily extended to a second-
order model using the second-order decoding al-
gorithm (Eisner, 1996; McDonald and Pereira,
2006). The third row of Table 1 shows the addi-
tional features we use in our second-order model.

Sibling node and its local context are used as
additional atomic features. We also used the in-
fix embedding for the infix between sibling pair
(s,m), which we call sm infix. It is calculated in
the same way as infix between head-modifier pair
(h,m) (i.e., hm infix) in Section 2.2 except that
the word pair is now s and m. For cases where no
sibling information is available, the corresponding
sibling-related embeddings are set to zero vector.

4 Experiments

4.1 Experiment Setup

We use the English Penn Treebank (PTB) to eval-
uate our model implementations and Yamada and
Matsumoto (2003) head rules are used to extract
dependency trees. We follow the standard splits of
PTB3, using section 2-21 for training, section 22
as development set and 23 as test set. The Stanford

POS Tagger (Toutanova et al., 2003) with ten-way
jackknifing of the training data is used for assign-
ing POS tags (accuracy ≈ 97.2%).

Hyper-parameters of our models are tuned on
the development set and their final settings are
as follows: embedding size d = 50, hidden layer
(Layer 2) size = 200, regularization parameter λ =
10−4, discount parameter for margin loss κ = 0.3,
initial learning rate of AdaGrad alpha = 0.1.

4.2 Experiment Results
Table 2 compares our models with several conven-
tional graph-based parsers. We use MSTParser2

for conventional first-order model (McDonald et
al., 2005) and second-order model (McDonald and
Pereira, 2006). We also include the result of a
third-order model of Koo and Collins (2010) for
comparison3. For our models, we report the results
with and without unsupervised pre-training. Pre-
training only trains the word-based feature embed-
dings on Gigaword corpus (Graff et al., 2003) us-
ing word2vec4 and all other parameters are still
initialized randomly. In all experiments, we re-
port unlabeled attachment scores (UAS) and la-
beled attachment scores (LAS) and punctuation5

is excluded in all evaluation metrics. The parsing
speeds are measured on a workstation with Intel
Xeon 3.4GHz CPU and 32GB RAM.

As we can see, even with random initialization,
1-order-atomic-rand performs as well as conven-
tional first-order model and both 1-order-phrase-

2http://sourceforge.net/projects/
mstparser

3Note that Koo and Collins (2010)’s third-order model
and our models are not strict comparable since their model
is an unlabeled model.

4https://code.google.com/p/word2vec/
5Following previous work, a token is a punctuation if its

POS tag is {“ ” : , .}
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Figure 4: Convergence curve for tanh-cube and
cube activation function.

rand and 2-order-phrase-rand perform better
than conventional models in MSTParser. Pre-
training further improves the performance of all
three models, which is consistent with the conclu-
sion of previous work (Pei et al., 2014; Chen and
Manning, 2014). Moreover, 1-order-phrase per-
forms better than 1-order-atomic, which shows
that phrase embeddings do improve the model. 2-
order-phrase further improves the performance
because of the more expressive second-order fac-
torization. All three models perform significantly
better than their counterparts in MSTParser where
millions of features are used and 1-order-phrase
works surprisingly well that it even beats the con-
ventional second-order model.

With regard to parsing speed, 1-order-atomic
is the fastest while other two models have similar
speeds as MSTParser. Further speed up could be
achieved by using pre-computing strategy as men-
tioned in Chen and Manning (2014). We did not
try this strategy since parsing speed is not the main
focus of this paper.

Model tanh-cube cube tanh
1-order-atomic 92.19 91.97 91.73
1-order-phrase 92.82 92.25 92.13
2-order-phrase 93.57 92.95 92.91

Table 3: Model Performance of different activa-
tion functions.

We also investigated the effect of different acti-
vation functions. We trained our models with the
same configuration except for the activation func-
tion. Table 3 lists the UAS of three models on de-
velopment set.

Feature Type Instance Neighboors

Words
(word2vec)

in the, of, and,
for, from

his himself, her, he,
him, father

which its, essentially,
similar, that, also

Words
(Our model)

in on, at, behind,
among, during

his her, my, their,
its, he

which where, who, whom,
whose, though

POS-tags NN NNPS, NNS, EX,
NNP, POS

JJ JJR, JJS, PDT,
RBR, RBS

Table 4: Examples of similar words and POS-tags
according to feature embeddings.

As we can see, tanh-cube function outperforms
cube function because of advantages we men-
tioned in Section 2.4. Moreover, both tanh-cube
function and cube function performs better than
tanh function. The reason is that the cube term can
capture more interactions between input features.

We also plot the UAS of 2-order-phrase dur-
ing each iteration of training. As shown in Figure
4, tanh-cube function converges faster than cube
function.

4.3 Qualitative Analysis

In order to see why our models work, we made
qualitative analysis on different aspects of our
model.

Ability of Feature Abstraction
Feature embeddings give our model the ability of
feature abstraction. They capture the inherent cor-
relations between features so that syntactic similar
features will have similar representations, which
makes our model generalizes well on unseen data.

Table 4 shows the effect of different feature
embeddings which are obtained from 2-order-
phrase after training. For each kind of feature
type, we list several features as well as top 5 fea-
tures that are nearest (measured by Euclidean dis-
tance) to the corresponding feature according to
their embeddings.

We first analysis the effect of word embeddings
after training. For comparison, we also list the
initial word embeddings in word2vec. As we
can see, in word2vec word embeddings, words
that are similar to in and which tends to be those
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Phrase Neighboor

On a Saturday morning

On Monday night football
On Sunday
On Saturday
On Tuesday afternoon
On recent Saturday morning

most of it

of it
of it all
some of it also
most of these are
only some of

big investment bank

great investment bank
bank investment
entire equity investment
another cash equity investor
real estate lending division

Table 5: Examples of similar phrases according to
phrase embeddings.

co-occuring with them and for word his, similar
words are morphologies of he. On the contrary,
similar words measured by our embeddings have
similar syntactic functions. This is helpful for de-
pendency parsing since parsing models care more
about the syntactic functions of words rather than
their collocations or morphologies.

POS-tag embeddings also show similar behav-
ior with word embeddings. As shown in Table 4,
our model captures similarities between POS-tags
even though their embeddings are initialized ran-
domly.

We also investigated the effect of phrase embed-
dings in the same way as feature embeddings. Ta-
ble 5 lists the examples of similar phrases. Our
phrase embeddings work pretty well given that
only a simple averaging strategy is used. Phrases
that are close to each other tend to share simi-
lar syntactic and semantic information. By using
phrase embeddings, our model sees panorama of
the context rather than limited word tri-grams and
thus captures richer context information, which is
the reason why phrase embeddings significantly
improve the performance.

Ability of Feature Learning
Finally, we try to unveil the mysterious hidden
layer and investigate what features it learns. For
each hidden unit of 2-order-phrase, we get its
connections with embeddings (i.e., W d

h in Figure
2) and pick the connections whose weights have
absolute value > 0.1. We sampled several hidden
units and invenstigated which features their highly
weighted connections belong to:
• Hidden 1: h.w, m.w, h−1.w, m1.w

• Hidden 2: h.p, m.p, s.p

• Hidden 3: hm infix.p, hm infix.w, hm prefix.w

• Hidden 4: hm infix.w, hm prefix.w, sm infix.w

• Hidden 5: hm infix.p, hm infix.w, hm suffix.w

The samples above give qualitative results of what
features the hidden layer learns:

• Hidden unit 1 and 2 show that atomic features
of head, modifier, sibling and their local con-
text words are useful in our model, which is
consistent with our expectations since these
features are also very important features in
conventional graph-based models (McDon-
ald and Pereira, 2006).

• Features in the same hidden unit will “com-
bine” with each other through our tanh-cube
activation function. As we can see, feature
combination in hidden unit 2 were also used
in Mcdonald and Pereira (2006). However,
these feature combinations are automatically
captured by our model without the labor-
intensive feature engineering.

• Hidden unit 3 to 5 show that phrase-level
information like hm prefix, hm suffix and
sm infix are effective in our model. These
features are not used in conventional second-
order model (McDonald and Pereira, 2006)
because they could explode the feature space.
Through our tanh-cube activation function,
our model further captures the interactions
between phrases and other features without
the concern of overfitting.

5 Related Work

Models for dependency parsing have been stud-
ied with considerable effort in the NLP commu-
nity. Among them, we only focus on the graph-
based models here. Most previous systems ad-
dress this task by using linear statistical models
with carefully designed context and structure fea-
tures. The types of features available rely on tree
factorization and decoding algorithm. Mcdonald
et.al (2005) proposed the first-order model which
is also know as arc-factored model. Efficient de-
coding can be performed with Eisner (2000) algo-
rithm in O(n3) time and O(n2) space. Mcdonald
and Pereira (2006) further extend the first-order
model to second-order model where sibling infor-
mation is available during decoding. Eisner (2000)
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algorithm can be modified trivially for second-
order decoding. Carreras (2007) proposed a more
powerful second-order model that can score both
sibling and grandchild parts with the cost ofO(n4)
time and O(n3) space. To exploit more struc-
ture information, Koo and Collins (2010) pro-
posed three third-order models with computational
requirements of O(n4) time and O(n3) space.

Recently, neural network models have been in-
creasingly focused on for their ability to minimize
the effort in feature engineering. Chen et.al (2014)
proposed an approach to automatically learning
feature embeddings for graph-based dependency
parsing. The learned feature embeddings are used
as additional features in conventional graph-based
model. Le and Zuidema (2014) proprosed an
infinite-order model based on recursive neural net-
work. However, their model can only be used as
an reranking model since decoding is intractable.

Compared with these work, our model is a
general and standalone neural network model.
Both training and decoding in our model are per-
formed based on our neural network architecture
in an effective way. Although only first-order
and second-order models are implemented in our
work, higher-order graph-based models can be
easily implemented using our model.

6 Conclusion

In this paper, we propose a general and effec-
tive neural network model that can automatically
learn feature combinations with our novel acti-
vation function. Moreover, we introduce a sim-
ple yet effect way to utilize phrase-level informa-
tion, which greatly improves the model perfor-
mance. Experiments on the benchmark dataset
show that our model achieves better results than
conventional models.
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Abstract
We present structured perceptron training for neural
network transition-based dependency parsing. We
learn the neural network representation using a gold
corpus augmented by a large number of automat-
ically parsed sentences. Given this fixed network
representation, we learn a final layer using the struc-
tured perceptron with beam-search decoding. On
the Penn Treebank, our parser reaches 94.26% un-
labeled and 92.41% labeled attachment accuracy,
which to our knowledge is the best accuracy on
Stanford Dependencies to date. We also provide in-
depth ablative analysis to determine which aspects
of our model provide the largest gains in accuracy.

1 Introduction

Syntactic analysis is a central problem in lan-
guage understanding that has received a tremen-
dous amount of attention. Lately, dependency
parsing has emerged as a popular approach to this
problem due to the availability of dependency tree-
banks in many languages (Buchholz and Marsi,
2006; Nivre et al., 2007; McDonald et al., 2013)
and the efficiency of dependency parsers.

Transition-based parsers (Nivre, 2008) have
been shown to provide a good balance between
efficiency and accuracy. In transition-based pars-
ing, sentences are processed in a linear left to
right pass; at each position, the parser needs to
choose from a set of possible actions defined by
the transition strategy. In greedy models, a classi-
fier is used to independently decide which transi-
tion to take based on local features of the current
parse configuration. This classifier typically uses
hand-engineered features and is trained on indi-
vidual transitions extracted from the gold transi-
tion sequence. While extremely fast, these greedy
models typically suffer from search errors due to
the inability to recover from incorrect decisions.
Zhang and Clark (2008) showed that a beam-
search decoding algorithm utilizing the structured

perceptron training algorithm can greatly improve
accuracy. Nonetheless, significant manual fea-
ture engineering was required before transition-
based systems provided competitive accuracy with
graph-based parsers (Zhang and Nivre, 2011), and
only by incorporating graph-based scoring func-
tions were Bohnet and Kuhn (2012) able to exceed
the accuracy of graph-based approaches.

In contrast to these carefully hand-tuned ap-
proaches, Chen and Manning (2014) recently
presented a neural network version of a greedy
transition-based parser. In their model, a feed-
forward neural network with a hidden layer is used
to make the transition decisions. The hidden layer
has the power to learn arbitrary combinations of
the atomic inputs, thereby eliminating the need for
hand-engineered features. Furthermore, because
the neural network uses a distributed representa-
tion, it is able to model lexical, part-of-speech
(POS) tag, and arc label similarities in a contin-
uous space. However, although their model out-
performs its greedy hand-engineered counterparts,
it is not competitive with state-of-the-art depen-
dency parsers that are trained for structured search.

In this work, we combine the representational
power of neural networks with the superior search
enabled by structured training and inference, mak-
ing our parser one of the most accurate depen-
dency parsers to date. Training and testing on
the Penn Treebank (Marcus et al., 1993), our
transition-based parser achieves 93.99% unlabeled
(UAS) / 92.05% labeled (LAS) attachment accu-
racy, outperforming the 93.22% UAS / 91.02%
LAS of Zhang and McDonald (2014) and 93.27
UAS / 91.19 LAS of Bohnet and Kuhn (2012).
In addition, by incorporating unlabeled data into
training, we further improve the accuracy of our
model to 94.26% UAS / 92.41% LAS (93.46%
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UAS / 91.49% LAS for our greedy model).

In our approach we start with the basic structure
of Chen and Manning (2014), but with a deeper ar-
chitecture and improvements to the optimization
procedure. These modifications (Section 2) in-
crease the performance of the greedy model by as
much as 1%. As in prior work, we train the neu-
ral network to model the probability of individual
parse actions. However, we do not use these prob-
abilities directly for prediction. Instead, we use
the activations from all layers of the neural net-
work as the representation in a structured percep-
tron model that is trained with beam search and
early updates (Section 3). On the Penn Treebank,
this structured learning approach significantly im-
proves parsing accuracy by 0.8%.

An additional contribution of this work is an
effective way to leverage unlabeled data. Neu-
ral networks are known to perform very well in
the presence of large amounts of training data;
however, obtaining more expert-annotated parse
trees is very expensive. To this end, we generate
large quantities of high-confidence parse trees by
parsing unlabeled data with two different parsers
and selecting only the sentences for which the
two parsers produced the same trees (Section 3.3).
This approach is known as “tri-training” (Li et
al., 2014) and we show that it benefits our neu-
ral network parser significantly more than other
approaches. By adding 10 million automatically
parsed tokens to the training data, we improve the
accuracy of our parsers by almost ∼1.0% on web
domain data.

We provide an extensive exploration of our
model in Section 5 through ablative analysis and
other retrospective experiments. One of the goals
of this work is to provide guidance for future re-
finements and improvements on the architecture
and modeling choices we introduce in this paper.

Finally, we also note that neural network repre-
sentations have a long history in syntactic parsing
(Henderson, 2004; Titov and Henderson, 2007;
Titov and Henderson, 2010); however, like Chen
and Manning (2014), our network avoids any re-
current structure so as to keep inference fast and
efficient and to allow the use of simple backprop-
agation to compute gradients. Our work is also
not the first to apply structured training to neu-
ral networks (see e.g. Peng et al. (2009) and Do
and Artires (2010) for Conditional Random Field
(CRF) training of neural networks). Our paper ex-
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early updates (section 3). Structured learning re-
duces bias and significantly improves parsing ac-
curacy by 0.6%. We demonstrate empirically that
beam search based on the scores from the neural
network does not work as well, perhaps because
of the label bias problem.

A second contribution of this work is an ef-
fective way to leverage unlabeled data and other
parsers. Neural networks are known to perform
very well in the presence of large amounts of
training data. It is however unlikely that the
amount of hand parsed data will increase signif-
icantly because of the high cost for syntactic an-
notations. To this end we generate large quanti-
ties of high-confidence parse trees by parsing an
unlabeled corpus and selecting only the sentences
on which two different parsers produced the same
parse trees. This idea comes from tri-training (Li
et al., 2014) and while applicable to other parsers
as well, we show that it benefits neural network
parsers more than models with discrete features.
Adding 10 million automatically parsed tokens to
the training data improves the accuracy of our
parsers further by 0.7%. Our final greedy parser
achieves an unlabeled attachment score (UAS) of
93.46% on the Penn Treebank test set, while a
model with a beam of size 8 produces an UAS of
94.08% (section 4. To the best of our knowledge,
these are some of the very best dependency accu-
racies on this corpus.

We provide an extensive exploration of our
model in section 5. In ablation experiments we
tease apart our various contributions and modeling
choices in order to shed some light on what mat-
ters in practice. Neural network representations
have been used in structured models before (Peng
et al., 2009; Do and Artires, 2010), and have also
been used for syntactic parsing (Titov and Hen-
derson, 2007; Titov and Henderson, 2010), alas
with fairly complex architectures and constraints.
Our work on the other hand introduces a general
approach for structured perceptron training with a
neural network representation and achieves state-
of-the-art parsing results for English.

2 Neural Network Model

In this section, we describe the architecture of our
model, which is summarized in figure 2. Note that
we separate the embedding processing to a distinct
“embedding layer” for clarity of presentation. Our
model is based upon that of Chen and Manning
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Figure 1: Schematic overview of our neural network model.

Feature Groups
si, bi i 2 {1, 2, 3, 4} All

lc1(si), lc2(si) i 2 {1, 2} All
rc1(si), rc2(si) i 2 {1, 2} All
rc1(rc1(si)) i 2 {1, 2} All
lc1(lc1(si)) i 2 {1, 2} All

Table 1: Features used in the model. si and bi are elements
on the stack and buffer, respectively. lci indicates i’th left-
most child and rci the i’th rightmost child. Features that are
included in addition to those from Chen and Manning (2014)
are marked with ?. Groups indicates which values were ex-
tracted from each feature location (e.g. words, tags, labels).

(2014) and we discuss the differences between our
model and theirs in detail at the end of this section.

2.1 Input layer

Given a parse configuration c, we extract a rich set
of discrete features which we feed into the neural
network. Following Chen and Manning (2014),
we group these features by their input source:
words, POS tags, and arc labels. The full set of
features is given in Table 2. The features extracted
for each group are represented as a sparse F ⇥ V
matrix X, where V is the size of the vocabulary of
the feature group and F is the number of features:
the value of element Xfv is 1 if the f ’th feature
takes on value v. We produce three input matri-
ces: Xword for words features, Xtag for POS tag
features, and Xlabel for arc labels.

For all feature groups, we add additional special

…

Figure 1: Schematic overview of our neural network model.
Atomic features are extracted from the i’th elements on the
stack (si) and the buffer (bi); lci indicates the i’th leftmost
child and rci the i’th rightmost child. We use the top two
elements on the stack for the arc features and the top four
tokens on stack and buffer for words, tags and arc labels.

tends this line of work to the setting of inexact
search with beam decoding for dependency pars-
ing; Zhou et al. (2015) concurrently explored a
similar approach using a structured probabilistic
ranking objective. Dyer et al. (2015) concurrently
developed the Stack Long Short-Term Memory
(S-LSTM) architecture, which does incorporate
recurrent architecture and look-ahead, and which
yields comparable accuracy on the Penn Treebank
to our greedy model.

2 Neural Network Model

In this section, we describe the architecture of our
model, which is summarized in Figure 1. Note that
we separate the embedding processing to a distinct
“embedding layer” for clarity of presentation. Our
model is based upon that of Chen and Manning
(2014) and we discuss the differences between our
model and theirs in detail at the end of this section.
We use the arc-standard (Nivre, 2004) transition
system.

2.1 Input layer
Given a parse configuration c (consisting of a stack
s and a buffer b), we extract a rich set of dis-
crete features which we feed into the neural net-
work. Following Chen and Manning (2014), we
group these features by their input source: words,
POS tags, and arc labels. The features extracted
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for each group are represented as a sparse F × V
matrix X, where V is the size of the vocabulary
of the feature group and F is the number of fea-
tures. The value of element X f v is 1 if the f ’th
feature takes on value v. We produce three in-
put matrices: Xword for words features, Xtag for
POS tag features, and Xlabel for arc labels, with
Fword = Ftag = 20 and Flabel = 12 (Figure 1).

For all feature groups, we add additional special
values for “ROOT” (indicating the POS or word of
the root token), “NULL” (indicating no valid fea-
ture value could be computed) or “UNK” (indicat-
ing an out-of-vocabulary item).

2.2 Embedding layer

The first learned layer h0 in the network trans-
forms the sparse, discrete features X into a dense,
continuous embedded representation. For each
feature group Xg, we learn a Vg × Dg embedding
matrix Eg that applies the conversion:

h0 = [XgEg | g ∈ {word, tag, label}], (1)

where we apply the computation separately for
each group g and concatenate the results. Thus,
the embedding layer has E =

∑
g FgDg outputs,

which we reshape to a vector h0. We can choose
the embedding dimensionality D for each group
freely. Since POS tags and arc labels have much
smaller vocabularies, we show in our experiments
(Section 5.1) that we can use smaller Dtag and
Dlabel, without a loss in accuracy.

2.3 Hidden layers

We experimented with one and two hidden layers
composed of M rectified linear (Relu) units (Nair
and Hinton, 2010). Each unit in the hidden layers
is fully connected to the previous layer:

hi = max{0,Wihi−1 + bi}, (2)

where W1 is a M1 × E weight matrix for the first
hidden layer and Wi are Mi×Mi−1 matrices for all
subsequent layers. The weights bi are bias terms.
Relu layers have been well studied in the neural
network literature and have been shown to work
well for a wide domain of problems (Krizhevsky
et al., 2012; Zeiler et al., 2013). Through most of
development, we kept Mi = 200, but we found that
significantly increasing the number of hidden units
improved our results for the final comparison.

2.4 Relationship to Chen and Manning (2014)

Our model is clearly inspired by and based on the
work of Chen and Manning (2014). There are a
few structural differences: (1) we allow for much
smaller embeddings of POS tags and labels, (2) we
use Relu units in our hidden layers, and (3) we use
a deeper model with two hidden layers. Somewhat
to our surprise, we found these changes combined
with an SGD training scheme (Section 3.1) during
the “pre-training” phase of the model to lead to an
almost 1% accuracy gain over Chen and Manning
(2014). This trend held despite carefully tuning
hyperparameters for each method of training and
structure combination.

Our main contribution from an algorithmic per-
spective is our training procedure: as described in
the next section, we use the structured perceptron
for learning the final layer of our model. We thus
present a novel way to leverage a neural network
representation in a structured prediction setting.

3 Semi-Supervised Structured Learning

In this work, we investigate a semi-supervised
structured learning scheme that yields substantial
improvements in accuracy over the baseline neu-
ral network model. There are two complementary
contributions of our approach: (1) incorporating
structured learning of the model and (2) utilizing
unlabeled data. In both cases, we use the neural
network to model the probability of each parsing
action y as a soft-max function taking the final hid-
den layer as its input:

P(y) ∝ exp{β>y hi + by}, (3)

where βy is a Mi dimensional vector of weights for
class y and i is the index of the final hidden layer
of the network. At a high level our approach can
be summarized as follows:

• First, we pre-train the network’s hidden rep-
resentations by learning probabilities of pars-
ing actions. Fixing the hidden representa-
tions, we learn an additional final output layer
using the structured perceptron that uses the
output of the network’s hidden layers. In
practice this improves accuracy by ∼0.6% ab-
solute.

• Next, we show that we can supplement the
gold data with a large corpus of high quality
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automatic parses. We show that incorporat-
ing unlabeled data in this way improves ac-
curacy by as much as 1% absolute.

3.1 Backpropagation Pretraining
To learn the hidden representations, we use
mini-batched averaged stochastic gradient descent
(ASGD) (Bottou, 2010) with momentum (Hinton,
2012) to learn the parameters Θ of the network,
where Θ = {Eg,Wi,bi, βy | ∀g, i, y}. We use back-
propagation to minimize the multinomial logistic
loss:

L(Θ) = −
∑

j

log P(y j | c j,Θ) + λ
∑

i

||Wi||22, (4)

where λ is a regularization hyper-parameter over
the hidden layer parameters (we use λ = 10−4 in
all experiments) and j sums over all decisions and
configurations {y j, c j} extracted from gold parse
trees in the dataset.

The specific update rule we apply at iteration t
is as follows:

gt = µgt−1 − ∆L(Θt), (5)

Θt+1 = Θt + ηtgt, (6)

where the descent direction gt is computed by a
weighted combination of the previous direction
gt−1and the current gradient ∆L(Θt). The parame-
ter µ ∈ [0, 1) is the momentum parameter while ηt

is the traditional learning rate. In addition, since
we did not tune the regularization parameter λ,
we apply a simple exponential step-wise decay to
ηt; for every γ rounds of updates, we multiply
ηt = 0.96ηt−1.

The final component of the update is parame-
ter averaging: we maintain averaged parameters
Θ̄t = αtΘ̄t−1 + (1 − αt)Θt, where αt is an averag-
ing weight that increases from 0.1 to 0.9999 with
1/t. Combined with averaging, careful tuning of
the three hyperparameters µ, η0, and γ using held-
out data was crucial in our experiments.

3.2 Structured Perceptron Training
Given the hidden representations, we now describe
how the perceptron can be trained to utilize these
representations. The perceptron algorithm with
early updates (Collins and Roark, 2004) requires
a feature-vector definition φ that maps a sentence
x together with a configuration c to a feature vec-
tor φ(x, c) ∈ Rd. There is a one-to-one mapping
between configurations c and decision sequences

y1 . . . y j−1 for any integer j ≥ 1: we will use c and
y1 . . . y j−1 interchangeably.

For a sentence x, define GEN(x) to be the set
of parse trees for x. Each y ∈ GEN(x) is a se-
quence of decisions y1 . . . ym for some integer m.
We use Y to denote the set of possible decisions
in the parsing model. For each decision y ∈ Y
we assume a parameter vector v(y) ∈ Rd. These
parameters will be trained using the perceptron.

In decoding with the perceptron-trained model,
we will use beam search to attempt to find:

argmax
y∈GEN(x)

m∑
j=1

v(y j) · φ(x, y1 . . . y j−1).

Thus each decision y j receives a score:

v(y j) · φ(x, y1 . . . y j−1).

In the perceptron with early updates, the param-
eters v(y) are trained as follows. On each train-
ing example, we run beam search until the gold-
standard parse tree falls out of the beam.1 De-
fine j to be the length of the beam at this point.
A structured perceptron update is performed using
the gold-standard decisions y1 . . . y j as the target,
and the highest scoring (incorrect) member of the
beam as the negative example.

A key idea in this paper is to use the neural net-
work to define the representation φ(x, c). Given
the sentence x and the configuration c, assuming
two hidden layers, the neural network defines val-
ues for h1, h2, and P(y) for each decision y. We
experimented with various definitions of φ (Sec-
tion 5.2) and found that φ(x, c) = [h1 h2 P(y)] (the
concatenation of the outputs from both hidden lay-
ers, as well as the probabilities for all decisions y
possible in the current configuration) had the best
accuracy on development data.

Note that it is possible to continue to use back-
propagation to learn the representation φ(x, c) dur-
ing perceptron training; however, we found using
ASGD to pre-train the representation always led to
faster, more accurate results in preliminary exper-
iments, and we left further investigation for future
work.

3.3 Incorporating Unlabeled Data
Given the high capacity, non-linear nature of the
deep network we hypothesize that our model can

1If the gold parse tree stays within the beam until the end
of the sentence, conventional perceptron updates are used.

326



be significantly improved by incorporating more
data. One way to use unlabeled data is through
unsupervised methods such as word clusters (Koo
et al., 2008); we follow Chen and Manning (2014)
and use pretrained word embeddings to initial-
ize our model. The word embeddings capture
similar distributional information as word clusters
and give consistent improvements by providing a
good initialization and information about words
not seen in the treebank data.

However, obtaining more training data is even
more important than a good initialization. One
potential way to obtain additional training data is
by parsing unlabeled data with previously trained
models. McClosky et al. (2006) and Huang and
Harper (2009) showed that iteratively re-training
a single model (“self-training”) can be used to
improve parsers in certain settings; Petrov et al.
(2010) built on this work and showed that a slow
and accurate parser can be used to “up-train” a
faster but less accurate parser.

In this work, we adopt the “tri-training” ap-
proach of Li et al. (2014): Two parsers are used to
process the unlabeled corpus and only sentences
for which both parsers produced the same parse
tree are added to the training data. The intu-
ition behind this idea is that the chance of the
parse being correct is much higher when the two
parsers agree: there is only one way to be correct,
while there are many possible incorrect parses. Of
course, this reasoning holds only as long as the
parsers suffer from different biases.

We show that tri-training is far more effective
than vanilla up-training for our neural network
model. We use same setup as Li et al. (2014), in-
tersecting the output of the BerkeleyParser (Petrov
et al., 2006), and a reimplementation of ZPar
(Zhang and Nivre, 2011) as our baseline parsers.
The two parsers agree only 36% of the time on
the tune set, but their accuracy on those sentences
is 97.26% UAS, approaching the inter annotator
agreement rate. These sentences are of course eas-
ier to parse, having an average length of 15 words,
compared to 24 words for the tune set overall.
However, because we only use these sentences to
extract individual transition decisions, the shorter
length does not seem to hurt their utility. We gen-
erate 107 tokens worth of new parses and use this
data in the backpropagation stage of training.

4 Experiments

In this section we present our experimental setup
and the main results of our work.

4.1 Experimental Setup

We conduct our experiments on two English lan-
guage benchmarks: (1) the standard Wall Street
Journal (WSJ) part of the Penn Treebank (Marcus
et al., 1993) and (2) a more comprehensive union
of publicly available treebanks spanning multiple
domains. For the WSJ experiments, we follow
standard practice and use sections 2-21 for train-
ing, section 22 for development and section 23 as
the final test set. Since there are many hyperpa-
rameters in our models, we additionally use sec-
tion 24 for tuning. We convert the constituency
trees to Stanford style dependencies (De Marneffe
et al., 2006) using version 3.3.0 of the converter.
We use a CRF-based POS tagger to generate 5-
fold jack-knifed POS tags on the training set and
predicted tags on the dev, test and tune sets; our
tagger gets comparable accuracy to the Stanford
POS tagger (Toutanova et al., 2003) with 97.44%
on the test set. We report unlabeled attachment
score (UAS) and labeled attachment score (LAS)
excluding punctuation on predicted POS tags, as
is standard for English.

For the second set of experiments, we follow
the same procedure as above, but with a more di-
verse dataset for training and evaluation. Follow-
ing Vinyals et al. (2015), we use (in addition to the
WSJ), the OntoNotes corpus version 5 (Hovy et
al., 2006), the English Web Treebank (Petrov and
McDonald, 2012), and the updated and corrected
Question Treebank (Judge et al., 2006). We train
on the union of each corpora’s training set and test
on each domain separately. We refer to this setup
as the “Treebank Union” setup.

In our semi-supervised experiments, we use the
corpus from Chelba et al. (2013) as our source of
unlabeled data. We process it with the Berkeley-
Parser (Petrov et al., 2006), a latent variable con-
stituency parser, and a reimplementation of ZPar
(Zhang and Nivre, 2011), a transition-based parser
with beam search. Both parsers are included as
baselines in our evaluation. We select the first
107 tokens for which the two parsers agree as
additional training data. For our tri-training ex-
periments, we re-train the POS tagger using the
POS tags assigned on the unlabeled data from the
Berkeley constituency parser. This increases POS
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Method UAS LAS Beam

Graph-based
Bohnet (2010) 92.88 90.71 n/a
Martins et al. (2013) 92.89 90.55 n/a
Zhang and McDonald (2014) 93.22 91.02 n/a

Transition-based
?Zhang and Nivre (2011) 93.00 90.95 32
Bohnet and Kuhn (2012) 93.27 91.19 40
Chen and Manning (2014) 91.80 89.60 1
S-LSTM (Dyer et al., 2015) 93.20 90.90 1
Our Greedy 93.19 91.18 1
Our Perceptron 93.99 92.05 8

Tri-training
?Zhang and Nivre (2011) 92.92 90.88 32
Our Greedy 93.46 91.49 1
Our Perceptron 94.26 92.41 8

Table 1: Final WSJ test set results. We compare our system to
state-of-the-art graph-based and transition-based dependency
parsers. ? denotes our own re-implementation of the system
so we could compare tri-training on a competitive baseline.
All methods except Chen and Manning (2014) and Dyer et
al. (2015) were run using predicted tags from our POS tag-
ger. For reference, the accuracy of the Berkeley constituency
parser (after conversion) is 93.61% UAS / 91.51% LAS.

accuracy slightly to 97.57% on the WSJ.

4.2 Model Initialization & Hyperparameters

In all cases, we initialized Wi and β randomly us-
ing a Gaussian distribution with variance 10−4. We
used fixed initialization with bi = 0.2, to ensure
that most Relu units are activated during the initial
rounds of training. We did not systematically com-
pare this random scheme to others, but we found
that it was sufficient for our purposes.

For the word embedding matrix Eword, we
initialized the parameters using pretrained word
embeddings. We used the publicly available
word2vec2 tool (Mikolov et al., 2013) to learn
CBOW embeddings following the sample config-
uration provided with the tool. For words not ap-
pearing in the unsupervised data and the special
“NULL” etc. tokens, we used random initializa-
tion. In preliminary experiments we found no dif-
ference between training the word embeddings on
1 billion or 10 billion tokens. We therefore trained
the word embeddings on the same corpus we used
for tri-training (Chelba et al., 2013).

We set Dword = 64 and Dtag = Dlabel = 32 for
embedding dimensions and M1 = M2 = 2048 hid-
den units in our final experiments. For the percep-

2http://code.google.com/p/word2vec/

Method News Web QTB

Graph-based
Bohnet (2010) 91.38 85.22 91.49
Martins et al. (2013) 91.13 85.04 91.54
Zhang and McDonald (2014) 91.48 85.59 90.69

Transition-based
?Zhang and Nivre (2011) 91.15 85.24 92.46
Bohnet and Kuhn (2012) 91.69 85.33 92.21
Our Greedy 91.21 85.41 90.61
Our Perceptron (B=16) 92.25 86.44 92.06

Tri-training
?Zhang and Nivre (2011) 91.46 85.51 91.36
Our Greedy 91.82 86.37 90.58
Our Perceptron (B=16) 92.62 87.00 93.05

Table 2: Final Treebank Union test set results. We report
LAS only for brevity; see Appendix for full results. For these
tri-training results, we sampled sentences to ensure the dis-
tribution of sentence lengths matched the distribution in the
training set, which we found marginally improved the ZPar
tri-training performance. For reference, the accuracy of the
Berkeley constituency parser (after conversion) is 91.66%
WSJ, 85.93% Web, and 93.45% QTB.

tron layer, we used φ(x, c) = [h1 h2 P(y)] (con-
catenation of all intermediate layers). All hyper-
parameters (including structure) were tuned using
Section 24 of the WSJ only. When not tri-training,
we used hyperparameters of γ = 0.2, η0 = 0.05,
µ = 0.9, early stopping after roughly 16 hours of
training time. With the tri-training data, we de-
creased η0 = 0.05, increased γ = 0.5, and de-
creased the size of the network to M1 = 1024,
M2 = 256 for run-time efficiency, and trained the
network for approximately 4 days. For the Tree-
bank Union setup, we set M1 = M2 = 1024 for the
standard training set and for the tri-training setup.

4.3 Results

Table 1 shows our final results on the WSJ test
set, and Table 2 shows the cross-domain results
from the Treebank Union. We compare to the best
dependency parsers in the literature. For (Chen
and Manning, 2014) and (Dyer et al., 2015), we
use reported results; the other baselines were run
by Bernd Bohnet using version 3.3.0 of the Stan-
ford dependencies and our predicted POS tags for
all datasets to make comparisons as fair as possi-
ble. On the WSJ and Web tasks, our parser out-
performs all dependency parsers in our compari-
son by a substantial margin. The Question (QTB)
dataset is more sensitive to the smaller beam size
we use in order to train the models in a reason-
able time; if we increase to B = 32 at inference
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time only, our perceptron performance goes up to
92.29% LAS.

Since many of the baselines could not be di-
rectly compared to our semi-supervised approach,
we re-implemented Zhang and Nivre (2011) and
trained on the tri-training corpus. Although tri-
training did help the baseline on the dev set (Fig-
ure 4), test set performance did not improve sig-
nificantly. In contrast, it is quite exciting to see
that after tri-training, even our greedy parser is
more accurate than any of the baseline depen-
dency parsers and competitive with the Berkeley-
Parser used to generate the tri-training data. As ex-
pected, tri-training helps most dramatically to in-
crease accuracy on the Treebank Union setup with
diverse domains, yielding 0.4-1.0% absolute LAS
improvement gains for our most accurate model.

Unfortunately we are not able to compare to
several semi-supervised dependency parsers that
achieve some of the highest reported accuracies
on the WSJ, in particular Suzuki et al. (2009),
Suzuki et al. (2011) and Chen et al. (2013). These
parsers use the Yamada and Matsumoto (2003) de-
pendency conversion and the accuracies are there-
fore not directly comparable. The highest of these
is Suzuki et al. (2011), with a reported accuracy
of 94.22% UAS. Even though the UAS is not di-
rectly comparable, it is typically similar, and this
suggests that our model is competitive with some
of the highest reported accuries for dependencies
on WSJ.

5 Discussion

In this section, we investigate the contribution of
the various components of our approach through
ablation studies and other systematic experiments.
We tune on Section 24, and use Section 22 for
comparisons in order to not pollute the official test
set (Section 23). We focus on UAS as we found
the LAS scores to be strongly correlated. Unless
otherwise specified, we use 200 hidden units in
each layer to be able to run more ablative exper-
iments in a reasonable amount of time.

5.1 Impact of Network Structure

In addition to initialization and hyperparameter
tuning, there are several additional choices about
model structure and size a practitioner faces when
implementing a neural network model. We ex-
plore these questions and justify the particular
choices we use in the following. Note that we do
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Figure 2: Effect of hidden layers and pre-training on vari-
ance of random restarts. Initialization was either completely
random or initialized with word2vec embeddings (“Pre-
trained”), and either one or two hidden layers of size 200
were used (“200” vs “200x200”). Each point represents
maximization over a small hyperparameter grid with early
stopping based on WSJ tune set UAS score. Dword = 64,
Dtag,Dlabel = 16.

not use a beam for this analysis and therefore do
not train the final perceptron layer. This is done
in order to reduce training times and because the
trends persist across settings.

Variance reduction with pre-trained embed-
dings. Since the learning problem is non-
convex, different initializations of the parameters
yield different solutions to the learning problem.
Thus, for any given experiment, we ran multiple
random restarts for every setting of our hyperpa-
rameters and picked the model that performed best
using the held-out tune set. We found it important
to allow the model to stop training early if tune set
accuracy decreased.

We visualize the performance of 32 random
restarts with one or two hidden layers and with
and without pretrained word embeddings in Fig-
ure 2, and a summary of the figure in Table 3.
While adding a second hidden layer results in a
large gain on the tune set, there is no gain on the
dev set if pre-trained embeddings are not used.
In fact, while the overall UAS scores of the tune
set and dev set are strongly correlated (ρ = 0.64,
p < 10−10), they are not significantly correlated
if pre-trained embeddings are not used (ρ = 0.12,
p > 0.3). This suggests that an additional bene-
fit of pre-trained embeddings, aside from allowing
learning to reach a more accurate solution, is to
push learning towards a solution that generalizes
to more data.
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Pre Hidden WSJ §24 (Max) WSJ §22
Y 200 × 200 92.10 ± 0.11 92.58 ±0.12
Y 200 91.76 ± 0.09 92.30 ± 0.10
N 200 × 200 91.84 ± 0.11 92.19 ± 0.13
N 200 91.55 ± 0.10 92.20 ± 0.12

Table 3: Impact of network architecture on UAS for greedy
inference. We select the best model from 32 random restarts
based on the tune set and show the resulting dev set accuracy.
We also show the standard deviation across the 32 restarts.

# Hidden 64 128 256 512 1024 2048
1 Layer 91.73 92.27 92.48 92.73 92.74 92.83
2 Layers 91.89 92.40 92.71 92.70 92.96 93.13

Table 4: Increasing hidden layer size increases WSJ Dev
UAS. Shown is the average WSJ Dev UAS across hyperpa-
rameter tuning and early stopping with 3 random restarts with
a greedy model.

Diminishing returns with increasing embed-
ding dimensions. For these experiments, we
fixed one embedding type to a high value and
reduced the dimensionality of all others to very
small values. The results are plotted in Figure
3, suggesting larger embeddings do not signifi-
cantly improve results. We also ran tri-training
on a very compact model with Dword = 8 and
Dtag = Dlabel = 2 (8× fewer parameters than our
full model) which resulted in 92.33% UAS accu-
racy on the dev set. This is comparable to the full
model without tri-training, suggesting that more
training data can compensate for fewer parame-
ters.

Increasing hidden units yields large gains. For
these experiments, we fixed the embedding sizes
Dword = 64, Dtag = Dlabel = 32 and tried increas-
ing and decreasing the dimensionality of the hid-
den layers on a logarthmic scale. Improvements in
accuracy did not appear to saturate even with in-
creasing the number of hidden units by an order of
magnitude, though the network became too slow
to train effectively past M = 2048. These results
suggest that there are still gains to be made by in-
creasing the efficiency of larger networks, even for
greedy shift-reduce parsers.

5.2 Impact of Structured Perceptron

We now turn our attention to the importance of
structured perceptron training as well as the im-
pact of different latent representations.

Bias reduction through structured training.
To evaluate the impact of structured training, we

Beam 1 2 4 8 16 32
WSJ Only

ZN’11 90.55 91.36 92.54 92.62 92.88 93.09
Softmax 92.74 93.07 93.16 93.25 93.24 93.24
Perceptron 92.73 93.06 93.40 93.47 93.50 93.58

Tri-training
ZN’11 91.65 92.37 93.37 93.24 93.21 93.18
Softmax 93.71 93.82 93.86 93.87 93.87 93.87
Perceptron 93.69 94.00 94.23 94.33 94.31 94.32

Table 5: Beam search always yields significant gains but us-
ing perceptron training provides even larger benefits, espe-
cially for the tri-trained neural network model. The best re-
sult for each model is highlighted in bold.

φ(x, c) WSJ Only Tri-training
[h2] 93.16 93.93

[P(y)] 93.26 93.80
[h1 h2] 93.33 93.95

[h1 h2 P(y)] 93.47 94.33

Table 6: Utilizing all intermediate representations improves
performance on the WSJ dev set. All results are with B = 8.

compare using the estimates P(y) from the neural
network directly for beam search to using the acti-
vations from all layers as features in the structured
perceptron. Using the probability estimates di-
rectly is very similar to Ratnaparkhi (1997), where
a maximum-entropy model was used to model the
distribution over possible actions at each parser
state, and beam search was used to search for the
highest probability parse. A known problem with
beam search in this setting is the label-bias prob-
lem. Table 5 shows the impact of using structured
perceptron training over using the softmax func-
tion during beam search as a function of the beam
size used. For reference, our reimplementation of
Zhang and Nivre (2011) is trained equivalently for
each setting. We also show the impact on beam
size when tri-training is used. Although the beam
does marginally improve accuracy for the softmax
model, much greater gains are achieved when per-
ceptron training is used.

Using all hidden layers crucial for structured
perceptron. We also investigated the impact of
connecting the final perceptron layer to all prior
hidden layers (Table 6). Our results suggest that
all intermediate layers of the network are indeed
discriminative. Nonetheless, aggregating all of
their activations proved to be the most effective
representation for the structured perceptron. This
suggests that the representations learned by the
network collectively contain the information re-

330



1 2 4 8 16 32 64 128
89.5

90

90.5

91

91.5

92

Word Embedding Dimension (D
words

)

U
A

S
 (

%
)

Word Tuning on WSJ (Tune Set, D
pos

,D
labels

=32)

 

 

Pretrained 200x200
Pretrained 200
200x200
200

1 2 4 8 16 32
90.5

91

91.5

92

POS/Label Embedding Dimension (D
pos

,D
labels

)

U
A

S
 (

%
)

POS/Label Tuning on WSJ (Tune Set, D
words

=64)

 

 

Pretrained 200x200
Pretrained 200
200x200
200

Figure 3: Effect of embedding dimensions on the WSJ tune set.

quired to reduce the bias of the model, but not
when filtered through the softmax layer. Finally,
we also experimented with connecting both hid-
den layers to the softmax layer during backpropa-
gation training, but we found this did not signifi-
cantly affect the performance of the greedy model.

5.3 Impact of Tri-Training

To evaluate the impact of the tri-training approach,
we compared to up-training with the Berkely-
Parser (Petrov et al., 2006) alone. The results are
summarized in Figure 4 for the greedy and percep-
tron neural net models as well as our reimplemen-
tated Zhang and Nivre (2011) baseline.

For our neural network model, training on the
output of the BerkeleyParser yields only modest
gains, while training on the data where the two
parsers agree produces significantly better results.
This was especially pronounced for the greedy
models: after tri-training, the greedy neural net-
work model surpasses the BerkeleyParser in accu-
racy. It is also interesting to note that up-training
improved results far more than tri-training for the
baseline. We speculate that this is due to the a
lack of diversity in the tri-training data for this
model, since the same baseline model was inter-
sected with the BerkeleyParser to generate the tri-
training data.

5.4 Error Analysis

Regardless of tri-training, using the structured per-
ceptron improved error rates on some of the com-
mon and difficult labels: ROOT, ccomp, cc, conj,
and nsubj all improved by >1%. We inspected
the learned perceptron weights v for the softmax
probabilities P(y) (see Appendix) and found that
the perceptron reweights the softmax probabilities
based on common confusions; e.g. a strong neg-
ative weight for the action RIGHT(ccomp) given
the softmax model outputs RIGHT(conj). Note

ZN’11 (B=1) ZN’11 (B=32) Ours (B=1) Ours (B=8)
90

91

92

93

94

95
Semi−supervised Training (WSJ Dev Set)

 

 
Base Up Tri Berkeley

Figure 4: Semi-supervised training with 107 additional to-
kens, showing that tri-training gives significant improve-
ments over up-training for our neural net model.

that this trend did not hold when φ(x, c) = [P(y)];
without the hidden layer, the perceptron was not
able to reweight the softmax probabilities to ac-
count for the greedy model’s biases.

6 Conclusion

We presented a new state of the art in dependency
parsing: a transition-based neural network parser
trained with the structured perceptron and ASGD.
We then combined this approach with unlabeled
data and tri-training to further push state-of-the-art
in semi-supervised dependency parsing. Nonethe-
less, our ablative analysis suggests that further
gains are possible simply by scaling up our system
to even larger representations. In future work, we
will apply our method to other languages, explore
end-to-end training of the system using structured
learning, and scale up the method to larger datasets
and network structures.
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Abstract

We propose a technique for learning rep-
resentations of parser states in transition-
based dependency parsers. Our primary
innovation is a new control structure for
sequence-to-sequence neural networks—
the stack LSTM. Like the conventional
stack data structures used in transition-
based parsing, elements can be pushed to
or popped from the top of the stack in
constant time, but, in addition, an LSTM
maintains a continuous space embedding
of the stack contents. This lets us formu-
late an efficient parsing model that cap-
tures three facets of a parser’s state: (i)
unbounded look-ahead into the buffer of
incoming words, (ii) the complete history
of actions taken by the parser, and (iii) the
complete contents of the stack of partially
built tree fragments, including their inter-
nal structures. Standard backpropagation
techniques are used for training and yield
state-of-the-art parsing performance.

1 Introduction

Transition-based dependency parsing formalizes
the parsing problem as a series of decisions that
read words sequentially from a buffer and combine
them incrementally into syntactic structures (Ya-
mada and Matsumoto, 2003; Nivre, 2003; Nivre,
2004). This formalization is attractive since the
number of operations required to build any projec-
tive parse tree is linear in the length of the sen-
tence, making transition-based parsing computa-
tionally efficient relative to graph- and grammar-
based formalisms. The challenge in transition-
based parsing is modeling which action should be
taken in each of the unboundedly many states en-
countered as the parser progresses.

This challenge has been addressed by develop-
ment of alternative transition sets that simplify the
modeling problem by making better attachment

decisions (Nivre, 2007; Nivre, 2008; Nivre, 2009;
Choi and McCallum, 2013; Bohnet and Nivre,
2012), through feature engineering (Zhang and
Nivre, 2011; Ballesteros and Nivre, 2014; Chen et
al., 2014; Ballesteros and Bohnet, 2014) and more
recently using neural networks (Chen and Man-
ning, 2014; Stenetorp, 2013).

We extend this last line of work by learning
representations of the parser state that are sensi-
tive to the complete contents of the parser’s state:
that is, the complete input buffer, the complete
history of parser actions, and the complete con-
tents of the stack of partially constructed syn-
tactic structures. This “global” sensitivity to the
state contrasts with previous work in transition-
based dependency parsing that uses only a nar-
row view of the parsing state when constructing
representations (e.g., just the next few incoming
words, the head words of the top few positions
in the stack, etc.). Although our parser integrates
large amounts of information, the representation
used for prediction at each time step is constructed
incrementally, and therefore parsing and training
time remain linear in the length of the input sen-
tence. The technical innovation that lets us do this
is a variation of recurrent neural networks with
long short-term memory units (LSTMs) which we
call stack LSTMs (§2), and which support both
reading (pushing) and “forgetting” (popping) in-
puts.

Our parsing model uses three stack LSTMs: one
representing the input, one representing the stack
of partial syntactic trees, and one representing the
history of parse actions to encode parser states
(§3). Since the stack of partial syntactic trees may
contain both individual tokens and partial syntac-
tic structures, representations of individual tree
fragments are computed compositionally with re-
cursive (i.e., similar to Socher et al., 2014) neural
networks. The parameters are learned with back-
propagation (§4), and we obtain state-of-the-art re-
sults on Chinese and English dependency parsing
tasks (§5).
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2 Stack LSTMs

In this section we provide a brief review of LSTMs
(§2.1) and then define stack LSTMs (§2.2).

Notation. We follow the convention that vectors
are written with lowercase, boldface letters (e.g., v
or vw); matrices are written with uppercase, bold-
face letters (e.g., M, Ma, or Mab), and scalars are
written as lowercase letters (e.g., s or qz). Struc-
tured objects such as sequences of discrete sym-
bols are written with lowercase, bold, italic letters
(e.g., w refers to a sequence of input words). Dis-
cussion of dimensionality is deferred to the exper-
iments section below (§5).

2.1 Long Short-Term Memories

LSTMs are a variant of recurrent neural networks
(RNNs) designed to cope with the vanishing gra-
dient problem inherent in RNNs (Hochreiter and
Schmidhuber, 1997; Graves, 2013). RNNs read
a vector xt at each time step and compute a
new (hidden) state ht by applying a linear map
to the concatenation of the previous time step’s
state ht−1 and the input, and passing this through
a logistic sigmoid nonlinearity. Although RNNs
can, in principle, model long-range dependencies,
training them is difficult in practice since the re-
peated application of a squashing nonlinearity at
each step results in an exponential decay in the er-
ror signal through time. LSTMs address this with
an extra memory “cell” (ct) that is constructed as a
linear combination of the previous state and signal
from the input.

LSTM cells process inputs with three multi-
plicative gates which control what proportion of
the current input to pass into the memory cell (it)
and what proportion of the previous memory cell
to “forget” (ft). The updated value of the memory
cell after an input xt is computed as follows:

it = σ(Wixxt + Wihht−1 + Wicct−1 + bi)
ft = σ(Wfxxt + Wfhht−1 + Wfcct−1 + bf )
ct = ft � ct−1+

it � tanh(Wcxxt + Wchht−1 + bc),

where σ is the component-wise logistic sig-
moid function, and � is the component-wise
(Hadamard) product.

The value ht of the LSTM at each time step is
controlled by a third gate (ot) that is applied to the
result of the application of a nonlinearity to the

memory cell contents:

ot = σ(Woxxt + Wohht−1 + Wocct + bo)
ht = ot � tanh(ct).

To improve the representational capacity of
LSTMs (and RNNs generally), LSTMs can be
stacked in “layers” (Pascanu et al., 2014). In these
architectures, the input LSTM at higher layers at
time t is the value of ht computed by the lower
layer (and xt is the input at the lowest layer).

Finally, output is produced at each time step
from the ht value at the top layer:

yt = g(ht),

where g is an arbitrary differentiable function.

2.2 Stack Long Short-Term Memories

Conventional LSTMs model sequences in a left-
to-right order.1 Our innovation here is to augment
the LSTM with a “stack pointer.” Like a conven-
tional LSTM, new inputs are always added in the
right-most position, but in stack LSTMs, the cur-
rent location of the stack pointer determines which
cell in the LSTM provides ct−1 and ht−1 when
computing the new memory cell contents.

In addition to adding elements to the end of the
sequence, the stack LSTM provides a pop oper-
ation which moves the stack pointer to the previ-
ous element (i.e., the previous element that was
extended, not necessarily the right-most element).
Thus, the LSTM can be understood as a stack im-
plemented so that contents are never overwritten,
that is, push always adds a new entry at the end of
the list that contains a back-pointer to the previous
top, and pop only updates the stack pointer.2 This
control structure is schematized in Figure 1.

By querying the output vector to which the stack
pointer points (i.e., the hTOP), a continuous-space
“summary” of the contents of the current stack
configuration is available. We refer to this value
as the “stack summary.”

What does the stack summary look like? In-
tuitively, elements near the top of the stack will

1Ours is not the first deviation from a strict left-to-
right order: previous variations include bidirectional LSTMs
(Graves and Schmidhuber, 2005) and multidimensional
LSTMs (Graves et al., 2007).

2Goldberg et al. (2013) propose a similar stack construc-
tion to prevent stack operations from invalidating existing ref-
erences to the stack in a beam-search parser that must (effi-
ciently) maintain a priority queue of stacks.
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Figure 1: A stack LSTM extends a conventional left-to-right LSTM with the addition of a stack pointer
(notated as TOP in the figure). This figure shows three configurations: a stack with a single element (left),
the result of a pop operation to this (middle), and then the result of applying a push operation (right).
The boxes in the lowest rows represent stack contents, which are the inputs to the LSTM, the upper rows
are the outputs of the LSTM (in this paper, only the output pointed to by TOP is ever accessed), and the
middle rows are the memory cells (the ct’s and ht’s) and gates. Arrows represent function applications
(usually affine transformations followed by a nonlinearity), refer to §2.1 for specifics.

influence the representation of the stack. How-
ever, the LSTM has the flexibility to learn to ex-
tract information from arbitrary points in the stack
(Hochreiter and Schmidhuber, 1997).

Although this architecture is to the best of
our knowledge novel, it is reminiscent of the
Recurrent Neural Network Pushdown Automa-
ton (NNPDA) of Das et al. (1992), which added an
external stack memory to an RNN. However, our
architecture provides an embedding of the com-
plete contents of the stack, whereas theirs made
only the top of the stack visible to the RNN.

3 Dependency Parser

We now turn to the problem of learning represen-
tations of dependency parsers. We preserve the
standard data structures of a transition-based de-
pendency parser, namely a buffer of words (B)
to be processed and a stack (S) of partially con-
structed syntactic elements. Each stack element
is augmented with a continuous-space vector em-
bedding representing a word and, in the case of
S, any of its syntactic dependents. Additionally,
we introduce a third stack (A) to represent the his-
tory of actions taken by the parser.3 Each of these
stacks is associated with a stack LSTM that pro-
vides an encoding of their current contents. The
full architecture is illustrated in Figure 3, and we
will review each of the components in turn.

3The A stack is only ever pushed to; our use of a stack
here is purely for implementational and expository conve-
nience.

3.1 Parser Operation

The dependency parser is initialized by pushing
the words and their representations (we discuss
word representations below in §3.3) of the input
sentence in reverse order onto B such that the first
word is at the top of B and the ROOT symbol is at
the bottom, and S and A each contain an empty-
stack token. At each time step, the parser com-
putes a composite representation of the stack states
(as determined by the current configurations of B,
S, andA) and uses that to predict an action to take,
which updates the stacks. Processing completes
whenB is empty (except for the empty-stack sym-
bol), S contains two elements, one representing
the full parse tree headed by the ROOT symbol and
the other the empty-stack symbol, andA is the his-
tory of operations taken by the parser.

The parser state representation at time t, which
we write pt, which is used to is determine the tran-
sition to take, is defined as follows:

pt = max {0,W[st;bt;at] + d} ,

where W is a learned parameter matrix, bt is
the stack LSTM encoding of the input buffer B,
st is the stack LSTM encoding of S, at is the
stack LSTM encoding of A, d is a bias term, then
passed through a component-wise rectified linear
unit (ReLU) nonlinearity (Glorot et al., 2011).4

Finally, the parser state pt is used to compute

4In preliminary experiments, we tried several nonlineari-
ties and found ReLU to work slightly better than the others.
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Figure 2: Parser state computation encountered while parsing the sentence “an overhasty decision was
made.” Here S designates the stack of partially constructed dependency subtrees and its LSTM encod-
ing; B is the buffer of words remaining to be processed and its LSTM encoding; and A is the stack
representing the history of actions taken by the parser. These are linearly transformed, passed through a
ReLU nonlinearity to produce the parser state embedding pt. An affine transformation of this embedding
is passed to a softmax layer to give a distribution over parsing decisions that can be taken.

the probability of the parser action at time t as:

p(zt | pt) =
exp

(
g>zt

pt + qzt

)∑
z′∈A(S,B) exp

(
g>z′pt + qz′

) ,
where gz is a column vector representing the (out-
put) embedding of the parser action z, and qz is
a bias term for action z. The set A(S,B) repre-
sents the valid actions that may be taken given the
current contents of the stack and buffer.5 Since
pt = f(st,bt,at) encodes information about all
previous decisions made by the parser, the chain
rule may be invoked to write the probability of any
valid sequence of parse actions z conditional on
the input as:

p(z | w) =
|z|∏
t=1

p(zt | pt). (1)

3.2 Transition Operations

Our parser is based on the arc-standard transition
inventory (Nivre, 2004), given in Figure 3.

5In general, A(S,B) is the complete set of parser actions
discussed in §3.2, but in some cases not all actions are avail-
able. For example, when S is empty and words remain in B,
a SHIFT operation is obligatory (Sartorio et al., 2013).

Why arc-standard? Arc-standard transitions
parse a sentence from left to right, using a stack
to store partially built syntactic structures and
a buffer that keeps the incoming tokens to be
parsed. The parsing algorithm chooses an action
at each configuration by means of a score. In
arc-standard parsing, the dependency tree is con-
structed bottom-up, because right-dependents of a
head are only attached after the subtree under the
dependent is fully parsed. Since our parser recur-
sively computes representations of tree fragments,
this construction order guarantees that once a syn-
tactic structure has been used to modify a head, the
algorithm will not try to find another head for the
dependent structure. This means we can evaluate
composed representations of tree fragments incre-
mentally; we discuss our strategy for this below
(§3.4).

3.3 Token Embeddings and OOVs

To represent each input token, we concatenate
three vectors: a learned vector representation for
each word type (w); a fixed vector representa-
tion from a neural language model (w̃LM), and a
learned representation (t) of the POS tag of the to-
ken, provided as auxiliary input to the parser. A
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Figure 3: Parser transitions indicating the action applied to the stack and buffer and the resulting stack
and buffer states. Bold symbols indicate (learned) embeddings of words and relations, script symbols
indicate the corresponding words and relations.

linear map (V) is applied to the resulting vector
and passed through a component-wise ReLU,

x = max {0,V[w; w̃LM; t] + b} .

This mapping can be shown schematically as in
Figure 4.

overhasty JJUNK decision NNdecision

x2 x3

t2 t3w2w̃LM
2 w̃LM

3 w3

Figure 4: Token embedding of the words decision,
which is present in both the parser’s training data
and the language model data, and overhasty, an
adjective that is not present in the parser’s training
data but is present in the LM data.

This architecture lets us deal flexibly with out-
of-vocabulary words—both those that are OOV in
both the very limited parsing data but present in
the pretraining LM, and words that are OOV in
both. To ensure we have estimates of the OOVs in
the parsing training data, we stochastically replace
(with p = 0.5) each singleton word type in the
parsing training data with the UNK token in each
training iteration.

Pretrained word embeddings. A veritable cot-
tage industry exists for creating word embeddings,
meaning numerous pretraining options for w̃LM
are available. However, for syntax modeling prob-
lems, embedding approaches which discard order
perform less well (Bansal et al., 2014); therefore
we used a variant of the skip n-gram model in-
troduced by Ling et al. (2015), named “structured
skip n-gram,” where a different set of parameters
is used to predict each context word depending on
its position relative to the target word. The hy-
perparameters of the model are the same as in the
skip n-gram model defined in word2vec (Mikolov

et al., 2013), and we set the window size to 5, used
a negative sampling rate to 10, and ran 5 epochs
through unannotated corpora described in §5.1.

3.4 Composition Functions
Recursive neural network models enable complex
phrases to be represented compositionally in terms
of their parts and the relations that link them
(Socher et al., 2011; Socher et al., 2013c; Her-
mann and Blunsom, 2013; Socher et al., 2013b).
We follow this previous line of work in embed-
ding dependency tree fragments that are present in
the stack S in the same vector space as the token
embeddings discussed above.

A particular challenge here is that a syntactic
head may, in general, have an arbitrary number
of dependents. To simplify the parameterization
of our composition function, we combine head-
modifier pairs one at a time, building up more
complicated structures in the order they are “re-
duced” in the parser, as illustrated in Figure 5.
Each node in this expanded syntactic tree has a
value computed as a function of its three argu-
ments: the syntactic head (h), the dependent (d),
and the syntactic relation being satisfied (r). We
define this by concatenating the vector embed-
dings of the head, dependent and relation, apply-
ing a linear operator and a component-wise non-
linearity as follows:

c = tanh (U[h;d; r] + e) .

For the relation vector, we use an embedding of
the parser action that was applied to construct the
relation (i.e., the syntactic relation paired with the
direction of attachment).

4 Training Procedure

We trained our parser to maximize the conditional
log-likelihood (Eq. 1) of treebank parses given
sentences. Our implementation constructs a com-
putation graph for each sentence and runs forward-
and backpropagation to obtain the gradients of this
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Figure 5: The representation of a depen-
dency subtree (above) is computed by re-
cursively applying composition functions to
〈head,modifier, relation〉 triples. In the case of
multiple dependents of a single head, the recur-
sive branching order is imposed by the order of
the parser’s reduce operations (below).

objective with respect to the model parameters.
The computations for a single parsing model were
run on a single thread on a CPU. Using the dimen-
sions discussed in the next section, we required
between 8 and 12 hours to reach convergence on a
held-out dev set.6

Parameter optimization was performed using
stochastic gradient descent with an initial learn-
ing rate of η0 = 0.1, and the learning rate was
updated on each pass through the training data as
ηt = η0/(1 + ρt), with ρ = 0.1 and where t is the
number of epochs completed. No momentum was
used. To mitigate the effects of “exploding” gra-
dients, we clipped the `2 norm of the gradient to 5
before applying the weight update rule (Sutskever
et al., 2014; Graves, 2013). An `2 penalty of
1× 10−6 was applied to all weights.

Matrix and vector parameters were initialized
with uniform samples in ±√6/(r + c), where r
and c were the number of rows and columns in the
structure (Glorot and Bengio, 2010).

Dimensionality. The full version of our parsing
model sets dimensionalities as follows. LSTM
hidden states are of size 100, and we use two lay-
ers of LSTMs for each stack. Embeddings of the
parser actions used in the composition functions
have 16 dimensions, and the output embedding
size is 20 dimensions. Pretained word embeddings
have 100 dimensions (English) and 80 dimensions
(Chinese), and the learned word embeddings have

6Software for replicating the experiments is available
from https://github.com/clab/lstm-parser.

32 dimensions. Part of speech embeddings have
12 dimensions.

These dimensions were chosen based on in-
tuitively reasonable values (words should have
higher dimensionality than parsing actions, POS
tags, and relations; LSTM states should be rela-
tively large), and it was confirmed on development
data that they performed well.7 Future work might
more carefully optimize these parameters; our re-
ported architecture strikes a balance between min-
imizing computational expense and finding solu-
tions that work.

5 Experiments

We applied our parsing model and several varia-
tions of it to two parsing tasks and report results
below.

5.1 Data
We used the same data setup as Chen and Manning
(2014), namely an English and a Chinese parsing
task. This baseline configuration was chosen since
they likewise used a neural parameterization to
predict actions in an arc-standard transition-based
parser.

• For English, we used the Stanford Depen-
dencency (SD) treebank (de Marneffe et al.,
2006) used in (Chen and Manning, 2014)
which is the closest model published, with
the same splits.8 The part-of-speech tags
are predicted by using the Stanford Tagger
(Toutanova et al., 2003) with an accuracy
of 97.3%. This treebank contains a negligi-
ble amount of non-projective arcs (Chen and
Manning, 2014).

• For Chinese, we use the Penn Chinese Tree-
bank 5.1 (CTB5) following Zhang and Clark
(2008),9 with gold part-of-speech tags which
is also the same as in Chen and Manning
(2014).

Language model word embeddings were gener-
ated, for English, from the AFP portion of the En-
glish Gigaword corpus (version 5), and from the
complete Chinese Gigaword corpus (version 2),

7We did perform preliminary experiments with LSTM
states of 32, 50, and 80, but the other dimensions were our
initial guesses.

8Training: 02-21. Development: 22. Test: 23.
9Training: 001–815, 1001–1136. Development: 886–

931, 1148–1151. Test: 816–885, 1137–1147.
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as segmented by the Stanford Chinese Segmenter
(Tseng et al., 2005).

5.2 Experimental configurations
We report results on five experimental configu-
rations per language, as well as the Chen and
Manning (2014) baseline. These are: the full
stack LSTM parsing model (S-LSTM), the stack
LSTM parsing model without POS tags (−POS),
the stack LSTM parsing model without pretrained
language model embeddings (−pretraining), the
stack LSTM parsing model that uses just head
words on the stack instead of composed represen-
tations (−composition), and the full parsing model
where rather than an LSTM, a classical recurrent
neural network is used (S-RNN).

5.3 Results
Following Chen and Manning (2014) we exclude
punctuation symbols for evaluation. Tables 1 and
2 show comparable results with Chen and Man-
ning (2014), and we show that our model is better
than their model in both the development set and
the test set.

Development Test
UAS LAS UAS LAS

S-LSTM 93.2 90.9 93.1 90.9
−POS 93.1 90.4 92.7 90.3
−pretraining 92.7 90.4 92.4 90.0
−composition 92.7 89.9 92.2 89.6
S-RNN 92.8 90.4 92.3 90.1
C&M (2014) 92.2 89.7 91.8 89.6

Table 1: English parsing results (SD)

Dev. set Test set
UAS LAS UAS LAS

S-LSTM 87.2 85.9 87.2 85.7
−composition 85.8 84.0 85.3 83.6
−pretraining 86.3 84.7 85.7 84.1
−POS 82.8 79.8 82.2 79.1
S-RNN 86.3 84.7 86.1 84.6
C&M (2014) 84.0 82.4 83.9 82.4

Table 2: Chinese parsing results (CTB5)

5.4 Analysis
Overall, our parser substantially outperforms the
baseline neural network parser of Chen and Man-
ning (2014), both in the full configuration and

in the various ablated conditions we report. The
one exception to this is the −POS condition for
the Chinese parsing task, which in which we un-
derperform their baseline (which used gold POS
tags), although we do still obtain reasonable pars-
ing performance in this limited case. We note
that predicted POS tags in English add very lit-
tle value—suggesting that we can think of parsing
sentences directly without first tagging them. We
also find that using composed representations of
dependency tree fragments outperforms using rep-
resentations of head words alone, which has im-
plications for theories of headedness. Finally, we
find that while LSTMs outperform baselines that
use only classical RNNs, these are still quite capa-
ble of learning good representations.

Effect of beam size. Beam search was deter-
mined to have minimal impact on scores (abso-
lute improvements of ≤ 0.3% were possible with
small beams). Therefore, all results we report
used greedy decoding—Chen and Manning (2014)
likewise only report results with greedy decoding.
This finding is in line with previous work that gen-
erates sequences from recurrent networks (Grefen-
stette et al., 2014), although Vinyals et al. (2015)
did report much more substantial improvements
with beam search on their “grammar as a foreign
language” parser.10

6 Related Work

Our approach ties together several strands of pre-
vious work. First, several kinds of stack memories
have been proposed to augment neural architec-
tures. Das et al. (1992) proposed a neural network
with an external stack memory based on recur-
rent neural networks. In contrast to our model, in
which the entire contents of the stack are summa-
rized in a single value, in their model, the network
could only see the contents of the top of the stack.
Mikkulainen (1996) proposed an architecture with
a stack that had a summary feature, although the
stack control was learned as a latent variable.

A variety of authors have used neural networks
to predict parser actions in shift-reduce parsers.
The earliest attempt we are aware of is due to
Mayberry and Miikkulainen (1999). The resur-
gence of interest in neural networks has resulted

10Although superficially similar to ours, Vinyals et al.
(2015) is a phrase-structure parser and adaptation to the de-
pendency parsing scenario would have been nontrivial. We
discuss their work in §6.
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in in several applications to transition-based de-
pendency parsers (Weiss et al., 2015; Chen and
Manning, 2014; Stenetorp, 2013). In these works,
the conditioning structure was manually crafted
and sensitive to only certain properties of the state,
while we are conditioning on the global state ob-
ject. Like us, Stenetorp (2013) used recursively
composed representations of the tree fragments
(a head and its dependents). Neural networks
have also been used to learn representations for
use in chart parsing (Henderson, 2004; Titov and
Henderson, 2007; Socher et al., 2013a; Le and
Zuidema, 2014).

LSTMs have also recently been demonstrated
as a mechanism for learning to represent parse
structure.Vinyals et al. (2015) proposed a phrase-
structure parser based on LSTMs which operated
by first reading the entire input sentence in so as
to obtain a vector representation of it, and then
generating bracketing structures sequentially con-
ditioned on this representation. Although super-
ficially similar to our model, their approach has
a number of disadvantages. First, they relied on
a large amount of semi-supervised training data
that was generated by parsing a large unanno-
tated corpus with an off-the-shelf parser. Sec-
ond, while they recognized that a stack-like shift-
reduce parser control provided useful information,
they only made the top word of the stack visible
during training and decoding. Third, although it
is impressive feat of learning that an entire parse
tree be represented by a vector, it seems that this
formulation makes the problem unnecessarily dif-
ficult.

Finally, our work can be understood as a pro-
gression toward using larger contexts in parsing.
An exhaustive summary is beyond the scope of
this paper, but some of the important milestones
in this tradition are the use of cube pruning to ef-
ficiently include nonlocal features in discrimina-
tive chart reranking (Huang and Chiang, 2008),
approximate decoding techniques based on LP re-
laxations in graph-based parsing to include higher-
order features (Martins et al., 2010), and random-
ized hill-climbing methods that enable arbitrary
nonlocal features in global discriminative parsing
models (Zhang et al., 2014). Since our parser is
sensitive to any part of the input, its history, or its
stack contents, it is similar in spirit to the last ap-
proach, which permits truly arbitrary features.

7 Conclusion

We presented stack LSTMs, recurrent neural net-
works for sequences, with push and pop opera-
tions, and used them to implement a state-of-the-
art transition-based dependency parser. We con-
clude by remarking that stack memory offers in-
triguing possibilities for learning to solve general
information processing problems (Mikkulainen,
1996). Here, we learned from observable stack
manipulation operations (i.e., supervision from a
treebank), and the computed embeddings of final
parser states were not used for any further predic-
tion. However, this could be reversed, giving a de-
vice that learns to construct context-free programs
(e.g., expression trees) given only observed out-
puts; one application would be unsupervised pars-
ing. Such an extension of the work would make
it an alternative to architectures that have an ex-
plicit external memory such as neural Turing ma-
chines (Graves et al., 2014) and memory networks
(Weston et al., 2015). However, as with those
models, without supervision of the stack opera-
tions, formidable computational challenges must
be solved (e.g., marginalizing over all latent stack
operations), but sampling techniques and tech-
niques from reinforcement learning have promise
here (Zaremba and Sutskever, 2015), making this
an intriguing avenue for future work.
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Abstract

Relation triples produced by open domain
information extraction (open IE) systems
are useful for question answering, infer-
ence, and other IE tasks. Traditionally
these are extracted using a large set of pat-
terns; however, this approach is brittle on
out-of-domain text and long-range depen-
dencies, and gives no insight into the sub-
structure of the arguments. We replace this
large pattern set with a few patterns for
canonically structured sentences, and shift
the focus to a classifier which learns to
extract self-contained clauses from longer
sentences. We then run natural logic infer-
ence over these short clauses to determine
the maximally specific arguments for each
candidate triple. We show that our ap-
proach outperforms a state-of-the-art open
IE system on the end-to-end TAC-KBP
2013 Slot Filling task.

1 Introduction

Open information extraction (open IE) has been
shown to be useful in a number of NLP tasks, such
as question answering (Fader et al., 2014), rela-
tion extraction (Soderland et al., 2010), and infor-
mation retrieval (Etzioni, 2011). Conventionally,
open IE systems search a collection of patterns
over either the surface form or dependency tree
of a sentence. Although a small set of patterns
covers most simple sentences (e.g., subject verb
object constructions), relevant relations are often
spread across clauses (see Figure 1) or presented
in a non-canonical form.

Systems like Ollie (Mausam et al., 2012) ap-
proach this problem by using a bootstrapping
method to create a large corpus of broad-coverage
partially lexicalized patterns. Although this is
effective at capturing many of these patterns, it

Born in Honolulu, Hawaii, Obama is a US Citizen.

Our System Ollie

(Obama; is; US citizen) (Obama; is; a US citizen)

(Obama; born in; (Obama; be born in; Honolulu)

Honolulu, Hawaii) (Honolulu; be born in; Hawaii)

(Obama; is citizen of; US)

Friends give true praise.

Enemies give fake praise.

Our System Ollie

(friends; give; true praise) (friends; give; true praise)

(friends; give; praise)

(enemies; give; fake praise) (enemies; give; fake praise)

Heinz Fischer of Austria visits the US

Our System Ollie

(Heinz Fischer; visits; US) (Heinz Fischer of Austria;

visits; the US)

Figure 1: Open IE extractions produced by
the system, alongside extractions from the state-
of-the-art Ollie system. Generating coherent
clauses before applying patterns helps reduce false
matches such as (Honolulu; be born in; Hawaii).
Inference over the sub-structure of arguments, in
turn, allows us to drop unnecessary information
(e.g., of Austria), but only when it is warranted
(e.g., keep fake in fake praise).

can lead to unintuitive behavior on out-of-domain
text. For instance, while Obama is president is
extracted correctly by Ollie as (Obama; is; pres-
ident), replacing is with are in cats are felines
produces no extractions. Furthermore, existing
systems struggle at producing canonical argument
forms – for example, in Figure 1 the argument
Heinz Fischer of Austria is likely less useful for
downstream applications than Heinz Fischer.

In this paper, we shift the burden of extracting
informative and broad coverage triples away from
this large pattern set. Rather, we first pre-process
the sentence in linguistically motivated ways to
produce coherent clauses which are (1) logically
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entailed by the original sentence, and (2) easy to
segment into open IE triples. Our approach con-
sists of two stages: we first learn a classifier for
splitting a sentence into shorter utterances (Sec-
tion 3), and then appeal to natural logic (Sánchez
Valencia, 1991) to maximally shorten these utter-
ances while maintaining necessary context (Sec-
tion 4.1). A small set of 14 hand-crafted patterns
can then be used to segment an utterance into an
open IE triple.

We treat the first stage as a greedy search prob-
lem: we traverse a dependency parse tree recur-
sively, at each step predicting whether an edge
should yield an independent clause. Importantly,
in many cases naı̈vely yielding a clause on a de-
pendency edge produces an incomplete utterance
(e.g., Born in Honolulu, Hawaii, from Figure 1).
These are often attributable to control relation-
ships, where either the subject or object of the
governing clause controls the subject of the sub-
ordinate clause. We therefore allow the produced
clause to sometimes inherit the subject or object
of its governor. This allows us to capture a large
variety of long range dependencies with a concise
classifier.

From these independent clauses, we then extract
shorter sentences, which will produce shorter ar-
guments more likely to be useful for downstream
applications. A natural framework for solving this
problem is natural logic – a proof system built on
the syntax of human language (see Section 4.1).
We can then observe that Heinz Fischer of Aus-
tria visits China entails that Heinz Fischer visits
China. On the other hand, we respect situations
where it is incorrect to shorten an argument. For
example, No house cats have rabies should not en-
tail that cats have rabies, or even that house cats
have rabies.

When careful attention to logical validity is nec-
essary – such as textual entailment – this approach
captures even more subtle phenomena. For exam-
ple, whereas all rabbits eat fresh vegetables yields
(rabbits; eat; vegetables), the apparently similar
sentence all young rabbits drink milk does not
yield (rabbits; drink; milk).

We show that our new system performs well on
a real world evaluation – the TAC KBP Slot Filling
challenge (Surdeanu, 2013). We outperform both
an official submission on open IE, and a baseline
of replacing our extractor with Ollie, a state-of-
the-art open IE systems.

2 Related Work

There is a large body of work on open information
extraction. One line of work begins with Text-
Runner (Yates et al., 2007) and ReVerb (Fader
et al., 2011), which make use of computation-
ally efficient surface patterns over tokens. With
the introduction of fast dependency parsers, Ol-
lie (Mausam et al., 2012) continues in the same
spirit but with learned dependency patterns, im-
proving on the earlier WOE system (Wu and Weld,
2010). The Never Ending Language Learning
project (Carlson et al., 2010) has a similar aim,
iteratively learning more facts from the internet
from a seed set of examples. Exemplar (Mesquita
et al., 2013) adapts the open IE framework to n-
ary relationships similar to semantic role labeling,
but without the expensive machinery.

Open IE triples have been used in a number
of applications – for example, learning entail-
ment graphs for new triples (Berant et al., 2011),
and matrix factorization for unifying open IE and
structured relations (Yao et al., 2012; Riedel et
al., 2013). In each of these cases, the concise ex-
tractions provided by open IE allow for efficient
symbolic methods for entailment, such as Markov
logic networks or matrix factorization.

Prior work on the KBP challenge can be cate-
gorized into a number of approaches. The most
common of these are distantly supervised relation
extractors (Craven and Kumlien, 1999; Wu and
Weld, 2007; Mintz et al., 2009; Sun et al., 2011),
and rule based systems (Soderland, 1997; Grish-
man and Min, 2010; Chen et al., 2010). However,
both of these approaches require careful tuning to
the task, and need to be trained explicitly on the
KBP relation schema. Soderland et al. (2013) sub-
mitted a system to KBP making use of open IE re-
lations and an easily constructed mapping to KBP
relations; we use this as a baseline for our empiri-
cal evaluation.

Prior work has used natural logic for RTE-style
textual entailment, as a formalism well-suited for
formal semantics in neural networks, and as a
framework for common-sense reasoning (Mac-
Cartney and Manning, 2009; Watanabe et al.,
2012; Bowman et al., 2014; Angeli and Manning,
2013). We adopt the precise semantics of Icard
and Moss (2014). Our approach of finding short
entailments from a longer utterance is similar in
spirit to work on textual entailment for informa-
tion extraction (Romano et al., 2006).
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Born in a small town, she took the midnight train going anywhere.

prep in

amod
det

vmod

nsubj

dobj

nn
det

vmod dobj

she Born in a small town

prep in

amod
detnsubj

(input) (extracted clause)
↓ ↓

she took the midnight train going anywhere she took the midnight train

Born in a small town, she took the midnight train she took midnight train
Born in a town, she took the midnight train . . .

she Born in small town
she Born in a town

she Born in town
↓ ↓

(she; took; midnight train)
(she; born in; small town)
(she; born in; town)

Figure 2: An illustration of our approach. From left to right, a sentence yields a number of independent
clauses (e.g., she Born in a small town – see Section 3). From top to bottom, each clause produces a set
of entailed shorter utterances, and segments the ones which match an atomic pattern into a relation triple
(see Section 4.1).

3 Inter-Clause Open IE

In the first stage of our method, we produce a set
of self-contained clauses from a longer utterance.
Our objective is to produce a set of clauses which
can stand on their own syntactically and seman-
tically, and are entailed by the original sentence
(see Figure 2). Note that this task is not specific to
extracting open IE triples. Conventional relation
extractors, entailment systems, and other NLP ap-
plications may also benefit from such a system.

We frame this task as a search problem. At a
given node in the parse tree, we classify each out-
going arc e = p

l−→ c, from the governor p to a de-
pendent c with [collapsed] Stanford Dependency
label l, into an action to perform on that arc. Once
we have chosen an action to take on that arc, we
can recurse on the dependent node. We decom-
pose the action into two parts: (1) the action to
take on the outgoing edge e, and (2) the action
to take on the governor p. For example, in our
motivating example, we are considering the arc:
e = took vmod−−−→ born. In this case, the correct
action is to (1) yield a new clause rooted at born,
and (2) interpret the subject of born as the subject
of took.

We proceed to describe this action space in
more detail, followed by an explanation of our
training data, and finally our classifier.

3.1 Action Space

The three actions we can perform on a dependency
edge are:

Yield Yields a new clause on this depen-
dency arc. A canonical case of this action is
the arc suggest

ccomp−−−−→ brush in Dentists suggest
that you should brush your teeth, yielding you
should brush your teeth.

Recurse Recurse on this dependency arc, but
do not yield it as a new clause. For example,
in the sentence faeries are dancing in the field
where I lost my bike, we must recurse through
the intermediate constituent the field where I lost
my bike – which itself is not relevant – to get to
the clause of interest: I lost my bike.

Stop Do not recurse on this arc, as the subtree
under this arc is not entailed by the parent sen-
tence. This is the case, for example, for most
leaf nodes (furry cats are cute should not entail
the clause furry), and is an important action for
the efficiency of the algorithm.

With these three actions, a search path through
the tree becomes a sequence of Recurse and
Yield actions, terminated by a Stop action (or leaf
node). For example, a search sequenceA Recurse−−−−−→
B

Y ield−−−→ C
Stop−−−→ D would yield a clause rooted

at C. A sequence A Y ield−−−→ B
Y ield−−−→ C

Stop−−−→ D
would yield clauses rooted at both B and C. Find-
ing all such sequences is in general exponential in
the size of the tree. In practice, during training we
run breadth first search to collect the first 10 000
sequences. During inference we run uniform cost
search until our classifier predictions fall below a
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given threshold.
For the Stop action, we do not need to further

specify an action to take on the parent node. How-
ever, for both of the other actions, it is often the
case that we would like to capture a controller in
the higher clause. We define three such common
actions:

Subject Controller If the arc we are consider-
ing is not already a subject arc, we can copy the
subject of the parent node and attach it as a sub-
ject of the child node. This is the action taken in
the example Born in a small town, she took the
midnight train.

Object Controller Analogous to the subject
controller action above, but taking the object in-
stead. This is the intended action for examples
like I persuaded Fred to leave the room.1

Parent Subject If the arc we are taking is the
only outgoing arc from a node, we take the par-
ent node as the (passive) subject of the child.
This is the action taken in the example Obama,
our 44th president to yield a clause with the se-
mantics of Obama [is] our 44th president.

Although additional actions are easy to imagine,
we found empirically that these cover a wide range
of applicable cases. We turn our attention to the
training data for learning these actions.

3.2 Training
We collect a noisy dataset to train our clause gen-
eration model. We leverage the distant supervision
assumption for relation extraction, which creates a
noisy corpus of sentences annotated with relation
mentions (subject and object spans in the sentence
with a known relation). Then, we take this anno-
tation as itself distant supervision for a correct se-
quence of actions to take: any sequence which re-
covers the known relation is correct.

We use a small subset of the KBP source doc-
uments for 2010 (Ji et al., 2010) and 2013 (Sur-
deanu, 2013) as our distantly supervised corpus.
To try to maximize the density of known relations
in the training sentences, we take all sentences
which have at least one known relation for ev-
ery 10 tokens in the sentence, resulting in 43 155
sentences. In addition, we incorporate the 23 725
manually annotated examples from Angeli et al.
(2014).

1The system currently misses most most such cases due
to insufficient support in the training data.

Once we are given a collection of labeled sen-
tences, we assume that a sequence of actions
which leads to a correct extraction of a known
relation is a positive sequence. A correct ex-
traction is any extraction we produce from our
model (see Section 4) which has the same argu-
ments as the known relation. For instance, if we
know that Obama was born in Hawaii from the
sentence Born in Hawaii, Obama . . . , and an ac-
tion sequence produces the triple (Obama, born in,
Hawaii), then we take that action sequence as a
positive sequence.

Any sequence of actions which results in a
clause which produces no relations is in turn con-
sidered a negative sequence. The third case to con-
sider is a sequence of actions which produces a
relation, but it is not one of the annotated rela-
tions. This arises from the incomplete negatives
problem in distantly supervised relation extraction
(Min et al., 2013): since our knowledge base is
not exhaustive, we cannot be sure if an extracted
relation is incorrect or correct but previously un-
known. Although many of these unmatched re-
lations are indeed incorrect, the dataset is suffi-
ciently biased towards the STOP action that the
occasional false negative hurts end-to-end perfor-
mance. Therefore, we simply discard such se-
quences.

Given a set of noisy positive and negative se-
quences, we construct training data for our action
classifier. All but the last action in a positive se-
quence are added to the training set with the label
Recurse; the last action is added with the label
Split. Only the last action in a negative sequence
is added with the label Stop. We partition the fea-
ture space of our dataset according to the action
applied to the parent node.

3.3 Inference

We train a multinomial logistic regression classi-
fier on our noisy training data, using the features
in Table 1. The most salient features are the label
of the edge being taken, the incoming edge to the
parent of the edge being taken, neighboring edges
for both the parent and child of the edge, and the
part of speech tag of the endpoints of the edge.
The dataset is weighted to give 3× weight to ex-
amples in the Recurse class, as precision errors
in this class are relatively harmless for accuracy,
while recall errors are directly harmful to recall.

Inference now reduces to a search problem. Be-
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Feature Class Feature Templates
Edge taken {l, short name(l)}
Last edge taken {incoming edge(p)}
Neighbors of parent {nbr(p), (p, nbr(p))}
Grandchild edges {out edge(c),

(e, out edge(c))}
Grandchild count {count (nbr(echild))

(e, count (nbr(echild)))}
Has subject/object ∀e∈{e,echild}∀l∈{subj,obj}

1(l ∈ nbr(e))
POS tag signature {pos(p), pos(c),

(pos(p), pos(c))}
Features at root {1(p = root),POS(p)}

Table 1: Features for the clause splitter model, de-
ciding to split on the arc e = p

l−→ c. The fea-
ture class is a high level description of features;
the feature templates are the particular templates
used. For instance, the POS signature contains the
tag of the parent, the tag of the child, and both tags
joined in a single feature. Note that all features are
joined with the action to be taken on the parent.

ginning at the root of the tree, we consider every
outgoing edge. For every possible action to be
performed on the parent (i.e., clone subject, clone
root, no action), we apply our trained classifier to
determine whether we (1) split the edge off as a
clause, and recurse; (2) do not split the edge, and
recurse; or (3) do not recurse. In the first two
cases, we recurse on the child of the arc, and con-
tinue until either all arcs have been exhausted, or
all remaining candidate arcs have been marked as
not recursable.

We will use the scores from this classifier to
inform the score assigned to our generated open
IE extractions (Section 4). The score of a clause
is the product of the scores of actions taken to
reach the clause. The score of an extraction will
be this score multiplied by the score of the extrac-
tion given the clause.

4 Intra-Clause Open IE

We now turn to the task of generating a maximally
compact sentence which retains the core seman-
tics of the original utterance, and parsing the sen-
tence into a conventional open IE subject verb ob-
ject triple. This is often a key component in down-
stream applications, where extractions need to be
not only correct, but also informative. Whereas
an argument like Heinz Fischer of Austria is often

correct, a downstream application must apply fur-
ther processing to recover information about either
Heinz Fischer, or Austria. Moreover, it must do so
without the ability to appeal to the larger context
of the sentence.

4.1 Validating Deletions with Natural Logic
We adopt a subset of natural logic semantics dic-
tating contexts in which lexical items can be re-
moved. Natural logic as a formalism captures
common logical inferences appealing directly to
the form of language, rather than parsing to a spe-
cialized logical syntax. It provides a proof theory
for lexical mutations to a sentence which either
preserve or negate the truth of the premise.

For instance, if all rabbits eat vegetables then
all cute rabbits eat vegetables, since we are al-
lowed to mutate the lexical item rabbit to cute
rabbit. This is done by observing that rabbit is
in scope of the first argument to the operator all.
Since all induces a downward polarity environ-
ment for its first argument, we are allowed to re-
place rabbit with an item which is more specific –
in this case cute rabbit. To contrast, the operator
some induces an upward polarity environment for
its first argument, and therefore we may derive the
inference from cute rabbit to rabbit in: some cute
rabbits are small therefore some rabbits are small.
For a more comprehensive introduction to natural
logic, see van Benthem (2008).

We mark the scopes of all operators (all, no,
many, etc.) in a sentence, and from this deter-
mine whether every lexical item can be replaced
by something more general (has upward polarity),
more specific (downward polarity), or neither. In
the absence of operators, all items have upwards
polarity.

Each dependency arc is then classified into
whether deleting the dependent of that arc makes
the governing constituent at that node more
general, more specific (a rare case), or nei-
ther.2 For example, removing the amod edge in
cute amod←−−− rabbit yields the more general lexical
item rabbit. However, removing the nsubj edge in

Fido
nsubj←−−− runs would yield the unentailed (and

nonsensical) phrase runs. The last, rare, case is
an edge that causes the resulting item to be more

specific – e.g., quantmod: about
quantmod←−−−−−− 200 is

more general than 200.
2We use the Stanford Dependencies representation (de

Marneffe and Manning, 2008).

348



For most dependencies, this semantics can be
hard-coded with high accuracy. However, there
are at least two cases where more attention is war-
ranted. The first of these concerns non-subsective
adjectives: for example a fake gun is not a gun. For
this case, we make use of the list of non-subsective
adjectives collected in Nayak et al. (2014), and
prohibit their deletion as a hard constraint.

The second concern is with prepositional at-
tachment, and direct object edges. For example,

whereas Alice went to the playground
prep with−−−−−−→

Bob entails that Alice went to the playground, it
is not meaningful to infer that Alice is friends
prep with−−−−−−→ Bob entails Alice is friends. Analo-

gously, Alice played
dobj−−→ baseball on Sunday en-

tails that Alice played on Sunday; but, Obama

signed
dobj−−→ the bill on Sunday should not entail

the awkward phrase *Obama signed on Sunday.
We learn these attachment affinities empirically

from the syntactic n-grams corpus of Goldberg
and Orwant (2013). This gives us counts for how
often object and preposition edges occur in the
context of the governing verb and relevant neigh-
boring edges. We hypothesize that edges which
are frequently seen to co-occur are likely to be
essential to the meaning of the sentence. To this
end, we compute the probability of seeing an arc
of a given type, conditioned on the most specific
context we have statistics for. These contexts, and
the order we back off to more general contexts, is
given in Figure 3.

To compute a score s of deleting the edge from
the affinity probability p collected from the syn-
tactic n-grams, we simply cap the affinity and sub-
tract it from 1:

s = 1−min(1,
p

K
)

where K is a hyperparameter denoting the mini-
mum fraction of the time an edge should occur in
a context to be considered entirely unremovable.
In our experiments, we set K = 1

3 .
The score of an extraction, then, is the product

of the scores of each deletion multiplied by the
score from the clause splitting step in Section 3.

4.2 Atomic Patterns

Once a set of short entailed sentences is produced,
it becomes straightforward to segment them into
conventional open IE triples. We employ 6 sim-
ple dependency patterns, given in Table 2, which

Obama signed the bill into law on Friday

nsubj
dobj

det

prep into
prep on

pr
ep

ba
ck

of
f



p
(

prep on | Obama signed bill

nsubj dobj )
p
(

prep on | Obama signed law

nsubj prep into )
p
(

prep on | Obama signed

nsubj )
p
(

prep on | signed
)

do
bj

ba
ck

of
f {

p
(

dobj | Obama signed bill

nsubj dobj )
p
(

dobj | signed
)

Figure 3: The ordered list of backoff probabilities
when deciding to drop a prepositional phrase or di-
rect object. The most specific context is chosen for
which an empirical probability exists; if no con-
text is found then we allow dropping prepositional
phrases and disallow dropping direct objects. Note
that this backoff arbitrarily orders contexts of the
same size.

Input Extraction
cats play with yarn (cats; play with; yarn)

fish like to swim (fish; like to; swim)

cats have tails (cats; have; tails)

cats are cute (cats; are; cute)

Tom and Jerry are fighting (Tom; fighting; Jerry)

There are cats with tails (cats; have; tails)

Table 2: The six dependency patterns used to seg-
ment an atomic sentence into an open IE triple.

cover the majority of atomic relations we are in-
terested in.

When information is available to disambiguate
the substructure of compound nouns (e.g., named
entity segmentation), we extract additional re-
lations with 5 dependency and 3 TokensRegex
(Chang and Manning, 2014) surface form patterns.
These are given in Table 3; we refer to these
as nominal relations. Note that the constraint of
named entity information is by no means required
for the system. In other applications – for exam-
ple, applications in vision – the otherwise trivial
nominal relations could be quite useful.
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KBP Relation Open IE Relation PMI2 KBP Relation Open IE Relation PMI2

Org:Founded found in 1.17 Per:Date Of Birth be bear on 1.83
be found in 1.15 bear on 1.28

Org:Dissolved *buy Chrysler in 0.95 Per:Date Of Death die on 0.70
*membership in 0.60 be assassinate on 0.65

Org:LOC Of HQ in 2.12 Per:LOC Of Birth be bear in 1.21
base in 1.82 Per:LOC Of Death *elect president of 2.89

Org:Member Of *tough away game in 1.80 Per:Religion speak about 0.67
*away game in 1.80 popular for 0.60

Org:Parents ’s bank 1.65 Per:Parents daughter of 0.54
*also add to 1.52 son of 1.52

Org:Founded By invest fund of 1.48 Per:LOC Residence of 1.48
own stake besides 1.18 *independent from 1.18

Table 4: A selection of the mapping from KBP to lemmatized open IE relations, conditioned on the types
of the arguments being correct. The top one or two relations are shown for 7 person and 6 organization
relations. Incorrect or dubious mappings are marked with an asterisk.

Input Extraction
Durin, son of Thorin (Durin; is son of; Thorin)

Thorin’s son, Durin (Thorin; ’s son; Durin)

IBM CEO Rometty (Rometty; is CEO of; IBM)

President Obama (Obama; is; President)

Fischer of Austria (Fischer; is of; Austria)

IBM’s research group (IBM; ’s; research group)

US president Obama (Obama; president of; US)

Our president, Obama, (Our president; be; Obama)

Table 3: The eight patterns used to segment a noun
phrase into an open IE triple. The first five are de-
pendency patterns; the last three are surface pat-
terns.

5 Mapping OpenIE to a Known Relation
Schema

A common use case for open IE systems is to map
them to a known relation schema. This can either
be done manually with minimal annotation effort,
or automatically from available training data. We
use both methods in our TAC-KBP evaluation. A
collection of relation mappings was constructed
by a single annotator in approximately a day,3 and
a relation mapping was learned using the proce-
dure described in this section.

We map open IE relations to the KBP schema
by searching for co-occurring relations in a large
distantly-labeled corpus, and marking open IE and

3The official submission we compare against claimed two
weeks for constructing their manual mapping, although a ver-
sion of their system constructed in only 3 hours performs
nearly as well.

KBP relation pairs which have a high PMI2 value
(Béatrice, 1994; Evert, 2005) conditioned on their
type signatures matching. To compute PMI2, we
collect probabilities for the open IE and KBP re-
lation co-occurring, the probability of the open IE
relation occurring, and the probability of the KBP
relation occurring. Each of these probabilities is
conditioned on the type signature of the relation.
For example, the joint probability of KBP relation
rk and open IE relation ro, given a type signature
of t1, t2, would be

p(rk, ro | t1, t2) =
count(rk, ro, t1, t2)∑
r′k,r′o

count(r′k, r′o, t1, t2)
.

Omitting the conditioning on the type signature
for notational convenience, and defining p(rk) and
p(ro) analogously, we can then compute The PMI2

value between the two relations:

PMI2(rk, ro) = log
(

p(rk, ro)2

p(rk) · p(ro)
)

Note that in addition to being a measure
related to PMI, this captures a notion simi-
lar to alignment by agreement (Liang et al.,
2006); the formula can be equivalently written
as log [p(rk | ro)p(ro | rk)]. It is also function-
ally the same as the JC WordNet distance measure
(Jiang and Conrath, 1997).

Some sample type checked relation mappings
are given in Table 4. In addition to intuitive map-
pings (e.g., found in→Org:Founded), we can note
some rare, but high precision pairs (e.g., invest
fund of → Org:Founded By). We can also see
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the noise in distant supervision occasionally per-
meate the mapping, e.g., with elect president of →
Per:LOC Of Death – a president is likely to die in
his own country.

6 Evaluation

We evaluate our approach in the context of a real-
world end-to-end relation extraction task – the
TAC KBP Slot Filling challenge. In Slot Filling,
we are given a large unlabeled corpus of text, a
fixed schema of relations (see Section 5), and a
set of query entities. The task is to find all rela-
tion triples in the corpus that have as a subject the
query entity, and as a relation one of the defined
relations. This can be viewed intuitively as popu-
lating Wikipedia Infoboxes from a large unstruc-
tured corpus of text.

We compare our approach to the University
of Washington submission to TAC-KBP 2013
(Soderland et al., 2013). Their system used
OpenIE v4.0 (a successor to Ollie) run over the
KBP corpus and then they generated a mapping
from the extracted relations to the fixed schema.
Unlike our system, Open IE v4.0 employs a se-
mantic role component extracting structured SRL
frames, alongside a conventional open IE system.
Furthermore, the UW submission allows for ex-
tracting relations and entities from substrings of
an open IE triple argument. For example, from
the triple (Smith; was appointed; acting director of
Acme Corporation), they extract that Smith is em-
ployed by Acme Corporation. We disallow such
extractions, passing the burden of finding correct
precise extractions to the open IE system itself (see
Section 4).

For entity linking, the UW submission uses Tom
Lin’s entity linker (Lin et al., 2012); our sub-
mission uses the Illinois Wikifier (Ratinov et al.,
2011) without the relational inference component,
for efficiency. For coreference, UW uses the Stan-
ford coreference system (Lee et al., 2011); we em-
ploy a variant of the simple coref system described
in (Pink et al., 2014).

We report our results in Table 5.4 UW Offi-
cial refers to the official submission in the 2013
challenge; we show a 3.1 F1 improvement (to 22.7

4All results are reported with the anydoc flag set to true
in the evaluation script, meaning that only the truth of the
extracted knowledge base entry and not the associated prove-
nance is scored. In absence of human evaluators, this is in
order to not penalize our system unfairly for extracting a new
correct provenance.

System P R F1

UW Official∗ 69.8 11.4 19.6
Ollie† 57.4 4.8 8.9

+ Nominal Rels∗ 57.7 11.8 19.6
Our System

- Nominal Rels† 64.3 8.6 15.2
+ Nominal Rels∗ 61.9 13.9 22.7
+ Alt. Name 57.8 17.8 27.1
+ Alt. Name + Website 58.6 18.6 28.3

Table 5: A summary of our results on the end-
to-end KBP Slot Filling task. UW official is the
submission made to the 2013 challenge. The sec-
ond row is the accuracy of Ollie embedded in
our framework, and of Ollie evaluated with nom-
inal relations from our system. Lastly, we report
our system, our system with nominal relations re-
moved, and our system combined with an alternate
names detector and rule-based website detector.
Comparable systems are marked with a dagger† or
asterisk∗.

F1) over this submission, evaluated using a com-
parable approach. A common technique in KBP
systems but not employed by the official UW sub-
mission in 2013 is to add alternate names based
on entity linking and coreference. Additionally,
websites are often extracted using heuristic name-
matching as they are hard to capture with tradi-
tional relation extraction techniques. If we make
use of both of these, our end-to-end accuracy be-
comes 28.2 F1.

We attempt to remove the variance in scores
from the influence of other components in an end-
to-end KBP system. We ran the Ollie open IE sys-
tem (Mausam et al., 2012) in an identical frame-
work to ours, and report accuracy in Table 5. Note
that when an argument to an Ollie extraction con-
tains a named entity, we take the argument to be
that named entity. The low performance of this
system can be partially attributed to its inability to
extract nominal relations. To normalize for this,
we report results when the Ollie extractions are
supplemented with the nominal relations produced
by our system (Ollie + Nominal Rels in Table 5).
Conversely, we can remove the nominal relation
extractions from our system; in both cases we out-
perform Ollie on the task.
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Figure 4: A precision/recall curve for Ollie and
our system (without nominals). For clarity, recall
is plotted on a range from 0 to 0.15.

6.1 Discussion
We plot a precision/recall curve of our extractions
in Figure 4 in order to get an informal sense of
the calibration of our confidence estimates. Since
confidences only apply to standard extractions, we
plot the curves without including any of the nom-
inal relations. The confidence of a KBP extrac-
tion in our system is calculated as the sum of the
confidences of the open IE extractions that support
it. So, for instance, if we find (Obama; be bear
in; Hawaii) n times with confidences c1 . . . cn,
the confidence of the KBP extraction would be∑n

i=0 ci. It is therefore important to note that
the curve in Figure 4 necessarily conflates the
confidences of individual extractions, and the fre-
quency of an extraction.

With this in mind, the curves lend some inter-
esting insights. Although our system is very high
precision on the most confident extractions, it has
a large dip in precision early in the curve. This
suggests that the model is extracting multiple in-
stances of a bad relation. Systematic errors in
the clause splitter are the likely cause of these er-
rors. While the approach of splitting sentences
into clauses generalizes better to out-of-domain
text, it is reasonable that the errors made in the
clause splitter manifest across a range of sentences
more often than the fine-grained patterns of Ollie
would.

On the right half of the PR curve, however, our
system achieves both higher precision and extends
to a higher recall than Ollie. Furthermore, the
curve is relatively smooth near the tail, suggesting

that indeed we are learning a reasonable estimate
of confidence for extractions that have only one
supporting instance in the text – empirically, 46%
of our extractions.

In total, we extract 42 662 862 open IE triples
which link to a pair of entities in the corpus
(i.e., are candidate KBP extractions), covering
1 180 770 relation types. 202 797 of these rela-
tion types appear in more than 10 extraction in-
stances; 28 782 in more than 100 instances, and
4079 in more than 1000 instances. 308 293 rela-
tion types appear only once. Note that our system
over-produces extractions when both a general and
specific extraction are warranted; therefore these
numbers are an overestimate of the number of se-
mantically meaningful facts.

For comparison, Ollie extracted 12 274 319
triples, covering 2 873 239 relation types.
1 983 300 of these appeared only once; 69 010
appeared in more than 10 instances, 7951 in more
than 100 instances, and 870 in more than 1000
instances.

7 Conclusion

We have presented a system for extracting open
domain relation triples by breaking a long sen-
tence into short, coherent clauses, and then find-
ing the maximally simple relation triples which are
warranted given each of these clauses. This allows
the system to have a greater awareness of the con-
text of each extraction, and to provide informative
triples to downstream applications. We show that
our approach performs well on one such down-
stream application: the KBP Slot Filling task.
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Abstract

A standard pipeline for statistical rela-
tional learning involves two steps: one
first constructs the knowledge base (KB)
from text, and then performs the learn-
ing and reasoning tasks using probabilis-
tic first-order logics. However, a key is-
sue is that information extraction (IE) er-
rors from text affect the quality of the KB,
and propagate to the reasoning task. In
this paper, we propose a statistical rela-
tional learning model for joint information
extraction and reasoning. More specifi-
cally, we incorporate context-based entity
extraction with structure learning (SL) in
a scalable probabilistic logic framework.
We then propose a latent context inven-
tion (LCI) approach to improve the per-
formance. In experiments, we show that
our approach outperforms state-of-the-art
baselines over three real-world Wikipedia
datasets from multiple domains; that joint
learning and inference for IE and SL sig-
nificantly improve both tasks; that latent
context invention further improves the re-
sults.

1 Introduction

Information extraction (IE) is often an early stage
in a pipeline that contains non-trivial downstream
tasks, such as question answering (Mollá et al.,
2006), machine translation (Babych and Hartley,
2003), or other applications (Wang and Hua, 2014;
Li et al., 2014). Knowledge bases (KBs) populated
by IE techniques have also been used as an input
to systems that learn rules allowing further infer-
ences to be drawn from the KB (Lao et al., 2011),
a task sometimes called KB completion (Socher et
al., 2013; Wang et al., 2014; West et al., 2014).
Pipelines of this sort frequently suffer from error

cascades, which reduces performance of the full
system1.

In this paper, we address this issue, and pro-
pose a joint model system for IE and KB com-
pletion in a statistical relational learning (SRL)
setting (Sutton and McCallum, 2006; Getoor and
Taskar, 2007). In particular, we outline a system
which takes as input a partially-populated KB and
a set of relation mentions in context, and jointly
learns: 1) how to extract new KB facts from the
relation mentions, and; 2) a set of logical rules that
allow one to infer new KB facts. Evaluation of the
KB facts inferred by the joint system shows that
the joint model outperforms its individual com-
ponents. We also introduce a novel extension of
this model called Latent Context Invention (LCI),
which associates latent states with context features
for the IE component of the model. We show that
LCI further improves performance, leading to a
substantial improvement over prior state-of-the-art
methods for joint relation-learning and IE.

To summarize our contributions:

• We present a joint model for IE and re-
lational learning in a statistical relational
learning setting which outperforms universal
schemas (Riedel et al., 2013), a state-of-the-
art joint method;

• We incorporate latent context into the joint
SRL model, bringing additional improve-
ments.

In next section, we discuss related work. We
describe our approach in Section 3. The details
of the datasets are introduced in Section 4. We
show experimental results in Section 5, discuss in
Section 6, and conclude in Section 7.

1For example, KBP slot filling is known for its com-
plex pipeline, and the best overall F1 scores (Wiegand and
Klakow, 2013; Angeli et al., 2014) for recent competitions
are within the range of 30-40.
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2 Related Work

In NLP, our work clearly aligns with recent work
on joint models of individual text processing tasks.
For example, Finkel and Manning (2009) work on
the problem of joint IE and parsing, where they
use tree representations to combine named entities
and syntactic chunks. Recently, Devlin et al. (De-
vlin et al., 2014) use a joint neural network model
for machine translation, and obtain an impressive
6.3 BLEU point improvement over a hierarchical
phrase-based system.

In information extraction, weak supervi-
sion (Craven et al., 1999; Mintz et al., 2009) is a
common technique for extracting knowledge from
text, without large-scale annotations. In extracting
Infobox information from Wikipedia text, Wu and
Weld (2007; 2010) also use a similar idea. In an
open IE project, Banko et al. (2007) use a seed
KB, and utilize weak supervision techniques to
extend it. Note that weakly supervised extraction
approaches can be noisy, as a pair of entities in
context may be associated with one, none, or
several of the possible relation labels, a property
which complicates the application of distant
supervision methods (Mintz et al., 2009; Riedel et
al., 2010; Hoffmann et al., 2011; Surdeanu et al.,
2012).

Lao et al. (2012) learned syntactic rules for find-
ing relations defined by “lexico-semantic” paths
spanning KB relations and text data. Wang et
al. (2015) extends the methods used by Lao et
al. to learn mutually recursive relations. Recently,
Riedel et al. (2013) propose a matrix factoriza-
tion technique for relation embedding, but their
method requires a large amount of negative and
unlabeled examples. Weston et al. (2013) con-
nect text with KB embedding by adding a scoring
term, though no shared parameters/embeddings
are used. All these prior works make use of text
and KBs. Unlike these prior works, our method is
posed in an SRL setting, using a scalable proba-
bilistic first-order logic, and allows learning of re-
lational rules that are mutually recursive, thus al-
lowing learning of multi-step inferences. Unlike
some prior methods, our method also does not re-
quire negative examples, or large numbers of un-
labeled examples.

3 Our Approach

In this section, we first briefly review the se-
mantics, inference, and learning procedures of a

about(X,Z) :- handLabeled(X,Z) # base.
about(X,Z) :- sim(X,Y),about(Y,Z) # prop.
sim(X,Y) :- links(X,Y) # sim,link.
sim(X,Y) :-

hasWord(X,W),hasWord(Y,W),
linkedBy(X,Y,W) # sim,word.

linkedBy(X,Y,W) :- true # by(W).

Table 1: A simple program in ProPPR. See text for
explanation.

newly proposed scalable probabilistic logic called
ProPPR (Wang et al., 2013; Wang et al., 2014).
Then, we describe the joint model for information
extraction and relational learning. Finally, a latent
context invention theory is proposed for enhancing
the performance of the joint model.

3.1 ProPPR: Background
Below we will give an informal description of
ProPPR, based on a small example. More formal
descriptions can be found elsewhere (Wang et al.,
2013).

ProPPR (for Programming with Personalized
PageRank) is a stochastic extension of the logic
programming language Prolog. A simple program
in ProPPR is shown in Table 1. Roughly speak-
ing, the upper-case tokens are variables, and the
“:-” symbol means that the left-hand side (the head
of a rule) is implied by the conjunction of condi-
tions on the right-hand size (the body). In addition
to the rules shown, a ProPPR program would in-
clude a database of facts: in this example, facts
would take the form handLabeled(page,label),
hasWord(page,word), or linkedBy(page1,page2),
representing labeled training data, a document-
term matrix, and hyperlinks, respectively. The
condition “true” in the last rule is “syntactic sugar”
for an empty body.

In ProPPR, a user issues a query, such as
“about(a,X)?”, and the answer is a set of possible
bindings for the free variables in the query (here
there is just one such varable, “X”). To answer the
query, ProPPR builds a proof graph. Each node
in the graph is a list of conditions R1, . . . , Rk that
remain to prove, interpreted as a conjunction. To
find the children of a node R1, . . . , Rk, you look
for either

1. database facts that match R1, in which case
the appropriate variables are bound, and R1

is removed from the list, or;
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Figure 1: A partial proof graph for the query about(a,Z). The upper right shows the link structure between
documents a, b, c, and d, and some of the words in the documents. Restart links are not shown.

2. a rule A ← B1, . . . , Bm with a head A that
matches R1, in which case again the appro-
priate variables are bound, andR1 is replaced
with the body of the rule, resulting in the new
list B1, . . . , Bm, R2, . . . , Rk.

The procedures for “matching” and “appropriately
binding variables” are illustrated in Figure 1.2 An
empty list of conditions (written 2 in the fig-
ure) corresponds to a complete proof of the ini-
tial query, and by collecting the required variable
bindings, this proof can be used to determine an
answer to the initial query.

In Prolog, this proof graph is constructed on-
the-fly in a depth-first, left-to-right way, returning
the first solution found, and backtracking, if re-
quested, to find additional solutions. In ProPPR,
however, we will define a stochastic process on
the graph, which will generate a score for each
node, and hence a score for each answer to the
query. The stochastic process used in ProPPR is
personalized PageRank (Page et al., 1998; Csa-
logny et al., 2005), also known as random-walk-
with-restart. Intuitively, this process upweights
solution nodes that are reachable by many short
proofs (i.e., short paths from the query node.) For-
mally, personalized PageRank is the fixed point of
the iteration

pt+1 = αχv0 + (1− α)Wpt (1)

2The edge annotations will be discussed later.

where p[u] is the weight assigned to u, v0 is
the seed (i.e., query) node, χv0 is a vector with
χv0 [v0] = 1 and χv0 [u] = 0 for u 6= v, and W
is a matrix of transition probabilities, i.e., W [v, u]
is the probability of transitioning from node u to a
child node v. The parameter α is the reset proba-
bility, and the transition probabilities we use will
be discussed below.

Like Prolog, ProPPR’s proof graph is also con-
structed on-the-fly, but rather than using depth-
first search, we use PageRank-Nibble, a fast ap-
proximate technique for incrementally exploring a
large graph from a an initial “seed” node (Ander-
sen et al., 2008). PageRank-Nibble takes a param-
eter ε and will return an approximation p̂ to the
personalized PageRank vector p, such that each
node’s estimated probability is within ε of correct.

We close this background section with some fi-
nal brief comments about ProPPR.

Scalability. ProPPR is currently limited in that
it uses memory to store the fact databases, and the
proof graphs constructed from them. ProPPR uses
a special-purpose scheme based on sparse matrix
representations to store facts which are triples,
which allows it to accomodate databases with hun-
dreds of millions of facts in tens of gigabytes.

With respect to run-time, ProPPR’s scalabil-
ity is improved by the fast approximate inference
scheme used, which is often an order of mag-
nitude faster than power iteration for moderate-
sized problems (Wang et al., 2013). Experimen-
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Figure 2: The data generation example as described in subsection 3.2.

tation and learning are also sped up because with
PageRank-Nibble, each query is answered using a
“small”—size O( 1

αε)—proof graph. Many opera-
tions required in learning and experimentation can
thus be easily parallized on a multi-core machine,
by simply distributing different proof graphs to
different threads.

Parameter learning. Personalized PageRank
scores are defined by a transition probability
matrix W , which is parameterized as follows.
ProPPR allows “feature generators” to be attached
to its rules, as indicated by the code after the hash-
tags in the example program.3 Since edges in the
proof graph correspond to rule matches, the edges
can also be labeled by features, and a weighted
combination of these features can be used to de-
fine a total weight for each edge, which finally can
be normalized used to define the transition matrix
W . Learning can be used to tune these weights to
data; ProPPR’s learning uses a parallelized SGD
method, in which inference on different examples
is performed in different threads, and weight up-

3For instance, when matching the rule “sim(X,Y) :-
links(X,Y)” to a condition such as “sim(a,X)” the two fea-
tures “sim” and “link” are generated; likewise when match-
ing the rule “linkedBy(X,Y,W) :- true” to the condition
“linkedBy(a,c,sprinter)” the feature “by(sprinter)” is gener-
ated.

dates are synchronized.

Structure learning. Prior work (Wang et al.,
2014) has studied the problem of learning a
ProPPR theory, rather than simply tuning parame-
ters in an existing theory, a process called structure
learning (SL). In particular, Wang et al. (2014)
propose a scheme called the structural gradient
which scores rules in some (possibly large) user-
defined space R of potential rules, which can be
viewed as instantiations of rule templates, such as
the ones shown in the left-hand side of Table 2.

For completeness, we will summarize briefly
the approach used in (Wang et al., 2014). The
space of potential rulesR is defined by a “second-
order abductive theory”, which conceptually is an
interpreter that constructs proofs using all rules in
R. Each rule template is mapped to two clauses
in the interpreter: one simulates the template (for
any binding), and one “abduces” the specific bind-
ing (facts) from the KB. Associated with the use
of the abductive rule is a feature corresponding to
a particular binding for the template. The gradient
of these features indicates which instantiated rules
can be usefully added to the theory. More details
can be found in (Wang et al., 2014).
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Rule template ProPPR clause
Structure learning
(a) P(X,Y) :- R(X,Y) interp(P,X,Y) :- interp0(R,X,Y),abduce if(P,R).

abduce if(P,R) :- true # f if(P,R).
(b) P(X,Y) :- R(Y,X) interp(P,X,Y) :- interp0(R,Y,X),abduce ifInv(P,R).

abduce ifInv(P,R) :- true # f ifInv(P,R).
(c) P(X,Y) :- R1(X,Z),R2(Z,Y) interp(P,X,Y) :- interp0(R1,X,Z),interp0(R2,Z,Y),

abduce chain(P,R1,R2).
abduce chain(P,R1,R2) :- true # f chain(P,R1,R2).

base case for SL interpreter interp0(P,X,Y) :- rel(R,X,Y).
insertion point for learned rules interp0(P,X,Y) :- any rules learned by SL.

Information extraction
(d) R(X,Y) :- link(X,Y,W), interp(R,X,Y) :- link(X,Y,W),abduce indicates(W,R).

indicates(W,R). abduce indicates(W,R) :- true #f ind1(W,R).
(e) R(X,Y) :- link(X,Y,W1), interp(R,X,Y) :- link(X,Y,W1),link(X,Y,W2),

link(X,Y,W2), abduce indicates(W1,W2,R).
indicates(W1,W2,R). abduce indicates(W1,W2,R) :- true #f ind2(W1,W2,R).

Latent context invention
(f) R(X,Y) :- latent(L), interp(R,X,Y) :- latent(L),link(X,Y,W),abduce latent(W,L,R).

link(X,Y,W), abduce latent(W,L,R) :- true #f latent1(W,L,R).
indicates(W,L,R)

(g) R(X,Y) :- latent(L1),latent(L2) interp(R,X,Y) :- latent(L1),latent(L2),link(X,Y,W),
link(X,Y,W), abduce latent(W,L1,L2,R).
indicates(W,L1,L2,R) abduce latent(W,L1,L2,R) :- true #f latent2(W,L1,L2,R).

Table 2: The ProPPR template and clauses for joint structure learning and information extraction.

3.2 Joint Model for IE and SRL

Dataset Generation The KBs and text used in
our experiments were derived from Wikipedia.
Briefly, we choose a set of closely-related pages
from a hand-selected Wikipedia list. These pages
define a set of entities E , and a set of commonly-
used Infobox relations R between these entities
define a KB. The relation mentions are hyperlinks
between the pages, and the features of these rela-
tion mentions are words that appear nearby these
links. This information is encoded in a single rela-
tion link(X,Y,W), which indicates that there is hy-
perlink between Wikipedia pages X to Y which
is near the context word W . The Infobox relation
triples are stored in another relation, rel(R,X,Y). 4

Figure 2 shows an example. We first find the
“European royal families” to find a list of enti-

4In more detail, the extraction process was as follows. (1)
We used a DBpedia dump of categories and hyperlink struc-
ture to find pages in a category; sometimes, this included
crawling a supercategory page to find categories and then en-
tities. (2) We used the DBpedia hyperlink graph to find the
target entity pages, downloaded the most recent (2014) ver-
sion of each of these pages, and collected relevant hyperlinks
and anchor text, together with 80 characters of context to ei-
ther side.

ties E . This list contains the page “Louis VI of
France”, the source entity, which contains an out-
link to the target entity page “Philip I of France”.
On the source page, we can find the following text:
“Louis was born in Paris, the son of Philip I and
his first wife, Bertha of Holland.” From Infobox
data, we also may know of a relationship between
the source and target entities: in this case, the tar-
get entity is the parent of the source entity.

Theory for Joint IE and SL The structure learn-
ing templates we used are identical to those used
in prior work (Wang et al., 2014), and are summa-
rized by the clauses (a-c) in Table 2. In the tem-
plates in the left-hand side of the table, P , R, R1
and R2 are variables in the template, which will
be bound to specific relations found to be useful
in prediction. (The interpreter rules on the right-
hand side are provided for completeness, and can
be ignored by readers not deeply familiar with the
work of (Wang et al., 2014).)

The second block of the table contains the tem-
plates used for IE. For example, to understand
template (d), recall that the predicate link in-
dicates a hyperlink from Wikipedia page X to
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Y , which includes the context word W between
two entities X and Y . The abductive predicate
abduce indicates activates a feature template, in
which we learn the degree of association of a con-
text word and a relation from the training data.
These rules essentially act as a trainable classi-
fier which classifies entity pairs based on the hy-
perlinks they that contain them, and classifies the
hyperlinks according to the relation they reflect,
based on context-word features.

Notice that the learner will attempt to tune word
associations to match the gold rel facts used as
training data, and that doing this does not require
assigning labels to individual links, as would be
done in a traditional distant supervision setting:
instead these labels are essentially left latent in this
model. Similar to “deep learning” approaches, the
latent assignments are provided not by EM, but by
hill-climbing search in parameter space.

A natural extension to this model is to add a
bilexical version of this classifier in clause (e),
where we learn a feature which conjoins word
W1, word W2, and relation R.

Combining the clauses from (a) to (e), we de-
rive a hybrid theory for joint SL and IE: the struc-
ture learning section involves a second-order prob-
abilistic logic theory, where it searches the rela-
tional KB to form plausible first-order relational
inference clauses. The information extraction sec-
tion from (d) to (e) exploits the distributional sim-
ilarity of contextual words for each relation, and
extracts relation triples from the text, using distant
supervision and latent labels for relation mentions
(which in our case are hyperlinks). Training this
theory as a whole trains it to perform joint reason-
ing to facts for multiple relations, based on rela-
tions that are known (from the partial KB) or in-
ferred from the IE part of the theory. Both param-
eters for the IE portion of the theory and inference
rules between KB relations are learned.5

Latent Context Invention Note that so far both
the IE clauses (d-e) are fully observable: there
are no latent predicates or variables. Recent
work (Riedel et al., 2013) suggests that learning
latent representations for words improves perfor-
mance in predicting relations. Perhaps this is be-
cause such latent representations can better model
the semantic information in surface forms, which
are often ambiguous.

5In in addition to finding rules which instantiate the tem-
plates, weights on these rules are also learned.

We call our method latent context invention
(LCI), and it is inspired from literature in predi-
cate invention (Kok and Domingos, 2007).6 LCI
applies the idea of predicate invention to the con-
text space: instead of inventing new predicates, we
now invent a latent context property that captures
the regularities among the similar relational lex-
ical items. To do this, we introduce some addi-
tional rules of the form latent(1) :- true, latent(2)
:- true, etc, and allow the learner to find appro-
priate weights for pairing these arbitrarily-chosen
values with specific words. This is implemented
by template (f) in Table 2. Adding this to the joint
theory means that we will learn to map surface-
level lexical items (words) to the “invented” latent
context values and also to relation.

Another view of LCI is that we are learning a la-
tent embedding of words jointly with relations. In
template (f) we model a single latent dimension,
but to model higher-dimensional latent variables,
we can add the clauses such as (g), which con-
structs a two-dimensional latent space. Below we
will call this variant method hLCI.

4 Datasets

Using the data generation process that we de-
scribed in subsection 3.2, we extract two datasets
from the supercategories of “European royal fam-
ilies” and “American people of English descent,
and third geographic dataset using three lists: “List
of countries by population”, “List of largest cities
and second largest cities by country” and “List of
national capitals by population”.

For the royal dataset, we have 2,258 pages
with 67,483 source-context-target mentions, and
we use 40,000 for training, and 27,483 for test-
ing. There are 15 relations7. In the Amer-
ican dataset, we have 679 pages with 11,726
mentions, and we use 7,000 for training, and
4,726 for testing. This dataset includes 30 re-
lations8. As for the Geo dataset, there are 497

6To give some background on this nomenclature, we note
that the SL method is inspired by Cropper and Muggleton’s
Metagol system (Cropper and Muggleton, 2014), which in-
cludes predicate invention. In principle predicates could be
invented by SL, by extending the interpreter to consider “in-
vented” predicate symbols as binding to its template vari-
ables (e.g., P and R); however, in practice invented predi-
cates leads to close dependencies between learned rules, and
are highly sensitive to the level of noise in the data.

7birthPlace, child, commander, deathPlace, keyPerson,
knownFor, monarch, parent, partner, predecessor, relation,
restingPlace, spouse, successor, territory

8architect, associatedBand, associatedMusicalArtist, au-
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pages with 43,475 mentions, and we use 30,000
for training, and 13,375 for testing. There are
10 relations9. The datasets are freely available
for download at http://www.cs.cmu.edu/
˜yww/data/jointIE+Reason.zip.

5 Experiments

To evaluate these methods, we use the setting of
Knowledge Base completion (Socher et al., 2013;
Wang et al., 2014; West et al., 2014). We ran-
domly remove a fixed percentage of facts in a
training knowledge base, train the learner from
the partial KB, and use the learned model to pre-
dict facts in the test KB. KB completion is a well-
studied task in SRL, where multiple relations are
often needed to fill in missing facts, and thus
reconstruct the incomplete KB. Following prior
work (Riedel et al., 2013; Wang et al., 2013), we
use mean average precision (MAP) as the evalua-
tion metric.

5.1 Baselines

To understand the performance of our joint model,
we compare with three prior methods. Struc-
ture Learning (SL) includes the second-order re-
lation learning templates (a-c) from Table 2. In-
formation Extraction (IE) includes only tem-
plates (d) and (e). Markov Logic Networks
(MLN) is the Alchemy’s implementation10 of
Markov Logic Networks (Richardson and Domin-
gos, 2006), using the first-order clauses learned
from SL method11. We used conjugate gradient
weight learning (Lowd and Domingos, 2007) with
10 iterations. Finally, Universal Schema is a
state-of-the-art matrix factorization based univer-
sal method for jointly learning surface patterns and
relations. We used the code and parameter settings
for the best-performing model (NFE) from (Riedel
et al., 2013).

As a final baseline method, we considered
a simpler approach to clustering context words,

thor, birthPlace, child, cinematography, deathPlace, direc-
tor, format, foundationOrganisation, foundationPerson, in-
fluenced, instrument, keyPerson, knownFor, location, mus-
icComposer, narrator, parent, president, producer, relation,
relative, religion, restingPlace, spouse, starring, successor,
writer

9archipelago, capital, country, daylightSavingTimeZone,
largestSettlement, leaderTitle, mottoFor, timeZone, twinCity,
twinCountry

10http://alchemy.cs.washington.edu/
11We also experimented with Alchemy’s structure learn-

ing, but it was not able to generate results in 24 hours.

which we called Text Clustering, which used the
following template:

R(X,Y) :-
clusterID(C),link(X,Y,W),
cluster(C,W),related(R,W).

Here surface patterns are grouped to form latent
clusters in a relation-independent fashion.

5.2 The Effectiveness of the Joint Model
Our experimental results are shown in 3. The left-
most part of the table concerns the Royal dataset.
We see that the universal schema approach out-
performs the MLN baseline in most cases, but
ProPPR’s SL method substantially improves over
MLN’s conjugated gradient learning method, and
the universal schema approach. This is perhaps
surprising, as the universal schema approach is
also a joint method: we note that in our datasets,
unlike the New York Times corpus used in (Riedel
et al., 2013), large numbers of unlabeled examples
are not available. The unigram and bilexical IE
models in ProPPR also perform well—better than
SL on this data. The joint model outperforms the
baselines, as well as the separate models. The dif-
ference is most pronounced when the background
KB gets noisier: the improvement with 10% miss-
ing setting is about 1.5 to 2.3% MAP, while with
50% missing data, the absolute MAP improve-
ment is from 8% to 10%.

In the next few columns of Table 3, we show the
KB completion results for the Geo dataset. This
dataset has fewer relations, and the most com-
mon one is country. The overall MAP scores are
much higher than the previous dataset. MLN’s re-
sults are good, but still generally below the uni-
versal schema method. On this dataset, the uni-
versal schema method performs better than the IE
only model for ProPPR in most settings. However,
the ProPPRjoint model still shows large improve-
ments over individual models and the baselines:
the absolute MAP improvement is 22.4%.

Finally, in the rightmost columns of Table 3,
we see that the overall MAP scores for the Ameri-
can dataset are relatively lower than other datasets,
perhaps because it is the smallest of the three.
The universal schema approach consistently out-
performs the MLN model, but not ProPPR. On this
dataset the SL-only model in ProPPR outperforms
the IE-only models; however, the joint models still
outperform individual ProPPR models from 1.5%
to 6.4% in MAP.
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Royal Geo American
% missing 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
Baselines
MLN 60.8 43.7 44.9 38.8 38.8 80.4 79.2 68.1 66.0 68.0 54.0 56.0 51.2 41.0 13.8
Universal Schema 48.2 53.0 52.9 47.3 41.2 82.0 84.0 75.7 77.0 65.2 56.7 51.4 55.9 54.7 51.3
SL 79.5 77.2 74.8 65.5 61.9 83.8 80.4 77.1 72.8 67.2 73.1 70.0 71.3 67.1 61.7
IE only
IE (U) 81.3 78.5 76.4 75.7 70.6 83.9 79.4 73.1 71.6 65.2 63.4 61.0 60.2 61.4 54.4
IE (U+B) 81.1 78.1 76.2 75.5 70.3 84.0 79.5 73.3 71.6 65.3 64.3 61.2 61.1 62.1 55.7
Joint
SL+IE (U) 82.8 80.9 79.1 77.9 78.6 89.5 89.4 89.3 88.1 87.6 74.0 73.3 73.7 70.5 68.0
SL+IE (U+B) 83.4 82.0 80.7 79.7 80.3 89.6 89.6 89.5 88.4 87.7 74.6 73.5 74.2 70.9 68.4

Joint + Latent
Joint + Clustering 83.5 82.3 81.2 80.2 80.7 89.8 89.6 89.5 88.8 88.4 74.6 73.9 74.4 71.5 69.7
Joint + LCI 83.5 82.5 81.5 80.6 81.1 89.9 89.8 89.7 89.1 89.0 74.6 74.1 74.5 72.3 70.3
Joint + LCI + hLCI 83.5 82.5 81.7 81.0 81.3 89.9 89.7 89.7 89.6 89.5 74.6 74.4 74.6 73.6 72.1

Table 3: The MAP results for KB completion on three datasets. U: unigram. B: bigram. Best result in
each column is highlighted in bold.

The averaged training runtimes on an ordinary
PC for unigram joint model on the above Royal,
Geo, American datasets are 38, 36, and 29 sec-
onds respectively, while the average testing times
are 11, 10, and 9 seconds. For bilexical joint mod-
els, the averaged training times are 25, 10, and 10
minutes respectively, whereas the testing times are
111, 28, and 26 seconds respectively.

5.3 The Effectiveness of LCI

Finally we consider the latent context invention
(LCI) approach. The last three rows of Table 3
show the performances of LCI and hHCI. We com-
pare it here with the best previous approach, the
joint IE + SL model, and text clustering approach.

For the Royal dataset, first, the LCI and hLCI
models clearly improve over joint IE and SL. In
noisy conditions of missing 50% facts, the biggest
improvement of LCI/hLCI is 2.4% absolute MAP.

From the Geo dataset, we see that the joint mod-
els and joint+latent models have similar perfor-
mances in relatively clean conditions (10%-30%)
facts missing. However, in noisy conditions, we
the LCI and hLCI model has an advantage of be-
tween 1.5% to 1.8% in absolute MAP.

Finally, the results for the American dataset
show a consistent trend: again, in noisy condi-
tions (missing 40% to 50% facts), the latent con-
text models outperform the joint IE + SL models
by 2.9% and 3.7% absolute MAP scores.

Although the LCI approach is inspired by pred-
icate invention in inductive logic programming,
our result is also consistent with theories of gen-
eralized latent variable modeling in probabilis-
tic graphical models and statistics (Skrondal and

Rabe-Hesketh, 2004): modeling hidden variables
helps take into account the measurement (observa-
tion) errors (Fornell and Larcker, 1981) and results
in a more robust model.

6 Discussions

Compared to state-of-the-art joint models (Riedel
et al., 2013) that learn the latent factor represen-
tations, our method gives strong improvements in
performance on three datasets with various set-
tings. Our model is also trained to retrieve a target
entity from a relation name plus a source entity,
and does not require large samples of unlabeled or
negative examples in training.

Another advantage of the ProPPR model is that
they are explainable. For example, below are the
features with the highest weights after joint learn-
ing from the Royal dataset, written as predicates
or rules:

indicates(“mother”,parent)
indicates(“king”,parent)
indicates(“spouse”,spouse)
indicates(“married”,spouse)
indicates(“succeeded”,successor)
indicates(“son”,successor)

parent(X,Y) :- successor(Y,X)
successor(X,Y) :- parent(Y,X)
spouse(X,Y) :- spouse(Y,X)
parent(X,Y) :- predecessor(X,Y)
successor(Y,X) :- spouse(X,Y)
predecessor(X,Y) :- parent(X,Y)

Here we see that our model is able to learn that the
keywords “mother” and “king” that are indicators
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of the relation parent, that the keywords “spouse”
and “married” indicate the relation spouse, and the
keywords “succeeded” and “son” indicate the re-
lation successor. Interestingly, our joint model is
also able to learn the inverse relation successor for
the relation parent, as well as the similar relational
predicate predecessor for parent.

7 Conclusions

In this paper, we address the issue of joint infor-
mation extraction and relational inference. To be
more specific, we introduce a holistic probabilis-
tic logic programming approach for fusing IE con-
texts with relational KBs, using locally groundable
inference on a joint proof graph. We then propose
a latent context invention technique that learns
relation-specific latent clusterings for words. In
experiments, we show that joint modeling for IE
and SRL improves over prior state-of-the-art base-
lines by large margins, and that the LCI model
outperforms various fully baselines on three real-
world Wikipedia dataset from different domains.
In the future, we are interested in extending these
techniques to also exploit unlabeled data.
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Abstract

Prepositional phrases (PPs) express cru-
cial information that knowledge base con-
struction methods need to extract. How-
ever, PPs are a major source of syntactic
ambiguity and still pose problems in pars-
ing. We present a method for resolving
ambiguities arising from PPs, making ex-
tensive use of semantic knowledge from
various resources. As training data, we use
both labeled and unlabeled data, utilizing
an expectation maximization algorithm for
parameter estimation. Experiments show
that our method yields improvements over
existing methods including a state of the
art dependency parser.

1 Introduction

Machine reading and information extraction (IE)
projects have produced large resources with many
millions of facts (Suchanek et al., 2007; Mitchell
et al., 2015). This wealth of knowledge creates
a positive feedback loop for automatic knowledge
base construction efforts: the accumulated knowl-
edge can be leveraged to improve machine read-
ing; in turn, improved reading methods can be
used to better extract knowledge expressed using
complex and potentially ambiguous language. For
example, prepositional phrases (PPs) express cru-
cial information that IE methods need to extract.
However, PPs are a major source of syntactic am-
biguity. In this paper, we propose to use semantic
knowledge to improve PP attachment disambigua-
tion. PPs such as “in”, “at”, and “for” express de-
tails about the where, when, and why of relations
and events. PPs also state attributes of nouns.

As an example, consider the following sen-
tences: S1.) Alice caught the butterfly with the
spots. S2.) Alice caught the butterfly with the net.

S

NP VP

VP NP

Alice

caught butterfly

PP
with 

spots

S1.) Noun attachment
S

NP VP

VP NP PPAlice

caught butterfly with 
net

S2.) Verb attachment

Figure 1: Parse trees where the prepositional
phrase (PP) attaches to the noun, and to the verb.

Relations Noun-Noun binary relations
(Paris, located in, France)
(net, caught, butterfly)

Nouns Noun semantic categories
(butterfly, isA, animal)

Verbs Verb roles
caught(agent, patient, instrument)

Prepositions Preposition definitions
f(for)= used for, has purpose, ...
f(with)= has, contains, ...

Discourse Context
n0 ∈ {n0, v, n1, p, n2}

Table 1: Types of background knowledge used in
this paper to determine PP attachment.

S1 and S2 are syntactically different, this is evi-
dent from their corresponding parse trees in Fig-
ure 1. Specifically, S1 and S2 differ in where their
PPs attach. In S1, the butterfly has spots and there-
fore the PP, “with the spots”, attaches to the noun.
For relation extraction, we obtain a binary relation
of the form: 〈Alice〉 caught 〈butterfly with spots〉.
However, in S2, the net is the instrument used for
catching and therefore the PP, “with the net”, at-
taches to the verb. For relation extraction, we get
a ternary extraction of the form: 〈Alice〉 caught
〈butterfly〉 with 〈net〉.

The PP attachment problem is often defined as
follows: given a PP occurring within a sentence
where there are multiple possible attachment sites
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Figure 2: Dependency parser PP attachment accu-
racy for various frequent prepositions.

for the PP, choose the most plausible attachment
site. In the literature, prior work going as far back
as (Brill and Resnik, 1994; Ratnaparkhi et al.,
1994; Collins and Brooks, 1995) has focused on
the language pattern that causes most PP ambigui-
ties, which is the 4-word sequence: {v, n1, p, n2}
(e.g., {caught, butterfly, with, spots}). The task is
to determine if the prepositional phrase (p, n2) at-
taches to the verb v or to the first noun n1. Follow-
ing common practice, we focus on PPs occurring
as {v, n1, p, n2} quadruples — we shall refer to
these as PP quads.

The approach we present here differs from prior
work in two main ways. First, we make ex-
tensive use of semantic knowledge about nouns,
verbs, prepositions, pairs of nouns, and the dis-
course context in which a PP quad occurs. Table 1
summarizes the types of knowledge we considered
in our work. Second, in training our model, we
rely on both labeled and unlabeled data, employ-
ing an expectation maximization (EM) algorithm
(Dempster et al., 1977).
Contributions. In summary, our main contribu-
tions are:

1) Semantic Knowledge: Previous methods
largely rely on corpus statistics. Our approach
draws upon diverse sources of background knowl-
edge, leading to performance improvements.

2) Unlabeled Data: In addition to training on la-
beled data, we also make use of a large amount of
unlabeled data. This enhances our method’s abil-
ity to generalize to diverse data sets.

3) Datasets: In addition to the standard Wall
Street Journal corpus (WSJ) (Ratnaparkhi et al.,
1994), we labeled two new datasets for testing
purposes, one from Wikipedia (WKP), and an-
other from the New York Times Corpus (NYTC).
We make these datasets freely available for fu-

0

0.25

0.5

0.75

1

IN FROM WITH FOR OF As AT ON

Verb attachments
Noun attachments

Figure 3: Noun vs. verb attachment proportions
for frequent prepositions in the labeled NYTC
dataset.

ture research. In addition, we have applied our
model to over 4 million 5-tuples of the form
{n0, v, n1, p, n2}, and we also make this dataset
available1 for research into ternary relation extrac-
tion beyond spatial and temporal scoping.

2 State of the Art

To quantitatively assess existing tools, we ana-
lyzed performance of the widely used Stanford
parser2 as of 2014, and the established baseline
algorithm (Collins and Brooks, 1995), which has
stood the test of time. We first manually labeled
PP quads from the NYTC dataset, then prepended
the noun phrase appearing before the quad, ef-
fectively creating sentences made up of 5 lexi-
cal items (n0 v n1 p n2). We then applied the
Stanford parser, obtaining the results summarized
in Figure 2. The parser performs well on some
prepositions, for example, “of”, which tends to oc-
cur with noun attaching PPs as can be seen in Fig-
ure 3. However, for prepositions with an even dis-
tribution over verb and noun attachments, such as
“on”, precision is as low as 50%. The Collins
baseline achieves 84% accuracy on the bench-
mark Wall Street Journal PP dataset. However,
drawing a distinction in the precision of different
prepositions provides useful insights on its per-
formance. We re-implemented this baseline and
found that when we remove the trivial preposi-
tion, “of”, whose PPs are by default attached to
the noun by this baseline, precision drops to 78%.
This analysis suggests there is substantial room for
improvement.

1http://rtw.ml.cmu.edu/resources/ppa
2http://nlp.stanford.edu:8080/parser/
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3 Related Work

Statistics-based Methods. Prominent prior meth-
ods learn to perform PP attachment based on
corpus co-occurrence statistics, gathered either
from manually annotated training data (Collins
and Brooks, 1995; Brill and Resnik, 1994) or
from automatically acquired training data that may
be noisy (Ratnaparkhi, 1998; Pantel and Lin,
2000). These models collect statistics on how of-
ten a given quadruple, {v, n1, p, n2}, occurs in the
training data as a verb attachment as opposed to a
noun attachment. The issue with this approach is
sparsity, that is, many quadruples occuring in the
test data might not have been seen in the training
data. Smoothing techniques are often employed
to overcome sparsity. For example, (Collins and
Brooks, 1995) proposed a back-off model that uses
subsets of the words in the quadruple, by also
keeping frequency counts of triples, pairs and sin-
gle words. Another approach to overcoming spar-
sity has been to use WordNet (Fellbaum, 1998)
classes, by replacing nouns with their WordNet
classes (Stetina and Nagao, 1997; Toutanova et
al., 2004) to obtain less sparse corpus statistics.
Corpus-derived clusters of similar nouns and verbs
have also been used (Pantel and Lin, 2000).

Hindle and Rooth proposed a lexical associa-
tion approach based on how words are associated
with each other (Hindle and Rooth, 1993). Lexi-
cal preference is used by computing co-occurrence
frequencies (lexical associations) of verbs and
nouns, with prepositions. In this manner, they
would discover that, for example, the verb “send”
is highly associated with the preposition from, in-
dicating that in this case, the PP is likely to be a
verb attachment.
Structure-based Methods. These methods are
based on high-level observations that are then gen-
eralized into heuristics for PP attachment deci-
sions. (Kimball, 1988) proposed a right associa-
tion method, whose premise is that a word tends
to attach to another word immediately to its right.
(Frazier, 1978) introduced a minimal attachment
method, which posits that words attach to an ex-
isting non-terminal word using the fewest addi-
tional syntactic nodes. While simple, in practice
these methods have been found to perform poorly
(Whittemore et al., 1990).
Rule-based Methods. (Brill and Resnik, 1994)

proposed methods that learn a set of transforma-
tion rules from a corpus. The rules can be too spe-
cific to have broad applicability, resulting in low
recall. To address low recall, knowledge about
nouns, as found in WordNet, is used to replace cer-
tain words in rules with their WordNet classes.
Parser Correction Methods. The quadruples for-
mulation of the PP problem can be seen as a
simplified setting. This is because, with quadru-
ples, there is no need to deal with complex sen-
tences but only well-defined quadruples of the
form {v, n1, p, n2}. Thus in the quadruples set-
ting, there are only two possible attachment sites
for the PP, the v and n1. An alternative setting is
to work in the context of full sentences. In this
setting the problem is cast as a dependency parser
correction problem (Atterer and Schütze, 2007;
Agirre et al., 2008; Anguiano and Candito, 2011).
That is, given a dependency parse of a sentence,
with potentially incorrect PP attachments, rectify
it such that the prepositional phrases attach to the
correct sites. Unlike our approach, these methods
do not take semantic knowledge into account.
Sense Disambiguation. In addition to prior work
on prepositional phrase attachment, a highly re-
lated problem is preposition sense disambiguation
(Hovy et al., 2011; Srikumar and Roth, 2013).
Even a syntactically correctly attached PP can still
be semantically ambiguous with respect to ques-
tions of machine reading such as where, when, and
why. Therefore, when extracting information from
prepositions, the problem of preposition sense dis-
ambiguation (semantics) has to be addressed in ad-
dition to prepositional phrase attachment disam-
biguation (syntax). In this paper, our focus is on
the latter.

4 Methodology

Our approach consists of first generating features
from background knowledge and then training a
model to learn with these features. The types of
features considered in our experiments are sum-
marized in Table 2. The choice of features was
motivated by our empirically driven characteriza-
tion of the problem as follows:

(Verb attach) −→ v 〈has-slot-filler〉 n2
(Noun attach a.) −→ n1 〈described-by〉 n2
(Noun attach b.) −→ n2 〈described-by〉 n1
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Feature Type # Feature Example
Noun-Noun Binary Relations Source: SVOs

F1. svo(n2, v, n1) For q1; (net, caught, butterfly)
F2. ∀i : ∃svio; svo(n1, vi, n2) For q2; (butterfly, has, spots)

For q2; (butterfly, can see, spots)
Noun Semantic Categories Source: T

F3. ∀ti ∈ T ; isA(n1, ti) For q1 isA(butterlfy, animal)
F4. ∀ti ∈ T ; isA(n2, ti) For q2 isA(net, device)

Verb Role Fillers Source: VerbNet
F5. hasRole(n2, ri) For q1; (net, instrument)

Preposition Relational Source:M
Definitions F6. def(prep, vi) ∀i :

∃svio; vi ∈M ∧
svo(n1, vi, n2) For q2; def(with, has)

Discourse Features Source: Sentence(s), T
F7. ∀ti ∈ T ; isA(n0, ti) n0 ∈ {n0, v, n1, p, n2}

Lexical Features Source: PP quads For q1;
F8. (v, n1, p, n2) (caught, butterfly, with, net)
F9. (v, n1, p) (caught, butterfly, with)
F10. (v, p, n2) (caught, with, net)
F11. (n1, p, n2) (butterfly, with, net)
F12. (v, p) (caught, with)
F13. (n1, p) (butterfly, with)
F14. (p, n2) (with, net)
F15. (p) (with)

Table 2: Types of features considered in our experiments. All features have values of 1 or 0.
The PP quads used as running examples are: q1 = {caught, butterfly, with, net} : V , q2 =
{caught, butterfly, with, spots} : N .

That is, we found that for verb-attaching PPs,
n2 is usually a role filler for the verb, e.g., the net
fills the role of an instrument for the verb catch.
On the other hand, for noun-attaching PPs, one
noun describes or elaborates on the other. In par-
ticular, we found two kinds of noun attachments.
For the first kind of noun attachment, the second
noun n2 describes the first noun n1, for exam-
ple n2 might be an attribute or property of n1,
as in the spots(n2) are an attribute of the butter-
fly (n1). And for the second kind of noun attach-
ment, the first noun n1 describes the second noun
n2, as in the PP quad {expect, decline, in, rates},
where the PP “in rates”, attaches to the noun. The
decline:n1 that is expected:v is in the rates:n2. We
sampled 50 PP quads from the WSJ dataset and
found that every labeling could be explained using
our characterization. We make this labeling avail-
able with the rest of the datasets.

We next describe in more detail how each type

of feature is derived from the background knowl-
edge in Table 1.

4.1 Feature Generation

We generate boolean-valued features for all the
feature types we describe in this section.

4.1.1 Noun-Noun Binary Relations

The noun-noun binary relation features, F1-2
in Table 2, are boolean features svo(n1, vi, n2)
(where vi is any verb) and svo(n2, v, n1) (where
v is the verb in the PP quad, and the roles of
n2 and n1 are reversed). These features de-
scribe diverse semantic relations between pairs of
nouns (e.g., butterfly-has-spots, clapton-played-
guitar). To obtain this type of knowledge, we
dependency parsed all sentences in the 500 mil-
lion English web pages of the ClueWeb09 corpus,
then extracted subject-verb-object (SVO) triples
from these parses, along with the frequency of
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each SVO triple in the corpus. The value of
any given feature svo(n1, vi, n2) is defined to be
1 if that SVO triple was found at least 3 times
in these SVO triples, and 0 otherwise. To see
why these relations are relevant, let us suppose
that we have the knowledge that butterfly-has-
spots, svo(n1, vi, n2). From this, we can infer
that the PP in {caught, butterfly, with, spots}
is likely to attach to the noun. Similarly, suppose
we know that net-caught-butterfly, svo(n2, v, n1).
The fact that a net can be used to catch a but-
terfly can be used to predict that the PP in
{caught, butterfly, with, net} is likely to attach
to the verb.

4.1.2 Noun Semantic Categories

Noun semantic type features, F3-4, are boolean
features isA(n1, ti) and isA(n2, ti) where ti is a
noun category in a noun categorization scheme T
such as WordNet classes. Knowledge about se-
mantic types of nouns, for example that a butter-
fly is an animal, enables extrapolating predictions
to other PP quads that contain nouns of the same
type. We ran experiments with several noun cat-
egorizations including WordNet classes, knowl-
edge base ontological types, and an unsupervised
noun categorization produced by clustering nouns
based on the verbs and adjectives with which they
co-occur (distributional similarity).

4.1.3 Verb Role Fillers

The verb role feature, F5, is a boolean fea-
ture hasRole(n2, ri) where ri is a role that
n2 can fulfill for the verb v in the PP quad,
according to background knowledge. Notice
that if n2 fills a role for the verb, then the
PP is a verb attachment. Consider the quad
{caught, butterfly, with, net}, if we know that
a net can play the role of an instrument for the
verb catch, this suggests a likely verb attachment.
We obtained background knowledge of verbs and
their possible roles from the VerbNet lexical re-
source (Kipper et al., 2008). From VerbNet we
obtained 2, 573 labeled sentences containing PP
quads (verbs in the same VerbNet group are con-
sidered synonymous), and the labeled semantic
roles filled by the second noun n2 in the PP quad.
We use these example sentences to label similar
PP quads, where similarity of PP quads is defined
by verbs from the same VerbNet group.

4.1.4 Preposition Definitions
The preposition definition feature, F6, is a
boolean feature def(prep, vi) = 1 if ∃vi ∈
M ∧ svo(n1, vi, n2) = 1, where M is a def-
inition mapping of prepositions to verb phrases.
This mapping defines prepositions, using verbs
in our ClueWeb09 derived SVO corpus, in or-
der to capture their senses using verbs; it con-
tains definitions such as def(with, *) = contains,
accompanied by, ... . If “with” is used in the
sense of “contains” , then the PP is a likely
noun attachment, as in n1 contains n2 in the
quad ate, cookies, with, cranberries. However,
if “with” is used in the sense of “accompanied
by”, then the PP is a likely verb attachment, as
in the quad visted, Paris, with, Sue. To obtain
the mapping, we took the labeled PP quads (WSJ,
(Ratnaparkhi et al., 1994)) and computed a ranked
list of verbs from SVOs, that appear frequently
between pairs of nouns for a given preposition.
Other sample mappings are: def(for,*)= used for,
def(in,*)= located in. Notice that this feature F6
is a selective, more targeted version of F2.

4.1.5 Discourse and Lexical Features
The discourse feature, F7, is a boolean feature
isA(n0, ti), for each noun category ti found in a
noun category ontology T such as WordNet se-
mantic types. The context of the PP quad can
contain relevant information for attachment deci-
sions. We take into account the noun preceding
a PP quad, in particular, its semantic type. This
in effect makes the PP quad into a PP 5-tuple:
{n0, v, n1, p, n2}, where the n0 provides addi-
tional context.

Finally, we use lexical features in the form of
PP quads, features F8-15. To overcome sparsity
of occurrences of PP quads, we also use counts
of shorter sub-sequences, including triples, pairs
and singles. We only use sub-sequences that con-
tain the preposition, as the preposition has been
found to be highly crucial in PP attachment deci-
sions (Collins and Brooks, 1995).

4.2 Disambiguation Algorithm

We use the described features to train a model
for making PP attachment decisions. Our goal
is to compute P(y|x), the probability that the PP
(p, n2) in the tuple {v, n1, p, n2} attaches to the
verb (v) , y = 1 or to the noun(n1), y = 0, given
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a feature vector x describing that tuple. As input to
training the model, we are given a collection of PP
quads, D where di ∈ D : di = {v, n1, p, n2}. A
small subset,Dl ⊂ D is labeled data, thus for each
di ∈ Dl we know the corresponding yi. The rest
of the quads, Du, are unlabeled, hence their corre-
sponding yis are unknown. From each PP quad di,
we extract a feature vector xi according to the fea-
ture generation process discussed in Section 4.1.

4.2.1 Model
To model P(y|x), there a various possibilities.
One could use a generative model (e.g., Naive
Bayes) or a discriminative model ( e.g., logistic re-
gression). In our experiments we used both kinds
of models, but found the discriminative model per-
formed better. Therefore, we present details only
for our discriminative model. We use the logistic
function: P(y|x, ~θ) = e

~θx

1+e~θx
, where ~θ is a vec-

tor of model parameters. To estimate these pa-
rameters, we could use the labeled data as training
data and use standard gradient descent to minimize
the logistic regression cost function. However, we
also leverage the unlabeled data.

4.2.2 Parameter Estimation
To estimate model parameters based on both la-
beled and unlabeled data, we use an Expecta-
tion Maximization (EM) algorithm. EM estimates
model parameters that maximize the expected log
likelihood of the full (observed and unobserved)
data. Since we are using a discriminative model,
our likelihood function is a conditional likelihood
function:

L(θ) =
N∑
i=1

ln P(yi|xi)

=
N∑
i=1

yiθ
Txi − ln (1 + exp(θTxi)) (1)

where i indexes over the N training examples.
The EM algorithm produces parameter esti-

mates that correspond to a local maximum in
the expected log likelihood of the data under
the posterior distribution of the labels, given by:
arg max

θ
Ep(y|x,θ)[ln P(y|x, θ)]. In the E-step, we

use the current parameters θt−1 to compute the
posterior distribution over the y labels, give by
P(y|x, θt−1). We then use this posterior distri-
bution to find the expectation of the log of the

complete-data conditional likelihood, this expec-
tation is given by Q(θ, θt−1), defined as:

Q(θ, θt−1) =
N∑
i=1

Eθt−1 [ln P(y|x, θ)] (2)

In the M-step, a new estimate θt is then pro-
duced, by maximizing thisQ function with respect
to θ:

θt = arg max
θ
Q(θ, θt−1) (3)

EM iteratively computes parameters
θ0, θ1, ...θt, using the above update rule at
each iteration t, halting when there is no further
improvement in the value of the Q function. Our
algorithm is summarized in Algorithm 1. The
M-step solution for θt is obtained using gradient
ascent to maximize the Q function.

Algorithm 1 The EM algorithm for PP attachment
Input: X ,D = Dl ∪Du

Output: θT

for t = 1 . . . T do
E-Step:
Compute p(y|xi, θt−1)

xi : di ∈ Du; p(y|xi, ~θ) = e
~θx

1+e~θx

xi : di ∈ Dl; p(y|xi) = 1 if y = yi, else 0
M-Step:
Compute new parameters, θt

θt = arg max
θ
Q(θ, θt−1)

Q(θ, θt−1) =
N∑
i=1

∑
y∈{0,1}

p(y|xi, θt−1)×

(yθTxi − ln(1 + exp(θTxi)))

if convergence(L(θ),L(θt−1)) then
break

end if
end for
return θT

5 Experimental Evaluation

We evaluated our method on several datasets con-
taining PP quads of the form {v, n1, p, n2}. The
task is to predict if the PP (p, n2) attaches to the
verb v or to the first noun n1.

5.1 Experimental Setup

Datasets. Table 3 shows the datasets used in our
experiments. As labeled training data, we used the
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DataSet # Training quads # Test quads
Labeled data

WSJ 20,801 3,097
NYTC 0 293
WKP 0 381

Unlabeled data
WKP 100,000 4,473,072

Table 3: Training and test datasets used in our ex-
periments.

PPAD PPAD- Coll- Stan-
NB ins ford

WKP 0.793 0.740 0.727 0.701
WKP 0.759 0.698 0.683 0.652
\of
NYTC 0.843 0.792 0.809 0.679
NYTC 0.815 0.754 0.774 0.621
\of
WSJ 0.843 0.816 0.841 N\A
WSJ 0.779 0.741 0.778 N\A
\of

Table 4: PPAD vs. baselines.

Wall Street Journal (WSJ) dataset. For the unla-
beled training data, we extracted PP quads from
Wikipedia (WKP) and randomly selected 100, 000
which we found to be a sufficient amount of un-
labeled data. The largest labeled test dataset is
WSJ but it is also made up of a large fraction, of
“of” PP quads, 30% , which trivially attach to the
noun, as already seen in Figure 3. The New York
Times (NYTC) and Wikipedia (WKP) datasets are
smaller but contain fewer proportions of “of” PP
quads, 15%, and 14%, respectively. Addition-
ally, we applied our model to over 4 million un-
labeled 5-tuples from Wikipedia. We make this
data available for download, along with our man-
ually labeled NYTC and WKP datasets. For the
WKP & NYTC corpora, each quad has a preced-
ing noun, n0, as context, resulting in PP 5-tuples
of the form: {n0, v, n1, p, n2}. The WSJ dataset
was only available to us in the form of PP quads
with no other sentence information.
Methods Under Comparison. 1) PPAD (Prepo-
sitional Phrase Attachment Disambiguator) is our
proposed method. It uses diverse types of seman-
tic knowledge, a mixture of labeled and unlabeled
data for training data, a logistic regression classi-

0.5

0.58

0.66

0.74

0.82

0.9

WKP WKP\of NYTC NYTC\of WSJ WSJ\of

PPAD - WordNet Types PPAD - KB Types
PPAD - Unsupervised Types PPAD - WordNet Verbs
PPAD - Naive Bayes Collins Baseline
Stanford Parser

Figure 4: PPAD variations vs. baselines.

fier, and expectation maximization (EM) for pa-
rameter estimation 2) Collins is the established
baseline among PP attachment algorithms (Collins
and Brooks, 1995). 3) Stanford Parser is a state-
of-the-art dependency parser, the 2014 online ver-
sion. 4) PPAD Naive Bayes(NB) is the same as
PPAD but uses a generative model, as opposed to
the discriminative model used in PPAD.

5.2 PPAD vs. Baselines

Comparison results of our method to the three
baselines are shown in Table 4. For each dataset,
we also show results when the “of” quads are re-
moved, shown as “WKP\of”, “NYTC\of”, and
“WSJ\of”. Our method yields improvements over
the baselines. Improvements are especially sig-
nificant on the datasets for which no labeled data
was available (NYTC and WKP). On WKP, our
method is 7% and 9% ahead of the Collins base-
line and the Stanford parser, respectively. On
NYTC, our method is 4% and 6% ahead of the
Collins baseline and the Stanford parser, respec-
tively. On WSJ, which is the source of the labeled
data, our method is not significantly better than
the Collins baseline. We could not evaluate the
Stanford parser on the WSJ dataset. The parser re-
quires well-formed sentences which we could not
generate from the WSJ dataset as it was only avail-
able to us in the form of PP quads with no other
sentence information. For the same reason, we
could not generate discourse features,F7, for the
WSJ PP quads. For the NYTC and WKP datasets,
we generated well-formed short sentences con-
taining only the PP quad and the noun preceding
it.
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Feature Type Precision Recall F1
Noun-Noun Binary Relations (F1-2) low high low

Noun Semantic Categories (F3-4) high high high
Verb Role Fillers (F5) high low low

Preposition Definitions (F6) low low low

Discourse Features (F7) high low high
Lexical Features (F8-15) high high high

Table 5: An approximate characterization of feature knowledge sources in terms of precision/recall/F1

5.3 Feature Analysis

We found that features F2 and F6 did not im-
prove performance, therefore we excluded them
from the final model, PPAD. This means that bi-
nary noun-noun relations were not useful when
used permissively, feature F2, but when used se-
lectively, feature F1, we found them to be useful.
Our attempt at mapping prepositions to verb def-
initions produced some noisy mappings, resulting
in feature F6 producing mixed results. To ana-
lyze the impact of the unlabeled data, we inspected
the features and their weights as produced by the
PPAD model. From the unlabeled data, new lex-
ical features were discovered that were not in the
original labeled data. Some sample new features
with high weights for verb attachments are: (per-
form,song,for,*), (lose,*,by,*), (buy,property,in,*).
And for noun attachments: (*,conference,on,*),
(obtain,degree,in,*), (abolish,taxes,on,*).

We evaluated several variations of PPAD, the
results are shown in Figure 4. For “PPAD-
WordNet Verbs”, we expanded the data by replac-
ing verbs in PP quads with synonymous WordNet
verbs, ignoring verb senses. This resulted in more
instances of features F1, F8-10, & F12.

We also used different types of noun categoriza-
tions: WordNet classes, semantic types from the
NELL knowledge base (Mitchell et al., 2015) and
unsupervised types. The KB types and the unsu-
pervised types did not perform well, possibly due
to the noise found in these categorizations. Word-
Net classes showed the best results, hence they
were used in the final PPAD model for features
F3-4 & F7. In Section 5.1, PPAD corresponds to
the best model.

5.4 Discussion: The F1 Score of Knowledge

Why did we not reach 100% accuracy? Should re-
lational knowledge not be providing a much big-
ger performance boost than we have seen in the re-

sults? To answer these questions, we characterize
our features in terms precision and recall, and F1
measure of their knowledge sources in Table 5. A
low recall feature means that the feature does not
fire on many examples, the feature’s knowledge
source suffers from low coverage. A low preci-
sion feature means that when it fires, the feature
could be incorrect, the feature’s knowledge source
contains a lot of errors.

From Table 5, the noun-noun binary relation
features (F1 − 2) have low precision, but high
recall. This is because the SVO data, extracted
from the ClueWeb09 corpus, that we used as our
relational knowledge source is very noisy but it is
high coverage. The low precision of the SVO data
causes these features to be detrimental to perfor-
mance. Notice that when we used a filtered ver-
sion of the data, in feature F2, the data was no
longer detrimental to performance. However, the
F2 feature is low recall, and therefore it’s impact
on performance is also limited. The noun seman-
tic category features (F3−4) have high recall and
precision, hence it to be expected that their im-
pact on performance is significant. The verb role
filler features (F5), obtained from VerbNet have
high precision but low recall, hence their marginal
impact on performance is also to be expected. The
preposition definition features (F6) poor precision
made them unusable. The discourse features (F7)
are based noun semantic types and lexical features
(F8−15), both of which have high recall and pre-
cision, hence they useful impact on performance.

In summary, low precision in knowledge is
detrimental to performance. In order for knowl-
edge to make even more significant contributions
to language understanding, high precision, high
recall knowledge sources are required for all fea-
tures types. Success in ongoing efforts in knowl-
edge base construction projects, will make perfor-
mance of our algorithm better.
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Relation Prep. Attachment accuracy Example(s)
acquired from 99.97 BNY Mellon acquired Insight from Lloyds.
hasSpouse in 91.54 David married Victoria in Ireland.
worksFor as 99.98 Shubert joined CNN as reporter.
playsInstrument with 98.40 Kushner played guitar with rock band Weezer.

Table 6: Binary relations extended to ternary relations by mapping to verb-preposition pairs in PP 5-
tuples. PPAD predicted verb attachments with accuracy >90% in all relations.

5.5 Application to Ternary Relations

Through the application of ternary relation extrac-
tion, we further tested PPAD’s PP disambiguation
accuracy and illustrated its usefulness for knowl-
edge base population. Recall that a PP 5-tuple of
the form {n0, v, n1, p, n2}, whose enclosed PP at-
taches to the verb v, denotes a ternary relation with
arguments n0, n1, & n2. Therefore, we can extract
a ternary relation from every 5-tuple for which our
method predicts a verb attachment. If we have a
mapping between verbs and binary relations from
a knowledge base (KB), we can extend KB rela-
tions to ternary relations by augmenting the KB
relations with a third argument n2.

We considered four KB binary re-
lations and their instances such as
worksFor(TimCook,Apple), from the NELL
KB. We then took the collection of 4 million
5-tuples that we extracted from Wikipedia. We
mapped verbs in 5-tuples to KB relations, based
on significant overlaps in the instances of the KB
relations, noun pairs such as (TimCook,Apple)
with the n0, n1 pairs in the Wikipedia PP 5-tuple
collection. We found that, for example, instances
of the noun-noun KB relation “worksFor” match
n0, n1 pairs in tuples where v = joined and
p = as , with n2 referring to the job title. Other
binary relations extended are: “hasSpouse” ex-
tended by “in” with wedding location, “acquired”
extended by “from” with the seller of the company
being acquired. Examples are shown in Table
6. In all these mappings, the proportion of verb
attachments in the corresponding PP quads is
significantly high ( > 90%). PPAD is overwhelm-
ing making the right attachment decisions in this
setting.

Efforts in temporal and spatial relation extrac-
tion have shown that higher N-ary relation extrac-
tion is challenging. Since prepositions specify de-
tails that transform binary relations to higher N-

ary relations, our method can be used to read infor-
mation that can augment binary relations already
in KBs. As future work, we would like to incor-
porate our method into a pipeline for reading be-
yond binary relations. One possible direction is
to read details about the where,why, who of events
and relations, effectively moving from extracting
only binary relations to reading at a more general
level.

6 Conclusion

We have presented a knowledge-intensive ap-
proach to prepositional phrase (PP) attachment
disambiguation, which is a type of syntactic ambi-
guity. Our method incorporates knowledge about
verbs, nouns, discourse, and noun-noun binary re-
lations. We trained a model using labeled data and
unlabeled data, making use of expectation max-
imization for parameter estimation. Our method
can be seen as an example of tapping into a pos-
itive feedback loop for machine reading, which
has only become possible in recent years due to
the progress made by information extraction and
knowledge base construction techniques. That
is, using background knowledge from existing re-
sources to read better in order to further populate
knowledge bases with otherwise difficult to extract
knowledge. As future work, we would like to use
our method to extract more than just binary rela-
tions.
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Abstract

Comparisons in text, such as in online re-
views, serve as useful decision aids. In
this paper, we focus on the task of iden-
tifying whether a comparison exists be-
tween a specific pair of entity mentions
in a sentence. This formulation is trans-
formative, as previous work only seeks
to determine whether a sentence is com-
parative, which is presumptuous in the
event the sentence mentions multiple en-
tities and is comparing only some, not all,
of them. Our approach leverages not only
lexical features such as salient words, but
also structural features expressing the re-
lationships among words and entity men-
tions. To model these features seamlessly,
we rely on a dependency tree representa-
tion, and investigate the applicability of a
series of tree kernels. This leads to the de-
velopment of a new context-sensitive tree
kernel: Skip-node Kernel (SNK). We fur-
ther describe both its exact and approxi-
mate computations. Through experiments
on real-life datasets, we evaluate the effec-
tiveness of our kernel-based approach for
comparison identification, as well as the
utility of SNK and its approximations.

1 Introduction

When weighing various alternatives, users in-
creasingly turn to the social media, by scouring
online reviews, discussion forums, etc. Our goal
is to extract from such corpora those text snip-
pets where users make direct comparisons of en-
tities. While sentiment analysis (Pang and Lee,
2008) may be helpful in evaluating individual en-
tities, comparison by the same author within a sen-
tence provides an unambiguous and more equi-
table basis for the relative positions of two enti-
ties on some aspect. For example, the sentence s1

in Table 1, taken from an Amazon review about
a digital camera, makes two distinct comparisons:
#1) between “A630” and “A-series cameras” and
#2) between “A630” and “its competition”, with a
clear sense of which entity mention is the greater
on some aspect (“larger”). Moreover, comparisons
may be objective (e.g., larger) or subjective (e.g.,
better), while sentiments are primarily subjective.

Problem Given a sentence and a specific pair
of entity mentions, we seek to determine if a com-
parison exists between those two mentions. In pre-
vious work, the problem was formulated as identi-
fying comparative sentences, i.e., those containing
at least one comparison (Jindal and Liu, 2006a).
This is not ideal because a sentence may contain
more than two entity mentions, and may be com-
paring only some of them. For instance, s1 is com-
parative with respect to the pair (A630, A-series
cameras) and the pair (A630, its competition), but
not the pair (A-series cameras, its competition).

We therefore postulate that the more appropri-
ate formulation is comparisons within sentences.
If a sentence compares two entities (A, B) with re-
spect to some aspect Z, it should be possible to
reformulate it into another sentence such as: “A
is better than B with respect to Z” (Kessler and
Kuhn, 2014a). Based on this definition, there is no
comparison between (A-series cameras, its com-
petition) in s1. Here, we adopt this apt definition
with a slight restriction to make it more practical,
and seek to identify such comparisons automati-
cally. We consider only sentences with at least
two entity mentions involved in gradable compar-
isons, i.e., a clear sense of scaling in the compar-
ison (e.g., A is better than B.). Such comparisons
are more useful in investigating the pros and cons
of entities, as opposed to equative comparisons ex-
pressing parity between two mentions (e.g., A is as
good as B.), or superlative comparisons expressing
the primacy of an entity with respect to unknown
reference entities (e.g., A is the best.).
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ID Sentence Remarks
s1 The A630 is slightly larger than previous generation A-

series cameras, and also larger than much of its competition.
Contains two comparisons: (A630, A-series cam-
eras) and (A630, its competition).

s2 I got 30D for my wife because she wanted a better camera. Includes comparative predicate “better”, but con-
tains no comparison.

s3 I had D3100 and it was nice but the D5100 is truly amazing. No comparative predicate, but has a comparison:
(D3100, D5100).

s4 D7000 and D7100 do better at high ISO than D300s. Contains two comparisons: (D7000, D300s) and
(D7100, D300s).

Table 1: Example Sentences with ≥ 2 Entity Mentions from Amazon.com Digital Cameras Reviews

Approach For English, there usually is a com-
parative predicate that anchors a comparison, such
as “better” or “worse”. However, many sentences
with such predicate words are not comparisons.
The sentence s2 in Table 1 has the word “better”,
but does not contain any comparison between the
entity mentions. Yet, other words (e.g., “amaz-
ing”), though not a comparative predicate, could
signify a comparison, e.g., in s3 in Table 1.

(Jindal and Liu, 2006a) considered the “con-
text” around a predicate. A sentence is trans-
formed into a sequence involving the predicate and
the part of speech (POS) within a text window
around the predicate (usually three words before
and after). For instance, s2 in Table 1 would be
transformed into the sequence 〈PRP VBD DT bet-
ter NN〉. Such sequences are labeled comparative
or non-comparative, upon which (Jindal and Liu,
2006a) applies sequential pattern mining (Agrawal
and Srikant, 1995; Ayres et al., 2002; Pei et al.,
2001) to learn class sequential rule (CSR). These
CSRs are then used as features in classifying com-
parative sentences.

While (Jindal and Liu, 2006a) makes some
progress by considering context, its performance
may be affected by several factors. First, CSRs are
not sensitive to entity mentions. It may classify
s1 as comparative generally, missing the nuance
that s1 is not comparing the pair (A-series cam-
eras, its competition). Second, as CSRs requires a
list of comparative predicates, the quality and the
completeness of the list are crucial. For instance,
“amazing” is not in their list, and thus the compar-
ison in s3 may not be identifiable. Third, due to
the windowing effect, CSRs has a limited ability to
model long-range dependencies. For s4, a window
of three words around the predicate “better” ex-
cludes the word “than” that would have been very
informative. Yet, enlarging the window might then
bring in irrelevant associations.

What is important then is not so much whether
a sentence is comparative as whether two entity
mentions are related by a comparative relation.
One insight we draw is how comparison identifi-
cation is effectively a form of relation extraction.
While there are diverse relation extraction formu-
lations (Culotta and Sorensen, 2004; Bunescu and
Mooney, 2005; Nguyen et al., 2009), our distinct
relation type is comparison of two entity mentions.

Armed with this insight, we propose a kernel-
based approach based on a dependency tree rep-
resentation (Nivre, 2005), with significant innova-
tions motivated by the comparative identification
task. This proposed approach has several advan-
tages over CSR. Most importantly, it models de-
pendencies between any pair of words (including
entity mentions), whereas CSR only relates a com-
parative predicate to nearby POS tags. For other
advantages, unlike CSR, this approach is contin-
gent on neither a pre-specified list of comparative
predicates, nor a specific window length.

Contributions In this paper, we make the fol-
lowing contributions. First, we re-formulate the
problem of automatic identification of compara-
tive sentences into the more general task of iden-
tifying comparisons within sentences. Second, we
propose to frame comparison identification as a re-
lation extraction problem. This entails: #1) deriv-
ing an appropriate dependency tree representation
of sentences to enable discrimination of compari-
son vs. non-comparison within the same sentence
(see Section 2), and #2) a systematic exploration
of the applicability of various tree kernel spaces
to our task (see Section 3). Third, due to the lim-
itation of the existing tree kernels, we propose a
new tree kernel: Skip-node Kernel that is context-
sensitive, and discuss both its exact and approx-
imate computations (see Section 4). Fourth, we
validate its effectiveness and efficiency through
experiments on real-life datasets (see Section 5).
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2 Overview

Task The input is a corpus of sentences S con-
cerning a set of entities within a certain domain
(e.g., digital cameras). Every sentence s ∈ S con-
tains at least two entity mentions. The set of entity
mentions in s is denoted Ms. For instance, the
sentence s4 in Table 1 contains three entity men-
tions: D7000, D7100, and D300s. The same entity
may be mentioned more than once in a sentence,
in which case every mention is a distinct instance.

As output, we seek to determine, for each pair
of entity mentions (mi < mj) ∈ Ms in a sen-
tence s ∈ S, a binary class label of whether s con-
tains a comparison between mi and mj . For the
pair (D7000, D7100) in s4, the correct class is 0
(no comparison). For the other two pairs (D7000,
D300s) and (D7100, D300s), the correct class is 1
(comparisons). We do not seek to identify the as-
pect of comparison, which is a different problem
of independent research interest (see Section 6).

Dependency Tree In order to represent both
the lexical units (words) as well their structural
dependencies seamlessly, we represent each
sentence s as a dependency tree T . For example,
Figure 1(a) shows the dependency tree of s4 in
Table 1. The tree is rooted at the main verb (“do”),
and each dependency relation associates a head
word and a dependent word. To describe a tree
or any of its substructures, we use the bracket
notation. Figure 1(a) in this notation is [do
[D7000 [and] [D7100]] [better [at
[ISO [high]]] [than [D300s]]]].

Here, we make two observations. First, there
is one tree even for a sentence with multiple pairs
of entity mentions. Second, the information sig-
nalling a comparison is borne by the structures
around the mentions (e.g., [better [than]],
rather than the actual mentions (e.g., “D7000”).
These lead us to introduce a modified dependency
tree that is distinct for every pair of mentions,
achieved by replacing each entity mention of in-
terest by a placeholder token. Here, we use the to-
ken “#camera” for illustration. Figure 1(b) shows
the modified tree for the pair (D7000, D7100).
This enables learning in an entity-agnostic way,
because the token ensures that sentences about dif-
ferent cameras are interpreted similarly.

Convolution Kernel Observe how the trees of
the pair (D7000, D300s) in Figure 1(c) and the pair
(D7100, D300s) in Figure 1(d), which are both
comparisons, share certain substructures, such

D7000 and D7100 do better at high ISO than D300s

(a) original dependency tree

#camera and #camera do better at high ISO than D300s

(b) modified dependency tree for (D7000, D7100)

#camera and D7100 do better at high ISO than #camera

(c) modified dependency tree for (D7000, D300s)

D7000 and #camera do better at high ISO than #camera

(d) modified dependency tree for (D7100, D300s)

Figure 1: Modified dependency trees.

as [do [better [than [#camera]]]. In
contrast, the tree in Figure 1(b) for the pair
(D7000, D7100), which is not a comparison, does
not contain this substructure. What we need is a
way to systematically examine tree substructures
to determine the similarity between two trees.

Kernel methods offer a way to measure the sim-
ilarity by exploring an implicit feature space with-
out enumerating all substructures explicitly. Sup-
pose that T denotes the space of all possible in-
stances. A kernel function K is a symmetric and
positive semidefinite function that maps the in-
stance space T × T to a real value in the range
of [0,∞) (Haussler, 1999). A tree kernel func-
tion can be reformulated into a convolution kernel
(Collins and Duffy, 2001), shown in Equation 1.

K(T1, T2) =
∑
ni∈T1

∑
nj∈T2

D(ni, nj) (1)

Here, ni and nj denote each node in their re-
spective tree instances T1 and T2. D(ni, nj) is
the number of common substructure instances be-
tween the two sub-trees rooted in ni and nj re-
spectively. The exact form of D(ni, nj) depends
on the specific definition of the tree kernel space.
In Section 3, we systematically explore the appli-
cability of various tree kernel spaces, leading to
the introduction of the new Skip-node Kernel.

The appropriate kernel function can be embed-
ded seamlessly in kernel methods for classifica-
tion. In this work, we use the Support Vector Ma-
chines (SVM) (Steinwart and Christmann, 2008).
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3 Tree Kernel Spaces

Tree kernels count substructures of a tree in some
high-dimensional feature space. Different tree
kernel spaces vary in the amount and the type of
information they can capture, and thus may suit
different purposes. To find a suitable tree kernel
for the comparison identification task, we first sys-
tematically explore a progression of known tree
kernel spaces, including Sub-tree, Subset Tree,
and Partial Tree. Through the use of appropriate
examples, we show how these existing tree ker-
nel spaces may not be appropriate for certain in-
stances. This section culminates in the introduc-
tion of a new feature space that we call Skip-node.

Sub-tree (ST) Space In this space, the ba-
sic substructure is a subgraph formed by a node
along with all its descendants. Applying this ker-
nel to two dependency trees of similar sentences
may not be appropriate due to, for example, mod-
ifier words that change the dependency structure.
To illustrate this, let us examine the two depen-
dency parses in Figure 2. Both support compar-
isons, and ideally we can detect some level of sim-
ilarity. However, if we consider only sub-trees, the
two dependency trees share in common only two
fragments: [#camera] and [is]. Neither of
these fragments is indicative of a comparison.

#camera is better than #camera

(a)

(b)

Figure 2: Dependency parses. Working example
for the Sub-tree, Subset Tree, Partial Tree kernels.

Subset Tree (SST) Space We next consider
the SST kernel, which computes similarity in
a more general space of substructures than ST.
Any subgraph of a tree that preserves produc-
tion rules is counted. This definition suggests
SST is intended more for a constituency parse
(Moschitti, 2006a). In this feature space, the
parses in Figure 2 now have in common the fol-
lowing fragments: [#camera], [is], [than
[#camera]]. This representation is better than
ST’s, e.g., the fragment [than [#camera]] is
informative. However, as a whole, the set of fea-
tures are still insufficient to identify a comparison.

#camera is twice as expensive as #camera

(a)

Previously I had D60 and D7100 and #camera is twice as good as #camera

(b)

Previously I had D60 and #camera and this camera is twice as good as #camera

(c)

Figure 3: Dependency parses. Working example
for the Partial Tree, Skip-node kernels.

Partial Tree (PT) Space In turn, the PT space
allows breaking of production rules, making it a
better choice than SST for dependency parses. PT
kernel would find that the parse in Figure 2(a) with
all its subgraphs can be matched as a whole within
the parse in Figure 2(b), identifying a close match.

However, PT kernel is prone to two drawbacks.
By generating an exponential feature space, it may
overfit and degrade generalization (Cumby and
Roth, 2003). More importantly, PT considers tree
fragments independently from their contexts, re-
sulting in features involving non-related parts of a
sentence. This is particularly apparent when we
consider multiple entities within a sentence.

Suppose that Figure 3(a) is in our training set,
and we have the sentence below in the testing set:

Previously, I had D60 and D7100, and
this camera is twice as good as D60.

Figure 3(b) shows the parse for (this camera, D60),
and Figure 3(c) for (D7100, D60). The former
is a comparison, and should match Figure 3(a).
The latter is not and should not match. PT ker-
nel cannot resolve this ambiguity, computing the
same similarity value to Figure 3(a) for both.
The common features are: [#camera], [is],
[twice], [as], and [as [#camera]].

Skip-node (SN) Space Figures 3(a) and 3(b)
share a similar substructure “twice as ... as”, but
because they use different words to express the
comparisons (“expensive” vs. “good”), previous
kernels treat their features disjointly, missing out
on their similarity. To reduce this over-reliance on
exact word similarity, we seek a feature space that
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#camera is twice as as #camera

(a)

Previously I had D60 and D7100 and #camera is twice as as #camera

(b)

Figure 4: Dependency parses with skipped nodes.

would allow some degree of relaxation in deter-
mining the structural similarity between trees.

We therefore propose the Skip-node (SN) space,
which represents a generalized space of tree frag-
ments, where some nodes can be “skipped” or re-
labeled to a special symbol ‘*’ that would match
nodes of any label. A restriction on this space is
that each skip symbol must connect two non-skip
(regular) nodes. The implication is that skips code
for some notion of connecting distance between
non-skip nodes. Moreover, the space would not
include features such as [* [* [#camera]]]
that serve only to indicate the presence of ances-
tors, and not any relationship of non-skip nodes.

Figure 4 resolves the ambiguity in Fig-
ure 3 by skipping the words “expensive” and
“good”, introducing a new set of features: [*
[#camera] [is] [twice] [as] [as
[#camera]]]. Note how in this case the skip
symbol effectively serves as a “context” that pulls
together the previously disjoint features identified
by the PT kernel. These new context-sensitive
features would allow a match between the earlier
Figures 3(a) and 3(b), but not Figure 3(c).

Thus, SN space effectively generalizes over the
PT space, and enriches it with context-sensitive
features. To avoid overfitting, in addition to decay
parameter λ used in PT kernel, we associate SN
kernel with two other parameters. The SN space
consists of rooted ordered trees where some nodes
are labeled with a special skip symbol ‘*’, such
that the number of regular nodes (not marked with
‘*’) is at most S, and each skip node is within a
distance of L from a non-skip node. This engen-
ders a graceful gradation of similarity as the num-
ber of skip nodes in a substructure grows, yet im-
poses a limit to the extent of relaxation.

4 Skip-node Kernel Computation

We now discuss the computation of Skip-node
Kernel, first exactly, and thereafter approximately.

4.1 Exact Computation

We define the alignment of common fragments be-
tween two trees in the Skip-node space. When
S = 1, only singleton nodes with the same labels
contribute to the kernel, and alignment is straight-
forward. When aligning fragments with two reg-
ular nodes (S > 1), we consider their connection
structure and the order of the child nodes to pre-
vent over-counting substructures with the same la-
bels (e.g., [*[as][as]] in Figure 4). To pre-
serve the natural order of words in a sentence, we
enumerate the tree nodes according to preorder,
left-to-right depth-first search (DFS) traversal.

In turn, the connection structure is defined by
the skip-node path connecting two regular nodes.
This can be expressed as a sequence of upward
(towards the root) and downward (towards the
leaves) steps we need to perform to get from
the leftmost to the rightmost regular node. Due
to the natural ordering of regular nodes, upward
steps are followed by downward steps. The se-
quence can be expressed as a pair of numbers:
〈ρ(nl, u), ρ(nr, u)〉, where nl is the leftmost reg-
ular node of a fragment, nr is the rightmost one,
u = σ(nl, nr) is the lowest common ancestor of
nodes nl, nr, and ρ returns the number of edges in
the shortest path connecting two nodes.

Suppose a rooted tree T = (N,E) has pre-
order DFS enumeration N = (n1, n2, ..., n|N |).
For i < j, we define a function π(ni, nj), which
canonically represents the way two nodes are con-
nected in a tree, as follows:

π(ni, nj) = 〈ρ(ni, σ(ni, nj)), ρ(nj , σ(ni, nj))〉.

DEFINITION 1 (STRUCTURAL ISOMOR-
PHISM): Given two trees T1 = (N1, E1),
T2 = (N2, E2), we say that pairs of nodes
(vi, ui′), (vj , uj′) ∈ N1 × N2 are structurally
isomorphic and write (vi, ui′) ! (vj , uj′) when
π(vi, vj) = π(ui′ , uj′) on the valid domain.

It can be shown that structural isomorphism is a
transitive relation. This property allows us to grow
aligned fragments by adding one node at a time:

(vi, ui′)! (vj , uj′) ∧ (vj , vj′)! (vk, uk′)⇒
(vi, ui′)! (vk, uk′).
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To compute the kernel, we use a graph-based
approach to enumerate all the common substruc-
tures in the Skip-node space. Given two trees T1

and T2, we begin by aligning their nodes. The sets
of nodes in T1 and T2 are N1 and N2 respectively.
LetNG be a set of pairs (ni, nj) ∈ N1×N2, where
ni and nj have the same label. On top of NG, we
build a graph G = (NG, EG). We draw an edge
between two vertices (vi, vk), (uj , ul) ∈ NG, if
(vi, uj)! (vk, ul) and ρ(vi, vk) ≤ L.

Any connected subgraph of G represents a fea-
ture in the Skip-node space common to both T1

and T2. The kernel then needs to count the num-
ber of connected subgraphs of sizes not more than
S. To see that this procedure is correct, we sim-
ply need to trace back the construction of graph
G, and build an bijection from a subgraph of G to
the corresponding fragments of T1 and T2.

Enumerating all the connected subgraphs of a
given graph requires exponential time. The al-
gorithm described above requires O(|N1||N2| +∑S

i=1

(|NG|
i

)
) time, assuming that the distance be-

tween two nodes in a tree can be computed inO(1)
with appropriate linear preprocessing. See (Ben-
der and Farach-Colton, 2000) for insight. The ex-
act computation is still tractable on the condition
that S and L are not very large. This condition
would probably hold in most realistic scenarios.
Yet, to improve the practicality of the kernel, we
propose a couple of approximations as follows.

4.2 Approximate Computation

One reason for the complexity of the Skip-node
kernel is that although the graph G is formed
by aligning two trees, by allowing connections
through skips, G itself may not necessarily be in
the form of a tree. In deriving an approximation,
our strategy is to formG through alignment of lin-
ear substructures of the original two trees. A Skip-
node space over linear structures can be computed
in polynomial time using dynamic programming.

Linear Skip-node One approximation is to
consider linear substructures in the form of root-
paths. A root-path is a path from the root of a
tree to a leaf. Given two trees T1 and T2, with
DFS enumerated nodes N1 = (v1, v2, ..., vm1)
and N2 = (u1, u2, ..., um2) respectively. Here, v1
and u1 are roots, and vm1 and um2 are the leaves.
Starting with common fragments at the leaves, we
grow them into larger common fragments towards
the root. We call this approximation Linear Skip-

node. Figure 5(a) shows examples of features con-
sidered by Linear Skip-node for the illustrated tree
T in skip-node space (S = 3, L = 2).

The kernel function can be decomposed into:

K(T1, T2) =
∑
vi∈N1

∑
uj∈N2

S∑
s=1

λsD(vi, uj , s),

where D(vi, uj , s) is the number of common sub-
structures of size s with the leftmost regular nodes
vi and uj . λ is a decay factor for substructure size.

The recursive definition of the kernel is:

D(vi, uj , s) =∑
i<k≤m1

∑
j<l≤m2

I(vi, vk, uj , ul)D(vk, ul, s− 1),

D(vi, uj , 1) =

{
1 if label(vi) = label(uj),
0 otherwise;

I(vi, vk, uj , ul) = 1(vi,uj)!(vk,ul)

1ρ(vi,vk)≤L · 1(vi is an ancestor of vk),

where 1c equals 1 when constraint c is satisfied
and 0 otherwise. Note that the first two factors
of indicator function I just represent the general
Skip-node space constraints, the last factor ensures
that features are computed along the root-paths.

Lookahead Skip-node The second approxi-
mation, Lookahead Skip-node, is related to the ob-
servation that when growing a substructure, we do
not have to confine the growth only towards an-
cestors, as DFS traversal already ensures iterative
manner of computation. In other words, the con-
straint vi is an ancestor of vk can be dropped:

I(vi, vk, uj , ul) = 1(vi,uj)!(vk,ul) · 1ρ(vi,vk)≤L.

In addition to those features generated by Linear
Skip-node in Figure 5(a), Lookahead Skip-node
can generate additional tree substructures, shown
in Figure 5(b). The approximation can be com-
puted using different DFS enumerations, which
may result in different feature sets. In our exper-
iments, we used pre-order left-to-right enumera-
tion. Given the enumeration of tree T as in Fig-
ure 5, we start to grow feature fragments from
node n4. According to the Skip-node space con-
straints, the growth can only proceed to nodes n1

or n2. Once any of these nodes is attached to n4,
we lose tree fragments containing n3, as the pro-
cedure allows us to grow substructures only to-
wards nodes with smaller (earlier) DFS enumer-
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Figure 5: Features of T in skip-node space (S = 3, L = 2). Numbers indicates pre-order left-to-right
DFS enumeration of T . Dashed circles represent skip nodes. Subfigures: (a) - modeled by all; (b) -
modeled by Lookahead Skip-node, not by Linear Skip-node; (c) - modeled only by Exact Skip-node.

Domain # sentences % comp. # pairs % comp.

Camera 1716 59.4% 2170 49.9%

Cell 821 35.2% 1110 30.5%

Table 2: The dataset size for each domain.

ation numbers. Figure 5(c) shows the fragments
that Lookahead Skip-node cannot capture1.

The computation procedure is similar for both
approximations and requires O(S|N1|2|N2|2).

5 Experiments

Data For experiments, we compiled two anno-
tated datasets in two domains: Digital Camera and
Cell Phone from online review sentences. The re-
views were collected from Amazon and Epinions2.

We identified the entity mentions through dic-
tionary matching, followed by manual annotation
to weed out false positives. Each dictionary entry
is a product name (e.g., Canon PowerShot D20,
D7100) or a common product reference (e.g., this
camera, that phone). The dataset includes only
sentences that contain at least two entity mentions.
Every pair of entities within a sentence was an-
notated with a comparative label according to the
definition given in Section 2. A sentence is com-
parative if at least one pair of entities within it is in
a comparative relation. Table 2 shows the dataset
properties, in terms of the number sentences and
the percentage that are comparative sentences, as
well as the number of pairs of entity mentions
and the percentage that are comparative relations.
There are more pairs than sentences, i.e., many
sentences mention more than two entities.

This dataset subsumes the annotated gradable

1In this particular case, all features could have been com-
puted by Lookahead Skip-node using preorder right-to-left
DFS enumeration, although it may not be true in general.

2We used already available snapshots for Epinions
dataset: http://groups.csail.mit.edu/rbg/code/precis/.

Camera Cell
P R F1 P R F1

CSR 74.3 52.3 61.3 48.9 61.5∗ 54.3

BoW 76.9 76.3 76.6 62.2 58.0 59.8

BoW† 77.3 71.9 74.4 69.0 56.3 61.8

SNK 80.5∗ 75.2 77.7∗∗ 77.2∗ 55.1 64.1∗

Table 3: Comparison identification task

comparisons of (Kessler and Kuhn, 2014a) derived
from Epinions reviews on Digital Cameras. (Jin-
dal and Liu, 2006a)’s dataset is inapplicable, due
to its lack of entity-centric comparison.

Evaluation The experiments were carried out
with SVM-light-TK framework3 (Joachims, 1999;
Moschitti, 2006b), into which we built Skip-node
Kernel. We further release a separate standalone
library that we built, called Tree-SVM4, which
does SVM optimization using the tree kernels de-
scribed in this paper. The sentences were parsed
and lemmatized with the use of the Stanford NLP
software (Chen and Manning, 2014).

The experiments were done on 10 random data
splits in 80:20 proportion of training vs. testing.
Performance is measured by using F1, which is
the harmonic mean of precision P and recall R:
F1 = 2PR

P+R . The statistical significance5 is mea-
sured by randomization test (Yeh, 2000). The
hyper-parameters, including the baselines’, were
optimized for F1 through grid-search.

5.1 Comparison Identification

Our first and primary objective is to investigate the
effectiveness of the proposed approach on the task
of identifying comparisons between a pair of en-

3http://disi.unitn.it/moschitti/Tree-Kernel.htm
4http://github.com/sitfoxfly/tree-svm
5When presenting the results, an asterisk indicates that the

outperformance over the second-best result is significant at
0.05 level. Two asterisks indicate the same at 0.1 level.
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Camera Cell
P R F1 P R F1

CSR 74.6 51.7 60.9 50.9 61.2∗ 55.3

BoW 77.5 76.3 76.8 63.4 57.7 60.2

BoW† 77.6 72.4 74.9 70.9 57.3 63.2

SNK 81.0∗ 75.2 78.0∗∗ 77.9∗ 54.8 64.2

Table 4: Comparative sentence identification task

tity mentions. Previous work focused on identify-
ing comparative sentences. We compare to three
baselines. One is CSR, implemented following the
description in (Jindal and Liu, 2006a). Another
is BoW, classification using bag-of-words as fea-
tures. For the baselines, if a comparative sentence
contains more than one pair of entities, we assume
that every pair is in comparative relation. The third
baseline, BoW†, considers only the words in be-
tween of the two target entities.

Table 3 shows the performance on the compar-
ison identification task (best results are in bold).
In terms of F1, it is evident that SNK outperforms
the baselines. This is achieved through significant
gains in precision. It is expected that the base-
lines tend to have a high recall. CSR benefits from
the human-constructed predefined list of compara-
tive keywords and key phrases that a kernel-based
method is unable to learn from a training split.
BoW† tends to have a higher precision than the
other baselines, as it is able to distinguish between
different pairs of entities within one sentence.

While SNK may have an inherent advantage
over CSR or BoW due to its entity orientation,
to investigate the effectiveness of the method it-
self, we now compare them on the previous task
of comparative sentence identification. Table 4
shows that even in this task, SNK still performs
better than the baselines. Comparing Table 3 and
Table 4, the results also concur with the intuition:
once we fold up multiple entity pairs in a sentence
into a comparative sentence, we observe a drop in
recall and an increase in precision.

5.2 Tree Kernel Spaces

Our second objective is to explore the progres-
sion of feature spaces discussed in Section 3. Ta-
ble 5 reports the results on comparison identifi-
cation task. The F1 columns show that the per-
formance gradually increases from STK to SNK
along with the increase in the complexity of fea-
ture space. PTK and SNK can be considered high-

Camera Cell
P R F1 P R F1

STK 67.5 64.0 64.9 43.7 41.9 42.6

SSTK 72.1 72.6 71.8 79.6 42.4 54.9

PTK 79.2 74.9 76.9 72.3 56.0∗∗ 62.7

SNK 80.5∗ 75.2 77.7∗∗ 77.2 55.1 64.1∗

Table 5: Tree kernels

Camera Cell
P R F1 P R F1

STKBoW 79.9 65.1 71.7 77.5 45.3 56.8

SSTKBoW 78.0 73.5 75.6 71.8 54.5 61.6

PTKBoW 78.6 74.1 76.2 71.0 53.8 60.8

SNK 80.5 75.2∗∗ 77.7∗ 77.2 55.1 64.1∗∗

Table 6: Tree kernels combined with bag-of-words

variance estimators due to the power of their fea-
ture spaces. The data is such that these kernels
may not have fully modeled the feature space com-
pletely enough to show even sharper differences.

SNK’s parameters were optimized to non-trivial
cases (S > 1 and L > 1) by the grid-search, i.e.,
S = 3 and L = 2 for Digital Camera and S = 2
and L = 3 for Cell Phone. The trivial case S = 1
represents a standard bag-of-words feature space,
i.e., this space is embedded into Skip-node space
whenever S > 1. To show that SNK does not
merely take advantage of this simple space to com-
pete with structural kernels, we carried out another
experiment where we combined STK, SSTK, and
PTK with bag-of-word representation of a sen-
tence. Table 6 shows that surprisingly this combi-
nation harms the quality of PTK. STK and SSTK
gain more from bag-of-words features. Neverthe-
less, the overall outperformance by SNK remains.

5.3 Skip-node Kernel Approximations

Our third objective is to study the utility of the ap-
proximations of SNK described in Section 4. Ta-
ble 7 reports the performance of the approxima-
tions. For Camera, the performance of Lookahead

Camera Cell
P R F1 P R F1

Linear SNK 78.9 77.1∗ 77.9 71.8 55.3 62.2

Lookahead SNK 80.5 75.2 77.7 71.8 55.3 62.2

SNK 80.5 75.2 77.7 77.2∗ 55.1 64.1

Table 7: Effectiveness: SNK vs. approximations
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Figure 6: Efficiency: SNK vs. approximations

SNK and SNK are the same. In turn, Linear SNK
represents more restricted features, yielding a drop
in precision and a gain in recall, resulting in the
best F1. For Cell Phone, the approximations are
close, but the original SNK has the best F1.

To study the running time, we randomly select
500 sentences. Figure 6 shows the time for ap-
plying a kernel function to 250k pairs of sentences
when we vary two parameters: S and L. When
S varies, SNK running time has exponential be-
haviour, whereas the approximations show fairly
linear curves. L seems to influence the computa-
tion time linearly for SNK and and its approxima-
tions. The experiments were carried out on a PC
with Intel Core i5 CPU 3.2 GHz and 4Gb RAM.

This experiment shows that the original SNK is
still tractable for small S and L, which turn out to
be the case for optimal effectiveness. If efficiency
is of paramount importance, the two approxima-
tions are significantly faster, without much degra-
dation (none in some cases) of effectiveness.

6 Related Work

Exploiting comparisons in text begins with iden-
tifying comparisons within sentences. The previ-
ous state of the art for English is the baseline CSR
approach (Jindal and Liu, 2006a). For scientific
text, (Park and Blake, 2012) explored handcrafted
syntactic rules that might not cross domains well.
Comparisons are also studied in other languages,

such as Chinese, Japanese, and Korean (Huang et
al., 2008; Yang and Ko, 2009; Kurashima et al.,
2008; Yang and Ko, 2009; Zhang and Jin, 2012).

A different task seeks to identify the “com-
ponents” within comparative sentences, i.e., en-
tities, aspect, comparative predicate (Jindal and
Liu, 2006b; Hou and Li, 2008; Kessler and Kuhn,
2014b; Kessler and Kuhn, 2013; Feldman et al.,
2007). Others are interested in yet another task to
identify the direction of the comparisons (Ganap-
athibhotla and Liu, 2008; Tkachenko and Lauw,
2014), or the aggregated ranking (Kurashima et
al., 2008; Zhang et al., 2013; Li et al., 2011). Our
task precedes these tasks in the pipeline.

Other than comparison identification, depen-
dency grammar has also found applications in
natural language-related tasks, such as sentiment
classification (Nakagawa et al., 2010), question
answering (Punyakanok et al., 2004; Lin and Pan-
tel, 2001), as well as relation extraction (Culotta
and Sorensen, 2004; Bunescu and Mooney, 2005).

(Collins and Duffy, 2001) applied convolution
kernels (Haussler, 1999; Watkins, 1999) to natural
language objects, which evolved into tree kernels,
e.g., sub-tree (Vishwanathan and Smola, 2004),
subset tree (Collins and Duffy, 2002), descending-
path kernel (Lin et al., 2014), partial tree (Mos-
chitti, 2006a). Skip-node kernel joins the list of
tree kernels applicable to dependency trees. These
kernels may also apply to other types of trees, e.g.,
constituency trees (Zhou et al., 2007).

(Croce et al., 2011; Srivastava et al., 2013) pro-
posed to capture semantic information along with
tree structure, by allowing soft label matching via
lexical similarity over distributional word repre-
sentation. Skip-node gives another perspective
on sparsity, using structural alignment of the tree
fragments with non-matching labels. As lexical
similarity can be incorporated into Skip-node ker-
nel, we consider it orthogonal and complementary.

7 Conclusion

We study the effectiveness of a convolution ker-
nel approach for the novel formulation of extract-
ing comparisons within sentences. Our approach
outperforms the baselines in identifying compar-
isons and comparative sentences. Skip-node ker-
nel and its approximations are particularly effec-
tive for comparison identification, and potentially
applicable to other relation extraction or natural-
language tasks (the direction of our future work).
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Abstract

The last few years have seen a surge in the
number of accurate, fast, publicly avail-
able dependency parsers. At the same
time, the use of dependency parsing in
NLP applications has increased. It can be
difficult for a non-expert to select a good
“off-the-shelf” parser. We present a com-
parative analysis of ten leading statistical
dependency parsers on a multi-genre cor-
pus of English. For our analysis, we de-
veloped a new web-based tool that gives
a convenient way of comparing depen-
dency parser outputs. Our analysis will
help practitioners choose a parser to op-
timize their desired speed/accuracy trade-
off, and our tool will help practitioners ex-
amine and compare parser output.

1 Introduction

Dependency parsing is a valuable form of syn-
tactic processing for NLP applications due to its
transparent lexicalized representation and robust-
ness with respect to flexible word order languages.
Thanks to over a decade of research on statisti-
cal dependency parsing, many dependency parsers
are now publicly available. In this paper, we re-
port on a comparative analysis of leading statis-
tical dependency parsers using a multi-genre cor-
pus. Our purpose is not to introduce a new pars-
ing algorithm but to assess the performance of ex-
isting systems across different genres of language
use and to provide tools and recommendations
that practitioners can use to choose a dependency
parser. The contributions of this work include:

• A comparison of the accuracy and speed of
ten state-of-the-art dependency parsers, cov-

ering a range of approaches, on a large multi-
genre corpus of English.

• A new web-based tool, DEPENDABLE, for
side-by-side comparison and visualization of
the output from multiple dependency parsers.

• A detailed error analysis for these parsers
using DEPENDABLE, with recommendations
for parser choice for different factors.

• The release of the set of dependencies used
in our experiments, the test outputs from all
parsers, and the parser-specific models.

2 Related Work

There have been several shared tasks on de-
pendency parsing conducted by CoNLL (Buch-
holz and Marsi, 2006; Nivre and others, 2007;
Surdeanu and others, 2008; Hajič and others,
2009), SANCL (Petrov and McDonald, 2012),
SPMRL (Seddah and others, 2013), and Se-
mEval (Oepen and others, 2014). These shared
tasks have led to the public release of numerous
statistical parsers. The primary metrics reported
in these shared tasks are: labeled attachment score
(LAS) – the percentage of predicted dependencies
where the arc and the label are assigned correctly;
unlabeled attachment score (UAS) – where the arc
is assigned correctly; label accuracy score (LS) –
where the label is assigned correctly; and exact
match (EM) – the percentage of sentences whose
predicted trees are entirely correct.

Although shared tasks have been tremendously
useful for advancing the state of the art in depen-
dency parsing, most English evaluation has em-
ployed a single-genre corpus, the WSJ portion of
the Penn Treebank (Marcus et al., 1993), so it
is not immediately clear how these results gen-
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BC BN MZ NW PT TC WB ALL
Training 171,120 206,057 163,627 876,399 296,437 85,466 284,975 2,084,081
Development 29,962 25,274 15,422 147,958 25,206 11,467 36,351 291,640
Test 35,952 26,424 17,875 60,757 25,883 10,976 38,490 216,357
Training 10,826 10,349 6,672 34,492 21,419 8,969 12,452 105,179
Development 2,117 1,295 642 5,896 1,780 1,634 1,797 15,161
Test 2,211 1,357 780 2,327 1,869 1,366 1,787 11,697

Table 1: Distribution of data used for our experiments. The first three/last three rows show the number of
tokens/trees in each genre. BC: broadcasting conversation, BN: broadcasting news, MZ: news magazine,
NW: newswire, PT: pivot text, TC: telephone conversation, WB: web text, ALL: all genres combined.

eralize.1 Furthermore, a detailed comparative er-
ror analysis is typically lacking. The most de-
tailed comparison of dependency parsers to date
was performed by McDonald and Nivre (2007;
2011); they analyzed accuracy as a function of
sentence length, dependency distance, valency,
non-projectivity, part-of-speech tags and depen-
dency labels.2 Since then, additional analyses of
dependency parsers have been performed, but ei-
ther with respect to specific linguistic phenom-
ena (e.g. (Nivre et al., 2010; Bender et al., 2011))
or to downstream tasks (e.g. (Miwa and others,
2010; Petrov et al., 2010; Yuret et al., 2013)).

3 Data

3.1 OntoNotes 5

We used the English portion of the OntoNotes 5
corpus, a large multi-lingual, multi-genre cor-
pus annotated with syntactic structure, predicate-
argument structure, word senses, named entities,
and coreference (Weischedel and others, 2011;
Pradhan and others, 2013). We chose this corpus
rather than the Penn Treebank used in most pre-
vious work because it is larger (2.9M vs. 1M to-
kens) and more diverse (7 vs. 1 genres). We used
the standard data split used in CoNLL’12 3, but re-
moved sentences containing only one token so as
not to artificially inflate accuracy.

Table 1 shows the distribution across genres
of training, development, and test data. For the
most strict and realistic comparison, we trained all
ten parsers using automatically assigned POS tags
from the tagger in ClearNLP (Choi and Palmer,
2012a), which achieved accuracies of 97.34 and
97.52 on the development and test data, respec-
tively. We also excluded any “morphological” fea-

1The SANCL shared task used OntoNotes and the Web
Treebanks instead for better generalization.

2A detailed error analysis of constituency parsing was per-
formed by (Kummerfeld and others, 2012).

3conll.cemantix.org/2012/download/ids/

ture from the input, as these are often not available
in non-annotated data.

3.2 Dependency Conversion

OntoNotes provides annotation of constituency
trees only. Several programs are available for con-
verting constituency trees into dependency trees.
Table 2 shows a comparison between three of
the most widely used: the LTH (Johansson and
Nugues, 2007),4, Stanford (de Marneffe and Man-
ning, 2008),5 and ClearNLP (Choi and Palmer,
2012b)6 dependency converters. Compared to the
Stanford converter, the ClearNLP converter pro-
duces a similar set of dependency labels but gen-
erates fewer unclassified dependencies (0.23% vs.
3.62%), which makes the training data less noisy.

Both the LTH and ClearNLP converters pro-
duce long-distance dependencies and use function
tags for the generation of dependency relations,
which allows one to generate rich dependency
structures including non-projective dependencies.
However, only the ClearNLP converter adapted
the new Treebank guidelines used in OntoNotes.
It can also produce secondary dependencies (e.g.
right-node raising, referent), which can be used for
further analysis. We used the ClearNLP converter
to produce dependencies for our experiments.

LTH Stanford ClearNLP
Long-distance X X

Secondary 1 2 4
Function tags X X

New TB format X

Table 2: Dependency converters. The “secondary”
row shows how many types of secondary depen-
dencies that can be produced by each converter.

4http://nlp.cs.lth.se/software
5http://nlp.stanford.edu/software
6http://www.clearnlp.com
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Parser Approach Language License
ClearNLP v2,37 Transition-based, selectional branching (Choi and McCallum, 2013) Java Apache
GN138 Easy-first, dynamic oracle (Goldberg and Nivre, 2013) Python GPL v2
LTDP v2.0.39 Transition-based, beam-search + dynamic prog. (Huang et al., 2012) Python n/a
Mate v3.6.110 Maximum spanning tree, 3rd-order features (Bohnet, 2010) Java GPL v2
RBG11 Tensor decomposition, randomized hill-climb (Lei et al., 2014) Java MIT
Redshift12 Transition-based, non-monotonic (Honnibal et al., 2013) Cython FOSS
spaCy13 Transition-based, greedy, dynamic oracle, Brown clusters Cython Dual
SNN14 Transition-based, word embeddings (Chen and Manning, 2014) Java GPL v2
Turbo v2.215 Dual decomposition, 3rd-order features (Martins et al., 2013) C++ GPL v2
Yara16 Transition-based, beam-search, dynamic oracle (Rasooli and Tetreault, 2015) Java Apache

Table 3: Dependency parsers used in our experiments.

4 Parsers

We compared ten state of the art parsers repre-
senting a wide range of contemporary approaches
to statistical dependency parsing (Table 3). We
trained each parser using the training data from
OntoNotes. For all parsers we trained using the
automatic POS tags generated during data prepro-
cessing, as described above.

Training settings For most parsers, we used the
default settings for training. For the SNN parser,
following the recommendation of the developers,
we used the word embeddings from (Collobert and
others, 2011).

Development data ClearNLP, LTDP, SNN and
Yara make use of the development data (for pa-
rameter tuning). Mate and Turbo self-tune param-
eter settings using the training data. The others
were trained using their default/“standard” param-
eter settings.

Beam search ClearNLP, LTDP, Redshift and
Yara have the option of different beam settings.
The higher the beam size, the more accurate the
parser usually becomes, but typically at the ex-
pense of speed. For LTDP and Redshift, we ex-
perimented with beams of 1, 8, 16 and 64 and
found that the highest accuracy was achieved at
beam 8.17 For ClearNLP and Yara, a beam size of

7www.clearnlp.com
8cs.bgu.ac.il/˜yoavg/software/sdparser
9acl.cs.qc.edu/˜lhuang

10code.google.com/p/mate-tools
11github.com/taolei87/RBGParser
12github.com/syllog1sm/Redshift
13honnibal.github.io/spaCy
14nlp.stanford.edu/software/nndep.shtml
15www.ark.cs.cmu.edu/TurboParser
16https://github.com/yahoo/YaraParser
17Due to memory limitations we were unable to train Red-

shift on a beam size greater than 8.

64 produced the best accuracy, while a beam size
of 1 for LTDT, ClearNLP, and Yara produced the
best speed performance. Given this trend, we also
include how those three parsers perform at beam 1
in our analyses.

Feature Sets RBG, Turbo and Yara have the op-
tions of different feature sets. A more complex or
larger feature set has the advantage of accuracy,
but often at the expense of speed. For RBG and
Turbo, we use the ”Standard” setting and for Yara,
we use the default (”not basic”) feature setting.

Output All the parsers other than LTDP output
labeled dependencies. The ClearNLP, Mate, RBG,
and Turbo parsers can generate non-projective de-
pendencies.

5 DEPENDABLE: Web-based Evaluation
and Visualization Tool

There are several very useful tools for evaluating
the output of dependency parsers, including the
venerable eval.pl18 script used in the CoNLL
shared tasks, and newer Java-based tools that sup-
port visualization of and search over parse trees
such as TedEval (Tsarfaty et al., 2011),19 Mal-
tEval (Nilsson and Nivre, 2008)20 and “What’s
wrong with my NLP?”.21 Recently, there is mo-
mentum towards web-based tools for annotation
and visualization of NLP pipelines (Stenetorp and
others, 2012). For this work, we used a new web-
based tool, DEPENDABLE, developed by the first
author of this paper. It requires no installation and
so provides a convenient way to evaluate and com-
pare dependency parsers. The following are key
features of DEPENDABLE:

18ilk.uvt.nl/conll/software.html
19www.tsarfaty.com/unipar/
20www.maltparser.org/malteval.html
21whatswrong.googlecode.com
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Figure 1: Screenshot of our evaluation tool.

• It reads any type of Tab Separated Value
(TSV) format, including the CoNLL formats.

• It computes LAS, UAS and LS for parse out-
puts from multiple parsers against gold (man-
ual) parses.

• It computes exact match scores for multiple
parsers, and “oracle ensemble” output, the
upper bound performance obtainable by com-
bining all parser outputs.

• It allows the user to exclude symbol tokens,
projective trees, or non-projective trees.

• It produces detailed analyses by POS tags, de-
pendency labels, sentence lengths, and de-
pendency distances.

• It reports statistical significance values for all
parse outputs (using McNemar’s test).

DEPENDABLE can be also used for visualizing
and comparing multiple dependency trees together
(Figure 2). A key feature is that the user may
select parse trees by specifying a range of accu-
racy scores; this enabled us to perform the er-
ror analyses in Section 6.5. DEPENDABLE al-
lows one to filter trees by sentence length and
highlights arc and label errors. The evalua-
tion and comparison tools are publicly avail-
able at http://nlp.mathcs.emory.edu/
clearnlp/dependable.

Figure 2: Screenshot of our visualization tool.

6 Results and Error Analysis

In this section, we report overall parser accu-
racy and speed. We analyze parser accuracy
by sentence length, dependency distance, non-
projectivity, POS tags and dependency labels, and
genre. We report detailed manual error analy-
ses focusing on sentences that multiple parsers
parsed incorrectly.22 All analyses, other than pars-
ing speed, were conducted using the DEPEND-
ABLE tool.23 The full set of outputs from all
parsers, as well as the trained models for each
parser, available at http://amandastent.
com/dependable/.

We also include the greedy parsing results of
ClearNLP, LTDP, and Yara in two of our anal-
yses to better illustrate the differences between
the greedy and non-greedy settings. The greedy
parsing results are denoted by the subscript ‘g’.
These two analyses are the overall accuracy re-
sults, presented in Section 6.1 (Table 4), and the
overall speed results, presented in Section 6.2 (
(Table 5 and Figure ). All other analyses exclude
the ClearNLPg, LTDPg and Yarag.

22For one sentence in the NW data, the LTDP parser failed
to produce a complete parse containing all tokens, so we
removed this sentence for all parsers, leaving 11,696 trees
(216,313 tokens) in the test data.

23We compared the results produced by DEPENDABLE
with those produced by eval07.pl, and verified that LAS,
UAS, LA, and EM were the same when punctuation was
included. Our tool uses a slightly different symbol set than
eval07.pl: !"#$%&’()*+,-./:;<=>?@[\]ˆ ‘{|}˜
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With Punctuation Without Punctuation
Overall Exact Match Overall Exact Match

LAS UAS LS LAS UAS LS LAS UAS LS LAS UAS LS
ClearNLPg 89.19 90.63 94.94 47.65 53.00 61.17 90.09 91.72 94.29 49.12 55.01 61.31

GN13 87.59 89.17 93.99 43.78 48.89 56.71 88.75 90.54 93.32 45.44 51.20 56.88
LTDPg n/a 85.75 n/a n/a 46.38 n/a n/a 87.16 n/a n/a 48.01 n/a

SNN 86.42 88.15 93.54 42.98 48.53 55.87 87.63 89.59 92.70 43.96 49.83 55.91
spaCy 87.92 89.61 94.08 43.36 48.79 55.67 88.95 90.86 93.32 44.97 51.28 55.70
Yarag 85.93 87.64 92.99 42.94 47.77 54.79 87.39 89.32 92.24 44.25 49.44 54.96

ClearNLP 89.87 91.30 95.28 49.38 55.18 63.18 90.64 92.26 94.67 50.61 56.88 63.24
LTDP n/a 88.18 n/a n/a 51.62 n/a n/a 89.17 n/a n/a 53.54 n/a
Mate 90.03 91.62 95.29 49.66 56.44 62.71 90.70 92.50 94.67 50.83 58.36 62.72
RBG 89.57 91.45 94.71 46.49 55.49 58.45 90.23 92.35 94.01 47.64 56.54 58.07

Redshift 89.48 91.01 95.04 49.71 55.82 62.70 90.27 92.00 94.42 50.88 57.28 62.78
Turbo 89.81 91.50 95.00 48.08 55.33 60.49 90.49 92.40 94.34 49.29 57.09 60.52
Yara 89.80 91.36 95.19 50.07 56.18 63.36 90.47 92.24 94.57 51.02 57.53 63.42

Table 4: Overall parsing accuracy. The top 6 rows and the bottom 7 rows show accuracies for greedy and
non-greedy parsers, respectively.

6.1 Overall Accuracy
In Table 4, we report overall accuracy for each
parser. For clarity, we report results separately
for greedy and non-greedy versions of the parsers.
Over all the different metrics, MATE is a clear
winner, though ClearNLP, RBG, Redshift, Turbo
and Yara are very close in performance. Look-
ing at only the greedy parsers, ClearNLPg shows a
significant advantage over the others.

We conducted a statistical significance test for
the the parsers (greedy versions excluded). All
LAS differences are statistically significant at p <
.01 (using McNemar’s test), except for: RBG vs.
Redshift, Turbo vs. Yara, Turbo vs. ClearNLP and
Yara vs. ClearNLP. All UAS differences are sta-
tistically significant at p < .01 (using McNemar’s
test), except for: SNN vs. LTDP, Turbo vs. Red-
shift, Yara vs. RBG and ClearNLP vs. Yara.

6.2 Overall Speed
We ran timing experiments on a 64 core machine
with 16 Intel Xeon E5620 2.40 GHz processors
and 24G RAM, and used the unix time com-
mand to time each run. Some parsers are multi-
threaded; for these, we ran in single-thread mode
(since any parser can be externally parallelized).
Most parsers do not report model load time, so we
first ran each parser five times with a test set of
10 sentences, and then averaged the middle three
times to get the average model load time.24 Next,
we ran each parser five times with the entire test
set and derived the overall parse time by averag-
ing the middle three parse times. We then sub-
tracted the average model time from the average

24Recall we exclude single-token sentences from our tests.

parse time and averaged over the number of sen-
tences and tokens.

Sent/Sec Tokens/Sec Language
ClearNLPg 555 10,271 Java

GN13 95 1,757 Python
LTDPg 232 4,287 Python

SNN 465 8,602 Java
spaCy 755 13,963 Cython
Yarag 532 9,838 Java

ClearNLP 72 1,324 Java
LTDP 26 488 Python
Mate 30 550 Java
RBG 57 1,056 Java

Redshift 188 3,470 Cython
Turbo 19 349 C++
Yara 18 340 Java

Table 5: Overall parsing speed.

Figure 3: Number of sentences parsed per second
by each parser with respect to sentence length.

Table 5 shows overall parsing speed for each
parser. spaCy is the fastest greedy parser and Red-
shift is the fastest non-greedy parser. Figure 3
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shows an analysis of parsing speed by sentence
length in bins of length 10. As expected, as sen-
tence length increases, parsing speed decreases re-
markably.

6.3 Detailed Accuracy Analyses
For the following more detailed analyses, we used
all tokens (including punctuation). As mentioned
earlier, we exclude ClearNLPg, LTDPg and Yarag
from these analyses and instead use their respec-
tive non-greedy modes yielding higher accuracy.

Sentence Length We analyzed parser accuracy
by sentence length in bins of length 10 (Figure 4).
As expected, all parsers perform better on shorter
sentences. For sentences under length 10, UAS
ranges from 93.49 to 95.5; however, UAS de-
clines to a range of 81.66 and 86.61 for sen-
tence lengths greater than 50. The most accurate
parsers (ClearNLP, Mate, RBG, Redshift, Turbo,
and Yara) separate from the remaining when sen-
tence length is more than 20 tokens.

Figure 4: UAS by sentence length.

Dependency Distance We analyzed parser ac-
curacy by dependency distance (depth from each
dependent to its head; Figure 5). Accuracy falls
off more slowly as dependency distance increases
for the top 6 parsers vs. the rest.

Projectivity Some of our parsers only produce
projective parses. Table 6 shows parsing accuracy
for trees containing only projective arcs (11,231
trees, 202,521 tokens) and for trees containing
non-projective arcs (465 trees, 13,792 tokens). As
before, all differences are statistically significant
at p < .01 except for: Redshift vs. RBG for over-
all LAS; LTDP vs. SNN for overall UAS; and

Turbo vs. SpaCy for overall UAS. For strictly pro-
jective trees, the LTDP parser is 5th from the top in
UAS. Apart from this, the grouping between “very
good” and “good” parsers does not change.

Figure 5: UAS by dependency distance.

Projective only Non-proj. only
LAS UAS LAS UAS

ClearNLP 90.20 91.62 85.10 86.72
GN13 88.00 89.57 81.56 83.37
LTDP n/a 90.24 n/a 57.83
Mate 90.34 91.91 85.51 87.40
RBG 89.86 91.72 84.83 86.94

Redshift 89.90 91.41 83.30 85.12
SNN 86.83 88.55 80.37 82.32

spaCy 88.31 89.99 82.15 84.08
Turbo 88.36 89.90 83.50 85.30
Yara 90.20 91.74 83.92 85.74

Table 6: Accuracy for proj. and non-proj. trees.

Dependency Relations We were interested in
which dependency relations were computed with
high/low overall accuracy, and for which accuracy
varied between parsers. The dependency relations
with the highest average LAS scores (> 97%)
were possessive, hyph, expl, hmod, aux,
det and poss. These relations have strong lexi-
cal clues (e.g. possessive) or occur very often
(e.g. det). Those with the lowest LAS scores
(< 50%) were csubjpass, meta, dep, nmod
and parataxis. These either occur rarely or are
very general (dep).

The most “confusing” dependency relations
(those with the biggest range of accuracies across
parsers) were csubj, preconj, csubjpass,
parataxis, meta and oprd (all with a spread
of > 20%). The Mate and Yara parsers each had
the highest accuracy for 3 out of the top 10 “con-
fusing” dependency relations. The RBG parser
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had the highest accuracy for 4 out of the top 10
“most accurate” dependency relations. SNN had
the lowest accuracy for 5 out of the top 10 “least
accurate” dependency relations, while the RBG
had the lowest accuracy for another 4.

POS Tags We also examined error types by part
of speech tag of the dependent. The POS tags with
the highest average LAS scores (> 97%) were
the highly unambiguous tags POS, WP$, MD, TO,
HYPH, EX, PRP and PRP$. With the exception of
WP$, these tags occur frequently. Those with the
lowest average LAS scores (< 75%) were punctu-
ation markers ((, ) and :, and the rare tags AFX,
FW, NFP and LS.

Genres Table 7 shows parsing accuracy for each
parser for each of the seven genres comprising
the English portion of OntoNotes 5. Mate and
ClearNLP are responsible for the highest accuracy
for some genres, although accuracy differences
among the top four parsers are generally small.
Accuracy is highest for PT (pivot text, the Bible)
and lowest for TC (telephone conversation) and
WB (web data). The web data is itself multi-genre
and includes translations from Arabic and Chi-
nese, while telephone conversation data includes
disfluencies and informal language.

6.4 Oracle Ensemble Performance

One popular method for achieving higher accuracy
on a classification task is to use system combina-
tion (Björkelund and others, 2014; Le Roux and
others, 2012; Le Roux et al., 2013; Sagae and
Lavie, 2006; Sagae and Tsujii, 2010; Haffari et
al., 2011). DEPENDABLE reports ensemble upper
bound performance assuming that the best tree can
be identified by an oracle (macro), or that the best
arc can be identified by an oracle (micro). Ta-
ble 8 provides an upper bound on ensemble per-
formance for future work.

LAS UAS LS
Macro 94.66 96.00 97.82
Micro 96.52 97.61 98.40

Table 8: Oracle ensemble performance.

The highest match was achieved between the RBG
and Mate parser (62.22 UAS). ClearNLP, GN13
and LTDP all matched with Redshift the best, and
RBG, Redshift and Turbo matched with Mate the
best. SNN, spaCy and Turbo did not match well

with other parsers; their respective ”best match”
score was never higher than 55.

6.5 Error Analysis

From the test data, we pulled out parses where
only one parser achieved very high accuracy, and
parses where only one parser had low accuracy
(Table 9). As with the detailed performance anal-
yses, we used the most accurate version of each
parser for this analysis. Mate has the highest num-
ber of “generally good” parses, while the SNN
parser has the highest number of “uniquely bad”
parses. The SNN parser tended to choose the
wrong root, but this did not appear to be tied to the
number of verbs in the sentence - rather, the SNN
parser just makes the earliest “reasonable” choice
of root.

Parser UAS ≥ 90 = 100 < 90 < 90
All others UAS < 90 < 90 ≥ 90 = 100
ClearNLP 42 11 45 15
LTDP 29 12 182 36
GN13 26 8 148 65
Mate 75 19 44 10
RBG 49 21 49 15
Redshift 38 17 28 8
SNN 70 23 417 142
spaCy 48 17 218 73
Turbo 54 15 28 14
Yara 33 15 27 7

Table 9: Differential parsing accuracies.

To further analyze these results, we first looked at
the parse trees for “errorful” sentences where the
parsers agreed. From the test data, we extracted
parses for sentences where at least two parsers got
UAS of < 50%. This gave us 253 sentences. The
distribution of these errors across genres varied:
PT - 2.8%, MZ - 3.5%, BN - 9.8%, NW - 10.3%,
WB - 17.4%, BC - 25.3%, TC - 30.8%.

By manual comparison using the DEPEND-
ABLE tool, we identified frequently occurring po-
tential sources of error. We then manually anno-
tated all sentences for these error types. Figure 6
shows the number of “errorful” sentences of each
type. Punctuation attachment “errors” are preva-
lent. For genres with “noisy” text (e.g. broadcast
conversation, telephone conversation) a significant
proportion of errors come from fragmented sen-
tences or those containing backchannels or disflu-
encies. There are also a number of sentences with
what appeared to be manual dependency labeling
errors in the gold annotation.
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BC BN MZ NW PT TC WB
LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS

ClearNLP 88.95 90.36 89.59 91.01 89.56 91.24 89.79 91.08 95.88 96.68 87.17 88.93 87.93 89.83
GN13 86.75 88.40 87.38 88.87 87.31 89.10 87.36 88.84 94.06 95.00 85.68 87.60 85.20 87.19
LTDP n/a 86.81 n/a 87.43 n/a 88.87 n/a 88.40 n/a 93.52 n/a 85.85 n/a 86.37
Mate 89.03 90.73 89.30 90.82 90.09 91.92 90.28 91.68 95.71 96.64 87.86 89.87 87.86 89.89
RBG 88.64 90.58 88.99 90.86 89.28 91.45 89.85 91.47 95.27 96.41 87.36 89.65 87.12 89.61

Redshift 88.60 90.19 88.96 90.46 89.11 90.90 89.63 90.99 95.36 96.22 87.14 88.99 87.27 89.31
SNN 85.35 87.08 86.13 87.78 86.00 87.92 86.17 87.74 93.47 94.64 83.50 85.74 84.29 86.50
spaCy 87.27 89.05 87.70 89.31 87.37 89.29 88.00 89.52 94.28 95.27 85.67 87.65 85.16 87.40
Turbo 87.05 88.70 87.58 89.04 88.34 90.02 87.95 89.33 94.39 95.36 85.91 87.93 85.66 87.70
Yara 88.90 90.53 89.40 90.89 89.72 91.42 90.00 91.41 95.41 96.32 87.35 89.19 87.55 89.61
Total 2211 1357 780 2326 1869 1366 1787

Table 7: Parsing accuracy by genre.

Figure 6: Common error types in erroneous trees.

6.6 Recommendations

Each of the transition-based parsers that was in-
cluded in this evaluation can use varying beam
widths to trade off speed vs. accuracy, and each
parser has numerous other parameters that can be
tuned. Notwithstanding all these variables, we
can make some recommendations. Figure 7 illus-
trates the speed vs. accuracy tradeoff across the
parsers. For highest accuracy (e.g. in dialog sys-
tems), Mate, RBG, Turbo, ClearNLP and Yara are
good choices. For highest speed (e.g. in web-scale
NLP), spaCy and ClearNLPg are good choices;
SNN and Yarag are also good choices when ac-
curacy is relatively not as important.

7 Conclusions and Future Work

In this paper we have: (a) provided a detailed com-
parative analysis of several state-of-the-art statis-
tical dependency parsers, focusing on accuracy

Figure 7: Speed with respect to accuracy.

and speed; and (b) presented DEPENDABLE, a
new web-based evaluation and visualization tool
for analyzing dependency parsers. DEPENDABLE

supports a wide range of useful functionalities.
In the future, we plan to add regular expression
search over parses, and sorting within results ta-
bles. Our hope is that the results from the eval-
uation as well as the tool will give non-experts
in parsing better insight into which parsing tool
works well under differing conditions. We also
hope that the tool can be used to facilitate evalua-
tion and be used as a teaching aid in NLP courses.

Supplements to this paper include the tool,
the parse outputs, the statistical models for each
parser, and the new set of dependency trees for
OntoNotes 5 created using the ClearNLP depen-
dency converter. We do recommend examining
one’s data and task before choosing and/or train-
ing a parser. Are non-projective parses likely or
desirable? Does the data contain disfluencies, sen-
tence fragments, and other “noisy text” phenom-
ena? What is the average and standard deviation
for sentence length and dependency length? The
analyses in this paper can be used to select a parser
if one has the answers to these questions.
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In this work we did not implement an ensemble
of parsers, partly because an ensemble necessarily
entails complexity and/or speed delays that render
it unusable by all but experts. However, our anal-
yses indicate that it may be possible to achieve
small but significant increases in accuracy of de-
pendency parsing through ensemble methods. A
good place to start would be with ClearNLP, Mate,
or Redshift in combination with LTDP and Turbo,
SNN or spaCy. In addition, it may be possible to
achieve good performance in particular genres by
doing “mini-ensembles” trained on general pur-
pose data (e.g. WB) and genre-specific data. We
leave this for future work. We also leave for fu-
ture work the comparison of these parsers across
languages.

It remains to be seen what downstream impact
differences in parsing accuracy of 2-5% have on
the goal task. If the impact is small, then speed
and ease of use are the criteria to optimize, and
here spaCy, ClearNLPg, Yarag and SNN are good
choices.
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Abstract

Semantic role labeling (SRL) is crucial to
natural language understanding as it identi-
fies the predicate-argument structure in text
with semantic labels. Unfortunately, re-
sources required to construct SRL models
are expensive to obtain and simply do not
exist for most languages. In this paper, we
present a two-stage method to enable the
construction of SRL models for resource-
poor languages by exploiting monolingual
SRL and multilingual parallel data. Exper-
imental results show that our method out-
performs existing methods. We use our
method to generate Proposition Banks with
high to reasonable quality for 7 languages
in three language families and release these
resources to the research community.

1 Introduction

Semantic role labeling (SRL) is the task of automat-
ically labeling predicates and arguments in a sen-
tence with shallow semantic labels. This level of
analysis provides a more stable semantic representa-
tion across syntactically different sentences, thereby
enabling a range of NLP tasks such as information
extraction and question answering (Shen and Lap-
ata, 2007; Maqsud et al., 2014). Projects such as the
Proposition Bank (PropBank) (Palmer et al., 2005)
spent considerable effort to annotate corpora with
semantic labels, in turn enabling supervised learn-
ing of statistical SRL parsers for English. Unfor-

∗This work was conducted at IBM.

tunately, due to the high costs of manual annota-
tion, comparable SRL resources do not exist for
most other languages, with few exceptions (Hajič
et al., 2009; Erk et al., 2003; Zaghouani et al., 2010;
Vaidya et al., 2011).

As a cost-effective alternative to manual annota-
tion, previous work has investigated the direct pro-
jection of semantic labels from a resource rich lan-
guage (English) to a resource poor target language
(TL) in parallel corpora (Pado, 2007; Van der Plas et
al., 2011). The underlying assumption is that orig-
inal and translated sentences in parallel corpora are
semantically broadly equivalent. Hence, if English
sentences of a parallel corpus are automatically la-
beled using an SRL system, these labels can be pro-
jected onto aligned words in the TL corpus, thereby
automatically labeling the TL corpus with seman-
tic labels. This way, PropBank-like resources can
automatically be created that enable the training of
statistical SRL systems for new TLs.

However, as noted in previous work (Pado, 2007;
Van der Plas et al., 2011), aligned sentences in par-
allel corpora often exibit issues such as translation

We need to hold people responsible

A0 need.01 A1
A0 hold.01 A1 A2

Il faut qu' il y desait responsables

need.01 A1
it needs exist those responsiblethat there

exist.01 A1

need.01

A1

TL

SL

Figure 1: Pair of parallel sentences from Frenchgoldwith word
alignments (dotted lines), SRL labels for the English sentence,
and gold SRL labels for the French sentence. Only two of the
seven English SRL labels should be projected here.
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Figure 2: Overview of the proposed two-stage approach for
projecting English (EN) semantic role labels onto a TL corpus.

shifts that go against this assumption. For example,
in Fig. 1, the English sentence “We need to hold peo-
ple responsible” is translated into a French sentence
that literally reads as “There need to exist those re-
sponsible”. Hence, the predicate label of the English
word “hold” should not be projected onto the French
verb, which has a different meaning. As the exam-
ple in Fig. 1 shows, this means that only a subset of
all SL labels can be directly projected.

In this paper, we aim to create PropBank-like re-
sources for a range of languages from different lan-
guage groups. To this end, we propose a two-stage
approach to cross-lingual semantic labeling that ad-
dresses such errors, shown in Fig. 2: Given a par-
allel corpus in which the source language (SL) side
is automatically labeled with PropBank labels and
the TL side is syntactically parsed, we use a filtered
projection approach that allows the projection only
of high-confidence SL labels. This results in a TL
corpus with low recall but high precision. In the
second stage, we repeatedly sample a subset of com-
plete TL sentences and train a classifier to iteratively
add new labels, significantly increasing the recall in
the TL corpus while retaining the improvement in
precision.

Our contributions are: (1) We propose filtered
projection focused specifically on raising the pre-
cision of projected labels, based on a detailed anal-
ysis of direct projection errors. (2) We propose a
bootstrap learning approach to retrain the SRL to
iteratively improve recall without a significant re-
duction of precision, especially for arguments; (3)

We demonstrate the effectiveness and generalizabil-
ity of our approach via an extensive set of experi-
ments over 7 different language pairs. (4) We gen-
erate PropBanks for each of these languages and re-
lease them to the research community.1

2 Stage 1: Filtered Annotation Projection

Stage 1 of our approach (Fig. 2) is designed to create
a TL corpus with high precision semantic labels.

Direct Projection The idea of direct annotation
projection (Van der Plas et al., 2011) is to transfer
semantic labels from SL sentences to TL sentences
according to word alignments. Formally, for each
pair of sentences sSL and sTL in the parallel corpus,
the word alignment produces alignment pairs (wSL,i,
wTL,i′), where wSL,i and wTL,i′ are words from sSL and
sTL respectively. Under direct projection, if lSL,i is
a predicate label for wSL,i and (wSL,i, wTL,i′) is an
alignment pair, then lSL,i is transferred to wTL,i′ ; If
lSL,j is a predicate-argument label for (wSL,i, wSL,j),
and (wSL,i, wTL,i′) and (wSL,j , wTL,j′) are alignment
pairs, then lSL,j is transferred to (wTL,i′ , wTL,j′), as
illustrated below.

Filtered Projection As discussed earlier, direct
projection is vulnerable to errors stemming from
issues such as translation shifts. We propose fil-
tered projection focused specifically on improving
the precision of projected labels. Specifically, for a
pair of sentences sSL and sTL in the parallel corpus,
we retain the semantic label lSL,i projected fromwSL,i

onto wTL,i′ if and only if it satisfies the filtering poli-
cies. This results in a target corpus containing fewer
labels but of higher precision compared to that ob-
tained via direct projection.

In the rest of the section, we analyze typical errors
in direct projection (Sec. 2.2), present a set of filters
to handle such errors (Sec. 2.3), and experimentally
evaluate their effectiveness (Sec. 2.4).

1The resources are available on request.
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ERROR CLASS NUMBER

Translation Shift: Predicate Mismatch 37
Translation Shift: Verb→Non-verb 36
No English Equivalent 8
Gold Data Errors 6
SRL Errors 5
Verb (near-)Synonyms 4
Light Verb Construction 3
Alignment Errors 1

Total 100

Table 1: Breakdown of error classes in predicate projection.

2.1 Experimental Setup

Data For experiments in this section and Sec. 3, we
used the gold data set compiled by (Van der Plas
et al., 2011), referred to as Frenchgold. It consists
of 1,000 sentence-pairs from the English-French
Europarl corpus (Koehn, 2005) with French sen-
tences manually labeled with predicate and argu-
ment labels from the English Propbank.
Evaluation In line with previous work (Van der Plas
et al., 2010), we count synonymous predicate labels
sharing the same VERBNET (Schuler, 2005) class as
true positives.2 In addition, we exclude modal verbs
from the evaluation due to inconsistent annotation.
Source Language SRL Throughout the rest of the
paper, we use CLEARNLP (Choi and McCallum,
2013), a state-of-the-art SRL system, to produce se-
mantic labels for English text.

2.2 Error Analysis

We observe that direct projection labels have both
low precision and low recall (see Tab. 3 (Direct)).

Analysis of False Negatives The low recall of di-
rect projection is not surprising; most semantic la-
bels in the French sentences do not appear in the
corresponding English sentences at all. Specifically,
among 1,741 predicate labels in the French sen-
tences, only 778 exist in the corresponding English
sentences, imposing a 45% upper bound on the re-
call for projected predicates. Similarly, of the 5,061
argument labels in the French sentences, only 1,757
exist in the corresponding English sentences, result-
ing in a 35% upper bound on recall for arguments.3

2For instance, the French verb sembler may be correctly la-
beled as either of the synonyms: seem.01 or appear.02.

3This upper bound is different from the one reported
in (Van der Plas et al., 2011) which corresponds to the inter-
annotator agreement over manual annotation of 100 sentences.

ERROR CLASS NUMBER

Non-Argument Head 33
SRL Errors 31
No English Equivalent 12
Gold Data Errors 11
Translation Shift: Argument Function 6
Parsing Errors 4
Alignment Errors 3

Total 100

Table 2: Breakdown of error classes in argument projection.

Analysis of False Positives While the recall pro-
duced by direct projection is close to the theoretical
upper bound, the precision is far from the theoretical
upper bound of 100%. To understand causes of false
positives, we examine a random sample of 200 false
positives, of which 100 are incorrect predicate la-
bels, and 100 are incorrect argument labels belong-
ing to correctly projected predicates. Tab. 1 and 2
show the detailed breakdown of errors for predicates
and arguments, respectively. We first analyze the
most common types of errors and discuss the resid-
ual errors later in Sec. 2.5.

• Translation Shift: Predicate Mismatch The
most common predicate errors (37%) are translation
shifts in which an English predicate is aligned to a
French verb with a different meaning. Fig. 1 illus-
trates such a translation shift: label hold.01 of En-
glish verb hold is wrongly projected onto the French
verb ait, which is labeled as exist.01 in Frenchgold.

• Translation Shift: Verb→Non-Verb is another
common predicate error (36%). English verbs may
be aligned with TL words other than verbs, which
is often indicative of translation shifts. For instance,
in the following sentence pair

sSL We know what happened
sFR On connait la suite

We know the result

the English verb happen is aligned to the French
noun suite (result), causing it to be wrongly pro-
jected with the English predicate label happen.01.

• Non-Argument Head The most common argu-
ment error (33%) is caused by the projection of ar-
gument labels onto words other than the syntactic
head of a target verb’s argument. For example, in
Fig. 1 the label A1 on the English hold is wrongly
transferred to the French ait, which is not the syn-
tactic head of the complement.
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2.3 Filters
We consider the following filters to remove the most
common types of false positives.
Verb Filter (VF) targets Verb→Non-Verb transla-
tion shift errors (Van der Plas et al., 2011). For-
mally, if direct projection transfers predicate label
lSL,i from wSL,i onto wTL,i′ , retain lSL,i only if both
wSL,i and wTL,i′ are verbs.
Translation Filter (TF) handles both Predicate
Mismatch and Verb→Non-Verb translation shift er-
rors. It makes use of a translation dictionary and
allows projection only if the TL verb is a valid trans-
lation of the SL verb. In addition, in order to ensure
consistent predicate labels throughout the TL cor-
pus, if a SL verb has several possible synonymous
translations, it allows projection only for the most
commonly observed translation.
Formally, for an aligned pair (wSL,i, wTL,i′) where
wSL,i has predicate label lSL,i, if (wSL,i, wTL,i′) is not
a verb to verb translation from SL to TL, assign no
label to wTL,i′ . Otherwise, split the set of SL trans-
lations of wTL,i′ into synonym sets S1, S2, . . . ; For
each k, let W k be the subset of Sk most commonly
aligned with wTL,i′ ; If wSL,i is in one of these W k,
assign label lSL,i to wTL,i′ ; Otherwise assign no label
to wTL,i′ .
Reattachment Heuristic (RH) targets non-
argument head errors that occur if a TL argument
is not the direct child of a verb in the dependency
parse tree of its sentence.4 Assume direct projection
transfers the predicate-argument label lSL,j from
(wSL,i, wSL,j) onto (wTL,i′ , wTL,j′). Find the immedi-
ate ancestor verb of wTL,j′ in the dependency parse
tree. Denote as wTL,k its child that is an ancestor of
wTL,j′ . Assign the label lSL,j to (wTL,i′ , wTL,k) instead
of (wTL,i′ , wTL,j′). An illustration is below:

RH ensures that labels are always attached to the
syntactic heads of their respective arguments, as de-

4In (Padó and Lapata, 2009), a similar filtering method is
defined over constituent-based trees to reduce the set of viable
nodes for argument labels to all nodes that are not a child of
some ancestor of the predicate.

PREDICATE ARGUMENT

PROJECTION P R F1 P R F1

Direct 0.45 0.4 0.43 0.43 0.31 0.36

VF 0.59 0.4 0.48 0.53 0.31 0.39
TF 0.88 0.36 0.51 0.58 0.17 0.27

VF+RH 0.59 0.4 0.48 0.68 0.35 0.46
TF+RH 0.88 0.36 0.51 0.75 0.2 0.31

Upper Bound 1 0.45 0.62 1 0.35 0.51

Table 3: Quality of predicate and argument labels for different
projection methods on Frenchgold, including upper bound.

termined by the dependency tree. An example of
such reattachment is illustrated in Fig. 1 (curved ar-
row on TL sentence).

2.4 Filter Effectiveness

We now present an initial validation on the effec-
tiveness of the aforementioned filters by evaluating
their contribution to annotation projection quality
for Frenchgold, as summarized in Tab. 3.
VF reduces the number of wrongly projected predi-
cate labels, resulting in an increase of predicate pre-
cision to 59% (↑14 pp), without impact to recall. As
a side effect, argument precision also increases to
53% (↑10 pp), since, if a predicate label cannot be
projected, none of its arguments can be projected.
TF5 reduces the number of wrongly projected pred-
icate labels even more significantly, increasing pred-
icate precision to 88% (↑43 pp), at a small cost to re-
call. Again, argument precision increases as a side
effect. However, as expected, argument recall de-
creases significantly (↓14 pp, to 17%), as many ar-
guments can no longer be projected.
RH targets argument labels directly (unlike VF and
TF), significantly increasing argument precision and
slightly increasing argument recall.

In summary, initial experiments confirm that our
proposed filters are effective in improving preci-
sion of projected labels at a small cost in recall. In
fact, TF+RH results in nearly 100% improvement in
predicate and argument labels precision with a much
smaller drop in recall.

2.5 Residual Errors

Filtered projection removes the most common errors
discussed in Sec. 2.2. Most of the remaining errors

5In all experiments in this paper, we derived the trans-
lation dictionaries from the WIKTIONARY project and used
VERBNET and WORDNET to find SL synonym groups.
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come from the following sources.
SRL Errors The most common residual errors in
the remaining projected labels, especially for argu-
ment labels, are caused by mistakes made by the En-
glish SRL system. Any wrong label it assigns to an
English sentence may be projected onto the TL sen-
tence, resulting in false positives.
No English Equivalent A small number of errors
occur due to French particularities that do not exist
in English. Such errors include certain French verbs
for which no appropriate English PropBank labels
exists, and French-specific syntactic particularities.6

Gold Data Errors Our evaluation so far relies
on Frenchgold as ground truth. Unfortunately,
Frenchgold does contain a small number of errors
(e.g. missing argument labels). As a result, some
correctly projected labels are being mistaken as
false positives, causing a drop in both precision and
recall. We therefore expect the true precision and
recall of the approach to be somewhat higher than
the estimate based on Frenchgold.

3 Stage 2: Bootstrapped Training of SRL

As discussed earlier, the TL corpus generated via fil-
tered projection suffers from low recall. We address
this issue with the second stage of our method.

Relabeling The idea of relabeling (Van der Plas
et al., 2011) is to first train an SRL system over a
TL corpus labeled using direct projection (with VF
filter) and then use this SRL to relabel the corpus,
effectively overwriting the projected labels with po-
tentially less noisy predicted labels.

We first present an analysis on relabeling in con-
cert with our proposed filters (Sec. 3.1), which mo-
tivates our bootstrap algorithm (Sec. 3.2).

3.1 Analysis of Relabeling Approach

We use the same experimental setup as in Sec. 2, and
produce a labeled French corpus for each filtered an-
notation method. We then train an off-the-shelf SRL
system (Björkelund et al., 2009) on each generated
corpus and use it to relabel the corpus.

We measure precision and recall of each resulting
TL corpus against Frenchgold (see Tab. 4). Across all

6French negations, for instance, are split into a particle and
a connegative. In the annotation scheme used in Frenchgold,
particles and connegatives are labeled differently.

PROJECTION PREDICATE ARGUMENT

SRL training P R F1 P R F1

DIRECT

– 0.45 0.40 0.43 0.43 0.31 0.36
relabel (SP) 0.49 0.57 0.53 0.52 0.43 0.47
relabel (OW) 0.66 0.60 0.63 0.71 0.37 0.49

VERB FILTER (VF)

– 0.59 0.40 0.48 0.53 0.31 0.39
relabel (SP) 0.57 0.55 0.56 0.61 0.42 0.50
relabel (OW) 0.56 0.55 0.56 0.69 0.31 0.43
(Van der Plas et al., 2011)

PROPOSED (TF+RH)

– 0.88 0.36 0.51 0.75 0.20 0.31
relabelfull data(SP) 0.83 0.58 0.68 0.75 0.41 0.53
relabelfull data(OW) 0.78 0.51 0.62 0.73 0.35 0.47

relabelcomp. sent.(SP) 0.80 0.64 0.71 0.68 0.48 0.56
relabelcomp. sent.(OW) 0.62 0.60 0.61 0.55 0.40 0.47

bootstrap (iter. 3) 0.78 0.68 0.73 0.71 0.55 0.62
bootstrap (terminate)0.77 0.70 0.73 0.64 0.60 0.62
Table 4: Experiments on Frenchgold, with different projection
and SRL training methods. SP=Supplement; OW=Overwrite.

experiments, relabeling consistently improves recall
over projection. The results also show how different
factors affect the performance of relabeling.

Supplement vs. Overwrite Projected Labels
The labels produced by the trained SRL can be used
to either overwrite projected labels as in (Van der
Plas et al., 2011), or to supplement them (supply-
ing labels only for words w/o projected labels).
Whether to overwrite or supplement depends on
whether labels produced by the trained SRL are of
higher quality than the projected labels. We find that
while predicted labels are of higher precision than
directly projected labels, they are of lower precision
than labels post filtered projection. Therefore, for
filtered projection, it makes more sense to allow pre-
dicted labels to only supplement projected labels.

Impact of Sampling Method We are further in-
terested in learning the impact of sampling the data
on the quality of relabeling. For the best filter found
earlier (TF+RH), we compare SRL trained on the
entire data set (full data) with SRL trained only on the
subset of completely annotated sentences (comp. sent.),
where completeness is defined as:

Definition 1. A direct component of a labeled sen-
tence sTL is either a verb in sTL or a syntactic depen-
dent of a verb. Then sTL is k-complete if sTL contains
equal to or fewer than k unlabeled direct compo-
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Algorithm 1 Bootstrap learning algorithm

Require: Corpus CTL with initial set of labels LTL, and resam-
pling threshold function k(i);
for i = 1 to∞ do

Let ki = k(i);
Let CTL

comp = {w ∈ CTL : w ∈ sTL, sTLis ki-complete};
Let LTL

comp be subset of LTL appearing on CTL
comp;

Train an SRL on (CTL
comp, LTL

comp);
Use the SRL to produce label set LTL

new on CTL;
Let CTL

no.lab = {w ∈ CTL : w not labelled by LTL};
Let LTL

suppl be subset of LTL
new appearing on CTL

no.lab;
if LTL

suppl = ∅ then
Return the SRL;

end if
Let LTL = LTL ∪ LTL

suppl;
end for

nents. 0-complete is abbreviated as complete.

We observe that for TF+RH, when new labels
supplement projected labels, relabeling over com-
plete sentences results in better recall at slightly re-
duced precision, while including incomplete sen-
tences into the training data reduces recall, but im-
proves precision. While this finding may seem
counterintuitive, it can be explained by how statis-
tical SRL works. A densely labeled training data
(such as comp. sent.) usually results in an SRL that gen-
erates densely labeled sentences, resulting in better
recall but poorer precision. On the other hand, train-
ing data that is sparsely labeled results in an SRL
that weighs the option of not assigning a label with
higher probability, resulting in better precision and
poorer recall. In short, one can control the trade-
off between precision and recall of SRL output by
manipulating the completeness of the training data.

3.2 Bootstrap Learning

Building on the observation that we can sample data
in such a way as to either favor precision or re-
call, we propose a bootstrapping algorithm to train
an SRL iteratively over k-complete subsets of the
data which are supplemented by high precision la-
bels produced from previous iteration. The detailed
algorithm is depicted in Algorithm 1.
Resampling Threshold Our goal is to use bootstrap
learning to improve recall without sacrificing too
much precision.

Proposition 1. Under any resampling threshold,
the set of labels LTL increases monotonically in each
iteration of Algorithm 1.

Figure 3: Values at each bootstrap iteration.

Since Prop. 1 guarantees the increase of the set
of labels, we need to select a resampling function to
favor precision while improving recall. Specifically,
we use the formula k(i) = max(k0 − i, 0), where
k0 is sufficiently large. Since the precision of labels
generated by the SRL is lower than the precision of
labels obtained from filtered projection, the preci-
sion of the training data is expected to decrease with
the increase in recall. Therefore, starting with a high
k seeks to ensure high precision labels are added to
the training data in the first iterations. Decreasing k
in each iteration seeks to ensure that resampling is
done in an increasingly restrictive way to ensure that
only high-quality annotated sentences are added to
the training data, thus maintaining a high confidence
in the learned SRL model.

3.3 Effectiveness of Bootstrapping

We experimentally evaluate the effectiveness of our
model with k0 = 9.7 As shown in Tab 4, boot-
strapping outperforms relabeling, producing labels
with best overall quality in terms of F1 measure and
recall for both predicates and arguments, with a rel-
atively small cost in precision.

While Algorithm 1 guarantees the increase of re-
call (Prop. 1), it provides no such guarantee on pre-
cision. Therefore, it is important to experimentally
decide an early termination cutoff before the SRL
gets overtrained. To do so, we evaluated the per-
formance of the bootstrapping algorithm at each it-
eration (Fig. 3). We observe that for the first 3 it-
erations, F1-measure for both predicates and argu-
ments rises due to large increase in recall which
offsets the smaller drop in precision. Then F1-
measure remains stable, with recall rising and pre-

7We found that setting k0 to larger values had little impact
on the final results .
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LANGUAGE DEP. PARSER DATA SET #SENTENCE

Arabic STANFORD UN 481K
Chinese MATE-G UN 2,986K
French MATE-T UN 2,542K
German MATE-T Europarl 560K
Hindi MALT Hindencorp 54K
Russian MALT UN 2,638K
Spanish MATE-G UN 2,304K

Table 5: Experimental setup .
Dependency parsers: STANFORD: (Green and Manning, 2010), MATE-G:
(Bohnet, 2010), MATE-T: (Bohnet and Nivre, 2012), MALT: (Nivre et al., 2006).
Parallel corpora: UN: (Rafalovitch et al., 2009), Europarl: (Koehn, 2005),
Hindencorp: (Bojar et al., 2014). Word alignment: The UN corpus is already
word-aligned. For others, we use the Berkeley Aligner (DeNero and Liang, 2007).

cision falling slightly at each iteration until conver-
gence. To optimize precision and avoid overtrain-
ing, we set an iteration cutoff of 3. This combina-
tion of TF+RH filters, bootstrapping with k0 = 9
and an iteration cutoff of 3 is used in the rest of our
evaluation (Sec. 4), denoted as FBbest .

4 Multilingual Experiments

We use our method to generate Proposition Banks
for 7 languages and evaluate the generated re-
sources. We seek to answer the following ques-
tions: (1) What is the estimated quality for the gen-
erated PropBanks? How well does the approach
work without language-specific adaptation? (2) Are
there notable differences in quality from language
to language; if so, why? We also present initial in-
vestigations on how different factors affect the per-
formance of our method.

4.1 Experimental Setup

Data Tab. 5 lists the 7 different TLs and resources
used in our experiments.8 We chose these TLs be-
cause (1) they are among top 10 most influential lan-
guages in the world (Weber, 1997); and (2) we could
find language experts to evaluate the results. English
is used as SL in all our experiments.

Approach Tested For each TL, we used FBbest
(Sec. 3.3) to generate a corpus with semantic la-
bels. From each TL corpus, we extracted all com-
plete sentences to form the generated PropBanks.

8From each parallel corpus, we only keep sentences that are
considered well-formed based on a set of standard heuristics.
For example, we require a well-formed sentence to end in punc-
tuation and not to contain certain special characters. For Ara-
bic, as the dependency parser we use has relatively poor parsing
accuracy, we additionally require sentences to be shorter than
100 characters.

PREDICATE ARGUMENT

LANG. Match P R F1 P R F1 Agr κ

Arabic part. 0.97 0.89 0.93 0.86 0.69 0.77 0.92 0.87
exact 0.97 0.89 0.93 0.67 0.63 0.65 0.85 0.77

Chinese part. 0.97 0.88 0.92 0.93 0.83 0.88 0.95 0.91
exact 0.97 0.88 0.92 0.83 0.81 0.82 0.92 0.86

French part. 0.95 0.92 0.94 0.92 0.76 0.83 0.97 0.95
exact 0.95 0.92 0.94 0.86 0.74 0.8 0.95 0.91

German part. 0.96 0.92 0.94 0.95 0.73 0.83 0.95 0.91
exact 0.96 0.92 0.94 0.91 0.73 0.81 0.92 0.86

Hindi part. 0.91 0.68 0.78 0.93 0.66 0.77 0.94 0.88
exact 0.91 0.68 0.78 0.58 0.54 0.56 0.81 0.69

Russian part. 0.96 0.94 0.95 0.91 0.68 0.78 0.97 0.94
exact 0.96 0.94 0.95 0.79 0.65 0.72 0.93 0.89

Spanish part. 0.96 0.93 0.95 0.85 0.74 0.79 0.91 0.85
exact 0.96 0.93 0.95 0.75 0.72 0.74 0.85 0.77

Table 6: Estimated precision and recall over seven languages.

Manual Evaluation While a gold annotated cor-
pus for French (Frenchgold) was available for our
experiments in the previous Sections, no such re-
sources existed for the other TLs we wished to eval-
uate. We therefore chose to conduct a manual eval-
uation for each TL, each executed identically: For
each TL we randomly selected 100 complete sen-
tences with their generated semantic labels and as-
signed them to two language experts who were in-
structed to evaluate the semantic labels (based on
their English descriptions) for the predicates and
their core arguments. For each label, they were
asked to determine (1) whether the label is correct;
(2) if yes, then whether the boundary of the labeled
constituent is correct: If also yes, mark the label as
fully correct, otherwise as partially correct.

Metrics We used the standard measures of preci-
sion, recall, and F1 to measure the performance of
the SRLs, with the following two schemes: (1) Ex-
act: Only fully correct labels are considered as true
positives; (2) Partial: Both fully and partially cor-
rect matches are considered as true positives.9

4.2 Experimental Results
Tab. 6 summarizes the estimated quality of seman-
tic labels generated by our method for all seven TL.
As can be seen, our method performed well for all

9Note that since the manually evaluated semantic labels are
only a small fraction of the labels generated, the performance
numbers obtained from manual evaluation is only an estimate
of the actual quality for the generated resources.Thus the num-
bers obtained based on manual evaluation cannot be directly
compared against the numbers computed over Frenchgold.
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PROPBANK #COMPLETE %COMPLETE #VERBS

Arabic 68.512 14% 330
Chinese 419,140 14% 1,102
French 248.256 10% 1145
German 44.007 8% 537
Hindi 1.623 3% 59
Russian 496.033 19% 1.349
Spanish 165.582 7% 909

Table 7: Characteristics of the generated PropBanks.

seven languages and generated high quality seman-
tics labels across the board. For predicate labels,
the precision is over 95% and the recall is over 85%
for all languages except for Hindi. For argument
labels, when considering partially correct matches,
the precision is at least 85% (above 90% for most
languages) and the recall is between 66% to 83%
for all the languages. These encouraging results
obtained from a diverse set of languages implies
the generalizability of our method. In addition, the
inter-annotator agreement is very high for all the
languages, indicating that the results obtained based
on manual evaluation are very reliable.

In addition, we make a number of interesting ob-
servations:
Dependency Parsing Accuracy The precision for
exact argument labels is significantly below partial
matches, particularly for Hindi (↓35 pp) and Ara-
bic (↓19 pp). Since argument boundaries are deter-
mined syntactically, such errors are caused by de-
pendency parsing. The fact that Hindi and Arbic
suffer the most from this issue is consistent with
the poorer performance of their dependency parsers
compared to other languages (Nivre et al., 2006;
Green and Manning, 2010).
Hindi as the Main Outlier The results for Hindi
are much worse than the results for other languages.
Besides the poorer dependency parser performance,
the size of the parallel corpus used could be a fac-
tor: Hindencorp is one to two orders of magni-
tude smaller than the other corpora. The quality
of the parallel corpus could be a reason as well:
Hindencorp was collected from various sources,
while both UN and Europarl were extracted from
governmental proceedings.
Language-specific Errors Certain errors occur
more frequently in some languages than others. An
example are deverbal nouns in Chinese (Xue, 2006)
in formal passive constructions with support verb
受. Since we currently only consider verbs for pred-

PREDICATE ARGUMENT

SAMPLE SIZE P R F1 P R F1

100% 0.87 0.81 0.84 0.86 0.74 0.8

10% 0.88 0.8 0.84 0.87 0.72 0.79
1% 0.9 0.76 0.83 0.89 0.67 0.76

Table 8: Estimated impact of downsampling parallel corpus.

PREDICATE ARGUMENT

HEURISTIC P R F1 P R F1

none∗ 0.87 0.81 0.84 0.86 0.74 0.8
none∗∗ 0.88 0.8 0.84 0.76 0.65 0.7

customization∗0.87 0.81 0.84 0.9 0.74 0.81

Table 9: Impact of English SRLs (∗=CLEARNLP, ∗∗=MATE-
SRL) and language-spec. customization (filter synt. expletive).

icate labels, predicate labels are projected onto the
support verbs instead of the deverbal nouns. Such
errors appear for light verb constructions in all lan-
guages, but particularly affect Chinese due to the
high frequency of this passive construction in the
UN corpus.
Low Fraction of Complete Sentences As Tab. 7
shows, the fraction of complete sentences in the
generated PropBanks is rather low, indicating the
impact of moderate recall on the size of generated
PropBanks. Especially for languages for which only
small parallel corpora are available, such as Hindi,
this points to the need to address recall issues in fu-
ture work.

4.3 Additional Experiments

The observations made in Sec. 4.2 suggests a few
factors that may potentially affect the performance
of our method. To better understand their impact,
we conducted the following initial investigation.
SRL models produced in this set of experiments
were evaluated using Frenchgold, sampled and eval-
uated in the same way as other experiments in this
section for comparability.
Data Size We varied the data size for French by
downsampling the UN corpus. As one can see from
Tab. 8, downsampling the dataset by one order of
magnitude (to 250k sentences) only slightly affects
precision, while downsampling to 25k sentences has
a more pronounced but still small impact on recall.
It appears that data size does not have significant
impact on the performance of our method.
Language-specific Customizations While our
method is language-agnostic, intuitively language-
specific customization can be helpful in address-
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ing language-specific errors. As an initial exper-
iment, we added a simple heuristic to filter out
French verbs that are commonly used for “existen-
tial there” constructions, as one type of common
errors for French involves the syntactic expletive
il (Danlos, 2005) in “existential there” constructions
such as il faut (see Fig. 1 (TL sentence) for an ex-
ample) wrongly labeled with with role information.
As shown in Tab. 9, this simple customization re-
sults in a small increase in precision, suggesting that
language-specific customization can be helpful.
Quality of English SRL As noted in Sec. 2.5, errors
made by English SRL are often prorogated to the TL
via projection. To assess the impact of English SRL
quality, we used two different English SRL systems:
CLEARNLP and MATE-SRL. As can be seen from
Tab. 9, the impact of English SRL quality is sub-
stantial on argument labeling.

4.4 Multilingual PropBanks

To facilitate future research on multilingual SRL,
we release the created PropBanks for all 7 languages
to the research community to encourage further re-
search. Tab. 7 gives an overview over the resources.

5 Related Work

Annotation Projection in Parallel Corpora to
train monolingual tools for new languages was in-
troduced in the context of learning a PoS tag-
ger (Yarowsky et al., 2001). Similar in spirit to our
approach of using filters to increase the precision
of projected labels, recent work (Täckström et al.,
2013) uses token and type constraints to guide learn-
ing in cross-lingual PoS tagging.
Projection of Semantic Labels was considered for
FrameNet (Baker et al., 1998) in (Padó and Lapata,
2009; Basili et al., 2009). Recently, however, most
work in the area focuses on PropBank, which has
been identified as a more suitable annotation scheme
for joint syntactic-semantics settings due to broader
coverage (Merlo and van der Plas, 2009), and was
shown to be usable for languages other than En-
glish (Monachesi et al., 2007).

Direct projection of PropBank annotations was
considered in (Van der Plas et al., 2011). Our ap-
proach significantly outperforms theirs in terms of
recall and F1 for both predicates and arguments

(Section 3). A approach was proposed in (Van der
Plas et al., 2014) in which information is aggregated
at the corpus level, resulting in a significantly bet-
ter SRL corpus for French. However, this approach
has several practical limitations: (1) it does not con-
sider the problem of argument identification of SRL
systems, treating arguments as already given; (2) it
generates rules for the argument classification step
preferably from manually annotated data; (3) it has
been demonstrated for a single language (French),
and was not applied to any other language. In con-
trast, our approach trains an SRL system for both
predicate and argument labels, in a completely au-
tomatic fashion. Furthermore, we have applied our
approach to generate PropBanks for 7 languages and
conducted experiments that indicate a high F1 mea-
sure for all languages (Section 4).
Other Related Work A number of approaches such
as model transfer (Kozhevnikov and Titov, 2013)
and role induction (Titov and Klementiev, 2012)
exist for the argument classification step in the SRL
pipeline. In contrast, our work addresses the full
SRL pipeline and seeks to generate SRL resources
for TLs with English PropBank labels.

6 Conclusion

We proposed a two-staged method to construct mul-
tilingual SRL resources using monolingual SRL and
parallel data and showed that our method outper-
forms previous approaches in both precision and
recall. More importantly, through comprehensive
experiments over seven languages from three lan-
guage families, we show that our proposed method
works well across different languages without any
language specific customization. Preliminary re-
sults from additional experiments indicate that bet-
ter English SRL and language-specific customiza-
tion can further improve the results, which we aim
to investigate in future work. A qualitative com-
parison against existing or under-construction Prop-
Banks for Chinese (Xue, 2008), Hindi (Vaidya et al.,
2011) or Arabic (Zaghouani et al., 2010) may be in-
teresting, both for comparison of resources and for
defining language-specific customizations. In ad-
dition, we plan to expand our experiments both to
more languages as well as NomBank (Meyers et al.,
2004)-style noun labels.
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Abstract
We propose a cross-lingual framework for
fine-grained opinion mining using bitext
projection. The only requirements are a
running system in a source language and
word-aligned parallel data. Our method
projects opinion frames from the source to
the target language, and then trains a sys-
tem on the target language using the auto-
matic annotations. Key to our approach is
a novel dependency-based model for opin-
ion mining, which we show, as a byprod-
uct, to be on par with the current state
of the art for English, while avoiding the
need for integer programming or rerank-
ing. In cross-lingual mode (English to Por-
tuguese), our approach compares favor-
ably to a supervised system (with scarce
labeled data), and to a delexicalized model
trained using universal tags and bilingual
word embeddings.

1 Introduction

The goal of opinion mining is to extract opinions
and sentiments from text (Pang and Lee, 2008;
Wilson, 2008; Liu, 2012). With the advent of so-
cial media and the increasing amount of data avail-
able on the Web, this has become a very active
area of research, with applications in summariza-
tion of customer reviews (Hu and Liu, 2004; Wu et
al., 2011), tracking of newswire and blogs (Ku et
al., 2006), question answering (Yu and Hatzivas-
siloglou, 2003), and text-to-speech synthesis (Alm
et al., 2005).

While early work has focused on determining
sentiment at document and sentence level (Pang
et al., 2002; Turney, 2002; Balog et al., 2006),
research has gradually progressed towards fine-
grained opinion mining, where rather than deter-
mining global sentiment, the goal is to parse text

into opinion frames, identifying opinion expres-
sions, agents, targets, and polarities (Ding et al.,
2008), or addressing compositionality (Socher et
al., 2013b). Since the release of the MPQA cor-
pus1 (Wiebe et al., 2005; Wilson, 2008), a stan-
dard corpus for fine-grained opinion mining of
news documents, a long string of work has been
produced (reviewed in §2). Despite the large vol-
ume of prior work, opinion mining has by and
large been limited to monolingual approaches in
English.2 This is explained by the heavy effort
of annotation necessary for current learning-based
approaches to succeed, which delays the deploy-
ment of opinion miners for new languages.

We bridge the existing gap by proposing a
cross-lingual approach to fine-grained opinion
mining via bitext projection. This technique has
been quite effective in several NLP tasks, such
as part-of-speech (POS) tagging (Täckström et
al., 2013), named entity recognition (Wang and
Manning, 2014), syntactic parsing (Yarowsky and
Ngai, 2001; Hwa et al., 2005), semantic role label-
ing (Padó and Lapata, 2009), and coreference res-
olution (Martins, 2015). Given a corpus of parallel
sentences (bitext), the idea is to run a pre-trained
system on the source side and then to use word
alignments to transfer the produced annotations to
the target side, creating an automatic training cor-
pus for the impoverished language.

To alleviate the complexity of the task, we
start by introducing a lightweight representation—
called dependency-based opinion mining—and
convert the MPQA corpus to this formalism (§3).
We propose a simple arc-factored model that per-
mits easy decoding (§4) and we show that, despite

1http://mpqa.cs.pitt.edu/corpora/mpqa_
corpus.

2Besides English, monolingual systems have also been
developed for Chinese and Japanese (Seki et al., 2007), Ger-
man (Clematide et al., 2012) and Bengali (Das and Bandy-
opadhyay, 2010).
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its simplicity, this model is on par with state-of-
the-art opinion mining systems for English (§5).
Then, through bitext projection, we transfer these
dependency-based opinion frames to Portuguese
(our target language), and train a system on the
resulting corpus (§6).

As part of this work, a validation corpus in Por-
tuguese with subjectivity annotations was created,
along with a translation of the MPQA Subjectiv-
ity lexicon of Wilson et al. (2005).3 Experimental
evaluation (§7) shows that our cross-lingual ap-
proach surpasses a supervised system trained on
a small corpus in the target language, as well as a
delexicalized baseline trained using universal POS
tags, bilingual word embeddings and a projected
lexicon.

2 Related Work

A considerable amount of work on fine-grained
opinion mining is based on the MPQA corpus.
Kim and Hovy (2006) proposed a method for find-
ing opinion holders and topics, with the aid of a se-
mantic role labeler. Choi et al. (2005) and Breck et
al. (2007) used CRFs for finding opinion holders
and recognizing opinion expressions, respectively.
The two things are predicted jointly by Choi et al.
(2006), with integer programming, and Johansson
and Moschitti (2010), via reranking. The same
method was applied later for joint prediction of
opinion expressions and their polarities (Johans-
son and Moschitti, 2011). The advantage of a
joint model was also shown by Choi and Cardie
(2010) and Yang and Cardie (2014). Yang and
Cardie (2012) classified expressions with a semi-
Markov decoder, outperforming a B-I-O tagger; in
later work, the same authors proposed an ILP de-
coder to jointly retrieve opinion expressions, hold-
ers, and targets (Yang and Cardie, 2013). A more
recent work (İrsoy and Cardie, 2014) proposes a
recurrent neural network to identify opinion spans.

All the approaches above rely on a span-based
representation of the opinion elements. This
makes joint decoding procedures more compli-
cated, since they must forbid overlap of opinion
elements or add further constraints, leading to in-
teger programming or reranking strategies. Be-
sides, there is little consensus about what should
be the correct span boundaries, the inter-annotator
agreement being quite low (Wiebe et al., 2005). In

3The Portuguese corpus and the lexicon are available at
http://labs.priberam.com/Resources.

constrast, we use dependencies to model opinion
elements and relations, leading to a compact repre-
sentation that does not depend on spans and which
is tractable to decode. A dependency scheme was
also used by Wu et al. (2011) for fine-grained
opinion mining. Our work differs in which we
mine opinions in news articles instead of product
reviews, a considerably different task. In addition,
the approach of Wu et al. (2011) relies on “span
nodes” (instead of head words), requiring solving
an ILP followed by an approximate heuristic.

Query-based multilingual opinion mining was
addressed in several NTCIR shared tasks (Seki
et al., 2007; Seki et al., 2010).4 However, to
our best knowledge, a cross-lingual approach has
never been attempted. Some steps were taken by
Mihalcea et al. (2007) and Banea et al. (2008),
who translated an English lexicon and the MPQA
corpus to Romanian and Spanish, but for the much
simpler task of sentence-level subjectivity anal-
ysis. Cross-lingual sentiment classification was
addressed by Wan (2009), Prettenhofer and Stein
(2010) and Wei and Pal (2010) at document level,
and by Lu et al. (2011) at sentence level. Recently,
Gui et al. (2013) applied projection learning for
opinion mining in Chinese. However, this work
only addresses agent detection and requires trans-
lating the MPQA corpus. While all these works
are relevant, none addresses fine-grained opinion
mining in its full generality, where the goal is to
predict full opinion frames.

3 Dependency-Based Opinion Mining

This work addresses various elements of subjec-
tivity annotated in the MPQA corpus, namely:

• direct-subjective expressions (henceforth, opin-
ions) that are direct mentions of a private state,
e.g. opinions, beliefs, emotions, sentiments,
speculations, goals, etc.;

• the opinion agent, i.e., the holder of the opinion;

• the opinion target, i.e., what is being argued
about;

• the opinion polarity, i.e., the sentiment (posi-
tive, negative or neutral) towards the target.

As an example, consider the sentence in Fig-
ure 1, which has two opinions, expressed by the

4NTCIR-8 had a cross-lingual track but in a very differ-
ent sense: there, queries and documents are in different lan-
guages; in contrast, we transfer a model accross languages.
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spans “is believed” (O1) and “are against” (O2).
The first opinion has an implicit agent and a neu-
tral polarity toward the target “the rich elites”
(T1). This target is also the agent (A2) of the sec-
ond opinion, which has a negative polarity toward
“Hugo Chávez” (T2).

3.1 Motivation

As noted in prior work (Choi et al., 2005; Kim and
Hovy, 2006; Johansson and Moschitti, 2010), one
source of difficulty when learning opinion min-
ers on MPQA is with the boundaries of the en-
tity spans. The fact that no criterion for choosing
these boundaries is explicitly defined in the anno-
tation guidelines (Wiebe et al., 2005) leads to a
low inter-annotator agreement. To circumvent this
problem and make the learning task easier, we de-
part from the classical span-based approaches to-
ward dependency-based opinion mining. This
decision is inspired by the success of dependency
models for syntax and semantics (Buchholz and
Marsi, 2006; Surdeanu et al., 2008). These depen-
dency relations can be further converted to opinion
spans (as described in §3.3), or directly used as
features in downstream applications. As we will
see, a compact representation based on dependen-
cies can achieve state-of-the-art results and has the
advantage of being easily transferred to other lan-
guages through a parallel corpus.

3.2 Dependency Graph

Figure 1 depicts a sentence-level dependency rep-
resentation for fine-grained opinion mining. The
overall structure is a graph whose nodes are head
words (plus two special nodes, root and null),
connected by labeled arcs, as outlined below.

Determining head nodes. The three opinion el-
ements that we want to detect (opinions, agents
and targets) are each represented by a head node,
which corresponds to a single word (underlined in
Figure 1). When converting the MPQA corpus
to dependencies, we determine this “representa-
tive” word automatically, by using the following
simple heuristic: we first parse the sentence us-
ing the Stanford dependency parser (Socher et al.,
2013a); then, we pick the last word in the span
whose syntactic parent is outside the span (if the
span is a syntactic phrase, there is only one word
whose parent is outside the span, which is the lex-
ical head). The same heuristic has been used for

identifying the heads of mention spans in corefer-
ence resolution (Durrett and Klein, 2013).

Defining labeled arcs. The opinion relations are
represented as labeled arcs that link these head
nodes. Two artificial nodes are added: a root
node, which links to all nodes that represent opin-
ion words, with the label OPINION; and a null
node, which is used for representing implicit re-
lations. To represent opinion-agent relations, we
draw an arc labeled AGENT toward the agent word.
For opinion-target relations, the arc is toward the
target word and has one of the labels TARGET:0,
TARGET:+, or TARGET:-; this encodes the polarity
in addition to the type of relation. We also include
implicit arcs for opinion elements whose agent or
target is not mentioned inside the sentence—these
are modeled as arcs pointing to the null node.

Dependency opinion graph. We have the fol-
lowing requirements for a well-formed depen-
dency opinion graph:

1. No self-arcs or arcs linking root to null.

2. An arc is labeled as OPINION if and only if it
comes from the root node.

3. Arcs labeled as AGENT or TARGET must come
from an opinion node (i.e., a node with an in-
coming OPINION arc).

4. Every opinion node has exactly one AGENT and
one TARGET outgoing arcs (possibly implicit).5

Similarly to prior work (Choi and Cardie, 2010;
Johansson and Moschitti, 2011; Johansson and
Moschitti, 2013), we map the MPQA’s polarity-
into three levels: positive, negative and neutral,
where the latter includes spans without polarity
annotation or annotated as “both”. As in Johans-
son and Moschitti (2013), we also ignore the “un-
certain” aspect of the annotated polarities.

3.3 Dependency-to-Span Conversion

To evaluate the opinion miner against manual an-
notations and compare with other systems, we
need a procedure to convert back from predicted
dependencies to spans. In this work, we used
a very simple procedure that we next describe,

5Even though this assumption is not always met in prac-
tice, it is typical in MPQA (only 10% of the opinions have
multiple agents, typically coreferent; and only 13% have
multiple targets). When multiple agents or targets exist, we
keep the ones that are closest to the opinion expression.
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Figure 1: Example of an opinion mining graph in our dependency formalism. Heads are underlined.

which assumes the sentence was previously parsed
using a syntactic dependency parser.

To generate agent and target spans, we compute
the largest span, containing the head word, whose
words are all descendants in the dependency parse
tree and that are, simultaneously, not punctuations.
To generate opinion spans, we start with the head
word and expand the span by adding all neigh-
bouring verbal words. In the case of English, we
also allow adverbs, adjectives, modal verbs and
the word to, when expanding to the left.

The application of this simple approach to the
gold dependency graphs in the training partition
of the MPQA leads to oracle F1 scores of 86.0%,
95.8% and 93.0% in the reconstruction of opinion,
agent and target spans, respectively, according to
the proportional scores described in §5.2.

4 Arc-Factored Model

One of the advantages of the dependency represen-
tation is that we can easily decode opinion-agent-
target relations without the need of complicated
constrained sequence models or integer program-
ming, as done in prior work (Choi et al., 2006;
Yang and Cardie, 2012; Yang and Cardie, 2013).

4.1 Decoding
We model dependency-based opinion mining as a
structured classification problem. Let x be a sen-
tence and y ∈ Y(x) a set of well-formed depen-
dency graphs, according to the constraints stated
in §3. We define a score function that decomposes
as a sum of labeled arc scores,

f(x, y) =
∑
a∈y

fa(x, ya) (1)

where ya is a labeled arc and the sum is over the
arcs of the graph y. We use a linear model with
weight vector w and local features φa(x, ya):

fa(x, ya) = w · φa(x, ya). (2)

For making predictions, we need to compute

ŷ = arg max
y∈Y(x)

f(x, y). (3)

Under the assumptions stated in §3, this problem
decouples into independent maximization prob-
lems (one for each possible opinion word in the
sentence). The detailed procedure is as follows,
where arcs a can take the form o → h (opinion to
agent) and o → t (opinion to target). For every
candidate opinion word o:

1. Obtain the most compatible agent word, ĥ :=
arg maxh fo→h(x, AGENT);

2. Obtain the best target word and its polarity,
(t̂, p̂) := arg maxt,p fo→t(x, TARGET:p);

3. Compute the total score of this candidate
opinion as so := froot→o(x, OPINION) +
f
o→ĥ(x, AGENT) + fo→t̂(x, TARGET:p̂). Then,

if so ≥ 0, add the arcs root → o, o → ĥ, and
o → t̂ to the dependency graph, respectively
with labels OPINION, AGENT, and TARGET:p̂.

For a sentence with L words, this decoding pro-
cedure takes O(L2) time. In practice, we speed
up this process by pruning from the candidate list
arcs whose connected POS were not observed in
the training set and whose length were larger than
the ones observed in the training set.

4.2 Features
We now describe our features φa, which are
computed after processing the sentence to predict
POS tags, syntactic dependency trees, lemmas and
voice (active or passive) information. For English,
we used the Stanford dependency parser (Socher
et al., 2013a) for the syntactic annotations, the
Porter stemmer to compute word stems, and a set
of rules for computing the voice of each word. Our
Portuguese corpus include all these preprocessing
elements (§6.3), with the exception of the voice in-
formation (features depending on voice were only
used for English).

We also used the Subjectivity Lexicon6 of Wil-
son et al. (2005) that we translated to Portuguese

6http://mpqa.cs.pitt.edu/lexicons/
subj_lexicon/
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(§6.3), and a set of negation words (e.g. not, never,
nor) and quantity words (e.g. very, much, less)
collected for both languages.

Our arc-factored features are described below;
they are inspired by prior work on dependency
parsing (Martins et al., 2013) and fine-grained
opinion mining (Breck et al., 2007; Johansson and
Moschitti, 2013).

Opinion features. We define a set of features
that only look at the opinion word; special sym-
bols are used if the opinion is connected to a root
or null node. The features below are also con-
joined with the arc label.

• OPINION WORD. The word itself, the lemma,
the POS, and the voice. Conjunction of the word
with the POS, and of the lemma with the POS.

• BIGRAMS. Bigrams of words and POS corre-
sponding to the opinion word conjoined with its
previous (and next) word.

• LEXICON (BASIC). Conjunction of the strength
and polarity of the opinion word in the Subjec-
tivity Lexicon6 (e.g., “weaksubj+neg”).

• LEXICON (COUNT). Number of subjective
words (total, positive and negative) in a sen-
tence, with and without being conjoined with
the polarity of the opinion word in the lexicon.

• LEXICON (CONTEXT). For each word that is in
the lexicon and within the 4-word context of the
opinion, the form and the polarity of that word
in the lexicon, with and without being conjoined
with the form and the polarity in the lexicon of
the opinion word. Besides the 4-word context,
we also used the next/previous word in the sen-
tence which is in the lexicon.

• NEGATION AND QUANTITY WORDS. Within
the 4-word context, features indicating if a word
is a negation or quantity word, conjoined with
the word itself and the opinion word.

• SYNTACTIC PATH. The number of words up to
the top of the syntactic dependency tree, and the
sequence of POS tags in that path.

Opinion-Argument features. In case of arcs
that neither connect to null nor root, the fea-
tures above are also conjoined with the binned dis-
tance between the two words.For these arcs, we
did not use the LEXICON (COUNT)/(CONTEXT)
features, but we added features regarding the pair
of opinion-argument words (below).

• OPINION-ARGUMENT WORD PAIR. Several
conjunctions of word form, POS, voice and syn-
tactic dependency relations corresponding to the
pair opinion-argument.

• OPINION-ARGUMENT SYNTACTIC PATH. The
syntactic path from the opinion word to the ar-
gument, conjoined with the POS and the de-
pendency relations in the path (in Figure 1, for
the agent “elites” headed by “are” with relation
nsuj, we have: “VBP↓NNS” and “nsuj↓”).

For arcs that neither connect to null or root,
we conjoin voice features with the label, distance,
and the direction of the arc. For these arcs, we
also include back-off features where the polarity
information is removed from the (target) labels.

5 English Monolingual Experiments

In a first set of experiments, we evaluated the
performance of our dependency-based model for
opinion mining (§3) in the MPQA English corpus.

5.1 Learning
We trained arc-factored models by running 25
epochs of max-loss MIRA (Crammer et al., 2006).
Our cost function takes into account mismatches
between predicted and gold dependencies, with
a cost CP on labeled arcs incorrectly predicted
(false positives) and a cost CR = 1 − CP on
missed gold labeled arcs (false negatives). The
cost CP , the regularization constant, and the num-
ber of epochs were tuned in the development set.

5.2 Evaluation Metrics
Opinion spans (Op.) are evaluated with F1 scores,
according to two matching criteria commonly
used in the literature: overlap matching (OM),
where a predicted span is counted as correct if
it overlaps a gold one, and proportional match-
ing (PM), proposed by Johansson and Moschitti
(2010). For the latter, we use the following for-
mula for the recall, where we consider the sets of
gold (G) and predicted (P) opinion spans:7

R(G,P) =
∑
p∈P

max
g∈G
|g⋂ p|/|p|
|P| ; (4)

7This metric is slightly different from the PM metric of Jo-
hansson and Moschitti (2010), in which recall was computed
as R(G,P) =

∑
p∈P

∑
g∈G

|g∩p|/|p|
|P| . The reason why we

replace the “sum” by a “max” is that each predicted span p in
(4) could contribute to the recall with a value greater than 1.
Since most of the predicted spans only overlap a single gold
span, this fix has a very small effect in the final scores.
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the precision is P (G,P) = R(P,G). We also re-
port metrics based on a head matching (HM) cri-
terion, where a predicted span is considered cor-
rect if its syntactic head matches the head of the
gold span. We consider that a pair opinion-agent
(Op-Ag.) or opinion-target (Op-Tg.) is correctly
extracted according to the OM or the HM criteria,
if both the elements satisfy these criteria and the
relation holds in the gold data. We also compute
the metric described in Johansson and Moschitti
(2010) which measures how well agents of opin-
ions are predicted based on a proportional match-
ing (PM) criterion. This metric is applied to eval-
uate the extraction of both agents and targets. Fi-
nally, to evaluate the opinions’ polarities (Op-Pol.
metric) we consider as correct opinions where the
span and polarity both match the gold ones.

5.3 Results: Dependency-Based Model

We assess the quality of our monolingual
dependency-based model by comparing it to the
recent state-of-the-art approach of Johansson and
Moschitti (2013), whose code is available online.8

That paper reports the performance of a basic
span-based pipeline system (which extracts opin-
ions with a CRF, followed by two separate classi-
fiers to detect polarities and agents), and of a more
sophisticated system that applies a reranking pro-
cedure to account for more complex features that
consider interactions accross opinion elements.

We ran experiments using the same data and
MPQA partitions as Johansson and Moschitti
(2013). However, since our system is designed for
predicting opinion, agents and targets together, we
removed the documents that were not annotated
with targets. The final train/development/test sets
have a total of 6,774/1,404/2,559 sentences and
3,834/881/1,426 opinions, respectively.

Table 1 reports the results; since the systems
of Johansson and Moschitti (2013) do not pre-
dict targets, Table 1 omits target scores.9 We ob-
serve that our dependency-based system achieves
results competitive with the best results of Johans-
son and Moschitti (2013) and clearly above the
ones reached by their basic system that does not
use re-ranking features. Though the two systems
are not fully comparable,10 the results in Table 1

8http://demo.spraakdata.gu.se/richard/
unitn_opinion/details.html

9We will report target scores later in §7.
10Our system makes use of target annotations to predict

the opinion frames, while Johansson and Moschitti (2013)

show that our dependency-based approach (§3.2)
followed by a simple dependency-to-span conver-
sion (§3.3) is, despite its simplicity, on par with
a top-performing opinion mining system. We con-
jecture that this is due to the ability to extract opin-
ions, agents, and targets jointly using exact decod-
ing. Note that our proposed dependency scheme
would also be able to include additional global fea-
tures relating pairs of opinions (by adding scores
to pairs of opinion arcs) or two opinions having
the same agent (by adding scores to pairs of agent
arcs sharing its argument), similar to the reranking
features used by Johansson and Moschitti (2013).
Similar second-order scores have been used in
syntactic and semantic dependency parsing (Mar-
tins et al., 2013; Martins and Almeida, 2014), but
with an increase in the complexity of the model
and of the decoder.

6 Cross-Lingual Opinion Mining

We now turn to the problem of learning a opin-
ion mining system for a resource-poor language
(Portuguese), in a cross-lingual manner. We use
a bitext projection approach (§6.1), whose only
requirements are a model for a resource-rich lan-
guage (English) and parallel data (§6.2).

6.1 Bitext Projection
Our methodology is outlined as Algorithm 1. For
simplicity, we call the source and target languages
English (e) and “foreign” (f ), respectively. The
procedure is inspired by the idea of bitext pro-
jection (Yarowsky and Ngai, 2001). We start by
training an English system on the labeled data Le
(line 1), which in our case is the MPQA v.2.0 cor-
pus. This system is then used to label the English
side of the parallel data, automatically identifying
opinion frames (line 2). The next step is to run
a word aligner on the parallel data (line 3). The
automatic alignments are then used to project the
opinion frames to the target language (along with
some filtering), yielding an automatic corpus D̂(f)

(line 4), which finally serves to train a system for
the target language (line 5).

6.2 Parallel Data
We use an English-Portuguese parallel corpus
based on the scientific news Brazilian magazine
Revista Pesquisa FAPESP, collected by Aziz and

has access not only to direct subjective spans but also to sub-
jective expressions annotations with their agents and polarity
information.
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JM13, BASIC JM13, RERANKING OUR SYSTEM

HM PM OM HM PM OM HM PM OM
Op. 56.3 56.2 60.6 58.6 59.2 63.7 61.6* 59.8 65.1

Op-Ag. 40.3 47.1 44.9 42.4 51.4 48.1 45.7* 51.4 50.3*
Op-Tg. - - - - - - 31.3* 48.3* 48.3*
Op-Pol. 46.1 45.9 49.3 48.5 48.9* 52.5 47.9 47.0 50.7

Table 1: Method comparison: F1 scores obtained in the MPQA corpus, for our dependency based method
and the approaches in Johansson and Moschitti (2013), with and without reranking. The symbol *
indicates that the best system beats the other systems with statistical significance, with p < 0.05 and
according to a bootstrap resampling test (Koehn, 2004).

Figure 2: Excerpt of a bitext document from FAPESP, with automatic opinion dependencies. The anno-
tations are directly projected to Portuguese via automatic word alignments.

Algorithm 1 Cross-Lingual Opinion Mining
Input: Labeled data Le, parallel data De and Df .
Output: Target opinion mining system Sf .

1: Se ← LEARNOPINIONMINER(Le)
2: D̂e ← RUNOPINIONMINER(Se,De)
3: De↔f ← RUNWORDALIGNER(De,Df )
4: D̂f ← PROJECTANDFILTER(De↔f , D̂e)
5: Sf ← LEARNOPINIONMINER(D̂f )

Specia (2011). Though this corpus is in Brazil-
ian Portuguese (while our validation corpus is in
European Portuguese), we preferred FAPESP over
other commonly used parallel corpora (such as the
Europarl and UN datasets), since it is closer to
our newswire target domain, with a smaller promi-
nence of direct speech. We computed word align-
ments using the Berkeley aligner (Liang et al.,
2006), intersected them and filtered out all the
alignments whose confidence is below 0.95.

After annotating the English side of FAPESP
with the pre-trained system (D̂e in Algorithm 1,
with a total of 166,719 sentences and 81,492 opin-
ions), the high confidence alignments (De↔f ) are
used to project the annotations to the Portuguese
side of the corpus. The automatic annotations pro-
duced by our dependency-based system are easily

transferred at a word level (for words with high
confidence alignments), as illustrated in Figure 2.
To improve the quality of the resulting corpus,
we excluded sentences whose alignments cover
less than 70% of the words in the target side of
the corpus, or sentences whose opinion elements
were not fully projected through high confidence
alignments. At this point, we obtain an automat-
ically annotated corpus in Portuguese (D̂f ), with
106,064 sentences and 32,817 opinions.

6.3 Portuguese Opinion Mining Corpus

For validation purposes, we also created a Por-
tuguese corpus with manually annotated fine-
grained opinions. The corpus consists of a sub-
set of the documents of the Priberam Compressive
Summarization Corpus11 (Almeida et al., 2014),
which contains 80 news topics with 10 documents
each, collected from several Portuguese newspa-
pers, TV and radio websites in the biennia 2010–
2011 and 2012–2013. In the scope of the current
work, we selected and annotated one document of
each of the 80 topics. The first biennium was se-
lected as the test set and the second biennium was
split into development and training sets (see Ta-

11http://labs.priberam.com/Resources/
PCSC
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ble 2 for statistics).

#doc. #sent. #opin.
Train 20 441 240
Dev 20 225 197
Test 40 560 391

Table 2: Number of documents, sentences and
opinions in the Portuguese Corpus.

HM PM OM
Op. 77.0 76.7 79.2

Op-Ag. 69.1 72.3 73.5
Op-Tg. 61.9 65.4 71.4
Op-Pol. 49.4 49.1 50.7

Table 3: Inter-annotator agreement in the test par-
tition (shown are F1 scores).

The corpus was annotated in a similar vein as
the MPQA (Wiebe et al., 2005), with the addition
of the head node for each element of the opin-
ion frame. It includes spans for direct-subjective
expressions with intensity and polarity informa-
tion; agent spans; and target spans. The annotation
was carried out by three linguists, after reading the
MPQA annotation guidelines (Wiebe et al., 2005;
Wilson, 2008) and having a small practice period
using the provided examples and some MPQA an-
notated sentences. Each document was annotated
by two of the three linguists and then revised by
the third linguist, who (in case of any doubts) dis-
cussed with the initial annotators to reach for the
final consensus. Scores for inter-annotator agree-
ment are shown in Table 3.

The corpus was annotated with automatic
POS tags and dependency parse trees using
TurboParser (Martins et al., 2013).12 We used
an in-house lemmatizer to obtain lemmas for
each inflected word in the corpus. A Por-
tuguese lexicon of subjectivity was created by
translating the words in the Subjectivity Lex-
icon of Wilson et al. (2005). The annotated
corpus and the translated subjectivity lexicon
are available at http://labs.priberam.com/

Resources/Fine-Grained-Opinion-Corpus,
and http://labs.priberam.com/Resources/

Subjectivity-Lexicon-PT, respectively.

12http://www.ark.cs.cmu.edu/TurboParser

OUR SYSTEM DELEXICALIZED

HM PM OM HM PM OM
Op. 65.7 63.5 69.8 50.1 45.8 52.7

Op-Ag. 47.6 48.8 51.1 33.8 34.8 35.7
Op-Tg. 34.9 44.8 50.3 19.9 28.0 32.1
Op-Pol. 51.5 50.2 54.4 36.7 34.7 38.8

Table 4: F1 scores obtained in English (MPQA),
for our full system and the DELEXICALIZED one.

7 Cross-Lingual Experiments

In a final set of experiments, we compare three
systems of fine-grained opinion mining for Por-
tuguese. All were trained as described in §5.1.

7.1 System Description

Baseline #1: Supervised System. A SUPER-
VISED system was trained on the small Portuguese
training set described in §6.3. Though being a
small training corpus, this is, to the best of our
knowledge, the only existing corpus with fine-
grained opinions in Portuguese. We used the same
arc-factored model and features described in §4.

Baseline #2: Delexicalized System with Bilin-
gual Embeddings. This baseline consists of a
direct model transfer: a DELEXICALIZED system
is trained in the source language, without lan-
guage specific features, so that it can be directly
applied to the target language. Despite its simplic-
ity, this strategy managed to provide a fairly strong
baseline in several NLP tasks (Zeman and Resnik,
2008; McDonald et al., 2011; Søgaard, 2011).

To achieve a unified feature representation, we
mapped all language-specific POS tags to univer-
sal tags (Petrov et al., 2012), and removed all
features depending on the dependency relations,
but maintained those depending on the syntactic
path (but not on the dependency relations them-
selves). In addition, we replaced the lexical fea-
tures by 128-dimensional cross-lingual word em-
beddings.13 To obtain these bilingual neural em-
beddings, we ran the method of Hermann and
Blunsom (2014) on the parallel data (§6.1). We
scaled the embeddings by a factor of 2.0 (selected
on the dev-set), following the procedure described
in Turian et al. (2010).

We trained the English delexicalized system on
the MPQA corpus, using the same test documents

13A delexicalized system trained without the word embed-
dings had a worse performance.
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BASELINE #1 (SUP.) BASELINE #2 (DELEX.) BITEXT PROJECTION

HM PM OM HM PM OM HM PM OM
Op. 49.4 48.7 50.8 33.1 32.1 34.3 58.0* 55.7* 58.0*

Op-Ag. 23.5 27.2 31.5 14.3 18.8 20.0 30.8* 31.2* 36.2*
Op-Tg. 23.0 24.9 30.6 11.0 15.7 19.0 29.4* 29.4* 35.6*
Op-Pol. 24.1 23.8 24.7 16.6 16.4 17.6 35.7* 34.1* 35.7*

Table 5: Comparison of cross-lingual approaches. F1 scores obtained in our Portuguese validation corpus
using: a SUPERVISED system trained on the small available data, a DELEXICALIZED system trained with
universal POS tags and multilingual embeddings and our BITEXT PROJECTION OF DEPENDENCIES.
The symbol * indicates that the best system beats the other systems with statistical significance, with
p < 0.05 and according to a bootstrap resampling test (Koehn, 2004).

as Riloff and Wiebe (2003) and whose list is avail-
able with the corpus, but selecting only documents
annotated with targets. We randomly split the
remaining documents into train and development
sets, respectively with a total of 6,471 and 782 sen-
tences.14 Table 4 shows the performance of the
delexicalized baseline in English, compared with
a lexicalized system. We will see how this model
behaves in a cross-lingual setting in §7.2.

Our System: Bitext Projection of Opinion De-
pendencies. Finally, we implemented our cross-
lingual BITEXT approach (§6). We trained the
(lexicalized) English model on the MPQA corpus
(the performance of this model is shown in Ta-
ble 4). Then, we ran this model on the English
side of the parallel corpus, generating automatic
annotations, and projected these annotations to the
Portuguese side, as described in §6.2. Finally, a
Portuguese model was trained on these projected
annotations using the arc-factored model and fea-
tures described in §4.

7.2 Comparison

Table 5 shows the F1 scores obtained by the three
systems on the Portuguese test partition. We ob-
serve that the BITEXT approach outperformed the
SUPERVISED and the DELEXICALIZED ones in all
metrics with a considerable margin, which shows
the effectiveness of our proposed method. The
SUPERVISED system suffers from the fact that the
training set is too small to allow good general-
ization; the bitext projection method, in contrast,
can create arbitrarily large training corpora with-
out any annotation effort. The performance of

14Note that this split is different from the one we used in
§5. There we used the same split as Johansson and Moschitti
(2013), for a fair comparison with their system; here, we fol-
low the standard MPQA test partition.

the DELEXICALIZED system is rather disappoint-
ing. This result is justified by a decrease of per-
formance in English due to the delexicalization
(cf. Table 4), followed by an extra loss of quality
due to language differences.

Though our BITEXT approach scores the best,
the scores are behind the range of values ob-
tained for English (Table 4), and far from the inter-
annotator agreement numbers (Table 3), suggest-
ing room for improvement. The polarity scores in
Table 5 appear to be relatively low. This fact is
probably be justified with the annotator agreement
scores (Table 3) which are considerably lower for
these metrics.

8 Conclusions

We presented a cross-lingual framework for fine-
grained opinion mining. We used a bitext pro-
jection technique to transfer dependency-based
opinion frames from English to Portuguese. Ex-
perimentally, our dependency model achieved
state-of-the-art results for English, and the Por-
tuguese system trained with bitext projection out-
performed two baselines: a supervised system
trained on a small dataset, and a delexicalized
model with bilingual word embeddings.
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Ozan İrsoy and Claire Cardie. 2014. Opinion mining with
deep recurrent neural networks. In EMNLP.

Richard Johansson and Alessandro Moschitti. 2010. Rerank-
ing models in fine-grained opinion analysis. In COLING.

Richard Johansson and Alessandro Moschitti. 2011. Extract-
ing opinion expressions and their polarities: exploration of
pipelines and joint models. In ACL.

Richard Johansson and Alessandro Moschitti. 2013. Rela-
tional features in fine-grained opinion analysis. Computa-
tional Linguistics, 39(3).

Soo-Min Kim and Eduard Hovy. 2006. Extracting opinions,
opinion holders, and topics expressed in online news me-
dia text. In SST.

P. Koehn. 2004. Statistical signicance tests for machine
translation evaluation. In ACL.

Lun-Wei Ku, Yu-Ting Liang, and Hsin-Hsi Chen. 2006.
Opinion extraction, summarization and tracking in news
and blog corpora. In AAAI.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Alignment
by agreement. In NAACL.

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis Lectures on Human Language Technolo-
gies, 5(1).

Bin Lu, Chenhao Tan, Claire Cardie, and Benjamin K. Tsou.
2011. Joint bilingual sentiment classification with unla-
beled parallel corpora. In ACL.
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Abstract

Cross-lingual sentiment analysis is a task
of identifying sentiment polarities of texts
in a low-resource language by using sen-
timent knowledge in a resource-abundant
language. While most existing approaches
are driven by transfer learning, their
performance does not reach to a promising
level due to the transferred errors. In this
paper, we propose to integrate into knowl-
edge transfer a knowledge validation mod-
el, which aims to prevent the negative
influence from the wrong knowledge by
distinguishing highly credible knowledge.
Experiment results demonstrate the neces-
sity and effectiveness of the model.

1 Introduction

With the wide range of business value, sentiment
analysis has drawn increasing attention in the past
years. The extensive research and development
efforts produce a variety of reliable sentiment
resources for English, one of the most popular
language in the world. These available rich
resources become the treasure of knowledge to
help conduct or enhance sentiment analysis in
the other languages, which is a task known as
cross-lingual sentiment analysis (CLSA). In the
literature of CSLA, the language with abundant
reliable resources is called the source language
(e.g., English), while the low-resource language is
referred to as the target language (e.g., Chinese).
However, in this paper, the situation is a low
resource language scenario, where the source
language is English, and the target language is
Chinese.

The main idea of existing CLSA researches is
to first build up the connection between the source
and target languages to overcome the language
barrier, and then develop an appropriate knowl-
edge transfer approach to leverage the annotated

data from the source language to train a sentiment
classification model in the target language, either
supervised or semi-supervised. In particular, these
approaches exploit and convert the knowledge
learned from the source language to automatically
generate and expand the pseudo-training data for
the target language.

The machine translation (MT) service is one
of the most common ways used to build the
language connection (Wan, 2008; Banea et al.,
2008; Wan, 2009; Wei and Pal, 2010; Gui et
al., 2014). Although it is claimed in Duh et al.
(2011) that the MT service is ripe for CLSA,
the imperfect MT quality hinders existing MT-
based CLSA approaches from the further advance.
In our preliminary study, we find that even the
Google translator1 (i.e., one of the most widely
used online MT service (Shankland 2013)) may
unavoidably changes the sentiment polarity of
the translated text, as illustrated below, with a
percentage of around 10%.

[Original English Text]: I am at home on bed
rest and desperate for something good to read.
[Sentiment Label: Negative]
[Translated Chinese Text]: ·3[¹K>E
Úý"�ÀÜéÐw" {Meaning: I am in bed
to rest at home and feel that desperate things are
also good to read.}[Sentiment Label: Positive]

The noisy data generated by MT errors for sure
will weaken the contribution of the transferred
knowledge and even worse may create conflicting
knowledge. While it is a critical step in CLSA to
localize the sentiment knowledge learned from the
source language in the target language, to the best
of our knowledge, hardly any previous research
has focused on knowledge validation to filter out
the noisy knowledge having sentiment changes
caused by wrong translations during knowledge
transfer.

1http://translate.google.com
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To reduce the noisy sentiment knowledge intro-
duced into the target language, we are motivated to
validate the knowledge transferred from the source
language by checking its linguistic distributions
and sentiment polarity consistency with the known
knowledge in the target language. Different
from previous co-training based approaches where
two language views recommend knowledge to
each other in the same manner, we consider
the source language as the “supervisor” and the
target language as the “learner”. The “supervisor”
boosts itself with its own accumulated labeled data
(called knowledge) and meanwhile recommends
its confident knowledge to the “learner”. The
“learner” tries to select trustworthy knowledge
based on the recommendation to update and
expand its training data. Adding a process to
efficiently filter out noisy knowledge and retain the
self-adaptive and interested new knowledge makes
the subsequent boosting process more credible.
This is why our approach can outperform state-of-
the-art CLSA approaches.

The rest of this paper is organized as follows.
Section 2 summarizes the related work. Section 3
explains the proposed model. Section 4 presents
experimental results. Finally, Section 5 concludes
the paper and suggests future work.

2 Related Work

2.1 Sentiment Analysis

Sentiment has been analyzed in different language
granularity, e.g., entity, aspect, sentence and
document. This paper focuses on sentiment
analysis of online product reviews in the document
level.

Existing approaches are generally categorized
into lexicon-based and machine learning based
approaches (Liu, 2012). Lexicon-based approach-
es highly depend on sentiment lexicons. Turney
(2002) derives the overall phrase and document
sentiment scores by averaging the sentiment
scores provided in a lexicon over the words
included. Similar idea is adopted in (Hiroshi et
al., 2004; Kennedy and Inkpen, 2006). Machine
learning based approaches, on the other hand,
apply classification models. The task-specific
features are designed to train sentiment polarity
classifiers. Pang et al. (2002) compare the
performance of NB, SVM and ME on movie
reviews. SVM is found more effective. Gamon
(2004) shows that SVM with deep linguistic

features can further improve the performance. A
variety of other machine learning approaches are
also proposed to sentiment classification (Mullen
and Collier, 2004; Read, 2005; Hassan and Radev,
2010; Socher et al., 2013).

Cross-domain sentiment classification (CDSC)
shares certain common characteristics with cross-
lingual sentiment classification (CLSC) (Tan et al.,
2007; Li et al., 2009; Pan and Yang, 2010; He et
al., 2011a; Glorot et al., 2011). Notice that the gap
between source domain and target domain is the
main difference between CDSC and CLSC. CLSC
copes with two different datasets in two different
languages. This difference makes CLSC a new
challenge, drawing specific attention to researcher
recently.

2.2 Cross-lingual Sentiment Analysis

There are two alternative solutions to cross-lingual
sentiment analysis. One is ensemble learning
that combines multiple classifiers. The other is
transfer learning that develops strategies to adapt
the knowledge from one language to the other.
Wan (2008) is among the pioneers to develop
the ensemble learning solutions, where multiple
classifiers learned from different training datasets
including those in original languages and trans-
lated languages are combined by voting. Most
researches, on the other hand, explore transfer
learning and focus on knowledge adaptation. For
example, Wan (2009) applies a supervised co-
training framework to iteratively adapt knowledge
learned from the two languages by transferring
translated texts to each other. Other similar work
includes (Wei and Pal, 2010) and (He, 2011b). All
these approaches rely on MT to build language
connection.

Meanwhile, the unlabeled parallel data is also
employed to fill the gap between two languages.
To solve the feature coverage problem with the
EM algorithm, Meng et al. (2012) leverage the
unlabeled parallel data to learn unseen sentiment
words. Similarly, Popat et al. (2013) use the
unlabeled parallel data to cluster features in order
to reduce the data sparsity problem. Meng et
al. (2012) and Popat et al. (2013) also use
the unlabeled parallel data to reduce the negative
influence of the noisy and incorrect sentiment
labels introduced by machine translation and
knowledge transfer. However, the parallel data is
also a scarce resource.

420



Some existing transfer learning based CLSA
methods have attempted to address the noisy
knowledge problem caused by wrong labels by
checking label consistency. For example, to
filter out the unconfident labels in Chinese, the
supervised learning method proposed by (Xu et
al., 2011) runs boosting in Chinese by checking
consistency between the labels manually annotat-
ed in English and predicted by Chinese classifiers
on translated Chinese. The work in (Gui et al.,
2014) follows the same line although it considers
knowledge transferring between two languages.
On the contrary, the main focus of our work is
to filter out the noisy knowledge having sentiment
changes by wrong translations. Actually, both
label consistency checking and linguistic distribu-
tion checking are important. Any one alone cannot
work well. In fact, both of them are considered as
the knowledge validation in our work, though the
later is our focus.

3 Credible Boosting Model

In this paper, we propose a knowledge validation
approach to improve the effectiveness of knowl-
edge transfer without directly using extra parallel
data. Our target is to filter out the noisy senti-
ment labels introduced by MT and the incorrect
sentiment labels generated by imperfect classifier
in the source language. Here, the knowledge is
referred to as a collection of distributed document
presentations with sentiment labels that have been
verified to be robust in sentiment classification (Le
and Mikolov, 2014). A novel credible boosting
model, namely CredBoost is proposed to apply
transfer-supervised learning with an added self-
validation mechanism to guarantee the knowledge
transferred highly credible and self-adaptive.

3.1 Problem Description

In a standard cross-lingual sentiment analysis
setting, the training data includes labeled English
reviews LEN = {(xleni , yi)}Mi=1 and unlabeled
Chinese reviews UCN = {xucnj }Nj=1, where xki
(k = len or ucn) represents review i and yi ∈
{−1, 1} is the sentiment label of review xli. The
test data is Chinese reviews TCN = {xtcns }Ss=1.

We now introduce the unlabeled data into
credBoost’s setting. LEN is divided into two
disjoint partsLTEN andLBEN , whereLTEN for basic
training and LBEN for self-boosting. We translate
LEN into Chinese to obtain extra labeled Chinese

pseudo-reviews LTrCN = {(xlcnTri , yi)}Mi=1 and
UCN into English to obtain extra unlabeled
English pseudo-reviews UTrEN = {xlenTrj }Nj=1.
Thereby, we obtain a pair of pseudo-parallel data
(UCN , UTrEN ).

The task is to use LEN and UCN to train a
Chinese classifier to predict sentiment polarity for
the test data TCN . It is a standard transfer learning
problem. We consider two language views, i.e.,
source language view DS and target language
viewDτ . DS boosts itself with the labeled English
data and recommend translated knowledge to Dτ ,
while Dt selects self-adaptive ones to boost itself.

3.2 Framework of CredBoost
The CredBoost model involves two synchronously
boosting views for two languages respectively.
During training, one view acts as a “supervisor”
that recommends and passes the knowledge to the
other view. The same knowledge is also added
into its own view for boosting by automatically
updating the weights of the labeled data. The
other view acts as a “learner” that receives the
recommended knowledge and selects the best-
suited new knowledge to learn.

As mentioned before, the knowledge trans-
ferred through MT is not reliable. The source
language view may also make wrong predictions
and thus transfer the wrong knowledge to the
target language even the translations are correct.
Whether or not the “learner” can benefit from
its “supervisor” and how much it benefits highly
depends on the credibility and adaptiveness of
the recommended knowledge accepted by the
“learner”. Knowledge validation is necessary to
ensure the quality of learning. The objective
of knowledge validation is to identify the new
and acquired knowledge from recommendations.
Both language views are iteratively trained until
learning converges or reaches the iteration upper
bound.

In the source language view, at iteration (t),
the CredBoost model first uses LT (t)

EN to train a
basic classifier C(t)

EN and then uses C(t)
EN to predict

L
B(t)
EN and U (t)

TrEN . Top m and top n instances are
sampled from L

B(t)
EN and U (t)

TrEN respectively, by
Formula (1) :

O
(t)
EN = {(xLBi′ , ŷLBi′ )}men

i′=1

TR
(t)
EN = {(xUTri , ŷUTri )}nen

i=1

(1)

where O(t)
EN denotes the candidates to be added
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into the training data, and TR(t)
EN the knowledge

to be recommended to the target language view.
We use the source knowledge validation function
VS(O

(t)
EN ) to identify the acquired knowledge

K
(t)
′Ac learned in the previous learning process and

the new knowledge K
(t)
′Nw fresh to the current

knowledge system from O
(t)
EN . The importance of

each training instance is updated according to the
performance of prediction by Formula (2) :

ω
′Ac
i′ =

 eε(t) ·
√
ν

(t)

i′ · c(t)i′ if ŷ
′Ac
i′ 6= y

′Ac
i′√

ν
(t)

i′ · c(t)i′ otherwise;

ω
′Nw
j′ =

{
eε(t) · log (1 +

√
e · c(t)j′ ) if ŷ

′Ac
j′ 6= y

′Ac
j′

log (1 +
√
e · c(t)j′ ) otherwise.

(2)

where c
(t)
j′ is the confidence of an instance

given by C(t)
EN , thus log (1 +

√
e · c(t)j′ ) > 1 is to

enhance the weight of new knowledge because of
the higher significance contributing to the later
learning. ν

(t)
i′ (< 1) is the adaptiveness score

given by the source knowledge validation function
VS(O

(t)
EN ). ε(t)(> 1) is the error rate of C(t)

EN ,
thus eε(t) > 1 is to reward the wrongly predicted
data in the next iteration. ŷ

′Ac
i′ is the label

given by C(t)
EN and y

′Ac
i′ is the manually annotated

label. For the incorrectly predicted instance, the
weight is boosted inversely to the performance
of the current classifier. The instance identified
as the new knowledge which contributes more
to performance improvement is given a reward
parameter to enhance its significant in the next
training iteration. Data sets update by Formula (3).
The training starts with iteration (1), the training
data is initially set as LT (1)

EN = LTEN .

L
T (t+1)
EN = L

T (t)
EN ∪K(t)

′Ac ∪K(t)
′Nw

L
B(t+1)
EN = L

B(t)
EN − (K

(t)
′Ac ∪K(t)

′Nw)
(3)

In the target language view, at iteration (t),
the CredBoost model receives the recommended
knowledge TR(t)

EN and projects it to O
(t)
CN from

the unlabeled Chinese data U (t)
CN with the pseudo-

parallel data (U (t)
CN , U

(t)
TrEN ). OCN(t) is validat-

ed by the target knowledge validation function
Vτ (O

(t)
CN ) to identify the acquired knowledge

K
(t)
Ac and the new knowledge K

(t)
Nw. K

(t)
Ac and

K
(t)
Nw are projected to K

(t)
∗Ac and K

(t)
∗Nw from

the unlabeled English pseudo-data U (t)
TrEN . The

weight of an instance is updated by Formula (4),
and the parameter setting is similar to that in

the source language view. The confidence c
(t)
i

is directly transferred from Ds. We reward the
validated knowledge to raise their significance in
the training data considering they are originally
Chinese.

ωAci =

√
c
(t)
i · log(1 +

√
e · v(t)

i )

ωNwj = elog (1+
√
e·c(t)

j ) = 1 +
√
e · c(t)j

(4)

We update the data setting by Formula (5). The
training data is initially set as UT (1)

CN = UTCN . The
CredBoost model is illustrated in Algorithm 1.

L
(t+1)
TrCN = L

(t)
TrCN ∪K(t)

Ac ∪K(t)
Nw

U
(t+1)
CN = U

(t)
CN − (K

(t)
Ac ∪K(t)

Nw)

U
(t+1)
TrEN = U

(t)
TrEN − (K

(t)
∗Ac ∪K(t)

∗Nw)

(5)

Algorithm 1 CredBoost Model
Input: English labeled data LTEN and LBEN , translated
English unlabeled data UTrEN , translated Chinese data
LTrCN and unlabeled Chinese data UCN ;
Initialize: Weights W

(1)
EN = {1}M for LTEN and

W
(1)
TrCN = {1}M for LTrCN ;

For t = 1, · · · , T :
1. Use LT (t)

EN to learn English classifier CEN(t);
2. Use C(t)

EN to predict LB(t)
EN and U (t)

TrEN sample top
m and top n instances from L

B(t)
EN and U (t)

TrEN , O(t)
EN and

TR
(t)
EN ;
3. Validate O(t)

EN by knowledge validation function
VS(O

(t)
EN ) to identify acquired knowledge K(t)

′Ac and new
knowledge K

(t)
′Nw, generate the weights for them by

Formula (2), then recommend TR(t)
EN to Dτ ;

4. Project TR(t)
EN to O(t)

CN with pseudo-parallel data
(U

(t)
CN , U

(t)
TrEN ), and use knowledge validation function

Vτ (O
(t)
CN ) to identify acquired knowledge K(t)

Ac and new
knowledge K

(t)
Nw, then generate weights for them by

Formula (4);
5. UpdateDS by Formula (2) andDτ by Formula (5);

End For.
Output: Chinese classifier C(T )

CN .

3.3 Knowledge Validation

Knowledge is familiarity, awareness or under-
standing of someone or something, such as
facts, information or skills, which is acquired
through experience or education by perceiving,
discovering or learning2. It can be implicit or
explicit.

In machine learning, natural language knowl-
edge is a continuously improving hypothesis that
consists of both semantic and significant domain

2Definition from Oxford Dictionary of English, avail-
able at: http://oxforddictionaries.com/view/
entry/m_en_us126.
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characters. While language is the expression of
semantic, semantic is the carrier of sentiment.
Using another word, two texts with more smaller
semantic distance have higher probability to share
the same sentiment polarity. Choi and Cardie
(2008) assert that the sentiment polarity of natural
language can be better inferred by compositional
semantics. They also suggest that incorporating
compositional semantics into learning can im-
prove the performance of sentiment classifiers.
Saif et al. (2012) also demonstrate that the
addition of extra semantic features can further
improve performance.

In order to filter out noisy and incorrect senti-
ment labels, we propose a knowledge validation
approach to reduce these noisy data that hinder the
improvement of learning performance. Knowl-
edge validation is a way to identify the acquired
knowledge implied in current knowledge system
and also the new knowledge fresh to current
knowledge system. The knowledge can be repre-
sented in the semantic space. (Le and Mikolov,
2014) project documents into a low-dimension
semantic space with a deep learning approach,
known as document-to-vector (Doc2Vec3). Con-
sidering that Dov2Vec has been verified to be
efficient in many NLP tasks including sentiment
analysis, we follow previous research to represent
knowledge embedded in product reviews with the
vectors generated by Doc2Vec.

Suppose distributed representations (i.e., low-
dimensional vectors) of the all reviews including
{LTEN , LBEN , UTrEN} and {LTrCN , UCN}
are {V(LTEN ),V(LBEN ),V(UTrEN )} and
{V(LTrCN ),V(UCN )} respectively. At iteration
(t), V(LT (t)

EN ) is the current knowledge system
of the English view and V(L(t)

TrCN ) is that of
the Chinese. The knowledge validation runs
separately in the source and target views.

In the target language view, at iteration (t),
suppose the prediction confidence of the candidate
(xUi , ŷ

U
i ) ∈ O

(t)
CN is c

(t)
i . We define the

adaptiveness score as the average distance of top
ζ+ semantic distances between the instance xLBi
and the positive cluster of L(t)

TrCN , denoted as

L
(t)+
TrCN , and top ζ(t)

− = ζ+ · L
(t)
+

L(t)
−

semantic distances

between xUi and the negative cluster, denoted as

3Doc2Vec is one of the models implemented in the free
python library Gensim which can be freely downloaded at:
https://pypi.python.org/pypi/gensim.

L
(t)−
TrCN , where L(t)

+ and L(t)
− are the numbers of

the elements in L(t)+
TrCN and L(t)−

TrCN respectively.
The validation parameters are defined by Formula
(6), ωr is the weight of training instance V(r), ν(t)

i

is the adaptiveness score, and V label∗ ∈ {1,−1} is
the validated label which denotes the knowledge
belonging to the positive cluster L(t)+

TrCN or the
negative cluster L(t)−

TrCN . The validation process
is illustrated in Algorithm 2, where the acquired
knowledge is k(t)

Ac, and the new knowledge is k(t)
Nw.

D(V(xLBi ),V(r)) =
V(xLBi )

T · V(r)

‖ V(xLBi ) ‖ · ‖ V(r) ‖

⇒


ν

(t)+
i = 1

ζ+

∑
r∈L(t)+

EN

ωr D(V(xLBi ),V(r))

ν
(t)−
i = 1

ζ
(t)
−

∑
r′∈L(t)−

EN

ωr′ D(V(xLBi ),V(r′))

⇒ ∆(ν
(t)
i ) = ν

(t)+
i − ν(t)−

i

⇒ δ
(t)
i =

1

e1+∆(ν
(t)
i )

⇒ V label∗ =

{
1 if δ(t)

i > 0.5,
−1 if δ(t)

i ≤ 0.5.

⇒ ν
(t)
i =

{
ν

(t)+
i if V label∗ = 1,
ν

(t)−
i if V label∗ = −1.

(6)

where D(V(xLBi ),V(r)) is the Cosine distance
between the distributed representations of the two
reviews. ν(t)+

i and ν(t)−
i are the weighted averages

of the semantic distances. δ
(t)
i is the Sigmoid

function which computes the probability that the
data is distributed in the positive cluster L(t)+

TrCN .
In the source language view, at iteration

(t), let’s suppose the prediction confidence of
candidate (xLBi′ , ŷ

LB
i′ ) ∈ O

(t)
EN to be c(t)i′ . The

definitions of validation parameters are similar
to those in the target language view. The
validation process is illustrated in Algorithm 3.
The validation is looser, because the training data
and candidates are both in English. This differs
from it in the target view.

4 Experiments

4.1 Experimental Setup

We evaluate the proposed CredBoost model on
an open cross-lingual sentiment analysis task in
NLP&CC 20134. The data set provided is a

4NLP&CC is an annual conference of Chinese infor-
mation technology professional committee organized by
Chinese computer Federation (CCF). It mainly focuses
on the study and application novelty of natural language
processing and Chinese computation. CLSA task is the
task 3 of NLP&CC 2013. For more details and open
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Algorithm 2 Knowledge Validation Vτ (Dτ )

Input: Labeled Chinese training data L(t)
TrCN , weights

of labeled data W
(t)
CN and semantics vectors of all

English data for iteration (t): {V(L
(t)
TrCN ),V(U

(t)
CN )};

Initialize: K(1)
′Ac = φ, K(1)

′Nw = φ;
For xUi in O(t)

CN :
1. Use L(t)

TrCN to train a classifier C(t)
CN ,

then use C(t)
CN predict xUi , giving la-

bel yCNi ;
2. Get validated label V label∗ , positive and

negative average distances ν(t)+
i , ν(t)−

i

of xUi by fomula (6);
3. If ν(t)+

i < ψ and ν(t)−
i < ψ:

If ŷLBi = V label∗ :
Then K(t)

Nw ← K
(t)
Nw + xUi ;

Else:
If ŷLBi = V label∗ = yCNi :
Then K(t)

Ac ← K
(t)
Ac + xUi ;

End For.
Output: K(t)

Nw, K(t)
Ac .

Algorithm 3 Knowledge Validation VS(DS)

Input: Weights of labeled data W (1)
EN and semantics

vectors of all English data for iteration (t):
{V(L

T (t)
EN ),V(L

B(t)
EN ),V(U

(t)
TrEN )};

Initialize: K(1)
′Ac = φ, K(1)

′Nw = φ;
For xLBi′ in O(t)

EN :
1. Get validated label V label′ , positive and

negative average distances ν(t)+

i′ , ν(t)−
i′

of xLBi′ by fomula (6);
2. If ν(t)+

i′ < ψ and ν(t)−
i′ < ψ:

If ŷLBi′ = V label′ :
Then K(t)

′Nw ← K
(t)
′Nw + xLBi′ ;

Else:
If ŷLBi′ = V label′ :
Then K(t)

′Ac ← K
(t)
′Ac + xLBi′ ;

End For.
Output: K(t)

′Nw, K(t)
′Ac.

collection of bilingual Amazon product reviews
in Books, DVD and Music domains. It contains
4,000 labeled English reviews, 4,000 Chinese test
reviews, and 17,814, 47,071, 29,677 unlabeled
Chinese reviews in three different domains. We
randomly select 2,000 unlabeled Chinese reviews
in each domain to train classifiers. Besides, the
pseudo-data sets described in CredBoost model
are translated with Google translator. The data set
is summarized in Table 1.

To better illustrate the significance of knowl-
edge validation during knowledge transfer, we
compare the proposed method with the following
baseline methods:

Lexicon-based (LB): The standard English
MPQA sentiment lexicons are translated into

resource, you can available at: http://tcci.ccf.org.
cn/conference/2013/index.html.

Domain English Chinese
L U L U

Books Train 4,000 - - 2,000
Test - - 4,000 -

DVD Train 4,000 - - 2,000
Test - - 4,000 -

Music Train 4,000 - - 2,000
Test - - 4,000 -

Table 1: Experimental data sets. All data sets
are balanced, L represents labeled data and U
represents unlabeled data.

Chinese and then utilized together with a small
number of Chinese turning words, negations and
intensifiers to predict the sentiment polarities of
the Chinese test reviews.

Basic SVM (BSVM-CN): The labeled English
reviews are translated into Chinese, which are then
used as the pseudo-training data to train a Chinese
SVM classifier.

Primarily boost transfer learning (BTL-1):
The labeled English reviews are used to train
the English classifier, which is applied to label
the English translations of the unlabeled Chinese
reviews. These labeled Chinese reviews obtained
via MT together with the Chinese translations of
the labeled English reviews are then used as the
pseudo-training data to train a Chinese sentiment
classifier.

Best result in NLP&CC 2013 (BR2013): This
is the best result reported in NLP&CC 2013.
Unfortunately, the specification of the method is
not available.

Self-boost (SB-CN) in Chinese: The labeled
English reviews are translated into Chinese, which
are used as the pseudo-training data to train a basic
Chinese classifier. This classifier is iteratively
refined by choosing the most confidently predicted
English reviews to add into the Chinese training
data until a predefined iteration number reaches. It
can be also considered as a self-adaptive boosting
approach.

Iteratively boost transfer learning (BTL-2):
This is an enhanced transfer learning method shar-
ing the same learning framework with CredBoost
but it ignores knowledge validation. It iteratively
transfers the knowledge from English to Chinese.
The learning in both languages iteratively boosts
themselves separately. The transfer size is 16,
comparable to that in CredBoost.

Basic co-training (CoTr): The co-training
method proposed in (Wan, 2009) is implemented.
It is bidirectional transfer learning. In each
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iteration, 10 positive and 10 negative reviews are
transferred from one language to the other.

Doc2vec feature CredBoost (dCredB): This
method is similar to CredBoost except that
document-to-vector is used to generate features
when training basic classifiers. The vectors
are obtained from both original and translated
reviews. The dimension of doc2vec is 300, while
the other parameters are set as default.

The baseline methods described above are
categorized into three classes: the first four
which are preliminary methods, the middle three
which are several state-of-the-art models being
comparable to our proposed model, and the last
one which is a comparison to suggest that the
knowledge representation is not the answer to the
performance improvement. For all the methods
excluding LB and BR2013, we use support vector
machines (SVMs) as basic classifiers. We use
the Liblinear package (Fan et al., 2008) with the
linear kernel5. All methods use Unigram+Bigram
features to train the basic classifiers, except for
dCredB.

4.2 Experimental Result

In this work, there are two main parameters that
may significantly influence the performance of our
proposed model. They are the new knowledge
validation boundary ψ and the validation scale
ζ+ in the training data. We set the values of
parameters with the grid search strategy. We
first fix initial ζ+ = 14 to search the best
new knowledge validation boundary ψ from an
empirical value set {0.30, 0.35, 0.40, 0.45, 0.50}.
We then fix the best ψ = 0.40 to check the
suitable validation scale ζ+ from the initial value
set {6, 8, 9, 10, 11, 12, 14, 16} in which values are
comparable with the knowledge transfer scale
of CoTr in the training data. Besides, the
recommendation size m for English is set to 20
and the recommendation size n for Chinese is set
to 40. The final settings are listed in Table 2.
The performance is evaluated in terms of accuracy
(Ac) defined by Formula (7).

Ac(f) =
pf

P f
, Avg Ac =

1

3
·
∑
f
′∈F

Ac(f
′
) (7)

where pf is the number of correct predictions
and P f is the total number of the test data; F ∈
{Books,DV D,Music} is the domain set.

5The parameter setting used in this paper is ‘-s 7’.

Domain ψ ζ+ m n
Books 0.45 12 20 40
DVD 0.40 12 20 40
Music 0.40 9 20 40

Table 2: Parameter settings of three domains in
this paper.

Approaches Domain Avg AcBooks DVD Music
LB 0.7770 0.7832 0.7595 0.7709

BSVM-CN 0.7940 0.7995 0.7778 0.7904
BTL-1 0.8010 0.8058 0.7605 0.7891

BR2013 0.7850 0.7773 0.7513 0.7712
SB-CN 0.8400 0.8428 0.8012 0.8280
BTL-2 0.8105 0.8265 0.7980 0.8117
CoTr 0.8025 0.8508 0.7812 0.8115

dCredB 0.6485 0.6753 0.6700 0.6646
CredBoost 0.8465 0.8518 0.8093 0.8359

Table 3: Macro performance of all approaches
in three domains. All values are accuracies and
Avg-Ac represents the average accuracy in three
domains.

The performances are reported in Tables 3 and
4. As shown, CredBoost outperforms all the other
comparison methods. The first four baselines
have poor performances compared to others. This
suggests that the CLSA problem cannot be well
solved by directly learning from the labeled
translated data without any knowledge adaption or
knowledge validation. SB-CN, BTL-2 and CoTr
employ iterative boosting to adapt knowledge
from the source English to the target Chinese with-
out validating the transferred knowledge. They
inevitably mis-recommend the massive noisy data
into Chinese. CredBoost, in contrast, introduces
knowledge validation into transfer learning with
iterative boosting. It better adapts knowledge from
English to Chinese and thus ensures the credibility
of the accepted knowledge. Its best result justifies
our assumption.

Specifically, SB-CN leverages both the Chinese
training data translated from the labeled English
data and the unlabeled Chinese data used for
boosting. The boosting in Chinese iteratively
selects the trustworthy data with the labels as-
signed by the Chinese classifier. Our proposed
method, however, exploits two different languages
simultaneously with an additional boosting step,
i.e., it transfers knowledge from English to
Chinese during boosting. We then use knowledge
validation model to validate the unlabeled Chinese
data whose labels are assigned by the English
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Model (Books) Positive Negative AcP R F1 P R F1
LB 0.7368 0.8400 0.7850 0.8140 0.7000 0.7527 0.7700

BSVM-CN 0.8249 0.7465 0.7837 0.7685 0.8415 0.8033 0.7940
BTL-1 0.8537 0.7265 0.7850 0.7620 0.8755 0.8148 0.8010

BR2013 - - - - - - 0.7850
SB-CN 0.8716 0.7975 0.8329 0.8134 0.8825 0.8465 0.8400
BTL-2 0.7105 0.8881 0.7894 0.9105 0.7588 0.8278 0.8105
CoTr 0.8339 0.7555 0.7928 0.7765 0.8495 0.8114 0.8025

dCredB 0.5310 0.6941 0.6017 0.7660 0.6202 0.6854 0.6485
CredBoost 0.8225 0.8640 0.8427 0.8705 0.8306 0.8501 0.8465

Model (DVD) Positive Negative AcP R F1 P R F1
LB 0.7648 0.8180 0.7905 0.8044 0.7485 0.7754 0.7832

BSVM-CN 0.7745 0.8450 0.8082 0.8295 0.7540 0.7900 0.7995
BTL-1 0.8282 0.7715 0.7988 0.7861 0.8400 0.8122 0.8058

BR2013 - - - - - - 0.7773
SB-CN 0.8853 0.7875 0.8335 0.8086 0.8980 0.8510 0.8428
BTL-2 0.8525 0.8104 0.8309 0.8005 0.8444 0.8219 0.8265
CoTr 0.8374 0.8705 0.8536 0.8652 0.8310 0.8478 0.8508

dCredB 0.6070 0.7030 0.6515 0.7435 0.6542 0.6960 0.6753
CredBoost 0.8440 0.8572 0.8508 0.8595 0.8465 0.8530 0.8518

Model (Music) Positive Negative AcP R F1 P R F1
LB 0.7387 0.8030 0.7695 0.7842 0.7160 0.7485 0.7595

BSVM-CN 0.8492 0.6755 0.7525 0.7306 0.8800 0.7984 0.7778
BTL-1 0.8437 0.6395 0.7275 0.7097 0.8815 0.7863 0.7605

BR2013 - - - - - - 0.7513
SB-CN 0.8787 0.6990 0.7786 0.7501 0.9035 0.8197 0.8012
BTL-2 0.7285 0.8461 0.7829 0.8675 0.7616 0.8111 0.7980
CoTr 0.8536 0.6790 0.7564 0.7335 0.8835 0.8015 0.7812

dCredB 0.5860 0.7043 0.6397 0.7540 0.6455 0.6955 0.6700
CredBoost 0.7258 0.8708 0.7917 0.8928 0.7653 0.8241 0.8093

Table 4: Micro performance of all approaches in three domains. P: Precision, R: Recall, F1: micro-F
measure, Ac: Accuracy, and - represents unknown. The model in BR2013 is unknown, thus its micro
performance is unavailable.

classifier. It is reasonable that a Chinese classifier
performs better on Chinese text than an English
classifier performs on the translated English text
due to the different language distributions and MT
errors. However, as shown in Tables 3 and 4,
the better performance of our proposed method
compared with that of the self-boosting method
further suggests the effectiveness of our proposed
knowledge validation model.

Figure 1 illustrates the continuous changes of
performances vs. the corresponding growth sizes
of the training data sets for SB-CN, BTL-2,
CoTr, and CredBoost. According to our common
sense, noisy data have negative influence on
performance improvement. Compared to the other
three methods, CredBoost accepts less number of
training instances during learning while it achieves
more improvement. This verifies the ability
of CredBoost that can filter out the noisy data
recommended by the English sentiment classifier.

In Figure 1(a), the curves of BTL-2 and CoTr

suggest that directly transferring the knowledge
recommended from English imports many noisy
data into Chinese. It is also obvious that the
performance curve of CredBoost implies a stable
improvement trend while the other three decrease
after certain iterations because of the accumulated
negative influence from the noisy data. Figure
1(b) shows CredBoost accepts decreased training
instances after certain iterations because the
number of “high-quality” instances decrease when
learning proceeds. This finding suggests that
knowledge validation would rather abandon “less-
credible” knowledge with higher probability than
easily accept it. Knowledge validation in the
proposed model guarantees highly-credible learn-
ing when transferring knowledge from English to
Chinese. The results also show that CredBoost
has great potential to achieve better performance
approaching to supervised approaches if more
unlabeled Chinese data are available.

Another interesting finding is also observed.
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Figure 1: Performances vs. Growth Sizes for SB-CN, CoTr, BTL-2, and CredBoost in three domains.
The similar performance curves of CoTr is also reported in (Gui et al., 2014).

Although document-to-vector represents content
semantic well, it cannot determine the sentiment
polarity of text well, even when the document-
to-vectors that are used to train basic classifiers
are learned on the mixture of the translated and
original reviews. The superior performance of
CredBoost to dCredB suggests that the semantic
representation is effective to identify highly-
credible acquired knowledge and new knowledge
but it alone may not be sufficient enough to model
the sentiment information.

We also conduct some other experiments to
study the sensitivity of the new knowledge valida-
tion boundary ψ and the validation scale ζ+ in the
training data. The experimental results show that
the performances with different parameter settings
fluctuate around the best result reported in Tables
3 and 4 in a small range. Our model is basically
quite stable.

5 Conclusion

In this paper, we propose a semi-supervised learn-
ing model, called CredBoost, to address cross-
lingual (English vs Chinese) sentiment analysis
without direct labeled Chinese data nor direct
parallel data. We propose to introduce knowledge
validation during transfer learning to reduce the

noisy data caused by machine translation errors or
inevitable mistakes made by the source language
sentiment classifier. The experimental result
demonstrates the effectiveness of the proposed
model. In the future, we will explore more suitable
knowledge representations and knowledge valida-
tion in the CredBoost framework.
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Abstract

The sentiment classification performance
relies on high-quality sentiment resources.
However, these resources are imbalanced
in different languages. Cross-language
sentiment classification (CLSC) can lever-
age the rich resources in one language
(source language) for sentiment classifica-
tion in a resource-scarce language (target
language). Bilingual embeddings could
eliminate the semantic gap between two
languages for CLSC, but ignore the senti-
ment information of text. This paper pro-
poses an approach to learning bilingual
sentiment word embeddings (BSWE) for
English-Chinese CLSC. The proposed B-
SWE incorporate sentiment information of
text into bilingual embeddings. Further-
more, we can learn high-quality BSWE
by simply employing labeled corpora and
their translations, without relying on large-
scale parallel corpora. Experiments on
NLP&CC 2013 CLSC dataset show that
our approach outperforms the state-of-the-
art systems.

1 Introduction

Sentiment classification is a task of predicting sen-
timent polarity of text, which has attracted consid-
erable interest in the NLP field. To date, a num-
ber of corpus-based approaches (Pang et al., 2002;
Pang and Lee, 2004; Kennedy and Inkpen, 2006)
have been developed for sentiment classification.
The approaches heavily rely on quality and quan-
tity of the labeled corpora, which are considered
as the most valuable resources in sentiment classi-
fication task. However, such sentiment resources
are imbalanced in different languages. To leverage
resources in the source language to improve the
sentiment classification performance in the target

language, cross-language sentiment classification
(CLSC) approaches have been investigated.

The traditional CLSC approaches employ ma-
chine translation (MT) systems to translate corpo-
ra in the source language into the target language,
and train the sentiment classifiers in the target lan-
guage (Banea et al., 2008). Directly employing
the translated resources for sentiment classifica-
tion in the target language is simple and could
get acceptable results. However, the gap between
the source language and target language inevitably
impacts the performance of sentiment classifica-
tion. To improve the classification accuracy, multi-
view approaches have been proposed. In these ap-
proaches, the resources in the source language and
their translations in the target language are both
used to train sentiment classifiers in two indepen-
dent views (Wan, 2009; Gui et al., 2013; Zhou et
al., 2014a). The final results are determined by en-
semble classifiers in these two views to overcome
the weakness of monolingual classifiers. However,
learning language-specific classifiers in each view
fails to capture the common sentiment information
of two languages during training process.

With the revival of interest in deep learning
(Hinton and Salakhutdinov, 2006), shared deep
representations (or embeddings) (Bengio et al.,
2013) are employed for CLSC (Chandar A P et
al., 2013). Usually, paired sentences from par-
allel corpora are used to learn word embeddings
across languages (Chandar A P et al., 2013; Chan-
dar A P et al., 2014), eliminating the need of MT
systems. The learned bilingual embeddings could
easily project the training data and test data into a
common space, where training and testing are per-
formed. However, high-quality bilingual embed-
dings rely on the large-scale task-related parallel
corpora, which are not always readily available.
Meanwhile, though semantic similarities across
languages are captured during bilingual embed-
ding learning process, sentiment information of
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text is ignored. That is, bilingual embeddings
learned from unlabeled parallel corpora are not
effective enough for CLSC because of a lack of
explicit sentiment information. Tang and Wan
(2014) first proposed a bilingual sentiment embed-
ding model using the original training data and the
corresponding translations through a linear map-
ping rather than deep learning technique.

This paper proposes a denoising autoencoder
based approach to learning bilingual sentimen-
t word embeddings (BSWE) for CLSC, which
incorporates sentiment polarities of text into the
bilingual embeddings. The proposed approach
learns BSWE with the original labeled documents
and their translations instead of parallel corpo-
ra. The BSWE learning process consists of two
phases: the unsupervised phase of semantic learn-
ing and the supervised phase of sentiment learn-
ing. In the unsupervised phase, sentiment words
and their negation features are extracted from the
source training data and their translations to rep-
resent paired documents. These features are used
as inputs for a denoising autoencoder to learn the
bilingual embeddings. In the supervised phase,
sentiment polarity labels of documents are used to
guide BSWE learning for incorporating sentiment
information into the bilingual embeddings.

The learned BSWE are applied to project En-
glish training data and Chinese test data into a
common space. In this space, a linear support vec-
tor machine (SVM) is used to perform training and
testing. The experiments are carried on NLP&CC
2013 CLSC dataset, including book, DVD and
music categories. Experimental results show that
our approach achieves 80.68% average accuracy,
which outperforms the state-of-the-art systems on
this dataset. Although the BSWE are only evaluat-
ed on English-Chinese CLSC here, it can be pop-
ularized to many other languages.

The major contributions of this work can be
summarized as follows:

• We propose bilingual sentiment word em-
beddings (BSWE) for CLSC based on deep
learning technique. Experimental results
show that the proposed BSWE significantly
outperform the bilingual embeddings by in-
corporating sentiment information.

• Instead of large-scale parallel corpora, on-
ly the labeled English corpora and English-
to-Chinese translations are required for B-
SWE learning. It is proved that in spite of

the small-scale of training set, our approach
outperforms the state-of-the-art systems in
NLP&CC 2013 CLSC share task.

• We employ sentiment words and their nega-
tion features rather than all words in doc-
uments to learn sentiment-specific embed-
dings, which significantly reduces the dimen-
sion of input vectors as well as improves sen-
timent classification performance.

2 Related Work

In this section, we review the literature related to
this paper from two perspectives: cross-language
sentiment classification and embedding learning
for sentiment classification.

2.1 Cross-language Sentiment Classification
(CLSC)

The critical problem of CLSC is how to bridge the
gap between the source language and target lan-
guage. Machine translations or parallel corpora
are usually employed to solve this problem. We
present a brief review of CLSC from two aspects:
machine translation based approaches and parallel
corpora based approaches.

Machine translation based approaches use MT
systems to project training data into the target lan-
guage or test data into the source language. Wan
(2009) proposed a co-training approach for CLSC.
The approach first translated Chinese test data in-
to English, and English training data into Chinese.
Then, they performed training and testing in t-
wo independent views: English view and Chinese
view. Gui et al. (2013) combined self-training
approach with co-training approach by estimating
the confidence of each monolingual system. Li
et al. (2013) selected the samples in the source
language that were similar to those in the target
language to decrease the gap between two lan-
guages. Zhou et al. (2014a) proposed a combi-
nation CLSC model, which adopted denoising au-
toencoders (Vincent et al., 2008) to enhance the
robustness to translation errors of the input.

Most recently, a number of studies adopt deep
learning technique to learn bilingual representa-
tions with parallel corpora. Bilingual represen-
tations have been successfully applied in many
NLP tasks, such as machine translation (Zou
et al., 2013), sentiment classification (Chan-
dar A P et al., 2013; Zhou et al., 2014b), tex-
t classification (Chandar A P et al., 2014), etc.
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Chandar A P et al. (2013) learned bilingual
representations with aligned sentences through-
out two phases: the language-specific represen-
tation learning phase and the shared representa-
tion learning phase. In the language-specific rep-
resentation learning phase, they applied autoen-
coders to obtain a language-specific representa-
tion for each entity in two languages respective-
ly. In shared representation learning phase, pairs
of parallel language-specific representations were
passed to an autoencoder to learn bilingual repre-
sentations. To joint language-specific representa-
tions and bilingual representations, Chandar A P
et al. (2014) integrated the two learning phases in-
to a unified process to learn bilingual embeddings.
Zhou et al. (2014b) employed bilingual represen-
tations for English-Chinese CLSC. The work men-
tioned above employed aligned sentences in bilin-
gual embedding learning process. However, in the
sentiment classification process, only representa-
tions in the source language are used for training,
and representations in the target language are used
for testing, which ignores the interactions of se-
mantic information between the source language
and target language.

2.2 Embedding Learning for Sentiment
Classification

Bilingual embedding learning algorithms focus
on capturing syntactic and semantic similarities
across languages, but ignore sentiment informa-
tion. To date, many embedding learning algo-
rithms have been developed for sentiment classi-
fication problem by incorporating sentiment in-
formation into word embeddings. Maas et al.
(2011) presented a probabilistic model that com-
bined unsupervised and supervised techniques to
learn word vectors, capturing semantic informa-
tion as well as sentiment information. Wang et
al. (2014) introduced sentiment labels into Neural
Network Language Models (Bengio et al., 2003)
to enhance sentiment expression ability of word
vectors. Tang et al. (2014) theoretically and em-
pirically analyzed the effects of the syntactic con-
text and sentiment information in word vectors,
and showed that the syntactic context and senti-
ment information were equally important to senti-
ment classification.

Recent years have seen a surge of interest in
word embeddings with deep learning technique
(Bespalov et al., 2011; Glorot et al., 2011; Socher

et al., 2011; Socher et al., 2012), which have been
empirically shown to preserve linguistic regulari-
ties (Mikolov et al., 2013). Our work focuses on
learning bilingual sentiment word embeddings (B-
SWE) with deep learning technique. Unlike the
work of Chandar A P et al. (2014) that adopt-
ed parallel corpora to learn bilingual embeddings,
we only use training data and their translations to
learn BSWE. More importantly, sentiment infor-
mation is integrated into bilingual embeddings to
improve their performance in CLSC.

3 Bilingual Sentiment Word Embeddings
(BSWE) for Cross-language Sentiment
Classification

3.1 Denoising Autoencoder

It has been demonstrated that the denoising au-
toencoder could decrease the effects of translation
errors on the performance of CLSC (Zhou et al.,
2014a). This paper proposes a deep learning based
approach, which employs the denoising autoen-
coder to learn the bilingual embeddings for CLSC.

A denoising autoencoder is the modification of
an autoencoder. The autoencoder (Bengio et al.,
2007) includes an encoder fθ and a decoder gθ′ .
The encoder maps a d-dimensional input vector
x ∈ [0, 1]d to a hidden representation y ∈ [0, 1]d

′

through a deterministic mapping y = fθ(x) =
σ(Wx + b), parameterized by θ = {W,b}. W
is a weight matrix, b is a bias term, and σ(x) is the
activation function. The decoder maps y back to a
reconstructed vector x̂ = gθ′(y) = σ(WTy + c),
parameterized by θ′ = {WT , c}, where c is the
bias term for reconstruction.

Through the process of encoding and decod-
ing, the parameters θ and θ′ of the autoencoder
will be trained by gradient descent to minimize the
loss function. The sum of reconstruction cross-
entropies across the training set is usually used as
the loss function:

l(x) = −
d∑
i=1

[xi log x̂i+(1−xi) log(1−x̂i)] (1)

A denoising autoencoder enhances robustness
to noises by corrupting the input x to a partially
destroyed version x̃. The desired noise level of the
input x can be changed by adjusting the destruc-
tion fraction ν. For each input x, a fixed number
νd (d is the dimension of x) of components are
selected randomly, and their values are set to 0,
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while the others are left untouched. Like an au-
toencoder, the destroyed input x̃ is mapped to a
latent representation y = fθ(x̃) = σ(Wx̃ + b).
Then y is mapped back to a reconstructed vector
x̂ through x̂ = gθ′(y) = σ(WTy + c). The loss
function of a denoising autoencoder is the same as
that of an autoencoder. Minimizing the loss makes
x̂ close to the input x rather than x̃.

Our BSWE learning process can be divided in-
to two phases: the unsupervised phase of seman-
tic learning and the supervised phase of sentiment
learning. In the unsupervised phase, a denoising
autoencoder is employed to learn the bilingual em-
beddings. In the supervised phase, the sentiment
information is incorporated into the bilingual em-
beddings based on sentiment labels of documents
to obtain BSWE.

3.2 Unsupervised Phase of the Bilingual
Embedding Learning

In the unsupervised phase, the English training
documents and their Chinese translations are em-
ployed to learn the bilingual embeddings (Sen-
timent polarity labels of documents are not em-
ployed in this phase). Based on the English docu-
ments, 2,000 English sentiment words in MPQA
subjectivity lexicon1 are extracted by the Chi-
square method (Galavotti et al., 2000). Their cor-
responding Chinese translations are used as Chi-
nese sentiment words. Besides, some sentimen-
t words are often modified by negation words,
which lead to inversion of their polarities. There-
fore, negation features are introduced to each sen-
timent word to represent its negative form.

We take into account 14 frequently-used nega-
tion words in English such as not and none; 5
negation words in Chinese such asØ (no/not) and
vk (without). A sentiment word modified by
these negation words in the window [-2, 2] is con-
sidered as its negative form in this paper, while
sentiment word features remain the initial mean-
ing. Negation features use binary expressions. If a
sentiment word is not modified by negation words,
the value of its negation features is set to 0. Thus,
the sentiment words and their corresponding nega-
tion features in English and Chinese are adopted to
represent the document pairs (xE ,xC).

We expect that pairs of documents could be
forced to capture the common semantic informa-
tion of two languages. To achieve this, a denoising

1http://mpqa.cs.pitt.edu/lexicons/subj lexicon

autoencoder is used to perform the reconstructions
of paired documents in both English and Chinese.
Figure 1 shows the framework of bilingual embed-
ding learning.
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(a) reconstruction from xE (b) reconstruction from xC

Figure 1: The framework of bilingual embedding
learning.

For the corrupted versions x̃E (x̃C) of the initial
input vector xE (xC), we use the sigmoid function
as the activation function to extract latent repre-
sentations:

yE = fθ(x̃E) = σ(WEx̃E + b) (2)

yC = fθ(x̃C) = σ(WC x̃C + b) (3)

where WE and WC are the language-specific
word representation matrices, corresponding to
English and Chinese respectively. Notice that the
bias b is shared to ensure that the produced repre-
sentations in two languages are on the same scale.

For the latent representations in either language,
we would like two decoders to perform recon-
structions in English and Chinese respectively. As
shown in Figure 1(a), for the latent representation
yE in English, one decoder is used to map yE
back to a reconstruction x̂E in English, and the
other is used to map yE back to a reconstruction
x̂C in Chinese such that:

x̂E = gθ′(yE) = σ(WT
EyE + cE) (4)

x̂C = gθ′(yE) = σ(WT
CyE + cC) (5)

where cE and cC are the biases of the decoders in
English and Chinese, respectively. Similarly, the
same steps repeat for the latent representation yC
in Chinese, which are shown in Figure 1(b).

The encoder and decoder structures allow us
to learn a mapping within and across languages.
Specifically, for a given document pair (xE ,xC),
we can learn bilingual embeddings to recon-
struct xE from itself (loss l(xE)), reconstruc-
t xC from itself (loss l(xC)), construct xC from

433



xE (loss l(xE ,xC)), construct xE from xC
(loss l(xC ,xE)) and reconstruct the concatena-
tion of xE and xC ([xE , xC]) from itself (loss
l([xE ,xC ], [x̂E , x̂C ])). The sum of 5 losses is
used as the loss function of bilingual embeddings:

L =l(xE) + l(xC) + l(xE ,xC) + l(xC ,xE)
+ l([xE ,xC ], [x̂E , x̂C ])

(6)

3.3 Supervised Phase of Sentiment Learning
In the unsupervised phase, we have learned the
bilingual embeddings, which could capture the se-
mantic information within and across languages.
However, the sentiment polarities of text are ig-
nored in the unsupervised phase. Bilingual em-
beddings without sentiment information are not
effective enough for sentiment classification task.
This paper proposes an approach to learning B-
SWE for CLSC, which introduces a supervised
learning phase to incorporate sentiment informa-
tion into the bilingual embeddings. The process of
supervised phase is shown in Figure 2.

[ , ]E CW W

by



labelmax ( | ; )p s d




sentiment

( | ; )p s d 

],[ CE xx

Figure 2: The supervised learning process.

For paired documents [xE ,xC ], the sigmoid
function is adopted as the activation function
to extract latent bilingual representations yb =
σ([WE ,WC ][xE ,xC ]+b), where [WE ,WC ] is
the concatenation of WE and WC .

The latent bilingual representation yb is used
to obtain the positive polarity probability p(s =
1|d; ξ) of a document through a sigmoid function:

p(s = 1|d; ξ) = σ(ϕTyb + bl) (7)

where ϕ is the logistic regression weight vector
and bl is the bias of logistic regression. The senti-
ment label s is a Boolean value representing sen-
timent polarity of a document: s = 0 represents
negative polarity and s = 1 represents positive po-
larity. Parameter ξ∗ = {[WE ,WC ]∗,b∗, ϕ∗, b∗l }
is learned by maximizing the objective function

according to the sentiment polarity label si of doc-
ument di:

ξ∗ = arg max
ξ

∑
i=1

log p(si|di; ξ) (8)

Through the supervised learning phase,
[WE ,WC ] is optimized by maximizing senti-
ment polarity probability. Thus, rich sentiment
information is encoded into the bilingual embed-
dings.

The following experiments will prove that the
proposed BSWE outperform the traditional bilin-
gual embeddings significantly in CLSC.

3.4 Bilingual Document Representation
Method (BDR)

Once we have learned BSWE [WE ,WC ], whose
columns are representations for sentiment words,
we can use them to represent documents in two
languages.

Given an English training document dE
containing 2,000 sentiment word features
s1, s2, · · · , s2,000 and 2,000 corresponding nega-
tion features, we represent it as the TF-IDF
weighted sum of BSWE:

φdE
=

4,000∑
i=1

TF − IDF (si)WE.,si (9)

Similarly, for its Chinese translation dC containing
2,000 sentiment word features t1, t2, · · · , t2,000

and 2,000 corresponding negation features, we
represent it as:

φdC
=

4,000∑
j=1

TF − IDF (tj)WC.,tj (10)

We propose a bilingual document representa-
tion method (BDR) in this paper, which represents
each document di with the concatenation of its En-
glish and Chinese representations [φdE

, φdC
]. B-

DR is expected to enhance the ability of sentiment
expression for further improving the classification
performance. Such bilingual document represen-
tations are fed to a linear SVM to perform senti-
ment classification.

4 Experiment

4.1 Experimental Settings
Data Set. The proposed approach is evaluated on
NLP&CC 2013 CLSC dataset2 3. The dataset con-

2http://tcci.ccf.org.cn/conference/2013/dldoc/evsam03.zip
3http://tcci.ccf.org.cn/conference/2013/dldoc/evdata03.zip
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sists of product reviews on three categories: book,
DVD, and music. Each category contains 4,000
English labeled data as training data (the ratio of
the number of positive and negative samples is
1:1) and 4,000 Chinese unlabeled data as test data.

Tools. In our experiments, Google Translate4 is
adopted for both English-to-Chinese and Chinese-
to-English translation. ICTCLAS (Zhang et al.,
2003) is used as Chinese word segmentation tool.
A denoising autoencoder is developed based on
Theano system (Bergstra et al., 2010). BSWE
are trained for 50 and 30 epochs in unsuper-
vised phase and supervised phases respectively.
SVM light (Joachims, 1999) is used to train lin-
ear SVM sentiment classifiers

Evaluation Metric. The performance is evalu-
ated by the classification accuracy for each cate-
gory, and the average accuracy of three categories,
respectively. The category accuracy is defined as:

Accuracyc =
#system correctc
#system totalc

(11)

where c is one of the three categories, and
#system correctc and #system totalc stand
for the number of being correctly classified re-
views and the number of total reviews in the cate-
gory c, respectively.

The average accuracy is shown as:

Average =
1
3

∑
c

Accuracyc (12)

4.2 Evaluations on BSWE

In this section, we evaluate the quality of BSWE
for CLSC. The dimension of bilingual embeddings
d is set to 50, and destruction fraction ν is set to
0.2.

Effects of Bilingual Embedding Learning
Methods

We first compare our unsupervised bilingual em-
bedding learning method with the parallel cor-
pora based method. The parallel corpora based
method uses the paired documents in the parallel
corpus5 to learn bilingual embeddings, while our
method only uses the English training documents
and their Chinese translations (Sentiment polari-
ty labels of documents are not employed here).
The Boolean feature weight calculation method is

4http://translate.google.cn/
5http://www.datatang.com/data/45485

adopted to represent documents for bilingual em-
bedding learning and BDR is employed to rep-
resent training data and test data for sentimen-
t classification. To represent the paired docu-
ments in the parallel corpus, 27,597 English word-
s and 31,786 Chinese words are extracted for
bilingual embedding learning. Our method only
needs 2,000 English sentiment words, 2,000 Chi-
nese sentiment words, and their negation features,
which significantly reduces the dimension of input
vectors.

Our method
Parallel corpora based method

Av
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0.5

0.55

0.6

0.65
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0.75
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Figure 3: Our unsupervised bilingual embed-
ding learning method vs. Parallel corpora based
method.

The average accuracies on NLP&CC 2013 test
data of the two bilingual embedding learning
methods are shown in Figure 3. As can be seen
from Figure 3, when the corpus scales of the two
methods are the same (4,000 paired documents),
our method (75.09% average accuracy) surpasses
the parallel corpora method (54.82% average ac-
curacy) by about 20%. With the scale of the par-
allel corpora increasing, the performance of par-
allel corpora based method is steadily improved.
However, the performance is not as good as our
bilingual embedding learning method. Though the
document number of the parallel corpus is up to
70,000 , the average accuracy is only 70.05%. It is
proved that our method is more suitable for learn-
ing bilingual embeddings for cross-language senti-
ment classification than the parallel corpora based
method.

Effects of Feature Weight in Bilingual
Embeddings

In this part, we compare the Boolean and TF-
IDF feature weight calculation methods in bilin-
gual embedding learning process.

Table 1 shows the classification accuracy with
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Category book DVD music Average
Boolean 76.22% 74.30% 74.75% 75.09%
TF-IDF 76.65% 77.60% 74.50% 76.25%

Table 1: The classification accuracy with the
Boolean and TF-IDF methods.

the Boolean and TF-IDF methods. Generally, the
TF-IDF method performs better than the Boolean
method. The average accuracy of the TF-IDF
method is 1.16% higher than the Boolean method,
which illustrates that the TF-IDF method could re-
flect the latent contribution of sentiment words to
each document effectively. The TF-IDF weight
calculation method is exploited in the following
experiments. Notice that sentiment information
is not yet introduced in the bilingual embeddings
here.

Effects of Sentiment Information in BSWE

Incorporating sentiment information in the bilin-
gual embeddings, the performance of bilingual
embeddings (without sentiment information) and
BSWE (with sentiment information) is compared
in Figure 4.

Bilingual embeddings
BSWE

A
cc

ur
ar

y

0.74

0.75

0.76

0.77

0.78

0.79

0.8

book DVD music Average

Figure 4: Performance comparison of the bilingual
embeddings and BSWE.

As can be seen from Figure 4, by encoding sen-
timent information in the bilingual embeddings,
the performance in book, DVD and music cate-
gories significantly improves to 79.47%, 78.72%
and 76.58% respectively (2.82% increase in book,
1.12% in DVD, and 2.08% in music). The av-
erage accuracy reaches 78.26%, which is 2.01%
higher than that of the bilingual embeddings. The
experimental results indicate the effectiveness of
sentiment information in the bilingual embedding
learning. The BSWE learning approach is em-
ployed for CLSC in the following experiments.

Effects of Bilingual Document Representation
Method

In this experiment, our bilingual document rep-
resentation method (BDR) is compared with the
following monolingual document representation
methods.

En-En: This method represents training and
test documents in English only with WE . English
training documents and Chinese-to-English trans-
lations of test documents are both represented with
WE .

Cn-Cn: This method represents training and
test documents in Chinese only with WC .
English-to-Chinese translations of training docu-
ments and Chinese test documents are both repre-
sented with WC .

En-Cn: This method represents English train-
ing documents with WE , while represents Chi-
nese test documents with WC . Chandar A P et
al. (2014) employed this method in their work.

BDR: This method adopts our bilingual doc-
ument representation method, which represents
training and test documents with both WE and
WC .

En-En
Cn-Cn
En-Cn
BDR

Av
er
ag
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0.75

0.76

0.77

0.78

0.79

0.8

ν
0 0.2 0.4 0.6 0.8

Figure 5: Effects of bilingual document represen-
tation method (BDR).

Figure 5 shows the average accuracy curves of
different document representation methods with d-
ifferent destruction fraction ν. We vary ν from 0
to 0.9 with an interval of 0.1.

From Figure 5 we can see that En-En, Cn-Cn,
and En-Cn get similar results. BDR performs con-
stantly better than the other representation meth-
ods throughout the interval [0, 0.9]. The absolute
superiority of BDR benefits from the enhanced a-
bility of sentiment expression.

Meanwhile, when the input x is partially de-
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stroyed (ν varies from 0.1 to 0.9), the perfor-
mance of En-En, Cn-Cn and En-Cn remains sta-
ble, which illustrates the robustness of the denois-
ing autoencoder to corrupting noises. In addi-
tion, the average accuracies of BDR in the inter-
val ν ∈ [0.1, 0.9] are all higher than the average
accuracy under the condition ν = 0 (78.23%).
Therefore, adding noises properly to the training
data could improve the performance of BSWE for
CLSC.

4.3 Influences of Dimension d and
Destruction Fraction ν

Figure 6 shows the relationship between accura-
cies and dimension d of BSWE as well as that be-
tween accuracies and destruction fraction ν in au-
toencoders in different categories. Dimension of
embeddings d varies from 50 to 500, and destruc-
tion fraction ν varies from 0.1 to 0.9.

As shown in Figure 6, the average accuracies
generally move upward as dimension of BSWE in-
creasing. Generally, the average accuracies keep
higher than 80% with ν varying from 0.1 to 0.5
as well as dimension varying from 300 to 500.
When ν = 0.1 and d = 400, the average accu-
racy reaches the peak value 80.68% (category ac-
curacy of 81.05% in book, 81.60% in DVD, and
79.40% in music). The experimental results show
that in BSWE learning process, increasing the di-
mension of embeddings or properly adding noises
to the training data helps improve the performance
of CLSC. In this paper, we only evaluate BSWE
when dimension d varies from 50 to 500. Howev-
er, there is still space for further improvement if d
continues to increase.

4.4 Comparison with Related Work
Table 2 shows comparisons of the performance
between our approach and some state-of-the-art
systems on NLP&CC 2013 CLSC dataset. Our
approach achieves the best performance with an
80.68% average accuracy. Compared with the re-
cent related work, our approach is more effective
and suitable for eliminating the language gap.

Chen et al. (2014) translated Chinese test da-
ta into English and then gave different weight-
s to sentiment words according to the subject-
predicate component of sentiment words. They
got 77.09% accuracy and took the 2nd place in
NLP&CC 2013 CLSC share task. The machine
translation based approach was limited by the
translation errors.

System book DVD music Average
Chen et al.

(2014) 77.00% 78.33% 75.95% 77.09%

Gui et al.
(2013) 78.70% 79.65% 78.30% 78.89%

Gui et al.
(2014) 80.10% 81.60% 78.60% 80.10%

Zhou et al.
(2014a) 80.63% 80.95% 78.48% 80.02%

Our approach 81.05% 81.60% 79.40% 80.68%

Table 2: Performance comparisons on the
NLP&CC 2013 CLSC dataset.

Gui et al. (2013; 2014) and Zhou et al. (2014a)
adopted the multi-view approach to bridge the lan-
guage gap. Gui et al. (2013) proposed a mixed
CLSC model by combining co-training and trans-
fer learning strategies. They achieved the high-
est accuracy of 78.89% in NLP&CC CLSC share
task. Gui et al. (2014) further improved the accu-
racy to 80.10% by removing noise from the trans-
ferred samples to avoid negative transfers. Zhou
et al. (2014a) built denoising autoencoders in t-
wo independent views to enhance the robustness
to translation errors in the inputs and achieved
80.02% accuracy. The multi-view approach learn-
s language-specific classifiers in each view dur-
ing training process, which is difficult to capture
the common sentiment information of the two lan-
guages. Our approach integrates the bilingual em-
bedding learning into a unified process, and out-
performs Chen et al. (2014), Gui et al. (2013), Gui
et al. (2014) and Zhou et al. (2014a) by 3.59%,
1.79%, 0.58%, and 0.66% respectively. The su-
periority of our approach benefits from the unified
bilingual embedding learning process and the in-
tegration of semantic and sentiment information.

5 Conclusion and Future Work

This paper proposes an approach to learning B-
SWE by incorporating sentiment information in-
to the bilingual embeddings for CLSC. The pro-
posed approach learns BSWE with the labeled
documents and their translations rather than par-
allel corpora. In addition, BDR is proposed to en-
hance the sentiment expression ability which com-
bines English and Chinese representations. Exper-
iments on the NLP&CC 2013 CLSC dataset show
that our approach outperforms the previous state-
of-the-art systems as well as traditional bilingual
embedding systems. The proposed BSWE are on-
ly evaluated on English-Chinese CLSC in this pa-
per, but it can be popularized to other languages.
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Figure 6: The relationship between accuracies and dimension d as well as that between accuracies and
destruction fraction ν.

Both semantic and sentiment information play
an important role in sentiment classification. In
the following work, we will further investigate the
relationship between semantic and sentiment in-
formation for CLSC, and balance their functions
to optimize their combination for CLSC.
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Abstract

We present a new factoid-annotated
dataset for evaluating content models
for scientific survey article generation
containing 3,425 sentences from 7 topics
in natural language processing. We also
introduce a novel HITS-based content
model for automated survey article gen-
eration called HITSUM that exploits the
lexical network structure between sen-
tences from citing and cited papers. Using
the factoid-annotated data, we conduct a
pyramid evaluation and compare HITSUM

with two previous state-of-the-art content
models: C-Lexrank, a network based con-
tent model, and TOPICSUM, a Bayesian
content model. Our experiments show that
our new content model captures useful
survey-worthy information and outper-
forms C-Lexrank by 4% and TOPICSUM

by 7% in pyramid evaluation.

1 Introduction

Survey article generation is the task of automat-
ically building informative surveys for scientific
topics. Given the rapid growth of publications in
scientific fields, the development of such systems
is crucial as human-written surveys exist for a lim-
ited number of topics and get outdated quickly.
In this paper, we investigate content models for
extracting survey-worthy information from scien-
tific papers. Such models are an essential com-
ponent of any system for automatic survey arti-
cle generation. Earlier work in the area of survey
article generation has investigated content mod-
els based on lexical networks (Mohammad et al.,
2009; Qazvinian and Radev, 2008). These mod-
els take as input citing sentences that describe
important papers on the topic and assign them a
salience score based on centrality in a lexical net-
work formed by the input citing sentences. In this

Factoid Weight
Question Answering
answer extraction 6
question classification 6
definition of question answering 5
TREC QA track 5
information retrieval 5
Dependency Parsing
non-projective dependency structures /
trees 6

projectivity / projective dependency trees 6
deterministic parsing approaches: Nivre’s
algorithm 5

terminology: head - dependent 4
grammar driven approaches for
dependency parsing 4

Table 1: Sample factoids from the topics of ques-
tion answering and dependency parsing along
with their factoid weights.

paper, we propose a new content model based on
network structure previously unexplored for this
task that exploits the lexical relationship between
citing sentences and the sentences from the origi-
nal papers that they cite. Our new formulation of
the lexical network structure fits nicely with the
hubs and authorities model for identifying impor-
tant nodes in a network (Kleinberg, 1999), leading
to a new content model called HITSUM. In addi-
tion to this new content model, we also describe
how Bayesian content models previously explored
in the news domain can be adapted for the content
modeling task for survey generation.

For the task of evaluating various content mod-
els discussed in this paper, we have annotated a
total of 3,425 sentences across 7 topics in the field
of natural language processing with factoids from
each of the topics. The factoids we use were ex-
tracted from existing survey articles and tutorials
on each topic (Jha et al., 2013), and thus repre-
sent information that must be captured by a survey
article on the corresponding topic. Each of the fac-
toids is assigned a weight based on its frequency in
the surveys/tutorials, which allows us to do pyra-
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Topic # Sentences
dependency parsing 487
named entity recognition 383
question answering 452
semantic role labeling 466
sentiment analysis 613
summarization 507
word sense disambiguation 425

Table 2: List of seven NLP topics used in our ex-
periments along with input size.

mid evaluation of our content models. Some sam-
ple factoids are shown in Table 1. Evaluation using
factoids extracted from existing survey articles can
help us understand the limits of automated survey
article generation and how well these systems can
be expected to perform. For example, if certain
kinds of factoids are missing consistently from our
input sentences, improvements in content models
are unlikely to get us closer to the goal of generat-
ing survey articles that match those generated by
humans, and effort must be directed to extracting
text from other sources that will contain the miss-
ing information. On the other hand, if most of the
factoids exist in the input sentences but important
factoids are not found by the content models, we
can think of strategies for improving these models
by doing error analysis.

The main contributions of this paper are:

• HITSUM, a new HITS-based content model
for automatic survey generation for scientific
topics.

• A new dataset of 3,425 factoid-annotated
sentences for scientific articles in 7 topics.

• Experimental results for pyramid evalua-
tion comparing three existing content models
(Lexrank, C-Lexrank, TOPICSUM) with HIT-
SUM.

The rest of this paper is organized as follows.
Section 2 describes the dataset used in our exper-
iment and the factoid annotation process. Sec-
tion 3 describes each of the content models used
in our experiments including HITSUM. Section 4
describes our experiments and Section 5 summa-
rizes the results. We summarize the related work
in Section 6 and conclude in Section 7.

2 Data

Prior research in automatic survey generation has
explored using text from different parts of scien-
tific papers. Some of the recent work has treated
survey generation as a direct extension of sin-
gle paper summarization (Qazvinian and Radev,
2008) and used citing sentences to a set of relevant
papers as the input for the summarizer (Moham-
mad et al., 2009; Qazvinian et al., 2013). How-
ever, in our prior work, we have observed that it’s
difficult to generate coherent and readable sum-
maries using just citing sentences and have pro-
posed the use of sentences from introductory texts
of papers that cite a number of important papers
on a topic (Jha et al., 2015). The use of full text
allows for the use of discourse structure of these
documents in framing coherent and readable sur-
veys. Since the content models we explore are
meant to be part of a larger system that should be
able to generate coherent and readable survey ar-
ticles, we use the introduction sentences for our
experiments as well.

The corpus we used for extracting our experi-
mental data was the ACL Anthology Network, a
comprehensive bibliographic dataset that contains
full text and citations for papers in most of the
important venues in natural language processing
(Radev et al., 2013). An oracle method is used for
selecting the initial set of papers for each topic.
For each topic, the bibliographies of at least three
human-written surveys were extracted, and any
papers that appeared in more than one survey were
added to the target document set for the topic.

The text for summarization is extracted from in-
troductory sections of papers that cite papers in the
target document set. The intuition behind this is
that the introductory sections of papers that cite
these target document summarize the research in
papers from the target document set as well as the
relationships between these papers. Thus, these
introductions can be thought of as mini-surveys
for specific aspects of the topic; combining text
from these introductory sections should allow us
to generate good comprehensive survey articles
for the topic1. For our experiments, we sort the cit-
ing papers based on the number of papers they cite

1Other sections of papers might have such information,
e.g. related work. Initial data analysis showed, however, that
not all papers in our corpus had related work sections. Thus
for consistency, we decided to use introduction sections. The
perfect system for this task would be able to extract ”related
work style” text segments from an entire paper.

442



Input sentence Factoids
According to [1] , the corpus based supervised machine learning methods are
the most successful approaches to WSD where contextual features have been
used mainly to distinguish ambiguous words in these methods.

supervised wsd, corpus based wsd

Compared with supervised methods, unsupervised methods do not require
tagged corpus, but the precision is usually lower than that of the supervised
methods.

supervised wsd, unsupervised wsd

Word sense disambiguation (WSD) has been a hot topic in natural language
processing, which is to determine the sense of an ambiguous word in a specific
context.

definition of word sense disambiguation

Improvement in the accuracy of identifying the correct word sense will result in
better machine translation systems, information retrieval systems, etc.

wsd for machine translation, wsd for in-
formation retrieval

The SENSEVAL evaluation framework ( Kilgarriff 1998 ) was a DARPA-style
competition designed to bring some conformity to the field of WSD, although
it has yet to achieve that aim completely.

senseval

Table 3: Sample input sentences from the topic of word sense disambiguation annotated with factoids.

in the target document set, pick the top 20 papers,
and extract sentences from their introductions to
form the input text for the summarizer. The seven
topics used in our experiments and input size for
each topic are shown in Table 2.

Once the input text for each topic has been ex-
tracted, we annotate the sentences in the input
text with factoids for that topic. Some annotated
sentences in the topic of word sense disambigua-
tion are shown in Table 3. Given this new an-
notated data, we can compare how the factoids
are distributed across different citing sentences (as
annotated by Jha et al. (2013)) and introduction
sentences that we have annotated. For this, we
divide the factoids into five categories: defini-
tions, venue, resources, methodology, and appli-
cations. The fractional distribution of factoids in
these categories is shown in Table 4. We can see
that the distribution of factoids relating to venues,
methodology and applications is similar for the
two datasets. However, factoids related to defini-
tional sentences are almost completely missing in
the citing sentences data. This lack of background
information in citing sentences is one of the moti-
vations for using introduction sentences for survey
article generation as opposed to previous work.

The complete set of factoids as well
as annotated sentences for all the top-
ics is available for download at http:
//clair.si.umich.edu/corpora/
Surveyor_CM_Data.tar.gz.

3 Content Models

We now describe each of the content models used
in our experiments.

Factoid category % Citing % Intro
definitions 0 4
venue 6 6
resources 18 2
methodology 70 83
applications 6 5

Table 4: Fractional distribution of factoids across
various categories in citing sentences vs introduc-
tion sentences.

3.1 Lexrank

Lexrank is a network-based content selection al-
gorithm that serves as a baseline for our experi-
ments. Given an input set of sentences, it first cre-
ates a network using these sentences where each
node represents a sentence and each edge repre-
sents the tf-idf cosine similarity between the sen-
tences. Two methods for creating the network are
possible. First, we can remove all edges that are
lower than a certain threshold of similarity (gener-
ally set to 0.1). The Lexrank value for a node p(u)
in this case is calculated as:

1− d
N

+ d
∑

v∈adj[u]

p(v)
deg(v)

Where N is the total number of sentences, d is
the damping factor that controls the probability of
a random jump (usually set to 0.85), deg(v) is the
degree of the node v, and adj[u] is the set of nodes
connected to the node u. A different way of creat-
ing the network is to treat the sentence similarities
as edge weights and use the adjacency matrix as
a transition matrix after normalizing the rows; the
formula then becomes:
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A dictionary such as the LDOCE has broad coverage of word senses, useful for WSD .
This paper describes a program that disambiguates English word senses in unrestricted text using
statistical models of the major Roget’s Thesaurus categories.
Our technique offers benefits both for online semantic processing and for the challenging task of
mapping word senses across multiple MRDs in creating a merged lexical database.
The words in the sentences may be any of the 28,000 headwords in Longman’s Dictionary of
Contemporary English (LDOCE) and are disambiguated relative to the senses given in LDOCE.
This paper describes a heuristic approach to automatically identifying which senses of a machine-
readable dictionary (MRD) headword are semantically related versus those which correspond to
fundamentally different senses of the word.

Figure 1: A sentence from Pciting with a high hub score (bolded) and some of sentences from Pcited
that it links to (italicised). The sentence from Pciting obtain a high hub score by being connected to the
sentences with high authority scores.

1− d
N

+ d
∑

v∈adj[u]

cos(u, v)
TotalCosv

p(v)

Where cos(u, v) gives the tf-idf cosine similar-
ity between sentence u and v and TotalCosv =∑
z∈adj[v] cos(z, v). In our experiments, we em-

ploy this second formulation. The above equation
can be solved efficiently using the power method
(Newman, 2010) to obtain p(u) for each node,
which is then used as the score for ordering the
sentences. The final Lexrank values p(u) for a
node represent the stationary distribution of the
Markov chain represented by the transition matrix.
Lexrank has been shown to perform well in sum-
marization experiments (Erkan and Radev, 2004).

3.2 C-Lexrank
C-Lexrank is a clustering-based summarization
system that was proposed by Qazvinian and Radev
(2008) to summarize different perspectives in cit-
ing sentences that reference a paper or a topic.
To create summaries, C-LexRank constructs a
fully connected network in which vertices are sen-
tences, and edges are cosine similarities calculated
using the tf-idf vectors of citation sentences. It
then employs a hierarchical agglomeration clus-
tering algorithm proposed by Clauset et al. (2004)
to find communities of sentences that discuss the
same scientific contributions. Once the graph is
clustered and communities are formed, the method
extracts sentences from different clusters to build
a summary. It iterates through the clusters from
largest to smallest, choosing the most salient sen-
tence of each cluster, until the summary length
limit is reached. The salience of a sentence in its

cluster is defined as its Lexrank value in the lexical
network formed by sentences in the cluster.

3.3 HITSUM

The input set of sentences in our data come from
introductory sections of papers that cite important
papers on a topic. We’ll refer to the set of cit-
ing papers that provide the input text for the sum-
marizer as Pciting and the set of important papers
that represent the research we are trying to sum-
marize as Pcited. Both Lexrank and C-Lexrank
work by finding central sentences in a network
formed by the input sentences and thus, only use
the lexical information present in Pciting, while ig-
noring additional lexical information from the pa-
pers in Pcited. We now present a formulation that
uses the network structure that exists between the
sentences in the two sets of papers to incorporate
additional lexical information into the summariza-
tion system. This system is based on the hubs and
authorities or the HITS model (Kleinberg, 1999)
and hence is called HITSUM.

HITSUM, in addition to the sentences from the
introductory sections of papers in Pciting, also
uses sentences from the abstracts of Pcited. It starts
by computing the tf-idf cosine similarity between
the sentences of each paper pi ∈ Pciting with the
sentences in the abstracts of each paper pj ∈ Pcited
that is directly cited by pi. A directed edge is cre-
ated between every sentence si in pi and sj in pj
if sim(si, sj) > smin, where smin is a similarity
threshold (set to 0.1 for our experiments). Once
this process has been completed for all papers in
Pciting, we end up with a bipartite graph between
sentences from Pciting and Pcited.

In this bipartite graph, sentences in Pcited that
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φB φC/QA φD/J07−1005 φC/NER φD/I08−1071

the 0.066 question 0.044 metathesaurus 0.00032 ne 0.028 wikipedia 0.0087
of 0.040 questions 0.038 umls 0.00032 entity 0.022 pages 0.0053
and 0.034 answer 0.028 biomedical 0.00024 named 0.022 million 0.0018
a 0.029 answering 0.022 relevance 0.00024 entities 0.017 extracting 0.0018
in 0.027 qa 0.021 citation 0.00024 ner 0.014 articles 0.0018
to 0.027 answers 0.017 wykoff 0.00024 names 0.009 contributors 0.0018
is 0.017 2001 0.016 bringing 0.00016 location 0.008 version 0.0009
for 0.014 system 0.011 appropriately 0.00016 tagging 0.007 dakka 0.0009
that 0.012 trec 0.008 organized 0.00016 recognition 0.007 service 0.0009
we 0.011 factoid 0.008 foundation 0.00016 classes 0.007 academic 0.0009

Figure 2: Top words from different word distributions learned by TOPICSUM on our input document set
of 15 topics. φB is the background word distribution that captures stop words. φC/QA and φC/NER are
the word distributions for the topics of question answering and named entity recognition respectively.
φD/J07−1005 is the document-specific word distribution for a single paper in question answering that
focuses on clinical question answering. φD/I08−1071 is the document-specific word distribution for a
single paper in named entity recognition that focuses on named entity recognition in Wikipedia articles.

have a lot of incoming edges represent sentences
that presented important contributions in the field.
Similarly, sentences in Pciting that have a lot of
outgoing edges represent sentences that summa-
rize a number of important contributions in the
field. This suggests using the HITS algorithm,
which, given a network, assigns hubs and author-
ities scores to each node in the network in a mu-
tually reinforcing way. Thus, nodes with high au-
thority scores are those that are pointed to by a
number of good hubs, and nodes with high hub
scores are those that point to a number of good
authorities. This can be formalized with the fol-
lowing equation for the hub score of a node:

h(v) =
∑

u∈successors(v)
a(u)

Where h(v) is the hub score for node v,
successors(v) is the set of all nodes that v has an
edge to, and a(u) is the authority score for node
u. Similarly, the authority score for each node is
computed as:

a(v) =
∑

u∈predecessors(v)
h(u)

Where predecessors(v) is the set of all nodes
that have an edge to v. The hub and authority score
for each node can be computed using the power
method that starts with an initial value and itera-
tively updates the scores for each node based on
the above equations until the hub and authority
scores for each node converge to within a toler-
ance value (set to 1E-08 for our experiments).

In our bipartite lexical network, we expect sen-
tences in Pcited receiving high authority scores to
be the ones reporting important contributions and
sentences in Pciting that receive high hub scores
to be sentences summarizing important contribu-
tions. Figure 1 shows an example of a sentence
with a high hub score from the topic of word sense
disambiguation, along with some of the sentences
that it points to. HITSUM computes the hub and
authority score for each sentence in the lexical net-
work and then uses the hub scores for sentences in
Pciting as their relevance score. Sentences from
Pcited are part of the lexical network, but are not
used in the output summary.

3.4 TOPICSUM

TOPICSUM is a probabilistic content model pre-
sented in Haghighi and Vanderwende (2009)
and is very similar to an earlier model called
BayesSum proposed by Daumé and Marcu (2006).
It is a hierarchical, LDA (Latent Dirichlet Alloca-
tion) style model that is based on the following
generative story:2 words in any sentence in the
corpus can come from one of three word distri-
butions: a background word distribution φB that
flexibly models stop words, a content word dis-
tribution φC for each document set that models
content relevant to the entire document set, and
a document-specific word distribution φD. The
word distributions are learned using Gibbs sam-
pling. Given n document sets each with k doc-

2To avoid confusion in use of the term “topic,” in this pa-
per we refer to topics in the LDA sense as “word distribu-
tions.” “Topics” in this paper refer to the natural language
processing topics such as question answering, word sense
disambiguation, etc.
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Topic Lexrank C-Lexrank TOPICSUM HITSUM
dependency parsing 0.47 0.76 0.62 1.00∗

named entity recognition 0.80 0.89 0.90∗ 0.80
question answering 0.65 0.67 0.65 0.76∗

sentiment analysis 0.64 0.62 0.75∗ 0.63
semantic role labeling 0.75∗ 0.67 0.65 0.69
summarization 0.52 0.75∗ 0.57 0.68
word sense disambiguation 0.78 0.66 0.67 0.79∗

Average 0.66 0.72 0.69 0.76∗

Table 5: Pyramid scores obtained by different content models for each topic along with average scores
for each model across all topics. For each topic as well as the average, the best performing method has
been highlighted with a ∗.

uments, we get n content word distributions and
n ∗ k document-specific distributions leading to a
total of 1 + n+ n ∗ k word distributions.

To illustrate the kind of distributions TOPIC-
SUM learns in our dataset, Figure 2 shows the
top words along with their probabilities from the
background word distribution, two content distri-
butions and two document-specific word distribu-
tions. We see that the model effectively captures
general content words for each topic. φC/QA is the
word distribution for the topic of question answer-
ing, while φD/J07−1005 is the document-specific
word distribution for a specific paper in the docu-
ment set for question answering3 that focuses on
clinical question answering. The word distribu-
tion φD/J07−1005 contains words that are relevant
to the specific subtopic in the paper, while φC/QA
contains content words relevant to the general
topic of question answering. Similar results can
be seen in the word distributions for named entity
recognition φC/NER and the document-specific
word distribution for a specific paper in the topic
φD/I08−1071

4 that focuses on comparable entity
mining.

These topics, learned using Gibbs sampling, can
be used to select sentences for a summary in the
following way. To summarize a document set, we
greedily select sentences that minimize the KL-
divergence of our summary to the document-set-
specific topic. Thus, the score for each sentence s
isKL(φC ||Ps) where Ps is the sentence word dis-
tribution with add-one smoothing applied to both
distributions. Using this objective, sentences that

3Dina Demner-Fushman and Jimmy Lin. 2007. Answer-
ing Clinical Questions with Knowledge-Based and Statistical
Techniques. Computational Linguistics.

4Wisam Dakka and Silviu Cucerzan. 2008. Augmenting
wikipedia with named entity tags. In Proceedings of IJCNLP.

contain words from the content word distribution
with high probability are more likely to be selected
in the generated summary.

We implemented TOPICSUM in Python
using Numpy and then optimized it using
Scipy Weave. This code is available for use
at https://github.com/rahuljha/
content-models. The repository also
contains Python code for HITSUM.

4 Experiments

For evaluating our content models, we gener-
ated 2,000-character-long summaries using each
of the systems (Lexrank, C-Lexrank, HITSUM,
and TOPICSUM) for each of the topics. The sum-
maries are generated by ranking the input sen-
tences using each content model and picking the
top sentences till the budget of 2,000 characters is
reached. Each of these summaries is then given
a pyramid score (Nenkova and Passonneau, 2004)
computed using the factoids assigned to each sen-
tence.

For the pyramid evaluation, the factoids are or-
ganized in a pyramid of order n. The top tier in
this pyramid contains the highest weighted fac-
toids, the next tier contains the second highest
weighted factoids, and so on. The score assigned
to a summary is the ratio of the sum of the weights
of the factoids it contains to the sum of weights
of an optimal summary with the same number of
factoids. Pyramid evaluation allows us to capture
how each content model performs in terms of se-
lecting sentences with the most highly weighted
factoids. Since the factoids have been extracted
from human-written surveys and tutorials on each
of the topics, the pyramid score gives us an idea of
the survey-worthiness of the sentences selected by
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Question classification is a crucial component of modern question answering system.
A what-type question is defined as the one whose question word is ‘what’, ‘which’, ‘name’ or ‘list’.
This metaclassifier beats all published numbers on standard question classification benchmarks
[4.4].
Due to its challenge, this paper focuses on what-type question classification.
In this paper, we focus on fine-category classification.
The promise of a machine learning approach is that the QA system builder can now focus on de-
signing features and providing labeled data, rather than coding and maintaining complex heuristic
rule bases.

Figure 3: Part of the summary generated by HITSUM for the topic of question answering.

each content model.

5 Results and Discussion

The results of pyramid evaluation are summarized
in Table 5. It shows the pyramid score obtained by
each system on each of the topics as well as the av-
erage score. The highest performing system on av-
erage is HITSUM with an average performance of
76%. HITSUM does especially well for the topics
of dependency parsing, question answering, and
word sense disambiguation. The second best per-
forming system is C-Lexrank, which is not sur-
prising because it was developed specifically for
the task of scientific paper summarization. How-
ever, HITSUM outperforms C-Lexrank on several
topics and by 4% on average.

Figure 3 shows part of the summary generated
by HITSUM for the topic of question answering.
The summary contains mostly informative sen-
tences about different aspects of question answer-
ing. One obvious drawback of this summary is
that it’s not very coherent and readable. How-
ever, previous work has shown how network based
content models can be combined with discourse
models to generate informative yet readable sum-
maries (Jha et al., 2015). We looked at some of the
network statistics of the lexical networks used by
HITSUM. One of the things we noticed is that the
lexical networks for topics where HITSUM per-
forms well seem to have higher degree assorta-
tivity compared to the topics for which it doesn’t
perform well. High degree assortativity in lexical
networks means sentences with high degree tend
to be linked to other sentences with high degree.
This suggests that HITS performs well for topics
where a set of important factoids are mentioned in
many citing and source sentences. A larger evalua-
tion dataset is needed for a more thorough analysis
of how the network properties of these lexical net-

works correlate with the performance of various
content models.

TOPICSUM does well on the topics of named
entity recognition and sentiment analysis, but does
not do well on average. This can be attributed to
the fact that it was developed as a content model
for the domain of news summarization and does
not translate well to our domain. All systems out-
perform Lexrank, which achieves the lowest aver-
age score. This result is also intuitive, because ev-
ery other system in our evaluation uses additional
information not used by Lexrank: C-Lexrank ex-
ploits the community structure in the input set of
sentences, HITSUM exploits the lexical informa-
tion from cited sentences, and TOPICSUM exploits
information about global word distribution across
all topics.

The different systems we tried in our evaluation
depend on using different lexical information and
seem to perform well for different topics. This
suggests that further gains can be made by com-
bining these systems. For example, C-Lexrank
and HITSUM can be combined by utilizing both
the network formed by citing sentences and the
network between the citing sentences and the cited
sentences into a larger lexical network. TOPIC-
SUM scores can be combined with these network-
based system by using the TOPICSUM scores as a
prior for each node, and then running either Pager-
ank or HITS on top of it. We leave exploration of
such hybrid systems to future work.

6 Related Work

The goal of content models in the context of sum-
marization is to extract a representation from in-
put text that can help in identifying important sen-
tences that should be in the output summary. Our
work is related to two main classes of content
models: network-based methods and probabilis-
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tic methods. We summarize related work for each
of these classes of content models, followed by a
short summary of the related work in the domain
of scientific summarization.

Network-based content models: Network-
based content models (Erkan and Radev, 2004;
Mihalcea and Tarau, 2004) work by converting
the input sentences into a network. Each sentence
is represented by a node in the network, and
the edges between sentences are given weight
based on the similarities of sentences. They then
run Pagerank on this network, and sentences are
selected based on their Pagerank score in the
network. For computing Pagerank, the network
can either be pruned by removing edges that
have weights less than a certain threshold, or
a weighted version of Pagerank can be run on
the network. The method can also be modified
for query-focused summarization (Otterbacher
et al., 2009). C-Lexrank (Qazvinian and Radev,
2008) modifies Lexrank by first running a clus-
tering algorithm on the network to partition the
network into different communities and then
selecting sentences from each community by
running Lexrank on the sub-network within each
community. C-Lexrank was also used in the task
of automated survey generation with encouraging
results (Mohammad et al., 2009).

Probabilistic content models: One of the
first probabilistic content models seems to be
BAYESSUM (Daumé and Marcu, 2006), designed
for query-focused summarization. BAYESSUM

models a set of document collections using a hi-
erarchical LDA style model. Each word in a sen-
tence can be generated using one of three language
models: 1) a general English language model that
captures English filler or background knowledge,
2) a document-specific language model, and 3) a
query language model. These language models are
inferred using expectation propagation, and then
sentences are ranked based on their likelihood of
being generated from the query language model.
A similar model for general multidocument sum-
marization called TOPICSUM was proposed by
Haghighi and Vanderwende (2009), where the
query language model is replaced by a document-
collection-specific language model; thus sentences
are selected based on how likely they are to con-
tain information that summarizes the entire doc-
ument collection instead of information pertain-

ing to individual documents or background knowl-
edge.

Barzilay and Lee (2004) present a Hidden
Markov Model (HMM) based content model
where the hidden states of the HMM represent
the topics in the text. The transition probabili-
ties are learned through Viterbi decoding. They
show that the HMM model can be used for both re-
ordering of sentences for coherence and discrimi-
native scoring of sentences for extractive summa-
rization. Fung and Ngai (2006) present a simi-
lar HMM-based model for multi-document sum-
marization. Jiang and Zhai (2005) proposed an
HMM-based model for the problem of extract-
ing coherent passages relevant to a query from
a relevant document. They learn an HMM with
two background states (B1 and B2) and a query-
relevant state (R), each associated with a language
model. The HMM starts in background state B1,
switches to relevant state R and then switches to
the next background state B2. The sentences that
the HMM emits while in R constitute the query-
relevant passage from the document.

Scientific summarization: Early work in scien-
tific summarization used abstracts of scientific ar-
ticles to produce summaries of specific scientific
papers (Kupiec et al., 1995). However, later work
(Elkiss et al., 2008) showed that citation sentences
are as important in understanding the main contri-
butions of a paper.

Nanba and Okumura (1999) explored using ref-
erence information to build a system for support-
ing writing survey articles. Their system extracts
citing sentences that describe a referred paper and
identify the type of reference relationships. The
type of references can be one of the three: 1) type
B that base on other researcher’s theory, 2) type
C that compare with related works, or 3) type O
representing relationships other than B or C. They
posit that type C sentences are the most important
for survey generation and can help show the simi-
larities and differences among cited papers.

Teufel and Moens (2002) propose a method for
summarizing scientific articles based on rhetorical
status of sentences in scientific articles. They an-
notate sentences in a corpus of 80 scientific arti-
cles with rhetorical status, where the rhetorical sta-
tus can be one of aim (specific research goal), tex-
tual (section structure), own (neutral description of
own work), background (generally accepted back-
ground), contrast (comparison with other work),
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basis (agreement with or continuation of other
work), and other (neutral description of other’s
work). They describe classifiers for tagging the
rhetorical status of sentences automatically and
present a method for using this to assign relevance
score to sentences.

In other work, Kan et al. (2002) use a corpus of
2000 annotated bibliographies for scientific papers
as a first step towards a supervised summariza-
tion system. They found that summaries in their
corpus were mostly single-document abstractive
summaries that were both indicative and informa-
tive and were organized around a “theme,” making
them ideal for query-based summarization. Mei
and Zhai (2008) presented an impact-based sum-
marization method for single-paper summariza-
tion that assigns relevance scores to sentences in
a paper based on their similarity to the set of cit-
ing sentences that reference the paper.

More recently, Hoang and Kan (2010) present
a method for automated related work generation.
Their system takes as input a set of keywords ar-
ranged in a hierarchical fashion that describes a
target paper’s topic. They hypothesize that sen-
tences in a related work provide either background
information or specific contributions. They use
two different models to extract these two kinds
of sentences using the input tree and combines
them to create the final output summary. Zhang
et al. (2013) explore methods for biomedical sum-
marization by identifying cliques in a network
of semantic predications extracted from citations.
These cliques are then clustered and labeled to
identify different points of view represented in the
summary.

7 Conclusion and Future Work

We have presented a new factoid-annotated dataset
for evaluating content models for scientific survey
article generation by annotating sentences from
seven topics in natural language processing. We
also introduce a new HITS-based content model
called HITSUM for survey article generation that
exploits the lexical information from cited papers
along with citing papers to rank input sentences
for survey-worthiness. We conduct pyramid
evaluation using our factoid dataset to compare
HITSUM with existing network-based methods
(Lexrank, C-Lexrank) as well as methods based
on Bayesian content modeling (TOPICSUM). On
average, HITSUM outperforms C-Lexrank by 4%

and TOPICSUM by 7%. Since the different con-
tent models use different kinds of lexical informa-
tion, further gains might be obtained by combining
some of these models into a joint model. We plan
to explore this in future work.
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Abstract

We present a novel syntax-based natural
language generation system that is train-
able from unaligned pairs of input mean-
ing representations and output sentences.
It is divided into sentence planning, which
incrementally builds deep-syntactic de-
pendency trees, and surface realization.
Sentence planner is based on A* search
with a perceptron ranker that uses novel
differing subtree updates and a simple fu-
ture promise estimation; surface realiza-
tion uses a rule-based pipeline from the
Treex NLP toolkit.

Our first results show that training from
unaligned data is feasible, the outputs of
our generator are mostly fluent and rele-
vant.

1 Introduction

We present a novel approach to natural lan-
guage generation (NLG) that does not require fine-
grained alignment in training data and uses deep
dependency syntax for sentence plans. We include
our first results on the BAGEL restaurant recom-
mendation data set of Mairesse et al. (2010).

In our setting, the task of a natural language
generator is that of converting an abstract meaning
representation (MR) into a natural language utter-
ance. This corresponds to the sentence planning
and surface realization NLG stages as described
by Reiter and Dale (2000). It also reflects the in-
tended usage in a spoken dialogue system (SDS),
where the NLG component is supposed to trans-
late a system output action into a sentence. While
the content planning NLG stage has been used in
SDS (e.g., Rieser and Lemon (2010)), we believe
that deciding upon the contents of the system’s ut-
terance is generally a task for the dialogue man-
ager. We focus mainly on the sentence planning

part in this work, and reuse an existing rule-based
surface realizer to test the capabilities of the gen-
erator in an end-to-end setting.

Current NLG systems usually require a sepa-
rate training data alignment step (Mairesse et al.,
2010; Konstas and Lapata, 2013). Many of them
use a CFG or operate in a phrase-based fashion
(Angeli et al., 2010; Mairesse et al., 2010), which
limits their ability to capture long-range syntactic
dependencies. Our generator includes alignment
learning into sentence planner training and uses
deep-syntactic trees with a rule-based surface re-
alization step, which ensures grammatical correct-
ness of the outputs. Unlike previous approaches
to trainable sentence planning (e.g., Walker et al.
(2001); Stent et al. (2004)), our generator does not
require a handcrafted base sentence planner.

This paper is structured as follows: in Section 2,
we describe the architecture of our generator. Sec-
tions 3 and 4 then provide further details on its
main components. In Section 5, we describe our
experiments on the BAGEL data set, followed by
an analysis of the results in Section 6. Section 7
compares our generator to previous related works
and Section 8 concludes the paper.

2 Generator Architecture

Our generator (see Figure 1) operates in two stages
that roughly correspond to the traditional NLG
stages of sentence planning and surface realiza-
tion. In the first stage, a statistical sentence
planner generates deep-syntactic dependency trees
from the input meaning representation. These are
converted into plain text sentences in the second
stage by the (mostly rule-based) surface realizer.

We use deep-syntax dependency trees to repre-
sent the sentence plan, i.e. the intermediate data
structure between the two aforementioned stages.
These are ordered dependency trees that only con-
tain nodes for content words (nouns, full verbs, ad-
jectives, adverbs) and coordinating conjunctions.
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inform(name=X,  type=placetoeat, 
           eattype=restaurant,  area=riverside, 
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X is an italian restaurant by the river.

Figure 1: Overall structure of our generator

Each node has a lemma and a formeme – a concise
description of its surface morphosyntactic form,
which may include prepositions and/or subordi-
nate conjunctions (Dušek et al., 2012). This struc-
ture is based on the deep-syntax trees of the Func-
tional Generative Description (Sgall et al., 1986),
but it has been simplified to fit our purposes (see
Figure 1 in the middle).

There are several reasons for taking the tra-
ditional two-step approach to generation (as op-
posed to joint approaches, see Section 7) and us-
ing deep syntax trees as the sentence plan format:
First, generating into deep syntax simplifies the
task for the statistical sentence planner – the plan-

ner does not need to handle surface morphology
and auxiliary words. Second, a rule-based syntac-
tic realizer allows us to ensure grammatical cor-
rectness of the output sentences, which would be
more difficult in a sequence-based and/or statisti-
cal approach.1 And third, a rule-based surface re-
alizer from our sentence plan format is relatively
easy to implement and can be reused for any do-
main within the same language. As in our case, it
is also possible to reuse and/or adapt an existing
surface realizer (see Section 4).

Deep-syntax annotation of sentences in the
training set is needed to train the sentence plan-
ner, but we assume automatic annotation and reuse
an existing deep-syntactic analyzer from the Treex
NLP framework (Popel and Žabokrtský, 2010).2

We use dialogue acts (DA) as defined in the
BAGEL restaurant data set of Mairesse et al.
(2010) as a MR in our experiments throughout this
paper. Here, a DA consists of a dialogue act type,
which is always “inform” in the set, and a list of
slot-value pairs (SVPs) that contain information
about a restaurant, such as food type or location
(see the top of Figure 1). Our generator can be
easily adapted to a different MR, though.

3 Sentence Planner

The sentence planner is based on a variant of the
A* algorithm (Hart et al., 1968; Och et al., 2001;
Koehn et al., 2003). It starts from an empty sen-
tence plan tree and tries to find a path to the opti-
mal sentence plan by iteratively adding nodes. It
keeps two sets of hypotheses, i.e., candidate sen-
tence plan trees, sorted by their score – hypotheses
to expand (open set) and already expanded (closed
set). It uses the following two subcomponents to
guide the search:

• a candidate generator that is able to incre-
mentally generate candidate sentence plan
trees (see Section 3.1),

• a scorer/ranker that scores the appropriate-
ness of these trees for the input MR (see Sec-
tion 3.2).

1This issue would become more pressing in languages
with richer morphology than English.

2See http://ufal.mff.cuni.cz/treex. Domain-
independent deep syntax analysis for several languages is
included in this framework; the English pipeline used here
involves a statistical part-of-speech tagger (Spoustová et al.,
2007) and a dependency parser (McDonald et al., 2005), fol-
lowed by a rule-based conversion to deep syntax trees.
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Figure 2: Candidate generator example inputs and
outputs

The basic workflow of the sentence planner al-
gorithm then looks as follows:

Init: Start from an open set with a single empty
sentence plan tree and an empty closed set.

Loop: 1. Select the best-scoring candidate C
from the open set. Add C to closed
set.

2. The candidate generator generates C,
a set of possible successors to C.
These are trees that have more nodes
than C and are deemed viable. Note
that C may be empty.

3. The scorer scores all successors in
C and if they are not already in the
closed set, it adds them to the open
set.

4. Check if the best successor in the
open set scores better than the best
candidate in the closed set.

Stop: The algorithm finishes if the top score in
the open set is lower than the top score in
the closed set for d consecutive iterations,
or if there are no more candidates in the
open set. It returns the best-scoring candi-
date from both sets.

3.1 Generating Sentence Plan Candidates
Given a sentence plan tree, which is typically in-
complete and may be even empty, the candidate
generator generates its successors by adding one
new node in all possible positions and with all pos-
sible lemmas and formemes (see Figure 2). While
a naive implementation – trying out any combina-
tion of lemmas and formemes found in the training
data – works in principle, it leads to an unman-
ageable number of candidate trees even for a very
small domain. Therefore, we include several rules
that limit the number of trees generated:

1. Lemma-formeme compatibility – only nodes
with a combination of lemma and formeme
seen in the training data are generated.

2. Syntactic viability – the new node must
be compatible with its parent node (i.e.,
this combination, including the dependency
left/right direction, must be seen in the train-
ing data).

3. Number of children – no node can have more
children than the maximum for this lemma-
formeme combination seen in the training
data.

4. Tree size – the generated tree cannot have
more nodes than trees seen in the training
data. The same limitation applies to the in-
dividual depth levels – the training data limit
the number of nodes on the n-th depth level
as well as the maximum depth of any tree.

This is further conditioned on the input SVPs
– the maximums are only taken from training
examples that contain the same SVPs that ap-
pear on the current input.

5. Weak semantic compatibility – we only in-
clude nodes that appear in the training data
alongside the elements of the input DA, i.e.,
nodes that appear in training examples con-
taining SVPs from the current input,

6. Strong semantic compatibility – for each
node (lemma and formeme), we make a
“compatibility list” of SVPs and slots that are
present in all training data examples contain-
ing this node. We then only allow generating
this node if all of them are present in the cur-
rent input DA. To allow for more generaliza-
tion, this rule can be applied just to lemmas
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(disregarding formemes), and a certain num-
ber of SVPs/slots from the compatibility list
may be required at maximum.

Only Rules 4 (partly), 5, and 6 depend on the
format of the input meaning representation. Using
a different MR would require changing these rules
to work with atomic substructures of the new MR
instead of SVPs.

While especially Rules 5 and 6 exclude a vast
number of potential candidate trees, this limitation
is still much weaker than using hard alignment
links between the elements of the MR and the out-
put words or phrases. It leaves enough room to
generate many combinations unseen in the train-
ing data (cf. Section 6) while keeping the search
space manageable. To limit the space of potential
tree candidates even further, one could also use au-
tomatic alignment scores between the elements of
the input MR and the tree nodes (obtained using a
tool such as GIZA++ (Och and Ney, 2003)).

3.2 Scoring Sentence Plan Trees

The scorer for the individual sentence plan tree
candidates is a function that maps global features
from the whole sentence plan tree t and the input
MR m to a real-valued score that describes the fit-
ness of t in the context of m.

We first describe the basic version of the scorer
and then our two improvements – differing subtree
updates and future promise estimation.

Basic perceptron scorer
The basic scorer is based on the linear percep-
tron ranker of Collins and Duffy (2002), where the
score is computed as a simple dot product of the
features and the corresponding weight vector:

score(t,m) = w> · feat(t,m)

In the training phase, the weights w are ini-
tialized to one. For each input MR, the system
tries to generate the best sentence plan tree given
current weights, ttop. The score of this tree is
then compared to the score of the correct gold-
standard tree tgold.3 If ttop 6= tgold and the
gold-standard tree ranks worse than the generated
one (score(ttop,m) > score(tgold,m)), the weight
vector is updated by the feature value difference of

3Note that the “gold-standard” sentence plan trees are ac-
tually produced by automatic annotation. For the purposes of
scoring, they are, however, treated as gold standard.

the generated and the gold-standard tree:

w = w + α · (feat(tgold,m)− feat(ttop,m))

where α is a predefined learning rate.

Differing subtree updates
In the basic version described above, the scorer is
trained to score full sentence plan trees. However,
it is also used to score incomplete sentence plans
during the decoding. This leads to a bias towards
bigger trees regardless of their fitness for the input
MR. Therefore, we introduced a novel modifica-
tion of the perceptron updates to improve scoring
of incomplete sentence plans: In addition to up-
dating the weights using the top-scoring candidate
ttop and the gold-standard tree tgold (see above),
we also use their differing subtrees titop, t

i
gold for

additional updates.
Starting from the common subtree tc of ttop and

tgold, pairs of differing subtrees titop, t
i
gold are cre-

ated by gradually adding nodes from ttop into titop
and from tgold into tigold (see Figure 3). To main-
tain the symmetry of the updates in case that the
sizes of ttop and tgold differ, more nodes may be
added in one step.4 The additional updates then
look as follows:

t0top = t0gold = tc
for i in 1, . . .min{|ttop| − |tc|, |tgold| − |tc|} − 1 :

titop = ti−1
top + node(s) from ttop

tigold = ti−1
gold + node(s) from tgold

w = w + α · (feat(tigold,m)− feat(titop,m))

Future promise estimation
To further improve scoring of incomplete sentence
plan trees, we incorporate a simple future promise
estimation for the A* search intended to boost
scores of sentence plans that are expected to fur-
ther grow.5 It is based on the expected number
of children Ec(n) of different node types (lemma-
formeme pairs).6 Given all nodes n1 . . . n|t| in a

4For example, if tgold has 6 more nodes than tc and ttop

has 4 more, there will be 3 pairs of differing subtrees, with
tigold having 2, 4, and 5 more nodes than tc and titop having
1, 2, and 3 more nodes than tc.

We have also evaluated a variant where both sets of sub-
trees tigold, t

i
top were not equal in size, but this resulted in

degraded performance.
5Note that this is not the same as future path cost in

the original A* path search, but it plays an analogous role:
weighing hypotheses of different size.

6Ec(n) is measured as the average number of children
over all occurrences of the given node type in the training
data. It is expected to be domain-specific.
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Figure 3: An example of differing subtrees
The gold standard tree tgold has three more nodes than the common subtree tc, while the top generated tree ttop has two more.
Only one pair of differing subtrees t1gold, t

1
top is built, where two nodes are added into t1gold and one node into t1top.

sentence plan tree t, the future promise is com-
puted in the following way:

fp = λ ·
∑

w ·
|t|∑
i=1

max{0, Ec(ni)− c(ni)}

where c(ni) is the current number of children of
node ni, λ is a preset weight parameter, and

∑
w

is the sum of the current perceptron weights. Mul-
tiplying by the weights sum makes future promise
values comparable to trees scores.

Future promise is added to tree scores through-
out the tree generation process, but it is disre-
garded for the termination criterion in the Stop
step of the generation algorithm and in perceptron
weight updates.

Averaging weights and parallel training
To speed up training using parallel processing, we
use the iterative parameter mixing approach of
McDonald et al. (2010), where training data are
split into several parts and weight updates are av-
eraged after each pass through the training data.
Following Collins (2002), we record the weights
after each training pass, take an average at the end,
and use this as the final weights for prediction.

4 Surface Realizer

We use the English surface realizer from the Treex
NLP toolkit (cf. Section 2 and (Ptáček, 2008)). It
is a simple pipeline of mostly rule-based blocks
that gradually change the deep-syntactic trees into
surface dependency trees, which are then lin-
earized to sentences. It includes the following
steps:

• Agreement – morphological attributes of
some nodes are deduced based on agreement

with other nodes (such as in subject-predicate
agreement).

• Word ordering – the input trees are already
ordered, so only a few rules for grammatical
words are applied.

• Compound verb forms – additional verbal
nodes are added for verbal particles (infini-
tive or phrasal verbs) and for compound ex-
pressions of tense, mood, and modality.

• Grammatical words – prepositions, subordi-
nating conjunctions, negation particles, arti-
cles, and other grammatical words are added
into the sentence.

• Punctuation – nodes for commas, final punc-
tuation, quotes, and brackets are introduced.

• Word Inflection – words are inflected accord-
ing to the information from formemes and
agreement.

• Phonetic changes – English “a” becomes
“an” based on the following word.

The realizer is designed as domain-independent
and handles most English grammatical phenom-
ena. A simple “round-trip” test – using au-
tomatic analysis with subsequent generation –
reached a BLEU score (Papineni et al., 2002)
of 89.79% against the original sentences on the
whole BAGEL data set, showing only minor dif-
ferences between the input sentence and genera-
tion output (mostly in punctuation).

455



restaurant
n:obj

X-area
n:in+X

and
x

X-area
n:in+X

restaurant
n:obj

X-area
n:in+X

and
x

X-area
n:in+X

Figure 4: Coordination structures conversion:
original (left) and our format (right).

5 Experimental Setup

Here we describe the data set used in our experi-
ments, the needed preprocessing steps, and the set-
tings of our generator specific to the data set.

5.1 Data set

We performed our experiments on the BAGEL
data set of Mairesse et al. (2010), which fits
our usage scenario in a spoken dialogue sys-
tem and is freely available.7 It contains a to-
tal of 404 sentences from a restaurant informa-
tion domain (describing the restaurant location,
food type, etc.), which correspond to 202 dia-
logue acts, i.e., each dialogue act has two para-
phrases. Restaurant names, phone numbers, and
other “non-enumerable” properties are abstracted
– replaced by an “X” symbol – throughout the gen-
eration process. Note that while the data set con-
tains alignment of source SVPs to target phrases,
we do not use it in our experiments.

For sentence planner training, we automatically
annotate all the sentences using the Treex deep
syntactic analyzer (see Section 2). The annotation
obtained from the Treex analyzer is further simpli-
fied for the sentence planner in two ways:

• Only lemmas and formemes are used in the
sentence planner. Other node attributes are
added in the surface realization step (see Sec-
tion 5.2).

• We convert the representation of coordination
structures into a format inspired by Universal
Dependencies.8 In the original Treex anno-
tation style, the conjunction heads both con-
juncts, whereas in our modification, the first

7Available for download at: http://farm2.user.
srcf.net/research/bagel/.

8http://universaldependencies.github.io

conjunct is at the top, heading the coordina-
tion and the second conjunct (see Figure 4).

The coordinations can be easily converted back for
the surface realizer, and the change makes the task
easier for the sentence planner: it may first gener-
ate one node and then decide whether it will add a
conjunction and a second conjunct.

5.2 Generator settings
In our candidate generator, we use all the limita-
tion heuristics described in Section 3.1. For strong
semantic compatibility (Rule 6), we use just lem-
mas and require at most 5 SVPs/slots from the
lemma’s compatibility list in the input DA.

We use the following feature types for our sen-
tence planner scorer:

• current tree properties – tree depth, total
number of nodes, number of repeated nodes

• tree and input DA – number of nodes per SVP
and number of repeated nodes per repeated
SVP,

• node features – lemma, formeme, and num-
ber of children of all nodes in the current tree,
and combinations thereof,

• input features – whole SVPs (slot + value),
just slots, and pairs of slots in the DA,

• combinations of node and input features,

• repeat features – occurrence of repeated lem-
mas and/or formemes in the current tree com-
bined with repeated slots in the input DA,

• dependency features – parent-child pairs for
lemmas and/or formemes, including and ex-
cluding their left-right order,

• sibling features – sibling pairs for lemmas
and/or formemes, also combined with SVPs,

• bigram features – pairs of lemmas and/or
formemes adjacent in the tree’s left-right or-
der, also combined with SVPs.

All feature values are normalized to have a mean
of 0 and a standard deviation of 1, with normaliza-
tion coefficients estimated from training data.

The feature set can be adapted for a different
MR format – it only must capture all important
parts of the MR, e.g., for a tree-like MR, the nodes
and edges, and possibly combinations thereof.
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Setup
BLEU for training portion NIST for training portion

10% 20% 30% 50% 100% 10% 20% 30% 50% 100%
Basic perc. 46.90 52.81 55.43 54.53 54.24 4.295 4.652 4.669 4.758 4.643
+ Diff-tree upd. 44.16 50.86 53.61 55.71 58.70 3.846 4.406 4.532 4.674 4.876
+ Future promise 37.25 53.57 53.80 58.15 59.89 3.331 4.549 4.607 5.071 5.231

Table 1: Evaluation on the BAGEL data set (averaged over all ten cross-validation folds)
“Training portion” denotes the percentage of the training data used in the experiment. “Basic perc.” = basic perceptron updates,
“+ Diff-tree upd.” = with differing subtree perceptron updates, “+ Future promise” = with future promise estimation. BLEU
scores are shown as percentages.

Based on our preliminary experiments, we use
100 passes over the training data and limit the
number of iterations d that do not improve score
to 3 for training and 4 for testing. We use a hard
maximum of 200 sentence planner iterations per
input DA. The learning rate α is set to 0.1. We use
training data parts of 36 or 37 training examples
(1/10th of the full training set) in parallel training.
If future promise is used, its weight λ is set to 0.3.

The Treex English realizer expects not only
lemmas and formemes, but also additional gram-
matical attributes for all nodes. In our experi-
ments, we simply use the most common values
found in the training data for the particular nodes
as this is sufficient for our domain. In larger do-
mains, some of these attributes may have to be also
included in sentence plans.

6 Results

Same as Mairesse et al. (2010), we use 10-fold
cross-validation where DAs seen at training time
are never used for testing, i.e., both paraphrases or
none of them are present in the full training set.
We evaluate using BLEU and NIST scores (Pap-
ineni et al., 2002; Doddington, 2002) against both
reference paraphrases for a given test DA.

The results of our generator are shown in Ta-
ble 1, both for standard perceptron updates and our
improvements – differing subtree updates and fu-
ture promise estimation (see Section 3.2).

Our generator did not achieve the same perfor-
mance as that of Mairesse et al. (2010) (ca. 67%).9

However, our task is substantially harder since
the generator also needs to learn the alignment
of phrases to SVPs and determine whether all re-
quired information is present on the output (see
also Section 7). Our differing tree updates clearly
bring a substantial improvement over standard per-

9Mairesse et al. (2010) do not give a precise BLEU score
number in their paper, they only show the values in a graph.

ceptron updates, and scores keep increasing with
bigger amounts of training data used, whereas
with plain perceptron updates, the scores stay flat.
The increase with 100% is smaller since all train-
ing DAs are in fact used twice, each time with a
different paraphrase.10 A larger training set with
different DAs should bring a bigger improvement.
Using future promise estimation boosts the scores
even further, by a smaller amount for BLEU but
noticeably for NIST. Both improvements on the
full training set are considered statistically signif-
icant at 95% confidence level by the paired boot-
strap resampling test (Koehn, 2004). A manual in-
spection of a small sample of the results confirmed
that the automatic scores reflect the quality of the
generated sentences well.

If we look closer at the generated sentences (see
Table 2), it becomes clear that the generator learns
to produce meaningful utterances which mostly
correspond well to the input DA. It is able to pro-
duce original paraphrases and generalizes to pre-
viously unseen DAs.

On the other hand, not all required information
is always present, and some facts are sometimes
repeated or irrelevant information appears. This
mostly happens with input slot-value pairs that oc-
cur only rarely in the training data; we believe that
a larger training set will solve this problem. Alter-
natively, one could introduce additional scorer fea-
tures to discourage conflicting information. An-
other problem is posed by repeated slots in the in-
put DA, which are sometimes not reflected prop-
erly in the generated sentence. This suggests that
a further refinement of the scorer feature set may
be needed.

10We used the two paraphrases that come with each DA
as independent training instances. While having two differ-
ent gold-standard outputs for a single input is admittedly not
ideal for a discriminative learner, it still brings an improve-
ment in our case.
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Input DA inform(name=X-name, type=placetoeat, eattype=restaurant, near=X-near, food=Continental, food=French)
Reference X is a French and continental restaurant near X.
Generated X is a French and continental restaurant near X.
Input DA inform(name=X-name, type=placetoeat, area=riverside, near=X-near, eattype=restaurant)
Reference X restaurant is near X on the riverside.
Generated X is a restaurant in the riverside area near X.
Input DA inform(name=X-name, type=placetoeat, area=X-area, pricerange=moderate, eattype=restaurant)
Reference X is a moderately priced restaurant in X.
Generated X is a restaurant in the X area.
Input DA inform(name=X-name, type=placetoeat, eattype=restaurant, area=riverside, food=French)
Reference X is a French restaurant on the riverside.
Generated X is a French restaurant in the riverside area which serves French food.
Input DA inform(name=X-name, type=placetoeat, eattype=restaurant, pricerange=moderate,

area=X-area, food=Contemporary, food=English)
Reference X is a moderately priced English contemporary restaurant in X.
Generated X is an English restaurant in the X area which serves expensive food in the moderate price range

located in X.
Input DA inform(name=X-name, type=placetoeat, eattype=restaurant, area=citycentre, near=X-near,

food="Chinese takeaway", food=Japanese)
Reference X is a Chinese takeaway and Japanese restaurant in the city centre near X.
Generated X is a Japanese restaurant in the centre of town near X and X.
Input DA inform(name=X-name, type=placetoeat, pricerange=moderate, eattype=restaurant)
Reference X is a restaurant that offers moderate price range.
Generated X is a restaurant in the moderate price range.

Table 2: Example generated sentences
Sentences generated when training on the full set and using differing subtree updates and future promise estimation.

7 Related Work

Previous trainable methods in sentence planning
use in principle two techniques: First, in the over-
generation and ranking approach (Walker et al.,
2001; Stent et al., 2004), many sentence plans are
generated using a rule-based planner and then the
best one is selected by a statistical ranker. Second,
parameter optimization trains adjustable parame-
ters of a handcrafted generator to produce outputs
with desired properties (Paiva and Evans, 2005;
Mairesse and Walker, 2008). As opposed to our
approach, both methods require an existing hand-
crafted sentence planner.

Other previous works combine sentence plan-
ning and surface realization into a single step and
do not require a handcrafted base module. Wong
and Mooney (2007) experiment with a phrase-
based machine translation system, comparing and
combining it with an inverted semantic parser
based on synchronous context-free grammars. Lu
et al. (2009) use tree conditional random fields
over hybrid trees that combine natural language
phrases with formal semantic expressions. Angeli
et al. (2010) generate text from database records
through a sequence of classifiers, gradually se-
lecting database records, fields, and correspond-
ing textual realizations to describe them. Konstas
and Lapata (2013) recast the whole NLG problem
as parsing over a probabilistic context-free gram-

mar estimated from database records and their de-
scriptions. Mairesse et al. (2010) convert input
DAs into “semantic stacks”, which correspond to
natural language phrases and contain slots and
their values on top of each other. Their genera-
tion model uses two dynamic Bayesian networks:
the first one performs an ordering of the input se-
mantic stacks, inserting intermediary stacks which
correspond to grammatical phrases, the second
one then produces a concrete surface realization.
Dethlefs et al. (2013) approach generation as a
sequence labeling task and use a conditional ran-
dom field classifier, assigning a word or a phrase
to each input MR element.

Unlike our work, the joint approaches typi-
cally include the alignment of input MR elements
to output words in a separate preprocessing step
(Wong and Mooney, 2007; Angeli et al., 2010), or
require pre-aligned training data (Mairesse et al.,
2010; Dethlefs et al., 2013). In addition, their ba-
sic algorithm often requires a specific input MR
format, e.g., a tree (Wong and Mooney, 2007; Lu
et al., 2009) or a flat database (Angeli et al., 2010;
Konstas and Lapata, 2013; Mairesse et al., 2010).

While dependency-based deep syntax has been
used previously in statistical NLG, the approaches
known to us (Bohnet et al., 2010; Belz et al., 2012;
Ballesteros et al., 2014) focus only on the surface
realization step and do not include a sentence plan-
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ner, whereas our work is mainly focused on statis-
tical sentence planning and uses a rule-based real-
izer.

Our approach to sentence planning is most sim-
ilar to Zettlemoyer and Collins (2007), which use
a candidate generator and a perceptron ranker for
CCG parsing. Apart from proceeding in the in-
verse direction and using dependency trees, we use
only very generic rules in our candidate generator
instead of language-specific ones, and we incorpo-
rate differing subtree updates and future promise
estimation into our ranker.

8 Conclusions and Further Work

We have presented a novel natural language gen-
erator, capable of learning from unaligned pairs
of input meaning representation and output utter-
ances. It consists of a novel, A*-search-based sen-
tence planner and a largely rule-based surface re-
alizer from the Treex NLP toolkit. The sentence
planner is, to our knowledge, first to use depen-
dency syntax and learn alignment of semantic el-
ements to words or phrases jointly with sentence
planning.

We tested our generator on the BAGEL restau-
rant information data set of Mairesse et al. (2010).
We have achieved very promising results, the ut-
terances produced by our generator are mostly flu-
ent and relevant. They did not surpass the BLEU
score of the original authors; however, our task is
substantially harder as our generator does not re-
quire fine-grained alignments on the input. Our
novel feature of the sentence planner ranker – us-
ing differing subtrees for perceptron weight up-
dates – has brought a significant performance im-
provement.

The generator source code, along with config-
uration files for experiments on the BAGEL data
set, is available for download on Github.11

In future work, we plan to evaluate our genera-
tor on further domains, such as geographic infor-
mation (Kate et al., 2005), weather reports (Liang
et al., 2009), or flight information (Dahl et al.,
1994). In order to improve the performance of our
generator and remove the dependency on domain-
specific features, we plan to replace the percep-
tron ranker with a neural network. We also want
to experiment with removing the dependency on
the Treex surface realizer by generating directly
into dependency trees or structures into which de-

11https://github.com/UFAL-DSG/tgen

pendency trees can be converted in a language-
independent way.
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Abstract

We propose an event-driven model for
headline generation. Given an input
document, the system identifies a key
event chain by extracting a set of structural
events that describe them. Then a novel
multi-sentence compression algorithm
is used to fuse the extracted events,
generating a headline for the document.
Our model can be viewed as a novel
combination of extractive and abstractive
headline generation, combining the
advantages of both methods using event
structures. Standard evaluation shows that
our model achieves the best performance
compared with previous state-of-the-art
systems.

1 Introduction

Headline generation (HG) is a text summarization
task, which aims to describe an article (or a set of
related paragraphs) using a single short sentence.
The task is useful in a number of practical
scenarios, such as compressing text for mobile
device users (Corston-Oliver, 2001), generating
table of contents (Erbs et al., 2013), and email
summarization (Wan and McKeown, 2004). This
task is challenging in not only informativeness
and readability, which are challenges to common
summarization tasks, but also the length reduction,
which is unique for headline generation.

Previous headline generation models fall into
two main categories, namely extractive HG
and abstractive HG (Woodsend et al., 2010;
Alfonseca et al., 2013). Both consist of
two steps: candidate extraction and headline
generation. Extractive models choose a set of
salient sentences in candidate extraction, and
then exploit sentence compression techniques to
achieve headline generation (Dorr et al., 2003;

Texts

Phrases Events Sentences

Candidate Ranking

Candidate #1 ... Candidate #i ... Candidate #K

Multi-Sentence Compression

Headline

Candidate Extraction

Headline Generation

Figure 1: System framework.

Zajic et al., 2005). Abstractive models choose a
set of informative phrases for candidate extraction,
and then exploit sentence synthesis techniques for
headline generation (Soricut and Marcu, 2007;
Woodsend et al., 2010; Xu et al., 2010).

Extractive HG and abstractive HG have
their respective advantages and disadvantages.
Extractive models can generate more readable
headlines, because the final title is derived by
tailoring human-written sentences. However,
extractive models give less informative titles
(Alfonseca et al., 2013), because sentences
are very sparse, making high-recall candidate
extraction difficult. In contrast, abstractive models
use phrases as the basic processing units, which
are much less sparse. However, it is more difficult
for abstractive HG to ensure the grammaticality
of the generated titles, given that sentence
synthesis is still very inaccurate based on a set
of phrases with little grammatical information
(Zhang, 2013).

In this paper, we propose an event-driven model
for headline generation, which alleviates the
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disadvantages of both extractive and abstractive
HG. The framework of the proposed model is
shown in Figure 1. In particular, we use
events as the basic processing units for candidate
extraction. We use structured tuples to represent
the subject, predicate and object of an event. This
form of event representation is widely used in
open information extraction (Fader et al., 2011;
Qiu and Zhang, 2014). Intuitively, events can
be regarded as a trade-off between sentences
and phrases. Events are meaningful structures,
containing necessary grammatical information,
and yet are much less sparse than sentences.
We use salience measures of both sentences and
phrases for event extraction, and thus our model
can be regarded as a combination of extractive and
abstractive HG.

During the headline generation step, A graph-
based multi-sentence compression (MSC) model
is proposed to generate a final title, given multiple
events. First a directed acyclic word graph is
constructed based on the extracted events, and
then a beam-search algorithm is used to find the
best title based on path scoring.

We conduct experiments on standard datasets
for headline generation. The results show
that headline generation can benefit not only
from exploiting events as the basic processing
units, but also from the proposed graph-based
MSC model. Both our candidate extraction
and headline generation methods outperform
competitive baseline methods, and our model
achieves the best results compared with previous
state-of-the-art systems.

2 Background

Previous extractive and abstractive models take
two main steps, namely candidate extraction and
headline generation. Here, we introduce these two
types of models according to the two steps.

2.1 Extractive Headline Generation

Candidate Extraction. Extractive models exploit
sentences as the basic processing units in this step.
Sentences are ranked by their salience according
to specific strategies (Dorr et al., 2003; Erkan and
Radev, 2004; Zajic et al., 2005). One of the state-
of-the-art approaches is the work of Erkan and
Radev (2004), which exploits centroid, position
and length features to compute sentence salience.
We re-implemented this method as our baseline

sentence ranking method. In this paper, we use
SentRank to denote this method.

Headline Generation. Given a set of sentences,
extractive models exploit sentence compression
techniques to generate a final title. Most previous
work exploits single-sentence compression (SSC)
techniques. Dorr et al. (2003) proposed the Hedge
Trimmer algorithm to compress a sentence by
making use of handcrafted linguistically-based
rules. Alfonseca et al. (2013) introduce a
multi-sentence compression (MSC) model into
headline generation, using it as a baseline in their
work. They indicated that the most important
information is distributed across several sentences
in the text.

2.2 Abstractive Headline Generation

Candidate Extraction. Different from extractive
models, abstractive models exploit phrases as the
basic processing units. A set of salient phrases
are selected according to specific principles during
candidate extraction (Schwartz, 01; Soricut and
Marcu, 2007; Xu et al., 2010; Woodsend et
al., 2010). Xu et al. (2010) propose to rank
phrases using background knowledge extracted
from Wikipedia. Woodsend et al. (2010) use
supervised models to learn the salience score of
each phrase. Here, we use the work of Soricut
and Marcu (2007) , namely PhraseRank, as
our baseline phrase ranking method, which is an
unsupervised model without external resources.
The method exploits unsupervised topic discovery
to find a set of salient phrases.

Headline Generation. In the headline generation
step, abstractive models exploit sentence synthesis
technologies to accomplish headline generation.
Zajic et al. (2005) exploit unsupervised topic
discovery to find key phrases, and use the
Hedge Trimmer algorithm to compress candidate
sentences. One or more key phrases are added
into the compressed fragment according to the
length of the headline. Soricut and Marcu
(2007) employ WIDL-expressions to generate
headlines. Xu et al. (2010) employ keyword
clustering based on several bag-of-words models
to construct a headline. Woodsend et al.
(2010) use quasi-synchronous grammar (QG) to
optimize phrase selection and surface realization
preferences jointly.
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3 Our Model

Similar to extractive and abstractive models, the
proposed event-driven model consists of two
steps, namely candidate extraction and headline
generation.

3.1 Candidate Extraction

We exploit events as the basic units for candidate
extraction. Here an event is a tuple (S, P,O),
where S is the subject, P is the predicate and O is
the object. For example, for the sentence “Ukraine
Delays Announcement of New Government”, the
event is (Ukraine, Delays, Announcement). This
type of event structures has been used in open
information extraction (Fader et al., 2011), and has
a range of NLP applications (Ding et al., 2014; Ng
et al., 2014).

A sentence is a well-formed structure with
complete syntactic information, but can contain
redundant information for text summarization,
which makes sentences very sparse. Phrases can
be used to avoid the sparsity problem, but with
little syntactic information between phrases, fluent
headline generation is difficult. Events can be
regarded as a trade-off between sentences and
phrases. They are meaningful structures without
redundant components, less sparse than sentences
and containing more syntactic information than
phrases.

In our system, candidate event extraction is
performed on a bipartite graph, where the two
types of nodes are lexical chains (Section 3.1.2)
and events (Section 3.1.1), respectively. Mutual
Reinforcement Principle (Zha, 2002) is applied
to jointly learn chain and event salience on the
bipartite graph for a given input. We obtain the
top-k candidate events by their salience measures.

3.1.1 Extracting Events
We apply an open-domain event extraction
approach. Different from traditional event
extraction, for which types and arguments are pre-
defined, open event extraction does not have a
closed set of entities and relations (Fader et al.,
2011). We follow Hu’s work (Hu et al., 2013) to
extract events.

Given a text, we first use the Stanford
dependency parser1 to obtain the Stanford typed
dependency structures of the sentences (Marneffe
and Manning, 2008). Then we focus on

1http://nlp.stanford.edu/software/lex-parser.shtml

DT NNPS MD VB DT NNP NNP POS NNS
the Keenans could demand the Aryan Nations ’ assets

nsubj

aux

dobj

det nn

poss

Figure 2: Dependency tree for the sentence
“the Keenans could demand the Aryan Nations’
assets”.

two relations, nsubj and dobj, for extracting
event arguments. Event arguments that have
the same predicate are merged into one event,
represented by tuple (Subject, Predicate, Object).
For example, given the sentence, “the Keenans
could demand the Aryan Nations’ assets”, Figure
2 present its partial parsing tree. Based
on the parsing results, two event arguments
are obtained: nsubj(demand, Keenans) and
dobj(demand, assets). The two event arguments
are merged into one event: (Keenans, demand,
assets).

3.1.2 Extracting Lexical Chains
Lexical chains are used to link semantically-
related words and phrases (Morris and Hirst, 1991;
Barzilay and Elhadad, 1997). A lexical chain is
analogous to a semantic synset. Compared with
words, lexical chains are less sparse for event
ranking.

Given a text, we follow Boudin and Morin
(2013) to construct lexical chains based on the
following principles:

1. All words that are identical after stemming
are treated as one word;

2. All NPs with the same head word fall into one
lexical chain;2

3. A pronoun is added to the corresponding
lexical chain if it refers to a word in the chain
(The coreference resolution is performed
using the Stanford Coreference Resolution
system);3

4. Lexical chains are merged if their main words
are in the same synset of WordNet.4

2NPs are extracted according to the dependency relations
nn and amod. As shown in Figure 2, we can extract the noun
phrase Aryan Nations according to the dependency relation
nn(Nations, Aryan).

3http://nlp.stanford.edu/software/dcoref.shtml
4http://wordnet.princeton.edu/
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At initialization, each word in the document is a
lexical chain. We repeatedly merge existing chains
by the four principles above until convergence.
In particular, we focus on content words only,
including verbs, nouns and adjective words. After
the merging, each lexical chain represents a word
cluster, and the first occuring word in it can be
used as the main word of chain.

3.1.3 Learning Salient Events

Intuitively, one word should be more important if
it occurs in more important events. Similarly, one
event should be more important if it includes more
important words. Inspired by this, we construct a
bipartite graph between lexical chains and events,
shown in Figure 3, and then exploit MRP to jointly
learn the salience of lexical chains and events.
MRP has been demonstrated effective for jointly
learning the vertex weights of a bipartite graph
(Zhang et al., 2008; Ventura et al., 2013).

Given a text, we construct bipartite graph
between the lexical chains and events, with an
edge being constructed between a lexical chain
and an event if the event contains a word in the
lexical chain. Suppose that there are n events
{e1, · · · , en} and m lexical chains: {l1, · · · , lm}
in the bipartite graph Gbi. Their scores are
represented by sal(e) = {sal(e1), · · · , sal(en)}
and sal(l) = {sal(l1), · · · , sal(lm)}, respectively.
We compute the final sal(e) and sal(l) iteratively
by MRP. At each step, sal(ei) and sal(lj) are
computed as follows:

sal(ei) ∝
m∑
j=1

rij × sal(lj)

sal(lj) ∝
n∑
i=1

rij × sal(ei)

rij =

∑
(lj ,ei)∈Gbi

w(lj) · w(ei)

A

(1)

where rij ∈ R denotes the cohesion between
lexicon chain li and event ej , A is a normalization
factor, sal(·) denotes the salience, and the initial
values of sal(e) and sal(t) can be assigned
randomly.

The remaining problem is how to define the
salience score of a given lexicon chain li and a
given event ej . In this work, we use the guidance
of abstractive and extractive models to compute

Lexical Chains Events

Figure 3: Bipartite graph where two vertex sets
denote lexical chains and events, respectively.

sal(lj) and sal(ei), respectively, as shown below:

w(lj) =
∑
w∈lj

salabs(w)

w(ei) =
∑

s∈Sen(ei)

salext(s)
(2)

where salabs(·) denotes the word salience score
of an abstractive model, salext(·) denotes the
sentence salience score of an extractive model,
and Sen(ei) denotes the sentence set where ei
is extracted from. We exploit our baseline
sentence ranking method, SentRank, to obtain
the sentence salience score, and use our baseline
phrase ranking method, PhraseRank, to obtain
the phrase salience score.

3.2 Headline Generation
We use a graph-based multi-sentence compression
(MSC) model to generate the final title for the
proposed event-driven model. The model is
inspired by Filippova (2010). First, a weighted
directed acyclic word graph is built, with a start
node and an end node in the graph. A headline
can be obtained by any path from the start node
to the end node. We measure each candidate path
by a scoring function. Based on the measurement,
we exploit a beam-search algorithm to find the
optimum path.

3.2.1 Word-Graph Construction
Given a set of candidate events CE, we extract
all the sentences that contain the events. In
particular, we add two artificial words, 〈S〉 and
〈E〉, to the start position and end position of
all sentences, respectively. Following Filippova
(2010), we extract all words in the sentences as
graph vertexes, and then construct edges based
on these words. Filippova (2010) adds edges
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〈S〉 〈E〉

King

Norodom

...
opposition

groups

...

Hun

Sun

on

...

rejected party

...

...

for

talks

...

...

...

Figure 4: Word graph generated from candidates
and a possible compression path.

for all the word pairs that are adjacent in one
sentence. The title generated using this strategy
can mistakenly contain common word bigrams(
i.e. adjacent words) in different sentences. To
address this, we change the strategy slightly, by
adding edges for all word pairs of one sentence in
the original order. In another words, if word wj
occurs after wi in one sentence, then we add an
edge wi → wj for the graph. Figure 4 gives an
example of the word graph. The search space of
the graph is larger compared with that of Filippova
(2010) because of more added edges.

Different from Filippova (2010), salience
information is introduced into the calculation of
the weights of vertexes. One word that occurs
in more salient candidate should have higher
weight. Given a graph G = (V, E), where V =
{V1, · · · , Vn} denotes the word nodes and E =
{Eij ∈ {0, 1}, i, j ∈ [1, n]} denotes the edges.
The vertex weight is computed as follows:

w(Vi) =
∑
e∈CE

sal(e) exp{−dist(Vi.w, e)} (3)

where sal(e) is the salience score of an event
from the candidate extraction step, Vi.w denotes
the word of vertex Vi, and dist(w, e) denotes the
distance from the word w to the event e, which
are defined by the minimum distance from w
to all the related words of e in a sentence by
the dependency path5 between them. Intuitively,
equation 3 demonstrates that a vertex is salient
when its corresponding word is close to salient

5The distance is +∞ when e and w are not in one
sentence.

events. It is worth noting that the formula
can adapt to extractive and abstractive models
as well, by replacing events with sentences and
phrases. We use them for the SentRank and
PhraseRank baseline systems in Section 4.3,
respectively.

The equation to compute the edge weight is
adopted from Filippova (2010):

w′(Eij) =
∑
s

rdist(Vi.w, Vj .w)

w(Eij) =
w(Vi)w(Vj) · w′(Eij)

w(Vi) + w(Vj)

(4)

where w′(Eij) refers to the sum of
rdist(Vi.w, Vj .w) over all sentences, and rdist(·)
denotes the reciprocal distance of two words in a
sentence by the dependency path. By the formula,
an edge is salient when the corresponding vertex
weights are large or the corresponding words are
close.

3.2.2 Scoring Method
The key to our MSC model is the path scoring
function. We measure a candidate path based
on two aspects. Besides the sum edge score of
the path, we exploit a trigram language model to
compute a fluency score of the path. Language
models have been commonly used to generate
more readable titles.

The overall score of a path is compute by:

score(p) = edge(p) + λ× flu(p)

edge(p) =

∑
Eij∈p ln{w(Eij)}

n

flu(p) =
∑

i ln{p(wi|wi−2wi−1)}
n

(5)

where p is a candidate path and the corresponding
word sequence of p is w1 · · ·wn. A trigram
language model is trained using SRILM6 on
English Gigaword (LDC2011T07).

3.2.3 Beam Search
Beam search has been widely used aiming to
find the sub optimum result (Collins and Roark,
2004; Zhang and Clark, 2011), when exact
inference is extremely difficult. Assuming our
word graph has a vertex size of n, the worst
computation complexity is O(n4) when using a
trigram language model, which is time consuming.

6http://www.speech.sri.com/projects/srilm/
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Input: G← (V, E), LM, B
Output: best
candidates← { {〈S〉} }
loop do

beam← { }
for each candidate in candidates

if candidate endwith 〈E〉
ADDTOBEAM(beam, candidate)
continue

for each Vi in V
candidate← ADDVERTEX(candidate, Vi)
COMPUTESCORE(candidate, LM)
ADDTOBEAM(beam, candidate)

end for
end for
candidates← TOP-K(beam, B)
if candidates all endwith 〈E〉 : break

end loop
best← BEST(candidates)

Figure 5: The beam-search algorithm.

Using beam search, assuming the beam size is B,
the time complexity decreases to O(Bn2).

Pseudo-code of our beam search algorithm is
shown in Figure 5. During search, we use
candidates to save a fixed size (B) of partial
results. For each iteration, we generate a set of
new candidates by adding one vertex from the
graph, computing their scores, and maintaining
the top B candidates for the next iteration. If
one candidate reaches the end of the graph, we
do not expand it, directly adding it into the new
candidate set according to its current score. If
all the candidates reach the end, the searching
algorithm terminates and the result path is the
candidate from candidates with the highest score.

4 Experiment

4.1 Settings
We use the standard HG test dataset to evaluate
our model, which consists of 500 articles from
DUC–04 task 17, where each article is provided
with four reference headlines. In particular, we
use the first 100 articles from DUC–07 as our
development set. There are averaged 40 events per
article in the two datasets. All the pre-processing
steps, including POS tagging, lemma analysis,
dependency parsing and anaphora resolution, are

7http://duc.nist.gov/duc2004/tasks.html

conducted using the Stanford NLP tools (Marneffe
and Manning, 2008). The MRP iteration number
is set to 10.

We use ROUGE (Lin, 2004) to automatically
measure the model performance, which has been
widely used in summarization tasks (Wang et al.,
2013; Ng et al., 2014). We focus on Rouge1
and Rouge2 scores, following Xu et al. (2010).
In addition, we conduct human evaluations, using
the same method as Woodsend et al. (2010).
Four participants are asked to rate the generated
headlines by three criteria: informativeness (how
much important information in the article does
the headline describe?), fluency (is it fluent to
read?) and coherence (does it capture the topic of
article?). Each headline is given a subjective score
from 0 to 5, with 0 being the worst and 5 being
the best. The first 50 documents from the test set
and their corresponding headlines are selected for
human rating. We conduct significant tests using
t-test.

4.2 Development Results

There are three important parameters in the
proposed event-driven model, including the beam
size B, the fluency weight λ and the number
of candidate events N . We find the optimum
parameters on development dataset in this section.
For efficiency, the three parameters are optimized
separately. The best performance is achieved with
B = 8, λ = 0.4 andN = 10. We report the model
results on the development dataset to study the
influences of the three parameters, respectively,
with the other two parameters being set with their
best value.

4.2.1 Influence of Beam Size
We perform experiments with different beam
widths. Figure 6 shows the results of the proposed
model with beam sizes of 1, 2, 4, 8, 16, 32,
64. As can be seen, our model can achieve the
best performances when the beam size is set to 8.
Larger beam sizes do not bring better results.

4.2.2 Influence of Fluency Weight
The fluency score is used for generating readable
titles, while the edge score is used for generating
informative titles. The balance between them is
important. By default, we set one to the weight
of edge score, and find the best weight λ for the
fluency score. We set λ ranging from 0 to 1 with
and interval of 0.1, to investigate the influence of
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Figure 6: Results with different beam sizes.
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Figure 7: Results using different fluency weights.

this parameter8. Figure 7 shows the results. The
best result is obtained when λ = 0.4.

4.2.3 Influence of Candidate Event Count
Ideally, all the sentences of an original text should
be considered in multi-sentence compression. But
an excess of sentences would bring more noise.
We suppose that the number of candidate events
N is important as well. To study its influence, we
report the model results with different N , from 1
to 15 with an interval of 1. As shown in Figure
8, the performance increases significantly from 1
to 10, and no more gains when N > 10. The
performance decreases drastically whenM ranges
from 12 to 15.

4.3 Final Results

Table 1 shows the final results on the test
dataset. The performances of the proposed event-
driven model are shown by EventRank. In
addition, we use our graph-based MSC model to

8Preliminary results show that λ is better below one.
9The mark ∗ denotes the results are inaccurate, which are

guessed from the figures in the published paper.
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Figure 8: Results using different numbers of
candidate events.

Method Model Type Rouge1 Rouge2

Our SalMSC
SentRank Extractive 0.3511 0.1375

PhraseRank Abstractive 0.3706 0.1415
EventRank Event-driven 0.4247‡ 0.1484‡

Using MSC
SentRank Extractive 0.2773 0.0980

PhraseRank Abstractive 0.3652 0.1299
EventRank Event-driven 0.3822‡ 0.1380‡

Other work
SentRank+SSC Extractive 0.2752 0.0855

Topiary Abstractive 0.2835 0.0872
Woodsend Abstractive 0.26∗ 0.06∗9

Table 1: Performance comparison for automatic
evaluation. The mark ‡ denotes that the result is
significantly better with a p-value below 0.01.

generate titles for SentRank and PhraseRank,
respectively, as mentioned in Section 3.2.1. By
comparison with the two models, we can examine
the effectiveness of the event-driven model. As
shown in Table 1, the event-driven model achieves
the best scores on both Rouge1 and Rouge2,
demonstrating events are more effective than
sentences and phrases.

Further, we compare our proposed MSC
method with the MSC proposed by Filippova
(2010), to study the effectiveness of our
novel MSC. We use MSC10 and SalMSC11 to

10The MSC source code, published by Boudin and Morin
(2013), is available at https://github.com/boudinfl/takahe.

11Our source code is available at https://github.com/
dram218/WordGraphCompression.
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Method Info. Infu. Cohe.
SentRank 4.13 2.85 2.54
PhraseRank 4.21 3.25 2.62
EventRank 4.35‡ 3.41‡ 3.22‡

Table 2: Results from the manual evaluation. The
mark ‡ denotes the result is significantly better
with a p-value below 0.01.

SentRank, PhraseRank and EventRank to
denote their MSC method and our proposed MSC,
respectively, applying them, respectively. As
shown in Table 1, better performance is achieved
by our MSC, demonstrating the effectiveness of
our proposed MSC. Similarly, the event-driven
model can achieve the best results.

We report results of previous state-of-the-art
systems as well. SentRank+SSC denotes the
result of Erkan and Radev (2004), which uses
our SentRank and SSC to obtain the final title.
Topiary denotes the result of Zajic et al. (2005),
which is an early abstractive model. Woodsend
denotes the result of Woodsend et al. (2010),
which is an abstractive model using a quasi-
synchronous grammar to generate a title. As
shown in Table 1, MSC is significantly better than
SSC, and our event-driven model achieves the
best performance, compared with state-of-the-art
systems.

Following Alfonseca et al. (2013), we conduct
human evaluation also. The results are shown in
Table 2, by three aspects: informativeness, fluency
and coherence. The overall tendency is similar to
the results, and the event-driven model achieves
the best results.

4.4 Example Outputs

We show several representative examples of the
proposed event-driven model, in comparison with
the extractive and abstractive models. The
examples are shown in Table 3.

In the first example, the results of both
SentRank and PhraseRank contain the
redundant phrase “catastrophe Tuesday”. The
output of PhraseRank is less fluent compared
with that of SentRank. The preposition “for”
is not recovered by the headline generation
system PhraseRank. In contrast, the output of
EventRank is better, capturing the major event
in the reference title.

Method Generated Headlines
Reference Honduras, other Caribbean countries brace

for the wrath of Hurricane Mitch
SentRank Honduras braced for potential catastrophe

Tuesday as Hurricane Mitch roared through
northwest Caribbean

PhraseRank Honduras braced catastrophe Tuesday
Hurricane Mitch roared northwest
Caribbean

EventRank Honduras braced for Hurricane Mitch
roared through northwest Caribbean

Reference At Ibero-American summit Castro protests
arrest of Pinochet in London

SentRank Castro disagreed with the arrest Augusto
Pinochet calling international meddling

PhraseRank Cuban President Fidel Castro disagreed
arrest London Chilean dictator Augusto
Pinochet

EventRank Fidel Castro disagreed with arrest in
London of Chilean dictator Augusto
Pinochet

Reference Cambodian leader Hun Sen rejects
opposition demands for talks in Beijing

SentRank Hun Sen accusing opposition parties of
internationalize the political crisis

PhraseRank opposition parties demands talks
internationalize political crisis

EventRank Cambodian leader Hun Sen rejected
opposition parties demands for talks

Table 3: Comparison of headlines generated by the
different methods.

In the second example, the outputs of three
systems all lose the phrase “Ibero-American
summit”. SentRank gives different additional
information compared with PhraseRank and
EventRank. Overall, the three outputs can be
regarded as comparable. PhraseRank also has a
fluency problem by ignoring some function words.

In the third example, SentRank does not
capture the information on “demands for talks”.
PhraseRank discards the preposition word
“for”. The output of EventRank is better, being
both more fluent and more informative.

From the three examples, we can see that
SentRank tends to generate more readable
titles, but may lose some important information.
PhraseRank tends to generate a title with
more important words, but the fluency is
relatively weak even with MSC. EventRank
combines the advantages of both SentRank
and PhraseRank, generating titles that contain
more important events with complete structures.
The observation verifies our hypothesis in the
introduction — that extractive models have
the problem of low information coverage, and
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abstractive models have the problem of poor
grammaticality. The event-driven mothod can
alleviate both issues since event offer a trade-off
between sentence and phrase.

5 Related Work

Our event-driven model is different from
traditional extractive (Dorr et al., 2003; Erkan
and Radev, 2004; Alfonseca et al., 2013) and
abstractive models (Zajic et al., 2005; Soricut
and Marcu, 2007; Woodsend et al., 2010; Xu
et al., 2010) in that events are used as the basic
processing units instead of sentences and phrases.
As mentioned above, events are a trade-off
between sentences and phrases, avoiding sparsity
and structureless problems. In particular, our
event-driven model can interact with sentences
and phrases, thus is a light combination for two
traditional models.

The event-driven model is mainly inspired
by Alfonseca et al. (2013), who exploit events
for multi-document headline generation. They
leverage titles of sub-documents for supervised
training. In contrast, we generate a title for a
single document using an unsupervised model.
We use novel approaches for event ranking and
title generation.

In recent years, sentence compression (Galanis
and Androutsopoulos, 2010; Yoshikawa and Iida,
2012; Wang et al., 2013; Li et al., 2014;
Thadani, 2014) has received much attention.
Some methods can be directly applied for multi-
document summarization (Wang et al., 2013; Li
et al., 2014). To our knowledge, few studies
have been explored on applying them in headline
generation.

Multi-sentence compression based on word
graph was first proposed by Filippova (2010).
Some subsequent work was presented recently.
Boudin and Morin (2013) propose that the key
phrase is helpful to sentence generation. The
key phrases are extracted according to syntactic
pattern and introduced to identify shortest path
in their work. Mehdad et al. (2013; Mehdad
et al. (2014) introduce the MSC based on word
graph into meeting summarization. Tzouridis et
al. (2014) cast multi-sentence compression as a
structured predication problem. They use a large-
margin approach to adapt parameterised edge
weights to the data in order to acquire the shortest
path. In their work, the sentences introduced to

a word graph are treated equally, and the edges in
the graph are constructed according to the adjacent
order in original sentence.

Our MSC model is also inspired by Filippova
(2010). Our approach is more aggressive
than their approach, generating compressions
with arbitrary length by using a different edge
construction strategy. In addition, our search
algorithm is also different from theirs. Our
graph-based MSC model is also similar in
spirit to sentence fusion, which has been used
for multi-document summarization (Barzilay and
McKeown, 2005; Elsner and Santhanam, 2011).

6 Conclusion and Future Work

We proposed an event-driven model headline
generation, introducing a graph-based MSC model
to generate the final title, based on a set of
events. Our event-driven model can incorporate
sentence and phrase salience, which has been used
in extractive and abstractive HG models. The
proposed graph-based MSC model is not limited
to our event-driven model. It can be applied
on extractive and abstractive models as well.
Experimental results on DUC–04 demonstrate
that event-driven model can achieve better results
than extractive and abstractive models, and the
proposed graph-based MSC model can bring
improved performances compared with previous
MSC techniques. Our final event-driven model
obtains the best result on this dataset.

For future work, we plan to explore two
directions. Firstly, we plan to introduce event
relations to learning event salience. In addition,
we plan to investigate other methods about multi-
sentence compression and sentence fusion, such as
supervised methods.
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Abstract

In natural language understanding (NLU),
a user utterance can be labeled differently
depending on the domain or application
(e.g., weather vs. calendar). Standard
domain adaptation techniques are not di-
rectly applicable to take advantage of the
existing annotations because they assume
that the label set is invariant. We propose
a solution based on label embeddings in-
duced from canonical correlation analysis
(CCA) that reduces the problem to a stan-
dard domain adaptation task and allows
use of a number of transfer learning tech-
niques. We also introduce a new trans-
fer learning technique based on pretrain-
ing of hidden-unit CRFs (HUCRFs). We
perform extensive experiments on slot tag-
ging on eight personal digital assistant do-
mains and demonstrate that the proposed
methods are superior to strong baselines.

1 Introduction

The main goal of NLU is to automatically extract
the meaning of spoken or typed queries. In recent
years, this task has become increasingly impor-
tant as more and more speech-based applications
have emerged. Recent releases of personal dig-
ital assistants such as Siri, Google Now, Dragon
Go and Cortana in smart phones provide natu-
ral language based interface for a variety of do-
mains (e.g. places, weather, communications, re-
minders). The NLU in these domains are based
on statistical machine learned models which re-
quire annotated training data. Typically each do-
main has its own schema to annotate the words and
queries. However the meaning of words and utter-
ances could be different in each domain. For ex-
ample, “sunny” is considered a weather condition
in the weather domain but it may be a song title in

a music domain. Thus every time a new applica-
tion is developed or a new domain is built, a sig-
nificant amount of resources is invested in creating
annotations specific to that application or domain.

One might attempt to apply existing techniques
(Blitzer et al., 2006; Daumé III, 2007) in domain
adaption to this problem, but a straightforward ap-
plication is not possible because these techniques
assume that the label set is invariant.

In this work, we provide a simple and effec-
tive solution to this problem by abstracting the la-
bel types using the canonical correlation analysis
(CCA) by Hotelling (Hotelling, 1936) a powerful
and flexible statistical technique for dimensional-
ity reduction. We derive a low dimensional rep-
resentation for each label type that is maximally
correlated to the average context of that label via
CCA. These shared label representations, or label
embeddings, allow us to map label types across
different domains and reduce the setting to a stan-
dard domain adaptation problem. After the map-
ping, we can apply the standard transfer learning
techniques to solve the problem.

Additionally, we introduce a novel pretraining
technique for hidden-unit CRFs (HUCRFs) to ef-
fectively transfer knowledge from one domain to
another. In our experiments, we find that our
pretraining method is almost always superior to
strong baselines such as the popular domain adap-
tation method of Daumé III (2007).

2 Problem description and related work

Let D be the number of distinct domains. Let Xi

be the space of observed samples for the i-th do-
main. Let Yi be the space of possible labels for the
i-th domain. In most previous works in domain
adaptation (Blitzer et al., 2006; Daumé III, 2007),
observed data samples may vary but label space is
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invariant1. That is,

Yi = Yj ∀i, j ∈ {1 . . .D}

butXi 6= Xj for some domains i and j. For exam-
ple, in part-of-speech (POS) tagging on newswire
and biomedical domains, the observed data sam-
ple may be radically different but the POS tag set
remains the same.

In practice, there are cases, where the same
query is labeled differently depending on the do-
main or application and the context. For example,
Fred Myer can be tagged differently; “send a text
message to Fred Myer” and “get me driving direc-
tion to Fred Myer ”. In the first case, Fred Myer is
person in user’s contact list but it is a grocery store
in the second one.

So, we relax the constraint that label spaces
must be the same. Instead, we assume that sur-
face forms (i.e words) are similar. This is a natu-
ral setting in developing multiple applications on
speech utterances; input spaces (service request
utterances) do not change drastically but output
spaces (slot tags) might.

Multi-task learning differs from our task. In
general multi-task learning aims to improve per-
formance across all domains while our domain
adaptation objective is to optimize the perfor-
mance of semantic slot tagger on the target do-
main.

Below, we review related work in domain adap-
tion and natural language understanding (NLU).

2.1 Related Work

Domain adaptation has been widely used in many
natural language processing (NLP) applications
including part-of-speech tagging (Schnabel and
Schütze, 2014), parsing (McClosky et al., 2010),
and machine translation (Foster et al., 2010).
Most of the work can be classified either su-
pervised domain adaptation (Chelba and Acero,
2006; Blitzer et al., 2006; Daume III and Marcu,
2006; Daumé III, 2007; Finkel and Manning,
2009; Chen et al., 2011) or semi-supervised adap-
tation (Ando and Zhang, 2005; Jiang and Zhai,
2007; Kumar et al., 2010; Huang and Yates, 2010).
Our problem setting falls into the former.

Multi-task learning has become popular in NLP.
Sutton and McCallum (2005) showed that joint

1Multilingual learning (Kim et al., 2011; Kim and Snyder,
2012; Kim and Snyder, 2013) has same setting.

learning and/or decoding of sub-tasks helps to im-
prove performance. Collobert and Weston (2008)
proved the similar claim in a deep learning archi-
tecture. While our problem resembles their set-
tings, there are two clear distinctions. First, we
aim to optimize performance on the target domain
by minimizing the gap between source and target
domain while multi-task learning jointly learns the
shared tasks. Second, in our problem the domains
are different, but they are closely related. On the
other hand, prior work focuses on multiple sub-
tasks of the same data.

Despite the increasing interest in NLU (De Mori
et al., 2008; Xu and Sarikaya, 2013; Sarikaya et
al., 2014; Xu and Sarikaya, 2014; Anastasakos et
al., 2014; El-Kahky et al., 2014; Liu and Sarikaya,
2014; Marin et al., 2014; Celikyilmaz et al., 2015;
Ma et al., 2015; Kim et al., 2015), transfer learn-
ing in the context of NLU has not been much ex-
plored. The most relevant previous work is Tur
(2006) and Li et al. (2011), which described both
the effectiveness of multi-task learning in the con-
text of NLU. For multi-task learning, they used
shared slots by associating each slot type with ag-
gregate active feature weight vector based on an
existing domain specific slot tagger. Our empiri-
cal results shows that these vector representation
might be helpful to find shared slots across do-
main, but cannot find bijective mapping between
domains.

Also, Jeong and Lee (2009) presented a transfer
learning approach in multi-domain NLU, where
the model jointly learns slot taggers in multiple
domains and simultaneously predicts domain de-
tection and slot tagging results.2 To share parame-
ters across domains, they added an additional node
for domain prediction on top of the slot sequence.
However, this framework also limited to a setting
in which the label set remains invariant. In con-
trast, our method is restricted to this setting with-
out any modification of models.

3 Sequence Modeling Technique

The proposed techniques in Section 4 and 5 are
generic methodologies and not tied to any partic-
ular models such as any sequence models and in-
stanced based models. However, because of supe-
rior performance over CRF, we use a hidden unit
CRF (HUCRF) of Maaten et al. (2011).

2Jeong and Lee (2009) pointed out that if the domain is
given, their method is the same as that of Daumé III (2007).
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Figure 1: Graphical representation of hidden unit
CRFs.

While popular and effective, a CRF is still a lin-
ear model. In contrast, a HUCRF benefits from
nonlinearity, leading to superior performance over
CRF (Maaten et al., 2011). Thus we will focus on
HUCRFs to demonstrate our techniques in experi-
ments.

3.1 Hidden Unit CRF (HUCRF)

A HUCRF introduces a layer of binary-valued hid-
den units z = z1 . . . zn ∈ {0, 1} for each pair of
label sequence y = y1 . . . yn and observation se-
quence x = x1 . . . xn. A HUCRF parametrized by
θ ∈ Rd and γ ∈ Rd′ defines a joint probability of
y and z conditioned on x as follows:

pθ,γ(y, z|x) =

exp(θ>Φ(x, z) + γ>Ψ(z, y))∑
z′∈{0,1}n
y′∈Y(x,z′)

exp(θ>Φ(x, z′) + γ>Ψ(z′, y′))

(1)

where Y(x, z) is the set of all possible label se-
quences for x and z, and Φ(x, z) ∈ Rd and
Ψ(z, y) ∈ Rd′ are global feature functions that de-
compose into local feature functions:

Φ(x, z) =
n∑
j=1

φ(x, j, zj)

Ψ(z, y) =
n∑
j=1

ψ(zj , yj−1, yj)

HUCRF forces the interaction between the obser-
vations and the labels at each position j to go
through a latent variable zj : see Figure 1 for illus-
tration. Then the probability of labels y is given
by marginalizing over the hidden units,

pθ,γ(y|x) =
∑

z∈{0,1}n
pθ,γ(y, z|x)

As in restricted Boltzmann machines (Larochelle
and Bengio, 2008), hidden units are conditionally
independent given observations and labels. This
allows for efficient inference with HUCRFs de-
spite their richness (see Maaten et al. (2011) for
details). We use a perceptron-style algorithm of
Maaten et al. (2011) for training HUCRFs.

4 Transfer learning between domains
with different label sets

In this section, we describe three methods for uti-
lizing annotations in domains with different la-
bel types. First two methods are about transfer-
ring features and last method is about transfer-
ring model parameters. Each of these methods re-
quires some sort of mapping for label types. A
fine-grained label type needs to be mapped to a
coarse one; a label type in one domain needs to be
mapped to the corresponding label type in another
domain. We will provide a solution to obtaining
these label mappings automatically in Section 5.

4.1 Coarse-to-fine prediction

This approach has some similarities to the method
of Li et al. (2011) in that shared slots are used
to transfer information between domains. In this
two-stage approach, we train a model on the
source domain, make predictions on the target do-
main, and then use the predicted labels as addi-
tional features to train a final model on the target
domain. This can be helpful if there is some cor-
relation between the label types in the source do-
main and the label types in the target domain.

However, it is not desirable to directly use the
label types in the source domain since they can
be highly specific to that particular domain. An
effective way to combat this problem is to re-
duce the original label types such start-time,
contract-info, and restaurant as to a
set of coarse label types such as name, date,
time, and location that are universally shared
across all domains. By doing so, we can use
the first model to predict generic labels such as
time and then use the second model to use this
information to predict fine-grained labels such as
start-time and end-time.

4.2 Method of Daumé III (2007)

In this popular technique for domain adapta-
tion, we train a model on the union of the
source domain data and the target domain data
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but with the following preprocessing step: each
feature is duplicated and the copy is conjoined
with a domain indicator. For example, in a
WEATHER domain dataset, a feature that indi-
cates the identity of the string “Sunny” will
generate both w(0) = Sunny and (w(0) =
Sunny) ∧ (domain = WEATHER) as fea-
ture types. This preprocessing allows the model
to utilize all data through the common features
and at the same time specialize to specific do-
mains through the domain specific features. This
is especially helpful when there is label ambigu-
ity on particular features (e.g., “Sunny” might be a
weather-condition in a WEATHER domain
dataset but a music-song-name in a MUSIC
domain dataset).

Note that a straightforward application of this
technique is in general not feasible in our situation.
This is because we have features conjoined with
label types and our domains do not share label
types. This breaks the sharing of features across
domains: many feature types in the source domain
are disjoint from those in the target domain due to
different labeling.

Thus it is necessary to first map source domain
label types to target domain label type. After the
mapping, features are shared across domains and
we can apply this technique.

4.3 Transferring model parameter

In this approach, we train HUCRF on the source
domain and transfer the learned parameters to ini-
tialize the training process on the target domain.
This can be helpful for at least two reasons:

1. The resulting model will have parameters for
feature types observed in the source domain
as well as the target domain. Thus it has bet-
ter feature coverage.

2. If the training objective is non-convex, this
initialization can be helpful in avoiding bad
local optima.

Since the training objective of HUCRFs is non-
convex, both benefits can apply. We show in our
experiments that this is indeed the case: the model
benefits from both better feature coverage and bet-
ter initialization.

Note that in order to use this approach, we need
to map source domain label types to target domain
label type so that we know which parameter in

Figure 2: Illustration of a pretraining scheme for
HUCRFs.

the source domain corresponds to which param-
eter in the target domain. This can be a many-to-
one, one-to-many, one-to-one mapping depending
on the label sets.

4.3.1 Pretraining with HUCRFs
In fact, pretraining HUCRFs in the source domain
can be done in various ways. Recall that there are
two parameter types: θ ∈ Rd for scoring obser-
vations and hidden states and γ ∈ Rd′ for scoring
hidden states and labels (Eq. (1)). In pretraining,
we first train a model (θ1, γ1) on the source data
{(x(i)

src, y
(i)
src)}nsrc

i=1 :

(θ1, γ1) ≈ arg max
θ,γ

nsrc∑
i=1

log pθ,γ(y(i)
src|x(i)

src)

Then we train a model (θ2, γ2) on the target
data {(x(i)

trg, y
(i)
trg)}ntrg

i=1 by initializing (θ2, γ2) ←
(θ1, γ1):

(θ2, γ2) ≈ arg max
θ,γ

ntrg∑
i=1

log pθ,γ(y(i)
trg|x(i)

trg)

Here, we can choose to initialize only θ2 ← θ1 and
discard the parameters for hidden states and labels
since they may not be the same. The θ1 parame-
ters model the hidden structures in the source do-
main data and serve as a good initialization point
for learning the θ2 parameters in the target domain.
This can be helpful if the mapping between the la-
bel types in the source data and the label types in
the target data is unreliable. This process is illus-
trated in Figure 2.

5 Automatic generation of label
mappings

All methods described in Section 4 require
a way to propagate the information in label
types across different domains. A straightfor-
ward solution would be to manually construct
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such mappings by inspection. For instance, we
can specify that start-time and end-time
are grouped as the same label time, or that
the label public-transportation-route
in the PLACES domain maps to the label
implicit-location in the CALENDAR do-
main.

Instead, we propose a technique that automat-
ically generates the label mappings. We induce
vector representations for all label types through
canonical correlation analysis (CCA) — a pow-
erful and flexible technique for deriving low-
dimensional representation. We give a review of
CCA in Section 5.1 and describe how we use
the technique to construct label mappings in Sec-
tion 5.2.

5.1 Canonical Correlation Analysis (CCA)

CCA is a general technique that operates on a
pair of multi-dimensional variables. CCA finds k
dimensions (k is a parameter to be specified) in
which these variables are maximally correlated.

Let x1 . . . xn ∈ Rd and y1 . . . yn ∈ Rd′ be n
samples of the two variables. For simplicity, as-
sume that these variables have zero mean. Then
CCA computes the following for i = 1 . . . k:

arg max
ui∈Rd, vi∈Rd′ :
u>i ui′=0 ∀i′<i
v>i vi′=0 ∀i′<i

∑n
l=1(u>i xl)(v

>
i yl)√∑n

l=1(u>i xl)2
√∑n

l=1(v>i yl)2

In other words, each (ui, vi) is a pair of projec-
tion vectors such that the correlation between the
projected variables u>i xl and v>i yl (now scalars) is
maximized, under the constraint that this projec-
tion is uncorrelated with the previous i − 1 pro-
jections.

This is a non-convex problem due to the inter-
action between ui and vi. Fortunately, a method
based on singular value decomposition (SVD) pro-
vides an efficient and exact solution to this prob-
lem (Hotelling, 1936). The resulting solution
u1 . . . uk ∈ Rd and v1 . . . vk ∈ Rd′ can be used
to project the variables from the original d- and
d′-dimensional spaces to a k-dimensional space:

x ∈ Rd −→ x̄ ∈ Rk : x̄i = u>i x

y ∈ Rd′ −→ ȳ ∈ Rk : ȳi = v>i y

The new k-dimensional representation of each
variable now contains information about the other

variable. The value of k is usually selected to be
much smaller than d or d′, so the representation is
typically also low-dimensional.

5.2 Inducing label embeddings
We now describe how to use CCA to induce vec-
tor representations for label types. Using the same
notation, let n be the number of instances of la-
bels in the entire data. Let x1 . . . xn be the original
representations of the label samples and y1 . . . yn
be the original representations of the associated
words set contained in the labels.

We employ the following definition for the orig-
inal representations for reasons we explain below.
Let d be the number of distinct label types and d′

be the number of distinct word types.

• xl ∈ Rd is a zero vector in which the entry
corresponding to the label type of the l-th in-
stance is set to 1.

• yl ∈ Rd′ is a zero vector in which the entries
corresponding to words spanned by the label
are set to 1.

The motivation for this definition is that similar
label types often have similar or same word.

For instance, consider two label types
start-time, (start time of a calendar event)
and end-time, meaning (the end time of a cal-
endar event). Each type is frequently associated
with phrases about time. The phrases {“9 pm”,
“7”, “8 am”} might be labeled as start-time;
the phrases {“9 am”, “7 pm”} might be labeled
as end-time. In these examples, both label
types share words “am”, “pm”, “9”, and “7” even
though phrases may not match exactly.

Figure 3 gives the CCA algorithm for inducing
label embeddings. It produces a k-dimensional
vector for each label type corresponding to the
CCA projection of the one-hot encoding of that
label.

5.3 Discussion on alternative label
representations

We point out that there are other options for in-
ducing label representations besides CCA. For
instance, one could simply use the sparse fea-
ture vector representation of each label. How-
ever, CCA’s low-dimensional projection is com-
putationally more convenient and arguably more
generalizable. One can also consider training a
predictive model similar to word2vec (Mikolov
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Figure 4: Bijective mapping: labels in REMINDER domain (orange box) are mapped into those in
PLACES and ALARM domains.

CCA-LABEL
Input: labeled sequences {(x(i), y(i))}ni=1, dimension k
Output: label vector v ∈ Rk for each label type

1. For each label type l ∈ {1 . . . d} and word type w ∈
{1 . . . d} present in the sequences, calculate

• count(l) = number of times label l occurs
• count(w) = number of times word w occurs
• count(l, w) = number of times word w occurs

under label l

2. Define a matrix Ω ∈ Rd×d′
where:

Ωl,w =
count(l, w)√

count(l)count(w)

3. Perform rank-k SVD on Ω. Let U ∈ Rd×k be a matrix
where the i-th column is the left singular vector of Ω
corresponding to the i-th largest singular value.

4. For each label l, set the l-th normalized row of U to be
its vector representation.

Figure 3: CCA algorithm for inducing label em-
beddings.

et al., 2013). But this requires significant efforts in
implementation and also very long training time.
In contrast, CCA is simple, efficient, and effec-
tive and can be readily implemented. Also, CCA
is theoretically well understood while methods in-
spired by neural networks are not.

5.4 Constructing label mappings

Vector representations of label types allow for nat-
ural solutions to the task of constructing label
mappings.

5.4.1 Mapping to a coarse label set
Given a domain and the label types that occur
in the domain, we can reduce the number of la-
bel types by simply clustering their vector repre-
sentations. For instance, if the embeddings for
start-time and end-time are close together,
they will be grouped as a single label type. We run
the k-means algorithm on the label embeddings to
obtain this coarse label set.

Table 1 shows examples of this clustering. It
demonstrates that the CCA representations ob-
tained by the procedure described in Section 5.2
are indeed informative of the labels’ properties.

Cluster Labels Cluster Labels

Time

start time

Person

contact info
end time artist

original start time from contact name
travel time relationship name

Loc

absolute loc

Loc ATTR

prefer route
leaving loc public trans route
from loc nearby

position ref distance

Table 1: Some of cluster examples

5.4.2 Bijective mapping between label sets
Given a pair of domains and their label sets, we
can create a bijective label mapping by finding
the nearest neighbor of each label type. Figure 4
shows some actual examples of CCA-based bijec-
tive maps, where the label set in the REMINDER
domain is mapped to the PLACES and ALARM
domains. One particularly interesting example is
that move earlier time in REMINDER do-
main is mapped to Travel time in PLACES
and Duration in ALARM domain. This is a tag
used in a user utterance requesting to move an
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Domains # of label Source Training Test Description
Alarm 7 27865 3334 Set alarms

Calendar 20 50255 7017 Set appointments & meetings in the calendar
Communication 18 104881 14484 Make calls, send texts, and communication related user request

Note 4 17445 2342 Note taking
Ondevice 7 60847 9704 Phone settings

Places 32 150348 20798 Find places & get direction
Reminder 16 62664 8235 Setting time, person & place based reminder
Weather 9 53096 9114 Weather forecasts & historical information about weather patterns

Table 2: Size of number of label, labeled data set size and description for Alarm, Calendar, Communica-
tion, Note, Ondevice, Places, Reminder and Weather domains partitioned into training and test set.

appointment to an earlier time. For example, in
the query “move the dentist’s appointment up by
30 minutes.”, the phrase “30 minutes” is tagged
with move earlier time. The role of this tag
is very similar to the role of Travel time in
PLACES (not Time) and Duration in ALARMS
(not Start date), and CCA is able to recover
this relation.

6 Experiments

In this section, we turn to experimental findings to
provide empirical support for our proposed meth-
ods.

6.1 Setup

To test the effectiveness of our approach, we apply
it to a suite of eight Cortana personal assistant do-
mains for slot sequence tagging tasks, where the
goal is to find the correct semantic tagging of the
words in a given user utterance.

The data statistics and short descriptions are
shown in Table 2. As the table indicates, the do-
mains have very different granularity and diverse
semantics.

6.2 Baselines

In all our experiments, we trained HUCRF and
only used n-gram features, including unigram, bi-
gram, and trigram within a window of five words
(±2 words) around the current word as binary fea-
ture functions. With these features, we compare
the following methods for slot tagging:

• NoAdapt: train only on target training data.

• Union: train on the union of source and target
training data.

• Daume: train with the feature duplication
method described in 4.2.

• C2F: train with the coarse-to-fine prediction
method described in 4.1.

• Pretrain: train with the pretraining method
described in 4.3.1.

To apply these methods except for Target, we
treat each of the eight domains in turn as the test
domain, with one of remaining seven domain as
the source domain. As in general domain adap-
tation setting, we assume that the source domain
has a sufficient amount of labeled data but the tar-
get domain has an insufficient amount of labeled
data. Specifically, For each test or target domain,
we only use 10% of the training examples to sim-
ulate data scarcity. In the following experiments,
we report the slot F-measure, using the standard
CoNLL evaluation script 3

6.3 Results on mappings

Mapping technique
Adaptation
technique Manual Li et al. (2011) CCA

Union 68.16 64.7 70.51
Daume 73.42 67.32 75.85

C2F 75.47 75.69 76.29
Pretrain 77.72 76.99 78.76

NoAdapt 75.13

Table 3: Comparison of slot F1 scores using
the proposed CCA-derived mapping versus other
mapping methods combined with different adap-
tation techniques.

To assess the quality of our automatic mapping
methods via CCA described in Section 5, we com-
pared against manually established mappings and
also the mapping method of Li et al. (2011). The
method of Li et al. (2011) is to associate each
slot type with the aggregate active feature weight
vectors based on an existing domain specific slot
tagger (a CRF). Manual mapping were performed

3http://www.cnts.ua.ac.be/conll2000/chunking/output.html
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Target Source Minimum distance domain performance
Domain Nearest Domain NoAdapt Union Daume C2F Pretrain
Alarm Calendar 74.82 84.46 84.97 81.54 84.88

Calendar Reminder 70.51 73.94 73.07 72.82 77.08
Note Reminder 65.38 56.39 69.89 66.6 69.55

Ondevice Weather 70.86 66.66 71.17 71.49 73.5
Reminder Calendar 77.3 83.38 82.19 81.29 83.22

Communication Reminder 79.31 74.28 80.33 79.66 82.96
Places Weather 73.93 73.74 75.86 73.73 80.11

Weather Places 92.78 92.88 94.43 93.75 97.18
Average - 75.61 75.72 78.99 77.61 81.06

Table 4: Slot F1 scores on each target domain using adapted models from the nearest source domain.
hhhhhhhhhhhhSource

Target Alarm Calendar Note Ondevice Reminder Communication Places Weather Average

NoAdapt 74.82 70.51 65.38 70.86 77.3 79.31 73.93 92.78 75.61

Alarm

Union - 72.26 59.92 67.32 79.45 77.91 73.78 92.67 74.76
Daume - 72.77 66.28 70.94 81.12 80.38 75.62 93.12 77.18

C2F - 70.59 64.06 71 78.8 79.5 74.29 92.75 75.86
Pretrain - 76.68 68.12 71.8 81.25 81.5 77.1 95.03 78.78

Calendar

Union 84.46 - 50.64 64.7 83.38 75.02 71.13 93.2 74.65
Daume 84.97 - 65.43 70.12 82.19 79.78 75.21 93.1 78.69

C2F 81.54 - 66.08 71.22 81.29 80.11 73.75 93.18 78.17
Pretrain 84.88 - 69.21 72.3 83.22 82.75 77.89 95.8 80.86

Note

Union 60.26 60.42 - 65.79 69.81 76.85 70.56 90.02 70.53
Daume 66.03 67.38 - 69.54 76.65 77.83 73.49 92.09 74.72

C2F 74.68 70.51 - 71.34 77.49 79.48 74.17 92.89 77.22
Pretrain 75.52 72.4 - 71.4 80.1 82.06 76.53 94.22 78.89

Ondevice

Union 63.72 66.28 55.67 - 75.16 74.85 70.59 90.7 71.00
Daume 71.01 69.39 64.02 - 75.75 77.92 74.41 92.62 75.02

C2F 74.02 70.33 64.99 - 77.43 79.53 73.84 92.71 76.12
Pretrain 76.27 71.59 67.21 - 78.67 82.34 77.45 95.04 78.37

Reminder

Union 84.74 73.94 56.39 61.27 - 74.28 68.14 92.22 73.00
Daume 84.66 73.07 69.89 67.94 - 80.33 73.36 93.19 77.49

C2F 80.42 72.82 66.6 71.36 - 79.66 74.35 92.38 76.80
Pretrain 84.75 77.08 69.55 71.9 - 82.96 78.57 95.37 80.03

Communication

Union 58.25 54.69 65.28 62.95 63.98 - 68.16 87.13 65.78
Daume 70.4 67.41 69.14 69.26 77.67 - 73.33 92.82 74.29

C2F 74.54 70.84 65.48 70.81 77.68 - 74.15 92.79 75.18
Pretrain 76.04 74.01 68.76 73.2 80.74 - 76.83 94.58 77.74

Places

Union 71.7 67.56 45.37 53.93 67.78 63.67 - 92.88 66.13
Daume 75.69 69.01 66.11 65.46 79.01 78.42 - 94.43 75.45

C2F 78.9 71.64 66.93 71.26 79.2 79.19 - 93.75 77.27
Pretrain 76.8 74.12 67.5 72.7 81 81.89 - 97.18 78.74

Weather

Union 69.43 58.53 56.76 66.66 74.98 77.53 73.74 - 68.23
Daume 75 71.73 66.54 71.17 79.36 80.57 75.86 - 74.32

C2F 77.61 71.47 63.24 71.49 78.44 79.43 73.73 - 73.63
Pretrain 77.37 74.5 68.23 73.5 80.96 82.05 80.11 - 76.67

Average

Union 70.37 64.81 55.72 63.23 73.51 74.3 70.87 91.26 70.51
Daume 75.4 70.23 66.77 69.2 78.32 79.32 74.47 93.05 75.85

C2F 77.39 71.17 65.4 71.21 78.62 79.56 74.04 92.92 76.29
Pretrain 78.80 74.34 68.37 72.40 80.85 82.22 77.78 95.32 78.76

Table 5: Slot F1 scores of using Union, Daume, Coarse-to-Fine and pretraining on all pairs of source and
target data. The numbers in boldface are the best performing adaptation technique in each pair.

by two experienced annotators who have PhD in
linguistics and machine learning. Each annotator
first assigned mapping slot labels independently
and then both annotators collaborated to reduce
disagreement of their mapping results. Initially,
the disagreement of their mapping rate between
two annotators was about 30% because labels of
slot tagging are very diverse; furthermore, in some
cases it is not clear for human annotators if there
exists a valid mapping.

The results are shown at Table 3. Vector repre-

sentation of Li et al. (2011) increases the F1 score
slightly from 75.13 to 75.69 in C2F, but it does not
help as much in cases that require bijective map-
ping: Daume, Union and Pretrain.

In contrast, the proposed CCA based technique
consistently outperforms the NoAdapt baselines
by significant margins. More importantly, it also
outperforms manual results under all conditions.
It is perhaps not so surprising – the CCA derived
mapping is completely data driven, while human
annotators have nothing but the prior linguistic
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knowledge about the slot tags and the domain.

6.4 Main Results

The full results are shown in Table 5, where all
pairs of source and target languages are consid-
ered for domain adaptation. It is clear from the ta-
ble that we can always achieve better results using
adaptation techniques than the non-adapted mod-
els trained only on the target data. Also, our pro-
posed pretraining method outperforms other types
of adaptation in most cases.

The overall result of our experiments are shown
in Table 4. In this experiment, we compare dif-
ferent adaptation techniques using our suggested
CCA-based mapping. Here, except for NoAdapt,
we use both the target and the nearest source do-
main data. To find the nearest domain, we first
map fine grained label set to coarse label set by
using the method described in Section 5.4.1 and
then count how many coarse labels are used in a
domain. And then we can find the nearest source
domain by calculating the l2 distance between the
multinomial distributions of the source domain
and the target domain over the set of coarse labels.

For example, for CALENDAR, we identify
REMINDER as the nearest domain and vice versa
because most of their labels are attributes related
to time. In all experiments, the domain adapted
models perform better than using only target do-
main data which achieves 75.1% F1 score. Sim-
ply combining source and target domain using our
automatically mapped slot labels performs slightly
better than baseline. C2F boosts the performance
up to 77.61% and Daume is able to reach 78.99%.4

Finally, our proposed method, pretrain achieves
nearly 81.02% F1 score.

7 Conclusion

We presented an approach to take advantage of ex-
isting annotations when the data are similar but
the label sets are different. This approach was
based on label embeddings from CCA, which re-
duces the setting to a standard domain adapta-
tion problem. Combined with a novel pretrain-
ing scheme applied to hidden-unit CRFs, our ap-
proach is shown to be superior to strong baselines
in extensive experiments for slot tagging on eight
distinct personal assistant domains.

4It is known that Daume is less beneficial when the source
and target domains are similar due to the increased number of
features.
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Abstract

Spoken dialogue systems (SDS) typically
require a predefined semantic ontology
to train a spoken language understanding
(SLU) module. In addition to the anno-
tation cost, a key challenge for design-
ing such an ontology is to define a coher-
ent slot set while considering their com-
plex relations. This paper introduces a
novel matrix factorization (MF) approach
to learn latent feature vectors for utter-
ances and semantic elements without the
need of corpus annotations. Specifically,
our model learns the semantic slots for a
domain-specific SDS in an unsupervised
fashion, and carries out semantic pars-
ing using latent MF techniques. To fur-
ther consider the global semantic struc-
ture, such as inter-word and inter-slot re-
lations, we augment the latent MF-based
model with a knowledge graph propaga-
tion model based on a slot-based seman-
tic graph and a word-based lexical graph.
Our experiments show that the proposed
MF approaches produce better SLU mod-
els that are able to predict semantic slots
and word patterns taking into account their
relations and domain-specificity in a joint
manner.

1 Introduction

A key component of a spoken dialogue sys-
tem (SDS) is the spoken language understand-
ing (SLU) module—it parses the users’ utterances
into semantic representations; for example, the ut-
terance “find a cheap restaurant” can be parsed
into (price=cheap, target=restaurant) (Pieraccini
et al., 1992). To design the SLU module of a SDS,
most previous studies relied on predefined slots1

for training the decoder (Seneff, 1992; Dowding
1A slot is defined as a basic semantic unit in SLU, such as

“price” and “target” in the example.

et al., 1993; Gupta et al., 2006; Bohus and Rud-
nicky, 2009). However, these predefined semantic
slots may bias the subsequent data collection pro-
cess, and the cost of manually labeling utterances
for updating the ontology is expensive (Wang et
al., 2012).

In recent years, this problem led to the devel-
opment of unsupervised SLU techniques (Heck
and Hakkani-Tür, 2012; Heck et al., 2013; Chen
et al., 2013b; Chen et al., 2014b). In particular,
Chen et al. (2013b) proposed a frame-semantics
based framework for automatically inducing se-
mantic slots given raw audios. However, these ap-
proaches generally do not explicitly learn the la-
tent factor representations to model the measure-
ment errors (Skrondal and Rabe-Hesketh, 2004),
nor do they jointly consider the complex lexical,
syntactic, and semantic relations among words,
slots, and utterances.

Another challenge of SLU is the inference of
the hidden semantics. Considering the user utter-
ance “can i have a cheap restaurant”, from its sur-
face patterns, we can see that it includes explicit
semantic information about “price (cheap)” and
“target (restaurant)”; however, it also includes
hidden semantic information, such as “food” and
“seeking”, since the SDS needs to infer that the
user wants to “find” some cheap “food”, even
though they are not directly observed in the sur-
face patterns. Nonetheless, these implicit seman-
tics are important semantic concepts for domain-
specific SDSs. Traditional SLU models use dis-
criminative classifiers (Henderson et al., 2012) to
predict whether the predefined slots occur in the
utterances or not, ignoring the unobserved con-
cepts and the hidden semantic information.

In this paper, we take a rather radical approach:
we propose a novel matrix factorization (MF)
model for learning latent features for SLU, tak-
ing account of additional information such as the
word relations, the induced slots, and the slot re-
lations. To further consider the global coherence
of induced slots, we combine the MF model with
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a knowledge graph propagation based model, fus-
ing both a word-based lexical knowledge graph
and a slot-based semantic graph. In fact, as it
is shown in the Netflix challenge, MF is cred-
ited as the most useful technique for recommen-
dation systems (Koren et al., 2009). Also, the MF
model considers the unobserved patterns and esti-
mates their probabilities instead of viewing them
as negative examples. However, to the best of our
knowledge, the MF technique is not yet well un-
derstood in the SLU and SDS communities, and
it is not very straight-forward to use MF methods
to learn latent feature representations for semantic
parsing in SLU. To evaluate the performance of
our model, we compare it to standard discrimina-
tive SLU baselines, and show that our MF-based
model is able to produce strong results in seman-
tic decoding, and the knowledge graph propaga-
tion model further improves the performance. Our
contributions are three-fold:
• We are among the first to study matrix fac-

torization techniques for unsupervised SLU,
taking account of additional information;
• We augment the MF model with a knowl-

edge graph propagation model, increasing the
global coherence of semantic decoding using
induced slots;
• Our experimental results show that the MF-

based unsupervised SLU outperforms strong
discriminative baselines, obtaining promis-
ing results.

In the next section, we outline the related work
in unsupervised SLU and latent variable model-
ing for spoken language processing. Section 3
introduces our framework. The detailed MF ap-
proach is explained in Section 4. We then intro-
duce the global knowledge graphs for MF in Sec-
tion 5. Section 6 shows the experimental results,
and Section 7 concludes.

2 Related Work

Unsupervised SLU Tur et al. (2011; 2012) were
among the first to consider unsupervised ap-
proaches for SLU, where they exploited query logs
for slot-filling. In a subsequent study, Heck and
Hakkani-Tür (2012) studied the Semantic Web for
an unsupervised intent detection problem in SLU,
showing that results obtained from the unsuper-
vised training process align well with the perfor-
mance of traditional supervised learning. Fol-
lowing their success of unsupervised SLU, recent
studies have also obtained interesting results on
the tasks of relation detection (Hakkani-Tür et al.,
2013; Chen et al., 2014a), entity extraction (Wang

et al., 2014), and extending domain coverage (El-
Kahky et al., 2014; Chen and Rudnicky, 2014).
However, most of the studies above do not ex-
plicitly learn latent factor representations from the
data—while we hypothesize that the better robust-
ness in noisy data can be achieved by explicitly
modeling the measurement errors (usually pro-
duced by automatic speech recognizers (ASR)) us-
ing latent variable models and taking additional lo-
cal and global semantic constraints into account.
Latent Variable Modeling in SLU Early stud-
ies on latent variable modeling in speech included
the classic hidden Markov model for statistical
speech recognition (Jelinek, 1997). Recently, Ce-
likyilmaz et al. (2011) were the first to study the
intent detection problem using query logs and a
discrete Bayesian latent variable model. In the
field of dialogue modeling, the partially observ-
able Markov decision process (POMDP) (Young
et al., 2013) model is a popular technique for di-
alogue management, reducing the cost of hand-
crafted dialogue managers while producing ro-
bustness against speech recognition errors. More
recently, Tur et al. (2013) used a semi-supervised
LDA model to show improvement on the slot fill-
ing task. Also, Zhai and Williams (2014) proposed
an unsupervised model for connecting words with
latent states in HMMs using topic models, obtain-
ing interesting qualitative and quantitative results.
However, for unsupervised learning for SLU, it is
not obvious how to incorporate additional infor-
mation in the HMMs. To the best of our knowl-
edge, this paper is the first to consider MF tech-
niques for learning latent feature representations
in unsupervised SLU, taking various local and
global lexical, syntactic, and semantic information
into account.

3 The Proposed Framework

This paper introduces a matrix factorization tech-
nique for unsupervised SLU,. The proposed
framework is shown in Figure 1(a). Given the
utterances, the task of the SLU model is to de-
code their surface patterns into semantic forms
and differentiate the target semantic concepts from
the generic semantic space for task-oriented SDSs
simultaneously. Note that our model does not
require any human-defined slots and domain-
specific semantic representations for utterances.

In the proposed model, we first build a feature
matrix to represent the training utterances, where
each row represents an utterance, and each column
refers to an observed surface pattern or a induced
slot candidate. Figure 1(b) illustrates an example
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Figure 1: (a): The proposed framework. (b): Our matrix factorization method completes a partially-
missing matrix for implicit semantic parsing. Dark circles are observed facts, shaded circles are inferred
facts. The slot induction maps (yellow arrow) observed surface patterns to semantic slot candidates.
The word relation model (blue arrow) constructs correlations between surface patterns. The slot relation
model (pink arrow) learns the slot-level correlations based on propagating the automatically derived
semantic knowledge graphs. Reasoning with matrix factorization (gray arrow) incorporates these models
jointly, and produces a coherent, domain-specific SLU model.

of the matrix. Given a testing utterance, we con-
vert it into a vector based on the observed surface
patterns, and then fill in the missing values of the
slots. In the first utterance in the figure, although
the semantic slot food is not observed, the utter-
ance implies the meaning facet food. The MF ap-
proach is able to learn the latent feature vectors for
utterances and semantic elements, inferring im-
plicit semantic concepts to improve the decoding
process—namely, by filling the matrix with prob-
abilities (lower part of the matrix).

The feature model is built on the observed word
patterns and slot candidates, where the slot candi-
dates are obtained from the slot induction compo-
nent through frame-semantic parsing (the yellow
block in Figure 1(a)) (Chen et al., 2013b). Sec-
tion 4.1 explains the detail of the feature model.

In order to consider the additional inter-word
and inter-slot relations, we propose a knowledge
graph propagation model based on two knowl-
edge graphs, which includes a word relation model
(blue block) and a slot relation model (pink block),
described in Section 4.2. The method of auto-

matic knowledge graph construction is introduced
in Section 5, where we leverage distributed word
embeddings associated with typed syntactic de-
pendencies to model the relations (Mikolov et al.,
2013b; Mikolov et al., 2013c; Levy and Goldberg,
2014; Chen et al., 2015).

Finally, we train the SLU model by learning
latent feature vectors for utterances and slot can-
didates through MF techniques. Combining with
a knowledge graph propagation model based on
word/slot relations, the trained SLU model esti-
mates the probability that each semantic slot oc-
curs in the testing utterance, and how likely each
slot is domain-specific simultaneously. In other
words, the SLU model is able to transform the test-
ing utterances into domain-specific semantic rep-
resentations without human involvement.

4 The Matrix Factorization Approach

Considering the benefits brought by MF tech-
niques, including 1) modeling the noisy data, 2)
modeling hidden semantics, and 3) modeling the
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can i have a cheap restaurant 

Frame: capability 
FT LU: can FE Filler: i 

Frame: expensiveness 
FT LU: cheap 

Frame: locale by use 
FT/FE LU: restaurant 

Figure 2: An example of probabilistic frame-
semantic parsing on ASR output. FT: frame target.
FE: frame element. LU: lexical unit.

long-range dependencies between observations, in
this work we apply an MF approach to SLU mod-
eling for SDSs. In our model, we use U to de-
note the set of input utterances, W as the set of
word patterns, and S as the set of semantic slots
that we would like to predict. The pair of an ut-
terance u ∈ U and a word pattern/semantic slot
x ∈ {W + S}, 〈u, x〉, is a fact. The input to
our model is a set of observed facts O, and the
observed facts for a given utterance is denoted by
{〈u, x〉 ∈ O}. The goal of our model is to esti-
mate, for a given utterance u and a given word pat-
tern/semantic slot x, the probability, p(Mu,x = 1),
whereMu,x is a binary random variable that is true
if and only if x is the word pattern/domain-specific
semantic slot in the utterance u. We introduce a
series of exponential family models that estimate
the probability using a natural parameter θu,x and
the logistic sigmoid function:

p(Mu,x = 1 | θu,x) = σ(θu,x) =
1

1 + exp (−θu,x)
(1)

We construct a matrix M|U |×(|W |+|S|) as observed
facts for MF by integrating a feature model and a
knowledge graph propagation model below.

4.1 Feature Model
First, we build a word pattern matrix Fw with
binary values based on observations, where each
row represents an utterance and each column
refers to an observed unigram. In other words, Fw
carries the basic word vectors for the utterances,
which is illustrated as the left part of the matrix in
Figure 1(b).

To induce the semantic elements, we parse all
ASR-decoded utterances in our corpus using SE-
MAFOR2, a state-of-the-art semantic parser for
frame-semantic parsing (Das et al., 2010; Das et
al., 2013), and extract all frames from seman-
tic parsing results as slot candidates (Chen et al.,
2013b; Dinarelli et al., 2009). Figure 2 shows
an example of an ASR-decoded output parsed
by SEMAFOR. Three FrameNet-defined frames

2
http://www.ark.cs.cmu.edu/SEMAFOR/

(capability, expensiveness, and locale by use)
are generated for the utterance, which we consider
as slot candidates for a domain-specific dialogue
system (Baker et al., 1998). Then we build a slot
matrix Fs with binary values based on the induced
slots, which also denotes the slot features for the
utterances (right part of the matrix in Figure 1(b)).

To build the feature model MF , we concatenate
two matrices:

MF = [ Fw Fs ], (2)

which is the upper part of the matrix in Fig-
ure 1(b) for training utterances. Note that we do
not use any annotations, so all slot candidates are
included.

4.2 Knowledge Graph Propagation Model
Since SEMAFOR was trained on FrameNet anno-
tation, which has a more generic frame-semantic
context, not all the frames from the parsing re-
sults can be used as the actual slots in the domain-
specific dialogue systems. For instance, in Fig-
ure 2, we see that the frames “expensiveness”
and “locale by use” are essentially the key slots
for the purpose of understanding in the restaurant
query domain, whereas the “capability” frame
does not convey particularly valuable information
for SLU.

Assuming that domain-specific concepts are
usually related to each other, considering global
relations between semantic slots induces a more
coherent slot set. It is shown that the relations
on knowledge graphs help make decisions on
domain-specific slots (Chen et al., 2015). Con-
sidering two directed graphs, semantic and lexi-
cal knowledge graphs, each node in the semantic
knowledge graph is a slot candidate si generated
by the frame-semantic parser, and each node in the
lexical knowledge graph is a word wj .

• Slot-based semantic knowledge graph is
built as Gs = 〈Vs, Ess〉, where Vs = {si ∈
S} and Ess = {eij | si, sj ∈ Vs}.
• Word-based lexical knowledge graph is

built as Gw = 〈Vw, Eww〉, where Vw =
{wi ∈ W} and Eww = {eij | wi, wj ∈ Vw}.

The edges connect two nodes in the graphs if there
is a typed dependency between them. Figure 3
is a simplified example of a slot-based semantic
knowledge graph. The structured graph helps de-
fine a coherent slot set. To model the relations be-
tween words/slots based on the knowledge graphs,
we define two relation models below.
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Figure 3: A simplified example of the automati-
cally derived knowledge graph.

• Semantic Relation
For modeling word semantic rela-
tions, we compute a matrix RSw =
[Sim(wi, wj)]|W |×|W |, where Sim(wi, wj)
is the cosine similarity between the de-
pendency embeddings of the word pat-
terns wi and wj after normalization.
For slot semantic relations, we compute
RSs = [Sim(si, sj)]|S|×|S| similarly3. The
matrices RSw and RSs model not only the
semantic but functional similarity since we
use dependency-based embeddings (Levy
and Goldberg, 2014).

• Dependency Relation
Assuming that important semantic slots are
usually mutually related to each other, that
is, connected by syntactic dependencies, our
automatically derived knowledge graphs are
able to help model the dependency relations.
For word dependency relations, we compute
a matrix RDw = [r̂(wi, wj)]|W |×|W |, where
r̂(wi, wj) measures the dependency between
two word patterns wi and wj based on the
word-based lexical knowledge graph, and the
detail is described in Section 5. For slot
dependency relations, we similarly compute
RDs = [r̂(si, sj)]|S|×|S| based on the slot-
based semantic knowledge graph.

With the built word relation models (RSw and RDw )
and slot relation models (RSs and RDs ), we com-
bine them as a knowledge graph propagation ma-
trix MR

4.

MR =
[
RSDw 0

0 RSDs

]
, (3)

3For each column in RS
w and RS

s , we only keep top 10
highest values, which correspond the top 10 semantically
similar nodes.

4The values in the diagonal of MR are 0 to model the
propagation from other entries.

where RSDw = RSw +RDw and RSDs = RSs +RDs to
integrate semantic and dependency relations. The
goal of this matrix is to propagate scores between
nodes according to different types of relations in
the knowledge graphs (Chen and Metze, 2012).

4.3 Integrated Model

With a feature model MF and a knowledge graph
propagation model MR, we integrate them into a
single matrix.

M = MF · (αI + βMR) (4)

=
[
αFw + βFwRw 0

0 αFs + βFsRs

]
,

where M is the final matrix and I is the iden-
tity matrix. α and β are the weights for balanc-
ing original values and propagated values, where
α + β = 1. The matrix M is similar to MF ,
but some weights are enhanced through the knowl-
edge graph propagation model, MR. The word
relations are built by FwRw, which is the ma-
trix with internal weight propagation on the lexical
knowledge graph (the blue arrow in Figure 1(b)).
Similarly, FsRs models the slot correlations, and
can be treated as the matrix with internal weight
propagation on the semantic knowledge graph (the
pink arrow in Figure 1(b)). The propagation mod-
els can be treated as running a random walk algo-
rithm on the graphs.
Fs contains all slot candidates generated by

SEMAFOR, which may include some generic
slots (such as capability), so the original feature
model cannot differentiate the domain-specific
and generic concepts. By integrating with Rs, the
semantic and dependency relations can be propa-
gated via the knowledge graph, and the domain-
specific concepts may have higher weights based
on the assumption that the slots for dialogue sys-
tems are often mutually related (Chen et al., 2015).
Hence, the structure information can be automati-
cally involved in the matrix. Also, the word rela-
tion model brings the same function, but now on
the word level. In conclusion, for each utterance,
the integrated model not only predicts the proba-
bility that semantic slots occur but also considers
whether the slots are domain-specific. The follow-
ing sections describe the learning process.

4.4 Parameter Estimation

The proposed model is parameterized through
weights and latent component vectors, where the
parameters are estimated by maximizing the log
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likelihood of observed data (Collins et al., 2001).

θ∗ = arg max
θ

∏
u∈U

p(θ |Mu) (5)

= arg max
θ

∏
u∈U

p(Mu | θ)p(θ)

= arg max
θ

∑
u∈U

ln p(Mu | θ)− λθ,

where Mu is the vector corresponding to the utter-
ance u from Mu,x in (1), because we assume that
each utterance is independent of others.

To avoid treating unobserved facts as designed
negative facts, we consider our positive-only data
as implicit feedback. Bayesian Personalized Rank-
ing (BPR) is an optimization criterion that learns
from implicit feedback for MF, which uses a vari-
ant of the ranking: giving observed true facts
higher scores than unobserved (true or false)
facts (Rendle et al., 2009). Riedel et al. (2013)
also showed that BPR learns the implicit relations
for improving the relation extraction task.

4.4.1 Objective Function
To estimate the parameters in (5), we create a
dataset of ranked pairs from M in (4): for each
utterance u and each observed fact f+ = 〈u, x+〉,
where Mu,x ≥ δ, we choose each word pat-
tern/slot x− such that f− = 〈u, x−〉, where
Mu,x < δ, which refers to the word pattern/slot we
have not observed to be in utterance u. That is, we
construct the observed data O from M . Then for
each pair of facts f+ and f−, we want to model
p(f+) > p(f−) and hence θf+ > θf− accord-
ing to (1). BPR maximizes the summation of each
ranked pair, where the objective is∑
u∈U

ln p(Mu | θ) =
∑
f+∈O

∑
f− 6∈O

lnσ(θf+ − θf−). (6)

The BPR objective is an approximation to the
per utterance AUC (area under the ROC curve),
which directly correlates to what we want to
achieve – well-ranked semantic slots per utterance.

4.4.2 Optimization
To maximize the objective in (6), we employ a
stochastic gradient descent (SGD) algorithm (Ren-
dle et al., 2009). For each randomly sampled ob-
served fact 〈u, x+〉, we sample an unobserved fact
〈u, x−〉, which results in |O| fact pairs 〈f−, f+〉.
For each pair, we perform an SGD update using
the gradient of the corresponding objective func-
tion for matrix factorization (Gantner et al., 2011).

can i have a cheap restaurant 

ccomp 

amod 
dobj nsubj det 

capability expensiveness locale_by_use 

Figure 4: The dependency parsing result.

5 Knowledge Graph Construction

This section introduces the procedure of con-
structing knowledge graphs in order to estimate
r̂(wi, wj) for building RDw and r̂(si, sj) for RDs
in Section 4.2. Considering the relations in the
knowledge graphs, the edge weights for Eww and
Ess are measured as r̂(wi, wj) and r̂(si, sj) based
on the dependency parsing results respectively.

The example utterance “can i have a cheap
restaurant” and its dependency parsing result are
illustrated in Figure 4. The arrows denote the
dependency relations from headwords to their
dependents, and words on arcs denote types of the
dependencies. All typed dependencies between
two words are encoded in triples and form a
word-based dependency set Tw = {〈wi, t, wj〉},
where t is the typed dependency between the
headword wi and the dependent wj . For example,
Figure 4 generates 〈restaurant, AMOD, cheap〉,
〈restaurant, DOBJ, have〉, etc. for Tw, Sim-
ilarly, we build a slot-based dependency set
Ts = {〈si, t, sj〉} by transforming dependen-
cies between slot-fillers into ones between
slots. For example, 〈restaurant, AMOD, cheap〉
from Tw is transformed into
〈locale by use, AMOD,expensiveness〉 for
building Ts, because both sides of the non-dotted
line are parsed as slot-fillers by SEMAFOR.

5.1 Relation Weight Estimation

For the edges in the knowledge graphs, we model
the relations between two connected nodes xi and
xj as r̂(xi, xj), where x is either a slot s or a word
pattern w. Since the weights are measured based
on the relations between nodes regardless of the
directions, we combine the scores of two direc-
tional dependencies:

r̂(xi, xj) = r(xi → xj) + r(xj → xi), (7)

where r(xi → xj) is the score estimating the de-
pendency including xi as a head and xj as a de-
pendent. We propose a scoring function for r(·)
using dependency-based embeddings.
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Table 1: The example contexts extracted for training dependency-based word/slot embeddings.

Typed Dependency Relation Target Word Contexts

Word 〈restaurant, AMOD, cheap〉 restaurant cheap/AMOD

cheap restaurant/AMOD−1

Slot 〈locale by use, AMOD,expensiveness〉 locale by use expensiveness/AMOD

expansiveness locale by use/AMOD−1

5.1.1 Dependency-Based Embeddings
Most neural embeddings use linear bag-of-words
contexts, where a window size is defined to pro-
duce contexts of the target words (Mikolov et
al., 2013c; Mikolov et al., 2013b; Mikolov et
al., 2013a). However, some important contexts
may be missing due to smaller windows, while
larger windows capture broad topical content. A
dependency-based embedding approach was pro-
posed to derive contexts based on the syntactic re-
lations the word participates in for training embed-
dings, where the embeddings are less topical but
offer more functional similarity compared to orig-
inal embeddings (Levy and Goldberg, 2014).

Table 1 shows the extracted dependency-based
contexts for each target word from the example in
Figure 4, where headwords and their dependents
can form the contexts by following the arc on a
word in the dependency tree, and −1 denotes the
directionality of the dependency. After replacing
original bag-of-words contexts with dependency-
based contexts, we can train dependency-based
embeddings for all target words (Yih et al., 2014;
Bordes et al., 2011; Bordes et al., 2013).

For training dependency-based word embed-
dings, each target x is associated with a vector
vx ∈ Rd and each context c is represented as a
context vector vc ∈ Rd, where d is the embed-
ding dimensionality. We learn vector representa-
tions for both targets and contexts such that the
dot product vx · vc associated with “good” target-
context pairs belonging to the training data D is
maximized, leading to the objective function:

arg max
vx,vc

∑
(w,c)∈D

log
1

1 + exp(−vc · vx)
, (8)

which can be trained using stochastic-gradient up-
dates (Levy and Goldberg, 2014). Then we can
obtain the dependency-based slot and word em-
beddings using Ts and Tw respectively.

5.1.2 Embedding-Based Scoring Function
With trained dependency-based embeddings, we
estimate the probability that xi is the headword
and xj is its dependent via the typed dependency t

as

P (xi −→
t
xj) =

Sim(xi, xj/t) + Sim(xj , xi/t−1)
2

,

(9)
where Sim(xi, xj/t) is the cosine similarity be-
tween word/slot embeddings vxi

and context em-
beddings vxj/t after normalizing to [0, 1].

Based on the dependency set Tx, we use t∗xi→xj

to denote the most possible typed dependency with
xi as a head and xj as a dependent.

t∗xi→xj
= arg max

t
C(xi −→

t
xj), (10)

where C(xi −→
t
xj) counts how many times the

dependency 〈xi, t, xj〉 occurs in the dependency
set Tx. Then the scoring function r(·) in (7) that
estimates the dependency xi → xj is measured as

r(xi → xj) = C(xi −−−−→
t∗xi→xj

xj)·P (xi −−−−→
t∗xi→xj

xj),

(11)
which is equal to the highest observed frequency
of the dependency xi → xj among all types from
Tx and additionally weighted by the estimated
probability. The estimated probability smoothes
the observed frequency to avoid overfitting due to
the smaller dataset. Figure 3 is a simplified exam-
ple of an automatically derived semantic knowl-
edge graph with the most possible typed depen-
dencies as edges based on the estimated weights.
Then the relation weights r̂(xi, xj) can be ob-
tained by (7) in order to build RDw and RDs ma-
trices.

6 Experiments

6.1 Experimental Setup

In this experiment, we used the Cambridge Uni-
versity SLU corpus, previously used on several
other SLU tasks (Henderson et al., 2012; Chen et
al., 2013a). The domain of the corpus is about
restaurant recommendation in Cambridge; sub-
jects were asked to interact with multiple SDSs
in an in-car setting. The corpus contains a to-
tal number of 2,166 dialogues, including 15,453
utterances (10,571 for self-training and 4,882 for
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Table 2: The MAP of predicted slots (%); † indicates that the result is significantly better than the Logistic
Regression (row (b)) with p < 0.05 in t-test.

Approach
ASR Manual

w/o w/ Explicit w/o w/ Explicit

Explicit
SVM (a) 32.48 36.62
MLR (b) 33.96 38.78

Implicit
Baseline

Random (c) 3.43 22.45 2.63 25.09
Majority (d) 15.37 32.88 16.43 38.41

MF
Feature (e) 24.24 37.61† 22.55 45.34†

Feature + KGP (f) 40.46† 43.51† 52.14† 53.40†

speak on topic addr 
area 

food 

phone 

part orientational 
direction 
locale 
part inner outer 

food 
origin 

contacting 

postcode 

price range 

task 

type 

sending 

commerce scenario 
expensiveness 
range 

seeking 
desiring 
locating 

locale by use 
building 

Figure 5: The mappings from induced slots
(within blocks) to reference slots (right sides of
arrows).

testing). The data is gender-balanced, with slightly
more native than non-native speakers. The vocab-
ulary size is 1868. An ASR system was used to
transcribe the speech; the word error rate was re-
ported as 37%. There are 10 slots created by do-
main experts: addr, area, food, name, phone,
postcode, price range, signature, task, and
type.

For parameter setting, the weights for balanc-
ing feature models and propagation models, α and
β, are set as 0.5 to give the same influence, and
the threshold for defining the unobserved facts δ
is set as 0.5 for all experiments. We use the Stan-
ford Parser5 to obtain the collapsed typed syntac-
tic dependencies (Socher et al., 2013) and set the
dimensionality of embeddings d = 300 in all ex-
periments.

6.2 Evaluation Metrics
To evaluate the accuracy of the automatically
decoded slots, we measure their quality as the
proximity between predicted slots and reference
slots. Figure 5 shows the mappings that indicate
semantically related induced slots and reference
slots (Chen et al., 2013b).

To eliminate the influence of threshold selection
when predicting semantic slots, in the following

5
http://nlp.stanford.edu/software/lex-parser.

shtml

metrics, we take the whole ranking list into ac-
count and evaluate the performance by the met-
rics that are independent of the selected threshold.
For each utterance, with the predicted probabilities
of all slot candidates, we can compute an average
precision (AP) to evaluate the performance of SLU
by treating the slots with mappings as positive. AP
scores the ranking result higher if the correct slots
are ranked higher, which also approximates to the
area under the precision-recall curve (Boyd et al.,
2012). Mean average precision (MAP) is the met-
ric for evaluating all utterances. For all experi-
ments, we perform a paired t-test on the AP scores
of the results to test the significance.

6.3 Evaluation Results
Table 2 shows the MAP performance of predicted
slots for all experiments on ASR and manual tran-
scripts. For the first baseline using explicit seman-
tics, we use the observed data to self-train mod-
els for predicting the probability of each seman-
tic slot by support vector machine (SVM) with a
linear kernel and multinomial logistic regression
(MLR) (row (a)-(b)) (Pedregosa et al., 2011; Hen-
derson et al., 2012). It is shown that SVM and
MLR perform similarly, and MLR is slightly bet-
ter than SVM because it has better capability of
estimating probabilities. For modeling implicit
semantics, two baselines are performed as refer-
ences, Random (row (c)) and Majority (row (d)),
where the former assigns random probabilities for
all slots, and the later assigns probabilities for the
slots based on their frequency distribution. To im-
prove probability estimation, we further integrate
the results from implicit semantics with the better
result from explicit approaches, MLR (row (b)),
by averaging the probability distribution from two
results.

Two baselines, Random and Majority, cannot
model the implicit semantics, producing poor re-
sults. The results of Random integrated with
MLR significantly degrades the performance of

490



Table 3: The MAP of predicted slots using different types of relation models in MR (%); † indicates that
the result is significantly better than the feature model (column (a)) with p < 0.05 in t-test.

Model Feature Knowledge Graph Propagation Model
Rel. (a) None (b) Semantic (c) Dependency (d) Word (e) Slot (f) All

MR -
[ RSw 0

0 RSs

] [ RDw 0
0 RDs

] [ RSDw 0
0 0

] [ 0 0
0 RSDs

] [ RSDw 0
0 RSDs

]
ASR 37.61 41.39† 41.63† 39.19† 42.10† 43.51†

Manual 45.34 51.55† 49.04† 45.18 49.91† 53.40†

MLR for both ASR and manual transcripts. Also,
the results of Majority integrated with MLR does
not produce any difference compared to the MLR
baseline. Among the proposed MF approaches,
only using feature model for building the ma-
trix (row (e)) achieves 24.2% and 22.6% of MAP
for ASR and manual results respectively, which
are worse than two baselines using explicit se-
mantics. However, with the combination of ex-
plicit semantics, using only the feature model sig-
nificantly outperforms the baselines, where the
performance comes from about 34.0% to 37.6%
and from 38.8% to 45.3% for ASR and manual
results respectively. Additionally integrating a
knowledge graph propagation (KGP) model (row
(e)) outperforms the baselines for both ASR and
manual transcripts, and the performance is fur-
ther improved by combining with explicit seman-
tics (achieving MAP of 43.5% and 53.4%). The
experiments show that the proposed MF models
successfully learn the implicit semantics and con-
sider the relations and domain-specificity simulta-
neously.

6.4 Discussion and Analysis

With promising results obtained by the proposed
models, we analyze the detailed difference be-
tween different relation models in Table 3.

6.4.1 Effectiveness of Semantic and
Dependency Relation Models

To evaluate the effectiveness of semantic and de-
pendency relations, we consider each of them in-
dividually inMR of (3) (columns (b) and (c) in Ta-
ble 3). Comparing to the original model (column
(a)), both modeling semantic relations and mod-
eling dependency relations significantly improve
the performance for ASR and manual results. It is
shown that semantic relations help the SLU model
infer the implicit meaning, and then the predic-
tion becomes more accurate. Also, dependency re-
lations successfully differentiate the generic con-
cepts from the domain-specific concepts, so that
the SLU model is able to predict more coherent

set of semantic slots (Chen et al., 2015). Integrat-
ing two types of relations (column (f)) further im-
proves the performance.

6.4.2 Comparing Word/ Slot Relation Models
To analyze the performance results from inter-
word and inter-slot relations, the columns (d) and
(e) show the results considering only word rela-
tions and only slot relations respectively. It can
be seen that the inter-slot relation model signif-
icantly improves the performance for both ASR
and manual results. However, the inter-word re-
lation model only performs slightly better results
for ASR output (from 37.6% to 39.2%), and there
is no difference after applying the inter-word rela-
tion model on manual transcripts. The reason may
be that inter-slot relations carry high-level seman-
tics that align well with the structure of SDSs, but
inter-word relations do not. Nevertheless, combin-
ing two relations (column (f)) outperforms both re-
sults for ASR and manual transcripts, showing that
different types of relations can compensate each
other and then benefit the SLU performance.

7 Conclusions

This paper presents an MF approach to self-train
the SLU model for semantic decoding in an unsu-
pervised way. The purpose of the proposed model
is not only to predict the probability of each se-
mantic slot but also to distinguish between generic
semantic concepts and domain-specific concepts
that are related to an SDS. The experiments show
that the MF-based model obtains promising re-
sults, outperforming strong discriminative base-
lines.
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Abstract

Automatic speech recognition (ASR) out-
puts often contain various disfluencies. It
is necessary to remove these disfluencies
before processing downstream tasks. In
this paper, an efficient disfluency detection
approach based on right-to-left transition-
based parsing is proposed, which can effi-
ciently identify disfluencies and keep ASR
outputs grammatical. Our method exploits
a global view to capture long-range de-
pendencies for disfluency detection by in-
tegrating a rich set of syntactic and dis-
fluency features with linear complexity.
The experimental results show that our
method outperforms state-of-the-art work
and achieves a 85.1% f-score on the com-
monly used English Switchboard test set.
We also apply our method to in-house an-
notated Chinese data and achieve a sig-
nificantly higher f-score compared to the
baseline of CRF-based approach.

1 Introduction

With the development of the mobile internet,
speech inputs have become more and more popu-
lar in applications where automatic speech recog-
nition (ASR) is the key component to convert
speech into text. ASR outputs often contain var-
ious disfluencies which create barriers to sub-
sequent text processing tasks like parsing, ma-
chine translation and summarization. Usually,
disfluencies can be classified into uncompleted
words, filled pauses (e.g. “uh”, “um”), discourse
markers (e.g. “I mean”), editing terms (e.g. “you
know”) and repairs. To identify and remove dis-
fluencies, straightforward rules can be designed
to tackle the former four classes of disfluencies
since they often belong to a closed set. However,
the repair type disfluency poses particularly more

difficult problems as their form is more arbitrary.
Typically, as shown in Figure 1, a repair disflu-
ency type consists of a reparandum (“to Boston”)
and a filled pause (“um”), followed by its repair
(“to Denver”). This special structure of disfluency
constraint, which exists in many languages such
as English and Chinese, reflects the scenarios of
spontaneous speech and conversation, where peo-
ple often correct preceding words with following
words when they find that the preceding words
are wrong or improper. This procedure might be
interrupted and inserted with filled pauses when
people are thinking or hesitating. The challenges
of detecting repair disfluencies are that reparan-
dums vary in length, may occur everywhere, and
are sometimes nested.

I want a flight to Boston um to Denver 

FPRM RP

correct

Figure 1: A typical example of repair type disflu-
ency consists of FP (Filled Pause), RM (Reparan-
dum), and RP (Repair). The preceding RM is cor-
rected by the following RP.

There are many related works on disfluency
detection, that mainly focus on detecting repair
type of disfluencies. Straightforwardly, disflu-
ency detection can be treated as a sequence la-
beling problem and solved by well-known ma-
chine learning algorithms such as conditional ran-
dom fields (CRF) or max-margin markov network
(M3N) (Liu et al., 2006; Georgila, 2009; Qian
and Liu, 2013), and prosodic features are also
concerned in (Kahn et al., 2005; Zhang et al.,
2006). These methods achieve good performance,
but are not powerful enough to capture compli-
cated disfluencies with longer spans or distances.
Recently, syntax-based models such as transition-
based parser have been used for detecting disflu-
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encies (Honnibal and Johnson, 2014; Rasooli and
Tetreault, 2013). These methods can jointly per-
form dependency parsing and disfluency detec-
tion. But in these methods, great efforts are made
to distinguish normal words from disfluent words
as decisions cannot be made imminently from left
to right, leading to inefficient implementation as
well as performance loss.

In this paper, we propose detecting disfluencies
using a right-to-left transition-based dependency
parsing (R2L parsing), where the words are con-
sumed from right to left to build the parsing tree
based on which the current word is predicted to be
either disfluent or normal. The proposed models
cater to the disfluency constraint and integrate a
rich set of features extracted from contexts of lexi-
cons and partial syntactic tree structure, where the
parsing model and disfluency predicting model are
jointly calculated in a cascaded way. As shown in
Figure 2(b), while the parsing tree is being built,
disfluency tags are predicted and attached to the
disfluency nodes. Our models are quite efficient
with linear complexity of 2∗N (N is the length of
input).

was

great

was

great

did

he

did

root root

N

NN N N

N XX

(a) (b)

he

Figure 2: An instance of the detection procedure
where ‘N’ stands for a normal word and ‘X’ a dis-
fluency word. Words with italic font are Reparan-
dums. (a) is the L2R detecting procedure and (b)
is the R2L procedure.

Intuitively, compared with previous syntax-
based work such as (Honnibal and Johnson,
2014) that uses left-to-right transition-based pars-
ing (L2R parsing) model, our proposed approach
simplifies disfluency detection by sequentially
processing each word, without going back to mod-
ify the pre-built tree structure of disfluency words.
As shown in Figure 2(a), the L2R parsing based
joint approach needs to cut the pre-built depen-
dency link between “did” and “he” when “was”
is identified as the repair of “did”, which is never
needed in our method as Figure 2(b). Furthermore,
our method overcomes the deficiency issue in de-

coding of L2R parsing based joint method, mean-
ing the number of parsing transitions for each hy-
pothesis path is not identical to 2 ∗N , which leads
to the failure of performing optimal search during
decoding. For example, the involvement of the ex-
tra cut operation in Figure 2(a) destroys the com-
petition scoring that accumulates over 2 ∗N tran-
sition actions among hypotheses in the standard
transition-based parsing. Although the heuristic
score, such as the normalization of transition count
(Honnibal and Johnson, 2014), can be introduced,
the total scores of all hypotheses are still not sta-
tistically comparable from a global view.

We conduct the experiments on English Switch-
board corpus. The results show that our method
can achieve a 85.1% f-score with a gain of 0.7
point over state-of-the-art M3N labeling model in
(Qian and Liu, 2013) and a gain of 1 point over
state-of-the-art joint model proposed in (Honnibal
and Johnson, 2014). We also apply our method on
Chinese annotated data. As there is no available
public data in Chinese, we annotate 25k Chinese
sentences manually for training and testing. We
achieve 71.2% f-score with 15 points gained com-
pared to the CRF-based baseline, showing that our
models are robust and language independent.

2 Transition-based dependency parsing

In a typical transition-based parsing, the Shift-
Reduce decoding algorithm is applied and a queue
and stack are maintained (Zhang and Clark,
2008). The queue stores the stream of the input
and the front of the queue is indexed as the current
word. The stack stores the unfinished words which
may be linked to the current word or a future word
in the queue. When words in the queue are con-
sumed in sequential order, a set of transition ac-
tions is applied to build a parsing tree. There are
four kinds of transition actions in the parsing pro-
cess (Zhang and Clark, 2008), as described below.

• Shift : Removes the front of the queue and
pushes it to the stack.

• Reduce : Pops the top of the stack.

• LeftArc : Pops the top of the stack, and links
the popped word to the front of the queue.

• RightArc : Links the front of the queue to the
top of the stack and, removes the front of the
queue and pushes it to the stack.

The choice of each transition action during pars-
ing is scored by a generalized perceptron (Collins,
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2002) which can be trained over a rich set of non-
local features. In decoding, beam search is per-
formed to search the optimal sequence of transi-
tion actions. As each word must be pushed to the
stack once and popped off once, the number of ac-
tions needed to parse a sentence is always 2 ∗ N ,
where N is the length of the sentence.

Transition-based dependency parsing (Zhang
and Clark, 2008) can be performed in either a left-
to-right or a right-to-left way, both of which have
a performance that is comparable as illustrated in
Section 4. However, when they are applied to
disfluency detection, their behaviors are very dif-
ferent due to the disfluency structure constraint.
We prove that right-to-left transition-based parsing
is more efficient than left-to-right transition-based
parsing for disfluency detection.

3 Our method

3.1 Model
Unlike previous joint methods (Honnibal and
Johnson, 2014; Rasooli and Tetreault, 2013), we
introduce dependency parsing into disfluency de-
tection from theory. In the task of disfluency
detection, we are given a stream of unstructured
words from automatic speech recognition (ASR).
We denote the word sequence with Wn

1 := w1,
w2,w3,...,wn, which is actually the inverse order of
ASR words that should be wn, wn−1,wn−2,...,w1.
The output of the task is a sequence of binary tags
denoted as Dn

1 = d1, d2,d3,...,dn, where each di
corresponds to wi, indicating whether wi is a dis-
fluency word (X) or not (N).1

Our task can be modeled as formula (1), which
is to search the best sequence D∗ given the stream
of words Wn

1 .

D∗ = argmaxDP (Dn
1 |W n

1 ) (1)

The dependency parsing tree is introduced into
model (1) to guide detection. The rewritten for-
mula is shown below:

D∗ = argmaxD

∑
T

P (Dn
1 , T |W n

1 ) (2)

We jointly optimize disfluency detection and
parsing with form (3), rather than considering all
possible parsing trees:

(D∗, T ∗) = argmax(D,T )P (Dn
1 , T |W n

1 ) (3)
1We just use tag ’N’ to represent a normal word, in prac-

tice normal words will not be tagged anything by default.

As both the dependency tree and the disfluency
tags are generated word by word, we decompose
formula (3) into:

(D∗, T ∗) = argmax(D,T )

n∏
i=1

P (di, T
i
1|W i

1, T
i−1
1 )

(4)

where T i1 is the partial tree after word wi is con-
sumed, di is the disfluency tag of wi.

We simplify the joint optimization in a cascaded
way with two different forms (5) and (6).

(D∗, T ∗) = argmax(D,T )

n∏
i=1

P (T i
1|W i

1, T
i−1
1 )

× P (di|W i
1, T

i
1) (5)

(D∗, T ∗) = argmax(D,T )

n∏
i=1

P (di|W i
1, T

i−1
1 )

× P (T i
1|W i

1, T
i−1
1 , di) (6)

Here, P (T i1|.) is the parsing model, and P (di|.) is
the disfluency model used to predict the disluency
tags on condition of the contexts of partial trees
that have been built.

In (5), the parsing model is calculated first, fol-
lowed by the calculation of the disfluency model.
Inspired by (Zhang et al., 2013), we associate the
disfluency tags to the transition actions so that the
calculation of P (di|W i

1, T
i
1) can be omitted as di

can be inferred from the partial tree T i1. We then
get

(D∗, T ∗) = argmax(D,T )

n∏
i=1

P (di, T
i
1|W i

1, T
i−1
1 )

(7)

Where the parsing and disfluency detection are
unified into one model. We refer to this model as
the Unified Transition(UT) model.

While in (6), the disfluency model is calculated
first, followed by the calculation of the parsing
model. We model P (di|.) as a binary classifier to
classify whether a word is disfluent or not. We re-
fer to this model as the binary classifier transition
(BCT) model.

3.2 Unified transition-based model (UT)
In model (7), in addition to the standard 4 transi-
tion actions mentioned in Section 2, the UT model
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adds 2 new transition actions which extend the
original Shift and RightArc transitions as shown
below:

• Dis Shift: Performs what Shift does then
marks the pushed word as disfluent.
• Dis RightArc: Adds a virtual link from the

front of the queue to the top of the stack
which is similar to Right Arc, marking the
front of the queue as disfluenct and pushing
it to the stack.

Figure 3 shows an example of how the UT
model works. Given an input “he did great was
great”, the optimal parsing tree is predicted by the
UT model. According to the parsing tree, we can
get the disfluency tags “N X X N N” which have
been attached to each word. To ensure the normal
words are built grammatical in the parse tree, we
apply a constraint to the UT model.
UT model constraint: When a word is marked
disfluent, all the words in its left and right sub-
trees will be marked disfluent and all the links of
its descendent offsprings will be converted to vir-
tual links, no matter what actions are applied to
these words.

For example, the italic word “great” will be
marked disfluent, no matter what actions are per-
formed on it.

was

great did he

root

N NX

N

great

X

Figure 3: An example of UT model, where ‘N’
means the word is a fluent word and ‘X’ means it is
disfluent. Words with italic font are Reparandums.

3.3 A binary classifier transition-based
model (BCT)

In model (6), we perform the binary classifier
and the parsing model together by augmenting
the Shift-Reduce algorithm with a binary classifier
transition(BCT) action:

• BCT : Classifies whether the current word is
disfluent or not. If it is, remove it from the

queue, push it into the stack which is simi-
lar to Shift and then mark it as disfluent, oth-
erwise the original transition actions will be
used.

It is noted that when BCT is performed, the next
action must be Reduce. This constraint guarantees
that any disfluent word will not have any descen-
dent offspring. Figure 2(b) shows an example of
the BCT model. When the partial tree “great was”
is built, the next word “did” is obviously disfluent.
Unlike UT model, the BCT will not link the word
“did” to any word. Instead only a virtual link will
add it to the virtual root.

3.4 Training and decoding
In practice, we use the same linear model for both
models (6) and (7) to score a parsing tree as:

Score(T ) =
∑

action

φ(action) · ~λ

Where φ(action) is the feature vector extracted
from partial hypothesis T for a certain action and
~λ is the weight vector. φ(action) ·~λ calculates the
score of a certain transition action. The score of a
parsing tree T is the sum of action scores.

In addition to the basic features introduced in
(Zhang and Nivre, 2011) that are defined over bag
of words and POS-tags as well as tree-based con-
text, our models also integrate three classes of
new features combined with Brown cluster fea-
tures (Brown et al., 1992) that relate to the right-
to-left transition-based parsing procedure as de-
tailed below.
Simple repetition function

• δI(a, b): A logic function which indicates
whether a and b are identical.

Syntax-based repetition function

• δL(a, b): A logic function which indicates
whether a is a left child of b.

• δR(a, b): A logic function which indicates
whether a is a right child of b.

Longest subtree similarity function

• NI(a, b): The count of identical children on
the left side of the root node between subtrees
rooted at a and b.

• N#(a0..n, b): The count of words among a0

.. an that are on the right of the subtree rooted
at b.
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Table 1 summarizes the features we use in the
model computation, where ws denotes the top
word of the stack, w0 denotes the front word of
the queue and w0..2 denotes the top three words of
the queue. Every pi corresponds to the POS-tag
of wi and p0..2 represents the POS-tags of w0..2.
In addition, wic means the Brown cluster of wi.
With these symbols, several new feature templates
are defined in Table 1. Both our models have the
same feature templates.

Basic
features

All templates in (Zhang and
Nivre, 2011)

New disfluency features
Function
unigrams

δI(ws, w0);δI(ps, p0);
δL(w0, ws);δL(p0, ps);
δR(w0, ws);δR(p0, ps);
NI(w0, ws);NI(p0, ps);
N#(w0..2, ws);N#(p0..2, ps);

Function
bigrams

δI(ws, w0)δI(ps, p0);
δL(w0, ws)δL(p0, ps);
δR(w0, ws)δR(p0, ps);
NI(w0, ws)NI(p0, ps);
N#(w0..2, ws)N#(p0..2, ps);
δI(ws, w0)wsc;
δI(ws, w0)w0c;

Function
trigrams

wsw0δI(ws, w0);
wsw0δI(ps, p0);

Table 1: Feature templates designed for disfluency
detection and dependency parsing.

Similar to the work in (Zhang and Clark, 2008;
Zhang and Nivre, 2011), we train our models by
averaged perceptron (Collins, 2002). In decod-
ing, beam search is performed to get the optimal
parsing tree as well as the tag sequence.

4 Experiments

4.1 Experimental setup

Our training data is the Switchboard portion of
the English Penn Treebank (Marcus et al., 1993)
corpus, which consists of telephone conversations
about assigned topics. As not all the Switchboard
data has syntactic bracketing, we only use the sub-
corpus of PAESED/MRG/SWBD. Following the
experiment settings in (Charniak and Johnson,
2001), the training subcorpus contains directories
2 and 3 in PAESED/MRG/SWBD and directory
4 is split into test and development sets. We use
the Stanford dependency converter (De Marneffe

et al., 2006) to get the dependency structure from
the Switchboard corpus, as Honnibal and John-
son (2014) prove that Stanford converter is robust
to the Switchboard data.

For our Chinese experiments, no public Chinese
corpus is available. We annotate about 25k spo-
ken sentences with only disfluency annotations ac-
cording to the guideline proposed by Meteer et al.
(1995). In order to generate similar data format
as English Switchboard corpus, we use Chinese
dependency parsing trained on the Chinese Tree-
bank corpus to parse the annotated data and use
these parsed data for training and testing . For our
Chinese experiment setting, we respectively select
about 2k sentences for development and testing.
The rest are used for training.

To train the UT model, we create data for-
mat adaptation by replacing the original Shift and
RightArc of disfluent words with Dis Shift and
Dis RightArc, since they are just extensions of
Shift and RightArc. For the BCT model, disflu-
ent words are directly depended to the root node
and all their links and labels are removed. We
then link all the fluent children of disfluent words
to parents of disfluent words. We also remove
partial words and punctuation from data to simu-
late speech recognizer results where such informa-
tion is not available (Johnson and Charniak, 2004).
Additionally, following Honnibal and Johnson
(2014), we remove all one token sentences as these
sentences are trivial for disfluency detection, then
lowercase the text and discard filled pauses like
“um” and “uh”.

The evaluation metrics of disfluency detection
are precision (Prec.), recall (Rec.) and f-score
(F1). For parsing accuracy metrics, we use unla-
beled attachment score (UAS) and labeled attach-
ment score (LAS). For our primary comparison,
we evaluate the widely used CRF labeling model,
the state-of-the-art M3N model presented by Qian
and Liu (2013) which has been commonly used as
baseline in previous works and the state-of-the-art
L2R parsing based joint model proposed by Hon-
nibal and Johnson (2014).

4.2 Experimental results

4.2.1 Performance of disfluency detection on
English Swtichboard corpus

The evaluation results of both disfluency detec-
tion and parsing accuracy are presented in Table
2. The accuracy of M3N directly refers to the re-
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Disfluency detection accuracy Parsing accuracy
Method Prec. Rec. F1 UAS LAS
CRF(BOW) 81.2% 44.9% 57.8% 88.7% 84.7%
CRF(BOW+POS) 88.3% 62.2% 73.1% 89.2% 85.6%
M3N N/A N/A 84.1% N/A N/A
M3N† 90.5% 79.1% 84.4% 91% 88.2%
H&J N/A N/A 84.1% 90.5% N/A
UT(basic features) 86% 72.5% 78.7% 91.9% 89.0%
UT(+new features) 88.8% 75.1% 81.3% 92.1% 89.4%
BCT(basic features) 88.2% 77.9% 82.7% 92.1% 89.3%
BCT(+new features) 90.3% 80.5% 85.1% 92.2% 89.6%

Table 2: Disfluency detection and parsing accuracies on English Switchboard data. The accuracy of
M3N refers to the result reported in (Qian and Liu, 2013). H&J is the L2R parsing based joint model in
(Honnibal and Johnson, 2014). The results of M3N† come from the experiments with toolkit released by
Qian and Liu (2013) on our pre-processed corpus.

sults reported in (Qian and Liu, 2013). The re-
sults of M3N† come from our experiments with the
toolkit2 released by Qian and Liu (2013) which
uses our data set with the same pre-processing. It
is comparable between our models and the L2R
parsing based joint model presented by Honni-
bal and Johnson (2014), as we all conduct experi-
ments on the same pre-processed data set. In order
to compare parsing accuracy, we use the CRF and
M3N† model to pre-process the test set by remov-
ing all the detected disfluencies, then evaluate the
parsing performance on the processed set. From
the table, our BCT model with new disfluency fea-
tures achieves the best performance on disfluency
detection as well as dependency parsing.

The performance of the CRF model is low, be-
cause the local features are not powerful enough
to capture long span disfluencies. Our main com-
parison is with the M3N† labeling model and the
L2R parsing based model by Honnibal and John-
son (2014). As illustrated in Table 2, the BCT
model outperforms the M3N† model (we got an
accuracy of 84.4%, though 84.1% was reported
in their paper) and the L2R parsing based model
respectively by 0.7 point and 1 point on disflu-
ency detection, which shows our method can ef-
ficiently tackle disfluencies. This is because our
method can cater extremely well to the disfluency
constraint and perform optimal search with iden-
tical transition counts over all hypotheses in beam
search. Furthermore, our global syntactic and dis-

2The toolkit is available at
https://code.google.com/p/disfluency-detection/downloads.

fluency features can help capture long-range de-
pendencies for disfluency detection. However, the
UT model does not perform as well as BCT. This
is because the UT model suffers from the risk
that normal words may be linked to disfluencies
which may bring error propagation in decoding.
In addition our models with only basic features
respectively score about 3 points below the mod-
els adding new features, which shows that these
features are important for disfluency detection. In
comparing parsing accuracy, our BCT model out-
performs all the other models, showing that this
model is more robust on disfluent parsing.

4.2.2 Performance of disfluency detection on
different part-of-speeches

In this section, we further analyze the frequency
of different part-of-speeches in disfluencies and
test the performance on different part-of-speeches.
Five classes of words take up more than 73% of
all disfluencies as shown in Table 3, which are
pronouns (contain PRP and PRP$), verbs (con-
tain VB,VBD,VBP,VBZ,VBN), determiners (con-
tain DT), prepositions (contain IN) and conjunc-
tions (contain CC). Obviously, these classes of
words appear frequently in our communication.

Pron. Verb Dete. Prep. Conj. Others
Dist. 30.2% 14.7% 13% 8.7% 6.7% 26.7%

Table 3: Distribution of different part-of-
speeches in disfluencies. Conj.=conjunction;
Dete.=determiner; Pron.=pronoun; Prep.= prepo-
sition.
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Table 4 illustrates the performance (f-score) on
these classes of words. The results of L2R pars-
ing based joint model in (Honnibal and Johnson,
2014) are not listed because we cannot get such
detailed data.

CRF
(BOW)

CRF
(BOW
+POS)

M3N† UT
(+feat.)

BCT
(+feat.)

Pron. 73.9% 85% 92% 91.5% 93.8%
Verb 38.2% 64.8% 84.2% 82.3% 84.7%
Dete. 66.8% 80% 88% 83.7% 87%
Prep. 60% 71.5% 79.1% 76.1% 79.3%
Conj. 75.2% 82.2% 81.6% 79.5% 83.2%
Others 43.2% 61% 78.4% 72.3% 79.1%

Table 4: Performance on different classes
of words. Dete.=determiner; Pron.=pronoun;
Conj.=conjunction; Prep.= preposition. feat.=new
disfluency features

As shown in Table 4, our BCT model outper-
forms all other models except that the performance
on determiner is lower than M3N†, which shows
that our algorithm can significantly tackle com-
mon disfluencies.

4.2.3 Performance of disfluency detection on
Chinese annotated corpus

In addition to English experiments, we also apply
our method on Chinese annotated data. As there
is no standard Chinese corpus, no Chinese experi-
mental results are reported in (Honnibal and John-
son, 2014; Qian and Liu, 2013). We only use the
CRF-based labeling model with lexical and POS-
tag features as baselines. Table 5 shows the results
of Chinese disfluency detection.

Model Prec. Rec. F1
CRF(BOW) 89.5% 35.6% 50.9%
CRF(BOW+POS) 83.4% 41.6% 55.5%
UT(+new features) 86.7% 59.5% 70.6%
BCT(+new features) 85.5% 61% 71.2%

Table 5: Disfluency detection performance on
Chinese annotated data.

Our models outperform the CRF model with
bag of words and POS-tag features by more than
15 points on f-score which shows that our method
is more effective. As shown latter in 4.2.4, the
standard transition-based parsing is not robust in
parsing disfluent text. There are a lot of parsing er-
rors in Chinese training data. Even though we are

still able to get promising results with less data and
un-golden parsing annotations. We believe that if
we were to have the golden Chinese syntactic an-
notations and more data, we would get much better
results.

4.2.4 Performance of transition-based
parsing

In order to show whether the advantage of the BCT
model is caused by the disfluency constraint or the
difference between R2L and L2R parsing models,
in this section, we make a comparison between the
original left-to-right transition-based parsing and
right-to-left parsing. These experiments are per-
formed with the Penn Treebank (PTB) Wall Street
Journal (WSJ) corpus. We follow the standard ap-
proach to split the corpus as 2-21 for training, 22
for development and section 23 for testing (Mc-
Donald et al., 2005). The features for the two
parsers are basic features in Table 1. The POS-
tagger model that we implement for a pre-process
before parsing also uses structured perceptron for
training and can achieve a competitive accuracy of
96.7%. The beam size for both POS-tagger and
parsing is set to 5. Table 6 presents the results on
WSJ test set and Switchboard (SWBD) test set.

Data sets Model UAS LAS
WSJ L2R Parsing 92.1% 89.8%

R2L Parsing 92.0% 89.6%
SWBD L2R Parsing 88.4% 84.4%

R2L Parsing 88.7% 84.8%

Table 6: Performance of our parsers on different
test sets.

The parsing accuracy on SWBD is lower than
WSJ which means that the parsers are more robust
on written text data. The performances of R2L and
L2R parsing are comparable on both SWBD and
WSJ test sets. This demonstrates that the effec-
tiveness of our disfluency detection model mainly
relies on catering to the disfluency constraint by
using R2L parsing based approach, instead of the
difference in parsing models between L2R and
R2L parsings.

5 Related work

In practice, disfluency detection has been exten-
sively studied in both speech processing field and
natural language processing field. Noisy channel
models have been widely used in the past to detect
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disfluencies. Johnson and Charniak (2004) pro-
posed a TAG-based noisy channel model where
the TAG model was used to find rough copies.
Thereafter, a language model and MaxEnt re-
ranker were added to the noisy channel model
by Johnson et al. (2004). Following their frame-
work, Zwarts and Johnson (2011) extended this
model using minimal expected f-loss oriented n-
best reranking with additional corpus for language
model training.

Recently, the max-margin markov networks
(M3N) based model has achieved great improve-
ment in this task. Qian and Liu (2013) presented
a multi-step learning method using weighted M3N
model for disfluency detection. They showed that
M3N model outperformed many other labeling
models such as CRF model. Following this work,
Wang et al. (2014) used a beam-search decoder to
combine multiple models such as M3N and lan-
guage model, they achieved the highest f-score.
However, direct comparison with their work is dif-
ficult as they utilized the whole SWBD data while
we only use the subcorpus with syntactic annota-
tion which is only half the SWBD corpus and they
also used extra corpus for language model train-
ing.

Additionally, syntax-based approaches have
been proposed which concern parsing and dis-
fluency detection together. Lease and Johnson
(2006) involved disfluency detection in a PCFG
parser to parse the input along with detecting dis-
fluencies. Miller and Schuler (2008) used a right
corner transform of syntax trees to produce a syn-
tactic tree with speech repairs. But their perfor-
mance was not as good as labeling models. There
exist two methods published recently which are
similar to ours. Rasooli and Tetreault (2013) de-
signed a joint model for both disfluency detection
and dependency parsing. They regarded the two
tasks as a two step classifications. Honnibal and
Johnson (2014) presented a new joint model by ex-
tending the original transition actions with a new
“Edit” transition. They achieved the state-of-the-
art performance on both disfluency detection and
parsing. But this model suffers from the problem
that the number of transition actions is not identi-
cal for different hypotheses in decoding, leading to
the failure of performing optimal search. In con-
trast, our novel right-to-left transition-based joint
method caters to the disfluency constraint which
can not only overcome the decoding deficiency in

previous work but also achieve significantly higher
performance on disfluency detection as well as de-
pendency parsing.

6 Conclusion and Future Work

In this paper, we propose a novel approach for
disfluency detection. Our models jointly perform
parsing and disfluency detection from right to left
by integrating a rich set of disfluency features
which can yield parsing structure and difluency
tags at the same time with linear complexity. The
algorithm is easy to implement without compli-
cated backtrack operations. Experiential results
show that our approach outperforms the baselines
on the English Switchboard corpus and experi-
ments on the Chinese annotated corpus also show
the language independent nature of our method.
The state-of-the-art performance on disfluency de-
tection and dependency parsing can benefit the
downstream tasks of text processing.

In future work, we will try to add new classes of
features to further improve performance by cap-
turing the property of disfluencies. We would
also like to make an end-to-end MT test over
transcribed speech texts with disfluencies removed
based on the method proposed in this paper.
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Abstract

Non-linear models recently receive a lot
of attention as people are starting to dis-
cover the power of statistical and em-
bedding features. However, tree-based
models are seldom studied in the con-
text of structured learning despite their re-
cent success on various classification and
ranking tasks. In this paper, we propose
S-MART, a tree-based structured learning
framework based on multiple additive re-
gression trees. S-MART is especially suit-
able for handling tasks with dense fea-
tures, and can be used to learn many dif-
ferent structures under various loss func-
tions.

We apply S-MART to the task of tweet
entity linking — a core component of
tweet information extraction, which aims
to identify and link name mentions to en-
tities in a knowledge base. A novel infer-
ence algorithm is proposed to handle the
special structure of the task. The exper-
imental results show that S-MART signif-
icantly outperforms state-of-the-art tweet
entity linking systems.

1 Introduction

Many natural language processing (NLP) prob-
lems can be formalized as structured prediction
tasks. Standard algorithms for structured learning
include Conditional Random Field (CRF) (Laf-
ferty et al., 2001) and Structured Supported Vec-
tor Machine (SSVM) (Tsochantaridis et al., 2004).
These algorithms, usually equipped with a linear
model and sparse lexical features, achieve state-
of-the-art performances in many NLP applica-
tions such as part-of-speech tagging, named entity
recognition and dependency parsing.

This classical combination of linear models and
sparse features is challenged by the recent emerg-

ing usage of dense features such as statistical and
embedding features. Tasks with these low dimen-
sional dense features require models to be more
sophisticated to capture the relationships between
features. Therefore, non-linear models start to re-
ceive more attention as they are often more expres-
sive than linear models.

Tree-based models such as boosted trees (Fried-
man, 2001) are flexible non-linear models. They
can handle categorical features and count data bet-
ter than other non-linear models like Neural Net-
works. Unfortunately, to the best of our knowl-
edge, little work has utilized tree-based methods
for structured prediction, with the exception of
TreeCRF (Dietterich et al., 2004).

In this paper, we propose a novel structured
learning framework called S-MART (Structured
Multiple Additive Regression Trees). Unlike
TreeCRF, S-MART is very versatile, as it can be
applied to tasks beyond sequence tagging and can
be trained under various objective functions. S-
MART is also powerful, as the high order relation-
ships between features can be captured by non-
linear regression trees.

We further demonstrate how S-MART can be
applied to tweet entity linking, an important and
challenging task underlying many applications in-
cluding product feedback (Asur and Huberman,
2010) and topic detection and tracking (Math-
ioudakis and Koudas, 2010). We apply S-MART to
entity linking using a simple logistic function as
the loss function and propose a novel inference al-
gorithm to prevent overlaps between entities.

Our contributions are summarized as follows:

• We propose a novel structured learning
framework called S-MART. S-MART com-
bines non-linearity and efficiency of tree-
based models with structured prediction,
leading to a family of new algorithms. (Sec-
tion 2)
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• We apply S-MART to tweet entity link-
ing. Building on top of S-MART, we pro-
pose a novel inference algorithm for non-
overlapping structure with the goal of pre-
venting conflicting entity assignments. (Sec-
tion 3)

• We provide a systematic study of evaluation
criteria in tweet entity linking by conduct-
ing extensive experiments over major data
sets. The results show that S-MART sig-
nificantly outperforms state-of-the-art entity
linking systems, including the system that is
used to win the NEEL 2014 challenge (Cano
and others, 2014). (Section 4)

2 Structured Multiple Additive
Regression Trees

The goal of a structured learning algorithm is to
learn a joint scoring function S between an input
x and an output structure y, S : (x,y) → R. The
structured output y often contains many interde-
pendent variables, and the number of the possible
structures can be exponentially large with respect
to the size of x. At test time, the prediction y for
x is obtained by

arg max
y∈Gen(x)

S(x,y),

whereGen(x) represents the set of all valid output
structures for x.

Standard learning algorithms often directly op-
timize the model parameters. For example, as-
sume that the joint scoring function S is param-
eterized by θ. Then, gradient descent algorithms
can be used to optimize the model parameters θ
iteratively. More specifically,

θm = θm−1 − ηm∂L(y∗, S(x,y; θ))
∂θm−1

, (1)

where y∗ is the gold structure, L(y∗, S(x,y; θ))
is a loss function and ηm is the learning rate of the
m-th iteration.

In this paper, we propose a framework called
Structured Multiple Additive Regression Trees
(S-MART), which generalizes Multiple Additive
Regression Trees (MART) for structured learn-
ing problems. Different from Equation (1), S-
MART does not directly optimize the model pa-
rameters; instead, it approximates the optimal
scoring function that minimize the loss by adding
(weighted) regression tree models iteratively.

Due to the fact that there are exponentially
many input-output pairs in the training data,
S-MART assumes that the joint scoring function
can be decomposed as

S(x,y) =
∑

k∈Ω(x)

F (x,yk),

where Ω(x) contains the set of the all factors for
input x and yk is the sub-structure of y that cor-
responds to the k-th factor in Ω(x). For instance,
in the task of word alignment, each factor can be
defined as a pair of words from source and target
languages respectively. Note that we can recover
y from the union of {yk}K1 .

The factor scoring function F (x,yk) can be
optimized by performing gradient descent in the
function space in the following manner:

Fm(x,yk) = Fm−1(x,yk)− ηmgm(x,yk) (2)

where function gm(x,yk) is the functional gradi-
ent.

Note that gm is a function rather than a vector.
Therefore, modeling gm theoretically requires an
infinite number of data points. We can address this
difficulty by approximating gm with a finite num-
ber of point-wise functional gradients

gm(x,yk = uk) = (3)[
∂L(y∗, S(x,yk = uk))

∂F (x,yk = uk)

]
F (x,yk)=Fm−1(x,yk)

where uk index a valid sub-structure for the k-th
factor of x.

The key point of S-MART is that it approximates
−gm by modeling the point-wise negative func-
tional gradients using a regression tree hm. Then
the factor scoring function can be obtained by

F (x,yk) =
M∑
m=1

ηmhm(x,yk),

where hm(x,yk) is also called a basis function
and ηm can be simply set to 1 (Murphy, 2012).

The detailed S-MART algorithm is presented in
Algorithm 1. The factor scoring functionF (x,yk)
is simply initialized to zero at first (line 1). After
this, we iteratively update the function by adding
regression trees. Note that the scoring function is
shared by all the factors. Specifically, given the
current decision function Fm−1, we can consider
line 3 to line 9 a process of generating the pseudo
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Algorithm 1 S-MART: A family of structured
learning algorithms with multiple additive regres-
sion trees
1: F0(x,yk) = 0
2: for m = 1 to M do: . going over all trees
3: D ← ∅
4: for all examples do: . going over all examples
5: for yk ∈ Ω(x) do: . going over all factors
6: For all uk, obtain gku by Equation (3)
7: D ← D ∪ {(Φ(x,yk = uk),−gku)}
8: end for
9: end for

10: hm(x,yk)← TrainRegressionTree(D)
11: Fm(x,yk) = Fm−1(x,yk) + hm(x,yk)
12: end for

training data D for modeling the regression tree.
For each training example, S-MART first computes
the point-wise functional gradients according to
Equation (3) (line 6). Here we use gku as the ab-
breviation for gm(x,yk = uk). In line 7, for each
sub-structure uk, we create a new training exam-
ple for the regression problem by the feature vec-
tor Φ(x,yk = uk) and the negative gradient−gku.
In line 10, a regression tree is constructed by min-
imizing differences between the prediction values
and the point-wise negative gradients. Then a new
basis function (modeled by a regression tree) will
be added into the overall F (line 11).

It is crucial to note that S-MART is a fam-
ily of algorithms rather than a single algorithm.
S-MART is flexible in the choice of the loss
functions. For example, we can use either lo-
gistic loss or hinge loss, which means that S-
MART can train probabilistic models as well as
non-probabilistic ones. Depending on the choice
of factors, S-MART can handle various structures
such as linear chains, trees, and even the semi-
Markov chain (Sarawagi and Cohen, 2004).

S-MART versus MART There are two key
differences between S-MART and MART. First,
S-MART decomposes the joint scoring function
S(x,y) into factors to address the problem of the
exploding number of input-output pairs for struc-
tured learning problems. Second, S-MART mod-
els a single scoring function F (x,yk) over inputs
and output variables directly rather than O differ-
ent functions F o(x), each of which corresponds to
a label class.

S-MART versus TreeCRF TreeCRF can be
viewed as a special case of S-MART, and there
are two points where S-MART improves upon
TreeCRF. First, the model designed in (Dietterich

et al., 2004) is tailored for sequence tagging prob-
lems. Similar to MART, for a tagging task with O
tags, they choose to model O functions F o(x, o′)
instead of directly modeling the joint score of the
factor. This imposes limitations on the feature
functions, and TreeCRF is consequently unsuit-
able for many tasks such as entity linking.1Second,
S-MART is more general in terms of the objective
functions and applicable structures. In the next
section, we will see how S-MART can be applied to
a non-linear-chain structure and various loss func-
tions.

3 S-MART for Tweet Entity Linking

We first formally define the task of tweet entity
linking. As input, we are given a tweet, an entity
database (e.g., Wikipedia where each article is an
entity), and a lexicon2 which maps a surface form
into a set of entity candidates. For each incoming
tweet, all n-grams of this tweet will be used to find
matches in the lexicon, and each match will form a
mention candidate. As output, we map every men-
tion candidate (e.g., “new york giants”) in the mes-
sage to an entity (e.g., NEW YORK GIANTS) or to
Nil (i.e., a non-entity). A mention candidate can
often potentially link to multiple entities, which
we call possible entity assignments.

This task is a structured learning problem, as the
final entity assignments of a tweet should not over-
lap with each other.3 We decompose this learn-
ing problem as follows: we make each mention
candidate a factor, and the score of the entity as-
signments of a tweet is the sum of the score of
each entity and mention candidate pair. Although
all mention candidates are decomposed, the non-
overlapping constraint requires the system to per-
form global inference.

Consider the example tweet in Figure 1, where
we show the tweet with the mention candidates
in brackets. To link the mention candidate “new
york giants” to a non-Nil entity, the system has to
link previous overlapping mention candidates to
Nil. It is important to note that this is not a lin-
ear chain problem because of the non-overlapping
constraint, and the inference algorithm needs to be

1For example, entity linking systems need to model the
similarity between an entity and the document. The TreeCRF
formulation does not support such features.

2We use the standard techniques to construct the lexicon
from anchor texts, redirect pages and other information re-
sources.

3We follow the common practice and do not allow embed-
ded entities.
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Figure 1: Example tweet and its mention candidates. Each mention candidate is marked as a pair of brackets in the original
tweet and forms a column in the graph. The graph demonstrates the non-overlapping constraint. To link the mention candidate
“new york giants” to a non-Nil entity, the system has to link previous four overlapping mention candidates to Nil. The mention
candidate “eli manning” is not affected by “new york giants”. Note that this is not a standard linear chain problem.

carefully designed.

3.1 Applying S-MART

We derive specific model for tweet entity linking
task with S-MART and use logistic loss as our run-
ning example. The hinge loss version of the model
can be derived in a similar way.

Note that the tweet and the mention candidates
are given. Let x be the tweet, uk be the entity as-
signment of the k-th mention candidate. We use
function F (x, yk = uk) to model the score of the
k-th mention candidate choosing entity uk.4 The
overall scoring function can be decomposed as fol-
lows:

S(x,y = {uk}Kk=1) =
K∑
k=1

F (x, yk = uk)

S-MART utilizes regression trees to model the
scoring function F (x, yk = uk), which requires
point-wise functional gradient for each entity of
every mention candidate. Let’s first write down
the logistic loss function as

L(y∗, S(x,y)) =− logP (y∗|x)
= logZ(x)− S(x,y∗)

where Z(x) =
∑

y exp(S(x,y)) is the potential
function. Then the point-wise gradients can be
computed as

gku =
∂L

∂F (x, yk = uk)
= P (yk = uk|x)− 1[y∗k = uk],

where 1[·] represents an indicator function. The
conditional probabilityP (yk = uk|x) can be com-
puted by a variant of the forward-backward algo-
rithm, which we will detail in the next subsection.

4Note that each mention candidate has different own en-
tity sets.

3.2 Inference

The non-overlapping structure is distinct from lin-
ear chain and semi-Markov chain (Sarawagi and
Cohen, 2004) structures. Hence, we propose a
carefully designed forward-backward algorithm to
calculate P (yk = uk|x) based on current scor-
ing function F (x, yk = uk) given by the re-
gression trees. The non-overlapping constraint
distinguishes our inference algorithm from other
forward-backward variants.

To compute the forward probability, we sort5

the mention candidates by their end indices and
define forward recursion by

α(u1, 1) = exp(F (x, y1 = u1))
α(uk, k) = exp(F (x, yk = uk))

·
P−1∏
p=1

exp(F (x, yk−p = Nil))

·
∑
uk−P

α(uk−P , k − P ) (4)

where k − P is the index of the previous non-
overlapping mention candidate. Intuitively, for
the k-th mention candidate, we need to identify
its nearest non-overlapping fellow and recursively
compute the probability. The overlapping mention
candidates can only take the Nil entity.

Similarly, we can sort the mention candidates
by their start indices and define backward recur-

5Sorting helps the algorithms find non-overlapping candi-
dates.
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sion by

β(uK ,K) =1

β(uk, k) =
∑
uk+Q

exp(F (x, yk+Q = uk+Q))

·
Q−1∏
q=1

exp(F (x, yk+q = Nil))

· β(uk+Q, k +Q) (5)

where k + Q is the index of the next non-
overlapping mention candidate. Note that the third
terms of equation (4) or (5) will vanish if there are
no corresponding non-overlapping mention candi-
dates.

Given the potential function can be computed
by Z(x) =

∑
uk
α(uk, k)β(uk, k), for entities

that are not Nil,

P (yk = uk|x) =
exp(F (x, yk = uk)) · β(uk, k)

Z(x)

·
P−1∏
p=1

exp(F (x, yk−p = Nil))

·
∑
uk−P

α(uk−P , k − P ) (6)

The probability for the special token Nil can be
obtained by

P (yk = Nil|x) = 1−
∑
uk 6=Nil

P (yk = uk|x) (7)

In the worst case, the total cost of the forward-
backward algorithm is O(max{TK,K2}), where
T is the number of entities of a mention candi-
date.6

Finally, at test time, the decoding problem
arg maxy S(x,y) can be solved by a variant of
the Viterbi algorithm.

3.3 Beyond S-MART: Modeling entity-entity
relationships

It is important for entity linking systems to take
advantage of the entity-to-entity information while
making local decisions. For instance, the identi-
fication of entity “eli manning” leads to a strong
clue for linking “new york giants” to the NFL
team.

Instead of defining a more complicated struc-
ture and learning everything jointly, we employ a

6The cost is O(K2) only if every mention candidate of
the tweet overlaps other mention candidates. In practice, the
algorithm is nearly linear w.r.t K.

two-stage approach as the solution for modeling
entity-entity relationships after we found that S-
MART achieves high precision and reasonable re-
call. Specifically, in the first stage, the system
identifies all possible entities with basic features,
which enables the extraction of entity-entity fea-
tures. In the second stage, we re-train S-MART on
a union of basic features and entity-entity features.
We define entity-entity features based on the Jac-
card distance introduced by Guo et al. (2013).

Let Γ(ei) denotes the set of Wikipedia pages
that contain a hyperlink to an entity ei and Γ(t−i)
denotes the set of pages that contain a hyperlink
to any identified entity ej of the tweet t in the first
stage excluding ei. The Jaccard distance between
ei and t is

Jac(ei, t) =
|Γ(ei) ∩ Γ(t−i)|
|Γ(ei) ∪ Γ(t−i)| .

In addition to the Jaccard distance, we add one ad-
ditional binary feature to indicate if the current en-
tity has the highest Jaccard distance among all en-
tities for this mention candidate.

4 Experiments

Our experiments are designed to answer the fol-
lowing three research questions in the context of
tweet entity linking:

• Do non-linear learning algorithms perform
better than linear learning algorithms?

• Do structured entity linking models perform
better than non-structured ones?

• How can we best capture the relationships be-
tween entities?

4.1 Evaluation Methodology and Data
We evaluate each entity linking system using two
evaluation policies: Information Extraction (IE)
driven evaluation and Information Retrieval (IR)
driven evaluation. For both evaluation settings,
precision, recall and F1 scores are reported. Our
data is constructed from two publicly available
sources: Named Entity Extraction & Linking
(NEEL) Challenge (Cano et al., 2014) datasets,
and the datasets released by Fang and Chang
(2014). Note that we gather two datasets from
Fang and Chang (2014) and they are used in two
different evaluation settings. We refer to these two
datasets as TACL-IE and TACL-IR, respectively.
We perform some data cleaning and unification on
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these sets.7 The statistics of the datasets are pre-
sented in Table 1.

IE-driven evaluation The IE-driven evaluation
is the standard evaluation for an end-to-end entity
linking system. We follow Carmel et al. (2014)
and relax the definition of the correct mention
boundaries, as they are often ambiguous. A men-
tion boundary is considered to be correct if it over-
laps (instead of being the same) with the gold men-
tion boundary. Please see (Carmel et al., 2014) for
more details on the procedure of calculating the
precision, recall and F1 score.

The NEEL and TACL-IE datasets have differ-
ent annotation guidelines and different choices of
knowledge bases, so we perform the following
procedure to clean the data and unify the annota-
tions. We first filter out the annotations that link to
entities excluded by our knowledge base. We use
the same knowledge base as the ERD 2014 com-
petition (Carmel et al., 2014), which includes the
union of entities in Wikipedia and Freebase. Sec-
ond, we follow NEEL annotation guideline and
re-annotate TACL-IE dataset. For instance, in or-
der to be consistent with NEEL, all the user tags
(e.g. @BarackObama) are re-labeled as entities in
TACL-IE.

We train all the models with NEEL Train
dataset and evaluate different systems on NEEL
Test and TACL-IE datasets. In addition, we sam-
ple 800 tweets from NEEL Train dataset as our
development set to perform parameter tuning.

IR-driven evaluation The IR-driven evaluation
is proposed by Fang and Chang (2014). It is
motivated by a key application of entity linking
— retrieval of relevant tweets for target entities,
which is crucial for downstream applications such
as product research and sentiment analysis. In
particular, given a query entity we can search for
tweets based on the match with some potential sur-
face forms of the query entity. Then, an entity
linking system is evaluated by its ability to cor-
rectly identify the presence or absence of the query
entity in every tweet. Our IR-driven evaluation
is based on the TACL-IR set, which includes 980
tweets sampled for ten query entities of five entity
types (roughly 100 tweets per entity). About 37%
of the sampled tweets did not mention the query
entity due to the anchor ambiguity.

7We plan to release the cleaned data and evaluation code
if license permitted.

Data #Tweet #Entity Date
NEEL Train 2340 2202 Jul. ˜Aug. 11
NEEL Test 1164 687 Jul. ˜Aug. 11
TACL-IE 500 300 Dec. 12
TACL-IR 980 NA Dec. 12

Table 1: Statistics of data sets.

4.2 Experimental Settings
Features We employ a total number of 37 dense
features as our basic feature set. Most of the fea-
tures are adopted from (Guo et al., 2013)8, includ-
ing various statistical features such as the proba-
bility of the surface to be used as anchor text in
Wikipedia. We also add additional Entity Type
features correspond to the following entity types:
Character, Event, Product and Brand. Finally,
we include several NER features to indicate each
mention candidate belongs to one the following
NER types: Twitter user, Twitter hashtag, Person,
Location, Organization, Product, Event and Date.

Algorithms Table 2 summarizes all the algo-
rithms that are compared in our experiments. First,
we consider two linear structured learning algo-
rithms: Structured Perceptron (Collins, 2002) and
Linear Structured SVM (SSVM) (Tsochantaridis
et al., 2004).

For non-linear models, we consider polynomial
SSVM, which employs polynomial kernel inside
the structured SVM algorithm. We also include
LambdaRank (Quoc and Le, 2007), a neural-
based learning to rank algorithm, which is widely
used in the information retrieval literature. We
further compare with MART, which is designed
for performing multiclass classification using log
loss without considering the structured informa-
tion. Finally, we have our proposed log-loss S-
MART algorithm, as described in Section 3. 9

Note that our baseline systems are quite strong.
Linear SSVM has been used in one of the state-
of-the-art tweet entity linking systems (Guo et al.,
2013), and the system based on MART is the win-
ning system of the 2014 NEEL Challenge (Cano
and others, 2014)10.

Table 2 summarizes several properties of the al-
gorithms. For example, most algorithms are struc-

8We consider features of Base, Capitalization Rate, Pop-
ularity, Context Capitalization and Entity Type categories.

9Our pilot experiments show that the log-loss S-
MART consistently outperforms the hinge-loss S-MART.

10Note that the numbers we reported here are different
from the results in NEEL challenge due to the fact that
we have cleaned the datasets and the evaluation metrics are
slightly different in this paper.
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Model Structured Non-linear Tree-based
Structured Perceptron X
Linear SSVM X
Polynomial SSVM X X
LambdaRank X
MART X X
S-MART X X X

Table 2: Included algorithms and their properties.

tured (e.g. they perform dynamic programming
at test time) except for MART and LambdaRank,
which treat mention candidates independently.

Parameter tuning All the hyper-parameters are
tuned on the development set. Then, we re-train
our models on full training data (including the
dev set) with the best parameters. We choose the
soft margin parameter C from {0.5, 1, 5, 10} for
two structured SVM methods. After a prelimi-
nary parameter search, we fixed the number of
trees to 300 and the minimum number of docu-
ments in a leaf to 30 for all tree-based models.
For LambdaRank, we use a two layer feed for-
ward network. We select the number of hidden
units from {10, 20, 30, 40} and learning rate from
{0.1, 0.01, 0.001}.

It is widely known that F1 score can be affected
by the trade-off between precision and recall. In
order to make the comparisons between all algo-
rithms fairer in terms of F1 score, we include a
post-processing step to balance precision and re-
call for all the systems. Note the tuning is only
conducted for the purpose of robust evaluation. In
particular, we adopt a simple tuning strategy that
works well for all the algorithms, in which we add
a bias term b to the scoring function value of Nil:

F (x, yk = Nil)← F (x, yk = Nil) + b.

We choose the bias term b from values between
−3.0 to 3.0 on the dev set and apply the same bias
term at test time.

4.3 Results

Table 3 presents the empirical findings for S-
MART and competitive methods on tweet entity
linking task in both IE and IR settings. In the fol-
lowing, we analyze the empirical results in details.

Linear models vs. non-linear models Table 3
clearly shows that linear models perform worse
than non-linear models when they are restricted
to the IE setting of the tweet entity linking task.
The story is similar in IR-driven evaluation, with
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Figure 2: Balance precisions and recalls. X-axis corresponds
to values of the bias terms for the special token Nil. Note that
S-MART is still the overall winning system without tuning the
threshold.

the exception of LambdaRank. Among the lin-
ear models, linear SSVM demonstrates its supe-
riority over Structured Perceptron on all datasets,
which aligns with the results of (Tsochantaridis et
al., 2005) on the named entity recognition task.

We have many interesting observations on the
non-linear models side. First, by adopting a
polynomial kernel, the non-linear SSVM further
improves the entity linking performances on the
NEEL datasets and TACL-IR dataset. Second,
LambdaRank, a neural network based model,
achieves better results than linear models in IE-
driven evaluation, but the results in IR-driven eval-
uation are worse than all the other methods. We
believe the reason for this dismal performance is
that the neural-based method tends to overfit the
IR setting given the small number of training ex-
amples. Third, both MART and S-MART signifi-
cantly outperform alternative linear and non-linear
methods in IE-driven evaluation and performs bet-
ter or similar to other methods in IR-driven eval-
uation. This suggests that tree-based non-linear
models are suitable for tweet entity linking task.
Finally, S-MART outperforms previous state-of-
the-art method Structured SVM by a surprisingly
large margin. In the NEEL Test dataset, the dif-
ference is more than 10% F1. Overall, the results
show that the shallow linear models are not ex-
pressive enough to capture the complex patterns
in the data, which are represented by a few dense
features.

Structured learning models To showcase
structured learning technique is crucial for entity
linking with non-linear models, we compare
S-MART against MART directly. As shown in
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Model
NEEL Dev NEEL Test TACL-IE TACL-IR

P R F1 P R F1 P R F1 P R F1
Structured Perceptron 75.8 62.8 68.7 79.1 64.3 70.9 74.4 63.0 68.2 86.2 43.8 58.0
Linear SSVM 78.0 66.1 71.5 80.5 67.1 73.2 78.2 64.7 70.8 86.7 48.5 62.2
Polynomial SSVM 77.7 70.7 74.0 81.3 69.0 74.6 76.8 64.0 69.8 91.1 48.8 63.6
LambdaRank 75.0 69.0 71.9 80.3 71.2 75.5 77.8 66.7 71.8 85.8 42.4 56.8
MART 76.2 74.3 75.2 76.8 78.0 77.4 73.4 71.0 72.2 98.1 46.4 63.0
S-MART 79.1 75.8 77.4 83.2 79.2 81.1 76.8 73.0 74.9 95.1 52.2 67.4
+ entity-entity 79.2 75.8 77.5 81.5 76.4 78.9 77.3 73.7 75.4 95.5 56.7 71.1

Table 3: IE-driven and IR-driven evaluation results for different models. The best results with basic features are in bold. The
results are underlined if adding entity-entity features gives the overall best results.

Table 3, S-MART can achieve higher precision and
recall points compared to MART on all datasets
in terms of IE-driven evaluation, and can improve
F1 by 4 points on NEEL Test and TACL-IR
datasets. The task of entity linking is to produce
non-overlapping entity assignments that match the
gold mentions. By adopting structured learning
technique, S-MART is able to automatically
take into account the non-overlapping constraint
during learning and inference, and produce global
optimal entity assignments for mention candidates
of a tweet. One effect is that S-MART can easily
eliminate some common errors caused by popular
entities (e.g. new york in Figure 1).

Modeling entity-entity relationships Entity-
entity relationships provide strong clues for entity
disambiguation. In this paper, we use the sim-
ple two-stage approach described in Section 3.3
to capture the relationships between entities. As
shown in Table 3, the significant improvement in
IR-driven evaluation indicates the importance of
incorporating entity-entity information.

Interestingly, while IR-driven results are signif-
icantly improved, IE-driven results are similar or
even worse given entity-entity features. We be-
lieve the reason is that IE-driven and IR-driven
evaluations focus on different aspects of tweet en-
tity linking task. As Guo et al. (2013) shows
that most mentions in tweets should be linked to
the most popular entities, IE setting actually pays
more attention on mention detection sub-problem.
In contrast to IE setting, IR setting focuses on en-
tity disambiguation, since we only need to decide
whether the tweet is relevant to the query entity.
Therefore, we believe that both evaluation policies
are needed for tweet entity linking.

Balance Precision and Recall Figure 2 shows
the results of tuning the bias term for balancing

precision and recall on the dev set. The results
show that S-MART outperforms competitive ap-
proaches without any tuning, with similar margins
to the results after tuning. Balancing precision
and recall improves F1 scores for all the systems,
which suggests that the simple tuning method per-
forms quite well. Finally, we have an interest-
ing observation that different methods have vari-
ous scales of model scores.

5 Related Work

Linear structured learning methods have been pro-
posed and widely used in the literature. Popu-
lar models include Structured Perceptron (Collins,
2002), Conditional Random Field (Lafferty et al.,
2001) and Structured SVM (Taskar et al., 2004;
Tsochantaridis et al., 2005). Recently, many struc-
tured learning models based on neural networks
have been proposed and are widely used in lan-
guage modeling (Bengio et al., 2006; Mikolov
et al., 2010), sentiment classification (Socher et
al., 2013), as well as parsing (Socher et al.,
2011). Cortes et al. (2014) recently proposed a
boosting framework which treats different struc-
tured learning algorithms as base learners to en-
semble structured prediction results.

Tree-based models have been shown to pro-
vide more robust and accurate performances than
neural networks in some tasks of computer vi-
sion (Roe et al., 2005; Babenko et al., 2011)
and information retrieval (Li et al., 2007; Wu et
al., 2010), suggesting that it is worth to investi-
gate tree-based non-linear models for structured
learning problems. To the best of our knowl-
edge, TreeCRF (Dietterich et al., 2004) is the only
work that explores tree-based methods for struc-
tured learning problems. The relationships be-
tween TreeCRF and our work have been discussed
in Section 2.
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Early research on entity linking has focused
on well written documents (Bunescu and Pasca,
2006; Cucerzan, 2007; Milne and Witten, 2008).
Due to the raise of social media, many techniques
have been proposed or tailored to short texts in-
cluding tweets, for the problem of entity linking
(Ferragina and Scaiella, 2010; Meij et al., 2012;
Guo et al., 2013) as well as the related problem
of named entity recognition (NER) (Ritter et al.,
2011). Recently, non-textual information such as
spatial and temporal signals have also been used to
improve entity linking systems (Fang and Chang,
2014). The task of entity linking has attracted a
lot of attention, and many shared tasks have been
hosted to promote entity linking research (Ji et al.,
2010; Ji and Grishman, 2011; Cano and others,
2014; Carmel et al., 2014).

Building an end-to-end entity linking system in-
volves in solving two interrelated sub-problems:
mention detection and entity disambiguation. Ear-
lier research on entity linking has been largely fo-
cused on the entity disambiguation problem, in-
cluding most work on entity linking for well-
written documents such as news and encyclope-
dia articles (Cucerzan, 2007) and also few for
tweets (Liu et al., 2013). Recently, people have
focused on building systems that consider mention
detection and entity disambiguation jointly. For
example, Cucerzan (2012) delays the mention de-
tection decision and consider the mention detec-
tion and entity linking problem jointly. Similarly,
Sil and Yates (2013) proposed to use a reranking
approach to obtain overall better results on men-
tion detection and entity disambiguation.

6 Conclusion and Future Work

In this paper, we propose S-MART, a family of
structured learning algorithms which is flexible on
the choices of the loss functions and structures.
We demonstrate the power of S-MART by applying
it to tweet entity linking, and it significantly out-
performs the current state-of-the-art entity linking
systems. In the future, we would like to investigate
the advantages and disadvantages between tree-
based models and other non-linear models such
as deep neural networks or recurrent neural net-
works.
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Abstract

We propose that entity queries are gener-
ated via a two-step process: users first se-
lect entity facts that can distinguish tar-
get entities from the others; and then
choose words to describe each selected
fact. Based on this query generation
paradigm, we propose a new entity rep-
resentation model named as entity fac-
toid hierarchy. An entity factoid hierar-
chy is a tree structure composed of fac-
toid nodes. A factoid node describes one
or more facts about the entity in different
information granularities. The entity fac-
toid hierarchy is constructed via a factor
graph model, and the inference on the fac-
tor graph is achieved by a modified variant
of Multiple-try Metropolis algorithm. En-
tity retrieval is performed by decompos-
ing entity queries and computing the query
likelihood on the entity factoid hierarchy.
Using an array of benchmark datasets, we
demonstrate that our proposed framework
significantly improves the retrieval perfor-
mance over existing models.

1 Introduction

Entity retrieval, which aims at returning specific
entities to directly answer a user’s query, has
drawn much attention these years. Various entity
retrieval tasks have been proposed, such as TREC
Entity (Balog et al., 2012; Wang et al., 2011) and
INEX-LD (Wang et al., 2012; Wang and Kang,
2012). Many existing entity retrieval models fol-
low the document retrieval assumption: when is-
suing queries, users choose the words that may

∗ The work described in this paper is substantially sup-
ported by grants from the Research Grant Council of the
Hong Kong Special Administrative Region, China (Project
Codes: 413510 and 14203414) and the Direct Grant of the
Faculty of Engineering, CUHK (Project Code: 4055034).

appear in the “entity pseudo-document”. Based
on the assumption, these models construct in-
ternal entity representations by combining vari-
ous entity descriptions, and use these representa-
tions to compute the rank of the candidate enti-
ties for a given entity query. These models in-
clude fielded versions of BM25 and Mixture of
Language Models (Neumayer et al., 2012), Entity
Language Model (Raghavan et al., 2004), Hierar-
chical Expert Model (Petkova and Croft, 2006),
Structured Positional Entity Language Model (Lu
et al., 2013).

However, a closer examination of entity queries
reveals that most of them are not simple uniform
word samples from the “entity pseudo-document”.
Instead, they can be decomposed into multiple
parts, where each part describes a fact about target
entities. For example, the query “National capitals
situated on islands” describes two facts regarding
a target entity: it is a national capital; it is lo-
cated on an island. Compared to the assumption
in document retrieval models, where query terms
are assumed to be generated from a single docu-
ment, these query terms can be regarded to be in-
dependently generated from two underlying docu-
ments. According to this observation, we propose
that an entity query is generated via a two-step
process: users first select facts that can distinguish
target entities from the others; and then choose
words that describe the selected facts. Based on
the proposed query generation paradigm, we de-
sign a new entity retrieval framework. On one
hand, an entity is modeled to have multiple in-
ternal representations, each regarding one or more
closely related facts. On the other hand, an entity
query is decomposed into one or more subqueries,
each describing a fact about target entities. In this
way, entity retrieval can be performed by combin-
ing the probabilities of subqueries being satisfied
for each candidate entity.

One of the central components of our proposed
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Figure 1: An example of entity factoid hierarchy containing two factoids about Barack Obama

retrieval framework is a novel entity representa-
tion known as entity factoid hierarchy. An entity
factoid hierarchy is a tree structure composed of
factoid nodes, which is automatically constructed
from a collection of entity descriptions. We abuse
the term “factoid” to denote a single piece of infor-
mation regarding an entity. A factoid node in the
hierarchy describes one or more factoids. Factoid
nodes in different levels capture the information of
different levels of detail (referred to as information
granularities hereafter), where lower level nodes
contain more detailed information and higher level
nodes abstract the details away. The entity factoid
hierarchy is constructed via a factor graph model,
and the inference on the factor graph is achieved
by a modified variant of Multiple-try Metropolis
algorithm. Each factoid node is indexed sepa-
rately as a pseudo-document. During retrieval, the
query likelihood for a candidate entity are com-
puted by transversing the factoid hierarchy. Com-
pared to exiting entity retrieval models, our pro-
posed framework exhibits two advantages:

• By organizing entity descriptions in a hier-
archical structure, detailed entity information
is preserved and we can return finer confi-
dence value. Suppose that the entity “Barack
Obama” is only described by one sentence:
“born in 1961”. Traditional entity models,
which model an entity as a pseudo-document,
would return high confidence value for the
query “who is born in 1961”. However, as
we add more and more sentences to describe
“Barack Obama”, the confidence value re-
turned for the query decreases due to the
longer entity pseudo-document. This result is
not desirable for entity retrieval, since adding
more descriptions about other facts should
not affect the confidence of existing facts.
Our factoid hierarchy avoids this problem by
preserving all the entity descriptions in a hi-

erarchical structure. When performing re-
trieval, entity factoid hierarchy can be tra-
versed to locate the best supporting descrip-
tion for the query.

• By separating entity facts in different factoid
nodes, our model prevent ambiguity caused
by mixing terms describing different facts.
Suppose “Barack Obama” is described by
two sentences: “Barack Obama is a presi-
dent of United States” and “Barack Obama
is a graduate of Harvard Law School”, and
our query is “Who is a president of Har-
vard Law School”. A traditional docu-
ment retrieval model with a bag-of-word en-
tity pseudo-document would return “Barack
Obama” with high confidence, since all the
query terms appear in the entity descriptions.
But obviously, this result is not correct. In
our factoid hierarchy, these two facts are sep-
arated in lower level factoid nodes. While
higher level nodes are still mixed with terms
from child nodes, they are penalized to avoid
giving high confidence value.

2 Factoid Hierarchy

2.1 Hierarchy Representation

As mentioned in the previous section, all the infor-
mation regarding an entity is organized in a partic-
ular factoid hierarchy. We denote the term “fac-
toid” as a single piece of information regarding an
entity, such as the birth date of Barack Obama.
A factoid node in the hierarchy describes one or
more factoids. Each factoid node is associated
with a bag-of-words vector to represent the fac-
toid description. Factoid nodes in different depth
encode information in different granularities.

An example of an entity factoid hierarchy, re-
garding two factoids (birth date and birth place)
about Barack Obama, is given in Figure 1. The
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example hierarchy is constructed from three sen-
tences about Barack Obama: he was born in 1961;
he was born in August 1961; he was born in Hon-
olulu Hawaii. These three sentences correspond
to the leaf nodes A, B, and C respectively in Fig-
ure 1. In general, a leaf node in the factoid hi-
erarchy comes directly from a sentence or a RDF
triple describing the entity. Since it is extracted
either from human written texts or from manu-
ally crafted structured databases, a leaf node repre-
sents the most exact representation regarding one
or more factoids. During the construction of the
hierarchy, intermediate nodes are formed as par-
ents for nodes that contain closely related factoids.
The factoid description for an intermediate node is
the sum of bag-of-words vectors of its child nodes.
In this way, intermediate nodes capture the words
that are used more frequently with higher weights
to describe the underlying factoids in a more gen-
eral form. As we merge more nodes and move
up in the hierarchy, intermediate nodes become
blended with more different factoids. Node D in
Figure 1 is an intermediate factoid node, as a par-
ent node for nodes A and B both describing the
birth date. The root node in an entity factoid hi-
erarchy summarizes all the descriptions regarding
an entity, which is similar to the “entity pseudo-
document” used in some existing entity retrieval
models. Each entity factoid hierarchy has only one
root node. For example, node E in Figure 1 is the
root node, and it contains words from all the three
sentences.

Note that the depth of a leaf node varies with
the number of descriptions associated with the fac-
toids. Some factoids may be associated with lots
of detailed information and are expressed in many
sentences, while others are only expressed in one
or two sentences. For example, the factoid that
Obama is elected president in 2008 may be de-
scribed in many sentences and in different con-
texts; while the factoid that Obama is born in
Kapiolani Maternity & Gynecological Hospital is
only mentioned in a few sentences. In this case,
factoid nodes associated with more details may
have deeper hierarchical structure.

2.2 Factor Graph Model

To construct the entity factoid hierarchy, we make
use of a hierarchical discriminative factor graph
model. A similar factor graph model has been pro-
posed to solve the coreference resolution in (Singh

et al., 2011; Wick et al., 2012). Here we design a
factor graph model corresponding to the entity fac-
toid hierarchy, together with new factor types and
inference mechanism.

Generally speaking, a factor graph is composed
of two parts: a set of random variables and a set of
factors that model the dependencies between ran-
dom variables. An example of the factor graph
construction corresponding to the factoid hierar-
chy involved in Figure 1 is given in Figure 2. In
our factor graph approach, each factoid is repre-
sented as a random variable fi, corresponding to a
rounded square node in Figure 2. The pairwise bi-
nary decision variable yij , denotes whether a fac-
toid fi is a child of another factoid fj correspond-
ing to a circle node in Figure 2. The set of fac-
toids F plus the set of decision variables y are the
random variables in our factor graph model. To
model the dependency between factoids, we con-
sider two types of factors. Ψp is the set of factors
that consider the compatibility between two fac-
toid nodes, i.e., to indicate whether two nodes have
parent-child relationship. Ψu is the set of factors
that measure the compatibility of the factoid node
itself. Such factor is used to check whether a new
intermediate node should be created. Factors are
represented as square nodes in Figure 2. Given a
factor graph model m, our target is to find the best
assignments for the decision variable y that maxi-
mizes the objective function in Equation (1).

P (y, F |m) =
∏
f∈F

Ψp(f, fp)Ψu(f) (1)

2.3 Factors Design
The pairwise factors Ψp and unit-wise factors Ψu

compute the compatibility scores among factoid
nodes. Each factor type is associated with a weight
w to indicate the importance of the factor during
inference. For the notation, the bag-of-words rep-
resentation for a factoid node is denoted as d. We
use superscripts p and c to denote the variables of
parent nodes and child nodes. To capture the in-
terrelations between factoid nodes, the following
factors are used in our factor graph model.

Bag-of-words similarity To check whether two
factoid nodes refer to the same fact, we compare
the similarity between their bag-of-words descrip-
tions. We choose Kullback-Leibler divergence
(KL divergence) as the similarity measure. By
definition, the KL divergence of Q from P, de-
noted DKL(P ||Q), is a measure of the informa-
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Figure 2: Generation of an factoid hierarchy via factor graph inference. Factoid nodes are initialized as
singletons in (a). During one step of sampling in (b), two factoid nodes are selected and one proposal is
to add a common parent. If we accept the proposal, we end up with the factoid hierarchy in (c).

tion lost when Q is used to approximate P. It is
a non-symmetric measure and fits in our problem
nicely, i.e., measuring whether a parent node is a
more abstract representation of its child node. The
compatibility score is computed as:

− w1 ·DKL(dp||dq)

=− w1 ·
m∑
i=1

dpi × log
(
dpi
dci

)
, (2)

where dpi is the smoothed term frequency of the
factoid description for the parent node; dci is for
the child node; w1 is a global weighting parame-
ter among different factors. In fact, we have also
explored other popular text similarity metrics sum-
marized in (Huang, 2008), and find that KL diver-
gence performs the best.

Entropy penalty We penalize the entropy of the
factoid description to encourage a smaller vocab-
ulary of words describing the underlying factoids:

−w2 · H(d)
log ||d||0 , (3)

where H(d) denotes the Shannon entropy for
the bag-of-words representation of the factoid de-
scription d; ||d||0 is the number of unique terms in
the factoid description.

Structure penalty The depth of a factoid node
indicates the level of information granularity.
However, we also need to control the depth of the
factoid hierarchy. A factoid node should not have
too many levels. We define the depth penalty as:

−w3 · |nd − ||d||0
s
|, (4)

where nd is the depth of a factoid node and s is
the parameter that controls the average depth of
factoid nodes per term. In this way, we can con-
trol the average depth of factoid nodes in the entity
factoid hierarchy.

2.4 Inference
Exact inference is impossible for our factor graph
model due to the large state space. Here we adopt a
modified variant of Multiple-try Metropolis algo-
rithm to conduct maximum probability estimation
for inference, following the work in (Wick et al.,
2013). At each sampling step, multiple changes
to the current setting are proposed. The accep-
tance probability for a given proposal is equal to
the likelihood ratio of the proposed hypothesis to
the current hypothesis. In our case, we initialize
the MCMC procedure to the singleton configura-
tion, where each entity description, such as a sen-
tence or a RDF triple, forms its own factoid hierar-
chy initially. At each sampling step, we randomly
select two nodes and propose several alternative
local modifications. If fi and fj are not connected,
i.e., sharing no common child nodes, the following
changes are proposed:

• Add factoid fi as the parent of fj , if fj has
no parent node;

• Remove fj from its current parent, if fj has a
parent;

• Create a new common parent for fi and fj , if
both fi and fj have no parent.

Otherwise, if fi and fj are in the same cluster, the
following changes are proposed:

• Remove fj from its current parent;

• Move fj’s children to fj’s parent and delete
fj , if fj is an intermediate node.

A sampling step of the inference process is il-
lustrated in Figure 2. Initially, all the decision vari-
ables y are set to zero. That is, each factoid node
is regarded as forming its own factoid hierarchy,
as illustrated in Figure 2(a). During the inference,
local modifications are proposed to the current fac-
tor graph hypothesis. For example, in Figure 2(b),
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the two factoid nodes at the bottom are selected
and proposed to add a new intermediate factoid as
their common parent. If we accept the proposal,
we get an intermediate factoid hierarchy as illus-
trated in Figure 2(c).

The sampling process is iterated until no pro-
posal has been accepted in a certain number of
successive steps, or a maximum number of steps
has been reached. Each entity factoid hierarchy is
inferred separately, allowing us to parallelize the
inference across multiple machines.

3 Entity Retrieval

3.1 Retrieval Model
After we preprocess available information sources
and construct the entity factoid hierarchy, we are
ready to answer entity queries. Our retrieval
model is based on the query likelihood model. Us-
ing Bayes’ rule, the probability that an entity e is
a target entity for a query q can be written as:

p(e|q) =
p(q|e)p(e)
p(q)

. (5)

The probability of the query p(q) is the same for
all entities and can be ignored. Furthermore, we
assume that the prior probability of an entity being
a target entity is uniform. Thus, p(e) can also be
ignored. The task is to rank an entity e in response
to a query q by estimating the query generation
probability p(q|e).

To compute p(q|e), recall that our two-step
query generation process assumes that users gen-
erate queries by first selecting facts and then
choosing query words for each fact. Based on the
query generation process, we first decompose the
query q into m subqueries qi (discussed in Sec-
tion 3.2). Then the probability p(q|e) can be com-
puted as:

p(q|e) =
m∏
i=1

p(qi|e) (6)

=
m∏
i=1

n∑
k=1

p(qi|fk)p(fk|e) (7)

'
m∏
i=1

max
k

p(qi|fk). (8)

Equation (6) decomposes the query into sub-
queries, assuming that all the subqueries are inde-
pendent. Equation (7) iterates through all the fac-
toid nodes fk in the factoid hierarchy of an entity

e. Equation (8) simplifies the computation by as-
suming that the underlying factoid generating sub-
query qi is the factoid fk with the highest query
generation probability.

To compute p(qi|fk), the probability of the fac-
toid fk generating the subquery qi, we use the
multinomial unigram language model:

p(qi|fk) = e(fk)
∏
j

p(tji |fk), (9)

where tji is the term j in the subquery qi. e(fk)
is the penalty term for factoids containing many
children:

e(fk) = w · 1
c(fk)

, (10)

where c(fk) is the number of child nodes for
fk. To understand why we add this penalty term,
consider a query “who is born in 2008”. Sup-
pose “Barack Obama” is described by two sen-
tences: “born in 1961” and “elected president in
2008”. When computing p(qi|fk) for the root
node, although it contains both the terms “born”
and “2008”, it should be penalized since the terms
come from two different child nodes.

3.2 Query analysis
As mentioned earlier, we decompose the original
query q into multiple factoid subqueries qi. For
long queries issued in a verbose sentence, such
as “which presidents were born in 1945”, depen-
dency parsing is performed (Klein and Manning,
2003) and the resulting dependency tree is used to
split the original query. For short queries issued
in keywords, such as “vietnam war movies”, we
decompose it based on possible key concepts ex-
pressed in the query. Usually a short query only
contains a single entity, which is used to segment
the original query into subqueries.

Furthermore, stop structures in verbose queries
is removed, following the method proposed in
(Huston and Croft, 2010). Here a stop structure
is defined as a phrase which provides no informa-
tion regarding the information needs, such as “tell
me the”. We also inject target entity type informa-
tion by replacing the leading “who ” as “person”,
and “where” as “place” for all the queries.

3.3 Retrieval Process
For the purpose of retrieval, each node in the
entity factoid hierarchy is regarded as a pseudo-
document describing one or more factoids about
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the entity, and is indexed as a bag-of-words doc-
ument during the preprocessing. The retrieval is
performed in a two-step process. First, for each in-
dividual subquery, we retrieve top 1000 candidate
entities by performing retrieval on all root nodes.
This gives us an initial pool of candidate entities
by merging the returned entities for subqueries.
After that, for each candidate entity, we traverse
its factoid hierarchy and compute the query gen-
eration probability p(q|e) using Equations (8) and
(9). Top ranked entities are returned as retrieval
results.

4 Experiments

4.1 Dataset
We perform entity retrieval experiments using the
DBpedia-Entity dataset used in (Balog and Neu-
mayer, 2013). The dataset is a mixture of multiple
entity retrieval datasets, covering entity queries of
various styles such as keyword queries like “viet-
nam war movies” and verbose queries like “What
is the capital of Canada”. Some query statistics are
shown in Table 2.

Query set #query avg(|q|) avg(#rel)

INEX-XER 55 5.5 29.7
TREC Entity 17 6.7 12.9
SemSearch ES 130 2.7 8.6
SemSearch LS 43 5.4 12.5
QALD-2 140 7.9 41.2
INEX-LD 100 4.8 36.8

Total 485 5.3 26.7

Table 2: DBpedia-Entity dataset statistics

The data corpus we use are DBpedia 3.9 and
the corresponding English Wikipedia data dump
on April 4, 2013. It should be noted that the origi-
nal DBpedia-Entity benchmark only uses DBpedia
for entity modeling (Balog and Neumayer, 2013).
In our experiments, we also conducted another set
of experiments which include full-text Wikipedia
articles as additional entity descriptions, to eval-
uate the capacity of different models on handling
free texts as information sources.

4.2 Comparison models and variants of our
model

For comparison, we have implemented the follow-
ing two existing models:

• BM25. BM25 is a popular document re-
trieval method and also used to perform en-
tity retrieval (Balog and Neumayer, 2013).

All the descriptions about an entity are ag-
gregated into an entity pseudo-document. We
use k1 = 1.2, b = 0.8 for the model parame-
ter, similar to the original papers.

• MLM-tc. The Mixture of Language Model
represents an entity as a document with
multiple fields, where each field is given
a different weight for generating the query
terms. MLM is often adopted to do entity
retrieval (Neumayer et al., 2012). Here we
adopt the MLM-tc model used in (Balog and
Neumayer, 2013), where two fields are con-
sidered: title and content fields (described in
Section 4.3). The parameters used are 0.8 for
the title field and 0.2 for the content field.

Note that both MLM-tc and BM25 are also
compared in (Balog and Neumayer, 2013), and
have shown the best MAP performances among all
the compared models.

For our models, the following two variants are
implemented and compared.

• Factoid Retrieval Model with Hierarchy
(FRMwH). Our full model uses entity fac-
toid graph as entity representation. Each fac-
toid node is indexed as a bag-of-words docu-
ment. The retrieval model described in Sec-
tion 3 is employed.

• Factoid Retrieval Model (FRM). This
model does not use entity factoid hierarchy
as entity representation. Instead, K-Means
clustering algorithm is used to cluster the sen-
tences into text clusters. Each text cluster is
then indexed as a document. Compared to the
FRMwH model, an entity only has a flat clus-
ter of factoid descriptions. The same retrieval
model is used.

All the four models use the same query prepro-
cessing techniques.

4.3 Setup
The entity descriptions come from texts in
Wikipedia articles and structured information
from DBpedia. For DBpedia information, we con-
sider top 1000 most frequent predicates as fields.
We convert RDF predicates to free text by break-
ing the camelcase predicate name to terms, for ex-
ample “birthPlace” is converted to “birth place”.
For Wikipedia texts, we first remove all markup
text such as images, categories. Infoboxes are also
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Model INEX-XER TREC Entity SemSearch ES SemSearch LS QALD-2 INEX-LD Total
MAP P@10 MAP P@10 MAP P@10 MAP P@10 MAP P@10 MAP P@10 MAP P@10

Experiments with only DBpedia information

BM25 .1890 .2706 .1257 .1571 .2732 .2426 .2050 .2286 .2211 .1976 .1104 .2158 .1806 .1901
MLM-tc .1439 .2176 .1138 .1143 .2962 .2641 .1755 .1976 .1789 .1598 .1093 .2144 .1720 .1792
FRM

:::
.2186

:::
.2186 .1548

::::
.1548 .2430 .2430 .2088 .2088

:::
.2462

::::
.2462 .1178 .1178

:::
.1854

:::
.1965

FRMwH
:::
.2260

:::
.2260

:::
.1742

:::
.1742 .2270 .2270 .1642 .1642

:::
.2286

::::
.2286

:::
.1358 .1358

:::
.1905

:::
.2004

Experiments with both DBpedia and Wikipedia information

BM25 .1313 .1887 .1374 .1667 .2916 .2526 .1867 .1833 .1552 .1253 .1698 .2680 .1848 .1821
MLM-tc .0777 .0981 .0942 .0875 .2794 .2398 .1071 .1071 .1024 .0771 .1501 .2370 .1515 .1452
FRM

:::
.1922

:::
.1922

:::
.1601

::::
.1601 .2279 .2279

:::
.1729

::::
.1729

:::
.1965

:::
.1965

:::
.1793

::::
.1793

:::
.1934

:::
.1998

FRMwH
:::
.2634

:::
.2634

:::
.1770

::::
.1770 .2267 .2267

:::
.1910

::::
.1910

:::
.2491

:::
.2491 .1554 .1554

:::
.2092

:::
.2130

Table 1: Retrieval performance for various models

removed since the information is already well cap-
tured in DBpedia. Each Wikipedia article is then
segmented to a list of sentences, which are consid-
ered as factoid descriptions regarding the entity.

For the BM25 model, all the descriptions about
an entity are aggregated into an entity pseudo-
document. For the MLMtc model, the title field
is constructed by combining DBpedia properties
whose property names are ending with “title”,
“name” or “label”, such as “fullName” (Neumayer
et al., 2012), and the content field is the same
as the entity pseudo-document used in the BM25
model.

The inference algorithm for the entity factoid
hierarchy is implemented based on the factorie
package (McCallum et al., 2009). The parame-
ters used in the inference are manually tuned on
a small set of entities. The retrieval algorithms,
including BM25 and Language Modeling, are im-
plemented based on Apache Lucene1. For lan-
guage models, Bayesian smoothing with Dirich-
let priors is used, with parameter µ = 2000. For
FRM, to cluster the entity descriptions, we use
the K-Means clustering algorithm implemented in
Carrot22.

4.4 Results

We report two standard retrieval measures: mean
average precision (MAP) and precision at 10
(P@10). Top 100 ranked entities are evaluated for
each query. Two set of experiments are conducted:
experiments with only DBpedia information; ex-
periments with both DBpedia and Wikipedia in-
formation. The experiment result is shown in Ta-
ble 1. To conduct the statistical significance anal-
ysis, we use two-tailed paired t-test at the 0.05
level. The symbols underline and

:::::
wave

:::::::::
underline

1Apache Lucene: http://lucene.apache.org/
2Carrot2: http://www.carrot2.org/

are used to indicate significant improvement of
our model compared with the BM25 and MLM-
tc models respectively.

The first set of rows in Table 1 show the per-
formance of four models using only DBpedia in-
formation. Both of our models have better overall
performance. On datasets with verbose queries,
such as INEX-XER and TREC Entity, both our
models outperform the baseline models. One rea-
son is that our retrieval model relies on the as-
sumption that verbose queries can be decomposed
into multiple subqueries. The second set of rows
show the performance of four models using both
DBpedia and Wikipedia information. After adding
the additional information from Wikipedia arti-
cles, MLM-tc attains much worse performance,
while BM25 performs roughly the same. One
possible reason is that Wikipedia articles con-
tain much irrelevant information regarding enti-
ties, and these two existing models cannot eas-
ily make use of additional information. In con-
trast, with Wikipedia full-text available, both of
our proposed models achieve obviously better per-
formances.

Our full model, FRMwH, has shown consis-
tently better overall performance compared with
the FRM model. It demonstrates that it is worth-
while to employ our proposed entity hierarchical
structure for entity representation.

4.5 Analysis

For the retrieval performance, we also perform a
topic-level analysis between our model FRMwH
and the baseline model BM25, shown in Fig-
ure 3. The X-axis represents individual query
topics, ordered by average precision difference
(shown on the Y-axis). Positive Y value indi-
cates that FRMwH performs better than the BM25
model for the query. From the figure, most of
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Figure 3: Topic-level differences between FRMwH and BM25. Positive values mean FRMwH is better.
(a) INEX-XER; (b) TREC Entity; (c) SemSearch ES; (d) SemSearch LS; (e) QALD-2; (f) INEX-LD.

queries are affected by using FRMwH model. On
the datasets with verbose queries, such as INEX-
XER and TREC Entity, we can see most of the
query are improved. FRMwH performs slightly
worse for datasets like SemSearch ES which is
mostly composed of keyword queries. For the
queries that show little or no performance differ-
ences, manual inspection shows that both models
fail to find any relevant results, due to the lack of
supporting descriptions in Wikipedia and DBpe-
dia.

5 Related Work

Besides the entity retrieval models reviewed in
Section 1, there are models that do not maintain
an explicit entity representation. Instead, they
compute the entity relevance score based on the
co-occurance between entities and query terms
in the documents directly. Most of these mod-
els are originally proposed for expertise retrieval,
where the appearance of a person name indicates
the association with the expertise mentioned in
the same document. Typical models include vot-
ing model (Macdonald and Ounis, 2006), graph
model (Serdyukov et al., 2008), etc. However, it
is not easy to generalize these models for open do-
main entity retrieval.

Entity models are also used in other fields be-
sides entity retrieval. For example, entity topic
models are used to perform entity prediction, clas-
sification of entity pairs, construction of entity-
entity network (Newman et al., 2006), as well as
entity linking (Han and Sun, 2012). These models
are not suitable for our retrieval framework.

The decomposing of entity queries into fac-
toid queries is related to query segmentation.
Query segmentation has been used by search en-
gines to support inverse lookup of words and
phrases (Risvik et al., 2003; Bergsma and Wang,
2007). Our use of query decomposition is quite
different compared to query segmentation. Be-

sides query segmentation, query decomposition
has also been used to facilitate the acquisition and
optimization of high-order contextual term associ-
ations (Song et al., 2012).

Our work is also related to the information ex-
traction and knowledge representation field since
our framework involves extraction and aggrega-
tion of knowledge from free texts. However, most
existing approaches takes two extreme ways: ei-
ther extract relations based on pre-defined ontol-
ogy, such as DBpedia (Lehmann et al., 2014); or
cluster relation without referring to some ontol-
ogy, such as OpenIE (Etzioni et al., 2011). Though
our main goal is not on constructing a complete
knowledge base, we do leverage both existing
knowledge bases as well as free text data.

Semantic search also targets on returning an-
swers directly (Pound et al., 2010; Blanco et al.,
2011; Tonon et al., 2012; Kahng and Lee, 2012).
However, they are mainly based on structured
linked data, as well as structured query language
like SPARQL. While this is an effective approach
if we have a powerful thorough knowledge base,
in practice many facts cannot be effectively repre-
sented as linked data. Only a small set of relations
(thousands in DBpedia) have been defined in the
ontology, such as “birthPlace”. Furthermore, even
if we can define a formal representation of human
knowledge, retrieve them effectively is still a prob-
lem due to the difficulty of transforming the hu-
man query into a structured query on a knowledge
base.

6 Conclusions

We propose that an entity query is generated in a
two-step process: users first select the facts that
can distinguish target entities from the others; then
choose words to express those facts. Following
this motivation, we propose a retrieval framework
by decomposing the original query into factoid
queries. We also propose to construct an entity
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factoid hierarchy as the entity model for the pur-
pose of entity retrieval. Our entity factoid hier-
archy can integrate information of different gran-
ularities from both free text and structured data.
Extensive experiments demonstrate the effective-
ness of our framework.
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Abstract

Document enrichment focuses on retriev-
ing relevant knowledge from external re-
sources, which is essential because text is
generally replete with gaps. Since conven-
tional work primarily relies on special re-
sources, we instead use triples of Subject,
Predicate, Object as knowledge and in-
corporate distributional semantics to rank
them. Our model first extracts these triples
automatically from raw text and converts
them into real-valued vectors based on the
word semantics captured by Latent Dirich-
let Allocation. We then represent these
triples, together with the source document
that is to be enriched, as a graph of triples,
and adopt a global iterative algorithm to
propagate relevance weight from source
document to these triples so as to select the
most relevant ones. Evaluated as a rank-
ing problem, our model significantly out-
performs multiple strong baselines. More-
over, we conduct a task-based evaluation
by incorporating these triples as additional
features into document classification and
enhances the performance by 3.02%.

1 Introduction

Document enrichment is the task of acquiring rel-
evant background knowledge from external re-
sources for a given document. This task is essen-
tial because, during the writing of text, some ba-
sic but well-known information is usually omitted
by the author to make the document more concise.
For example, Baghdad is the capital of Iraq is
omitted in Figure 1a. A human will fill these gaps
automatically with the background knowledge in
his mind. However, the machine lacks both the

∗ This work was partly done while the first author was
visiting University of Toronto.

necessary background knowledge and the ability
to select. The task of document enrichment is pro-
posed to tackle this problem, and has been proved
helpful in many NLP tasks such as web search
(Pantel and Fuxman, 2011), coreference resolu-
tion (Bryl et al., 2010), document cluster (Hu et
al., 2009) and entity disambiguation (Sen, 2012).

We can classify previous work into two classes
according to the resources they rely on. The first
line of work uses Wikipedia, the largest on-line en-
cyclopedia, as a resource and introduces the con-
tent of Wikipedia pages as external knowledge
(Cucerzan, 2007; Kataria et al., 2011; He et al.,
2013). Most research in this area relies on the text
similarity (Zheng et al., 2010; Hoffart et al., 2011)
and structure information (Kulkarni et al., 2009;
Sen, 2012; He et al., 2013) between the mention
and the Wikipedia page. Despite the apparent suc-
cess of these methods, most Wikipedia pages con-
tain too much information, most of which is not
relevant enough to the source document, and this
causes a noise problem. Another line of work tries
to improve the accuracy by introducing ontolo-
gies (Fodeh et al., 2011; Kumar and Salim, 2012)
and structured knowledge bases such as WordNet
(Nastase et al., 2010), which provide semantic in-
formation about words such as synonym (Sun et
al., 2011) and antonym (Sansonnet and Bouchet,
2010). However, these methods primarily rely on
special resources constructed with supervision or
even manually, which are difficult to expand and
in turn limit their applications in practice.

In contrast, we wish to seek the benefits of both
coverage and accuracy from a better representa-
tion of background knowledge: triples of Subject,
Predicate, Object (SPO). According to Hoffart et
al. (2013), these triples, such as LeonardCohen,
wasBornIn, Montreal, can be extracted automat-
ically from Wikipedia and other sources, which
is compatible with the RDF data model (Staab
and Studer, 2009). Moreover, by extracting these
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Figure 1: An example of document enrichment:
A source document about a U.S. air strike omit-
ting two important pieces of background knowl-
edge which are acquired by our framework.

triples from multiple sources, we also get better
coverage. Therefore, one can expect that this rep-
resentation is helpful for better document enrich-
ment by incorporating both accuracy and cover-
age. In fact, there is already evidence that this
representation is helpful. Zhang et al. (2014) pro-
posed a triple-based document enrichment frame-
work which uses triples of SPO as background
knowledge. They first proposed a search engine–
based method to evaluate the relatedness between
every pair of triples, and then an iterative propa-
gation algorithm was introduced to select the most
relevant triples to a given source document (see
Section 2), which achieved a good performance.

However, to evaluate the semantic relatedness
between two triples, Zhang et al. (2014) primar-
ily relied on the text of triples and used search
engines, which makes their method difficult to
re-implement and in turn limits its application in
practice. Moreover, they did not carry out any
task-based evaluation, which makes it uncertain
whether their method will be helpful in real appli-
cations. Therefore, we instead use topic models,
especially Latent Dirichlet Allocation (LDA), to
encode distributional semantics of words and con-
vert every triple into a real-valued vector, which
is then used to evaluate the relatedness between
a pair of triples. We then incorporate these triples
into the given source document and represent them
together as a graph of triples. Then a modified it-
erative propagation is carried out over the entire
graph to select the most relevant triples of back-
ground knowledge to the given source document.

To evaluate our model, we conduct two series of

experiments: (1) evaluation as a ranking problem,
and (2) task-based evaluation. We first treat this
task as a ranking problem which inputs one doc-
ument and outputs the top N most-relevant triples
of background knowledge. Second, we carry out a
task-based evaluation by incorporating these rele-
vant triples acquired by our model into the origi-
nal model of document classification as additional
features. We then perform a direct comparison be-
tween the classification models with and without
these triples, to determine whether they are help-
ful or not. On the first series of experiments, we
achieve a MAP of 0.6494 and a P@N of 0.5597 in
the best situation, which outperforms the strongest
baseline by 5.87% and 17.21%. In the task-based
evaluation, the enriched model derived from the
triples of background knowledge performs better
by 3.02%, which demonstrates the effectiveness of
our framework in real NLP applications.

2 Background

The most closely related work in this area is our
own (Zhang et al., 2014), which used the triples
of SPO as background knowledge. In that work,
we first proposed a triple graph to represent the
source document and then used a search engine–
based iterative algorithm to rank all the triples. We
describe this work in detail below.

Triple graph Zhang et al. (2014) proposed the
triple graph as a document representation, where
the triples of SPO serve as nodes, and the edges
between nodes indicate their semantic relatedness.
There are two kinds of nodes in the triple graph:
(1) source document nodes (sd-nodes), which are
triples extracted from source documents, and (2)
background knowledge nodes (bk-nodes), which
are triples extracted from external sources. Both
of them are extracted automatically with Reverb, a
well-known Open Information Extraction system
(Etzioni et al., 2011). There are also two kinds
of edges: (1) an edge between a pair of sd-nodes,
and (2) an edge between one sd-node and another
bk-node, both of which are unidirectional. In the
original representation, there are no edges between
two bk-nodes because they treat the bk-nodes as
recipients of relevance weight only. In this paper,
we modify this setup and connect every pair of bk-
nodes with an edge, so the bk-nodes serve as in-
termediate nodes during the iterative propagation
process and contribute to the final performance too
as shown in our experiments (see Section 5.1).
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Relevance evaluation To compute the weight of
a edge, Zhang et al. (2014) evaluate the seman-
tic relatedness between two nodes with a search
engine–based method. They first convert every
node, which is a triple of SPO, into a query by
combining the text of Subject and Object together.
Then for every pair of nodes ti and t j, they con-
struct three queries: p, q, and p∩ q, which corre-
spond to the queries of ti, t j, and t j ∩ t j, the com-
bination of ti and t j. All these queries are put into
a search engine to get H(p), H(q), and H(p∩ q),
the numbers of returned pages for query p, p, and
p∩q. Then the WebJaccard Coefficient (Bollegala
et al., 2007) is used to evaluate r(i, j), the related-
ness between ti and t j, according to Formula 1.

r(i, j) = WebJaccard(p,q) = 0 if H(p∩q)≤C
H(p∩q)

H(p)+H(q)−H(p∩q) otherwise.

(1)

Using r(i, j), Zhang et al. (2014) further define
p(i, j), the probability of ti and t j propagating to
each other, as shown in Formula 2. Here N is
the set of all nodes, and δ (i, j) denotes whether
an edge exists between two nodes or not.

p(i, j) =
r(i, j)×δ (i, j)

∑n∈N r(n, j)×δ (n, j)
(2)

Iterative propagation Considering that the
source document D is represented as a graph of
sd-nodes, so the relevance of background knowl-
edge tb to D is naturally converted into that of tb to
the graph of sd-nodes. Zhang et al. (2014) evalu-
ate this relevance by propagating relevance weight
from sd-nodes to tb iteratively. After convergence,
the relevance weight of tb will be treated as the fi-
nal relevance to D. There are in total n× n pairs
of nodes, and their p(i, j) are stored in a matrix P.
Zhang et al. (2014) use ~W = (w1,w2, . . . ,wn) to de-
note the relevance weights of nodes, where wi in-
dicates the relevance of ti to D. At the beginning,
each wi of bk-nodes is initialized to 0, and each
that of sd-nodes is initialized to its importance to
D. Then ~W is updated to ~W

′
after every iteration

according to Formula 3. They keep updating the
weights of both sd-nodes and bk-nodes until con-

vergence and do not distinguish them explicitly.

~W
′
= ~W ×P

= ~W ×


p(1,1) p(1,2) . . . p(1,n)
p(2,1) p(2,2) . . . p(2,n)
. . . . . . . . . . . .

p(n,1) p(n,2) . . . p(n,n)

 (3)

3 Methodology

The key idea behind this work is that every doc-
ument is composed of several units of informa-
tion, which can be extracted into triples automat-
ically. For every unit of background knowledge
b, the more units that are relevant to b and the
more relevant they are, the more relevant b will
be to the source document. Based on this intu-
ition, we first present both source document infor-
mation and background knowledge together as a
document-level triple graph as illustrated in Sec-
tion 2. Then we use LDA to capture the distribu-
tional semantics of a triple by representing it as a
vector of distributional probabilities over k topics
and evaluate the relatedness between two triples
with cosine-similarity. Finally, we propose a mod-
ified iterative process to propagate the relevance
score from the source document information to the
background knowledge and select the top n rele-
vant ones.

3.1 Encoding distributional semantics
LDA LDA is a popular generative probabilistic
model, which was first introduced by Blei et al.
(2003). LDA views every document as a mixture
over underlying topics, and each topic as a distri-
bution over words. Both the document-topic and
the topic-word distributions are assumed to have a
Dirichlet prior. Given a set of documents and a
number of topics, the model returns θd , the topic
distribution for each document d, and φz, the word
distribution for every topic z.

LDA assumes the following generative process
for each document in a corpus D:

1. Choose N ∼ Poisson(ξ ).

2. Choose θ ∼ Dir(α).

(a) Choose a topic zn ∼Multinomial(θ).
(b) Choose a word wn from p(wn|zn,β ) con-

ditioned on the topic zn.

Here the dimensionality k of the Dirichlet distribu-
tion (and thus the dimensionality of the topic vari-
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Figure 2: Graphical representation of LDA. The
boxes represents replicates, where the inner box
represents the repeated choice of N topics and
words within a document, while the outer one rep-
resents the repeated generation of M documents.

able z) is assumed to be known and fixed; θ is a k-
dimensional Dirichlet random variable, where the
parameter α is a k-vector with components αi > 0;
and the β indicates the word probabilities over
topics, which is a matrix with βi j = p(w j = 1|zi =
1). Figure 2 shows the representation of LDA as
a probabilistic graphical model with three levels.
There are two corpus-level parameters α and β ,
which are assumed to be sampled once in the pro-
cess of generating a corpus; one document-level
variable θd , which is sampled once per document;
and two word-level variables zdn and wdn, which
are sampled once for each word in each document.

We employ the publicly available implementa-
tion of LDA, JGibbLDA21 (Phan et al., 2008),
which has two main execution methods: param-
eter estimation (model building) and inference for
new data (classification of a new document).

Relevance evaluation Given a set of documents
and the number of topics k, LDA will return φz,
the word distribution over the topic z. So for every
word wn, we get k distributional probabilities over
k topics. We use pwnzi to denote the probability
that wn appears in the ith topic zi, where i≤ k, zi ∈
Z, the set of k topics. Then we combine these k
possibilities together as a real-valued vector~vwn to
represent wn as shown in Formula 4.

~vwn = (pwnz1 , pwnz2 , . . . , pwnzk) (4)

After getting the vectors of words, we employ
an intuitive method to compute the vector of a
triple t, by accumulating all the corresponding
vectors of words appearing in t according to For-
mula 5. Considering that the elements of this
newly generated vector indicate the distributional
probabilities of t over k topics, we then normalize

1http://jgibblda.sourceforge.net/

it according to Formula 6 so that its elements sum
to 1. This gives us ~vt , the real-valued vector of
triple t, which captures its distributional probabil-
ities over k topics. Here t corresponds to a triple
of background knowledge or of source document,
ptzi indicates the possibility of t to appear in the ith

topic zi, and wn ∈ t means that wn appears in t.

ptzi = ∑
wn∈t

pwnzi (5)

~vt =
(ptz1 , ptz2 , . . . , ptzk)

∑k
i=1 ptzi

(6)

Using the vectors of triples, we can easily com-
pute the semantic relatedness between a pair of
triples as their cosine-similarity according to For-
mula 7. Here A, B correspond to the real-valued
vectors of two triples, r(A,B) denotes their se-
mantic relatedness, and k is the number of topics,
which is also the length of A (or B). A high value
of r(A,B) usually indicates a close relatedness be-
tween A and B, and thus a higher probability of
propagating to each other in the following modi-
fied iterative propagation illustrated in Section 3.2.

r(A,B) =cos(A,B) =
AB
‖A‖‖B‖

= ∑k
i=1 AiBi√

∑k
i=1 (Ai)2

√
∑k

i=1 (Bi)2

(7)

3.2 Modified iterative propagation
In this part, we propose a modified iterative prop-
agation based ranking model to select the most-
relevant triples of background knowledge. There
are three primary modifications to the original
model of Zhang et al. (2014), all of which are
shown more powerful in our experiments.

First of all, the original model (Zhang et al.,
2014) does not reset the relevance weight of sd-
nodes after every iteration. This results in a contin-
ued decrease of the relevance weight of sd-nodes,
which weakens the effect of sd-nodes during the
iterative propagation and in turn affects the fi-
nal performance. To tackle this problem, we de-
crease the relevance weight of bk-nodes and in-
crease that of sd-nodes according to a fixed ratio
after every iteration, so as to ensure that the to-
tal weight of sd-nodes is always higher than that
of bk-nodes. Note that although the relevance
weights of bk-nodes are changed after the redis-
tribution, the corresponding ranking of them is not
changed because the redistribution is carried out
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Figure 3: The edge between two bk-nodes helps
in the better evaluation of relatedness between the
bk-node Yoko Ono and the sd-node Beatles.

over all nodes accordingly. In our experiments, we
tried different ratios and finally chose 10:1, with
sd-nodes corresponding to 10 and bk-nodes to 1,
which achieved the best performance.

In addition, we also modify the triple graph, the
representation of a document illustrated in Section
2, by connecting every pair of bk-nodes with an
edge, which is not allowed in the original model.
This modification was motivated by the intuition
that the relatedness between bk-nodes also con-
tributes to the better evaluation of relevance to the
source document, because the bk-nodes can serve
as the intermediate nodes during the iterative prop-
agation over the entire graph. Figure 3 shows an
example, where the bk-node John Lennon is close
to both the sd-node Beatles and to another bk-
node Yoko Ono, so the relatedness between two
bk-nodes John Lennon and Yoko Ono helps in bet-
ter evaluation of the relatedness between the bk-
node Yoko Ono and the sd-node Beatles.

We also modify the definition of p(i, j), the
probability of two nodes ti and t j propagating to
each other. Zhang et al. (2014) compute this prob-
ability according to Formula 2, which highlights
the number of neighbors, but weakens the related-
ness between nodes, due to the normalization. For
instance, if a node tx has only one neighbor ty, no
matter how low their relatedness is, their p(x,y)
will still be equal to 1 in the original model, while
another node with two equally but closely related
neighbors will only get a probability of 0.5 for
each neighbor. We modify this setup by removing
the normalization process and computing p(i, j) as
the relatedness between ti and t j directly, which is
evaluated according to Formula 1 .

4 Encoding background knowledge into
document classification

In this part, we demonstrate that the introduction
of relevant knowledge could be helpful to real
NLP applications. In particular, we choose the
document classification task as a demonstration,

which aims to classify documents into predefined
categories automatically (Sebastiani, 2002). We
choose this task for two reasons: (1) This task
has witnessed a booming interest in the last 20
years, due to the increased availability of docu-
ments in digital form and the ensuing need to orga-
nize them, so it is important in both research and
application. (2) The state-of-the-art performance
of this task is achieved by a series of topic model–
based methods, which rely on the same model as
we do, but make use of source document informa-
tion only. However, there is always some omitted
information and relevant knowledge, which can-
not be captured from the source document. In-
tuitively, the recovery of this information will be
helpful. If we can improve the performance by in-
troducing extra background knowledge into exist-
ing framework of document classification, we can
inference naturally that the improvement benefits
from the introduction of this knowledge.

Traditional methods primarily use topic models
to represent a document as a topic vector. Then a
SVM classifier takes this vector as input and out-
puts the class of the document. In this work, we
propose a new framework for document classifica-
tion to incorporate extra knowledge. Given a doc-
ument to be classified, we select the top N most-
relevant triples of background knowledge with our
model introduced in Section 3, all of which are
represented as vectors of ~vt = (ptz1 , ptz2 , . . . , ptzk).
Then we combine these N triples as a new vec-
tor~v

′
t , which is then incorporated into the original

framework of document classification. Another
SVM classifier takes ~v

′
t , together with the original

features extracted from the source document, as
input and outputs the category of the source doc-
ument. To combine N triples as one, we employ
an intuitive method by computing the average of
N corresponding vectors in every dimension.

One possible problem is how to decide N, the
number of triples to be introduced. We first intro-
duce a fixed amount of triples for every document.
Moreover, we also select the triples according to
their relevance weight to the source document (see
Section 3.2) by setting a threshold of relevance
weight first and selecting the triples whose weights
are higher than the threshold. We further discuss
the impact of different thresholds in Section 5.2.
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5 Experiments

To evaluate our model, we conduct two series
of experiments: (1) We first treat this task as a
ranking problem, which takes a document as in-
put and outputs the ranked triples of background
knowledge, and evaluate the ranking performance
by computing the scores of MAP and P@N. (2)
We also conduct a task-based evaluation, where
document classification (see Section 4) is chosen
as a demonstration, by enriching the background
knowledge to the original framework as additional
features and performing a direct comparison.

5.1 Evaluation as a ranking problem

Data preparation The data is composed of two
parts: source documents and background knowl-
edge. For source documents, we use a publicly
available Chinese corpus which consists of 17,199
documents and 13,719,428 tokens extracted from
Internet news2 including 9 topics: Finance, IT,
Health, Sports, Travel, Education, Jobs, Art, Mil-
itary. We then randomly but equally select 600
articles as the set of source documents from 9 top-
ics without data bias. We use all the other 16,599
documents of the same corpus as the source of
background knowledge, and then introduce a well-
known Chinese open source tool (Che et al., 2010)
to extract the triples of background knowledge
from the raw text automatically. So the back-
ground knowledge also distributes evenly across
the same 9 topics. We use the same tool to extract
the triples of source documents too.

Baseline systems As Zhang et al. (2014) argued,
it is difficult to use the methods in traditional
ranking tasks, such as information retrieval (Man-
ning et al., 2008) and entity linking (Han et al.,
2011; Sen, 2012), as baselines in this task, because
our model takes triples as basic input and thus
lacks some crucial information such as link struc-
ture. For better comparison, we implement three
methods as baselines, which have been proved ef-
fective in relevance evaluation: (1) Vector Space
Model (VSM), (2) Word Embedding (WE), and
(3) Latent Dirichlet Allocation (LDA). Note that
our model captures the distributional semantics of
triples with LDA, while WE serves as a baseline
only, where the word embeddings are acquired
over the same corpus mentioned previously with

2http://www.sogou.com/labs/dl/c.html

the publicly available tool word2vec3.
Here we use ti, D, and wi to denote a triple of

background knowledge, a source document, and
the relevance of ti to D. For VSM, we represent
both ti and D with a tf-idf scheme first (Salton
and McGill, 1986) and compute wi as their cosine-
similarity. For WE, we first convert both ti and the
triples extracted from D into real-valued vectors
with WE and then compute wi by accumulating all
the cosine-similarities between ti and every triple
from D. For LDA, we represent ti as a vector with
our model introduced in Section 3.1 and get the
vector of D directly with LDA. Then we evaluate
their relevance of ti to D by computing the cosine-
similarity of two corresponding vectors.

Moreover, to determine whether our modified
iterative propagation is helpful or not, we also
compare our full model (Ours) against a simpli-
fied version without iterative propagation (Ours-
S). In Ours-S, we represent both ti and the triples
extracted from D as real-valued vectors with our
model introduced in Section 3.1. Then we com-
pute wi by accumulating all the cosine-similarities
between ti and the triples extracted from D. For all
the baselines, we rank the triples of background
knowledge according to wi, their relevance to D.

Experimental setup Previous research relies on
manual annotation to evaluate the ranking perfor-
mance (Zhang et al., 2014), which costs a lot,
and in which it is difficult to get high consistency.
In this paper, we carry out an automatic evalua-
tion. The corpus we used consists of 9 different
classes, from which we extract triples of back-
ground knowledge. So correspondingly, there will
be 9 sets of triples too. Then we randomly select
200 triples from every class and mix 200× 9 =
1800 triples together as S, the set of triples of
background knowledge. For every document D
to be enriched, our model selects the top N most-
relevant triples from S and returns them to D as
enrichments. We treat a triple ti selected by our
model as positive only if ti is extracted from the
same class as D. We evaluate the performance of
our model with two well-known criteria in ranking
problem: MAP and P@N (Voorhees et al., 2005).
Statistically significant differences of performance
are determined using the two-tailed paired t-test
computed at a 95% confidence level based on the
average performance per source document.

3https://code.google.com/p/word2vec/
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Model MAP 5 P@5 MAP 10 P@10
VSM 0.4968 0.3435 0.4752 0.3841
WE 0.4356 0.3354 0.4624 0.3841
LDA 0.6134 0.4775 0.6071 0.5295
Ours-S 0.5325 0.3762 0.5012 0.4054
Ours 0.6494 0.5597 0.6338 0.5502

Table 1: The performance evaluated as a ranking
task. Here Ours corresponds to our full model,
while Ours-S is a simplified version of our model
without iterative propagation (see Section 3.2).

Results The performance of multiple models is
shown in Table 1. Overall, our full model Ours
outperforms all the baseline systems significantly
in every metric. When evaluating the top 10 triples
with the highest relevance weight, our framework
outperforms the best baseline LDA by 4.4% in
MAP and by 3.91% in P@N. When evaluating the
top 5 triples, our framework performs even better
and significantly outperforms the best baseline by
5.87% in MAP and by 17.21% in P@N.

To analyze the results further, Ours-S, the sim-
plified version of our model without iterative
propagation, outperforms two strong baselines
VSM and WE, which indicates the effectiveness
of encoding distributional semantics. However,
the performance of this simplified model is not as
good as that of LDA, because Ours-S evaluates the
relevance with simple accumulation, which fails
to capture the relatedness between multiple triples
from the source document. We tackle this prob-
lem by incorporating the modified iterative propa-
gation over the entire triple graph into Ours, which
achieves the best performance. One possible prob-
lem is why WE has a poor performance, the reason
of which lies in the setup of our evaluation, where
we label positive and negative instances according
to the class information of triples and documents.
This is better fit for topic model–based methods.

Discussion We further analyze the impact of the
three modifications we made to the original model
(see Section 3.2). We first focus on the impact
of decreasing the relevance weight of bk-nodes
and increasing that of sd-nodes after every itera-
tion. As mentioned previously, we change their
relevance weight according to a fixed ratio, which
is important to the performance. Figure 4 shows
the performance of models with different ratios.
With any increase of the ratio, our model improves
its performance in every metric, which shows the
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Figure 4: The performance of our model with dif-
ferent ratios between sd-nodes and bk-nodes.

effectiveness of this setup. The performance re-
mains stable from the value of 10:1, which is thus
chosen as the final value in our experiments. We
then turn to the other two modifications about the
edges between bk-nodes and the setup of propaga-
tion probability. Table 2 shows the performance of
our full model and the simplified models without
these two modifications. With the edges between
bk-nodes, our model improves the performance by
1.48% in MAP 5 and by 1.82% in P@5. With the
modified iterative propagation, we achieve a even
greater improvement of 13.99% in MAP 5 and
24.27% in P@5. All these improvements are sta-
tistically significant, which indicates the effective-
ness of these modifications to the original model.

Model MAP 5 P@5 MAP 10 P@10
Full 0.6494 0.5597 0.6338 0.5502
Full−bb 0.6399 0.5497 0.6254 0.5404
Full−p 0.5697 0.4504 0.5485 0.4409

Table 2: The performance of our full model (Full)
and two simplified models without modifications:
(1) without edges between bk-nodes (Full−bb),
(2) without the newly proposed definition of prop-
agation probability between nodes (Full−p).

5.2 Task-based evaluation
Data preparation To carry out the task-based
evaluation, we use the same Chinese corpus as that
in previous experiments, which consists of 17,199
documents extracted from Internet news in 9 top-
ics. We also use the same tool (Che et al., 2010) to
extract triples of both source document and back-
ground knowledge. For every document D to be
classified, we first use our model to get the top N
most-relevant triples to D, and then use them as
extra features for the original model. We conduct
a direct comparison between the models with and
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Model P R F
VSM+one-hot 0.8214 0.8146 0.8168
VSM+tf-idf 0.8381 0.8333 0.8336
LDA+SVM 0.8512 0.8422 0.8436
LDA+SVM+Ours-S 0.8584 0.8489 0.8501
LDA+SVM+Ours 0.8748 0.8689 0.8691

Table 3: The performance of document classifica-
tion with (LDA+SVM+Ours-S, LDA+SVM+Ours)
and without (others) background knowledge.

without background knowledge to evaluate the im-
pact of introducing background knowledge.

Baseline systems We first illustrate two base-
lines without background knowledge based on
VSM and LDA. For VSM, the test document D
is represented as a bag of words, where the word
distribution over candidate topics is trained on
the same corpus mentioned previously. Then we
evaluate the similarity between D and a candi-
date topic with cosine-similarity directly, where
the topic with the highest similarity will be chosen
as the final class. We use two setups: (1) VSM-
one-hot represents a word as 1 if it appears in a
document or topic, or 0 if not. (2) VSM-tf-idf rep-
resents a word as the value of tf-idf. For LDA,
we re-implement the state-of-the-art system as an-
other baseline, which represents D as a topic vec-
tor ~vd in the parameter estimation step, and then
introduces a SVM classifier to take~vd as input and
decide the final class in the inference step.

We also evaluate the impact of knowledge qual-
ity by proposing two different models to introduce
background knowledge: our full model introduced
in Section 3 (Ours), and a simplified version of
our model without iterative propagation (Ours-S).
They have different performances on introducing
background knowledge as shown in previous ex-
periments (see Section 5.1). We then conduct a di-
rect comparison between the document classifica-
tion models with these conditions, whose differing
performances demonstrates the impact of different
qualities of background knowledge on this task.

Results Table 3 shows the results. We use P, R, F
to evaluate the performance, which are computed
as the micro-average over 9 topics. Both models
with background knowledge (LDA+SVM+Ours-
S, LDA+SVM+Ours) outperform systems without
knowledge, which shows that the introduction of
background knowledge helps in better classifica-
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Figure 5: The performance of document classifica-
tion models with different thresholds. The knowl-
edge whose relevance weight to the source docu-
ment exceeds the threshold will be introduced as
background knowledge.

tion of documents. The system with the simpli-
fied version of our model without iterative prop-
agation (LDA+SVM+Ours-S) achieves a F-value
of 0.8501, which outperforms the other baselines
without knowledge too. Moreover, the system
with our full model (LDA+SVM+Ours) achieves
the best performance, a F-value of 0.8691, and
outperforms the best baseline LDA+SVM signif-
icantly. This shows that introducing better qual-
ity of background knowledge is helpful to the bet-
ter classification of documents. Statistical signif-
icance is also verified using the two-tailed paired
t-test computed at a 95% confidence level based
on the results of classification over the test set.

Discussion One important question here is how
much background knowledge to include. As men-
tioned in Section 4, we have tried two different
solutions: (1) introducing a fixed amount of back-
ground knowledge for every document, and (2)
setting a threshold and selecting knowledge whose
relevance weight exceeds the threshold. The re-
sults are shown in Table 4, where the systems
with threshold outperform that with fixed amount,
which shows that the threshold helps in better in-
troduction of background knowledge.

Model P R F
Ours-S+Top5 0.8522 0.8444 0.8456
Ours-S+ThreD 0.8584 0.8489 0.8501
Ours+Top5 0.8769 0.8667 0.8677
Ours+ThreD 0.8748 0.8689 0.8691

Table 4: The performance of document classifica-
tion with the full model (Ours) and the simplified
model (Ours-S) to introduce knowledge.
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We also evaluate the impact of different thresh-
olds as shown in Figure 5. The performance keeps
improving as the threshold increases up to 6.4 and
becomes steady from 6.4 to 6.7, while it begins to
decline sharply from 6.7. This is reasonable be-
cause at the beginning, as the threshold increases,
we recall more background knowledge and pro-
vide more information. However, with the further
increase of the threshold, we introduce more noise,
which decreases the performance. In our experi-
ments, we choose 6.4 as the final threshold.

6 Conclusion and Future Work

This study encodes distributional semantics into
the triple-based background knowledge ranking
model (Zhang et al., 2014) for better document
enrichment. We first use LDA to represent ev-
ery triple as a real-valued vector, which is used to
evaluate the relatedness between triples, and then
propose a modified iterative propagation model to
rank all the triples of background knowledge. For
evaluation, we conduct two series of experiments:
(1) evaluation as ranking problem, and (2) task-
based evaluation, especially for document classifi-
cation. In the first set of experiments, our model
outperforms multiple strong baselines based on
VSM, LDA, and WE. In the second set of exper-
iments, our full model with background knowl-
edge outperforms the state-of-the-art systems sig-
nificantly. Moreover, we also explore the impact
of knowledge quality and show its importance.

In our future work, we wish to explore a better
way to encode distributional semantics by propos-
ing a modified LDA for better triples representa-
tion. In addition, we also want to explore the ef-
fect of introducing background knowledge in con-
junction with other NLP tasks, especially with dis-
course parsing (Marcu, 2000; Pitler et al., 2009).
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Abstract

We characterize a class of indirect an-
swers to yes/no questions, alternative an-
swers, where information is given that is
not directly asked about, but which might
nonetheless address the underlying moti-
vation for the question. We develop a
model rooted in game theory that gener-
ates these answers via strategic reasoning
about possible unobserved domain-level
user requirements. We implement the
model within an interactive question an-
swering system simulating real estate dia-
logue. The system learns a prior probabil-
ity distribution over possible user require-
ments by analyzing training dialogues,
which it uses to make strategic deci-
sions about answer selection. The system
generates pragmatically natural and inter-
pretable answers which make for more ef-
ficient interactions compared to a baseline.

1 Introduction

In natural language dialogue, questions are often
answered indirectly. This is particularly apparent
for yes/no questions, where a wide range of re-
sponses beyond literal “yes” and “no” answers is
available. Sometimes indirect answers serve to an-
ticipate the next step of the hearer’s plan, as in (1)
(Allen and Perrault, 1980), where the literal an-
swer is entailed by the supplied answer, and some-
times indirect answers leave it to the hearer to in-
fer the literal answer from common contextual as-
sumptions, as in (2) (de Marneffe et al., 2009).

(1) Q: Has the train to Windsor left yet?
A: It’s leaving soon from gate 7.

(2) Q: Is Sue at work?
A: She’s sick with the flu.

But other times there is no semantic link between
the question and the supplied answer. Rather, the

answer must be interpreted in light of the task-
specific goals of the interlocutors. Consider (3)
in a context where a customer is posing questions
to a real estate agent with the aim of renting an
apartment.

(3) Q: Does the apartment have a garden?
A: Well, it has a large balcony.

Whether there is a balcony has no logical bear-
ing on whether there is a garden. Intuitively, the
realtor is inferring that the customer’s question
might have been motivated by a more general re-
quirement (perhaps the customer wants a place
to grow flowers) and supplying an alternative at-
tribute to satisfy that requirement. In this case
the answerer must reason about which attributes of
an apartment might satisfy a customer who would
ask about a garden. Note that multiple motivating
requirements are possible (perhaps the customer
just wants to relax outside), such that the answerer
might just as easily have said, “It has a large bal-
cony, and there is a park close by.” In either case,
the hearer can infer from the lack of a direct an-
swer that the apartment must not have a garden,
because if it did, to say so would have been more
obviously helpful.

This paper focuses on this class of answers,
which we call alternative answers. We character-
ize these as indirect answers to yes/no questions
that offer attributes of an object under discussion
which might satisfy an unobserved domain-level
requirement of the questioner. We conceive of a
requirement as a set of satisfying conditions, such
that a particular domain-related need would be met
by any one member of the set. For example, in the
context of (3) we can encode a possible customer
requirement of a place to grow flowers in an apart-
ment, FLOWERS = {GARDEN, BALCONY}, such
that either GARDEN or BALCONY would suffice
to satisfy the requirement.
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In order to generate alternative answers auto-
matically, we must first solve two problems: (i)
how does one learn and represent a space of likely
user requirements?, and (ii) how does one use such
a space to select indirect answers? To do this
in a natural, pragmatically interpretable way, we
must not only derive answers like in (3), but cru-
cially, also rule out infelicitous responses like the
following, where a logically possible alternative
leads to incoherence due to the low probability of
an appropriate requirement like {GARDEN, BASE-
MENT}. (In other words, wanting a garden has
little effect on the probability of wanting a base-
ment.)

(4) Q: Does the apartment have a garden?
A: #Well, it has a large basement.

To solve these problems, we propose an approach
rooted in decision-theoretic and game-theoretic
analyses of indirectness in natural language (van
Rooij, 2003; Benz and van Rooij, 2007; Benz et
al., 2011; Stevens et al., 2014) whereby a system
uses strategic reasoning to derive an optimal re-
sponse to a yes/no question given certain domain
assumptions. The model operates by assuming
that both the questioner and the answerer are ratio-
nal, i.e. that both participants want to further their
own goals, and will behave so as to maximize the
probability of success at doing so.

One appeal of the strategic approach is its rela-
tive simplicity: the model utilizes a learned prob-
ability distribution over possible domain-level re-
quirements of the questioner and applies simple
probabilistic reasoning to feed content selection
during online answer generation. Unlike plan in-
ference approaches, we do not need to represent
any complex taxonomies of stimulus conditions
(Green and Carberry, 1994) or coherence relations
(Green and Carberry, 1999; Asher and Lascarides,
2003).

By implementing the strategic reasoning model
within a simple interactive question answering
system (Konstantinova and Orasan, 2012), simu-
lating real estate dialogues with exchanges like in
(3), we are able to evaluate the current approach
quantitatively in terms of dialogue efficiency, per-
ceived coherence of the supplied answers, and
ability of users to draw natural pragmatic infer-
ences. We conclude that strategic reasoning pro-
vides a promising framework for developing an-
swer generation methods by starting with princi-
pled theoretical analyses of human dialogue.

The following section presents the model, in-
cluding a concrete content selection algorithm
used for producing answers to questions, and then
walks through a simple illustrative example. Sec-
tion 3 describes our implementation, addresses the
problem of learning requirement probabilities, and
presents the results of our evaluation, providing
quantitative support for our approach. Section 4
concludes with a general summary.

2 Model

2.1 Overview

We derive our model beginning with a simple
description of the discourse situation. In our
case, this is an exchange of questions and answers
where a user poses questions to be answered by
an expert who has access to a database of in-
formation that the user wants. The expert has
no advance knowledge of the database, and thus
must look up information as needed. Each user
question is motivated by a requirement, conceived
of as a (possibly singleton) set of database at-
tributes (restricted for current purposes to boolean
attributes), any one of which satisfies a user need
(e.g. {GARDEN, BALCONY} in the previous sec-
tion). Only the user has direct access to her own
requirements, and only the expert can query the
database to inform the user whether her require-
ments can be satisfied. For current purposes we
assume that each question and answer in the di-
alogue pertains to a specific object o from the
database which is designated as the object un-
der discussion. This way we can represent an-
swers and question denotations with attributes,
like GARDEN, where the queried/supplied attribute
is assumed to predicate over o. In these terms, the
expert can either ASSERT an attribute (if it holds
of o) or DENY an attribute (if it does not hold of o)
in response to a user query.

Now we describe the goals of the interlocutors.
The user wants her requirements to be satisfied,
and will not accept an object until she is sure this
is the case. If it is clear that an object cannot sat-
isfy one or more requirements, the user will ask to
discuss a different object from the database. We
can thus characterize the set of possible user re-
sponses as follows: the user may ACCEPT the ob-
ject as one that meets all requirements, the user
may REJECT the object and ask to see something
else, or the user may FOLLOW UP, continuing to
pose questions about the current object. The user’s
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goal, then, is ultimately to accept an object that in
fact satisfies her requirements, and to reject any
object that does not.

The expert’s goal is to help the user find an op-
timal object as efficiently as possible. Given this
goal, the expert does better to provide alternative
attributes (like BALCONY for GARDEN in (3)) in
place of simple “no” answers only when those at-
tributes are relevant to the user’s underlying re-
quirements. To use some economic terminology,
we can define the benefit (B) of looking up a po-
tential alternative attribute a in the database as a
binary function indicating whether a is relevant to
(i.e. a member of) the user requirement ρ which
motivated the user’s question. For example, in (3),
if the user’s question is motivated by requirement
{GARDEN, BALCONY}, then the benefit of looking
up whether there is a balcony is 1, because if that
attribute turns out to hold of o, then the customer’s
requirement is satisfied. If, on the other hand, the
questioner has requirement {GARDEN}, then the
benefit of looking up BALCONY is 0, because this
attribute cannot satisfy this requirement.

B(a|ρ) = 1 if a ∈ ρ and 0 otherwise (1)

Regardless of benefit, the expert incurs a cost by
looking up information. To fully specify what cost
means in this context, first assume a small, fixed
effort cost associated with looking up an attribute.
Further assume a larger cost incurred when the
user has to ask a follow-up question to find out
whether a requirement is satisfied. What really
matters are not the raw cost amounts, which may
be very small, but rather the relative cost of look-
ing up an attribute compared to that of receiving a
follow-up. We can represent the ratio of look-up
cost to follow-up cost as a constant κ, which en-
codes the reluctance of the expert to look up new
information. Intuitively, if κ is close to 1 (i.e. if
follow-ups are not much more costly than simple
look-ups), the expert should give mostly literal an-
swers, and if κ is close to 0, (i.e. if relative follow-
up cost is very high), the expert should look up all
potentially beneficial attributes. With this, let the
utility (U ) of looking up a be the benefit of looking
up a minus the relative cost.

U(a|ρ) = B(a|ρ)− κ (2)

The expert is utility-maximizing under game-
theoretic assumptions, and (assuming a baseline
utility of zero for doing nothing) should aim to

look up attributes for which U is positive, i.e. for
which benefit outweighs cost. But the expert has a
problem: ρ, on which U depends, is known only to
the user. Therefore, the best the expert can do is to
reason probabilistically, based on the user’s ques-
tion, to maximize expected utility, or the weighted
average of U(a|ρ) for all possible values of ρ. The
expected utility of looking up an attribute a can be
written as the expected benefit of a—the weighted
average of B(a|ρ) for all ρ—minus the relative
cost. Let REQS be the set of all possible user re-
quirements and let q be the user’s question.

EU(a|q, REQS) = EB(a|q, REQS)− κ (3)

EB(a|q, REQS) =
∑

ρ∈REQS

P (ρ|q)×B(a|ρ) (4)

The probability of a user requirement P (ρ|q) is
calculated via Bayes’ rule, assuming that users
will choose their questions randomly from the set
of questions whose denotations are in their re-
quirement set. This yields the following.

P (ρ|q) =
P (q|ρ)× P (ρ)∑

ρ′∈REQS

P (q|ρ′)× P (ρ′)
(5)

P (q|ρ) =
1
|ρ| if JqK ∈ ρ and 0 otherwise (6)

The prior probability of a user requirement, P (ρ),
is given as input to the model. We will see in the
next section that it is possible to learn a prior prob-
ability distribution from training dialogues.

We have now fully characterized the expected
benefit (EB) of looking up an attribute in the
database. As per Eq.3, the expert should only
bother looking up an attribute if EB is greater
than the relative cost κ, since that is when EU
is positive. The final step is to give the expert
a sensible way to iteratively look up attributes to
potentially produce multiple alternatives. To this
end, we first point out that if an alternative has
been found which satisfies a certain requirement,
then it no longer adds any benefit to consider that
requirement when selecting further alternatives.
For example, in the context of example (3), when
the realtor queries the database to find the apart-
ment has a balcony, she no longer needs to con-
sider the probability of a requirement {BALCONY,
GARDEN} when considering additional attributes,
since that is already satisfied. Given this consid-
eration, the order in which database attributes are
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looked up can make a difference to the outcome.
So, we need a consistent and principled criterion
for determining the order in which to look up at-
tributes. The most efficient method is to start with
the attribute with the highest possible EB value
and then iteratively move down to the next best at-
tribute until EB is less than or equal to cost.

Note that the attribute that was asked about will
always have an EB value of 1. Consider again
the QA exchange in (3). Recall that the expert as-
sumes that the user’s query is relevant to an un-
derlying requirement ρ. This means that ρ must
contain the attribute GARDEN. Therefore, by defi-
nition, supplying GARDEN will always yield posi-
tive benefit. We can use this fact to explain how al-
ternative answers are interpreted by the user. The
user knows that the most beneficial attribute to
look up (in terms ofEB) is the one asked about. If
that attribute is not included in the answer, the user
is safe to assume that it does not hold of the object
under discussion. By reasoning about the expert’s
reasoning, the user can derive the implicature that
the literal answer to her question is “no”. In fact,
this is what licenses the expert to leave the nega-
tion of the garden attribute out of the answer: the
expert knows that the user knows that the expert
would have included it if it were true. This type of
“I know that you know” reasoning is characteristic
of game-theoretic analysis.1

2.2 Algorithm and example

Our algorithm for generating alternative answers
(Algorithm 1), which simulates strategic reason-
ing by the expert in our dialogue situation, is
couched in a simple information state update
(ISU) framework (Larsson and Traum, 2000;
Traum and Larsson, 2003), whereby the answerer
keeps track of the current object under discussion
(o) as well as a history of attributes looked up for
o (HISTo). The output of the algorithm takes the
form of a dialogue move, either an assertion (or set
of assertions) or denial that an attribute holds of o.
These dialogue moves can then be translated into
natural language with simple sentence templates.
The answerer uses HISTo to make sure redundant
alternatives aren’t given across QA exchanges. If

1It can be shown that the answer selection algorithm pre-
sented in this section, combined with a simple user inter-
pretation model, constitutes a perfect Bayesian equilibrium
(Harsanyi, 1968; Fudenberg and Tirole, 1991) in a signaling
game (Lewis, 1969) with private hearer types which formally
describes this kind of dialogue.

Requirement set P (ρ) P (q|ρ) P (ρ|q)
ρG ={GARDEN} 0.5 1 0.67
ρF ={GARDEN, BALCONY} 0.25 0.5 0.17
ρP ={GARDEN, PARK} 0.2 0.5 0.13
ρS ={GARDEN, BASEMENT} 0.05 0.5 0.03

Table 1: A toy example of a customer requirement
space with probabilities for q = ‘Does the apart-
ment have a garden?’

all possible answers are redundant, the answerer
falls back on a direct yes/no response.

To illustrate how the algorithm works, consider
a simple toy example. Table 1 gives a hypothetical
space of possible requirements along with a dis-
tribution of priors, likelihoods and Bayesian pos-
teriors. We imagine that a customer might want
a garden (ρG), or more generally a place to grow
flowers (ρF ), a place for their child to play outside
(ρP ), or, in rare cases, either a garden or a base-
ment to use as storage space (ρS). The rather odd
nature of ρS is reflected in its low prior. Consider
a variant of (3) where HISTo is empty, and where
DBo contains BALCONY, PARK and BASEMENT.

(5) Q: Does the apartment have a garden?
A: It has a balcony, and there is a park

very close by.

To start, let REQS contain the requirements in
Table 1, and let κ = 0.1. The algorithm derives
the answer as follows. First, the algorithm looks
up whether GARDEN holds of o. It does not hold,
so GARDEN is not added to the answer; it is only
added to the history of looked up attributes.

a = GARDEN; EB(GARDEN) = 1;
HISTo = {GARDEN}

Then, the system finds the next best attribute, BAL-
CONY, which does hold of o, appends it to the an-
swer as well as the history, and removes the rele-
vant requirement from consideration.

a = BALCONY; EB(BALCONY) = 0.17;
HISTo = {GARDEN, BALCONY};
ANSWER = {BALCONY};
REQS = {ρG, ρP , ρS}

The attribute PARK is similarly added.

a = PARK; EB(PARK) = 0.13;
HISTo = {GARDEN, BALCONY, PARK};
ANSWER = {BALCONY, PARK};
REQS = {ρG, ρS}

The attribute BASEMENT is next in line. However,
its EB value is below the threshold of 0.1 due
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Algorithm 1 An algorithm for generating alternative answers
Input: A set of attributes Φ, an object under discussion o, a database DBo of attributes which hold of o, a history HISTo of

attributes that have been looked up in the database, a set of possible user requirements REQS, a prior probability distribution
over REQS, a user-supplied question q with denotation JqK and a relative cost threshold κ ∈ (0, 1)

Initialize: ANSWER = {}; LOOKUP = TRUE
1: while LOOKUP do
2: Φ′ = (Φ \ HISTo) ∪ {JqK} . Only consider alternatives once per object per dialogue.
3: a = arg maxφ∈Φ′ EB(φ|q, REQS) . Find the best candidate answer.
4: if EB(a|q, REQS) > κ then . Check whether expected benefit outweighs cost.
5: HISTo = HISTo ∪ {a} . Log which attribute has been looked up.
6: if a ∈ DBo then
7: ANSWER = ANSWER ∪ {a} . Add to answer if attribute holds.
8: REQS = REQS \ {ρ ∈ REQS | ρ ∩ ANSWER 6= ∅}

. Don’t consider requirements that are already satisfied.
9: end if

10: else
11: LOOKUP = FALSE . Stop querying the database when there are no promising candidates left.
12: end if
13: end while
14: if ANSWER 6= ∅ then ASSERT(ANSWER),
15: else DENY(JqK)
16: end if

to its low prior probability, and thus the iteration
stops there, and BASEMENT is never looked up.

a = BASEMENT; EB(BASEMENT) = 0.03;
EB < κ; exit loop

3 Implementation and evaluation

3.1 Setup

A simple interactive question answering sys-
tem was built using a modified version of the
PyTrindiKit toolkit2 with a database back end im-
plemented using an adapted version of PyKE, a
Horn logic theorem prover.3 The system was set
up to emulate the behavior of a real estate agent
answering customers’ yes/no questions about a
range of attributes pertaining to individual apart-
ments. A set of 12 attributes was chosen for the
current evaluation experiment. The system gen-
erates answers by first selecting a discourse move
(i.e. assertion or denial of an attribute) and then
translating the move into natural language with
simple sentence templates like, “It has a(n) X” or
“There is a(n) X nearby”. When answers are in-
direct (i.e. not asserting or denying the attribute
asked about), the system begins its reply with the
discourse connective “well” as in example (3).4

2https://code.google.com/p/
py-trindikit

3http://pyke.sourceforge.net/
4Early feedback indicated that alternative answers were

more natural when preceded by such a discourse connective.
To assess this effect, we ran a separate evaluation experiment
with an earlier version of the system that produced alterna-
tive answers without “well”. Dialogue lengths and coherence
scores were not very different from what is reported in this

Subjects interacted with our system by means of
an online text-based interface accessible remotely
through a web browser. At the outset of the exper-
iment, subjects were told to behave as if they were
finding an apartment for a hypothetical friend, and
given a list of requirements for that friend. The
task required them to identify which from among
a sequence of presented apartments would satisfy
the given set of requirements. One out of four
lists, each containing three requirements (one of
which was a singleton), was assigned to subjects
at random. The requirements were constructed by
the researchers to be plausible desiderata for users
looking for a place to rent or buy (e.g. connection
to public transit, which could be satisfied either by
a nearby bus stop, or by a nearby train station).

The apartments presented by the system were
individually generated for each experiment such
that there was an apartment satisfying one attribute
for each possible combination of the three require-
ments issued to subjects, plus two additional apart-
ments that each satisfied two of the conditions
(23 + 2 = 10 apartments overall). Attributes out-
side a subject’s requirement sets were added at
random to assess the effect of “unhelpful” alter-
native answers.

Subject interacted with one of two answer gen-
eration models: a literal model, which only pro-
duced direct yes/no answers, and the strategic

section; however, in contrast with the current evaluation, we
found a large effect of model type (a 69% decrease for strate-
gic vs. literal) on whether the subjects successfully completed
the task (z=-2.19, p=0.03). This is consistent with the early
feedback.
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model as outlined above. Crucially, in both con-
ditions, the sequence in which objects were pre-
sented was fixed so that the last apartment of-
fered would be the sole object satisfying all of
the desired criteria. Also, we set the strategic
model’s κ parameter high enough (1/7) that only
single-attribute answers were ever given. These
two properties of the task, taken together, allow
us to obtain an apples-to-apples comparison of the
models with respect to average dialogue length. If
subjects failed to accept the optimal solution, the
interaction was terminated. After completing in-
teraction with our system, subjects were asked to
complete a short survey designed to get at the per-
ceived coherence of the system’s answers. Sub-
jects were asked to rate, on a seven-point Likert
scale, the relevance of the system’s answers to the
questions asked, overall helpfulness, the extent to
which questions seemed to be left open, and the
extent to which the system seemed evasive.

We predict that the strategic system will im-
prove overall efficiency of dialogue over that of the
literal system by (i) offering helpful alternatives to
satisfy the customer’s needs, and (ii) allowing cus-
tomers to infer implicit “no” answers from alterna-
tive answers, leading to rejections of sub-optimal
apartments. If, contrary to our hypothesis, sub-
jects fail to draw inferences/implicatures from al-
ternative answers, then we expect unhelpful alter-
natives (i.e. alternatives not in the user’s require-
ment set) to prompt repeated questions and/or fail-
ures to complete the task.

With respect to the questionnaire items, the lit-
eral system is predicted to be judged maximally
coherent, since only straightforward yes/no an-
swers are offered. The question is whether the
pragmatic system also allows for coherent dia-
logue. If subjects judge alternative answers to be
incoherent, then we expect any difference in aver-
age Likert scale ratings between strategic and lit-
eral system to reflect the proportion of alternative
answers that are given.

3.2 Learning prior probabilities

Before presenting our results, we explain how
prior probabilities can be learned within this
framework. One of the assumptions of the strate-
gic reasoning model is that users ask questions that
are motivated by specific requirements. Moreover,
we should assume that users employ a reason-
able questioning strategy for finding out whether

S: An apartment in the north of town might suit you. I
have an additional offer for you there.

U: Does the apartment have a garden?
S: The apartment does not have a garden.
U: Does the apartment have a balcony?
S: The apartment does not have a balcony.
U: I’d like to see something else

Figure 1: An example of the negation-rejection se-
quence 〈GARDEN, BALCONY〉

requirements hold, which is tailored to the sys-
tem they are interacting with. For example, if a
user interacts with a system that only produces lit-
eral yes/no answers, the user should take all an-
swers at face value, not drawing any pragmatic
inferences. In such a scenario, we expect the
user’s questioning strategy to be roughly as fol-
lows: for a1, a2, · · · , an in requirement ρ, ask
about a1, then if a1 is asserted, accept (or move
on to the next requirement if there are multiple re-
quirements), and if not, ask about a2; if a2 is as-
serted, accept, and if not, ask about a3, and so on,
until an is asked about. If an is denied, then reject
the object under discussion. If you need a place
to grow flowers, ask if there is a balcony or gar-
den, then, if the answer is no, ask about the other
attribute. If no “yes” answers are given, reject.

Such a strategy predicts that potential user re-
quirements should be able to be gleaned from dia-
logues with a literal system by analyzing negation-
rejection sequences (NRSs). A negation-rejection
sequence is a maximal observed sequence of ques-
tions which all receive “no” answers, without any
intervening “yes” answers or any other interven-
ing dialogue moves, such that at the end of that
sequence of questions, the user chooses to reject
the current object under discussion. Such a se-
quence is illustrated in Fig.1. By hypothesis, the
NRS 〈GARDEN, BALCONY〉 indicates a possible
user requirement {GARDEN, BALCONY}.

By considering NRSs, the system can learn
from training data a reasonable prior probability
distribution over possible customer requirements.
This obviates the need to pre-supply the system
with complex world knowledge. If customer re-
quirements can in principle be learned, then the
strategic approach could be expanded to dialogue
situations where the distribution of user require-
ments could not sensibly be pre-supplied. While
the system in its current form is not guaranteed to
scale up in this way, its success here provides us
with a promising proof of concept.
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Using the dialogues with the literal system as
training data, we were able to gather frequen-
cies of observed negation-rejection sequences. By
transforming the sequences into unordered sets
and then normalizing the frequencies of those sets,
we obtained a prior probability distribution over
possible customer requirements. In the training di-
alogues, subjects were given the same lists of re-
quirements as was given for the evaluation of the
strategic model. If successful, the system should
use the yes/no dialogue data to learn high prob-
abilities for requirements which customers actu-
ally had, and low probabilities for any others, al-
lowing us to evaluate the system without giving it
any prior clues as to which customer requirements
were assigned.

Because we know in advance which require-
ments the subjects wanted to fulfill, we have
a gold standard against which we can compare
the question-alternative answer pairs that different
variants of the model are able to produce. For ex-
ample, we know that if a subject asked whether
the apartment had a balcony and received an an-
swer about a nearby café, that answer could not
have been beneficial, since no one was assigned
the requirement {CAFÉ, BALCONY}.

Table 2 compares three variant models: (i) the
system we use in our evaluation, which sets prior
probabilities proportional to NRS frequency, (ii) a
system with flat priors, where probability is zero
if NRS frequency is zero, but where all observed
NRSs are taken to correspond to equiprobable re-
quirements, and finally (iii) a baseline which does
not utilize an EB threshold, but rather simply ran-
domly selects alternatives which were observed at
least once in an NRS with the queried attribute.
These models are compared by the maximum ben-
efit of their possible outputs using best-case val-
ues for κ. We see that there is a good match be-
tween the answers given by the strategic model
with learned priors and the actual requirements
that users were told to fulfill.

Though it remains to be seen whether this would
scale up to more complex requirement spaces, this
result suggests that NRSs can in fact be indicative
of disjunctive requirement sets, and can indeed be
useful in learning what possible alternatives might
be. For purposes of our evaluation, we will see
that the method was successful.

Model Precision Recall F1
Frequency-based 1 0.92 0.96
Flat 0.88 0.92 0.90
Baseline 0.23 1 0.37

Table 2: Comparison of best-case output with
respect to potential benefit of alternative answer
types to subjects. Precision = hits / hits+misses,
and Recall = hits / possible hits. A “hit” is a QA
pair which is a possible output of the model, such
that A could be a beneficial answer to a customer
asking Q, and a “miss” is such a QA pair such that
A is irrelevant to Q.

3.3 Evaluation results

We obtained data from a total of 115 subjects via
Amazon Mechanical Turk; 65 subjects interacted
with the literal comparison model, and 50 sub-
jects interacted with the strategic model. We ex-
cluded a total of 13 outliers across both condi-
tions who asked too few or too many questions
(1.5 interquartile ranges below the 1st or above
the 3rd quartile). These subjects either quit the
task early or simply asked all available questions
even for apartments that were obviously not a
good fit for their requirements. Two subjects were
excluded for not filling out the post-experiment
questionnaire. This left 100 subjects (59 literal/41
strategic), of which 86 (49/37) successfully com-
pleted the task, accepting the object which met
all assigned requirements. There was no statisti-
cally significant difference between the literal and
strategic models with respect to task success.

We first compare the literal and strategic models
with regard to dialogue length, looking only at the
subjects who successfully completed the task. Due
to the highly structured nature of the experiment
it was always the case that a successful dialogue
consisted of 10 apartment proposals, some num-
ber of QA pairs, where each question was given a
single answer, 9 rejections and, finally, one accep-
tance. This allows us to use the number of ques-
tions asked as a proxy for dialogue length. Fig-
ure 2 shows the comparison. The strategic model
yields 27.4 questions on average, more than four
fewer than the literal model’s 31.6. Standard sta-
tistical tests show the effect to be highly signif-
icant, with a one-way ANOVA yielding F=16.2,
p = 0.0001, and a mixed effects regression model
with a random slope for item (the items in this case
being the set of requirements assigned to the sub-
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Figure 2: Avg. number of QA pairs by model

S: How about an apartment in the east of the city? I
have an offer for you there.

U: Does the apartment have a café nearby?
S: Well, there is a restaurant nearby.
U: I’d like to see something else

Figure 3: A QA exchange from a dialogue where
the user was instructed to find an apartment with a
café nearby

ject) yielding t=4, p=0.0001.
We now ask whether the observed effect is

due only to the presence of helpful alternatives
which preclude the need for follow-up questions,
or whether the ability of users to draw pragmatic
inferences from unhelpful alternatives (i.e. alterna-
tives that don’t actually satisfy the user’s require-
ment) also contributes to dialogue efficiency. Fig-
ure 3, taken from a real dialogue with our system,
illustrates such an inference. The subject specifi-
cally wants a café nearby, and infers from the al-
ternative answer that this requirement cannot be
satisfied, and therefore rejects. The subject could
have asked the question again to get a direct an-
swer, which would have had a negative effect on
dialogue efficiency, but this did not happen. We
want to know if subjects’ aggregate behavior re-
flects this example.

First, take the null hypothesis to be that subjects
do not reliably draw such negative implicatures. In
that case we would expect a certain proportion of
questions to be repeated. Subjects are allowed to
ask questions multiple times, and alternatives are
never presented twice, such that repeating ques-
tions will ultimately lead to a direct yes/no answer.
We do see some instances of this behavior in the
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Figure 4: Proportion unhelpful alternatives vs.
proportion repeated questions

dialogues. If this is indicative of an overall diffi-
culty in drawing pragmatic inferences from an on-
line dialogue system, then we expect the number
of such repetitions to reflect the number of unhelp-
ful alternatives that are offered. Instead, we find
that when we plot a linear regression of repeated
questions vs. unhelpful alternatives, we get a flat
line with no observable correlation (Fig.4). More-
over, we also find no effect of unhelpful alterna-
tives on whether the task was successfully com-
pleted. This suggests that the correct inferences
are being drawn, as in Fig.3.

We now look at the perceived coherence of
the dialogues as assessed by our post-experiment
questionnaire. We obtain a composite coher-
ence score from all coherence-related items on the
seven point Likert scale by summing all per-item
scores for each subject and normalizing them to a
unit interval, where 1 signifies the upper bound of
perceived coherence. Although there is a differ-
ence in mean coherence score between the strate-
gic and literal models, with the strategic model ex-
hibiting 88% perceived coherence and the literal
model 93%, the difference is not statistically sig-
nificant. Moreover, we can rule out the possibility
that the strategic model is judged to be coherent
only when the number of alternative answers is
low. To rule this out, we calculate the expected
coherence score under the null hypothesis that co-
herence is directly proportional to the proportion
of literal answers. Taking the literal model’s av-
erage score of 0.93 as a ceiling, we multiply this
by the proportion of literal answers to obtain a
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null hypothesis expected score of about 0.75 for
the strategic model. This null hypothesis is dis-
confirmed (F=12.5, t=30.6, p<0.01). The strate-
gic model is judged, by the criteria assessed by
our post-experiment questionnaire, to be pragmat-
ically coherent independently of the rate of indi-
rect answers given.

4 Conclusion

We have characterized the class of alternative an-
swers to yes/no questions and proposed a content
selection model for generating these answers in
dialogue. The model is based on strategic rea-
soning about unobserved user requirements, and
is based on work in game-theoretic pragmatics
(Benz and van Rooij, 2007; Stevens et al., 2014).
The model was implemented as an answer selec-
tion algorithm within an interactive question an-
swering system in a real estate domain. We have
presented an evaluation of this system against a
baseline which produces only literal answers. The
results show that the strategic reasoning approach
leads to efficient dialogues, allows pragmatic in-
ferences to be drawn, and does not dramatically
reduce the overall perceived coherence or natural-
ness of the produced answers. Although the strate-
gic model requires a form of world knowledge—
knowledge of possible user requirements and their
probabilities—we have shown that there is a sim-
ple method, the analysis of negation-rejection se-
quences in yes/no QA exchanges, that can be used
to learn this knowledge with positive results. Fur-
ther research is required to address issues of scala-
bility and generalizability, but the current model
represents a promising step in the direction of
pragmatically competent dialogue systems with
solid basis in formal pragmatic theory.
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Abstract

While recent years have seen a surge of in-
terest in automated essay grading, includ-
ing work on grading essays with respect
to particular dimensions such as prompt
adherence, coherence, and technical qual-
ity, there has been relatively little work
on grading the essay dimension of argu-
ment strength, which is arguably the most
important aspect of argumentative essays.
We introduce a new corpus of argumen-
tative student essays annotated with argu-
ment strength scores and propose a su-
pervised, feature-rich approach to auto-
matically scoring the essays along this
dimension. Our approach significantly
outperforms a baseline that relies solely
on heuristically applied sentence argument
function labels by up to 16.1%.

1 Introduction

Automated essay scoring, the task of employing
computer technology to evaluate and score writ-
ten text, is one of the most important educational
applications of natural language processing (NLP)
(see Shermis and Burstein (2003) and Shermis et
al. (2010) for an overview of the state of the art
in this task). A major weakness of many ex-
isting scoring engines such as the Intelligent Es-
say AssessorTM(Landauer et al., 2003) is that they
adopt a holistic scoring scheme, which summa-
rizes the quality of an essay with a single score and
thus provides very limited feedback to the writer.
In particular, it is not clear which dimension of
an essay (e.g., style, coherence, relevance) a score
should be attributed to. Recent work addresses this
problem by scoring a particular dimension of es-
say quality such as coherence (Miltsakaki and Ku-
kich, 2004), technical errors, relevance to prompt
(Higgins et al., 2004; Persing and Ng, 2014), or-
ganization (Persing et al., 2010), and thesis clarity

(Persing and Ng, 2013). Essay grading software
that provides feedback along multiple dimensions
of essay quality such as E-rater/Criterion (Attali
and Burstein, 2006) has also begun to emerge.

Our goal in this paper is to develop a com-
putational model for scoring the essay dimension
of argument strength, which is arguably the most
important aspect of argumentative essays. Argu-
ment strength refers to the strength of the argu-
ment an essay makes for its thesis. An essay with
a high argument strength score presents a strong
argument for its thesis and would convince most
readers. While there has been work on design-
ing argument schemes (e.g., Burstein et al. (2003),
Song et al. (2014), Stab and Gurevych (2014a))
for annotating arguments manually (e.g., Song et
al. (2014), Stab and Gurevych (2014b)) and auto-
matically (e.g., Falakmasir et al. (2014), Song et
al. (2014)) in student essays, little work has been
done on scoring the argument strength of student
essays. It is worth mentioning that some work has
investigated the use of automatically determined
argument labels for heuristic (Ong et al., 2014)
and learning-based (Song et al., 2014) essay scor-
ing, but their focus is holistic essay scoring, not
argument strength essay scoring.

In sum, our contributions in this paper are two-
fold. First, we develop a scoring model for the ar-
gument strength dimension on student essays us-
ing a feature-rich approach. Second, in order to
stimulate further research on this task, we make
our data set consisting of argument strength anno-
tations of 1000 essays publicly available. Since
progress in argument strength modeling is hin-
dered in part by the lack of a publicly annotated
corpus, we believe that our data set will be a valu-
able resource to the NLP community.

2 Corpus Information

We use as our corpus the 4.5 million word Interna-
tional Corpus of Learner English (ICLE) (Granger
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Topic Languages Essays
Most university degrees are the-
oretical and do not prepare stu-
dents for the real world. They are
therefore of very little value.

13 131

The prison system is outdated.
No civilized society should pun-
ish its criminals: it should reha-
bilitate them.

11 80

In his novel Animal Farm,
George Orwell wrote “All men
are equal but some are more
equal than others.” How true is
this today?

10 64

Table 1: Some examples of writing topics.

et al., 2009), which consists of more than 6000
essays on a variety of different topics written by
university undergraduates from 16 countries and
16 native languages who are learners of English
as a Foreign Language. 91% of the ICLE texts
are written in response to prompts that trigger ar-
gumentative essays. We select 10 such prompts,
and from the subset of argumentative essays writ-
ten in response to them, we select 1000 essays to
annotate for training and testing of our essay ar-
gument strength scoring system. Table 1 shows
three of the 10 topics selected for annotation. Fif-
teen native languages are represented in the set of
annotated essays.

3 Corpus Annotation

We ask human annotators to score each of the
1000 argumentative essays along the argument
strength dimension. Our annotators were selected
from over 30 applicants who were familiarized
with the scoring rubric and given sample essays
to score. The six who were most consistent with
the expected scores were given additional essays
to annotate. Annotators evaluated the argument
strength of each essay using a numerical score
from one to four at half-point increments (see Ta-
ble 2 for a description of each score).1 This con-
trasts with previous work on essay scoring, where
the corpus is annotated with a binary decision
(i.e., good or bad) for a given scoring dimension
(e.g., Higgins et al. (2004)). Hence, our annota-
tion scheme not only provides a finer-grained dis-
tinction of argument strength (which can be im-
portant in practice), but also makes the prediction
task more challenging.

1See our website at http://www.hlt.utdallas.
edu/˜persingq/ICLE/ for the complete list of argu-
ment strength annotations.

Score Description of Argument Strength
4 essay makes a strong argument for its thesis

and would convince most readers
3 essay makes a decent argument for its thesis

and could convince some readers
2 essay makes a weak argument for its thesis or

sometimes even argues against it
1 essay does not make an argument or it is often

unclear what the argument is

Table 2: Descriptions of the meaning of scores.

To ensure consistency in annotation, we ran-
domly select 846 essays to have graded by mul-
tiple annotators. Though annotators exactly agree
on the argument strength score of an essay only
26% of the time, the scores they apply fall within
0.5 points in 67% of essays and within 1.0 point in
89% of essays. For the sake of our experiments,
whenever the two annotators disagree on an es-
say’s argument strength score, we assign the es-
say the average the two scores rounded down to
the nearest half point. Table 3 shows the number
of essays that receive each of the seven scores for
argument strength.

score 1.0 1.5 2.0 2.5 3.0 3.5 4.0
essays 2 21 116 342 372 132 15

Table 3: Distribution of argument strength scores.

4 Score Prediction

We cast the task of predicting an essay’s argument
strength score as a regression problem. Using re-
gression captures the fact that some pairs of scores
are more similar than others (e.g., an essay with
an argument strength score of 2.5 is more similar
to an essay with a score of 3.0 than it is to one
with a score of 1.0). A classification system, by
contrast, may sometimes believe that the scores
1.0 and 4.0 are most likely for a particular essay,
even though these scores are at opposite ends of
the score range. In the rest of this section, we de-
scribe how we train and apply our regressor.
Training the regressor. Each essay in the train-
ing set is represented as an instance whose label
is the essay’s gold score (one of the values shown
in Table 3), with a set of baseline features (Sec-
tion 5) and up to seven other feature types we pro-
pose (Section 6). After creating training instances,
we train a linear regressor with regularization pa-
rameter c for scoring test essays using the linear
SVM regressor implemented in the LIBSVM soft-
ware package (Chang and Lin, 2001). All SVM-
specific learning parameters are set to their default
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values except c, which we tune to maximize per-
formance on held-out validation data.2

Applying the regressor. After training the re-
gressor, we use it to score the test set essays. Test
instances are created in the same way as the train-
ing instances. The regressor may assign an essay
any score in the range of 1.0−4.0.

5 Baseline Systems

In this section, we describe two baseline systems
for predicting essays’ argument strength scores.

5.1 Baseline 1: Most Frequent Baseline

Since there is no existing system specifically for
scoring argument strength, we begin by designing
a simple baseline. When examining the score dis-
tribution shown in Table 3, we notice that, while
there exist at least a few essays having each of the
seven possible scores, the essays are most densely
clustered around scores 2.5 and 3.0. A system that
always predicts one of these two scores will very
frequently be right. For this reason, we develop
a most frequent baseline. Given a training set,
Baseline 1 counts the number of essays assigned
to each of the seven scores. From these counts, it
determines which score is most frequent and as-
signs this most frequent score to each test essay.

5.2 Baseline 2: Learning-based Ong et al.

Our second baseline is a learning-based version of
Ong et al.’s (2014) system. Recall from the intro-
duction that Ong et al. presented a rule-based ap-
proach to predict the holistic score of an argumen-
tative essay. Their approach was composed of two
steps. First, they constructed eight heuristic rules
for automatically labeling each of the sentences
in their corpus with exactly one of the following
argument labels: OPPOSES, SUPPORTS, CITA-
TION, CLAIM, HYPOTHESIS, CURRENT STUDY,
or NONE. After that, they employed these sen-
tence labels to construct five heuristic rules to
holistically score a student essay.

We create Baseline 2 as follows, employing the
methods described in Section 4 for training, pa-
rameter tuning, and testing. We employ Ong et
al.’s method to tag each sentence of our essays
with an argument label, but modify their method
to accommodate differences between their and our
corpus. In particular, our more informal corpus

2For parameter tuning, we employ the following c values:
100 101, 102, 103, 104, 105, or 106.

# Rule
1 Sentences that begin with a comparison dis-

course connective or contain any string prefixes
from “conflict” or “oppose” are tagged OP-
POSES.

2 Sentences that begin with a contingency con-
nective are tagged SUPPORTS.

3 Sentences containing any string prefixes from
“suggest”, “evidence”, “shows”, “Essentially”,
or “indicate” are tagged CLAIM.

4 Sentences in the first, second, or last paragraph
that contain string prefixes from “hypothes”,
or “predict”, but do not contain string prefixes
from “conflict” or “oppose” are tagged HY-
POTHESIS.

5 Sentences containing the word “should” that
contain no contingency connectives or string
prefixes from “conflict” or “oppose” are also
tagged HYPOTHESIS.

6 If the previous sentence was tagged hypothesis
and this sentence begins with an expansion con-
nective, it is also tagged HYPOTHESIS.

7 Do not apply a label to this sentence.

Table 4: Sentence labeling rules.

does not contain CURRENT STUDY or CITATION

sentences, so we removed portions of rules that
attempt to identify these labels (e.g. portions of
rules that search for a four-digit number, as would
appear as the year in a citation). Our resulting rule
set is shown in Table 4. If more than one of these
rules applies to a sentence, we tag it with the label
from the earliest rule that applies.

After labeling all the sentences in our corpus,
we then convert three of their five heuristic scor-
ing rules into features for training a regressor.3

The resulting three features describe (1) whether
an essay contains at least one sentence labeled HY-
POTHESIS, (2) whether it contains at least one sen-
tence labeled OPPOSES, and (3) the sum of CLAIM

sentences and SUPPORTS sentences divided by the
number of paragraphs in the essay. If the value of
the last feature exceeds 1, we instead assign it a
value of 1. These features make sense because,
for example, we would expect essays containing
lots of SUPPORTS sentences to offer stronger ar-
guments.

6 Our Approach

Our approach augments the feature set available to
Baseline 2 with seven types of novel features.
1. POS N-grams (POS) Word n-grams, though
commonly used as features for training text clas-
sifiers, are typically not used in automated essay

3We do not apply the remaining two of their heuristic
scoring rules because they deal solely with current studies
and citations.
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grading. The reason is that any list of word n-gram
features automatically compiled from a given set
of training essays would be contaminated with
prompt-specific n-grams that may make the result-
ing regressor generalize less well to essays written
for new prompts.

To generalize our feature set in a way that does
not risk introducing prompt-dependent features,
we introduce POS n-gram features. Specifically,
we construct one feature from each sequence of
1−5 part-of-speech tags appearing in our corpus.
In order to obtain one of these features’ values for
a particular essay, we automatically label each es-
say with POS tags using the Stanford CoreNLP
system (Manning et al., 2014), then count the
number of times the POS tag sequence occurs in
the essay. An example of a useful feature of this
type is “CC NN ,”, as it is able to capture when
a student writes either “for instance,” or “for ex-
ample,”. We normalize each essay’s set of POS
n-gram features to unit length.

2. Semantic Frames (SFR) While POS n-grams
provide syntactic generalizations of word n-grams,
FrameNet-style semantic role labels provide se-
mantic generalizations. For each essay in our data
set, we employ SEMAFOR (Das et al., 2010) to
identify each semantic frame occurring in the es-
say as well as each frame element that participates
in it. For example, a semantic frame may describe
an event that occurs in a sentence, and the event’s
frame elements may be the people or objects that
participate in the event. For a more concrete exam-
ple, consider the sentence “I said that I do not be-
lieve that it is a good idea”. This sentence contains
a Statement frame because a statement is made
in it. One of the frame elements participating in
the frame is the Speaker “I”. From this frame,
we would extract a feature pairing the frame to-
gether with its frame element to get the feature
“Statement-Speaker-I”. We would expect this fea-
ture to be useful for argument strength scoring be-
cause we noticed that essays that focus excessively
on the writer’s personal opinions and experiences
tended to receive lower argument strength scores.

As with POS n-grams, we normalize each es-
say’s set of Semantic Frame features to unit length.

3. Transitional Phrases (TRP) We hypothesize
that a more cohesive essay, being easier for a
reader to follow, is more persuasive, and thus
makes a stronger argument. For this reason, it
would be worthwhile to introduce features that

measure how cohesive an essay is. Consequently,
we create features based on the 149 transitional
phrases compiled by Study Guides and Strate-
gies4. Study Guides and Strategies collected these
transitions into lists of phrases that are useful for
different tasks (e.g. a list of transitional phrases for
restating points such as “in essence” or “in short”).
There are 14 such lists, which we use to general-
ize transitional features. Particularly, we construct
a feature for each of the 14 phrase type lists. For
each essay, we assign the feature a value indicat-
ing the average number of transitions from the list
that occur in the essay per sentence. Despite be-
ing phrase-based, transitional phrases features are
designed to capture only prompt-independent in-
formation, which as previously mentioned is im-
portant in essay grading.
4. Coreference (COR) As mentioned in our dis-
cussion of transitional phrases, a strong argument
must be cohesive so that the reader can under-
stand what is being argued. While the transi-
tional phrases already capture one aspect of this,
they cannot capture when transitions are made via
repeated mentions of the same entities in differ-
ent sentences. We therefore introduce a set of 19
coreference features that capture information such
as the fraction of an essay’s sentences that mention
entities introduced in the prompt, and the average
number of total mentions per sentence.5 Calculat-
ing these feature values, of course, requires that
the text be annotated with coreference informa-
tion. We automatically coreference-annotate the
essays using the Stanford CoreNLP system.
5. Prompt Agreement (PRA) An essay’s
prompt is always either a single statement, or can
be split up into multiple statements with which a
writer may AGREE STRONGLY, AGREE SOME-
WHAT, be NEUTRAL, DISAGREE SOMEWHAT,
DISAGREE STRONGLY, NOT ADDRESS, or ex-
plicitly have NO OPINION on. We believe in-
formation regarding which of these categories a
writer’s opinion falls into has some bearing on the
strength of her argument because, for example, a
writer who explicitly mentions having no opinion
has probably not made a persuasive argument.

For this reason, we annotate a subset of 830 of
our ICLE essays with these agreement labels. We
then train a multiclass maximum entropy classifier

4http://www.studygs.net/wrtstr6.htm
5See our website at http://www.hlt.utdallas.

edu/˜persingq/ICLE/ for a complete list of corefer-
ence features.
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using MALLET (McCallum, 2002) for identifying
which one of these seven categories an author’s
opinion falls into. The feature set we use for this
task includes POS n-gram and semantic frame fea-
tures as described earlier in this section, lemma-
tized word 1-3 grams, the keyword and prompt ad-
herence keyword features we described in Persing
and Ng (2013) and Persing and Ng (2014), respec-
tively, and a feature indicating which statement in
the prompt we are attempting to classify the au-
thor’s agreement level with respect to.

Our classifier’s training set in this case is the
subset of prompt agreement annotated essays that
fall within the training set of our 1000 essay ar-
gument strength annotated data. We then apply
the trained classifier to our entire 1000 essay set
in order to obtain predictions from which we can
then construct features for argument strength scor-
ing. For each prediction, we construct a feature
indicating which of the seven classes the classifier
believes is most likely, as well as seven additional
features indicating the probability the classifier as-
sociates with each of the seven classes.

We produce additional related annotations on
this 830 essay set in cases when the annotated
opinion was neither AGREE STRONGLY nor DIS-
AGREE STRONGLY, as the reason the annotator
chose one of the remaining five classes may some-
times offer insight into the writer’s argument. The
classes of reasons we annotate include cases when
the writer: (1) offered CONFLICTING OPINIONS,
(2) EXPLICITLY STATED an agreement level, (3)
gave only a PARTIAL RESPONSE to the prompt,
(4) argued a SUBTLER POINT not capturable by
extreme opinions, (5) did not make it clear that
the WRITER’S POSITION matched the one she ar-
gued, (6) only BRIEFLY DISCUSSED the topic,
(7) CONFUSINGLY PHRASED her argument, or (8)
wrote something whose RELEVANCE to the topic
was not clear. We believe that knowing which rea-
son(s) apply to an argument may be useful for ar-
gument strength scoring because, for example, the
CONFLICTING OPINIONS class indicates that the
author wrote a confused argument, which proba-
bly deserves a lower argument strength score.

We train eight binary maximum entropy classi-
fiers, one for each of these reasons, using the same
training data and feature set we use for agreement
level prediction. We then use the trained classi-
fiers to make predictions for these eight reasons on
all 1000 essays. Finally, we generate features for

our argument strength regressor from these predic-
tions by constructing two features from each of the
eight reasons. The first binary feature is turned on
whenever the maximum entropy classifier believes
that the reason applies (i.e., when it assigns the
reason a probability of over 0.5). The second fea-
ture’s value is the probability the classifier assigns
for this reason.

6. Argument Component Predictions (ACP)
Many of our features thus far do not result from
an attempt to build a deep understanding of the
structure of the arguments within our essays. To
introduce such an understanding into our system,
we follow Stab and Gurevych (2014a), who col-
lected and annotated a corpus of 90 persuasive es-
says (not from the ICLE corpus) with the under-
standing that the arguments contained therein con-
sist of three types of argument components. In
one essay, these argument components typically
include a MAJOR CLAIM, several lesser CLAIMs
which usually support or attack the major claim,
and PREMISEs which usually underpin the valid-
ity of a claim or major claim.

Stab and Gurevych (2014b) trained a system to
identify these three types of argument components
within their corpus given the components’ bound-
aries. Since our corpus does not contain annotated
argument components, we modify their approach
in order to simultaneously identify argument com-
ponents and their boundaries.

We begin by implementing a maximum entropy
version of their system using MALLET for per-
forming the argument component identification
task. We feed our system the same structural and
lexical features they described. We then augment
the system in the following ways.

First, since our corpus is not annotated with ar-
gument component boundaries, we construct a set
of low precision, high recall heuristics for iden-
tifying the locations in each sentence where an
argument component’s boundaries might occur.
The majority of these rules depend primarily on
a syntactic parse tree we automatically generated
for the sentence using the Stanford CoreNLP sys-
tem. Since a large majority of annotated argument
components are substrings of a simple declarative
clause (an S node in the parse tree), we begin by
identifying each S node in the sentence’s tree.

Given one of these clauses, we collect a list of
left and right boundaries where an argument com-
ponent may begin or end. The rules we used to
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(a) Potential left boundary locations
# Rule
1 Exactly where the S node begins.
2 After an initial explicit connective, or if the connec-

tive is immediately followed by a comma, after the
comma.

3 After nth comma that is an immediate child of the S
node.

4 After nth comma.

(b) Potential right boundary locations
# Rule
5 Exactly where the S node ends, or if S ends in a

punctuation, immediately before the punctuation.
6 If the S node ends in a (possibly nested) SBAR node,

immediately before the nth shallowest SBAR.6

7 If the S node ends in a (possibly nested) PP node,
immediately before the nth shallowest PP.

Table 5: Rules for extracting candidate argument
component boundary locations.

find these boundaries are summarized in Table 5.
Given an S node, we use our rules to construct

up to l × r argument component candidate in-
stances to feed into our system by combining each
left boundary with each right boundary that oc-
curs after it, where l is the number of potential left
boundaries our rules found, and r is the number of
right boundaries they found.

The second way we augment the system is by
adding a boundary rule feature type. Whenever
we generate an argument component candidate in-
stance, we augment its normal feature set with
two binary features indicating which heuristic rule
was used to find the candidate’s left boundary, and
which rule was used to find its right boundary. If
two rules can be used to find the same left or right
boundary position, the first rule listed in the table
is the one used to create the boundary rule feature.
This is why, for example, the table contains mul-
tiple rules that can find boundaries at comma lo-
cations. We would expect some types of commas
(e.g., ones following an explicit connective) to be
more significant than others.

A last point that requires additional explanation
is that several of the rules contain the word “nth”.
This means that, for example, if a sentence con-
tains multiple commas, we will generate multiple
left boundary positions for it using rule 4, and the
left boundary rule feature associated with each po-
sition will be different (e.g., there is a unique fea-

6The S node may end in an SBAR node which itself has an
SBAR node as its last child, and so on. In this case, the S node
could be said to end with any of these “nested” SBARS, so
we use the position before each (nth) one as a right boundary.

ture for the first comma, and for the the second
comma, etc.).

The last augmentation we make to the system
is that we apply a NONE label to all argument
component candidates whose boundaries do not
exactly match those of a gold standard argument
component. While Stab and Gurevych also did
this, their list of such argument component candi-
dates consisted solely of sentences containing no
argument components at all. We could not do this,
however, since our corpus is not annotated with ar-
gument components and we therefore do not know
which sentences these would be.

We train our system on all the instances we gen-
erated from the 90 essay corpus and apply it to la-
bel all the instances we generated in the same way
from our 1000 essay ICLE corpus. As a result, we
end up with a set of automatically generated ar-
gument component annotations on our 1000 essay
corpus. We use these annotations to generate five
additional features for our argument strength scor-
ing SVM regressor. These features’ values are the
number of major claims in the essay, the number
of claims in the essay, the number of premises in
the essay, the fraction of paragraphs that contain
either a claim or a major claim, and the fraction
of paragraphs that contain at least one argument
component of any kind.

7. Argument Errors (ARE) We manually iden-
tified three common problems essays might have
that tend to result in weaker arguments, and thus
lower argument strength scores. We heuristically
construct three features, one for each of these
problems, to indicate to the learner when we be-
lieve an essay has one of these problems.

It is difficult to make a reasonably strong argu-
ment in an essay that is too short. For this reason,
we construct a feature that encodes whether the es-
say has 15 or fewer sentences, as only about 7% of
our essays are this short.

In the Stab and Gurevych corpus, only about
5% of paragraphs have no claims or major claims
in them. We believe that an essay that contains
too many of these claim or major claim-less para-
graphs may have an argument that is badly struc-
tured, as it is typical for a paragraph to contain
one or two (major) claim(s). For this reason, we
construct a feature that encodes whether more than
half of the essay’s paragraphs contain no claims or
major claims, as indicated by the previously gen-
erated automatic annotations.

548



Similarly, only 5% of the Stab and Gurevych es-
says contain no argument components at all. We
believe that an essay that contains too many of
these component-less paragraphs is likely to have
taken too much space discussing issues that are not
relevant to the main argument of the essay. For
this reason, we construct a feature that encodes
whether more than one of the essay’s paragraphs
contain no components, as indicated by the previ-
ously generated automatic annotations.

7 Evaluation

In this section, we evaluate our system for argu-
ment strength scoring. All the results we report
are obtained via five-fold cross-validation experi-
ments. In each experiment, we use 60% of our la-
beled essays for model training, another 20% for
parameter tuning and feature selection, and the fi-
nal 20% for testing. These correspond to the train-
ing set, held-out validation data, and test set men-
tioned in Section 4.

7.1 Scoring Metrics
We employ four evaluation metrics. As we will
see below, S1, S2, and S3 are error metrics, so
lower scores on them imply better performance.
In contrast, PC is a correlation metric, so higher
correlation implies better performance.

The simplest metric, S1, measures the fre-
quency at which a system predicts the wrong score
out of the seven possible scores. Hence, a system
that predicts the right score only 25% of the time
would receive an S1 score of 0.75.

The S2 metric measures the average distance
between a system’s predicted score and the actual
score. This metric reflects the idea that a system
that predicts scores close to the annotator-assigned
scores should be preferred over a system whose
predictions are further off, even if both systems
estimate the correct score at the same frequency.

The S3 metric measures the average square of
the distance between a system’s score predictions
and the annotator-assigned scores. The intuition
behind this metric is that not only should we prefer
a system whose predictions are close to the anno-
tator scores, but we should also prefer one whose
predictions are not too frequently very far away
from the annotated scores. The three error metric
scores are given by:

1
N

∑
Aj 6=E′

j

1,
1
N

N∑
j=1

|Aj − Ej |, 1
N

N∑
j=1

(Aj − Ej)2

System S1 S2 S3 PC

Baseline 1 .668 .428 .321 .000
Baseline 2 .652 .418 .267 .061
Our System .618 .392 .244 .212

Table 6: Five-fold cross-validation results for ar-
gument strength scoring.

where Aj , Ej , and E′
j are the annotator assigned,

system predicted, and rounded system predicted
scores7 respectively for essay j, and N is the num-
ber of essays.

The last metric, PC , computes Pearson’s cor-
relation coefficient between a system’s predicted
scores and the annotator-assigned scores. PC
ranges from −1 to 1. A positive (negative) PC
implies that the two sets of predictions are posi-
tively (negatively) correlated.

7.2 Results and Discussion

Five-fold cross-validation results on argument
strength score prediction are shown in Table 6.
The first two rows show our baseline systems’ per-
formances. The best baseline system (Baseline 2),
which recall is a learning-based version of Ong
et al.’s (2014) system, predicts the wrong score
65.2% of the time. Its predictions are off by an
average of .418 points, the average squared error
of its predictions is .267, and its average Pear-
son correlation coefficient with the gold argument
strength score across the five folds is .061.

Results of our system are shown on the third
row of Table 6. Rather than using all of the
available features (i.e., Baseline 2’s features and
the novel features described in Section 6), our
system uses only the feature subset selected by
the backward elimination feature selection algo-
rithm (Blum and Langley, 1997) that achieves the
best performance on the validation data (see Sec-
tion 7.3 for details). As we can see, our system
predicts the wrong score only 61.8% of the time,
predicts scores that are off by an average of .392
points, the average squared error of its predictions
is .244, and its average Pearson correlation coeffi-
cient with the gold scores is .212. These numbers
correspond to relative error reductions8 of 5.2%,

7We round all predictions to 1.0 or 4.0 if they fall outside
the 1.0−4.0 range and round S1 predictions to the nearest
half point.

8These numbers are calculated B−O
B−P

where B is the base-
line system’s score, O is our system’s score, and P is a per-
fect score. Perfect scores for error measures and PC are 0
and 1 respectively.
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6.2%, 8.6%, and 16.1% over Baseline 2 for S1, S2,
S3, and PC, respectively, the last three of which
are significant improvements9. The magnitudes of
these improvements suggest that, while our system
yields improvements over the best baseline by all
four measures, its greatest contribution is that its
predicted scores are best-correlated with the gold
standard argument strength scores.

7.3 Feature Ablation

To gain insight into how much impact each of the
feature types has on our system, we perform fea-
ture ablation experiments in which we remove the
feature types from our system one-by-one.

We show the results of the ablation experiments
on the held-out validation data as measured by the
four scoring metrics in Table 7. The top line of
each subtable shows what a system that uses all
available features’s score would be if we removed
just one of the feature types. So to see how our
system performs by the PC metric if we remove
only prompt agreement (PRA) features, we would
look at the first row of results of Table 7(d) under
the column headed by PRA. The number here tells
us that the resulting system’s PC score is .303.
Since our system that uses all feature types obtains
S1, S2, S3, and PC scores of .521, .366, .218,
and .341 on the validation data respectively, the
removal of PRA features costs the complete sys-
tem .038 PC points, and thus we can infer that the
inclusion of PRA features has a beneficial effect.

From row 1 of Table 7(a), we can see that re-
moving the Baseline 2 feature set (BAS) yields a
system with the best S1 score in the presence of
the remaining feature types in this row. For this
reason, we permanently remove the BAS features
from the system before we generate the results on
line 2. We iteratively remove the feature type that
yields a system with the best performance in this
way until we get to the last line, where only one
feature type is used to generate each result.

Since the feature type whose removal yields the
best system is always the rightmost entry in a line,
the order of column headings indicates the rela-
tive importance of the feature types, with the left-
most feature types being most important to per-
formance and the rightmost feature types being
least important in the presence of the other feature
types. The score corresponding to the best system
is boldfaced for emphasis, indicating that all fea-

9All significance tests are paired t-tests with p < 0.05.

(a) Results using the S1 metric
SFR ACP TRP PRA POS COR ARE BAS
.534 .594 .530 .524 .522 .532 .529 .521
.530 .554 .526 .529 .526 .528 .525
.534 .555 .525 .531 .528 .522
.543 .558 .536 .530 .527
.565 .561 .536 .529
.563 .547 .539
.592 .550

(b) Results using the S2 metric
POS PRA ACP TRP BAS SFR COR ARE
.370 .369 .375 .367 .367 .366 .366 .365
.369 .369 .375 .366 .366 .365 .365
.370 .371 .372 .367 .366 .365
.374 .374 .376 .368 .366
.377 .375 .374 .368
.381 .377 .376
.385 .382

(c) Results using the S3 metric
POS PRA ACP TRP BAS COR ARE SFR
.221 .220 .225 .219 .218 .217 .217 .211
.220 .219 .221 .214 .212 .211 .211
.218 .218 .220 .212 .211 .209
.221 .216 .218 .212 .210
.224 .217 .218 .212
.228 .220 .219
.229 .225

(d) Results using the PC metric
POS ACP PRA TRP BAS ARE COR SFR
.302 .270 .303 .326 .324 .347 .347 .356
.316 .300 .327 .344 .361 .366 .371
.346 .331 .341 .356 .367 .378
.325 .331 .345 .362 .375
.297 .331 .339 .360
.280 .320 .321
.281 .281

Table 7: Feature ablation results. In each subtable, the

first row shows how our system would perform on the vali-
dation set essays if each feature type was removed. We then

remove the least important feature type, and show in the next

row how the adjusted system would perform without each re-

maining type.

ture types appearing to its left are included in the
best system.10

It is interesting to note that while the relative
importance of different feature types does not re-
main exactly the same if we measure performance
in different ways, we can see that some feature
types tend to be more important than others in a
majority of the four scoring metrics.

From these tables, it is clear that POS n-grams

10The reason the performances shown in these tables ap-
pear so much better than those shown previously is that in
these tables we tune parameters and display results on the
validation set in order to make it clearer why we chose to re-
move each feature type. In Table 6, by contrast, we tune pa-
rameters on the validation set, but display results using those
parameters on the test set.
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S1 S2 S3 PC
Gold .25 .50 .75 .25 .50 .75 .25 .50 .75 .25 .50 .75
1.0 2.90 2.90 2.90 2.74 2.74 2.74 2.74 2.74 2.74 2.74 2.74 2.74
1.5 2.69 2.78 2.89 2.36 2.67 2.78 2.52 2.63 2.71 2.52 2.63 2.81
2.0 2.61 2.72 2.85 2.54 2.69 2.79 2.60 2.69 2.78 2.60 2.70 2.80
2.5 2.64 2.71 2.85 2.65 2.75 2.86 2.66 2.75 2.85 2.69 2.79 2.89
3.0 2.73 2.84 2.92 2.71 2.81 2.91 2.70 2.80 2.90 2.72 2.83 2.90
3.5 2.74 2.85 2.97 2.78 2.89 3.02 2.79 2.90 3.00 2.81 2.90 2.98
4.0 2.75 2.87 3.10 2.76 2.85 3.09 2.76 2.83 3.08 2.81 2.86 3.19

Table 8: Distribution of regressor scores for our system.

(POS), prompt agreement features (PRA), and ar-
gument component predictions (ACP) are the most
generally important feature types in roughly that
order. They all appear in the leftmost three po-
sitions under the tables for metrics S2, S3, and
PC , the three metrics by which our system sig-
nificantly outperforms Baseline 2. Furthermore,
removing any of them tends to have a larger neg-
ative impact on our system than removing any of
the other feature types.

Transitional phrase features (TRP) and Base-
line 2 features (BAS), by contrast, are of more
middling importance. While both appear in the
best feature sets for the aforementioned metrics
(i.e., they appear to the left of the boldfaced entry
in the corresponding ablation tables), the impact
of their removal is relatively less than that of POS,
PRA, or ACP features.

Finally, while the remaining three feature types
might at first glance seem unimportant to argu-
ment strength scoring, it is useful to note that
they all appear in the best performing feature set
as measured by at least one of the four scoring
metrics. Indeed, semantic frame features (SFR)
appear to be the most important feature type as
measured by the S1 metric, despite being one of
the least useful feature types as measured by the
other performance metrics. From this we learn
that when designing an argument strength scoring
system, it is important to understand what the ulti-
mate goal is, as the choice of performance metric
can have a large impact on what type of system
will seem ideal.

7.4 Analysis of Predicted Scores
To more closely examine the behavior of our sys-
tem, in Table 8 we chart the distributions of scores
it predicts for essays having each gold standard
score. As an example of how to read this table,
consider the number 2.60 appearing in row 2.0 in
the .25 column of the S3 region. This means that
25% of the time, when our system with param-
eters tuned for optimizing S3 (including the S3

feature set as selected in Table 7(c)) is presented
with a test essay having a gold standard score of
2.0, it predicts that the essay has a score less than
or equal to 2.60.

From this table, we see that our system has a
bias toward predicting more frequent scores as the
smallest entry in the table is 2.36 and the largest
entry is 3.19, and as we saw in Table 3, 71.4% of
essays have gold scores in this range. Neverthe-
less, our system does not rely entirely on bias, as
evidenced by the fact that each column in the table
has a tendency for its scores to ascend as the gold
standard score increases, implying that our system
has some success at predicting lower scores for es-
says with lower gold standard argument strength
scores and higher scores for essays with higher
gold standard argument strength scores. The ma-
jor exception to this rule is line 1.0, but this is to
be expected since there are only two essays hav-
ing this gold score, so the sample from which the
numbers on this line are calculated is very small.

8 Conclusion

We proposed a feature-rich approach to the new
problem of predicting argument strength scores on
student essays. In an evaluation on 1000 argumen-
tative essays selected from the ICLE corpus, our
system significantly outperformed a baseline sys-
tem that relies solely on features built from heuris-
tically labeled sentence argument function labels
by up to 16.1%. To stimulate further research on
this task, we make all of our annotations publicly
available.
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Abstract

We study the problem of summarizing
DAG-structured topic hierarchies over a
given set of documents. Example appli-
cations include automatically generating
Wikipedia disambiguation pages for a
set of articles, and generating candidate
multi-labels for preparing machine learn-
ing datasets (e.g., for text classification,
functional genomics, and image classi-
fication). Unlike previous work, which
focuses on clustering the set of documents
using the topic hierarchy as features, we
directly pose the problem as a submodular
optimization problem on a topic hierarchy
using the documents as features. Desirable
properties of the chosen topics include
document coverage, specificity, topic
diversity, and topic homogeneity, each of
which, we show, is naturally modeled by
a submodular function. Other information,
provided say by unsupervised approaches
such as LDA and its variants, can also be
utilized by defining a submodular function
that expresses coherence between the
chosen topics and this information. We use
a large-margin framework to learn convex
mixtures over the set of submodular
components. We empirically evaluate our
method on the problem of automatically
generating Wikipedia disambiguation
pages using human generated clusterings
as ground truth. We find that our frame-
work improves upon several baselines
according to a variety of standard evalua-
tion metrics including the Jaccard Index,
F1 score and NMI, and moreover, can be
scaled to extremely large scale problems.

1 Introduction

Several real world machine learning applications
involve hierarchy based categorization of topics
for a set of objects. Objects could be, e.g., a
set of documents for text classification, a set of
genes in functional genomics, or a set of images
in computer vision. One can often define a natural
topic hierarchy to categorize these objects. For
example, in text and image classification problems,
each document or image is assigned a hierarchy
of labels — a baseball page is assigned the labels
“baseball” and “sports.” Moreover, many of these
applications, naturally have an existing topic
hierarchy generated on the entire set of objects
(Rousu et al., 2006; Barutcuoglu et al., 2006; ling
Zhang and hua Zhou, 2007; Silla and Freitas, 2011;
Tsoumakas et al., 2010).

Given a DAG-structured topic hierarchy and a
subset of objects, we investigate the problem of
finding a subset of DAG-structured topics that are
induced by that subset (of objects). This problem
arises naturally in several real world applications.
For example, consider the problem of identifying
appropriate label sets for a collection of articles.
Several existing text collection datasets such as 20
Newsgroup1, Reuters-215782 work with a prede-
fined set of topics. We observe that these topic
names are highly abstract3 for the articles catego-
rized under them. On the other hand, techniques
proposed by systems such as Wikipedia Miner
(Milne, 2009) and TAGME (Ferragina and Scaiella,
2010) generate several labels for each article in the
dataset that are highly specific to the article. Col-
lating all labels from all articles to create a label

1http://qwone.com/˜jason/20Newsgroups/
2http://www.daviddlewis.com/resources/

testcollections/reuters21578/
3Topic Concept is more abstract than the topic Science

which is more abstract than the topicChemistry
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Figure 1: Topic Summarization overview. On the left, we show many documents related to Apple. In the
middle, a Wikipedia category hierarchy shown as a topic DAG, links these documents at the leaf level. On
the right, we show the output of our summarization process, which creates a set of summary topics (Plants,
Technology, Companies, Films, Music and Places in this example) with the input documents classified
under them.

set for the dataset can result in a large number of
labels and become unmanageable. Our proposed
techniques can summarize such large sets of labels
into a smaller and more meaningful label sets using
a DAG-structured topic hierarchy. This also holds
for image classification problems and datasets like
ImageNet (Deng et al., 2009). We use the term
summarize to highlight the fact that the smaller la-
bel set semantically covers the larger label set. For
example, the topics Physics, Chemistry, and Math-
ematics can be summarized into a topic Science.

A particularly important application of our work
(and the one we use for our evaluations in Section 4)
is the following: Given a collection of articles span-
ning different topics, but with similar titles, auto-
matically generate a disambiguation page for those
titles using the Wikipedia category hierarchy4 as a
topic DAG. Disambiguation pages5 on Wikipedia
are used to resolve conflicts in article titles that oc-
cur when a title is naturally associated with multi-
ple articles on distinct topics. Each disambiguation
page organizes articles into several groups, where
the articles in each group pertain only to a specific
topic. Disambiguations may be seen as paths in a
hierarchy leading to different articles that arguably
could have the same title. For example, the title
Apple6 can refer to a plant, a company, a film, a

4
http://en.wikipedia.org/wiki/Help:Categories

5
http://en.wikipedia.org/wiki/Wikipedia:Disambiguation

6http://en.wikipedia.org/wiki/Apple_
(disambiguation)

television show, a place, a technology, an album, a
record label, and a newspaper daily. The problem
then, is to organize the articles into multiple groups
where each group contains articles of similar nature
(topics) and has an appropriately discerned group
heading. Figure 1 describes the topic summariza-
tion process for creation of the disambiguation page
for “Apple”.

All the above mentioned problems can be mod-
eled as the problem of finding the most representa-
tive subset of topic nodes from a DAG-Structured
topic hierarchy. We argue that many formulations
of this problem are natural instances of submodular
maximization, and provide a learning framework
to create submodular mixtures to solve this prob-
lem. A set function f (.) is said to be submodular
if for any element v and sets A ⊆ B ⊆ V \ {v},
where V represents the ground set of elements,
f (A ∪ {v})− f (A) ≥ f (B ∪ {v})− f (B). This is
called the diminishing returns property and states,
informally, that adding an element to a smaller
set increases the function value more than adding
that element to a larger set. Submodular func-
tions naturally model notions of coverage and di-
versity in applications, and therefore, a number
of machine learning problems can be modeled as
forms of submodular optimization (Kempe et al.,
2003; Krause and Guestrin, 2005; Narasimhan and
Bilmes, 2004; Iyer et al., 2013; Lin and Bilmes,
2012; Lin and Bilmes, 2010). In this paper, we
investigate structured prediction methods for learn-
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ing weighted mixtures of submodular functions to
summarize topics for a collection of objects us-
ing DAG-structured topic hierarchies. Throughout
this paper we use the terms “topic” and “category”
interchangeably.

1.1 Related Work

To the best of our knowledge, the specific problem
we consider here is new. Previous work on identi-
fying topics can be broadly categorized into one of
the following types: a) cluster the objects and then
identify names for the clusters; or b) dynamically
identify topics (including hierarchical) for a set of
objects. LDA (Blei et al., 2003) clusters the docu-
ments and simultaneously produces a set of topics
into which the documents are clustered. In LDA,
each document may be viewed as a mixture of var-
ious topics and the topic distribution is assumed
to have a Dirichlet prior. LDA associates a group
of high probability words to each identified topic.
A name can be assigned to a topic by manually
inspecting the words or using additional algorithms
like (Mei et al., 2007; Maiya et al., 2013). LDA
does not make use of existing topic hierarchies and
correlation between topics. The Correlated Topic
Model (Blei and Lafferty, 2006) induces a correla-
tion structure between topics by using the logistic
normal distribution instead of the Dirichlet. An-
other extension is the hierarchical LDA (Blei et
al., 2004), where topics are joined together in a
hierarchy by using the nested Chinese restaurant
process. Nonparametric extensions of LDA include
the Hierarchical Dirichlet Process (Teh et al., 2006)
mixture model, which allows the number of top-
ics to be unbounded and learnt from data and the
Nested Chinese Restaurant Process which allows
topics to be arranged in a hierarchy whose structure
is learnt from data. In each of these approaches,
unlike our proposed approach, an existing topic
hierarchy is not used, nor is any additional object-
topic information leveraged.

The pachinko allocation model (PAM)(Li and
McCallum, 2006) captures arbitrary, nested, and
possibly sparse correlations between topics using a
DAG. The leaves of the DAG represent individual
words in the vocabulary, while each interior node
represents a correlation among its children, which
may be words or other interior nodes (topics). PAM
learns the probability distributions of words in a
topic, subtopics in a topic, and topics in a document.
We cannot, however, generate a subset of topics
from a large existing topic DAG that can act as
summary topics, using PAM.

HSLDA (Perotte et al., 2011) introduces a hierar-

chically supervised LDA model to infer hierarchi-
cal labels for a document. It assumes an existing
label hierarchy in the form of a tree. The model
infers one or more labels such that, if a label l is
inferred as relevant to a document, then all the la-
bels from l to the root of the tree are also inferred
as relevant to the document. Our approach differs
from HSLDA since: (1) we use the label hierarchy
to infer a set of labels for a group of documents; (2)
we do not enforce the label hierarchy to be a tree
as it can be a DAG; and (3) generalizing HSLDA
to use a DAG structured hierarchy and infer labels
for a group of documents (e.g., combining into one
big document) also may not help in solving our
problem. HSLDA will apply all the relevant labels
to the documents as per the classifier that it learns
for every label. Moreover, the “root” label is al-
ways applied and it is very likely that many labels
near the top level of the label hierarchy are also
classified as relevant to the group of documents.

Wei and James (Bi and Kwok, 2011) present
a hierarchical multi-label classification algorithm
that can be used on both tree and DAG structured
hierarchies. They formulate a search for the opti-
mal consistent multi-label as the finding of the best
subgraph in a tree/DAG. In our approach, we as-
sume, individual documents are already associated
with one or more topics and we find a consistent
label set for a group of documents using the DAG
structured topic hierarchy.

Medelyan et al. (Medelyan et al., 2008) and
Ferragina et al. (Ferragina and Scaiella, 2010) de-
tect topics for a document using Wikipedia article
names and category names as the topic vocabulary.
These systems are able to extract signals from a text
document and identify Wikipedia articles and/or
categories that optimally match the document and
assign those article/category names as topics for the
document. When run on a large collection of docu-
ments, these approaches generate enormous num-
bers of topics, a problem our proposed approach
addresses.

1.2 Our Contributions

While most prior work discussed above focuses
on the underlying set of documents, (e.g., by
clustering documents), we focus directly on the
topics. In particular, we formulate the problem
as subset selection on the set of topics within
a DAG while simultaneously considering the
documents to be categorized. Our method can
scale to the colossal size of the DAG (1 million
topics and 3 million correlation links between
topics in Wikipedia). Moreover, our approach can
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naturally incorporate outputs from many of the
aforementioned algorithms. Our approach is based
on submodular maximization and mixture learning,
which has been successfully used in applications
such as document summarization (Lin, 2012) and
image summarization (Tschiatschek et al., 2014),
but has never been applied to topic identification
tasks or, more generally, DAG summarization.

We introduce a family of submodular functions
to identify an appropriate set of topics from a DAG
structured hierarchy of topics for a group of docu-
ments. We characterize this topic appropriateness
through a set of desirable properties such as cov-
erage, diversity, specificity, clarity, and relevance.
Each of the submodular function components we
consider are monotone, thereby ensuring a near op-
timal performance obtainable via a simple greedy
algorithm for optimization.7. We also show how
our technique naturally embodies outputs of other
algorithms such as LDA, clustering, and classifi-
cations. Finally, we utilize a large margin formu-
lation for learning mixtures of these submodular
functions, and show how we can optimally learn
them from training data.

Our approach demonstrates how to utilize the
features collectively in the document space and the
topic space to infer a set of topics. From an em-
pirical perspective, we introduce and evaluate our
approach on a dataset of around 8000 disambigua-
tions that was extracted from Wikipedia and subse-
quently cleaned using the methods described in the
experimentation section. We show that our learn-
ing framework outperforms many of the baselines,
and is practical enough to be used on large corpora.

2 Problem Formulation

LetG (V,E) be the DAG structured topic hierarchy
with V topics. These topics are observed to have a
parent child (isa) relationship forming a DAG. Let
D be the set of documents that are associated with
one or more of these topics. The middle portion
of Figure 1 depicts a topic hierarchy with associ-
ated documents. The association links between the
documents and topics can be hard or soft. In case
of a hard link, a document is attached to a set of
topics. Examples include multi-labeled documents.
In case of a soft link, a document is associated with
a topic with some degree of confidence (or prob-
ability). Furthermore, if a document is attached
to a topic t, we assume that all the ancestor top-
ics of t are also relevant for that document. This

7A simple greedy algorithm (Nemhauser et al., 1978) ob-
tains a 1 − 1/e approximation guarantee for monotone sub-
modular function maximization

assumption has been employed in earlier works
(Blei et al., 2004; Bi and Kwok, 2011; Rousu et
al., 2006) as well. Given a budget of K, our objec-
tive is to choose a set of K topics from V , which
best describe the documents in D. The notion of
best describing topics is characterized through a set
of desirable properties - coverage, diversity, speci-
ficity, clarity, relevance and fidelity - that K topics
have to satisfy. The submodular functions that we
introduce in the next section ensure these proper-
ties are satisfied. Formally, we solve the following
discrete optimization problem:

S∗ ∈ argmax
S⊆V :|S|≤K

∑
i

wifi(S) (1)

where, fi are monotone submodular mixture com-
ponents andwi ≥ 0 are the weights associated with
those mixture components. Set S∗ is the summary
topics scored best.

It is easy to find massive (i.e., size in the order of
million) DAG structured topic hierarchies in prac-
tice. Wikipedia’s category hierarchy consists of
more than 1M categories (topics) arranged hierar-
chically. In fact, they form a cyclic graph (Zesch
and Gurevych, 2007). However, we can convert it
to a DAG by eliminating the cycles as described
in the supplementary material. YAGO (Suchanek
et al., 2007) and Freebase (Bollacker et al., 2008)
are other instances of massive topic hierarchies.
The association of the documents with the existing
topic hierarchy is also well studied. Systems such
as WikipediaMiner (Milne, 2009), TAGME (Fer-
ragina and Scaiella, 2010) and several annotation
systems such as (Dill et al., 2003; Mihalcea and
Csomai, 2007; Bunescu and Pasca, 2006) attach
topics from Wikipedia (and other catalogs) to the
documents by establishing the hard or soft links
mentioned above.

Our goal is the following: Given a (ground set)
collection V of topics organized in a pre-existing
hierarchical DAG structure, and a collection D of
documents, chose a size K ∈ Z+ representative
subset of topics. Our approach is distinct from
earlier work (e.g., (Kanungo et al., 2002; Blei et
al., 2003)) where typically only a set of documents
is classified and categorized in some way. We next
provide a few definitions needed later in the paper.

Definition 1: Transitive Cover Γ): A topic t is
said to cover a set of documents Γ(t), called the
transitive cover of the topic t, if for all documents
i ∈ Γ(t), either i is associated directly with topic
t or with any of the descendant topics of t in the
topic DAG. A natural extension of this definition to
a set of topics T is defined as Γ(T ) = ∪t∈TΓ(t).
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Definition 2: Truncated Transitive Cover (Γα):
This is a transitive cover of topic t, but with the
limitation that the path length between a docu-
ment and the topic t is not more than α. Hence,
|Γα(t)| ≤ |Γ(t)|.

While our problem is closely related to cluster-
ing approaches, which consider the set of docu-
ments directly, there are some crucial differences.
In particular, we focus on producing a clustering of
documents where clusters are encouraged to honor
a pre-defined DAG structured topic hierarchy. Ex-
isting agglomerative clustering algorithms focusing
on the coverage of documents may not produce the
desired clustering. To understand this, consider six
documents d1, d2 . . . d6 to be grouped into three
clusters. There may be multiple ways to do this de-
pending upon multiple aggregation paths present in
the topic DAG: ((d1, d2), (d3, d4), (d5, d6)) or ((d1,
d2, d3), (d4, d5), (d6)) or ((d1, d2, d3, d4), (d5),
(d6)) or something else. Hence, we need more
stringent measures to prefer one clustering over
the others. Our work addresses this with a variety
of quality criteria (coverage, diversity, specificity,
clarity, relevance and fidelity, which are explained
later in this paper) that are organically derived from
well established submodular functions. And, most
importantly, we learn the right mixture of these
qualities to be enforced from the data itself. Fur-
thermore, our approach also generalizes these clus-
tering approaches, since one of the components in
our mixture of submodular functions is defined via
these unsupervised approaches, and maps a given
clustering to a set of topics in the hierarchy.

3 Submodular Components and
Learning

Summarization is the task of extracting information
from a source that is both small in size but still
representative. Our problem is different from
traditional summarization tasks since we have an
underlying DAG as a topic hierarchy that we wish
to summarize in response to a subset of documents.
Thus, a critical part of our problem is to take the
graph structure into account while creating the
summaries. Below, we identify properties we wish
our summaries to posses.

Coverage: A summary set of topics should
cover most of the documents. A document is said
to be covered by a topic if there exists a path from
the topic, going through intermediary descendant
topics, to the document, i.e., the document is within
the transitive cover of the topic.

Diversity: Summaries should be as diverse as
possible, i.e., each summary topic should cover

a unique set of documents. When a document is
covered by more than one topic, that document is
redundantly covered, e.g., “Finance” and “Banking”
would be unlikely members of the same summary.

Summary qualities also involve “quality”
notions, including:

Specificity/Clarity/Relevance/Coherence:
These quality measures help us choose a set of
topics that are neither too abstract nor overly
specific. They ensure that the topics are clear
and relevant to the documents that they represent.
When additional information such as clustering
(from LDA or other sources) and tagging (manual)
documents is available, these quality criteria
encourage the chosen topics to show resemblance
(coherence) to those clustering/tagging in terms of
transitive cover of documents they produce.

In the below, we define a variety of submodular
functions that capture the above properties, and we
then describe a large margin learning framework
for learning convex mixtures of such components.

3.1 Submodular Components

3.1.1 Coverage Based Functions

Coverage components capture “coverage” of a set
of documents.

Weighted Set Cover Function: Given a set of
categories, S ⊆ V , define Γ(S) as the set of docu-
ments covered — for each topic s ∈ S, Γ(s) ⊆ D
represents the documents covered by topic s and
Γ(S) = ∪s∈SΓ(s). The weighted set cover func-
tion, defined as f(S) =

∑
d∈Γ(S)wd = w(Γ(S)),

assigns weights to the documents based on
their relative importance (e.g., in Wikipedia
disambiguation, the different documents could be
ranked based on their priority).

Feature-based Functions: This class of
function represents coverage in feature space.
Given a set of categories S ⊆ V , and a set of
features U , define mu(S) as the score associated
with the set of categories S for feature u ∈ U .
The feature set could represent, for example, the
documents, in which case mu(S) represents the
number of times document u is covered by the
set S. U could also represent more complicated
features. For example, in the context of Wikipedia
disambiguation, U could represent TFIDF features
over the documents. Feature based are then
defined as f(S) =

∑
u∈U ψ(mu(S)), where ψ is

a concave (e.g., the square root) function. This
function class has been successfully used in several
applications (Kirchhoff and Bilmes, 2014; Wei et
al., 2014a; Wei et al., 2014b).
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3.1.2 Similarity based Functions
Similarity functions are defined through a simi-
larity matrix S = {sij}i,j∈V . Given categories
i, j ∈ V , similarity sij in our case can be defined
as sij = |Γ(i)∩Γ(j)|, i.e the number of documents
commonly covered by both i and j.

Facility Location: The facility location func-
tion, defined as f(S) =

∑
i∈V maxj∈S sij , is a

natural model for k-medoids and exemplar based
clustering, and has been used in several summariza-
tion problems (Tschiatschek et al., 2014; Wei et al.,
2014a).

Penalty based diversity: A similarity ma-
trix may be used to express a form of coverage
of a set S but that is then penalized with a re-
dundancy term, as in the following difference:
f(S) =

∑
i∈V,j∈S sij − λ

∑
i∈S
∑

j∈S, si,j (Lin
and Bilmes, 2011)). Here λ ∈ [0, 1]. This function
is submodular, but is not in general monotone, and
has been used in document summarization (Lin and
Bilmes, 2011), as a dispersion function (Borodin
et al., 2012), and in image summarization (Tschi-
atschek et al., 2014).

3.1.3 Quality Control (QC) Functions
QC functions ensure a quality criteria is met by a
set S of topics. We define the quality score of the
set S as Fq (S) =

∑
s∈S fq (s), where fq (s) is

the quality score of topic s for quality q. Therefore,
Fq (S) is a modular function in S. We investigate
three types of quality control functions: Topic
Specificity, Topic Clarity, and Topic Relevance.

Topic Specificity: The farther a topic is from
the root of the DAG, the more specific it becomes.
Topics higher up in the hierarchy are abstract and
less specific. We therefore prefer topics low in the
DAG, but lower topics also have less coverage. We
define fspecificity (s) = sh where sh is the height of
topic s in the DAG. The root topic has height zero
and the “height” increases as we move down the
DAG in Figure 1.

Topic Clarity: Topic clarity is the fraction of
descendant topics that cover one or more docu-
ments. If a topic has many descendant topics that
do not cover any documents, it has less clarity. For-

mally, fclarity(s) =
∑
t∈descendants(s)JΓ(t)>0K
|descendants(s)| , where J�K

is the indicator function.
Topic Relevance: A topic is considered to be

better related to a document if the number of hops
needed to reach the document from that topic is
lower. Given any set A ⊆ D of document, and
any topic s ∈ V , we can define frelevance (s|A) =
argminα{α : A ⊆ Γα(s)}.

QC Functions As Barrier Modular Mixtures:
We introduce a modular function for every QC
function as follows
fαspecificity (s) =

{
1 if the height of topic s is at least α
0 otherwise

for every possible value of α. This creates a sub-
modular mixture with as many components as the
number of possible values of α. In our experiments
with Wikipedia, we had α varying from 1 to 120
stepping by 1, adding 120 modular mixture compo-
nents. Similarly, we define,

fβclarity (s) =

{
1 if the clarity of topic s is at least β
0 otherwise

for every possible (discretized to make it count-
ably finite) value of β. And,
fγrelevance (s) = fcov (s|Γγ (s)), where fcov (�) is

the coverage submodular function and s|X indi-
cates coverage of a topic s over a set of documents
X . All these functions (modular and submodular
terms) are added as mixture components in our
learning framework to learn suitable weights for
them. We then use these weights in our inference
procedure to obtain a subset of topics as described
in 3.2. We show from our experiments that this
approach performs better than all other approaches
and baselines.

3.1.4 Fidelity Functions

A function representing the fidelity of a set S to
another reference setR is one that gets a large value
when the set S represents the setR. Such a function
scores inferred topics high when it resembles a
reference set of topics and/or item clusters. The
reference set in this case can be produced from
other algorithms such as k-means, LDA and its
variants or from a manually tagged corpus. Next
we describe one such fidelity function.

Topic Coherence: This function scores a set
of topics S high when the transitive cover (Def-
inition 1) produced by the topics in S resembles
the clusters of documents produced by an external
source (k-means, LDA or manual). Given an exter-
nal source that clusters the documents, producing T
clusters L1, L2, ..., LT (for T topics), topic coher-
ence is defined as: f(S) =

∑
t∈T maxk∈S wk,t

where wk,t = harmonic mean(wpk,t, w
r
k,t) and

wpk,t = |Γ(k)∩Lt|
|Γ(k)| and wrk,t = |Γ(k)∩Lt|

|Lt| . Note that,
wpk,t ≥ 0 and wrk,t ≥ 0 are the precision on recall
of the resemblance and wk,t is the F1 measure. If
the transitive cover of topics in S resembles the
reference clusters Lt exactly, we attain maximum
coherence (or fidelity). As the resemblance dimin-
ishes, the score decreases. The above function f(S)
is monotone submodular.
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3.1.5 Mixture of Submodular Components:
Given the different classes of submodular functions
above, we construct our submodular scoring func-
tions Fw(·) as a convex combinations of these dif-
ferent submodular functions f1, f2, . . . , fm, above.
In other words,

Fw(S) =
m∑
i=1

wifi(S), (2)

where w = (w1, . . . , wm), wi ≥ 0,
∑

iwi = 1.
The components fi are submodular and assumed to
be normalized: i.e., fi(∅) = 0, and fi(V ) = 1 for
monotone functions and maxA⊆V fi(A) ≤ 1 for
non-monotone functions. A simple way to normal-
ize a monotone submodular function is to define
the component as fi(S)/fi(V ). This ensures that
the components are compatible with each other.
Obviously, the merit of the scoring function Fw(·)
depends on the selection of the components.

3.2 Large Margin Learning
We optimize the weights w of the scoring func-
tion Fw(·) in a large-margin structured prediction
framework. In this setting, we assume we have
training data in the form of pairs of a set of docu-
ments, and a human generated summary as a set
of topics. For example, in the case of Wikipedia
disambiguation, we use the human generated dis-
ambiguation pages as the ground truth summary.
We represent the set of ground-truth summaries as
S = {S1, S2, · · · , SN}. In large margin training,
the weights are optimized such that ground-truth
summaries S are separated from competitor sum-
maries by a loss-dependent margin:

Fw(S) ≥ Fw(S′) + L(S′), ∀S ∈ S, S′ ∈ Y \ S, (3)

where L(·) is the loss function, and where Y
is a structured output space (for example Y
is the set of summaries that satisfy a certain
budget B, i.e., Y = {S′ ⊆ V : |S′| ≤ B}).
We assume the loss to be normalized,
0 ≤ L(S′) ≤ 1, ∀S′ ⊆ V , to ensure that mixture
and loss are calibrated. Equation (3) can be stated
as Fw(S) ≥ maxS′∈Y [Fw(S′) + L(S′)] ,∀S ∈ S
which is called loss-augmented inference. We
introduce slack variables and minimize the
regularized sum of slacks (Lin and Bilmes, 2012):

min
w≥0,‖w‖1=1

∑
S∈S

[
max
S′∈Y

[
Fw(S′) + L(S′)

]− Fw(S)

]
+
λ

2
‖w‖22, (4)

where the non-negative orthant constraint, w ≥ 0,
ensures that the final mixture is submodular. Note
a 2-norm regularizer is used on top of a 1-norm
constraint ‖w‖1 = 1 which we interpret as a prior

to encourage higher entropy, and thus more diverse
mixture distributions. Tractability depends on the
choice of the loss function. The parameters w
are learnt using stochastic gradient descent as in
(Tschiatschek et al., 2014).

3.3 Loss Functions
A natural choice of loss functions for our case can
be derived from cluster evaluation metrics. Every
inferred topic s induces a subset of documents,
namely the transitive cover Γ (s) of s. We compare
these clusters with the clusters induced from the
true topics in the training set and compute the loss.

In this paper, we use the Jaccard Index (JI) as a
loss function. Let S be the inferred topics and T
be the true topics. The Jaccard loss is defined as
Ljaccard(S, T ) = 1 − 1

k

∑
s∈S maxt∈T

|Γ(s)∩Γ(t)|
|Γ(s)∪Γ(t)| ,

where k = |S| = |T | is the number of topics.
When the clustering produced by the inferred and
the true topics are similar, Jaccard loss is 0. When
they are completely dissimilar, the loss is maxi-
mum, i.e., 1. Jaccard loss is a modular function.

3.4 Inference Algorithm: Greedy
Having learnt the weights for the mixture
components, the resulting function Fw(S) =∑m

i=1wifi(S) is a submodular function. In the
case when the individual components are them-
selves monotone (all our functions in fact are),
Fw(S) can be optimized by the accelerated greedy
algorithm (Minoux, 1978). Thanks to submodu-
larity, we can obtain near optimal solutions very
efficiently. In case the functions are all monotone
submodular, we can guarantee that the solution is
within 1− 1/e factor from the optimal solution.

4 Experimental Results

To validate our approach, we make use of
Wikipedia category structure as a topic DAG and
apply our technique to the task of automatic
generation of Wikipedia disambiguation pages.
We pre-processed the category graph to elimi-
nate the cycles in order to make it a DAG. Each
Wikipedia disambiguation page is manually created
by Wikipedia editors by grouping a collection of
Wikipedia articles into several groups. Each group
is then assigned a name, which serves as a topic for
the group. Typically, a disambiguation page segre-
gates around 20-30 articles into 5-6 groups. Our
goal is to measure how accurately we can recre-
ate the groups for a disambiguation page and label
them, given only the collection of articles men-
tioned in that disambiguation page (when actual
groupings and labels are hidden).
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4.1 Datasets
We parsed the contents of Wikipedia disambigua-
tion pages and extracted disambiguation page
names, article groups and group names. We col-
lected about 8000 disambiguation pages that had
at least four groups on them. Wikipedia category
structure is used as the topic DAG. We eliminated
few administrative categories such as “Hidden Cat-
egories”, “Articles needing cleanup”, and the like.
The final DAG had about 1M topics and 3M links.

4.2 Evaluation Metrics
Every group of articles on the Wikipedia disam-
biguation page is assigned a name by the editors.
Unfortunately, these names may not correspond to
the Wikipedia category (topic) names. For exam-
ple, one of the groups on the “Matrix” disambigua-
tion page has a name “Business and government”
and there is no Wikipedia category by that name.
However, the group names generated by our (and
baseline) method are from the Wikipedia categories
(which forms our topic DAG). In addition, there
can be multiple relevant names for a group. For
example, a group on a disambiguation page may
be called “Calculus”, but an algorithm may rightly
generate “Vector Calculus”. Hence we cannot eval-
uate the accuracy of an algorithm just by matching
the generated group names to those on the disam-
biguation page. To alleviate this problem, we adopt
cluster-based evaluation metrics. We treat every
group of articles generated by an algorithm under a
topic for a disambiguation page as a cluster of arti-
cles. These are considered as inferred clusters for a
disambiguation page. We compare them against the
actual grouping of articles on the Wikipedia disam-
biguation page by treating those groups as true clus-
ters. We can now adopt Jaccard Index, F1-measure,
and NMI (Normalized Mutual Information) based
cluster evaluation metrics described in (Manning
et al., 2008). For each disambiguation page in the
test set, we compute every metric score and then
average it over all the disambiguation pages.

4.3 Methods Compared
We validated our approach by comparing against
several baselines described below. We also com-
pared two variations of our approach as described
next. For each of these cases (baselines and two
variations) we generated and compared the metrics
(Jaccard Index, F1-measure and NMI) as described
in the previous section.

KMdocs: K-Means algorithm run on articles as
TF-IDF vectors of words. The number of clus-
ters K is set to the number of true clusters on the

Wikipedia disambiguation page.
KMeddocs: K-Medoids algorithm with articles

as TF-IDF vectors of words. The number of clus-
ters are set as in KMdocs.

KMedtopics: K-Medoids run on topics as TF-
IDF vectors of words. The words for each topic
is taken from the articles that are in the transitive
cover of the topic.

LDAdocs: LDA algorithm with the number of
topics set to the number of true clusters on the
Wikipedia disambiguation page. Each article is
then grouped under the highest probability topic.

SMMLcov: This is the submodular mixture
learning case explained in section 3.1.5. Here we
consider a mixture of all the submodular functions
governing coverage, diversity, fidelity and QC func-
tions. However, we exclude the similarity based
functions described in section 3.1.2. Coverage
based functions have a time complexity of O (n)
whereas similarity based functions are O

(
n2
)
. By

excluding similarity based functions, we can com-
pare the quality of the results with and without
O(n2) functions. We learn the mixture weights
from the training set and use them during infer-
ence on the test set to subset K topics through the
submodular maximization (Equation 1).

SMMLcov+sim: This case is similar to SMMLcov
except that, we include similarity based submodu-
lar mixture components. This makes the inference
time complexity O

(
n2
)
.

We do not compare against HSLDA, PAM and
few other techniques cited in the related work sec-
tions because they do not produce a subset of K
summary topics — these are not directly compara-
ble with our work.

4.4 Evaluation Results

We show that the submodular mixture learning
and maximization approaches, i.e., SMMLcov and
SMMLcov+sim outperform other approaches in vari-
ous metrics. In all these experiments, we performed
5 fold cross validation to learn the parameters from
80% of the disambiguation pages and evaluated on
the rest of the 20%, in each fold.

In Figure 2a we summarize the results of the
comparison of the methods mentioned above on
Jaccard Index, F1 measure and NMI. Our pro-
posed techniques SMMLcov and SMMLcov+sim out-
perform other techniques consistently.

In Figures 2b and 2c we measure the number
of test instances (i.e., disambiguation queries) in
which each of the algorithms dominate (win) in
evaluation metrics. In 60% of the disambiguation
queries, SMMLcov and SMMLcov+sim approaches
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Figure 2: Comparison of techniques

produce higher JI, F1 and NMI than all other meth-
ods. This indicates that the clusters of articles pro-
duced by our technique resembles the clusters of
articles present on the disambiguation page better
than other techniques.

From Figures 2b and 2c it is clear thatO (n) time
complexity based submodular mixture functions
(SMMLcov) perform on par with O

(
n2
)

based
functions (SMMLcov+sim), but at a greatly reduced
execution time, demonstrating the sufficiency of
O (n) functions for our task. On the average, for
each disambiguation query, SMMLcov took around
40 seconds (over 1M topics and 3M edges DAG) to
infer the topics, whereas SMMLcov+sim took around
35 minutes. Both these experiments were carried
on a machine with 32 GB RAM, Eight-Core AMD
Opteron(tm) Processor 2427.

5 Conclusions

We investigated a problem of summarizing topics
over a massive topic DAG such that the summary
set of topics produced represents the objects in
the collection. This representation is characterized
through various classes of submodular (and mono-
tone) functions that captured coverage, similarity,
diversity, specificity, clarity, relevance and fidelity

of the topics. Currently we assume that the number
of topics K is given as an input to our algorithm. It
would be an interesting future problem to estimate
the value of K automatically in our setting. As fu-
ture work, we also plan to extend our techniques to
produce a hierarchical summary of topics and scale
it across heterogeneous collection of objects (from
different domains) to bring all of them under the
same topic DAG and investigate interesting cases
thereon.
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Abstract

We study the problem of explaining re-
lationships between pairs of knowledge
graph entities with human-readable de-
scriptions. Our method extracts and en-
riches sentences that refer to an entity pair
from a corpus and ranks the sentences ac-
cording to how well they describe the re-
lationship between the entities. We model
this task as a learning to rank problem for
sentences and employ a rich set of fea-
tures. When evaluated on a large set of
manually annotated sentences, we find that
our method significantly improves over
state-of-the-art baseline models.

1 Introduction

Knowledge graphs are a powerful tool for support-
ing a large spectrum of search applications includ-
ing ranking, recommendation, exploratory search,
and web search (Dong et al., 2014). A knowl-
edge graph aggregates information around enti-
ties across multiple content sources and links these
entities together, while at the same time provid-
ing entity-specific properties (such as age or em-
ployer) and types (such as actor or movie).

Although there is a growing interest in au-
tomatically constructing knowledge graphs, e.g.,
from unstructured web data (Weston et al., 2013;
Craven et al., 2000; Fan et al., 2012), the prob-
lem of providing evidence on why two entities
are related in a knowledge graph remains largely
unaddressed. Extracting and presenting evidence
for linking two entities, however, is an impor-
tant aspect of knowledge graphs, as it can enforce
trust between the user and a search engine, which
in turn can improve long-term user engagement,
e.g., in the context of related entity recommenda-
tion (Blanco et al., 2013). Although knowledge

∗This work was carried out while this author was visiting
Yahoo Labs.

graphs exist that provide this functionality to a
certain degree (e.g., when hovering over Google’s
suggested entities, see Figure 1), to the best of
our knowledge there is no previously published re-
search on methods for entity relationship explana-
tion.

Figure 1: Part of Google’s search result page for
the query “barack obama”. When hovering over
the related entity “Michelle Obama”, an explana-
tion of the relationship between her and “Barack
Obama” is shown.

In this paper we propose a method for explain-
ing the relationship between two entities, which
we evaluate on a newly constructed annotated
dataset that we make publicly available. In par-
ticular, we consider the task of explaining rela-
tionships between pairs of Wikipedia entities. We
aim to infer a human-readable description for an
entity pair given a relationship between the two
entities. Since Wikipedia does not explicitly de-
fine relationships between entities we use a knowl-
edge graph to obtain these relations. We cast our
task as a sentence ranking problem: we automat-
ically extract sentences from a corpus and rank
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them according to how well they describe a given
relationship between a pair of entities. For rank-
ing purposes, we extract a rich set of features and
use learning to rank to effectively combine them.
Our feature set includes both traditional informa-
tion retrieval and natural language processing fea-
tures that we augment with entity-dependent fea-
tures. These features leverage information from
the structure of the knowledge graph. On top of
this, we use features that capture the presence in
a sentence of the relationship of interest. For our
evaluation we focus on “people” entities and we
use a large, manually annotated dataset of sen-
tences.

The research questions we address are the fol-
lowing. First, we ask what the effectiveness of
state-of-the-art sentence retrieval models is for
explaining a relationship between two entities
(RQ1). Second, we consider whether we can im-
prove over sentence retrieval models by casting the
task in a learning to rank framework (RQ2). Third,
we examine whether we can further improve per-
formance by using relationship-dependent models
instead of a relationship-independent one (RQ3).
We complement these research questions with an
error and feature analysis.

Our main contributions are a robust and effec-
tive method for explaining entity relationships, de-
tailed insights into the performance of our method
and features, and a manually annotated dataset.

2 Related Work

We combine ideas from sentence retrieval, learn-
ing to rank, and question answering to address the
task of explaining relationships between entities.

Previous work that is closest to the task we ad-
dress in this paper is that of Blanco and Zaragoza
(2010) and Fang et al. (2011). First, Blanco and
Zaragoza (2010) focus on finding and ranking sen-
tences that explain the relationship between an en-
tity and a query. Our work is different in that we
want to explain the relationship between two enti-
ties, rather than a query. Fang et al. (2011) explore
the generation of a ranked list of knowledge base
relationships for an entity pair. Instead, we try to
select sentences that describe a particular relation-
ship, assuming that this is given.

Our approach builds on sentence retrieval,
where one retrieves sentences rather than docu-
ments that answer an information need. Docu-
ment retrieval models such as tf-idf, BM25, and

language modeling (Baeza-Yates et al., 1999) have
been extended to tackle sentence retrieval. Three
of the most successful sentence retrieval methods
are TFISF (Allan et al., 2003), which is a vari-
ant of the vector space model with tf-idf weight-
ing, language modeling with local context (Mur-
dock, 2006; Fernández et al., 2011), and a recur-
sive version of TFISF that accounts for local con-
text (Doko et al., 2013). TFISF is very competi-
tive compared to document retrieval models tuned
specifically for sentence retrieval (e.g., BM25 and
language modeling (Losada, 2008)) and we there-
fore include it as a baseline.

Sentences that are suitable for explaining rela-
tionships can have attributes that are important for
ranking but cannot be captured by term-based re-
trieval models. One way to combine a wide range
of ranking features is learning to rank (LTR). Re-
cent years have witnessed a rapid increase in the
work on learning to rank, and it has proven to be a
very successful method for combining large num-
bers of ranking features, for web search, but also
other information retrieval applications (Burges et
al., 2011; Surdeanu et al., 2011; Agarwal et al.,
2012). We use learning to rank and represent each
sentence with a set of features that aim to capture
different dimensions of the sentence.

Question answering (QA) is the task of provid-
ing direct and concise answers to questions formed
in natural language (Hirschman and Gaizauskas,
2001). QA can be regarded as a similar task to
ours, assuming that the combination of entity pair
and relationship form the “question” and that the
“answer” is the sentence describing the relation-
ship of interest. Even though we do not follow the
QA paradigm in this paper, some of the features
we use are inspired by QA systems. In addition,
we employ learning to rank to combine the devised
features, which has recently been successfully ap-
plied for QA (Surdeanu et al., 2011; Agarwal et
al., 2012).

3 Problem Statement

We address the problem of explaining relation-
ships between pairs of entities in a knowledge
graph. We operationalize the problem as a prob-
lem of ranking sentences from documents in a
corpus that is related to the knowledge graph.
More specifically, given two entities ei and ej that
form an entity pair ⟨ei, ej⟩, and a relation r be-
tween them, the task is to extract a set of can-
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didate sentences Sij = {sij1 , . . . , sijk} that refer
to ⟨ei, ej⟩ and to impose a ranking on the sen-
tences in Sij . The relation r has the general form
⟨type(ei), terms(r), type(ej)⟩, where type(e) is
the type of the entity e (e.g., Person or Actor)
and terms(r) are the terms of the relation (e.g.,
CoCastsWith or IsSpouseOf).

We are left with two specific tasks: (1) extract-
ing candidate sentences Sij , and (2) ranking Sij ,
where the goal is to have sentences that provide
a perfect explanation of the relationship at the top
position of the ranking. The next section describes
our methods for both tasks.

4 Explaining Entity Relationships

We follow a two-step approach for automatically
explaining relationships between entity pairs.
First, in Section 4.1, we extract and enrich sen-
tences that refer to an entity pair ⟨ei, ej⟩ from a
corpus in order to construct a set of candidate sen-
tences. Second, in Section 4.2, we extract a rich
set of features describing the entities’ relationship
r and use supervised machine learning in order to
rank the sentences in Sij according to how well
they describe the relationship r.

4.1 Extracting candidate sentences

To create a set of candidate sentences for a given
entity pair and relationship, we require a corpus of
documents that is pertinent to the entities at hand.
Although any kind of document collection can be
used, we focus on Wikipedia in this paper, as it
provides good coverage for the majority of entities
in our knowledge graph.

First, we extract surface forms for the given en-
tities: the title of the entity’s Wikipedia article
(e.g., “Barack Obama”), the titles of all redirect
pages linking to that article (e.g., “Obama”), and
all anchor text associated with hyperlinks to the ar-
ticle within Wikipedia (e.g., “president obama”).
We then split all Wikipedia articles into sentences
and consider a sentence as a candidate if (i) the
sentence is part of either entities’ Wikipedia arti-
cle and contains a surface form of, or a link to,
the other entity; or (ii) the sentence contains sur-
face forms of, or links to, both entities in the entity
pair.

Next, we apply two sentence enrichment steps
for (i) making sentences self-contained and read-
able outside the context of the source document
and (ii) linking the sentences to entities. For (i),

we replace pronouns in candidate sentences with
the title of the entity. We apply a simple heuristic
for the people entities, inspired by (Wu and Weld,
2010):1 we count the frequency of the terms “he”
and “she” in the article for determining the gender
of the entity, and we replace the first appearance
of “he” or “she” in each sentence with the entity’s
title. We skip this step if any surface form of the
entity occurs in the sentence.

For (ii), we apply entity linking to provide links
from the sentence to additional entities (Milne and
Witten, 2008). This need arises from the fact
that not every sentence in an article contains ex-
plicit links to the entities it mentions, as Wikipedia
guidelines only allow one link to another article in
the article’s text.2 The algorithm takes a sentence
as input and iterates over n-grams that are not yet
linked to an entity. If an n-gram matches a surface
form of an entity, we establish a link between the
n-gram and the entity. We restrict our search space
to entities that are linked from within the source
article of the sentence and from within articles to
which the source article links. This way, our entity
linking method achieves high precision as almost
no disambiguation is necessary.

As an example, consider the sentence “He
gave critically acclaimed performances in the
crime thriller Seven. . . ” on the Wikipedia page
for Brad Pitt. After applying our enrichment
steps, we obtain “Brad Pitt gave critically
acclaimed performances in the crime thriller
Seven. . . ”, making the sentence human read-
able and link to the entities Brad Pitt and
Seven (1995 film).

4.2 Ranking sentences

After extracting candidate sentences, we rank
them by how well they describe the relationship
of interest r between entities ei and ej . There
are many signals beyond simple term statistics that
can indicate relevance. Automatically construct-
ing a ranking model using supervised machine
learning techniques is therefore an obvious choice.
For ranking we use learning to rank (LTR) and rep-
resent each sentence with a rich set of features. Ta-
ble 1 lists the features we use. Below we provide

1We experimented with the Stanford co-reference reso-
lution system (Lee et al., 2011) and Apache OpenNLP and
found that they were not able to consistently achieve the level
of effectiveness that we require.

2http://en.Wikipedia.org/wiki/
Wikipedia:Manual_of_Style/Linking
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# Name Gloss

Text features
1 Sentence length Length of s in words
2 Sum of idf Sum of IDF of terms of s in Wikipedia
3 Average idf Average IDF of terms of s in Wikipedia
4 Sentence density Lexical density of s, see Equation 1 (Lee et al., 2001)

5–8 POS fractions Fraction of verbs, nouns, adjectives, others in s (Mintz et al., 2009)

Entity features
9 #entities Total number of entities in s

10 Link to ei Whether s contains a link to the entity ei

11 Link to ej Whether s contains a link to the entity ej

12 Links to ei and ej Whether s contains links to both entities ei and ej

13 Entity first Is ei or ej the first entity in the sentence?
14 Spread of ei, ej Distance between the last match of ei and ej in s (Blanco and Zaragoza, 2010)

15–22 POS fractions left/right Fraction of verbs, nouns, adjectives, others to the left/right window of ei and ej in
s (Mintz et al., 2009)

23–25 #entities left/right/between Number of entities to the left/right or between entities ei and ej in s
26 common links ei, ej Whether s contains any common link of ei and ej

27 #common links The number of common links of ei and ej in s
28 Score common links ei, ej Sum of the scores of the common links of ei and ej in s

29–30 #common links prev/next The number of common links of ei and ej in previous/next sentence of s

Relationship features
31 Match terms(r)? Whether s contains any term in terms(r)
32 Match wordnet(r)? Whether s contains any phrase in wordnet(r)
33 Match word2vec(r)? Whether s contains any phrase in word2vec(r)

34–36 or’s Boolean OR of feature 31 and one or both of features 32 and 33
37–38 or(31, 32, 33) prev/next Boolean OR of features 31, 32, 33 for the previous/next sentence of s

39 Average word2vec(r) Average cosine similarity of phrases in word2vec(r) that are matched in s
40 Maximum word2vec(r) Maximum cosine similarity of phrases in word2vec(r) that are matched in s
41 Sum word2vec(r) Sum of cosine similarity of phrases in word2vec(r) that are matched in s
42 Score LC Lucene score of s with titles(ei, ej), terms(r), wordnet(r), word2vec(r) as

query
43 Score R-TFISF R-TFISF score of s with queries constructed as above

Source features
44 Sentence position Position of s in document from which it originates
45 From ei or ej? Does s originate from the Wikipedia article of ei or ej?
46 #(ei or ej) Number of occurrences of ei or ej in document from which s originates, inspired

by document smoothing for sentence retrieval (Murdock and Croft, 2005)

Table 1: Features used for sentence ranking.

a brief description of the more complex ones.

Text features This feature type regards the im-
portance of the sentence s at the term level. We
compute the density of s (feature 4) as:

density(s) =
1

K ⋅ (K + 1)
n

∑
j=1

idf(tj) ⋅ idf(tj+1)
distance(tj , tj+1)2

, (1)

where K is the number of keyword terms in
s and distance(tj , tj+1) is the number of non-
keyword terms between keyword terms tj and
tj+1. We treat stop words and numbers in s as non-
keywords and the remaining terms as keywords.
Features 5–8 capture the distribution of part-of-
speech tags in the sentence.

Entity features These features partly build
on (Tsagkias et al., 2011; Meij et al., 2012) and de-

scribe the entities and are dependent on the knowl-
edge graph. Whether ei or ej is the first appearing
entity in a sentence might be an indicator of impor-
tance (feature 13). The spread of ei and ej in the
sentence (feature 14) might be an indicator of their
centrality in the sentence (Blanco and Zaragoza,
2010). Features 15–22 capture the distribution of
part-of-speech tags in the sentence in a window of
four words around ei or ej in s (Mintz et al., 2009),
complemented by the number of entities between,
to the left of, and to the right of the entity pair
(features 23–25).

We assume that two articles that have many
common articles that point to them are strongly
related (Witten and Milne, 2008). We hypothesize
that, if a sentence contains common inlinks from
ei and ej , the sentence might contain important in-
formation about their relationship. Hence, we add
whether the sentence contains a common link (fea-
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ture 26) and the number of common links (feature
27) as features. We score a common link l between
ei and ej using:

score(l, ei, ej) = sim(l, ei) ⋅ sim(l, ej), (2)

where sim(⋅, ⋅) is defined as the similarity between
two Wikipedia articles, computed using a vari-
ant of Normalized Google Distance (Witten and
Milne, 2008). Feature 28 then measures the sum
of the scores of the common links.

Previous research shows that using surrounding
sentences is beneficial for sentence retrieval (Doko
et al., 2013). We therefore consider the number of
common links in the previous and next sentence
(features 29–30).

Relationship features Feature 31 indicates
whether any of the relationship-specific terms oc-
curs in the sentence. Only matching the terms
in the relationship may have low coverage since
terms such as “spouse” may have many synonyms
and/or highly related terms, e.g., “husband” or
“married”. Therefore, we use WordNet to find
synonym phrases of r (feature 32); we refer to this
method as wordnet(r).

Alternatively, we use word embeddings to find
such similar phrases (Mikolov et al., 2013). Such
embeddings take a text corpus as input and learn
vector representations of words and phrases con-
sisting of real numbers. Given the set Vr consist-
ing of the vector representations of all the relation-
ship terms and the set V which consists of the vec-
tor representations of all the candidate phrases in
the data, we calculate the distance between a can-
didate phrase represented by a vector vi ∈ V and
the vectors in Vr as:

distance(vi, V ) = cos
⎛
⎝
vi, ∑

vj∈Vr

vj
⎞
⎠
, (3)

where ∑vj∈Vr
vj is the element-wise sum of the

vectors in Vr and the distance between two vec-
tors v1 and v2 is measured using cosine similarity.
The candidate phrases in V are then ranked using
Equation 3 and the top-m phrases are selected, re-
sulting in features 33, 39, 40, and 41; we refer to
the ranked set of phrases that are selected using
this procedure as word2vec(r).

In addition, we employ state-of-the-art retrieval
functions and include the scores for queries that
are constructed using the entities ei and ej , the re-
lation r, wordnet(r), and word2vec(r). We use

the titles of the entity articles titles(e) to repre-
sent the entities in the query and two ranking func-
tions, Recursive TFISF (R-TFISF) and LC,3 (fea-
tures 42–43). TFISF is a sentence retrieval model
that determines the level of relevance of a sentence
s given a query q as:

R(s, q) =∑
t∈q

log(tf t,q + 1)⋅

log(tf t,s + 1) ⋅ log( n + 1
0.5 + sf t

) , (4)

where tf t,q and tf t,s are the number of occur-
rences of term t in the query q and the sentence
s respectively, sf t is the number of sentences in
which t appears, and n is the number of sentences
in the collection. R-TFISF is an improved ex-
tension of the TFISF method (Doko et al., 2013),
which incorporates context from neighboring sen-
tences in the ranking function:

Rc(s, q) = (1 − µ)R(s, q)+ (5)

µ[Rc(sprev(s), q) +Rc(snext(s), q)],

where µ is a free parameter and sprev(s) and
snext(s) indicate functions to retrieve the previous
and next sentence, respectively. We use a maxi-
mum of three recursive calls.

Source features Here, we refer to features that
are dependent on the source document of the sen-
tences. We have three such features.

5 Experimental setup

In this section we describe the dataset, manual an-
notations, learning to rank algorithm, and evalu-
ation metrics that we use to answer our research
questions.

5.1 Dataset
We draw entities and their relationships from a
proprietary knowledge graph that is created from
Wikipedia, Freebase, IMDB, and other sources,
and that is used by the Yahoo web search engine.
We focus on “people” entities and relationships
between them.4 For our experiments we need to
select a manageable set of entities, which we ob-
tain as follows. We consider a year of query logs

3In preliminary experiments R-TFISF and LC were the
best performing among a pool of sentence retrieval methods.

4Note that, except for the co-reference resolution step de-
scribed in Section 4.1, our method does not depend on this
restriction.
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from a large commercial search engine, count the
number of times a user clicks on a Wikipedia ar-
ticle of an entity in the results page and perform
stratified sampling of entities according to this dis-
tribution. As we are bounded by limited resources
for our manual assessments, we sample 1 476 en-
tity pairs that together with nine unique relation-
ship types form our experimental dataset.

We use an English Wikipedia dump dated July
8, 2013, containing approximately 4M articles, of
which 50 638 belong to “people” entities that are
also in our knowledge graph. We extract sentences
using the approach described in Section 4.1, re-
sulting in 36 823 candidate sentences for our enti-
ties. On average we have 24.94 sentences per en-
tity pair (maximum 423 and minimum 0). Because
of the large variance, it is not feasible to obtain ex-
haustive annotations for all sentences. We rank the
sentences using R-TFISF and keep the top-10 sen-
tences per entity pair for annotation. This results
in a total of 5 689 sentences.

Five human annotators provided relevance judg-
ments, manually judging sentences based on how
well they describe the relationship for an entity
pair, for which we use a five-level graded rele-
vance scale (perfect, excellent, good, fair, bad).5

Of all relevance grades 8.1% is perfect, 15.69%
excellent, 19.98% good, 8.05% fair, and 48.15%
bad. Out of 1 476 entity pairs, 1 093 have at least
one sentence annotated as fair. As is common in
information retrieval evaluation, we discard entity
pairs that have only “bad” sentences. We examine
the difficulty of the task for human annotators by
measuring inter-annotator agreement on a subset
of 105 sentences that are judged by 3 annotators.
Fleiss’ kappa is k = 0.449, which is considered to
be moderate agreement.

5.2 Machine learning

For ranking sentences we use a Random Forest
(RF) classifier (Breiman, 2001).6 We set the num-
ber of iterations to 300 and the sampling rate to
0.3. Experiments with varying these two parame-
ters did not show any significant differences. We
also tried several feature normalization methods,
none of them being able to significantly outper-

5https://github.com/nickvosk/acl2015-
dataset-learning-to-explain-entity-
relationships

6In preliminary experiments, we contrasted RF with gra-
dient boosted regression trees and LambdaMART and found
that RF consistently outperformed other methods.

Baseline NDCG@1 NDCG@10 ERR@1 ERR@10

B1 0.7508 0.8961 0.3577 0.4531
B2 0.7511 0.8958 0.3584 0.4530
B3 0.7595 0.8997 0.3696 0.4600
B4 0.7767 0.9070 0.3774 0.4672
B5 0.7801 0.9093 0.3787 0.4682

Table 2: Results for five baseline variants. See text
for their description and significant differences.

form the runs without feature normalization.
We obtain POS tags using the Stanford part-of-

speech tagger and filter out a standard list of 33
English stopwords. For the word embeddings we
use word2vec and train our model on all text in
Wikipedia using negative sampling and the con-
tinuous bag of words architecture. We set the size
of the phrase vectors to 500 and m = 30.

5.3 Evaluation metrics
We employ two main evaluation metrics in our
experiments, NDCG (Järvelin and Kekäläinen,
2002) and ERR (Chapelle et al., 2009). The for-
mer measures the total accumulated gain from
the top of the ranking that is discounted at lower
ranks and is normalized by the ideal cumulative
gain. The latter models user behavior and mea-
sures the expected reciprocal rank at which a user
will stop her search. We consider these ranking-
based graded evaluation metrics at two cut-off
points: position 1, corresponding to showing a sin-
gle sentence to a user, and 10, which accounts for
users who might look at more results. We report
on NDCG@1, NDCG@10, ERR@1, ERR@10,
and Exc@1, which indicates whether we have an
“excellent” or “perfect” sentence at the top of the
ranking. Likewise, Per@1 indicates whether we
have a “perfect” sentence at the top of the ranking
(not all entity pairs have an excellent or a perfect
sentence).

We perform 5-fold cross validation and test for
statistical significance using a paired two-tailed t-
test. We depict a significant difference in perfor-
mance for p < 0.01 with ▲ (gain) and ▼ (loss) and
for p < 0.05 with △ (gain) and ▽ (loss). Boldface
indicates the best score for a metric.

6 Results and Analysis

We compare the performance of typical docu-
ment retrieval models and state-of-the-art sentence
retrieval models in order to answer RQ1. We
consider five sentence retrieval models: Lucene
ranking (LC), language modeling with Dirichlet
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Has one # pairs # sentences Method NDCG@1 NDCG@10 ERR@1 ERR@10 Exc@1 Per@1

fair 1 093 4 435 B5 0.7801 0.9093 0.3787 0.4682 – –
LTR 0.8489▲ 0.9375▲ 0.4242▲ 0.4980▲ – –

good 1 038 4 285 B5 0.7742 0.9078 0.3958 0.4894 – –
LTR 0.8486▲ 0.9374▲ 0.4438▲ 0.5208▲ – –

excellent 752 3 387 B5 0.7455 0.8999 0.4858 0.5981 0.7314 –
LTR 0.8372▲ 0.9340▲ 0.5500▲ 0.6391▲ 0.8298▲ –

perfect 339 1 687 B5 0.7082 0.8805 0.6639 0.7878 0.7729 0.6136
LTR 0.8150▲ 0.9245▲ 0.7640▲ 0.8518▲ 0.8909▲ 0.7227▲

Table 3: Results for the best baseline (B5) and the learning to rank method (LTR).

smoothing (LM), BM25, TFISF, and Recursive
TF-ISF (R-TFISF). We follow related work and
set µ = 0.1 for R-TFISF, k = 1 and b = 0 for BM25
and µ = 250 for LM (Fernández et al., 2011).

In our experiments, a query q is constructed us-
ing various combinations of surface forms of the
two entities ei and ej and the relationship r. Each
entity in the entity pair can be represented by its
title, the titles of any redirect pages pointing to
the entity’s article, the n-grams used as anchors in
Wikipedia to link to the article of the entity, or the
union of them all. The relationship r can be repre-
sented by the terms in the relationship, synonyms
in wordnet(r), or by phrases in word2vec(r).

First, we fix the way we represent r. Base-
line B1 does not include any representation of r
in the query. B2 includes the relationship terms
of r, while B3 includes the relationship terms of r
and the synonyms in wordnet(r). B4 includes the
terms of r and the phrases in word2vec(r), and B5
includes the relationship terms of r, the synonyms
in wordnet(r) and the phrases in word2vec(r).
Combining these variations with the entity repre-
sentations, we find that all combinations that use
the titles as representation and R-TFISF as the
retrieval function outperform all other combina-
tions.7 This can be explained by the fact that titles
are least ambiguous, thus reducing the possibility
of accidentally referring to other entities. BM25
and LC perform almost as well as R-TFISF, with
only insignificant differences in performance.

Table 2 shows the best performing combination
of each baseline, i.e., varying the representation
of r and using titles and R-TFISF. B4 and B5
are the best performing baselines, suggesting that
word2vec(r) and wordnet(r) are beneficial. B5
significantly outperforms all baselines except B4.

We also experiment with a supervised combina-

7We omit a full table of results due to space constraints.

tion of the baseline rankers using LTR. Here, we
consider each baseline ranker as a separate feature
and train a ranking model. The trained model is
not able to outperform the best individual baseline,
however.

6.1 Learning to rank sentences
Next, we provide the results of our method us-
ing the features described in Section 4.2, exploring
whether our learning to rank (LTR) approach im-
proves over sentence retrieval models (RQ2). We
compare an LTR model using Table 1’s features
against the best baseline (B5). Table 3 shows the
results. Each group in the table contains the results
for the entity pairs that have at least one candidate
sentence of that relevance grade for B5 and LTR.

We find that LTR significantly outperforms B5
by a large margin. The absolute performance dif-
ference between LTR and B5 becomes larger for
all metrics as we move from “fair” to “perfect,”
which shows that LTR is more robust than the
baseline for entity pairs that have at least one high
quality candidate sentence. LTR ranks the best
possible sentence at the top of the ranking for
∼83% of the cases for entity pairs that contain an
“excellent” sentence and for ∼72% of the cases for
entity pairs that contain a “perfect” sentence.

Note that, as indicated in Section 5.1, we dis-
card entity pairs that have only “bad” sentences
in our experiments. For the sake of complete-
ness, we report on the results for all entity pairs in
our dataset—including those without any relevant
sentences—in Table 4.

6.2 Relationship-dependent models
Relevant sentences may have different properties
for different relationship types. For example, a
sentence describing two entities being partners
would have a different form than one describing
that two entities costar in a movie. A similar
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Has one # pairs # sentences Method NDCG@1 NDCG@10 ERR@1 ERR@10 Exc@1 Per@1

- 1 476 5 689 B5 0.5776 0.6733 0.2804 0.3467 – –
LTR 0.6285▲ 0.6940▲ 0.3155▲ 0.3694▲ – –

Table 4: Results for the best baseline (B5) and the learning to rank method (LTR), using all entity pairs
in the dataset, including those without any relevant sentences.

Relationship # pairs # sentences NDCG@1 NDCG@10 ERR@1 ERR@10

⟨MovieActor ,CoCastsWith,MovieActor⟩ 410 1 403 0.8604 0.9436 0.3809 0.4546
⟨TvActor ,CoCastsWith,TvActor⟩ 210 626 0.8729 0.9482 0.3271 0.3845
⟨MovieActor , IsDirectedBy ,MovieDirector⟩
⟨MovieDirector ,Directs,MovieActor⟩ 112 492 0.8795 0.9396 0.4709 0.5261
⟨Person, isChildOf ,Person⟩
⟨Person, isParentOf ,Person⟩ 108 716 0.8428 0.9081 0.6395 0.7136
⟨Person, isPartnerOf ,Person⟩
⟨Person, isSpouseOf ,Person⟩ 155 877 0.8623 0.9441 0.6153 0.6939
⟨Athlete,PlaysSameSportTeamAs,Athlete⟩ 98 321 0.8787 0.9535 0.3350 0.3996

Average results over all data 1 093 4 435 0.8661 0.9395 0.4615 0.5287
LTR (Table 3; fair) 0.8489 0.9375 0.4242 0.4980

Table 5: Results for relationship-dependent models. Similar relationships are grouped together.

idea was investigated in the context of QA for as-
sociating question and answer types (Yao et al.,
2013). To answer (RQ3) we examine whether
learning a relationship-dependent model improves
over learning a single model for all types. We split
our dataset per relationship type and train a model
per type using 5-fold cross-validation within each.
Table 5 shows the results.8 Our method is ro-
bust across different relationships in terms of
NDCG. However, we observe some variation in
ERR as this metric is more sensitive to the distri-
bution of relevant items than NDCG—the distri-
bution over relevance grades varies per relation-
ship type. For example, it is much more likely to
find candidate sentences that have a high relevance
grade for ⟨Person , isSpouseOf , Person⟩ than for
⟨Athlete , PlaysSameSportTeamAs , Athlete⟩ in
our dataset. We plan to address this issue by ex-
ploring other corpora in the future.

The second-to-last row in Table 5 shows the av-
eraged results over the different relationship types,
which is a significant improvement over LTR at
p < 0.01 for all metrics. This method ranks the
best possible sentence at the top of the ranking for
∼85% of the cases for entity pairs that contain an
“excellent” sentence (∼2% absolute improvement
over LTR) and for ∼75% of the cases for entity
pairs that contain a “perfect” sentence (∼3% abso-
lute improvement over LTR).

8We omit Exc@1 and Per@1 due to space constraints.

6.3 Feature type analysis
Next, we analyze the impact of the feature types.
Table 6 shows how performance varies when re-
moving one feature type at a time from the full
feature set. Relationship type features are the most
important, although entity type features are impor-
tant as well. This indicates that introducing fea-
tures based on entities identified in the sentences
and the relationship is beneficial for this task. Fur-
thermore, the limited dependency on the source
feature type indicates that our method might be
able to generalize in other domains. Finally, text
type features do contribute to retrieval effective-
ness, although not significantly. Note that calcu-
lating the sentence features is straightforward, as
none of our features requires heavy linguistic anal-
ysis.

Features NDCG@1 NDCG@10 ERR@1 ERR@10

All 0.8661 0.9395 0.4615 0.5287

All∖text 0.8620 0.9372 0.4606 0.5274
All∖source 0.8598 0.9372 0.4582 0.5261
All∖entity 0.8421▽ 0.9282▼ 0.4497 0.5202▽

All∖relation 0.8183▼ 0.9201▼ 0.4352▼ 0.5112▼

Table 6: Results using relationship-dependent
models, removing individual feature types.

6.4 Error analysis
When looking at errors made by the system, we
find that some are due to the fact that entity pairs
might have more than one relationship (e.g., ac-
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tors that costar in movies also being partners) but
the selected sentence covers only one of the re-
lationships.9 For example, Liza Minnelli is
the daughter of Judy Garland, but they have
also costarred in a movie, which is the relationship
of interest. The model ranks the sentence “Liza
Minnelli is the daughter of singer and actress Judy
Garland. . . ” at the top, while the most relevant
sentence is: “Judy Garland performed at the Lon-
don Palladium with her then 18-year-old daughter
Liza Minnelli in November 1964.”

Sentences that contain the relationship in which
we are interested, but for which this cannot be
directly inferred, are another source of error.
Consider, for example, the following sentence,
which explains director Christopher Nolan
directed actor Christian Bale: “Jackman
starred in the 2006 film The Prestige, directed by
Christopher Nolan and costarring Christian Bale,
Michael Caine, and Scarlett Johansson”. Even
though the sentence contains the relationship of in-
terest, it focuses on actor Hugh Jackman. The
sentence “In 2004, after completing filming for
The Machinist, Bale won the coveted role of Bat-
man and his alter ego Bruce Wayne in Christopher
Nolan’s Batman Begins. . . ”, in contrast, refers to
the two entities and the relationship of interest di-
rectly, resulting in a higher relevance grade. Our
method, however, ranks the first sentence on top,
as it contains more phrases that refer to the rela-
tionship.

7 Conclusions and Future Work

We have presented a method for explaining rela-
tionships between knowledge graph entities with
human-readable descriptions. We first extract and
enrich sentences that refer to an entity pair and
then rank the sentences according to how well
they describe the relationship. For ranking, we
use learning to rank with a diverse set of fea-
tures. Evaluation on a manually annotated dataset
of “people” entities shows that our method sig-
nificantly outperforms state-of-the-art sentence re-
trieval models for this task. Experimental results
also show that using relationship-dependent mod-
els is beneficial.

In future work we aim to evaluate how our
method performs on entities and relationships of

9The annotators marked sentences that do not refer to the
relationship of interest as “bad” but indicated whether they
describe another relationship or not. We plan to account for
such cases in future work.

any type and popularity, including tail entities and
miscellaneous relationships. We also want to in-
vestigate moving beyond Wikipedia and extract
candidate sentences from documents that are not
related to the knowledge graph, such as web pages
or news articles. Employing such documents also
implies an investigation into more advanced co-
reference resolution methods.

Our analysis showed that sentences may cover
different relationships between entities or differ-
ent aspects of a single relationship—we aim to ac-
count for such cases in follow-up work. Further-
more, sentences may contain unnecessary infor-
mation for explaining the relation of interest be-
tween two entities. Especially when we want to
show the obtained results to end users, we may
need to apply further processing of the sentences
to improve their quality and readability. We would
like to explore sentence compression techniques
to address this. Finally, relationships between en-
tities have an inherit temporal nature and we aim
to explore ways to explain entity relationships and
their changes over time.
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Abstract

An event chronicle provides people with
an easy and fast access to learn the past.
In this paper, we propose the first novel
approach to automatically generate a top-
ically relevant event chronicle during a
certain period given a reference chronicle
during another period. Our approach con-
sists of two core components – a time-
aware hierarchical Bayesian model for
event detection, and a learning-to-rank
model to select the salient events to con-
struct the final chronicle. Experimental re-
sults demonstrate our approach is promis-
ing to tackle this new problem.

1 Introduction

Human civilization has developed for thousands of
years. During the long period, history witnessed
the changes of societies and dynasties, the revo-
lution of science and technology, as well as the
emergency of celebrities, which are great wealth
for later generations. Even nowadays, people usu-
ally look back through history either for their work
or interests. Among various ways to learn history,
many people prefer reading an event chronicle
summarizing important events in the past, which
saves much time and efforts.

The left part of Figure 1 shows a disaster event
chronicle from Infoplease1, by which people can
easily learn important disaster events in 2009. Un-
fortunately, almost all the available event chron-
icles are created and edited manually, which re-
quires editors to learn everything that happened in
the past. Even if an editor tries her best to gener-
ate an event chronicle, she still cannot guarantee
that all the important events are included. More-
over, when new events happen in the future, she

1http://www.infoplease.com/world/disasters/2009.html

needs to update the chronicle in time, which is
laborious. For example, the event chronicle of
2010 in Wikipedia2 has been edited 8,488 times
by 3,211 distinct editors since this page was cre-
ated. In addition, event chronicles can vary ac-
cording to topic preferences. Some event chroni-
cles are mainly about disasters while others may
focus more on sports. For people interested in
sports, the event chronicle in Figure 1 is unde-
sirable. Due to the diversity of event chronicles,
it is common that an event chronicle regarding a
specific topic for some certain period is unavail-
able. If editing an event chronicle can be done by
computers, people can have an overview of any pe-
riod according to their interests and do not have to
wait for human editing, which will largely speed
up knowledge acquisition and popularization.

Based on this motivation, we propose a new task
of automatic event chronicle generation, whose
goal is to generate a topically relevant event chron-
icle for some period based on a reference chroni-
cle of another period. For example, if an disaster
event chronicle during 2009 is available, we can
use it to generate a disaster chronicle during 2010
from a news collection, as shown in Figure 1.

To achieve this goal, we need to know what
events happened during the target period, whether
these events are topically relevant to the chron-
icle, and whether they are important enough to
be included, since an event chronicle has only a
limited number of entries. To tackle these chal-
lenges, we propose an approach consisting of two
core components – an event detection component
based on a novel time-aware hierarchical Bayesian
model and a learning-to-rank component to select
the salient events to construct the final chronicle.
Our event detection model can not only learn topic
preferences of the reference chronicle and mea-
sure topical relevance of an event to the chronicle

2http://en.wikipedia.org/wiki/2010
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Figure 1: Example for automatic generation of a topically relevant event chronicle.

but also can effectively distinguish similar events
by taking into account time information and event-
specific details. Experimental results show our ap-
proach significantly outperforms baseline methods
and that is promising to tackle this new problem.

The major novel contributions of this paper are:

• We propose a new task automatic generation
of a topically relevant event chronicle, which
is meaningful and has never been studied to
the best of our knowledge.

• We design a general approach to tackle
this new problem, which is language-
independent, domain-independent and scal-
able to any arbitrary topics.

• We design a novel event detection model. It
outperforms the state-of-the-art event detec-
tion model for generating topically relevant
event chronicles.

2 Terminology and Task Overview

Figure 2: An example of relevance-topic-event hi-
erarchical structure for a disaster event chronicle.

As shown in Figure 1, an event (entry) in an
event chronicle corresponds to a specific occur-
rence in the real world, whose granularity depends
on the chronicle. For a sports chronicle, an event
entry may be a match in 2010 World Cup, while
for a comprehensive chronicle, the World Cup is
regarded as one event. In general, an event can be
represented by a cluster of documents related to

it. The topic of an event can be considered as the
event class. For example, we can call the topic of
MH17 crash as air crash (fine-grained) or disaster
(coarse-grained). The relation between topic and
event is shown through the example in Figure 2.

An event chronicle is a set of important events
occurring in the past. Event chronicles vary ac-
cording to topic preferences. For the disaster
chronicle shown in Figure 1, earthquakes and air
crashes are relevant topics while election is not.
Hence, we can use a hierarchical structure to orga-
nize documents in a corpus, as Figure 2 shows.

Formally, we define an event chronicle E =
{e1, e2, ..., en} where ei is an event entry in
E and it can be represented by a tuple ei =
〈Dei , tei , zei〉. Dei denotes the set of documents
about ei, tei is ei’s time and zei is ei’s topic. Spe-
cially, we use Λ to denote the time period (inter-
val) covered by E, and θ to denote the topic distri-
bution of E, which reflects E’s topic preferences.

As shown in Figure 1, the goal of our task is to
generate an (target) event chronicle ET during ΛT
based on a reference chronicle ER during ΛR. The
topic distributions of ET and ER (i.e., θT and θR)
should be consistent.

3 Event Detection

3.1 Challenges of Event Detection

Figure 3: Documents that are lexically similar but
refer to different events. The underlined words are
event-specific words.
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For our task, the first step is to detect topically
relevant events from a corpus. A good event de-
tection model should be able to

(1) measure the topical relevance of a detected
event to the reference chronicle.

(2) consider document time information.

(3) look into a document’s event-specific details.

The first requirement is to identify topically rele-
vant events since we want to generate a topically
relevant chronicle. The second and third require-
ments are for effectively distinguishing events, es-
pecially similar events like the example in Figure
3. To distinguish the similar events, we must con-
sider document time information (for distinguish-
ing events in d1 and d2) and look into the docu-
ment’s event-specific details (the underlined words
in Figure 3) (for distinguishing events in d1 and
d3).

3.2 TaHBM: A Time-aware Hierarchical
Bayesian Model

To tackle all the above challenges mentioned in
Section 3.1, which cannot be tackled by conven-
tional detection methods (e.g., agglomerative clus-
tering), we propose a Time-aware Hierarchical
Bayesian Model (TaHBM) for detecting events.

Model Overview

Figure 4: The plate diagram of TaHBM. The
shaded nodes are observable nodes.

The plate diagram and generative story of
TaHBM are depicted in Figure 4 and Figure 5
respectively. For a corpus with M documents,
TaHBM assumes each document has three labels –
s, z, and e. s is a binary variable indicating a doc-
ument’s topical relevance to the reference event
chronicle, whose distribution is a Bernoulli dis-
tribution πs drawn from a Beta distribution with

Draw πs ∼ Beta(γs)
For each s ∈ {0, 1}: draw θ(s) ∼ Dir(α)
For each z = 1, 2, 3, ...,K: draw φ(z) ∼
Dir(ε), ψ(z)

z ∼ Dir(βz)
For each e = 1, 2, 3, ..., E: draw ψ

(e)
e ∼

Dir(βe)
For each document m = 1, 2, 3, ...,M :

Draw s ∼ Bernoulli(πs)
Draw z ∼Multi(θ(s))
Draw e ∼Multi(φ(z))
Draw t′ ∼ Gaussian(µe, σe), t← bt′c
Draw πx ∼ Beta(γx)
For each word w in document m:

Draw x ∼ Bernoulli(πx)
If x = 0: draw w ∼ ψ(z)

z

Else: draw w ∼ ψ(e)
e

Figure 5: The generative story of TaHBM

symmetric hyperparameter γs. s=1 indicates the
document is topically relevant to the chronicle
while s=0 means not. z is a document’s topic label
drawn from a K-dimensional multinomial distri-
bution θ, and e is a document’s event label drawn
from an E-dimensional multinomial distribution
φ. θ and φ are drawn from Dirichlet distributions
with symmetric hyperparameter α and ε respec-
tively. For an event e′, it can be represented by a
set of documents whose event label is e′.

In TaHBM, the relations among s, z and e are
similar to the hierarchical structure in Figure 2.
Based on the dependencies among s, z and e, we
can compute the topical relevance of an event to
the reference chronicle by Eq (1) where P (e|z),
P (e), P (s) and P (z|s) can be estimated using
Bayesian inference (some details of estimation of
P (s) and P (s|z) will be discussed in Section 3.3)
and thus we solve the first challenge in Section 3.1
(i.e., topical relevance measure problem).

P (s|e) =
P (s)× P (z|s)× P (e|z)

P (e)
(1)

Now, we introduce how to tackle the second
challenge – how to take into account a document’s
time information for distinguishing events. In
TaHBM, we introduce t, document timestamps.
We assume t = bt′c where t′ is drawn from a
Gaussian distribution with mean µ and variance
σ2. Each event e corresponds to a specific Gaus-
sian distribution which serves as a temporal con-
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straint for e. A Gaussian distribution has only one
peak around where the probability is concentrated.
Its value trends to zero if a point lies far away
from the mean. For this reason, a Gaussian dis-
tribution is suitable to describe an event’s tempo-
ral distribution whose probability usually concen-
trates around the event’s burst time and it will be
close to zero if time lies far from the burst time.
Figure 6 shows the temporal distribution of the
July 2009 Urumqi riots3. The probability of this
event concentrates around the 7th day. If we use a
Gaussian distribution (the dashed curve in Figure
6) to constrain this event’s time scope, the doc-
uments whose timestamps are beyond this scope
are unlikely to be grouped into this event’s cluster.

Now that the problems of topical relevance
measure and temporal constraints have been
solved, we discuss how to identify event-specific
details of a document for distinguishing events.
By analyzing the documents shown in Figure 3,
we find that general words (e.g., earthquake, kill,
injury, devastate) indicate the document’s topic
while words about event-specific details (e.g.,
Napa, California, 3.4-magnitude) are helpful to
determine what events the document talks about.
Assuming a person is asked to analyze what event
a document discusses, it would be a natural way
to first determine topic of the document based its
general words, and then determine what event it
talks about given its topic, timestamp and event-
specific details, which is exactly the way our
TaHBM works.

For simplicity, we call the general words as
topic words and call the words describing event-
specific information as event words. Inspired by
the idea of Chemudugunta et al. (2007), given the
different roles these two kinds of words play, we
assume words in a document are generated by two
distributions: topic words are generated by a topic
word distribution ψz while event words are gen-
erated by an event word distribution ψe. ψz and
ψe are |V |-dimensional multinomial distributions
drawn from Dirichlet distributions with symmetric
hyperparameter βz and βe respectively, where |V |
denotes the size of vocabulary V . A binary indica-
tor x, which is generated by a Bernoulli distribu-
tion πx drawn from a Beta distribution with sym-
metric hyperparameter γx, determines whether a
word is generated by ψz or ψe. Specifically, if
x = 0, a word is drawn from ψz; otherwise the

3http://en.wikipedia.org/wiki/July 2009 Urumqi riots

Figure 6: The temporal distribution of documents
about the Urumqi riots, which can be described by
a Gaussian distribution (the dashed curve). The
horizontal axis is time (day) and the vertical axis
is the number of documents about this event.

word is drawn from ψe. Since ψz is shared by all
events of one topic, it can be seen as a background
word distribution which captures general aspects.
In contrast, ψe tends to describe the event-specific
aspects. In this way, we can model a document’s
general and specific aspects and use the informa-
tion to better distinguish similar events4.

Model Inference
Like most Bayesian models, we use collapsed
Gibbs sampling for model inference in TaHBM.
For a document m, we present the conditional
probability of its latent variables s, z and x for
sampling:

P (sm|~s¬m, ~z, γs, α) =
cs + γs∑
s(cs + γs)

× cs,zm + α∑
z(cs,z + α)

(2)

P (zm|~z¬m, ~e, ~s, ~wm, ~xm, α, ε, βz)

=
csm,z + α∑
z(csm,z + α)

× cz,em + ε∑
e(cz,e + ε)

×
Nm∏
n=1

(
cz,wm,n +

∑n−1
i=1 1(wm,i = wm,n) + βz∑

w∈V (cz,w + βz) + n− 1
)(1−xm,n)

(3)

P (xm,n|~wm, ~x¬m,n, zm, em, γx)

=
cm,x + γx

Nm + 2γx
× (

czm,wm,n + βz∑
w∈V (czm,w + βz)

)(1−x)

× (
cem,wm,n + βe∑
w∈V (cem,w + βe)

)x

(4)

where V denotes the vocabulary, wm,n is the nth

word in a document m, cs is the count of docu-
ments with topic relevance label s, cs,z is the count

4TaHBM is language-independent, which can identify
event words without name tagging. But if name tagging re-
sults are available, we can also exploit them (e.g., we can fix x
of a named entity specific to an event to 1 during inference.).
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of documents with topic relevance label s and
topic label z, cz,w is the count of word w whose
document’s topic label is z, cm,x is the count of
words with binary indicator label x in m and 1(·)
is an indicator function.

Specially, for variable e which is dependent on
the Gaussian distribution, its conditional probabil-
ity for sampling is computed as Eq (5):

P (em|~e¬m, ~z, ~wm, ~xm, tm, ε, βe, µe, σe)

=
czm,e + ε∑
e(czm,e + ε)

×
∫ tm+1

tm

pG(tm;µe, σ
′
e)

×
Nm∏
n=1

(
ce,wm,n +

∑n−1
i=1 1(wm,i = wm,n) + βe∑

w∈V (ce,w + βe) + n− 1
)xm,n

(5)

where pG(x;µ, σ) is a Gaussian probability mass
function with parameter µ and σ.

The function pG(·) can be seen as the temporal
distribution of an event, as discussed before. In
this sense, the temporal distribution of the whole
corpus can be considered as a mixture of Gaussian
distributions of events. As a natural way to esti-
mate parameters of mixture of Gaussians, we use
EM algorithm (Bilmes, 1998). In fact, Eq (5) can
be seen as the E-step. The M-step of EM updates
µ and σ as follows:

µe =

∑
d∈De

td

|De| , σe =

√∑
d∈De

(td − µe)2
|De| (6)

where td is document d’s timestamp and De is the
set of documents with event label e.

Specially, for sampling e we use σ′e defined as
σ′e = σe + τ (τ is a small number for smoothing5)
because when σ is very small (e.g., σ = 0), an
event’s temporal scope will be strictly constrained.
Using σ′e can help the model overcome this “trap”
for better parameter estimation.

Above all, the model inference and parameter
estimation procedure can be summarized by algo-
rithm 1.

3.3 Learn Topic Preferences of the Event
Chronicle

A prerequisite to use Eq (1) to compute an event’s
topical relevance to an event chronicle is that
we know P (s) and P (z|s) which reflects topic
preferences of the event chronicle. Nonetheless,
P (s) and P (z|s) vary according to different event
chronicles. Hence, we cannot directly estimate

5τ is set to 0.5 in our experiments.

Algorithm 1 Model inference for TaHBM
1: Initialize parameters in TaHBM;
2: for each iteration do
3: for each document d in the corpus do
4: sample s according to Eq (2)
5: sample z according to Eq (3)
6: sample e according to Eq (5)
7: for each word w in d do
8: sample x according to Eq (4)
9: end for

10: end for
11: for each event e do
12: update µe, σe according to Eq (6)
13: end for
14: end for

them in an unsupervised manner; instead, we pro-
vide TaHBM some “supervision”. As we men-
tioned in section 3.2, the variable s indicates a
document’s topical relevance to the event chron-
icle. For some documents, s label can be easily
derived with high accuracy so that we can exploit
the information to learn the topic preferences.

To obtain the labeled data, we use the descrip-
tion of each event entry in the reference chroni-
cle ER during period ΛR as a query to retrieve
relevant documents in the corpus using Lucene
(Jakarta, 2004) which is an information retrieval
software library. We define R as the set of doc-
uments in hits of any event entry in the reference
chronicle returned by Lucene:

R = ∪e∈ER
Hit(e)

where Hit(e) is the complete hit list of event e re-
turned by Lucene. For document dwith timestamp
td, if d /∈ R and td ∈ ΛR, then d is considered ir-
relevant to the event chronicle and thus it would be
labeled as a negative example.

To generate positive examples, we use a strict
criterion since we cannot guarantee that all the
documents in R are actually relevant. To pre-
cisely generate positive examples, a document d is
labeled as positive only if it satisfies the positive
condition which is defined as follows:

∃e∈ER
0 ≤ td − te ≤ 10 ∧ sim(d, e) ≥ 0.4

where te is time6 of event e, provided by the ref-
erence chronicle. sim(d, e) is Lucene’s score of
d given query e. According to the positive con-
dition, a positive document example must be lexi-

6The time unit of td and te is one day.
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cally similar to some event in the reference chron-
icle and its timestamp is close to the event’s time.

As a result, we can use the labeled data to learn
topic preferences of the event chronicle. For the
labeled documents, s is fixed during model infer-
ence. In contrast, for documents that are not la-
beled, s is sampled by Eq (2). In this manner,
TaHBM can learn topic preferences (i.e., P (z|s))
without any manually labeled data and thus can
measure the topical relevance between an event
and the reference chronicle.

4 Event Ranking

Generating an event chronicle is beyond event de-
tection because we cannot use all detected events
to generate the chronicle with a limited number of
entries. We propose to use learning-to-rank tech-
niques to select the most salient events to generate
the final chronicle since we believe the reference
event chronicle can teach us the principles of se-
lecting salient events. Specifically, we use SVM-
Rank (Joachims, 2006).

4.1 Training and Test Set Generation
The event detection component returns many doc-
ument clusters, each of which represents an event.
As Section 3.2 shows, each event has a Gaussian
distribution whose mean indicates its burst time in
TaHBM. We use the events whose burst time is
during the reference chronicle’s period as training
examples and treat those during the target chroni-
cle’s period as test examples. Formally, the train-
ing set and test set are defined as follows:

Train = {e|µe ∈ ΛR}, Test = {e|µe ∈ ΛT }
In the training set, events containing at least one

positive document (i.e. relevant to the event chron-
icle) in Section 3.3 are labeled as high rank pri-
ority while those without positive documents are
labeled as low priority.

4.2 Features
We use the following features to train the ranking
model, all of which can be provided by TaHBM.

• P (s = 1|e): the probability that an event e is
topically relevant to the reference chronicle.

• P (e|z): the probability reflects an event’s im-
pact given its topic.

• σe: the parameter of an event e’s Gaussian
distribution. It determines the ‘bandwidth’

of the Gaussian distribution and thus can be
considered as the time span of e.

• |De|: the number of documents related to
event e, reflecting the impact of e.

• |De|
σe

: For an event with a long time span (e.g.,
Premier League), the number of relevant doc-
uments is large but its impact may not be pro-
found. Hence, we use |De|

σe
to normalize |De|,

which may better reflect the impact of e.

5 Experiments

5.1 Experiment Setting

Data: We use various event chronicles during
2009 as references to generate their counterparts
during 2010. Specifically, we collected disaster,
sports, war, politics and comprehensive chroni-
cles during 2009 from mapreport7, infoplease and
Wikipedia8. To generate chronicles during 2010,
we use 2009-2010 APW and Xinhua news in En-
glish Gigaword (Graff et al., 2003) and remove
documents whose titles and first paragraphs do not
include any burst words. We detect burst words us-
ing Kleinberg algorithm (Kleinberg, 2003), which
is a 2-state finite automaton model and widely
used to detect bursts. In total, there are 140,557
documents in the corpus.
Preprocessing: We remove stopwords and use
Stanford CoreNLP (Manning et al., 2014) to do
lemmatization.
Parameter setting: For TaHBM, we empirically
set α = 0.05, βz = 0.005, βe = 0.0001, γs =
0.05, γx = 0.5, ε = 0.01, the number of topics
K = 50, and the number of events E = 5000. We
run Gibbs sampler for 2000 iterations with burn-in
period of 500 for inference. For event ranking, we
set regularization parameter of SVMRank c = 0.1.
Chronicle display: We use a heuristic way to
generate the description of each event. Since the
first paragraph of a news article is usually a good
summary of the article and the earliest document
in a cluster usually explicitly describes the event,
for an event represented by a document cluster,
we choose the first paragraph of the earliest doc-
ument written in 2010 in the cluster to generate
the event’s description. The earliest document’s
timestamp is considered as the event’s time.

7http://www.mapreport.com
8http://en.wikipedia.org/wiki/2009
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5.2 Evaluation Methods and Baselines

Since there is no existing evaluation metric for the
new task, we design a method for evaluation.

Although there are manually edited event
chronicles on the web, which may serve as ref-
erences for evaluation, they are often incomplete.
For example, the 2010 politics event chronicle on
Wikipedia has only two event entries. Hence, we
first pool all event entries of existing chronicles on
the web and chronicles generated by approaches
evaluated in this paper and then have 3 human
assessors judge each event entry for generating a
ground truth based on its topical relevance, impact
and description according to the standard of the
reference chronicles. An event entry will be in-
cluded in the ground-truth only if it is selected as
a candidate by at least two human judges. On aver-
age, the existing event chronicles on the web cover
50.3% of event entries in the ground-truth.

Given the ground truth, we can use Precision@k
to evaluate an event chronicle’s quality.

Precision@k = |EG ∩ Etopk|/k

where EG and Etopk are ground-truth chronicle
and the chronicle with top k entries generated by
an approach respectively. If there are multiple
event entries corresponding to one event in the
ground-truth, only one is counted.

For comparison, we choose several baseline ap-
proaches. Note that event detection models except
TaHBM do not provide features used in learning-
to-rank model. For these detection models, we use
a criterion that considers both relevance and im-
portance to rank events:

rankscorebasic(e) =
∑
d∈De

maxe′∈ER
sim(d, e′)

where ER is the reference chronicle and sim(d, e′)
is Lucene’s score of document d given query e′.
We call this ranking criterion as basic criterion.

• Random: We randomly select k documents
to generate the chronicle.

• NB+basic: Since TaHBM is essentially an
extension of NB, we use Naive Bayes (NB)
to detect events and basic ranking criterion to
rank events.

• B-HAC+basic: We use hierarchical agglom-
erative clustering (HAC) based on BurstVSM

schema (Zhao et al., 2012) to detect events,
which is the state-of-the-art event detection
method for general domains.

• TaHBM+basic: we use this baseline to verify
the effectiveness of learning-to-rank.

As TaHBM, the number of clusters in NB is set to
5000 for comparison. For B-HAC, we adopt the
same setting with (Zhao et al., 2012).

5.3 Experiment Results

Using the evaluation method introduced above,
we can conduct a quantitative evaluation for event
chronicle generation approaches9.

Table 1 shows the overall performance. Our
approach outperforms the baselines for all chron-
icles. TaHBM beats other detection models for
chronicle generation owing to its ability of incor-
porating the temporal information and identifica-
tion of event-specific details of a document. More-
over, learning-to-ranking is proven more effective
to rank events than the basic ranking criterion.

Among these 5 chronicles, almost all ap-
proaches perform best on disaster event chronicle
while worst on sports event chronicle. We ana-
lyzed the results and found that many event entries
in the sports event chronicle are about the open-
ing match, or the first-round match of a tourna-
ment due to the display method described in Sec-
tion 5.1. According to the reference sport event
chronicle, however, only matches after quarterfi-
nals in a tournament are qualified to be event en-
tries. In other words, a sports chronicle should
provide information about the results of semi-final
and final, and the champion of the tournament in-
stead of the first-round match’s result, which ac-
counts for the poor performance. In contrast, the
earliest document about a disaster event always di-
rectly describes the disaster event while the fol-
lowing reports usually concern responses to the
event such as humanitarian aids and condolence
from the world leaders. The patterns of reporting
war events are similar to those of disasters, thus
the quality of war chronicle is also good. Pol-
itics is somewhat complex because some politi-
cal events (e.g., election) are arranged in advance
while others (e.g., government shutdown) are un-
expected. It is notable that for generating com-
prehensive event chronicles, learning-to-rank does

9Due to the space limitation, we display chronicles gener-
ated by our approach in the supplementary notes.
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sports politics disaster war comprehensive
P@50 P@100 P@50 P@100 P@50 P@100 P@50 P@100 P@50 P@100

Random 0.02 0.08 0 0 0.02 0.04 0 0 0.02 0.03
NB+basic 0.08 0.12 0.18 0.19 0.42 0.36 0.18 0.17 0.38 0.31

B-HAC+basic 0.10 0.13 0.30 0.26 0.50 0.47 0.30 0.22 0.36 0.32
TaHBM+basic 0.18 0.15 0.30 0.29 0.50 0.43 0.46 0.36 0.38 0.33
Our approach 0.20 0.15 0.38 0.36 0.64 0.53 0.54 0.41 0.40 0.33

Table 1: Performance of event chronicle generation.

Topically Irrelevant Trivial Events Indirect Description Redundant Entries
disaster 31.91% 17.02% 44.68% 6.38%
sports 38.82% 55.29% 3.52% 2.35%
comp - 67.16% 31.34% 1.49%

Table 2: Proportion of errors in disaster, sports and comprehensive event chronicles.

not show significant improvement. A possible rea-
son is that a comprehensive event chronicle does
not care the topical relevance of a event. In other
words, its ranking problem is simpler so that the
learning-to-rank does not improve the basic rank-
ing criterion much.

Moreover, we analyze the incorrect entries in
the chronicles generated by our approaches. In
general, there are four types of errors.
Topically irrelevant: the topic of an event entry
is irrelevant to the event chronicle.
Minor events: the event is not important enough
to be included. For example, “20100828:
Lebanon beat Canada 81-71 in the opening round
of the basketball world championships” is a minor
event in the sports chronicle because it is about an
opening-round match and not important enough.
Indirect description: the entry does not describe
a major event directly. For instance, “20100114:
Turkey expressed sorrow over the Haiti earth-
quake” is an incorrect entry in the disaster chroni-
cle though it mentions the Haiti earthquake.
Redundant entries: multiple event entries de-
scribe the same event.

We analyze the errors of the disaster, sports and
comprehensive event chronicle since they are rep-
resentative, as shown in Table 2.

Topical irrelevance is a major error source for
both disaster and sports event chronicles. This
problem mainly arises from incorrect identifica-
tion of topically relevant events during detection.
Moreover, disaster and sports chronicles have their
own more serious problems. Disaster event chron-
icles suffer from the indirect description problem
since there are many responses (e.g., humanitar-
ian aids) to a disaster. These responses are top-
ically relevant and contain many documents, and

thus appear in the top list. One possible solution
might be to increase the event granularity by ad-
justing parameters of the detection model so that
the documents describing a major event and those
discussing in response to this event can be grouped
into one cluster (i.e., one event). In contrast, the
sports event chronicle’s biggest problem is on mi-
nor events, as mentioned before. Like the sports
chronicle, the comprehensive event chronicle also
has many minor event entries but its main prob-
lem results from its strict criterion. Since com-
prehensive chronicles can include events of any
topic, only extremely important events can be in-
cluded. For example, “Netherlands beat Uruguay
to reach final in the World Cup 2010” may be a
correct event entry in sports chronicles but it is not
a good entry in comprehensive chronicles. Com-
pared with comprehensive event chronicles, events
in other chronicles tend to describe more details.
For example, a sports chronicle may regard each
match in the World Cup as an event while compre-
hensive chronicles consider the World Cup as one
event, which requires us to adapt event granularity
for different chronicles.

Also, we evaluate the time of event entries in
these five event chronicles because event’s hap-
pening time is not always equal to the timestamp
of the document creation time (UzZaman et al.,
2012; Ge et al., 2013). We collect existing man-
ually edited 2010 chronicles on the web and use
their event time as gold standard. We define a
metric to evaluate if the event entry’s time in our
chronicle is accurate:

diff =
∑

e∈E∩E∗ |(te − t∗e)|/|E ∩ E∗|
where E and E∗ are our chronicle and the manu-
ally edited event chronicle respectively. te is e’s
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time labeled by our method and t∗e is e’s correct
time. Note that for multiple entries referring the
same event in event chronicles, the earliest entry’s
time is used as the event’s time to compute diff.

sports politics disaster war comprehensive
0.800 3.363 1.042 1.610 2.467

Table 3: Difference between an event’s actual time
and the time in our chronicles. Time unit is a day.

Table 3 shows the performance of our approach
in labeling event time. For disaster, sports and war,
the accuracy is desirable since important events
about these topics are usually reported in time.
In contrast, the accuracy of political event time
is the lowest. The reason is that some political
events may be confidential and thus they are not
reported as soon as they happen; on the other hand,
some political events (e.g., a summit) are reported
several days before the events happen. The com-
prehensive event chronicle includes many political
events, which results in a lower accuracy.

6 Related Work

To the best of our knowledge, there was no previ-
ous end-to-end topically relevant event chronicle
generation work but there are some related tasks.

Event detection, sometimes called topic detec-
tion (Allan, 2002), is an important part of our ap-
proach. Yang et al. (1998) used clustering tech-
niques for event detection on news. He et al.
(2007) and Zhao et al. (2012) designed burst fea-
ture representations for detecting bursty events.
Compared with our TaHBM, these methods lack
the ability of distinguishing similar events.

Similar to event detection, event extraction fo-
cuses on finding events from documents. Most
work regarding event extraction (Grishman et al.,
2005; Ahn, 2006; Ji and Grishman, 2008; Chen
and Ji, 2009; Liao and Grishman, 2010; Hong et
al., 2011; Li et al., 2012; Chen and Ng, 2012; Li et
al., 2013) was developed under Automatic Content
Extraction (ACE) program. The task only defines
33 event types and events are in much finer grain
than those in our task. Moreover, there was work
(Verhagen et al., 2005; Chambers and Jurafsky,
2008; Bethard, 2013; Chambers, 2013; Chambers
et al., 2014) about temporal event extraction and
tracking. Like ACE, the granularity of events in
this task is too fine to be suitable for our task.

Also, timeline generation is related to our work.
Most previous work focused on generating a time-

line for a document (Do et al., 2012), a centroid
entity (Ji et al., 2009) or one major event (Hu et
al., 2011; Yan et al., 2011; Lin et al., 2012; Li and
Li, 2013). In addition, Li and Cardie (2014) gen-
erated timelines for users in microblogs. The most
related work to ours is Swan and Allan (2000).
They used a timeline to show bursty events along
the time, which can be seen as an early form of
event chronicles. Different from their work, we
generate a topically relevant event chronicle based
on a reference event chronicle.

7 Conclusions and Future Work

In this paper, we propose a novel task – automatic
generation of topically relevant event chronicles.
It can serve as a new framework to combine the
merits of Information Retrieval, Information Ex-
traction and Summarization techniques, to rapidly
extract and rank salient events. This framework is
also able to rapidly and accurately capture a user’s
interest and needs based on the reference chronicle
(instead of keywords as in Information Retrieval
or event templates as in Guided Summarization)
which can reflect diverse levels of granularity.

As a preliminary study of this new challenge,
this paper focuses on event detection and rank-
ing. There are still many challenges for gener-
ating high-quality event chronicles. In the fu-
ture, we plan to investigate automatically adapt-
ing an event’s granularity and learn the principle
of summarizing the event according to the refer-
ence event chronicle. Moreover, we plan to study
the generation of entity-driven event chronicles,
leveraging more fine-grained entity and event ex-
traction approaches.
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Abstract

People create morphs, a special type of
fake alternative names, to achieve certain
communication goals such as expressing
strong sentiment or evading censors. For
example, “Black Mamba”, the name for a
highly venomous snake, is a morph that
Kobe Bryant created for himself due to his
agility and aggressiveness in playing bas-
ketball games. This paper presents the first
end-to-end context-aware entity morph de-
coding system that can automatically iden-
tify, disambiguate, verify morph mentions
based on specific contexts, and resolve
them to target entities. Our approach is
based on an absolute “cold-start” - it does
not require any candidate morph or tar-
get entity lists as input, nor any manually
constructed morph-target pairs for train-
ing. We design a semi-supervised collec-
tive inference framework for morph men-
tion extraction, and compare various deep
learning based approaches for morph res-
olution. Our approach achieved signifi-
cant improvement over the state-of-the-art
method (Huang et al., 2013), which used a
large amount of training data. 1

1 Introduction

Morphs (Huang et al., 2013; Zhang et al., 2014)
refer to the fake alternative names created by so-
cial media users to entertain readers or evade cen-
sors. For example, during the World Cup in 2014,

1The data set and programs are publicly avail-
able at: http://nlp.cs.rpi.edu/data/morphdecoding.zip and
http://nlp.cs.rpi.edu/software/morphdecoding.tar.gz

a morph “Su-tooth” was created to refer to the
Uruguay striker “Luis Suarez” for his habit of bit-
ing other players. Automatically decoding human-
generated morphs in text is critical for downstream
deep language understanding tasks such as entity
linking and event argument extraction.

However, even for human, it is difficult to de-
code many morphs without certain historical, cul-
tural, or political background knowledge (Zhang
et al., 2014). For example, “The Hutt” can be used
to refer to a fictional alien entity in the Star Wars
universe (“The Hutt stayed and established himself
as ruler of Nam Chorios”), or the governor of New
Jersey, Chris Christie (“The Hutt announced a bid
for a seat in the New Jersey General Assembly”).
Huang et al. (2013) did a pioneering pilot study on
morph resolution, but their approach assumed the
entity morphs were already extracted and used a
large amount of labeled data. In fact, they resolved
morphs on corpus-level instead of mention-level
and thus their approach was context-independent.
A practical morph decoder, as depicted in Fig-
ure 1, consists of two problems: (1) Morph Ex-
traction: given a corpus, extract morph mentions;
and (2). Morph Resolution: For each morph men-
tion, figure out the entity that it refers to.

In this paper, we aim to solve the fundamental
research problem of end-to-end morph decoding
and propose a series of novel solutions to tackle
the following challenges.

Challenge 1: Large-scope candidates

Only a very small percentage of terms can be used
as morphs, which should be interesting and fun.
As we annotate a sample of 4, 668 Chinese weibo
tweets, only 450 out of 19, 704 unique terms are
morphs. To extract morph mentions, we propose a
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Figure 1: An Illustration of Morph Decoding Task.

two-step approach to first identify individual men-
tion candidates to narrow down the search scope,
and then verify whether they refer to morphed en-
tities instead of their original meanings.

Challenge 2: Ambiguity, Implicitness,
Informality

Compared to regular entities, many morphs con-
tain informal terms with hidden information. For
example, “不厚 (not thick)” is used to refer to
“薄熙来 (Bo Xilai)” whose last name “薄 (Bo)”
means “thin”. Therefore we attempt to model
the rich contexts with careful considerations for
morph characteristics both globally (e.g., language
models learned from a large amount of data) and
locally (e.g. phonetic anomaly analysis) to extract
morph mentions.

For morph resolution, the main challenge lies
in that the surface forms of morphs usually ap-
pear quite different from their target entity names.
Based on the distributional hypothesis (Harris,
1954) which states that words that often occur in
similar contexts tend to have similar meanings, we
propose to use deep learning techniques to capture
and compare the deep semantic representations of
a morph and its candidate target entities based on
their contextual clues. For example, the morph
“平西王(Conquer West King)” and its target entity
“薄熙来 (Bo Xilai)” share similar implicit contex-
tual representations such as “重庆(Chongqing)”
(Bo was the governor of Chongqing) and “倒台
(fall from power)”.

Challenge 3: Lack of labeled data

To the best of our knowledge, no sufficient
mention-level morph annotations exist for training
an end-to-end decoder. Manual morph annotations
require native speakers who have certain cultural
background (Zhang et al., 2014). In this paper
we focus on exploring novel approaches to save
annotation cost in each step. For morph extrac-
tion, based on the observation that morphs tend to
share similar characteristics and appear together,
we propose a semi-supervised collective inference
approach to extract morph mentions from multiple
tweets simultaneously. Deep learning techniques
have been successfully used to model word rep-
resentation in an unsupervised fashion. For morph
resolution, we make use of a large amount of unla-
beled data to learn the semantic representations of
morphs and target entities based on the unsuper-
vised continuous bag-of-words method (Mikolov
et al., 2013b).

2 Problem Formulation

Following the recent work on morphs (Huang
et al., 2013; Zhang et al., 2014), we use Chi-
nese Weibo tweets for experiments. Our goal
is to develop an end-to-end system that auto-
matically extract morph mentions and resolve
them to their target entities. Given a corpus
of tweets D = {d1, d2, ..., d|D|}, we define a
candidate morph mi as a unique term tj in T ,
where T = {t1, t2, ..., t|T |} is the set of unique
terms in D. To extract T , we first apply sev-
eral well-developed Natural Language Process-
ing tools, including Stanford Chinese word seg-
menter (Chang et al., 2008), Stanford part-of-
speech tagger (Toutanova et al., 2003) and Chinese
lexical analyzer ICTCLAS (Zhang et al., 2003),
to process the tweets and identify noun phrases.
Then we define a morph mention mp

i of mi as the
p-th occurrence of mi in a specific document dj .
Note that a mention with the same surface form as
mi but referring to its original entity is not consid-
ered as a morph mention. For instance, the “平西
王 (Conquer West King)” in d1 and d3 in Figure 1
are morph mentions since they refer to the modern
politician “薄熙来 (Bo Xilai)”, while the one in d4

is not a morph mention since it refers to the origi-
nal entity, who was king “吴三桂 (Wu Sangui)”.

For each morph mention, we discover a list of
target candidates E = {e1, e2, ..., e|E|} from Chi-
nese web data for morph mention resolution. We
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design an end-to-end morph decoder which con-
sists of the following procedure:

• Morph Mention Extraction

– Potential Morph Discovery: This first step
aims to obtain a set of potential entity-level
morphs M = {m1,m2, ...}(M ⊆ T ). Then,
we only verify and resolve the mentions of
these potential morphs, instead of all the
terms in T in a large corpus.

– Morph Mention Verification: In this step, we
aim to verify whether each mentionmp

i of the
potential morphmi(mi ∈M) from a specific
context dj is a morph mention or not.

• Morph Mention Resolution: The final step is
to resolve each morph mention mp

i to its target
entity (e.g., “薄熙来 (Bo Xilai)” for the morph
mention “平西王 (Conquer West King)” in d1

in Figure 1).

3 Morph Mention Extraction

3.1 Why Traditional Entity Mention
Extraction doesn’t Work

In order to automatically extract morph mentions
from any given documents, our first reflection is
to formulate the task as a sequence labeling prob-
lem, just like labeling regular entity mentions. We
adopted the commonly used conditional random
fields (CRFs) (Lafferty et al., 2001) and got only
6% F-score. Many morphs are not presented as
regular entity mentions. For example, the morph
“天线 (Antenna)” refers to “温家宝 (Wen Ji-
abao)” because it shares one character “宝 (baby)”
with the famous children’s television series “天
线宝宝 (Teletubbies)”. Even when they are pre-
sented as regular entity mentions, they must refer
to new target entities which are different from the
regular ones. So we propose the following novel
two-step solution.

3.2 Potential Morph Discovery

We first introduce the first step of our approach
– potential morph discovery, which aims to nar-
row down the scope of morph candidates with-
out losing recall. This step takes advantage of
the common characteristics shared among morphs
and identifies the potential morphs using a super-
vised method, since it is relatively easy to collect
a certain number of corpus-level morphs as train-
ing data compared to labeling morph mentions.
Through formulating this task as a binary classifi-

cation problem, we adopt the Support Vector Ma-
chines (SVMs) (Cortes and Vapnik, 1995) as the
learning model. We propose the following four
categories of features.

Basic: (i) character unigram, bigram, trigram,
and surface form; (ii) part-of-speech tags; (iii) the
number of characters; (iv) whether some charac-
ters are identical. These basic features will help
identify several common characteristics of morph
candidates (e.g., they are very likely to be nouns,
and very unlikely to contain single characters).

Dictionary: Many morphs are non-regular
names derived from proper names while retain-
ing some characteristics. For example, the morphs
“薄督 (Governor Bo)” and “吃省 (Gourmand
Province)” are derived from their target entity
names “薄熙来 (Bo Xilai)” and “广东省 (Guan-
dong Province)”, respectively. Therefore, we
adopt a dictionary of proper names (Li et al., 2012)
and propose the following features: (i) Whether
a term occurs in the dictionary. (ii) Whether a
term starts with a commonly used last name, and
includes uncommonly used characters as its first
name. (iii) Whether a term ends with a geo-
political entity or organization suffix word, but it’s
not in the dictionary.

Phonetic: Many morphs are created based on
phonetic (Chinese pinyin in our case) modifica-
tions. For instance, the morph “饭饼饼 (Rice
Cake)” has the same phonetic transcription as
its target entity name “范冰冰 (Fan Bingbing)”.
To extract phonetic-based features, we compile
a dictionary composed of 〈phonetic transcription,
term〉 pairs from the Chinese Gigaword corpus 2.
Then for each term, we check whether it has the
same phonetic transcription as any entry in the dic-
tionary but they include different characters.

Language Modeling: Many morphs rarely ap-
pear in a general news corpus (e.g., “六步郎
(Six Step Man)” refers to the NBA baseketball
player “勒布朗·詹姆斯 (Lebron James)”.). There-
fore, we use the character-based language models
trained from Gigaword to calculate the occurrence
probabilities of each term, and use n-gram proba-
bilities (n ∈ [1 : 5]) as features.

3.3 Morph Mention Verification

The second step is to verify whether a mention of
the discovered potential morphs is indeed used as
a morph in a specific context. Based on the ob-

2https://catalog.ldc.upenn.edu/LDC2011T07
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servation that closely related morph mentions of-
ten occur together, we propose a semi-supervised
graph-based method to leverage a small set of la-
beled seeds, coreference and correlation relations,
and a large amount of unlabeled data to perform
collective inference and thus save annotation cost.
According to our observation of morph mentions,
we propose the following two hypotheses:

Hypothesis 1: If two mentions are coreferen-
tial, then they both should either be morph men-
tions or non-morph mentions. For instance, the
morph mentions “平西王 (Conquer West King)”
in d1 and d3 in Figure 1 are coreferential, they both
refer to the modern politician “薄熙来 (Bo Xilai)”.

Hypothesis 2: Those highly correlated men-
tions tend to either be morph mentions or non-
morph mentions. From our annotated dataset, 49%
morph mentions co-occur on tweet level. For ex-
ample, “平西王(Conquer West King)” and “军
哥(Brother Jun)” are used together in d3 in Fig-
ure 1.

Based on these hypotheses, we aim to design
an effective approach to compensate for the lim-
ited annotated data. Graph-based semi-supervised
learning approaches (Zhu et al., 2003; Smola and
Kondor, 2003; Zhou et al., 2004) have been suc-
cessfully applied many NLP tasks (Niu et al.,
2005; Chen et al., 2006; Huang et al., 2014).
Therefore we build a mention graph to capture
the semantic relatedness (weighted arcs) between
potential morph mentions (nodes) and propose a
semi-supervised graph-based algorithm to collec-
tively verify a set of relevant mentions using a
small amount of labeled data. We now describe
the detailed algorithm as follows.

Mention Graph Construction
First, we construct a mention graph that can reflect
the association between all the mentions of poten-
tial morphs. According to the above two hypothe-
ses, mention coreference and correlation relations
are the basis to build our mention graph, which is
represented by a matrix.

In Chinese Weibo, their exist rich and clean
social relations including authorship, replying,
retweeting, or user mentioning relations. We make
use of these social relations to judge the possibility
of two mentions of the same potential morph be-
ing coreferential. If there exists one social relation
between two mentions mp

i and mq
i of the morph

mi, they are usually coreferential and assigned an
association score 1. We also detect coreferential

relations by performing content similarity analy-
sis. The cosine similarity is adopted with the tf-idf
representation for the contexts of two mentions.
Then we get a coreference matrix W 1:

W 1
mp

i ,mq
i

=


1.0 if mp

i and mq
i are linked

with certain social relation
cos(mp

i ,m
q
i ) else if q ∈ kNN(p)

0 Otherwise

where mp
i and mq

i are two mentions from the
same potential morph mi, and kNN means that
each mention is connected to its k nearest neigh-
boring mentions.

Users tend to use morph mentions together to
achieve their communication goals. To incorpo-
rate such evidence, we measure the correlation be-
tween two mentions mp

i and mq
j of two different

potential morphs mi and mj as corr(mp
i ,m

q
j) =

1.0 if there exists a certain social relation between
them. Otherwise, corr(mp

i ,m
q
j) = 0. Then

we can obtain the correlation matrix: W 2
mp

i ,m
q
j

=

corr(mp
i ,m

q
j).

To tune the balance of coreferential relation and
correlation relation during learning, we first get
two matrices Ŵ 1 and Ŵ 2 by row-normalizingW 1

and W2, respectively. Then we obtain the final
mention matrix W with a linear combination of
Ŵ 1 and Ŵ 2: W = αŴ 1 + (1− α)Ŵ 2, where α
is the coefficient between 0 and 1 3.

Graph-based Semi-supervised Learning
Intuitively, if two mentions are strongly con-
nected, they tend to hold the same label. The
label of 1 indicates a mention is a morph men-
tion, and 0 means a non-morph mention. We use
Y =

[
Yl Yu

]T to denote the label vector of all
mentions, where the first l nodes are verified men-
tions labeled as 1 or 0, and the remaining u nodes
need to be verified and initialized with the label
0.5. Our final goal is to obtain the final label vec-
tor Yu by incorporating evidence from initial la-
bels and the mention graph.

Following the graph-based semi-supervised
learning algorithm (Zhu et al., 2003), the mention
verification problem is formulated to optimize the
objective function Q(Y) = µ

∑l
i=1(yi − y0

i )
2 +

1
2

∑
i,jWij(yi − yj)2 where y0

i denotes the initial

3α is set to 0.8 in this paper, optimized from the develop-
ment set.
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label, and µ is a regularization parameter that con-
trols the trade-off between initial labels and the
consistency of labels on the mention graph. Zhu
et al. (2003) has proven that this formula has both
closed-form and iterative solutions.

4 Morph Mention Resolution
The final step is to resolve the extracted morph
mentions to their target entities.

4.1 Candidate Target Identification

We start from identifying a list of target candidates
for each morph mention from the comparable cor-
pora including Sina Weibo, Chinese News and
English Twitter. After preprocessing the corpora
using word segmentation, noun phrase chunking
and name tagging, the name entity list is still too
large and too noisy for candidate ranking. To
clean the name entity list, we adopt the tempo-
ral Distribution Assumption proposed in our re-
cent work (Huang et al., 2013). It assumes that
a morph m and its real target e should have sim-
ilar temporal distributions in terms of their occur-
rences. Following the same heuristic we assume
that an entity is a valid candidate for a morph if
and only if the candidate appears fewer than seven
days after the morph’s appearance.

4.2 Candidate Target Ranking

Motivations of Using Deep Learning
Compared to regular entity linking tasks (Ji et al.,
2010; Ji et al., 2011; Ji et al., 2014), the major
challenge of ranking a morph’s candidate target
entities lies in that the surface features such as the
orthographic similarity between morph and target
candidates have been proven inadequate (Huang
et al., 2013). Therefore, it is crucial to capture
the semantics of both mentions and target candi-
dates. For instance, in order to correctly resolve
“平西王 (Conquer West King)” from d1 and d3

in Figure 1 to the modern politician “薄熙来(Bo
Xilai)” instead of the ancient king “吴三桂 (Wu
Sangui)”, it is important to model the surround-
ing contextual information effectively to capture
important information (e.g., “重庆 (Chongqing)”,
“倒台 (fall from power)”, and “唱红歌 (sing red
songs)”) to represent the mentions and target en-
tity candidates. Inspired by the recent success
achieved by deep learning based techniques on
learning semantic representations for various NLP
tasks (e.g., (Bengio et al., 2003; Collobert et al.,
2011; Mikolov et al., 2013b; He et al., 2013)), we

design and compare the following two approaches
to employ hierarchical architectures with multiple
hidden layers to extract useful features and map
morphs and target entities into a latent semantic
space.

Pairwise Cross-genre Supervised Learning
Ideally, we hope to obtain a large amount of coref-
erential entity mention pairs for training. A nat-
ural knowledge resource is Wikipedia which in-
cludes anchor links. We compose an anchor’s sur-
face string and the title of the entity it’s linked to as
a positive training pair. Then we randomly sample
negative training instances from those pairs that
don’t share any links.

Our approach consists of the following steps:
(1) generating high quality embedding for each
training instance; (2) pre-training with the stacked
denoising auto-encoder (Bengio et al., 2003) for
feature dimension reduction; and (3) supervised
fine-tuning to optimize the neural networks to-
wards a similarity measure (e.g., dot product).
Figure 2 depicts the overall architecture of this ap-
proach.

n layers stacked 
auto-encoders

pair-wise supervised 
fine-tuning layer

…. ….

sim(m,c) = Dot( f (m), f (c))

f f

mention candidate target

Figure 2: Overall Architecture of Pairwise Cross-
genre Supervised Learning

However, morph resolution is significantly dif-
ferent from the traditional entity linking task since
the latter mainly focuses on formal and explicit
entities (e.g., “薄熙来 (Bo Xilai)”) which tend
to have stable referents in Wikipedia. In con-
trast, morphs tend to be informal, implicit and
have newly emergent meanings which evolve over
time. In fact, these morph mentions rarely appear
in Wikipedia. For example, almost all “平西王
(Conquer West King)” mentions in Wikipedia re-
fer to the ancient king instead of the modern politi-
cian “薄熙来 (Bo Xilai)”. In addition, the contex-
tual words in Wikipedia used to describe entities
are quite different from those in social media. For
example, to describe a death event, Wikipedia usu-
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ally uses a formal expression “去世 (pass away)”
while an informal expression “挂了 (hang up)” is
used more often in tweets. Therefore this approach
suffers from the knowledge discrepancy between
these two genres.

Within-genre Unsupervised Learning

context(��[already])

Input Layer

context(��[fell from power])

context(�[sing])

context(��[red song])

Projection Layer

Xw

summation

Output Layer

σ (Xw
Tθ )

Figure 3: Continuous Bag-of-Words Architecture

To address the above challenge, we propose
the second approach to learn semantic embed-
dings of both morph mentions and entities di-
rectly from tweets. Also we prefer unsuper-
vised learning methods due to the lack of train-
ing data. Following (Mikolov et al., 2013a),
we develop a continuous bag-of-words (CBOW)
model that can effectively model the surround-
ing contextual information. CBOW is discrimina-
tively trained by maximizing the conditional prob-
ability of a term wi given its contexts c(wi) =
{wi−n, ..., wi−1, wi+1, ..., wi+n}, where n is the
contextual window size, and wi is a term obtained
using the preprocessing step introduced in Sec-
tion 2 4. The architecture of CBOW is depicted in
Figure 3. We obtain a vector Xwi through the pro-
jection layer by summing up the embedding vec-
tors of all terms in c(wi), and then use the sigmoid
activation function to obtain the final embedding
of wi in c(wi) in the output layer.

Formally, the objective function of
CBOW can be formulated as L(θ) =∑

wi∈W
∑

wj∈W log p(wj |c(wi)), where W
is the set of unique terms obtained from the whole
training corpus. p(wj |c(wi)) is the conditional
likelihood of wj given the context c(wi) and it is
formulated as follows:

p(wj |c(wi)) = [σ(XT
wi
θwj )]L

wi (wj) ×
[1− σ(XT

wi
θwj )]1−L

wi (wj),

4Each wi is not limited to noun phrases we consider as
candidate morphs.

Data Training Development Testing
# Tweets 1,500 500 2,688
# Unique Terms 10,098 4, 848 15,108
# Morphs 250 110 341
# Morph Mentions 1,342 487 2,469

Table 1: Data Statistics

where Lwi(wj) =
{

1, wi = wj
0, Otherwise

, σ is the

sigmoid activation function, and θwi is the embed-
dings of wi to be learned with back-propagation
during training.

5 Experiments
5.1 Data
We retrieved 1,553,347 tweets from Chinese Sina
Weibo from May 1 to June 30, 2013 and 66,
559 web documents from the embedded URLs
in tweets for experiments. We then randomly
sampled 4, 688 non-redundant tweets and asked
two Chinese native speakers to manually anno-
tate morph mentions in these tweets. The anno-
tated dataset is randomly split into training, de-
velopment, and testing sets, with detailed statistics
shown in Table 1 5. We used 225 positive instances
and 225 negative instances to train the model in the
first step of potential morph discovery.

We collected a Chinese Wikipedia dump of Oc-
tober 9th, 2014, which contains 2,539,355 pages.
We pulled out person, organization and geo-
political pages based on entity type matching with
DBpedia 6. We also filter out the pages with fewer
than 300 words. For training the model, we use
60,000 mention-target pairs along with one neg-
ative sample randomly generated for each pair,
among which, 20% pairs are reserved for parame-
ter tuning.

5.2 Overall: End-to-End Decoding
In this subsection, we first study the end-to-end
decoding performance of our best system, and
compare it with the state-of-the-art supervised
learning-to-rank approach proposed by (Huang et
al., 2013) based on information networks con-
struction and traverse with meta-paths. We use
the 225 extracted morphs as input to feed (Huang
et al., 2013) system. The experiment setting, im-
plementation and evaluation process are similar
to (Huang et al., 2013).

5We will make all of these annotations and other resources
available for research purposes if this paper gets accepted.

6http://dbpedia.org
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The overall performance of our approach us-
ing within-genre learning for resolution is shown
in Table 2. We can see that our system
achieves significantly better performance (95.0%
confidence level by the Wilcoxon Matched-Pairs
Signed-Ranks Test) than the approach proposed
by (Huang et al., 2013). We found that (Huang
et al., 2013) failed to resolve many unpopular
morphs (e.g., “小马 (Little Ma)” is a morph re-
ferring to Ma Yingjiu, and it only appeared once
in the data), because it heavily relies on aggre-
gating contextual and temporal information from
multiple instances of each morph. In contrast, our
unsupervised resolution approach only leverages
the pre-trained word embeddings to capture the se-
mantics of morph mentions and entities.

Model Precision Recall F1

Huang et al., 2013 40.2 33.3 36.4
Our Approach 41.1 35.9 38.3

Table 2: End-to-End Morph Decoding (%)

5.3 Diagnosis: Morph Mention Extraction
The first step discovered 888 potential morphs
(80.1% of all morphs, 5.9% of all terms), which
indicates that this step successfully narrowed
down the scope of candidate morphs.

Method Precision Recall F1

Naive 58.0 83.1 68.3
SVMs 61.3 80.7 69.7
Our Approach 88.2 77.2 82.3

Table 3: Morph Mention Verification (%)

Now we evaluate the performance of morph
mention verification. We compare our approach
with two baseline methods: (i) Naive, which con-
siders all mentions as morph mentions; (ii) SVMs,
a fully supervised model using Support Vector
Machines (Cortes and Vapnik, 1995) based on un-
igrams and bigrams features. Table 3 shows the
results. We can see that our approach achieves sig-
nificantly better performance than the baseline ap-
proaches. In particular it can verify the mentions
of newly emergent morphs. For instance, “棒棒
棒 (Good Good Good)” is mistakenly identified by
the first step as a potential morph, but the second
step correctly filters it out.

5.4 Diagnosis: Morph Mention Resolution
The target candidate identification step success-
fully filters 86% irrelevant entities with high preci-

sion (98.5% of morphs retain their target entitis).
For candidate ranking, we compare with several
baseline approaches as follows:

• BOW: We compute cosine similarity over bag-
of-words vectors with tf-idf values to measure
the context similarity between a mention and its
candidates.
• Pair-wise Cross-genre Supervised Learning:

We first construct a vocabulary by choosing the
top 100,000 frequent terms. Then we randomly
sample 48,000 instances for training and 12,000
instances for development. At the pre-training
step, we set the number of hidden layers as 3,
the size of each hidden layer as 1000, the mask-
ing noise probability for the first layer as 0.7,
and a Gaussian noise with standard deviation of
0.1 for higher layers. The learning rate is set to
be 0.01. At the fine-tuning stage, we add a 200
units layer on top of auto-encoders and optimize
the neural network models based on the training
data.
• Within-genre Unsupervised Learning: We di-

rectly train morph mention and entity embed-
dings from the large-scale tweets and web doc-
uments that we collect. We set the window size
as 10 and the vector dimension as 800 based on
the development set.

The overall performance of various resolu-
tion approaches using perfect morph mentions is
shown in Figure 4. We can clearly see that our
second within-genre learning approach achieves
the best performance. Figure 5 demonstrates the
differences between our two deep learning based
methods. When learning semantic embeddings di-
rectly from Wikipedia, we can see that the top 10
closest entities of the mention “平西王(Conquer
West King)” are all related to the ancient king “吴
三桂(Wu Sangui)”. Therefore this method is only
able to capture the original meanings of morphs.
In contrast, when we learn embeddings directly
from tweets, most of the closest entities are rel-
evant to its target entity “薄熙来 (Bo Xilai)”.

6 Related Work

The first morph decoding work (Huang et al.,
2013) assumed morph mentions are already dis-
covered and didn’t take contexts into account. To
the best of our knowledge, this is the first work on
context-aware end-to-end morph decoding.

Morph decoding is related to several traditional
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Figure 4: Resolution Acc@K for Perfect Morph
Mentions

NLP tasks: entity mention extraction (e.g., (Zi-
touni and Florian, 2008; Ohta et al., 2012; Li and
Ji, 2014)), metaphor detection (e.g., (Wang et al.,
2006; Tsvetkov, 2013; Heintz et al., 2013)), word
sense disambiguation (WSD) (e.g., (Yarowsky,
1995; Mihalcea, 2007; Navigli, 2009)), and entity
linking (EL) (e.g., (Mihalcea and Csomai, 2007;
Ji et al., 2010; Ji et al., 2011; Ji et al., 2014).
However, none of these previous techniques can
be applied directly to tackle this problem. As
mentioned in section 3.1, entity morphs are fun-
damentally different from regular entity mentions.
Our task is also different from metaphor detec-
tion because morphs cover a much wider range
of semantic categories and can include either ab-
stractive or concrete information. Some common
features for detecting metaphors (e.g. (Tsvetkov,

2013)) are not effective for morph extraction: (1).
Semantic categories. Metaphors usually fall into
certain semantic categories such as noun.animal
and noun.cognition. (2). Degree of abstractness.
If the subject or an object of a concrete verb is
abstract then the verb is likely to be a metaphor.
In contrast, morphs can be very abstract (e.g., “函
数 (Function)” refers to “杨幂 (Yang Mi)” be-
cause her first name “幂 (Mi)” means the Power
Function) or very concrete (e.g., “薄督 (Governor
Bo)” refers to “薄熙来 (Bo Xilai)”). In contrast
to traditional WSD where the senses of a word are
usually quite stable, the “sense” (target entity) of
a morph may be newly emergent or evolve over
time rapidly. The same morph can also have mul-
tiple senses. The EL task focuses more on explicit
and formal entities (e.g., named entities), while
morphs tend to be informal and convey implicit
information.

Morph mention detection is also related to mal-
ware detection (e.g., (Firdausi et al., 2010; Chan-
dola et al., 2009; Firdausi et al., 2010; Christodor-
escu and Jha, 2003)) which discovers abnormal
behavior in code and malicious software. In con-
trast our task tackles anomaly texts in semantic
context.

Deep learning-based approaches have been
demonstrated to be effective in disambiguation re-
lated tasks such as WSD (Bordes et al., 2012), en-
tity linking (He et al., 2013) and question link-
ing (Yih et al., 2014; Bordes et al., 2014; Yang
et al., 2014). In this paper we proved that it’s cru-
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cial to keep the genres consistent between learning
embeddings and applying embeddings.

7 Conclusions and Future Work

This paper describes the first work of context-
aware end-to-end morph decoding. By conduct-
ing deep analysis to identity the common charac-
teristics of morphs and the unique challenges of
this task, we leverage a large amount of unlabeled
data and the coreferential and correlation relations
to perform collective inference to extract morph
mentions. Then we explore deep learning-based
techniques to capture the semantics of morph men-
tions and entities and resolve morph mentions on
the fly. Our future work includes exploiting the
profiles of target entities as feedback to refine the
results of morph mention extraction. We will also
extend the framework for event morph decoding.
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Abstract

In this paper, we present a novel approach
to joint word sense disambiguation (WSD)
and entity linking (EL) that combines a set
of complementary objectives in an exten-
sible multi-objective formalism. During
disambiguation the system performs con-
tinuous optimization to find optimal prob-
ability distributions over candidate senses.
The performance of our system on nomi-
nal WSD as well as EL improves state-of-
the-art results on several corpora. These
improvements demonstrate the importance
of combining complementary objectives in
a joint model for robust disambiguation.

1 Introduction

The task of automatically assigning the correct
meaning to a given word or entity mention in
a document is called word sense disambiguation
(WSD) (Navigli, 2009) or entity linking (EL)
(Bunescu and Pasca, 2006), respectively. Suc-
cessful disambiguation requires not only an un-
derstanding of the topic or domain a document is
dealing with, but also a deep analysis of how an in-
dividual word is used within its local context. For
example, the meanings of the word “newspaper”,
as in the company or the physical product, often
cannot be distinguished by the global topic of the
document it was mentioned in, but by recogniz-
ing which type of meaning fits best into the local
context of its mention. On the other hand, for an
ambiguous entity mention such as a person name,
e.g., “Michael Jordan”, it is important to recognize
the domain or topic of the wider context to distin-
guish, e.g., between the basketball player and the
machine learning expert.

The combination of the two most com-
monly employed reference knowledge bases for
WSD and EL, WordNet (Fellbaum, 1998) and

Wikipedia, in BabelNet (Navigli and Ponzetto,
2012), has enabled a new line of research towards
the joint disambiguation of words and named en-
tities. Babelfy (Moro et al., 2014) has shown
the potential of combining these two tasks in
a purely knowledge-driven approach that jointly
finds connections between potential word senses
on a global, document level. On the other hand,
typical supervised methods (Zhong and Ng, 2010)
trained on sense-annotated datasets are usually
quite successful in dealing with individual words
in their local context on a sentence level. Hoffart
et al. (2011) recognize the importance of combin-
ing both local and global context for robust dis-
ambiguation. However, their approach is limited
to EL and optimization is performed in a discrete
setting.

We present a system that combines disambigua-
tion objectives for both global and local contexts
into a single multi-objective function. The result-
ing system is flexible and easily extensible with
complementary objectives. In contrast to prior
work (Hoffart et al., 2011; Moro et al., 2014) we
model the problem in a continuous setting based
on probability distributions over candidate mean-
ings instead of a binary treatment of candidate
meanings during disambiguation. Our approach
combines knowledge from various sources in one
robust model. The system uses lexical and ency-
clopedic knowledge for the joint disambiguation
of words and named entities, and exploits local
context information of a mention to infer the type
of its meaning. We integrate prior statistics from
surface strings to candidate meanings in a “nat-
ural” way as starting probability distributions for
each mention.

The contributions of our work are the following:

• a model for joint nominal WSD and EL that
outperforms previous state-of-the-art systems
on both tasks
• an extensible framework for multi-objective
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disambiguation
• an extensive evaluation of the approach on

multiple standard WSD and EL datasets
• the first work that employs continuous op-

timization techniques for disambiguation (to
our knowledge)
• publicly available code, resources and

models at https://bitbucket.org/
dfki-lt-re-group/mood

2 Approach

Our system detects mentions in texts and disam-
biguates their meaning to one of the candidate
senses extracted from a reference knowledge base.
The integral parts of the system, namely mention
detection, candidate search and disambiguation
are described in detail in this section. The model
requires a tokenized, lemmatized and POS-tagged
document as input; the output are sense-annotated
mentions.

2.1 Knowledge Source

We employ BabelNet 2.5.1 as our reference
knowledge base (KB). BabelNet is a multilingual
semantic graph of concepts and named entities
that are represented by synonym sets, called Ba-
bel synsets. It is composed of lexical and encyclo-
pedic resources, such as WordNet and Wikipedia.
Babel synsets comprise several Babel senses, each
of which corresponds to a sense in another knowl-
edge base. For example the Babel synset of
“Neil Armstrong” contains multiple senses in-
cluding for example “armstrong#n#1” (WordNet),
“Neil Armstrong” (Wikipedia). All synsets are in-
terlinked by conceptual-semantic and lexical re-
lations from WordNet and semantic relations ex-
tracted from links between Wikipedia pages.

2.2 Mention Extraction & Entity Detection

We define a mention to be a sequence of tokens in
a given document. The system extracts mentions
for all content words (nouns, verbs, adjectives, ad-
verbs) and multi-token units of up to 7 tokens that
contain at least one noun. In addition, we apply
a NER-tagger to identify named entity (NE) men-
tions. Our approach distinguishes NEs from com-
mon nouns because there are many common nouns
also referring to NEs, making disambiguation un-
necessarily complicated. For example, the word
“moon” might refer to songs, films, video games,
etc., but we should only consider these meanings

if the occurrence suggests that it is used as a NE.

2.3 Candidate Search
After potential mentions are extracted, the sys-
tem tries to identify their candidate meanings, i.e.,
the appropriate synsets. Mentions without any
candidates are discarded. There are various re-
sources one can exploit to map surface strings to
candidate meanings. However, existing methods
or resources especially for NEs are either miss-
ing many important mappings1 or contain many
noisy mappings2. Therefore, we created a can-
didate mapping strategy that tries to avoid noisy
mappings while including all potentially correct
candidates. Our approach employs several heuris-
tics that aim to avoid noise. Their union yields
an almost complete mapping that includes the cor-
rect candidate meaning for 97-100% of the exam-
ples in the test datasets. Candidate mentions are
mapped to synsets based on similarity of their sur-
face strings or lemmas. If the surface string or
lemma of a mention matches the lemma of a syn-
onym in a synset that has the same part of speech,
the synset will be considered as a candidate mean-
ing. We allow partial matches for BabelNet syn-
onyms derived from Wikipedia titles or redirec-
tions. However, partial matching is restricted to
synsets that belong either to the semantic category
“Place” or “Agent”. We make use of the seman-
tic category information provided by the DBpe-
dia ontology3. A partial match allows the sur-
face string of a mention to differ by up to 3 to-
kens from the Wikipedia title (excluding every-
thing in parentheses) if the partial string occurred
at least once as an anchor for the corresponding
Wikipedia page. E.g., for the Wikipedia title Arm-
strong School District (Pennsylvania), the fol-
lowing surface strings would be considered
matches: “Armstrong School District (Pennsylva-
nia)”, “Armstrong School District”, “Armstrong”,
but not “School” or “District”, since they were
never used as an anchor. If there is no match we try
the same procedure applied to the lowercase forms
of the surface string or the lemma. For persons we
allow matches to all partial names, e.g., only first
name, first and middle name, last name, etc.

In addition to the aforementioned candidate ex-
traction we also match surface strings to candidate
entities mentioned on their respective disambigua-

1e.g., using only the synonyms of a synset
2e.g., partial matches for all synonyms of a synset
3http://wiki.dbpedia.org/Ontology
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tion pages in Wikipedia4. For cases where ad-
jectives should be disambiguated as nouns, e.g.,
“English” as a country to “England”, we allow
candidate mappings through the pertainment rela-
tion from WordNet. Finally, frequently annotated
surface strings in Wikipedia are matched to their
corresponding entities, where we stipulate “fre-
quently” to mean that the surface string occurs at
least 100 times as anchor in Wikipedia and the en-
tity was either at least 100 times annotated by this
surface string or it was annotated above average.

The distinction between nouns and NEs im-
poses certain restrictions on the set of potential
candidates. Candidate synsets for nouns are noun
synsets considered as “Concepts” in BabelNet (as
opposed to “Named Entities”) in addition to all
synsets of WordNet senses. On the other hand,
candidate synsets for NEs comprise all nominal
Babel synsets. Thus, the range of candidate sets
for NEs properly contains the one for nouns. We
include all nominal synsets as potential candidates
for NEs because the distinction of NEs and sim-
ple concepts is not always clear in BabelNet. For
example the synset for “UN” (United Nations) is
considered a concept whereas it could also be con-
sidered a NE. Finally, if there is no candidate for a
potential nominal mention, we try to find NE can-
didates for it before discarding it.

2.4 Multi-Objective Disambiguation

We formulate the disambiguation as a continuous,
multi-objective optimization problem. Individual
objectives model different aspects of the disam-
biguation problem. Maximizing these objectives
means assigning high probabilities to candidate
senses that contribute most to the combined ob-
jective. After maximization, we select the candi-
date meaning with the highest probability as the
disambiguated sense. Our model is illustrated in
Figure 1.

Given a set of objectives O the overall objective
function O is defined as the sum of all normalized
objectives O ∈ O given a set of mentions M :

O(M) =
∑
O∈O

|MO|
|M | ·

O(M)
Omax(M)−Omin(M)

.

(1)
The continuous approach has several advan-

tages over a discrete setting. First, we can ex-

4provided by DBpedia at http://wiki.dbpedia.
org/Downloads2014

Armstrong
- Armstrong_(crater) 0.6
- Neil_Armstrong 0.2
- Louis_Armstrong 0.1
...

jazz
- jazz_(music) 0.3
- jazz_(rhetoric) 0.3
- ...

Mentions M

play
- play_(game) 0.4
- play_(instrument) 0.2
- ...

Armstrong
- Armstrong_(crater) 0.3
- Neil_Armstrong 0.1
- Louis_Armstrong 0.5
- ...

Mentions MObjectives   

.

.

.

While not_converged or i < max_iterations

play
- play_(game) 0.1
- play_(instrument) 0.6
- ...

jazz
- jazz_(music) 0.8
- jazz_(rhetoric) 0.1
- ...

Figure 1: Illustration of our multi-objective ap-
proach to WSD & EL for the example sen-
tence: Armstrong plays jazz. Mentions are disam-
biguated by iteratively updating probability distri-
butions over their candidate senses with respect to
the given objective gradients∇Oi.

ploit well established continuous optimization al-
gorithms, such as conjugate gradient or LBFGS.
Second, by optimizing upon probability distribu-
tions we are optimizing the actually desired result,
in contrast to densest sub-graph algorithms where
normalized confidence scores are calculated after-
wards, e.g., Moro et al. (2014). Third, discrete
optimization usually works on a single candidate
per iteration whereas in a continuous setting, prob-
abilities are adjusted for each candidate, which is
computationally advantageous for highly ambigu-
ous documents.

We normalize each objective using the differ-
ence of its maximum and minimum value for a
given document, which makes the weighting of
the objectives different for each document. The
maximum/minimum values can be calculated ana-
lytically or, if this is not possible, by running the
optimization algorithm with only the given objec-
tive for an approximate estimate for the maximum
and with its negated form for an approximate min-
imum. Normalization is important for optimiza-
tion because it ensures that the individual gradi-
ents have similar norms on average for each ob-
jective. Without normalization, optimization is bi-
ased towards objectives with large gradients.

Given that one of the objectives can be applied
to only a fraction of all mentions (e.g., only nomi-
nal mentions), we scale each objective by the frac-
tion of mentions it is applied to.

Note that our formulation could easily be ex-
tended to using additional coefficients for each ob-
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jective. However, these hyper-parameters would
have to be estimated on development data and
therefore, this method could hurt generalization.

Prior Another advantage of working with prob-
ability distributions over candidates is the easy in-
tegration of prior information. For example, the
word “Paris” without further context has a strong
prior on its meaning as a city instead of a per-
son. Our approach utilizes prior information in
form of frequency statistics over candidate synsets
for a mention’s surface string. These priors are
derived from annotation frequencies provided by
WordNet and Wikipedia. We make use of oc-
currence frequencies extracted by DBpedia Spot-
light (Daiber et al., 2013) for synsets containing
Wikipedia senses in case of NE disambiguation.
For nominal WSD, we employ frequency statis-
tics from WordNet for synsets containing Word-
Net senses. Laplace-smoothing is applied to all
prior frequencies. The priors serve as initializa-
tion for the probability distributions over candi-
date synsets. Note that we use priors “naturally”,
i.e., as actual priors for initialization only and not
during disambiguation itself. They should not be
applied during disambiguation because these pri-
ors can be very strong and are not domain inde-
pendent. However, they provide a good initializa-
tion which is important for successful continuous
optimization.

3 Disambiguation Objectives

3.1 Coherence Objective

Jointly disambiguating all mentions within a doc-
ument has been shown to have a large impact on
disambiguation quality, especially for named enti-
ties (Kulkarni et al., 2009). It requires a measure-
ment of semantic relatedness between concepts
that can for example be extracted from a semantic
network like BabelNet. However, semantic net-
works usually suffer from data sparsity where im-
portant links between concepts might be missing.
To deal with this issue, we adopt the idea of using
semantic signatures from Moro et al. (2014). Fol-
lowing their approach, we create semantic signa-
tures for concepts and named entities by running
a random walk with restart (RWR) in the seman-
tic network. We count the times a vertex is vis-
ited during RWR and define all frequently visited
vertices to be the semantic signature (i.e., a set of
highly related vertices) of the starting concept or

named entity vertex.
Our coherence objective aims at maximizing

the semantic relatedness among selected candidate
senses based on their semantic signatures Sc. We
define the continuous objective using probability
distributions pm(c) over the candidate set Cm of
each mention m ∈M in a document as follows:

Ocoh(M) =
∑
m∈M
c∈Cm

∑
m′∈M
m′ 6=m
c′∈Cm′

s(m, c,m′, c′)

s(m, c,m′, c′) = pm(c) · pm′(c′) · 1((c, c′) ∈ S)

pm(c) =
ewm,c∑

c′∈Cm
ewm,c′ , (2)

where 1 denotes the indicator function and pm(c)
is a softmax function. The only free, optimizable
parameters are the softmax weights wm. This ob-
jective includes all mentions, i.e., MOcoh = M . It
can be interpreted as finding the densest subgraph
where vertices correspond to mention-candidate
pairs and edges to semantic signatures between
candidate synsets. However, in contrast to a dis-
crete setup, each vertex is now weighted by its
probability and therefore each edge is weighted by
the product of its adjacent vertex probabilities.

3.2 Type Objective

One of the biggest problems for supervised ap-
proaches to WSD is the limited size and synset
coverage of available training datasets such as
SemCor (Miller et al., 1993). One way to cir-
cumvent this problem is to use a coarser set of se-
mantic classes that groups synsets together. Pre-
vious studies on using semantic classes for dis-
ambiguation showed promising results (Izquierdo-
Beviá et al., 2006). For example, WordNet pro-
vides a mapping, called lexnames, of synsets into
45 types, which is based on the syntactic cate-
gories of synsets and their logical groupings5. In
WordNet 13.5% of all nouns are ambiguous with
an average ambiguity of 2.79 synsets per lemma.
Given a noun and a type (lexname), the percentage
of ambiguous nouns drops to 7.1% for which the
average ambiguity drops to 2.33. This indicates
that exploiting type classification for disambigua-
tion can be very useful.

Similarly, for EL it is important to recognize
the type of an entity mention in a local context.

5http://wordnet.princeton.edu/man/
lexnames.5WN.html
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For example, in the phrase “London beats Manch-
ester” it is very likely that the two city names refer
to sports clubs and not to the cities. We utilize an
existing mapping from Wikipedia pages to types
from the DBpedia ontology, restricting the set of
target types to the following: “Activity”, “Organ-
isation”, “Person”, “Event”, “Place” and “Misc”
for the rest.

We train a multi-class logistic regression model
for each set of types that calculates probability
distributions qm(t) over WN- or DBpedia-types t
given a noun- or a NE-mention m, respectively.
The features used as input to the model are the fol-
lowing:

• word embedding of mention’s surface string
• sum of word embeddings of all sentence

words excluding stopwords
• word embedding of the dependency parse

parent
• collocations of surrounding words as in

Zhong et al. (2010)
• POS tags with up to 3 tokens distance to m
• possible types of candidate synsets

We employed pre-trained word embeddings from
Mikolov et al. (2013) instead of the words them-
selves to increase generalization.

Type classification is included as an objective
in the model as defined in equation 3. It puts type
specific weights derived from type classification
on candidate synsets, enforcing candidates of fit-
ting type to have higher probabilities. The objec-
tive is only applied to noun, NE and verb men-
tions, i.e., MOtyp = Mn ∪MNE ∪Mv.

Otyp(M) =
∑

m∈MOtyp

∑
c∈Cm

qm(tc) · pm(c) (3)

3.3 Regularization Objective

Because candidate priors for NE mentions can be
very high, we add an additional L2-regularization
objective for NE mentions:

OL2(M) = −λ
2

∑
m∈MNE

‖wm‖22 (4)

The regularization objective is integrated in the
overall objective function as it is, i.e., it is not nor-
malized.

Dataset |D| |M| KB
SemEval-2015-13 (Sem15) 4 757 BN
(to be published)
SemEval-2013-12 (Sem13) 13 1931 BN
SemEval-2013-12 (Sem13) 13 1644 WN
(Navigli et al., 2013)
SemEval-2007-17 (Sem07) 3 159 WN
(Pradhan et al., 2007)
Senseval 3 (Sen3) 4 886 WN
(Snyder and Palmer, 2004)
AIDA-CoNLL-testb (AIDA) 216 4530 Wiki
(Hoffart et al., 2011)
KORE50 (KORE) 50 144 Wiki
(Hoffart et al., 2012)

Table 1: List of datasets used in experiments with
information about their number of documents (D),
annotated noun and/or NE mentions (M ), and
their respective target knowledge base (KB): BN-
BabelNet, WN-WordNet, Wiki-Wikipedia.

4 Experiments

4.1 Datasets

We evaluated our approach on 7 different datasets,
comprising 3 WSD datasets annotated with Word-
Net senses, 2 datasets annotated with Wikipedia
articles for EL and 2 more recent datasets anno-
tated with Babel synsets. Table 1 contains a list of
all datasets.

Besides these test datasets we used SemCor
(Miller et al., 1993) as training data for WSD and
the training part of the AIDA CoNLL dataset for
EL.

4.2 Setup

For the creation of semantic signatures we choose
the same parameter set as defined by Moro et al.
(2014). We run the random walk with a restart
probability of 0.85 for a total of 1 million steps for
each vertex in the semantic graph and keep ver-
tices visited at least 100 times as semantic signa-
tures.

The L2-regularization objective for named enti-
ties is employed with λ = 0.001, which we found
to perform best on the training part of the AIDA-
CoNLL dataset.

We trained the multi-class logistic regression
model for WN-type classification on SemCor and
for DBpedia-type classification on the training
part of the AIDA-CoNLL dataset using LBFGS
and L2-Regularization with λ = 0.01 until con-
vergence.

Our system optimizes the combined multi-
objective function using Conjugate Gradient
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System KB Description
IMS (Zhong and
Ng, 2010)

WN supervised, SVM

KPCS (Hoffart
et al., 2011)

Wiki greedy densest-subgraph on
combined mention-entity,
entity-entity measures

KORE (Hoffart
et al., 2012)

Wiki extension of KPCS with
keyphrase relatedness mea-
sure between entities

MW (Milne and
Witten, 2008)

Wiki Normalized Google Dis-
tance

Babelfy (Moro
et al., 2014)

BN greedy densest-subgraph on
semantic signatures

Table 2: Systems used for comparison during eval-
uation.

(Hestenes and Stiefel, 1952) with up to a maxi-
mum of 1000 iterations per document.

We utilized existing implementations from
FACTORIE version 1.1 (McCallum et al., 2009)
for logistic regression, NER tagging and Conju-
gate Gradient optimization. For NER tagging we
used a pre-trained stacked linear-chain CRF (Laf-
ferty et al., 2001).

4.3 Systems

We compare our approach to state-of-the-art re-
sults on all datasets and a most frequent sense
(MFS) baseline. The MFS baseline selects the
candidate with the highest prior as described in
section 2.4. Table 2 contains a list of all sys-
tems we compared against. We use Babelfy as our
main baseline, because of its state-of-the-art per-
formance on all datasets and because it also em-
ployed BabelNet as its sense inventory. Note that
Babelfy achieved its results with different setups
for WSD and EL, in contrast to our model, which
uses the same setup for both tasks.

4.4 General Results

We report the performance of all systems in terms
of F1-score. To ensure fairness we restricted
the candidate sets of the target mentions in each
dataset to candidates of their respective reference
KB. Note that our candidate mapping strategy en-
sures for all datasets a 97%−100% chance that the
target synset is within a mention’s candidate set.

This section presents results on the evaluation
datasets divided by their respective target KBs:
WordNet, Wikipedia and BabelNet.

WordNet Table 3 shows the results on three
datasets for the disambiguation of nouns to Word-

System Sens3 Sem07 Sem13
MFS 72.6 65.4 62.8
IMS 71.2 63.3 65.7
Babelfy 68.3 62.7 65.9
Our 68.8 66.0 72.8

Table 3: Results for nouns on WordNet annotated
datasets.

System AIDA KORE
MFS 70.1 35.4
KPCS 82.2 55.6
KORE-LSH-G 81.8 64.6
MW 82.3 57.6
Babelfy 82.1 71.5
Our 85.1 67.4

Table 4: Results for NEs on Wikipedia annotated
datasets.

Net. Our approach exhibits state-of-the-art re-
sults outperforming all other systems on two of the
three datasets. The model performs slightly worse
on the Senseval 3 dataset because of one docu-
ment in particular where the F1 score is very low
compared to the MFS baseline. On the other three
documents, however, it performs as good or even
better. In general, results from the literature are al-
ways worse than the MFS baseline on this dataset.
A strong improvement can be seen on the SemEval
2013 Task 12 dataset (Sem13), which is also the
largest dataset. Our system achieves an improve-
ment of nearly 7% F1 over the best other system,
which translates to an error reduction of roughly
20% given that every word mention gets anno-
tated. Besides the results presented in Table 3, we
also evaluated the system on the SemEval 2007
Task 7 dataset for coarse grained WSD, where it
achieved 85.5% F1 compared to the best previ-
ously reported result of 85.5% F1 from Ponzetto
et al. (2010) and Babelfy with 84.6%.

Wikipedia The performance on entity linking
was evaluated against state-of-the-art systems on
two different datasets. The results in Table 4
demonstrate that our model can compete with the
best existing models, showing superior results es-
pecially on the large AIDA CoNLL6 test dataset
comprising 216 news texts, where we achieve
an error reduction of about 16%, resulting in a
new state-of-the-art of 85.1% F1. On the other
hand, our system is slightly worse on the KORE
dataset compared to Babelfy (6 errors more in to-
tal), which might be due to the strong priors and

6the largest, freely available dataset for EL.
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System Sem13 Sem15
MFS 66.7 71.1
Babelfy 69.2 –
Best other – 64.8
Our 71.5 75.4

Table 5: Results for nouns and NEs on BabelNet
annotated datasets.

System Sem13 Sem15 AIDA
MFS 66.7 71.1 70.1
Otyp 68.1 73.8 78.0
Ocoh +OL2 68.1 69.6 82.7
Ocoh +Otyp +OL2 71.5 75.4 85.1

Table 6: Detailed results for nouns and NEs on
BabelNet annotated datasets and AIDA CoNLL.

the small context. However, the dataset is rather
small, containing only 50 sentences, and has been
artificially tailored to the use of highly ambiguous
entity mentions. For example, persons are most
of the time only mentioned by their first names.
It is an interesting dataset because it requires the
system to employ a lot of background knowledge
about mentioned entities.

BabelNet Table 5 shows the results on the 2 ex-
isting BabelNet annotated datasets. To our knowl-
edge, our system shows the best performance on
both datasets in the literature. An interesting ob-
servation is that the F1 score on SemEval 2013
with BabelNet as target KB is lower compared to
WordNet as target KB. The reason is that ambigu-
ity rises for nominal mentions by including con-
cepts from Wikipedia that do not exist in WordNet.
For example, the Wikipedia concept “formal lan-
guage” becomes a candidate for the surface string
“language”.

4.5 Detailed Results
We also experimented with different objective
combinations, namely “type only” (Otyp), “coher-
ence only” (Ocoh+OL2) and “all” (Ocoh+Otyp+
OL2), to evaluate the impact of the different objec-
tives. Table 6 shows results of employing individ-
ual configurations compared to the MFS baseline.

Results for only using coherence or type exhibit
varying performance on the datasets, but still con-
sistently exceed the strong MFS baseline. Com-
bining both objectives always yields better results
compared to all other configurations. This find-
ing is important because it proves that the objec-
tives proposed in this work are indeed comple-
mentary, and thus demonstrates the significance of

combining complementary approaches in one ro-
bust framework such as ours.

An additional observation was that DBpedia-
type classification slightly overfitted on the AIDA
CoNLL training part. When removing DBpedia-
type classification from the type objective, results
increased marginally on some datasets except for
the AIDA CoNLL dataset, where results decreased
by roughly 3% F1. The improvements of using
DBpedia-type classification are mainly due to the
fact that the classifier is able to correctly clas-
sify names of places in tables consisting of sports
scores not to the “Place” type but to the “Organi-
zation” type. Note that the AIDA CoNLL dataset
(train and test) contains many of those tables. This
shows that including supervised objectives into the
system helps when data is available for the do-
main.

4.6 Generalization

We evaluated the ability of our system to gener-
alize to different domains based on the SemEval
2015 Task 13 dataset. It includes documents from
the bio-medical, the math&computer and general
domains. Our approach performs particularly well
on the bio-medical domain with 86.3% F1 (MFS:
77.3%). Results on the math&computer domain
(58.8% F1, MFS: 57.0%), however, reveal that
performance still strongly depends on the docu-
ment topic. This indicates that either the employed
resources do not cover this domain as well as oth-
ers, or that it is generally more difficult to dis-
ambiguate. Another potential explanation is that
enforcing only pairwise coherence does not take
the hidden concepts computer and maths into ac-
count, which connect all concepts, but are never
actually mentioned. An interesting point for future
research might be the introduction of an additional
objective or the extension of the coherence objec-
tive to allow indirect connections between candi-
date meanings through shared topics or categories.

Besides these very specific findings, the model’s
ability to generalize is strongly supported by its
good results across all datasets, covering a variety
of different topics.

5 Related Work

WSD Approaches to WSD can be distinguished
by the kind of resource exploited. The two main
resources for WSD are sense annotated datasets
and knowledge bases. Typical supervised ap-
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proaches like IMS (Zhong and Ng, 2010) train
classifiers that learn from existing, annotated ex-
amples. They suffer from the sparsity of sense
annotated datasets that is due to the data acqui-
sition bottleneck (Pilehvar and Navigli, 2014).
There have been approaches to overcome this
issue through the automatic generation of such
resources based on bootstrapping (Pham et al.,
2005), sentences containing unambiguous rela-
tives of senses (Martinez et al., 2008) or exploit-
ing Wikipedia (Shen et al., 2013). On the other
hand, knowledge-based approaches achieve good
performances rivaling state-of-the-art supervised
systems (Ponzetto and Navigli, 2010) by using ex-
isting structured knowledge (Lesk, 1986; Agirre
et al., 2014), or take advantage of the structure of
a given semantic network through connectivity or
centrality measures (Tsatsaronis et al., 2007; Nav-
igli and Lapata, 2010). Such systems benefit from
the availability of numerous KBs for a variety of
domains. We believe that both knowledge-based
approaches and supervised methods have unique,
complementary abilities that need to be combined
for sophisticated disambiguation.

EL Typical EL systems employ supervised ma-
chine learning algorithms to classify or rank can-
didate entities (Bunescu and Pasca, 2006; Milne
and Witten, 2008; Zhang et al., 2010). Com-
mon features include popularity metrics based on
Wikipedia’s graph structure or on name mention
frequency (Dredze et al., 2010; Han and Zhao,
2009), similarity metrics exploring Wikipedia’s
concept relations (Han and Zhao, 2009), and
string similarity features. Mihalcea and Csomai
(2007) disambiguate each mention independently
given its sentence level context only. In contrast,
Cucerzan (2007) and Kulkarni et al. (Kulkarni
et al., 2009) recognize the interdependence be-
tween entities in a wider context. The most sim-
ilar work to ours is that of Hoffart et al. (2011)
which was the first that combined local and global
context measures in one robust model. However,
objectives and the disambiguation algorithm differ
from our work. They represent the disambigua-
tion task as a densest subgraph problem where the
least connected entity is eliminated in each itera-
tion. The discrete treatment of candidate entities
can be problematic especially at the beginning of
disambiguation where it is biased towards men-
tions with many candidates.

Babelfy (Moro et al., 2014) is a knowledge-
based approach for joint WSD and EL that also
uses a greedy densest subgraph algorithm for dis-
ambiguation. It employs a single coherence model
based on semantic signatures similar to our coher-
ence objective. The system’s very good perfor-
mance indicates that the semantic signatures pro-
vide a powerful resource for joint disambiguation.
However, because we believe it is not sufficient
to only enforce semantic agreement among nouns
and entities, our approach includes an objective
that also focuses on the local context of mentions,
making it more robust.

6 Conclusions & Future Work

We have presented a novel approach for the
joint disambiguation of nouns and named enti-
ties based on an extensible framework. Our sys-
tem employs continuous optimization on a multi-
objective function during disambiguation. The
integration of complementary objectives into our
formalism demonstrates that robust disambigua-
tion can be achieved by considering both the local
and the global context of a mention. Our model
outperforms previous state-of-the-art systems for
nominal WSD and for EL. It is the first system
that achieves such results on various WSD and EL
datasets using a single setup.

In future work, new objectives should be inte-
grated into the framework and existing objectives
could be enhanced. For example, it would be in-
teresting to express semantic relatedness contin-
uously rather than in a binary setting for the co-
herence objective. Additionally, using the entire
model during training could ensure better com-
patibility between the different objectives. At the
moment, the model itself is composed of different
pre-trained models that are only combined during
disambiguation.
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Abstract

Extracted keyphrases can enhance numer-
ous applications ranging from search to
tracking the evolution of scientific dis-
course. We present SCHBASE, a hier-
archical database of keyphrases extracted
from large collections of scientific liter-
ature. SCHBASE relies on a tendency
of scientists to generate new abbrevia-
tions that “extend” existing forms as a
form of signaling novelty. We demon-
strate how these keyphrases/concepts can
be extracted, and their viability as a
database in relation to existing collections.
We further show how keyphrases can
be placed into a semantically-meaningful
“phylogenetic” structure and describe key
features of this structure. The com-
plete SCHBASE dataset is available at:
http://cond.org/schbase.html.

1 Introduction

Due to the immense practical value to Informa-
tion Retrieval and other text mining applications,
keyphrase extraction has become an extremely
popular topic of research. Extracted keyphrases,
specifically those derived from scientific literature,
support search tasks (Anick, 2003), classification
and tagging (Medelyan et al., 2009), informa-
tion extraction (Wu and Weld, 2008), and higher-
level analysis such as the tracking of influence and
dynamics of information propagation (Shi et al.,
2010; Ohniwa et al., 2010). In our own work
we use the extracted hierarchies to predict scien-
tific emergence based on how rapidly new vari-
ants emerge. Keyphrases themselves capture a
diverse set of scientific language (e.g., methods,

techniques, materials, phenomena, processes, dis-
eases, devices).

Keyphrases, and their uses, have been stud-
ied extensively (Gil-Leiva and Alonso-Arroyo,
2007). However, automated keyphrase extrac-
tion work has often focused on large-scale statis-
tical techniques and ignored the scientific com-
munication literature. This literature points to
the complex ways in which keyphrases are cre-
ated in light of competing demands: expressive-
ness, findability, succinct writing, signaling nov-
elty, signaling community membership, and so
on (Hartley and Kostoff, 2003; Ibrahim, 1989;
Grange and Bloom, 2000; Gil-Leiva and Alonso-
Arroyo, 2007). Furthermore, the tendency to ex-
tract keyphrases through statistical mechanisms
often leads to flat keyphrase spaces that make anal-
ysis of evolution and emergence difficult.

Our contention, and the main motivation be-
hind our work, is that we can do better by lever-
aging explicit mechanisms adopted by authors
in keyphrase generation. Specifically, we focus
on a tendency to expand keyphrases by adding
terms, coupled with a pressure to abbreviate to
retain succinctness. As we argue below, scien-
tific communication has evolved the use of ab-
breviations to deal with various constraints. Ab-
breviations, and acronyms specifically, are rela-
tively new in many scientific domains (Grange and
Bloom, 2000; Fandrych, 2008) but are now ubiq-
uitous (Ibrahim, 1989; Cheng, 2010).

Keyphrase selection is often motivated by
increasing article findability within a domain
(thereby increasing citation). This strategy leads
to keyphrase reuse. A competing pressure, how-
ever, is to signal novelty in an author’s work which
is often done by creating new terminology (e.g.,
creating a “brand” around a system or idea). For
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example, a machine learning expert working on
a new type of Support Vector Machine will want
their article found when someone searches for
“Support Vector Machine,” but will also want to
add their own unique brand. In response, they will
often augment the original keyphrase (e.g., “Least-
Squares Support Vector Machine”) rather than in-
venting a completely new one. Unfortunately,
continuous expansion will soon render a paper un-
readable (e.g., one of many extensions to Poly-
merase Chain Reaction is Standard Curve Quan-
titative Competitive Reverse Transcription Poly-
merase Chain Reaction). Thus emerges a second
strategy: abbreviation.

Our assertion is that abbreviations are a key
mechanism for resolving competing demands.
Authors can simultaneously expand keyphrases,
thus maintaining both findability and novelty,
while at the same time addressing the need to be
succinct and non-repetitive. Of interest to us is
the phenomena that if a new keyphrase expands
an existing keyphrase that has an established ab-
breviation, the new keyphrase will also be ab-
breviated (e.g., LS-SVM and SVM). This ten-
dency allows us to construct hierarchies of evolved
keyphrases (rather than assuming a flat keyphrase
space) which can be leveraged to identify emer-
gence, keyphrase “mash-ups,” and perform other
high level analysis. As we demonstrate below,
edges represent the rough semantic of EXTENDS

or ISSUBTYPEOF. So if keyphrase A is connected
to B, we can say A is a subtype of B (e.g., A is
“Least-Squares Support Vector Machine” and B is
“Support Vector Machine”).

In this paper we introduce SCHBASE, a hi-
erarchical database of keyphrases. We demon-
strate how we can simply, but effectively, extract
keyphrases by mining abbreviations from scien-
tific literature and composing those keyphrases
into semantically-meaningful hierarchies. We fur-
ther show that abbreviations are a viable mech-
anism for building a domain-specific keyphrase
database by comparing our extracted keyphrases
to a number of author-defined and automatically-
created keyphrase corpora. Finally, we illustrate
how authors build upon each others’ terminology
over time to create new keyphrases.1

1Full database available at: http://cond.org/schbase.html

2 Related Work

Initial work in keyphrase extraction utilized
heuristics that were based on the understood struc-
ture of scientific documents (Edmundson, 1969).
As more data became available, it was possible
to move away from heuristic cues and to lever-
age statistical techniques (Paice and Jones, 1993;
Turney, 2000; Frank et al., 1999) that could iden-
tify keyphrases within, and between, documents.
The guiding model in this approach is that phrases
that appear as statistical “anomalies” (by some
measure) are effective for summarizing a docu-
ment or corpus. This style of keyphrase extrac-
tion represents much of the current state-of-the-
art (Kim et al., 2010). Specific extensions in this
space involve the use of network structures (Mi-
halcea and Tarau, 2004; Litvak and Last, 2008;
Das Gollapalli and Caragea, 2014), part-of-speech
features (Barker and Cornacchia, 2000; Hulth,
2003), or more sophisticated metrics (Tomokiyo
and Hurst, 2003).

However, as we note above, these statistical ap-
proaches largely ignore the underlying tensions in
scientific communication that lead to the creation
of new keyphrases and how they are signaled to
others. The result is that these techniques often
find statistically “anomalous” phrases which often
are not valid scientific concepts (but are simply un-
common phrasing), are unstructured and discon-
nected, and inflexible to size variance (as in the
case of fixed length n-grams), and fail to capture
extremely rare terminology.

The idea that abbreviations may be useful for
keyphrase extraction has been partially realized.
Nguyen et al., (2007) found that they could pro-
duce better keyphrases by extending existing mod-
els (Frank et al., 1999) to include an acronym in-
dicator as a feature. That is, if a candidate phrase
had an associated parenthetical acronym associ-
ated with it in the text a binary feature would be
set. This approach has been implemented by oth-
ers (Bordea and Buitelaar, 2010). We propose to
expand on this idea by implementing a simple, but
effective, solution by performing abbreviation ex-
traction to build a hierarchical keyphrase database
– a form of open-information extraction (Etzioni
et al., 2008) on large scientific corpora.

3 Keyphrases and Hierarchies

Our high level strategy for finding an initial set
of keyphrases is to mine a corpus for abbrevia-
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tion expansions. This is a simple strategy, but
as we show below, highly effective. Though the
idea that abbreviations and keyphrases are linked
fits within our understanding of scientific writing,
we confirmed our intuition through a small exper-
iment. Specifically, we looked at the 85 unique
keyphrases (in this case, article titles) listed in
the Wikipedia entry for List of Machine Learning
Concepts (Wikipedia, 2014). These ranged from
well known terms (e.g., Support Vector Machines
and Autoencoders) to less known (e.g., Informa-
tion fuzzy networks). In all 85 cases we were able
to find an abbreviation on the Web (using Google)
alongside the expansion (e.g., searching for the
phrases “Support Vector Machines (SVMs)” or
“Information Fuzzy Networks (IFN)”). Though
there may be bias in the use of abbreviations in
the Machine Learning literature, our experience
has been that this holds in other domains as well.
When a scientific keyphrase is used often enough,
someone, somewhere, will have abbreviated it.

3.1 Abbreviation Extraction

To find all abbreviation expansions we use the un-
supervised SaRAD algorithm (Adar, 2004). This
algorithm is simple to implement, does not re-
quire extremely large amounts of data, works for
both acronyms and more general abbreviations,
and has been demonstrated as effective in various
contexts (Adar, 2004; Schwartz and Hearst, 2003).
However, our solution does not depend on a spe-
cific implementation, only that we are able to ac-
curately identify abbreviation expansions.

Adar (2004) presents the full details for the al-
gorithm, but for completeness we present the high
level details. The algorithm progresses by identi-
fying abbreviations inside of parentheses (defined
as single words with at least one capital letter).
The algorithm then extracts a “window” of text
preceding the parenthesis, up to n words long
(where n is the character length of the abbrevia-
tion plus padding). This window does not cross
sentence boundaries. Within the window all possi-
ble “explanations” of the abbreviation are derived.

An explanation consists of a continuous sub-
sequence of words that contain all the characters
of the original abbreviation in order. For example,
the window “determine the geographical distribu-
tion of ribonucleic acid” preceding the abbrevia-
tion “RNA” includes the explanations: “determine
the geographical,” “graphical distribution of ri-

bonucleic acid” and “ribonucleic acid” (matching
characters in italics). In the example above there
are ten explanations (five unique). Each explana-
tion is scored heuristically: 1 point for each ab-
breviation character at the start of a word; 1 point
subtracted for every word between the explanation
and the parenthesis; 1 point bonus if the explana-
tion is adjacent to the parenthesis; 1 point sub-
tracted for each extra word beyond the abbrevia-
tion length. For the explanations above, the scores
are −4, 0, and 3 respectively. The highest scor-
ing match (we require a minimum of 1 point) is
returned as the mostly likely expansion.

In practice, pairs of extracted abbrevia-
tions/expansions are pulled from a large textual
corpus. This both allows us to identify vari-
ants of expansions (e.g., different pluralization,
spelling, hyphenation, etc.) as well as finding
more plausible expansions (those that are repeated
multiple times in a corpus). Thus, each ex-
pansion/abbreviation pair has an associated count
which can be used to threshold and filter for in-
creased quality. To discard units of measurement,
single letter abbreviations and single word expan-
sions are removed. We return to this decision
later, but our experience is also that single word
keyphrases are rare. Additionally, expansions con-
taining brackets are not considered as they usually
represent mathematical formulae.

3.1.1 The ABBREVCORPUS

In our experiments we utilize the ACM Digital Li-
brary (ACMDL) as our main corpus. Though the
ACMDL is more limited than other collections,
it has a number of desirable properties: spanning
nearly the entire history (1954-2011) of a domain
(Computer Science) with full-text and clean meta-
data. The corpus itself contains both journal and
conference articles (77k and 197k, respectively).

In addition to the filtering rules described
above, we manually constructed a set of fil-
ter terms to remove publication venues, agen-
cies, and other institutions: ‘university’, ‘confer-
ence’, ‘symposium’, ‘journal’, ‘foundation’, ‘con-
sortium’, ‘agency’, ‘institute’ and ‘school’ are dis-
carded. We further normalize our keyphrases by
lowercasing, removing hyphens, and using the
Snowball stemmer (Porter, 2001) to merge plu-
ral variants. After stemming and normalizing, we
found a total of 155,957 unique abbreviation ex-
pansions. Among these, 48,890 expansions occur
more than once, 25,107 expansions thrice or more
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and 16,916 expansions four or more times. We re-
fer to this collection as the ABBREVCORPUS.

For each keyphrase we search within the full-
text corpus to identify set of documents containing
the keyphrase. This allowed us to find both the
earliest mention of the keyphrase (the expansion,
not the abbreviation) as well as overall popularity
of keyphrases. We do not argue that abbreviations
are the norm in the introduction of new keyphrases
and may, in fact, only happen much later when the
domain is familiar enough with the phrase.

To find the expansions in the full-text we uti-
lize a modified suffix-tree that greedily finds
the longest-matching phrase and avoids “double-
counting”. For example, if the text contains
the phrase, “. . . we utilize a Least-Squares Sup-
port Vector Machine for . . . ” it will match
against Least-Squares Support Vector Machine but
not Least Squares, Support Vector Machines, or
Support Vector (also keyphrases in our collec-
tion). The distribution of keyphrase frequency is a
power-law (many keyphrases appearing once with
a long tail) with exponent (α) of 2.17 (fit using
Clauset et al., (2009)).

3.2 Building Keyphrase Hierarchies

We employ a very simple method of text con-
tainment to build keyphrase hierarchies from AB-
BREVCORPUS. If a keyphrase A is a substring
of keyphrase B, A is said to be contained by B
(B → A). If a third keyphrase, C, contains
B and is contained by A, the containment link
between A and B is dropped and two new ones
(A→ C and C → B) are added. For example for
the keyphrases, circuit switching, optical circuit
switching and dynamic optical circuit switching,
there are links from optical circuit switching to cir-
cuit switching, and dynamic optical circuit switch-
ing to optical circuit switching, but there is no link
from dynamic optical circuit switching to circuit
switching. The hierarchies formed in this manner
are mostly trees, but in rare cases a keyphrase can
have links to multiple branches. Example hierar-
chies are displayed in Figure 1.

For efficiency we sort all keyphrases by length
(from largest to shortest) and iterate over each one,
testing for containment in all previously “seen”
keyphrases. This is computationally intensive,
O(n2), but can be parallelized.

A potential issue with string containment is
that negating prefixes can also appear (e.g., non-

monotonic reasoning and monotonic reasoning).
Our algorithm uses a dictionary of negations and
can annotate the results. However, in practice
we find that only .6% of our data has a leading
negating-prefix (“internal” negating prefixes can
also be caught in this way, but are similarly rare).
It is an application-specific question if we want to
consider such pairs as “siblings” or “parent-child”
(with both supported).

4 Overlap with Keyphrase Corpora

To test our newly-constructed keyphrase database
we generate a mixture of human- and machine-
built datasets to compare. Our goal is to char-
acterize both the intersection (keyphrases appear-
ing in our corpus as well as the external datasets)
as well as those keyphrases uniquely captured by
each dataset.

4.1 ACM Author keyphrases (ACMCORPUS)
The metadata for articles in ACM corpus contain
author-provided keyphrases. In the corpus de-
scribed above, we found 145,373 unique author-
provided keyphrases after stemming and normal-
ization. We discard 16,418 single-word keywords
and those that do not appear in the full-text of any
document. We retain 116,246 keyphrases which
we refer to as the ACMCORPUS.

ACMCORPUS

WIKICORPUS

MSRACORPUS

MESHCORPUS

M
ESHC

O
RPUS

W
IKIC

ORPUS

MSRAC
O

RPUS

ACMC
O

RPUS

Figure 2: Keyphrase counts for the ACMCOR-
PUS (powerlaw α = 2.36), WIKICORPUS (2.49),
MSRACORPUS (2.55) and MESHCORPUS (2.7)
within the ACM full-text.

4.2 Microsoft Academic (MSRACORPUS)
Our second keyphrase dataset comes from the Mi-
crosoft Academic (MSRA) search corpus (Mi-
crosoft, 2015). While particularly focused on
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fault tolerance (1969)

fault tolerance index (2006)

software fault tolerance (1973)

algorithm based fault tolerance (1984)

partial fault tolerance (1975)

byzantine fault tolerance (1991)practical byzantine fault tolerance (2000)

geographic information (1973)

volunteered geographic information (2008)

geographic information network (2011)

geographic information science (1996)geographic information science and technology (2010)

geographic information services (2000)

geographic information system (1975)

geographic information retrieval (1976)

geographic information systems and science (2003)

Figure 1: Keyphrase hierarchy for Fault Tolerance (top) and Geographic Information (Bottom). Colors
encode earliest appearance (brighter green is earlier)

Computer Science, this collection contains arti-
cles and keyphrases from over a dozen domains2.
MSRA provides a list of keyphrases with unique
IDs and different stemming variations of each
keyphrase. There are a total of 46,978 (without
counting stemming variations) of which 30,477
keyphrases occur in ACM full-text corpus after
stemming and normalization (64% coverage).

4.3 MeSH (MESHCORPUS)

Medical Subject Headings (MeSH) (Lipscomb,
2000) is set of subject headings or descriptors in
the life sciences domain. For the purpose of our
work, we use the 27,149 keyphrases from the 2014
MeSH dataset. Similar to the other keyphrase lists
we only use stemmed and normalized multi-word
keywords that occur in in the ACM full-text cor-
pus, which is 4,363 in case of MeSH.

4.4 Wikipedia (WIKICORPUS)

Scientific article headings in Wikipedia can often
be used as a proxy for keyphrases. To collect rele-
vant titles, we find Wikipedia articles that exactly
match (in title name) existing MeSH and MSRA
keyphrases. For these “seed” articles, we com-
pile their categories and mark all the articles in
these categories as potentially “relevant.” How-
ever, as this also captures scientist names (e.g., a

2We know these keyphrases are algorithmically derived,
but the details are not disclosed.

researcher’s page may be placed under the “Com-
puter Science” category), research institutes and
other non-keyphrase matches, we use the page’s
infobox as a further filter. Pages containing “per-
son,” “place,” infoboxes, in “book,” “video game,”
“TV show” or other related “media” category, and
those with geographical coordinates are removed.
After applying these filters, we obtain 110,102
unique article titles (after stemming) which we
treat as keyphrases. Of these, 39,974 occur in the
ACM full-text corpus.

4.5 Results
The total overlap for ACMCORPUS, MESH-
CORPUS, MSRACORPUS and WIKICORPUS are
14.12%, 12.28%, 32.33% and 17.41% respec-
tively. While these numbers seem low, it is worth
noting that many of these terms only appear once
in the ACM full-text corpus (see Figure 2).

Figure 3 illustrates the relationship between
the number of times a keyphrase appears in the
full-text and the probability that it will appear
in ABBREVCORPUS. In all cases, the more of-
ten a keyphrase appears in the corpus, the more
likely it is to have an abbreviation. If we quali-
tatively examine popular phrases that do not ap-
pear in ABBREVCORPUS we find mathematical
forms (e.g., of-the-form, well-defined or a priori),
and nouns/entities that are largely unrelated to sci-
entific keyphrases (e.g., New Jersey, Government
Agency, and Private Sector). More importantly,
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the majority of phrases that are never abbreviated
are simply not Computer Science keyphrases (we
return to this in Section 4.6).

We were somewhat surprised by the poor over-
lap of the ACMCORPUS, even for terms that were
very common in the full-text. We found that the
cause was a large set of “bad” keyphrases. Specif-
ically, 69.3k (69.5%) of author-defined keyphrases
(occurring in ACMCORPUS but not in AB-
BREVCORPUS) are used as a keyword in only one
paper. However, they appear more than once in
the full-text – often many times. For example,
one author (and only one) used if and only if as
a keyphrase, which matched a great many articles.
The result is that there is little correlation between
the number of times a keyphrase appears in the
full-text and how many times it used explicitly as
a keyphrase in the document metadata. Because
these will never be found as an abbreviation, they
“pull” the mean probability down.

Instead of counting the number of times a
keyphrase occurs in the full-text we generate a fre-
quency count based on the number of times au-
thors explicitly use it in the metadata. This new
curve, labeled as ACMCORPUS (KEY) in Figure 3
displays a very different tendency, with a rapid
upward slope that peaks at 100% for frequently-
occurring keyphrases. Notably, only 16k (16%)
keyphrases appear once in full-text but are never
abbreviated (far fewer than the 69.5% above).

It is worth briefly considering those terms
that appear in ABBREVCORPUS and not in the
other keyphrases lists. We find roughly 17.6k,
24.7k, 19.4k, and 21.4k terms that appear in AB-
BREVCORPUS (with a threshold of 2 to elimi-
nate “noisy” expansions), but not in ACMCOR-
PUS, MESHCORPUS, MSRACORPUS, and WI-
KICORPUS respectively. As MeSH keyphrases
tend to be focused on the biological keyphrases
this is perhaps unsurprising but the high numbers
for the author-provided ACM keyphrases is unex-
pected. We find that some of the keyphrases that
are in ABBREVCORPUS but not in ACMCORPUS

are highly specific (e.g., Multi-object Evolutionary
Algorithm Based on Decomposition or Stochastic
Variable Graph Model). However, many are also
extremely generic terms that one would expect to
find in a computer science corpus: Run-Time Er-
ror Detection, Parallel Execution Tree, and Little
Endian. Our hypothesis is that these are often not
the focus of a paper and are unlikely to be selected
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Figure 3: The probability of inclusion of
keyphrases in ABBREVCORPUS based on fre-
quency of appearance in full text or, in the case if
ACMCORPUS (KEY), frequency of use as a key-
word. At frequency x, the y value represents prob-
ability of appearence in ABBREVCORPUS if we
only consider terms that appear at least x times in
the other corpus.

by the author. We believe this provides further evi-
dence of the viability of the abbreviation approach
to generating good keyphrase lists.

4.6 Domain keyphrases
When looking at keyphrases that appear in MESH-
CORPUS but not in the ABBREVCORPUS we find
that many phrases do, in fact, appear in the full
text but are never abbreviated. For example, Color
Perception and Blood Cell both appear in ACM
articles but are not abbreviated. Our hypothesis—
which is motivated by the tendency of scientists to
abbreviate terms that are deeply familiar to their
community (Grange and Bloom, 2000)—is that
terms that are possibly distant from the core do-
main focus tend not to be abbreviated. This is sup-
ported by the fact that these terms are abbreviated
in other collections (e.g., one can find CP as an ab-
breviation for Color Perception in psychology and
cognition work and BC, for Blood Cell, in medi-
cal and biological journals). Additional evidence
is apparent in Figure 3 which shows that ACM-
CORPUS keyphrases are more likely to be abbre-
viated (with far fewer repeats necessary). MSRA-
CORPUS, which contains many Computer Science
articles, also has higher probabilities (though not
nearly matching the ACM).

To test this systematically, we calculated se-
mantic similarity between each keyphrase in
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the WikiCorpus dataset to “computer science.”
Specifically, we utilize Explicit Semantic Anal-
ysis (Gabrilovich and Markovitch, 2009) to cal-
culate similarity. In this method, every segment
of text is represented in a very high dimensional
space in terms of keyphrases (based on Wikipedia
categories). The similarity score for each term is
between 0 (unrelated) and 1 (very similar).

Figure 4 demonstrates that with increasing sim-
ilarity, the likelihood of abbreviation increases.
From this, one may infer that to generate a
domain-specific database that excludes unrelated
keyphrases, the abbreviation-derived corpus is
highly appropriate. Conversely, to get coverage of
keyphrases from all scientific domains it is insuffi-
cient to mine for abbreviations in one specific do-
main’s text. Even though a keyphrase may appear
in the full-text it will simply never be abbreviated.

Figure 4: Probability of a keyphrase appearing in
ABBREVCORPUS (y-axis) based on semantic sim-
ilarity of the keyphrase to “Computer Science” (x-
axis, binned exponentially for readability).

4.7 Keyphrase Hierarchies

Our hierarchy generation process (see Section 3.2)
generated 1716 hierarchies accounting for 8661
unique keyphrases. Most of the hierarchies (1002
or 58%) only contained two nodes (a root and one
child). The degree distribution, aggregated across
all hierarchies, is again power-law (α = 2.895).
Hierarchy sizes are power-law distributed (α =
2.807) and an average “diameter” (max height) of
1.135. The hierarchies contain a giant component
with 2302 nodes and 2436 edges.

While most of our hierarchies are trees,
keyphrases can connect to two independent
branches. For example, Least-Squares Support
Vector Machines (LS-SVMs) appears in both the
Least Squares and Support Vector hierarchies.
In total, 649 keyphrases appear in multiple hi-
erarchies, the majority appearing 2. Only 17

keyphrases appear in 3 hierarchies. For exam-
ple, the particularly long Single Instruction Mul-
tiple Thread Evolution Strategy Pattern Search
appears in the Evolution(ary) Strategy, Pattern
Search, and Single-Instruction-Multiple-Thread
hierarchies. These collisions are interesting in
that they reflect a mash-ups of different concepts,
and by extension, different sub-disciplines or tech-
niques. In some situations, where there is an
overlap in many sub-keyphrases, this may indicate
that two root keyphrases are in fact equivalent or
highly related (e.g., likelihood ratio and log likeli-
hood). We do not currently handle such ambiguity
in SCHBASE.

To test the semantic interpretation of edges as
EXTENDS/ISSUBTYPEOF we randomly sampled
200 edges and manually checked these. We found
that in 92% (184) this interpretation was cor-
rect. The remaining 16 were largely an artifact
of normalization errors rather than a wrong “type”
(e.g., “session identifier” and “session id” where
clearly a more accurate interpretation is ISEXPAN-
SIONOF). We believe it is fair to say that the hier-
archies we construct are the “skeleton” of a full
EXTENDS hierarchy but one that is nonetheless
fairly encompassing. Our qualitative analysis is
that most keyphrases that share a type also share a
root keyphrase (e.g., “classifier”).

It is interesting to consider if edges which are
derived by “containment” reflect a temporal pat-
tern. That is, if keyphrase A EXTENDS B, does
the first mention of A in the literature happen af-
ter B? We find that this is almost always the case.
Among the 7136 edges generated by our algorithm
only 165 (2.3%) are “reversed.” Qualitatively, we
find that these instances appear either due to miss-
ing data (the parent keyphrase first appeared out-
side the ACM) or publication ordering (in some
cases the difference in first-appearance is only a
year). In most situations the date is only 1-2 years
apart. This high degree of consistency lends fur-
ther support to the tendency of scientists to expand
upon keyphrases over time.

Figure 5 depicts the mean change in length of
“children” in keyphrase hierarchies. The numbers
depicted are relative change. Thus, at year “0”,
the year the root keyphrase is introduced, there is
no relative increase. Within 1 year, new children
of that root are 50% larger in character length and
after that children continue to “grow” as authors
add additional keyphrases. A particularly obvious
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example of this is the branch for Petri Net (PN)
which was extended as Queueing Petri Net (QPN)
and then Hierarchically Combined Queueing Petri
Nets (HCQPN) and finally Extended Hierarchi-
cally Combined Queueing Petri Nets (EHCQPN).
Notably, this may have implications to other ex-
tractors that assume fixed-sized entities over the
history of the collection.

Figure 5: Average increase in character length of
sub-keyphrases over time

5 Discussion and Future Work

Our decision to eliminate single-word keyphrases
from consideration is an explicit one. Of the
145k keyphrases in the original ACMCORPUS

(pre-filtering), 16,418 (11.29%) were single-word
keyphrases. Our experience with the ACM author-
defined keyphrases is that such terms are too
generic to be useful as “scientific” keyphrases. For
example, In all the ACM proceedings, the top-
5 most common single-word keyphrases are se-
curity, visualization, evaluation, design, and pri-
vacy. Even in specific sub-domains, such as rec-
ommender systems (Proceedings of Recsys), the
most popular single-word keyphrases are person-
alization, recommendation, evaluation, and trust.
Contrast these to the most popular multi-word
terms: recommender system(s), collaborative fil-
tering, matrix factorization, and social network(s).

Notably, in the MSRA corpus, which is algo-
rithmically filtered, only .46% (226 keyphrases)
were single word. MeSH, in contrast, has a full
37% of keyphrases as single-term. In most sit-
uations these reflect chemical names (e.g., 382
single-word enzymes) or biological structures. In
such a domain, and if these keyphrases are desir-
able, it may be advisable to retain single-word ab-
breviations. While it may seem surprising, even

single words are often abbreviated (e.g., Transal-
dolase is “T” and Ultrafiltration is “U” or “U/F”).

A second key observation is that while the
ACM full-text corpus is large, it is by no means
“big.” We selected to use it because it controlled
and “clean.” However, we have also run our al-
gorithms on the MSRA Corpus (which contains
only abstracts) and CiteSeer (which contains full-
text). Because the corpora contain more text we
find significantly higher overlap with the differ-
ent keyphrase corpora. However, this comes at
the cost of not being able to isolate the domain-
specific keyphrases. To put it differently, the
broader full-text collections enable to us gener-
ate a more fleshed out keyphrase hierarchies that
tracks keyphrases across all domains but which
may not be appropriate for certain workloads.

Finally, it is worth considering the possibility
of building hierarchies (and connecting them) by
relations other than “containment.” We have be-
gun to utilize metrics such as co-occurrence of
keyphrases (e.g., PMI) as well as higher level cita-
tion and co-citation structure in the corpora. Thus,
we are able to connect terms that are highly related
but are textually dissimilar. When experimenting
with PMI, for example, we have found a diverse
set of edge types including ISUSEDFOR (e.g., “n-
gram language model” and “machine translation”)
or ISUSEDIN (e.g., “Expectation Maximization”
and “Baum-Welch” or “euclidean algorithm” and
“k-means”). By necessity, edges generated by this
technique require an additional classification.

6 Summary

We have introduced SCHBASE, a simple, robust,
and highly effective system and database of sci-
entific concepts/keyphrases. By leveraging the
incentive structure of scientists to expand exist-
ing ideas while simultaneously signaling novelty
we are able to construct semantically-meaningful
hierarchies of related keyphrases. The further
tendency by authors to succinctly describe new
keyphrases results in a general habit of utilizing
abbreviations. We have demonstrated a mecha-
nism to identify these keyphrases by extracting ab-
breviation expansions and have shown that these
keyphrases cover the bulk of “useful” keyphrases
within the domain of the corpus. We believe
that SCHBASE will enable a number of appli-
cations ranging from search, categorization, and
analysis of scientific communication patterns.
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Abstract

Aspect extraction and sentiment analysis
of reviews are both important tasks in
opinion mining. We propose a novel senti-
ment and aspect extraction model based on
Restricted Boltzmann Machines to jointly
address these two tasks in an unsupervised
setting. This model reflects the gener-
ation process of reviews by introducing
a heterogeneous structure into the hidden
layer and incorporating informative priors.
Experiments show that our model outper-
forms previous state-of-the-art methods.

1 Introduction

Nowadays, it is commonplace for people to ex-
press their opinion about various sorts of entities,
e.g., products or services, on the Internet, espe-
cially in the course of e-commerce activities. Ana-
lyzing online reviews not only helps customers ob-
tain useful product information, but also provide
companies with feedback to enhance their prod-
ucts or service quality. Aspect-based opinion min-
ing enables people to consider much more fine-
grained analyses of vast quantities of online re-
views, perhaps from numerous different merchant
sites. Thus, automatic identification of aspects of
entities and relevant sentiment polarities in Big
Data is a significant and urgent task (Liu, 2012;
Pang and Lee, 2008; Popescu and Etzioni, 2005).

Identifying aspect and analyzing sentiment
words from reviews has the ultimate goal of dis-
cerning people’s opinions, attitudes, emotions, etc.
towards entities such as products, services, orga-
nizations, individuals, events, etc. In this con-
text, aspect-based opinion mining, also known as
feature-based opinion mining, aims at extracting
and summarizing particular salient aspects of enti-
ties and determining relevant sentiment polarities

∗Corresponding Author: Kang Liu (kliu@nlpr.ia.ac.cn)

from reviews (Hu and Liu, 2004). Consider re-
views of computers, for example. A given com-
puter’s components (e.g., hard disk, screen) and
attributes (e.g., volume, size) are viewed as aspects
to be extracted from the reviews, while sentiment
polarity classification consists in judging whether
an opinionated review expresses an overall posi-
tive or negative opinion.

Regarding aspect identification, previous meth-
ods can be divided into three main categories:
rule-based, supervised, and topic model-based
methods. For instance, association rule-based
methods (Hu and Liu, 2004; Liu et al., 1998)
tend to focus on extracting product feature words
and opinion words but neglect connecting product
features at the aspect level. Existing rule-based
methods typically are not able to group the ex-
tracted aspect terms into categories. Supervised
(Jin et al., 2009; Choi and Cardie, 2010) and semi-
supervised learning methods (Zagibalov and Car-
roll, 2008; Mukherjee and Liu, 2012) were intro-
duced to resolve certain aspect identification prob-
lems. However, supervised training requires hand-
labeled training data and has trouble coping with
domain adaptation scenarios.

Hence, unsupervised methods are often adopted
to avoid this sort of dependency on labeled data.
Latent Dirichlet Allocation, or LDA for short,
(Blei et al., 2003) performs well in automatically
extracting aspects and grouping corresponding
representative words into categories. Thus, a num-
ber of LDA-based aspect identification approaches
have been proposed in recent years (Brody and El-
hadad, 2010; Titov and McDonald, 2008; Zhao et
al., 2010). Still, these methods have several im-
portant drawbacks. First, inaccurate approxima-
tions of the distribution over topics may reduce the
computational accuracy. Second, mixture models
are unable to exploit the co-occurrence of topics
to yield high probability predictions for words that
are sharper than the distributions predicted by in-
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dividual topics (Hinton and Salakhutdinov, 2009).
To overcome the weaknesses of existing meth-

ods and pursue the promising direction of
jointly learning aspect and sentiment, we present
the novel Sentiment-Aspect Extraction RBM
(SERBM) model to simultaneously extract as-
pects of entities and relevant sentiment-bearing
words. This two-layer structure model is inspired
by conventional Restricted Boltzmann machines
(RBMs). In previous work, RBMs with shared
parameters (RSMs) have achieved great success
in capturing distributed semantic representations
from text (Hinton and Salakhutdinov, 2009).

Aiming to make the most of their ability to
model latent topics while also accounting for
the structured nature of aspect opinion mining,
we propose replacing the standard hidden lay-
ers of RBMs with a novel heterogeneous struc-
ture. Three different types of hidden units are
used to represent aspects, sentiments, and back-
ground words, respectively. This modification bet-
ter reflects the generative process for reviews, in
which review words are generated not only from
the aspect distribution but also affected by senti-
ment information. Furthermore, we blend back-
ground knowledge into this model using priors and
regularization to help it acquire more accurate fea-
ture representations. After m-step Contrastive Di-
vergence for parameter estimation, we can capture
the required data distribution and easily compute
the posterior distribution over latent aspects and
sentiments from reviews. In this way, aspects and
sentiments are jointly extracted from reviews, with
limited computational effort. This model is hence
a promising alternative to more complex LDA-
based models presented previously. Overall, our
main contributions are as follows:

1. Compared with previous LDA-based meth-
ods, our model avoids inaccurate approxima-
tions and captures latent aspects and senti-
ment both adequately and efficiently.

2. Our model exploits RBMs’ advantage in
properly modeling distributed semantic rep-
resentations from text, but also introduces
heterogeneous structure into the hidden layer
to reflect the generative process for online re-
views. It also uses a form of regularization to
incorporate prior knowledge into the model.
Due these modifications, our model is very
well-suited for solving aspect-based opinion
mining tasks.

3. The optimal weight matrix of this RBM
model can exactly reflect individual word
features toward aspects and sentiment, which
is hard to achieve with LDA-based models
due to the mixture model sharing mechanism.

4. Last but not the least, this RBM model is ca-
pable of jointly modeling aspect and senti-
ment information together.

2 Related Work

We summarize prior state-of-the-art models for as-
pect extraction. In their seminal work, Hu and
Liu (2004) propose the idea of applying classical
information extraction to distinguish different as-
pects in online reviews. Methods following their
approach exploit frequent noun words and depen-
dency relations to extract product features without
supervision (Zhuang et al., 2006; Liu et al., 2005;
Somasundaran and Wiebe, 2009). These methods
work well when the aspect is strongly associated
with a single noun, but obtain less satisfactory re-
sults when the aspect emerges from a combination
of low frequency items. Additionally, rule-based
methods have a common shortcoming in failing to
group extracted aspect terms into categories.

Supervised learning methods (Jin et al., 2009;
Choi and Cardie, 2010; Jakob and Gurevych,
2010; Kobayashi et al., 2007) such as Hidden
Markov Models, one-class SVMs, and Condi-
tional Random Fields have been widely used in
aspect information extraction. These supervised
approaches for aspect identification are generally
based on standard sequence labeling techniques.
The downside of supervised learning is its require-
ment of large amounts of hand-labeled training
data to provide enough information for aspect and
opinion identification.

Subsequent studies have proposed unsuper-
vised learning methods, especially LDA-based
topic modeling, to classify aspects of comments.
Specific variants include the Multi-Grain LDA
model (Titov and McDonald, 2008) to capture
local rateable aspects, the two-step approach to
detect aspect-specific opinion words (Brody and
Elhadad, 2010), the joint sentiment/topic model
(JST) by Lin and He (2009), the topic-sentiment
mixture model with domain adaption (Mei et al.,
2007), which treats sentiment as different topics,
and MaxEnt-LDA (Zhao et al., 2010), which inte-
grates a maximum entropy approach into LDA.
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However, these LDA-based methods can only
adopt inaccurate approximations for the posterior
distribution over topics rather than exact inference.
Additionally, as a mixture model, LDA suffers
from the drawbacks mentioned in Section 1 that
are common to all mixture models.

3 Model

In order to improve over previous work, we first
introduce a basic RBM-based model and then de-
scribe our modified full model.

3.1 Basic RBM-based Model
Restricted Boltzmann Machines can be used for
topic modeling by relying on the structure shown
in Figure 1. As shown on the left side of the fig-
ure, this model is a two-layer neural network com-
posed of one visible layer and one hidden layer.
The visible layer consists of a softmax over dis-
crete visible units for words in the text, while the
hidden layer captures its topics. More precisely,
the visible layer is represented as a K × D ma-
trix v, where K is the dictionary size, and D is the
document length. Here, if visible unit i in v takes
the k-th value, we set vki = 1. The hidden layer
can be expressed as h ∈ {0, 1}F , where F is the
number of hidden layer nodes, corresponding to
topics. The right side of Figure 1 is another way
of viewing the network, with a single multinomial
visible unit (Hinton and Salakhutdinov, 2009).

The energy function of the model can be defined
as

E(v, h) = −
D∑
i=1

F∑
j=1

K∑
k=1

W k
ijhjv

k
i

−
D∑
i=1

K∑
k=1

vki b
k
i −

F∑
j=1

hjaj ,

(1)

where W k
ij specifies the connection weight from

the i-th visible node of value k to the j-th hidden

node, bki corresponds to a bias of vki , and aj corre-
sponds to a bias of hj .

The probability of the input layer v is defined as

P (v) =
1
Z

∑
h

exp(−E(v, h)), (2)

where Z is the partition function to normalize the
probability.

The conditional probabilities from the hidden to
the visible layer and from the visible to the hidden
one are given in terms of a softmax and logistic
function, respectively, i.e.

P ( vki = 1 | h) =

exp

(
bki +

F∑
j=1

hjW
k
ij

)
K∑
q=1

exp

(
bqi +

F∑
j=1

hjW
q
ij

) ,

P ( hj = 1 | v) = σ

(
aj +

D∑
i=1

K∑
k=1

vkiW
k
ij

)
,

(3)
where σ(x) = 1/(1 + exp(−x)) is the logistic
function.

3.2 Our Sentiment-Aspect Extraction model
While the basic RBM-based method provides a
simple model of latent topics, real online reviews
require a more fine-grained model, as they con-
sist of opinion aspects and sentiment information.
Therefore, aspect identification is a different task
from regular topic modeling and the basic RBM-
based model may not perform well in aspect ex-
traction for reviews.

To make the most of the ability of the basic
RBM-based model in extracting latent topics, and
obtain an effective method that is well-suited to
solve aspect identification tasks, we present our
novel Sentiment-Aspect Extraction RBM model.

3.2.1 Generative Perspective
From a generative perspective, product reviews
can be regarded as follows. Every word in a
review text may describe a specific aspect (e.g.
“expensive” for the price aspect), or an opinion
(e.g. “amazing” for a positive sentiment and “ter-
rible” for a negative one), or some irrelevant back-
ground information (e.g. “Sunday”). In a genera-
tive model, a word may be generated from a latent
aspect variable, a sentiment variable, or a back-
ground variable. Also, there may exist certain re-
lations between such latent variables.
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3.2.2 Structure
To simulate this generative process for reviews,
we adapt the standard RBM structure to reflect the
aspect-sentiment identification task.

Undirected Model. Our Sentiment-Aspect Ex-
traction model structure is illustrated in Figure 2.

Compared to standard RBMs, a crucial differ-
ence is that hidden units now have a heterogeneous
structure instead of being homogeneous as in the
standard basic RBM model. In particular, we rely
on three types of hidden units, representing aspect,
sentiment, and background, respectively. The first
two types are self-explanatory, while the back-
ground units are intended to reflect the kind of
words that do not contribute much to the aspect or
sentiment information of review documents. Since
the output of the hidden units is a re-encoding of
the information in the visible layer, we obtain a
deeper representation and a more precise expres-
sion of information in the input reviews. Thus, this
approach enables the model to learn multi-faceted
information with a simple yet expressive structure.

To formalize this, we denote v̂k =
∑D

i=1 v
k
i as

the count for the k-th word, where D is the doc-
ument length. The energy function can then be
defined as follows:

E(v, h) = −
F∑
j=1

K∑
k=1

W k
j hj v̂

k

−
K∑
k=1

v̂kbk −
F∑
j=1

hjaj ,

(4)

where W k
j denotes the weight between the k-th

visible unit and the j-th hidden unit.
The conditional probability from visible to hid-

den unit can be expressed as:

P (hj = 1|v) = σ(aj +
K∑
k=1

v̂kW k
j ). (5)

In an RBM, every hidden unit can be activated
or restrained by visible units. Thus, every visible
unit has a potential contribution towards the acti-
vation of a given hidden unit. The probability of
whether a given visible unit affects a specific hid-
den unit is described as follows (cf. appendix for
details):

P (hj = 1 | v̂k) =P (hj = 1 | h−j , v̂k)
=σ(aj +W k

j v̂
k).

(6)

Under this architecture, this equation can be ex-
plained as the conditional probability from visible
unit k to hidden unit j (softmax of words to as-
pect or sentiment). According to Eq. 6, the con-
ditional probability for the k-th word feature to-
wards the j-th aspect or sentiment p(hj = 1 | vk)
is a monotone function of W k

j , the (k, j)-th entry
of the optimal weight matrix. Thus, the optimal
weight matrix of this RBM model can directly re-
flect individual word features toward aspects and
sentiment.

Informative Priors. To improve the ability of
the model to extract aspects and identify senti-
ments, we capture priors for words in reviews and
incorporate this information into the learning pro-
cess of our Sentiment-Aspect Extraction model.
We regularize our model based on these priors to
constrain the aspect modeling and improve its ac-
curacy. Figure 3 provides an example of how such
priors can be applied to a sentence, with φi repre-
senting the prior knowledge.

Research has found that most aspect words are
nouns (or noun phrases), and sentiment is often
expressed with adjectives. This additional infor-
mation has been utilized in previous work on as-
pect extraction (Hu and Liu, 2004; Benamara et
al., 2007; Pang et al., 2002). Inspired by this, we
first rely on Part of Speech (POS) Tagging to iden-
tify nouns and adjectives. For all noun words, we
first calculate their term frequency (TF) in the re-
view corpus, and then compute their inverse doc-
ument frequency (IDF) from an external Google
n-gram corpus1. Finally, we rank their TF∗IDF

1http://books.google.com/ngrams/datasets
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Figure 3: Prior Feature Extraction

values and assign them an aspect prior probability
pA,vk , indicating their general probability of be-
ing an aspect word. This TF-IDF approach is mo-
tivated by the following intuitions: the most fre-
quently mentioned candidates in reviews have the
highest probability of being an opinion target and
false target words are non-domain specific and fre-
quently appear in a general text corpus (Liu et al.,
2012; Liu et al., 2013). For all adjective words, if
the words are also included in the online sentiment
resource SentiWordNet2, we assign prior probabil-
ity ps,vk to suggest that these words are generally
recognized as sentiment words.

Apart from these general priors, we obtain a
small amount of fine-grained information as an-
other type of prior knowledge. This fine-grained
prior knowledge serves to indicate the probabil-
ity of a known aspect word belonging to a specific
aspect, denoted as pAj ,vk and an identified senti-
ment word bearing positive or negative sentiment,
denoted as pSj ,vk . For instance, “salad” is always
considered as a general word that belongs to the
specific aspect food, and “great” is generally con-
sidered a positive sentiment word.

To extract pAj ,vk , we apply regular LDA on the
review dataset. Since the resulting topic clusters
are unlabeled, we manually assign top k words
from the topics to the target aspects. We thus
obtain fine-grained prior probabilities to suggest
these words as belonging to specific aspects. To
obtain pSj ,vk , we rely on SentiWordNet and sum
up the probabilities of an identified sentiment
word being positive or negative sentiment-bearing,
respectively. Then we adopt the corresponding
percentage value as a fine-grained specific senti-
ment prior.

It is worthwhile to mention that the priors are
not a compulsory component. However, the pro-
cedure for obtaining priors is generic and can eas-

2http://sentiwordnet.isti.cnr.it

ily be applied to any given dataset. Furthermore,
we only obtain such fine-grained prior knowledge
for a small amount of words in review sentences
and rely on the capability of model itself to deal
with the remaining words.

3.2.3 Objective Function

We now construct an objective function for our
SERBM model that includes regularization based
on the priors defined above in Section 3.2.2. Sup-
pose that the training set is S = v1, v2, . . . , vns ,
where ns is the number of training objects. Each
element has the form vi = (vi1, v

i
2, . . . , v

i
K)D,

where i = 1, 2, . . . , ns, and these data points are
assumed to be independent and identically dis-
tributed.

We define the following novel log-likelihood
function lnLS , with four forms of regularization
corresponding to the four kinds of priors:

lnLS = ln
ns∏
i=1

P (vi)−
ns∑
i=1

[

λ1 ln
F1−1∏
j=1

∏
k∈R1

[
P (hj = 1 | v̂k)− pAj ,vk

]2

+ λ2 ln
∏
k∈R2

[ F1∑
j=1

P (hj = 1 | v̂k)− pA,vk
]2

+ λ3 ln
F2+1∏
j=F2

∏
k∈R3

[
P (hj = 1 | v̂k)− pSj ,vk

]2

+ λ4 ln
∏
k∈R4

[F2+1∑
j=F2

P (hj = 1 | v̂k)− pS,vk
]2
]
(7)

Here, P (hj = 1 | v̂k) stands for the probability of
a given input word belonging to a specific hidden
unit. We assume all λi > 0 for i = 1 . . . 4, while
F1 and F2 are integers for the offsets within the
hidden layer. Units up to index F1 capture aspects,
with the last one reserved for miscellaneous Other
Aspects, while units from F2 capture the sentiment
(with F1 = F2 + 1 < F for convenience).

Our goal will be to maximize the log-likelihood
lnLS in order to adequately model the data, in ac-
cordance with the regularization.

3.2.4 Training

We use Stochastic Gradient Descent (SGD) to find
suitable parameters that maximize the objective
function. Given a single training instance v from
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the training set S, we obtain

∂ lnL
∂θ

=
∂ lnP (v)

∂θ

− λ1

F1−1∑
j=1

∑
k∈R1

∂ ln
[
P (hj = 1 | v̂k)− pAj ,vk

]2
∂θ

− λ2

∑
k∈R2

∂ ln
[∑F1

j=1 P (hj = 1 | v̂k)− pA,vk
]2

∂θ

− λ3

F2+1∑
j=F2

∑
k∈R3

∂ ln
[
P (hj = 1 | v̂k)− pSj ,vk

]2
∂θ

− λ4

∑
k∈R4

∂ ln
[∑F2+1

j=F2
P (hj = 1 | v̂k)− pS,vk

]2
∂θ

(8)
where θ = {W,aj , bi} stands for the parameters.
Given N documents {vn}Nn=1, the first term in the
log-likelihood function with respect to W is:

1
N

N∑
n=1

∂ lnP (vn)
∂W k

j

= ED1 [v̂
khj ]− ED2 [v̂

khj ].

(9)
Here, D1[·] and D2[·] represent the expectation
with respect to the data distribution and the dis-
tribution obtained by this model, respectively. We
use Contrastive Divergence (CD) to approximate
ED2 [v̂

khj ] (Hinton and Salakhutdinov, 2009).
Due to the m steps of transfer between input and
hidden layers in a CD-m run of the algorithm, the
two types of hidden units, aspect and sentiment,
will jointly affect input reviews together with the
connection matrix between the two layers.

Finally, we consider the partial derivative of the
entire log-likelihood function with respect to the
parameter W . Denoting ln ∂L

∂W as ∇W , in each
step we update∇W k

j by adding

λ
[
P (hj = 1|v(0))v(0)

k − P (hj = 1|v(cdm))v(cdm)
k

]
− λ1

F1−1∑
j=1

∑
k∈R1

2Gj v̂k

(1 +Gj)2( 1
1+Gj

− pAj ,vk)

− λ2

∑
k∈R2

2v̂k∑F1
j=1

1
(1+Gj)

− pA,vk

F1∑
j=1

Gj
(1 +Gj)2

− λ3

F2+1∑
j=F2

∑
k∈R3

2Gj v̂k

(1 +Gj)2( 1
1+Gj

− pSj ,vk)

− λ4

∑
k∈R4

2v̂k∑F2+1
j=F2

1
(1+Gj)

− pS,vk

F2+1∑
j=F2

Gj
(1 +Gj)2

,

where Gj=e−(aj+W
k
j v̂

k) for convenience, and
v(cdm) is the result from the CD-m steps.

4 Experiments

We present a series of experiments to evaluate our
model’s performance on the aspect identification
and sentiment classification tasks.

4.1 Data
For this evaluation, we rely on a restaurant review
dataset widely adopted by previous work (Ganu
et al., 2009; Brody and Elhadad, 2010; Zhao et
al., 2010), which contains 1,644,923 tokens and
52,574 documents in total. Documents in this
dataset are annotated with one or more labels from
a gold standard label set S = {Food, Staff, Ambi-
ence, Price, Anecdote, Miscellaneous}. Following
the previous studies, we select reviews with less
than 50 sentences and remove stop words. The
Stanford POS Tagger3 is used to distinguish noun
and adjective words from each other.

We later also rely on the Polarity dataset v2.04

to conduct an additional experiment on senti-
ment classification in order to better assess the
model’s overall performance. This dataset focuses
on movie reviews and consists of 1000 positive
review documents and 1000 negative ones. It
has also been used in the experiments by Lin &
He (2009), among others.

4.2 Aspect Identification
We first apply our novel model to identify aspects
from documents in the restaurant review dataset.

4.2.1 Experimental Setup
For the experimental setup, we use ten hidden
units in our Sentiment-Aspect Extraction RBM
(SERBM), where units 0–6 capture aspects, units
7–8 capture sentiment information, and unit 9
stores background information. In particular, we
fix hidden units 0–6 to represent the target aspects
Food, Staff, Ambience, Price, Ambience, Miscella-
neous, and Other Aspects, respectively. Units 7–8
represent positive and negative sentiment, respec-
tively. The remaining hidden unit is intended to
capture irrelevant background information.

Note that the structure of our model needs no
modifications for new reviews. There are two
cases for datasets from a new domain. If the new

3http://nlp.stanford.edu/software/tagger.shtml
4http://www.cs.cornell.edu/people/pabo/

movie-review-data/
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Method RBM RSM SERBM
PPL 49.73 39.19 21.18

Table 1: Results in terms of perplexity

dataset has a gold standard label set, then we as-
sign one hidden unit to represent each label in the
gold standard set. If not, our model only obtains
the priors pA,vk and pS,vk , and the aspect set can
be inferred as in the work of Zhao et al. (2010).

For evaluation, following previous work, the an-
notated data is fed into our unsupervised model,
without any of the corresponding labels. The
model is then evaluated in terms of how well its
prediction matches the true labels. As for hyperpa-
rameter optimization, we use the perplexity scores
as defined in Eq. 10 to find the optimal hyper-
parameters.

As a baseline, we also re-implement standard
RBMs and the RSM model (Hinton and Salakhut-
dinov, 2009) to process this same restaurant re-
view dataset and identify aspects for every doc-
ument in this dataset under the same experimental
conditions. We recall that RSM is a similar undi-
rected graphical model that models topics from
raw text.

Last but not the least, we conduct addi-
tional comparative experiments, including
with LocLDA (Brody and Elhadad, 2010),
MaxEnt-LDA (Zhao et al., 2010) and the SAS
model (Mukherjee and Liu, 2012) to extract
aspects for this restaurant review dataset under the
same experimental conditions. In the following,
we use the abbreviated name MELDA to stand for
the MaxEnt LDA method.

4.2.2 Evaluation
Brody and Elhadad (2010) and Zhao et al. (2010)
utilize three aspects to perform a quantitative eval-
uation and only use sentences with a single label
for evaluation to avoid ambiguity. The three major
aspects chosen from the gold standard labels are
S = {Food, Staff, Ambience}. The evaluation cri-
terion essentially is to judge how well the predic-
tion matches the true label, resulting in Precision,
Recall, and F1 scores. Besides these, we consider
perplexity (PPL) as another evaluation metric to
analyze the aspect identification quality. The aver-
age test perplexity PPL over words is defined as:

exp

(
− 1
N

N∑
n=1

1
Dn

logP (vn)

)
, (10)

Aspect Method Precision Recall F1

RBM 0.753 0.680 0.715
RSM 0.718 0.736 0.727

food LocLDA 0.898 0.648 0.753
MELDA 0.874 0.787 0.828

SAS 0.867 0.772 0.817
SERBM 0.891 0.854 0.872

RBM 0.436 0.567 0.493
RSM 0.430 0.310 0.360

staff LocLDA 0.804 0.585 0.677
MELDA 0.779 0.540 0.638

SAS 0.774 0.556 0.647
SERBM 0.819 0.582 0.680

RBM 0.489 0.439 0.463
RSM 0.498 0.441 0.468

ambi LocLDA 0.603 0.677 0.638
-ence MELDA 0.773 0.588 0.668

SAS 0.780 0.542 0.640
SERBM 0.805 0.592 0.682

Table 2: Aspect identification results in terms of
precision, recall, and F1 scores on the restaurant
reviews dataset

where N is the number of documents, Dn repre-
sents the word number, and vn stands for the word-
count of document n.

Average perplexity results are reported in Ta-
ble 1, while Precision, Recall, and F1 evaluation
results for aspect identification are given in Ta-
ble 2. Some LDA-based methods require manual
mappings for evaluation, which causes difficulties
in obtaining a fair PPL result, so a few methods
are only considered in Table 2.

To illustrate the differences, in Table 3, we list
representative words for aspects identified by var-
ious models and highlight words without an obvi-
ous association or words that are rather unspecific
in bold.

4.2.3 Discussion
Considering the results from Table 1 and the
RBM, RSM, and SERBM-related results from Ta-
ble 2, we find that the RSM performs better than
the regular RBM model on this aspect identifi-
cation task. However, the average test perplex-
ity is greatly reduced even further by the SERBM
method, resulting in a relative improvement by
45.96% over the RSM model. Thus, despite
the elaborate modification, our SERBM inherits
RBMs’ ability in modeling latent topics, but sig-
nificantly outperforms other RBM family models
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Aspect RSM RBM Loc-LDA ME-LDA SAS SERBM
great menu,drink chicken chocolate food,menu salad,cheese

dessert food,pizza menu,salad dessert dessert dessert
beef chicken good cream drinks chicken

Food drink,BBQ seafood fish ice,cake chicken sauce
menu good drinks desserts cheeses rice,pizza

delicious sandwich wine,sauce good beers,salad food
good soup rice bread delicious dish
fish flavor cheese cheese rice sushi,menu

service staff service service staff,slow service
room helpful staff,waiter staff,food waitress staff,friendly
slow waiter attentive wait,waiters attentive waitress

Staff table friendly busy waiter helpful waitstaff
quick good,attentive slow,friendly place service attentive

waitress slow,service table restaurant minutes waitresses
friendly restaurant wait waitress wait,friendly servers
waiter minutes minutes waitstaff waiter minutes

atmosphere place great room place atmosphere
music atmosphere atmosphere dining decor atmosphere
place cozy wonderful tables great scene

dinner door music bar good place
Ambience romantic cute seating place romantic tables

room bar experience decor tables outside
comfortable great relaxed scene bar area

tables seating bar space decor ambiance
good experience room area great outdoor

ambiance romantic outside table music romantic,cozy

Table 3: Aspects and representative words

on the aspect identification task.

In Table 2, we also observe that SERBM
achieves a higher accuracy compared with
other state-of-the-art aspect identification meth-
ods. More specifically, it is evident that our
SERBM model outperforms previous methods’ F1

scores. Compared with MELDA, the F1 scores
for the SERBM lead to relative improvements of
5.31%, 6.58%, and 2.10%, respectively, for the
Food, Staff, and Ambience aspects. Compared
with SAS, the F1 scores yield relative improve-
ments by 6.73%, 5.10%, and 6.56%, respectively,
on those same aspects. As for Precision and Re-
call, the SERBM also achieves a competitive per-
formance compared with other methods in aspect
identification.

Finally, we conclude from Table 3 that the
SERBM method has the capability of extracting
word with obvious aspect-specific features and
makes less errors compared with other models.

4.3 Sentiment Classification

We additionally conduct two experiments to eval-
uate the model’s performance on sentiment classi-
fication.

4.3.1 Comparison with SentiWordNet
We assign a sentiment score to every document in
the restaurant review dataset based on the output
of SERBM’s sentiment-type hidden units. To ana-
lyze SERBM’s performance in sentiment classifi-
cation, we compare these results with SentiWord-
Net5, a well-known sentiment lexicon. For this
SentiWordNet baseline, we consult the resource to
obtain a sentiment label for every word and ag-
gregate these to judge the sentiment information
of an entire review document in terms of the sum
of word-specific scores. Table 4 provides a com-
parison between SERBM and SentiWordNet, with
Accuracy as the evaluation metric.

We observe in Table 4 that the sentiment
5http://sentiwordnet.isti.cnr.it
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Method SentiWordNet SERBM
Accuracy 0.703 0.788

Table 4: Accuracy for SERBM and SentiWordNet

classification accuracy on the restaurant review
dataset sees a relative improvement by 12.1% with
SERBM over the SentiWordNet baseline.

4.3.2 Comparison with JST

We additionally utilize the Polarity dataset v2.0 to
conduct an additional sentiment classification ex-
periment in order to assess SERBM’s performance
more thoroughly. We compare SERBM with the
advanced joint sentiment/topic model (JST) by
Lin & He (2009). For the JST and the Trying-
JST methods only, we use the filtered subjectiv-
ity lexicon (subjective MR) as prior information,
containing 374 positive and 675 negative entries,
which is the same experimental setting as in Lin
& He (2009). For SERBM, we use the same gen-
eral setup as before except for the fact that aspect-
specific priors are not used here.

Table 5 provides the sentiment classification ac-
curacies on both the overall dataset and on the sub-
sets for each polarity, where pos. and neg. refer to
the positive and negative reviews in the dataset, re-
spectively.

Method overall pos. neg.
JST(%) 84.6 96.2 73

Trying-JST(%) 82 89.2 74.8
SERBM(%) 89.1 92.0 86.2

Table 5: Accuracy for SERBM and JST

In Table 5, we observe that SERBM outper-
forms JST both in terms of the overall accu-
racy and for the positive/negative-specific subsets.
SERBM yields a relative improvement in the over-
all accuracy by 5.31% over JST and by 8.66% over
Trying-JST.

5 Conclusion

In this paper, we have proposed the novel
Sentiment-Aspect Extraction RBM (SERBM)
model to jointly extract review aspects and sen-
timent polarities in an unsupervised setting. Our
approach modifies the standard RBM model by
introducing a heterogeneous structure into the hid-
den layer and incorporating informative priors into

the model. Our experimental results show that this
model can outperform LDA-based methods.

Hence, our work opens up the avenue of uti-
lizing RBM-based undirected graphical models to
solve aspect extraction and sentiment classifica-
tion tasks as well as other unsupervised tasks with
similar structure.

Appendix

The joint probability distribution is defined as

pθ(v, h) =
1
Zθ
eEθ(v,h), (11)

where Zθ is the partition function. In conjunction
with Eq. 1, we obtain

Eθ(v̂k, h) = −biv̂k −
F∑
j=1

ajhj −
F∑
j=1

hjW
k
j v̂

k

(12)

Then, we can obtain the derivation in Eq. 6.

P (hj = 1 | v̂k)
=P (hj = 1 | h−j , v̂k)

=
P (hj = 1, h−j , v̂k)

P (h−j , v̂k)

=
P (hj = 1, h−j , v̂k)

P (hj = 1, h−j , v̂k) + P (hj = 0, h−j , v̂k)

=
1
Z e
−E(hj=1,h−j ,v̂k)

1
Z e
−E(hj=1,h−j ,v̂k) + 1

Z e
−E(hj=0,h−j ,v̂k)

=
e−E(hj=1,h−j ,v̂k)

e−E(hj=1,h−j ,v̂k) + e−E(hj=0,h−j ,v̂k)

=
1

1 + e−E(hj=0,h−j ,v̂k)+E(hj=1,h−j ,v̂k)

=σ(aj +W k
j v̂

k)
(13)
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Abstract

Relation classification is an important se-
mantic processing task for which state-of-
the-art systems still rely on costly hand-
crafted features. In this work we tackle the
relation classification task using a convo-
lutional neural network that performs clas-
sification by ranking (CR-CNN). We pro-
pose a new pairwise ranking loss function
that makes it easy to reduce the impact
of artificial classes. We perform experi-
ments using the the SemEval-2010 Task
8 dataset, which is designed for the task
of classifying the relationship between two
nominals marked in a sentence. Using CR-
CNN, we outperform the state-of-the-art
for this dataset and achieve a F1 of 84.1
without using any costly handcrafted fea-
tures. Additionally, our experimental re-
sults show that: (1) our approach is more
effective than CNN followed by a soft-
max classifier; (2) omitting the representa-
tion of the artificial class Other improves
both precision and recall; and (3) using
only word embeddings as input features is
enough to achieve state-of-the-art results if
we consider only the text between the two
target nominals.

1 Introduction

Relation classification is an important Natural
Language Processing (NLP) task which is nor-
mally used as an intermediate step in many com-
plex NLP applications such as question-answering
and automatic knowledge base construction. Since
the last decade there has been increasing interest
in applying machine learning approaches to this
task (Zhang, 2004; Qian et al., 2009; Rink and
Harabagiu, 2010). One reason is the availability
of benchmark datasets such as the SemEval-2010

task 8 dataset (Hendrickx et al., 2010), which en-
codes the task of classifying the relationship be-
tween two nominals marked in a sentence. The
following sentence contains an example of the
Component-Whole relation between the nominals
“introduction” and “book”.

The [introduction]e1 in the [book]e2 is a

summary of what is in the text.

Some recent work on relation classification has
focused on the use of deep neural networks with
the aim of reducing the number of handcrafted fea-
tures (Socher et al., 2012; Zeng et al., 2014; Yu et
al., 2014). However, in order to achieve state-of-
the-art results these approaches still use some fea-
tures derived from lexical resources such as Word-
Net or NLP tools such as dependency parsers and
named entity recognizers (NER).

In this work, we propose a new convolutional
neural network (CNN), which we name Classifi-
cation by Ranking CNN (CR-CNN), to tackle the
relation classification task. The proposed network
learns a distributed vector representation for each
relation class. Given an input text segment, the
network uses a convolutional layer to produce a
distributed vector representation of the text and
compares it to the class representations in order
to produce a score for each class. We propose a
new pairwise ranking loss function that makes it
easy to reduce the impact of artificial classes. We
perform an extensive number of experiments using
the the SemEval-2010 Task 8 dataset. Using CR-
CNN, and without the need for any costly hand-
crafted feature, we outperform the state-of-the-art
for this dataset. Our experimental results are ev-
idence that: (1) CR-CNN is more effective than
CNN followed by a softmax classifier; (2) omit-
ting the representation of the artificial class Other
improves both precision and recall; and (3) using
only word embeddings as input features is enough
to achieve state-of-the-art results if we consider
only the text between the two target nominals.
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The remainder of the paper is structured as fol-
lows. Section 2 details the proposed neural net-
work. In Section 3, we present details about the
setup of experimental evaluation, and then de-
scribe the results in Section 4. In Section 5, we
discuss previous work in deep neural networks
for relation classification and for other NLP tasks.
Section 6 presents our conclusions.

2 The Proposed Neural Network

Given a sentence x and two target nouns, CR-CNN
computes a score for each relation class c ∈ C.
For each class c ∈ C, the network learns a dis-
tributed vector representation which is encoded as
a column in the class embedding matrix W classes.
As detailed in Figure 1, the only input for the net-
work is the tokenized text string of the sentence. In
the first step, CR-CNN transforms words into real-
valued feature vectors. Next, a convolutional layer
is used to construct a distributed vector represen-
tations of the sentence, rx. Finally, CR-CNN com-
putes a score for each relation class c ∈ C by per-
forming a dot product between rᵀx and W classes.

2.1 Word Embeddings
The first layer of the network transforms words
into representations that capture syntactic and
semantic information about the words. Given
a sentence x consisting of N words x =
{w1, w2, ..., wN}, every wordwn is converted into
a real-valued vector rwn . Therefore, the input to
the next layer is a sequence of real-valued vectors
embx = {rw1 , rw2 , ..., rwN }

Word representations are encoded by column
vectors in an embedding matrixWwrd ∈ Rdw×|V |,
where V is a fixed-sized vocabulary. Each column
Wwrd
i ∈ Rdw

corresponds to the word embedding
of the i-th word in the vocabulary. We transform a
word w into its word embedding rw by using the
matrix-vector product:

rw = Wwrdvw

where vw is a vector of size |V | which has value
1 at index w and zero in all other positions. The
matrix Wwrd is a parameter to be learned, and the
size of the word embedding dw is a hyperparame-
ter to be chosen by the user.

2.2 Word Position Embeddings
In the task of relation classification, information
that is needed to determine the class of a relation

Figure 1: CR-CNN: a Neural Network for classi-
fying by ranking.

between two target nouns normally comes from
words which are close to the target nouns. Zeng
et al. (2014) propose the use of word position em-
beddings (position features) which help the CNN
by keeping track of how close words are to the tar-
get nouns. These features are similar to the posi-
tion features proposed by Collobert et al. (2011)
for the Semantic Role Labeling task.

In this work we also experiment with the word
position embeddings (WPE) proposed by Zeng et
al. (2014). The WPE is derived from the relative
distances of the current word to the target noun1

and noun2. For instance, in the sentence shown in
Figure 1, the relative distances of left to car and
plant are -1 and 2, respectively. As in (Collobert
et al., 2011), each relative distance is mapped to
a vector of dimension dwpe, which is initialized
with random numbers. dwpe is a hyperparameter
of the network. Given the vectorswp1 andwp2 for
the word w with respect to the targets noun1 and
noun2, the position embedding of w is given by
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the concatenation of these two vectors, wpew =
[wp1, wp2].

In the experiments where word position
embeddings are used, the word embed-
ding and the word position embedding of
each word are concatenated to form the
input for the convolutional layer, embx =
{[rw1 , wpew1 ], [rw2 , wpew2 ], ..., [rwN , wpewN ]}.

2.3 Sentence Representation

The next step in the NN consists in creating the
distributed vector representation rx for the input
sentence x. The main challenges in this step are
the sentence size variability and the fact that im-
portant information can appear at any position in
the sentence. In recent work, convolutional ap-
proaches have been used to tackle these issues
when creating representations for text segments
of different sizes (Zeng et al., 2014; Hu et al.,
2014; dos Santos and Gatti, 2014) and character-
level representations of words of different sizes
(dos Santos and Zadrozny, 2014). Here, we use
a convolutional layer to compute distributed vec-
tor representations of the sentence. The convo-
lutional layer first produces local features around
each word in the sentence. Then, it combines these
local features using a max operation to create a
fixed-sized vector for the input sentence.

Given a sentence x, the convolutional layer ap-
plies a matrix-vector operation to each window
of size k of successive windows in embx =
{rw1 , rw2 , ..., rwN }. Let us define the vector zn ∈
Rdwk as the concatenation of a sequence of k word
embeddings, centralized in the n-th word:

zn = (rwn−(k−1)/2 , ..., rwn+(k−1)/2)ᵀ

In order to overcome the issue of referencing
words with indices outside of the sentence bound-
aries, we augment the sentence with a special

padding token replicated
k − 1

2
times at the be-

ginning and the end.
The convolutional layer computes the j-th ele-

ment of the vector rx ∈ Rdc
as follows:

[rx]j = max
1<n<N

[
f
(
W 1zn + b1

)]
j

where W 1 ∈ Rdc×dwk is the weight matrix of the
convolutional layer and f is the hyperbolic tangent
function. The same matrix is used to extract local
features around each word window of the given

sentence. The fixed-sized distributed vector rep-
resentation for the sentence is obtained by using
the max over all word windows. Matrix W 1 and
vector b1 are parameters to be learned. The num-
ber of convolutional units dc, and the size of the
word context window k are hyperparameters to be
chosen by the user. It is important to note that dc

corresponds to the size of the sentence representa-
tion.

2.4 Class embeddings and Scoring
Given the distributed vector representation of the
input sentence x, the network with parameter set
θ computes the score for a class label c ∈ C by
using the dot product

sθ(x)c = rᵀx[W
classes]c

where W classes is an embedding matrix whose
columns encode the distributed vector representa-
tions of the different class labels, and [W classes]c
is the column vector that contains the embedding
of the class c. Note that the number of dimensions
in each class embedding must be equal to the size
of the sentence representation, which is defined by
dc. The embedding matrix W classes is a parame-
ter to be learned by the network. It is initialized
by randomly sampling each value from an uniform

distribution: U (−r, r), where r =
√

6
|C|+ dc

.

2.5 Training Procedure
Our network is trained by minimizing a pairwise
ranking loss function over the training set D. The
input for each training round is a sentence x and
two different class labels y+ ∈ C and c− ∈ C,
where y+ is a correct class label for x and c− is
not. Let sθ(x)y+ and sθ(x)c− be respectively the
scores for class labels y+ and c− generated by the
network with parameter set θ. We propose a new
logistic loss function over these scores in order to
train CR-CNN:

L = log(1 + exp(γ(m+ − sθ(x)y+))

+ log(1 + exp(γ(m− + sθ(x)c−))
(1)

where m+ and m− are margins and γ is a scal-
ing factor that magnifies the difference between
the score and the margin and helps to penalize
more on the prediction errors. The first term in
the right side of Equation 1 decreases as the score
sθ(x)y+ increases. The second term in the right
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side decreases as the score sθ(x)c− decreases.
Training CR-CNN by minimizing the loss func-
tion in Equation 1 has the effect of training to give
scores greater than m+ for the correct class and
(negative) scores smaller than −m− for incorrect
classes. In our experiments we set γ to 2, m+ to
2.5 and m− to 0.5. We use L2 regularization by
adding the term β‖θ‖2 to Equation 1. In our ex-
periments we set β to 0.001. We use stochastic
gradient descent (SGD) to minimize the loss func-
tion with respect to θ.

Like some other ranking approaches that only
update two classes/examples at every training
round (Weston et al., 2011; Gao et al., 2014), we
can efficiently train the network for tasks which
have a very large number of classes. This is an
advantage over softmax classifiers.

On the other hand, sampling informative nega-
tive classes/examples can have a significant impact
in the effectiveness of the learned model. In the
case of our loss function, more informative nega-
tive classes are the ones with a score larger than
−m−. The number of classes in the relation clas-
sification dataset that we use in our experiments is
small. Therefore, in our experiments, given a sen-
tence x with class label y+, the incorrect class c−

that we choose to perform a SGD step is the one
with the highest score among all incorrect classes
c− = arg max

c ∈ C; c 6=y+
sθ(x)c.

For tasks where the number of classes is large,
we can fix a number of negative classes to be con-
sidered at each example and select the one with
the largest score to perform a gradient step. This
approach is similar to the one used by Weston et
al. (2014) to select negative examples.

We use the backpropagation algorithm to com-
pute gradients of the network. In our experi-
ments, we implement the CR-CNN architecture
and the backpropagation algorithm using Theano
(Bergstra et al., 2010).

2.6 Special Treatment of Artificial Classes

In this work, we consider a class as artificial if it is
used to group items that do not belong to any of the
actual classes. An example of artificial class is the
class Other in the SemEval 2010 relation classifi-
cation task. In this task, the artificial class Other
is used to indicate that the relation between two
nominals does not belong to any of the nine rela-
tion classes of interest. Therefore, the class Other
is very noisy since it groups many different types

of relations that may not have much in common.
An important characteristic of CR-CNN is that

it makes it easy to reduce the effect of artificial
classes by omitting their embeddings. If the em-
bedding of a class label c is omitted, it means that
the embedding matrix W classes does not contain
a column vector for c. One of the main benefits
from this strategy is that the learning process fo-
cuses on the “natural” classes only. Since the em-
bedding of the artificial class is omitted, it will not
influence the prediction step, i.e., CR-CNN does
not produce a score for the artificial class.

In our experiments with the SemEval-2010 rela-
tion classification task, when training with a sen-
tence x whose class label y = Other, the first
term in the right side of Equation 1 is set to
zero. During prediction time, a relation is clas-
sified as Other only if all actual classes have neg-
ative scores. Otherwise, it is classified with the
class which has the largest score.

3 Experimental Setup

3.1 Dataset and Evaluation Metric
We use the SemEval-2010 Task 8 dataset to per-
form our experiments. This dataset contains
10,717 examples annotated with 9 different rela-
tion types and an artificial relation Other, which
is used to indicate that the relation in the exam-
ple does not belong to any of the nine main rela-
tion types. The nine relations are Cause-Effect,
Component-Whole, Content-Container, Entity-
Destination, Entity-Origin, Instrument-Agency,
Member-Collection, Message-Topic and Product-
Producer. Each example contains a sentence
marked with two nominals e1 and e2, and the
task consists of predicting the relation between
the two nominals taking into consideration the di-
rectionality. That means that the relation Cause-
Effect(e1,e2) is different from the relation Cause-
Effect(e2,e1), as shown in the examples below.
More information about this dataset can be found
in (Hendrickx et al., 2010).

The [war]e1 resulted in other collateral imperial
[conquests]e2 as well. ⇒ Cause-Effect(e1,e2)

The [burst]e1 has been caused by water hammer

[pressure]e2. ⇒ Cause-Effect(e2,e1)

The SemEval-2010 Task 8 dataset is already
partitioned into 8,000 training instances and 2,717
test instances. We score our systems by using the
SemEval-2010 Task 8 official scorer, which com-
putes the macro-averaged F1-scores for the nine
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actual relations (excluding Other) and takes the di-
rectionality into consideration.

3.2 Word Embeddings Initialization

The word embeddings used in our experiments are
initialized by means of unsupervised pre-training.
We perform pre-training using the skip-gram NN
architecture (Mikolov et al., 2013) available in
the word2vec tool. We use the December 2013
snapshot of the English Wikipedia corpus to train
word embeddings with word2vec. We prepro-
cess the Wikipedia text using the steps described
in (dos Santos and Gatti, 2014): (1) removal of
paragraphs that are not in English; (2) substitu-
tion of non-western characters for a special char-
acter; (3) tokenization of the text using the to-
kenizer available with the Stanford POS Tagger
(Toutanova et al., 2003); (4) removal of sentences
that are less than 20 characters long (including
white spaces) or have less than 5 tokens. (5) lower-
case all words and substitute each numerical digit
by a 0. The resulting clean corpus contains about
1.75 billion tokens.

3.3 Neural Network Hyper-parameter

We use 4-fold cross-validation to tune the neu-
ral network hyperparameters. Learning rates in
the range of 0.03 and 0.01 give relatively simi-
lar results. Best results are achieved using be-
tween 10 and 15 training epochs, depending on
the CR-CNN configuration. In Table 1, we show
the selected hyperparameter values. Additionally,
we use a learning rate schedule that decreases the
learning rate λ according to the training epoch t.
The learning rate for epoch t, λt, is computed us-

ing the equation: λt =
λ

t
.

Parameter Parameter Name Value
dw Word Emb. size 400
dwpe Word Pos. Emb. size 70
dc Convolutinal Units 1000
k Context Window size 3
λ Initial Learning Rate 0.025

Table 1: CR-CNN Hyperparameters

4 Experimental Results

4.1 Word Position Embeddings and Input
Text Span

In the experiments discussed in this section we as-
sess the impact of using word position embeddings
(WPE) and also propose a simpler alternative ap-
proach that is almost as effective as WPEs. The
main idea behind the use of WPEs in relation clas-
sification task is to give some hint to the convo-
lutional layer of how close a word is to the target
nouns, based on the assumption that closer words
have more impact than distant words.

Here we hypothesize that most of the informa-
tion needed to classify the relation appear between
the two target nouns. Based on this hypothesis,
we perform an experiment where the input for the
convolutional layer consists of the word embed-
dings of the word sequence {we1 − 1, ..., we2 +1}
where e1 and e2 correspond to the positions of the
first and the second target nouns, respectively.

In Table 2 we compare the results of different
CR-CNN configurations. The first column indi-
cates whether the full sentence was used (Yes) or
whether the text span between the target nouns
was used (No). The second column informs if
the WPEs were used or not. It is clear that the
use of WPEs is essential when the full sentence is
used, since F1 jumps from 74.3 to 84.1. This ef-
fect of WPEs is reported by (Zeng et al., 2014). On
the other hand, when using only the text span be-
tween the target nouns, the impact of WPE is much
smaller. With this strategy, we achieve a F1 of 82.8
using only word embeddings as input, which is a
result as good as the previous state-of-the-art F1 of
83.0 reported in (Yu et al., 2014) for the SemEval-
2010 Task 8 dataset. This experimental result also
suggests that, in this task, the CNN works better
for short texts.

All experiments reported in the next sections
use CR-CNN with full sentence and WPEs.

Full Word Prec. Rec. F1Sentence Position
Yes Yes 83.7 84.7 84.1
No Yes 83.3 83.9 83.5
No No 83.4 82.3 82.8
Yes No 78.1 71.5 74.3

Table 2: Comparison of different CR-CNN con-
figurations.
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4.2 Impact of Omitting the Embedding of the
artificial class Other

In this experiment we assess the impact of omit-
ting the embedding of the class Other. As we
mentioned above, this class is very noisy since it
groups many different infrequent relation types.
Its embedding is difficult to define and therefore
brings noise into the classification process of the
natural classes. In Table 3 we present the results
comparing the use and omission of embedding
for the class Other. The two first lines of results
present the official F1, which does not take into
account the results for the class Other. We can see
that by omitting the embedding of the class Other
both precision and recall for the other classes im-
prove, which results in an increase of 1.4 in the
F1. These results suggest that the strategy we use
in CR-CNN to avoid the noise of artificial classes
is effective.

Use embedding Class Prec. Rec. F1of class Other
No All 83.7 84.7 84.1
Yes All 81.3 84.3 82.7
No Other 52.0 48.7 50.3
Yes Other 60.1 48.7 53.8

Table 3: Impact of not using an embedding for the
artificial class Other.

In the two last lines of Table 3 we present the
results for the class Other. We can note that
while the recall for the cases classified as Other
remains 48.7, the precision significantly decreases
from 60.1 to 52.0 when the embedding of the class
Other is not used. That means that more cases
from natural classes (all) are now been classified
as Other. However, as both the precision and the
recall of the natural classes increase, the cases that
are now classified as Other must be cases that are
also wrongly classified when the embedding of the
class Other is used.

4.3 CR-CNN versus CNN+Softmax
In this section we report experimental results com-
paring CR-CNN with CNN+Softmax. In order
to do a fair comparison, we’ve implemented a
CNN+Softmax and trained it with the same data,
word embeddings and WPEs used in CR-CNN.
Concretely, our CNN+Softmax consists in getting
the output of the convolutional layer, which is the
vector rx in Figure 1, and giving it as input for

a softmax classifier. We tune the parameters of
CNN+Softmax by using a 4-fold cross-validation
with the training set. Compared to the hyperpa-
rameter values for CR-CNN presented in Table 1,
the only difference for CNN+Softmax is the num-
ber of convolutional units dc, which is set to 400.

In Table 4 we compare the results of CR-
CNN and CNN+Softmax. CR-CNN outperforms
CNN+Softmax in both precision and recall, and
improves the F1 by 1.6. The third line in Ta-
ble 4 shows the result reported by Zeng et al.
(2014) when only word embeddings and WPEs
are used as input to the network (similar to our
CNN+Softmax). We believe that the word embed-
dings employed by them is the main reason their
result is much worse than that of CNN+Softmax.
We use word embeddings of size 400 while they
use word embeddings of size 50, which were
trained using much less unlabeled data than we
did.

Neural Net. Prec. Rec. F1
CR-CNN 83.7 84.7 84.1

CNN+SoftMax 82.1 83.1 82.5
CNN+SoftMax

- - 78.9
(Zeng et al., 2014)

Table 4: Comparison of results of CR-CNN and
CNN+Softmax.

4.4 Comparison with the State-of-the-art

In Table 5 we compare CR-CNN results with
results recently published for the SemEval-2010
Task 8 dataset. Rink and Harabagiu (2010) present
a support vector machine (SVM) classifier that is
fed with a rich (traditional) feature set. It ob-
tains an F1 of 82.2, which was the best result
at SemEval-2010 Task 8. Socher et al. (2012)
present results for a recursive neural network
(RNN) that employs a matrix-vector representa-
tion to every node in a parse tree in order to com-
pose the distributed vector representation for the
complete sentence. Their method is named the
matrix-vector recursive neural network (MVRNN)
and achieves a F1 of 82.4 when POS, NER and
WordNet features are used. In (Zeng et al., 2014),
the authors present results for a CNN+Softmax
classifier which employs lexical and sentence-
level features. Their classifier achieves a F1 of
82.7 when adding a handcrafted feature based on
the WordNet. Yu et al. (2014) present the Factor-
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based Compositional Embedding Model (FCM),
which achieves a F1 of 83.0 by deriving sentence-
level and substructure embeddings from word em-
beddings utilizing dependency trees and named
entities.

As we can see in the last line of Table 5, CR-
CNN using the full sentence, word embeddings
and WPEs outperforms all previous reported re-
sults and reaches a new state-of-the-art F1 of 84.1.
This is a remarkable result since we do not use
any complicated features that depend on external
lexical resources such as WordNet and NLP tools
such as named entity recognizers (NERs) and de-
pendency parsers.

We can see in Table 5 that CR-CNN1 also
achieves the best result among the systems that
use word embeddings as the only input features.
The closest result (80.6), which is produced by the
FCM system of Yu et al. (2014), is 2.2 F1 points
behind CR-CNN result (82.8).

4.5 Most Representative Trigrams for each
Relation

In Table 6, for each relation type we present the
five trigrams in the test set which contributed the
most for scoring correctly classified examples.
Remember that in CR-CNN, given a sentence x
the score for the class c is computed by sθ(x)c =
rᵀx[W classes]c. In order to compute the most rep-
resentative trigram of a sentence x, we trace back
each position in rx to find the trigram responsible
for it. For each trigram t, we compute its particular
contribution for the score by summing the terms
in score that use positions in rx that trace back to
t. The most representative trigram in x is the one
with the largest contribution to the improvement of
the score. In order to create the results presented
in Table 6, we rank the trigrams which were se-
lected as the most representative of any sentence
in decreasing order of contribution value. If a tri-
gram appears as the largest contributor for more
than one sentence, its contribuition value becomes
the sum of its contribution for each sentence.

We can see in Table 6 that for most classes, the
trigrams that contributed the most to increase the
score are indeed very informative regarding the re-
lation type. As expected, different trigrams play
an important role depending on the direction of
the relation. For instance, the most informative tri-

1This is the result using only the text span between the
target nouns.

gram for Entity-Origin(e1,e2) is “away from the”,
while reverse direction of the relation, Entity-
Origin(e2,e1) or Origin-Entity, has “the source
of” as the most informative trigram. These re-
sults are a step towards the extraction of meaning-
ful knowledge from models produced by CNNs.

5 Related Work

Over the years, various approaches have been
proposed for relation classification (Zhang, 2004;
Qian et al., 2009; Hendrickx et al., 2010; Rink and
Harabagiu, 2010). Most of them treat it as a multi-
class classification problem and apply a variety of
machine learning techniques to the task in order to
achieve a high accuracy.

Recently, deep learning (Bengio, 2009) has be-
come an attractive area for multiple applications,
including computer vision, speech recognition and
natural language processing. Among the different
deep learning strategies, convolutional neural net-
works have been successfully applied to different
NLP task such as part-of-speech tagging (dos San-
tos and Zadrozny, 2014), sentiment analysis (Kim,
2014; dos Santos and Gatti, 2014), question classi-
fication (Kalchbrenner et al., 2014), semantic role
labeling (Collobert et al., 2011), hashtag predic-
tion (Weston et al., 2014), sentence completion
and response matching (Hu et al., 2014).

Some recent work on deep learning for relation
classification include Socher et al. (2012), Zeng
et al. (2014) and Yu et al. (2014). In (Socher et
al., 2012), the authors tackle relation classification
using a recursive neural network (RNN) that as-
signs a matrix-vector representation to every node
in a parse tree. The representation for the com-
plete sentence is computed bottom-up by recur-
sively combining the words according to the syn-
tactic structure of the parse tree Their method is
named the matrix-vector recursive neural network
(MVRNN).

Zeng et al. (2014) propose an approach for re-
lation classification where sentence-level features
are learned through a CNN, which has word em-
bedding and position features as its input. In par-
allel, lexical features are extracted according to
given nouns. Then sentence-level and lexical fea-
tures are concatenated into a single vector and
fed into a softmax classifier for prediction. This
approach achieves state-of-the-art performance on
the SemEval-2010 Task 8 dataset.

Yu et al. (2014) propose a Factor-based Com-
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Classifier Feature Set F1
SVM POS, prefixes, morphological, WordNet, dependency parse,

82.2(Rink and Harabagiu, 2010) Levin classes, ProBank, FrameNet, NomLex-Plus,
Google n-gram, paraphrases, TextRunner

RNN word embeddings 74.8
(Socher et al., 2012) word embeddings, POS, NER, WordNet 77.6

MVRNN word embeddings 79.1
(Socher et al., 2012) word embeddings, POS, NER, WordNet 82.4

word embeddings 69.7
CNN+Softmax word embeddings, word position embeddings, 82.7(Zeng et al., 2014) word pair, words around word pair, WordNet

FCM word embeddings 80.6
(Yu et al., 2014) word embeddings, dependency parse, NER 83.0

CR-CNN word embeddings 82.8
word embeddings, word position embeddings 84.1

Table 5: Comparison with results published in the literature.

Relation (e1,e2) (e2,e1)

Cause-Effect e1 resulted in, e1 caused a, had caused e2 caused by, was caused by, are
the, poverty cause e2, caused a e2 caused by, been caused by, e2 from e1

Component-Whole e1 of the, of the e2, part of the, e2 ’s e1, with its e1, e2 has a,
in the e2, e1 on the e2 comprises the, e2 with e1

Content-Container was in a, was hidden in, were in a, e2 full of, e2 with e1, e2 was full,
was inside a, was contained in e2 contained a, e2 with cold

Entity-Destination e1 into the, e1 into a, e1 to the, -was put inside, imported into the

Entity-Origin away from the, derived from a, had the source of, e2 grape e1,
left the, derived from an, e1 from the e2 butter e1

Instrument-Agency are used by, e1 for e2, is used by, with a e1, by using e1, e2 finds a,
trade for e2, with the e2 e2 with a, e2 , who

Member-Collection of the e2, in the e2, of this e2, e2 of e1, of wild e1, of elven e1,
the political e2, e1 collected in e2 of different, of 0000 e1

Message-Topic
e1 is the, e1 asserts the, e1 that the, described in the, discussed in the,

on the e2, e1 inform about featured in numerous, discussed
in cabinet, documented in two,

Product-Producer e1 by the, by a e2, of the e2, e2 of the, e2 has constructed, e2 ’s e1,
by the e2, from the e2 e2 came up, e2 who created

Table 6: List of most representative trigrams for each relation type.

positional Embedding Model (FCM) by deriving
sentence-level and substructure embeddings from
word embeddings, utilizing dependency trees and
named entities. It achieves slightly higher accu-
racy on the same dataset than (Zeng et al., 2014),
but only when syntactic information is used.

There are two main differences between the ap-
proach proposed in this paper and the ones pro-
posed in (Socher et al., 2012; Zeng et al., 2014; Yu
et al., 2014): (1) CR-CNN uses a pair-wise rank-
ing method, while other approaches apply multi-
class classification by using the softmax function
on the top of the CNN/RNN; and (2) CR-CNN
employs an effective method to deal with artificial
classes by omitting their embeddings, while other
approaches treat all classes equally.

6 Conclusion

In this work we tackle the relation classification
task using a CNN that performs classification by
ranking. The main contributions of this work are:
(1) the definition of a new state-of-the-art for the
SemEval-2010 Task 8 dataset without using any
costly handcrafted features; (2) the proposal of a
new CNN for classification that uses class embed-
dings and a new rank loss function; (3) an effective
method to deal with artificial classes by omitting
their embeddings in CR-CNN; (4) the demonstra-
tion that using only the text between target nomi-
nals is almost as effective as using WPEs; and (5)
a method to extract from the CR-CNN model the
most representative contexts of each relation type.
Although we apply CR-CNN to relation classifica-
tion, this method can be used for any classification
task.
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Abstract

We study the application of word embed-
dings to generate semantic representations
for the domain adaptation problem of re-
lation extraction (RE) in the tree kernel-
based method. We systematically evaluate
various techniques to generate the seman-
tic representations and demonstrate that
they are effective to improve the general-
ization performance of a tree kernel-based
relation extractor across domains (up to
7% relative improvement). In addition,
we compare the tree kernel-based and the
feature-based method for RE in a compat-
ible way, on the same resources and set-
tings, to gain insights into which kind of
system is more robust to domain changes.
Our results and error analysis shows that
the tree kernel-based method outperforms
the feature-based approach.

1 Introduction

Relation Extraction (RE) is an important aspect of
information extraction that aims to discover the
semantic relationships between two entity men-
tions appearing in the same sentence. Previous
research on RE has followed either the kernel-
based approach (Zelenko et al., 2003; Bunescu
and Mooney, 2005; Zhao and Grishman, 2005;
Zhang et al., 2006; Bunescu, 2007; Qian et al.,
2008; Nguyen et al., 2009) or the feature-based ap-
proach (Kambhatla, 2004; Grishman et al., 2005;
Zhou et al., 2005; Jiang and Zhai, 2007a; Chan
and Roth, 2010; Sun et al., 2011). Usually, in
such supervised machine learning systems, it is as-
sumed that the training data and the data to which
the RE system is applied to are sampled inde-
pendently and identically from the same distribu-
tion. This assumption is often violated in reality
and exemplified in the fact that the performance

of the traditional RE techniques degrades signif-
icantly in such a domain mismatch case (Plank
and Moschitti, 2013). To alleviate this perfor-
mance loss, we need to resort to domain adaptation
(DA) techniques to adapt a system trained on some
source domain to perform well on new target do-
mains. We here focus on the unsupervised domain
adaptation (i.e., no labeled target data) and single-
system DA (Petrov and McDonald, 2012; Plank
and Moschitti, 2013), i.e., building a single sys-
tem that is able to cope with different, yet related
target domains.

While DA has been investigated extensively in
the last decade for various natural language pro-
cessing (NLP) tasks, the examination of DA for
RE is only very recent. To the best of our knowl-
edge, there have been only three studies on DA
for RE (Plank and Moschitti, 2013; Nguyen and
Grishman, 2014; Nguyen et al., 2014). Of these,
Nguyen et al. (2014) follow the supervised DA
paradigm and assume some labeled data in the
target domains. In contrast, Plank and Moschitti
(2013) and Nguyen and Grishman (2014) work
on the unsupervised DA. In our view, unsuper-
vised DA is more challenging, but more realistic
and practical for RE as we usually do not know
which target domains we need to work on in ad-
vance, thus cannot expect to possess labeled data
of the target domains. Our current work therefore
focuses on the single-system unsupervised DA.
Besides, note that this setting tries to construct a
single system that can work robustly with differ-
ent but related domains (multiple target domains),
thus being different from most previous studies on
DA (Blitzer et al., 2006; Blitzer et al., 2007) which
have attempted to design a specialized system for
every specific target domain.

Plank and Moschitti (2013) propose to embed
word clusters and latent semantic analysis (LSA)
of words into tree kernels for DA of RE, while
Nguyen and Grishman (2014) studies the appli-
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cation of word clusters and word embeddings for
DA of RE on the feature-based method. Although
word clusters (Brown et al., 1992) have been em-
ployed by both studies to improve the performance
of relation extractors across domains, the appli-
cation of word embeddings (Bengio et al., 2003;
Mnih and Hinton, 2008; Turian et al., 2010) for
DA of RE is only examined in the feature-based
method and never explored in the tree kernel-
based method so far, giving rise to the first ques-
tion we want to address in this paper:

(i) Can word embeddings help the tree kernel-
based methods on DA for RE and more impor-
tantly, in which way can we do it effectively?

This question is important as word embeddings
are real valued vectors, while the tree kernel-based
methods rely on the symbolic matches or mis-
matches of concrete labels in the parse trees to
compute the kernels. It is unclear at the first glance
how to encode word embeddings into the tree ker-
nels effectively so that word embeddings could
help to improve the generalization performance of
RE. One way is to use word embeddings to com-
pute similarities between words and embed these
similarity scores into the kernel functions, e.g.,
by resembling the method of Plank and Moschitti
(2013) that exploited LSA (in the semantic syntac-
tic tree kernel (SSTK), cf. §2.1). We explore vari-
ous methods to apply word embeddings to gener-
ate the semantic representations for DA of RE and
demonstrate that semantic representations are very
effective to significantly improve the portability of
the relation extractors based on the tree kernels,
bringing us to the second question:

(ii) Between the feature-based method in
Nguyen and Grishman (2014) and the SSTK
method in Plank and Moschitti (2013), which
method is better for DA of RE, given the recent
discovery of word embeddings for both methods?

It is worth noting that besides the approach dif-
ference, these two works employ rather different
resources and settings in their evaluation, mak-
ing it impossible to directly compare their perfor-
mance. In particular, while Plank and Moschitti
(2013) only use the path-enclosed trees induced
from the constituent parse trees as the represen-
tation for relation mentions, Nguyen and Grish-
man (2014) include a rich set of features extracted
from multiple resources such as constituent trees,
dependency trees, gazetteers, semantic resources
in the representation. Besides, Plank and Mos-

chitti (2013) consider the direction of relations in
their evaluation (i.e, distinguishing between rela-
tion classes and their inverses) but Nguyen and
Grishman (2014) disregard this relation direction.
Finally, we note that although both studies evalu-
ate their systems on the ACE 2005 dataset, they
actually have different dataset partitions. In order
to overcome this limitation, we conduct an eval-
uation in which the two methods are directed to
use the same resources and settings, and are thus
compared in a compatible manner to achieve an in-
sight on their effectiveness for DA of RE. In fact,
the problem of incompatible comparison is unfor-
tunately very common in the RE literature (Wang,
2008; Plank and Moschitti, 2013) and we believe
there is a need to tackle this increasing confusion
in this line of research. Therefore, this is actu-
ally the first attempt to compare the two methods
(tree kernel-based and feature-based) on the same
settings. To ease the comparison for future work
and circumvent the Zigglebottom pitfall (Pedersen,
2008), the entire setup and package is available.1

2 Relation Extraction Approaches

In the following, we introduce the two relation ex-
traction systems further examined in this study.

2.1 Tree kernel-based Method

In the tree kernel-based method (Moschitti, 2006;
Moschitti, 2008; Plank and Moschitti, 2013), a
relation mention (the two entity mentions and
the sentence containing them) is represented
by the path-enclosed tree (PET), the smallest
constituency-based subtree including the two tar-
get entity mentions (Zhang et al., 2006). The syn-
tactic tree kernel (STK) is then defined to compute
the similarity between two PET trees (where tar-
get entities are marked) by counting the common
sub-trees, without enumerating the whole frag-
ment space (Moschitti, 2006; Moschitti, 2008).
STK is then applied in the support vector ma-
chines (SVMs) for RE. The major limitation of
STK is its inability to match two trees that share
the same substructure, but involve different though
semantically related terminal nodes (words). This
is caused by the hard matches between words,
and consequently between sequences containing
them. For instance, in the following example taken
from Plank and Moschitti (2013), the two frag-
ments “governor from Texas” and “head of Mary-

1https://bitbucket.org/nycphre/limo-re
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land” would not match in STK although they have
very similar syntactic structures and basically con-
vey the same relationship.

Plank and Moschitti (2013) propose to resolve
this issue for STK using the semantic syntac-
tic tree kernel (SSTK) (Bloehdorn and Moschitti,
2007) and apply it to the domain adaptation prob-
lem of RE. The two following techniques are uti-
lized to activate the SSTK: (i) replace the part-of-
speech nodes in the PET trees by the new ones
labeled by the word clusters of the corresponding
terminals (words); (ii) replace the binary similar-
ity scores between words (i.e, either 1 or 0) by
the similarities induced from the latent semantic
analysis (LSA) of large corpus. The former gener-
alizes the part-of-speech similarity to the seman-
tic similarity on word clusters; the latter, on the
other hand, allows soft matches between words
that have the same latent semantic but differ in
symbolic representation. Both techniques empha-
size the invariants of word semantics in different
domains, thus being helpful to alleviate the vocab-
ulary difference across domains.

2.2 Feature-based Method

In the feature-based method (Zhou et al., 2005;
Sun et al., 2011; Nguyen and Grishman, 2014), re-
lation mentions are first transformed into rich fea-
ture vectors that capture various characteristics of
the relation mentions (i.e, lexicon, syntax, seman-
tics etc). The resulting vectors are then fed into the
statistical classifiers such as Maximum Entropy
(MaxEnt) to perform classification for RE.

The main reason for the performance loss of
the feature-based systems on new domains is the
behavioral changes of the features when domains
shift. Some features might be very informative in
the source domain but become less relevant in the
target domains. For instance, some words, that
are very indicative in the source domain might
not appear in the target domains (lexical sparsity).
Consequently, the models putting high weights on
such words (features) in the source domain will
fail to perform well on the target domains. Nguyen
and Grishman (2014) address this problem for the
feature-based method in DA of RE by introduc-
ing word embeddings as additional features. The
rationale is based on the fact that word embed-
dings are low dimensional and real valued vec-
tors, capturing latent syntactic and semantic prop-
erties of words (Bengio et al., 2003; Mnih and

Hinton, 2008; Turian et al., 2010). The embed-
dings of symbolically different words are often
close to each other if they have similar semantic
and syntactic functions. This again helps to mit-
igate the lexical sparsity or the vocabulary differ-
ence between the domains and has proven helpful
for, amongst others, the feature-based method in
DA of RE.

2.3 Tree Kernel-based vs Feature-based

The feature-based method explicitly encapsulates
the linguistic intuition and domain expertise for
RE into the features, while the tree kernel-based
method avoids the complicated feature engineer-
ing and implicitly encode the features into the
computation of the tree kernels. Which method
is better for DA of RE?

In order to ensure the two methods (Plank and
Moschitti, 2013; Nguyen and Grishman, 2014) are
compared compatibly on the same resources, we
make sure the two systems have access to the same
amount of information. Thus, we follow Plank
and Moschitti (2013) and use the PET trees (be-
side word clusters and word embeddings) as the
only resource the two methods can exploit.

For the feature-based method, we utilize all
the features extractable from the PET trees that
are standardly used in the state-of-the-art feature-
based systems for DA of RE (Nguyen and Gr-
ishman, 2014). Specifically, the feature set em-
ployed in this paper (denoted by FET) includes:
the lexical features, i.e., the context words, the
head words, the bigrams, the number of words,
the lexical path, the order of mention (Zhou et al.,
2005; Sun et al., 2011); and the syntactic features,
i.e., the path connecting the two mentions in PET
and the unigrams, bigrams, trigrams along this
path (Zhou et al., 2005; Jiang and Zhai, 2007a).

Hypothesis: Assuming identical settings and
resources, we hypothesize that the tree kernel-
based method is better than the feature-based
method for DA of RE. This is motivated because
of at least two reasons: (i) the tree kernel-based
method implicitly encodes a more comprehen-
sive feature set (involving all the sub-trees in the
PETs), thus potentially captures more domain-
independent features to be useful for DA of RE;
(ii) the tree kernel-based method avoids the in-
clusion of fine-tuned and domain-specific features
originated from the excessive feature engineer-
ing (i.e., hand-designing feature sets based on the
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linguistic intuition for specific domains) of the
feature-based method.

3 Word Embeddings & Tree Kernels

In this section, we first give the intuition that
guides us in designing the proposed methods. In
particular, one limitation of the syntactic seman-
tic tree kernel presented in Plank and Moschitti
(2013) (§2.1) is that semantics is highly tied to
syntax (the PET trees) in the kernel computation,
limiting the generalization capacity of semantics
to the extent of syntactic matches. If two rela-
tion mentions have different syntactic structures,
the two relation mentions will not match, although
they share the same semantic representation and
express the same relation class. For instance, the
two fragments “Tom is the CEO of the company”
and “the company, headed by Tom” express the
same relationship between “Tom” and “company”
based on the semantics of their context words,
but cannot be matched in SSTK as their syntac-
tic structures are different. In such a case, it is
desirable to have a representation of relation men-
tions that is grounded on the semantics of the con-
text words and reflects the latent semantics of the
whole relation mentions. This representation is
expected to be general enough to be effective on
different domains. Once the semantic representa-
tion of relation mentions is established, we can use
it in conjunction with the traditional tree kernels
to extend their coverage. The benefit is mutual as
both semantics and syntax help to generalize rela-
tion mentions to improve the recall, but also con-
strain each other to support precision. This is the
basic idea of our approach, which we compare to
the previous methods.

3.1 Methods

We propose to utilize word embeddings of the con-
text words as the principal components to obtain
semantic representations for relation mentions in
the tree kernel-based methods. Besides more tra-
ditional approaches to exploit word embeddings,
we investigate representations that go beyond the
word level and use compositionality embeddings
for domain adaptation for the first time.

In general, suppose we are able to acquire an
additional real-valued vector Vi from word embed-
dings to semantically represent a relation mention
Ri (along with the PET tree Ti), leading to the new
representation of Ri = (Ti, Vi). The new kernel

function in this case is then defined by:

Knew(Ri, Rj) = (1− α)SSTK(Ti, Tj) + αKvec(Vi, Vj)

where Kvec(Vi, Vj) is some standard vector ker-
nel like the polynomial kernels. α is a trade-off
parameter and indicates whether the system at-
tributes more weight to the traditional SSTK or the
new semantic kernel Kvec.

In this work, we consider the following meth-
ods to obtain the semantic representation Vi from
the word embeddings of the context words of Ri
(assuming d is the dimensionality of the word em-
beddings):

HEAD: Vi = the concatenation of the word em-
beddings of the two entity mention heads of Ri.
This representation is inherited from Nguyen and
Grishman (2014) that only examine embeddings
at the word level separately for the feature-based
method without considering the compositionality
embeddings of relation mentions. The dimension-
ality of HEAD is 2d.

According to the principle of compositional-
ity (Werning et al., 2006; Baroni and Zamparelli,
2010; Paperno et al., 2014), the meaning of a com-
plex expression is determined by the meanings of
its components and the rules to combine them. We
study the following two compositionality embed-
dings for relation mentions that can be generated
from the embeddings of the context words:

PHRASE: Vi = the mean of the embeddings
of the words contained in the PET tree Ti of
Ri. Although this composition is simple, it is in
fact competitive to the more complicated methods
based on recursive neural networks (Socher et al.,
2012b; Blacoe and Lapata, 2012; Sterckx et al.,
2014) on representing phrase semantics.

TREE: This is motivated by the training of re-
cursive neural networks (Socher et al., 2012a) for
semantic compositionality and attempts to aggre-
gate the context words embeddings syntactically.
In particular, we compute an embedding for every
node in the PET tree in a bottom-up manner. The
embeddings of the leaves are the embeddings of
the words associated with them while the embed-
dings of the internal nodes are the means of the
embeddings of their children nodes. We use the
embeddings of the root of the PET tree to represent
the relation mention in this case. Both PHRASE
and TREE have d dimensions.

It is also interesting to examine combinations of
these three representations (cf., Table 1).
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SIM: Finally, for completeness, we experi-
ment with a more obvious way to introduce
word embeddings into tree kernels, resembling
more closely the approach of Plank and Moschitti
(2013). In particularly, the SIM method simply
replaces the similarity scores between word pairs
obtained from LSA by the cosine similarities be-
tween the word embeddings to be used in the
SSTK kernel.

4 Experiments

4.1 Dataset, Resources and Parameters

We use the word clusters trained by Plank and
Moschitti (2013) on the ukWaC corpus (Baroni
et al., 2009) with 2 billion words, and the C&W
word embeddings from Turian el al. (2010)2 with
50 dimensions following Nguyen and Grishman
(2014). In order to make the comparisons com-
patible, we introduce word embeddings into the
tree kernel by extending the package provided by
Plank and Moschitti (2013), which uses the Char-
niak parser to obtain the constituent trees, the
SVM-light-TK for the SSTK kernel in SVM, the
directional relation classes, etc. We utilize the de-
fault vector kernel in the SVM-light-TK package
(d=3). For the feature-based method, we apply the
MaxEnt classifier in the MALLET3 package with
the L2 regularizer on the hierarchical architecture
for relation extraction as in Nguyen and Grishman
(2014).

Following prior work, we evaluate the sys-
tems on the ACE 2005 dataset which involves 6
domains: broadcast news (bn), newswire (nw),
broadcast conversation (bc), telephone conversa-
tion (cts), weblogs (wl) and usenet (un). The union
of bn and nw (news) is used as the source domain
while bc, cts and wl play the role of the target do-
mains. We take half of bc as the only target de-
velopment set, and use the remaining data and do-
mains for testing. The dataset partition is exactly
the same as in Plank and Moschitti (2013). As
described in their paper, the target domains quite
differ from the source domain in the relation dis-
tributions and vocabulary.

4.2 Word Embeddings for Tree Kernel

We investigate the effectiveness of different se-
mantic representations (§3.1) in tree kernels by

2
http://metaoptimize.com/projects/wordreprs/

3
http://mallet.cs.umass.edu/
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Figure 1: α vs F-measure on PET+HEAD+PHRASE

taking the PET tree as the baseline4, and evaluate
the performance of the representations when com-
bined with the baseline on the bc development set.

Method P R F1
PET (Plank and Moschitti, 2013) 52.2 41.7 46.4
PET+SIM 39.4 37.2 38.3
PET+HEAD 60.4 44.9 51.5
PET+PHRASE 58.4 40.7 48.0
PET+TREE 59.8 42.2 49.5
PET+HEAD+PHRASE 63.2 46.2 53.4
PET+HEAD+TREE 61.0 45.7 52.3
PET+PHRASE+TREE 59.2 42.4 49.4
PET+HEAD+PHRASE+TREE 60.8 45.2 51.9

Table 1: Performance on the bc dev set for PET. Best com-
bination (HEAD+PHRASE) is denoted WED in Table 2

Table 1 shows the results. The main conclusions
include:

(i) The substitution of LSA similarity scores
with the word embedding cosine similarities
(SIM) does not help to improve the performance
of the tree kernel method.

(ii) When employed independently, both the
word level embeddings (HEAD) and the compo-
sitionality embeddings (PHRASE, TREE) are ef-
fective for the tree kernel-based method on DA for
RE, showing a slight advantage for HEAD.

(iii) Thus, the compositionality embeddings
PHRASE and TREE seem to capture different
information with respect to the word level em-
beddings HEAD. We expect the combination of
HEAD with either PHRASE or TREE to further
improve performance. This is the case when
adding one of them at a time. PHRASE and TREE
seem to capture similar information, combining all
(last row in Table 1) is not the overall best sys-
tem. The best performance is achieved when the
HEAD and PHRASE embeddings are utilized at

4By using their system we obtained the same results.
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nw+bn (in-dom.) bc cts wl
# System: P: R: F1: P: R: F1: P: R: F1: P: R: F1:
1 PET (Plank and Moschitti, 2013) 50.6 42.1 46.0 51.2 40.6 45.3 51.0 37.8 43.4 35.4 32.8 34.0
2 PET+WED 55.8 48.7 52.0 57.3 45.7 50.8 54.0 38.1 44.7 40.1 36.5 38.2
3 PET WC 55.4 44.6 49.4 54.3 41.4 47.0 55.9 37.1 44.6 40.0 32.7 36.0
4 PET WC+WED 56.3 48.2 51.9 57.0 44.3 49.8 56.1 38.1 45.4 40.7 36.1 38.2
5 PET LSA 52.3 44.1 47.9 51.4 41.7 46.0 49.7 36.5 42.1 38.1 36.5 37.3
6 PET LSA+WED 55.2 48.5 51.6 58.8 45.8 51.5 54.1 38.1 44.7 40.9 38.5 39.6
7 PET+PET WC 55.0 46.5 50.4 54.4 43.4 48.3 54.1 38.1 44.7 38.4 34.5 36.3
8 PET+PET WC+WED 56.3 50.3 53.1 57.5 46.6 51.5 55.6 39.8 46.4 41.5 37.9 39.6
9 PET+PET LSA 52.7 46.6 49.5 53.9 45.2 49.2 49.9 37.6 42.9 37.9 38.3 38.1
10 PET+PET LSA+WED 55.5 49.9 52.6 56.8 45.8 50.8 52.5 38.6 44.5 41.6 39.3 40.5
11 PET+PET WC+PET LSA 55.1 45.9 50.1 55.3 43.1 48.5 53.1 37.0 43.6 39.9 35.8 37.8
12 PET+PET WC+PET LSA+WED 55.0 48.8 51.7 58.5 47.3 52.3 52.6 38.8 44.7 42.3 38.9 40.5

Table 2: In-domain (first column) and out-of-domain performance (columns two to four) on ACE 2005. Systems of the rows
not in gray come from Plank and Moschitti (2013) (the baselines). WED means HEAD+PHRASE.

the same time, reaching an F1 of 53.4% (compared
to 46.4% of the baseline) on the development set.

The results in Table 1 are obtained using the
trade-off parameter α = 0.7. Figure 1 addi-
tionally shows the variation of the performance
with changing α (for the best system on dev, i.e.,
for the representation PET+HEAD+PHRASE).
As we can see, the performance for α > 0.5 is
in general better, suggesting a preference for the
semantic representation over the syntactic repre-
sentation in DA for RE. The performance reaches
its peak when the suitable amounts of semantics
and syntax are combined (i.e, α = 0.7).

In the following experiments, we use the
embedding combination (HEAD+PHRASE) with
α = 0.7 for the tree kernels, denoted WED.

4.3 Domain Adaptation Experiments

In this section, we examine the semantic rep-
resentation for DA of RE in the tree kernel-
based method. In particular, we take the sys-
tems using the PET trees, word clusters and LSA
in Plank and Moschitti (2013) as the baselines
and augment them with the embeddings WED =
HEAD+PHRASE. We report the performance of
these augmented systems in Table 2 for the two
scenarios: (i) in-domain: both training and test-
ing are performed on the source domain via 5-fold
cross validation and (ii) out-of-domain: models
are trained on the source domain but evaluated on
the three target domains. To summarize, we find:

First, word embeddings seem to subsume word
clusters in the tree kernel-based method (compar-
ing rows 2 and 4, and except domain cts) while
word embeddings and LSA actually encode dif-
ferent information (comparing rows 2 and 6 for

the out-of-domain experiments) and their combi-
nation would be helpful for DA of RE.

Second, regarding composite kernels, given
word embeddings, the addition of the baseline ker-
nel (PET) is in general useful for the augmented
kernels PET WC and PET LSA (comparing rows
4 and 8, rows 6 and 10) although it is less pro-
nounced for PET LSA.

Third and most importantly, for all the systems
in Plank and Moschitti (2013) (the baselines) and
for all the target domains, whether word clusters
and LSA are utilized or not, we consistently wit-
ness the performance improvement of the base-
lines when combined with word embedding (com-
paring systems X and X+WED where X is some
baseline system). The best out-of-domain perfor-
mance is achieved when word embeddings are em-
ployed in conjunction with the composite kernels
(PET+PET WC+PET LSA for the target domains
bc and wl, and PET+PET WC for the target do-
main cts). To be more concrete, the best system
with word embeddings (row 12 in Table 2) signif-
icantly outperforms the best system in Plank and
Moschitti (2013) with p < 0.05, an improvement
of 3.7%, 1.1% and 2.7% on the target domains bc,
cts and wl respectively, demonstrating the bene-
fit of word embeddings for DA of RE in the tree
kernel-based method.

4.4 Tree Kernel-based vs Feature-based DA
of RE

This section aims to compare the tree kernel-based
method in Plank and Moschitti (2013) and the
feature-based method in Nguyen and Grishman
(2014) for DA of RE on the same settings (i.e,
same dataset partition, the same pre-processing
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nw+bn (in-dom.) bc cts wl
System: P: R: F1: P: R: F1: P: R: F1: P: R: F1:
Tree kernel-based:
PET+PET WC+HEAD+PHRASE 56.3 50.3 53.1 57.5 46.6 51.5 55.6 39.8 46.4 41.5 37.9 39.6
Feature-based:
FET+WC+HEAD 44.5 51.0 47.5 46.5 49.3 47.8 44.5 40.0 42.1 35.4 39.5 37.3
FET+WC+TREE 44.4 50.2 47.1 46.4 48.7 47.6 43.7 40.3 41.9 32.7 36.7 34.6
FET+WC+HEAD+PHRASE 44.9 51.6 48.0 46.0 49.1 47.5 45.2 41.5 43.3 34.7 39.2 36.8
FET+WC+HEAD+TREE 45.1 51.0 47.8 46.9 48.4 47.6 43.8 39.5 41.5 34.7 38.8 36.6

Table 3: Tree kernel-based in Plank and Moschitti (2013) vs feature-based in Nguyen and Grishman (2014). All the compar-
isons between the tree kernel-based method and the feature-based method in this table are significant with p < 0.05.

procedure, the same model of directional relation
classes, the same PET trees for tree kernels and
feature extraction, the same word clusters and the
same word embeddings). We first evaluate the
feature-based system with different combinations
of embeddings (i.e, HEAD, PHRASE and TREE)
on the bc development set. Based on the evalua-
tion results, we then discuss the effect of the se-
mantic representations on the feature-based sys-
tem and the tree kernel-based system, and then
compare the performance of the two methods
when they are augmented with their best corre-
sponding embedding combinations.

System P R F1
B 51.2 49.4 50.3
B+HEAD 55.8 52.4 54.0
B+PHRASE 50.7 46.2 48.4
B+TREE 53.6 51.1 52.3
B+HEAD+PHRASE 53.2 50.1 51.6
B+HEAD+TREE 54.9 51.4 53.1
B+PHRASE+TREE 50.7 48.4 49.5
B+HEAD+PHRASE+TREE 52.7 49.4 51.0

Table 4: Performance of the feature-based method (dev).

Table 4 presents the evaluation results on the bc
development for the feature-based system where
B is the baseline feature set consisting of FET
and word clusters (WC) (Nguyen and Grishman,
2014).

The Role of Semantic Representations Con-
sidering Table 4 for the feature-based method and
Table 1 for the tree kernel-based method, we see
that when combined with the HEAD embeddings,
the compositionality embedding TREE is more ef-
fective for the feature-based method, in contrast to
the tree kernel-based method, where the PHRASE
embeddings are better. This can be partly ex-
plained by the fact that the tree kernel-based
method emphasizes the syntactic structure of the
relation mentions, while the feature-based method
exploits the sequential structure more. Conse-

quently, the syntactic semantics of TREE are more
helpful for the feature-based method, whereas the
sequential semantics of PHRASE are more useful
for the tree kernel-based method.

Performance Comparison The three best em-
bedding combinations for the feature-based sys-
tem in Table 4 are (listed by performance order):
(HEAD), (HEAD+TREE) and (TREE), where
(HEAD) is also the best word level method em-
ployed in Nguyen and Grishman (2014). In
order to enable a fairer and clearer evaluation,
when doing comparison, we use both the three
best embedding combinations in the feature-
based method and the best embedding combina-
tion (HEAD+PHRASE) in the tree kernel-based
method. In the tree kernel-based method, we do
not employ the LSA information as it comes in the
form of similarity scores between pairs of words,
and it is not clear how to encode this information
into the feature-based method effectively. Finally,
we utilize the composite kernel for its demon-
strated effectiveness in Section 4.3.

The most important observation from the ex-
perimental results (shown in Table 3) is that over
all the target domains, the tree kernel-based sys-
tem is significantly better than the feature-based
systems with p < 0.05 (assuming the same re-
sources and settings mentioned above). In fact,
there are large margins between the tree kernel-
based and the feature-based methods in this case
(i.e, about 3.7% for bc, 3.1% for cts and 2.3% for
wl), clearly confirming the hypothesis about the
advantage of the tree kernel-based method over
the feature-based method on DA for RE in Section
2.3.

5 Analysis

This section analyzes the output of the systems to
gain more insights into their operation.
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Word Embeddings for the Tree-kernel based
Method We focus on the comparison of the best
model in Plank and Moschitti (2013) (row 11
in Table 2) (called P) with the same model but
augmented with the embedding WED (row 12 in
Tabel 2) (called P+WED). One of the most inter-
esting insights is that the embedding WED helps
to semantically generalize the phrases connecting
the two target entity mentions beyond the syntactic
constraints. For instance, model P fails to discover
the relation between “Chuck Hagel” and “Viet-
nam” in the sentence (of the target domain bc):
“Sergeant Chuck Hagel was seriously wounded
twice in Vietnam.” (i.e, it returns the NONE re-
lation as the prediction) as the substructure asso-
ciated with “seriously wounded twice” does not
appear with any relation in the source domain.
Model P+WED, on the other hand, correctly pre-
dicts the PHYS (Located) relation between the
two entities as the PHRASE embedding of “Chuck
Hagel was seriously wounded twice in Vietnam.”
(phrase X1) is very close to the embedding of the
source domain phrase: “Stewart faces up to 30
years in prison” (phrase X2) (annotated with the
PHYS relation between “Stewart” and “prison”).

In fact, X2 is only the 9th closest phrase in
the source domain of X1. The closest phrase of
X1 in the source domain is X3: the phrase be-
tween “Iraqi soldiers” and “herself” in the sen-
tence “The Washington Post is reporting she shot
several Iraqi soldiers before she was captured
and she was shot herself , too.”. However, as the
syntactical structure of X1 is more similar to X2’s,
and is remarkably different from X3 as well as the
other closest phrases (ranked from 2nd to 8th), the
new kernel function Knew would still prefer X2
due to its trade-off between syntax and semantics.

Tree Kernel-based vs Feature-based From the
analysis of the systems in Table 3, we find that,
among others, the tree kernel-based method im-
proves the precision significantly via the seman-
tic and syntactic refinement it maintains. Let us
consider the following phrase of the target domain
bc: “troops have dislodged stubborn Iraqi sol-
diers” (called Y1). The feature-based systems in
Table 3 incorrectly predict the ORG-AFF relation
(Employment or Membership) between “Iraqi sol-
diers” and “troops”. This is mainly due to the high
weights of the features linking the words “troop”
and “soldiers” with the relation type ORG-AFF in
the feature-based models, which is, in turn, orig-

inated from the high correlation of these words
and the relation type in the training data of the
source domain (domain bias). The tree kernel-
based model in Table 3 successfully recognizes the
NONE relation in this case. A closer examination
shows that the phrase with the closest embedding
to Y1 in the source domain is Y2: “Iraqi soldiers
abandoned their posts”,5 which is annotated with
the NONE relation between “Iraqi soldiers” and
“their posts”. As the syntactic structure of Y2 is
also very similar to Y1, it is not surprising that Y1
is closest to Y2 in the new kernel function, conse-
quently helping the tree kernel-based method work
correctly in this case.

6 Related work

Word embeddings are only applied to RE recently.
Socher et al. (2012b) use word embeddings as in-
put for matrix-vector recursive neural networks in
relation classification while Zeng et al. (2014),
and Nguyen and Grishman (2015) employ word
embeddings in the framework of convolutional
neural networks for relation classification and ex-
traction, respectively. Sterckx et al. (2014) uti-
lize word embeddings to reduce noise of training
data in distant supervision. Kuksa et al. (2010)
present a string kernel for bio-relation extraction
with word embeddings, and Yu et al. (2014; 2015)
study the factor-based compositional embedding
models. However, none of this work examines
word embeddings for tree kernels as well as do-
main adaptation as we do.

Regarding DA, in the unsupervised DA setting,
Huang and Yates (2010) attempt to learn multi-
dimensional feature representations while Blitzer
et al. (2006) introduce structural correspondence
learning. Daumé (2007) proposes an easy adapta-
tion framework (EA) while Xiao and Guo (2013)
present a log-bilinear language adaptation tech-
nique in the supervised DA setting. Unfortunately,
all of this work assumes some prior (in the form of
either labeled or unlabeled data) on the target do-
mains for the sequential labeling tasks, in contrast
to our single-system unsupervised DA setting for
relation extraction. An alternative method that is
also popular to DA is instance weighting (Jiang
and Zhai, 2007b). However, as shown by Plank
and Moschitti (2013), instance weighting is not

5The full sentence is: “After today’s air strikes, Iraqi sol-
diers abandoned their posts and surrendered to Kurdish fight-
ers.”.
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very useful for DA of RE.

7 Conclusion

In order to improve the generalization of rela-
tion extractors, we propose to augment the seman-
tic syntactic tree kernels with the semantic rep-
resentation of relation mentions, generated from
the word embeddings of the context words. The
method demonstrates strong promise for the DA
of RE, i.e, it significantly improves the best sys-
tem of Plank and Moschitti (2013) (up to 7% rela-
tive improvement). Moreover, we perform a com-
patible comparison between the tree kernel-based
method and the feature-based method on the same
settings and resources, which suggests that the tree
kernel-based method (Plank and Moschitti, 2013)
is better than the feature-based method (Nguyen
and Grishman, 2014) for DA of RE. An error anal-
ysis is conducted to get a deeper comprehension of
the systems. Our future plan is to investigate other
syntactic and semantic structures (such as depen-
dency trees, abstract meaning representation etc)
for DA of RE, as well as continue the comparison
between the kernel-based method and the feature-
based method when they are allowed to exploit
more resources.
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Abstract 

In the current fast-paced world, people tend to 

possess limited knowledge about things from 

the past. For example, some young users may 

not know that Walkman played similar func-

tion as iPod does nowadays. In this paper, we 

approach the temporal correspondence prob-

lem in which, given an input term (e.g., iPod) 

and the target time (e.g. 1980s), the task is to 

find the counterpart of the query that existed 

in the target time. We propose an approach 

that transforms word contexts across time 

based on their neural network representations. 

We then experimentally demonstrate the ef-

fectiveness of our method on the New York 

Times Annotated Corpus.  

1 Introduction 

What music device 30 years ago played similar 

role as iPod does nowadays? Who are today’s 

Beatles? Who was a counterpart of President Chi-

rac in 1988? These and many other similar ques-

tions may be difficult to answer by average users 

(especially, by young ones). This is because peo-

ple tend to possess less knowledge about the past 

than about the contemporary time.  

    In this work we propose an effective method to 

solve the problem of finding counterpart terms 

across time. In particular, for an input pair of a 

term (e.g., iPod) and the target time (e.g. 1980s), 

we find the corresponding term that existed in the 

target time (walkman). We consider temporal 

counterparts to be terms which are semantically 

similar, yet, which existed in different time. 

    Knowledge of temporal counterparts can help 

to alleviate the problem of terminology gap for us-

ers searching within temporal document collec-

tions such as archives. For example, given a user’s 

query and the target time frame, a new modified 

query that represents the same meaning could be 

suggested to improve search results. Essentially, 

it would mean letting searchers use the knowledge 

they possess on the current world to perform 

search within unknown collections such as ones 

containing documents from the distant past. Fur-

thermore, solving temporal correspondence prob-

lem can help timeline construction, temporal sum-

marization, reference forecasting and can have ap-

plications in education. 

    The problem of temporal counterpart detection 

is however not trivial. The key difficulty comes 

from the change of the entire context that results 

in low overlap of context across time. In other 

words, it is difficult to find temporal counterpart 

terms by directly comparing context vectors 

across time. This fact is nicely portrayed by the 

Latin proverb: “omnia mutantur, nihil interit” (in 

English: “everything changes, nothing perishes”) 

which indicates that there are no completely static 

things, yet, many things and concepts are still sim-

ilar across time. Another challenge is the lack of 

training data. If we have had enough training pairs 

of input terms and their temporal counterparts, 

then it would have become possible to represent 

the task as a typical machine learning problem. 

However, it is difficult to collect multiple training 

pairs over various domains and for arbitrary time. 

    In view of the challenges mentioned above, we 

propose an approach that transforms term repre-

sentations from one vector space (e.g., one de-

rived from the present documents) to another vec-

tor space (e.g., one obtained from the past docu-

ments). Terms in both the vector spaces are repre-

sented by the distributed vector representation 

(Mikolov et al. 2013a; Mikolov et al. 2013c). Our 

method then matches the terms by comparing 

their relative positions in the vector spaces of dif-

ferent time periods alleviating the problem of low 

overlap between word contexts over time. It also 

does not require to manually prepare seed pairs of 

temporal counterparts. We further improve this 

method by automatically generating reference 

points that more precisely represent target terms 

in the form of local graphs. In result, our approach 

consists of finding global and local correspond-

ence between terms over time. 
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    To sum up, we make the following contribu-

tions in this paper: (1) we propose an efficient 

method to find temporal counterparts by trans-

forming the representation of terms within differ-

ent temporal spaces, (2) we then enhance the 

global correspondence method by considering 

also the local context of terms (local correspond-

ence) and (3) we perform extensive experiments 

on the New York Times Annotated Corpus 

(Sandhaus, 2008), including the search from the 

present to the past and vice versa, which prove the 

effectiveness of our approach.  

2 Global  Correspondence Across Time 

Let the base time denoted as TB mean the time pe-

riod associated with the input term and let the tar-

get time, TT, mean the time period in which we 

want to find this term’s counterparts. Typically, 

for users, the base time is the present time and the 

target time is some selected time period in the 

past. Note however, that we do not impose any re-

striction on the order and the distance of the both 

times. Hence, it is possible to search for present 

counterparts of terms that existed in the past. 

    In our approach we first represent all the terms 

in the base time and in the target time within their 

respective semantic vector spaces, χB and χT. 

Then, we construct a transformation matrix to 

bridge the two vector spaces. Algorithm 1 sum-

marizes the procedures needed to compute the 

global transformation. We will explain it in Sec-

tion 2.1 and 2.2.  

 

Algorithm 1 Overview of Global Transformation 

Input: query q, base time TB and target time TT 

1. Construct word representation model for 

corpus in the base time, D(TB), and in the 

target time, D(TT). (Section 2.1) 

2. Construct transformation matrix M be-

tween D(TB) and D(TT) by first collecting 

CFTs as training pairs and then learning M 

using Eq. 1. (Section 2.2) 

3. Rank the words in target time by their cor-

respondence scores (Eq. 2) 

Output: ranked list of temporal counterparts  

2.1 Vector space word representations 

Distributed representation of words by neural 

network was first proposed by Rumelhart et al. 

(1986). More recently, Mikolov et al. (2013a, 

2013c) introduced the Skip-gram model which 

utilizes a simplified neural network architecture 

for learning vector representations of words from 

unstructured text data. We apply this model due to 

its advantages: (1) it can capture precise semantic 

word relationships; (2) due to the simplified neu-

ral network architecture, the model can easily 

scale to millions of words. After applying the 

Skip-gram model, the documents in the base time, 

D(TB), are converted to a m×p matrix where n is 

the vocabulary size and p are the dimensions of 

feature vectors. Similarly, the documents in the 

target time, D(TT), are represented as a n×q matrix 

(as shown in Fig. 1).  

 

 
Figure 1: Word vector representations for the base 

and the target time. 

2.2 Transformation across vector spaces 

Our goal is to compare words in the base time and 

the target time in order to find temporal counter-

parts. However, it is impossible to directly com-

pare words in two different semantic vector 

spaces, as the features in both spaces have no di-

rect correspondence between each other (as can be 

seen in Fig. 1). To solve this problem, we propose 

to train a transformation matrix in order to build 

the connection between different vector spaces. 

The key idea is that the relative positions of words 

in each vector space should remain more or less 

stable. In other words, a temporal counterpart 

term should have similar relative position in its 

own vector space as the position of the queried 

term in the base time space. Fig. 2 conceptually 

portrays this idea as the correspondence between 

the context of Walkman and the context of iPod 

(only two dimensions are shown for simplicity).  

 
Figure 2: Conceptual view of the across-time 

transformation by matching similar relative geo-

metric positions in each space.   

 

    Our task is then to train the transformation ma-

trix to automatically “rotate” the base vector space 
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into the target vector space. Suppose we have K 

pairs of temporal counterparts {(1, w1),…,(k, 

wk,)} where i is a base time term and wi is its 

counterpart in the target time. Then the transfor-

mation matrix Μ can be computed by minimizing 

the differences between Μ∙i and wi as given in 

Eq. 1. The latter part of Eq. 1 is added as regular-

ization to overcome the problem of overfitting. In-

tuitively, matrix M is obtained by making sure that 

the sum of Euclidean 2-norms between trans-

formed query vectors and their counterparts is 

minimal on K seed query-counterpart pairs. Eq.1 

is used for solving regularized least squares prob-

lem (γ equals to 0.02). 
 

2

2
1

2

2
minarg MwMM

K

i
ii

M

  


 (1) 

 

    However, as mentioned before, the other chal-

lenge is that the training pairs are difficult to be 

obtained. It is non-trivial to prepare large enough 

training data that would also cover various do-

mains and any possible combinations of the base 

and target time periods. We apply here a simple 

trick that performs reasonably well. We select 

terms that (a) have the same syntactic forms in the 

base and the target time periods and (b) are fre-

quent in the both time periods. Such Common 

Frequent Terms (CFTs) are then used as the train-

ing data. Essentially, we assume here that very 

frequent terms (e.g., man, women, water, dog, see, 

three) change their meanings only to small extent. 

The reasoning is that the more frequently the word 

is used, the harder is to change its dominant mean-

ing (or the longer time it takes to make the mean-

ing shift) as the word is commonly used by many 

people. The phenomenon that words used more 

often in everyday language had evolved more 

slowly has been observed in several languages in-

cluding English, Spanish, Russian and Greek 

(Pargel et al., 2007; Lieberman et al. 2007). Then, 

using the common frequent terms as the training 

pairs, we solve Eq. 1 as the least squares problem. 

Note that the number of CFTs is heuristically de-

cided. In Sec. 5 we discuss transformation perfor-

mance with regards to different numbers of CFTs. 

    After obtaining matrix Μ, we can then trans-

form the base time term, q, first by multiplying its 

vector representation with the transformation ma-

trix Μ, and then by calculating the cosine similar-

ity between such transformed vector and the vec-

tors of all the terms in the target time. We call the 

result of this similarity comparison the corre-

spondence score between the input term q in the 

base time and a given term w in the target time 

(see Eq. 2). A term which has the highest corre-

spondence score could be then considered as tem-

poral counterpart of q.  
 

   wqMwqenceCorrespond ,cos,   (2) 

3 Local Correspondence across Time 

The method described above computes “global 

similarity” between terms across time. In result, 

the discovered counterparts can be similar to the 

query term for variety of reasons, some of which 

may not always lead to the best results. For in-

stance, the global transformation finds VCR as the 

temporal counterpart of iPod in 1980s simply be-

cause both of them can have recording and play-

back functions. Macintosh is another term judged 

to be strongly corresponding to iPod since both 

are produced by Apple. Clearly, although VCR 

and Macintosh are somewhat similar to iPod, they 

are far from being its counterparts. The global 

transformation, as presented in the previous sec-

tion, may thus fail to find correct counterparts due 

to neglecting fundamental relations between a 

query term and its context.  

    Inspired by these observations, we propose an-

other method for leveraging the informative con-

text terms of an input query term called reference 

points. They are used to help mapping the query 

to its correct temporal counterpart by considering 

the relation between the query and the reference 

points. We call this kind of similarity matching as 

local correspondence in contrast to global corre-

spondence described in Sec. 2. In the following 

sub-sections, we first introduce the desired char-

acteristics of the reference points and we then pro-

pose three computation methods for selecting 

them. Finally, we describe how to find temporal 

counterparts using the selected reference points. 

Algorithm 2 shows the process of computing the 

local transformation. 

 

Algorithm 2 Overview of Local Transformation 

Input: query q, base time TB and target time TT  

1. Construct the local graph of q by detecting 

the reference points in the context of q. 

(Section 3.1) 

2. Compute similarity of the local graph of q 

with all the local graphs of candidate tem-

poral counterparts in the target time. (Sec-

tion 3.2) 

3. Rank the candidate temporal counterparts 

in the target time by graph similarity score 

(Eq. 4). 

Output: ranked list of temporal counterparts 

647



3.1 Reference points detection 

Reference points are terms in the query’s context 

which help to build connection between the query 

and its temporal counterparts. Reference points 

should have at least some of the following charac-

teristics: (a) have high relation with the query (b) 

be sufficiently general and (c) be independent 

from each other.  

    Note that it does not mean that the selected ref-

erence point should have exactly same surface 

form across time. Let us consider the previous ex-

ample query iPod and 1980s as the target time. 

The term music could be a candidate reference 

point for this query. Its temporal counterpart has 

exactly the same syntax form in the target time 

(music). However, mp3 could be another refer-

ence point. Even though mp3 did not exist in 

1980s, it can still be referred to storage devices at 

the target time such as cassette or disk helping 

thus to find the correct counterparts of iPod, that 

is, walkman and CD player. 

    Since different reference points will lead to dif-

ferent answers, we propose three methods for se-

lecting the reference points.  Each one considers 

the previously mentioned characteristics of refer-

ence points to different extent. Note that, if neces-

sary, the choice of the references points can be left 

to users.  

Term co-occurrence. The first approach satis-

fies the reference points’ characteristics of being 

related to the query. To select reference points us-

ing this approach we rank context terms by multi-

plying two factors: tf(c) and relatedness(q,c), 

where tf(c) is the frequency of a context term c, 

while relatedness(q,c) is the relation strength of q 

and c measured by the χ2 test. The test is con-

ducted based on the hypothesis that 

P(c|q)=P(c|q̄), according to which the term c has 

the same probability of occurring in documents 

containing query q and in the documents not con-

taining q. We then use the inverse of the p-value 

obtained from the test as relatedness(q,c).  

    Lexico-syntactic patterns. As the second ap-

proach we propose using hypernyms of terms. 

This corresponds to the characteristic of reference 

points to be general words. General terms are pre-

ferred rather than specific or detailed ones since 

the former are more probable to be associated with 

correct temporal counterparts1 . This is because 

detailed or specific terms are less likely to have 

corresponding terms in the target time. To detect 

                                                 
1 We have experimented with hyponyms and coordinate 

terms used as reference points and found the results are 

worse than when using hypernyms. 

hypernyms on the fly, we adopt the method pro-

posed by Ohshima et al. (2010) that uses bi-direc-

tional lexico-syntactic patterns due to its high 

speed and the lack of requirements for using ex-

ternal ontologies. The latter is important since, to 

the best of our knowledge, there are no ready on-

tology resources for arbitrary periods in the past 

(e.g., there seems to be no Wordnet for the past). 

    Semantic clustering. The last method chooses 

reference points from clusters of context terms. 

The purpose of applying clustering is to avoid 

choosing semantically similar reference points. 

Clustering helps to select typical terms from dif-

ferent sematic clusters to provide diverse informa-

tive context.  

    For grouping the context terms we utilize the 

bisecting k-means algorithm. It is superior over k-

means and the agglomerative approach (Steinbach 

et al., 2000) in terms of accuracy. The procedure 

of bisecting k-means is to, first, select a cluster to 

split and then to utilize the basic k-means to form 

two sub-clusters. These two steps are repeated un-

til the desired number of clusters is obtained. The 

distance between any two terms w1, w2 is the in-

verse of cosine similarity between their vector 

representations. 
 

),cos(1),( 2121 wwwwDist   (3) 

3.2 Local graph matching 

    Formulation. The local graph of query q is a 

star shaped graph, denoted as Sq
FB, in which q is 

the internal node, and the set of reference points, 

𝐹B = {f1, f2,…, fu}, are leaf nodes where u is the 

number of reference points. Our objective is to 

find a local graph Sw
FT in the target vector space 

that is most similar to Sq
FB in the base vector space. 

w denotes here the temporal counterpart of q and 

FT is the set of terms in the target vector space that 

corresponds to FB.  

Algorithm. Step (1): to compare the similarity 

between two graphs in different vector spaces, 

every node (i.e. term) in Sq
FB is required to be 

transformed first to allow for comparison under 

the same vector space. So the transformed vector 

representation of q becomes Μ∙q and FB is trans-

formed to {Μ∙f1, Μ∙f2 …, Μ∙fu} (recall that Μ is 

the transformation matrix). Step (2): for each node 

in Sq
FB, we then choose the top k candidate terms 

with the highest correspondence score in the tar-

get space. Note that we would need to perform k∙ku 
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combinations of nodes (or candidate local graphs) 

in total, to find the best graph with the highest 

graph similarity. The computation time becomes 

then an issue as the number of comparisons grows 

in polynomial way with the increase in the number 

of candidate terms. However, we manage to re-

duce the number of combinations to k∙k∙u by as-

suming the reference points be independent of 

each other. Then, for every selected candidate 

temporal counterpart, we only choose the set of 

corresponding terms FT which maximizes the cur-

rent graph similarity. By default we set k equal to 

1000. The process is shown in Algorithm 3.  

 

Algorithm 3 Local Graph Matching 

Input: local graph of q, Sq
FB 

W = top k corresponding terms of q (by Eq. 2) 

FF = {top k corresponding terms of each f in 

reference points FB={ f0, f1, …, fu}} (by Eq. 2) 

for w = W[1:k] do: 

sum_cos = 0  # total graph similarity score 

for F = FF[1:u] do: 

max_cos = 0 # current maximum similar-

ity 

for c = F[1:k] do: 

find c which maximizes current graph 

similarity  

end for 

sum_cos += max_cos 

end for 

end for 
sort W by sum_cos of each w in W. 

Output: sorted W as ranked list of temporal 

counterparts 

 

    Graph similarity computation. To compute 

the similarity of two star shaped graphs, we take 

both the semantic and relational similarities into 

consideration. Fig. 3 conceptually portrays this 

idea. Since all the computation is done under the 

same vector space (after transformation), the se-

mantic meaning is represented by the absolute po-

sition of the term, that is, by its vector representa-

tion in the vector space. On the other hand, the re-

lation is described by the difference of two term 

vectors. Finally, the graph similarity function 

g(Sq
FB,Sw

FT) is defined as the combination of the 

relational similarity function, h(Sq
FB,Sw

FT), and se-

mantic similarity function, z(Sq
FB,Sw

FT), as follows: 
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(4) 

where Rq
f
B is the difference of vectors between q 

and fB in FB represented as [q-fB]. Rw
fT is the differ-

ence of vectors between w and fT in FT, [w-fT], 

where fT is selected from k candidates correspond-

ing terms of fB. fT maximizes the cosine similarity 

between [q- fB] and [w- fT]. λ is set to 0.5 by de-

fault. Intuitively, Sq
FB is a graph composed of 

query and its reference points, while Sw
FT is a 

graph containing candidate word w and its refer-

ence points. The first maximum in Eq. 4 finds for 

each reference point in the base time, fB, the top-k 

candidate terms corresponding to fB in the target 

time. Next, it finds within k such fT that similarity 

between [q- fB] and [w- fT] is maximum (relational 

similarity). The second maximum in Eq. 4 is same 

as the first one with the exception that it computes 

the semantic similarity instead of the relational 

similarity. The two summations in Eq. 4 aggregate 

both the similarity scores over all the reference 

points. 

 
 

Figure 3: The concept of computing semantic and 

relational similarity in matching local graphs. 

4 Experimental Setup 

4.1 Training sets 

For the experiments we use the New York Times 

Annotated Corpus (Sandhaus, 2008). This dataset 

contains over 1.8 million newspaper articles pub-

lished between 1987 and 2007. We first divide it 

into four parts according to article publication 

time: [1987-1991], [1992-1996], [1997-2001] and 

[2002-2007]. Each time period contains then 

around half a million articles. We next train the 

model of distributed vector representation sepa-

rately for each time period. The vocabulary size 

of the entire corpus is 360k, while the vocabulary 

size of each time period is around 300k.  

    In the experiments, we first focus on the pair of 

time periods separated by the longest time gap, 

that is, [2002, 2007] as the base time and [1987, 

1991] as the target time. We also repeat the exper-

iment using more recent target time: [1992, 1996].

base time
(e.g. 2003-2007)

  
 

  
 

ipod

mp3
music

apple

target time
(e.g. 1987-1991)

  
 

  
 

musiccassette

walkman

sony
semantic similarity

relational similarity
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Table 1: Example results where q is the input term and tc is the matching temporal counterpart. The 

numbers are the ranks of the correct temporal counterpart in the results ranked by each method. Since 

we output only the top 1000 results, ranks lower than 1000 are represented as 1000+. 

 

4.2 Test sets 

As far as we know there is no standard test bench 

for temporal correspondence finding. We then had 

to manually create test sets containing queries in 

the base time and their correct temporal counter-

parts in the target time. In this process we used 

external resources including the Wikipedia, a 

Web search engine and several historical text-

books. The test terms cover three types of entities: 

persons, locations and objects. 

    The examples of the test queries and their tem-

poral counterparts for [1987, 1991] are shown in 

Table 1 where q denotes the input term and tc is 

the correct counterpart. Note that the expected an-

swer is not required to be single neither exhaus-

tive. For example, there can be many answers for 

the same query term, such as letter, mail, fax, all 

being commonly used counterparts in 1980s for 

email. Furthermore, as we do not care for recall in 

this research, we do not require all the correct 

counterpart terms to be found. In total, there are 

95 pairs of terms (query and its counterpart) re-

sulting from 54 input query terms for the task of 

mapping [2002, 2007] with [1987, 1991], and 50 

term pairs created from 25 input query terms for 

matching [2002, 2007] and [1992, 1996].  

4.3 Evaluation measures and baselines 

    We use the Mean Reciprocal Rank (MRR) as a 

main metric to evaluate the ranked search results 

for each method. MRR is expressed as the mean 

of the inverse ranks for each test where a correct 

result appears. It is calculated as follows: 
 





N

i irankN
MRR

1

11  (5) 

 

where ranki is the rank of a correct counterpart at 

the i-th test. N is the number of query-answer 

pairs. MRR’s values range between [0,1]. The 

higher the value, the more correct the method is. 

Besides MRR, we also report precision @1, @5, 

@10 and @20. They are equal to the rates of tests 

in which the correct counterpart term tc was found 

in the top 1, 5, 10 and 20 results, respectively. 

    Baselines. We prepare three baselines:  

(1) Bag of words approach (BOW) without 

transformation: this method directly compares the 

context of the query in the base time with the con-

text of the candidate term in the target time. We 

use it to examine whether the distributed vector 

representation and transformation are necessary. 

(2)  Latent Semantic Indexing (LSI) without 

transformation (LSI-Com): we first merge the 

documents in the base time and the documents in 

the target time. Then, we train LSI (Deerwester, 

1988) on such combined collection to represent 

each term by the same distribution of detected top-

ics. We next search for the terms that exist in the 

target period and that are also semantically similar 

to the queried terms by comparing their vector 

q 

[2002,2007] 

tc  

[1987,1991] 

BOW 

(baseline) 

LSI-Com 

(baseline) 

LSI-Tran 

(baseline) 

GT 

(proposed) 

LT-Cooc 

(proposed) 

LT-Lex 

(proposed) 

LT-Clust 

(proposed) 

Putin Yeltsin 1000+ 252 353 24 1 1 1 

Chirac Mitterrand 1000+ 8 1 7 19 1 3 

iPod Walkman 1000+ 20 131 3 13 1 16 

Merkel Kohl 1000+ 1000+ 537 142 76 7 102 

Facebook Usenet 1000+ 1000+ 1000+ 1 1 1 1 

Linux Unix 1000+ 11 1 20 1 1 1 

email letter 1000+ 1000+ 464 1 35 1 17 

email mail 1000+ 1 9 7 2 6 11 

email fax 1000+ 1000+ 10 3 1 4 2 

Pixar Tristar 1000+ 549 1 1 1 1 1 

Pixar Disney 1000+ 4 4 3 2 2 4 

Serbia Yugoslavia 1000+ 15 1000+ 1 1 1 1 

mp3 compact disk 1000+ 56 44 58 17 19 22 

Rogge Samaranch 1000+ 4 22 42 82 34 44 

Berlin Bonn 1000+ 43 265 62 40 48 56 

Czech Czechoslovakia 1000+ 1 3 4 3 7 4 

USB floppy disk 1000+ 209 1000+ 20 1 1 4 

spam junk mail 1000+ 1000+ 37 5 61 1 1 

Kosovo Yugoslavia 1000+ 59 1000+ 14 10 6 11 

650



representations. The purpose of using LSI-Com is 

to check the need for the transformation over time.  

(3) Latent Semantic Indexing (LSI) with 

transformation (LSI-Tran): we train two LSI 

models separately on the documents in the base 

time and the documents in the target time. Then 

we train the transformation matrix in the same 

way as we did for our proposed methods. Lastly, 

for a given input query, we compare its trans-

formed vector representation with terms in the tar-

get time. LSI-Tran is used to investigate if LSI can 

be an alternative for the vector representation un-

der our transformation scenario.  

    Proposed Methods. All our methods use the 

neural network based term representation. The 

first one is the method without considering the lo-

cal context graph called GT (see Sec. 2). By test-

ing it we want to investigate the necessity of trans-

forming the context of the query in the target time. 

    We also test the three variants of the proposed 

approach that applies the local graph (explained in 

Sec. 3). The first one, LT-Lex, constructs the lo-

cal graph by using the hypernyms of terms. LT-

Cooc applies term co-occurrence to select the ref-

erence points. Finally, LT-Clust clusters the con-

text terms by their semantic meanings and selects 

the most common term from each cluster.  

4.4 Parameter settings 

We set the parameters as follows:  

(1) num_of_dim: we experimentally set the num-

ber of dimensions of the Skip-gram model and the 

number of topics of LSI to be 200.  

(2) num_of_CFTs: we utilize the top 5% (18k 

words) of Common Frequent Terms to train the 

transformation matrix. We have tried other num-

bers but we found 5% to perform best (see Fig. 4).    

(3) u: the number of reference points (same as the 

number of semantic clusters) is set to be 5. Ac-

cording to the results, we found that increasing the 

number of reference points does not always im-

prove the results. The performance depends rather 

on whether the reference points are general 

enough, as too detailed ones hurt the results.  

5 Experimental Results 

First, we look at the results of finding temporal 

counterparts in [1987, 1991]. The average scores 

for each method are shown in Table 2. Table 1 

shows detailed results for few example queries.  

    The main finding is that all our methods outper-

form the baselines when measured by MRR and 

by the precisions at different ranks. In the follow-

ing subsections we discuss the results in detail. 

5.1 Context change over time 

The first observation is that the task is quite diffi-

cult as evidenced by extremely poor performance 

of the bag of words approach (BOW). The correct 

answers in BOW approach are usually found at 

ranks 10k-30k (recall that the vocabulary size is 

360k). This suggests little overlap in the contexts 

of query and counterpart terms.  The fact that all 

our methods outperform the baselines suggests 

that the across-time transformation is helpful. 

5.2 Using local context graph 

We can observe from Table 2 that, in general, us-

ing the local context graph improves the results. 

The best performing approach, LT-Lex, improves 

GT method, which uses only global similarity 

matching, by 24% when measured using MRR. It 

increases the precision at certain levels of top 

ranks, especially, at the top 1, where it boosts the 

performance by 44%. LT-Lex uses the hyper-

nyms of query as reference points in the local 

graph. This suggests that using generalized con-

text terms as reference points is most helpful for 

finding correct temporal counterparts. On the 

other hand, LT-Cooc and LT-Clust usually fail to 

improve GT. It may be because the term co-oc-

currence and semantic clustering approaches de-

tect less general terms that tend to capture too de-

tailed information which is then poorly related to 

the temporal counterpart. For example, LT-Cooc 

detects {music, Apple, computer, digital, iTunes} 

as the reference points of the query iPod. While 

music is shared by iPod’s counterpart (walkman) 

and Apple can be considered analogical to Sony, 

other terms (i.e., computer, digital, iTunes) are ra-

ther too specific and unique for iPod. 

5.3 Using neural network model 

When comparing the results of LSI-Com and 

LSI-Tran in Table 2, we can see that using the 

transformation does not help LSI to enhance the 

performance but, on the contrary, it makes the re-

sults worse.  

 
Method MRR P@1 P@5 P@10 P@20 

BOW 4.1E-5 0 0 0 0 

LSI-Com 0.206 15.8 27.3 29.5 38.6 

LSI-Tran 0.112 7.9 13.6 21.6 22.7 

GT 0.298 16.8 44.2 56.8 73.7 

LT-Cooc 0.283 18.8 35.3 50.6 62.4 

LT-Lex 0.369 24.2 49.5 63.2 71.6 

LT-Clust 0.285 14.7 42.1 55.1 65.2 

 

Table 2: Results of searching from present to past 

(present: 2002-2007; past: 1987-1991). 
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    Yet, as discussed above, applying the transfor-

mation is good idea in the case of the Neural Net-

work Model. We believe the reason for this is be-

cause it is difficult to perform the global transfor-

mation between topics underling the dimensions 

of LSI, in contrast to transforming “semantic di-

mensions” of Neural Network Model. 

5.4 Effect of the number of CFTs 

Fig. 4 shows MRR results for different numbers 

of Common Frequent Terms (CFTs) when apply-

ing GT method. Note that the level of 0.10% (the 

first point) corresponds to using 658 stop words as 

seed pairs. As mentioned before, 5% of CFTs al-

lows to obtain the best results.  

 
Figure 4: Results of MRR for GT method depend-

ing on number of used CFTs. 

5.5 Searching from past to present 

We next analyze the case of searching from the 

past to the present. This scenario may apply to the 

case of a user (perhaps, an older person) who pos-

sesses knowledge about the past term but does not 

know its modern counterparts. 

    Table 3 shows the performance. We can see 

that, again, all our approaches outperform all the 

baselines using all the measures. LT-Lex is the 

best performing approach, when measured by 

MRR and P@1 and P@20. LT-Cooc this time re-

turns the best results at P@5 and P@10. 

     
Method MRR P@1 P@5 P@10 P@20 

BOW 3.4E-5 0 0 0 0 

LSI-Com 0.181 13.2 19.7 28.9 35.5 

LSI-Tran 0.109 5.3 17.1 21.1 23.7 

GT 0.226 15.2 27.3 33.3 45.5 

LT-Cooc 0.231 14.7 30.7 36 46.7 

LT-Lex 0.235 16.7 28.8 31.8 48.5 
LT-Clust 0.228 13.6 28.8 31.8 47 

 

Table 3: Average scores of searching from past to 

present (present: 2002-2007; past: 1987-1991). 

 

    The objective of testing the search from the past 

to present is to prove our methods work in both 

directions. As for now, we can only conclude the 

performance is asymmetrical. Yet, we might spec-

ulate that, along with the increase in distance, 

searching from past to present could be harder due 

to present world becoming relatively more diverse 

when seen from the distant past. 

5.6 Results using different time period 

Finally, we perform additional experiment using 

another target time period [1992, 1996] to verify 

whether our approach is still superior on different 

target time.  For the experiment we use the best 

performing baseline listed in Table 2, LSI-Com, 

and the best proposed approach, LT-Lex, as well 

as GT. The results are shown in Tables 4 and 5. 

LT-Lex outperforms the other baselines in both 

the search from the present to the past (Table 4) 

and from the past to the present (Table 5). Note 

that since the query-answers pairs for [1992, 

1996] are different than ones for [1987, 1991], 

their results cannot be directly compared.  

 
Method MRR P@1 P@5 P@10 P@20 

LSI-Com 0.115 10.6 14.9 21.3 23.4 

GT 0.132 8.5 27.7 40.4 53.2 

LT-Lex 0.169 10.6 34.1 48.9 55.3 

 

Table 4: Results of searching from present to past 

(present: 2002-2007; past: 1992-1996).  

 
Method MRR P@1 P@5 P@10 P@20 

LSI-Com 0.148 11.6 18.6 23.3 30.2 

GT 0.184 11.6 23.3 30.2 44.2 

LT-Lex 0.212 14 28 32.6 44.2 

 

Table 5: Results of searching from past to present 

(present: 2002-2007; past: 1992-1996).  

5.7 Confidence of Results 

The approach described in this paper will al-

ways try to output some matching terms to a query 

in the target time period. However in some cases, 

no term corresponding to the one in the base time 

existed in the target time (e.g. when the semantic 

concept behind the term was not yet born or, on 

the contrary, it has already felt out of use). For ex-

ample, junk mail may not have any equivalent in 

texts created around 1800s. A simple solution to 

this problem would be to use Eqs. 2 and 4 to serve 

as measures of confidence behind each result in 

order to decide whether the found counterparts 

should or not be shown to users. Note however 

that the scores returned by Eqs. 2 and 4 need to be 

first normalized according to the distance between 

the target time and the base time periods. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00% 14.00% 16.00%

M
R

R
 f

o
r 

G
T

 m
et

h
o

d

Percentage of used CFTs

652



6 Related Work 

Temporal changes in word meaning have been an 

important topic of study within historical linguis-

tics (Aitchison, 2001; Campbell 2004; Labov, 

2010; Hughes, 1988). Some researchers employed 

computational methods for analyzing changes in 

word senses over time (Mihalcea and Nastase, 

2012; Kim et al., 2014; Jatowt and Duh, 2014; 

Kulkarni et al., 2015). For example, Mihalcea and 

Nastase (2012) classified words to one of three 

past epochs based on words’ contexts. Kim et al. 

(2014) and Kulkarni et al. (2015) computed the 

degree of meaning change by applying neural net-

works for word representation. Jatowt and Duh 

(2014) used also sentiment analysis and word pair 

comparison for meaning change estimation. Our 

objective is different as we search for correspond-

ing terms across time, and, in our case, temporal 

counterparts can have different syntactic forms. 

    Some works considered computing term simi-

larity across time (Kalurachchi et al., 2010; Kan-

habua et al. 2010; Tahmasebi et al. 2012, Berber-

ich et al. 2009). Kalurachchi et al. (2010) pro-

posed to discover semantically identical tempo-

rally altering concepts by applying association 

rule mining, assuming that the concepts referred 

by similar events (verbs) are semantically related. 

Kanhabua et al. (2010) discovered the change of 

terms through the comparison of temporal Wik-

ipedia snapshots. Berberich et al. (2009) ap-

proached the problem by introducing a HMM 

model and measuring the across-time sematic 

similarity between two terms by comparing the 

contexts captured by co-occurrence measures. 

Tahmasebi et al. (2012) improved their approach 

by first detecting the periods of name change and 

then by analyzing the contexts during the change 

periods to find the temporal co-references of dif-

ferent names. There are important differences be-

tween those works and ours. First, the previous 

works mainly focused on detecting changes of the 

names of the same, single entity over time. For ex-

ample, the objective was to look for the previous 

name of Pope Benedict (i.e. Joseph Ratzinger) or 

the previous name of St. Petersburg (i.e. Lenin-

grad). Second, these approaches relied on apply-

ing the co-occurrence statistics according to the 

intuition that if two terms share similar contexts, 

then these terms are semantically similar. In our 

work, we do not require the context to be literally 

same but to have the same meaning. 

    Transfer Learning (Pan et al., 2010) is related 

to some extent to our work. It has been mainly 

used in tasks such as POS tagging (Blitzer et al., 

2006), text classification (Blitzer et al., 2007; Ling 

et al., 2008; Wang et al., 2011; Xue et al., 2008), 

learning to rank (Cai et al., 2011; Gao et al., 2010; 

Wang et al., 2009) and content-based retrieval 

(Kato et al., 2012). The temporal correspondence 

problem can be also understood as a transfer 

learning as it is a search process that uses samples 

in the base time for inferring correspondent in-

stances existing in the target time. However, the 

difference is that we do not only consider the 

structural correspondence but we also utilize the 

semantic similarity across time. 

The idea of distance-preserving projections is 

also used in automatic translation (Mikolov et al., 

2013b). Our research problem is however more 

difficult and is still unexplored. In the traditional 

language translation, languages usually share 

same concepts, while in the across-time transla-

tion concepts evolve and thus may be similar but 

not always same. Furthermore, the lack of training 

data is another key problem. 

7  Conclusions and Future Work 

This work approaches the problem of finding tem-

poral counterparts as a way to build a “bridge” 

across different times. Knowing corresponding 

terms across time can have direct usage in sup-

porting search within longitudinal document col-

lections or be helpful for constructing evolution 

timelines. We first discuss the key challenge of 

the temporal counterpart detection – the fact that 

contexts of terms change, too. We then propose 

the global correspondence method using transfor-

mation between two vector spaces. Based on this, 

we then introduce more refined approach of com-

puting the local correspondence. Through experi-

ments we demonstrate that the local correspond-

ence using hypernyms outperforms both the base-

lines and the global correspondence approach.  

    In the future, we plan to test our approaches 

over longer time spans and to design the way to 

automatically “explain” temporal counterparts by 

outputting “evidence” terms for clarifying the 

similarity between the counterparts. 
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Abstract 

Identifying negative or speculative narra-
tive fragments from fact is crucial for 
natural language processing (NLP) appli-
cations. Previous studies on negation and 
speculation identification in Chinese lan-
guage suffers much from two problems: 
corpus scarcity and the bottleneck in fun-
damental Chinese information processing. 
To resolve these problems, this paper 
constructs a Chinese corpus which con-
sists of three sub-corpora from different 
resources. In order to detect the negative 
and speculative cues, a sequence labeling 
model is proposed. Moreover, a bilingual 
cue expansion method is proposed to in-
crease the coverage in cue detection. In 
addition, this paper presents a new syn-
tactic structure-based framework to iden-
tify the linguistic scope of a cue, instead 
of the traditional chunking-based frame-
work. Experimental results justify the 
usefulness of our Chinese corpus and the 
appropriateness of our syntactic struc-
ture-based framework which obtained 
significant improvement over the state-
of-the-art on negation and speculation 
identification in Chinese language. * 

1 Introduction 

Negation and speculation are ubiquitous phe-
nomena in natural language. While negation is a 
grammatical category which comprises various 
kinds of devices to reverse the truth value of a 
proposition, speculation is a grammatical catego-
ry which expresses the attitude of a speaker to-
wards a statement in terms of degree of certainty, 

                                                 
* Corresponding author 

reliability, subjectivity, sources of information, 
and perspective (Morante and Sporleder, 2012). 

Current studies on negation and speculation 
identification mainly focus on two tasks: 1) cue 
detection, which aims to detect the signal of a 
negative or speculative expression, and 2) scope 
resolution, which aims to determine the linguistic 
coverage of a cue in sentence, in distinguishing 
unreliable or uncertain information from facts. 
For example, (E1) and (E2) include a negative 
cue and a speculative cue respectively, both de-
noted in boldface with their linguistic scopes 
denoted in square brackets (adopted hereinafter). 
In sentence (E1), the negative cue “不(not)” trig-
gers the scope of “不会追究酒店的这次管理失

职(would not investigate the dereliction of ho-
tel)”, within which the fragment “investigate the 
dereliction of hotel” is the part that is repudiated; 
While the speculative cue “有望(expected)” in 
sentence (E2) triggers the scope “后期仍有望反

弹(is still expected to rebound in the late)”, with-
in which the fragment “the benchmark Shanghai 
Composite Index will rebound in the late” is the 
speculative part. 

(E1) 所有住客均表示[不会追究酒店的这次管
理失职]. 
(All of guests said that they [would not in-
vestigate the dereliction of hotel].) 

(E2) 尽管上周五沪指盘中还受创业板的下跌
所拖累,但[后期仍有望反弹].  

(Although dragged down by GEM last Fri-
day, the benchmark Shanghai Composite In-
dex [is still expected to rebound in the late].) 

Negation and speculation identification is very 
relevant for almost all NLP applications involv-
ing text understanding which need to discrimi-
nate between factual and non-factual information. 
The treatment of negation and speculation in 
computational linguistics has been shown to be 
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useful for biomedical text processing (Morante et 
al., 2008; Chowdhury and Lavelli, 2013), infor-
mation retrieval (Averbuch, 2004), sentiment 
analysis (Councill et al., 2010; Zhu et al., 2014), 
recognizing textual entailment (Snow et al., 
2006), machine translation (Baker et al., 2010; 
Wetzel and Bond, 2012), and so forth. 

The research on negation and speculation 
identification in English has received a noticea-
ble boost. However, in contrast to the significant 
achievements concerning English, the research 
progress in Chinese language is quite limited. 
The main reason includes the following two as-
pects: First, the scarcity of linguistic resource 
seriously limits the advance of related research. 
To the best of our knowledge, there are no pub-
licly available standard Chinese corpus of rea-
sonable size annotated with negation and specu-
lation. Second, this may be attributed to the limi-
tations of Chinese information processing.  

The contributions of this paper are as follows: 
● To address the aforementioned first issue, this 

paper seeks to fill this gap by presenting the 
Chinese negation and speculation corpus 
which consists of three kind of sub-corpora 
annotated for negative and speculative cues, 
and their linguistic scopes. The corpus has 
been made publicly available for research 
purposes and it is freely downloadable from 
http://nlp.suda.edu.cn/corpus. 

● For cue detection, we propose a feature-based 
sequence labeling model to identify cues. It is 
worth noting that the morpheme feature is 
employed to better represent the composition-
al semantics inside Chinese words. Moreover, 
for improving the low recall rate which suf-
fers from the unknown cues, we propose a 
cross-lingual cue expansion strategy based on 
parallel corpora. 

● For scope resolution, we present a new syn-
tactic structure-based framework on depend-
ency tree. Evaluation justifies the appropri-
ateness and validity of this framework on 
Chinese scope resolution, which outperforms 
the chunking-based framework that widely 
used in mainstream scope resolution systems. 

The layout of the rest paper is organized as 
follows. Section 2 describes related work. Sec-
tion 3 provides details about annotation guide-
lines and also presents statistics about corpus 
characteristics. Section 4 describes our approach 
in detail. Section 5 reports and discusses our ex-
perimental results. Finally, we conclude our 
work and indicate some future work in Section 6. 

2 Related Work 

Currently, both cue detection task and scope res-
olution task are always modeled as a classifica-
tion problem with the purpose of predicting 
whether a token is inside or outside the cue and 
its scope. Among them, feature-based and ker-
nel-based approaches are most popular. 

In the feature-based framework, Agarwal and 
Yu (2010) employed a conditional random fields 
(CRFs) model to detect speculative cues and 
their scopes on the BioScope corpus. The CRFs-
based model achieved an F1-meature of 88% in 
detecting speculative cues. We train this model 
on our corpus as the baseline system for cue de-
tection. Our work is different from theirs in that 
we employ a new feature (morpheme feature) 
which is particularly appropriate for Chinese. 

Besides, kernel-based approaches exploit the 
structure of the tree that connects cue and its cor-
responding scope. Zou et al. (2013) developed a 
tree kernel-based system to resolve the scope of 
negation and speculation, which captures the 
structured information in syntactic parsing trees. 
To the best of our knowledge, this system is the 
best English scope resolution system. For this 
reason, we train this system on our corpus as the 
baseline system for scope resolution. 

Compared with a fair amount of works on 
English negation and speculation identification, 
unfortunately, few works has been published on 
Chinese. Ji et al. (2010) developed a system to 
detect speculation in Chinese news texts. How-
ever, only the speculative sentences have been 
found out, with no more fine-grained information 
such as scope. The insufficient study on Chinese 
negation and speculation identification drives us 
to construct a high-quality corpus and investigate 
how to find an approach that is particularly ap-
propriate for Chinese language. 

3 Corpus Construction 

In this section, we elaborate on the overall char-
acteristics of the Chinese Negation and Specula-
tion (abbr., CNeSp) corpus we constructed, in-
cluding a brief description of the sources that 
constitute our corpus, general guidelines which 
illustrated with lots of examples and some spe-
cial cases, and statistics on the overall results of 
our corpus. 

3.1 Sources 

To capture the heterogeneity of language use in 
texts, the corpus consists of three different 
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sources and types, including scientific literature, 
product reviews, and financial articles. 

Vincze et al. (2008) described that it is neces-
sary to separate negative and speculative infor-
mation from factual especially in science articles, 
because conclusions of science experiment are 
always described by using diversity of expres-
sions and include hypothetical asserts or view-
points. For this reason, we adopt the 19 articles 
from Chinese Journal of Computers (Vol.35(11)), 
an authoritative academic journal in Chinese, to 
construct the Scientific Literature sub-corpus. 

Another part of the corpus consists of 311 ar-
ticles from “股市及时雨(timely rain for stock 
market)” column from Sina.com in April, 2013. 
There are 22.3% and 40.2% sentences in the Fi-
nancial Article sub-corpus containing negation 
and speculation respectively. 

Many researches have investigated the role of 
negation in sentiment analysis task, as an im-
portant linguistic qualifier which leads to a 
change in polarity. For example, Councill et al. 
(2010) investigated the problem of determining 
the polarity of sentiment in movie reviews when 
negation words occur in the sentences. On the 
other hand, speculation is a linguistic expression 
that tends to correlate with subjectivity which is 
also crucial for sentiment analysis. Pang and Lee 
(2004) showed that subjectivity detection in the 
review domain helps to improve polarity classifi-
cation. Therefore, the Product Review sub-
corpus consists of 821 comments of hotel service 
from the website Ctrip.com. 

3.2 Annotation Guidelines 

The guidelines of our CNeSp corpus have partly 
referred to the existing Bioscope corpus guide-
lines (BioScope, 2008) in order to fit the needs of 
the Chinese language. In annotation process, 
negative or speculative cues and their linguistic 
scopes in sentence are annotated. There are sev-
eral general principles below: 
(G1) Cue is contained in its scope. 
(G2) The minimal unit that expresses negation or 

speculation is annotated as a cue. 
(E3) 该股极有可能再度出现涨停.  

(The stock is very likely to hit limit up.) 
To G2, the modifiers such as prepositions, de-

terminers, or adverbs are not annotated as parts 
of the cue. For example, in Sentence (E3), “极
(very)” is only a modifier of the speculative cue 
“可能(likely)”, but not a constituent of the cue. 

For the drawbacks of the Bioscope corpus 
guidelines either on itself or for Chinese lan-

guage, we introduced some modifications. These 
main changes are summarized below: 
(G3) A cue is annotated only relying on its actual 

semantic in context. 
(E4) 大盘不可能再次出现高开低走.  

(It is not possible that the broader market 
opens high but slips later again.) 

To G3, “不可能(not possible)” means that the 
author denies the possibility of the situation that 
“the broader market opens high but slips later 
again”, which contains negative meanings than 
speculative. Thus, the phrase “不可能(not possi-
ble)” should be labeled as a negative cue. 
(G4) A scope should contain the subject which 

contributes to the meaning of the content 
being negated or speculated if possible. 

(E5) *Once again, the Disorder module does 
[not contribute positively to the prediction]. 

The BioScope corpus suggests that the scope 
of negative adverbs usually starts with the cue 
and ends at the end of the phrase, clause or sen-
tence (E5). However, in our view, the scope 
should contain the subject for the integrity of 
meaning. Following is an exceptional case. 
(G5) Scope should be a continuous fragment in 

sentence. 
(E6) 酒店有高档的配套设施,然而却[不能多给

我们提供一个枕头].  
(The hotel are furnished with upscale facili-
ties, but [cannot offer us one more pillow].) 

Some rhetoric in Chinese language, such as 
parallelism or ellipsis, often gives rise to separa-
tion of some sentence constituents from others. 
For example, in Sentence (E6), the subject of the 
second clause should be “ 酒店 (the hotel)”, 
which is omitted. In this situation, we only need 
to identify the negative or speculative part in sen-
tence than all semantic constituents which can be 
completed through other NLP technologies, such 
as zero subject anaphora resolution or semantic 
role labeling. 
(G6) A negative or speculative character or word 

may not be a cue. 
(E7) 早茶的种类之多不得不赞.  

(We are difficult not to give credit to the 
variety of morning snack.) 

We have come across several cases where the 
presence of a negative or speculative character or 
word does not denote negative or speculative 
meaning. For example, there are lots of double 
negatives in Chinese language only for empha-
sizing than negative meanings. In Sentence (E7), 
obviously, the author wants to emphasis the 
praise of the variety of breakfast buffet by using 
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the phrase “不得不(be difficult not to)” which 
does not imply a negative meaning. 

The CNeSp corpus is annotated by two inde-
pendent annotators who are not allowed to com-
municate with each other. A linguist expert re-
solves the differences between the two annota-
tors and modified the guidelines when they are 
confronted with problematic issues, yielding the 
gold standard labeling of the corpus. 

3.3 Statistics and Agreement Analysis 

Table 1 summarizes the chief characteristics of 
the three sub-corpora, including Scientific Litera-
ture (Sci., for short), Financial Article (Fin.), and 
Product Review (Prod.). As shown in Table 1, 
out of the total amount of 16,841 sentences more 
than 20% contained negation or speculation, con-
firming the availability for corpus. 
Item Sci. Fin. Prod.
#Documents 19 311 821 
#Sentences 4,630 7,213 4,998
Avg. Length of Sentences 30.4 30.7 24.1 
Negation 
%Sentence 13.2 17.5 52.9 
Avg. Length of Scopes 9.1 7.2 5.1 
Speculation 
%Sentence 21.6 30.5 22.6 
Avg. Length of Scopes 12.3 15.0 6.9 
(Avg. Length: The average number of Chinese characters.) 

Table 1. Statistics of corpus. 

Type Sci. Fin. Prod.

Negation 
Cue 0.96 0.96 0.93 
Cue & Scope 0.90 0.91 0.88 

Speculation 
Cue 0.94 0.90 0.93 
Cue & Scope 0.93 0.85 0.89 

Table 2. Inter-annotator agreement. 

We measured the inter-annotator agreement of 
annotating cues and their linguistic scope for all 
of three sub-corpora between the two independ-
ent annotators in terms of Kappa (Cohen, 1960). 
The results are shown in Table 2. The 2nd and 
4th rows of the table show the kappa value of 
only cue annotation for negation and speculation, 
respectively. The 3rd and 5th rows show the 
agreement rate for both cue and its full scope. 
The most obvious conclusions here are that the 
identification of speculation is more complicated 
than negation even for humans because of the 
higher ambiguity of cues and the longer average 
length of scopes in speculation. 

4 Chinese Negation and Speculation 
Identification 

As a pipeline task, negation and speculation 
identification generally consists of two basic 

stages, cue detection and scope resolution. The 
former detects whether a word or phrase implies 
negative or speculative meanings, while the latter 
determines the sequences of terms which are 
dominated by the corresponding cue in sentence. 

In this section, we improve our cue detection 
system by using the morpheme features of Chi-
nese characters and expanding the cue clusters 
based on bilingual parallel corpora. Then, we 
present a new syntactic structure-based frame-
work for Chinese language, which regards the 
sub-structures of dependency tree selected by a 
heuristic rule as scope candidates. 

4.1 Cue Detection 

Most of the existing cue detection approaches are 
proposed from feature engineering perspective. 
They formulate cue detection as a classification 
issue, which is to classify each token in sentence 
as being the element of cue or not. 

Feature-based sequence labeling model 

At the beginning, we explore the performance of 
an English cue detection system, as described in 
Agarwal and Yu (2010), which employs a condi-
tional random fields (abbr., CRFs) model with 
lexical and syntactic features. Unfortunately, the 
performance is very low on Chinese texts (Sec-
tion 5.1). This may be attributed to the different 
characteristic of Chinese language, for example, 
no word boundaries and lack of morphologic 
variations. Such low performance drives us to 
investigate new effective features which are par-
ticularly appropriate for Chinese. We employed 
three kinds of features for cue detection: 

1) N-gram features 
For each character ci, assuming its 5-windows 

characters are ci-2 ci-1 ci ci+1 ci+2, we adopt follow-
ing features: ci-2, ci-1, ci, ci+1, ci+2, ci-1ci, cici+1, ci-

2ci-1ci, ci-1cici+1, cici+1ci+2. 
2) Lexical features 
To achieve high performance as much as pos-

sible, we also use some useful basic features 
which are widely used in other NLP tasks on 
Chinese. The basic feature set consists of POS 
tag, the left/right character and its PoS tag. It is 
worth noting that the cue candidates in our model 
are characters. Thus, in order to get these fea-
tures, we substitute them with corresponding fea-
tures of the words which contain the characters. 

3) Morpheme features 
The word-formation of Chinese implies that 

almost all of the meanings of a word are made up 
by the morphemes, a minimal meaningful unit in 
Chinese language contained in words. This more 
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fine-grained semantics are the compositional se-
mantics inside Chinese words namely. We as-
sume that the morphemes in a given cue are also 
likely to be contained in other cues. For example, 
“猜测(guess)” is a given speculative cue which 
consists of “ 猜 (guess)” and “ 测 (speculate)”, 
while the morpheme “猜(guess)” could be ap-
peared in “猜想(suppose)”. In consideration of 
the Chinese characteristics, we use every poten-
tial character in cues to get the morpheme feature. 

A Boolean feature is taken to represent the 
morpheme information. Specifically, the charac-
ters which appear more than once within differ-
ent cues in training corpus were selected as the 
features. The morpheme feature is set to 1, if the 
character is a negative or speculative morpheme. 

For the ability of capturing the local infor-
mation around a cue, we choose CRFs, a condi-
tional sequence model which represents the 
probability of a hidden state sequence given 
some observations, as classifier to label each 
character with a tag indicating whether it is out 
of a cue (O), the beginning of the cue (B) or a 
part of the cue except the beginning one (I). In 
this way, our CRFs-based cue identifier performs 
sequential labeling by assigning each character 
one of the three tags and a character assigned 
with tag B is concatenated with following char-
acters with tag I to form a cue. 

Cross-lingual Cue Expansion Strategy 

The feature-based cue detection approach men-
tioned above shows that a bottleneck lies in low 
recall (see Table 4). This is probably due to the 
absence of about 12% negation cues and 17% 
speculation cues from the training data. It is a 
challenging task to identify unknown cues with 
the limited amount of training data. Hence, we 
propose a cross-lingual cue expansion strategy. 

In the approach, we take use of the top 5 Chi-
nese cues in training corpus as our “anchor set”. 
For each cue, we search its automatically aligned 
English words from a Chinese-English parallel 
corpus to construct an English word cluster. The 
parallel corpus consisting of 100,000 sentence 
pairs is built by using Liu's approach (Liu et al., 
2014), which combines translation model with 
language model to select high-quality translation 
pairs from 16 million sentence pairs. The word 
alignment was obtained by running Giza++ (Och 
and Ney, 2003). In each cluster, we record the 
frequency of each unique English word. Consid-
ering the word alignment errors in cross-lingual 

clusters, we filter the clusters by word alignment 
probability which is formulated as below: 

( | ) (1 ) ( | )   A E C C EP P w w P w w  
( , ) ( , )

(1 )
( ) ( )

   E C E C

C E

P w w P w w

P w P w                         
( , ) ( , )

(1 )
( , ) ( , )

   
 

E C E C

Ei C Ci Ei i

align w w align w w

align w w align w w
      (1) 

where ( | )E CP w w  is the translation probability of 
English word wE conditioned on Chinese word 
wC, reversely, while ( | )C EP w w  is the translation 
probability of Chinese word wC conditioned on 
English word wE. ( , )m nalign w w  is the number of 
alignments of word wm and word wn in parallel 
corpus. ∑i ( , )mi nalign w w  is the sum of the num-
ber of alignments which contain word wn. The 
parameter α∈[0,1] is the coefficient controlling 
the relative contributions from the two directions 
of translation probability. 

Then we conduct the same procedure in the 
other direction to construct Chinese word clus-
ters anchored by English cues, until no new word 
comes about. For example, applying the above 
approach from the cue “可能(may)”, we obtain 
59 Chinese speculative cues. All of words in the 
final expansion cluster are identified as cues. 

4.2 Scope Resolution 

Currently, mainstream approaches formulated 
the scope resolution as a chunking problem, 
which classifies every word of a sentence as be-
ing inside or outside the scope of a cue. However, 
unlike in English, we found that plenty of errors 
occurred in Chinese scope resolution by using 
words as the basic identifying candidate. 

In this paper we propose a new framework us-
ing the sub-structures of dependency tree as 
scope candidates. Specifically, given a cue, we 
adopt the following heuristic rule to get the scope 
candidates in the dependency tree. 

Setting constituent X and its siblings as the root 
nodes of candidate structure of scope, X should 
be the ancestor node of cue or cue itself. 

For example, in the sentence “所有住客均表

示不会追究酒店的这次管理失职(All of guests 
said that they would not investigate the derelic-
tion of hotel)”, the negative cue “不(not)” has 
four constituent Xs and seven scope candidates, 
as shown in Figure 1. According to the above 
rule, three ancestor nodes {Xa: “表示(said)”, Xb: 
“追究(investigate)”, and Xc: “会(would)”} cor-
respond to three scope candidates (a, b1, and c), 
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Figure 1. Examples of a negative cue and its seven scope candidates in dependency tree. 

Feature Description Instantiation 
Cue: 
C1: Itself Tokens of cue 不(not) 
C2: PoS PoS of cue d(adverb) 
Scope candidate: 
S1: Itself Tokens of headword 追究(investigate) 
S2: PoS PoS of headword v(verb) 
S3: Dependency type Dependency type of headword VOB 
S4: Dependency type of child nodes Dependency type of child nodes of headword ADV+VOB 
S5: Distance<candidate, left word> Number of dependency arcs between the first word of can-

didate and its left word 
3 

S6: Distance<candidate, right word> Number of dependency arcs between the last word of can-
didate and its right word 

0 

Relationship between cue and scope candidate: 
R1: Path Dependency relation path from cue to headword ADV-ADV 
R2: Distance<cue, headword> Number of dependency arcs between cue and headword 2 
R3: Compression path Compression version of path ADV 
R4: Position Positional relationship of cue with scope candidate L_N(Left-nested) 

Table 3. Features and their instantiations for scope resolution. 

and the cue itself is certainly a scope candidate 
(d). In addition, the Xb node has two siblings in 
dependency tree {“住客(guests)” and “均(all 
of)”}. Therefore, the two scope candidates cor-
responding to them are b2 and b3, respectively. 
Similarly, the sibling of the Xc node is labeled as 
candidate c2. 

A binary classifier is applied to determine 
each candidate as either part of scope or not. In 
this paper, we employ some lexical and syntactic 
features about cue and candidate. Table 3 lists all 
of the features for scope resolution classification 
(with candidate b1 as the focus constituent (i.e., 
the scope candidate) and “不(not)” as the giv-
en cue, regarding candidate b1 in Figure 1(2)). 

For clarity, we categorize the features into three 
groups according to their relevance with the giv-
en cue (C, in short), scope candidate (S, in short), 
and the relationship between cue andcandidate 
(R, in short). Figure 2 shows four kinds of posi-
tional features between cue and scope candidate 
we defined (R4). 

 
Figure 2. Positional features. 

Some features proposed above may not be ef-
fective in classification. Therefore, we adopt a 
greedy feature se-lection algorithm as described 
in (Jiang and Ng, 2006) to pick up positive fea-
tures incrementally according to their contribu-
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tions on the development data. Additionally, a 
cue should have one continuous block as its 
scope, but the scope identifier may result in dis-
continuous scope due to independent candidate 
in classification. For this reason, we employ a 
post-processing algorithm as described in Zhu et 
al. (2010) to identify the boundaries. 

5 Experimentation 

In this section, we evaluate our feature-based 
sequence labeling model and cross-lingual cue 
expansion strategy on cue detection, and report 
the experimental results to justify the appropri-
ateness of our syntactic structure-based frame-
work on scope resolution in Chinese language. 

The performance is measured by Precision (P), 
Recall (R), and F1-score (F). In addition, for 
scope resolution, we also report the accuracy in 
PCS (Percentage of Correct Scopes), within 
which a scope is fully correct if the output of 
scope resolution system and the correct scope 
have been matched exactly. 

5.1 Cue Detection 

Results of the Sequence Labeling Model 

Every sub-corpus is randomly divided into ten 
equal folds so as to perform ten-fold cross vali-
dation. Lexical features are gained by using an 
open-source Chinese language processing plat-
form, LTP1(Che et al., 2010) to perform word 
segmentation, POS tagging, and syntactic pars-
ing. CRF++0.582 toolkit is employed as our se-
quence labeling model for cue detection. 

Table 4 lists the performances of cue detection 
systems using a variety of features. It shows that 
the morpheme features derived from the word-
formation of Chinese improve the performance 
for both negation and speculation cue detection 
systems on all kinds of sub-corpora. However, 
the one exception occurs in negation cue detec-
tion on the Product Review sub-corpus, in which 
the performance is decreased about 4.55% in 
precision. By error analysis, we find out the main 
reason is due to the pseudo cues. For example, 
“非常(very)” is identified by the negative mor-
pheme “非(-un)”, which is a pseudo cue. 

Table 4 also shows a bottleneck of our se-
quence labeling model, which lies in low recall. 
Due to the diversity of Chinese language, many 
cues only appear a few times in corpus. For ex-

                                                 
1 http://www.ltp-cloud.com 
2 https://crfpp.googlecode.com/svn/trunk/doc/index.html 

ample, 83% (233/280) of speculative cues appear 
less than ten times in Financial Article sub-
corpus. This data sparse problem directly leads to 
the low recall of cue detection. 
 Negation Speculation 

Sci. P R F1 P R F1 
Agarwal’s 48.75 36.44 41.71 46.16 33.49 38.82
N-gram 64.07 49.64 55.94 62.15 42.87 50.74
+Lexical 76.68 57.36 65.63 70.47 48.31 57.32
+Morpheme 81.37 59.11 68.48 76.91 50.77 61.16

Fin.  
Agarwal’s 41.93 39.15 40.49 50.39 42.80 46.29
N-gram 56.05 45.48 50.21 60.37 44.16 51.01
+Lexical 71.61 50.12 58.97 68.96 48.72 57.10
+Morpheme 78.94 53.37 63.68 75.43 51.29 61.06

Prod.  
Agarwal’s 58.47 47.31 52.30 45.88 34.13 39.14
N-gram 71.33 54.69 61.91 49.38 39.31 43.77
+Lexical 86.76 65.41 74.59 64.85 44.63 52.87
+Morpheme 82.21 66.82 73.72 70.06 45.31 55.03

Table 4. Contribution of features to cue detection. 

Results of the Cross-lingual Cue Expansion 
Strategy 

Before cue expansion, we select the parameter α 
as defined in formula (1) by optimizing the F1-
measure score of on Financial Article sub-corpus. 
Figure 3 shows the effect on F1-measure of vary-
ing the coefficient from 0 to 1. We can see that 
the best performance can be obtained by select-
ing parameter 0.6 for negation and 0.7 for specu-
lation. Then we apply these parameter values 
directly for cue expansion. 

 
Figure 3. The effect of varying the value of pa-

rameter α on Financial Article sub-corpus. 

Table 5 lists the performances of feature-based 
system, expansion-based system, and the com-
bined system. A word is identified as a cue by 
combined system if it is identified by one of the 
above systems (Feat-based or Exp-based) at least. 

For both negation and speculation, the cross-
lingual cue expansion approach provides signifi-
cant improvement over the feature-based se-
quence labeling model, achieving about 15-20% 
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better recall with little loss in precision. More 
importantly, the combined system obtains the 
best performance. 

 Negation Speculation 
Sci. P R F1 P R F1 

Feat-based 81.37 59.11 68.48 76.91 50.77 61.16
Exp-based 68.29 76.24 72.05 62.74 68.07 65.30
Combined 75.17 78.91 76.99 70.98 75.71 73.27

Fin.  
Feat-based 78.94 53.37 63.68 75.43 51.29 61.06
Exp-based 70.31 64.49 67.27 67.46 68.78 68.11
Combined 72.77 67.02 69.78 71.60 69.03 70.29

Prod.  
Feat-based 82.21 66.82 73.72 70.06 45.31 55.03
Exp-based 78.30 86.47 82.18 62.18 63.47 62.82
Combined 81.94 89.23 85.43 67.56 69.61 68.57

Table 5. Performance of cue detection. 

5.2 Syntactic Structure-based Scope Reso-
lution 

Considering the effectiveness of different fea-
tures, we divide the Financial Article sub-corpus 
into 5 equal parts, within which 2 parts are used 
for feature selection. Then, the feature selection 
data are divided into 5 equal parts, within which 
4 parts for training and the rest for developing. 
On this data set, a greedy feature selection algo-
rithm (Jiang and Ng, 2006) is adopted to pick up 
positive features proposed in Table 3. In addition, 
SVMLight3 with the default parameter is selected 
as our classifier. 

Table 6 lists the performance of selected fea-
tures. 7 features {C1, C2, S4, S5, S6, R1, R4} 
are selected consecutively for negation scope 
resolution, while 9 features {C2, S1, S3, S4, S5, 
R1, R2, R3, R4} are selected for speculation 
scope resolution. We will include those selected 
features in all the remaining experiments. 

Type Feature set Sci. Fin. Prod.

Negation 
Selected features 62.16 56.07 60.93

All features 59.74 54.20 55.42

Speculation 
Selected features 54.16 49.64 52.89

All features 52.33 46.27 48.07

Table 6. Feature selection for scope resolution on 
golden cues (PCS %). 

The feature selection experiments suggest that 
the feature C2 (POS of cue) plays a critical role 
for both negation and speculation scope resolu-
tion. It may be due to the fact that cues of differ-
ent POS usually undertake different syntactic 
roles. Thus, there are different characteristics in 
triggering linguistic scopes. For example, an ad-
jective cue may treat a modificatory structure as 

                                                 
3 http://svmlight.joachims.org 

its scope, while a conjunction cue may take the 
two connected components as its scope. 

As a pipeline task, the negation and specula-
tion identification could be regarded as a combi-
nation of two sequential tasks: first, cue detection, 
and then scope resolution. Hence, we turn to a 
more realistic scenario in which cues are auto-
matically recognized. 

Type Corpus P R F1 PCS

Negation 
Sci. 55.32 53.06 54.17 59.08
Fin. 42.14 46.37 44.15 49.24
Prod. 50.57 48.55 49.54 52.17

Speculation
Sci. 45.68 47.15 46.40 48.36
Fin. 34.21 31.80 32.96 41.33
Prod. 32.64 33.59 33.11 39.78

Table 7. Performance of scope resolution with 
automatic cue detection. 

Table 7 lists the performance of scope resolu-
tion by using automatic cues. It shows that auto-
matic cue detection lowers the performance by 
3.08, 6.83, and 8.76 in PCS for the three sub-
corpora, respectively; while it lowers the perfor-
mance by 5.80, 8.31 and 13.11 in PCS for specu-
lation scope resolution on the three sub-corpora, 
respectively (refer to Table 6). The main reason 
of performance lost is the error propagation from 
the automatic cue detection. 

We employ a start-of-the-art chunking-based 
scope resolution system (described in Zou et al., 
(2013)) as a baseline, in which every word in 
sentence has been labelled as being the element 
of the scope or not. Table 8 compares our syntac-
tic structure-based framework with the chunking-
based framework on scope resolution. Note that 
all the performances are achieved on Financial 
Article sub-corpus by using golden cues. The 
results in Table 8 shows that our scope resolution 
system outperforms the chunking ones both on 
negation and speculation, improving 8.75 and 
7.44 in PCS, respectively. 

Type System PCS 

Negation 
Chunking-based 47.32 
Ours 56.07 

Speculation 
Chunking-based 42.20 
Ours 49.64 

Table 8. Comparison with the chunking-based 
system on Financial Article sub-corpus. 

6 Conclusion 

In this paper we construct a Chinese corpus for 
negation and speculation identification, which 
annotates cues and their linguistic scopes. For 
cue detection, we present a feature-based se-
quence labeling model, in which the morpheme 
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feature is employed to better catch the com-
position semantics inside the Chinese words. 
Complementally, a cross-lingual cue expansion 
strategy is pro-posed to increase the coverage in 
cue detection. For scope resolution, we present a 
new syntactic structure-based framework to iden-
tify the linguistic scope of a cue. Evaluation jus-
tifies the usefulness of our Chinese corpus and 
the appropriateness of the syntactic structure-
based framework. It also shows that our ap-
proach outperforms the state-of-the-art chunking 
ones on negation and speculation identification 
in Chinese language. 

In the future we will explore more effective 
features to improve the negation and speculation 
identification in Chinese language, and focus on 
joint learning of the two subtasks. 
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Abstract

The path ranking algorithm (PRA)
has been recently proposed to address
relational classification and retrieval tasks
at large scale. We describe Cor-PRA,
an enhanced system that can model a
larger space of relational rules, including
longer relational rules and a class of
first order rules with constants, while
maintaining scalability. We describe
and test faster algorithms for searching
for these features. A key contribution
is to leverage backward random walks
to efficiently discover these types of
rules. An empirical study is conducted
on the tasks of graph-based knowledge
base inference, and person named entity
extraction from parsed text. Our results
show that learning paths with constants
improves performance on both tasks, and
that modeling longer paths dramatically
improves performance for the named
entity extraction task.

1 Introduction

Structured knowledge about entities and the
relationships between them can be represented
as an edge-typed graph, and relational learning
methods often base predictions on connectivity
patterns in this graph. One such method is the
Path Ranking Algorithm (PRA), a random-walk
based relational learning and inference framework
due to Lao and Cohen (2010b). PRA is highly
scalable compared with other statistical relational
learning approaches, and can therefore be applied
to perform inference in large knowledge bases
(KBs). Several recent works have applied PRA
to link prediction in semantic KBs, as well as
to learning syntactic relational patterns used in
information extraction from the Web (Lao et al.,

2012; Gardner et al., 2013; Gardner et al., 2014;
Dong et al., 2014).

A typical relational inference problem is
illustrated in Figure 1. Having relational
knowledge represented as a graph, it is desired
to infer additional relations of interest between
entity pairs. For example, one may wish to
infer whether an AthletePlaysInLeague relation
holds between nodes HinesWard and NFL. More
generally, link prediction involves queries of the
form: which entities are linked to a source node s
(HinesWard) over a relation of interest r (e.g., r is
AlthletePlaysInLeague)?

PRA gauges the relevance of a target node t
with respect to the source node s and relation r
based on a set of relation paths (i.e., sequences
of edge labels) that connect the node pair. Each
path πi is considered as feature, and the value of
feature πi for an instance (s, t) is the probability of
reaching t from s following path πi. A classifier
is learned in this feature space, using logistic
regression.

PRA’s candidate paths correspond
closely to a certain class of Horn
clauses: for instance, the path π =
〈AthletePlaysForTeam,TeamPlaysInLeague〉,
when used as a feature for the relation
r = AthletePlaysForLeague, corresponds to
the Horn clause

AthletePlaysForTeam(s, z) ∧ TeamPlaysInLeague(z, t)
→ AthletePlaysForLeague(s, t)

One difference between PRA’s features and
more traditional logical inference is that
random-walk weighting means that not all
inferences instantiated by a clause will be given
the same weight. Another difference is that
PRA is very limited in terms of expressiveness.
In particular, inductive logic programming
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Eli Manning Giants
AthletePlays

ForTeam

HinesWard Steelers

AthletePlays
ForTeam NFL

TeamPlays
InLeague

MLBTeamPlays
InLeague

TeamPlays
InLeague

Figure 1: An example knowledge graph

(ILP) methods such as FOIL (Quinlan and
Cameron-Jones, 1993) learn first-order Horn
rules that may involve constants. Consider the
following rules as motivating examples.

EmployeedByAgent(s, t) ∧ IsA(t, SportsTeam)
→ AthletePlaysForTeam(s, t)

t = NFL→ AthletePlaysForTeam(s, t)

The first rule includes SportsTeam as a constant,
corresponding to a particular graph node, which
is a the semantic class (hypernym) of the target
node t. The second rule simply assigns NFL
as the target node for the AthletePlaysForTeam
relation; if used probabilistically, this rule can
serve as a prior. Neither feature can be expressed
in PRA, as PRA features are restricted to edge type
sequences.

We are interested in extending the range of
relational rules that can be represented within the
PRA framework, including rules with constants.
A key challenge is that this greatly increases
the space of candidate rules. Knowledge
bases such as Freebase (Bollacker et al., 2008),
YAGO (Suchanek et al., 2007), or NELL (Carlson
et al., 2010a), may contain thousands of predicates
and millions of concepts. The number of features
involving concepts as constants (even if limited
to simple structures such as the example rules
above) will thus be prohibitively large. Therefore,
it is necessary to search the space of candidate
paths π very efficiently. More efficient candidate
generation is also necessary if one attempts to use
a looser bound on the length of candidate paths.

To achieve this, we propose using backward
random walks. Given target nodes that are
known to be relevant for relation r, we perform
backward random walks (up to finite length `)
originating at these target nodes, where every
graph node c reachable in this random walk
process is considered as a potentially useful
constant. Consequently, the relational paths

that connect nodes c and t are evaluated as
possible random walk features. As we will show,
such paths provide informative class priors for
relational classification tasks.

Concretely, this paper makes the following
contributions. First, we outline and discuss a
new and larger family of relational features that
may be represented in terms of random walks
within the PRA framework. These features
represent paths with constants, expanding the
expressiveness of PRA. In addition, we propose to
encode bi-directional random walk probabilities as
features; we will show that accounting for this sort
of directionality provides useful information about
graph structure.

Second, we describe the learning of this
extended set of paths by means of backward walks
from relevant target nodes. Importantly, the search
and computation of the extended set of features is
performed efficiently, maintaining high scalability
of the framework. Concretely, using backward
walks, one can compute random walk probabilities
in a bi-directional fashion; this means that for
paths of length 2M , the time complexity of path
finding is reduced from O(|V |2M ) to O(|V |M ),
where |V | is the number of edge types in graph.

Finally, we report experimental results for
relational inference tasks in two different domains,
including knowledge base link prediction and
person named entity extraction from parsed
text (Minkov and Cohen, 2008). It is shown
that the proposed extensions allow one to
effectively explore a larger feature space,
significantly improving model quality over
previously published results in both domains. In
particular, incorporating paths with constants
significantly improves model quality on
both tasks. Bi-directional walk probability
computation also enables the learning of longer
predicate chains, and the modeling of long paths
is shown to substantially improve performance
on the person name extraction task. Importantly,
learning and inference remain highly efficient in
both these settings.

2 Related Work

ILP complexity stems from two main
sources—the complexity of searching for
clauses, and of evaluating them. First-order
learning systems (e.g. FOIL, FOCL (Pazzani et
al., 1991)) mostly rely on hill-climbing search,
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i.e., incrementally expanding existing patterns
to explore the combinatorial model space, and
are thus often vulnerable to local maxima. PRA
takes another approach, generating features using
efficient random graph walks, and selecting a
subset of those features which pass precision and
frequency thresholds. In this respect, it resembles
a stochastic approach to ILP used in earlier
work (Sebag and Rouveirol, 1997).The idea of
sampling-based inference and induction has been
further explored by later systems (Kuželka and
Železný, 2008; Kuželka and Železný, 2009).

Compared with conventional ILP or relational
learning systems, PRA is limited to learning
from binary predicates, and applies random-walk
semantics to its clauses. Using sampling
strategies (Lao and Cohen, 2010a), the
computation of clause probabilities can be
done in time that is independent of the knowledge
base size, with bounded error rate (Wang et al.,
2013). Unlike in FORTE and similar systems, in
PRA, sampling is also applied to the induction
path-finding stage. The relational feature
construction problem (or propositionalization)
has previously been addressed in the ILP
community—e.g., the RSD system (Železný and
Lavrač, 2006) performs explicit first-order feature
construction guided by an precision heuristic
function. In comparison, PRA uses precision and
recall measures, which can be readily read off
from random walk results.

Bi-directional search is a popular strategy
in AI, and in the ILP literature. The
Aleph algorithm (Srinivasan, 2001) combines
top-down with bottom-up search of the refinement
graph, an approach inherited from Progol.
FORTE (Richards and Mooney, 1991) was another
early ILP system which enumerated paths via
a bi-directional seach. Computing backward
random walks for PRA can be seen as a particular
way of bi-directional search, which is also
assigned a random walk probability semantics.
Unlike in prior work, we will use this probability
semantics directly for feature selection.

3 Background

We first review the Path Ranking Algorithm
(PRA) as introduced by (Lao and Cohen, 2010b),
paying special attention to its random walk feature
estimation and selection components.

3.1 Path Ranking Algorithm

Given a directed graph G, with nodes N , edges E
and edge types R, we assume that all edges can be
traversed in both directions, and use r−1 to denote
the reverse of edge type r ∈ R. A path type π
is defined as a sequence of edge types r1 . . . r`.
Such path types may be indicative of an extended
relational meaning between graph nodes that are
linked over these paths; for example, the path
〈AtheletePlaysForTeam,TeamPlaysInLeague〉
implies the relationship “the league a certain
player plays for”. PRA encodes P (s→ t;πj), the
probability of reaching target node t starting from
source node s and following path πj , as a feature
that describes the semantic relation between s and
t. Specifically, provided with a set of selected
path types up to length `, P` = {π1, . . . , πm},
the relevancy of target nodes t with respect to the
query node s and the relationship of interest is
evaluated using the following scoring function

score(s, t) =
∑
πj∈P`

θjP (s→ t;πj), (1)

where θ are appropriate weights for the features,
estimated in the following fashion.

Given a relation of interest r and a set of
annotated node pairs {(s, t)}, for which it is
known whether r(s, t) holds or not, a training
data set D = {(x, y)} is constructed, where
x is a vector of all the path features for the
pair (s, t)—i.e., the j-th component of x is
P (s → t;πj), and y is a boolean variable
indicating whether r(s, t) is true. We adopt
the closed-world assumption—a set of relevant
target nodes Gi is specified for every example
source node si and relation r, and all other nodes
are treated as negative target nodes. A biased
sampling procedure selects only a small subset of
negative samples to be included in the objective
function (Lao and Cohen, 2010b). The parameters
θ are estimated from both positive and negative
examples using a regularized logistic regression
model.

3.2 PRA Features–Generation and Selection

PRA features are of the form P (s → t;πj),
denoting the probability of reaching target node t,
originating random walk at node s and following
edge type sequence πj . These path probabilities
need to be estimated for every node pair, as part
of both training and inference. High scalability
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is achieved due to efficient path probability
estimation. In addition, feature selection is
applied so as to allow efficient learning and avoid
overfitting.

Concretely, the probability of reaching t from s
following path type π can be recursively defined
as

P (s→ t;π) =
∑
z

P (s→ z;π′)P (z → t; r),

(2)
where r is the last edge type in path π, and π′

is its prefix, such that adding r to π’ gives π.
In the terminal case that π’ is the empty path φ,
P (s → z;φ) is defined to be 1 if s = z, and 0
otherwise. The probability P (z → t; r) is defined
as 1/|r(z)| if r(z, t), and 0 otherwise, where r(z)
is the set of nodes linked to node z over edge
type r. It has been shown that P (s → t;π)
can be effectively estimated using random walk
sampling techniques, with bounded complexity
and bounded error, for all graph nodes that can be
reached from s over path type π (Lao and Cohen,
2010a).

Due to the exponentially large feature space
in relational domains, candidate path features are
first generated using a dedicated particle filtering
path-finding procedure (Lao et al., 2011), which
is informed by training signals. Meaningful
features are then selected using the following
goodness measures, considering path precision
and coverage:

precision(π) =
1
n

∑
i

P (si → Gi;π), (3)

coverage(π) =
∑
i

I(P (si → Gi;π) > 0). (4)

where P (si → Gi;π) ≡ ∑
t∈Gi

P (si → t;π).
The first measure prefers paths that lead to correct
nodes with high average probability. The second
measure reflects the number of queries for which
some correct node is reached over path π. In
order for a path type π to be included in the
PRA model, it is required that the respective
scores pass thresholds, precision(π) ≥ a and
coverage(π) ≥ h, where the thresholds a and h
are tuned empirically using training data.

4 Cor-PRA

We will now describe the enhanced system, which
we call Cor-PRA, for the Constant and Reversed

Path Ranking Algorithm. Our goal is to enrich the
space of relational rules that can be represented
using PRA, while maintaining the scalability of
this framework.

4.1 Backward random walks

We first introduce backward random walks, which
are useful for generating and evaluating the set
of proposed relational path types, including paths
with constants. As discussed in Sec.4.4, the use of
backward random walks also enables the modeling
of long relational paths within Cor-PRA.

A key observation is that the path probability
P (s → t;π) may be computed using forward
random walks (Eq. (2)), or alternatively, it can be
recursively defined in a backward fashion:

P (t← s;π) =
∑
z

P (t← z;π′−1)P (z ← s; r−1)

(5)
where π′−1 is the path that results from removing
the last edge type r in π′. Here, in the terminal
condition that π′−1 = φ, P (t ← z;π′−1) is
defined to be 1 for z = t, and 0 otherwise. In
what follows, the starting point of the random
walk calculation is indicated at the left side of
the arrow symbol; i.e., P (s → t;π) denotes the
probability of reaching t from s computed using
forward random walks, and P (t ← s;π) denotes
the same probability, computed in a backward
fashion.

4.2 Relational paths with constants

As stated before, we wish to model relational
rules that may include constants, denoting related
entities or concepts. Main questions are, how
can relational rules with constants be represented
as path probability features? and, how can
meaningful rules with constants be generated and
selected efficiently?

In order to address the first question, let
us assume that a set of constant nodes {c},
which are known to be useful with respect to
relation r, has been already identified. The
relationship between each constant c and target
node t may be represented in terms of path
probability features, P (c → t;π). For example,
the rule IsA(t, SportsTeam) corresponds to a path
originating at constant SportsTeam, and reaching
target node t over a direct edge typed IsA−1. Such
paths, which are independent of the source node
s, readily represent the semantic type, or other
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characteristic attributes of relevant target nodes.
Similarly, a feature (c, φ), designating a constant
and an empty path, forms a prior for the target
node identity.

The remaining question is how to identify
meaningful constant features. Apriori, candidate
constants range over all of the graph nodes,
and searching for useful paths that originate
at arbitrary constants is generally intractable.
Provided with labeled examples, we apply the
path-finding procedure for this purpose, where
rather than search for high-probability paths from
source node s to target t, paths are explored in
a backward fashion, initiating path search at the
known relevant target nodes t ∈ Gi per each
labeled query. This process identifies candidate
(c, π) tuples, which give high P (c ← t;π−1)
values, at bounded computation cost. As a second
step, P (c → t;π) feature values are calculated,
where useful path features are selected using the
precision and coverage criteria. Further details are
discussed in Section 4.4.

4.3 Bi-directional Random Walk Features

The PRA algorithm only uses features of the form
P (s → t;π). In this study we also consider
graph walk features in the inverse direction of
the form P (s ← t;π−1). Similarly, we
consider both P (c → t;π) and P (c ← t;π−1).
While these path feature pairs represent the same
logical expressions, the directional random walk
probabilities may greatly differ. For example,
it may be highly likely for a random walker to
reach a target node representing a sports team
t from node s denoting a player over a path π
that describes the functional AthletePlaysForTeam
relation, but unlikely to reach a particular player
node s from the multiplayer team t via the reversed
path π−1.

In general, there are six types of random walk
probabilities that may be modeled as relational
features following the introduction of constant
paths and inverse path probabilities. The random
walk probabilities between s and constant nodes
c, P (s → c;π) and P (s ← c;π), do not directly
affect the ranking of candidate target nodes, so
we do not use them in this study. It is possible,
however, to generate random walk features that
combine these probabilities with random walks
starting or ending with t through conjunction.

Algorithm 1 Cor-PRA Feature Induction1

Input training queries {(si, Gi)}, i = 1...n
for each query (s,G) do

1. Path exploration
(i). Apply path-finding to generate pathsPs up to length
` that originate at si.
(ii). Apply path-finding to generate paths Pt up to
length ` that originate at every ti ∈ Gi.
2. Calculate random walk probabilities:
for each πs ∈ Ps: do

compute P (s→ x;πs) and P (s← x;π−1
s )

end for
for each πt ∈ Pt: do

compute P (G→ x;πt) and P (G← x;π−1
t )

end for
3. Generate constant paths candidates:
for each (x ∈ N,π ∈ Pt) with P (G→ x|πt) > 0 do

propose path feature P (c ← t;π−1
t ) setting c = x,

and update its statistics by coverage += 1.
end for
for each (x ∈ N,π ∈ Pt) with P (G ← x|π−1

t ) > 0
do

propose P (c → t;πt) setting c = x and update its
statistics by coverage += 1

end for
4. Generate long (concatenated) path candidates:
for each (x ∈ N,πs ∈ Ps, πt ∈ Pt) with P (s →
x|πs) > 0 and P (G← x|π−1

t ) > 0 do
propose long path P (s → t;πs.π

−1
t ) and update its

statistics by coverage += 1, and precision +=
P (s→ x|πs)P (G← x|π−1

t )/n.
end for
for each (x ∈ N,πs ∈ Ps, πt ∈ Pt) with P (s ←
x|π−1

s ) > 0 and P (G→ x|πt) > 0 do
propose long path P (s ← t;πt.π

−1
s ) and update its

statistics by coverage += 1, and precision +=
P (s← x|π−1

s )P (G→ x|πt)/n.
end for

end for

4.4 Cor-PRA feature induction and selection

The proposed feature induction procedure is
outlined in Alg. 1. Given labeled node pairs,
the particle-filtering path-finding procedure is first
applied to identify edge type sequences up to
length ` that originate at either source nodes si
or relevant target nodes ti (step 1). Bi-directional
path probabilities are then calculated over these
paths, recording the terminal graph nodes x (step
2). Note that since the set of nodes x may be
large, path probabilities are all computed with
respect to s or t as starting points. As a result
of the induction process, candidate relational
paths involving constants are identified, and are
associated with precision and coverage statistics
(step 3). Further, long paths up to length 2` are
formed between the source and target nodes as the
combination of paths πs from the source side and
path πt from the target side, updating accuracy and
coverage statistics for the concatenated paths πsπt
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(step 4).
Following feature induction, feature selection is

applied. First, random walks are performed for
all the training queries, so as to obtain complete
(rather than sampled) precision and coverage
statistics per path. Then relational paths, which
pass respective tuned thresholds are added to the
model. We found, however, that applying this
strategy for paths with constants often leads to
over-fitting. We therefore select only the top K
constant features in terms of F1

2, where K is
tuned using training examples.

Finally, at test time, random walk probabilities
are calculated for the selected paths, starting from
either s or c nodes per query–since the identity of
relevant targets t is unknown, but rather has to be
revealed.

5 Experiments

In this section, we report the results of applying
Cor-PRA to the tasks of knowledge base inference
and person named entity extraction from parsed
text.

We performed 3-fold cross validation
experiments, given datasets of labeled queries.
For each query node in the evaluation set, a list of
graph nodes ranked by their estimated relevancy
to the query node s and relation r is generated.
Ideally, relevant nodes should be ranked at the
top of these lists. Since the number of correct
answers is large for some queries, we report
results in terms of mean average precision (MAP),
a measure that reflects both precision and recall
(Turpin and Scholer, 2006).

The coverage and precision thresholds of
Cor-PRA were set to h = 2 and a = 0.001
in all of the experiments, following empirical
tuning using a small subset of the training data.
The particle filtering path-finding algorithm was
applied using the parameter setting wg = 106, so
as to find useful paths with high probability and
yet constrain the computational cost.

Our results are compared against the FOIL
algorithm3, which learns first-order horn clauses.
In order to evaluate FOIL using MAP, its candidate
beliefs are first ranked by the number of FOIL
rules they match. We further report results
using Random Walks with Restart (RWR), also

2F1 is the harmonic mean of precision and recall, where
the latter is defined as coverage

total number targets in training queries
3http://www.rulequest.com/Personal/

Table 1: MAP and training time [sec] on KB
inference and NE extraction tasks. consti denotes
constant paths up to length i.

KB inference NE extraction
Time MAP Time MAP

RWR 25.6 0.429 7,375 0.017
FOIL 18918.1 0.358 366,558 0.167
PRA 10.2 0.477 277 0.107
CoR-PRA-no-const 16.7 0.479 449 0.167
CoR-PRA-const2 23.3 0.524 556 0.186
CoR-PRA-const3 27.1 0.530 643 0.316

known as personalized PageRank (Haveliwala,
2002), a popular random walk based graph
similarity measure, that has been shown to be
fairly successful for many types of tasks (e.g.,
(Agirre and Soroa, 2009; Moro et al., 2014)).
Finally, we compare against PRA, which models
relational paths in the form of edge-sequences
(no constants), using only uni-directional path
probabilities, P (s→ t;π).

All experiments were run on a machine with a
16 core Intel Xeon 2.33GHz CPU and 24Gb of
memory. All methods are trained and tested with
the same data splits. We report the total training
time of each method, measuring the efficiency of
inference and induction as a whole.

5.1 Knowledge Base Inference

We first consider relational inference in the
context of NELL, a semantic knowledge base
constructed by continually extracting facts from
the Web (Carlson et al., 2010b). This work uses
a snapshot of the NELL knowledge base graph,
which consists of ∼1.6M edges comprised of
353 edge types, and ∼750K nodes. Following
Lao et al. (2011), we test our approach on 16
link prediction tasks, targeting relations such
as Athlete-plays-in-league, Team-plays-in-league
and Competes-with.

Table 1 reports MAP results and training times
for all of the evaluated methods. The maximum
path length of RWR, PRA, and CoR-PRA are set
to 3 since longer path lengths do not result in better
MAPs. As shown, RWR performance is inferior to
PRA; unlike the other approaches, RWR is merely
associative and does not involve path learning.
PRA is significantly faster than FOIL due to its
particle filtering approach in feature induction
and inference. It also results in a better MAP
performance due to its ability to combine random
walk features in a discriminative model.
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Figure 2: Path finding time (a) and MAP (b)
for the KB inference (top) and name extraction
(bottom) tasks. A marker iF + jB indicates the
maximum path exploration depth i from query
node s and j from target node t–so that the
combined path length is up to i+ j. No paths with
constants were used.

Table 1 further displays the evaluation results of
several variants of CoR-PRA. As shown, modeling
features that encode random walk probabilities
in both directions (CoR-PRA-no-const), yet no
paths with constants, requires longer training
times, but results in slightly better performance
compared with PRA. Note that for a fixed path
length, CoR-PRA has “forward” features of the
form P (s → t;π), the probability of reaching
target node t from source node s over path π
(similarly to PRA), as well as backward features
of the form P (s ← t;π−1), the probability of
reaching s from t over the backward path π−1.
As mentioned earlier these probabilities are not the
same; for example, a player usually plays for one
team, whereas a team is linked to many players.

Performance improves significantly, however,
when paths with constants are further added. The
table includes our results using constant paths
up to length ` = 2 and ` = 3 (denoted as
CoR-PRA-const`). Based on tuning experiments
on one fold of the data, K = 20 top-rated constant
paths were included in the models.4 We found
that these paths provide informative class priors;

4MAP performance peaked at roughly K = 20, and
gradually decayed as K increased.

Table 2: Example paths with constants learnt for
the knowledge base inference tasks. (φ denotes
empty paths.)

Constant path Interpretation
r=athletePlaysInLeague
P (mlb→ t;φ) Bias toward MLB.
P (boston braves→ t; The leagues played by〈

athleteP laysForTeam−1, Boston Braves university
athletePlaysInLeague〉) team members.

r=competesWith
P (google→ t;φ) Bias toward Google.
P (google→ t; Companies which compete
〈competesWith, competesWith〉)with Google’s competitors.

r=teamPlaysInLeague
P (ncaa→ t;φ) Bias toward NCAA.
P (boise state→ t; The leagues played by Boise
〈teamPlaysInLeague〉) State university teams.

example paths and their interpretation are included
in Table 2.

Figure 2(a) shows the effect of increasing the
maximal path length on path finding and selection
time. The leftmost (blue) bars show baseline
performance of PRA, where only forward random
walks are applied. It is clearly demonstrated that
the time spent on path finding grows exponentially
with `. Due to memory limitations, we were
able to execute forward-walk models only up to
4 steps. The bars denoted by iF + jB show
the results of combining forward walks up to
length i with backward walks of up to j = 1 or
j = 2 steps. Time complexity using bidirectional
random walks is dominated by the longest path
segment (either forward or backward)—e.g., the
settings 3F , 3F +1B, 3F +2B have similar time
complexity. Using bidirectional search, we were
able to consider relational paths up to length 5.
Figure 2(b) presents MAP performance, where it
is shown that extending the maximal explored path
length did not improve performance in this case.
This result indicates that meaningful paths in this
domain are mostly short. Accordingly, path length
was set to 3 in the respective main experiments.

5.2 Named Entity Extraction

We further consider the task of named entity
extraction from a corpus of parsed texts, following
previous work by Minkov and Cohen (2008).

In this case, an entity-relation graph schema is
used to represent a corpus of parsed sentences,
as illustrated in Figure 3. Graph nodes denoting
word mentions (in round edged boxes) are linked
over edges typed with dependency relations. The
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parsed sentence structures are connected via nodes
that denote word lemmas, where every word
lemma is linked to all of its mentions in the
corpus via the special edge type W . We represent
part-of-speech tags as another set of graph nodes,
where word mentions are connected to the relevant
tag over POS edge type.

In this graph, task-specific word similarity
measures can be derived based on the
lexico-syntactic paths that connect word
types (Minkov and Cohen, 2014). The task
defined in the experiments is to retrieve a ranked
list of person names given a small set of seeds.
This task is implemented in the graph as a query,
where we let the query distribution be uniform
over the given seeds (and zero elsewhere). That
is, our goal is to find target nodes that are related
to the query nodes over the relation r =similar-to,
or, coordinate-term. We apply link prediction in
this case with the expected result of generating
a ranked list of graph nodes, which is populated
with many additional person names. The named
entity extraction task we consider is somewhat
similar to the one adopted by FIGER (Ling
and Weld, 2012), in that a finer-grain category
is being assigned to proposed named entities.
Our approach follows however set expansion
settings (Wang and Cohen, 2007), where the goal
is to find new instances of the specified type from
parsed text.

In the experiments, we use the training set
portion of the MUC-6 data set (MUC, 1995),
represented as a graph of 153k nodes and 748K
edges. We generated 30 labeled queries, each
comprised of 4 person names selected randomly
from the person names mentioned in the data
set. The MUC corpus is fully annotated with
entity names, so that relevant target nodes (other
person names) were readily sampled. Extraction
performance was evaluated considering the tagged
person names, which were not included in the
query, as the correct answer set. The maximum
path length of RWR, PRA, and CoR-PRA are set
to 6 due to memory limitation.

Table 1 shows that PRA is much faster
than RWR or FOIL on this data set, giving
competitive MAP performance to FOIL. RWR
is generally ineffective on this task, because
similarity in this domain is represented by a
relatively small set of long paths, whereas
RWR express local node associations in the
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Figure 3: Part of a typed graph representing a
corpus of parsed sentences.

Table 3: Highly weighted paths with constants
learnt for the person name extraction task.

Constant path Interpretation
P (said← t; W−1, nsubj, W ) The subjects of ‘said’ or ‘say’
P (says← t; W−1, nsubj, W ) are likely to be a person name.
P (vbg ← t; POS−1, nsubj, W ) Subjects, proper nouns, and
P (nnp← t; POS−1, W ) nouns with apposition or
P (nn← t; POS−1, appos−1, W ) possessive constructions, are
P (nn← t; POS−1, poss, W ) likely to be person names.

graph (Minkov and Cohen, 2008). Modeling
inverse path probabilities improves performance
substantially, and adding relational features with
constants boosts performance further. The
constant paths learned encode lexical features, as
well as provide useful priors, mainly over different
part-of-speech tags. Example constant paths that
were highly weighted in the learned models and
their interpretation are given in Table 3.

Figure 2(c) shows the effect of modeling long
relational paths using bidirectional random walks
in the language domain. Here, forward path
finding was applied to paths up to length 5 due
to memory limitation. The figure displays the
results of exploring paths up to a total length of
6 edges, performing backward search from the
target nodes of up to j = 1, 2, 3 steps. MAP
performance (Figure 2(d)) using paths of varying
lengths shows significant improvements as the
path length increases. Top weighted long features
include:
P (s→ t;W−1, conj and−1,W,W−1, conj and,W )

P (s→ t;W−1, nn,W,W−1, appos−1,W )

P (s→ t;W−1, appos,W,W−1, appos−1,W )

These paths are similar to the top ranked paths
found in previous work (Minkov and Cohen,
2008). In comparison, their results on this dataset
using paths of up to 6 steps measured 0.09 in
MAP. Our results reach roughly 0.16 in MAP due
to modeling of inverse paths; and, when constant
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paths are incorporated, MAP reaches 0.32.
Interestingly, in this domain, FOIL generates

fewer yet more complex rules, which are
characterised with low recall and high precision,
such as: W (B,A) ∧ POS(B,nnp) ∧ nsubj(D,B) ∧
W (D, said) ∧ appos(B,F ) → person(A). Note
that subsets of these rules, namely, POS(B,nnp),
nsubj(D,B) ∧ W (D, said) and appos(B,F )
have been discovered by PRA as individual
features assigned with high weights (Table 3).
This indicates an interesting future work, where
products of random walk features can be used to
express their conjunctions.

6 Conclusion

We have introduced CoR-PRA, extending an
existing random walk based relational learning
paradigm to consider relational paths with
constants, bi-directional path features, as well
as long paths. Our experiments on knowledge
base inference and person name extraction tasks
show significant improvements over previously
published results, while maintaining efficiency.
An interesting future direction is to use products
of these random walk features to express their
conjunctions.
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Abstract

In this paper we present a formal compu-
tational framework for modeling manip-
ulation actions. The introduced formal-
ism leads to semantics of manipulation ac-
tion and has applications to both observ-
ing and understanding human manipula-
tion actions as well as executing them with
a robotic mechanism (e.g. a humanoid
robot). It is based on a Combinatory Cat-
egorial Grammar. The goal of the intro-
duced framework is to: (1) represent ma-
nipulation actions with both syntax and se-
mantic parts, where the semantic part em-
ploys λ-calculus; (2) enable a probabilis-
tic semantic parsing schema to learn the
lambda-calculus representation of manip-
ulation action from an annotated action
corpus of videos; (3) use (1) and (2) to de-
velop a system that visually observes ma-
nipulation actions and understands their
meaning while it can reason beyond ob-
servations using propositional logic and
axiom schemata. The experiments con-
ducted on a public available large manip-
ulation action dataset validate the theoret-
ical framework and our implementation.

1 Introduction

Autonomous robots will need to learn the actions
that humans perform. They will need to recognize
these actions when they see them and they will
need to perform these actions themselves. This re-
quires a formal system to represent the action se-
mantics. This representation needs to store the se-
mantic information about the actions, be encoded
in a machine readable language, and inherently be
in a programmable fashion in order to enable rea-
soning beyond observation. A formal represen-
tation of this kind has a variety of other appli-
cations such as intelligent manufacturing, human

robot collaboration, action planning and policy de-
sign, etc.

In this paper, we are concerned with manipula-
tion actions, that is actions performed by agents
(humans or robots) on objects, resulting in some
physical change of the object. However most of
the current AI systems require manually defined
semantic rules. In this work, we propose a com-
putational linguistics framework, which is based
on probabilistic semantic parsing with Combina-
tory Categorial Grammar (CCG), to learn manip-
ulation action semantics (lexicon entries) from an-
notations. We later show that this learned lexicon
is able to make our system reason about manipu-
lation action goals beyond just observation. Thus
the intelligent system can not only imitate human
movements, but also imitate action goals.

Understanding actions by observation and exe-
cuting them are generally considered as dual prob-
lems for intelligent agents. The sensori-motor
bridge connecting the two tasks is essential, and
a great amount of attention in AI, Robotics as well
as Neurophysiology has been devoted to investi-
gating it. Experiments conducted on primates have
discovered that certain neurons, the so-called mir-
ror neurons, fire during both observation and ex-
ecution of identical manipulation tasks (Rizzolatti
et al., 2001; Gazzola et al., 2007). This suggests
that the same process is involved in both the obser-
vation and execution of actions. From a function-
alist point of view, such a process should be able
to first build up a semantic structure from obser-
vations, and then the decomposition of that same
structure should occur when the intelligent agent
executes commands.

Additionally, studies in linguistics (Steedman,
2002) suggest that the language faculty develops
in humans as a direct adaptation of a more primi-
tive apparatus for planning goal-directed action in
the world by composing affordances of tools and
consequences of actions. It is this more primitive
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apparatus that is our major interest in this paper.
Such an apparatus is composed of a “syntax part”
and a “semantic part”. In the syntax part, every lin-
guistic element is categorized as either a function
or a basic type, and is associated with a syntactic
category which either identifies it as a function or a
basic type. In the semantic part, a semantic trans-
lation is attached following the syntactic category
explicitly.

Combinatory Categorial Grammar (CCG) intro-
duced by (Steedman, 2000) is a theory that can
be used to represent such structures with a small
set of combinators such as functional application
and type-raising. What do we gain though from
such a formal description of action? This is simi-
lar to asking what one gains from a formal descrip-
tion of language as a generative system. Chom-
skys contribution to language research was exactly
this: the formal description of language through
the formulation of the Generative and Transforma-
tional Grammar (Chomsky, 1957). It revolution-
ized language research opening up new roads for
the computational analysis of language, provid-
ing researchers with common, generative language
structures and syntactic operations, on which lan-
guage analysis tools were built. A grammar for
action would contribute to providing a common
framework of the syntax and semantics of action,
so that basic tools for action understanding can be
built, tools that researchers can use when develop-
ing action interpretation systems, without having
to start development from scratch. The same tools
can be used by robots to execute actions.

In this paper, we propose an approach for learn-
ing the semantic meaning of manipulation action
through a probabilistic semantic parsing frame-
work based on CCG theory. For example, we want
to learn from an annotated training action corpus
that the action “Cut” is a function which has two
arguments: a subject and a patient. Also, the ac-
tion consequence of “Cut” is a separation of the
patient. Using formal logic representation, our
system will learn the semantic representations of
“Cut”:

Cut :=(AP\NP )/NP : λx.λy.cut(x, y)→ divided(y)

Here cut(x, y) is a primitive function. We will fur-
ther introduce the representation in Sec. 3. Since
our action representation is in a common calculus
form, it enables naturally further logical reasoning
beyond visual observation.

The advantage of our approach is twofold: 1)
Learning semantic representations from annota-
tions helps an intelligent agent to enrich automat-
ically its own knowledge about actions; 2) The
formal logic representation of the action could be
used to infer the object-wise consequence after a
certain manipulation, and can also be used to plan
a set of actions to reach a certain action goal. We
further validate our approach on a large publicly
available manipulation action dataset (MANIAC)
from (Aksoy et al., 2014), achieving promising ex-
perimental results. Moreover, we believe that our
work, even though it only considers the domain of
manipulation actions, is also a promising example
of a more closely intertwined computer vision and
computational linguistics system. The diagram in
Fig.1 depicts the framework of the system.

Figure 1: A CCG based semantic parsing frame-
work for manipulation actions.

2 Related Works

Reasoning beyond appearance: The very small
number of works in computer vision, which aim to
reason beyond appearance models, are also related
to this paper. (Xie et al., 2013) proposed that be-
yond state-of-the-art computer vision techniques,
we could possibly infer implicit information (such
as functional objects) from video, and they call
them “Dark Matter” and “Dark Energy”. (Yang
et al., 2013) used stochastic tracking and graph-
cut based segmentation to infer manipulation con-
sequences beyond appearance. (Joo et al., 2014)
used a ranking SVM to predict the persuasive mo-
tivation (or the intention) of the photographer who
captured an image. More recently, (Pirsiavash et
al., 2014) seeks to infer the motivation of the per-
son in the image by mining knowledge stored in
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a large corpus using natural language processing
techniques. Different from these fairly general in-
vestigations about reasoning beyond appearance,
our paper seeks to learn manipulation actions se-
mantics in logic forms through CCG, and further
infer hidden action consequences beyond appear-
ance through reasoning.

Action Recognition and Understanding: Hu-
man activity recognition and understanding has
been studied heavily in Computer Vision recently,
and there is a large range of applications for this
work in areas like human-computer interactions,
biometrics, and video surveillance. Both visual
recognition methods, and the non-visual descrip-
tion methods using motion capture systems have
been used. A few good surveys of the former can
be found in (Moeslund et al., 2006) and (Turaga et
al., 2008). Most of the focus has been on recog-
nizing single human actions like walking, jump-
ing, or running etc. (Ben-Arie et al., 2002; Yilmaz
and Shah, 2005). Approaches to more complex ac-
tions have employed parametric approaches, such
as HMMs (Kale et al., 2004) to learn the transi-
tion between feature representations in individual
frames e.g. (Saisan et al., 2001; Chaudhry et al.,
2009). More recently, (Aksoy et al., 2011; Ak-
soy et al., 2014) proposed a semantic event chain
(SEC) representation to model and learn the se-
mantic segment-wise relationship transition from
spatial-temporal video segmentation.

There also have been many syntactic ap-
proaches to human activity recognition which used
the concept of context-free grammars, because
such grammars provide a sound theoretical basis
for modeling structured processes. Tracing back
to the middle 90’s, (Brand, 1996) used a grammar
to recognize disassembly tasks that contain hand
manipulations. (Ryoo and Aggarwal, 2006) used
the context-free grammar formalism to recognize
composite human activities and multi-person in-
teractions. It is a two level hierarchical approach
where the lower-levels are composed of HMMs
and Bayesian Networks while the higher-level in-
teractions are modeled by CFGs. To deal with
errors from low-level processes such as tracking,
stochastic grammars such as stochastic CFGs were
also used (Ivanov and Bobick, 2000; Moore and
Essa, 2002). More recently, (Kuehne et al., 2014)
proposed to model goal-directed human activi-
ties using Hidden Markov Models and treat sub-
actions just like words in speech. These works

proved that grammar based approaches are prac-
tical in activity recognition systems, and shed
insight onto human manipulation action under-
standing. However, as mentioned, thinking about
manipulation actions solely from the viewpoint
of recognition has obvious limitations. In this
work we adopt principles from CFG based activ-
ity recognition systems, with extensions to a CCG
grammar that accommodates not only the hierar-
chical structure of human activity but also action
semantics representations. It enables the system
to serve as the core parsing engine for both ma-
nipulation action recognition and execution.

Manipulation Action Grammar: As men-
tioned before, (Chomsky, 1993) suggested that a
minimalist generative grammar, similar to the one
of human language, also exists for action under-
standing and execution. The works closest related
to this paper are (Pastra and Aloimonos, 2012;
Summers-Stay et al., 2013; Guha et al., 2013).
(Pastra and Aloimonos, 2012) first discussed a
Chomskyan grammar for understanding complex
actions as a theoretical concept, and (Summers-
Stay et al., 2013) provided an implementation of
such a grammar using as perceptual input only
objects. More recently, (Yang et al., 2014) pro-
posed a set of context-free grammar rules for ma-
nipulation action understanding, and (Yang et al.,
2015) applied it on unconstrained instructional
videos. However, these approaches only con-
sider the syntactic structure of manipulation ac-
tions without coupling semantic rules using λ ex-
pressions, which limits the capability of doing rea-
soning and prediction.

Combinatory Categorial Grammar and Se-
mantic Parsing: CCG based semantic parsing
originally was used mainly to translate natural
language sentences to their desired semantic rep-
resentations as λ-calculus formulas (Zettlemoyer
and Collins, 2005; Zettlemoyer and Collins,
2007). (Mooney, 2008) presented a framework
of grounded language acquisition: the interpre-
tation of language entities into semantically in-
formed structures in the context of perception and
actuation. The concept has been applied success-
fully in tasks such as robot navigation (Matuszek
et al., 2011), forklift operation (Tellex et al., 2014)
and of human-robot interaction (Matuszek et al.,
2014). In this work, instead of grounding natural
language sentences directly, we ground informa-
tion obtained from visual perception into seman-
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tically informed structures, specifically in the do-
main of manipulation actions.

3 A CCG Framework for Manipulation
Actions

Before we dive into the semantic parsing of ma-
nipulation actions, a brief introduction to the Com-
binatory Categorial Grammar framework in Lin-
guistics is necessary. We will only introduce re-
lated concepts and formalisms. For a complete
background reading, we would like to refer read-
ers to (Steedman, 2000). We will first give a brief
introduction to CCG and then introduce a fun-
damental combinator, i.e., functional application.
The introduction is followed by examples to show
how the combinator is applied to parse actions.

3.1 Manipulation Action Semantics

The semantic expression in our representation of
manipulation actions uses a typed λ-calculus lan-
guage. The formal system has two basic types:
entities and functions. Entities in manipulation
actions are Objects or Hands, and functions are
the Actions. Our lambda-calculus expressions are
formed from the following items:

Constants: Constants can be either entities or
functions. For example, Knife is an entity (i.e., it
is of type N) and Cucumber is an entity too (i.e., it
is of type N). Cut is an action function that maps
entities to entities. When the event Knife Cut Cu-
cumber happened, the expression cut(Knife, Cu-
cumber) returns an entity of type AP, aka. Action
Phrase. Constants like divided are status functions
that map entities to truth values. The expression
divided(cucumber) returns a true value after the
event (Knife Cut Cucumber) happened.

Logical connectors: The λ-calculus expression
has logical connectors like conjunction (∧), dis-
junction (∨), negation(¬) and implication(→).

For example, the expression

connected(tomato, cucumber)∧
divided(tomato) ∧ divided(cucumber)

represents the joint status that the sliced tomato
merged with the sliced cucumber. It can be
regarded as a simplified goal status for “mak-
ing a cucumber tomato salad”. The expression
¬connected(spoon, bowl) represents the status
after the spoon finished stirring the bowl.

λx.cut(x, cucumber)→ divided(cucumber)

represents that if the cucumber is cut by x, then
the status of the cucumber is divided.
λ expressions: lambda expressions represent

functions with unknown arguments. For example,
λx.cut(knife, x) is a function from entities to en-
tities, which is of type NP after any entities of type
N that is cut by knife.

3.2 Combinatory Categorial Grammar
The semantic parsing formalism underlying our
framework for manipulation actions is that of
combinatory categorial grammar (CCG) (Steed-
man, 2000). A CCG specifies one or more logi-
cal forms for each element or combination of ele-
ments for manipulation actions. In our formalism,
an element of Action is associated with a syntac-
tic “category” which identifies it as functions, and
specifies the type and directionality of their argu-
ments and the type of their result. For example, ac-
tion “Cut” is a function from patient object phrase
(NP) on the right into predicates, and into func-
tions from subject object phrase (NP) on the left
into a sub action phrase (AP):

Cut := (AP\NP )/NP. (1)

As a matter of fact, the pure categorial gram-
mar is a conext-free grammar presented in the ac-
cepting, rather than the producing direction. The
expression (1) is just an accepting form for Ac-
tion “Cut” following the context-free grammar.
While it is now convenient to write derivations as
follows, they are equivalent to conventional tree
structure derivations in Figure. 3.2.

Knife Cut Cucumber

N N

NP (AP\NP)/NP NP
>

AP\NP
<

AP

AP

AP

NP

N

Cucumber

A

Cut

NP

N

Knife

Figure 2: Example of conventional tree structure.

The semantic type is encoded in these cate-
gories, and their translation can be made explicit
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in an expanded notation. Basically a λ-calculus
expression is attached with the syntactic category.
A colon operator is used to separate syntactical
and semantic expressions, and the right side of the
colon is assumed to have lower precedence than
the left side of the colon. Which is intuitive as any
explanation of manipulation actions should first
obey syntactical rules, then semantic rules. Now
the basic element, Action “Cut”, can be further
represented by:

Cut :=(AP\NP )/NP : λx.λy.cut(x, y)→ divided(y).

(AP\NP )/NP denotes a phrase of type AP ,
which requires an element of type NP to specify
what object was cut, and requires another element
of type NP to further complement what effector
initiates the cut action. λx.λy.cut(x, y) is the λ-
calculus representation for this function. Since the
functions are closely related to the state update,
→ divided(y) further points out the status expres-
sion after the action was performed.

A CCG system has a set of combinatory rules
which describe how adjacent syntatic categories
in a string can be recursively combined. In the
setting of manipulation actions, we want to point
out that similar combinatory rules are also appli-
cable. Especially the functional application rules
are essential in our system.

3.3 Functional application

The functional application rules with semantics
can be expressed in the following form:

A/B : f B : g => A : f(g) (2)

B : g A\B : f => A : f(g) (3)

Rule. (2) says that a string with type A/B can be
combined with a right-adjacent string of type B to
form a new string of type A. At the same time, it
also specifies how the semantics of the category A
can be compositionally built out of the semantics
for A/B and B. Rule. (3) is a symmetric form of
Rule. (2).

In the domain of manipulation actions, follow-
ing derivation is an example CCG parse. This
parse shows how the system can parse an ob-
servation (“Knife Cut Cucumber”) into a se-
mantic representation (cut(knife, cucumber) →
divided(cucumber)) using the functional appli-
cation rules.

Knife Cut Cucumber

N N

NP (AP\NP)/NP NP
knife λx .λy .cut(x , y) cucumber
knife → divided(y) cucumber

>
AP\NP

λx .cut(x , cucumber)
→ divided(cucumber)

<
AP

cut(knife, cucumber)
→ divided(cucumber)

4 Learning Model and Semantic Parsing

After having defined the formalism and applica-
tion rule, instead of manually writing down all the
possible CCG representations for each entity, we
would like to apply a learning technique to de-
rive them from the paired training corpus. Here
we adopt the learning model of (Zettlemoyer and
Collins, 2005), and use it to assign weights to the
semantic representation of actions. Since an ac-
tion may have multiple possible syntactic and se-
mantic representations assigned to it, we use the
probabilistic model to assign weights to these rep-
resentations.

4.1 Learning Approach

First we assume that complete syntactic parses of
the observed action are available, and in fact a ma-
nipulation action can have several different parses.
The parsing uses a probabilistic combinatorial cat-
egorial grammar framework similar to the one
given by (Zettlemoyer and Collins, 2007). We as-
sume a probabilistic categorial grammar (PCCG)
based on a log linear model. M denotes a manipu-
lation task, L denotes the semantic representation
of the task, and T denotes its parse tree. The prob-
ability of a particular syntactic and semantic parse
is given as:

P (L, T |M ; Θ) =
ef(L,T,M)·Θ∑

(L,T ) e
f(L,T,M)·Θ (4)

where f is a mapping of the triple (L, T,M ) to
feature vectors ∈ Rd, and the Θ ∈ Rd represents
the weights to be learned. Here we use only lexi-
cal features, where each feature counts the number
of times a lexical entry is used in T . Parsing a ma-
nipulation task under PCCG equates to finding L
such that P (L|M ; Θ) is maximized:

argmaxLP (L|M ; Θ)

= argmaxL
∑
T

P (L, T |M ; Θ). (5)
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We use dynamic programming techniques to
calculate the most probable parse for the manipu-
lation task. In this paper, the implementation from
(Baral et al., 2011) is adopted, where an inverse-λ
technique is used to generalize new semantic rep-
resentations. The generalization of lexicon rules
are essential for our system to deal with unknown
actions presented during the testing phase.

5 Experiments

5.1 Manipulation Action (MANIAC) Dataset

(Aksoy et al., 2014) provides a manipulation ac-
tion dataset with 8 different manipulation actions
(cutting, chopping, stirring, putting, taking, hid-
ing, uncovering, and pushing), each of which con-
sists of 15 different versions performed by 5 dif-
ferent human actors1. There are in total 30 differ-
ent objects manipulated in all demonstrations. All
manipulations were recorded with the Microsoft
Kinect sensor and serve as training data here.

The MANIAC data set contains another 20 long
and complex chained manipulation sequences
(e.g. “making a sandwich”) which consist of a to-
tal of 103 different versions of these 8 manipula-
tion tasks performed in different orders with novel
objects under different circumstances. These serve
as testing data for our experiments.

(Aksoy et al., 2014; Aksoy and Wörgötter,
2015) developed a semantic event chain based
model free decomposition approach. It is an un-
supervised probabilistic method that measures the
frequency of the changes in the spatial relations
embedded in event chains, in order to extract the
subject and patient visual segments. It also decom-
poses the long chained complex testing actions
into their primitive action components according
to the spatio-temporal relations of the manipula-
tor. Since the visual recognition is not the core
of this work, we omit the details here and refer
the interested reader to (Aksoy et al., 2014; Aksoy
and Wörgötter, 2015). All these features make the
MANIAC dataset a great testing bed for both the
theoretical framework and the implemented sys-
tem presented in this work.

5.2 Training Corpus

We first created a training corpus by annotating
the 120 training clips from the MANIAC dataset,

1Dataset available for download at https:
//fortknox.physik3.gwdg.de/cns/index.
php?page=maniac-dataset.

in the format of observed triplets (subject action
patient) and a corresponding semantic representa-
tion of the action as well as its consequence. The
semantic representations in λ-calculus format are
given by human annotators after watching each ac-
tion clip. A set of sample training pairs are given
in Table.1 (one from each action category in the
training set). Since every training clip contains
one single full execution of each manipulation ac-
tion considered, the training corpus thus has a total
of 120 paired training samples.

Snapshot triplet semantic representation

cleaver chopping carrot chopping(cleaver, carrot)
→ divided(carrot)

spatula cutting pepper cutting(spatula, pepper)
→ divided(pepper)

spoon stirring bucket stirring(spoon, bucket)

cup take down bucket
take down(cup, bucket)
→ ¬connected(cup, bucket)
∧moved(cup)

cup put on top bowl
put on top(cup, bowl)
→ on top(cup, bowl)
∧moved(cup)

bucket hiding ball
hiding(bucket, ball)
→ contained(bucket, ball)
∧moved(bucket)

hand pushing box pushing(hand, box)
→ moved(box)

box uncover apple
uncover(box, apple)
→ appear(apple)
∧moved(box)

Table 1: Example annotations from training cor-
pus, one per manipulation action category.

We also assume the system knows that every
“object” involved in the corpus is an entity of its
own type, for example:

Knife := N : knife

Bowl := N : bowl

......

Additionally, we assume the syntactic form of
each “action” has a main type (AP\NP )/NP
(see Sec. 3.2). These two sets of rules form the
initial seed lexicon for learning.

5.3 Learned Lexicon
We applied the learning technique mentioned in
Sec. 4, and we used the NL2KR implementa-
tion from (Baral et al., 2011). The system learns
and generalizes a set of lexicon entries (syntactic
and semantic) for each action categories from the
training corpus accompanied with a set of weights.
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We list the one with the largest weight for each ac-
tion here respectively:

Chopping :=(AP\NP )/NP : λx.λy.chopping(x, y)

→ divided(y)

Cutting :=(AP\NP )/NP : λx.λy.cutting(x, y)

→ divided(y)

Stirring :=(AP\NP )/NP : λx.λy.stirring(x, y)

Take down :=(AP\NP )/NP : λx.λy.take down(x, y)

→ ¬connected(x, y) ∧moved(x)
Put on top :=(AP\NP )/NP : λx.λy.put on top(x, y)

→ on top(x, y) ∧moved(x)
Hiding :=(AP\NP )/NP : λx.λy.hiding(x, y)

→ contained(x, y) ∧moved(x)
Pushing :=(AP\NP )/NP : λx.λy.pushing(x, y)

→ moved(y)

Uncover :=(AP\NP )/NP : λx.λy.uncover(x, y)

→ appear(y) ∧moved(x).

The set of seed lexicon and the learned lexicon
entries are further used to probabilistically parse
the detected triplet sequences from the 20 long
manipulation activities in the testing set.

5.4 Deducing Semantics

Using the decomposition technique from (Aksoy
et al., 2014; Aksoy and Wörgötter, 2015), the re-
ported system is able to detect a sequence of ac-
tion triplets in the form of (Subject Action Pa-
tient) from each of the testing sequence in MA-
NIAC dataset. Briefly speaking, the event chain
representation (Aksoy et al., 2011) of the observed
long manipulation activity is first scanned to esti-
mate the main manipulator, i.e. the hand, and ma-
nipulated objects, e.g. knife, in the scene without
employing any visual feature-based object recog-
nition method. Solely based on the interactions
between the hand and manipulated objects in the
scene, the event chain is partitioned into chunks.
These chunks are further fragmented into sub-
units to detect parallel action streams. Each parsed
Semantic Event Chain (SEC) chunk is then com-
pared with the model SECs in the library to decide
whether the current SEC sample belongs to one
of the known manipulation models or represents a
novel manipulation. SEC models, stored in the li-
brary, are learned in an on-line unsupervised fash-
ion using the semantics of manipulations derived
from a given set of training data in order to create
a large vocabulary of single atomic manipulations.

For the different testing sequence, the number
of triplets detected ranges from two to seven. In to-
tal, we are able to collect 90 testing detections and

they serve as the testing corpus. However, since
many of the objects used in the testing data are not
present in the training set, an object model-free ap-
proach is adopted and thus “subject” and “patient”
fields are filled with segment IDs instead of a spe-
cific object name. Fig. 3 and 4 show several ex-
amples of the detected triplets accompanied with a
set of key frames from the testing sequences. Nev-
ertheless, the method we used here can 1) gener-
alize the unknown segments into the category of
object entities and 2) generalize the unknown ac-
tions (those that do not exist in the training corpus)
into the category of action function. This is done
by automatically generalizing the following two
types of lexicon entries using the inverse-λ tech-
nique from (Baral et al., 2011):

Object [ID] :=N : object [ID]

Unknown :=(AP\NP )/NP : λx.λy.unknown(x, y)

Among the 90 detected triplets, using the
learned lexicon we are able to parse all of them
into semantic representations. Here we pick the
representation with the highest probability after
parsing as the individual action semantic represen-
tation. The “parsed semantics” rows of Fig. 3 and
4 show several example action semantics on test-
ing sequences. Taking the fourth sub-action from
Fig. 4 as an example, the visually detected triplets
based on segmentation and spatial decomposition
is (Object 014, Chopping,Object 011). Af-
ter semantic parsing, the system predicts that
divided(Object 011). The complete training cor-
pus and parsed results of the testing set will be
made publicly available for future research.

5.5 Reasoning Beyond Observations

As mentioned before, because of the use of λ-
calculus for representing action semantics, the ob-
tained data can naturally be used to do logical rea-
soning beyond observations. This by itself is a
very interesting research topic and it is beyond this
paper’s scope. However by applying a couple of
common sense Axioms on the testing data, we can
provide some flavor of this idea.

Case study one: See the “final action conse-
quence and reasoning” row of Fig. 3 for case one.
Using propositional logic and axiom schema, we
can represent the common sense statement (“if an
object x is contained in object y, and object z is
on top of object y, then object z is on top of object
x”) as follows:
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Figure 3: System output on complex chained manipulation testing sequence one. The segmentation
output and detected triplets are from (Aksoy and Wörgötter, 2015)

.

Figure 4: System output on the 18th complex chained manipulation testing sequence. The segmentation
output and detected triplets are from (Aksoy and Wörgötter, 2015)

.

Axiom (1): ∃x, y, z, contained(y, x) ∧
on top(z, y)→ on top(z, x).

Then it is trivial to deduce an additional fi-
nal action consequence in this scenario that
(on top(object 007, object 009)). This matches
the fact: the yellow box which is put on top of the
red bucket is also on top of the black ball.

Case study two: See the “final action conse-
quence and reasoning” row of Fig. 4 for a more
complicated case. Using propositional logic and
axiom schema, we can represent three common
sense statements:

1) “if an object y is contained in object x, and
object z is contained in object y, then object z is
contained in object x”;

2) “if an object x is contained in object y, and
object y is divided, then object x is divided”;

3) “if an object x is contained in object y, and
object y is on top of object z, then object x is on
top of object z” as follows:

Axiom (2): ∃x, y, z, contained(y, x) ∧
contained(z, y)→ contained(z, x).

Axiom (3): ∃x, y, contained(y, x) ∧
divided(y)→ divided(x).

Axiom (4): ∃x, y, z, contained(y, x) ∧
on top(y, z)→ on top(x, z).

With these common sense Axioms, the system
is able to deduce several additional final action
consequences in this scenario:

divided(object 005) ∧ divided(object 010)

∧ on top(object 005, object 012)

∧ on top(object 010, object 012).

From Fig. 4, we can see that these additional
consequences indeed match the facts: 1) the bread
and cheese which are covered by ham are also di-
vided, even though from observation the system
only detected the ham being cut; 2) the divided
bread and cheese are also on top of the plate, even
though from observation the system only detected
the ham being put on top of the plate.
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We applied the four Axioms on the 20 testing
action sequences and deduced the “hidden” conse-
quences from observation. To evaluate our system
performance quantitatively, we first annotated all
the final action consequences (both obvious and
“hidden” ones) from the 20 testing sequences as
ground-truth facts. In total there are 122 conse-
quences annotated. Using perception only (Aksoy
and Wörgötter, 2015), due to the decomposition
errors (such as the red font ones in Fig. 4) the sys-
tem can detect 91 consequences correctly, yielding
a 74% correct rate. After applying the four Ax-
ioms and reasoning, our system is able to detect
105 consequences correctly, yielding a 86% cor-
rect rate. Overall, this is a 15.4% of improvement.

Here we want to mention a caveat: there are def-
initely other common sense Axioms that we are
not able to address in the current implementation.
However, from the case studies presented, we can
see that using the presented formal framework, our
system is able to reason about manipulation action
goals instead of just observing what is happening
visually. This capability is essential for intelligent
agents to imitate action goals from observation.

6 Conclusion and Future Work

In this paper we presented a formal computa-
tional framework for modeling manipulation ac-
tions based on a Combinatory Categorial Gram-
mar. An empirical study on a large manipula-
tion action dataset validates that 1) with the intro-
duced formalism, a learning system can be devised
to deduce the semantic meaning of manipulation
actions in λ-schema; 2) with the learned schema
and several common sense Axioms, our system is
able to reason beyond just observation and deduce
“hidden” action consequences, yielding a decent
performance improvement.

Due to the limitation of current testing scenar-
ios, we conducted experiments only considering a
relatively small set of seed lexicon rules and log-
ical expressions. Nevertheless, we want to men-
tion that the presented CCG framework can also
be extended to learn the formal logic representa-
tion of more complex manipulation action seman-
tics. For example, the temporal order of manipula-
tion actions can be modeled by considering a seed
rule such as AP\AP : λf.λg.before(f(·), g(·)),
where before(·, ·) is a temporal predicate. For
actions in this paper we consider seed main type
(AP\NP )/NP . For more general manipulation

scenarios, based on whether the action is transi-
tive or intransitive, the main types of action can be
extended to include AP\NP .

Moreover, the logical expressions can also be
extended to include universal quantification ∀ and
existential quantification ∃. Thus, manipulation
action such as “knife cut every tomato” can be
parsed into a representation as ∀x.tomato(x) ∧
cut(knife, x) → divided(x) (the parse is given
in the following chart). Here, the concept “every”
has a main type of NP\NP and semantic mean-
ing of ∀x.f(x). The same framework can also
extended to have other combinatory rules such as
composition and type-raising (Steedman, 2002).
These are parts of the future work along the line of
the presented work.

Knife Cut every Tomato

N N

NP (AP\NP)/NP NP\NP NP
knife λx .λy .cut(x , y) ∀x .f (x ) tomato
knife → divided(y) ∀x .f (x ) tomato

>
NP

∀x .tomato(x )
>

AP\NP
∀y .λx .tomato(y) ∧ cut(x , y)→ divided(y)

<
AP

∀y .tomato(y) ∧ cut(knife, y)→ divided(y)

The presented computational linguistic frame-
work enables an intelligent agent to predict and
reason action goals from observation, and thus has
many potential applications such as human inten-
tion prediction, robot action policy planning, hu-
man robot collaboration etc. We believe that our
formalism of manipulation actions bridges com-
putational linguistics, vision and robotics, and
opens further research in Artificial Intelligence
and Robotics. As the robotics industry is moving
towards robots that function safely, effectively and
autonomously to perform tasks in real-world un-
structured environments, they will need to be able
to understand the meaning of actions and acquire
human-like common-sense reasoning capabilities.
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survey of advances in vision-based human motion
capture and analysis. Computer vision and image
understanding, 104(2):90–126.

Raymond J Mooney. 2008. Learning to connect lan-
guage and perception. In AAAI, pages 1598–1601.

Darnell Moore and Irfan Essa. 2002. Recognizing
multitasked activities from video using stochastic
context-free grammar. In Proceedings of the Na-
tional Conference on Artificial Intelligence, pages
770–776, Menlo Park, CA. AAAI.

K. Pastra and Y. Aloimonos. 2012. The mini-
malist grammar of action. Philosophical Transac-
tions of the Royal Society B: Biological Sciences,
367(1585):103–117.

Hamed Pirsiavash, Carl Vondrick, and Antonio Tor-
ralba. 2014. Inferring the why in images. arXiv
preprint arXiv:1406.5472.

Giacomo Rizzolatti, Leonardo Fogassi, and Vittorio
Gallese. 2001. Neurophysiological mechanisms un-
derlying the understanding and imitation of action.
Nature Reviews Neuroscience, 2(9):661–670.

Michael S Ryoo and Jake K Aggarwal. 2006. Recogni-
tion of composite human activities through context-
free grammar based representation. In Proceedings
of the 2006 IEEE Conference on Computer Vision
and Pattern Recognition, volume 2, pages 1709–
1718, New York City, NY. IEEE.

685



P. Saisan, G. Doretto, Y.N. Wu, and S. Soatto. 2001.
Dynamic texture recognition. In Proceedings of the
2001 IEEE Intenational Conference on Computer
Vision and Pattern Recognition, volume 2, pages
58–63, Kauai, HI. IEEE.

Mark Steedman. 2000. The syntactic process, vol-
ume 35. MIT Press.

Mark Steedman. 2002. Plans, affordances, and combi-
natory grammar. Linguistics and Philosophy, 25(5-
6):723–753.

D. Summers-Stay, C.L. Teo, Y. Yang, C. Fermüller,
and Y. Aloimonos. 2013. Using a minimal ac-
tion grammar for activity understanding in the real
world. In Proceedings of the 2013 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Sys-
tems, pages 4104–4111, Vilamoura, Portugal. IEEE.

Stefanie Tellex, Pratiksha Thaker, Joshua Joseph, and
Nicholas Roy. 2014. Learning perceptually
grounded word meanings from unaligned parallel
data. Machine Learning, 94(2):151–167.

P. Turaga, R. Chellappa, V.S. Subrahmanian, and
O. Udrea. 2008. Machine recognition of human ac-
tivities: A survey. IEEE Transactions on Circuits
and Systems for Video Technology, 18(11):1473–
1488.

Dan Xie, Sinisa Todorovic, and Song-Chun Zhu. 2013.
Inferring “dark matter” and “dark energy” from
videos. In Computer Vision (ICCV), 2013 IEEE In-
ternational Conference on, pages 2224–2231. IEEE.

Yezhou Yang, Cornelia Fermüller, and Yiannis Aloi-
monos. 2013. Detection of manipulation action
consequences (MAC). In Proceedings of the 2013
IEEE Conference on Computer Vision and Pattern
Recognition, pages 2563–2570, Portland, OR. IEEE.

Y. Yang, A. Guha, C. Fermuller, and Y. Aloimonos.
2014. A cognitive system for understanding hu-
man manipulation actions. Advances in Cognitive
Sysytems, 3:67–86.

Yezhou Yang, Yi Li, Cornelia Fermuller, and Yiannis
Aloimonos. 2015. Robot learning manipulation ac-
tion plans by “watching” unconstrained videos from
the world wide web. In The Twenty-Ninth AAAI
Conference on Artificial Intelligence (AAAI-15).

A. Yilmaz and M. Shah. 2005. Actions sketch: A
novel action representation. In Proceedings of the
2005 IEEE Intenational Conference on Computer
Vision and Pattern Recognition, volume 1, pages
984–989, San Diego, CA. IEEE.

Luke S Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. In UAI.

Luke S Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed ccg grammars for parsing to
logical form. In EMNLP-CoNLL, pages 678–687.

686



Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 687–696,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Knowledge Graph Embedding via Dynamic Mapping Matrix

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu and Jun Zhao
National Laboratory of Pattern Recognition (NLPR)

Institute of Automation Chinese Academy of Sciences, Beijing, 100190, China
{guoliang.ji,shizhu.he,lhxu,kliu,jzhao}@nlpr.ia.ac.cn

Abstract

Knowledge graphs are useful resources for
numerous AI applications, but they are far
from completeness. Previous work such as
TransE, TransH and TransR/CTransR re-
gard a relation as translation from head en-
tity to tail entity and the CTransR achieves
state-of-the-art performance. In this pa-
per, we propose a more fine-grained model
named TransD, which is an improvement
of TransR/CTransR. In TransD, we use
two vectors to represent a named sym-
bol object (entity and relation). The first
one represents the meaning of a(n) entity
(relation), the other one is used to con-
struct mapping matrix dynamically. Com-
pared with TransR/CTransR, TransD not
only considers the diversity of relations,
but also entities. TransD has less param-
eters and has no matrix-vector multipli-
cation operations, which makes it can be
applied on large scale graphs. In Experi-
ments, we evaluate our model on two typ-
ical tasks including triplets classification
and link prediction. Evaluation results
show that our approach outperforms state-
of-the-art methods.

1 Introduction

Knowledge Graphs such as WordNet (Miller
1995), Freebase (Bollacker et al. 2008) and Yago
(Suchanek et al. 2007) have been playing a piv-
otal role in many AI applications, such as relation
extraction(RE), question answering(Q&A), etc.
They usually contain huge amounts of structured
data as the form of triplets (head entity, relation,
tail entity)(denoted as (h, r, t)), where relation
models the relationship between the two entities.
As most knowledge graphs have been built either
collaboratively or (partly) automatically, they of-
ten suffer from incompleteness. Knowledge graph

completion is to predict relations between entities
based on existing triplets in a knowledge graph. In
the past decade, much work based on symbol and
logic has been done for knowledge graph comple-
tion, but they are neither tractable nor enough con-
vergence for large scale knowledge graphs. Re-
cently, a powerful approach for this task is to en-
code every element (entities and relations) of a
knowledge graph into a low-dimensional embed-
ding vector space. These methods do reasoning
over knowledge graphs through algebraic opera-
tions (see section ”Related Work”).

Among these methods, TransE (Bordes et al.
2013) is simple and effective, and also achieves
state-of-the-art prediction performance. It learns
low-dimensional embeddings for every entity and
relation in knowledge graphs. These vector em-
beddings are denoted by the same letter in bold-
face. The basic idea is that every relation is re-
garded as translation in the embedding space. For
a golden triplet (h, r, t), the embedding h is close
to the embedding t by adding the embedding r,
that is h + r ≈ t. TransE is suitable for 1-to-1
relations, but has flaws when dealing with 1-to-
N, N-to-1 and N-to-N relations. TransH (Wang
et al. 2014) is proposed to solve these issues.
TransH regards a relation as a translating oper-
ation on a relation-specific hyperplane, which is
characterized by a norm vector wr and a trans-
lation vector dr. The embeddings h and t are
first projected to the hyperplane of relation r to
obtain vectors h⊥ = h − w>r hwr and t⊥ =
t − w>r twr, and then h⊥ + dr ≈ t⊥. Both
in TransE and TransH, the embeddings of enti-
ties and relations are in the same space. How-
ever, entities and relations are different types ob-
jects, it is insufficient to model them in the same
space. TransR/CTransR (Lin et al. 2015) set a
mapping matrix Mr and a vector r for every re-
lation r. In TransR, h and t are projected to the
aspects that relation r focuses on through the ma-
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Figure 1: Simple illustration of TransD. Each
shape represents an entity pair appearing in a
triplet of relation r. Mrh and Mrt are mapping
matrices of h and t, respectively. hip, tip(i =
1, 2, 3), and rp are projection vectors. hi⊥ and
ti⊥(i = 1, 2, 3) are projected vectors of entities.
The projected vectors satisfy hi⊥ + r ≈ ti⊥(i =
1, 2, 3).

trix Mr and then Mrh + r ≈ Mrt. CTransR is
an extension of TransR by clustering diverse head-
tail entity pairs into groups and learning distinct
relation vectors for each group. TransR/CTransR
has significant improvements compared with pre-
vious state-of-the-art models. However, it also has
several flaws: (1) For a typical relation r, all en-
tities share the same mapping matrix Mr. How-
ever, the entities linked by a relation always con-
tains various types and attributes. For example, in
triplet (friedrich burklein, nationality, germany),
friedrich burklein and germany are typical differ-
ent types of entities. These entities should be pro-
jected in different ways; (2) The projection oper-
ation is an interactive process between an entity
and a relation, it is unreasonable that the map-
ping matrices are determined only by relations;
and (3) Matrix-vector multiplication makes it has
large amount of calculation, and when relation
number is large, it also has much more param-
eters than TransE and TransH. As the complex-
ity, TransR/CTransR is difficult to apply on large-
scale knowledge graphs.

In this paper, we propose a novel method named
TransD to model knowledge graphs. Figure 1
shows the basic idea of TransD. In TransD, we de-
fine two vectors for each entity and relation. The
first vector represents the meaning of an entity or
a relation, the other one (called projection vector)
represents the way that how to project a entity em-
bedding into a relation vector space and it will
be used to construct mapping matrices. There-
fore, every entity-relation pair has an unique map-
ping matrix. In addition, TransD has no matrix-
by-vector operations which can be replaced by

vectors operations. We evaluate TransD with the
task of triplets classification and link prediction.
The experimental results show that our method has
significant improvements compared with previous
models.

Our contributions in this paper are: (1)We pro-
pose a novel model TransD, which constructs a
dynamic mapping matrix for each entity-relation
pair by considering the diversity of entities and re-
lations simultaneously. It provides a flexible style
to project entity representations to relation vec-
tor space; (2) Compared with TransR/CTransR,
TransD has fewer parameters and has no matrix-
vector multiplication. It is easy to be applied
on large-scale knowledge graphs like TransE and
TransH; and (3) In experiments, our approach
outperforms previous models including TransE,
TransH and TransR/CTransR in link prediction
and triplets classification tasks.

2 Related Work

Before proceeding, we define our mathematical
notations. We denote a triplet by (h, r, t) and their
column vectors by bold lower case letters h, r, t;
matrices by bold upper case letters, such as M;
tensors by bold upper case letters with a hat, such
as M̂. Score function is represented by fr(h, t).
For a golden triplet (h, r, t) that corresponds to a
true fact in real world, it always get a relatively
higher score, and lower for an negative triplet.
Other notations will be described in the appropri-
ate sections.

2.1 TransE, TransH and TransR/CTransR
As mentioned in Introduction section, TransE
(Bordes et al. 2013) regards the relation r as trans-
lation from h to t for a golden triplet (h, r, t).
Hence, (h+r) is close to (t) and the score function
is

fr(h, t) = −‖h + r− t‖22. (1)

TransE is only suitable for 1-to-1 relations, there
remain flaws for 1-to-N, N-to-1 and N-to-N rela-
tions.

To solve these problems, TransH (Wang et al.
2014) proposes an improved model named trans-
lation on a hyperplane. On hyperplanes of differ-
ent relations, a given entity has different represen-
tations. Similar to TransE, TransH has the score
function as follows:

fr(h, t) = −‖h⊥ + r− t⊥‖22. (2)
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Model #Parameters # Operations (Time complexity)
Unstructured (Bordes et al. 2012; 2014) O(Nem) O(Nt)

SE (Bordes et al. 2011) O(Nem + 2Nrn2)(m = n) O(2m2Nt)
SME(linear) (Bordes et al. 2012; 2014) O(Nem + Nrn + 4mk + 4k)(m = n) O(4mkNt)

SME (bilinear) (Bordes et al. 2012; 2014) O(Nem + Nrn + 4mks + 4k)(m = n) O(4mksNt)

LFM (Jenatton et al. 2012; Sutskever et al. 2009) O(Nem + Nrn2)(m = n) O((m2 + m)Nt)
SLM (Socher et al. 2013) O(Nem + Nr(2k + 2nk))(m = n) O((2mk + k)Nt)

NTN (Socher et al. 2013) O(Nem + Nr(n2s + 2ns + 2s))(m = n) O(((m2 + m)s + 2mk + k)Nt)
TransE (Bordes et al. 2013) O(Nem + Nrn)(m = n) O(Nt)
TransH (Wang et al. 2014) O(Nem + 2Nrn)(m = n) O(2mNt)
TransR (Lin et al. 2015) O(Nem + Nr(m + 1)n) O(2mnNt)

CTransR (Lin et al. 2015) O(Nem + Nr(m + d)n) O(2mnNt)
TransD (this paper) O(2Nem + 2Nrn) O(2nNt)

Table 1: Complexity (the number of parameters and the number of multiplication operations in an epoch)
of several embedding models. Ne and Nr represent the number of entities and relations, respectively.
Nt represents the number of triplets in a knowledge graph. m is the dimension of entity embedding
space and n is the dimension of relation embedding space. d denotes the average number of clusters of a
relation. k is the number of hidden nodes of a neural network and s is the number of slice of a tensor.

In order to ensure that h⊥ and t⊥ are on the hy-
perplane of r, TransH restricts ‖wr‖ = 1.

Both TransE and TransH assume that entities
and relations are in the same vector space. But
relations and entities are different types of ob-
jects, they should not be in the same vector space.
TransR/CTransR (Lin et al. 2015) is proposed
based on the idea. TransR set a mapping matrix
Mr for each relation r to map entity embedding
into relation vector space. Its score function is:

fr(h, t) = −‖Mrh + r−Mrt‖22. (3)

where Mr ∈ Rm×n, h, t ∈ Rn and r ∈ Rm.
CTransR is an extension of TransR. As head-tail
entity pairs present various patterns in different re-
lations, CTransR clusters diverse head-tail entity
pairs into groups and sets a relation vector for each
group.

2.2 Other Models
Unstructured. Unstructured model (Bordes et al.
2012; 2014) ignores relations, only models entities
as embeddings. The score function is

fr(h, t) = −‖h− t‖22. (4)

It’s a simple case of TransE. Obviously, Unstruc-
tured model can not distinguish different relations.
Structured Embedding (SE). SE model (Bordes
et al. 2011) sets two separate matrices Mrh and
Mrt to project head and tail entities for each rela-
tion. Its score function is defined as follows:

fr(h, t) = −‖Mrhh−Mrtt‖1 (5)

Semantic Matching Energy (SME). SME model
(Bordes et al. 2012; 2014) encodes each named

symbolic object (entities and relations) as a vector.
Its score function is a neural network that captures
correlations between entities and relations via ma-
trix operations. Parameters of the neural network
are shared by all relations. SME defines two se-
mantic matching energy functions for optimiza-
tion, a linear form

gη = Mη1eη + Mη2r + bη (6)

and a bilinear form

gη = (Mη1eη)⊗ (Mη2r) + bη (7)

where η = {left, right}, eleft = h, eright = t
and ⊗ is the Hadamard product. The score func-
tion is

fr(h, t) = gleft>gright (8)

In (Bordes et al.2014), matrices of the bilinear
form are replaced by tensors.
Latent Factor Model (LFM). LFM model (Je-
natton et al. 2012; Sutskever et al. 2009) en-
codes each entity into a vector and sets a ma-
trix for every relation. It defines a score function
fr(h, t) = h>Mrt, which incorporates the inter-
action of the two entity vectors in a simple and
effecitve way.
Single Layer Model (SLM). SLM model is de-
signed as a baseline of Neural Tensor Network
(Socher et al. 2013). The model constructs a non-
linear neural network to represent the score func-
tion defined as follows.

fr(h, t) = u>r f(Mr1h + Mr2t + br) (9)

where Mr1, Mr2 and br are parameters indexed
by relation r, f() is tanh operation.
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Neural Tensor Network (NTN). NTN model
(Socher et al. 2013) extends SLM model by con-
sidering the second-order correlations into nonlin-
ear neural networks. The score function is

fr(h, t) = u>r f(h>Ŵrt + Mr

[
h
t

]
+ br) (10)

where Ŵr represents a 3-way tensor, Mr denotes
the weight matrix, br is the bias and f() is tanh
operation. NTN is the most expressive model so
far, but it has so many parameters that it is difficult
to scale up to large knowledge graphs.

Table 1 lists the complexity of all the above
models. The complexity (especially for time) of
TransD is much less than TransR/CTransR and is
similar to TransE and TransH. Therefore, TransD
is effective and train faster than TransR/CTransR.
Beyond these embedding models, there is other re-
lated work of modeling multi-relational data, such
as matrix factorization, recommendations, etc. In
experiments, we refer to the results of RESCAL
presented in (Lin et al. 2015) and compare with it.

3 Our Method

We first define notations. Triplets are represented
as (hi, ri, ti)(i = 1, 2, . . . , nt), where hi denotes
a head entity, ti denotes a tail entity and ri de-
notes a relation. Their embeddings are denoted by
hi, ri, ti(i = 1, 2, . . . , nt). We use ∆ to represent
golden triplets set, and use ∆

′
to denote negative

triplets set. Entities set and relations set are de-
noted by E and R, respectively. We use Im×n to
denote the identity matrix of size m× n.

3.1 Multiple Types of Entities and Relations
Considering the diversity of relations, CTransR
segments triplets of a specific relation r into
several groups and learns a vector representa-
tion for each group. However, entities also
have various types. Figure 2 shows several
kinds of head and tail entities of relation loca-
tion.location.partially containedby in FB15k. In
both TransH and TransR/CTransR, all types of en-
tities share the same mapping vectors/matrices.
However, different types of entities have differ-
ent attributes and functions, it is insufficient to let
them share the same transform parameters of a re-
lation. And for a given relation, similar entities
should have similar mapping matrices and other-
wise for dissimilar entities. Furthermore, the map-
ping process is a transaction between entities and

relations that both have various types. Therefore,
we propose a more fine-grained model TransD,
which considers different types of both entities
and relations, to encode knowledge graphs into
embedding vectors via dynamic mapping matrices
produced by projection vectors.

Figure 2: Multiple types of entities of relation lo-
cation.location.partially containedby.

3.2 TransD

Model In TransD, each named symbol object (en-
tities and relations) is represented by two vectors.
The first one captures the meaning of entity (rela-
tion), the other one is used to construct mapping
matrices. For example, given a triplet (h, r, t),
its vectors are h,hp, r, rp, t, tp, where subscript
p marks the projection vectors, h,hp, t, tp ∈ Rn

and r, rp ∈ Rm. For each triplet (h, r, t), we
set two mapping matrices Mrh,Mrt ∈ Rm×n to
project entities from entity space to relation space.
They are defined as follows:

Mrh = rph>p + Im×n (11)

Mrt = rpt>p + Im×n (12)

Therefore, the mapping matrices are determined
by both entities and relations, and this kind of
operation makes the two projection vectors inter-
act sufficiently because each element of them can
meet every entry comes from another vector. As
we initialize each mapping matrix with an identity
matrix, we add the Im×n to Mrh and Mrh. With
the mapping matrices, we define the projected vec-
tors as follows:

h⊥ = Mrhh, t⊥ = Mrtt (13)
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Then the score function is

fr(h, t) = −‖h⊥ + r− t⊥‖22 (14)

In experiments, we enforce constrains as ‖h‖2 ≤
1, ‖t‖2 ≤ 1, ‖r‖2 ≤ 1, ‖h⊥‖2 ≤ 1 and ‖t⊥‖2 ≤
1.

Training Objective We assume that there are
nt triplets in training set and denote the ith triplet
by (hi, ri, ti)(i = 1, 2, . . . , nt). Each triplet has a
label yi to indicate the triplet is positive (yi = 1)
or negative (yi = 0). Then the golden and neg-
ative triplets are denoted by ∆ = {(hj , rj , tj) |
yj = 1} and ∆

′
= {(hj , rj , tj) | yj = 0}, respec-

tively. Before training, one important trouble is
that knowledge graphs only encode positive train-
ing triplets, they do not contain negative examples.
Therefore, we obtain ∆ from knowledge graphs
and generate ∆

′
as follows: ∆

′
= {(hl, rk, tk) |

hl 6= hk ∧ yk = 1}∪ {(hk, rk, tl) | tl 6= tk ∧ yk =
1}. We also use two strategies “unif” and “bern”
described in (Wang et al. 2014) to replace the head
or tail entity.

Let us use ξ and ξ
′

to denote a golden triplet
and a corresponding negative triplet, respectively.
Then we define the following margin-based rank-
ing loss as the objective for training:

L =
∑
ξ∈∆

∑
ξ′∈∆′

[γ + fr(ξ
′
)− fr(ξ)]+ (15)

where [x]+ ,max (0, x), and γ is the margin sep-
arating golden triplets and negative triplets. The
process of minimizing the above objective is car-
ried out with stochastic gradient descent (SGD).
In order to speed up the convergence and avoid
overfitting, we initiate the entity and relation em-
beddings with the results of TransE and initiate all
the transfer matrices with identity matrices.

3.3 Connections with TransE, TransH and
TransR/CTransR

TransE is a special case of TransD when the di-
mension of vectors satisfies m = n and all projec-
tion vectors are set zero.

TransH is related to TransD when we set m =
n. Under the setting, projected vectors of entities
can be rewritten as follows:

h⊥ = Mrhh = h + h>p hrp (16)

t⊥ = Mrtt = t + t>p trp (17)

Hence, when m = n, the difference between
TransD and TransH is that projection vectors are

determinded only by relations in TransH, but
TransD’s projection vectors are determinded by
both entities and relations.

As to TransR/CTransR, TransD is an improve-
ment of it. TransR/CTransR directly defines a
mapping matrix for each relation, TransD con-
sturcts two mapping matrices dynamically for
each triplet by setting a projection vector for each
entity and relation. In addition, TransD has no
matrix-vector multiplication operation which can
be replaced by vector operations. Without loss of
generality, we assume m ≥ n, the projected vec-
tors can be computed as follows:

h⊥ = Mrhh = h>p hrp +
[

h>,0>
]> (18)

t⊥ = Mrtt = t>p trp +
[

t>,0>
]> (19)

Therefore, TransD has less calculation than
TransR/CTransR, which makes it train faster and
can be applied on large-scale knowledge graphs.

4 Experiments and Results Analysis

We evaluate our apporach on two tasks: triplets
classification and link prediction. Then we show
the experiments results and some analysis of them.

4.1 Data Sets

Triplets classification and link prediction are im-
plemented on two popular knowledge graphs:
WordNet (Miller 1995) and Freebase (Bollacker
et al. 2008). WordNet is a large lexical knowledge
graph. Entities in WordNet are synonyms which
express distinct concepts. Relations in WordNet
are conceptual-semantic and lexical relations. In
this paper, we use two subsets of WordNet: WN11
(Socher et al. 2013) and WN18 (Bordes et al.
2014). Freebase is a large collaborative knowl-
edge base consists of a large number of the world
facts, such as triplets (anthony asquith, location,
london) and (nobuko otowa, profession, actor).
We also use two subsets of Freebase: FB15k (Bor-
des et al. 2014) and FB13 (Socher et al. 2013).
Table 2 lists statistics of the 4 datasets.

Dataset #Rel #Ent #Train #Valid #Test
WN11 11 38,696 112,581 2,609 10,544
WN18 18 40,943 141,442 5,000 5,000
FB13 13 75,043 316,232 5908 23,733
FB15k 1,345 14,951 483,142 50,000 59,071

Table 2: Datesets used in the experiments.
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4.2 Triplets Classification

Triplets classification aims to judge whether a
given triplet (h, r, t) is correct or not, which is a
binary classification task. Previous work (Socher
et al. 2013; Wang et al. 2014; Lin et al. 2015)
had explored this task. In this paper ,we use three
datasets WN11, FB13 and FB15k to evaluate our
approach. The test sets of WN11 and FB13 pro-
vided by (Socher et al. 2013) contain golden and
negative triplets. As to FB15k, its test set only
contains correct triplets, which requires us to con-
struct negative triplets. In this parper, we construct
negative triplets following the same setting used
for FB13 (Socher et al. 2013).

For triplets classification, we set a threshold δr
for each relation r. δr is obtained by maximizing
the classification accuracies on the valid set. For a
given triplet (h, r, t), if its score is larger than δr,
it will be classified as positive, otherwise negative.

We compare our model with several previous
embedding models presented in Related Work sec-
tion. As we construct negative triplets for FB15k
by ourselves, we use the codes of TransE, TransH
and TransR/CTransR provied by (Lin et al. 2015)
to evaluate the datasets instead of reporting the re-
sults of (Wang et al.2014; Lin et al. 2015) directly.

In this experiment, we optimize the objective
with ADADELTA SGD (Zeiler 2012). We select
the margin γ among {1, 2, 5, 10}, the dimen-
sion of entity vectors m and the dimension of re-
lation vectors n among {20, 50, 80, 100}, and
the mini-batch size B among {100, 200, 1000,
4800}. The best configuration obtained by valid
set are:γ = 1,m, n = 100, B = 1000 and tak-
ing L2 as dissimilarity on WN11; γ = 1,m, n =
100, B = 200 and taking L2 as dissimilarity on
FB13; γ = 2,m, n = 100, B = 4800 and tak-
ing L1 as dissimilarity on FB15k. For all the
three datasets, We traverse to training for 1000
rounds. As described in Related Work section,
TransD trains much faster than TransR (On our
PC, TransR needs 70 seconds and TransD merely
spends 24 seconds a round on FB15k).

Table 3 shows the evaluation results of triplets
classification. On WN11, we found that there are
570 entities appearing in valid and test sets but
not appearing in train set, we call them ”NULL
Entity”. In valid and test sets, there are 1680
(6.4%) triplets containing ”NULL Entity”. In
NTN(+E), these entity embeddings can be ob-
tained by word embedding. In TransD, how-

Data sets WN11 FB13 FB15K
SE 53.0 75.2 -

SME(bilinear) 70.0 63.7 -
SLM 69.9 85.3 -
LFM 73.8 84.3 -
NTN 70.4 87.1 68.2

NTN(+E) 86.2 90.0 -
TransE(unif) 75.9 70.9 77.3
TransE(bern) 75.9 81.5 79.8
TransH(unif) 77.7 76.5 74.2
TransH(bern) 78.8 83.3 79.9
TransR(unif) 85.5 74.7 81.1
TransR(bern) 85.9 82.5 82.1

CTransR(bern) 85.7 - 84.3
TransD(unif) 85.6 85.9 86.4
TransD(bern) 86.4 89.1 88.0

Table 3: Experimental results of Triplets Classifi-
cation(%). “+E” means that the results are com-
bined with word embedding.

ever, they are only initialized randomly. There-
fore, it is not fair for TransD, but we also achieve
the accuracy 86.4% which is higher than that of
NTN(+E) (86.2%). From Table 3, we can con-
clude that: (1) On WN11, TransD outperforms any
other previous models including TransE, TransH
and TransR/CTransR, especially NTN(+E); (2)
On FB13, the classification accuracy of TransD
achieves 89.1%, which is significantly higher than
that of TransE, TransH and TransR/CTransR and
is near to the performance of NTN(+E) (90.0%);
and (3) Under most circumstances, the ”bern”
sampling method works better than ”unif”.

Figure 3 shows the prediction accuracy of dif-
ferent relations. On the three datasets, different
relations have different prediction accuracy: some
are higher and the others are lower. Here we fo-
cus on the relations which have lower accuracy.
On WN11, the relation similar to obtains accuracy
51%, which is near to random prediction accuracy.
In the view of intuition, similar to can be inferred
from other information. However, the number of
entity pairs linked by relation similar to is only
1672, which accounts for 1.5% in all train data,
and prediction of the relation needs much infor-
mation about entities. Therefore, the insufficient
of train data is the main cause. On FB13, the
accuracies of relations cuase of death and gender
are lower than that of other relations because they
are difficult to infer from other imformation, espe-
cially cuase of death. Relation gender may be in-
ferred from a person’s name (Socher et al. 2013),
but we learn a vector for each name, not for the
words included in the names, which makes the
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Figure 3: Classification accuracies of different relations on the three datasets. For FB15k, each triangle
represent a relation, in which the red triangles represent the relations whose accuracies of “bern” or
“unif” are lower than 50% and the blacks are higher than 50%. The red line represents the function
y = x. We can see that the most relations are in the lower part of the red line.

names information useless for gender. On FB15k,
accuracies of some relations are lower than 50%,
for which some are lack of train data and some are
difficult to infer. Hence, the ability of reasoning
new facts based on knowledge graphs is under a
certain limitation, and a complementary approach
is to extract facts from plain texts.

4.3 Link Prediction

Link prediction is to predict the missing h or t for
a golden triplet (h, r, t). In this task, we remove
the head or tail entity and then replace it with all
the entities in dictionary in turn for each triplet in
test set. We first compute scores of those corrupted
triplets and then rank them by descending order;
the rank of the correct entity is finally stored. The
task emphasizes the rank of the correct entity in-
stead of only finding the best one entity. Simi-
lar to (Bordes et al. 2013), we report two mea-
sures as our evaluation metrics: the average rank
of all correct entites (Mean Rank) and the propor-
tion of correct entities ranked in top 10 (Hits@10).
A lower Mean Rank and a higher Hits@10 should
be achieved by a good embedding model. We call
the evaluation setting ”Raw’. Noting the fact that
a corrupted triplet may also exist in knowledge
graphs, the corrupted triplet should be regard as
a correct triplet. Hence, we should remove the
corrupted triplets included in train, valid and test
sets before ranking. We call this evaluation setting
”Filter”. In this paper, we will report evaluation
results of the two settings .

In this task, we use two datasets: WN18 and
FB15k. As all the data sets are the same, we
refer to their experimental results in this paper.
On WN18, we also use ADADELTA SGD (Zeiler

2012) for optimization. We select the margin γ
among {0.1, 0.5, 1, 2}, the dimension of entity
vectors m and the dimension of relation vectors n
among {20, 50, 80, 100}, and the mini-batch size
B among {100, 200, 1000, 1400}. The best con-
figuration obtained by valid set are:γ = 1,m, n =
50, B = 200 and taking L2 as dissimilarity. For
both the two datasets, We traverse to training for
1000 rounds.

Experimental results on both WN18 and FB15k
are shown in Table 4. From Table 4, we can
conclude that: (1) TransD outperforms other
baseline embedding models (TransE, TransH and
TransR/CTransR), especially on sparse dataset,
i.e., FB15k; (2) Compared with CTransR, TransD
is a more fine-grained model which considers the
multiple types of entities and relations simultane-
ously, and it achieves a better performance. It in-
dicates that TransD handles complicated internal
correlations of entities and relations in knowledge
graphs better than CTransR; (3) The “bern” sam-
pling trick can reduce false negative labels than
“unif”.

For the comparison of Hits@10 of different
kinds of relations, Table 5 shows the detailed
results by mapping properties of relations1 on
FB15k. From Table 5, we can see that TransD
outperforms TransE, TransH and TransR/CTransR
significantly in both “unif” and “bern” settings.
TransD achieves better performance than CTransR
in all types of relations (1-to-1, 1-to-N, N-to-1 and
N-to-N). For N-to-N relations in predicting both
head and tail, our approach improves the Hits@10
by almost 7.4% than CTransR. In particular, for

1Mapping properties of relations follows the same rules in
(Bordes et al. 2013)
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Data sets WN18 FB15K

Metric Mean Rank Hits@10 Mean Rank Hits@10
Raw Filt Raw Filt Raw Filt Raw Filt

Unstructured (Bordes et al. 2012) 315 304 35.3 38.2 1,074 979 4.5 6.3
RESCAL (Nickle, Tresp, and Kriegel 2011) 1,180 1,163 37.2 52.8 828 683 28.4 44.1

SE (Bordes et al. 2011) 1,011 985 68.5 80.5 273 162 28.8 39.8
SME (linear) (Bordes et al.2012) 545 533 65.1 74.1 274 154 30.7 40.8

SME (Bilinear) (Bordes et al. 2012) 526 509 54.7 61.3 284 158 31.3 41.3
LFM (Jenatton et al. 2012) 469 456 71.4 81.6 283 164 26.0 33.1
TransE (Bordes et al. 2013) 263 251 75.4 89.2 243 125 34.9 47.1

TransH (unif) (Wang et al. 2014) 318 303 75.4 86.7 211 84 42.5 58.5
TransH (bern) (Wang et al. 2014) 401 388 73.0 82.3 212 87 45.7 64.4

TransR (unif) (Lin et al. 2015) 232 219 78.3 91.7 226 78 43.8 65.5
TransR (bern) (Lin et al. 2015) 238 225 79.8 92.0 198 77 48.2 68.7

CTransR (unif) (Lin et al. 2015) 243 230 78.9 92.3 233 82 44.0 66.3
CTransR (bern) (Lin et al. 2015) 231 218 79.4 92.3 199 75 48.4 70.2

TransD (unif) 242 229 79.2 92.5 211 67 49.4 74.2
TransD (bern) 224 212 79.6 92.2 194 91 53.4 77.3

Table 4: Experimental results on link prediction.

Tasks Prediction Head (Hits@10) Prediction Tail (Hits@10)
Relation Category 1-to-1 1-to-N N-to-1 N-to-N 1-to-1 1-to-N N-to-1 N-to-N

Unstructured (Bordes et al. 2012) 34.5 2.5 6.1 6.6 34.3 4.2 1.9 6.6
SE (Bordes et al. 2011) 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3

SME (linear) (Bordes et al.2012) 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3
SME (Bilinear) (Bordes et al. 2012) 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8

TransE (Bordes et al. 2013) 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0
TransH (unif) (Wang et al. 2014) 66.7 81.7 30.2 57.4 63.7 30.1 83.2 60.8
TransH (bern) (Wang et al. 2014) 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2

TransR (unif) (Lin et al. 2015) 76.9 77.9 38.1 66.9 76.2 38.4 76.2 69.1
TransR (bern) (Lin et al. 2015) 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1

CTransR (unif) (Lin et al. 2015) 78.6 77.8 36.4 68.0 77.4 37.8 78.0 70.3
CTransR (bern) (Lin et al. 2015) 81.5 89.0 34.7 71.2 80.8 38.6 90.1 73.8

TransD (unif) 80.7 85.8 47.1 75.6 80.0 54.5 80.7 77.9
TransD (bern) 86.1 95.5 39.8 78.5 85.4 50.6 94.4 81.2

Table 5: Experimental results on FB15K by mapping properities of relations (%).

N-to-1 relations (predicting head) and 1-to-N rela-
tions (predicting tail), TransD improves the accu-
racy by 9.0% and 14.7% compared with previous
state-of-the-art results, respectively. Therefore,
the diversity of entities and relations in knowl-
edge grahps is an important factor and the dynamic
mapping matrix is suitable for modeling knowl-
edge graphs.

5 Properties of Projection Vectors

As mentioned in Section ”Introduction”, TransD
is based on the motivation that each mapping ma-
trix is determined by entity-relation pair dynam-
ically. These mapping matrices are constructed
with projection vectors of entities and relations.
Here, we analysis the properties of projection vec-
tors. We seek the similar objects (entities and rela-
tions) for a given object (entities and relations) by
projection vectors. As WN18 has the most enti-
ties (40,943 entities which contains various types
of words. FB13 also has many entities, but the

most are person’s names) and FB15k has the most
relations (1,345 relations), we show the similarity
of projection vectors on them. Table 6 and 7 show
that the same category objects have similar projec-
tion vectors. The similarity of projection vectors
of different types of entities and relations indicates
the rationality of our method.

6 Conclusions and Future Work

We introduced a model TransD that embed knowl-
edge graphs into continues vector space for their
completion. TransD has less complexity and more
flexibility than TransR/CTransR. When learning
embeddings of named symbol objects (entities or
relations), TransD considers the diversity of them
both. Extensive experiments show that TransD
outperforms TrasnE, TransH and TransR/CTransR
on two tasks including triplets classification and
link prediction.

As shown in Triplets Classification section, not
all new facts can be deduced from the exist-
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Datesets WN18
Entities and Definitions upset VB 4 cause to overturn from an upright or

normal position
srbija NN 1 a historical region in central and

northern Yugoslavia

Similar Entities and
Definitions

sway VB 4 cause to move back and forth montenegro NN 1 a former country bordering on the
Adriatic Sea

shift VB 2 change place or direction constantina NN 1 a Romanian resort city on the Black
Sea

flap VB 3 move with a thrashing motion lappland NN 1 a region in northmost Europe inhab-
ited by Lapps

fluctuate VB 1 cause to fluctuate or move in a wave-
like pattern

plattensee NN 1 a large shallow lake in western Hun-
gary

leaner NN 1 (horseshoes) the throw of a horse-
shoe so as to lean against (but not en-
circle) the stake

brasov NN 1 a city in central Romania in the
foothills of the Transylvanian Alps

Table 6: Entity projection vectors similarity (in descending order) computed on WN18. The similarity
scores are computed with cosine function.

Datesets FB15k
Relation /location/statistical region/rent50 2./measurement unit/dated money value/currency

Similar relations

/location/statistical region/rent50 3./measurement unit/dated money value/currency
/location/statistical region/rent50 1./measurement unit/dated money value/currency
/location/statistical region/rent50 4./measurement unit/dated money value/currency
/location/statistical region/rent50 0./measurement unit/dated money value/currency

/location/statistical region/gdp nominal./measurement unit/dated money value/currency
Relation /sports/sports team/roster./soccer/football roster position/player

Similar relations

/soccer/football team/current roster./sports/sports team roster/player
/soccer/football team/current roster./soccer/football roster position/player

/sports/sports team/roster./sports/sports team roster/player
/basketball/basketball team/historical roster./sports/sports team roster/player

/sports/sports team/roster./basketball/basketball historical roster position/player

Table 7: Relation projection vectors similarity computed on FB15k. The similarity scores are computed
with cosine function.

ing triplets in knowledge graphs, such as rela-
tions gender, place of place, parents and chil-
dren. These relations are difficult to infer from all
other information, but they are also useful resource
for practical applications and incomplete, i.e. the
place of birth attribute is missing for 71% of all
people included in FreeBase (Nickel, et al. 2015).
One possible way to obtain these new triplets is
to extract facts from plain texts. We will seek
methods to complete knowledge graphs with new
triplets whose entities and relations come from
plain texts.
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Abstract

In this paper, we first explore the role
of inter-annotator agreement statistics in
grammatical error correction and conclude
that they are less informative in fields
where there may be more than one correct
answer. We next created a dataset of 50
student essays, each corrected by 10 dif-
ferent annotators for all error types, and in-
vestigated how both human and GEC sys-
tem scores vary when different combina-
tions of these annotations are used as the
gold standard. Upon learning that even hu-
mans are unable to score higher than 75%
F0.5, we propose a new metric based on
the ratio between human and system per-
formance. We also use this method to in-
vestigate the extent to which annotators
agree on certain error categories, and find
that similar results can be obtained from a
smaller subset of just 10 essays.

1 Introduction

Interest in grammatical error correction (GEC)
systems has grown considerably in the past few
years, thanks mainly to the success of the recent
Helping Our Own (HOO) (Dale and Kilgarriff,
2011; Dale et al., 2012) and Conference on Natu-
ral Language Learning (CoNLL) (Ng et al., 2013;
Ng et al., 2014) shared tasks. Despite this increas-
ing attention, however, one of the most significant
challenges facing GEC today is the lack of a robust
evaluation practice. In fact Chodorow et al. (2012)
even go as far to say that it is sometimes “hard
to draw meaningful comparisons between differ-
ent approaches, even when they are evaluated on
the same corpus.”

One of the reasons for this is that, tradition-
ally, system performance has only ever been eval-
uated against the gold standard annotations of a

single native speaker (rarely, two native speakers).
As such, system output is not actually scored on
the basis of grammatical acceptability alone, but
rather is also constrained by the idiosyncrasies of
the particular annotators.

The obvious solution to this problem would be
to compare systems against the gold standard an-
notations of multiple annotators, in an effort to di-
lute the effect of individual annotator bias, how-
ever creating manual annotations is often consid-
ered too time consuming and expensive. In spite of
this, while other studies have instead elected to use
crowdsourcing to produce multiply-corrected an-
notations, often concerning only a limited number
of error types (Madnani et al., 2011; Pavlick et al.,
2014; Tetreault et al., 2014), one of the main con-
tributions of this paper is the provision of a dataset
of 10 human expert annotations, annotated in the
tradition of CoNLL-2014, that is moreover anno-
tated for all error types.1

With this new dataset, we have, for the first
time, been able to compare system output against
the gold standard annotations of a larger group of
human annotators, in a realistic grammar check-
ing scenario, and consequently been able to quan-
tify the extent to which additional annotators af-
fect system performance. Additionally, we also
noticed that some annotators tend to agree on cer-
tain error categories more than others and so at-
tempt to explain this.

In light of the results, we also explore how hu-
man annotators themselves compare against the
combined annotations of the remaining annotators
and thus calculate an upper bound F0.5 score for
the given dataset and number of annotators; e.g., if
one human versus nine other humans is only able
to score a maximum of 70% F0.5, then it is unrea-
sonable to expect a machine to do better. For this
reason, we propose a more informative method of

1http://www.comp.nus.edu.sg/˜nlp/sw/
10gec_annotations.zip
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evaluating a system based on the ratio of that sys-
tem’s F0.5 score against the equivalent human F0.5

score.
Section 2 contains an overview of some of the

latest research in both GEC and SMT that makes
use of IAA statistics. Section 3 shows an example
sentence from our dataset and qualitatively anal-
yses how individual annotator bias affects their
choice of corrections. Section 4 describes the data
collection process and presents some preliminary
results. Section 5 discusses the main quantitative
results of the paper, formalizing the formulas used
and introducing the more informative method of
ratio scoring for GEC, while Section 6 summa-
rizes the results from our additional experiments
on category agreement and essay subsets. Section
7 concludes the paper.

2 Inter-Annotator Agreement (IAA)

Whenever we discuss multiple annotators, re-
searchers invariably raise the issue of inter-
annotator agreement (IAA), or rather the extent to
which annotators agree with each other. This is
because data which shows a higher level of agree-
ment is often believed to be in some way more reli-
able than data which has a lower agreement score.
Within GEC, agreement has often been reported in
terms of Cohen’s-κ (Cohen, 1960), although other
agreement statistics could also be used.2

In the rest of this section, however, we wish to
challenge the use of IAA statistics in GEC and
question their value in this field. Specifically,
while IAA statistics may be informative in areas
where items can be classified into single, well-
defined categories, such as in part-of-speech tag-
ging, we argue that they are less well-suited to
GEC and SMT, where there is often more than one
correct answer. For example, two annotators may
correct or translate a given sentence in two com-
pletely different yet valid ways, but IAA statistics
are only able to interpret the alternative answers as
disagreements.

2.1 Inter-Annotator Agreement in GEC

One important study that made use of κ as a mea-
sure of agreement between raters is by Tetrault and
Chodorow (2008) (also in Tetreault et al. (2014)),
who asked two native English speakers to insert
a missing preposition into 200 randomly chosen,

2See Hayes and Krippendorff (2007) or Artstein and Poe-
sio (2008) for the pros and cons of different IAA metrics.

well-formed sentences from which a single prepo-
sition had been removed.

Despite the simplicity of this correction task,
the authors reported κ-agreement of just 0.7, not-
ing that in cases where the raters disagreed, their
disagreements were often “licensed by context”
and thus actually “acceptable alternatives”. This
led them to conclude that they would “expect even
more disagreement when the task is preposition er-
ror detection in ’noisy’ learner texts” and, by ex-
tension, imply that detection of all error types in
’noisy’ texts would show more disagreement still.

The most important question to ask then, as a
result of this study, is whether low κ-scores in
’noisy’ texts are truly indicative of real disagree-
ment, or whether, as in this preposition test, the
disagreement is actually the result of multiple cor-
rect answers, and therefore not disagreement at all.

In a related study, and aware of the fact that
there are often multiple ways to correct individual
words in sentence, Rozovskaya and Roth (2010)
instead chose to compute agreement at the sen-
tence level. Specifically, three raters were asked
simply to decide whether they thought 200 sen-
tences were correct or not.

This time, despite operating at the more gen-
eral sentence level, the authors reported κ scores
of just 0.16, 0.4 and 0.23, surmising that “the low
numbers reflect the difficulty of the task and the
variability of the native speakers’ judgments about
acceptable usage.” If that is the case, then true dis-
agreement may be indistinguishable from native
variability, and we should be wary of using IAA
statistics as a measure of agreement or evaluation
in GEC.

2.2 Inter-Annotator Agreement in SMT

In fact, the issues regarding the reliability of IAA
metrics are not unique to GEC and we can also
draw a parallel with the field of statistical machine
translation (SMT). In the same way that there is
often more than one way to correct a sentence in
GEC, it is also well known that there is often more
than one way to translate a sentence in SMT.

Nevertheless, while several papers have suc-
cessfully discussed ways to minimize annotator
bias effects in SMT (Snover et al., 2006; Madnani
et al., 2008), IAA metrics such as κ still unhelp-
fully play a role in the field and have, for exam-
ple, been reported almost every year in the Work-
shop on Machine Translation (WMT) conference.
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Source: To put it in the nutshell, I believe that people should have the obligation to tell their relatives about the
genetic testing result for the good of their health.

A1 To put it in a nutshell, I believe that people should be obliged to tell their relatives about their genetic test
results for the good of their health.

A2 In a nutshell, I believe that people should have an obligation to tell their relatives about the genetic testing
result for the good of their health.

A3 In summary, I believe that people should have the obligation to tell their relatives about the genetic testing
result for the good of their health.

A4 In a nutshell, I believe that people should be obligated to tell their relatives about the genetic testing result for
the good of their health.

A5 To put it in a nutshell, I believe that people should be obligated to tell their relatives about the genetic testing
results for the good of their health.

A6 To put it in the nutshell, I believe that people should have an obligation to tell their relatives about their genetic
test results for the good of their health.

A7 To put it in a nutshell, I believe that people should have the obligation to tell their relatives about the genetic
testing result for the good of their health.

A8 To put it in a nutshell, I believe that people should be obligated to tell their relatives about the genetic testing
result for the good of their health.

A9 To put it in a nutshell, I believe that people should have the obligation to tell their relatives about the genetic
test result for the good of their health.

A10 To put it in a nutshell, I believe that people should have the obligation to tell their relatives about the genetic
test results for the good of their health.

Table 1: Table showing how each of the 10 annotators edited the same source sentence in Essay 25. The
words in the source sentence that were changed are highlighted in bold.

This is in spite of the fact that the average inter-
annotator κ score across all language pairs over
the past five years has never been higher than 0.4
(Bojar et al., 2014).

One important paper that attempts to explain
why IAA metrics score so poorly in SMT is by
Lommel et al. (2014), who asked annotators to
highlight and categorize sections of automatically
translated text they believed to be erroneous. Their
results showed that while annotators were often
able to agree on the rough locations of errors, they
often disagreed as to the specific boundaries of
those errors: for instance, given the phrase “had
go”, some annotators considered just the partici-
ple “go”→ “gone” to be the minimal error, while
others considered the whole verbal unit, “had go”
→ “had gone”, to be the minimal error. Simi-
larly, the authors also noted that annotators some-
times had problems categorizing ambiguous errors
which could be classified into more than one error
category.

In short, while annotators already vary as to
what they consider an error, these observations
show that even when they do apparently agree,
there is no guarantee that every annotator will de-
fine the error in exactly the same terms. This poses
a problem for IAA statistics, which rely on an ex-
act match to measure agreement.

Finally, it is also worth mentioning that a related
study, by Denkowski and Lavie (2010), suggested
that “annotators also have difficulty agreeing with

themselves” (shown from intra-annotator agree-
ment κ scores of about 0.6), and so we should be
especially wary of using IAA metrics to validate
datasets that may even be unreliable for a single
annotator.

3 Annotator Bias

In an effort to better understand how annotators’
judgments might differ, we first carried out a
small-scale qualitative analysis on a handful of
random sentences corrected by the 10 human an-
notators in our dataset. One such sentence, and all
its various corrections, is shown in Table 1.

It is interesting to note that, for even as short an
idiom as “To put it in the nutshell’, there are still
multiple alternative edits. Although 8 out of the 10
annotators elected to replace the article “the” with
“a”, among them, A2 and A4 also deleted “To put
it” from the expression. Of the remaining 2 an-
notators, A3 chose to replace the idiom entirely
with “In summary”, while A6 made no correction
at all. Although no correction appears to be un-
acceptable to the majority of annotators, it is also
not completely ungrammatical (just idiomatically
awkward) so it may be that A6 has a higher tol-
erance for this kind of error than the other anno-
tators. Alternatively, there is also always the pos-
sibility that, given such a large amount of text to
correct, this error was simply overlooked.

Another noteworthy difference is that annota-
tors A1, A4, A5, and A8 all elected to change the
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verb “have the obligation” from active to passive,
although A1 still disagreed with the others on the
form of the participle. Similarly, there is also a
great difference of opinion on whether “testing re-
sult” should be corrected or not, and if so, how.
While half of the annotators left the phrase un-
changed, A1, A6, and A10 all changed both words
to “test results”. Meanwhile, somewhere in be-
tween, A5 decided to change “result” to “results”,
but not “testing” to “test”, while, conversely, A9
decided to do the opposite. This would suggest
that error correction of even minor phrases falls
along a continuum governed by each annotator’s
natural bias.

Finally, one of the most important results of
this qualitative evaluation is that even though all
10 annotators edited the same sentence to a level
they deemed grammatical, not one single annota-
tor agreed with another exactly. This fact alone
suggests IAA statistics are not a good way to eval-
uate GEC data and that a more robust agreement
metric must take into account the possibility of al-
ternative correct answers.

4 Data Collection

The raw text data in our dataset was originally pro-
duced by 25 students at the National University of
Singapore (NUS) who were non-native speakers
of English. They were asked to write two essays
on the topics of genetic testing and social media
respectively. All essays were of similar length and
quality. This was important because varying the
skill level of the essays is likely to further affect
the natural bias of the annotators, who may then
consistently over- or under-correct essays. These
raw essays also formed the basis of the CoNLL-
2014 test data (Ng et al., 2014). See Table 2 for
some basic statistics on the resulting 50 essays.

The 10 annotators who annotated all 50 essays
include: the 2 official annotators of CoNLL-2014,
the first author of this paper, and 7 freelancers
who were recruited via online recruitment website,
Elance.3 All annotators are native British English
speakers, many of whom also have backgrounds in
English language teaching, proofreading, and/or
Linguistics.

All annotations were made using an online an-
notation platform, WAMP, especially designed for
annotating ESL errors (Dahlmeier et al., 2013).
Using this platform, annotators were asked to

3http://www.elance.com

Total Average per essay
# Paragraphs 252 5.0
# Sentences 1312 26.2
# Tokens 30144 602.9

Table 2: Statistics for the 50 unannotated essays.

highlight a minimal error string in the source text,
provide an appropriate correction, and then cate-
gorize their selection according to the same 28-
category error framework used by CoNLL-2014.
Before commencing annotation, however, each
annotator was given detailed instructions on how
to use the tool, along with an explanation of each
of the error categories. In cases of uncertainty, an-
notators were also encouraged to ask questions.

As it was slightly harder to control the qual-
ity of the 7 independently recruited annotators via
Elance, they were each preliminarily asked to an-
notate only the first two essays before being given
detailed feedback on their work. The main pur-
pose of this feedback was to make sure that they
a) understood the error category framework, and
b) knew how to deal with more complicated cases
such as word insertions, punctuation, etc. Unless
it was felt that they had overlooked an obvious er-
ror in these first two essays, the feedback did not
go so far as to tell annotators what they should and
should not highlight in an effort to preserve indi-
vidual annotator bias.

In all, while the specific time taken to complete
annotation of all 50 essays was not calculated, all
annotators completed the task over a period of
about 3 weeks, at a rate of about 45 minutes per
essay.

4.1 Early Observations

To investigate the extent to which different anno-
tators have different biases, we first counted the
total number of edits made by each annotator and
sorted them by error category (Table 3).

As can be seen, there is quite a difference be-
tween the annotator who made the most edits (A1)
and the annotator who made the fewest edits (A7),
with A1 making more than twice the number of
edits as A7. This just goes to show how varied
judgments on grammaticality can be. Incidentally,
annotators A3 and A7, who are among those who
made the fewest edits, were also the two official
gold standard annotators in CoNLL-2014.

There is also a large difference between edits in
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Category A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Total
ArtOrDet 879 639 443 503 665 620 331 358 390 624 5452

Cit 0 0 0 0 0 1 0 2 0 0 3
Mec 227 376 493 325 411 336 228 733 598 780 4507
Nn 404 290 228 264 360 300 215 254 277 365 2957

Npos 21 21 15 21 31 28 19 25 29 23 233
Others 42 186 49 116 95 43 44 34 125 105 839
Pform 431 52 18 57 30 83 47 53 19 18 808
Pref 4 79 153 18 223 53 96 92 250 180 1148
Prep 755 488 390 421 502 556 211 276 362 459 4420

Rloc– 488 308 199 331 187 244 94 174 296 240 2561
Sfrag 1 5 1 3 1 5 13 2 12 2 45
Smod 1 4 5 0 1 0 0 3 1 1 16
Spar 0 18 24 0 2 11 3 2 8 0 68
Srun 157 38 21 16 17 18 7 15 17 37 343
Ssub 74 54 10 4 25 81 68 21 18 82 437
SVA 162 123 154 95 140 114 105 132 144 144 1313
Trans 248 100 78 147 118 81 93 199 87 95 1246
Um 5 12 42 25 25 12 12 19 7 8 167
V0 137 35 37 50 81 69 31 58 51 85 634

Vform 388 168 91 100 156 125 132 78 122 124 1484
Vm 71 48 37 67 119 24 49 39 4 62 520
Vt 100 209 150 200 82 237 133 234 117 188 1650
Wa 0 1 1 3 1 1 0 2 4 2 15
Wci 623 476 479 446 456 595 340 250 212 346 4223

Wform 126 107 103 150 136 145 77 103 107 81 1135
WOadv 23 48 27 23 61 76 12 94 41 62 467
WOinc 187 67 54 78 53 74 22 24 87 103 749
Wtone 6 30 15 65 38 27 9 10 12 15 227
Total 5560 3982 3317 3528 4016 3959 2391 3286 3397 4231 37667

Table 3: Table showing how many annotations each annotator made in terms of error category. See Ng
et al. (2014) Table 1 for a more detailed description of error categories.

terms of category use, with almost half of all edits
falling into the categories for article or determiner
(ArtOrDet), spelling or punctuation (Mec), prepo-
sition (Prep), or word choice (Wci) errors.

5 Quantitative Analysis

In the main phase of experimentation, we first in-
vestigated how different numbers of annotators af-
fected the performance of various systems in the
context of the CoNLL-2014 shared task. To do
this, we downloaded the official system output
of all the participating teams4 and then the Max-
Match (M2) Scorer5 (Dahlmeier and Ng, 2012),
which was the official scorer of the previous
CoNLL-2013 and CoNLL-2014 shared tasks.

This scorer evaluates a system at the sentence
level in terms of correct edits, proposed edits,
and gold edits, and uses these to calculate an
F-score for each team. When more than one
set of gold standard annotations is available, the
scorer will calculate F-scores for each alternative

4http://www.comp.nus.edu.sg/˜nlp/
conll14st/official_submissions.tar.gz

5http://www.comp.nus.edu.sg/˜nlp/sw/
m2scorer.tar.gz

gold-standard sentence and choose the one from
whichever annotator scored the highest. As in
CoNLL-2014, we calculate F0.5, which weights
precision twice as much as recall, because it is
more important for a system to be accurate than to
correct every possible error. See (Ng et al., 2014)
for more details on how F0.5 is calculated.

5.1 Pairwise Evaluation

In order to quantify how much the F-score can
vary in a realistic grammar checking scenario
when there is only one gold standard annotator, we
first computed the scores for a participating sys-
tem vs each annotator in a pairwise fashion. Table
4 hence shows how the top team in CoNLL-2014,
CAMB (Felice et al., 2014), performed against
each of the 10 human annotators individually.

While Tetrault and Chodorow (2008) and
Tetreault et al. (2014) reported a difference of 10%
precision and 5% recall between their two individ-
ual annotators in their simplified preposition cor-
rection task, Table 4 shows this difference can ac-
tually be as much as almost 15% precision (A1 vs
A7) and 6% recall (A1 vs A3) in a more realistic
full scale correction task. This equates to a differ-
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CAMB P R F0.5

A1 39.64 14.06 29.06
A2 35.73 17.35 29.48
A3 35.22 20.29 30.70
A4 32.69 17.88 28.04
A5 35.74 17.26 29.43
A6 35.76 17.73 29.72
A7 24.96 19.62 23.67
A8 29.17 16.92 25.48
A9 32.03 18.28 27.84

A10 35.52 16.26 28.72

Table 4: Table showing the F0.5 scores for the top
team in CoNLL-2014, CAMB, against each of the
10 annotators individually.

ence of over 7% F0.5 (A3 vs A7) and once again
shows how varied annotator’s judgments can be.

5.2 All Combinations
5.2.1 Human vs Human
Whereas previously we could only calculate F0.5

scores on a system vs human basis, when there
are two or more annotators, we can also calculate
scores on a human vs human basis. In fact, as the
number of annotators increases, we can also start
to calculate scores against different combinations
of gold standard annotations.6

To give an example, since we have 10 annota-
tors, a subset of these annotators, say annotators
a2–a8, could be chosen as the gold standard anno-
tations. We could then evaluate how each of the re-
maining annotators (i.e., annotator a1, a9, and a10)
performs against this gold standard, by comput-
ing the M2 score for annotator a1 against annota-
tors a2–a8, annotator a9 against annotators a2–a8,
and annotator a10 against annotators a2–a8. We
then average these 3 M2 scores, to determine how,
on average, an annotator performs when measured
against gold standard annotators a2–a8.

It is worth reiterating, however, that when more
than one annotator is used as the gold standard,
the M2 scorer will choose whichever annotator for
the given sentence produces the highest F-score;
i.e., if a2–a8 are the gold standard and we want
to compute the F-score for a9, the M2 scorer will
compute a9 vs a2, a9 vs a3, . . . , a9 vs a8 separately
for each sentence, and choose the highest.

6Note that by combinations of annotators, we mean sim-
ply that the M2 scorer has access to a larger number of alter-
native gold standard corrections; we do not attempt to merge
annotations in any way.

The above calculations can be formalized as
Equation 1:

g(X) =
1

|A| − |X|
∑

a∈A\X
f(a,X) (1)

where A is the set of all annotators (|A| = 10 in
our case) and X is a non-empty and proper subset
of A, denoting the set of annotators chosen to be
in the gold standard. The function f(a,X) is the
score computed by the M2 scorer to evaluate anno-
tator a against each set of gold standard annotators
X . g(X) is thus the average M2 scores for the re-
maining annotators against the input gold standard
combination X .

So far, in our example, we have chosen anno-
tators a2–a8 to be the gold standard. There are,
however, many other different ways of choosing 7
annotators to serve as the gold standard. For exam-
ple, we could have chosen { a1, a2, . . . , a7 }, { a1,
a3, a4, . . . , a8 }, etc. In fact, there are

(
10
7

)
= 120

different combinations of 7 annotators. As such,
we can also compute how an individual human an-
notator performs when measured against any com-
bination of 7 gold standard annotators, by averag-
ing these 120 M2 scores. The above calculation is
formalized in the general case in Equation 2:

hi =
1(|A|
|X|
) ∑
X:|X|=i

g(X) (2)

where
(|A|
|X|
)

is the binomial coefficient for |A|
choose |X| and 1 ≤ i < |A|. The function g(X)
is defined in Equation 1.

The resulting hi values are hence the average
F0.5 scores achieved by any human against any
combination of i other humans, and so, in some
ways, also represent the upper bound of human
performance on the current dataset. The specific
values for hi are shown in the second column of
Table 5.

5.2.2 Caveat
One caveat regarding this method is that the num-
ber of all possible combinations of annotators is
of the order 2|A|, which quickly becomes compu-
tationally expensive for large values of |A|. Fortu-
nately however, in a realistic GEC evaluation sce-
nario, it is only the last row of Table 5 that we are
most interested in, and so it is actually only neces-
sary to calculate a much more manageable

( |A|
|A|−1

)
gold standard combinations, which is conveniently
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Gold Human (hi) AMU CAMB CUUI
Annotators (i) Avg F0.5 Avg F0.5 Ratio Avg F0.5 Ratio Avg F0.5 Ratio

1 45.91 24.20 52.71% 28.22 61.46% 26.76 58.29%
2 56.68 33.47 59.05% 37.77 66.64% 36.04 63.59%
3 61.83 38.35 62.03% 42.68 69.03% 40.76 65.92%
4 65.05 41.53 63.85% 45.87 70.51% 43.77 67.29%
5 67.33 43.84 65.11% 48.17 71.54% 45.94 68.23%
6 69.07 45.62 66.06% 49.93 72.29% 47.60 68.92%
7 70.45 47.06 66.80% 51.34 72.87% 48.94 69.46%
8 71.60 48.26 67.40% 52.50 73.32% 50.05 69.89%
9 72.58 49.28 67.90% 53.47 73.67% 50.99 70.25%

Table 5: Table showing average human F0.5 scores over all combinations of 1 ≤ i < 10 gold annotators
compared to the same averages for the top 3 systems in CoNLL-2014, and the ratio percentage of each
team’s average score versus the human average score.

equal to the total number of annotators. We only
compute all combinations here in order to quan-
tify, for the first time, how much each additional
annotator affects performance.

5.2.3 System vs Human
In addition to calculating scores on a human vs
human basis, we also calculated the F-scores for
the top three CoNLL-2014 teams, AMU (Junczys-
Dowmunt and Grundkiewicz, 2014), CAMB (Fe-
lice et al., 2014), and CUUI (Rozovskaya et al.,
2014), versus all the combinations of humans
(Equation 3).

si =
1(|A|
|X|
) ∑
X:|X|=i

f(s,X) (3)

Specifically, s ∈ S, where S is the set of all
three shared task systems, i.e., {AMU, CAMB,
CUUI}, and f(s,X) is the same function in Equa-
tion 1 which is the score computed by the M2
scorer to evaluate system s against the set of an-
notators X chosen to be in the gold standard. The
average F0.5 scores for each of the team’s systems
versus increasing numbers of i annotators are also
shown in Table 5.

We notice from these scores that, as expected,
both system and human performance increases as
more annotators are used in a gold standard. We
do now, however, have data that quantifies exactly
how much each additional annotator affects the
score. This effect can be more clearly seen in Fig-
ure 1.

It is important to note, however, that even with
9 annotators, human output itself does not reach
close to 100% F0.5 and instead, the difference be-

tween the systems and the humans is about 20%
F0.5. Furthermore, the curves for humans and sys-
tems also remain roughly parallel, suggesting hu-
man corrections gain as much benefit as system
corrections from larger sets of gold standard an-
notations.

5.3 Ratio Scoring

In light of the above observation that even humans
vs humans are unable to score 100% F0.5, it thus
seems unreasonable to expect machines to do the
same. As such, we propose that it is much more
informative to score system output against the av-
erage performance of humans instead of against
the theoretical maximum score. The ratio values
for the three CoNLL-2014 teams against the hu-
man gold standards of various sizes are hence also
reported in Table 5. The most important thing to
note is that these figures are not only much higher
than the low F0.5 values currently reported in the
literature, they are also more representative of the
state of the art. For instance, it is highly significant
that we can report that the top system in CoNLL-
2014, CAMB, is actually able to perform 73% as
reliably as a human, which suggests GEC may ac-
tually be a more viable technology than was pre-
viously thought.

6 Additional Experiments

6.1 Error Categories

As well as carrying out experiments at the system
level, we also carried out similar experiments at
the error category level. More specifically, we re-
calculated the values of Equation 1 and 2 for cases
where the set of annotations consisted of only a
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Figure 1: Graph showing how average F0.5 scores
for humans and systems increase as the number of
gold standard annotators also increases (all error
types, 50 Essays).

single specific error type. Since the participating
teams in CoNLL-2014 were not asked to classify
the type of errors their systems corrected, we were
only able to calculate these new values using the
10 sets of human annotations.

Like Figure 1, we can see from Figure 2 that
the F0.5 performance of individual error types in-
creases diminishingly as the number of annotators
in the gold standard also increases. More impor-
tantly, however, we notice that some error types
achieve much higher scores than others, which
suggests some annotators agree on certain cate-
gories more than others.

In particular, noun number (Nn) and subject-
verb agreement (SVA) errors achieve the highest
scores, at just under 90% F0.5, which is also not
far from the 100% F0.5 that would be achieved if
we had gold standard answers for all possible al-
ternative corrections of this type. The most likely
reason for this is that, as the correction of these
error types typically only involves the addition or
removal of an -s suffix, i.e., a minor change in
number morphology, there is very little room for
annotators to disagree.

In contrast, the next highest category, article and
determiner errors (ArtOrDet), has a slightly larger
confusion set, {the, a/an, ε}, which may account
for the slightly lower score. Similarly, the next
group of error categories, spelling and punctuation

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

Number of Gold Standard Annotators

F 0
.5

Nn V t WOinc
SV A Wform Wci
ArtOrDet Prep
Mec Trans

Figure 2: Graph showing how average F0.5 scores
for various error categories increase as the num-
ber of gold standard annotators also increases (50
essays). Calculations based on human annotations
only.

(Mec), verb tense (Vt), and word form (Wform),
which all often involve a similar type of edit op-
eration to a word lemma, likewise have slightly
larger confusion sets that include a larger variety
of possible morphological inflections. It is likely
that the next category, prepositions (Prep), also has
a confusion set of a similar size.

The last three categories, conjunctions (all-
types) (Trans), word order (WOinc) and word
choice (Wci), are all notable because they per-
form significantly worse than the hitherto men-
tioned categories. The main reason for this is that
these error types all typically have a scope much
larger than most other categories in that they often
involve changes at the structural or semantic level;
e.g., changing an active to a passive or choosing a
synonym. For this reason, there are often many
more alternative ways to correct them, meaning
they are also much more likely to be affected by
annotator bias.

704



1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

Number of Gold Standard Annotators

F 0
.5

Human
AMU
CAMB
CUUI

Figure 3: Graph showing how average F0.5 scores
for humans and systems increase as the number of
gold standard annotators also increases (all error
types, 10 Essays).

6.2 Essay Subsets
Now that we had empirical evidence showing how
F0.5 scores varied with the number of annotators,
an additional question to ask was whether the same
trends for 50 essays were also present in a smaller
subset of essays. We therefore repeated the main
experiment with all error types, but this time used
just 10 essays (specifically, essays 1–10) in both
the hypothesis and gold standard. The results are
shown in Figure 3.

Compared to Figure 1, the most significant dif-
ference between these two graphs is that the rank-
ing for AMU and CUUI has changed, although not
by much in terms of F0.5. The most likely reason
for this is that the distribution of error types in the
smaller subset of essays is better suited to AMU’s
more general SMT approach than to CUUI’s more
targeted classifier based approach. For instance,
see Table 9 in Ng et al. (2014) to compare each
team’s performance on different error types in the
CoNLL-2014 shared task.

In other words, while the overall relationship
between the system and human scores on 10 and
50 essays remains more or less the same, re-
searchers must be aware that smaller datasets may
have more skewed error distributions, which in
turn may affect system performance, dependent
upon correction strategy. With a balanced test set
though, it would seem feasible to carry out future

evaluation research on as few as 10 essays (about
6000 words).

7 Conclusion

To summarize, we first showed that 10 individual
annotators can all correct the same sentence in 10
different ways, yet also all produce valid alterna-
tives. This implies that inter-annotator agreement
statistics, which rely on exact matching, are not
well-suited to grammatical error correction, be-
cause it may not be the case that annotators truly
disagree, but rather that they have a bias towards a
particular type of alternative answer.

We next showed that, as has long been sus-
pected, increasing the number of annotators in the
gold standard also leads to an increase in F0.5, al-
though at a diminishing rate. This data can be used
to help researchers decide how many gold standard
annotations should be used in GEC evaluation.

The main result of this paper however, is that by
computing scores for human against human, we
determined that it is not true that any human cor-
rection is able to score 100% F0.5. Instead, we
found that the human upper bound is roughly 73%
F0.5 and that the top 3 teams from CoNLL-2014
actually perform, on average, between 67-73% as
reliably as this human upper bound. This result
is highly significant, because it suggests GEC sys-
tems may actually be more viable than their previ-
ously low F0.5 scores would suggest.

In addition to the above, we also found that hu-
mans tend to agree on some error categories more
than others, and suggest that one of the main rea-
sons for this concerns the size of the confusion set
of the particular error type.

Finally, not only are we making the corrections
by 10 annotators of all 50 essays available with
this paper, we also showed that the trends found
in the data are also consistent with the annotations
of just 10 essays, allowing future research to be
conducted on much less text.
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Abstract

Our research focuses on the multilin-
gual enhancement of ontologies that, of-
ten represented only in English, need to
be translated in different languages to en-
able knowledge access across languages.
Ontology translation is a rather different
task then the classic document translation,
because ontologies contain highly specific
vocabulary and they lack contextual in-
formation. For these reasons, to improve
automatic ontology translations, we first
focus on identifying relevant unambigu-
ous and domain-specific sentences from a
large set of generic parallel corpora. Then,
we leverage Linked Open Data resources,
such as DBPedia, to isolate ontology-
specific bilingual lexical knowledge. In
both cases, we take advantage of the se-
mantic information of the labels to se-
lect relevant bilingual data with the aim
of building an ontology-specific statistical
machine translation system. We evaluate
our approach on the translation of a medi-
cal ontology, translating from English into
German. Our experiment shows a sig-
nificant improvement of around 3 BLEU
points compared to a generic as well as a
domain-specific translation approach.

1 Introduction

Currently, most of the semantically structured
data, i.e. ontologies or taxonomies, has labels ex-
pressed in English only.1 On the one hand, the
increasing amount of ontologies offers an excel-
lent opportunity to link this knowledge together
(Gómez-Pérez et al., 2013). On the other hand,
non-English users may encounter difficulties when

1Based on (Gracia et al., 2012), around 80% of ontology
labels indexed in Watson are English.

using the ontological knowledge represented only
in English. Furthermore, applications in informa-
tion retrieval, question answering or knowledge
management, that use monolingual ontologies are
therefore limited to the language in which the on-
tology labels are stored. To make the ontologi-
cal knowledge language-independent and accessi-
ble beyond language borders, these monolingual
resources need to be transformed into multilingual
knowledge bases. This multilingual enhancement
can enable queries on documents beyond English,
e.g. for cross-lingual business intelligence in the
financial domain (O’Riain et al., 2013), provid-
ing information related to an ontology label, e.g.
other intangible assets,2 in Spanish, German or
Italian. The main challenge involved in build-
ing multilingual knowledge bases is, however, to
bridge the gap between language-specific informa-
tion and the language-independent semantic con-
tent of ontologies or taxonomies (Gracia et al.,
2012).

Since manual multilingual enhancement of on-
tologies is a very time consuming and expensive
process, we engage an ontology-specific statisti-
cal machine translation (SMT) system to automat-
ically translate the ontology labels. Due to the fact
that ontology labels are usually highly domain-
specific and stored only in knowledge represen-
tations (Chandrasekaran et al., 1999), the labels
appear infrequent in parallel corpora, which are
needed to build a domain-specific translation sys-
tem with accurate translation candidates. Addi-
tionally, ambiguous labels built out of only a few
words do often not express enough semantic or
contextual information to guide the SMT system
to translate a label into the targeted domain. This
can be observed by domain-unadapted SMT sys-
tems, e.g. Google Translate, where ambiguous
expressions, such as vessel stored in an medical
ontology, are often translated into a generic do-

2ontology label stored in FINREP - FINancial REPorting
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main as Schiff 3 in German (meaning ship or boat),
but not into the targeted medical domain as Gefäß.
Since ontologies may change over time, keeping
up with these changes can be challenging for a hu-
man translator. Having in place an SMT system
adapted to an ontology can therefore be very ben-
eficial.

In this work, we propose an approach to select
the most relevant (parallel) sentences from a pool
of generic sentences based on the lexical and se-
mantic overlap with the ontology labels. The goal
is to identify sentences that are domain-specific in
respect of the target domain and contain as much
as possible relevant words that can allow the SMT
system to learn the translations of the monolin-
gual ontology labels. For instance, with the sen-
tence selection we aim to retain only parallel sen-
tences where the English word injection is trans-
lated into the German language as Impfung in the
medical domain, but not into Eindüsung, belong-
ing to the technical domain. This selection process
aims to reduce the semantic noise in the translation
process, since we try to avoid learning translation
candidates that do not belong to the targeted do-
main. Nonetheless, some of the domain-specific
ontology labels may not be automatically trans-
latable with SMT, due to the fact that the bilin-
gual information is missing and cannot be learned
from the parallel sentences. Therefore we use the
information contained in the DBpedia knowledge
base (Lehmann et al., 2015) to improve the trans-
lation of expressions which are not known to the
SMT system. We tested our approach on the med-
ical domain translating from English to German,
showing improvements of around 3 BLEU points
compared to a generic as well as a domain-specific
translation model.

The remainder of this paper is organized as
follows: Section 2 gives an overview of the re-
lated work done in the field of ontology translation
within SMT. In Section 3, we present the method-
ology of parallel data selection and terminology
identification to improve ontology label transla-
tion. Furthermore we show different methods of
embedding domain-specific knowledge into SMT.
In Experimental Setting, Section 4, we describe
the ontology to be translated along the training
data needed for SMT. Moreover we introduce ex-
isting approaches and give a description of met-
rics for automatic translation evaluation. Section 5

3Translation performed on 25.02.2015

presents the automatic and manual evaluation of
the translated labels. Finally, conclusions and fu-
ture work are shown in Section 6.

2 Related Work

The task of ontology translation involves the find-
ing of an appropriate translation for the lexical
layer, i.e. labels, of the ontology. Most of the
previous work tackled this problem by accessing
multilingual lexical resources, e.g. EuroWordNet
or IATE (Declerck et al., 2006; Cimiano et al.,
2010). Their work focuses on the identification
of the lexical overlap between the ontology and
the multilingual resource. Since the replacement
of the source and target vocabulary guarantees a
high precision but a low recall, external transla-
tion services, e.g. BabelFish, SDL FreeTransla-
tion tool or Google Translate, were used to over-
come this issue (Fu et al., 2009; Espinoza et al.,
2009). Additionally, ontology label disambigua-
tion was performed by (Espinoza et al., 2009) and
(McCrae et al., 2011), where the structure of the
ontology along with existing multilingual ontolo-
gies was used to annotate the labels with their se-
mantic senses. Differently to the aforementioned
approaches, which rely on external knowledge or
services, we focus on how to gain adequate trans-
lations using a small, but ontology-specific SMT
system. We learned that using external SMT ser-
vices often results in wrong translations of la-
bels, because the external SMT services are not
able to adapt to the specificity of the ontology.
Avoiding existing multilingual resources, which
enables a simple replacement of source and target
labels, showed the possibility of improving label
translations without manually generated lexical re-
sources, since not every ontology may benefit of
current multilingual resources.

Due to the specificity of the labels, previous
research (Wu et al., 2008; Haddow and Koehn,
2012) showed that generic SMT systems, which
merge all accessible data together, cannot be used
to translate domain-specific vocabulary. To avoid
unsatisfactory translations of specific vocabulary
we have to provide the SMT system domain-
specific bilingual knowledge, from where it can
learn specific translation candidates. (Eck et al.,
2004) used for the language model adaptation
within SMT the information retrieval technique
tf-idf. Similarly, (Hildebrand et al., 2005) and
(Lü et al., 2007) utilized this approach to select
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relevant sentences from available parallel text to
adapt translation models. The results confirmed
that large amounts of generic training data can-
not compensate for the requirement of domain-
specific training sentences. Another approach is
taken by (Moore and Lewis, 2010), where, based
on source and target language models, the authors
calculated the difference of the cross-entropy val-
ues for a given sentence. (Axelrod et al., 2011)
extend this work using the bilingual difference
of cross-entropy on in-domain and out-of-domain
language models for training sentence selection
for SMT. (Wuebker et al., 2014) reused the cross-
entropy approach and applied it to the translation
of video lectures. (Kirchhoff and Bilmes, 2014)
introduce submodular optimization using complex
features for parallel sentence selection. In their
experiments they use the source and target side
of the text to be translated, and show significant
improvements over the widely used cross-entropy
method. A different approach for sentence se-
lection is shown in (Cuong and Sima’an, 2014),
where the authors propose a latent domain transla-
tion model to distinguish between hidden in- and
out-of-domain data. (Gascó et al., 2012) and (Bi-
cici and Yuret, 2011) sub-sample sentence pairs
whose source has most overlap with the evaluation
dataset. Different from these approaches, we do
not embed any specific in-domain knowledge to
the generic corpus, from which sentence selection
is performed. Furthermore, none of these meth-
ods explicitly exploit the ontological hierarchy for
label disambiguation and are not specifically de-
signed to deal with the characteristics of ontology
labels.

As a lexical resource, Wikipedia with its rich
semantic knowledge was used as a resource for
bilingual term identification in the context of SMT.
(Tyers and Pieanaar, 2008) extracts bilingual dic-
tionary entries from Wikipedia to support the ma-
chine translation system. Based on exact string
matching they query Wikipedia with a list of
around 10,000 noun lemmas to generate the bilin-
gual dictionary. Besides the interwiki link system,
(Erdmann et al., 2009) enhance their bilingual dic-
tionary by using redirection page titles and anchor
text within Wikipedia. To cast the problem of
ambiguous Wikipedia titles, (Niehues and Waibel,
2011; Arcan et al., 2014a) use the information of
Wikipedia categories and the text of the articles to
provide the SMT system domain-specific bilingual

knowledge. This research showed that using the
lexical information stored in this knowledge base
improves the translation of highly domain-specific
vocabulary. However, we do not rely on cate-
gory annotations of Wikipedia articles, but per-
form domain-specific dictionary generation based
on the overlap between related words from the on-
tology label and the abstract of a Wikipedia article.

3 Methodology

We propose an approach that uses the ontology
labels to be translated to select the most relevant
parallel sentences from a generic parallel corpus.
Since ontology labels tend to be short (McCrae
et al., 2011), we expand the label representation
with its semantically related words. This expan-
sion enables a larger semantic overlap between a
label and the (parallel) sentences, which gives us
more information to distinguish between related
and unrelated sentences. Our approach reduces
the ambiguity of expressions in the selected par-
allel sentences, which consequently gives more
preference to translation candidates of the targeted
domain. Furthermore, we access the DBpedia
knowledge base to identify bilingual terminology
belonging to the domain of the ontology. Once
the domain-specific parallel sentences and lexi-
cal knowledge is available, we use different tech-
niques to embed this knowledge into the SMT sys-
tem. These methods are detailed in the following
subsections.

3.1 Domain-Specific Parallel Sentence
Selection

In order to generate the best translation system we
select only sentences from the generic parallel cor-
pus which are most relevant to the labels to be
translated. The first criteria for relevance was the
n-gram overlap between a label and a source sen-
tence coming from the generic corpus. Therefore
we calculate the cosine similarity between the n-
grams extracted from a label and the n-grams of
each source sentence in the generic corpus. The
similarity between the label and the sentence is de-
fined as the cosine of the angle between the two
vectors. The calculated similarity score allows us
to distinguish between more and less relevant sen-
tences.

Due to the specificity of ontology labels, the n-
gram overlap approach is not able to select use-
ful sentences in the presence of short labels. For
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this reason, we improve it by extending the se-
mantic information of labels using a technique for
computing vector representations of words. The
technique is based on a neural network that anal-
yses the textual data provided as input and pro-
vides as output a list of semantically related words
(Mikolov et al., 2013). Each input string is vector-
ized using the surrounding context and compared
to other vectorized sets of words (from the training
data) in a multi-dimensional vector space. For ob-
taining the vector representations we used a distri-
butional semantic model trained on the Wikipedia
articles,4 containing more than 3 billion words.
Word relatedness is measured through the cosine
similarity between two word vectors. A score of
1 would represent a perfect word similarity; e.g.
cholera equals cholera, while the medical expres-
sion medicine has a cosine distance of 0.678 to
cholera. Since words, which occur in similar con-
texts tend to have similar meanings (Harris, 1954),
this approach enables to group related words to-
gether. The output of this technique is the analysed
label with a vector attached to it, e.g. for the med-
ical label cholera it provides related words with
its relatedness value, e.g. typhus (0.869), smallpox
(0.849), epidemic (0.834), dysentery (0.808) . . . In
our experiments, this method is implemented by
the use of Word2Vec.5

To additionally disambiguate short labels, the
related words of the current label are combined
with the related words of its direct parent in the
ontology. The usage of the ontology hierarchy al-
lows us to take advantage of the specific vocabu-
lary of the related words in the computation of the
cosine similarity. Given a label and a source sen-
tence from the generic corpus, related words and
their weights are extracted from both of them and
used as entries of the vectors passed to the cosine
similarity. The most similar source sentence and
the label should share the largest number of related
words (largest cosine similarity).

3.2 Bilingual Terminology Identification
The automatic translation of domain-specific vo-
cabulary can be a hard task for a generic SMT sys-
tem, if the bilingual knowledge is not present in
the parallel dataset. To complement the previous
approaches we access DBpedia6 as a multilingual
lexical resource.

4Wikipedia dump id enwiki-20141106
5https://code.google.com/p/word2vec/
6http://wiki.dbpedia.org/Downloads2014

We engage the idea of (Arcan et al., 2012)
where the authors provide to the SMT system un-
ambiguous terminology identified in Wikipedia to
improve the translations of labels in the financial
domain. To disambiguate Wikipedia entries with
translations into different domains, they query the
repository for analysing the n-gram overlap be-
tween the financial labels and the Wikipedia en-
tries and store the frequency of categories which
are associated with the matched entry. In a fi-
nal step they extract only bilingual Wikipedia en-
tries, which are associated with the most frequent
Wikipedia categories identified in the previous
step.

Since the Wikipedia entries are often associ-
ated only with a few categories, this limited vo-
cabulary may give only a small contribution for
this disambiguation of different meanings or top-
ics of the same Wikipedia entry. For this reason,
we use for each Wikipedia entry the extended ab-
stract, which contains more information about the
entry compared to the previous approach. For am-
biguous Wikipedia entries, which overlap with a
medical label, we therefore calculate the cosine
similarity between the related words associated
with the label and the lexical information of the
Wikipedia abstract. Among different ambiguous
entries, the cosine similarity gives more weight to
the Wikipedia entry, which is closer to our pre-
ferred domain. Finally, if the Wikipedia entry has
an equivalent in the target language, i.e. German,
we use the bilingual information for the lexical en-
hancement of the SMT system.

3.3 Integration of Domain-Specific
Knowledge into SMT

After the identification of domain-specific bilin-
gual knowledge, it has to be integrated into the
workflow of the SMT system. The injection of
new obtained knowledge can be performed by re-
training the domain-specific knowledge with the
generic parallel corpus (Langlais, 2002; Ren et al.,
2009; Haddow and Koehn, 2012) or by adding
new entries directly to the translation system (Pin-
nis et al., 2012; Bouamor et al., 2012). These
methods have the drawback that the bilingual do-
main specificity may get lost due to the usually
larger generic parallel corpora. Giving more pri-
ority to domain-specific translations than generic
ones, we focus on two techniques, i.e. the Fill-Up
model (Bisazza et al., 2011) and the Cache-Based
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Model (Bertoldi et al., 2013) approach.

The Fill-Up model has been developed to ad-
dress a common scenario where a large generic
background model exists, and only a small quan-
tity of domain-specific data can be used to build
a translation model. Its goal is to leverage the
large coverage of the background model, while
preserving the domain-specific knowledge com-
ing from the domain-specific data. For this pur-
pose the generic and the domain-specific transla-
tion models are merged. For those translation can-
didates that appear in both models, only one in-
stance is reported in the Fill-Up model with the
largest probabilities according to the translation
models. To keep track of a translation candidate’s
provenance, a binary feature is added that gives
preference to a translation candidate if it comes
from the domain-specific translation model. We
engage the idea of the Fill-Up model to combine
the domain-specific parallel knowledge from the
selected sentences with the generic (1.9M) paral-
lel corpus.

Furthermore, for embedding bilingual lexical
knowledge into the SMT system, we engage the
idea of cache-based translation and language mod-
els (Bertoldi et al., 2013). The main idea behind
these models is to combine a large static global
model with a small, but dynamic local model. This
approach has already shown its potential of in-
jecting domain-specific knowledge into a generic
SMT system (Arcan et al., 2014b). For our exper-
iments we inject the bilingual lexical knowledge
identified in DBpedia and IATE into the cache-
based models. The cache-based model relies on
a local translation model (CBTM) and language
model (CBLM). The first is implemented as an
additional table in the translation model provid-
ing one score. All entries are associated with an
’age’ (initially set to 1), corresponding to the time
when they were actually inserted. Each new in-
sertion causes an ageing of the existing translation
candidates and hence their re-scoring; in case of
re-insertion of a phrase pair, the old value is set to
the initial value. Similarly to the CBTM, the lo-
cal language model is built to give preference to
the provided target expressions. Each entry stored
in CBLM is associated with a decaying function
of the age of insertion into the model. Both mod-
els are used as additional features of the log-linear
model in the SMT system.

4 Experimental Setting

In this Section, we give an overview on the dataset
and the translation toolkit used in our experiment.
Furthermore, we describe the existing approaches
and give insights into the SMT evaluation tech-
niques, considering the translation direction from
English to German.

Evaluation Dataset For our experiments we
used the International Classification of Diseases
(ICD) ontology as the gold standard,7 whereby the
considered translation direction is from English to
German. The ICD ontology, translated into 43 lan-
guages, is used to monitor diseases and to report
the general health situation of the population in a
country. This stored information also provides an
overview of the national mortality rate and appear-
ance of diseases of WHO member countries.

For our experiment we used 2000 English labels
from the ICD-10 dataset, which were aligned to
their German equivalents (Table 1). To identify the
best set of sentences we experiment with differ-
ent values of τ , which is the percentage of all the
sentences that are considered relevant (domain-
specific) by the sentence extraction approach. The
value that allows the SMT system to achieve the
best performance on the development dataset 1 is
used on the evaluation set, which is used for the
translation evaluation of ontology labels reported
in this paper. The parameters within the SMT sys-
tem are optimized on the development dataset 2.

Statistical Machine Translation and Training
Dataset For our translation task, we use the sta-
tistical translation toolkit Moses (Koehn et al.,
2007), where the word alignments were built with
the GIZA++ toolkit (Och and Ney, 2003). The
SRILM toolkit (Stolcke, 2002) was used to build
the 5-gram language model.

For a broader domain coverage of the generic
training dataset necessary for the SMT system,
we merged parts of JRC-Acquis 3.08 (Steinberger
et al., 2006), Europarl v79 (Koehn, 2005) and
OpenSubtitles201310 (Tiedemann, 2012), obtain-
ing a training corpus of 1.9M sentences, con-

7http://www.who.int/classifications/
icd/en/

8https://ec.europa.eu/jrc/en/
language-technologies/jrc-acquis

9http://www.statmt.org/europarl/
10http://opus.lingfil.uu.se/

OpenSubtitles2013.php
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English German

Generic Dataset Sentences 1.9M
(out-domain) Running Words 39.8M 37.1M

Vocabulary 195,912 446,068

EMEA Dataset Sentences 1.1M
(domain-specific) Running Words 13.8M 12.7M

Vocabulary 58,935 115,754

Development Labels 500
Dataset 1 Running Words 3,025 2,908

Vocabulary 889 951

Development Labels 500
Dataset 2 Running Words 3,003 3,020

Vocabulary 938 1,027

Evaluation Labels 1,000
Dataset Running Words 5,677 5,514

Vocabulary 1,255 1,489

Table 1: Statistics for the bilingual training, de-
velopment and evaluation datasets. (’Vocabulary’
denotes the number of unique words in the dataset)

taining around 38M running words (Table 1).11

The generic SMT system, trained on the con-
catenated 1.9 sentences, is used as a baseline,
which we compare against the domain-specific
models generated with different sentence selection
methods. Furthermore we use the generic SMT
system in combination with the smaller domain-
specific models to evaluate different approaches
when combining generic and domain-specific data
together.

We additionally compare our results to an SMT
system built on an existing domain-specific par-
allel dataset, i.e. EMEA12 (Tiedemann, 2009),
which holds specific medical parallel data ex-
tracted from the European Medicines Agency doc-
uments and websites.

Comparison to Existing Approaches We com-
pare our approach on knowledge expansion for
sentence selection with similar methods that dis-
tinguish between more important sentences and
less important ones. First, we sort 1.9M sentences
from the generic corpus based on the perplexity
of the ontology vocabulary. The perplexity score
gives a notion of how well the probability model
based on the ontology vocabulary predicts a sam-
ple, which is in our case each sentence in the
generic corpus.

Second, we use the method shown in (Hilde-
brand et al., 2005), where the authors use a method

11For reproducibility and future evaluation we take the first
one-third part of each corpus.

12http://opus.lingfil.uu.se/EMEA.php

based on tf-idf 13 to select the most relevant sen-
tences. This widely-used method in information
retrieval tells us how important a word is to a doc-
ument, whereby each sentence from the generic
corpus is treated as a document.

Finally, we compare our approach with the in-
frequent n-gram recovery method, described in
(Gascó et al., 2012). Their technique consists of
selection of relevant sentences from the generic
corpus, which contain infrequent n-grams based
on their test data. They consider an n-gram as
infrequent if it appears in the generic corpus less
times than an infrequent threshold t.

Furthermore we enrich and evaluate our pro-
posed ontology-specific SMT system with the lex-
ical information coming from the terminological
database IATE14 (Inter-Active Terminology for
Europe). IATE is the institutional terminology
database of the EU and is used for the collection,
dissemination and shared management of specific
terminology and contains approximately 1.4 mil-
lion multilingual entries.

Evaluation Metrics The automatic translation
evaluation is based on the correspondence be-
tween the SMT output and reference translation
(gold standard). For the automatic evaluation
we used the BLEU (Papineni et al., 2002) and
METEOR (Denkowski and Lavie, 2014) algo-
rithms.15

BLEU (Bilingual Evaluation Understudy) is
calculated for individual translated segments (n-
grams) by comparing them with a dataset of refer-
ence translations. Considering the shortness of the
labels, we report scores based on the bi-gram over-
lap (BLEU-2) and the standard four-gram over-
lap (BLEU-4). Those scores, between 0 and 100
(perfect translation), are then averaged over the
whole evaluation dataset to reach an estimate of
the translation’s overall quality.

METEOR (Metric for Evaluation of Transla-
tion with Explicit ORdering) is based on the har-
monic mean of precision and recall, whereby re-
call is weighted higher than precision. Along with
standard exact word (or phrase) matching it has
additional features, i.e. stemming, paraphrasing
and synonymy matching. Differently to BLEU,
the metric produces good correlation with human
judgement at the sentence or segment level.

13tf-idf – term frequency-inverse document frequency
14http://iate.europa.eu/downloadTbx.do
15METEOR configuration: exact, stem, paraphrase
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The approximate randomization approach in
MultEval (Clark et al., 2011) is used to test
whether differences among system performances
are statistically significant with a p-value < 0.05.

5 Evaluation of Ontology Labels

In this Section, we report the translation quality
of ontology labels based on translation systems
learned from different sentence selection methods.
Additionally, we perform experiments training an
SMT system on the combination of in- and out-
domain knowledge. The final approach enhances
a domain-specific translation system with lexical
knowledge identified in IATE or DBpedia.

5.1 Automatic Translation Evaluation

We report the automatic evaluation based on
BLEU and METEOR for the sentence selection
techniques, the combination of in- and out-domain
data and the lexical enhancement of SMT.

Sentence Selection Techniques As a first eval-
uation, we automatically compare the quality of
the ICD labels translated with different SMT sys-
tems trained on specific sentences by the afore-
mentioned selection techniques (Table 2). Due to
the in-domain bilingual knowledge, the translation
system trained using the EMEA dataset performs
slightly better compared to the large generic base-
line system. Among the different sentence selec-
tion approaches, the infrequent n-gram recovery
method (infreq. in Table 2) outperforms the base-
lines and all the other techniques. This is due to
the very strict criteria of selecting relevant sen-
tences that allows the infrequent n-gram recovery
method to identify a limited number (20,000) of
highly ontology-specific bilingual sentences. The
related words and the n-gram overlap models per-
form slightly better than the baseline, with a usage
of 81,000 and 59,000 relevant sentences, and per-
form similarly to the in-domain EMEA translation
system.

Further translation quality improvement is pos-
sible, if sentence selection methods are combined
together (last four rows in Table 2). The co-
sine similarities of the methods are combined to-
gether, whereby new thresholds τ are computed
on the development dataset 1 and applied on the
ICD evaluation dataset. Each combined method
showed improvement compared to the stand-alone
method. The best overall performance is obtained

Dataset Type Size BLEU-2 BLEU-4 METEOR

Generic dataset 1.9M 17.2 6.6 24.7
EMEA dataset 1.1M 18.5 7.0 25.8

(1) perplexity 89K 17.5 6.8 24.8
(2) tf-idf 21K 12,6 4.9 18,7
(3) infreq. 20K 19.1 8.1 25.3
(4) related w. 81K 18.9 7.0 25.8
(5) n-gram 59K 17.7 7.1 23.3

(5) ∧ (3) 22K 18.9 8.2* 25.1
(5) ∧ (4) 24K 17.3 7.3 23.9
(3) ∧ (4) 24K 18.4 8.4* 25.5*
(5) ∧ (4) ∧ (3) 30K 20.1 8.9* 27.2*

Table 2: Automatic translation evaluation on the
evaluation dataset of the ICD ontology (Size =
amount of selected sentences from the generic par-
allel corpus. bold results = best performance; *sta-
tistically significant compared to baseline)

when combining the n-gram overlap, the seman-
tic related words and infrequent n-gram recovery
methods. With this combination, we reduce the
amount of parallel sentences by 98% compared
to the generic corpus and significantly outperform
the baseline by 2.3 BLEU score points. These
two factors confirm the capability of the combined
approach of selecting only few ontology-specific
bilingual sentences (30,000) that allows the SMT
system to identify the correct translations in the
target ontology domain. This is due to the fact that
the three combined methods are quite complemen-
tary. In fact, the n-gram overlap method selects a
relatively large amount of bilingual sentences with
few words in common with the label, the related
words approach identifies bilingual sentences in
the ontology target domain, and the infrequent n-
gram recovery technique selects few bilingual sen-
tences with only specific n-grams in common with
the labels balancing the effect of the n-gram over-
lap method.

Combining In- and Out-Domain Data Con-
sidering the relatively small amount of parallel
data extracted with the sentence selecting meth-
ods for the SMT community, we evaluate dif-
ferent approaches that combine a large generic
translation model with domain-specific data. For
this purpose, we use the sentences selected by
the best approach ((5)∧(4)∧(3)) in the previous
experiments and combine them with the generic
parallel dataset. We evaluate the translation per-
formance when (i) concatenating the selected
domain-specific parallel dataset with the generic
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Dataset Type BLEU-2 BLEU-4 METEOR

Generic dataset 17.2 6.6 24.7
(5)∧(4)∧(3) sent. selec. 20.1 8.9* 27.2*

Data Concatenation (i) 18.1 6.8 24.1
Log-linear Models (ii) 18.9 8.1* 25.3
Fill-Up Model (iii) 17.7 7.0 24.7

(5)∧(4)∧(3) + IATE 19.8 9.0* 27.8*
(5)∧(4)∧(3) + DBpedia(1) 20.6 9.1* 27.3*
(5)∧(4)∧(3) + DBpedia(2) 21.0 9.6*3 28.2*3

Table 3: Evaluation of the ICD ontology eval-
uation dataset combining domain-specific with
generic parallel knowledge and lexical enhance-
ment of SMT using IATE and DBpedia (bold
results = best performance; *statistically signifi-
cant compared to baseline; 3statistically signifi-
cant compared to best sentence selection model)

parallel one, (ii) combining the generated transla-
tion models from the selected domain-specific par-
allel dataset and the generic corpus and (iii) apply-
ing the Fill-Up model to emphasise the domain-
specific data in a single translation model. The
translation performance of the combination meth-
ods are shown in Table 3. It is interesting to
notice that none of them benefits from the use
of the additional generic parallel data showing
translation performance smaller than the domain-
specific model. Although all methods outperform
the generic translation model, only the log-linear
approach, keeping in- and out-domain translation
models separated, shows significant improvement.
Comparing it to the combined sentence selec-
tion technique ((5)∧(4)∧(3)) does not show any
statistical significant differences between the ap-
proaches. We conclude that the generic corpus
is too large compared to the selected in-domain
corpus, nullifying the influence of the extracted
domain-specific parallel knowledge.

Lexical enhancement for SMT Since the out-
of-vocabulary problem can be only mitigated
with sentence selection, we accessed lexical re-
sources IATE and DBpedia to further improve
the translations of the medical labels. Based on
the word overlap between labels and entries in
IATE we extracted 11,641 English lexical entries
with its equivalent in German. The DBpedia(1)

approach, which disambiguates DBpedia entries
based on the (Wikipedia article) categories (Ar-
can et al., 2012), identified 7,911 English-German
expression for the targeted domain, while the ab-

stract based disambiguation approach, marked as
DBpedia(2) in Table 3 identified 3,791 bilingual
entries. The lexical enhanced models further im-
proved the translations of the medical labels (last
three rows in Table 3) due to the additional bilin-
gual information from the lexical resources, which
is missing in the standalone sentence selection
model. Comparing the ICD evaluation dataset
and the translations generated with the DBpedia(2)

lexical enhanced model we observed that more
than 80 labels benefit from the additional lexi-
cal knowledge, e.g. correcting the mistranslated
”adrenal gland” into ”Nebenniere”. The lexical
extraction and disambiguation of bilingual knowl-
edge based on the abstract of the article compared
to the article categories further improves the lex-
ical choice, helping SMT systems to improve the
translation of ontology labels.

5.2 Manual Evaluation of Translated Labels

Since ontologies store specific vocabulary about a
domain, this vocabulary is adapted to a concrete
language and culture community (Cimiano et al.,
2010). In order to investigate to what extent the
automatically generated translations differ from a
translator’s adapted point of view, we manually in-
spected the translations produced by the sentence
selection approaches described in Section 5.1.

While analysing the English and German part of
the ICD ontology gold standard we noticed signif-
icant differences in the translations of the medical
labels. As a result of the language and cultural
adaptation, many labels in the ICD ontology were
not always translated literally, i.e. parts of a la-
bel were semantically merged, omitted or new in-
formation was added while crossing the language
border. For example, the ICD label ”acute kid-
ney failure and chronic kidney disease” is stored
in the German part of the ontology as ”Nierenin-
suffizienz”.16 Although none of the translation
systems can generate the compounded medical
expression for German, the SMT system gener-
ated nevertheless an acceptable translation, i.e.
”akutes Nierenversagen und chronischer Nieren-
erkrankungen”.17 A more extreme example is the
English label ”slipping, tripping, stumbling and
falls”, in the German ICD ontology represented as

16Niereninsuffizienz←kidney insufficiency
17akutes←acute, Nierenversagen←kidney failure,

und←and, chronischer←chronic,
Nierenerkrankungen←kidney disease

715



”sonstige Stürze auf gleicher Ebene”.18 The lan-
guage and cultural adaptation is very active for this
example, where the whole English label is seman-
tically merged into the word ”Stürze”, meaning
”falls”. Additionally, the German part holds more
information within the label, i.e. ”auf gleicher
Ebene” (en. ”at the same level”), which is not
represented on the English side. Since the SMT
system will always try to translate every phrase
(word or word segments) into the target language,
an automatic translation evaluation cannot reflect
the overall SMT performance.

Further we detected a large error class caused by
compounding, a common linguistic feature of Ger-
man. Although the phrase ”heart diseases” with its
reference translation ”Herzkrankheiten” appears
frequent in the generic training dataset, the SMT
system prefers to translate it word by word into
”Herz Krankheiten”. 19 Similar observations were
made with ”upper arm” (German ”Oberarm”) with
the SMT word to word translation ”oberen Arm”.

Finally, we analysed the impact of the seman-
tically enriched sentence selection with related
words coming from Word2Vec compared to the
surface based sentence selection, e.g. preplex-
ity, infrequent n-gram recovery or n-gram overlap.
Since semantically enriched selection stored the
most relevant sentences, we observed the correct
translation of the label ”blood vessels” into ”Blut-
gefäße”. The generic and other surface based se-
lections translated the expression individually into
”Blut Schiffe”, where ”Schiffe” refers to the more
common English word ”ship”, but not to ’part
of the system transporting blood throughout our
body’. The last example illustrates further the se-
mantic mismatch between the training domain and
the test domain. Using the generic model, built
mainly out of European laws and parliament dis-
cussions (JRC-Acquis/Europarl) the word ”head”
inside the label ”injury of head” is wrongly trans-
lated into the word ”Leiter”, meaning ”leader” in
the legal domain. Nevertheless, the additional se-
mantic information prevents storing wrong paral-
lel sentences and guides the SMT to the correct
translation, i.e. ”Schädigung des Kopfes”.20

18sonstige←other, Stürze←falls, auf←on,
gleicher←same, Ebene←level

19Herz←heart, Krankheiten←diseases
20Schädigung←injury, des←of, Kopfes←head

6 Conclusion

In this paper we presented an approach to identify
the most relevant sentences from a large generic
parallel corpus, giving the possibility to translate
highly specific ontology labels without particular
in-domain parallel data. We enhanced furthermore
the translation system build on the in-domain par-
allel knowledge with additional lexical knowledge
accessing DBpedia. With the aim to better se-
lect relevant bilingual knowledge for SMT, we ex-
tend previous sentence and lexical selection tech-
niques with additional semantic knowledge. Our
proposed ontology-specific SMT system showed a
statistical significant improvement (up to 3 BLEU
points) of ontology label translation over the com-
pared translation approaches.

In future, we plan to integrate a larger diversity
of surface, semantic and linguistic information for
relevant sentence selection. Although the SMT
system is capable of translating several words into
a compound word, the small amount of the se-
lected sentences limits this capability. To improve
the ontology label translations, we therefore see
the need to focus more on the German compound
feature. Additionally we observed that more than
25% of the identified lexical knowledge consists
of multi-word-expressions, e.g. ”fatal familial in-
somnia”. For this reason, our ongoing work fo-
cuses on the alignment of nested knowledge inside
those expressions. To move further in this direc-
tion, we plan to focus on exploiting morphological
term variations taking advantage of the alternative
terms provided by DBpedia.
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Giménez, A., , Juan, A., Servan, C., Dymetman, M.,
and Mirkin, S. (2014). Comparison of Data Selec-
tion Techniques for the Translation of Video Lec-
tures. In Proc. of the Eleventh Biennial Conf. of the
Association for Machine Translation in the Ameri-
cas (AMTA-2014), Vancouver (Canada).

718



Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 719–729,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Automatic disambiguation of English puns

Tristan Miller and Iryna Gurevych
Ubiquitous Knowledge Processing Lab (UKP-TUDA)

Department of Computer Science, Technische Universität Darmstadt
https://www.ukp.tu-darmstadt.de/

Abstract

Traditional approaches to word sense dis-
ambiguation (WSD) rest on the assump-
tion that there exists a single, unambigu-
ous communicative intention underlying
every word in a document. However, writ-
ers sometimes intend for a word to be in-
terpreted as simultaneously carrying mul-
tiple distinct meanings. This deliberate
use of lexical ambiguity—i.e., punning—
is a particularly common source of humour.
In this paper we describe how traditional,
language-agnostic WSD approaches can be
adapted to “disambiguate” puns, or rather
to identify their double meanings. We eval-
uate several such approaches on a manually
sense-annotated collection of English puns
and observe performance exceeding that
of some knowledge-based and supervised
baselines.

1 Introduction

Word sense disambiguation, or WSD, is the task of
identifying a word’s meaning in context. No matter
whether it is performed by a human or a machine,
WSD usually rests on the assumption that there
is a single unambiguous communicative intention
underlying each word in the document.1 However,
there exists a class of language constructs known

1Under this assumption, lexical ambiguity arises due to
there being a plurality of words with the same surface form
but different meanings, and the task of the interpreter is to
select correctly among them. An alternative view is that each
word is a single lexical entry whose specific meaning is un-
derspecified until it is activated by the context (Ludlow, 1996).
In the case of systematically polysemous terms (i.e., words
that have several related senses shared in a systematic way by
a group of similar words), it may not be necessary to disam-
biguate them at all in order to interpret the communication
(Buitelaar, 2000). While there has been some research in mod-
elling intentional lexical-semantic underspecification (Jurgens,
2014), it is intended for closely related senses such as those of
systematically polysemous terms, not those of coarser-grained
homonyms which are the subject of this paper.

as paronomasia and syllepsis, or more generally as
puns, in which homonymic (i.e., coarse-grained)
lexical-semantic ambiguity is a deliberate effect of
the communication act. That is, the writer intends
for a certain word or other lexical item to be in-
terpreted as simultaneously carrying two or more
separate meanings, or alternatively for it to be un-
clear which meaning is the intended one. There are
a variety of motivations writers have for employing
such constructions, and in turn for why such uses
are worthy of scholarly investigation.

Perhaps surprisingly, this sort of intentional lex-
ical ambiguity has attracted little attention in the
fields of computational linguistics and natural lan-
guage processing. What little research has been
done is confined largely to computational mecha-
nisms for pun generation (in the context of natu-
ral language generation for computational humour)
and to computational analysis of phonological prop-
erties of puns. A fundamental problem which has
not yet been as widely studied is the automatic
detection and identification of intentional lexical
ambiguity—that is, given a text, does it contain
any lexical items which are used in a deliberately
ambiguous manner, and if so, what are the intended
meanings?

We consider these to be important research ques-
tions with a number of real-world applications.
For instance, puns are particularly common in ad-
vertising, where they are used not only to create
humour but also to induce in the audience a va-
lenced attitude toward the target (Valitutti et al.,
2008). Recognizing instances of such lexical am-
biguity and understanding their affective connota-
tions would be of benefit to systems performing
sentiment analysis on persuasive texts. Wordplay
is also a perennial topic of scholarship in literary
criticism and analysis. To give just one example,
puns are one of the most intensively studied as-
pects of Shakespeare’s rhetoric, and laborious man-
ual counts have shown their frequency in certain
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of his plays to range from 17 to 85 instances per
thousand lines (Keller, 2009). It is not hard to
image how computer-assisted detection, classifi-
cation, and analysis of puns could help scholars
in the digital humanities. Finally, computational
pun detection and understanding hold tremendous
potential for machine-assisted translation. Some of
the most widely disseminated and translated popu-
lar discourses—particularly television shows and
movies—feature puns and other forms of wordplay
as a recurrent and expected feature (Schröter, 2005).
These pose particular challenges for translators,
who need not only to recognize and comprehend
each instance of humour-provoking ambiguity, but
also to select and implement an appropriate trans-
lation strategy.2 NLP systems could assist transla-
tors in flagging intentionally ambiguous words for
special attention, and where they are not directly
translatable (as is usually the case), the systems
may be able to propose ambiguity-preserving alter-
natives which best match the original pun’s double
meaning.

In the present work, we discuss the adaptation of
automatic word sense disambiguation techniques
to intentionally ambiguous text and evaluate these
adaptations in a controlled setting. We focus on
humorous puns, as these are by far the most com-
monly encountered and more readily available in
(and extractable from) existing text corpora.

The remainder of this paper is structured as fol-
lows: In the following section we give a brief intro-
duction to puns, WSD, and related previous work
on computational detection and comprehension of
humour. In §3 we describe the data set produced
for our experiments. In §§4 and 5 we describe how
disambiguation algorithms, evaluation metrics, and
baselines from traditional WSD can be adapted to
the task of pun identification, and in §6 we report
and discuss the performance of our adapted sys-
tems. Finally, we conclude in §7 with a review of
our research contributions and an outline of our
plans for future work.

2 Background

2.1 Puns

Punning is a form of wordplay where a word is
used in such a way as to evoke several indepen-
dent meanings simultaneously. Humorous and non-

2The problem is compounded in audio-visual media such
as films; often one or both of the pun’s meanings appears in
the visual channel, and thus cannot be freely substituted.

humorous puns have been the subject of extensive
study in the humanities and social sciences, which
has led to insights into the nature of language-based
humour and wordplay, including their role in com-
merce, entertainment, and health care; how they are
processed in the brain; and how they vary over time
and across cultures (Monnot, 1982; Culler, 1988;
Lagerwerf, 2002; Bell et al., 2011; Bekinschtein et
al., 2011). Study of literary puns imparts a greater
understanding of the cultural or historical context
in which the literature was produced, which is of-
ten necessary to properly interpret and translate it
(Delabastita, 1997).

Puns can be classified in various ways (Attardo,
1994), though from the point of view of our par-
ticular natural language processing application the
most important distinction is between homographic
and homophonic puns. A homographic pun ex-
ploits distinct meanings of the same written word,
and a homophonic pun exploits distinct meanings
of the same spoken word. Puns can be homo-
graphic, homophonic, both, or neither, as the fol-
lowing examples illustrate:

(1) A lumberjack’s world revolves on its axes.

(2) She fell through the window but felt no
pane.

(3) A political prisoner is one who stands be-
hind her convictions.

(4) The sign at the nudist camp read, “Clothed
until April.”

In (1), the pun on axes is homographic but not
homophonic, since the two meanings (“more than
one axe” and “more than one axis”) share the same
spelling but have different pronunciations. In (2),
the pun on pane (“sheet of glass”) is homophonic
but not homographic, since the word for the sec-
ondary meaning (“feeling of injury”) is properly
spelled pain but pronounced the same. The pun on
convictions (“strongly held beliefs” and “findings
of criminal guilt”) in (3) is both homographic and
homophonic. Finally, the pun on clothed in (4) is
neither homographic nor homophonic, since the
word for the secondary meaning, closed, differs
in both spelling and pronunciation. Such puns are
commonly known as imperfect puns.

Other characteristics of puns important for our
work include whether they involve compounds,
multiword expressions, or proper names, and
whether the pun’s multiple meanings involve mul-
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tiple parts of speech. We elaborate on the signifi-
cance of these characteristics in the next section.

2.2 Word sense disambiguation

Word sense disambiguation (WSD) is the task of
determining which sense of a polysemous term is
the one intended when that term is used in a given
communicative act. Besides the target term itself,
a WSD system generally requires two inputs: the
context (i.e., the running text containing the target),
and a sense inventory which specifies all possible
senses of the target.

Approaches to WSD can be categorized accord-
ing to the type of knowledge sources used to help
discriminate senses. Knowledge-based approaches
restrict themselves to using pre-existing lexical-
semantic resources (LSRs), or such additional infor-
mation as can be automatically extracted or mined
from raw text corpora. Supervised approaches, on
the other hand, use manually sense-annotated cor-
pora as training data for a machine learning sys-
tem, or as seed data for a bootstrapping process.
Supervised WSD systems generally outperform
their knowledge-based counterparts, though this
comes at the considerable expense of having hu-
man annotators manually disambiguate hundreds
or thousands of example sentences. Moreover, su-
pervised approaches tend to be such that they can
disambiguate only those words for which they have
seen sufficient training examples to cover all senses.
That is, most of them cannot disambiguate words
which do not occur in the training data, nor can
they select the correct sense of a known word if
that sense was never observed in the training data.

Regardless of the approach, all WSD systems
work by extracting contextual information for the
target word and comparing it against the sense
information stored for that word. A seminal
knowledge-based example is the Lesk algorithm
(Lesk, 1986) which disambiguates a pair of tar-
get terms in context by comparing their respective
dictionary definitions and selecting the two with
the greatest number of words in common. Though
simple, the Lesk algorithm performs surprisingly
well, and has frequently served as the basis of more
sophisticated approaches. In recent years, Lesk
variants in which the contexts and definitions are
supplemented with entries from a distributional the-
saurus (Lin, 1998) have achieved state-of-the-art
performance for knowledge-based systems on stan-
dard data sets (Miller et al., 2012; Basile et al.,

2014).
In traditional word sense disambiguation, the

part of speech and lemma of the target word are
usually known a priori, or can be determined with
high accuracy using off-the-shelf natural language
processing tools. The pool of candidate senses can
therefore be restricted to those whose lexicaliza-
tions exactly match the target lemma and part of
speech. No such help is available for puns, at least
not in the general case. Take the following two
examples:

(5) Tom moped.

(6) “I want a scooter,” Tom moped.

In the first of these sentences, the word moped
is unambiguously a verb with the lemma mope,
and would be correctly recognized as such by any
automatic lemmatizer and part-of-speech tagger.
The moped of the second example is a pun, one of
whose meanings is the same inflected form of the
verb mope (“to sulk”) and the other of which is the
noun moped (“motorized scooter”). For such cases
an automated pun identifier would therefore need
to account for all possible lemmas for all possible
parts of speech of the target word. The situation
becomes even more onerous for heterographic and
imperfect puns, which may require the use of pro-
nunciation dictionaries, and application of phono-
logical theories of punning, in order to recover the
lemmas (Hempelmann, 2003).

As our research interests are in lexical semantics
rather than phonology, we focus on puns which are
homographic and monolexemic. This allows us to
investigate the problem of pun identification in as
controlled a setting as possible.

2.3 Previous work

2.3.1 Computational humour
There is some previous research on computational
detection and comprehension of humour, though by
and large it is not concerned specifically with puns;
those studies which do analyze puns tend to have
a phonological or syntactic rather than semantic
bent. In this subsection we briefly review some
prior work which is relevant to ours.

Yokogawa (2002) describes a system for detect-
ing the presence of puns in Japanese text. However,
this work is concerned only with puns which are
both imperfect and ungrammatical, relying on syn-
tactic cues rather than the lexical-semantic informa-
tion we propose to use. Taylor and Mazlack (2004)
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describe an n-gram–based approach for recogniz-
ing when imperfect puns are used for humorous
effect in a certain narrow class of English knock-
knock jokes. Their focus on imperfect puns and
their use of a fixed syntactic context makes their
approach largely inapplicable to perfect puns in
running text. Mihalcea and Strapparava (2005)
treat humour recognition as a classification task,
employing various machine learning techniques
on humour-specific stylistic features such as al-
literation and antonymy. Of particular interest is
their follow-up analysis (Mihalcea and Strapparava,
2006), where they specifically point to their sys-
tem’s failure to resolve lexical-semantic ambiguity
as a stumbling block to better accuracy, and specu-
late that deeper semantic analysis of the text, such
as via word sense disambiguation or domain disam-
biguation, could aid in the detection of humorous
incongruity and opposition.

The previous work which is perhaps most rele-
vant to ours is that of Mihalcea et al. (2010). They
build a data set consisting of 150 joke set-ups, each
of which is followed by four possible “punchlines”,
only one of which is actually humorous (but not
necessarily due to a pun). They then compare
the set-ups against the punchlines using various
models of incongruity detection, including many
exploiting knowledge-based semantic relatedness
such as Lesk. The Lesk model had an accuracy
of 56%, which is lower than that of a naı̈ve pol-
ysemy model which simply selects the punchline
with the highest mean polysemy (66%) and even
of a random-choice baseline (62%). However, it
should be stressed here that the Lesk model did not
directly account for the possibility that any given
word might be ambiguous. Rather, for every word
in the setup, the Lesk measure was used to select a
word in the punchline such that the lexical overlap
between each one of their possible definitions was
maximized. The overlap scores for all word pairs
were then averaged, and the punchline with the low-
est average score selected as the most humorous.

2.3.2 Corpora
There are a number of English-language corpora
of intentional lexical ambiguity which have been
used in past work, usually in linguistics or the so-
cial sciences. In their work on computer-generated
humour, Lessard et al. (2002) use a corpus of 374
“Tom Swifty” puns taken from the Internet, plus
a well-balanced corpus of 50 humorous and non-
humorous lexical ambiguities generated program-

matically (Venour, 1999). Hong and Ong (2009)
also study humour in natural language generation,
using a smaller data set of 27 punning riddles de-
rived from a mix of natural and artificial sources.
In their study of wordplay in religious advertis-
ing, Bell et al. (2011) compile a corpus of 373
puns taken from church marquees and literature,
and compare it against a general corpus of 1515
puns drawn from Internet websites and a special-
ized dictionary. Zwicky and Zwicky (1986) con-
duct a phonological analysis on a corpus of several
thousand puns, some of which they collected them-
selves from advertisements and catalogues, and the
remainder of which were taken from previously
published collections. Two studies on cognitive
strategies used by second language learners (Ka-
plan and Lucas, 2001; Lucas, 2004) used a data set
of 58 jokes compiled from newspaper comics, 32
of which rely on lexical ambiguity. Bucaria (2004)
conducts a linguistic analysis of a set of 135 hu-
morous newspaper headlines, about half of which
exploit lexical ambiguity.

Such data sets—particularly the larger ones—
provided us good evidence that intentionally lexical
ambiguous exemplars exist in sufficient numbers to
make a rigorous evaluation of our task feasible. Un-
fortunately, none of the above-mentioned corpora
have been published in full, and moreover many of
them contain (sometimes exclusively) the sort of
imperfect or otherwise heterographic puns which
we mean to exclude from consideration. This has
motivated us to produce our own corpus of puns,
the construction and analysis of which is described
in the following section.

3 Data set

As in traditional WSD, a prerequisite for our re-
search is a corpus of examples, where one or more
human annotators have already identified the am-
biguous words and marked up their various mean-
ings with reference to a given sense inventory. Such
a corpus is sufficient for evaluating what we term
pun identification or pun disambiguation—that is,
identifying the senses of a term known a priori to
be a pun.

3.1 Construction

Though several prior studies have produced corpora
of puns, none of them are systematically sense-
annotated. We therefore compiled our own corpus
by pooling together some of the aforementioned
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corpora, the user-submitted puns from the Pun of
the Day website,3 and private collections provided
to us by some professional humorists. This raw
collection of 7750 one-liners was then filtered by
trained human annotators to those instances meet-
ing the following four criteria:

One pun per instance: Of all the lexical units in
the instance, one and only one may be a pun.
(This criterion simplifies the task detecting the
presence and location of puns in a text, a clas-
sification task which we intend to investigate
in future work.)

One content word per pun: The lexical unit that
forms the pun must consist of, or contain, only
a single content word (i.e., a noun, verb, adjec-
tive, or adverb), excepting adverbial particles
of phrasal verbs. This criterion is important
because, in our observations, it is often only
one word which carries ambiguity in puns on
compounds and multi-word expressions. Ac-
cepting lexical units containing more than one
content word would have required our annota-
tors to laboriously partition the pun into (pos-
sibly overlapping) sense-bearing units and to
assign sense sets to each of them, inflating the
complexity of the annotation task to unaccept-
able levels.

Two meanings per pun: The pun must have ex-
actly two distinct meanings. Though many
sources state that puns have only two senses
(Redfern, 1984; Attardo, 1994), our annota-
tors identified a handful of corpus examples
where the pun could plausibly be analyzed as
carrying three distinct meanings. To simplify
our manual annotation procedure and our eval-
uation metrics we excluded these rare outliers.

Weak homography: The lexical units corre-
sponding to the two distinct meanings must be
spelled exactly the same way, except that parti-
cles and inflections may be disregarded. This
somewhat softer definition of homography al-
lows us to admit a good many morphologi-
cally interesting cases which were nonetheless
readily recognized by our human annotators.

The filtering reduced the number of instances
to 1652, whose puns two human judges anno-
tated with sense keys from WordNet 3.1 (Fellbaum,

3http://www.punoftheday.com/

1998). Using an online annotation tool specially
constructed for this study, the annotators applied
two sets of sense keys to each instance, one for each
of the two meanings of the pun. For cases where the
distinction between WordNet’s fine-grained senses
was irrelevant, the annotators had the option of
labelling the meaning with more than one sense
key. Annotators also had the option of marking a
meaning as unassignable if WordNet had no cor-
responding sense key. Further details of our anno-
tation tool and its use can be found in Miller and
Turković (2015).

3.2 Analysis
Our judges agreed on which word was the pun
in 1634 out of 1652 cases, a raw agreement of
98.91%. For the agreed cases, we used DKPro
Agreement (Meyer et al., 2014) to compute Krip-
pendorff’s α (Krippendorff, 1980) for the sense
annotations. This is a chance-correcting metric
of inter-annotator agreement ranging in (−1,1],
where 1 indicates perfect agreement, −1 perfect
disagreement, and 0 the expected score for ran-
dom labelling. Our distance metric for α is a
straightforward adaptation of the MASI set compar-
ison metric (Passonneau, 2006). Whereas standard
MASI, dM(A,B), compares two annotation sets A
and B, our annotations take the form of unordered
pairs of sets {A1,A2} and {B1,B2}. We therefore
find the mapping between elements of the two
pairs that gives the lowest total distance, and halve
it: dM′({A1,A2} ,{B1,B2}) = 1

2 min(dM(A1,B1) +
dM(A2,B2),dM(A1,B2) + dM(A2,B1)). With this
method we observe a Krippendorff’s α of 0.777;
this is only slightly below the 0.8 threshold recom-
mended by Krippendorff, and far higher than what
has been reported in other sense annotation studies
(Passonneau et al., 2006; Jurgens and Klapaftis,
2013).

Where possible, we resolved sense annotation
disagreements automatically by taking the intersec-
tion of corresponding sense sets. Where the an-
notators’ sense sets were disjoint or contradictory
(including the cases where the annotators disagreed
on the pun word), we had a human adjudicator at-
tempt to resolve the disagreement in favour of one
annotator or the other. This left us with 1607 in-
stances,4 of which we retained only the 1298 that
had successful (i.e., not marked as unassignable)

4Pending clearance of the distribution rights, we will make
some or all of our annotated data set available on our website
at https://www.ukp.tu-darmstadt.de/data/.
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annotations for the present study. The contexts in
this data set range in length from 3 to 44 words,
with an average length of 11.9. The 2596 meanings
carry sense key annotations corresponding to any-
where from one to seven WordNet synsets, with
an average of 1.08. As expected, then, WordNet’s
sense granularity proved to be somewhat finer than
necessary to characterize the meanings in the data
set, though only marginally so.

Of the 2596 individual meanings, 1303 (50.2%)
were annotated with noun senses only, 877 (33.8%)
with verb senses only, 340 (13.1%) with adjective
senses only, and 41 (1.6%) with adverb senses only.
Only 35 individual meanings (1.3%) carry sense an-
notations corresponding to multiple parts of speech.
However, for 297 (22.9%) of our puns, the two
meanings had different parts of speech. Similarly,
sense annotations for each individual meaning cor-
respond to anywhere from one to four different
lemmas, with a mean of 1.25. These observations
confirm the concerns we raised in §2.2 that pun
disambiguators, unlike traditional WSD systems,
cannot always rely on the output of a lemmatizer
or part-of-speech tagger to narrow down the list of
sense candidates.

4 Pun disambiguation

It has long been observed that gloss overlap–based
WSD systems, such as those based on the Lesk
algorithm, fail to distinguish between candidate
senses when their definitions have a similar over-
lap with the target word’s context. In some cases
this is because the overlap is negligible or nonexis-
tent; this is known as the lexical gap problem, and
various solutions to it are discussed in (inter alia)
Miller et al. (2012). In other cases, the indecision
arises because the definitions provided by the sense
inventory are too fine-grained; this problem has
been addressed, with varying degrees of success,
through sense clustering or coarsening techniques
(a short but reasonably comprehensive survey of
which appears in Matuschek et al. (2014)). A third
condition under which senses cannot be discrimi-
nated is when the target word is used in an under-
specified or intentionally ambiguous manner. We
hold that for this third scenario a disambiguator’s
inability to discriminate senses should not be seen
as a failure condition, but rather as a limitation
of the WSD task as traditionally defined. By re-
framing the task so as to permit the assignment
of multiple senses (or groups of senses), we can

allow disambiguation systems to sense-annotate in-
tentionally ambiguous constructions such as puns.

Many approaches to WSD, including Lesk-like
algorithms, involve computing some score for all
possible senses of a target word, and then select-
ing the single highest-scoring one as the “correct”
sense. The most straightforward modification of
these techniques to pun disambiguation, then, is
to have the systems select the two top-scoring
senses, one for each meaning of the pun. Accord-
ingly we applied this modification to the following
knowledge-based WSD algorithms:

Simplified Lesk (Kilgarriff and Rosenzweig,
2000) disambiguates a target word by examin-
ing the definitions5 for each of its candidate
senses and selecting the single sense—or in
our case, the two senses—which have the
greatest number of words in common with
the context. As we previously demonstrated
that puns often transcend part of speech, our
pool of candidate senses is constructed as
follows: we apply a morphological analyzer
to recover all possible lemmas of the target
word without respect to part of speech, and
for each lemma we add all its senses to the
pool.

Simplified extended Lesk (Ponzetto and Navigli,
2010) is similar to simplified Lesk, except that
the definition for each sense is concatenated
with those of neighbouring senses in Word-
Net’s semantic network.

Simplified lexically expanded Lesk (Miller et
al., 2012) is also based on simplified Lesk,
with the extension that every word in the
context and sense definitions is expanded with
up to 100 entries from a large distributional
thesaurus.

The above algorithms fail to make a sense as-
signment when more than two senses are tied for
the highest lexical overlap, or when there is a single
highest-scoring sense but multiple senses are tied
for the second-highest overlap. We therefore de-
vised two pun-specific tie-breaking strategies. The
first is motivated by the informal observation that,
though the two meanings of a pun may have dif-
ferent parts of speech, at least one of the parts

5In our implementation, the sense definitions are formed
by concatenating the synonyms, gloss, and example sentences
provided by WordNet.
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of speech is grammatical in the context of the
sentence, and so would probably be the one as-
signed by a stochastic or rule-based POS tagger.
Our “POS” tie-breaker therefore preferentially se-
lects the best sense, or pair of senses, whose POS
matches the one applied to the target by the Stan-
ford POS tagger (Toutanova et al., 2003). For our
second tie-breaking strategy, we posit that since
humour derives from the resolution of semantic in-
congruity (Raskin, 1985; Attardo, 1994), puns are
more likely to exploit coarse-grained homonymy
than than fine-grained systematic polysemy. Thus,
following Matuschek et al. (2014), we induced a
clustering of WordNet senses by aligning WordNet
to the more coarse-grained OmegaWiki LSR.6 Our
“cluster” fallback works the same as the “POS” one,
with the addition that any remaining ties among
senses with the second-highest overlap are resolved
by preferentially selecting those which are not in
the same induced cluster as, and which in Word-
Net’s semantic network are at least three edges
distant from, the sense with the highest overlap.

5 Evaluation

5.1 Scoring
In traditional word sense disambiguation, in vitro
evaluations are conducted by comparing the senses
assigned by the disambiguation system to the gold-
standard senses assigned by the human annotators.
For the case that the system and gold-standard as-
signments consist of a single sense each, the exact-
match criterion is used: the system receives a score
of 1 if it chose the sense specified by the gold stan-
dard, and 0 otherwise. Where the system selects
a single sense for an instance for which there is
more than one correct gold standard sense, the mul-
tiple tags are interpreted disjunctively—that is, the
system receives a score of 1 if it chose any one of
the gold-standard senses, and 0 otherwise. Overall
performance is reported in terms of coverage (the
number of targets for which a sense assignment
was attempted), precision (the sum of scores di-
vided by the number of attempted targets), recall
(the sum of scores divided by the total number of
targets in the data set), and F1 (the harmonic mean
of precision and recall) (Palmer et al., 2006).

The traditional approach to scoring individual
targets is not usable as-is for pun disambiguation,
because each pun carries two disjoint but equally
valid sets of sense annotations. Instead, since our

6http://www.omegawiki.org/

systems assign exactly one sense to each of the
pun’s two sense sets, we count this as a match
(scoring 1) only if each chosen sense can be found
in one of the gold-standard sense sets, and no two
gold-standard sense sets contain the same chosen
sense. (As with traditional WSD scoring, various
approaches could be used to assign credit for par-
tially correct assignments, though we leave explo-
ration of these to future work.)

5.2 Baselines

System performance in WSD is normally inter-
preted with reference to one or more baselines. To
our knowledge, ours is the very first study of auto-
matic pun disambiguation on any scale, so at this
point there are no previous systems against which
to compare our results. However, traditional WSD
systems are often compared with two naı̈ve base-
lines (Gale et al., 1992) which can be adapted for
our purposes.

The first of these naı̈ve baselines is to randomly
select from among the candidate senses. In tradi-
tional WSD, the score for a random disambiguator
which selects a single sense for a given target t is
the number of gold-standard senses divided by the
number of candidate senses: score(t) = g(t)÷δ (t).
In our pun disambiguation task, however, a ran-
dom disambiguator must select two senses—one
for each of the sense sets g1(t) and g2(t)—and
these senses must be distinct. There are

(δ (t)
2

)
pos-

sible ways of selecting two unique senses, so the
random score for any given instance is score(t) =
g1(t) ·g2(t)÷

(δ (t)
2

)
.

The second naı̈ve baseline for WSD, known as
most frequent sense (MFS), is a supervised base-
line, meaning that it depends on a manually sense-
annotated background corpus. As its name sug-
gests, it involves always selecting from the candi-
dates that sense which has the highest frequency in
the corpus. As with our test algorithms, we adapt
this technique to pun disambiguation by having
it select the two most frequent senses (according
to WordNet’s built-in sense frequency counts). In
traditional WSD, MFS baselines are notoriously
difficult to beat, even for supervised disambigua-
tion systems, and since they rely on expensive
sense-tagged data they are not normally considered
a benchmark for the performance of knowledge-
based disambiguators.
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system C P R F1

SL 35.52 19.74 7.01 10.35
SEL 42.45 19.96 8.47 11.90
SLEL 98.69 13.43 13.25 13.34
SEL+POS 59.94 21.21 12.71 15.90
SEL+cluster 68.10 20.70 14.10 16.77

random 100.00 9.31 9.31 9.31
MFS 100.00 13.25 13.25 13.25

Table 1: Coverage, precision, recall, and F1 for
various pun diasmbiguation algorithms.

6 Results

Using the freely available DKPro WSD framework
(Miller et al., 2013), we implemented our pun dis-
ambiguation algorithms, ran them on our full data
set, and compared their annotations against those
of our manually produced gold standard. Table 1
shows the coverage, precision, recall, and F1 for
simplified Lesk (SL), simplified extended Lesk
(SEL), simplified lexically expanded Lesk (SLEL),
and the random and most frequent sense baselines;
for SEL we also report results for each of our pun-
specific tie-breaking strategies. All metrics are
reported as percentages, and the highest score for
each metric (excluding baseline coverage, which is
always 100%) is highlighted in boldface.

Accuracy for the random baseline annotator was
about 9%; for the MFS baseline it was just over
13%. These figures are considerably lower than
what is typically seen with traditional WSD cor-
pora, where random baselines achieve accuracies of
30 to 60%, and MFS baselines 65 to 80% (Palmer
et al., 2001; Snyder and Palmer, 2004; Navigli et
al., 2007). Our baselines’ low figures are the re-
sult of them having to consider senses from every
possible lemmatization and part of speech of the
target, and underscore the difficulty of our task.

The simplest knowledge-based algorithm we
tested, simplified Lesk, was over twice as accu-
rate as the random baseline in terms of precision
(19.74%), but predictably had very low cover-
age (35.52%), leading in turn to very low recall
(7.01%). Manual examination of the unassigned
instances confirmed that failure was usually due
to the lack of any lexical overlap whatsoever be-
tween the context and definitions. The use of a
tie-breaking strategy would not help much here,
though some way of bridging the lexical gap would.
This is, in fact, the strategy employed by the ex-

tended and lexically expanded variants of simpli-
fied Lesk, and we observed that both were success-
ful to some degree. Simplified lexically expanded
Lesk almost completely closed the lexical gap, with
nearly complete coverage (98.69%), though this
came at the expense of a large drop in precision (to
13.43%). Given the near-total coverage, use of a tie-
breaking strategy here would have no appreciable
effect on the accuracy.

Simplified extended Lesk, on the other hand,
saw significant increases in coverage, precision,
and recall (to 42.45%, 19.96%, and 8.47%, respec-
tively). Its recall is statistically indistinguishable7

from the random baseline, though spot-checks of
its unassigned instances show that the problem is
very frequently not the lexical gap but rather mul-
tiple senses tied for the greatest overlap with the
context. We therefore tested our two pun-specific
backoff strategies to break this system’s ties. Us-
ing the “POS” strategy increased coverage by 41%,
relatively speaking, and gave us our highest ob-
served precision of 21.21%. Our “cluster” strategy
effected a relative increase in coverage of over 60%,
and gave us the best recall (14.10%). This strategy
also had the best tradeoff between precision and
recall, with an F1 of 16.77%.

Significance testing shows the recall scores for
SLEL, SEL+POS, and SEL+cluster to be signifi-
cantly better than the random baseline, and statisti-
cally indistinguishable from that of MFS. This is
excellent news, especially in light of the fact that
supervised approaches (even baselines like MFS)
usually outperform their knowledge-based counter-
parts. Though the three knowledge-based systems
are not statistically distinguishable from each other
in terms of recall, they do show a statistically sig-
nificant improvement over SL and SEL, and the
two implementing pun-specific tie-breaking strate-
gies were markedly more accurate than SLEL for
those targets where they attempted an assignment.
These two systems would therefore be preferable
for applications where precision is more important
than recall.

We also examined the results of our gener-
ally best-performing system, SEL+cluster, to see
whether there was any relationship with the targets’
part of speech. We filtered the results according to
whether both gold-standard meanings of the pun
contain senses for nouns only, verbs only, adjec-

7All significance statements in this section are based on
McNemar’s test at a confidence level of 5%.
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POS C P R Rrand

noun 66.60 20.89 13.91 10.44
verb 65.61 14.54 9.54 5.12
adj. 68.87 39.73 27.36 16.84
adv. 100.00 75.00 75.00 46.67

pure 66.77 21.44 14.31 9.56
mult. 72.58 18.43 13.38 12.18

Table 2: Coverage, precision, and recall for
SEL+cluster, and random baseline recall, accord-
ing to part of speech.

tives only, or adverbs only; these amounted to 539,
346, 106, and 8 instances, respectively. These re-
sults are shown in Table 2. Also shown there is a
row which aggregates the 999 targets with “pure”
POS, and another for the remaining 608 instances
(“mult.”), where one or both of the two mean-
ings contain senses for multiple parts of speech,
or where the two meanings have different parts of
speech. The last column of each row shows the
recall of the random baseline for comparison.

Accuracy was lowest on the verbs, which had the
highest candidate polysemy (21.6) and are known
to be particularly difficult to disambiguate even in
traditional WSD. Still, as with all the other sin-
gle parts of speech, performance of SEL+cluster
exceeded the random baseline. While recall was
lower on targets with mixed POS than those with
pure POS, coverage was significantly higher. Nor-
mally such a disparity could be attributed to a dif-
ference in polysemy: Lesk-like systems are more
likely to attempt a sense assignment for highly pol-
ysemous targets, since there is a greater likelihood
of one of the candidate definitions matching the
context, though the probability of the assignment
being correct is reduced. In this case, however,
the multi-POS targets actually had lower average
polysemy than the single-POS ones (13.2 vs. 15.8).

7 Conclusion

In this paper we have introduced the novel task of
pun disambiguation and have proposed and evalu-
ated several computational approaches for it. The
major contributions of this work are as follows:
First, we have produced a new data set consisting
of manually sense-annotated homographic puns.
The data set is large enough, and the manual an-
notations reliable enough, for a principled eval-
uation of automatic pun disambiguation systems.

Second, we have shown how evaluation metrics,
baselines, and disambiguation algorithms from tra-
ditional WSD can be adapted to the task of pun
disambiguation, and we have tested these adapta-
tions in a controlled experiment. The results show
pun disambiguation to be a particularly challeng-
ing task for NLP, with baseline results far below
what is commonly seen in traditional WSD. We
showed that knowledge-based disambiguation al-
gorithms naı̈vely adapted from traditional WSD
perform poorly, but that extending them with strate-
gies that rely on pun-specific features brings about
dramatic improvements in accuracy: their recall be-
comes comparable to that of a supervised baseline,
and their precision greatly exceeds it.

There are a number of avenues we intend to ex-
plore in future work. First, we would like to try
adapting and evaluating some additional WSD al-
gorithms for use with puns. Though our data set is
probably too small to use with machine learning–
based approaches, we are particularly interested
in testing knowledge-based disambiguators which
rely on measures of graph connectivity rather than
gloss overlaps. Second, we would like to investi-
gate alternative tie-breaking strategies, such as the
domain similarity measures used by Mihalcea et
al. (2010). Finally, whereas in this paper we have
treated only the task of sense disambiguation for
the case where a word is known a priori to be a
pun, we are interested in exploring the requisite
problem of pun detection, where the object is to
determine whether or not a given context contains
a pun, and more precisely whether any given word
in a context is a pun.
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the automatic detection and identification of English
puns. European Journal of Humour Research. To
appear.

Tristan Miller, Chris Biemann, Torsten Zesch, and Iryna
Gurevych. 2012. Using distributional similarity for
lexical expansion in knowledge-based word sense
disambiguation. In Proceedings of the 24th Inter-
national Conference on Computational Linguistics
(COLING 2012), pages 1781–1796, December.

Tristan Miller, Nicolai Erbs, Hans-Peter Zorn, Torsten
Zesch, and Iryna Gurevych. 2013. DKPro WSD: A
generalized UIMA-based framework for word sense
disambiguation. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (System Demonstrations) (ACL 2013), pages
37–42, August.

Michel Monnot. 1982. Puns in advertising: Ambiguity
as verbal aggression. Maledicta, 6:7–20.

Roberto Navigli, Kenneth C. Litkowski, and Orin Har-
graves. 2007. SemEval-2007 Task 07: Coarse-
grained English All-words Task. In Proceedings
of the 4th International Workshop on Semantic Eval-
uations (SemEval-2007), pages 30–35, June.

Martha Palmer, Christiane Fellbaum, Scott Cotton, Lau-
ren Delfs, and Hoa Trang Dang. 2001. English tasks:
All-words and verb lexical sample. In Proceedings
of Senseval-2: 2nd International Workshop on Eval-
uating Word Sense Disambiguation Systems, pages
21–24, July.

Martha Palmer, Hwee Tou Ng, and Hoa Trang Dang.
2006. Evaluation of WSD systems. In Eneko Agirre
and Philip Edmonds, editors, Word Sense Disam-
biguation: Algorithms and Applications, volume 33
of Text, Speech, and Language Technology. Springer.

Rebecca J. Passonneau, Nizar Habash, and Owen Ram-
bow. 2006. Inter-annotator agreement on a multilin-
gual semantic annotation task. In Proceedings of the

5th International Conference on Language Resources
and Evaluations (LREC 2006), pages 1951–1956.

Rebecca J. Passonneau. 2006. Measuring agreement on
set-valued items (MASI) for semantic and pragmatic
annotation. In Proceedings of the 5th International
Conference on Language Resources and Evaluations
(LREC 2006), pages 831–836.

Simone Paolo Ponzetto and Roberto Navigli. 2010.
Knowledge-rich word sense disambiguation rivaling
supervised systems. In Proceedings of the 48th An-
nual Meeting of the Association for Computational
Linguistics (ACL 2010), pages 1522–1531.

Vitor Raskin. 1985. Semantic Mechanisms of Humor.
D. Reidel, Dordrecht, the Netherlands.

Walter Redfern. 1984. Puns. Basil Blackwell, Oxford.
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Abstract

Meaning of a word varies from one do-
main to another. Despite this impor-
tant domain dependence in word seman-
tics, existing word representation learning
methods are bound to a single domain.
Given a pair of source-target domains,
we propose an unsupervised method for
learning domain-specific word representa-
tions that accurately capture the domain-
specific aspects of word semantics. First,
we select a subset of frequent words that
occur in both domains as pivots. Next,
we optimize an objective function that
enforces two constraints: (a) for both
source and target domain documents, piv-
ots that appear in a document must accu-
rately predict the co-occurring non-pivots,
and (b) word representations learnt for
pivots must be similar in the two do-
mains. Moreover, we propose a method
to perform domain adaptation using the
learnt word representations. Our proposed
method significantly outperforms compet-
itive baselines including the state-of-the-
art domain-insensitive word representa-
tions, and reports best sentiment classifi-
cation accuracies for all domain-pairs in a
benchmark dataset.

1 Introduction

Learning semantic representations for words is a
fundamental task in NLP that is required in nu-
merous higher-level NLP applications (Collobert
et al., 2011). Distributed word representations
have gained much popularity lately because of
their accuracy as semantic representations for
words (Mikolov et al., 2013a; Pennington et al.,
2014). However, the meaning of a word often
varies from one domain to another. For exam-

ple, the phrase lightweight is often used in a posi-
tive sentiment in the portable electronics domain
because a lightweight device is easier to carry
around, which is a positive attribute for a portable
electronic device. However, the same phrase has a
negative sentiment assocition in the movie domain
because movies that do not invoke deep thoughts
in viewers are considered to be lightweight (Bol-
legala et al., 2014). However, existing word rep-
resentation learning methods are agnostic to such
domain-specific semantic variations of words, and
capture semantics of words only within a single
domain. To overcome this problem and capture
domain-specific semantic orientations of words,
we propose a method that learns separate dis-
tributed representations for each domain in which
a word occurs.

Despite the successful applications of dis-
tributed word representation learning meth-
ods (Pennington et al., 2014; Collobert et al.,
2011; Mikolov et al., 2013a) most existing ap-
proaches are limited to learning only a single
representation for a given word (Reisinger and
Mooney, 2010). Although there have been some
work on learning multiple prototype representa-
tions (Huang et al., 2012; Neelakantan et al., 2014)
for a word considering its multiple senses, such
methods do not consider the semantics of the do-
main in which the word is being used.

If we can learn separate representations for a
word for each domain in which it occurs, we can
use the learnt representations for domain adapta-
tion tasks such as cross-domain sentiment clas-
sification (Bollegala et al., 2011b), cross-domain
POS tagging (Schnabel and Schütze, 2013), cross-
domain dependency parsing (McClosky et al.,
2010), and domain adaptation of relation extrac-
tors (Bollegala et al., 2013a; Bollegala et al.,
2013b; Bollegala et al., 2011a; Jiang and Zhai,
2007a; Jiang and Zhai, 2007b).

We introduce the cross-domain word represen-
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tation learning task, where given two domains,
(referred to as the source (S) and the target (T ))
the goal is to learn two separate representations
wS and wT for a word w respectively from the
source and the target domain that capture domain-
specific semantic variations of w. In this paper,
we use the term domain to represent a collection
of documents related to a particular topic such as
user-reviews in Amazon for a product category
(e.g. books, dvds, movies, etc.). However, a do-
main in general can be a field of study (e.g. biol-
ogy, computer science, law, etc.) or even an entire
source of information (e.g. twitter, blogs, news
articles, etc.). In particular, we do not assume the
availability of any labeled data for learning word
representations.

This problem setting is closely related to unsu-
pervised domain adaptation (Blitzer et al., 2006),
which has found numerous useful applications
such as, sentiment classification and POS tagging.
For example, in unsupervised cross-domain sen-
timent classification (Blitzer et al., 2006; Blitzer
et al., 2007), we train a binary sentiment classifier
using positive and negative labeled user reviews
in the source domain, and apply the trained clas-
sifier to predict sentiment of the target domain’s
user reviews. Although the distinction between the
source and the target domains is not important for
the word representation learning step, it is impor-
tant for the domain adaptation tasks in which we
subsequently evaluate the learnt word representa-
tions. Following prior work on domain adapta-
tion (Blitzer et al., 2006), high-frequent features
(unigrams/bigrams) common to both domains are
referred to as domain-independent features or piv-
ots. In contrast, we use non-pivots to refer to fea-
tures that are specific to a single domain.

We propose an unsupervised cross-domain
word representation learning method that jointly
optimizes two criteria: (a) given a document d
from the source or the target domain, we must ac-
curately predict the non-pivots that occur in d us-
ing the pivots that occur in d, and (b) the source
and target domain representations we learn for piv-
ots must be similar. The main challenge in domain
adaptation is feature mismatch, where the features
that we use for training a classifier in the source
domain do not necessarily occur in the target do-
main. Consequently, prior work on domain adap-
tation (Blitzer et al., 2006; Pan et al., 2010) learn
lower-dimensional mappings from non-pivots to

pivots, thereby overcoming the feature mismatch
problem. Criteria (a) ensures that word represen-
tations for domain-specific non-pivots in each do-
main are related to the word representations for
domain-independent pivots. This relationship en-
ables us to discover pivots that are similar to tar-
get domain-specific non-pivots, thereby overcom-
ing the feature mismatch problem.

On the other hand, criteria (b) captures the prior
knowledge that high-frequent words common to
two domains often represent domain-independent
semantics. For example, in sentiment classifica-
tion, words such as excellent or terrible would ex-
press similar sentiment about a product irrespec-
tive of the domain. However, if a pivot expresses
different semantics in source and the target do-
mains, then it will be surrounded by dissimilar
sets of non-pivots, and reflected in the first crite-
ria. Criteria (b) can also be seen as a regulariza-
tion constraint imposed on word representations to
prevent overfitting by reducing the number of free
parameters in the model.

Our contributions in this paper can be summa-
rized as follows.

• We propose a distributed word representa-
tion learning method that learns separate
representations for a word for each do-
main in which it occurs. To the best
of our knowledge, ours is the first-ever
domain-sensitive distributed word represen-
tation learning method.

• Given domain-specific word representations,
we propose a method to learn a cross-domain
sentiment classifier.

Although word representation learning meth-
ods have been used for various related
tasks in NLP such as similarity measure-
ment (Mikolov et al., 2013c), POS tag-
ging (Collobert et al., 2011), dependency
parsing (Socher et al., 2011a), machine trans-
lation (Zou et al., 2013), sentiment classifica-
tion (Socher et al., 2011b), and semantic role
labeling (Roth and Woodsend, 2014), to the
best of our knowledge, word representations
methods have not yet been used for cross-
domain sentiment classification.

Experimental results for cross-domain senti-
ment classification on a benchmark dataset show
that the word representations learnt using the pro-
posed method statistically significantly outper-
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form a state-of-the-art domain-insensitive word
representation learning method (Pennington et al.,
2014), and several competitive baselines. In par-
ticular, our proposed cross-domain word represen-
tation learning method is not specific to a par-
ticular task such as sentiment classification, and
in principle, can be in applied to a wide-range
of domain adaptation tasks. Despite this task-
independent nature of the proposed method, it
achieves the best sentiment classification accu-
racies on all domain-pairs, reporting statistically
comparable results to the current state-of-the-art
unsupervised cross-domain sentiment classifica-
tion methods (Pan et al., 2010; Blitzer et al., 2006).

2 Related Work

Representing the semantics of a word using some
algebraic structure such as a vector (more gener-
ally a tensor) is a common first step in many NLP
tasks (Turney and Pantel, 2010). By applying al-
gebraic operations on the word representations, we
can perform numerous tasks in NLP, such as com-
posing representations for larger textual units be-
yond individual words such as phrases (Mitchell
and Lapata, 2008). Moreover, word representa-
tions are found to be useful for measuring se-
mantic similarity, and for solving proportional
analogies (Mikolov et al., 2013c). Two main ap-
proaches for computing word representations can
be identified in prior work (Baroni et al., 2014):
counting-based and prediction-based.

In counting-based approaches (Baroni and
Lenci, 2010), a word w is represented by a vec-
torw that contains other words that co-occur with
w in a corpus. Numerous methods for selecting
co-occurrence contexts such as proximity or de-
pendency relations have been proposed (Turney
and Pantel, 2010). Despite the numerous suc-
cessful applications of co-occurrence counting-
based distributional word representations, their
high dimensionality and sparsity are often prob-
lematic in practice. Consequently, further post-
processing steps such as dimensionality reduction,
and feature selection are often required when us-
ing counting-based word representations.

On the other hand, prediction-based approaches
first assign each word, for example, with a d-
dimensional real-vector, and learn the elements of
those vectors by applying them in an auxiliary task
such as language modeling, where the goal is to
predict the next word in a given sequence. The

dimensionality d is fixed for all the words in the
vocabulary, and, unlike counting-based word rep-
resentations, is much smaller (e.g. d ∈ [10, 1000]
in practice) compared to the vocabulary size. The
neural network language model (NNLM) (Bengio
et al., 2003) uses a multi-layer feed-forward neu-
ral network to predict the next word in a sequence,
and uses backpropagation to update the word vec-
tors such that the prediction error is minimized.

Although NNLMs learn word representations
as a by-product, the main focus on language
modeling is to predict the next word in a sen-
tence given the previous words, and not learn-
ing word representations that capture semantics.
Moreover, training multi-layer neural networks
using large text corpora is time consuming. To
overcome those limitations, methods that specif-
ically focus on learning word representations that
model word co-occurrences in large corpora have
been proposed (Mikolov et al., 2013a; Mnih and
Kavukcuoglu, 2013; Huang et al., 2012; Pen-
nington et al., 2014). Unlike the NNLM, these
methods use all the words in a contextual win-
dow in the prediction task. Methods that use
one or no hidden layers are proposed to improve
the scalability of the learning algorithms. For
example, the skip-gram model (Mikolov et al.,
2013b) predicts the words c that appear in the
local context of a word w, whereas the continu-
ous bag-of-words model (CBOW) predicts a word
w conditioned on all the words c that appear in
w’s local context (Mikolov et al., 2013a). Meth-
ods that use global co-occurrences in the entire
corpus to learn word representations have shown
to outperform methods that use only local co-
occurrences (Huang et al., 2012; Pennington et
al., 2014). Overall, prediction-based methods
have shown to outperform counting-based meth-
ods (Baroni et al., 2014).

Despite their impressive performance, existing
methods for word representation learning do not
consider the semantic variation of words across
different domains. However, as described in Sec-
tion 1, the meaning of a word vary from one do-
main to another, and must be considered. To the
best of our knowledge, the only prior work study-
ing the problem of word representation variation
across domains is due to Bollegala et al. (2014).
Given a source and a target domain, they first se-
lect a set of pivots using pointwise mutual infor-
mation, and create two distributional representa-
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tions for each pivot using their co-occurrence con-
texts in a particular domain. Next, a projection
matrix from the source to the target domain feature
spaces is learnt using partial least squares regres-
sion. Finally, the learnt projection matrix is used
to find the nearest neighbors in the source domain
for each target domain-specific features. However,
unlike our proposed method, their method does
not learn domain-specific word representations,
but simply uses co-occurrence counting when cre-
ating in-domain word representations.

Faralli et al. (2012) proposed a domain-driven
word sense disambiguation (WSD) method where
they construct glossaries for several domain us-
ing a pattern-based bootstrapping technique. This
work demonstrates the importance of considering
the domain specificity of word senses. However,
the focus of their work is not to learn representa-
tions for words or their senses in a domain, but to
construct glossaries. It would be an interesting fu-
ture research direction to explore the possibility of
using such domain-specific glossaries for learning
domain-specific word representations.

Neelakantan et al. (2014) proposed a method
that jointly performs WSD and word embedding
learning, thereby learning multiple embeddings
per word type. In particular, the number of senses
per word type is automatically estimated. How-
ever, their method is limited to a single domain,
and does not consider how the representations vary
across domains. On the other hand, our proposed
method learns a single representation for a partic-
ular word for each domain in which it occurs.

Although in this paper we focus on the mono-
lingual setting where source and target domains
belong to the same language, the related setting
where learning representations for words that are
translational pairs across languages has been stud-
ied (Hermann and Blunsom, 2014; Klementiev et
al., 2012; Gouws et al., 2015). Such representa-
tions are particularly useful for cross-lingual in-
formation retrieval (Duc et al., 2010). It will be an
interesting future research direction to extend our
proposed method to learn such cross-lingual word
representations.

3 Cross-Domain Representation
Learning

We propose a method for learning word represen-
tations that are sensitive to the semantic variations
of words across domains. We call this problem

cross-domain word representation learning, and
provide a definition in Section 3.1. Next, in Sec-
tion 3.2, given a set of pivots that occurs in both a
source and a target domain, we propose a method
for learning cross-domain word representations.
We defer the discussion of pivot selection meth-
ods to Section 3.4. In Section 3.5, we propose a
method for using the learnt word representations
to train a cross-domain sentiment classifier.

3.1 Problem Definition

Let us assume that we are given two sets of docu-
ments DS and DT respectively for a source (S)
and a target (T ) domain. We do not consider
the problem of retrieving documents for a domain,
and assume such a collection of documents to be
given. Then, given a particular word w, we define
cross-domain representation learning as the task of
learning two separate representations wS and wT
capturing w’s semantics in respectively the source
S and the target T domains.

Unlike in domain adaptation, where there is a
clear distinction between the source (i.e. the do-
main on which we train) vs. the target (i.e. the
domain on which we test) domains, for represen-
tation learning purposes we do not make a distinc-
tion between the two domains. In the unsupervised
setting of the cross-domain representation learn-
ing that we study in this paper, we do not assume
the availability of labeled data for any domain for
the purpose of learning word representations. As
an extrinsic evaluation task, we apply the trained
word representations for classifying sentiment re-
lated to user-reviews (Section 3.5). However, for
this evaluation task we require sentiment-labeled
user-reviews from the source domain.

Decoupling of the word representation learn-
ing from any tasks in which those representations
are subsequently used, simplifies the problem as
well as enables us to learn task-independent word
representations with potential generic applicabil-
ity. Although we limit the discussion to a pair of
domains for simplicity, the proposed method can
be easily extended to jointly learn word represen-
tations for more than two domains. In fact, prior
work on cross-domain sentiment analysis show
that incorporating multiple source domains im-
proves sentiment classification accuracy on a tar-
get domain (Bollegala et al., 2011b; Glorot et al.,
2011).
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3.2 Proposed Method

To describe our proposed method, let us denote a
pivot and a non-pivot feature respectively by c and
w. Our proposed method does not depend on a
specific pivot selection method, and can be used
with all previously proposed methods for selecting
pivots as explained later in Section 3.4. A pivot
c is represented in the source and target domains
respectively by vectors cS ∈ Rn and cT ∈ Rn.
Likewise, a source specific non-pivot w is repre-
sented bywS in the source domain, whereas a tar-
get specific non-pivot w is represented by wT in
the target domain. By definition, a non-pivot oc-
curs only in a single domain. For notational conve-
nience we use w to denote non-pivots in both do-
mains when the domain is clear from the context.
We use CS , WS , CT , and WT to denote the sets
of word representation vectors respectively for the
source pivots, source non-pivots, target pivots, and
target non-pivots.

Let us denote the set of documents in the source
and the target domains respectively by DS and
DT . Following the bag-of-features model, we as-
sume that a document D is represented by the set
of pivots and non-pivots that occur in D (w ∈ d
and c ∈ d). We consider the co-occurrences
of a pivot c and a non-pivot w within a fixed-
size contextual window in a document. Following
prior work on representation learning (Mikolov et
al., 2013a), in our experiments, we set the win-
dow size to 10 tokens, without crossing sentence
boundaries. The notation (c, w) ∈ d denotes the
co-occurrence of a pivot c and a non-pivot w in a
document d.

We learn domain-specific word representations
by maximizing the prediction accuracy of the non-
pivots w that occur in the local context of a pivot
c. The hinge loss, L(CS ,WS), associated with
predicting a non-pivot w in a source document
d ∈ DS that co-occurs with pivots c is given by:

∑
d∈DS

∑
(c,w)∈d

∑
w∗∼p(w)

max
(
0, 1− cS>wS + cS

>w∗S
)
(1)

Here, w∗S is the source domain representation of
a non-pivot w∗ that does not occur in d. The loss
function given by Eq. 1 requires that a non-pivot
w that co-occurs with a pivot c in the document d
is assigned a higher ranking score as measured by
the inner-product between cS and wS than a non-
pivot w∗ that does not occur in d. We randomly
sample k non-pivots from the set of all source do-

main non-pivots that do not occur in d as w∗.
Specifically, we use the marginal distribution

of non-pivots p(w), estimated from the corpus
counts, as the sampling distribution. We raise
p(w) to the 3/4-th power as proposed by Mikolov
et al. (2013a), and normalize it to unit probabil-
ity mass prior to sampling k non-pivots w∗ per
each co-occurrence of (c, w) ∈ d. Because non-
occurring non-pivots w∗ are randomly sampled,
prior work on noise contrastive estimation has
found that it requires more negative samples than
positive samples to accurately learn a prediction
model (Mnih and Kavukcuoglu, 2013). We exper-
imentally found k = 5 to be an acceptable trade-
off between the prediction accuracy and the num-
ber of training instances.

Likewise, the loss function L(CT ,WT ) for pre-
dicting non-pivots using pivots in the target do-
main is given by:∑

d∈DT

∑
(c,w)∈d

∑
w∗∼p(w)

max
(
0, 1− cT >wT + cT

>w∗T
)
(2)

Here, w∗ denotes target domain non-pivots that
do not occur in d, and are randomly sampled
from p(w) following the same procedure as in the
source domain.

The source and target loss functions given re-
spectively by Eqs. 1 and 2 can be used on their own
to independently learn source and target domain
word representations. However, by definition, piv-
ots are common to both domains. We use this
property to relate the source and target word repre-
sentations via a pivot-regularizer, R(CS , CT ), de-
fined as:

R(CS , CT ) =
1
2

K∑
i=1

||c(i)
S − c(i)

T ||
2

(3)

Here, ||x|| represents the l2 norm of a vector x,
and c(i) is the i-th pivot in a total collection of K
pivots. Word representations for non-pivots in the
source and target domains are linked via the pivot
regularizer because, the non-pivots in each domain
are predicted using the word representations for
the pivots in each domain, which in turn are reg-
ularized by Eq. 3. The overall objective function,
L(CS ,WS , CT ,WT ), we minimize is the sum1 of

1Weighting the source and target loss functions by the re-
spective dataset sizes did not result in any significant increase
in performance. We believe that this is because the bench-
mark dataset contains approximately equal numbers of docu-
ments for each domain.
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the source and target loss functions, regularized
via Eq. 3 with coefficient λ, and is given by:

L(CS ,WS , ) + L(CT ,WT ) + λR(CS , CT ) (4)

3.3 Training
Word representations of pivots c and non-pivots w
in the source (cS ,wS) and the target (cT ,wT ) do-
mains are parameters to be learnt in the proposed
method. To derive parameter updates, we compute
the gradients of the overall loss function in Eq. 4
w.r.t. to each parameter as follows:

∂L

∂wS
=

{
0 if cS>(wS −w∗S) ≥ 1

−cS otherwise
(5)

∂L

∂w∗S
=

{
0 if cS>(wS −w∗S) ≥ 1

cS otheriwse
(6)

∂L

∂wT
=

{
0 if cT >(wT −w∗T ) ≥ 1

−cT otherwise
(7)

∂L

∂w∗T
=

{
0 if cT >(wT −w∗T ) ≥ 1

cT otherwise
(8)

∂L

∂cS
=

{
λ(cS − cT ) if cS>(wS −w∗S) ≥ 1

w∗S −wS + λ(cS − cT ) otherwise
(9)

∂L

∂cT
=

{
λ(cT − cS) if cT >(wT −w∗T ) ≥ 1

w∗T −wT + λ(cT − cS) otherwise
(10)

Here, for simplicity, we drop the arguments inside
the loss function and write it as L. We use mini
batch stochastic gradient descent with a batch size
of 50 instances. AdaGrad (Duchi et al., 2011) is
used to schedule the learning rate. All word repre-
sentations are initialized with n dimensional ran-
dom vectors sampled from a zero mean and unit
variance Gaussian. Although the objective in Eq. 4
is not jointly convex in all four representations,
it is convex w.r.t. the representation of a partic-
ular feature (pivot or non-pivot) when the repre-
sentations for all the other features are held fixed.
In our experiments, the training converged in all
cases with less than 100 epochs over the dataset.

The rank-based predictive hinge loss (Eq. 1)
is inspired by the prior work on word represen-
tation learning for a single domain (Collobert et
al., 2011). However, unlike the multilayer neu-
ral network in Collobert et al. (2011), the pro-
posed method uses a computationally efficient sin-
gle layer to reduce the number of parameters that
must be learnt, thereby scaling to large datasets.
Similar to the skip-gram model (Mikolov et al.,

2013a), the proposed method predicts occurrences
of contexts (non-pivots) w within a fixed-size con-
textual window of a target word (pivot) c.

Scoring the co-occurrences of two words c and
w by the bilinear form given by the inner-product
is similar to prior work on domain-insensitive
word-representation learning (Mnih and Hinton,
2008; Mikolov et al., 2013a). However, unlike
those methods that use the softmax function to
convert inner-products to probabilities, we directly
use the inner-products without any further trans-
formations, thereby avoiding computationally ex-
pensive distribution normalizations over the entire
vocabulary.

3.4 Pivot Selection

Given two sets of documents DS , DT respec-
tively for the source and the target domains, we
use the following procedure to select pivots and
non-pivots. First, we tokenize and lemmatize each
document using the Stanford CoreNLP toolkit2.
Next, we extract unigrams and bigrams as features
for representing a document. We remove features
listed as stop words using a standard stop words
list. Stop word removal increases the effective co-
occurrence window size for a pivot. Finally, we
remove features that occur less than 50 times in
the entire set of documents.

Several methods have been proposed in the
prior work on domain adaptation for selecting a
set of pivots from a given pair of domains such
as the minimum frequency of occurrence of a fea-
ture in the two domains, mutual information (MI),
and the entropy of the feature distribution over the
documents (Pan et al., 2010). In our preliminary
experiments, we discovered that a normalized ver-
sion of the PMI (NPMI) (Bouma, 2009) to work
consistently well for selecting pivots from differ-
ent pairs of domains. NPMI between two features
x and y is given by:

NPMI(x, y) = log
(
p(x, y)
p(x)p(y)

)
1

− log(p(x, y))
(11)

Here, the joint probability p(x, y), and the
marginal probabilities p(x) and p(y) are estimated
using the number of co-occurrences of x and y in
the sentences in the documents. Eq. 11 normalizes
both the upper and lower bounds of the PMI.

2http://nlp.stanford.edu/software/
corenlp.shtml
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We measure the appropriateness of a feature as
a pivot according to the score given by:

score(x) = min (NPMI(x,S),NPMI(x, T )) .
(12)

We rank features that are common to both domains
in the descending order of their scores as given by
Eq. 12, and select the top NP features as pivots.
We rank features x that occur only in the source
domain by NPMI(x,S), and select the top ranked
NS features as source-specific non-pivots. Like-
wise, we rank the features x that occur only in the
target domain by NPMI(x, T ), and select the top
ranked NT features as target-specific non-pivots.

The pivot selection criterion described here dif-
fers from that of Blitzer et al. (2006; 2007), where
pivots are defined as features that behave similarly
both in the source and the target domains. They
compute the mutual information between a feature
(i.e. unigrams or bigrams) and the sentiment labels
using source domain labeled reviews. This method
is useful when selecting pivots that are closely as-
sociated with positive or negative sentiment in the
source domain. However, in unsupervised domain
adaptation we do not have labeled data for the tar-
get domain. Therefore, the pivots selected using
this approach are not guaranteed to demonstrate
the same sentiment in the target domain as in the
source domain. On the other hand, the pivot se-
lection method proposed in this paper focuses on
identifying a subset of features that are closely as-
sociated with both domains.

It is noteworthy that our proposed cross-domain
word representation learning method (Section 3.2)
does not assume any specific pivot/non-pivot se-
lection method. Therefore, in principle, our pro-
posed word representation learning method could
be used with any of the previously proposed pivot
selection methods. We defer a comprehensive
evaluation of possible combinations of pivot selec-
tion methods and their effect on the proposed word
representation learning method to future work.

3.5 Cross-Domain Sentiment Classification

As a concrete application of cross-domain word
representations, we describe a method for learning
a cross-domain sentiment classifier using the word
representations learnt by the proposed method.
Existing word representation learning methods
that learn from only a single domain are typi-
cally evaluated for their accuracy in measuring se-
mantic similarity between words, or by solving

word analogy problems. Unfortunately, such gold
standard datasets capturing cross-domain seman-
tic variations of words are unavailable. Therefore,
by applying the learnt word representations in a
cross-domain sentiment classification task, we can
conduct an indirect extrinsic evaluation.

The train data available for unsupervised cross-
domain sentiment classification consists of unla-
beled data for both the source and the target do-
mains as well as labeled data for the source do-
main. We train a binary sentiment classifier using
those train data, and apply it to classify sentiment
of the target test data.

Unsupervised cross-domain sentiment classifi-
cation is challenging due to two reasons: feature-
mismatch, and semantic variation. First, the sets
of features that occur in source and target domain
documents are different. Therefore, a sentiment
classifier trained using source domain labeled data
is likely to encounter unseen features during test
time. We refer to this as the feature-mismatch
problem. Second, some of the features that occur
in both domains will have different sentiments as-
sociated with them (e.g. lightweight). Therefore,
a sentiment classifier trained using source domain
labeled data is likely to incorrectly predict simi-
lar sentiment (as in the source) for such features.
We call this the semantic variation problem. Next,
we propose a method to overcome both problems
using cross-domain word representations.

Let us assume that we are given a set
{(x(i)
S , y

(i))}ni=1 of n labeled reviews x(i)
S for the

source domain S. For simplicity, let us consider
binary sentiment classification where each review
x(i) is labeled either as positive (i.e. y(i) = 1) or
negative (i.e. y(i) = −1). Our cross-domain bi-
nary sentiment classification method can be eas-
ily extended to multi-class classification. First, we
lemmatize each word in a source domain labeled
review x

(i)
S , and extract unigrams and bigrams as

features to represent x(i)
S by a binary-valued fea-

ture vector. Next, we train a binary linear clas-
sifier, θ, using those feature vectors. Any binary
classification algorithm can be used for this pur-
pose. We use θ(z) to denote the weight learnt by
the classifier for a feature z. In our experiments,
we used l2 regularized logistic regression.

At test time, we represent a test target review
by a binary-valued vector h using a the set of un-
igrams and bigrams extracted from that review.
Then, the activation score, ψ(h), of h is defined
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by:

ψ(h) =
∑
c∈h

∑
c′∈θ

θ(c′)f(c′S , cS)+
∑
w∈h

∑
w′∈θ

θ(w′)f(w′S ,wT )

(13)

Here, f is a similarity measure between two vec-
tors. If ψ(h) > 0, we classify h as positive, and
negative otherwise. Eq. 13 measures the similarity
between each feature in h against the features in
the classification model θ. For pivots c ∈ h, we
use the the source domain representations to mea-
sure similarity, whereas for the (target-specific)
non-pivots w ∈ h, we use their target domain rep-
resentations. We experimented with several pop-
ular similarity measures for f and found cosine
similarity to perform consistently well. We can in-
terpret Eq. 13 as a method for expanding a test tar-
get document using nearest neighbor features from
the source domain labeled data. It is analogous to
query expansion used in information retrieval to
improve document recall (Fang, 2008). Alterna-
tively, Eq. 13 can be seen as a linearly-weighted
additive kernel function over two feature spaces.

4 Experiments and Results

For train and evaluation purposes, we use the
Amazon product reviews collected by Blitzer et
al. (2007) for the four product categories: books
(B), DVDs (D), electronic items (E), and kitchen
appliances (K). There are 1000 positive and 1000
negative sentiment labeled reviews for each do-
main. Moreover, each domain has on average
17, 547 unlabeled reviews. We use the standard
split of 800 positive and 800 negative labeled re-
views from each domain as training data, and the
rest (200+200) for testing. For validation purposes
we use movie (source) and computer (target) do-
mains, which were also collected by Blitzer et al.
(2007), but not part of the train/test domains.

Experiments conducted using this validation
dataset revealed that the performance of the pro-
posed method is relatively insensitive to the value
of the regularization parameter λ ∈ [10−3, 103].
For the non-pivot prediction task we generate pos-
itive and negative instances using the procedure
described in Section 3.2. As a typical example,
we have 88, 494 train instances from the books
source domain and 141, 756 train instances from
the target domain (1:5 ratio between positive and
negative instances in each domain). The number
of pivots and non-pivots are set to NP = NS =
NT = 500.

In Figure 1, we compare the proposed method
against two baselines (NA, InDomain), current
state-of-the-art methods for unsupervised cross-
domain sentiment classification (SFA, SCL),
word representation learning (GloVe), and cross-
domain similarity prediction (CS). The NA (no-
adapt) lower baseline uses a classifier trained on
source labeled data to classify target test data with-
out any domain adaptation. The InDomain base-
line is trained using the labeled data for the target
domain, and simulates the performance we can ex-
pect to obtain if target domain labeled data were
available. Spectral Feature Alignment (SFA) (Pan
et al., 2010) and Structural Correspondence Learn-
ing (SCL) (Blitzer et al., 2007) are the state-of-
the-art methods for cross-domain sentiment clas-
sification. However, those methods do not learn
word representations.

We use Global Vector Prediction (GloVe) (Pen-
nington et al., 2014), the current state-of-the-
art word representation learning method, to learn
word representations separately from the source
and target domain unlabeled data, and use the
learnt representations in Eq. 13 for sentiment clas-
sification. In contrast to the joint word representa-
tions learnt by the proposed method, GloVe sim-
ulates the level of performance we would obtain
by learning representations independently. CS de-
notes the cross-domain vector prediction method
proposed by Bollegala et al. (2014). Although
CS can be used to learn a vector-space transla-
tion matrix, it does not learn word representations.
Vertical bars represent the classification accuracies
(i.e. percentage of the correctly classified test in-
stances) obtained by a particular method on target
domain’s test data, and Clopper-Pearson 95% bi-
nomial confidence intervals are superimposed.

Differences in data pre-processing (tokeniza-
tion/lemmatization), selection (train/test splits),
feature representation (unigram/bigram), pivot se-
lection (MI/frequency), and the binary classifica-
tion algorithms used to train the final classifier
make it difficult to directly compare results pub-
lished in prior work. Therefore, we re-run the orig-
inal algorithms on the same processed dataset un-
der the same conditions such that any differences
reported in Figure 1 can be directly attributable
to the domain adaptation, or word-representation
learning methods compared.

All methods use l2 regularized logistic regres-
sion as the binary sentiment classifier, and the reg-
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Figure 1: Accuracies obtained by different methods for each source-target pair in cross-domain sentiment classification.

ularization coefficients are set to their optimal val-
ues on the validation dataset. SFA, SCL, and CS
use the same set of 500 pivots as used by the pro-
posed method selected using NPMI (Section 3.4).
Dimensionality n of the representation is set to
300 for both GloVe and the proposed method.

From Fig. 1 we see that the proposed method
reports the highest classification accuracies in all
12 domain pairs. Overall, the improvements of the
proposed method over NA, GloVe, and CS are sta-
tistically significant, and is comparable with SFA,
and SCL. The proposed method’s improvement
over CS shows the importance of predicting word
representations instead of counting. The improve-
ment over GloVe shows that it is inadequate to
simply apply existing word representation learn-
ing methods to learn independent word represen-
tations for the source and target domains.

We must consider the correspondences between
the two domains as expressed by the pivots to
jointly learn word representations. As shown in
Fig. 2, the proposed method reports superior ac-
curacies over GloVe across different dimension-
alities. Moreover, we see that when the dimen-
sionality of the representations increases, initially
accuracies increase in both methods and saturates
after 200 − 600 dimensions. However, further
increasing the dimensionality results in unstable
and some what poor accuracies due to overfit-
ting when training high-dimensional representa-
tions. Although our word representations learnt
by the proposed method are not specific to senti-
ment classification, the fact that it clearly outper-
forms SFA and SCL in all domain pairs is encour-
aging, and implies the wider-applicability of the
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Figure 2: Accuracy vs. dimensionality of the representation.

proposed method for domain adaptation tasks be-
yond sentiment classification.

5 Conclusion

We proposed an unsupervised method for learning
cross-domain word representations using a given
set of pivots and non-pivots selected from a source
and a target domain. Moreover, we proposed a do-
main adaptation method using the learnt word rep-
resentations.

Experimental results on a cross-domain senti-
ment classification task showed that the proposed
method outperforms several competitive baselines
and achieves best sentiment classification accura-
cies for all domain pairs. In future, we plan to
apply the proposed method to other types of do-
main adaptation tasks such as cross-domain part-
of-speech tagging, named entity recognition, and
relation extraction.

Source code and pre-processed data etc. for this
publication are publicly available3.

3www.csc.liv.ac.uk/˜danushka/prj/darep
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Abstract

Semantic representation lies at the core of
several applications in Natural Language
Processing. However, most existing se-
mantic representation techniques cannot
be used effectively for the representation
of individual word senses. We put for-
ward a novel multilingual concept repre-
sentation, called MUFFIN, which not only
enables accurate representation of word
senses in different languages, but also pro-
vides multiple advantages over existing
approaches. MUFFIN represents a given
concept in a unified semantic space irre-
spective of the language of interest, en-
abling cross-lingual comparison of differ-
ent concepts. We evaluate our approach in
two different evaluation benchmarks, se-
mantic similarity and Word Sense Disam-
biguation, reporting state-of-the-art per-
formance on several standard datasets.

1 Introduction

Semantic representation, i.e., the task of represent-
ing a linguistic item (such as a word or a word
sense) in a mathematical or machine-interpretable
form, is a fundamental problem in Natural Lan-
guage Processing (NLP). The Vector Space Model
(VSM) is a prominent approach for semantic rep-
resentation, with widespread popularity in numer-
ous NLP applications. The prevailing methods
for the computation of a vector space represen-
tation are based on distributional semantics (Har-
ris, 1954). However, these approaches, whether
in their conventional co-occurrence based form
(Salton et al., 1975; Turney and Pantel, 2010; Lan-
dauer and Dooley, 2002), or in their newer predic-
tive branch (Collobert and Weston, 2008; Mikolov
et al., 2013; Baroni et al., 2014), suffer from a
major drawback: they are unable to model indi-
vidual word senses or concepts, as they conflate

different meanings of a word into a single vecto-
rial representation. This hinders the functionality
of this group of vector space models in tasks such
as Word Sense Disambiguation (WSD) that re-
quire the representation of individual word senses.
There have been several efforts to adapt and apply
distributional approaches to the representation of
word senses (Pantel and Lin, 2002; Brody and La-
pata, 2009; Reisinger and Mooney, 2010; Huang
et al., 2012). However, none of these techniques
provides representations that are already linked to
a standard sense inventory, and consequently such
mapping has to be carried out either manually,
or with the help of sense-annotated data. Chen
et al. (2014) addressed this issue and obtained
vectors for individual word senses by leveraging
WordNet glosses. NASARI (Camacho-Collados
et al., 2015) is another approach that obtains ac-
curate sense-specific representations by combin-
ing the complementary knowledge from Word-
Net and Wikipedia. Graph-based approaches have
also been successfully utilized to model individ-
ual words (Hughes and Ramage, 2007; Agirre et
al., 2009; Yeh et al., 2009), or concepts (Pilehvar
et al., 2013; Pilehvar and Navigli, 2014), drawing
on the structural properties of semantic networks.
The applicability of all these techniques, however,
is usually either constrained to a single language
(usually English), or to a specific task.

We put forward MUFFIN (Multilingual, Uni-
Fied and Flexible INterpretation), a novel method
that exploits both structural knowledge derived
from semantic networks and distributional statis-
tics from text corpora, to produce effective rep-
resentations of individual word senses or con-
cepts. Our approach provides multiple advantages
in comparison to the previous VSM techniques:

1. Multilingual: it enables sense representation
in dozens of languages;

2. Unified: it represents a linguistic item, irre-
spective of its language, in a unified seman-
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Figure 1: Our procedure for constructing a multilingual vector representation for a concept c.

tic space having concepts as its dimensions,
permitting direct comparison of different rep-
resentations across languages, and hence en-
abling cross-lingual applications;

3. Flexible: it can be readily applied to different
NLP tasks with minimal adaptation.

We evaluate our semantic representation on two
different tasks in lexical semantics: semantic sim-
ilarity and Word Sense Disambiguation. To as-
sess the multilingual capability of our approach,
we also perform experiments on languages other
than English on both tasks, and across languages
for semantic similarity. We report state-of-the-art
performance on multiple datasets and settings in
both frameworks, which confirms the reliability
and flexibility of our representations.

2 Methodology

Figure 1 illustrates our procedure for construct-
ing the vector representation of a given con-
cept. We use BabelNet1 (version 2.5) as our
main sense repository. BabelNet (Navigli and
Ponzetto, 2012a) is a multilingual encyclopedic
dictionary which merges WordNet with other lex-
ical resources, such as Wikipedia and Wiktionary,
thanks to its use of an automatic mapping al-
gorithm. BabelNet extends the WordNet synset
model to take into account multilinguality: a Ba-
belNet synset contains the words that, in the vari-
ous languages, express the given concept.

Our approach for modeling a BabelNet synset
consists of two main steps. First, for the given
synset we gather contextual information from
Wikipedia by exploiting knowledge from the Ba-
belNet semantic network (Section 2.1). Then, by
analyzing the corresponding contextual informa-
tion and comparing and contrasting it with the

1http://www.babelnet.org

whole Wikipedia corpus, we obtain a vectorial
representation of the given synset (Section 2.2).

2.1 A Wikipedia sub-corpus for each concept
Let c be a concept, which in our setting is a Ba-
belNet synset, and let Wc be the set containing
the Wikipedia page p corresponding to the con-
cept c and all the Wikipedia pages having an out-
going link to p. We further enrich Wc with the
corresponding Wikipedia pages of the hypernyms
and hyponyms of c in the BabelNet network. Wc

is the set of Wikipedia pages whose contents are
exploited to build a representation for the concept
c. We refer to the bag of content words in all the
Wikipedia pages inWc as the sub-corpus SCc for
the concept c.

2.2 Vector construction: lexical specificity
Lexical specificity (Lafon, 1980) is a statistical
measure based on the hypergeometric distribu-
tion. Due to its efficiency in extracting a set
of highly relevant words from a sub-corpus, the
measure has recently gained popularity in differ-
ent NLP applications, such as textual data analy-
sis (Lebart et al., 1998), term extraction (Drouin,
2003), and domain-based term disambiguation
(Camacho-Collados et al., 2014; Billami et al.,
2014). We leverage lexical specificity to com-
pute the weights in our vectors. In our earlier
work (Camacho-Collados et al., 2015), we con-
ducted different experiments which demonstrated
the improvement that lexical specificity can pro-
vide over the popular term frequency-inverse doc-
ument frequency weighting scheme (Jones, 1972,
tf-idf ). Lexical specificity computes the vector
weights for an item, i.e., a word or a set of words,
by comparing and contrasting its contextual infor-
mation with a reference corpus. In our setting, we
take the whole Wikipedia as our reference corpus
RC (we use the October 2012 Wikipedia dump).
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Let T and t be the respective total number of to-
kens in RC and SCc, while F and f denote the
frequency of a given item in RC and SCc, respec-
tively. Our goal is to compute a weight denoting
the association of an item to the concept c. For no-
tational brevity, we use the following expression
to refer to positive lexical specificity:

specificity(T, t, F, f) = − log10 P (X ≥ f) (1)

where X represents a random variable following
a hypergeometric distribution of parameters F , t
and T . As we are only interested in a set of
items that are representative of the concept be-
ing modeled, we follow Billami et al. (2014) and
only consider in our final vector the items which
are relevant to SCc with a confidence higher than
99% according to the hypergeometric distribution
(P (X ≥ f) ≤ 0.01).

On the basis of lexical specificity we put for-
ward two types of representations: lexical and uni-
fied. The lexical vector representation lexc of a
concept c has lemmas as its individual dimensions.
To this end, we apply lexical specificity to every
lemma in SCc in order to estimate the relevance of
each lemma to our concept c. We use the lexical
representation for the task of WSD (see Section
3.2). We describe the unified representation in the
next subsection.

2.3 Unified representation

Unlike the lexical version, our unified representa-
tion has concepts as individual dimensions. Algo-
rithm 1 shows the construction process of a con-
cept’s unified vector. The algorithm first clusters
together those words that have a sense sharing
the same hypernym (h in the algorithm) according
to the BabelNet taxonomy (lines 2-4). Next, the
specificity is computed for the set of all the hy-
ponyms of h, even those that do not appear in the
sub-corpus SCc (lines 6-14). Here, F and f denote
the aggregated frequencies of all the hyponyms of
h in the whole Wikipedia (i.e., reference corpus
RC) and the sub-corpus SCc, respectively.

Our binding of a set of sibling words into a sin-
gle cluster represented by their common hypernym
provides two advantages. Firstly, it transforms the
representations to a unified semantic space. This
space has concepts as its dimensions, enabling
their comparability across languages. Secondly,
the clustering can be viewed as an implicit dis-
ambiguation process, whereby a set of potentially

Algorithm 1 Unified Vector Construction
Input: a concept c
Output: the unified vector uc where uc(h) is the dimension

corresponding to concept h
1: H ← ∅
2: for each lemma l ∈ SCc

3: for each hypernym h of l in BabelNet
4: H ← H ∪ {h}
5: vector uc ← null vector
6: for each h ∈ H
7: if ∃ l1, l2 ∈ SCc: l1, l2 hyponyms of h and l1 6= l2

then
8: F ← 0
9: f ← 0

10: for each hyponym hypo of h
11: for each lexicalization lex of hypo
12: F ← F + freq(lex,RC)
13: f ← f + freq(lex,SCc)
14: uc(h)← specificity(T, t, F, f))
15: return vector uc

ambiguous words are disambiguated into their in-
tended sense on the basis of the contextual clues of
the neighbouring content words, resulting in more
accurate representations of meaning.

Example. Table 1 lists the top-weighted con-
cepts, represented by their relevant lexicalizations,
in the unified vectors generated for the bird and
machine senses of the noun crane and for three
different languages.2 A comparison of concepts
across the two senses indicates the effectiveness
of our representation in identifying relevant con-
cepts in different languages, while guaranteeing a
clear distinction between the two meanings.

3 Applications

Thanks to their VSM nature and the sense-
level functionality, our concept representations are
highly flexible, allowing us to adapt and apply
them to different NLP tasks with minimal adap-
tation. In this section we explain how we use our
representations in the tasks of semantic similarity
(Section 3.1) and WSD (Section 3.2).

Associating concepts with words. Given that
our representations are for individual word senses,
a preliminary step for both tasks would be to as-
sociate the set of concepts, i.e., BabelNet synsets,
Cw = {c1, ..., cn} with a given word w. In the
case when w exists in the BabelNet dictionary, we
obtain the set of associated senses of the word as
defined in the BabelNet sense inventory.

In order to enhance the coverage in the case of

2We use the sense notation of Navigli (2009): wordp
n is

the nth sense of the word with part of speech p.
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Crane (bird) Crane (machine)

English French German English French German

shore bird1
n ‡famille des oiseaux1

n ‡vogel-familie1
n ∗lifting device1

n ∗dispositif de levage1
n ∗hebevorrichtung1

n

bird1
n ∗limicole1

n ∗charadrii1n ‡construction4
n navire1

n radfahrzeug1
n

∗wading bird1
n oiseau aquatique2

n †vogel gattung1
n platform1

n limicole1
n †lenkfahrzeug1

n

oscine bird1
n tollé2

n wirbeltiere2
n warship1

n �vaisseau2
n regler3n

†bird genus1n gallinacé1
n fleisch1

n electric circuit1n spationef1n reisebus1n
‡bird family1

n �classe1
n tier um1

n �vessel2n ‡construction2
n charadrii1n

�taxonomic group1
n occurence1

n reiher1n boat1n †véhicule3
n güterwagen2

n

Table 1: Top-weighted concepts, i.e., BabelNet synsets, for the bird and machine senses of the noun
crane. We represent each synset by one of its word senses. Word senses marked with the same symbol
across languages correspond to the same BabelNet synset.

words that are not defined in the BabelNet dic-
tionary, we also exploit the so-called Wikipedia
piped links. A piped link is a hyperlink appear-
ing in the body of a Wikipedia article, providing a
link to another Wikipedia article. For example, the
piped link [[dockside crane|Crane (machine)]] is
a hyperlink that appears as dockside crane in the
text, but takes the user to the Wikipedia page titled
Crane (machine). These links provide Wikipedia
editors with the ability to represent a Wikipedia
article through a suitable lexicalization that pre-
serves the grammatical structure, contextual co-
herency, and flow of the sentence. This property
provides an effective means of obtaining a set of
concepts for the words not covered by BabelNet.
For the case of our example, the BabelNet out-of-
vocabulary word w = dockside crane will have
in its set of associated concepts Cw the BabelNet
synset corresponding to the Wikipedia page titled
Crane (machine).

3.1 Semantic Similarity

Once we have the set Cw of concepts associated
with each word w, we first retrieve the set of
corresponding unified vector representations. We
then follow Camacho-Collados et al. (2015) and
use square-rooted Weighted Overlap (Pilehvar et
al., 2013, WO) as our vector comparison method,
a metric that has been shown to suit specificity-
based vectors more than the conventional cosine.
WO compares two vectors on the basis of their
overlapping dimensions, which are harmonically
weighted by their relative ranking:

WO(v1, v2) =

∑
q∈O

(
rank(q, v1) + rank(q, v2)

)−1∑|O|
i=1(2i)

−1

(2)

where O is the set of overlapping dimensions (i.e.
concepts) between the two vectors and rank(q, vi)
is the rank of dimension q in the vector vi.

Finally, the similarity between two words w1

and w2 is calculated as the similarity of their clos-
est senses, a prevailing approach in the literature
(Resnik, 1995; Budanitsky and Hirst, 2006):

sim(w1, w2) = max
v1∈Cw1 ,v2∈Cw2

√
WO(v1, v2) (3)

where w1 and w2 can belong to different lan-
guages. This cross-lingual similarity measure-
ment is possible thanks to the unified language-
independent space of concepts of our semantic
representations.

3.2 Multilingual Word Sense Disambiguation

In order to be able to apply our approach to WSD,
we use the lexical vector lexc for each concept c.
The reason for our choice of lexical vectors in this
setting is that they enable a direct comparison of a
candidate sense’s representation with the context,
which is also in the same lexical form. Algorithm
2 summarizes the general framework of our ap-
proach. Given a target word w to disambiguate,
our approach proceeds by the following steps:

1. Retrieve Cw, the set of associated concepts
with the target word w (line 1);

2. Obtain the lexical vector lexc for each con-
cept c ∈ Cw (cf. Section 2);

3. Calculate, for each candidate concept c, a
confidence score (scorec) based on the har-
monic sum of the ranks of the overlapping
words between its lexical vector lexc and the
context of the target word (line 5 in Algo-
rithm 2).
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Algorithm 2 MUFFIN for WSD
Input: a target word w and a document d (context of w)
Output: ĉ, the intended sense of w
1: for each concept c ∈ Cw

2: scorec ← 0
3: for each lemma l ∈ d
4: if l ∈ lexc then
5: scorec ← scorec +

(
rank(l, lexc)

)−1

6: ĉ← arg max
c∈Cw

scorec

7: return ĉ

Thanks to the use of BabelNet, our approach is
applicable to arbitrary languages. For the task of
WSD, we focus on two major sense inventories in-
tegrated in BabelNet: Wikipedia and WordNet.

Wikipedia sense inventory. In this case, we ob-
tain the set of candidate senses for a target word
by following the procedure described in the begin-
ning of this Section (i.e., associating concepts with
words). However, we do not consider those Babel-
Net synsets that are not associated with Wikipedia
pages.

WordNet sense inventory. Similarly, when re-
stricted to the WordNet inventory, we discard
those BabelNet synsets that do not contain a Word-
Net synset. In this setting, we also leverage re-
lations from WordNet’s semantic network and its
disambiguated glosses3 in order to obtain a richer
set of Wikipedia articles in the sub-corpus con-
struction. The enrichment of the semantic network
with the disambiguated glosses has been shown to
be beneficial in various graph-based disambigua-
tion tasks (Navigli and Velardi, 2005; Agirre and
Soroa, 2009; Pilehvar et al., 2013).

4 Experiments

We assess the reliability of MUFFIN in two stan-
dard evaluation benchmarks: semantic similar-
ity (Section 4.1) and Word Sense Disambiguation
(Section 4.2).

4.1 Semantic Similarity

As our semantic similarity experiment we opted
for word similarity, which is one of the most pop-
ular evaluation frameworks in lexical semantics.
Given a pair of words, the task in word similarity
is to automatically judge their semantic similarity
and, ideally, this judgement should be close to that
given by humans.

3http://wordnet.princeton.edu/
glosstag.shtml

4.1.1 Datasets
Monolingual. We picked the RG-65 dataset
(Rubenstein and Goodenough, 1965) as our mono-
lingual word similarity dataset. The dataset com-
prises 65 English word pairs which have been
manually annotated by several annotators accord-
ing to their similarity on a scale of 0 to 4. We
also perform evaluations on the French (Joubarne
and Inkpen, 2011) and German (Gurevych, 2005)
adaptations of this dataset.

Cross-lingual. Hassan and Mihalcea (2009) de-
veloped two sets of cross-lingual datasets based on
the English MC-30 (Miller and Charles, 1991) and
WordSim-353 (Finkelstein et al., 2002) datasets,
for four different languages: English, German,
Romanian, and Arabic. However, the construc-
tion procedure they adopted, consisting of trans-
lating the pairs to other languages while preserv-
ing the original similarity scores, has led to incon-
sistencies in the datasets. For instance, the Span-
ish dataset contains the identical pair mediodia-
mediodia with a similarity score of 3.42 (in the
scale [0,4]). Additionally, the datasets contain
several orthographic errors, such as despliege and
grua (instead of despliegue and grúa) and incor-
rect translations (e.g., the English noun implement
translated into the Spanish verb implementar).

Kennedy and Hirst (2012) proposed a more reli-
able procedure that leverages two existing aligned
monolingual word similarity datasets for the con-
struction of a new cross-lingual dataset. To this
end, for each two word pairs a-b and a’-b’ in the
two datasets, if the difference in the correspond-
ing scores is greater than one, the pairs are dis-
carded. Otherwise, two new pairs a-b’ and a’-b
are created with a score equal to the average of the
two original pairs’ scores. In the case of repeated
pairs, we merge them into a single pair with a sim-
ilarity equal to their average scores. Using this
procedure as a basis, Kennedy and Hirst (2012)
created an English-French dataset consisting of
100 pairs. We followed the same procedure and
built two datasets for English-German (consisting
of 125 pairs) and German-French (comprising 96
pairs) language pairs.4

4.1.2 Comparison systems
Monolingual. We benchmark our system
against four other approaches that exploit

4The cross-lingual datasets are available at http://
lcl.uniroma1.it/sim-datasets/.
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English ρ r German ρ r French ρ r

MUFFIN 0.83 0.84 MUFFIN 0.77 0.76 MUFFIN 0.71 0.77
SOC-PMI – 0.61 SOC-PMI – 0.27 SOC-PMI – 0.19
PMI – 0.41 PMI – 0.40 PMI – 0.34
Retrofitting 0.74 – Retrofitting 0.60 – Retrofitting 0.61 –
LSA-Wiki 0.69 0.65 – – – LSA-Wiki 0.52 0.57
Wiki-wup – 0.59 Wiki-wup – 0.65
SSA 0.83 0.86 Resnik – 0.72
NASARI 0.84 0.82 Lesk hyper – 0.69
ADW 0.87 0.81
Word2Vec – 0.84
PMI-SVD – 0.74
ESA – 0.72

Table 2: Spearman (ρ) and Pearson (r) correlation performance of different systems on the English,
German and French RG-65 datasets.

Wikipedia as their main knowledge resource:
SSA5 (Hassan and Mihalcea, 2011), ESA
(Gabrilovich and Markovitch, 2007), Wiki-wup
(Ponzetto and Strube, 2007), and LSA-Wiki
(Granada et al., 2014). We also provide results for
systems that use distributional semantics for mod-
eling words, both the conventional co-occurrence
based approach, i.e., PMI-SVD (Baroni et al.,
2014), PMI and SOC-PMI (Joubarne and Inkpen,
2011), and Retrofitting (Faruqui et al., 2015),
and the newer word embeddings, i.e., Word2Vec
(Mikolov et al., 2013). For Word2Vec and PMI-
SVD, we use the pre-trained models obtained
by Baroni et al. (2014).6 As for WordNet-based
approaches, we report results for Resnik (Resnik,
1995) and ADW (Pilehvar et al., 2013), which
take advantage of its structural information,
and Lesk hyper (Gurevych, 2005), which lever-
ages definitional information in WordNet for
similarity computation. Finally, we also report
the performance of our earlier work NASARI
(Camacho-Collados et al., 2015), which combines
knowledge from WordNet and Wikipedia for
the English language in its setting without the
Wiktionary synonyms module.

Cross-lingual. We compare the performance of
our approach against the best configuration of
the CL-MSR-2.0 system (Kennedy and Hirst,
2012), which exploits Pointwise Mutual Informa-
tion (PMI) on a parallel corpus obtained from

5SSA involves several parameters tuned on datasets that
are constructed on the basis of MC-30 and RG-65.

6We report the best configuration of the systems on the
RG-65 dataset out of their 48 configurations. The corpus
used to train the models contained 2.8 billion tokens, includ-
ing Wikipedia (Baroni et al., 2014).

the English and French versions of WordNet.
Since two of our cross-lingual datasets are newly-
created, we developed three baseline systems to
enable a more meaningful comparison. To this
end, we first use Google Translate to translate the
non-English side of the dataset to the English lan-
guage. Accordingly, three state-of-the-art graph-
based and corpus-based approaches were used to
measure the similarity of the resulting English
pairs. As English similarity measurement systems,
we opted for ADW (Pilehvar et al., 2013), and the
best predictive (Mikolov et al., 2013, Word2Vec)
and co-occurrence (i.e., PMI-SVD) models ob-
tained by Baroni et al. (2014).7 In our experi-
ments we refer to these systems as pivot, since
they use English as a pivot for computing semantic
similarity. As a comparison, we also show results
for MUFFINpivot, which is the variant of our sys-
tem applied to the same automatically translated
monolingual datasets.

4.1.3 Results
Monolingual. We show in Table 2 the perfor-
mance of different systems in terms of Spear-
man and Pearson correlations on the English, Ger-
man, and French RG-65 datasets. On the German
and French datasets, our system outperforms the
comparison systems according to both evaluation
measures. It achieves considerable Spearman and
Pearson correlation leads of 0.1 and 0.2, respec-
tively, on the French dataset in comparison to the
best system. Also on the English RG-65 dataset,
our system attains competitive performance ac-
cording to both Spearman and Pearson correla-

7http://clic.cimec.unitn.it/composes/
semantic-vectors.html
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Measure FR-EN EN-DE DE-FR

MUFFIN 0.83 0.76 0.83
MUFFINpivot 0.83 0.73 0.79
ADWpivot 0.80 0.73 0.72
Word2Vecpivot 0.75 0.69 0.77
PMI-SVDpivot 0.76 0.72 0.65
CL-MSR-2.0 0.30 – –

Table 3: Pearson correlation performance of dif-
ferent similarity measures on the three cross-
lingual RG-65 datasets.

tions. We note that most state-of-the-art systems
on the dataset (e.g., ADW) are restricted to the En-
glish language only.

Cross-lingual. Pearson correlation results on
the three cross-lingual RG-65 datasets are pre-
sented in Table 3. Similarly to the monolingual
experiments, our system proves highly reliable
in the cross-lingual setting, improving the per-
formance of the comparison systems on all three
language pairs. Moreover, MUFFINpivot attains
the best results among the pivot systems on all
datasets, confirming the reliability of our system
in the monolingual setting. We note that since the
cross-lingual datasets were built by translating the
word pairs in the original English RG-65 dataset,
the pivot-based comparison systems proved to be
highly competitive, outperforming the CL-MSR-
2.0 system by a considerable margin.

4.2 Word Sense Disambiguation

4.2.1 Wikipedia
In this setting, we selected the SemEval 2013 all-
words WSD task (Navigli et al., 2013) as our eval-
uation benchmark. The task provides datasets for
five different languages: Italian, English, French,
Spanish and German. There are on average 1123
words to disambiguate in each language’s dataset.
As comparison system, we provide results for the
best-performing participating system on each lan-
guage. We also show results for the state-of-the-
art WSD system of Moro et al. (2014, Babelfy),
which relies on random walks on the BabelNet se-
mantic network and a set of graph heuristic algo-
rithms. Finally, we also report results for the Most
Frequent Sense (MFS) baseline provided by the
task organizers.

We follow Moro et al. (2014) and back off to
the MFS baseline in the case when our system’s

judgement does not meet a threshold θ. Similarly
to Babelfy, we tuned the value of the threshold θ
on the trial dataset provided by the organizers of
the task. We tuned θ with step size 0.05 (hence,
21 possible values in [0,1]), obtaining an optimal
value of 0.85 in the trial set, a value which we use
across all languages.

Table 4 lists the F1 percentage performance
of different systems on the five datasets of the
SemEval-2013 all-words WSD task. Despite not
being tuned to the task, our representations pro-
vide competitive results on all datasets, outper-
forming the sophisticated Babelfy system on the
Spanish and German languages. The variant of
our system not utilizing the MFS information in
the disambiguation process (θ = 0), i.e., MUF-
FIN?, also shows competitive results, outperform-
ing the best system in the SemEval-2013 dataset
on all languages. Interestingly, MUFFIN? proves
highly effective on the French language, surpass-
ing not only the performance of our system using
the MFS information, but also attaining the best
overall performance.

4.2.2 WordNet
As regards the WordNet disambiguation task, we
take as our benchmark the two recent SemEval
English all-words WSD tasks: the SemEval-2013
task on Multilingual WSD (Navigli et al., 2013)
and the SemEval-2007 English Lexical Sample,
SRL and All-Words task (Pradhan et al., 2007).
The all-words datasets of the two tasks contain
1644 instances (SemEval-2013) and 162 noun in-
stances (SemEval-2007), respectively.

As comparison system, we report the per-
formance of the best configuration of the top-
performing system in the SemEval-2013 task, i.e.,
UMCC-DLSI (Gutiérrez et al., 2013). We also
show results for the state-of-the-art supervised
system (Zhong and Ng, 2010, IMS), as well as
for two graph-based approaches that are based on
random walks on the WordNet graph (Agirre and
Soroa, 2009, UKB w2w) and the BabelNet seman-
tic network (Moro et al., 2014, Babelfy). We fol-
low Babelfy and also exploit the WordNet’s sense
frequency information from the SemCor sense-
annotated corpus (Miller et al., 1993). However,
instead of simply backing off to the most frequent
sense, we propose a more meaningful exploitation
of this information. To this end, we compute the
relevance of a specific sense as the average of its
normalized sense frequency and its corresponding
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System MFS Back off Italian English French Spanish German

MUFFIN X 81.9 84.5 71.4 85.1 83.1
MUFFIN? 67.9 73.5 72.3 81.1 76.1
Babelfy X 84.3 87.4 71.6 83.8 81.6
Best SemEval 2013 system X 58.3 54.8 60.5 58.1 61.0
MFS - 82.2 80.2 69.1 82.1 83.0

Table 4: F1 percentage performance on the SemEval-2013 Multilingual WSD datasets using Wikipedia
as sense inventory.

score (scorec in Algorithm 2) given by our system.
The sense with the highest overall relevance value
is then picked as the intended sense.

Additionally, we put forward a hybrid system
that combines our system with IMS, hence bene-
fiting from the judgements made by two systems
that utilize complementary information. Our sys-
tem makes judgements based on global contexts,
whereas IMS exploits the local context of the tar-
get word. To this end, we compute the relevance
of a specific sense as the average of the normal-
ized scores given by IMS and our system (scorec
in Algorithm 2). We refer to this hybrid system as
MUFFIN+IMS.

Table 5 reports the F1 percentage performance
of different systems on the datasets of SemEval-
2013 and SemEval-2007 English all-words WSD
tasks. We also report the results for the MFS base-
line, which always picks the most frequent sense
of a word. Similarly to the disambiguation task
on the Wikipedia sense inventory, MUFFIN proves
to be quite competitive on the WordNet disam-
biguation task, while surpassing the performance
of all the comparison systems on the SemEval-
2013 dataset. On the SemEval-2007 dataset,
IMS achieves the best performance, thanks to its
usage of large amounts of manually and semi-
automatically tagged data. Finally, our hybrid sys-
tem, MUFFIN+IMS, provides the best overall per-
formance on the two datasets, showing that our
combination of the two WSD systems that utilize
different types of knowledge was beneficial.

5 Related work

We briefly review the recent literature on the two
NLP tasks to which we applied our representa-
tions, i.e., Word Sense Disambiguation and se-
mantic similarity.

WSD. There are two main categories of WSD
techniques: knowledge-based and supervised

System SemEval-2013 SemEval-2007

MUFFIN 66.0 66.0
UKB 61.3 56.0
UMCC-DLSI 64.7 –
IMS 65.3 67.3
Babelfy 65.9 62.7
MFS 63.2 65.8

MUFFIN+IMS 66.9 68.5

Table 5: F1 percentage performance on the
SemEval-2013 and SemEval-2007 (noun in-
stances) English All-words WSD datatets using
WordNet as sense inventory.

(Navigli, 2009). Supervised systems such as IMS
(Zhong and Ng, 2010) analyze sense-annotated
data and model the context in which the various
senses of a word usually appear. Despite their ac-
curacy for the words that are provided with suit-
able amounts of sense-annotated data, their appli-
cability is limited to those words and languages
for which such data is available, practically limit-
ing them to a small subset of words mainly in the
English language. Knowledge-based approaches
(Sinha and Mihalcea, 2007; Navigli and Lapata,
2007; Agirre and Soroa, 2009) significantly im-
prove the coverage of supervised systems. How-
ever, similarly to their supervised counterparts,
knowledge-based techniques are usually limited to
the English language.

Recent years have seen a growing interest in
cross-lingual and multilingual WSD (Lefever and
Hoste, 2010; Lefever and Hoste, 2013; Navigli
et al., 2013). Multilinguality is usually offered
by methods that exploit the structural informa-
tion of large-scale multilingual lexical resources
such as Wikipedia (Gutiérrez et al., 2013; Manion
and Sainudiin, 2013; Hovy et al., 2013). Babelfy
(Moro et al., 2014) is an approach with state-of-
the-art performance that relies on random walks
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on BabelNet multilingual semantic network (Nav-
igli and Ponzetto, 2012a) and densest subgraph
heuristics. However, the approach is limited to the
WSD and Entity Linking tasks. In contrast, our
approach is global as it can be used in different
NLP tasks, including WSD.

Semantic similarity. Semantic similarity of
word pairs is usually computed either on the ba-
sis of the structural properties of lexical databases
and thesauri, or by comparing vectorial represen-
tations of words learned from massive text cor-
pora. Structural approaches usually measure the
similarity on the basis of the distance information
on semantic networks, such as WordNet (Budan-
itsky and Hirst, 2006), or thesauri, such as Ro-
get’s (Morris and Hirst, 1991; Jarmasz and Sz-
pakowicz, 2003). The semantic network of Word-
Net has also been used in more sophisticated tech-
niques such as those based on random graph walks
(Ramage et al., 2009; Pilehvar et al., 2013), or
coupled with the complementary knowledge from
Wikipedia (Camacho-Collados et al., 2015). How-
ever, these techniques are either limited in the lan-
guages to which they can be applied, or in their
applicability to tasks other than semantic similar-
ity (Navigli and Ponzetto, 2012b).

Corpus-based techniques are more flexible, en-
abling the training of models on corpora other
than English. However, these approaches, either
in their conventional co-occurrence based form
(Gabrilovich and Markovitch, 2007; Landauer and
Dumais, 1997; Turney and Pantel, 2010; Bulli-
naria and Levy, 2012), or the more recent predic-
tive models (Mikolov et al., 2013; Collobert and
Weston, 2008; Pennington et al., 2014), are re-
stricted in two ways: (1) they cannot be used to
compare word senses; and (2) they cannot be di-
rectly applied to cross-lingual semantic similar-
ity. Though the first problem has been solved
by multi-prototype models (Huang et al., 2012),
or by the sense-specific representations obtained
as a result of exploiting WordNet glosses (Chen
et al., 2014), the second problem remains unad-
dressed. In contrast, our approach models word
senses and concepts effectively, while providing a
unified representation for different languages that
enables cross-lingual semantic similarity.

6 Conclusions

This paper presented MUFFIN, a new multilingual,
unified and flexible representation of individual

word senses. Thanks to its effective combination
of distributional statistics and structured knowl-
edge, the approach can compute efficient represen-
tations of arbitrary word senses, with high cover-
age and irrespective of their language. We eval-
uated our representations on two different NLP
tasks, i.e., semantic similarity and Word Sense
Disambiguation, reporting state-of-the-art perfor-
mance on several datasets. Experimental results
demonstrated the reliability of our unified repre-
sentation approach, while at the same time also
highlighting its main advantages: multilinguality,
owing to its effective application within and across
multiple languages; and flexibility, owing to its ro-
bust performance on two different tasks.
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José Camacho-Collados, Mokhtar Billami, Evelyne
Jacquey, and Laurence Kister. 2014. Approche
statistique pour le filtrage terminologique des oc-
currences de candidats termes en texte intégral. In
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Abstract

Extra-linguistic factors influence language
use, and are accounted for by speakers
and listeners. Most natural language pro-
cessing (NLP) tasks to date, however,
treat language as uniform. This assump-
tion can harm performance. We investi-
gate the effect of including demographic
information on performance in a variety
of text-classification tasks. We find that
by including age or gender information,
we consistently and significantly improve
performance over demographic-agnostic
models. These results hold across three
text-classification tasks in five languages.

1 Introduction

When we use language, we take demographic
factors of the speakers into account. In other
words, we do have certain expectations as to who
uses “super cute,” “rather satisfying,” or “rad,
dude.” Sociolinguistics has long since studied the
interplay between demographic factors and lan-
guage use (Labov, 1964; Milroy and Milroy, 1992;
Holmes, 1997; Macaulay, 2001; Macaulay, 2002;
Barbieri, 2008; Wieling et al., 2011; Rickford and
Price, 2013, inter alia).1 These factors greatly in-
fluence word choice, syntax, and even semantics.

In natural language processing (NLP), however,
we have largely ignored demographic factors, and
treated language as a uniform medium. It was ir-
relevant, (and thus not modeled) whether a text
was produced by a middle-aged man, an elderly
lady, or a teenager. These three groups, how-
ever, differ along a whole host of demographic
axes, and these differences are reflected in their
language use.

1Apart from the demographic factors, other factors such
as mood, interpersonal relationship, authority, language atti-
tude, etc. contribute to our perception of language.

A model that is agnostic to demographic dif-
ferences will lose these distinctions, and perfor-
mance suffers whenever the model is applied to a
new demographic. Historically, the demograph-
ics of training and test data (newswire) were rela-
tively homogenous, language was relatively uni-
form, and information the main objective. Un-
der these uniform conditions, the impact of demo-
graphics on performance was small.

Lately, however, NLP is increasingly applied
to other domains, such as social media, where
language is less canonical, demographic informa-
tion about the author is available, and the authors’
goals are no longer purely informational. The in-
fluence of demographic factors in this medium is
thus much stronger than on the data we have tra-
ditionally used to induce models. The resulting
performance drops have often been addressed via
various domain adaptation approaches (Blitzer et
al., 2006; Daume III and Marcu, 2006; Reichart
and Rappoport, 2007; Chen et al., 2009; Daumé et
al., 2010; Chen et al., 2011; Plank and Moschitti,
2013; Plank et al., 2014; Hovy et al., 2015b, inter
alia). However, the authors and target demograph-
ics of social media differ radically from those in
newswire text, and domain might in some case be
a secondary effect to demographics. In this paper,
we thus ask whether we also need demographic
adaptation.
Concretely, we investigate

1. how we can encode demographic factors, and

2. what effect they have on the performance of
text-classification tasks

We focus on age and gender, and similarly
to Bamman et al. (2014a), we use distributed
word representations (embeddings) conditioned
on these demographic factors (see Section 2.1) to
incorporate the information.

We evaluate the effect of demographic informa-
tion on classification performance in three NLP
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tasks: sentiment analysis (Section 2.2), topic de-
tection (Section 2.3), and author attribute classifi-
cation (Section 2.4). 2

We compare F1-performance of classifiers a)
trained with access to demographic information,
or b) under agnostic conditions. We find that
demographic-aware models consistently outper-
form their agnostic counterparts in all tasks.

Our contributions
We investigate the effect of demographic fac-
tors on classification performance. We show that
NLP systems benefit from demographic aware-
ness, i.e., that information about age and gender
can lead to significant performance improvements
in three different NLP tasks across five different
languages.

2 Data

We use data from an international user review
website, Trustpilot. It contains information both
about the review (text and star rating), as well as
the reviewer, in form of a profile. The profile in-
cluded a screen name, and potentially information
about gender and birth year.

Since demographic factors are extra-linguistic,
we assume that the same effects hold irrespective
of language. To investigate this hypothesis, we use
data from several languages (Danish, French, and
German) and varieties (American English, British
English).

We use data from the countries with most users,
i.e., Great Britain, Denmark, Germany, France,
and the US. The selection was made based on the
availability of sufficient amounts of training data
(see Table 1 for more details). The high number of
users in Denmark (one tenth of the country’s pop-
ulation) might be due to the fact that Trustpilot is
a Danish company and thus existed there longer
than in other countries. Danish users also provide
(in relative terms) more information about them-
selves than users of any other country, so that even
in absolute numbers, there is oftentimes more in-
formation available than for larger countries like
France or Germany, where users are more reluc-
tant to disclose information.

While most of this profile information is vol-
untary, we have good coverage for both age and

2We selected these tasks to represent a range of text-
classification applications, and based on the availability of
suitable data with respect to target and demographic vari-
ables.

USERS AGE GENDER PLACE ALL

UK 1,424k 7% 62% 5% 4%
France 741k 3% 53% 2% 1%
Denmark 671k 23% 87% 17% 16%
US 648k 8% 59% 7% 4%
Germany 329k 8% 47% 6% 4%

Table 1: Number of users and % per variable per
country (after applying augmentations).

gender. In case of missing gender values, we base
a guess on the first name (if given), by choosing
the gender most frequently associated with that
name in the particular language. We do require
that one gender is prevalent (accounting for 95%
of all mentions), and that there is enough support
(at least 3 attributed instances), though. For age,
coverage is less dense, so the resulting data sets
are smaller, but still sufficient.

For more information on Trustpilot as a re-
source, see Hovy et al. (2015a).

We split each review into sentences, tokenize,
replace numbers with a 0, lowercase the data, and
join frequent bigrams with an underscore to form
a single token.

For each language, we collect four sub-corpora,
namely two for gender (male and female) and
two for age (under 35 and over 45). The sub-
corpora for the discrete variable gender are rela-
tively straightforward (although see (Bamman et
al., 2014b)), but the split for the continuous age
variable are less clear. While the effect of age on
language use is undisputed (Barke, 2000; Barbieri,
2008; Rickford and Price, 2013), providing a clear
cut-off is hard. We therefore use age ranges that
result in roughly equally sized data sets for both
groups, and that are not contiguous.

For each independent variable (age and gender),
we induce embeddings for the two sub-groups (see
section 2.1), as well as a “mixed” setting. We
also extract labeled data for each task (see sections
2.2, 2.3, and 2.4). Each of these data sets is ran-
domly split into training and test data, 60:40. Note
that we do not set any parameters on development
data, but instead use off-the-shelf software with
default parameters for classification. Table 2 gives
an overview of the number of training and test in-
stances for each task and both variables (gender
and age).

Note that this setup is somewhat artificial: the
vocabulary of the embeddings can subsume the
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GENDER AGE

TASK COUNTRY TRAIN TEST TRAIN TEST

TOPIC

Denmark 72.48k 48.32k 26.89k 17.93k
France 33.34k 22.23k 3.67k 2.45k
Germany 18.35k 12.23k 4.82k 3.22k
UK 110.40k 73.60k 13.26k 8.84k
US 36.95k 24.63k 7.25k 4.84k

SENTIMENT

Denmark 150.29k 100.19k 45.18k 30.12k
France 40.38k 26.92k 3.94k 2.63k
Germany 17.35k 11.57k 3.52k 2.35k
UK 93.98k 62.65k 15.80k 10.53k
US 43.36k 28.91k 3.90k 2.60k

ATTRIBUTES

Denmark 180.31k 120.20k 180.31k 120.20k
France 10.69k 7.12k 10.69k 7.12k
Germany 11.47k 7.64k 11.47k 7.64k
UK 70.87k 47.25k 70.87k 47.25k
US 28.10k 18.73k 28.10k 18.73k

total 918.32k 612.20k 429.66k 286.43k

Table 2: Number of sentences per task for gender and age as independent variable

vocabulary of the tasks (there is some loss due
to frequency cut-offs in word2vec). The out-of-
vocabulary rate on the tasks is thus artificially low
and can inflate results. In a standard “improve-
ment over baseline”-setup, this would be problem-
atic. However, the results should not be interpreted
with respect to their absolute value on the respec-
tive tasks, but with respect to the relative differ-
ences.

2.1 Conditional Embeddings

COUNTRY AGE GENDER

Denmark 495k 1.6m
France 36k 490k
Germany 47k 211k
UK 232k 1.63m
US 70k 576k
total 880k 4.51m

Table 3: Number of sentences used to induce em-
beddings

Embeddings are distributed representations of
words in a vector space, capturing syntactic and
semantic regularities among the words. We

learn our word embeddings by using word2vec3

(Mikolov et al., 2013) on unlabeled review data.
Our corpora are relatively small, compared to the
language modeling tasks the tool was developed
for (see Table 3 for the number of instances used
for each language and variable). We thus follow
the suggestions in the word2vec documentation
and use the skip-gram model and hierarchical soft-
max rather than the standard continuous-bag-of-
words model. This setting penalizes low-frequent
words less. All out-of-vocabulary (OOV) words
are replaced with an “unknown” token, which is
represented as the averaged vector over all other
words.

In this paper, we want to use embeddings to
capture group-specific differences. We therefore
train embeddings on each of the sub-corpora
(e.g., male, female, and U35, O45) separately. As
comparison, we create a mixed setting. For each
variable, we combine half of both sub-corpora
(say, men and women) to form a third corpus
with no demographic distinction. We also train
embeddings on this data. This setting assumes
that there are no demographic differences, which
is the common approach in NLP to date.

Since embeddings depend crucially on the
3https://code.google.com/p/word2vec/
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size of the available training data, and since we
want to avoid modeling size effects, we balance
the three corpora we use to induce embeddings
such that all three contain the same number of
instances.4

Note that while we condition the embeddings on
demographic variables, they are not task-specific.
While general-purpose embeddings are widely
used in the NLP community, task-specific embed-
dings are known to lead to better results for var-
ious tasks, including sentiment analysis (Tang et
al., 2014). Inducing task-specific embeddings car-
ries the risk of overfitting to a task and data set,
though, and would make it harder to attribute per-
formance differences to demographic factors.

Since we are only interested in the relative dif-
ference between demographic-aware and unaware
systems, not in the absolute performance on the
tasks, we do not use task-specific embeddings.

2.2 Sentiment Analysis

Sentiment analysis is the task of determining the
polarity of a document. In our experiments, we
use three polarity values: positive, negative, and
neutral. To collect data for the sentiment analysis
task, we select all reviews that contain the target
variable (gender or age), and a star-rating. Fol-
lowing previous work on similar data (Blitzer et
al., 2007; Hardt and Wulff, 2012; Elming et al.,
2014), we use one, three, or five star ratings, cor-
responding to negative, neutral, and positive senti-
ment, respectively.

We balance the data sets so that both training
and test set contain equal amounts of all three la-
bels. We do this in order to avoid demographic-
specific label distributions (women and people
over 45 tend to give more positive ratings than men
and people under 35, see Section 3.1).

2.3 Topic Identification

Topic identification is the task of assigning a high-
level concept to a document that captures its con-
tent. In our case, the topic labels are taken from
the Trustpilot taxonomy for companies (e.g., Elec-
tronics, Pets, etc.). Again, there is a strong gender
bias: the most common topic for men is Computer
& Accessories, the most common topic among
women is Pets. There is thus considerably less
overlap between the groups than for the other

4Note, however, that the vocabulary sizes still vary among
languages and between age and gender.

tasks. In order not to model gender-specific topic
bias and to eliminate topic frequency as a con-
founding factor, we restrict ourselves to the five
most frequent labels that occur in both groups. We
also ensure that we have the same number of ex-
amples for each label in both groups. However,
in the interest of data size, we do not enforce a
uniform distribution over the five labels (i.e., the
classes are not balanced).

2.4 Author Attribute Identification

Author attribute identification is the task of infer-
ring demographic factors from linguistic features
(Alowibdi et al., 2013; Ciot et al., 2013; Liu and
Ruths, 2013). It is often used in author profiling
(Koppel et al., 2002) and stylometrics (Goswami
et al., 2009; Sarawgi et al., 2011). Rosenthal and
McKeown (2011) have shown that these attributes
are correlated.

In this paper, we restrict ourselves to using gen-
der to predict age, and age to predict gender. This
serves as an additional test case. Again, we bal-
ance the class labels to minimize the effect of any
confounding factors.

3 Experiments

3.1 Data Analysis

Before we analyze the effect of demographic
differences on NLP performance, we investigate
whether there is an effect on the non-linguistic cor-
relates, i.e., ratings and topics. To measure the in-
fluence of demographic factors on these values, we
quantify the distributions over the three sentiment
labels and the five topic labels. We analyze both
gender and age groups separately, but in the inter-
est of space average across all languages.
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Figures 1 and 2 show the distributions over
sentiment labels. We note that men give more
negative and fewer positive ratings than women.
The same holds for people in the younger group,
who are more skewed towards negative ratings
than people in the older group. While the differ-
ences are small, they suggest that demographics
correlate with rating behavior have a measurable
effect on model performance.

The gender distributions over categories ex-
hibit a very different tendency. Table 3 shows
that the review categories (averaged over all
languages) are highly gender-specific. With the
exception of Hotels and Fashion Accessories, the
two distributions are almost bimodal opposites.
However, they are still significantly correlated
(Spearman ρ is 0.49 at p < 0.01).

The difference in the two distributions illus-
trates why we need to control for topic frequency
in our experiments.

3.2 Models
Classifiers For all tasks, we use logistic regres-
sion models5 with standard parameter settings. In
order to isolate the effect of demographic dif-
ferences on performance in all text classification
tasks, we need to represent variable length doc-
uments based only upon the embeddings of the
words they contain.

We follow Tang et al. (2014) in using convo-
lutional layers over word embeddings (Collobert
et al., 2011) to generate fixed-length input repre-
sentations. Figure 4 schematically shows the pro-
cedure for the minimum of a 4-dimensional toy

5http://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.
LogisticRegression.html

example. For each instance, we collect five N -
dimensional statistics over the t by N input ma-
trix, where N is the dimensionality of the embed-
dings (here: 100), and t is the sentence length in
words.

From the matrix representation, we compute the
dimension-wise minimum, maximum, and mean
representation, as well as one standard deviation
above and below the mean. We then concate-
nate those five 100-dimensional vectors to a 500-
dimensional vector thats represents each instance
(i.e., review) as input to the logistic regression
classifier.

Taking the maximum and minimum across all
embedding dimensions is equivalent to represent-
ing the exterior surface of the “instance manifold”
(the volume in embedding space within which all
words in the instance reside). Adding the mean
and standard deviation summarizes the density
per-dimension within the manifold. This way, we
can represent any input sentence solely based on
the embeddings, and with the same feature vector
dimensionality.
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Figure 4: Example for deriving embedding statis-
tics from sentence in 4-dimensional space. Mini-
mum shaded

The approach is the same for all three tasks, and
we did not tune any parameters to maximize per-
formance. The results are thus maximally compa-
rable to each other, albeit far from state-of-the-art.
Overall performance could be improved with task-
specific features and more sophisticated models,
but it would make the results less comparable, and
complicate identifying the source of performance
differences. We leave this for future research.

Comparison In order to compare demographic-
aware and agnostic models, we use the following
setup for each task and language:

1. In the “agnostic” setting, we train a logistic-
regression model using the joint embeddings
(i.e., embeddings induced on the corpus con-
taining both sub-groups, e.g. male and fe-
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Figure 3: Distribution of the 30 most frequent categories per gender over all languages

male) and group-agnostic training data (i.e.,
data that contains an equal amount of in-
stances from either sub-group).

2. In the demographic-aware setting, we train a
logistic-regression model for each of the two
sub-groups (e.g., male and female). For each
sub-group, we use the group-specific embed-
dings (i.e., embeddings induced on, say, male
data) and group-specific training data (i.e.,
instances collected from male data).

We measure F1-performance for both settings
(agnostic and demographic-aware) on the test set.
The test data contains an equal amount of in-
stances from both sub-groups (say, male and fe-
male). We use the demographic-aware classifier
appropriate for each instance (e.g., male classi-
fier for male instances), i.e., we assume that the
model has access to this information. For many
user-generated content settings, this is realistic,
since demographic information is available. How-
ever, we only predict the target variable (senti-
ment, topic, or author attribute). We do not require

the model to predict the sub-group (age or gender
group).

We assume that demographic factors hold
irrespective of language. We thus compute a
macro-F1 over all languages. Micro-F1 would
favor languages for which there is more data
available, i.e., performance on those languages
would dominate the average performance. Since
we do not want to ascribe more importance
to any particular language, macro-F1 is more
appropriate.

Even if there is a difference in performance
between the agnostic and aware settings, this dif-
ference could still be due to the specific data set.
In order to test whether the difference is also sta-
tistically significant, we use a bootstrap-sampling
test. In a bootstrap-sampling test, we sample
subsets of the predictions of both settings (with
replacement) 10,000 times. For each sample,
we measure F1 of both systems, and compare
the winning system of the sample to the winning
system on the entire data set. The number of times
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SENTIMENT ANALYSIS TOPIC CLASSIFICATION AGE CLASSIFICATION

COUNTRY AGNOSTIC AWARE AGNOSTIC AWARE AGNOSTIC AWARE

Denmark 61.75 ∗62.00 49.19 ∗50.08 59.94 ∗60.22
France 61.21 61.09 38.45 ∗39.33 53.85 54.21
Germany 60.50 61.36 60.45 61.11 60.19 60.20
UK 65.22 65.12 66.02 66.26 59.78 ∗60.35
US 60.94 61.24 65.64 65.37 61.97 62.68

avg 61.92 62.16 55.95 56.43 59.15 59.53

Table 4: F1 for gender-aware and agnostic models on tasks. Averages are macro average. ∗ : p < 0.05

the sample winner differs from the entire data
set, divided by 10, 000, is the reported p-value.
Bootstrap-sampling essentially simulates runs of
the two systems on different data sets. If one
system outperforms the other under most of these
conditions (i.e., the test returns a low p-value), we
can be reasonably sure that the difference is not
due to chance.

As discussed in Berg-Kirkpatrick et al. (2012)
and Søgaard et al. (2014), this test is the most ap-
propriate for NLP data, since it does not make any
assumptions about the underlying distributions,
and directly takes performance into account. Note
that the test still depends on data size, though,
so that small differences in performance on larger
data sets can be significant, while larger differ-
ences on small sets might not.

We test for significance with the standard cutoff
of p < 0.05. However, even under a bootstrap-
sampling test, we can only limit the number of
likely false positives. If we run enough tests, we
increase the chance of reporting a type-I error. In
order to account for this effect, we use Bonferroni
corrections for each of the tasks.

4 Results

For each task, we compare the demographic-aware
setting to an agnostic setting. The latter is equiva-
lent to the currently common approach in NLP. For
each task and language, the setting with the higher
performance is marked in bold. Statistically sig-
nificant differences (at p < 0.05) are marked with
a star (∗). Note that for the macro-averaged scores,
we cannot perform bootstrap significance testing.

4.1 Gender

Table 4 shows the F1 scores for the different tasks.
In the left column of each task (labeled AGNOS-

TIC), the system is trained on embeddings and data
from both genders, in the same ratios as in the test
data. This column is similar to the configuration
normally used in NLP to date, where – at least in
theory – data comes from a uniformly distributed
sample.

In the right column (labeled AWARE), the
classification is based on the classifier trained on
embeddings and data from the respective gender.

While the improvements are small, they are
consistent. We do note some variance in consis-
tency across tasks.

The largest average improvement among the
three tasks is on topic classification. This improve-
ment is interesting, since we have seen stark dif-
ferences for the topic distribution between gen-
ders. Note, however that we controlled for this
factor in our experiments (cf. Table 3). The re-
sults thus show that taking gender into account
improves topic classification performance even af-
ter controlling for prior topic distribution as a con-
founding factor.

The improvements in age classification are the
most consistent. This consistency is likely due
to the fact that author attributes are often corre-
lated. The fact that the attributes are related can
be exploited in stacking approaches, where the at-
tributes are predicted together.

Analyzing the errors, the misclassifications for
sentiment analysis (the weakest task) seem to be
system-independent. Mistakes are mainly due to
the simplicity of the system. Since we do not ex-
plicitly model negation, we incur errors such as “I
will never order anywhere else again” classified as
negative, even though it is in fact rather positive.
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SENTIMENT ANALYSIS TOPIC CLASSIFICATION GENDER CLASSIFICATION

COUNTRY AGNOSTIC AWARE AGNOSTIC AWARE AGNOSTIC AWARE

Denmark 58.74 59.12 45.11 46.00 58.82 58.97
France 53.50 53.40 43.54 42.64 54.64 54.24
Germany 51.91 52.83 ∗56.91 55.41 54.04 54.51
UK 59.72 ∗60.83 59.40 ∗60.88 57.69 ∗58.25
US 55.57 56.00 61.14 61.38 60.05 60.97

avg 55.89 56.44 53.22 53.26 57.05 57.59

Table 5: F1 for age-aware and agnostic models on tasks. Averages are macro average. ∗ : p < 0.05

4.2 Age

Table 5 presents the results for systems with age
as independent demographic variable. Again, we
show the difference between the agnostic and
age-aware setting in parallel columns for each
task.

The improvements are similar to the ones
for gender. The smaller magnitude across tasks
indicates that knowledge of age offers less dis-
criminative power than knowledge of gender. This
in itself is an interesting result, suggesting that the
age gap is much smaller than the gender gap when
it comes to language variation (i.e., older people’s
language is more similar to younger people than
the language of men is to women). The difference
between groups could be a domain-effect, though,
caused by the fact that all subjects are using a
form of “reviewese” when leaving their feedback.
Why this effect would be more prevalent across
ages than across genders is not obvious from the
data.

When averaged over all languages, the age-
aware setup again consistently outperforms the ag-
nostic setup, as it did for gender. While the final
numbers are lower than in the gender setting, av-
erage improvements tend to be just as decisive.

5 Related Work

Most work in NLP that has dealt with demo-
graphic factors has either a) looked at the corre-
lation of socio-economic attributes with linguis-
tic features (Eisenstein et al., 2011; Eisenstein,
2013a; Eisenstein, 2013b; Doyle, 2014; Bamman
et al., 2014a; Eisenstein, to appear), or b) used lin-
guistic features to infer socio-economic attributes
(Rosenthal and McKeown, 2011; Nguyen et al.,
2011; Alowibdi et al., 2013; Ciot et al., 2013; Liu

and Ruths, 2013; Bergsma et al., 2013; Volkova et
al., 2015).

Our approach is related to the work by Eisen-
stein (2013a) and Doyle (2014), in that we in-
vestigate the influence of extralinguistic factors.
Both of them work on Twitter and use geocoding
information, whereas we focus on age and gen-
der. Also, rather than correlating with census-level
statistics, as in (Eisenstein et al., 2011; Eisenstein,
2013a; Eisenstein, to appear), we take individual
information of each author into account.

Volkova et al. (2013) also explore the influence
of gender and age on text-classification. They
include demographic-specific features into their
model and show improvements on sentiment anal-
ysis in three languages. Our work extends to more
languages and three different text-classification
tasks. We also use word representations trained
on corpora from the various demographic groups,
rather than incorporating the differences explicitly
as features in our model.

Recently, Bamman et al. (2014a) have shown
how regional lexical differences (i.e., situated lan-
guage) can be learned and represented via dis-
tributed word representations (embeddings). They
evaluate the conditional embeddings intrinsically,
to show that the regional representatives of sports
teams, parks, etc. are more closely associated with
the respective hypernyms than other representa-
tives. We also use embeddings conditioned on de-
mographic factors (age and gender instead of loca-
tion), but evaluate their effect on performance ex-
trinsically, when used as input to an NLP system,
rather than intrinsically (i.e., for discovering cor-
relations between language use and demographic
statistics).

Tang et al. (2014) learn embeddings for senti-
ment analysis by splitting up their data by rating.
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We follow their methodology in using embeddings
to represent variable length inputs for classifica-
tion.

The experiments on author attribute identifi-
cation are inspired by a host of previous work
(Rosenthal and McKeown, 2011; Nguyen et al.,
2011; Alowibdi et al., 2013; Ciot et al., 2013;
Liu and Ruths, 2013; Volkova et al., 2015, in-
ter alia). The main difference is that we use em-
beddings trained on another demographic variable
rather than n-gram based features, and that our
goal is not to build a state-of-the-art system.

6 Discussion

The results in Section 4 have shown that incor-
porating information on age and gender improves
performance across a host of text-classification
tasks. Even though the improvements are small
and vary from task to task, they hold consistently
across three tasks and languages. The magnitude
of the improvements could be improved by using
task-specific embeddings, additional features, and
more sophisticated models. This would obscure
the influence of the individual factors, though.

The observed improvements are solely due to
the fact that different demographic groups use lan-
guage quite differently. Sociolinguistic research
suggests that younger people and women tend
to be more creative in their language use than
men and older groups. The former are thus of-
ten the drivers of language change (Holmes, 2013;
Nguyen et al., 2014). Modeling language as uni-
form loses these distinctions, and thus causes per-
formance drops.

As NLP systems are increasingly used for busi-
ness intelligence and decision making, systematic
performance differences carry the danger of dis-
advantaging minority groups whose language use
differs from the norm.

7 Conclusion

In this paper, we investigate the influence of age
and gender on topic identification, sentiment anal-
ysis, and author attribute identification. We induce
embeddings conditioned on the respective demo-
graphic variable and use those embeddings as sole
input to classifiers to build both demographic-
agnostic and aware models. We evaluate our mod-
els on five languages.

Our results show that the models using de-
mographic information perform on average better

than the agnostic models. The improvements are
small, but consistent, and in 8/30 cases, also statis-
tically significant at p < 0.05, according to boot-
strap sampling tests.

The results indicate that NLP systems can im-
prove classification performance by incorporat-
ing demographic information, where available. In
most of situated texts (social media, etc.), this is
the case. While the improvements vary among
tasks, the results suggest that similar to domain
adaptation, we should start addressing the problem
of demographic adaptation in NLP.
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Abstract

In order to build psycholinguistic mod-
els of processing difficulty and evaluate
these models against human data, we need
highly accurate language models. Here we
specifically consider surprisal, a word’s
predictability in context. Existing ap-
proaches have mostly used n-gram models
or more sophisticated syntax-based pars-
ing models; this largely does not account
for effects specific to semantics. We build
on the work by Mitchell et al. (2010) and
show that the semantic prediction model
suggested there can successfully predict
spoken word durations in naturalistic con-
versational data.

An interesting finding is that the training
data for the semantic model also plays
a strong role: the model trained on in-
domain data, even though a better lan-
guage model for our data, is not able to
predict word durations, while the out-of-
domain trained language model does pre-
dict word durations. We argue that this at
first counter-intuitive result is due to the
out-of-domain model better matching the
“language models” of the speakers in our
data.

1 Introduction

The Uniform Information Density (UID) hypothe-
sis holds that speakers tend to maintain a relatively
constant rate of information transfer during speech
production (e.g., Jurafsky et al., 2001; Aylett and
Turk, 2006; Frank and Jaeger, 2008). The rate
of information transfer is thereby quantified using
as each words’ Surprisal (Hale, 2001), that is, a
word’s negative log probability in context.

Surprisal(wi) = − logP (wi|w1..wi−1)

This work makes use of an existing measure of
semantic surprisal calculated from a distributional
space in order to test whether this measure ac-
counts for an effect of UID on speech production.
Our hypothesis is that a word in a semantically
surprising context is pronounced with a slightly
longer duration than the same word in a seman-
tically less-expected context. In this way, a more
uniform rate of information transfer is achieved,
because the higher information content of the un-
expected word is stretched over a slightly longer
time. To our knowledge, the use of this form of
surprisal as a pronunciation predictor has never
been investigated.

The intuition is thus: in a sentence like the
sheep ate the long grass, the word grass will have
relatively high surprisal if the context only con-
sists of the long. However, a distributional repre-
sentation that retains the other content words in the
sentence, thus representing the contextual similar-
ity of grass to sheep ate, would able to capture the
relevant context for content word prediction more
easily. In the approach taken here, both types of
models are combined: a standard language model
is reweighted with semantic similarities in order to
capture both short- and more long-distance depen-
dency effects within the sentence.

The semantic surprisal model, a re-
implementation of Mitchell (2011), uses a
word vector w and a history or context vector h to
calculate the language model p(w|h), defining this
probability in vector space via cosine similarity.
Words that have a higher distributional similarity
to their context are thus represented as having a
higher probability than words that do not. Thus,
we calculate probabilities for words in the context
of a sentence in a framework of distributional
semantics.

Regarding our main hypothesis—that speakers
adapt their speech rate as a function of a word’s in-
formation content—it is particularly important to
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us to test this hypothesis on fully “natural” conver-
sational data. Therefore, we use the AMI corpus,
which contains transcripts of English-language
conversations with orthographically correct tran-
scriptions and precise word pronunciation bound-
aries in terms of time.

We will explain the calculation of semantic sur-
prisal in section 4 (this is so far only described in
Mitchell’s 2011 PhD thesis), and then evaluate the
effect of an in-domain semantic surprisal model in
section 7. Next, we will compare this to the ef-
fect of an out-of-domain semantic surprisal model
in section 8. The hypothesis is only confirmed for
the out-of-domain model, which we argue is due
to this model being more similar to the speaker’s
internal “model” than the in-domain model.

2 Background

2.1 Surprisal and UID

Surprisal is defined in terms of the negative
logarithm of the probability of a word in con-
text: S(w) = − logP (w|context), where
P (w|context) is the probability of a word given
its previous (linguistic) context. It is a measure
of information content in which a high surprisal
implies low predictability. The use of surprisal
in psycholinguistic research goes back to Hale
(2001), who used a probabilistic Earley Parser to
model the difficulty in parsing so-called garden
path sentences (e.g. “The horse raced past the barn
fell”), wherein the unexpectedness of an upcom-
ing word or structure influences the language pro-
cessor’s difficulty. Recent work in psycholinguis-
tics has provided increasing support (e.g., Levy
(2008); Demberg and Keller (2008); Smith and
Levy (2013); Frank et al. (2013)) for the hypoth-
esis that the surprisal of a word is proportional
to the processing difficulty (measured in terms of
reading times and EEG event-related potentials) it
causes to a human.

The Uniform Information Density (UID) hy-
pothesis (Frank and Jaeger, 2008) holds that
speakers tend distribute information uniformly
across an utterance (in the limits of grammatical-
ity). Information density is quantified in terms of
the surprisal of each word (or other linguistic unit)
in the utterance. These notions go back to Shan-
non (1948), who showed that conveying informa-
tion uniformly close to channel capacity is optimal
for communication through a (noisy) communica-
tion channel.

Frank and Jaeger (2008) investigated UID ef-
fects in the SWITCHBOARD corpus at a mor-
phosyntactic level wherein speakers avoid using
English contracted forms (“you are” vs. “you’re”)
when the contractible phrase is also transmitting
a high degree of information in context. In this
case, n-gram surprisal was used as the information
density measure. Related hypotheses have been
suggested by Jurafsky et al. (2001), who related
speech durations to bigram probabilities on the
Switchboard corpus, and Aylett and Turk (2006),
who investigated information density effects at the
syllable level. They used a read-aloud English
speech synthesis corpus, and they found that there
is an inverse relationship between the pronuncia-
tion duration and the N-gram predictability. Dem-
berg et al. (2012) also use the AMI corpus used
in this work, and show that syntactic surprisal
(i.e., the surprisal estimated from Roark’s (2009)
PCFG parser) can predict word durations in natu-
ral speech.

Our work expands upon the existing efforts in
demonstrating the UID hypothesis by applying
surprisal to the level of lexical semantics.

2.2 Distributional semantics

Given a means of evaluating the similarity of lin-
guistic units (e.g., words, sentences, texts) in some
numerical space that represents the contexts in
which they appear, it is possible to approximate
the semantics in distributional terms. This is usu-
ally done by collecting statistics from a corpus us-
ing techniques developed for information retrieval.
Using these statistics as a model of semantics is
justified in terms of the “distributional hypothe-
sis”, which holds that words used in similar con-
texts have similar meanings (Harris, 1954).

A simple and widely-used type of distributional
semantic model is the vector space model (Tur-
ney and Pantel, 2010). In such a model, all words
are represented each in terms of vectors in a sin-
gle high-dimensional space. The semantic simi-
larity of words can then be calculated via the co-
sine of the angle between the vectors in this man-
ner: cos(ϕ) = ~a·~b

|~a||~b| . Closed-class function words
are usually excluded from this calculation. Until
relatively recently (Erk, 2012), distributional se-
mantic models did not take into account the fine-
grained details of syntactic and semantic structure
construed in formal terms.

764



3 Corpus

The AMI Meeting Corpus (Carletta, 2007) is a
multimodal English-language corpus. It contains
videos and transcripts of simulated workgroup
meetings accompanied by various kinds of anno-
tations. The corpus is available along with its an-
notations under a free license1.

Two-thirds of the videos contain simulated
meetings of 4-person design teams assigned to talk
about the development of a fictional television re-
mote control. The remaining meetings discuss var-
ious other topics. The majority of speakers were
non-native speakers of English, although all the
conversations were held in English. The corpus
contains about 100 hours of material.

An important characteristic of this corpus for
our work is that the transcripts make use of con-
sistent English orthography (as opposed to being
phonetic transcripts). This enables the use of nat-
ural language processing techniques that require
the reliable identification of words. Grammatical
errors, however, remain in the corpus. The corpus
includes other annotations such as gesture and dia-
log acts. Most important for our work are the time
spans of word pronunciation, which are precise to
the hundredth of a second.

We removed interjections, incomplete words,
and transcriptions that were still misspelled from
the corpus, and we took out all incomplete sen-
tences. This left 951,769 tokens (15,403 types) re-
maining in the corpus.

4 Semantic surprisal model

We make use of a re-implementation of the se-
mantic surprisal model presented in Mitchell et al.
(2010). As this paper does not provide a detailed
description of how to calculate semantic surprisal,
our re-implementation is based on the description
in Mitchell’s PhD thesis (2011).

In order to calculate surprisal, we need to be
able to obtain a good estimate of a word given
previous context. Mitchell uses the following con-
cepts in his model:

• hn−1 is the history and represents all the pre-
vious words in the sentence. If wn is the cur-
rent word, then hn−1 = w1 . . . wn−1. The
vector-space semantic representation of hn−1

1http://groups.inf.ed.ac.uk/ami/
download/

is calculated from the composition of individ-
ual word vectors, which we call ~hn−1.

• context words represent the dimensions of the
word vectors. The value of a word vector’s
component is the co-occurrence of that word
with a context word. The context words con-
sist of the most frequent words in the corpus.

• we use word class and distinguish between
content words and function words, for which
we use open and closed classes as a proxy.

4.1 Computing the vector components

The proportion between two probabilities p(ci|w)
p(ci)

is used for calculating vector components, where
ci is the ith context dimension and w is the given
word in the current position. We can calculate
each vector component vi for a word vector ~v ac-
cording to the following equation:

vi =
p(ci|w)
p(ci)

=
fciwftotal
fwfci

(1)

where fciw is the cooccurrence frequency ofw and
ci together, ftotal is the total corpus size, and ci
represents the unigram frequencies of w. All fu-
ture steps in calculating our language model rely
on this definition of vi.

4.2 Semantic probabilities
For the goal of computing p(w|h), we use the ba-
sic idea that the more “semantically coherent” a
word is with its history, the more likely it is. Co-
sine similarity is a common way to define this
similarity mathematically in a distributional space,
producing a value in the interval [−1, 1]. We use
the following definitions, wherein ϕ is the angle
between ~w and ~h:

cos(ϕ) =
~w · ~h
|~w||~h|

(2)

~w · ~h =
∑
i

wihi (3)

Mitchell notes that there are at least three prob-
lems with using cosine similarity in connection
with the construction of a probabilistic model:
(a) the sum of all cosine values is not unity, (b)
word frequency does not pay a role in the cal-
culation, such that a rare synonym of a frequent
word might get a high similarity rating, despite
low predictability, and (c) the calculation can re-
sult in negative values.
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This problem is addressed by two changes to the
notion of dot product used in the calculation of the
cosine:

~w · ~h =
∑
i

p(ci|w)
p(ci)

p(ci|h)
p(ci)

(4)

The influence of word frequencies is then restored
using p(w) and p(ci):

p(w|h) = p(w)
∑
i

p(ci|w)
p(ci)

p(ci|h)
p(ci)

p(ci) (5)

This expression reweights the new scalar product
with the likelihood of the given words and the con-
text words. We refer the reader to Mitchell (2011)
in order to see that this is a true probability. The
application of Bayes’ Rule allows us to rewrite the
formula as p(w|h) =

∑
i p(w|ci)p(ci|h). Never-

theless, equation (5) is better suited to our task, as
it operates directly over our word vectors.

4.3 Incremental processing

Equation (5) provides a conditional probability for
a word w and its history h. To calculate the prod-
uct p(ci|w)

p(ci)
p(ci|h)
p(ci)

, we need the components of the
vectors for w and h at the current position in the
sentence. We can get ~w from directly from the
vector space of words. However, ~h does not have
a direct representation in that space, and it must be
constructed compositionally:

~h1 = ~w1 Initialization (6)
~hn = f(~hn−1, ~wn) Composition (7)

f is a vector composition function that can be cho-
sen independently from the model. The history is
initialized using the vector of the first word and
combined step-by-step with the vectors of the fol-
lowing words. History vectors that arise from the
composition step are normalized2:

hi =
ĥi∑

j
ĥjp(cj)

Normalization (8)

The equations (5), (6), (7), and (8) represent a sim-
ple language model, assuming calculation of vec-
tor components with equation (1).

2This equation is slightly different from what appears in
Mitchell (2011). We present here a corrected formula based
on private communication with the author.

4.4 Accounting for word order
The model described so far is based on semantic
coherence and mostly ignores word order. Conse-
quently, it has poor predictive power. In this sec-
tion, we describe how a notion of word order is
included in the model through the integration of
an n-gram language model.

Specifically, equation (5) can be represented as
the product of two factors:

p(w|h) = p(w)∆(w, h) (9)

∆(w, h) =
∑
i

p(ci|w)
p(ci)

p(ci|h)
p(ci)

p(ci) (10)

where ∆ is the semantic component that scales
p(w) in function of the context. A word w that has
a close semantic similarity to a history h should
receive higher or lower probability depending on
whether ∆ is higher or lower than 1. In order to
make this into a prediction, p(w) is replaced with
a trigram probability.

p̂(wn, hn−1, w
n−1
n−2) = p(wn|wn−1

n−2)∆(wn, hn−1)
(11)

However, this change means that the result is no
longer a true probability. Instead, equation 11 can
be seen as an estimate of semantic similarity. In
order to restore its status as a probability, Mitchell
includes another normalization step:

p(wn|hn−3, w
n−1
n−2) =



p(wn|wn−1
n−2)

Function words
p̂(wn,hn−3,w

n−1
n−2)∑

wc

p̂(wc,hn−3,w
n−1
n−2)∑

wc

p(wc|wn−1
n−2)

Content words
(12)

The model hence simply uses the trigram model
probability for function words, making the as-
sumption that the distributional representation of
such words does not include useful information.
On the other hand, content words obtain a por-
tion of the probability mass whose size depends
on its similarity estimate p̂(wn, hn−3, w

n−1
n−2) rel-

ative to the similarity estimates of all other
words

∑
wc
p̂(wc, hn−3, w

n−1
n−2). The factor∑

wc
p(wc|wn−1

n−2) ensures that not all of the proba-
bility mass is divided up among the content words
wc; rather, only the mass assigned by the n-gram
model at position wn−1

n−2 is re-distributed. The
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probability mass of the function words remains
unchanged.

Mitchell (2011) restricts the history so that only
words outside the trigram window are taken into
account in order to keep the n-gram model and the
semantic similarity model independent. Thus, the
n-gram model represents local dependencies, and
the semantic model represents longer-distance de-
pendencies.

The final model that we use in our experiment
consists of equations (1), (6), (7), (8) and (12).

5 Evaluation Methods

Our goal is to test whether semantically
reweighted surprisal can explain spoken word
durations over and above more simple factors that
are known to influence word durations, such as
word length, frequency and predictability using
a simpler language model. Our first experiment
tests whether semantic surprisal based on a model
trained using in-domain data is predictive of
word pronunciation duration, considering the
UID hypothesis. For our in-domain model, we
estimate surprisal using 10-fold cross-validation
over the AMI corpus: we divide the corpus into
ten equally-sized segments and produce surprisal
values for each word in each segment based on a
model trained from the other nine segments. We
then use linear mixed effects modeling (LME) via
the lme4 package in R (Pinheiro and Bates, 2000;
Bates et al., 2014) in order to account for word
pronunciation length. We follow the approach of
Demberg et al. (2012).

Linear mixed effects modelling is a generaliza-
tion of linear regression modeling and includes
both fixed effects and random effects. This is par-
ticularly useful when we have a statistical units
(e.g., speakers) each with their own set of repeated
measures (e.g., word duration), but each such unit
has its own particular characteristics (e.g., some
speakers naturally speak more slowly than others).
These are the random effects. The fixed effects are
those characteristics that are expected not to vary
across such units. LME modeling learns coeffi-
cients for all of the predictors, defining a regres-
sion equation that should account for the data in
the dependent variable (in our case, word pronun-
ciation duration). The variance in the data that a
model cannot explain is referred to as the residual.
We denote statistical significances in the following
way: *** means a p-value ≤ 0.001, ** means p ≤

0.01, * means p ≤ 0.05, and no stars means that
the predictor is not significant (p > 0.05).

In our regression models, all the variables are
centered and scaled to reduce effects of correla-
tions between predictors. Furthermore, we log-
transformed the response variable (actual spoken
word durations from the corpus) as well as the du-
ration estimates from the MARY speech synthesis
system to obtain more normal distributions, which
are prerequisite for applying the LME models. All
conclusions drawn here also hold for versions of
the model where no log transformation is used.

From the AMI corpus, we filter out data points
(words) that have a pronunciation duration of zero
or those that are longer than two seconds, the latter
in order to avoid including such things as pauses
for thought. We also remove items that are not
represented in Gigaword. That leaves us with
790,061 data points for further analysis. How-
ever, in our semantic model, function words are
not affected by the ∆ semantic similarity adjust-
ment and are therefore not analyzable for the ef-
fect of semantically-weighted trigram predictabil-
ity. That leaves 260k data points for analysis in the
models.

6 Baseline model

As a first step, we estimate a baseline model
which does not include the in-domain semantic
surprisal. The response variable in this model
are the word durations observed in the corpus.
Predictor variables include DMARY (the context-
dependent spoken word duration as estimated by
the MARY speech synthesis system), word fre-
quency estimates from the same domain as well
as the GigaWord corpus (FAMI and FGiga, both
as log relative frequencies), the interaction be-
tween estimated word durations and in-domain
frequency, (DMARY:FAMI) and a domain-general
trigram model (SAMI-3). Our model also includes a
random intercept for each speaker, as well as ran-
dom slopes under speaker for DMARY and SAMI-3.
The baseline model is shown in Table 1.

All predictors in the baseline model shown in
Table 1 significantly improve model fit. We can
see that the MARY-TTS estimated word durations
are a positive highly significant predictor in the
model. Furthermore, the word frequency esti-
mates from the domain general corpus as well as
the in-domain frequency estimates are significant
negative predictors of word durations, this means
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Predictor Coefficient t-value Sig.

(Intercept) 0.034 4.90 ***
DMARY 0.427 143.97 ***
FAMI -0.137 -60.26 ***
FGiga -0.051 -18.92 ***
SGiga-3gram 0.032 10.94 ***
DMARY:FAMI -0.003 -2.12 *

Table 1: Fixed effects of a baseline model includ-
ing the data points for which we could calculate
semantic surprisal.

that as expected, words durations are shorter for
more frequent words. We can furthermore see
that n-gram surprisal is a significant positive pre-
dictor of spoken word durations; i.e., more unex-
pected words have longer durations than otherwise
predicted. Finally, there is also a significant in-
teraction between estimated word durations and
in-domain word frequency, which means that the
duration of long and frequent words is corrected
slightly downward.

7 Experiment 1: in-domain model

The AMI corpus contains spoken conversations,
and is thus quite different from the written cor-
pora we have available. When we train an n-
gram model in domain (using 10-fold cross valida-
tion), perplexities for the in-domain model (67.9)
are much lower than for a language model trained
on gigaword (359.7), showing that the in-domain
model is a better language model for the data3.

In order to see the effect of semantic surprisal
estimated based on the in-domain language model
and reweighted for semantic similarity within the
same sentence as described in Section 3, we then
expand the baseline model, adding SSemantics as
a predictor. Table 2 shows the fixed effects of
this expanded model. The predictor for semantic
surprisal is significant, but the coefficient is neg-
ative. This apparently contradicts our hypothesis
that semantic surprisal has a UID effect on pronun-
ciation duration, so that higher SSemantics means
higher DAMI. We found that these results are very
stable—in particular, the same results also hold if
we estimate a separate model with SSemantics as a
predictor and residuals of the baseline model as a

3Low perplexity estimates are reflective of the spoken
conversational domain. Perplexities on content words are
much higher: 357.3 for the in-domain model and 2169.8 for
the out of domain model.

Predictor Coefficient t-value Sig.

(Intercept) 0.031 4.53 **
DMARY 0.428 144.06 ***
FAMI -0.148 -59.15 ***
FGiga -0.043 -15.10 ***
SGiga-3gram 0.047 14.60 ***
SSemantics -0.028 -9.78 ***
DMARY:FAMI -0.003 -2.27 *

Table 2: Fixed effects of the baseline model with
semantic surprisal (including also a random slope
for semantic surprisal under subject).

Figure 1: GAM-calculated spline for SSemantics for
the in-domain model.

response variable, and when we include in-domain
semantic surprisal in a model where there ngram
surprisal on the out of domain corpus is not in-
cluded as a predictor variable.

In order to understand the unexpected behaviour
of SSemantics, we make use of a generalized additive
model (GAM) with the R package mgcv. Com-
pared to LME models, GAMs are parameter-free
and do not assume a linear form of the predic-
tors. Instead, for every predictor, GAMs can fit a
spline. We learn a GAM using the residuals of the
baseline model as a response variable and fitting
semantic surprisal based on the in-domain model;
see Table 2.

In figure 1, we see that SSemantics is poorly fit
by a linear function. In particular, there are two
intervals in the curve. Between surprisal values 0
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and 1.5, the curve falls, but between 1.5 and 4, it
rises. (For high surprisal values, there are too few
data points from which to draw conclusions.)

Therefore, we decided to divide the data up into
datapoints with SSemantics above 1.5 and below 1.5.
We then modelled the effect of SSemantics on the
residuals of the baseline model, with SSemantics as
a random effect. This is to remove a possible effect
of collinearity between SSemantics and the other
predictors.

Interval of
Predictor Coef. t-value Sig.

SSemantics

[0,∞[
(Intercept) 0 0
SSemantics -0.013 -7.01 ***

[0, 1.5[
(Intercept) 0 0
SSemantics -0.06 -18.56 ***

[1.5,∞[
(Intercept) 0 0
SSemantics 0.013 5.50 ***

Table 3: Three models of SSemantics as a random ef-
fect over the residuals of baseline models learned
from the remaining fixed effects. The first model
is over the entire range.

Table 3 shows that the random effect of se-
mantic surprisal is positive and significant in the
range of semantic surprisal above 1.5. That low
surprisals have the opposite effect compared to
what we expect suggests to us that using the
AMI corpus as an in-domain source of training
data presents a problem. The observed result
for the relationship between semantic surprisal
and spoken word durations does not only hold
for the semantic surprisal model, but also for the
standard non-weight-adjusted in-domain trigram
model. We therefore hypothesize that our seman-
tic surprisal model is producing surprisal values
that are low because they are common in this do-
main (both higher frequency and higher similari-
ties), but speakers are coming to the AMI task with
“models” trained on out-of-domain data. Thus,
words that are apparently very low-surprisal dis-
play longer pronunciation durations as an artifact
of the model. To test this, we conducted a second
experiment, for which we built a model with out-
of-domain data.

8 Experiment 2: out-of-domain training

In order to test for the effect of possible under-
estimation of surprisal due to in-domain training,

we also tested the semantic surprisal model when
trained on more domain-general text. As train-
ing data for our semantic model, we use a ran-
domly selected 1% (by sentence) of the English
Gigaword 5.0 corpus. This is lowercased, with ha-
pax legomena treated as unknown words. We test
the model against the entire AMI corpus. Further-
more, we also compare our semantic surprisal val-
ues to the syntactic surprisal values calculated by
Demberg et al. (2012) for the AMI corpus, which
we obtained from the authors. As noted above,
the out-of-domain language model has higher per-
plexity on the AMI corpus—that is, it is a lower-
performing language model. On the other hand, it
may represent overall speaker experience more ac-
curately than the in-domain model; in other words,
it may be a better model of the speaker.

8.1 Results

Once again, the semantic surprisal model is only
different from a general n-gram model on content
words. We therefore first compare whether the
model that is reweighted for semantic surprisal can
explain more of the variance than the same model
without semantic reweighting.

We again use the same baseline model as for the
in-domain experiment, see table 1. As the seman-
tic surprisal model represents a reweighted trigram
model, there is a high correlation between the
trigram model and the semantic surprisal model.
We thus need to know whether the semantically
reweighted model is better than the simple tri-
gram model. When we compare a model that con-
tains both trigram surprisal and semantic surprisal
as a predictor, we find that this model is signifi-
cantly better than the model including only trigram
surprisal (AIC of baseline model: 618427; AIC
of model with semantic surprisal: 618394; χ2 =
35.8; p < 0.00001). On the other hand, the model
including both predictors is only marginally better
than the model including semantic surprsial (AIC
of semantic surprisal model: 618398). This means
that the simpler trigram surprisal model does not
contribute anything over the semantic model, and
that the semantic model fits the word duration data
better. Table 4 shows the model with semantic sur-
prisal as a predictor.

Furthermore, we wanted to check whether our
hypothesis about the negative result for the in-
domain model was indeed due to an under-
estimation of surprisal of in-domain words for the
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Predictor Coefficient t-value Sig.

(Intercept) 0.034 4.90 ***
DMARY 0.427 144.36 ***
FAMI -0.135 -58.76 ***
FGiga -0.053 -19.99 ***
SSemantics 0.034 11.70 ***
DMARY:FAMI -0.003 -2.09 *

Table 4: Model of spoken word durations,
with random intercept and random slopes for
DMARY and SSemantics under speaker.

Figure 2: GAM-calculated spline for SSemantics for
the ouf-of-domain model.

in-domain model. We again calculate a GAM
model showing the effect of out-of-domain seman-
tic surprisal in a model containing also the base-
line predictors, see figure 2.

We can see that word durations increase with
increasing semantic surprisal, and that there is in
particular no effect of longer word durations for
low surprisal words. This result is also confirmed
by LME models splitting up the data in small and
large surprisal values, as done for the in-domain
model in Table 3; semantic surprisal based on the
out-of-domain model is a significant positive pre-
dictor in both data ranges.

Next, we tested whether the semantic similarity
model improves model fit over and above a model
also containing syntactic surprisal as a predictor.
We find that syntactic surprisal improves model fit
over and above the model including semantic sur-

Predictor Coefficient t-value Sig.

(Intercept) -0.058 -6.58 ***
DMARY 0.425 144.04 ***
FAMI -0.131 -57.04 ***
FGiga -0.051 -19.41 ***
SSyntax 0.011 17.61 ***
SSemantics 0.015 4.99 ***
DMARY:FAMI -0.007 -4.44 ***

Table 5: Linear mixed effects model for spoken
word durations in the AMI corpus, for a model in-
cluding both syntactic and semantic surprisal as a
predictor as well as a random intercept and slope
for DMARY and SSemantics under speaker.

prisal (χ2 = 309.5; p < 0.00001), and that seman-
tic surprisal improves model fit over and above
a model including syntactic surprisal and trigram
surprisal (χ2 = 28.5; p < 0.00001). Table 5
shows the model containing both syntactic based
on the Roark parser ((Roark et al., 2009); see also
Demberg et al. (2012) for use of syntactic surprisal
for estimating spoken word durations) and seman-
tic surprisal.

Finally, we split our dataset into data from na-
tive and non-native speakers of English (305 na-
tive speakers, vs. 376 non-native speakers). Ta-
ble 6 shows generally larger effects for native than
non-native speakers. In particular, the interac-
tion between duration estimates and word frequen-
cies, and semantic surprisal were not significant
predictors in the non-native speaker model (how-
ever, random slopes for semantic surprisal un-
der speaker still improved model fit very strongly,
showing that non-native speakers differ in whether
and how they take into account semantic surprisal
during language production).

9 Discussion

Our analysis shows that high information density
at one linguistic level of description (for exam-
ple, syntax or semantics) can lead to a compen-
satory effect at a different linguistic level (here,
spoken word durations). Our data also shows how-
ever, that the choice of training data for the mod-
els is important. A language model trained exclu-
sively in a specific domain, while a good language
model, may not be representative of speaker’s
overall language experience. This is particularly
relevant for the AMI corpus, in which groups of
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Native Speaker Non-native Speaker

Predictor Coefficient t-value Sig. Coefficient t-value Sig.
(Intercept) -0.1706 -13.76 *** 0.035 3.42 ***
DMARY 0.4367 105.43 *** 0.415 104.09 ***
FAMI -0.1407 -42.54 *** -0.122 -38.66 ***
FGiga -0.0421 -11.07 *** -0.063 -18.70 ***
SSyntax 0.0132 14.22 *** 0.009 11.96 ***
SSemantics 0.0246 5.89 *** ***
DMARY:FAMI -0.0139 -6.12 *** ***

Table 6: Linear mixed effects models for spoken word durations in the AMI corpus, for native as well as
non-native speakers of English separately. The models include both syntactic and semantic surprisal as
a fixed effect, and a random intercept and slope for DMARY and SSemantics under speaker.

researchers are discussing the design of a remote
control, but where it is not necessarily the case
that these people discuss remote controls very fre-
quently. Furthermore, none of the speakers were
present in the whole corpus, and most of the> 600
speakers participated only in very few meetings.
This means that the in-domain language model
strongly over-estimates people’s familiarity with
the domain.

Words that are highly predictable for the in-
domain model (but which are not highly pre-
dictable in general) were not pronounced faster,
as evident in our first analysis. When seman-
tic surprisal is however estimated based on a
more domain-general text like Gigaword, we find
a significant positive effect of semantic surprisal
on spoken word durations across the complete
spectrum from very predictable to unpredictable
words.

These results also point to an interesting sci-
entific question: to what extent to people use
their domain-general model for adapting their lan-
guage and speech production in a specific situa-
tion, and to what extent do they use a domain-
specific model for adaptation? Do people adapt
during a conversation, such that in-domain mod-
els would be more relevant for language produc-
tion in situations where speakers are more versed
in the domain?

10 Conclusions and future work

We have described a method by which it is pos-
sible to connect a semantic level of representation
(estimated using a distributional model) to obser-
vations about speech patterns at the word level.
From a language science or psycholinguistic per-

spective, we have shown that semantic surprisal
affects spoken word durations in natural conversa-
tional speech, thus providing additional supportive
evidence for the uniform information density hy-
pothesis. In particular, we find evidence that UID
effects connect linguistic levels of representation,
providing more information about the architecture
of the human processor or generator.

This work also has implications for designers
of speech synthesis systems: our results point to-
wards using high-level information about the rate
of information transfer measured in terms of sur-
prisal for estimating word durations in order to
make artificial word pronunciation systems sound
more natural.

Finally, the strong effect of training data domain
raises scientific questions about how speakers use
domain-general and -specific knowledge in com-
municative cooperation with listeners at the word
pronunciation level.

One possible next step would be to expand this
work to more complex semantic spaces which in-
clude stronger notions of compositionality, seman-
tic roles, and so on, such as the distributional ap-
proaches of Baroni and Lenci (2010), Sayeed and
Demberg (2014), and Greenberg et al. (2015) that
contain grammatical information but rely on vec-
tor operations.
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Abstract

Latent variable topic models such as La-
tent Dirichlet Allocation (LDA) can dis-
cover topics from text in an unsupervised
fashion. However, scaling the models up
to the many distinct topics exhibited in
modern corpora is challenging. “Flat”
topic models like LDA have difficulty
modeling sparsely expressed topics, and
richer hierarchical models become compu-
tationally intractable as the number of top-
ics increases.

In this paper, we introduce efficient meth-
ods for inferring large topic hierarchies.
Our approach is built upon the Sparse
Backoff Tree (SBT), a new prior for la-
tent topic distributions that organizes the
latent topics as leaves in a tree. We show
how a document model based on SBTs
can effectively infer accurate topic spaces
of over a million topics. We introduce a
collapsed sampler for the model that ex-
ploits sparsity and the tree structure in or-
der to make inference efficient. In exper-
iments with multiple data sets, we show
that scaling to large topic spaces results in
much more accurate models, and that SBT
document models make use of large topic
spaces more effectively than flat LDA.

1 Introduction

Latent variable topic models, such as Latent
Dirichlet Allocation (Blei et al., 2003), are popu-
lar approaches for automatically discovering top-
ics in document collections. However, learning
models that capture the large numbers of distinct
topics expressed in today’s corpora is challenging.
While efficient methods for learning large topic
models have been developed (Li et al., 2014; Yao
et al., 2009; Porteous et al., 2008), these methods

have focused on “flat” topic models such as LDA.
Flat topic models over large topic spaces are prone
to overfitting: even in a Web-scale corpus, some
words are expressed rarely, and many documents
are brief. Inferring a large topic distribution for
each word and document given such sparse data
is challenging. As a result, LDA models in prac-
tice tend to consider a few thousand topics at most,
even when training on billions of words (Mimno et
al., 2012).

A promising alternative to flat topic models is
found in recent hierarchical topic models (Paisley
et al., 2015; Blei et al., 2010; Li and McCallum,
2006; Wang et al., 2013; Kim et al., 2013; Ahmed
et al., 2013). Topics of words and documents can
be naturally arranged into hierarchies. For exam-
ple, an article on the topic of the Chicago Bulls is
also relevant to the more general topics of NBA,
Basketball, and Sports. Hierarchies can combat
data sparsity: if data is too sparse to place the
term “Pau Gasol” within the Chicago Bulls topic,
perhaps it can be appropriately modeled at some-
what less precision within the Basketball topic. A
hierarchical model can make fine-grained distinc-
tions where data is plentiful, and back-off to more
coarse-grained distinctions where data is sparse.
However, current hierarchical models are hindered
by computational complexity. The existing infer-
ence methods for the models have runtimes that
increase at least linearly with the number of top-
ics, making them intractable on large corpora with
large numbers of topics.

In this paper, we present a hierarchical topic
model that can scale to large numbers of dis-
tinct topics. Our approach is built upon a new
prior for latent topic distributions called a Sparse
Backoff Tree (SBT). SBTs organize the latent top-
ics as leaves in a tree, and smooth the distribu-
tions for each topic with those of similar top-
ics nearby in the tree. SBT priors use absolute
discounting and learned backoff distributions for
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smoothing sparse observation counts, rather than
the fixed additive discounting utilized in Dirichlet
and Chinese Restaurant Process models. We show
how the SBT’s characteristics enable a novel col-
lapsed sampler that exploits the tree structure for
efficiency, allowing SBT-based document models
(SBTDMs) that scale to hierarchies of over a mil-
lion topics.

We perform experiments in text modeling and
hyperlink prediction, and find that SBTDM is
more accurate compared to LDA and the re-
cent nested Hierarchical Dirichlet Process (nHDP)
(Paisley et al., 2015). For example, SBTDMs
with a hundred thousand topics achieve perplex-
ities 28-52% lower when compared with a stan-
dard LDA configuration using 1,000 topics. We
verify that the empirical time complexity of in-
ference in SBTDM increases sub-linearly in the
number of topics, and show that for large topic
spaces SBTDM is more than an order of magni-
tude more efficient than the hierarchical Pachinko
Allocation Model (Mimno et al., 2007) and nHDP.
Lastly, we release an implementation of SBTDM
as open-source software.1

2 Previous Work

The intuition in SBTDM that topics are naturally
arranged in hierarchies also underlies several other
models from previous work. Paisley et al. (2015)
introduce the nested Hierarchical Dirichlet Pro-
cess (nHDP), which is a tree-structured generative
model of text that generalizes the nested Chinese
Restaurant Process (nCRP) (Blei et al., 2010).
Both the nCRP and nHDP model the tree struc-
ture as a random variable, defined over a flexi-
ble (potentially infinite in number) topic space.
However, in practice the infinite models are trun-
cated to a maximal size. We show in our experi-
ments that SBTDM can scale to larger topic spaces
and achieve greater accuracy than nHDP. To our
knowledge, our work is the first to demonstrate a
hierarchical topic model that scales to more than
one million topics, and to show that the larger
models are often much more accurate than smaller
models. Similarly, compared to other recent hi-
erarchical models of text and other data (Petinot
et al., 2011; Wang et al., 2013; Kim et al., 2013;
Ahmed et al., 2013; Ho et al., 2010), our focus is
on scaling to larger data sets and topic spaces.

1http://websail.cs.northwestern.edu/
projects/sbts/

The Pachinko Allocation Model (PAM) intro-
duced by Li & McCallum (Li and McCallum,
2006) is a general approach for modeling corre-
lations among topic variables in latent variable
models. Hierarchical organizations of topics, as
in SBT, can be considered as a special case of a
PAM, in which inference is particularly efficient.
We show that our model is much more efficient
than an existing PAM topic modeling implemen-
tation in Section 5.

Hu and Boyd-Graber (2012) present a method
for augmenting a topic model with known hier-
archical correlations between words (taken from
e.g. WordNet synsets). By contrast, our focus
is on automatically learning a hierarchical orga-
nization of topics from data, and we demonstrate
that this technique improves accuracy over LDA.
Lastly, SparseLDA (Yao et al., 2009) is a method
that improves the efficiency of inference in LDA
by only generating portions of the sampling distri-
bution when necessary. Our collapsed sampler for
SBTDM utilizes a related intuition at each level of
the tree in order to enable fast inference.

3 Sparse Backoff Trees

In this section, we introduce the Sparse Backoff
Tree, which is a prior for a multinomial distribu-
tion over a latent variable. We begin with an ex-
ample showing how an SBT transforms a set of
observation counts into a probability distribution.
Consider a latent variable topic model of text doc-
uments, similar to LDA (Blei et al., 2003) or pLSI
(Hofmann, 1999). In the model, each token in a
document is generated by first sampling a discrete
latent topic variable Z from a document-specific
topic distribution, and then sampling the token’s
word type from a multinomial conditioned on Z.

We will focus on the document’s distribution
over topics, ignoring the details of the word types
for illustration. We consider a model with 12
latent topics, denoted as integers from the set
{1, . . . , 12}. Assume we have assigned latent
topic values to five tokens in the document, specif-
ically the topics {1, 4, 4, 5, 12}. We indicate the
number of times topic value z has been selected as
nz (Figure 1).

Given the five observations, the key question
faced by the model is: what is the topic distribu-
tion over a sixth topic variable from the same doc-
ument? In the case of the Dirichlet prior utilized
for the topic distribution in LDA, the probability
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Figure 1: An example Sparse Backoff Tree over 12 latent variable values.

that the sixth topic variable has value z is propor-
tional to nz + α, where α is a hyperparameter of
the model.

SBT differs from LDA in that it organizes the
topics into a tree structure in which the topics are
leaves (see Figure 1). In this paper, we assume
the tree structure, like the number of latent top-
ics, is manually selected in advance. With an SBT
prior, the estimate of the probability of a topic z
is increased when nearby topics in the tree have
positive counts. Each interior node a of the SBT
has a discount δa associated with it. The SBT
transforms the observation counts nz into pseudo-
counts (shown in the last row in the figure) by
subtracting δa from each non-zero descendent of
each interior node a, and re-distributing the sub-
tracted value uniformly among the descendants of
a. For example, the first state has a total of 0.90
subtracted from its initial count n1 = 1, and then
receives 0.30/3 from its parent, 1.08/6 from its
grandparent, and 0.96/12 from the root node for
a total pseudo-count of 0.46. The document’s dis-
tribution over a sixth topic variable is then propor-
tional to these pseudo-counts.

When each document tends to discuss a set of
related topics, the SBT prior will assign a higher
likelihood to the data when related topics are lo-
cated nearby in the tree. Thus, by inferring latent
variable values to maximize likelihood, nearby
leaves in the tree will come to represent related
topics. SBT, unlike LDA, encodes the intuition
that a topic becomes more likely in a document
that also discusses other, related topics. In the
example, the pseudo-count the SBT produces for
topic six (which is related to other topics that oc-
cur in the document) is almost three times larger
than that of topic eight, even though the observa-

tion counts are zero in each case. In LDA, top-
ics six and eight would have equal pseudo-counts
(proportional to α).

3.1 Definitions
LetZ be a discrete random variable that takes inte-
ger values in the set {1, . . . , L}. Z is drawn from a
multinomial parameterized by a vector θ of length
L.

Definition 1 A Sparse Backoff Tree
SBT (T , δθ, Q(z)) for the discrete random
variable Z consists of a rooted tree T containing
L leaves, one for each value of Z; a coefficient
δa > 0 for each interior node a of T ; and a
backoff distribution Q(z).

Figure 1 shows an example SBT. The example
includes simplifications we also utilize in our ex-
periments, namely that all nodes at a given depth
in the tree have the same number of children and
the same δ value. However, the inference tech-
niques we present in Section 4 are applicable to
any tree T and set of coefficients {δa}.

For a given SBT S, let ∆S(z) indicate the sum
of all δa values for all ancestors a of leaf node z
(i.e., all interior nodes on the path from the root to
z). For example, in the figure, ∆S(z) = 0.90 for
all z. This amount is the total absolute discount
that the SBT applies to the random variable value
z.

We define the SBT prior implicitly in terms of
the posterior distribution it induces on a random
variable Z drawn from a multinomial θ with an
SBT prior, after θ is integrated out. Let the vector
n = [n1, . . . , nL] denote the sufficient statistics
for any given observations drawn from θ, where nz
is the number of times value z has been observed.
Then, the distribution over a subsequent draw of Z
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given SBT prior S and observations n is defined
as:

P (Z = z|S,n) ≡ (1)
max(nz −∆S(z), 0) +B(S, z,n)Q(z)

K(S,
∑

i ni)

where K(S,
∑

i ni) is a normalizing constant that
ensures the distribution sums to one for any fixed
number of observations

∑
i ni, andB(S, z,n) and

Q(z) are defined as below.
The quantity B(S, z,n) expresses how much of

the discounts from all other leaves z′ contribute to
the probability of z. For an interior node a, let
desc(a) indicate the number of leaves that are de-
scendants of a, and let desc+(a) indicate the num-
ber of leaf descendants z of a that have non-zero
values nz . Then the contribution of the discount
δa of node a to each of its descendent leaves is
b(a,n) = δadesc

+(a)/desc(a). We then define
B(S, z,n) to be the sum of b(a,n) over all inte-
rior nodes a on the path from the root to z.

The function Q(z) is a backoff distribution. It
allows the portion of the discount probability mass
that is allocated to z to vary with a proposed dis-
tribution Q(z). This is useful because in practice
the SBT is used as a prior for a conditional distri-
bution, for example the distribution P (Z|w) over
topic Z given a word w in a topic model of text. In
that case, an estimate of P (Z|w) for a rare word
w may be improved by “mixing in” the marginal
topic distribution Q(z) = P (Z = z), analogous
to backoff techniques in language modeling. Our
document model described in the following sec-
tion utilizes two different Q functions, one uni-
form (Q(z) = 1/T ) and another related to the
marginal topic distribution P (z).

4 The SBT Document Model

We now present the SBT document model, a prob-
abilistic latent variable model of text documents
that utilizes SBT priors. We then provide a col-
lapsed sampler for the model that exploits the tree
structure to make inference more efficient.

Our document model follows the Latent Dirich-
let Allocation (LDA) Model (Blei et al., 2003), il-
lustrated graphically in Figure 2 (left). In LDA,
a corpus of documents is generated by sampling
a topic distribution θd for each document d, and
also a distribution over words φz for each topic.
Then, in document d each token w is generated
by first sampling a topic z from the multinomial

P (Z|θd), and then sampling w from the multino-
mial P (W |Z, φz).

The SBTDM is the same as LDA, with one
significant difference. In LDA, the parameters θ
and φ are sampled from two Dirichlet priors, with
separate hyperparameters α and β. In SBTDM,
the parameters are instead sampled from particu-
lar SBT priors. Specifically, the generative model
is:

θ ∼ SBT (T , δθ, Qθ(z) = 1/T )
φ′ ∼ SBT (T , δφ, Qφ(z) = P ∗(z))
λ ∼ Dirichlet(α′)

Z|θ ∼ Discrete(θ)
W |z, φ′, λ ∼ Discrete(λφ′.,z/P (z|φ′))
The variable φ′ represents the distribution of

topics given words, P (Z|W ). The SBTDM sam-
ples a distribution φ′w over topics for each word
type w in the vocabulary (of size V ). In SBTDM,
the random variable φ′w has dimension L, rather
than V for φz as in LDA. We also draw a prior
word frequency distribution, λ = {λw} for each
word w. 2 We then apply Bayes Rule to obtain
the conditional distributions P (W |Z, φ′) required
for inference. The expression λφ′.,z/P (z|φ′) de-
notes the normalized element-wise product of two
vectors of length V : the prior distribution λ over
words, and the vector of probabilities P (z|w) =
φ′w,z over words w for the given topic z.

The SBT priors for φ′ and θ share the same tree
structure T , which is fixed in advance. The SBTs
have different discount factors, denoted by the hy-
perparameters δθ and δφ. Finally, the backoff dis-
tribution for θ is uniform, whereas φ’s backoff dis-
tribution P ∗ is defined below.

4.1 Backoff distribution P ∗(z)
SBTDM requires choosing a backoff distribution
P ∗(z) for φ′. As we now show, it is possible to
select a natural backoff distribution P ∗(z) that en-
ables scalable inference.

Given a set of observations n, we will set P ∗(z)
proportional to P (z|Sφ,n). This is a recursive
definition, because P (z|Sφ,n) depends on P ∗(z).
Thus, we define:

P ∗(z) ≡
∑

w max(nwz −∆S(z), 0)
C −∑w Bw(Sφ, z,n)

(2)

2The word frequency distribution does not impact the in-
ferred topics (because words are always observed), and in our
experiments we simply use maximum likelihood estimates
for λw (i.e., setting α′ to be negligibly small). Exploring
other word frequency distributions is an item of future work.
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Figure 2: The Latent Dirichlet Allocation Model (left) and our SBT Document Model (right).

where C >
∑

w Bw(Sφ, z,n) is a hyperparame-
ter, nwz is the number of observations of topic z
for word w in n, and Bw indicates the function
B(Sφ, z,n) defined in Section 3.1, for the partic-
ular wordw. That is,

∑
w Bw(Sφ, z,n) is the total

quantity of smoothing distributed to topic z across
all words, before the backoff distribution P ∗(z) is
applied.

The form of P ∗(z) has two key advantages.
The first is that setting P ∗(z) proportional to
the marginal topic probability allows SBTDM to
back-off toward marginal estimates, a success-
ful technique in language modeling (Katz, 1987)
(where it has been utilized for word probabilities,
rather than topic probabilities). Secondly, setting
the backoff distribution in this way allows us to
simplify inference, as described below.

4.2 Inference with Collapsed Sampling
Given a corpus of documents D, we infer the val-
ues of the hidden variables Z using the collapsed
Gibbs sampler popular in Latent Dirichlet Alloca-
tion models (Griffiths and Steyvers, 2004). Each
variable Zi is sampled given the settings of all
other variables (denoted as n−i):

P (Zi = z|n−i, D) ∝ P (z|n−i, T , δθ)·
P (wi|z,n−i, T , δφ) (3)

The first term on the right-hand side is given by
Equation 1. The second can be rewritten as:

P (wi|z,n−i, T , δφ) =
P (z, wi|n−i, T , δφ)
P (z|n−i, T , δφ)

(4)

4.3 Efficient Inference Implementation
The primary computational cost when scaling to
large topic spaces involves constructing the sam-
pling distribution. Both LDA with collapsed sam-
pling and SBTDM share an advantage in space

Algorithm 1 Compute the sampling distribution
for a product of two multinomials with SBT priors
with Q(z) = 1

function INTERSECT(SBT Node ar , SBT Node al)
if ar, al are leaves then

τ(i)← τ(ar)τ(al)
return i

end if
i.r ← ar

r(i)← b(al) ∗ τ(ar)
i.l← al ; b(i.l)← 0
l(i)← b(ar) ∗ τ(al)− b(ar)b(al)desc(ar)
τ(i)+ = r(i) + l(i)
for all child c non-zero for ar and al do

ic ← INTERSECT(ar.c, al.c)
i.children += ic
τ(i) += τ(ic)

end for
return i

end function

complexity: the model parameters are specified by
a sparse set of non-zero counts denoting how of-
ten tokens of each word or document are assigned
to each topic. However, in general the sampling
distribution for SBTDM has non-uniform proba-
bilities for each of L different latent variable val-
ues. Thus, even if many parameters are zero, a
naive approach that computes the complete sam-
pling distribution will still take time linear in L.

However, in SBTs the sampling distribution can
be constructed efficiently using a simple recursive
algorithm that exploits the structure of the tree.
The result is an inference algorithm that often re-
quires far less than linear time in L, as we verify
in our experiments.

First, we note that P (z, wi|n−i, T , δφ) is pro-
portional to the sum of two quantities: the dis-
counted count max(nz −∆S , 0) and the smooth-
ing probability mass B(S, z,n)Q(z). By choos-
ing Q(z) = P ∗(z), we can be ensured that P ∗(z)
normalizes this sum. Thus, the backoff distri-
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bution cancels through the normalization. This
means we can normalize the SBT for φ′ in ad-
vance by scaling the non-zero counts by a factor of
1/P ∗(z), and then at inference time we need only
multiply pointwise two multinomials with SBT
priors and uniform backoff distributions.

The intersection of two multinomials drawn
from SBT priors with uniform backoff distribu-
tions can be performed efficiently for sparse trees.
The algorithm relies on two quantities defined for
each node of each tree. The first, b(a,n), was de-
fined in Section 3. It denotes the smoothing that
the interior node a distributes (uniformly) to each
of its descendent leaves. We denote b(a,n) as b(a)
in this section for brevity. The second quantity,
τ(a), expresses the total count mass of all leaf de-
scendants of a, excluding the smoothing from an-
cestors of a.

With the quantities b(a) and τ(a) for all a, we
can efficiently compute the sampling distribution
of the product of two SBT-governed multinomi-
als (which we refer to as an SBTI). The method
is shown in Algorithm 1. It takes two SBT nodes
as arguments; these are corresponding nodes from
two SBT priors that share the same tree structure
T . It returns an SBTI, a data structure representing
the sampling distribution.

The efficiency of Algorithm 1 is reflected in
the fact that the algorithm only recurses for child
nodes c with non-zero τ(c) for both of the SBT
node arguments. Because such cases will be rare
for sparse trees, often Algorithm 1 only needs to
traverse a small portion of the original SBTs in or-
der to compute the sampling distribution exactly.
Our experiments illustrate the efficiency of this al-
gorithm in practice.

Finally, we can efficiently sample from either
an SBTI or a single SBT-governed multinomial.
The sampling methods are straightforward recur-
sive methods, supplied in Algorithms 2 and 3.

Algorithm 2 Sample(SBT Node a)
procedure SAMPLE(SBT Node a)

if a is a leaf then return a
end if
Sample from {b(a)desc(a), τ(a)− b(a)desc(a)}.
if back-off distribution b(a)desc(a) selected then

return Uniform[a’s descendents]
else

Sample a’s child c ∼ τ(c)
return SAMPLE(c)

end if
end procedure

Algorithm 3 Sampling from an SBTI
function SAMPLE(SBTI Node i)

if i is a leaf then return i
end if
Sample from {r(i), l(i), τ(i)− r(i)− l(i)}
if right distribution r(i) selected then

return SAMPLE(i.r)
else

if left distribution l(i) selected then
return SAMPLE(i.l)

else
Sample i’s child c ∼ τ(c)
return SAMPLE(c)

end if
end if

end function

4.4 Expansion

Much of the computational expense encountered
in inference with SBTDM occurs shortly after ini-
tialization. After a slow first several sampling
passes, the conditional distributions over topics
for each word and document become concentrated
on a sparse set of paths through the SBT. From
that point forward, sampling is faster and requires
much less memory.

We utilize the hierarchical organization of the
topic space in SBTs to side-step this computa-
tional complexity by adding new leaves to the
SBTs of a trained SBTDM. This is a “coarse-
to-fine” (Petrov and Charniak, 2011) training ap-
proach that we refer to as expansion. Using ex-
pansion, the initial sampling passes of the larger
model can be much more time and space efficient,
because they leverage the already-sparse structure
of the smaller trained SBTDM.

Our expansion method takes as input an inferred
sampling distribution n for a given tree T . The
algorithm adds k new branches to each leaf of T
to obtain a larger tree T ′. We then transform the
sampling state by replacing each ni ∈ n with one
of its children in T ′. For example, in Figure 1,
expanding with k = 3 would result in a new tree
containing 36 topics, and the single observation of
topic 4 in T would be re-assigned randomly to one
of the topics {10, 11, 12} in T ′.

5 Experiments

We now evaluate the efficiency and accuracy of
SBTDM. We evaluate SBTs on two data sets, the
RCV1 Reuters corpus of newswire text (Lewis et
al., 2004), and a distinct data set of Wikipedia
links, WPL. We consider two disjoint subsets of
RCV1, a small training set (RCV1s) and a larger
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training set (RCV1).
We compare the accuracy and efficiency of

SBTDM against flat LDA and two existing hier-
archical models, the Pachinko Allocation Model
(PAM) and nested Hierarchical Dirichlet Process
(nHDP).

To explore how the SBT structure impacts mod-
eling performance, we experiment with two dif-
ferent SBTDM configurations. SBTDM-wide is
a shallow tree in which the branching factor in-
creases from the root downward in the sequence
3, 6, 6, 9, 9, 12, 12. Thus, the largest model we
consider has 3 ·6 ·6 ·9 ·9 ·12 ·12 = 1,259,712 dis-
tinct latent topics. SBTDM-tall has lower branch-
ing factors of either 2 or 3 (so in our evaluation its
depth ranges from 3 to 15). As in SBTDM-wide,
in SBTDM-tall the lower branching factors occur
toward the root of the tree. We vary the number
of topics by considering balanced subtrees of each
model. For nHDP, we use the same tree structures
as in SBT-wide. In preliminary experiments, using
the tall structure in nHDP yielded similar accuracy
but was somewhat slower.

Similar to our LDA implementation, SBTDM
optimizes hyperparameter settings as sampling
proceeds. We use local beam search to choose
new hyperparameters that maximize leave-one-
out likelihood for the distributions P (Z|d) and
P (Z|w) on the training data, evaluating the pa-
rameters against the current state of the sampler.

We trained all models by performing 100 sam-
pling passes through the full training corpus (i.e.,
approximately 10 billion samples for RCV1, and
8 billion samples for WPL). We evaluate perfor-
mance on held-out test sets of 998 documents for
RCV1 (122,646 tokens), and 200 documents for
WPL (84,610 tokens). We use the left-to-right al-
gorithm (Wallach et al., 2009) over a randomized
word order with 20 particles to compute perplex-
ity. We re-optimize the LDA hyperparameters at
regular intervals during sampling.

5.1 Small Corpus Experiments

We begin with experiments over a small corpus
to highlight the efficiency advantages of SBTDM.

Data Set Tokens Vocabulary Documents
RCV1s 2,669,093 46,130 22,149
RCV1 101,184,494 283,911 781,262
WPL 82,154,551 1,141,670 199,000

Table 1: Statistics of the three training corpora.

As argued above, existing hierarchical models re-
quire inference that becomes expensive as the
topic space increases in size. We illustrate this by
comparing our model with PAM and nHDP. We
also compare against a fast “flat” LDA implemen-
tation, SparseLDA, from the MALLET software
package (McCallum, 2002).

For SBTDM we utilize a parallel inference ap-
proach, sampling all variables using a fixed esti-
mate of the counts n, and then updating the counts
after each full sampling pass (as in (Wang et al.,
2009)). The SparseLDA and nHDP implementa-
tions are also parallel. All parallel methods use
15 threads. The PAM implementation provided in
MALLET is single-threaded.

Our efficiency measurements are shown in Fig-
ure 3. We plot the mean wall-clock time to per-
form 100 sampling passes over the RCV1s corpus,
starting from randomly initialized models (i.e.
without expansion in SBTDM). For the largest
plotted topic sizes for PAM and nHDP, we esti-
mate total runtime using a small number of iter-
ations. The results show that SBTDM’s time to
sample increases well below linear in the number
of topics. Both SBTDM methods have runtimes
that increase at a rate substantially below that of
the square root of the number of topics (plotted
as a blue line in the figure for reference). For the
largest numbers of topics in the plot, when we in-
crease the number of topics by a factor of 12, the
time to sample increases by less than a factor of
1.7 for both SBT configurations.

We also evaluate the accuracy of the mod-
els on the small corpus. We do not compare
against PAM, as the MALLET implementation
lacks a method for computing perplexity for a
PAM model. The results are shown in Table 3.
The SBT models tend to achieve lower perplexity
than LDA, and SBTDM-tall performs slightly bet-
ter than SBTDM-wide for most topic sizes. The
best model, SBT-wide with 8,748 topics, achieves
perplexity 14% lower than the best LDA model
and 2% lower than the best SBTDM-tall model.
The LDA model overfits for the largest topic con-
figuration, whereas at that size both SBT models
remain at least as accurate as any of the LDA mod-
els in Table 3.

We also evaluated using the topic coherence
measure from (Mimno et al., 2011), which re-
flects how well the learned topics reflect word co-
occurrence statistics in the training data. Follow-
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Figure 3: Time (in seconds) to perform a sampling
pass over the RCV1s corpus as number of topics
varies, plotted on a log-log scale. The SBT models
scale sub-linearly in the number of topics.

ing recent experiments with the measure (Stevens
et al., 2012), we use ε = 10−12 pseudo-co-
occurrences of each word pair and we evaluate the
average coherence using the top 10 words for each
topic. Table 2 shows the results. PAM, LDA, and
nHDP have better coherence at smaller topic sizes,
but SBT maintains higher coherence as the num-
ber of topics increases.

Topics LDA PAM nHDP SBTDM SBTDM
-wide -tall

18 -420.8 -421.2 -422.9 -444.3 -440.2
108 -434.8 -430.9 -554.3 -445.4 -445.8
972 -451.2 - -548.1 -443.3 -443.8
8748 -615.3 - - -444.3 -444.1

Table 2: Average topic coherence on the small
RCV1s corpus.

5.1.1 Evaluating Expansion
The results discussed above do not utilize ex-
pansion in SBTDM. To evaluate expansion, we
performed separate experiments in which we ex-
panded a 972-topic model trained on RCV1s to
initialize a 8,748-topic model. Compared to ran-
dom initialization, expansion improved efficiency
and accuracy. Inference in the expanded model
executed approximately 30% faster and used 70%
less memory, and the final 8,748-topic models had
approximately 10% lower perplexity.

5.2 Large Corpus Results
Our large corpus experiments are reported in Ta-
ble 4. Here, we compare the test set perplexity

of a single model for each topic size and model
type. We focus on SBTDM-tall for the large
corpora. We utilize expansion (see Section 4.4)
for SBTDM-tall models with more than a thou-
sand topics on each data set. The results show
that on both data sets, SBTDM-tall utilizes larger
numbers of topics more effectively. On RCV1,
LDA improves only marginally between 972 and
8,748 topics, whereas SBTDM-tall improves dra-
matically. For 8,748 topics, SBTDM-tall achieves
a perplexity score 17% lower than LDA model
on RCV1, and 29% lower on WPL. SBT im-
proves even further in larger topic configurations.
Training and testing LDA with our implementa-
tion using over a hundred thousand topics was not
tractable on our data sets due to space complexity
(the MALLET implementation exceeded our max-
imum 250G of heap space). As discussed above,
expansion enables SBTDM to dramatically reduce
space complexity for large topic spaces.

The results highlight the accuracy improve-
ments found from utilizing larger numbers of top-
ics than are typically used in practice. For exam-
ple, an SBTDM with 104,976 topics achieves per-
plexity 28-52% lower when compared with a stan-
dard LDA configuration using only 1,000 topics.

RCV1 WPL
# Topics LDA SBTDM-tall LDA SBTDM-tall
108 1,121 1,148 7,049 7,750
972 820 841 2,598 2,095
8,748 772 637 1,730 1,236
104,976 - 593 - 1,242
1,259,712 - 626 - -

Table 4: Model accuracy on large corpora (cor-
pus perplexity measure). The SBT model utilizes
larger numbers of topics more effectively.

5.3 Exploring the Learned Topics

Lastly, we qualitatively examine whether the
SBTDM’s learned topics reflect meaningful hi-
erarchical relationships. From an SBTDM of
104,976 topics trained on the Wikipedia links data
set, we examined the first 108 leaves (these are
contained in a single subtree of depth 5). 760
unique terms (i.e. Wikipedia pages) had positive
counts for the topics, and 500 of these terms were
related to radio stations.

The leaves appear to encode fine-grained sub-
categorizations of the terms. In Figure 4, we pro-
vide examples from one subtree of six topics (top-
ics 13-18). For each topic t, we list the top three
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Number of Topics
Model 18 108 972 8,748 104,976
LDA 1420 (16.3) 1016 (9.8) 844 (1.8) 845 (3.3) 1058 (4.1)
nHDP 1433 (19.6) 1446 (53.3) 1583 (157.7) - -
SBTDM-wide 1510 (31.5) 1091 (31.8) 797 (3.5) 723 (18.2) 844 (60.1)
SBTDM-tall 1480 (13.5) 1051 (9.1) 787 (10.5) 736 (3.2) 776 (14.1)

Table 3: Small training corpus (RCV1s) performance. Shown is perplexity averaged over three runs for
each method and number of topics, with standard deviation in parens. Both SBTDM models achieve
lower perplexity than LDA and nHDP for the larger numbers of topics.
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Figure 4: An example of topics from a 104,976-
topic SBTDM defined over Wikipedia pages.

terms w (ranked by symmetric conditional prob-
ability, P (w|t)P (t|w)), and a specific categoriza-
tion that applies to the three terms. Interestingly,
as shown in the figure, the top terms for the six
topics we examined were all four-character “call
letters” for particular radio stations. Stations with
similar content or in nearby locations tend to clus-
ter together in the tree. For example, the two topics
focused on radio stations in Tennessee (TN) share
the same parent, as do the topics focused on North
Carolina (NC) AM stations. More generally, all
six topics focus on radio stations in the southern
US.

Figure 5 shows a different example, from a
model trained on the RCV1 corpus. In this ex-
ample, we first select only those terms that oc-
cur at least 2,000 times in the corpus and have
a statistical association with their topic that ex-
ceeds a threshold, and we again rank terms by
symmetric conditional probability. The 27-topic
subtree detailed in the figure appears to focus on
terms from major storylines in United States pol-
itics in early 1997, including El Niño, Lebanon,
White House Press Secretary Mike McCarry, and
the Senate confirmation hearings of CIA Director
nominee Tony Lake.
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Figure 5: An example of topics from an 8,748-
topic SBTDM defined over the RCV1 corpus.

6 Conclusion and Future Work

We introduced the Sparse Backoff Tree (SBT), a
prior for latent topic distributions that organizes
the latent topics as leaves in a tree. We pre-
sented and experimentally analyzed a document
model based on the SBT, called an SBTDM. The
SBTDM was shown to utilize large topic spaces
more effectively than previous techniques.

There are several directions of future work. One
limitation of the current work is that the SBT is
defined only implicitly. We plan to investigate
explicit representations of the SBT prior or re-
lated variants. Other directions include developing
methods to learn the SBT structure from data, as
well as applying the SBT prior to other tasks, such
as sequential language modeling.
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Abstract

Language modeling (LM) involves
determining the joint probability of
words in a sentence. The conditional
approach is dominant, representing the
joint probability in terms of conditionals.
Examples include n-gram LMs and neural
network LMs. An alternative approach,
called the random field (RF) approach, is
used in whole-sentence maximum entropy
(WSME) LMs. Although the RF approach
has potential benefits, the empirical
results of previous WSME models are
not satisfactory. In this paper, we revisit
the RF approach for language modeling,
with a number of innovations. We
propose a trans-dimensional RF (TDRF)
model and develop a training algorithm
using joint stochastic approximation and
trans-dimensional mixture sampling. We
perform speech recognition experiments
on Wall Street Journal data, and find that
our TDRF models lead to performances as
good as the recurrent neural network LMs
but are computationally more efficient in
computing sentence probability.

1 Introduction

Language modeling is crucial for a variety
of computational linguistic applications, such
as speech recognition, machine translation,
handwriting recognition, information retrieval and
so on. It involves determining the joint probability
p(x) of a sentence x, which can be denoted as
a pair x = (l, xl), where l is the length and
xl = (x1, . . . , xl) is a sequence of l words.

Currently, the dominant approach is conditional
modeling, which decomposes the joint probability
of xl into a product of conditional probabilities 1

1And the joint probability of x is modeled as p(x) =

by using the chain rule,

p(x1, . . . , xl) =
l∏

i=1

p(xi|x1, . . . , xi−1). (1)

To avoid degenerate representation of the con-
ditionals, the history of xi, denoted as hi =
(x1, · · · , xi−1), is reduced to equivalence classes
through a mapping φ(hi) with the assumption

p(xi|hi) ≈ p(xi|φ(hi)). (2)

Language modeling in this conditional
approach consists of finding suitable mappings
φ(hi) and effective methods to estimate
p(xi|φ(hi)). A classic example is the traditional
n-gram LMs with φ(hi) = (xi−n+1, . . . , xi−1).
Various smoothing techniques are used for
parameter estimation (Chen and Goodman, 1999).
Recently, neural network LMs, which have begun
to surpass the traditional n-gram LMs, also follow
the conditional modeling approach, with φ(hi)
determined by a neural network (NN), which can
be either a feedforward NN (Schwenk, 2007) or a
recurrent NN (Mikolov et al., 2011).

Remarkably, an alternative approach is used in
whole-sentence maximum entropy (WSME) lan-
guage modeling (Rosenfeld et al., 2001). Specifi-
cally, a WSME model has the form:

p(x;λ) =
1
Z

exp{λT f(x)} (3)

Here f(x) is a vector of features, which can be
arbitrary computable functions of x, λ is the cor-
responding parameter vector, and Z is the global
normalization constant. Although WSME mod-
els have the potential benefits of being able to
naturally express sentence-level phenomena and
integrate features from a variety of knowledge

p(xl)p(〈EOS〉|xl), where 〈EOS〉 is a special token placed
at the end of every sentence. Thus the distribution of the
sentence length is implicitly modeled.
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sources, their performance results ever reported
are not satisfactory (Rosenfeld et al., 2001; Amaya
and Benedı́, 2001; Ruokolainen et al., 2010).

The WSME model defined in (3) is basically a
Markov random field (MRF). A substantial chal-
lenge in fitting MRFs is that evaluating the gradi-
ent of the log likelihood requires high-dimensional
integration and hence is difficult even for mod-
erately sized models (Younes, 1989), let alone
the language model (3). The sampling methods
previously tried for approximating the gradient are
the Gibbs sampling, the Independence Metropolis-
Hasting sampling and the importance sampling
(Rosenfeld et al., 2001). Simple applications of
these methods are hardly able to work efficient-
ly for the complex, high-dimensional distribution
such as (3), and hence the WSME models are in
fact poorly fitted to the data. This is one of the
reasons for the unsatisfactory results of previous
WSME models.

In this paper, we propose a new language
model, called the trans-dimensional random
field (TDRF) model, by explicitly taking
account of the empirical distributions of lengths.
This formulation subsequently enables us to
develop a powerful Markov chain Monte Carlo
(MCMC) technique, called trans-dimensional
mixture sampling and then propose an effective
training algorithm in the framework of stochastic
approximation (SA) (Benveniste et al., 1990;
Chen, 2002). The SA algorithm involves jointly
updating the model parameters and normalization
constants, in conjunction with trans-dimensional
MCMC sampling. Section 2 and 3 present the
model definition and estimation respectively.

Furthermore, we make several additional in-
novations, as detailed in Section 4, to enable
successful training of TDRF models. First, the
diagonal elements of hessian matrix are estimat-
ed during SA iterations to rescale the gradient,
which significantly improves the convergence of
the SA algorithm. Second, word classing is in-
troduced to accelerate the sampling operation and
also improve the smoothing behavior of the mod-
els through sharing statistical strength between
similar words. Finally, multiple CPUs are used to
parallelize the training of our RF models.

In Section 5, speech recognition experiments
are conducted to evaluate our TDRF LMs, com-
pared with the traditional 4-gram LMs and the re-
current neural network LMs (RNNLMs) (Mikolov

et al., 2011) which have emerged as a new state-
of-art of language modeling. We explore the use
of a variety of features based on word and class
information in TDRF LMs. In terms of word error
rates (WERs) for speech recognition, our TDRF
LMs alone can outperform the KN-smoothing 4-
gram LM with 9.1% relative reduction, and per-
form comparably to the RNNLM with a slight
0.5% relative reduction. To our knowledge, this
result represents the first strong empirical evidence
supporting the power of using the whole-sentence
language modeling approach. Our open-source
TDRF toolkit is released publicly 2.

2 Model Definition

Throughout, we denote 3 by xl = (x1, . . . , xl) a
sentence (i.e., word sequence) of length l ranging
from 1 to m. Each element of xl corresponds to
a single word. For l = 1, . . . ,m, we assume
that sentences of length l are distributed from an
exponential family model:

pl(xl;λ) =
1

Zl(λ)
eλ

T f(xl), (4)

where f(xl) = (f1(xl), f2(xl), . . . , fd(xl))T is
the feature vector and λ = (λ1, λ2, . . . , λd)T is
the corresponding parameter vector, and Zl(λ) is
the normalization constant:

Zl(λ) =
∑
xl

eλ
T f(xl) (5)

Moreover, we assume that length l is associated
with probability πl for l = 1, . . . ,m. Therefore,
the pair (l, xl) is jointly distributed as

p(l, xl;λ) = πl pl(xl;λ). (6)

We provide several comments on the above
model definition. First, by making explicit the
role of lengths in model definition, it is clear that
the model in (6) is a mixture of random fields
on sentences of different lengths (namely on sub-
spaces of different dimensions), and hence will be
called a trans-dimensional random field (TDRF).
Different from the WSME model (3), a crucial
aspect of the TDRF model (6) is that the mixture
weights πl can be set to the empirical length
probabilities in the training data. The WSME

2http://oa.ee.tsinghua.edu.cn/
˜ouzhijian/software.htm

3We add sup or subscript l, e.g. in xl, pl(), to make clear
that the variables and distributions depend on length l.
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model (3) is essentially also a mixture of RFs, but
the mixture weights implied are proportional to the
normalizing constants Zl(λ):

p(l, xl;λ) =
Zl(λ)
Z(λ)

1
Zl(λ)

eλ
T f(xl), (7)

where Z(λ) =
∑m

l=1 Zl(λ).
A motivation for proposing (6) is that it is

very difficult to sample from (3), namely (7),
as a mixture distribution with unknown weights
which typically differ from each other by orders of
magnitudes, e.g. 1040 or more in our experiments.
Setting mixture weights to the known, empirical
length probabilities enables us to develop a very
effective learning algorithm, as introduced in Sec-
tion 3. Basically, the empirical weights serve as a
control device to improve sampling from multiple
distributions (Liang et al., 2007; Tan, 2015) .

Second, it can be shown that if we incorporate
the length features 4 in the vector of features f(x)
in (3), then the distribution p(x;λ) in (3) under
the maximum entropy (ME) principle will take the
form of (6) and the probabilities (π1, . . . , πm) in
(6) implied by the parameters for the length fea-
tures are exactly the empirical length probabilities.

Third, a feature fi(xl), 1 ≤ i ≤ d, can be any
computable function of the sentence xl, such as
n-grams. In our current experiments, the features
fi(xl) and their corresponding parameters λi are
defined to be position-independent and length-
independent. For example, fi(xl) =

∑
k fi(x

l, k),
where fi(xl, k) is a binary function of xl evaluated
at position k. As a result, the feature fi(xl) takes
values in the non-negative integers.

3 Model Estimation

We develop a stochastic approximation algorith-
m using Markov chain Monte Carlo to estimate
the parameters λ and the normalization constants
Z1(λ), ..., Zm(λ) (Benveniste et al., 1990; Chen,
2002). The core algorithms newly designed in
this paper are the joint SA for simultaneously
estimating parameters and normalizing constants
(Section 3.2) and trans-dimensional mixture sam-
pling (Section 3.3) which is used as Step I of the
joint SA. The most relevant previous works that
we borrowed from are (Gu and Zhu, 2001) on SA
for fitting a single RF, (Tan, 2015) on sampling and

4The length feature corresponding to length l is a binary
feature that takes one if the sentence x is of length l, and
otherwise takes zero.

estimating normalizing constants from multiple
RFs of the same dimension, and (Green, 1995) on
trans-dimensional MCMC.

3.1 Maximum likelihood estimation
Suppose that the training dataset consists of nl
sentences of length l for l = 1, . . . ,m. First,
the maximum likelihood estimate of the length
probability πl is easily shown to be nl/n, where
n =

∑m
l=1 nl. By abuse of notation, we set

πl = nl/n hereafter. Next, the log-likelihood of
λ given the empirical length probabilities is

L(λ) =
1
n

m∑
l=1

∑
xl∈Dl

log pl(xl;λ), (8)

where Dl is the collection of sentences of length l
in the training set. By setting to 0 the derivative of
(8) with respect to λ, we obtain that the maximum
likelihood estimate of λ is determined by the
following equation:

∂L(λ)
∂λ

= p̃[f ]− pλ[f ] = 0, (9)

where p̃[f ] is the expectation of the feature vector
f with respect to the empirical distribution:

p̃[f ] =
1
n

m∑
l=1

∑
xl∈Dl

f(xl), (10)

and pλ[f ] is the expectation of f with respect to
the joint distribution (6) with πl = nl/n:

pλ[f ] =
m∑
l=1

nl
n
pλ,l[f ], (11)

and pλ,l[f ] =
∑

xl f(xl)pl(xl;λ). Eq.(9) has
the form of equating empirical expectations p̃[f ]
with theoretical expectations pλ[f ], as similarly
found in maximum likelihood estimation of single
random field models.

3.2 Joint stochastic approximation
Training random field models is challenging due
to numerical intractability of the normalizing con-
stants Zl(λ) and expectations pλ,l[f ]. We propose
a novel SA algorithm for estimating the parame-
ters λ by (9) and, simultaneously, estimating the
log ratios of normalization constants:

ζ∗l (λ) = log
Zl(λ)
Z1(λ)

, l = 1, . . . ,m (12)
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Algorithm 1 Joint stochastic approximation
Input: training set

1: set initial values λ(0) = (0, . . . , 0)T and
ζ(0) = ζ∗(λ(0))− ζ∗1 (λ(0))

2: for t = 1, 2, . . . , tmax do
3: set B(t) = ∅
4: set (L(t,0), X(t,0)) = (L(t−1,K), X(t−1,K))

Step I: MCMC sampling
5: for k = 1→ K do
6: sampling (See Algorithm 3)

(L(t,k), X(t,k)) = SAMPLE(L(t,k−1), X(t,k−1))

7: set B(t) = B(t) ∪ {(L(t,k), X(t,k))}
8: end for

Step II: SA updating
9: Compute λ(t) based on (14)

10: Compute ζ(t) based on (15) and (16)
11: end for

where Z1(λ) is chosen as the reference value and
can be calculated exactly. The algorithm can be
obtained by combining the standard SA algorithm
for training single random fields (Gu and Zhu,
2001) and a trans-dimensional extension of the
self-adjusted mixture sampling algorithm (Tan,
2015).

Specifically, consider the following joint distri-
bution of the pair (l, xl):

p(l, xl;λ, ζ) ∝ πl
eζl
eλ

T f(xl), (13)

where πl is set to nl/n for l = 1, . . . ,m, but
ζ = (ζ1, . . . , ζm)T with ζ1 = 0 are hypothesized
values of the truth ζ∗(λ) = (ζ∗1 (λ), . . . , ζ∗m(λ))T

with ζ∗1 (λ) = 0. The distribution p(l, xl;λ, ζ)
reduces to p(l, xl;λ) in (6) if ζ were identical
to ζ∗(λ). In general, p(l, xl;λ, ζ) differs from
p(l, xl;λ) in that the marginal probability of
length l is not necessarily πl.

The joint SA algorithm, whose pseudo-code is
shown in Algorithm 1, consists of two steps at
each time t as follows.

Step I: MCMC sampling. Generate a sample
set B(t) with p(l, xl;λ(t−1), ζ(t−1)) as the station-
ary distribution (see Section 3.3).

Step II: SA updating. Compute

λ(t) = λ(t−1) + γλ

{
p̃[f ]−

∑
(l,xl)∈B(t) f(xl)

K

}
(14)

where γλ is a learning rate of λ; compute

ζ(t− 1
2 ) = ζ(t) + γζ

{
δ1(B(t))

π1
, . . . ,

δm(B(t))

πm

}
(15)

ζ(t) = ζ(t− 1
2 ) − ζ(t− 1

2 )

1 (16)

where γζ is a learning rate of ζ, and δl(B(t)) is the
relative frequency of length l appearing in B(t):

δl(B(t)) =

∑
(j,xj)∈B(t) 1(j = l)

K
. (17)

The rationale in (15) is to adjust ζ based on
how the relative frequencies of lengths δl(B(t))
are compared with the desired length probabili-
ties πl. Intuitively, if the relative frequency of
some length l in the sample set B(t) is greater
(or respectively smaller) than the desired length
probability πl, then the hypothesized value ζ(t−1)

l

is an underestimate (or overestimate) of ζ∗l (λ(t−1))
and hence should be increased (or decreased).

Following Gu & Zhu (2001) and Tan (2015), we
set the learning rates in two stages:

γλ =

{
t−βλ if t ≤ t0

1

t−t0+t
βλ
0

if t > t0
(18)

γζ =

{
(0.1t)−βζ if t ≤ t0

1

0.1(t−t0)+(0.1t0)
βζ

if t > t0
(19)

where 0.5 < βλ, βζ < 1. In the first stage (t ≤ t0),
a slow-decaying rate of t−β is used to introduce
large adjustments. This forces the estimates λ(t)

and ζ(t) to fall reasonably fast into the true values.
In the second stage (t > t0), a fast-decaying
rate of t−1 is used. The iteration number t is
multiplied by 0.1 in (19), to make the the learning
rate of ζ decay more slowly than λ. Commonly,
t0 is selected to ensure there is no more significant
adjustment observed in the first stage.

3.3 Trans-dimensional mixture sampling
We describe a trans-dimensional mixture sam-
pling algorithm to simulate from the joint distri-
bution p(l, xl;λ, ζ), which is used with (λ, ζ) =
(λ(t−1), ζ(t−1)) at time t for MCMC sampling in
the joint SA algorithm. The name “mixture sam-
pling” reflects the fact that p(l, xl;λ, ζ) represents
a labeled mixture, because l is a label indicating
that xl is associated with the distribution pl(xl; ζ).
With fixed (λ, ζ), this sampling algorithm can
be seen as formally equivalent to reversible jump
MCMC (Green, 1995), which was originally pro-
posed for Bayes model determination.

The trans-dimensional mixture sampling algo-
rithm consists of two steps at each time t: local
jump between lengths and Markov move of sen-
tences for a given length. In the following, we de-
note byL(t−1) andX(t−1) the length and sequence
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before sampling, but use the short notation (λ, ζ)
for (λ(t−1), ζ(t−1)).

Step I: Local jump. The Metropolis-Hastings
method is used in this step to sample the length.
Assuming L(t−1) = k, first we draw a new length
j ∼ Γ(k, ·). The jump distribution Γ(k, l) is
defined to be uniform at the neighborhood of k :

Γ(k, l) =


1

3
, if k ∈ [2,m− 1], l ∈ [k − 1, k + 1]

1

2
, if k = 1, l ∈ [1, 2] or k = m, l ∈ [m− 1,m]

0, otherwise
(20)

where m is the maximum length. Eq.(20) restricts
the difference between j and k to be no more than
one. If j = k, we retain the sequence and perform
the next step directly, i.e. set L(t) = k and X(t) =
X(t−1). If j = k + 1 or j = k − 1, the two cases
are processed differently.

If j = k + 1, we first draw an element
(i.e., word) Y from a proposal distribution:
Y ∼ gk+1(y|X(t−1)). Then we set
L(t) = j (= k + 1) and X(t) = {X(t−1), Y } with
probability

min

{
1,

Γ(j, k)

Γ(k, j)

p(j, {X(t−1), Y };λ, ζ)
p(k,X(t−1);λ, ζ)gk+1(Y |X(t−1))

}
(21)

where {X(t−1), Y } denotes a sequence of length
k + 1 whose first k elements are X(t−1) and the
last element is Y .

If j = k − 1, we set L(t) = j (= k − 1) and
X(t) = X

(t−1)
1:j with probability

min

{
1,

Γ(j, k)

Γ(k, j)

p(j,X
(t−1)
1:j ;λ, ζ)gk(X

(t−1)
k |X(t−1)

1:j )

p(k,X(t−1);λ, ζ)

}
(22)

where X(t−1)
1:j is the first j elements of X(t−1) and

X
(t−1)
k is the kth element of X(t−1).
In (21) and (22), gk+1(y|xk) can be flexibly

specified as a proper density function in y. In our
application, we find the following choice works
reasonably well:

gk+1(y|xk) =
p(k + 1, {xk, y};λ, ζ)∑
w p(k + 1, {xk, w};λ, ζ) . (23)

Step II: Markov move. After the step of local
jump, we obtain

X(t) =


X(t−1) if L(t) = k

{X(t−1), Y } if L(t) = k + 1
X

(t−1)
1:k−1 if L(t) = k − 1

(24)

Then we perform Gibbs sampling on X(t), from
the first element to the last element (Algorithm 2)

Algorithm 2 Markov Move
1: for i = 1→ L(t) do
2: draw W ∼ p(L(t), {X(t)

1:i−1, w,X
(t)

i+1:L(t)};λ, ζ)
3: set X(t)

i = W
4: end for

4 Algorithm Optimization and
Acceleration

The joint SA algorithm may still suffer from
slow convergence, especially when λ is high-
dimensional. We introduce several techniques for
improving the convergence of the algorithm and
reducing computational cost.

4.1 Improving SA recursion

We propose two techniques to effectively improve
the convergence of SA recursion.

The first technique is to incorporate Hessian
information, similarly as in related works on s-
tochastic approximation (Gu and Zhu, 2001) and
stochastic gradient descent algorithms (Byrd et al.,
2014). But we only use the diagonal elements of
the Hessian matrix to re-scale the gradient, due to
high-dimensionality of λ.

Taking the second derivatives of L(λ) yields

Hi = −d
2L(λ)
dλ2

i

= p[f2
i ]−

m∑
l=1

πl(pl[fi])2 (25)

where Hi denotes the ith diagonal element of
Hessian matrix. At time t, before updating the
parameter λ (Step II in Section 3.2), we compute

H
(t− 1

2
)

i =
1
K

∑
(l,xl)∈B(t)

fi(xl)2 −
m∑
l=1

πl(p̄l[fi])2,

(26)

H
(t)
i = H

(t−1)
i + γH(H

(t− 1
2
)

i −H(t−1)
i ), (27)

where p̄l[fi] = |B(t)
l |−1

∑
(l,xl)∈B(t)

l

fi(xl), and

B
(t)
l is the subset, of size |B(t)

l |, containing all
sentences of length l in B(t).

The second technique is to introduce the “mini-
batch” on the training set. At each iteration, a
subset D(t) of K sentences are randomly selected
from the training set. Then the gradient is approx-
imated with the overall empirical expectation p̃[f ]
being replaced by the empirical expectation over
the subset D(t). This technique is reminiscent of
stochastic gradient descent using a random sub-
sample of training data to achieve fast convergence
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Figure 1: Examples of convergence curves on
training set after introducing hessian and training
set mini-batching.

of optimization algorithms (Bousquet and Bottou,
2008).

By combining the two techniques, we revise the
updating equation (14) of λ to

λ
(t)
i = λ

(t−1)
i +

γλ

max(H
(t)
i , h)

×{∑
(l,xl)∈D(t) fi(x

l)

K
−
∑

(l,xl)∈B(t) fi(x
l)

K

} (28)

where 0 < h < 1 is a threshold to avoid H
(t)
i

being too small or even zero. Moreover, a constant
tc is added to the denominator of (18), to avoid too
large adjustment of λ, i.e.

γλ =

{ 1
tc+tβλ

if t ≤ t0,
1

tc+t−t0+t
βλ
0

if t > t0.
(29)

Fig.1(a) shows the result after introducing hessian
estimation, and Fig.1(b) shows the effect of train-
ing set mini-batching.

4.2 Sampling acceleration
For MCMC sampling in Section 3.3, the Gibbs
sampling operation of drawing X(t)

i (Step 2 in Al-
gorithms 2) involves calculating the probabilities
of all the possible elements in position i. This
is computationally costly, because the vocabulary
size |V| is usually 10 thousands or more in prac-
tice. As a result, the Gibbs sampling operation
presents a bottleneck limiting the efficiency of
sampling algorithms.

We propose a novel method of using class in-
formation to effectively reduce the computational
cost of Gibbs sampling. Suppose that each word
in vocabulary V is assigned to a single class.
If the total class number is |C|, then there are,
on average, |V|/|C| words in each class. With
the class information, we can first draw the class
of X(t)

i , denoted by c
(t)
i , and then draw a word

Algorithm 3 Class-based MCMC sampling
1: function SAMPLE((L(t−1), X(t−1)))
2: set k = L(t−1)

3: init (L(t), X(t)) = (k,X(t−1))
Step I: Local jump

4: generate j ∼ Γ(k, ·) (Eq.(20))
5: if j = k + 1 then
6: generate C ∼ Qk+1(c)

7: generate Y ∼ ğk+1(y|X(t−1), C) (Eq.31)
8: set L(t) = j and X(t) = {X(t−1), Y } with

probability (Eq.21) and (Eq.32)
9: end if

10: if j = k − 1 then
11: set L(t) = j and X(t) = X

(t−1)
1:k−1 with probabil-

ity Eq.(22) and (Eq.32)
12: end if

Step II: Markov move
13: for i = 1→ L(t) do
14: draw C ∼ Qi(c)
15: set c(t)i = C with probability (Eq.30)
16: draw W ∈ V

c
(t)
i

17: set X(t)
i = W

18: end for
19: return (L(t), X(t))
20: end function

belonging to class c(t)i . The computational cost is
reduced from |V| to |C|+ |V|/|C| on average.

The idea of using class information to accel-
erate training has been proposed in various con-
texts of language modeling, such as maximum
entropy models (Goodman, 2001b) and RNN LMs
(Mikolov et al., 2011). However, the realization of
this idea is different for training our models.

The pseudo-code of the new sampling method is
shown in Algorithm 3. Denote by Vc the subset of
V containing all the words belonging to class c. In
the Markov move step (Step 13 to 18 in Algorithm
3), at each position i, we first generate a class C
from a proposal distributionQi(c) and then accept
C as the new c

(t)
i with probability

min

{
1,
Qi(c

(t)
i )

Qi(C)

pi(C)

pi(c
(t)
i )

}
(30)

where

pi(c) =
∑
w∈Vc

p(L(t), {X(t)
1:i−1, w,X

(t)

i+1:L(t)};λ, ζ).

The probabilities Qi(c) and pi(c) depend on
{X(t)

1:i−1, X
(t)

i+1:L(t)}, but this is suppressed in the
notation. Then we normalize the probabilities of
words belonging to class c(t)i and draw a word as
the new X

(t)
i from the class c(t)i .

Similarly, in the local jump step with k =
L(t−1), if the proposal j = k + 1 (Step 5 to 9
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in Algorithm 3), we first generate C ∼ Qk+1(c)
and then generate Y from class C by

ğk+1(y|xk, C) =
p(k + 1, {xk, y};λ, ζ)∑

w∈VC
p(k + 1, {xk, w};λ, ζ) (31)

with xk = X(t−1). Then we set L(t) = j and
X(t) = {X(t−1), Y } with probability as defined
in (21), by setting

gk+1(y|xk) = Qk+1(C)ğk+1(y|xk, C). (32)

If the proposal j = k − 1, similarly we use
acceptance probability (22) with (32).

In our application, we construct Qi(c) dynami-
cally as follows. Write xl for {X(t−1), Y } in Step
8 or for X(t) in Step 11 of Algorithm 3. First,
we construct a reduced model pcl (x

l), by including
only the features that depend on xli through its
class and retaining the corresponding parameters
in pl(xl;λ, ζ). Then we define the distribution

Qi(c) = pcl ({xl1:i−1, c, x
l
i+1:l}),

which can be directly calculated without knowing
the value of xli.

4.3 Parallelization of sampling
The sampling operation can be easily parallelized
in SA Algorithm 1. At each time t, both the
parameters λ and log normalization constants ζ
are fixed at λ(t−1) and ζ(t−1). Instead of simu-
lating one Markov Chain, we simulate J Markov
Chains on J CPU cores separately. As a result, to
generate a sample set B(t) of size K, only K/J
sampling steps need to be performed on each CPU
core. By parallelization, the sampling operation is
completed J times faster than before.

5 Experiments

5.1 PTB perplexity results
In this section, we evaluate the performance of
LMs by perplexity (PPL). We use the Wall Street
Journal (WSJ) portion of Penn Treebank (PTB).
Sections 0-20 are used as the training data (about
930K words), sections 21-22 as the development
data (74K) and section 23-24 as the test data
(82K). The vocabulary is limited to 10K words,
with one special token 〈UNK〉 denoting words
not in the vocabulary. This setting is the same as
that used in other studies (Mikolov et al., 2011).

The baseline is a 4-gram LM with modified
Kneser-Ney smoothing (Chen and Goodman,

Type Features
w (w−3w−2w−1w0)(w−2w−1w0)(w−1w0)(w0)
c (c−3c−2c−1c0)(c−2c−1c0)(c−1c0)(c0)

ws (w−3w0)(w−3w−2w0)(w−3w−1w0)(w−2w0)
cs (c−3c0)(c−3c−2c0)(c−3c−1c0)(c−2c0)

wsh (w−4w0) (w−5w0)
csh (c−4c0) (c−5c0)
cpw (c−3c−2c−1w0) (c−2c−1w0)(c−1w0)

Table 1: Feature definition in TDRF LMs

1999), denoted by KN4. We use the RNNLM
toolkit5 to train a RNNLM (Mikolov et al., 2011).
The number of hidden units is 250 and other
configurations are set by default6.

Word classing has been shown to be useful in
conditional ME models (Chen, 2009). For our
TDRF models, we consider a variety of features
as shown in Table 1, mainly based on word and
class information. Each word is deterministically
assigned to a single class, by running the automat-
ic clustering algorithm proposed in (Martin et al.,
1998) on the training data.

In Table 1, wi, ci, i = 0,−1, . . . ,−5 denote the
word and its class at different position offset i,
e.g. w0, c0 denotes the current word and its class.
We first introduce the classic word/class n-gram
features (denoted by “w”/“c”) and the word/class
skipping n-gram features (denoted by “ws”/“cs”)
(Goodman, 2001a). Second, to demonstrate that
long-span features can be naturally integrated in
TDRFs, we introduce higher-order features “w-
sh”/“csh”, by considering two words/classes sep-
arated with longer distance. Third, as an example
of supporting heterogenous features that combine
different information, the crossing features “cp-
w” (meaning class-predict-word) are introduced.
Note that for all the feature types in Table 1, only
the features observed in the training data are used.

The joint SA (Algorithm 1) is used to train the
TDRF models, with all the acceleration methods
described in Section 4 applied. The minibatch
size K = 300. The learning rates γλ and γζ
are configured as (29) and (19) respectively with
βλ = βζ = 0.6 and tc = 3000. For t0, it is first
initialized to be 104. During iterations, we monitor
the smoothed log-likelihood (moving average of
1000 iterations) on the PTB development data.

5http://rnnlm.org/
6Minibatch size=10, learning rate=0.1, BPTT steps=5. 17

sweeps are performed before stopping, which takes about 25
hours. No word classing is used, since classing in RNNLMs
reduces computation but at cost of accuracy. RNNLMs were
experimented with varying numbers of hidden units (100-
500). The best result from using 250 hidden units is reported.
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models PPL (± std. dev.)
KN4 142.72
RNN 128.81

TDRF w+c 130.69±1.64

Table 2: The PPLs on the PTB test data. The class
number is 200.

We set t0 to the current iteration number once the
rising percentage of the smoothed log-likelihoods
within 100 iterations is below 20%, and then
continue 5000 further iterations before stopping.
The configuration of hessian estimation (Section
4.1) is γH = γλ and h = 10−4. L2 regularization
with constant 10−5 is used to avoid over-fitting. 8
CPU cores are used to parallelize the algorithm, as
described in Section 4.3, and the training of each
TDRF model takes less than 20 hours.

The perplexity results on the PTB test data are
given in Table 2. As the normalization constants
of TDRF models are estimated stochastically, we
report the Monte Carlo mean and standard devi-
ation from the last 1000 iterations for each PPL.
The TDRF model using the basic “w+c” features
performs close to the RNNLM in perplexity. To be
compact, results with more features are presented
in the following WSJ experiment.

5.2 WSJ speech recognition results

In this section, we continue to use the LMs ob-
tained above (using PTB training and develop-
ment data), and evaluate their performance mea-
sured by WERs in speech recognition, by re-
scoring 1000-best lists from WSJ’92 test data (330
sentences). The oracle WER of the 1000-best lists
is 3.4%, which are generated from using the Kaldi
toolkit7 with a DNN-based acoustic model.

TDRF LMs using a variety of features and
different number of classes are tested. The results
are shown in Table 3. Different types of features,
like the skipping features, the higher-order fea-
tures and the crossing features can all be easily
supported in TDRF LMs, and the performance
is improved to varying degrees. Particularly, the
TDRF using the “w+c+ws+cs+cpw” features with
class number 200 performs comparable to the
RNNLM in both perplexity and WER. Numerical-
ly, the relative reduction is 9.1% compared with
the KN4 LMs, and 0.5% compared with the RNN
LM.

7http://kaldi.sourceforge.net/

model WER PPL (± std. dev.) #feat
KN4 8.71 295.41 1.6M
RNN 7.96 256.15 5.1M
WSMEs (200c)
w+c+ws+cs 8.87 ≈ 2.8× 1012 5.2M
w+c+ws+cs+cpw 8.82 ≈ 6.7× 1012 6.4M
TDRFs (100c)
w+c 8.56 268.25±3.52 2.2M
w+c+ws+cs 8.16 265.81±4.30 4.5M
w+c+ws+cs+cpw 8.05 265.63±7.93 5.6M
w+c+ws+cs+wsh+csh 8.03 276.90±5.00 5.2M
TDRFs (200c)
w+c 8.46 257.78±3.13 2.5M
w+c+ws+cs 8.05 257.80±4.29 5.2M
w+c+ws+cs+cpw 7.92 264.86±8.55 6.4M
w+c+ws+cs+wsh+csh 7.94 266.42±7.48 5.9M
TDRFs (500c)
w+c 8.72 261.02±2.94 2.8M
w+c+ws+cs 8.29 266.34±6.13 5.9M

Table 3: The WERs and PPLs on the WSJ’92 test
data. “#feat” denotes the feature number. Differ-
ent TDRF models with class number 100/200/500
are reported (denoted by “100c”/“200c”/“500c”)

5.3 Comparison and discussion

TDRF vs WSME. For comparison, Table 3 also
presents the results from our implementation of
the WSME model (3), using the same features as
in Table 1. This WSME model is the same as in
(Rosenfeld, 1997), but different from (Rosenfeld
et al., 2001), which uses the traditional n-gram
LM as the priori distribution p0.

For the WSME model (3), we can still use a
SA training algorithm, similar to that developed in
Section 3.2, to estimate the parameters λ. But in
this case, there is no need to introduce ζl, because
the normalizing constants Zl(λ) are canceled out
as seen from (7). Specifically, the learning rate γλ
and the L2 regularization are configured the same
as in TDRF training. A fixed number of iterations
with t0 = 5000 is performed. The total iteration
number is 10000, which is similar to the iteration
number used in TDRF training.

In order to calculate perplexity, we need to
estimate the global normalizing constant Z(λ) =∑m

l=1 Zl(λ) for the WSME model. Similarly
as in (Tan, 2015), we apply the SA algorithm
in Section 3.2 to estimate the log normalizing
constants ζ, while fixing the parameters λ to be
those already estimated from the WSME model
and using uniform probabilities πl ≡ m−1.

The resulting PPLs of these WSME models are
extremely poor. The average test log-likelihoods
per sentence for these two WSME models are
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−494 and −509 respectively. However, the W-
ERs from using the trained WSME models in
hypothesis re-ranking are not as poor as would be
expected from their PPLs. This appears to indicate
that the estimated WSME parameters are not so
bad for relative ranking. Moreover, when the
estimated λ and ζ are substituted into our TDRF
model (6) with the empirical length probabilities
πl, the “corrected” average test log-likelihoods
per sentence for these two sets of parameters are
improved to be −152 and −119 respectively. The
average test log-likelihoods are both −96 for the
two corresponding TDRF models in Table 3. This
is some evidence for the model deficiency of the
WSME distribution as defined in (3), and intro-
ducing the empirical length probabilities gives a
more reasonable model assumption.

TDRF vs conditional ME. After training, TDRF
models are computationally more efficient in com-
puting sentence probability, simply summing up
weights for the activated features in the sentence.
The conditional ME models (Khudanpur and Wu,
2000; Roark et al., 2004) suffer from the expen-
sive computation of local normalization factors.
This computational bottleneck hinders their use
in practice (Goodman, 2001b; Rosenfeld et al.,
2001). Partly for this reason, although building
conditional ME models with sophisticated features
as in Table 1 is theoretically possible, such work
has not been pursued so far.

TDRF vs RNN. The RNN models suffer from
the expensive softmax computation in the output
layer 8. Empirically in our experiments, the aver-
age time costs for re-ranking of the 1000-best list
for a sentence are 0.16 sec vs 40 sec, based on
TDRF and RNN respectively (no GPU used).

6 Related Work

While there has been extensive research on con-
ditional LMs, there has been little work on the
whole-sentence LMs, mainly in (Rosenfeld et al.,
2001; Amaya and Benedı́, 2001; Ruokolainen et
al., 2010). Although the whole-sentence approach
has potential benefits, the empirical results of pre-
vious WSME models are not satisfactory, almost
the same as traditional n-gram models. After
incorporating lexical and syntactic information,
a mere relative improvement of 1% and 0.4%

8This deficiency could be partly alleviated with
some speed-up methods, e.g. using word clustering
(Mikolov, 2012) or noise contrastive estimation (Mnih and
Kavukcuoglu, 2013).

respectively in perplexity and in WER is reported
for the resulting WSEM (Rosenfeld et al., 2001).
Subsequent studies of using WSEMs with gram-
matical features, as in (Amaya and Benedı́, 2001)
and (Ruokolainen et al., 2010), report perplexity
improvement above 10% but no WER improve-
ment when using WSEMs alone.

Most RF modeling has been restricted to fixed-
dimensional spaces 9. Despite recent progress,
fitting RFs of moderate or large dimensions re-
mains to be challenging (Koller and Friedman,
2009; Mizrahi et al., 2013). In particular, the
work of (Pietra et al., 1997) is inspiring to us,
but the improved iterative scaling (IIS) method
for parameter estimation and the Gibbs sampler
are not suitable for even moderately sized models.
Our TDRF model, together with the joint SA al-
gorithm and trans-dimensional mixture sampling,
are brand new and lead to encouraging results for
language modeling.

7 Conclusion

In summary, we have made the following contri-
butions, which enable us to successfully train T-
DRF models and obtain encouraging performance
improvement.
• The new TDRF model and the joint SA train-

ing algorithm, which simultaneously updates
the model parameters and normalizing con-
stants while using trans-dimensional mixture
sampling.
• Several additional innovations including ac-

celerating SA iterations by using Hessian
information, introducing word classing to ac-
celerate the sampling operation and improve
the smoothing behavior of the models, and
parallelization of sampling.

In this work, we mainly explore the use of fea-
tures based on word and class information. Future
work with other knowledge sources and larger-
scale experiments is needed to fully exploit the
advantage of TDRFs to integrate richer features.
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brinkat. 2010. Using dependency grammar features
in whole sentence maximum entropy language mod-
el for speech recognition. In Baltic HLT.

Holger Schwenk. 2007. Continuous space language
models. Computer Speech & Language, 21:492–
518.

Ilya Sutskever and Geoffrey E Hinton. 2007. Learn-
ing multilevel distributed representations for high-
dimensional sequences. In International Confer-
ence on Artificial Intelligence and Statistics (AIS-
TATS).

Zhiqiang Tan. 2015. Optimally adjusted mixture sam-
pling and locally weighted histogram. In Technical
Report, Department of Statistics, Rutgers University.

Laurent Younes. 1989. Parametric inference for
imperfectly observed gibbsian fields. Probability
theory and related fields, 82:625–645.

794



Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 795–804,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Gaussian LDA for Topic Models with Word Embeddings

Rajarshi Das*, Manzil Zaheer*, Chris Dyer
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA, 15213, USA

{rajarshd, manzilz, cdyer}@cs.cmu.edu

Abstract

Continuous space word embeddings
learned from large, unstructured corpora
have been shown to be effective at cap-
turing semantic regularities in language.
In this paper we replace LDA’s param-
eterization of “topics” as categorical
distributions over opaque word types with
multivariate Gaussian distributions on
the embedding space. This encourages
the model to group words that are a
priori known to be semantically related
into topics. To perform inference, we
introduce a fast collapsed Gibbs sampling
algorithm based on Cholesky decom-
positions of covariance matrices of the
posterior predictive distributions. We fur-
ther derive a scalable algorithm that draws
samples from stale posterior predictive
distributions and corrects them with a
Metropolis–Hastings step. Using vectors
learned from a domain-general corpus
(English Wikipedia), we report results on
two document collections (20-newsgroups
and NIPS). Qualitatively, Gaussian LDA
infers different (but still very sensible)
topics relative to standard LDA. Quantita-
tively, our technique outperforms existing
models at dealing with OOV words in
held-out documents.

1 Introduction

Latent Dirichlet Allocation (LDA) is a Bayesian
technique that is widely used for inferring the
topic structure in corpora of documents. It con-
ceives of a document as a mixture of a small num-
ber of topics, and topics as a (relatively sparse) dis-
tribution over word types (Blei et al., 2003). These
priors are remarkably effective at producing useful

*Both student authors had equal contribution.

results. However, our intuitions tell us that while
documents may indeed be conceived of as a mix-
ture of topics, we should further expect topics to
be semantically coherent. Indeed, standard human
evaluations of topic modeling performance are de-
signed to elicit assessment of semantic coherence
(Chang et al., 2009; Newman et al., 2009). How-
ever, this prior preference for semantic coherence
is not encoded in the model, and any such obser-
vation of semantic coherence found in the inferred
topic distributions is, in some sense, accidental. In
this paper, we develop a variant of LDA that oper-
ates on continuous space embeddings of words—
rather than word types—to impose a prior expec-
tation for semantic coherence. Our approach re-
places the opaque word types usually modeled in
LDA with continuous space embeddings of these
words, which are generated as draws from a mul-
tivariate Gaussian.

How does this capture our preference for se-
mantic coherence? Word embeddings have been
shown to capture lexico-semantic regularities in
language: words with similar syntactic and seman-
tic properties are found to be close to each other in
the embedding space (Agirre et al., 2009; Mikolov
et al., 2013). Since Gaussian distributions capture
a notion of centrality in space, and semantically
related words are localized in space, our Gaussian
LDA model encodes a prior preference for seman-
tically coherent topics. Our model further has sev-
eral advantages. Traditional LDA assumes a fixed
vocabulary of word types. This modeling assump-
tion drawback as it cannot handle out of vocabu-
lary (OOV) words in “held out” documents. Zhai
and Boyd-Graber (2013) proposed an approach
to address this problem by drawing topics from
a Dirichlet Process with a base distribution over
all possible character strings (i.e., words). While
this model can in principle handle unseen words,
the only bias toward being included in a particular
topic comes from the topic assignments in the rest
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of the document. Our model can exploit the conti-
guity of semantically similar words in the embed-
ding space and can assign high topic probability to
a word which is similar to an existing topical word
even if it has never been seen before.

The main contributions of our paper are as fol-
lows: We propose a new technique for topic mod-
eling by treating the document as a collection of
word embeddings and topics itself as multivari-
ate Gaussian distributions in the embedding space
(§3). We explore several strategies for collapsed
Gibbs sampling and derive scalable algorithms,
achieving asymptotic speed-up over the naı̈ve im-
plementation (§4). We qualitatively show that
our topics make intuitive sense and quantitatively
demonstrate that our model captures a better rep-
resentation of a document in the topic space by
outperforming other models in a classification task
(§5).

2 Background

Before going to the details of our model we pro-
vide some background on two topics relevant to
our work: vector space word embeddings and
LDA.

2.1 Vector Space Semantics

According to the distributional hypothesis (Har-
ris, 1954), words occurring in similar contexts
tend to have similar meaning. This has given
rise to data-driven learning of word vectors that
capture lexical and semantic properties, which is
now a technique of central importance in natu-
ral language processing. These word vectors can
be used for identifying semantically related word
pairs (Turney, 2006; Agirre et al., 2009) or as fea-
tures in downstream text processing applications
(Turian et al., 2010; Guo et al., 2014). Word
vectors can either be constructed using low rank
approximations of cooccurrence statistics (Deer-
wester et al., 1990) or using internal represen-
tations from neural network models of word se-
quences (Collobert and Weston, 2008). We use a
recently popular and fast tool called word2vec1,
to generate skip-gram word embeddings from un-
labeled corpus. In this model, a word is used as
an input to a log-linear classifier with continuous
projection layer and words within a certain win-
dow before and after the words are predicted.

1https://code.google.com/p/word2vec/

2.2 Latent Dirichlet Allocation (LDA)

LDA (Blei et al., 2003) is a probabilistic topic
model of corpora of documents which seeks to
represent the underlying thematic structure of the
document collection. They have emerged as a
powerful new technique of finding useful structure
in an unstructured collection as it learns distribu-
tions over words. The high probability words in
each distribution gives us a way of understanding
the contents of the corpus at a very high level. In
LDA, each document of the corpus is assumed to
have a distribution over K topics, where the dis-
crete topic distributions are drawn from a symmet-
ric dirichlet distribution. The generative process is
as follows.

1. for k = 1 to K
(a) Choose topic βk ∼ Dir(η)

2. for each document d in corpus D
(a) Choose a topic distribution θd ∼ Dir(α)
(b) for each word index n from 1 to Nd

i. Choose a topic zn ∼
Categorical(θd)

ii. Choose word wn ∼
Categorical(βzn

)
As it follows from the definition above, a topic
is a discrete distribution over a fixed vocabulary
of word types. This modeling assumption pre-
cludes new words to be added to topics. However
modeling topics as a continuous distribution over
word embeddings gives us a way to address this
problem. In the next section we describe Gaus-
sian LDA, a straightforward extension of LDA that
replaces categorical distributions over word types
with multivariate Gaussian distributions over the
word embedding space.

3 Gaussian LDA

As with multinomial LDA, we are interested in
modeling a collection of documents. However,
we assume that rather than consisting of sequences
of word types, documents consist of sequences of
word embeddings. We write v(w) ∈ RM as the
embedding of word of type w or vd,i when we are
indexing a vector in a document d at position i.

Since our observations are no longer dis-
crete values but continuous vectors in an M -
dimensional space, we characterize each topic k as
a multivariate Gaussian distribution with mean µk
and covariance Σk. The choice of a Gaussian pa-
rameterization is justified by both analytic conve-
nience and observations that Euclidean distances

796



p(zd,i = k | z−(d,i),Vd, ζ,α) ∝ (nk,d + αk)× tνk−M+1

(
vd,i

∣∣∣∣µk, κk + 1
κk

Σk

)
(1)

Figure 1: Sampling equation for the collapsed Gibbs sampler; refer to text for a description of the
notation.

between embeddings correlate with semantic sim-
ilarity (Collobert and Weston, 2008; Turney and
Pantel, 2010; Hermann and Blunsom, 2014). We
place conjugate priors on these values: a Gaus-
sian centered at zero for the mean and an inverse
Wishart distribution for the covariance. As be-
fore, each document is seen as a mixture of top-
ics whose proportions are drawn from a symmetric
Dirichlet prior. The generative process can thus be
summarized as follows:

1. for k = 1 to K
(a) Draw topic covariance Σk ∼
W−1(Ψ, ν)

(b) Draw topic mean µk ∼ N (µ, 1
κΣk)

2. for each document d in corpus D
(a) Draw topic distribution θd ∼ Dir(α)
(b) for each word index n from 1 to Nd

i. Draw a topic zn ∼ Categorical(θd)
ii. Draw vd,n ∼ N (µzn

,Σzn)
This model has previously been proposed for

obtaining indexing representations for audio re-
trieval (Hu et al., 2012). They use variational/EM
method for posterior inference. Although we don’t
do any experiment to compare the running time of
both approaches, the per-iteration computational
complexity is same for both inference methods.
We propose a faster inference technique using
Cholesky decomposition of covariance matrices
which can be applied to both the Gibbs and varia-
tional/EM method. However we are not aware of
any straightforward way of applying the aliasing
trick proposed by (Li et al., 2014) on the varia-
tional/EM method which gave us huge improve-
ment on running time (see Figure 2). Another
work which combines embedding with topic mod-
els is by (Wan et al., 2012) where they jointly learn
the parameters of a neural network and a topic
model to capture the topic distribution of low di-
mensional representation of images.

4 Posterior Inference

In our application, we observe documents consist-
ing of word vectors and wish to infer the poste-

rior distribution over the topic parameters, pro-
portions, and the topic assignments of individual
words. Since there is no analytic form of the poste-
rior, approximations are required. Because of our
choice of conjugate priors for topic parameters and
proportions, these variables can be analytically in-
tegrated out, and we can derive a collapsed Gibbs
sampler that resamples topic assignments to indi-
vidual word vectors, similar to the collapsed sam-
pling scheme proposed by Griffiths and Steyvers
(2004).

The conditional distribution we need for sam-
pling is shown in Figure 1. Here, z−(d,i) repre-
sents the topic assignments of all word embed-
dings, excluding the one at ith position of docu-
ment d; Vd is the sequence of vectors for docu-
ment d; tν′(x | µ′,Σ′) is the multivariate t - distri-
bution with ν ′ degrees of freedom and parameters
µ′ and Σ′. The tuple ζ = (µ, κ,Σ, ν) represents
the parameters of the prior distribution.

It should be noted that the first part of the equa-
tion which expresses the probability of topic k in
document d is the same as that of LDA. This is
because the portion of the model which generates
a topic for each word (vector) from its document
topic distribution is still the same. The second
part of the equation which expresses the probabil-
ity of assignment of topic k to the word vector vd,i
given the current topic assignments (aka posterior
predictive) is given by a multivariate t distribution
with parameters (µk, κk,Σk, νk). The parameters
of the posterior predictive distribution are given as
(Murphy, 2012):

κk = κ+Nk µk =
κµ+Nkv̄k

κk

νk = ν +Nk Σk =
Ψk

(νk −M + 1)

Ψk = Ψ + Ck+
κNk

κk
(v̄k − µ)(v̄k − µ)>

(2)
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where v̄k and Ck are given by,

v̄k =

∑
d

∑
i:zd,i=k

(vd,i)

Nk

Ck =
∑
d

∑
i:zd,i=k

(vd,i − v̄k)(vd,i − v̄k)>

Here v̄k is the sample mean and Ck is the scaled
form of sample covariance of the vectors with
topic assignment k. Nk represents the count of
words assigned to topic k across all documents.
Intuitively the parameters µk and Σk represents
the posterior mean and covariance of the topic dis-
tribution and κk, νk represents the strength of the
prior for mean and covariance respectively.

Analysis of running time complexity
As can be seen from (1), for computation of the
posterior predictive we need to evaluate the deter-
minant and inverse of the posterior covariance ma-
trix. Direct naı̈ve computation of these terms re-
quire O(M3) operations. Moreover, during sam-
pling as words get assigned to different topics,
the parameters (µk, κk,Ψk, νk) associated with a
topic changes and hence we have to recompute
the determinant and inverse matrix. Since these
step has to be recomputed several times (as many
times as number of words times number of topics
in one Gibbs sweep, in the worst case), it is criti-
cal to make the process as efficient as possible. We
speed up this process by employing a combination
of modern computational techniques and mathe-
matical (linear algebra) tricks, as described in the
following subsections.

4.1 Faster sampling using Cholesky
decomposition of covariance matrix

Having another look at the posterior equation for
Ψk, we can re-write the equation as:

Ψk = Ψ + Ck +
κNk

κk
(v̄k − µ)(v̄k − µ)>

= Ψ +
∑
d

∑
i:zd,i=k

vd,iv>d,i − κkµkµ>k

+ κµµ>. (3)

During sampling when we are computing the
assignment probability of topic k to vd,i, we need
to calculate the updated parameters of the topic.
Using (3) it can be shown that Ψk can be updated
from current value of Ψk, after updating κk.νk and

µk, as follows:

Ψk ← Ψk +
κk

κk − 1
(µk − vd,i) (µk − vd,i)

> .

(4)

This equation has the form of a rank 1 update,
hinting towards use of Cholesky decomposition. If
we have the Cholesky decomposition of Ψk com-
puted, then we have tools to update Ψk cheaply.
Since Ψk and Σk are off by only a scalar fac-
tor, we can equivalently talk about Σk. Equation
(4) can also be understood in the following way.
During sampling, when a word embedding vd,i
gets a new assignment to a topic, say k, then the
new value of the topic covariance can be computed
from the current one using just a rank 1 update.2

We next describe how to exploit the Cholesky de-
composition representation to speed up computa-
tions.

For sake of completeness, any symmetric M ×
M real matrix Σk is said to be positive definite if
∀z ∈ RM : z>Σkz > 0. The Cholesky decom-
position of such a symmetric positive definite ma-
trix Σk is nothing but its decomposition into the
product of some lower triangular matrix L and its
transpose, i.e.

Σk = LL>.

Finding this factorization also take cubic opera-
tion. However given Cholesky decomposition of
Σk, after a rank 1 update (or downdate), i.e. the
operation:

Σk ← Σk + zz>

we can find the factorization of new Σk in just
quadratic time (Stewart, 1998). We will use this
trick to speed up the computations3. Basically, in-
stead of computing determinant and inverse again
in cubic time, we will use such rank 1 update
(downdate) to find new determinant and inverse in
an efficient manner as explained in details below.

To compute the density of the posterior predic-
tive t−distibution, we need to compute the de-
terminant |Σk| and the term of the form (vd,i −
µk)>Σ−1

k (vd,i − µk). The Cholesky decomposi-
tion of the covariance matrix can be used for ef-
ficient computation of these expression as shown
below.

2Similarly the covariance of the old topic assignment of
the word w can be computed using a rank 1 downdate

3For our experiments, we set the prior covariance to be
3*I, which is a positive definite matrix.
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Computation of determinant: The determinant
of Σk can be computed from from its Cholesky
decomposition L as:

log(|Σk|) = 2×
M∑
i=1

log (Li,i) .

This takes linear time in the order of dimension
and is clearly a significant gain from cubic time
complexity.
Computation of (vd,i−µk)>Σ−1

k (vd,i−µ): Let
b = (vd,i−µk). Now b>Σ−1b can be written as

b>Σ−1b = b>(LL>)−1b

= bT (L−1)>L−1b

= (L−1b)>(L−1b)

Now (L−1b) is the solution of the equation Lx =
b. Also since L is a lower triangular matrix,
this equation can be solved easily using forward
substitution. Lastly we will have to take an in-
ner product of x and x> to get the value of
(vd,i−µk)>Σ−1(vd,i−µk). This step again takes
quadratic time and is again a savings from the cu-
bic time complexity.

4.2 Further reduction of sampling
complexity using Alias Sampling

Although Cholesky trick helps us to reduce
the sampling complexity of a embedding to
O(KM2), it can still be impractical.In Gaus-
sian LDA, the Gibbs sampling equation (1) can
be split into two terms. The first term nk,d ×
tνk−M+1

(
vd,i

∣∣∣µk, κk+1
κk

Σk

)
denotes the docu-

ment contribution and the second term αk ×
tνk−M+1

(
vd,i

∣∣∣µk, κk+1
κk

Σk

)
denotes the lan-

guage model contribution. Empirically one can
make two observations about these terms. First,
nk,d is often a sparse vector, as a document most
likely contains only a few of the topics. Sec-
ondly, topic parameters (µk,Σk) captures global
phenomenon, and rather change relatively slowly
over the iterations. We can exploit these findings
to avoid the naive approach to draw a sample from
(1).

In particular, we compute the document-specific
sparse term exactly and for the remainder lan-
guage model term we borrow idea from (Li et al.,
2014). We use a slightly stale distribution for the
language model. Then Metropolis Hastings (MH)
algorithm allows us to convert the stale sample

Time #104
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Naive
Cholesky
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Figure 2: Plot comparing average log-likelihood
vs time (in sec) achieved after applying each trick
on the NIPS dataset. The shapes on each curve
denote end of each iteration.

into a fresh one, provided that we compute ra-
tios between successive states correctly. It is suf-
ficient to run MH for a few number of steps be-
cause the stale distribution acting as the proposal
is very similar to the target. This is because, as
pointed out earlier, the language model term does
not change too drastically whenever we resample a
single word. The number of words is huge, hence
the amount of change per word is concomitantly
small. (Only if one could convert stale bread into
fresh one, it would solve world’s food problem!)

The exercise of using stale distribution and MH
steps is advantageous because sampling from it
can be carried out in O(1) amortized time, thanks
to alias sampling technique (Vose, 1991). More-
over, the task of building the alias tables can be
outsourced to other cores.

With the combination of both Cholesky and
Alias tricks, the sampling complexity can thus be
brought down to O(KdM

2) where Kd represents
the number of actually instantiated topics in the
document and Kd � K. In particular, we plot
the sampling rate achieved naively, with Cholesky
(CH) trick and with Cholesky+Alias (A+CH) trick
in figure 2 demonstrating better likelihood at much
less time. Also after initial few iterations, the time
per iteration of A+CH trick is 9.93 times less than
CH and 53.1 times less than naive method. This is
because initially we start with random initializa-
tion of words to topics, but after few iterations the
nk,d vector starts to become sparse.
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5 Experiments

In this section we evaluate our Word Vector Topic
Model on various experimental tasks. Specifically
we wish to determine:

• Is our model is able to find coherent and
meaningful topics?

• Is our model able to infer the topic distribu-
tion of a held-out document even when the
document contains words which were previ-
ously unseen?

We run our experiments4 on two datasets 20-
NEWSGROUP5 and NIPS6. All the datasets were
tokenized and lowercased with cdec (Dyer et al.,
2010).

5.1 Topic Coherence

Quantitative Analysis Typically topic models
are evaluated based on the likelihood of held-out
documents. But in this case, it is not correct to
compare perplexities with models which do topic
modeling on words. Since our topics are contin-
uous distributions, the probability of a word vec-
tor is given by its density w.r.t the normal distri-
bution based on its topic assignment, instead of
a probability mass from a discrete topic distribu-
tion. Moreover, (Chang et al., 2009) showed that
higher likelihood of held-out documents doesn’t
necessarily correspond to human perception of
topic coherence. Instead to measure topic coher-
ence we follow (Newman et al., 2009) to compute
the Pointwise Mutual Information (PMI) of topic
words w.r.t wikipedia articles. We extract the doc-
ument co-occurrence statistics of topic words from
Wikipedia and compute the score of a topic by av-
eraging the score of the top 15 words of the topic.
A higher PMI score implies a more coherent topic
as it means the topic words usually co-occur in the
same document. In the last line of Table 1, we
present the PMI score for some of the topics for
both Gaussian LDA and traditional multinomial

4Our implementation is available at https:
//github.com/rajarshd/Gaussian_LDA

5A collection of newsgroup documents partitioned into
20 news groups. After pre-processing we had 18768 docu-
ments. We randomly selected 2000 documents as our test set.
This dataset is publicly available at http://qwone.com/
˜jason/20Newsgroups/

6A collection of 1740 papers from the proceedings of
Neural Information Processing System. The dataset is avail-
able at http://www.cs.nyu.edu/˜roweis/data.
html

LDA. It can be seen that Gaussian LDA is a clear
winner, achieving an average 275% higher score
on average.

However, we are using embeddings trained on
Wikipedia corpus itself, and the PMI measure is
computed from co-occurrence in the Wikipedia
corpus. As a result, our model is definitely bi-
ased towards producing higher PMI. Nevertheless
Wikipedia PMI is a believed to be a good measure
of semantic coherence.

Qualitative Analysis Table 1 shows some top
words from topics from Gaussian-LDA and LDA
on the 20-news dataset for K = 50. The words
in Gaussian-LDA are ranked based on their den-
sity assigned to them by the posterior predictive
distribution in the final sample. As shown, Gaus-
sian LDA is able to capture several intuitive top-
ics in the corpus such as sports, government, ‘re-
ligion’, ’universities’, ‘tech’, ‘finance’ etc. One
interesting topic discovered by our model (on both
20-news and NIPS dataset) is the collection of hu-
man names, which was not captured by classic
LDA. While one might imagine that names associ-
ated with particular topics might be preferable to a
‘names-in-general’ topic, this ultimately is a mat-
ter of user preference. More substantively, classic
LDA failed to identify the ‘finance’ topics. We
also noticed that there were certain words (‘don’,
‘writes’, etc) which often came as a top word in
many topics in classic LDA. However our model
was not able to capture the ‘space’ topics which
LDA was able to identify.

Also we visualize a part of the continuous space
where the word embedding is performed. For this
task we performed the Principal Component Anal-
ysis (PCA) over all the word vectors and plot the
first two components as shown in Figure 3. We can
see clear separations between some of the clusters
of topics as depicted. The other topics would be
separated in other dimensions.

5.2 Performance on document containing
new words

In this experiment we evaluate the performance
of our model on documents which contains pre-
viously unseen words. It should be noted that tra-
ditional topic modeling algorithms will typically
ignore such words while inferring the topic distri-
bution and hence might miss out important words.
The continuous topic distributions of the Word
Vector Topic Model on the other hand, will be able
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Gaussian LDA topics

hostile play government people university hardware scott market gun
murder round state god program interface stevens buying rocket
violence win group jews public mode graham sector military
victim players initiative israel law devices walker purchases force
testifying games board christians institute rendering tom payments machine
provoking goal legal christian high renderer russell purchase attack
legal challenge bill great research user baker company operation
citizens final general jesus college computers barry owners enemy
conflict playing policy muslims center monitor adams paying fire
victims hitting favor religion study static jones corporate flying
rape match office armenian reading encryption joe limited defense
laws ball political armenians technology emulation palmer loans warning
violent advance commission church programs reverse cooper credit soldiers
trial participants private muslim level device robinson financing guns
intervention scores federal bible press target smith fees operations

0.8302 0.9302 0.4943 2.0306 0.5216 2.3615 2.7660 1.4999 1.1847

Multinomial LDA topics

turkish year people god university window space ken gun
armenian writes president jesus information image nasa stuff people
people game mr people national color gov serve law
armenians good don bible research file earth line guns
armenia team money christian center windows launch attempt don
turks article government church april program writes den state
turkey baseball stephanopoulos christ san display orbit due crime
don don time christians number jpeg moon peaceful weapons
greek games make life year problem satellite article firearms
soviet season clinton time conference screen article served police
time runs work don washington bit shuttle warrant control
genocide players tax faith california files lunar lotsa writes
government hit years good page graphics henry occurred rights
told time ll man state gif data writes article
killed apr ve law states writes flight process laws

0.3394 0.2036 0.1578 0.7561 0.0039 1.3767 1.5747 -0.0721 0.2443

Table 1: Top words of some topics from Gaussian-LDA and multinomial LDA on 20-newsgroups for
K = 50. Words in Gaussian LDA are ranked based on density assigned to them by the posterior predic-
tive distribution. The last row for each method indicates the PMI score (w.r.t. Wikipedia co-occurence)
of the topics fifteen highest ranked words.

to assign topics to an unseen word, if we have the
vector representation of the word. Given the re-
cent development of fast and scalable methods of
estimating word embeddings, it is possible to train
them on huge text corpora and hence it makes our
model a viable alternative for topic inference on
documents with new words.

Experimental Setup: Since we want to capture
the strength of our model on documents containing
unseen words, we select a subset of documents and
replace words of those documents by its synonyms
if they haven’t occurred in the corpus before. We
obtain the synonym of a word using two existing
resources and hence we create two such datasets.
For the first set, we use the Paraphrase Database
(Ganitkevitch et al., 2013) to get the lexical para-

phrase of a word. The paraphrase database7 is a
semantic lexicon containing around 169 million
paraphrase pairs of which 7.6 million are lexical
(one word to one word) paraphrases. The dataset
comes in varying size ranges starting from S to
XXXL in increasing order of size and decreasing
order of paraphrasing confidence. For our exper-
iments we selected the L size of the paraphrase
database.

The second set was obtained using WordNet
(Miller, 1995), a large human annotated lexicon
for English that groups words into sets of syn-
onyms called synsets. To obtain the synonym of
a word, we first label the words with their part-of-
speech using the Stanford POS tagger (Toutanova
et al., 2003). Then we use the WordNet database

7http://www.cis.upenn.edu/˜ccb/ppdb/
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Figure 3: The first two principal components for
the word embeddings of the top words of top-
ics shown in Table 1 have been visualized. Each
blob represents a word color coded according to
its topic in the Table 1.

to get the synonym from its sysnset.8 We select
the first synonym from the synset which hasn’t
occurred in the corpus before. On the 20-news
dataset (vocab size = 18,179 words, test corpus
size = 188,694 words), a total of 21,919 words
(2,741 distinct words) were replaced by synonyms
from PPDB and 38,687 words (2,037 distinct
words) were replaced by synonyms from Wordnet.

Evaluation Benchmark: As mentioned before
traditional topic model algorithms cannot handle
OOV words. So comparing the performance of
our document with those models would be unfair.
Recently (Zhai and Boyd-Graber, 2013) proposed
an extension of LDA (infvoc) which can incorpo-
rate new words. They have shown better perfor-
mances in a document classification task which
uses the topic distribution of a document as fea-
tures on the 20-news group dataset as compared to
other fixed vocabulary algorithms. Even though,
the infvoc model can handle OOV words, it will
most likely not assign high probability to a new
topical word when it encounters it for the first time
since it is directly proportional to the number of
times the word has been observed On the other
hand, our model could assign high probability to
the word if its corresponding embedding gets a
high probability from one of the topic gaussians.
With the experimental setup mentioned before, we
want to evaluate performance of this property of

8We use the JWI toolkit (Finlayson, 2014)

our model. Using the topic distribution of a docu-
ment as features, we try to classify the document
into one of the 20 news groups it belongs to. If the
document topic distribution is modeled well, then
our model should be able to do a better job in the
classification task.

To infer the topic distribution of a document
we follow the usual strategy of fixing the learnt
topics during the training phase and then running
Gibbs sampling on the test set (G-LDA (fix) in ta-
ble 2). However infvoc is an online algorithm, so it
would be unfair to compare our model which ob-
serves the entire set of documents during test time.
Therefore we implement the online version of our
algorithm using Gibbs sampling following (Yao et
al., 2009). We input the test documents in batches
and do inference on those batches independently
also sampling for the topic parameter, along the
lines of infvoc. The batch size for our experiments
are mentioned in parentheses in table 2. We clas-
sify using the multi class logistic regression clas-
sifier available in Weka (Hall et al., 2009).

It is clear from table 2 that we outperform in-
fvoc in all settings of our experiments. This im-
plies that even if new documents have significant
amount of new words, our model would still do
a better job in modeling it. We also conduct an
experiment to check the actual difference between
the topic distribution of the original and synthetic
documents. Let h and h′ denote the topic vectors
of the original and synthetic documents. Table 3
shows the average l1, l2 and l∞ norm of (h − h′)
of the test documents in the NIPS dataset. A low
value of these metrics indicates higher similarity.
As shown in the table, Gaussian LDA performs
better here too.

6 Conclusion and Future Work

While word embeddings have been incorporated
to produce state-of-the-art results in numerous su-
pervised natural language processing tasks from
the word level to document level ; however, they
have played a more minor role in unsupervised
learning problems. This work shows some of the
promise that they hold in this domain. Our model
can be extended in a number of potentially useful,
but straightforward ways. First, DPMM models of
word emissions would better model the fact that
identical vectors will be generated multiple times,
and perhaps add flexibility to the topic distribu-
tions that can be captured, without sacrificing our
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Model Accuracy
PPDB WordNet

infvoc 28.00% 19.30%
G-LDA (fix) 44.51% 43.53%
G-LDA (1) 44.66% 43.47%

G-LDA (100) 43.63% 43.11%
G-LDA (1932) 44.72% 42.90%

Table 2: Accuracy of our model and infvoc on the
synthetic datasets. In Gaussian LDA fix, the topic
distributions learnt during training were fixed; G-
LDA(1, 100, 1932) is the online implementation
of our model where the documents comes in mini-
batches. The number in parenthesis denote the
size of the batch. The full size of the test corpus is
1932.

Model PPDB (Mean Deviation)
L1 L2 L∞

infvoc 94.95 7.98 1.72
G-LDA (fix) 15.13 1.81 0.66
G-LDA (1) 15.71 1.90 0.66
G-LDA (10) 15.76 1.97 0.66
G-LDA (174) 14.58 1.66 0.66

Table 3: This table shows the Average L1 Devia-
tion, Average L2 Deviation, Average L∞ Devia-
tion for the difference of the topic distribution of
the actual document and the synthetic document
on the NIPS corpus. Compared to infvoc, G-LDA
achieves a lower deviation of topic distribution in-
ferred on the synthetic documents with respect to
actual document. The full size of the test corpus is
174.

preference for topical coherence. More broadly
still, running LDA on documents consisting of dif-
ferent modalities than just text is facilitated by us-
ing the lingua franca of vector space representa-
tions, so we expect numerous interesting appli-
cations in this area. An interesting extension to
our work would be the ability to handle polyse-
mous words based on multi-prototype vector space
models (Neelakantan et al., 2014; Reisinger and
Mooney, 2010) and we keep this as an avenue for
future research.
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Abstract

We present a novel framework for ma-
chine translation evaluation using neural
networks in a pairwise setting, where the
goal is to select the better translation from
a pair of hypotheses, given the reference
translation. In this framework, lexical,
syntactic and semantic information from
the reference and the two hypotheses is
compacted into relatively small distributed
vector representations, and fed into a
multi-layer neural network that models the
interaction between each of the hypothe-
ses and the reference, as well as between
the two hypotheses. These compact repre-
sentations are in turn based on word and
sentence embeddings, which are learned
using neural networks. The framework is
flexible, allows for efficient learning and
classification, and yields correlation with
humans that rivals the state of the art.

1 Introduction

Automatic machine translation (MT) evaluation is
a necessary step when developing or comparing
MT systems. Reference-based MT evaluation, i.e.,
comparing the system output to one or more hu-
man reference translations, is the most common
approach. Existing MT evaluation measures typ-
ically output an absolute quality score by com-
puting the similarity between the machine and
the human translations. In the simplest case, the
similarity is computed by counting word n-gram
matches between the translation and the reference.
This is the case of BLEU (Papineni et al., 2002),
which has been the standard for MT evaluation for
years. Nonetheless, more recent evaluation mea-
sures take into account various aspects of linguis-
tic similarity, and achieve better correlation with
human judgments.

Having absolute quality scores at the sentence
level allows to rank alternative translations for a
given source sentence. This is useful, for instance,
for statistical machine translation (SMT) parame-
ter tuning, for system comparison, and for assess-
ing the progress during MT system development.
The quality of automatic MT evaluation metrics
is usually assessed by computing their correlation
with human judgments. To that end, quality rank-
ings of alternative translations have been created
by human judges. It is known that assigning an
absolute score to a translation is a difficult task
for humans. Hence, ranking-based evaluations,
where judges are asked to rank the output of 2 to 5
systems, have been used in recent years, which
has yielded much higher inter-annotator agree-
ment (Callison-Burch et al., 2007).

These human quality judgments can be used to
train automatic metrics. This supervised learning
can be oriented to predict absolute scores, e.g., us-
ing regression (Albrecht and Hwa, 2008), or rank-
ings (Duh, 2008; Song and Cohn, 2011). A partic-
ular case of the latter is used to learn in a pair-
wise setting, i.e., given a reference and two al-
ternative translations (or hypotheses), the task is
to decide which one is better. This setting em-
ulates closely how human judges perform evalu-
ation assessments in reality, and can be used to
produce rankings for an arbitrarily large number
of hypotheses. In this pairwise setting, the chal-
lenge is to learn, from a pair of hypotheses, which
are the features that help to discriminate the better
from the worse translation. Although the pairwise
setting does not produce absolute quality scores
(i.e., it is not an evaluation metric applicable to a
single translation), it is useful and arguably suf-
ficient for most evaluation and MT development
scenarios.1

1We do not argue that the pairwise approach is better
than the direct estimation of human quality scores. Both ap-
proaches have pros and cons; we see them as complementary.
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Recently, Guzmán et al. (2014a) presented a
learning framework for this pairwise setting, based
on preference kernels and support vector ma-
chines (SVM). They obtained promising results
using syntactic and discourse-based structures.
However, using convolution kernels over complex
structures comes at a high computational cost both
at training and at testing time because the use of
kernels requires that the SVM operate in the much
slower dual space. Thus, some simplification is
needed to make it practical. While there are some
solutions in the kernel-based learning framework
to alleviate the computational burden, in this pa-
per we explore an entirely different direction.

We present a novel neural-based architecture for
learning in the pairwise setting for MT evalua-
tion. Lexical, syntactic and semantic information
from the reference and the two hypotheses is com-
pacted into relatively small distributed vector rep-
resentations and fed into the input layer, together
with a set of individual real-valued features com-
ing from simple pre-existing MT evaluation met-
rics. A hidden layer, motivated by our intuitions
on the pairwise ranking problem, is used to cap-
ture interactions between the relevant input com-
ponents. Finally, we present a task-oriented cost
function, specifically tailored for this problem.

Our evaluation results on the WMT12 metrics
task benchmark datasets (Callison-Burch et al.,
2012) show very high correlation with human
judgments. These results clearly surpass (Guzmán
et al., 2014a) and are comparable to the best pre-
viously reported results for this dataset, achieved
by DiscoTK (Joty et al., 2014), which is a much
heavier combination-based metric.

Another advantage of the proposed architecture
is efficiency. Due to the vector-based compres-
sion of the linguistic structure and the relatively
reduced size of the network, testing is fast, which
would greatly facilitate the practical use of this ap-
proach in real MT evaluation and development.
Finally, we empirically show that syntactically-
and semantically-oriented embeddings can be in-
corporated to produce sizeable and cumulative
gains in performance over a strong combination
of pre-existing MT evaluation measures (BLEU,
NIST, METEOR, and TER). This is promising ev-
idence towards our longer-term goal of defining a
general platform for integrating varied linguistic
information and for producing more informed MT
evaluation measures.

2 Related Work

Contemporary MT evaluation measures have
evolved beyond simple lexical matching, and
now take into account various aspects of lin-
guistic structures, including synonymy and para-
phrasing (Lavie and Denkowski, 2009), syn-
tax (Giménez and Màrquez, 2007; Popović and
Ney, 2007; Liu and Gildea, 2005), seman-
tics (Giménez and Màrquez, 2007; Lo et al.,
2012), and even discourse (Comelles et al., 2010;
Wong and Kit, 2012; Guzmán et al., 2014b; Joty
et al., 2014). The combination of several of
these aspects has led to improved results in metric
evaluation campaigns, such as the WMT metrics
task (Bojar et al., 2014).

In this paper, we present a general framework
for learning to rank translations in the pairwise
setting, using information from several linguistic
representations of the translations and references.
This work has connections with the ranking-based
approaches for learning to reproduce human judg-
ments of MT quality. In particular, our setting is
similar to that of Duh (2008), but differs from it
both in terms of the feature representation and of
the learning framework. For instance, we integrate
several layers of linguistic information, while Duh
(2008) only used lexical and POS matches as fea-
tures. Secondly, we use information about both
the reference and the two alternative translations
simultaneously in a neural-based learning frame-
work capable of modeling complex interactions
between the features.

Another related work is that of Kulesza and
Shieber (2004), in which lexical and syntactic fea-
tures, together with other metrics, e.g., BLEU and
NIST, are used in an SVM classifier to discrimi-
nate good from bad translations. However, their
setting is not pairwise comparison, but a classifi-
cation task to distinguish human- from machine-
produced translations. Moreover, in their work,
using syntactic features decreased the correla-
tion with human judgments dramatically (although
classification accuracy improved), while in our
case the effect is positive.

In our previous work (Guzmán et al., 2014a),
we introduced a learning framework for the pair-
wise setting, based on preference kernels and
SVMs. We used lexical, POS, syntactic and
discourse-based information in the form of tree-
like structures to learn to differentiate better from
worse translations.
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However, in that work we used convolution ker-
nels, which is computationally expensive and does
not scale well to large datasets and complex struc-
tures such as graphs and enriched trees. This in-
efficiency arises both at training and testing time.
Thus, here we use neural embeddings and multi-
layer neural networks, which yields an efficient
learning framework that works significantly better
on the same datasets (although we are not using
exactly the same information for learning).

To the best of our knowledge, the application
of structured neural embeddings and a neural net-
work learning architecture for MT evaluation is
completely novel. This is despite the growing in-
terest in recent years for deep neural nets (NNs)
and word embeddings with application to a myr-
iad of NLP problems. For example, in SMT we
have observed an increased use of neural nets for
language modeling (Bengio et al., 2003; Mikolov
et al., 2010) as well as for improving the transla-
tion model (Devlin et al., 2014; Sutskever et al.,
2014).

Deep learning has spread beyond language
modeling. For example, recursive NNs have been
used for syntactic parsing (Socher et al., 2013a)
and sentiment analysis (Socher et al., 2013b). The
increased use of NNs by the NLP community is
in part due to (i) the emergence of tools such as
word2vec (Mikolov et al., 2013a) and GloVe (Pen-
nington et al., 2014), which have enabled NLP re-
searchers to learn word embeddings, and (ii) uni-
fied learning frameworks, e.g., (Collobert et al.,
2011), which cover a variety of NLP tasks such
as part-of-speech tagging, chunking, named entity
recognition, and semantic role labeling.

While in this work we make use of widely avail-
able pre-computed structured embeddings, the
novelty of our work goes beyond the type of infor-
mation considered as input, and resides on the way
it is integrated to a neural network architecture that
is inspired by our intuitions about MT evaluation.

3 Neural Ranking Model

Our motivation for using neural networks for MT
evaluation is twofold. First, to take advantage of
their ability to model complex non-linear relation-
ships efficiently. Second, to have a framework
that allows for easy incorporation of rich syntac-
tic and semantic representations captured by word
embeddings, which are in turn learned using deep
learning.

3.1 Learning Task
Given two translation hypotheses t1 and t2 (and a
reference translation r), we want to tell which of
the two is better.2 Thus, we have a binary classifi-
cation task, which is modeled by the class variable
y, defined as follows:

y =
{

1 if t1 is better than t2 given r
0 if t1 is worse than t2 given r

(1)

We model this task using a feed-forward neural
network (NN) of the form:

p(y|t1, t2, r) = Ber(y|f(t1, t2, r)) (2)

which is a Bernoulli distribution of y with param-
eter σ = f(t1, t2, r), defined as follows:

f(t1, t2, r) = sig(wT
v φ(t1, t2, r) + bv) (3)

where sig is the sigmoid function, φ(x) defines the
transformations of the input x through the hidden
layer, wv are the weights from the hidden layer to
the output layer, and bv is a bias term.

3.2 Network Architecture
In order to decide which hypothesis is better given
the tuple (t1, t2, r) as input, we first map the hy-
potheses and the reference to a fixed-length vec-
tor [xt1 ,xt2 ,xr], using syntactic and semantic em-
beddings. Then, we feed this vector as input to
our neural network, whose architecture is shown
in Figure 1.

f(t1,t2,r) 

ψ(t1,r) ψ(t2,r)h12

h1r

h2r

v
xt2

xr

xt1

t1

t2

r

sentences  embeddings pairwise nodes pairwise features

output layer

Figure 1: Overall architecture of the neural network.

In our architecture, we model three types of in-
teractions, using different groups of nodes in the
hidden layer. We have two evaluation groups h1r

and h2r that model how similar each hypothesis ti
is to the reference r.

2In this work, we do not learn to predict ties, and ties are
excluded from our training data.
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The vector representations of the hypothesis
(i.e., xt1 or xt2) together with the reference
(i.e., xr) constitute the input to the hidden nodes
in these two groups. The third group of hidden
nodes h12, which we call similarity group, mod-
els how close t1 and t2 are. This might be useful
as highly similar hypotheses are likely to be com-
parable in quality, irrespective of whether they are
good or bad in absolute terms.

The input to each of these groups is repre-
sented by concatenating the vector representations
of the two components participating in the inter-
action, i.e., x1r = [xt1 ,xr], x2r = [xt2 ,xr],
x12 = [xt1 ,xt2 ]. In summary, the transformation
φ(t1, t2, r) = [h12,h1r,h2r] in our NN architec-
ture can be written as follows:

h1r = g(W1rx1r + b1r)
h2r = g(W2rx2r + b2r)
h12 = g(W12x12 + b12)

where g(.) is a non-linear activation function (ap-
plied component-wise), W ∈ RH×N are the asso-
ciated weights between the input layer and the hid-
den layer, and b are the corresponding bias terms.
In our experiments, we used tanh as an activation
function, rather than sig, to be consistent with how
parts of our input vectors were generated.3

In addition, our model allows to incorporate ex-
ternal sources of information by enabling skip arcs
that go directly from the input to the output, skip-
ping the hidden layer. In our setting, these arcs
represent pairwise similarity features between the
translation hypotheses and the reference (e.g., the
BLEU scores of the translations). We denote these
pairwise external feature sets as ψ1r = ψ(t1, r)
and ψ2r = ψ(t2, r). When we include the external
features in our architecture, the activation at the
output, i.e., eq. (3), can be rewritten as follows:

f(t1, t2, r) = sig(wT
v [φ(t1, t2, r), ψ1r, ψ2r] + bv)

3.3 Network Training
The negative log likelihood of the train-
ing data for the model parameters
θ = (W12,W1r,W2r,wv,b12,b1r,b2r, bv)
can be written as follows:

Jθ = −
∑
n

yn log ŷnθ + (1− yn) log (1− ŷnθ)
(4)

3Many of our input representations consist of word em-
beddings trained with neural networks that used tanh as an
activation function.

In the above formula, ŷnθ = fn(t1, t2, r) is
the activation at the output layer for the n-th
data instance. It is also common to use a reg-
ularized cost function by adding a weight decay
penalty (e.g., L2 or L1 regularization) and to per-
form maximum aposteriori (MAP) estimation of
the parameters. We trained our network with
stochastic gradient descent (SGD), mini-batches
and adagrad updates (Duchi et al., 2011), using
Theano (Bergstra et al., 2010).

4 Experimental Setup

In this section, we describe the different aspects
of our general experimental setup (we will discuss
some extensions thereof in Section 6), starting
with a description of the input representations we
use to capture the syntactic and semantic charac-
teristics of the two hypothesis translations and the
corresponding reference, as well as the datasets
used to evaluate the performance of our model.

4.1 Word Embedding Vectors

Word embeddings play a crucial role in our model,
since they allow us to model complex relations
between the translations and the reference using
syntactic and semantic vector representations.

Syntactic vectors. We generate a syntactic vector
for each sentence using the Stanford neural parser
(Socher et al., 2013a), which generates a 25-
dimensional vector as a by-product of syntactic
parsing using a recursive NN. Below we will refer
to these vectors as SYNTAX25.

Semantic vectors. We compose a semantic vector
for a given sentence using the average of the em-
bedding vectors for the words it contains (Mitchell
and Lapata, 2010). We use pre-trained, fixed-
length word embedding vectors produced by
(i) GloVe (Pennington et al., 2014), (ii) COM-
POSES (Baroni et al., 2014), and (iii) word2vec
(Mikolov et al., 2013b).

Our primary representation is based on 50-
dimensional GloVe vectors, trained on Wikipedia
2014+Gigaword 5 (6B tokens), to which below we
will refer as WIKI-GW25.

Furthermore, we experiment with WIKI-
GW300, the 300-dimensional GloVe vectors
trained on the same data, as well as with the CC-
300-42B and CC-300-840B, 300-dimensional
GloVe vectors trained on 42B and on 840B tokens
from Common Crawl.
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We also experiment with the pre-trained, 300-
dimensional word2vec embedding vectors, or
WORD2VEC300, trained on 100B words from
Google News. Finally, we use COMPOSES400,
the 400-dimensional COMPOSES vectors trained
on 2.8 billion tokens from ukWaC, the English
Wikipedia, and the British National Corpus.

4.2 Tuning and Evaluation Datasets
We experiment with datasets of segment-level
human rankings of system outputs from the
WMT11, WMT12 and WMT13 Metrics shared
tasks (Callison-Burch et al., 2011; Callison-Burch
et al., 2012; Macháček and Bojar, 2013). We focus
on translating into English, for which the WMT11
and WMT12 datasets can be split by source lan-
guage: Czech (cs), German (de), Spanish (es), and
French (fr); WMT13 also has Russian (ru).

4.3 Evaluation Score
We evaluate our metrics in terms of correlation
with human judgments measured using Kendall’s
τ . We report τ for the individual languages as well
as macro-averaged across all languages.

Note that there were different versions of τ at
WMT over the years. Prior to 2013, WMT used a
strict version, which was later relaxed at WMT13
and further revised at WMT14. See (Macháček
and Bojar, 2014) for a discussion. Here we use the
strict version used at WMT11 and WMT12.

4.4 Experimental Settings
Datasets: We train our neural models on WMT11
and we evaluate them on WMT12. We further use
a random subset of 5,000 examples from WMT13
as a validation set to implement early stopping.
Early stopping: We train on WMT11 for up to
10,000 epochs, and we calculate Kendall’s τ on
the development set after each epoch. We then se-
lect the model that achieves the highest τ on the
validation set; in case of ties for the best τ , we
select the latest epoch that achieved the highest τ .
Network parameters: We train our neural net-
work using SGD with adagrad, an initial learning
rate of η = 0.01, mini-batches of size 30, and L2

regularization with a decay parameter λ = 1e−4.
We initialize the weights for our matrices by sam-
pling from a uniform distribution following (Ben-
gio and Glorot, 2010). We further set the size
of each of our pairwise hidden layers H to four
nodes, and we normalize the input data using min-
max to map the feature values to the range [−1, 1].

5 Experiments and Results

The main findings of our experiments are shown
in Table 1. Section I of Table 1 shows the re-
sults for four commonly-used metrics for MT eval-
uation that compare a translation hypothesis to
the reference(s) using primarily lexical informa-
tion like word and n-gram overlap (even though
some allow paraphrases): BLEU, NIST, TER,
and METEOR (Papineni et al., 2002; Doddington,
2002; Snover et al., 2006; Denkowski and Lavie,
2011). We will refer to the set of these four met-
rics as 4METRICS. These metrics are not tuned
and achieve Kendall’s τ between 18.5 and 23.5.

Section II of Table 1 shows the results for multi-
layer neural networks trained on vectors from
word embeddings only: SYNTAX25 and WIKI-
GW25. These networks achieve modest τ values
around 10, which should not be surprising: they
use very general vector representations and have
no access to word or n-gram overlap or to length
information, which are very important features to
compute similarity against the reference. How-
ever, as will be discussed below, their contribution
is complementary to the four previous evaluation
metrics and will lead to significant improvements
in combination with them.

Section III of Table 1 shows the results for neu-
ral networks that combine the four metrics from
4METRICS with SYNTAX25 and WIKI-GW25.
We can see that just combining the four metrics
in a flat neural net (i.e., no hidden layer), which
is equivalent to a logistic regression, yields a τ of
27.06, which is better than the best of the four met-
rics by 3.5 points absolute, and also better by over
1.5 points absolute than the best metric that par-
ticipated at the WMT12 metrics task competition
(SPEDE07PP with τ = 25.4). Indeed, 4METRICS

is a strong mix that involves not only simple lex-
ical overlap but also approximate matching, para-
phrases, edit distance, lengths, etc. Yet, adding to
4METRICS the embedding vectors yields sizeable
further improvements: +1.5 and +2.0 points abso-
lute when adding SYNTAX25 and WIKI-GW25,
respectively. Finally, adding both yields even
further improvements close to τ of 30 (+2.64 τ
points), showing that lexical semantics and syn-
tactic representations are complementary.

Section IV of Table 1 puts these numbers in per-
spective: it lists the τ for the top three systems that
participated at WMT12, whose scores ranged be-
tween 22.9 and 25.4.
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System Details Kendall’s τ
I 4METRICS: commonly-used individual metrics cz de es fr AVG

BLEU no learning 15.88 18.56 18.57 20.83 18.46
NIST no learning 19.66 23.09 20.41 22.21 21.34
TER no learning 17.80 25.31 22.86 21.05 21.75
METEOR no learning 20.82 26.79 23.81 22.93 23.59

II NN using embedding vectors: syntactic & semantic
SYNTAX25 multi-layer NN 8.00 13.03 12.11 7.42 10.14
WIKI-GW25 multi-layer NN 14.31 11.49 9.24 4.99 10.01

III NN using 4METRICS+ embedding vectors
4METRICS logistic regression 23.46 29.95 27.49 27.36 27.06
4METRICS+SYNTAX25 multi-layer NN 26.09 30.58 29.30 28.07 28.51
4METRICS+WIKI-GW25 multi-layer NN 25.67 32.50 29.21 28.92 29.07
4METRICS+SYNTAX25+WIKI-GW25 multi-layer NN 26.30 33.19 30.38 28.92 29.70

IV Comparison to previous results on WMT12
DiscoTK (Joty et al., 2014) Best on the WMT12 dataset na na na na 30.5
SPEDE07PP 1st at the WMT12 competition 21.2 27.8 26.5 26.0 25.4
METEOR∗ 2nd at WMT12 the competition 21.2 27.5 24.9 25.1 24.7
(Guzmán et al., 2014a) Preference kernel approach 23.1 25.8 22.6 23.2 23.7
AMBER 3rd at the WMT12 competition 19.1 24.8 23.1 24.5 22.9

Table 1: Kendall’s tau (τ ) on the WMT12 dataset for various metrics. Notes: (i) the version of METEOR that took part in the

WMT12 competition (marked with ∗ in section IV of the table) is different from the one used in our experiments (section I of

the table), (ii) values marked as na were not reported by the authors.

We can see that 4METRICS is much stronger
than the winner at WMT12, and thus arguably a
baseline hard to improve upon. While our results
are slightly behind those of DiscoTK (Joty et al.,
2014), we should note that we only combine four
metrics, plus the vectors, while DiscoTK com-
bines over 20 metrics, many of which are costly
to compute.

On the other hand, we work in a ranking frame-
work, i.e., we are not interested in producing an
absolute score, but in making pairwise decisions
only. Mapping these pairwise decisions into an ab-
solute score is challenging and in our experiments
it leads to a slight drop in τ (results omitted here
to save space).

The only other result on WMT12 by authors
working with our pairwise framework is our own
previous work (Guzmán et al., 2014a), where we
used a preference kernel approach to combine syn-
tactic and discourse trees with lexical information;
as we can see, our earlier results are 6 absolute
points lower than those we achieve here. More-
over, our NN approach offers advantages over
SVMs in terms of computational cost.

Based on these results, we can conclude that
word embeddings, whether syntactic or semantic,
offer generalizations that efficiently complement
very strong metric combinations, and thus should
be considered when designing future MT evalua-
tion metrics.

6 Discussion
In this section, we explore how different parts of
our framework can be modified to improve its per-
formance, or how it can be extended for further
generalization. First, we explore variations of the
feature sets from the perspective of both the pair-
wise features and the embeddings. Then, we ana-
lyze the role of the network architecture and of the
cost function used for learning.

6.1 Fine-Grained Pairwise Features

We have shown that our NN can integrate syntactic
and semantic vectors with scores from other met-
rics. In fact, ours is a more general framework,
where one can integrate the components of a met-
ric instead of its score, which could yield better
learning. Below, we demonstrate this for BLEU.

BLEU has different components: the n-gram
precisions, the n-gram matches, the total num-
ber of n-grams (n=1,2,3,4), the lengths of the hy-
potheses and of the reference, the length ratio be-
tween them, and BLEU’s brevity penalty. We will
refer to this decomposed BLEU as BLEUCOMP.
Some of these features were previously used in
SIMPBLEU (Song and Cohn, 2011).

The results of using the components of
BLEUCOMP as features are shown in Table 2. We
see that using a single-layer neural network, which
is equivalent to logistic regression, outperforms
BLEU by more than +1 τ points absolute.
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Kendall’s τ
System Details cz de es fr AVG

BLEU no learning 15.88 18.56 18.57 20.83 18.46

BLEUCOMP logistic regression 18.18 21.13 19.79 19.91 19.75
BLEUCOMP+SYNTAX25 multi-layer NN 20.75 25.32 24.85 23.88 23.70
BLEUCOMP+WIKI-GW25 multi-layer NN 22.96 26.63 25.99 24.10 24.92
BLEUCOMP+SYNTAX25+WIKI-GW25 multi-layer NN 22.84 28.92 27.95 24.90 26.15
BLEU+SYNTAX25+WIKI-GW25 multi-layer NN 20.03 25.95 27.07 23.16 24.05

Table 2: Kendall’s τ on WMT12 for neural networks using BLEUCOMP, a decomposed version of BLEU. For comparison,

the last line shows a combination using BLEU instead of BLEUCOMP.

Source Alone Comb.
WIKI-GW25 10.01 29.70
WIKI-GW300 9.66 29.90
CC-300-42B 12.16 29.68
CC-300-840B 11.41 29.88
WORD2VEC300 7.72 29.13

COMPOSES400 12.35 28.54

Table 3: Average Kendall’s τ on WMT12 for semantic vec-

tors trained on different text collections. Shown are results

(i) when using the semantic vectors alone, and (ii) when com-

bining them with 4METRICS and SYNTAX25. The improve-

ments over WIKI-GW25 are marked in bold.

As before, adding SYNTAX25 and WIKI-
GW25 improves the results, but now by a more
sizable margin: +4 for the former and +5 for the
latter. Adding both yields +6.5 improvement over
BLEUCOMP, and almost 8 points over BLEU.

We see once again that the syntactic and seman-
tic word embeddings are complementary to the in-
formation sources used by metrics such as BLEU,
and that our framework can learn from richer pair-
wise feature sets such as BLEUCOMP.

6.2 Larger Semantic Vectors

One interesting aspect to explore is the effect of
the dimensionality of the input embeddings. Here,
we studied the impact of using semantic vectors
of bigger sizes, trained on different and larger text
collections. The results are shown in Table 3.
We can see that, compared to the 50-dimensional
WIKI-GW25, 300-400 dimensional vectors are
generally better by 1-2 τ points absolute when
used in isolation; however, when used in combina-
tion with 4METRICS+SYNTAX25, they do not of-
fer much gain (up to +0.2), and in some cases, we
observe a slight drop in performance. We suspect
that the variability across the different collections
is due to a domain mismatch. Yet, we defer this
question for future work.

Kendall’s τ
Details cz de es fr AVG

single-layer 25.86 32.06 30.03 28.45 29.10
multi-layer 26.30 33.19 30.38 28.92 29.70

Table 4: Kendall’s tau (τ ) on the WMT12 dataset for al-

ternative architectures using 4METRICS+SYNTAX25+WIKI-

GW25 as input.

6.3 Deep vs. Flat Neural Network
One interesting question is how much of the learn-
ing is due to the rich input representations, and
how much happens because of the architecture of
the neural network. To answer this, we exper-
imented with two settings: a single-layer neural
network, where all input features are fed directly
to the output layer (which is logistic regression),
and our proposed multi-layer neural network.

The results are shown in Table 4. We can see
that switching from our multi-layer architecture to
a single-layer one yields an absolute drop of 0.6
τ . This suggests that there is value in using the
deeper, pairwise layer architecture.

6.4 Task-Specific Cost Function
Another question is whether the log-likelihood
cost function J(θ) (see Section 3.3) is the most
appropriate for our ranking task, provided that it is
evaluated using Kendall’s τ as defined below:

τ =
concord.− disc.− ties
concord+ disc.+ ties

(5)

where concord., disc. and ties are the number of
concordant, disconcordant and tied pairs.

Given an input tuple (t1, t2, r), the logistic cost
function yields larger values of σ = f(t1, t2, r) if
y = 1, and smaller if y = 0, where 0 ≤ σ ≤ 1 is
the parameter of the Bernoulli distribution. How-
ever, it does not model directly the probability
when the order of the hypotheses in the tuple is
reversed, i.e., σ′ = f(t2, t1, r).
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Kendall’s τ
Details cz de es fr AVG

Logistic 26.30 33.19 30.38 28.92 29.70
Kendall 27.04 33.60 29.48 28.54 29.53
Log.+Ken. 26.90 33.17 30.40 29.21 29.92

Table 5: Kendall’s tau (τ ) on WMT12 for alternative cost

functions using 4METRICS+SYNTAX25+WIKI-GW25.

For our specific task, given an input tuple
(t1, t2, r), we want to make sure that the difference
between the two output activations ∆ = σ − σ′ is
positive when y = 1, and negative when y = 0.
Ensuring this would take us closer to the actual
objective, which is Kendall’s τ . One possible way
to do this is to introduce a task-specific cost func-
tion that penalizes the disagreements similarly to
the way Kendall’s τ does.4 In particular, we de-
fine a new Kendall cost as follows:

Jθ = −
∑
n

yn sig(−γ∆n) + (1− yn) sig(γ∆n)

(6)
where we use the sigmoid function sig as a differ-
entiable approximation to the step function.

The above cost function penalizes disconcor-
dances, i.e., cases where (i) y = 1 but ∆ < 0,
or (ii) when y = 0 but ∆ > 0. However, we also
need to make sure that we discourage ties. We do
so by adding a zero-mean Gaussian regularization
term exp(−β∆2/2) that penalizes the value of ∆
getting close to zero. Note that the specific val-
ues for γ and β are not really important, as long
as they are large. In particular, in our experiments,
we used γ = β = 100.

Table 5 shows a comparison of the two cost
functions: (i) the standard logistic cost, and (ii) our
Kendall cost. We can see that using the Kendall
cost enables effective learning, although it is even-
tually outperformed by the logistic cost. Our in-
vestigation revealed that this was due to a combi-
nation of slower convergence and poor initializa-
tion. Therefore, we further experimented with a
setup where we first used the logistic cost to pre-
train the neural network, and then we switched to
the Kendall cost in order to perform some finer
tuning. As we can see in Table 5 (last row), do-
ing so yielded a sizable improvement over using
the Kendall cost only; it also improved over using
the logistic cost only.

4Other variations for ranking tasks are possible, e.g., (Yih
et al., 2011).

7 Conclusions and Future Work

We have presented a novel framework for learn-
ing a tunable MT evaluation metric in a pairwise
ranking setting, given pre-existing pairwise human
preference judgments.

In particular, we used a neural network, where
the input layer encodes lexical, syntactic and se-
mantic information from the reference and the two
translation hypotheses, which is efficiently com-
pacted into relatively small embeddings. The net-
work has a hidden layer, motivated by our intuition
about the problem, which captures the interactions
between the relevant input components. Unlike
previously proposed kernel-based approaches, our
framework allows us to do both training and in-
ference efficiently. Moreover, we have shown that
it can be trained to optimize a task-specific cost
function, which is more appropriate for the pair-
wise MT evaluation setting.

The evaluation results have shown that our NN
model yields state-of-the-art results when using
lexical, syntactic and semantic features (the latter
two based on compact embeddings). Moreover,
we have shown that the contribution of the differ-
ent information sources is additive, thus demon-
strating that the framework can effectively inte-
grate complementary information. Furthermore,
the framework is flexible enough to exploit dif-
ferent granularities of features such as n-gram
matches and other components of BLEU (which
individually work better than using the aggregated
BLEU score). Finally, we have presented evidence
suggesting that using the pairwise hidden layers is
advantageous over simpler flat models.

In future work, we would like to experiment
with an extension that allows for multiple refer-
ences. We further plan to incorporate features
from the source sentence. We believe that our
framework can support learning similarities be-
tween the two translations and the source, for an
improved MT evaluation. Variations of this ar-
chitecture might be useful for related tasks such
as Quality Estimation and hypothesis re-ranking
for Machine Translation, where no references are
available.

Other aspects worth studying as a complement
to the present work include (i) the impact of the
quality of the syntactic analysis (translations are
often just a “word salad”), (ii) differences across
language pairs, and (iii) the relevance of the do-
main the semantic representations are trained on.
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search, 3:1137–1155.

James Bergstra, Olivier Breuleux, Frédéric Bastien,
Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. 2010. Theano: a CPU and
GPU math expression compiler. In Proceedings
of the Python for Scientific Computing Conference,
SciPy ’10, Austin, Texas.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Aleš
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Abstract

We achieve significant improvements in
several syntax-based machine translation
experiments using a string-to-tree vari-
ant of multi bottom-up tree transducers.
Our new parameterized rule extraction al-
gorithm extracts string-to-tree rules that
can be discontiguous and non-minimal
in contrast to existing algorithms for the
tree-to-tree setting. The obtained models
significantly outperform the string-to-tree
component of the Moses framework in a
large-scale empirical evaluation on several
known translation tasks. Our linguistic
analysis reveals the remarkable benefits of
discontiguous and non-minimal rules.

1 Introduction

We present an application of a variant of local
multi bottom-up tree transducers (`MBOTs) as
proposed in Maletti (2011) to statistical machine
translation. `MBOTs allow discontinuities on the
target language side since they have a sequence
of target tree fragments instead of a single tree
fragment in their rules. The original approach
makes use of syntactic information on both the
source and the target side (tree-to-tree) and a cor-
responding minimal rule extraction is presented
in (Maletti, 2011). Braune et al. (2013) imple-
mented it as well as a decoder inside the Moses
framework (Koehn et al., 2007) and demonstrated
that the resulting tree-to-tree `MBOT system sig-
nificantly improved over its tree-to-tree baseline
using minimal rules. We can see at least two draw-
backs in this approach. First, experiments investi-
gating the integration of syntactic information on
both sides generally report quality deterioration.
For example, Lavie et al. (2008), Liu et al. (2009),
and Chiang (2010) noted that translation quality
tends to decrease in tree-to-tree systems because

the rules become too restrictive. Second, minimal
rules (i.e., rules that cannot be obtained from other
extracted rules) typically consist of a few lexi-
cal items only and are thus not the most suitable
to translate idiomatic expressions and other fixed
phrases. To overcome these drawbacks, we abol-
ish the syntactic information for the source side
and develop a string-to-tree variant of `MBOTs.
In addition, we develop a new rule extraction algo-
rithm that can also extract non-minimal rules. In
general, the number of extractable rules explodes,
so our rule extraction places parameterized restric-
tions on the extracted rules in the same spirit as
in (Chiang, 2007). In this manner, we combine the
advantages of the hierarchical phrase-based ap-
proach on the source side and the tree-based ap-
proach with discontinuiety on the target side.

We evaluate our new system in 3 large-scale ex-
periments using translation tasks, in which we ex-
pect discontinuiety on the target. MBOTs are pow-
erful but asymmetric models since discontinuiety
is available only on the target. We chose to trans-
late from English to German, Arabic, and Chi-
nese. In all experiments our new system signifi-
cantly outperforms the string-to-tree syntax-based
component (Hoang et al., 2009) of Moses. The
(potentially) discontiguous rules of our model are
very useful in these setups, which we confirm in a
quantitative and qualitative analysis.

2 Related work

Modern statistical machine translation sys-
tems (Koehn, 2009) are based on different
translation models. Syntax-based systems have
become widely used because of their ability to
handle non-local reordering and other linguistic
phenomena better than phrase-based models (Och
and Ney, 2004). Synchronous tree substitution
grammars (STSGs) of Eisner (2003) use a single
source and target tree fragment per rule. In con-
trast, an `MBOT rule contains a single source tree
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concludes X →
( VAFIN

ist
, NP ,

VP

PP geschlossen

)

X on X →
(

NP ,
PP

über NN

)

human rights →
( NN

Menschenrechte

)
the X →

( NP

die NN

)

Figure 1: Several valid rules for our MBOT.

fragment and a sequence of target tree fragments.
`MBOTs can also be understood as a restriction of
the non-contiguous STSSGs of Sun et al. (2009),
which allow a sequence of source tree fragments
and a sequence of target tree fragments. `MBOT
rules require exactly one source tree fragment.

While the mentioned syntax-based models use
tree fragments for source and target (tree-to-tree),
Galley et al. (2004) and Galley et al. (2006) use
syntactic annotations only on the target language
side (string-to-tree). Further research by DeNeefe
et al. (2007) revealed that adding non-minimal
rules improves translation quality in this setting.
Here we improve statistical machine translation
in this setting even further using non-minimal
`MBOT rules.

3 Theoretical Model

As our translation model, we use a string-to-tree
variant of the shallow local multi bottom-up tree
transducer of Braune et al. (2013). We will call
our variant MBOT for simplicity. Our MBOT is
a synchronous grammar (Chiang, 2006) similar to
a synchronous context-free grammar (SCFG), but
instead of a single source and target fragment per
rule, our rules are of the form s → (t1, . . . , tn)
with a single source string s and potentially sev-
eral target tree fragments t1, . . . , tn. Besides lex-
ical items the source string can contain (several
occurrences of) the placeholder X, which links to
non-lexical leaves in the target tree fragments. In
contrast to an SCFG each placeholder can have
several such links. However, each non-lexical leaf
in a target tree fragment has exactly one such link
to a placeholder X. An MBOT is simply a finite
collection of such rules. Several valid rules are
depicted in Figure 1.

The sentential forms of our MBOTs, which
occur during derivations, have exactly the same
shape as our rules and each rule is a sentential

Matching sentential forms (underlining for emphasis):

concludes X →
( VAFIN

ist
, NP ,

VP

PP geschlossen

)

X on X →
(

NP ,
PP

über NN

)

Combined sentential form:

concludes X on X →
( VAFIN

ist
, NP ,

VP

PP

über NN

geschlossen
)

Figure 2: Substitution of sentential forms.

form. We can combine sentential forms with the
help of substitution (Chiang, 2006). Roughly
speaking, in a sentential form ξ we can replace
a placeholder X that is linked (left-to-right) to
non-lexical leaves C1, . . . , Ck in the target tree
fragments by the source string of any sentential
form ζ, whose roots of the target tree fragments
(left-to-right) read C1, . . . , Ck. The target tree
fragments of ζ will replace the respective linked
leaves in the target tree fragments of the sentential
form ξ. In other words, substitution has to respect
the symbols in the linked target tree fragments and
all linked leaves are replaced at the same time. We
illustrate substitution in Figure 2, where we re-
place the placeholder X in the source string, which
is linked to the underlined leaves NP and PP in the
target tree fragments. The rule below (also in Fig-
ure 1) is also a sentential form and matches since
its (underlined) root labels of the target tree frag-
ments read “NP PP”. Thus, we can substitute the
latter sentential form into the former and obtain
the sentential form shown at the bottom of Fig-
ure 2. Ideally, the substitution process is repeated
until the complete source sentence is derived.

4 Rule Extraction

The rule extraction of Maletti (2011) extracts min-
imal tree-to-tree rules, which are rules containing
both source and target tree fragments, from sen-
tence pairs of a word-aligned and bi-parsed paral-
lel corpus. In particular, this requires parses for
both the source and the target language sentences
which adds a source for errors and specificity po-
tentially leading to lower translation performance
and lower coverage (Wellington et al., 2006). Chi-
ang (2010) showed that string-to-tree systems—
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that1 concludes2 the3 debate4 on5 human6 rights7

TOP[1,7]

PROAV[1,1]

damit1

VAFIN[2,2]

ist2

NP[3,4]

ART[3,3]

die3

NN[4,4]

Aussprache4

VP[5,7]

PP[5,6]

APPR[5,5]

über5

NN[6,6]

Menschenrechte6

VVPP[7,7]

geschlossen7

Figure 3: Word-aligned sentence pair with target-
side parse.

which he calls fuzzy tree-to-tree-systems— gen-
erally yield higher translation quality compared to
corresponding tree-to-tree systems.

For efficiency reasons the rule extraction of
Maletti (2011) only extracts minimal rules, which
are the smallest tree fragments compatible with the
given word alignment and the parse trees. Simi-
larly, non-minimal rules are those that can be ob-
tained from minimal rules by substitution. In par-
ticular, each lexical item of a sentence pair oc-
curs in exactly one minimal rule extracted from
that sentence pair. However, minimal rules are
especially unsuitable for fixed phrases consisting
of rare words because minimal rules encourage
small fragments and thus word-by-word transla-
tion. Consequently, such fixed phrases will often
be assembled inconsistently by substitution from
small fragments. Non-minimal rules encourage a
consistent translation by covering larger parts of
the source sentence.

Here we want to develop an efficient rule ex-
traction procedure for our string-to-tree MBOTs
that avoids the mentioned drawbacks. Natu-
rally, we could substitute minimal rules into each
other to obtain non-minimal rules, but perform-
ing substitution for all combinations is clearly in-
tractable. Instead we essentially follow the ap-
proach of Koehn et al. (2003), Och and Ney
(2004), and Chiang (2007), which is based on con-
sistently aligned phrase pairs. Our training corpus
contains word-aligned sentence pairs 〈e,A, f〉,
which contain a source language sentence e, a
target language sentence f , and an alignment
A ⊆ [1, `e] × [1, `f ], where `e and `f are the
lengths of the sentences e and f , respectively, and
[i, i′] = {j ∈ Z | i ≤ j ≤ i′} is the span (closed
interval of integers) from i to i′ for all positive in-
tegers i ≤ i′. Rules are extracted for each pair
of the corpus, so in the following let 〈e,A, f〉 be

a word-aligned sentence pair. A source phrase
is simply a span [i, i′] ⊆ [1, `e] and correspond-
ingly, a target phrase is a span [j, j′] ⊆ [1, `f ].
A rule span is a pair 〈p, ϕ〉 consisting of a source
phrase p and a sequence ϕ = p1 · · · pn of (non-
overlapping) target phrases p1, . . . , pn. Spans
overlap if their intersection is non-empty. If n = 1
(i.e., there is exactly one target phrase in ϕ) then
〈p, ϕ〉 is also a phrase pair (Koehn et al., 2003).
We want to emphasize that formally phrases are
spans and not the substrings occuring at that span.

Next, we lift the notion of consistently aligned
phrase pairs to our rule spans. Simply put, for
a consistently aligned rule span 〈p, p1 · · · pn〉 we
require that it respects the alignment A in the
sense that the origin i of an alignment (i, j) ∈ A
is covered by p if and only if the destination j
is covered by p1, . . . , pn. Formally, the rule
span 〈p, p1 · · · pn〉 is consistently aligned if for
every (i, j) ∈ A we have i ∈ p if and
only if j ∈ ⋃n

k=1 pk. For example, given the
word-aligned sentence pair in Figure 3, the rule
span 〈[2, 4], [2, 4] [7, 7]〉 is consistently aligned,
whereas the phrase pair 〈[2, 4], [2, 7]〉 is not.

Our MBOTs use rules consisting of a source
string and a sequence of target tree fragments.
The target trees are provided by a parser for the
target language. For each word-aligned sentence
pair 〈e,A, f〉 we thus have a parse tree t for f . An
example is provided in Figure 3. We omit a for-
mal definition of trees, but recall that each node η
of the parse tree t governs a (unique) target phrase.
In Figure 3 we have indicated those target phrases
(spans) as subscript to the non-lexical node labels.
A consistently aligned rule span 〈p, p1 · · · pn〉 of
〈e,A, f〉 is compatible with t if there exist nodes
η1, . . . , ηn of t such that ηk governs pk for all
1 ≤ k ≤ n. For example, given the word-aligned
sentence pair and parse tree t in Figure 3, the con-
sistently aligned rule span 〈[2, 4], [2, 4] [7, 7]〉 is
not compatible with t because there is no node in t
that governs [2, 4]. However, for the same data, the
rule span 〈[2, 4], [2, 2] [3, 4] [7, 7]〉 is consistently
aligned and compatible with t. The required nodes
of t are labeled VAFIN, NP, VVPP.

Now we are ready to start the rule extrac-
tion. For each consistently aligned rule span
〈p, p1 · · · pn〉 that is compatible with t and each se-
lection of nodes η1, . . . , ηn of t such that nk gov-
erns pk for each 1 ≤ k ≤ n, we can extract the
rule e(p)→ (

flat(tη1), . . . ,flat(tηn)
)
, where
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Initial rules for

rule span 〈[3, 3], [3, 3]〉:

the →
( ART

die

)
rule span 〈[4, 4], [4, 4]〉:

debate →
( NN

Aussprache

)
rule span 〈[3, 4], [3, 4]〉:

the debate →
( NP

die Aussprache

)

rule span 〈[5, 7], [5, 6]〉:

on human rights →
( PP

über Menschenrechte

)
rule span 〈[3, 7], [3, 4] [5, 6]〉:

the debate on human rights →
( NP

die Aussprache
,

PP

über Menschenrechte

)

rule span 〈[2, 2], [2, 2] [7, 7]〉:

concludes →
( VAFIN

ist
,

VVPP

geschlossen

)
rule span 〈[2, 4], [2, 2] [3, 4] [7, 7]〉:

concludes the debate →
( VAFIN

ist
,

NP

die Aussprache
,

VVPP

geschlossen

)

rule span 〈[2, 7], [2, 7]〉:

concludes the debate on human rights →
( VAFIN

ist
,

NP

die Aussprache
,

VP

über Menschenrechte geschlossen

)

Figure 4: Some initial rules extracted from the word-aligned sentence pair and parse of Figure 3.

• e(p) is the substring of e at span p,1

• flat(u) removes all internal nodes from u (all
nodes except the root and the leaves), and
• tη is the subtree rooted in η for node η of t.

The rules obtained in this manner are called initial
rules for 〈e,A, f〉 and t. For example, for the rule
span 〈[2, 4], [2, 2] [3, 4] [7, 7]〉 we can extract only
one initial rule. More precisely, we have
• e([2, 4]) = concludes the debate
• tη1 = (VAFIN ist)
• tη2 =

(
NP (ART die) (NN Aussprache)

)
,

• and tη3 = (VVPP geschlossen).
The function flat leaves tη1 and tη3 unchanged,
but flat(tη2) = (NP die Aussprache). Thus, we
obtain the boxed rule of Figure 4.

Clearly, the initial rules are just the start be-
cause they are completely lexical in the sense that
they never contain the placeholder X in the source
string nor a non-lexical leaf in any output tree frag-
ment. We introduce non-lexical rules using the
same approach as for the hierarchical rules of Chi-
ang (2007). Roughly speaking, we obtain a new
rule r′′ by “excising” an initial rule r from another
rule r′ and replacing the removed part by
• the placeholder X in the source string,
• the root label of the removed tree fragment in

the target tree fragments, and
• linking the removed parts appropriately,

so that the flatted substitution of r into r′′ can

1If p = [i, i′], then e(p) = e[i, i′] is the substring of e
ranging from the i-th token to the i′-th token.

Extractable rule [top] and initial rule [bottom]:

the debate on human rights →
( NP

die Aussprache
,

PP

über Menschenrechte

)

on human rights → ( PP

über Menschenrechte )
Extractable rule obtained after excision:

the debate X →
( NP

die Aussprache
, PP

)

Figure 5: Excision of the middle initial rule from
the topmost initial rule. Substituting the middle
rule into the result yields the topmost rule.

yield r′. This “excision” process is illustrated in
Figure 5, where we remove the middle initial rule
from the topmost initial rule. The result is dis-
played at the bottom in Figure 5. Formally, the set
of extractable rules R for a given word-aligned
sentence pair 〈e,A, f〉 with parse tree t for f is
the smallest set subject to the following two con-
ditions:
• Each initial rule is in R and thus extractable.
• For every initial rule r and extractable rule
r′ ∈ R, any flat rule r′′, into which we can
substitute r to obtain ρ with flat(ρ) = r′, is
in R and thus extractable.2

For our running example depicted in Figure 3 we
display some extractable rules in Figure 6.

2A rule ρ = s→ (t1, . . . , tn) is flat if flat(ρ) = ρ, where
flat(ρ) = s→ (flat(t1), . . . , flat(tn)).
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Source string “the debate”:

concludes X on human rights →
( VAFIN

ist
, NP ,

VP

über Menschenrechte geschlossen

)

Source string “on human rights”:

concludes the debate X →
( VAFIN

ist
,

NP

die Aussprache
,

VP

PP geschlossen

)
Source string “the debate on human rights”:

concludes X →
( VAFIN

ist
, NP ,

VP

PP geschlossen

)

Figure 6: Extractable rules obtained by excising various initial rules (see Figure 4) from the initial rule
displayed at the bottom of Figure 4.

Unfortunately, already Chiang (2007) points out
that the set of all extractable rules is generally
too large and keeping all extractable rules leads to
slow training, slow decoding, and spurious ambi-
guity. Our MBOT rules are restricted by the parse
tree for the target sentence, but the MBOT model
permits additional flexibility due to the presence
of multiple target tree fragments. Overall, we ex-
perience the same problems, and consequently, in
the experiments we use the following additional
constraints on rules s→ (t1, . . . , tn):
(a) We only consider source phrases p of length at

most 10 (i.e., i′ − i < 10 for p = [i, i′]).3

(b) The source string s contains at most 5 occur-
rences of lexical items or X (i.e. `s ≤ 5).

(c) The source string s cannot have consecu-
tive Xs (i.e., XX is not a substring of s).

(d) The source string contains at least one lexical
item that was aligned in 〈e,A, f〉.

(e) The left-most token of the source string s can-
not be X (i.e., s[1, 1] 6= X).

Our implementation can easily be modified to han-
dle other constraints. Figure 7 shows extractable
rules violating those additional constraints.

Table 1 gives an overview on how many rules
are extracted. Our string-to-tree variant extracts
12–17 times more rules than the minimal tree-to-
tree rule extraction. For our experiments (see Sec-
tion 6), we filter all rule tables on the given input.
The decoding times for the minimal `MBOT and
our MBOT share the same order of magnitude.

5 Model Features

For each source language sentence e, we want to
determine its most likely translation f̂ given by

f̂ = arg maxf p(f | e) = arg maxf p(e | f) · p(f)

3Note that this restricts the set of initial rules.

for some unknown probability distributions p. We
estimate p(e | f) ·p(f) by a log-linear combination
of features hi(·) with weights λi scored on senten-
tial forms e→ (t) of our extracted MBOTM such
that the leaves of t read (left-to-right) f .

We use the decoder provided by MBOT-Moses
of Braune et al. (2013) and its standard features,
which includes all the common features (Koehn,
2009) and a gap penalty 1001−c, where c is the
number of target tree fragments that contributed
to t. This feature discourages rules with many tar-
get tree fragments. As usual, all features are ob-
tained as the product of the corresponding rule fea-
tures for the rules used to derive e→ (t) by means
of substitution. The rule weights for the transla-
tion weights are obtained as relative frequencies
normalized over all rules with the same right- and
left-hand side. Good-Turing smoothing (Good,
1953) is applied to all rules that were extracted at
most 10 times. The lexical translation weights are
obtained as usual.

6 Experimental Results

We considered three reasonable baselines: (i) min-
imal `MBOT, (ii) non-contiguous STSSG (Sun et
al., 2009), or (iii) a string-to-tree Moses system.
We decided against the minimal `MBOT as a base-
line since tree-to-tree systems generally get lower
BLEU scores than string-to-tree systems. We nev-
ertheless present its BLEU scores (see Table 3).
Unfortunately, we could not compare to Sun et
al. (2009) because their decoder and rule extrac-
tion algorithms are not publicly available. Fur-
thermore, we have the impression that their system
does not scale well:
• Only around 240,000 training sentences were

used. Our training data contains between
1.8M and 5.7M sentence pairs.
• The development and test set were length-
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violates (b):

that concludes X on human rights →
( PROAV

damit
,

VAFIN

ist
, NP ,

VP

über Menschenrechte geschlossen

)

violates (c):

concludes X X →
( VAFIN

ist
, NP ,

VP

PP geschlossen

) violates (d):

X →
(

NP
)

violates (e):

X on human rights →
(

NP ,
PP

über Menschenrechte

)

Figure 7: Showing extractable rules violating the restrictions.

System number of extracted rules
English-To-German English-To-Arabic English-To-Chinese

minimal tree-to-tree `MBOT 12,478,160 28,725,229 10,162,325
non-minimal string-to-tree MBOT 143,661,376 491,307,787 162,240,663
string-to-tree Moses 14,092,729 55,169,043 17,047,570

Table 1: Overview of numbers of extracted rules with respect to the different extraction algorithms.

ratio filtered to sentences up to 50 characters.
We do not modify those sets.
• Only rules with at most one gap were al-

lowed which would be equivalent to restrict
the number of target tree fragments to 2 in
our system.

Hence we decided to use a string-to-tree Moses
system as baseline (see Section 6.1).

6.1 Setup

As a baseline system for our experiments we use
the syntax-based component (Hoang et al., 2009)
of the Moses toolkit (Koehn et al., 2007). Our
system is the presented translation system based
on MBOTs. We use the MBOT-Moses decoder
(Braune et al., 2013) which – similar to the base-
line decoder – uses a CYK+ chart parsing algo-
rithm using a standard X-style parse tree which is
sped up by cube pruning (Chiang, 2007) with in-
tegrated language model scoring.

Our and the baseline system use linguistic syn-
tactic annotation (parses) only on the target side
(string-to-tree). During rule extraction we impose
the restrictions of Section 4. Additional glue-rules
that concatenate partial translations without per-
forming any reordering are used in all systems.

For all experiments (English-to-German,
English-to-Arabic, and English-to-Chinese), the
training data was length-ratio filtered. The word
alignments were generated by GIZA++ (Och
and Ney, 2003) with the grow-diag-final-and
heuristic (Koehn et al., 2005). The following
language-specific processing was performed. The
German text was true-cased and the functional

and morphological annotations were removed
from the parse. The Arabic text was tokenized
with MADA (Habash et al., 2009) and translit-
erated according to Buckwalter (2002). Finally,
the Chinese text was word-segmented using the
Stanford Word Segmenter (Chang et al., 2008).

In all experiments the feature weights λi of the
log-linear model were trained using minimum er-
ror rate training (Och, 2003). The remaining infor-
mation for the experiments is presented in Table 2.

6.2 Quantitative Analysis

The overall translation quality was measured with
4-gram BLEU (Papineni et al., 2002) on true-
cased data for German, on transliterated data for
Arabic, and on word-segmented data for Chinese.
Significance was computed with Gimpel’s imple-
mentation (Gimpel, 2011) of pairwise bootstrap
resampling with 1,000 samples. Table 3 lists the
evaluation results. In all three setups the MBOT
system significantly outperforms the baseline. For
German we obtain a BLEU score of 15.90 which
is a gain of 0.68 points. For Arabic we get an in-
crease of 0.78 points which results in 49.10 BLEU.
For Chinese we obtain a score of 18.35 BLEU
gaining 0.66 points.4 We also trained a vanilla
phrase-based system for each language pair on the
same data as described in Table 2.

To demonstrate the usefulness of the multiple

4NIST-08 also shows BLEU for word-segmented output
(http://www.itl.nist.gov/iad/mig/tests/
mt/2008/doc/mt08_official_results_v0.
html). Best constrained system: 17.69 BLEU; best
unconstrained system: 19.63 BLEU.

820



English to German English to Arabic English to Chinese
training data 7th EuroParl corpus (Koehn, 2005) MultiUN corpus (Eisele and Chen, 2010)

training data size ≈ 1.8M sentence pairs ≈ 5.7M sentence pairs ≈ 1.9M sentence pairs
target-side parser BitPar (Schmid, 2004) Berkeley parser (Petrov et al., 2006)

language model 5-gram SRILM (Stolcke, 2002)
add. LM data WMT 2013 Arabic in MultiUN Chinese in MultiUN
LM data size ≈ 57M sentences ≈ 9.7M sentences ≈ 9.5M sentences

tuning data WMT 2013 cut from MultiUN NIST 2002, 2003, 2005
tuning size 3,000 sentences 2,000 sentences 2,879 sentences

test data WMT 2013 (Bojar et al., 2013) cut from MultiUN NIST 2008 (NIST, 2010)
test size 3,000 sentences 1,000 sentences 1,859 sentences

Table 2: Summary of the performed experiments.

Language pair System BLEU

English-to-German

Moses Baseline 15.22
MBOT ∗15.90

minimal `MBOT 14.09
Phrase-based Moses 16.73

English-to-Arabic

Moses Baseline 48.32
MBOT ∗49.10

minimal `MBOT 32.88
Phrase-based Moses 50.27

English-to-Chinese

Moses Baseline 17.69
MBOT ∗18.35

minimal `MBOT 12.01
Phrase-based Moses 18.09

Table 3: Evaluation results. The starred results
are statistically significant improvements over the
baseline (at confidence p < 1%).

target tree fragments of MBOTs, we analyzed the
MBOT rules that were used when decoding the
test set. We distinguish several types of rules. A
rule is contiguous if it has only 1 target tree frag-
ment. All other rules are (potentially) discontigu-
ous. Moreover, lexical rules are rules whose leaves
are exclusively lexical items. All other rules (i.e.,
those that contain at least one non-lexical leaf)
are structural. Table 4 reports how many rules of
each type are used during decoding for both our
MBOT system and the minimal `MBOT. Below,
we focus on analyzing our MBOT system. Out
of the rules used for German, 27% were (poten-
tially) discontiguous and 5% were structural. For
Arabic, we observe 67% discontiguous rules and
26% structural rules. For translating into Chinese
30% discontiguous rules were used and the struc-
tural rules account to 18%. These numbers show
that the usage of discontiguous rules tunes to the

specific language pair. For instance, Arabic uti-
lizes them more compared to German and Chi-
nese. Furthermore, German uses a lot of lexical
rules which is probably due to the fact that it is a
morphologically rich language. On the other hand,
Arabic and Chinese make good use of structural
rules. In addition, Table 4 presents a finer-grained
analysis based on the number of target tree frag-
ments. Only rules with at most 8 target tree frag-
ments were used. While German and Arabic seem
to require some rules with 6 target tree fragments,
Chinese probably does not. We conclude that the
number of target tree fragments can be restricted
to a language-pair specific number during rule ex-
traction.

6.3 Qualitative Analysis

In this section, we inspect some English-to-
German translations generated by the Moses base-
line and our MBOT system in order to provide
some evidence for linguistic constructions that our
system handles better. We identified (a) the real-
ization of reflexive pronouns, relative pronouns,
and particle verbs, (b) the realization of verbal
material, and (c) local and long distance reorder-
ing to be better throughout than in the baseline
system. All examples are (parts of) translations
of sentences from the test data. Ungrammatical
constructions are enclosed in brackets and marked
with a star. We focus on instances that seem rele-
vant to the new ability to use non-minimal rules.

We start with an example showing the realiza-
tion of a reflexive pronoun.
Source: Bitcoin differs from other types of virtual currency.
Reference: Bitcoin unterscheidet sich von anderen Arten

virtueller Währungen.
Baseline: Bitcoin [unterscheidet]? von anderen Arten [der

virtuellen Währung]?.
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Target tree fragments
Language pair System Type Lex Struct Total 2 3 4 5 ≥ 6

English-to-German

our cont. 27,351 635 27,986
MBOT discont. 9,336 1,110 10,446 5,565 3,441 1,076 312 52
minimal cont. 55,910 4,492 60,402
`MBOT discont. 2,167 7,386 9,553 6,458 2,589 471 34 1

English-to-Arabic

our cont. 1,839 651 2,490
MBOT discont. 3,670 1,324 4,994 3,008 1,269 528 153 36
minimal cont. 18,389 2,855 21,244
`MBOT discont. 1,138 1,920 3,058 2,525 455 67 8 3

English-to-Chinese

our cont. 17,135 1,585 18,720
MBOT discont. 4,822 3,341 8,163 6,411 1,448 247 55 2
minimal cont. 34,275 8,820 43,095
`MBOT discont. 516 4,292 4,808 3,816 900 82 6 4

Table 4: Number of rules per type used when decoding test (Lex = lexical rules; Struct = structural rules;
[dis]cont. = [dis]contiguous).

MBOT: Bitcoin unterscheidet sich von anderen Arten [der
virtuellen Währung]?.

Here the baseline drops the reflexive pronoun sich,
which is correctly realized by the MBOT system.
The rule used is displayed in Figure 8.

differs from other →
( VVFIN

unterscheidet

,
PRF

sich

,
APPR

von

,
ADJA

anderen

)

Figure 8: Rule realizing the reflexive pronoun.

Next, we show a translation in which our system
correctly generates a whole verbal segment.
Source: It turned out that not only . . .
Reference: Es stellte sich heraus, dass nicht nur . . .
Baseline: [Heraus,]? nicht nur . . .
MBOT: Es stellte sich heraus, dass nicht nur . . .

The baseline drops the verbal construction
whereas the large non-minimal rule of Figure 9 al-
lows our MBOT to avoid that drop. Again, the re-
quired reflexive pronoun sich is realized as well as
the necessary comma before the conjunction dass.

It turned out that →
( PPER

Es

,
VVFIN

stellte

,
PRF

sich

,
PTKZU

heraus

,
$,

,

,
KOUS

dass

)

Figure 9: MBOT rule for the verbal segment.

Another feature of MBOT is its power to per-
form long distance reordering with the help of sev-
eral discontiguous output fragments.
Source: . . . weapons factories now, which do not endure

competition on the international market and . . .

Reference: . . . Rüstungsfabriken, die der internationalen
Konkurrenz nicht standhalten und . . .

Baseline: . . . [Waffen in den Fabriken nun]?, die nicht einem
Wettbewerb auf dem internationalen Markt []? und . . .

MBOT: . . . [Waffen Fabriken nun]?, die Konkurrenz auf dem
internationalen Markt nicht ertragen und . . .

Figure 10 shows the rules which enable the
MBOT system to produce the correct reordering.

which do not X →
( PRELS

die

,
NP

NP

,
PTKNEG

nicht

,
VP

VP

)

endure X →
( NP

NP

,
VP

ertragen

)

competition X →
( NP

Konkurrenz PP

)

on the international market →
( PP

auf dem internationalen Markt

)

Figure 10: Long distance reordering.

7 Conclusion

We present an application of a string-to-tree vari-
ant of local multi bottom-up tree transducers,
which are tree-to-tree models, to statistical ma-
chine translation. Originally, only minimal rules
were extracted, but to overcome the typically
lower translation quality of tree-to-tree systems
and minimal rules, we abolish the syntactic an-
notation on the source side and develop a string-
to-tree variant. In addition, we present a new pa-
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rameterized rule extraction that can extract non-
minimal rules, which are particularly helpful for
translating fixed phrases. It would be interesting
to know how much can be gained when using only
one contribution at a time. Hence, we will explore
the impact of string-to-tree and non-minimal rules
in isolation.

We demonstrate that our new system signifi-
cantly outperforms the standard Moses string-to-
tree system on three different large-scale transla-
tion tasks (English-to-German, English-to-Arabic,
and English-to-Chinese) with a gain between 0.53
and 0.87 BLEU points. An analysis of the rules
used to decode the test sets suggests that the usage
of discontiguous rules is tuned to each language
pair. Furthermore, it shows that only discontigu-
ous rules with at most 8 target tree fragments are
used. Thus, further research could investigate a
hard limit on the number of target tree fragments
during rule extraction. We also perform a manual
inspection of the obtained translations and con-
firm that our string-to-tree MBOT rules can ade-
quately handle discontiguous phrases, which oc-
cur frequently in German, Arabic, and Chinese.
Other languages that exhibit such phenomena in-
clude Czech, Dutch, Russian, and Polish. Thus,
we hope that our approach can also be applied suc-
cessfully to other language pairs.

To support further experimentation by the
community, we publicly release our de-
veloped software and complete tool-chain
(http://www.ims.uni-stuttgart.de/
forschung/ressourcen/werkzeuge/
mbotmoses.html).
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Abstract

Modern statistical machine translation
(SMT) systems usually use a linear com-
bination of features to model the quality
of each translation hypothesis. The linear
combination assumes that all the features
are in a linear relationship and constrains
that each feature interacts with the rest fea-
tures in an linear manner, which might
limit the expressive power of the model
and lead to a under-fit model on the cur-
rent data. In this paper, we propose a non-
linear modeling for the quality of transla-
tion hypotheses based on neural networks,
which allows more complex interaction
between features. A learning framework is
presented for training the non-linear mod-
els. We also discuss possible heuristics
in designing the network structure which
may improve the non-linear learning per-
formance. Experimental results show that
with the basic features of a hierarchical
phrase-based machine translation system,
our method produce translations that are
better than a linear model.

1 Introduction

One of the core problems in the research of statis-
tical machine translation is the modeling of trans-
lation hypotheses. Each modeling method defines
a score of a target sentence e = e1e2...ei...eI ,
given a source sentence f = f1f2...fj ...fJ , where
each ei is the ith target word and fj is the jth
source word. The well-known modeling method
starts from the Source-Channel model (Brown et
al., 1993)(Equation 1). The scoring of e decom-
poses to the calculation of a translation model and
a language model.

Pr(e|f) = Pr(e)Pr(f |e)/Pr(f) (1)

The modeling method is extended to log-linear
models by Och and Ney (2002), as shown in Equa-
tion 2, where hm(e|f) is the mth feature function
and λm is the corresponding weight.

Pr(e|f) = pλM
1

(e|f)

=
exp[

∑M
m=1 λmhm(e|f)]∑

e′ exp[
∑M

m=1 λmhm(e′|f)]
(2)

Because the normalization term in Equation 2 is
the same for all translation hypotheses of the same
source sentence, the score of each hypothesis, de-
noted by sL, is actually a linear combination of all
features, as shown in Equation 3.

sL(e) =
M∑

m=1

λmhm(e|f) (3)

The log-linear models are flexible to incorpo-
rate new features and show significant advantage
over the traditional source-channel models, thus
become the state-of-the-art modeling method and
are applied in various translation settings (Yamada
and Knight, 2001; Koehn et al., 2003; Chiang,
2005; Liu et al., 2006).

It is worth noticing that log-linear models try to
separate good and bad translation hypotheses us-
ing a linear hyper-plane. However, complex inter-
actions between features make it difficult to lin-
early separate good translation hypotheses from
bad ones (Clark et al., 2014).

Taking common features in a typical phrase-
based (Koehn et al., 2003) or hierarchical phrase-
based (Chiang, 2005) machine translation system
as an example, the language model feature favors
shorter hypotheses; the word penalty feature en-
courages longer hypotheses. The phrase trans-
lation probability feature selects phrases that oc-
curs more frequently in the training corpus, which
sometimes is long with a lower translation proba-
bility, as in translating named entities or idioms;
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sometimes is short but with a high translation
probability, as in translating verbs or pronouns.
These three features jointly decide the choice of
translations. Simply use the weighted sum of their
values may not be the best choice for modeling
translations. As a result, log-linear models may
under-fit the data. This under-fitting may prevents
the further improvement of translation quality.

In this paper, we propose a non-linear model-
ing of translation hypotheses based on neural net-
works. The traditional features of a machine trans-
lation system are used as the input to the net-
work. By feeding input features to nodes in a hid-
den layer, complex interactions among features are
modeled, resulting in much stronger expressive
power than traditional log-linear models. (Sec-
tion 3)

Employing a neural network for SMT model-
ing has two issues to be tackled. The first is-
sue is the parameter learning. Log-linear models
rely on minimum error rate training (MERT) (Och,
2003) to achieve best performance. When the
scoring function become non-linear, the intersec-
tion points of these non-linear functions could not
be effectively calculated and enumerated. Thus
MERT is no longer suitable for learning the pa-
rameters. To solve the problem, we present a
framework for effective training including several
criteria to transform the training problem into a bi-
nary classification task, a unified objective func-
tion and an iterative training algorithm. (Sec-
tion 4)

The second issue is the structure of neural net-
work. Single layer neural networks are equivalent
to linear models; two-layer networks with suffi-
cient nodes are capable of learning any continuous
function (Bishop, 1995). Adding more layers into
the network could model complex functions with
less nodes, but also brings the problem of van-
ishing gradient (Erhan et al., 2009). We adapt a
two-layer feed-forward neural network to keep the
training process efficient. We notice that one ma-
jor problem that prevents a neural network training
reaching a good solution is that there are too many
local minimums in the parameter space. Thus we
discuss how to constrain the learning of neural net-
works with our intuitions and observations of the
features. (Section 5)

Experiments are conducted to compare vari-
ous settings and verify the effectiveness of our
proposed learning framework. Experimental re-

sults show that our framework could achieve better
translation quality even with the same traditional
features as previous linear models. (Section 6)

2 Related work

Many research has been attempting to bring non-
linearity into the training of SMT. These efforts
could be roughly divided into the following three
categories.

The first line of research attempted to re-
interpret original features via feature transforma-
tion or additional learning. For example, Maskey
and Zhou (2012) use a deep belief network to
learn representations of the phrase translation and
lexical translation probability features. Clark et
al. (2014) used discretization to transform real-
valued dense features into a set of binary indica-
tor features. Lu et al. (2014) learned new fea-
tures using a semi-supervised deep auto encoder.
These work focus on the explicit representation
of the features and usually employ extra learning
procedure. Our proposed method only takes the
original features, with no transformation, as the
input. Feature transformation or combination are
performed implicitly during the training of the net-
work and integrated with the optimization of trans-
lation quality.

The second line of research attempted to use
non-linear models instead of log-linear models,
which is most similar in spirit with our work. Duh
and Kirchhoff (2008) used the boosting method
to combine several results of MERT and achieved
improvement in a re-ranking setting. Liu et
al. (2013) proposed an additive neural network
which employed a two-layer neural network for
embedding-based features. To avoid local min-
imum, they still rely on a pre-training and post-
training from MERT or PRO. Comparing to these
efforts, our proposed method takes a further step
that it is integrated with iterative training, instead
of re-ranking, and works without the help of any
pre-trained linear models.

The third line of research attempted to add
non-linear features/components into the log-linear
learning framework. Neural network based mod-
els are trained as language models (Vaswani et
al., 2013; Auli and Gao, 2014), translation mod-
els (Gao et al., 2014) or joint language and transla-
tion models (Auli et al., 2013; Devlin et al., 2014).
Liu et al. (2013) also introduced word embed-
ding for source and target sides of the translation
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output
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Mo

Mh

Figure 1: A two-layer feed-forward neural net-
work.

rules as local features. In this paper, we focus on
enhancing the expressive power of the modeling,
which is independent of the research of enhanc-
ing translation systems with new designed fea-
tures. We believe additional improvement could
be achieved by incorporating more features into
our framework.

3 Non-linear Translation

The non-linear modeling of translation hypothe-
ses could be used in both phrase-based system and
syntax-based systems. In this paper, we take the
hierarchical phrase based machine translation sys-
tem (Chiang, 2005) as an example and introduce
how we fit the non-linearity into the system.

3.1 Two-layer Neural Networks

We employ a two-layer neural network as the non-
linear model for scoring translation hypotheses.
The structure of a typical two-layer feed-forward
neural network includes an input layer, a hidden
layer, and a output layer (as shown in Figure 1).

We use the input layer to accept input features,
the hidden layer to combine different input fea-
tures, the output layer with only one node to out-
put the model score for each translation hypothesis
based on the value of hidden nodes. More specifi-
cally, the score of hypothesis e, denoted as sN , is
defined as:

sN (e) = σo(Mo·σh(Mh·hm
1 (e|f)+bh)+bo) (4)

where M , b is the weight matrix, bias vector of
the neural nodes, respectively; σ is the activation
function, which is often set to non-linear functions
such as the tanh function or sigmoid function; sub-
script h and o indicates the parameters of hidden
layer and output layer, respectively.

3.2 Features
We use the standard features of a typical hier-
archical phrase based translation system(Chiang,
2005). Adding new features into the framework is
left as a future direction. The features as listed as
following:

• p(α|γ) and p(γ|α): conditional probability
of translating α as γ and translating α as γ,
where α and γ is the left and right hand side
of a initial phrase or hierarchical translation
rule, respectively;

• pw(α|γ) and pw(γ|α): lexical probability of
translating words in α as words in γ and
translating words in γ as words in α;

• plm: language model probability;

• wc: accumulated count of individual words
generated during translation;

• pc: accumulated count of initial phrases used;

• rc: accumulated count of hierarchical rule
phrases used;

• gc: accumulated count of glue rule used in
this hypothesis;

• uc: accumulated count of unknown source
word. which has no entry in the translation
table;

• nc: accumulated count of source phrases that
translate into null;

3.3 Decoding
The basic decoding algorithm could be kept al-
most the same as traditional phrase-based or
syntax-based translation systems (Yamada and
Knight, 2001; Koehn et al., 2003; Chiang, 2005;
Liu et al., 2006). For example, in the experiments
of this paper, we use a CKY style decoding algo-
rithm following Chiang (2005).

Our non-linear translation system is different
from traditional systems in the way to calculate
the score for each hypothesis. Instead of calculat-
ing the score as a linear combination, we use neu-
ral networks (Section 3.1) to perform a non-linear
combination of feature values.

We also use the cube-pruning algorithm (Chi-
ang, 2005) to keep the decoding efficient. Al-
though the non-linearity in model scores may
cause more search errors (Huang and Chiang,
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2007) finding the highest scoring hypothesis, in
practice it still achieves reasonable results.

4 Non-linear Learning Framework

Traditional machine translation systems rely on
MERT to tune the weights of different features.
MERT performs efficient search by enumerating
the score function of all the hypotheses and us-
ing intersections of these linear functions to form
the ”upper-envelope” of the model score func-
tion (Och, 2003). When the scoring function is
non-linear, it is not feasible to find the intersec-
tions of these functions. In this section, we discuss
alternatives to train the parameters for non-linear
models.

4.1 Training Criteria
The task of machine translation is a complex prob-
lem with structural output space. Decoding algo-
rithms search for the translation hypothesis with
the highest score, according to a given scoring
function, from an exponentially large set of candi-
date hypotheses. The purpose of training is to se-
lect the scoring function, so that the function score
the hypotheses ”correctly”. The correctness is of-
ten introduced by some extrinsic metrics, such as
BLEU (Papineni et al., 2002).

We denote the scoring function as s(f , e; θ⃗), or
simply s, which is parameterized by θ⃗; denote the
set of all translation hypotheses as C; denote the
extrinsic metric as eval(·) 1. Note that, in linear
cases, s is a linear function as in Equation 3, while
in the non-linear case described in this paper, s is
the scoring function in Equation 4.

Ideally, the training objective is to select a scor-
ing function ŝ, from all functions S , that scores the
correct translation (or references) ê, higher than
any other hypotheses (Equation 5).

ŝ = {s ∈ S|s(ê) > s(e)∀e ∈ C} (5)

In practice, the candidate set C is exponentially
large and hard to enumerate; the correct translation
ê may not even exist in the current search space for
various reasons, e.g. unknown source word. As a
result, we use the n-best set Cnbest to approximate
C, use the extrinsic metric eval(·) to evaluate the
quality of hypotheses in Cnbest and use the fol-
lowing three alternatives as approximations to the
ideal objective.

1In our experiments, we use sentence level BLEU with +1
smoothing as the evaluation metric.

Best v.s. Rest (BR) To score the best hypothesis
in the n-best set ẽ higher than the rest hy-
potheses. This objective is very similar to
MERT in that it tries to optimize the score
of ẽ and doesn’t concern about the ranking of
rest hypotheses. In this case, ẽ is an approxi-
mation of ê.

Best v.s. Worst (BW) To score the best hypoth-
esis higher than the worst hypothesis in the
n-best set. This objective is motivated by the
practice of separating the ”hope” and ”fear”
translation hypotheses (Chiang, 2012). We
take a simpler strategy which uses the best
and worst hypothesis in Cnbest as the ”hope”
and ”fear” hypothesis, respectively, in order
to avoid multi-pass decoding.

Pairwise (PW) To score the better hypothesis in
sampled hypothesis pairs higher than the
worse one in the same pair. This objective
is adapted from the Pairwise Ranking Opti-
mization (PRO) (Hopkins and May, 2011),
which tries to ranking all the hypotheses in-
stead of selecting the best one. We use the
same sampling strategy as their original pa-
per.

Note that each of the above criteria transforms
the original problem of selecting best hypothe-
ses from an exponential space to a certain pair-
wise comparison problem, which could be easily
trained using binary classifiers.

4.2 Training Objective
For the binary classification task, we use a hinge
loss following Watanabe (2012). Because the net-
work has a lot of parameters compared with the
linear model, we use a L1 norm instead of L2

norm as the regularization term, to favor sparse so-
lutions. We define our training objective function
in Equation 6.

arg min
θ

1
N

∑
f∈D

∑
(e1,e2)∈T (f)

δ(f , e1, e2; θ)

+ λ · ||θ||1
with

δ(·) = max{s(f , e1; θ)− s(f , e2; θ) + 1, 0}
(6)

where D is the given training data; (e1, e2) is a
training hypothesis-pair, with e1 to be the one with
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higher eval(·) score; N is the total number of
hypothesis-pairs in D; T (f), or simply T , is the
set of hypothesis-pairs for each source sentence f .

The set T is decided by the criterion used for
training. For the BR setting, the best hypothesis is
paired with every other hypothesis in the n-best list
(Equation 7); while for the BW setting, it is only
paired with the worst hypothesis (Equation 8). The
generation of T in PW setting is the same with
PRO sampling, we refer the readers to the original
paper of Hopkins and May (2011).

TBR = {(e1, e2)|e1 = arg max
e∈Cnbest

eval(e),

e2 ∈ Cnbest and e1 ̸= e2}
(7)

TBW = {(e1, e2)|e1 = arg max
e∈Cnbest

eval(e),

e2 = arg min
e∈Cnbest

eval(e)}
(8)

4.3 Training Procedure

In standard training algorithm for classification,
the training instances stays the same in each itera-
tion. In machine translation, decoding algorithms
usually return a very different n-best set with dif-
ferent parameters. This is due to the exponentially
large size of search space. MERT and PRO extend
the current n-best set by merging the n-best set
of all previous iterations into a pool (Och, 2003;
Hopkins and May, 2011). In this way, the enlarged
n-best set may give a better approximation of the
true hypothesis set C and may lead to better and
more stable training results.

We argue that the training should still focus on
hypotheses obtained in current round, because in
each iteration the searching for the n-best set is in-
dependent of previous iterations. To compromise
the above two goals, in our practice, training hy-
pothesis pairs are first generated from the current
n-best set, then merged with the pairs generated
from all previous iterations. In order to make the
model focus more on pairs from current iteration,
we assign pairs in previous iterations a small con-
stant weight and assign pairs in current iteration a
relatively large constant weight 2. This is inspired
by the AdaBoost algorithm (Schapire, 1999) in
weighting instances.

Following the spirit of MERT, we propose a
iterative training procedure (Algorithm 1). The

2In our experiments, we empirically set the constants to
be 0.1 and 0.9, respectively.

Algorithm 1 Iterative Training Algorithm
Input: the set of training sentences D, max num-

ber of iteration I
1: θ0 ← RandomInit(),
2: for i = 0 to I do
3: Ti ← ∅;
4: for each f ∈ D do
5: Cnbest ← NbestDecode(f ; θi)
6: T ← GeneratePair(Cnbest)
7: Ti ← Ti ∪ T
8: end for
9: Tall ←WeightedCombine(∪i−1

k=0Tk, Ti)
10: θi+1 ← Optimize(Tall, θ

i)
11: end for

training starts by randomly initialized model pa-
rameters θ0 (line 1). In ith iteration, the decod-
ing algorithm decodes each sentence f to get the
n-best set Cnbest (line 5). Training hypothesis
pairs T are extracted from Cnbest according to the
training criterion described in Section 4.2 (line 6).
Newly collected pairs Ti are combined with pairs
from previous iterations before used for training
(line 9). θi+1 is obtained by solving Equation 6
using the Conjugate Sub-Gradient method (Le et
al., 2011) (line 10).

5 Structure of the Network

Although neural networks bring strong expressive
power to the modeling of translation hypothesis,
training a neural network is prone to resulting in
local minimum which may affect the training re-
sults. We speculate that one reason for these local
minimums is that the structure of a well-connected
network has too many parameters. Take a neu-
ral network with k nodes in the input layer and m
nodes in the hidden layer as an example. Every
node in the hidden layer is connected to each of
the k input nodes. This simple structure resulting
in at least k ×m parameters.

In Section 4.2, we use L1 norm in the objec-
tive function in order to get sparser solutions. In
this section, we propose some constrained network
structures according to our prior knowledge of the
features. These structures have much less param-
eters or simpler structures comparing to original
neural networks, thus reduce the possibility of get-
ting stuck in local minimums.
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5.1 Network with two-degree Hidden Layer

We find the first pitfall of the standard two-layer
neural network is that each node in the hidden
layer receives input from every input layer node.
Features used in SMT are usually manually de-
signed, which has their concrete meanings. For a
network of several hidden nodes, combining every
features into every hidden node may be redundant
and not necessary to represent the quality of a hy-
pothesis.

As a result, we take a harsh step and constrain
the nodes in hidden layer to have a in-degree of
two, which means each hidden node only accepts
inputs from two input nodes. We do not use any
other prior knowledge about features in this set-
ting. So for a network with k nodes in the in-
put layer, the hidden layer should contain C2

k =
k(k− 1)/2 nodes to accept all combinations from
the input layer. We name this network structure as
Two-Degree Hidden Layer Network (TDN).

It is easy to see that a TDN has C2
k × 2 =

k(k − 1) parameters for the hidden layer because
of the constrained degree. This is one order of
magnitude less than a standard two-layer network
with the same number of hidden nodes, which has
C2

k × k = k2(k − 1)/2 parameters.
Note that we perform a 2-degree combination

that looks similar in spirit with those combina-
tion of atomic features in large scale discrimina-
tive learning for other NLP tasks, such as POS tag-
ging and parsing. However, unlike the practice in
these tasks that directly combines values of differ-
ent features to generate a new feature type, we first
linearly combine the value of these features and
perform non-linear transformation on these values
via an activation function.

5.2 Network with Grouped Features

It might be a too strong constraint to require the
hidden node have in-degree of 2. In order to re-
lax this constraint, we need more prior knowledge
from the features.

Our first observation is that there are different
types of features. These types are different from
each other in terms of value ranges, sources, im-
portance, etc. For example, language model fea-
tures usually take a very small value of probability,
and word count feature takes a integer value and
usually has a much higher weight in linear case
than other count features.

The second observation is that features of the

same type may not have complex interaction with
each other. For example, it is reasonable to com-
bine language model features with word count fea-
tures in a hidden node. But it may not be neces-
sary to combine the count of initial phrases and the
count of unknown words into a hidden node.

Based on the above two intuitions, we design
a new structure of network that has the following
constraints: given a disjoint partition of features:
G1, G2,..., Gk, every hidden node takes input from
a set of input nodes, where any two nodes in this
set come from two different feature groups. Un-
der this constraint, the in-degree of a hidden node
is at most k. We name this network structure as
Grouped Network (GN).

In practice, we divide the basic features in Sec-
tion 3.2 into five groups: language model features,
translation probability features, lexical probability
features, the word count feature, and the rest of
count features. This division considers not only
the value ranges, but also types of features and the
possibility of them interact with each other.

6 Experiments and Results

6.1 General Settings

We conduct experiments on a large scale machine
translation tasks. The parallel data comes from
LDC, including LDC2002E18, LDC2003E14,
LDC2004E12, LDC2004T08, LDC2005T10,
LDC2007T09, which consists of 8.2 million
of sentence pairs. Monolingual data includes
Xinhua portion of Gigaword corpus. We use
multi-references data MT03 as training data,
MT02 as development data, and MT04, MT05
as test data. These data are mainly in the same
genre, avoiding the extra consideration of domain
adaptation.

Data Usage Sents.
LDC TM train 8,260,093

Gigaword LM train 14,684,074
MT03 train 919
MT02 dev 878
MT04 test 1,789
MT05 test 1,083

Table 1: Experimental data and statistics.

The Chinese side of the corpora is word seg-
mented using ICTCLAS3. Our translation sys-

3http://ictclas.nlpir.org/

830



Criteria MT03(train) MT02(dev) MT04 MT05
BRc 35.02 36.63 34.96 34.15
BR 38.66 40.04 38.73 37.50
BW 39.55 39.36 38.72 37.81
PW 38.61 38.85 38.73 37.98

Table 2: BLEU4 in percentage on different training criteria (”BR”, ”BW” and ”PW” refer to experiments
with ”Best v.s. Rest”, ”Best v.s. Worst” and ”Pairwise” training criteria, respectively. ”BRc” indicates
generate hypothesis pairs from n-best set of current iteration only presented in Section 4.3.

tem is an in-house implementation of the hier-
archical phrase-based translation system(Chiang,
2005). We set the beam size to 20. We train a
5-gram language model on the monolingual data
with MKN smoothing(Chen and Goodman, 1998).
For each parameter tuning experiments, we ran the
same training procedure 3 times and present the
average results. The translation quality is evalu-
ated use 4-gram case-insensitive BLEU (Papineni
et al., 2002). Significant test is performed using
bootstrap re-sampling implemented by Clark et
al. (2011). We employ a two-layer neural network
with 11 input layer nodes, corresponding to fea-
tures listed in Section 3.2 and 1 output layer node.
The number of nodes in the hidden layer varies in
different settings. The sigmoid function is used as
the activation function for each node in the hidden
layer. For the output layer we use a linear activa-
tion function. We try different λ for the L1 norm
from 0.01 to 0.00001 and use the one with best
performance on the development set. We solve the
optimization problem with ALGLIB package4.

6.2 Experiments of Training Criteria

This set experiments evaluates different training
criteria discussed in Section 4.1. We generate
hypothesis-pair according to BW, BR and PW cri-
teria, respectively, and perform training with these
pairs. In the PW criterion, we use the sampling
method of PRO (Hopkins and May, 2011) and get
the 50 hypothesis pairs for each sentence. We use
20 hidden nodes for all three settings to make a
fair comparison.

The results are presented in Table 2. The
first two rows compare training with and with-
out the weighted combination of hypothesis pairs
we discussed in Section 4.3. As the result sug-
gested, with the weighted combination of hypothe-
sis pairs from previous iterations, the performance
improves significantly on both test sets.

4http://www.alglib.net/

Although the system performance on the dev
set varies, the performance on test sets are al-
most comparable. This suggest that although the
three training criteria are based on different as-
sumptions, their are basically equivalent for train-
ing translation systems.

Criteria Pairs/iteration Accuracy(%)
BR 19 70.7
BW 1 79.5
PW 100 67.3

Table 3: Comparison of different training criteria
in number of new instances per iteration and train-
ing accuracy.

We also compares the three training criteria in
their number of new instances per iteration and
final training accuracy (Table 3). Compared to
BR which tries to separate the best hypothesis
from the rest hypotheses in the n-best set, and PW
which tries to obtain a correct ranking of all hy-
potheses, BW only aims at separating the best and
worst hypothesis of each iteration, which is a eas-
ier task for learning a classifiers. It requires the
least training instances and achieves the best per-
formance in training. Note that, the accuracy for
each system in Table 3 are the accuracy each sys-
tem achieves after training stops. They are not cal-
culated on the same set of instances, thus not di-
rectly comparable. We use the differences in accu-
racy as an indicator for the difficulties of the cor-
responding learning task.

For the rest of this paper, we use the BW crite-
rion because it is much simpler compared to sam-
pling method of PRO (Hopkins and May, 2011).

6.3 Experiments of Network Structures

We make several comparisons of the network
structures and compare them with a baseline hi-
erarchical phrase-based translation system (HPB).

Table 4 shows the translation performance of
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Systems MT03(train) MT02(dev) MT04 MT05 Test Average
HPB 39.25 39.07 38.81 38.01 38.41

TLayer20 39.55∗ 39.36∗ 38.72 37.81 38.27(-0.14)
TLayer30 39.70+ 39.71∗ 38.89 37.90 38.40(-0.01)
TLayer50 39.26 38.97 38.72 38.79+ 38.76(+0.35)
TLayer100 39.42 38.77 38.65 38.65+ 38.69(+0.28)
TLayer200 39.69 38.68 38.72 38.80+ 38.74(+0.32)

TDN 39.60+ 38.94 38.99∗ 38.13 38.56(+0.15)
GN 39.73+ 39.41+ 39.45+ 38.51+ 38.98(+0.57)

Table 4: BLEU4 in percentage for comparing of systems using different network structures (HPB refers
to the baseline hierarchical phrase-based system. TLayer, TDN, GN refer to the standard 2-layer network,
Two-Degree Hidden Layer Network, Grouped Network, respectively. Subscript of TLayer indicates the
number of nodes in the hidden layer.) +, ∗ marks results that are significant better than the baseline
system with p < 0.01 and p < 0.05.

Systems # Hidden Nodes # Parameters Training Time per iter.(s)
HPB - 11 1041

TLayer20 20 261 671
TLayer30 30 391 729
TLayer50 50 651 952
TLayer100 100 1,301 1,256
TLayer200 200 2,601 2,065

TDN 55 221 808
GN 214 1,111 1,440

Table 5: Comparison of network scales and training time of different systems, including the number of
nodes in the hidden layer, the number of parameters, the average training time per iteration (15 iterations).
The notations of systems are the same as in Table4.

different systems5. All 5 two-layer feed forward
neural networks models could achieve compara-
ble or better performance comparing to the base-
line system. We can see that training a larger net-
work may lead to better translation quality (from
TLayer20 and TLayer30 to TLayer50). However,
increasing the number of hidden node to 100 and
200 does not bring further improvement. One pos-
sible reason is that training a larger network with
arbitrary connections brings in too many param-
eters which may be difficult to train with limited
training data.

TDN and GN are the two network structures
proposed in Section 5. With the constraint that
all input to the hidden node should be of degree
2, TDN performs comparable to the baseline sys-
tem. With the grouped feature, we could design
networks such as GN, which shows significant im-
provement over the baseline systems (+0.57) and
achieves the best performance among all neural
systems.

5TLayer20 is the same system as BW in Table 2

Table 4 shows statistics related to the efficiency
issue of different systems. The baseline system
(HPB) uses MERT for training. HPB has a very
small number of parameters and searches for the
best parameters exhaustively in each iteration. The
non-linear systems with few nodes (TLayer20 and
TLayer30) train faster than HPB in each iteration
because they perform back-propagation instead of
exhaustive search. We iterate 15 iterations for each
non-linear system, while MERT takes about 10
rounds to reach its best performance.

When the number of nodes in the hidden layer
increases (from 20 to 200), the number of param-
eters in the system also increases, which requires
longer time to compute the score for each hypoth-
esis and to update the parameters through back-
propagation. The network with 200 hidden nodes
takes about twice the time to train for each itera-
tion, compared to the linear system6.

TDN and GN have larger numbers of hidden

6Matrix operation is CPU intensive. The cost will in-
crease when multiple tasks are running.
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nodes. However, because of our intuitions in de-
signing the structure of the networks, the degree
of the hidden node is constrained. So these two
networks are sparser in parameters and take sig-
nificant less training time than standard neural net-
works. For example, GN has a comparable num-
ber of hidden nodes with TLayer200, but only has
half of its parameters and takes about 70% time to
train in each iteration. In other words, our pro-
posed network structure provides more efficient
training in these cases and achieve better results.

7 Conclusion

In this paper, we discuss a non-linear framework
for modeling translation hypothesis for statisti-
cal machine translation system. We also present
a learning framework including training criterion
and algorithms to integrate our modeling into a
state of the art hierarchical phrase based machine
translation system. Compared to previous effort
in bringing in non-linearity into machine transla-
tion, our method uses a single two-layer neural
networks and performs training independent with
any previous linear training methods (e.g. MERT).
Our method also trains its parameters without any
pre-training or post-training procedure. Experi-
ment shows that our method could improve the
baseline system even with the same feature as
input, in a large scale Chinese-English machine
translation task.

In training neural networks with hidden nodes,
we use heuristics to reduce the complexity of net-
work structures and obtain extra advantages over
standard networks. It shows that heuristics and in-
tuitions of the data and features are still important
to a machine translation system.

Neural networks are able to perform feature
learning by using hidden nodes to model the in-
teraction among a large vector of raw features,
as in image and speech processing (Krizhevsky et
al., 2012; Hinton et al., 2012). We are trying to
model the interaction between hand-crafted fea-
tures, which is indeed similar in spirit with learn-
ing features from raw features. Although our fea-
tures already have concrete meaning, e.g. the
probability of translation, the fluency of target sen-
tence, etc. Combining these features may have ex-
tra advantage in modeling the translation process.

As future work, it is necessary to integrate more
features into our learning framework. It is also in-
teresting to see how the non-linear modeling fits

in to more complex learning tasks which involves
domain specific learning techniques.
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Abstract

We introduce into Bayesian decipherment
a base distribution derived from similari-
ties of word embeddings. We use Dirich-
let multinomial regression (Mimno and
McCallum, 2012) to learn a mapping be-
tween ciphertext and plaintext word em-
beddings from non-parallel data. Exper-
imental results show that the base dis-
tribution is highly beneficial to decipher-
ment, improving state-of-the-art decipher-
ment accuracy from 45.8% to 67.4% for
Spanish/English, and from 5.1% to 11.2%
for Malagasy/English.

1 Introduction

Tremendous advances in Machine Translation
(MT) have been made since we began applying
automatic learning techniques to learn translation
rules automatically from parallel data. However,
reliance on parallel data also limits the develop-
ment and application of high-quality MT systems,
as the amount of parallel data is far from adequate
in low-density languages and domains.

In general, it is easier to obtain non-parallel
monolingual data. The ability to learn transla-
tions from monolingual data can alleviate obsta-
cles caused by insufficient parallel data. Motivated
by this idea, researchers have proposed different
approaches to tackle this problem. They can be
largely divided into two groups.

The first group is based on the idea proposed
by Rapp (1995), in which words are represented
as context vectors, and two words are likely to
be translations if their context vectors are simi-
lar. Initially, the vectors contained only context

∗ Equal contribution

words. Later extensions introduced more fea-
tures (Haghighi et al., 2008; Garera et al., 2009;
Bergsma and Van Durme, 2011; Daumé and Jagar-
lamudi, 2011; Irvine and Callison-Burch, 2013b;
Irvine and Callison-Burch, 2013a), and used more
abstract representation such as word embeddings
(Klementiev et al., 2012).

Another promising approach to solve this prob-
lem is decipherment. It has drawn significant
amounts of interest in the past few years (Ravi and
Knight, 2011; Nuhn et al., 2012; Dou and Knight,
2013; Ravi, 2013) and has been shown to improve
end-to-end translation. Decipherment views a for-
eign language as a cipher for English and finds
a translation table that converts foreign texts into
sensible English.

Both approaches have been shown to improve
quality of MT systems for domain adaptation
(Daumé and Jagarlamudi, 2011; Dou and Knight,
2012; Irvine et al., 2013) and low density lan-
guages (Irvine and Callison-Burch, 2013a; Dou et
al., 2014). Meanwhile, they have their own ad-
vantages and disadvantages. While context vec-
tors can take larger context into account, it re-
quires high quality seed lexicons to learn a map-
ping between two vector spaces. In contrast, de-
cipherment does not depend on any seed lexicon,
but only looks at a limited n-gram context.

In this work, we take advantage of both ap-
proaches and combine them in a joint inference
process. More specifically, we extend previous
work in large scale Bayesian decipherment by in-
troducing a better base distribution derived from
similarities of word embedding vectors. The main
contributions of this work are:
• We propose a new framework that combines

the two main approaches to finding transla-
tions from monolingual data only.
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• We develop a new base-distribution tech-
nique that improves state-of-the art decipher-
ment accuracy by a factor of two for Span-
ish/English and Malagasy/English.
• We make our software available for future

research, functioning as a kind of GIZA for
non-parallel data.

2 Decipherment Model

In this section, we describe the previous decipher-
ment framework that we build on. This framework
follows Ravi and Knight (2011), who built an MT
system using only non-parallel data for translat-
ing movie subtitles; Dou and Knight (2012) and
Nuhn et al. (2012), who scaled decipherment to
larger vocabularies; and Dou and Knight (2013),
who improved decipherment accuracy with depen-
dency relations between words.

Throughout this paper, we use f to denote tar-
get language or ciphertext tokens, and e to denote
source language or plaintext tokens. Given cipher-
text f : f1...fn, the task of decipherment is to find
a set of parameters P (fi|ei) that convert f to sen-
sible plaintext. The ciphertext f can either be full
sentences (Ravi and Knight, 2011; Nuhn et al.,
2012) or simply bigrams (Dou and Knight, 2013).
Since using bigrams and their counts speeds up de-
cipherment, in this work, we treat f as bigrams,
where f = {fn}Nn=1 = {fn1 , fn2 }Nn=1.

Motivated by the idea from Weaver (1955), we
model an observed cipher bigram fn with the fol-
lowing generative story:
• First, a language model P (e) generates a se-

quence of two plaintext tokens en1 , e
n
2 with

probability P (en1 , e
n
2 ).

• Then, substitute en1 with fn1 and en2 with fn2
with probability P (fn1 | en1 ) · P (fn2 | en2 ).

Based on the above generative story, the proba-
bility of any cipher bigram fn is:

P (fn) =
∑
e1e2

P (e1e2)
2∏
i=1

P (fni | ei)

The probability of the ciphertext corpus,

P ({fn}Nn=1) =
N∏
n=1

P (fn)

There are two sets of parameters in the model:
the channel probabilities {P (f | e)} and the bi-
gram language model probabilities {P (e′ | e)},
where f ranges over the ciphertext vocabulary and

e, e′ range over the plaintext vocabulary. Given
a plaintext bigram language model, the training
objective is to learn P (f | e) that maximize
P ({fn}Nn=1). When formulated like this, one can
directly apply EM to solve the problem (Knight
et al., 2006). However, EM has time complexity
O(N ·V 2

e ) and space complexityO(Vf ·Ve), where
Vf , Ve are the sizes of ciphertext and plaintext vo-
cabularies respectively, andN is the number of ci-
pher bigrams. This makes the EM approach un-
able to handle long ciphertexts with large vocabu-
lary size.

An alternative approach is Bayesian decipher-
ment (Ravi and Knight, 2011). We assume that
P (f | e) and P (e′ | e) are drawn from a Dirichet
distribution with hyper-parameters αf,e and αe,e′ ,
that is:

P (f | e) ∼ Dirichlet(αf,e)
P (e | e′) ∼ Dirichlet(αe,e′).

The remainder of the generative story is the
same as the noisy channel model for decipher-
ment. In the next section, we describe how we
learn the hyper parameters of the Dirichlet prior.
Given αf,e and αe,e′ , The joint likelihood of the
complete data and the parameters,

P ({fn, en}Nn=1, {P (f | e)}, {P (e | e′)})
= P ({fn | en}Nn=1, {P (f | e)})
P ({en}Nn=1, P (e | e′))

=
∏
e

Γ
(∑

f αf,e

)
∏
f Γ (αe,f )

∏
f

P (f | e)#(e,f)+αe,f−1

∏
e

Γ
(∑

e′ αe,e′
)∏

e′ Γ
(
αe,e′

) ∏
f

P (e | e′)#(e,e′)+αe,e′−1,

(1)

where #(e, f) and #(e, e′) are the counts of the
translated word pairs and plaintext bigram pairs in
the complete data, and Γ (·) is the Gamma func-
tion. Unlike EM, in Bayesian decipherment, we
no longer search for parameters P (f | e) that
maximize the likelihood of the observed cipher-
text. Instead, we draw samples from posterior dis-
tribution of the plaintext sequences given the ci-
phertext. Under the above Bayesian decipherment
model, it turns out that the probability of a par-
ticular cipher word fj having a value k, given the
current plaintext word ej , and the samples for all
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the other ciphertext and plaintext words, f−j and
e−j , is:

P (fj = k | ej , f−j , e−j) =
#(k, ej)−j + αej ,k

#(ej)−j +
∑

f αej ,f
.

Where, #(k, ej)−j and #(ej)−j are the counts
of the ciphertext, plaintext word pair and plaintext
word in the samples excluding fj and ej . Simi-
larly, the probability of a plaintext word ej taking a
value l given samples for all other plaintext words,

P (ej = l | e−j) =
#(l, ej−1)−j + αl,ej−1

#(ej−1)−j +
∑

e αe,ej−1

.

(2)
Since we have large amounts of plaintext data,

we can train a high-quality dependency-bigram
language model, PLM (e | e′) and use it to guide
our samples and learn a better posterior distribu-
tion. For that, we define αe,e′ = αPLM (e | e′),
and set α to be very high. The probability of a
plaintext word (Equation 2) is now

P (ej = l | e−j) ≈ PLM (l | ej−1). (3)

To sample from the posterior, we iterate over the
observed ciphertext bigram tokens and use equa-
tions 2 and 3 to sample a plaintext token with prob-
ability

P (ej | e−j , f) ∝ PLM (ej | ej−1)
PLM (ej+1 | ej)P (fj | ej , f−j , e−j). (4)

In previous work (Dou and Knight, 2012), the
authors use symmetric priors over the channel
probabilities, where αe,f = α 1

Vf
, and they set α to

1. Symmetric priors over word translation prob-
abilities are a poor choice, as one would not a-
priori expect plaintext words and ciphertext words
to cooccur with equal frequency. Bayesian infer-
ence is a powerful framework that allows us to
inject useful prior information into the sampling
process, a feature that we would like to use. In the
next section, we will describe how we model and
learn better priors using distributional properties
of words. In subsequent sections, we show signif-
icant improvements over the baseline by learning
better priors.

3 Base Distribution with Cross-Lingual
Word Similarities

As shown in the previous section, the base dis-
tribution in Bayesian decipherment is given inde-
pendent of the inference process. A better base
distribution can improve decipherment accuracy.
Ideally, we should assign higher base distribution
probabilities to word pairs that are similar.

One straightforward way is to consider ortho-
graphic similarities. This works for closely related
languages, e.g., the English word “new” is trans-
lated as “neu” in German and “nueva” in Span-
ish. However, this fails when two languages are
not closely related, e.g., Chinese/English. Previ-
ous work aims to discover translations from com-
parable data based on word context similarities.
This is based on the assumption that words appear-
ing in similar contexts have similar meanings. The
approach straightforwardly discovers monolingual
synonyms. However, when it comes to finding
translations, one challenge is to draw a mapping
between the different context spaces of the two
languages. In previous work, the mapping is usu-
ally learned from a seed lexicon.

There has been much recent work in learn-
ing distributional vectors (embeddings) for words.
The most popular approaches are the skip-gram
and continuous-bag-of-words models (Mikolov et
al., 2013a). In Mikolov et al. (2013b), the au-
thors are able to successfully learn word trans-
lations using linear transformations between the
source and target word vector-spaces. However,
unlike our learning setting, their approach re-
lied on large amounts of translation pairs learned
from parallel data to train their linear transforma-
tions. Inspired by these approaches, we aim to ex-
ploit high-quality monolingual word embeddings
to help learn better posterior distributions in unsu-
pervised decipherment, without any parallel data.

In the previous section, we incorporated our
pre-trained language model in αe,e′ to steer our
sampling. In the same vein, we model αe,f us-
ing pre-trained word embeddings, enabling us to
improve our estimate of the posterior distribution.
In Mimno and McCallum (2012), the authors de-
velop topic models where the base distribution
over topics is a log-linear model of observed docu-
ment features, which permits learning better priors
over topic distributions for each document. Sim-
ilarly, we introduce a latent cross-lingual linear
mapping M and define:
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αf,e = exp{vTeMvf}, (5)

where ve and vf are the pre-trained plaintext
word and ciphertext word embeddings. M is
the similarity matrix between the two embedding
spaces. αf,e can be thought of as the affinity of a
plaintext word to be mapped to a ciphertext word.
Rewriting the channel part of the joint likelihood
in equation 1,

P ({fn | en}Nn=1, {P (f | e)})

=
∏
e

Γ
(∑

f exp{vTeMvf}
)

∏
f Γ (exp{vTeMvf})∏

f

P (f | e)#(e,f)+exp{vT
e Mvf}−1

Integrating out the channel probabilities, the
complete data log-likelihood of the observed ci-
phertext bigrams and the sampled plaintext bi-
grams,

P ({fn | en})

=
∏
e

Γ
(∑

f exp{vTeMvf}
)

∏
f Γ (exp{vTeMvf})∏

e

∏
f Γ
(
exp{vTeMvf}+ #(e, f)

)
Γ
(∑

f exp{vTeMvf}+ #(e)
) .

We also add a L2 regularization penalty on the
elements of M . The derivative of logP ({fn |
en} − λ

2

∑
i,jM

2
i,j , where λ is the regularization

weight, with respect to M ,

∂ logP ({fn | en} − λ
2

∑
i,jM

2
i,j

∂M

=
∑
e

∑
f

exp{vTeMvf}vevTf
(

Ψ

∑
f ′

exp{vTeMvf ′}
−

Ψ

∑
f ′

exp{vTeMvf ′}+ #(e)

+

+ Ψ
(
exp{vTeMvf}+ #(e, f)

)−
Ψ
(
exp{vTeMvf}

)− λM,

where we use

∂ exp{vTeMvf}
∂M

= exp{vTeMvf}∂v
T
eMvf
∂M

= exp{vTeMvf}vevTf .
Ψ (·) is the Digamma function, the derivative of
log Γ (·). Again, following Mimno and McCal-
lum (2012), we train the similarity matrix M with
stochastic EM. In the E-step, we sample plaintext
words for the observed ciphertext using equation 4
and in the M-step, we learn M that maximizes
logP ({fn | en}) with stochastic gradient descent.
The time complexity of computing the gradient
is O(VeVf ). However, significant speedups can
be achieved by precomputing vevTf and exploiting
GPUs for Matrix operations.

After learning M , we can set

αe,f =
∑
f ′

exp{vTeMvf ′} exp{vTeMvf}∑
f ′′ exp{vTeMvf ′′}

= αeme,f , (6)

where αe =
∑

f ′ exp{vTeMvf ′} is the concentra-

tion parameter andme,f = exp{vT
e Mvf}∑

f ′′ exp{vT
e Mvf ′′} is an

element of the base measure me for plaintext word
e. In practice, we find that αe can be very large,
overwhelming the counts from sampling when we
only have a few ciphertext bigrams. Therefore, we
use me and set αe proportional to the data size.

4 Deciphering Spanish Gigaword

In this section, we describe our data and exper-
imental conditions for deciphering Spanish into
English.

4.1 Data
In our Spanish/English decipherment experiments,
we use half of the Gigaword corpus as monolin-
gual data, and a small amount of parallel data from
Europarl for evaluation. We keep only the 10k
most frequent word types for both languages and
replace all other word types with “UNK”. We also
exclude sentences longer than 40 tokens, which
significantly slow down our parser. After pre-
processing, the size of data for each language is
shown in Table 1. While we use all the mono-
lingual data shown in Table 1 to learn word em-
beddings, we only parse the AFP (Agence France-
Presse) section of the Gigaword corpus to extract
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Spanish English

Training
992 million 940 million
(Gigaword) (Gigaword)

Evaluation
1.1 million 1.0 million
(Europarl) (Europarl)

Table 1: Size of data in tokens used in Span-
ish/English decipherment experiment

cipher dependency bigrams and build a plaintext
language model. We also use GIZA (Och and Ney,
2003) to align Europarl parallel data to build a dic-
tionary for evaluating our decipherment.

4.2 Systems

We implement a baseline system based on the
work described in Dou and Knight (2013). The
baseline system carries out decipherment on de-
pendency bigrams. Therefore, we use the Bohnet
parser (Bohnet, 2010) to parse the AFP section of
both Spanish and English versions of the Giga-
word corpus. Since not all dependency relations
are shared across the two languages, we do not ex-
tract all dependency bigrams. Instead, we only use
bigrams with dependency relations from the fol-
lowing list:
• Verb / Subject
• Verb / Object
• Preposition / Object
• Noun / Noun-Modifier
We denote the system that uses our new method

as DMRE (Dirichlet Multinomial Regression with
Embedings). The system is the same as the base-
line except that it uses a base distribution derived
from word embeddings similarities. Word embed-
dings are learned using word2vec (Mikolov et al.,
2013a).

For all the systems, language models are built
using the SRILM toolkit (Stolcke, 2002). We use
the modified Kneser-Ney (Kneser and Ney, 1995)
algorithm for smoothing.

4.3 Sampling Procedure

Motivated by the previous work, we use multiple
random restarts and an iterative sampling process
to improve decipherment (Dou and Knight, 2012).
As shown in Figure 1, we start a few sampling pro-
cesses each with a different random sample. Then
results from different runs are combined to initi-
ate the next sampling iteration. The details of the
sampling procedure are listed below:

Figure 1: Iterative sampling procedures

1. Extract dependency bigrams from parsing
outputs and collect their counts.

2. Keep bigrams whose counts are greater than
a threshold t. Then start N different ran-
domly seeded and initialized sampling pro-
cesses. Perform sampling.

3. At the end of sampling, extract word transla-
tion pairs (f, e) from the final sample. Es-
timate translation probabilities P (e|f) for
each pair. Then construct a translation ta-
ble by keeping translation pairs (f, e) seen
in more than one decipherment and use the
average P (e|f) as the new translation proba-
bility.

4. Start N different sampling processes again.
Initialize the first samples with the transla-
tion pairs obtained from the previous step
(for each dependency bigram f1, f2, find an
English sequence e1, e2, whose P (e1|f1) ·
P (e2|f2) · P (e1, e2)is the highest). Initial-
ize similarity matrix M with one learned by
previous sampling process whose posterior
probability is highest. Go to the third step,
repeat until it converges.

5. Lower the threshold t to include more bi-
grams into the sampling process. Go to the
second step, and repeat until t = 1.
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The sampling process consists of sampling and
learning of similarity matrix M . The sampling
process creates training examples for learning M ,
and the new M is used to update the base distri-
bution for sampling. In our Spanish/English de-
cipherment experiments, we use 10 different ran-
dom starts. As pointed out in section 3, setting
αe to it’s theoretical value (equation 6) gives poor
results as it can be quite large. In experiments,
we set αe to a small value for the smaller data
sets and increase it as more ciphtertext becomes
available. We find that using the learned base dis-
tribution always improves decipherment accuracy,
however, certain ranges are better for a given data
size. We use αe values of 1, 2, and 5 for cipher-
texts with 100k, 1 million, and 10 million tokens
respectively. We leave automatic learning of αe
for future work.

5 Deciphering Malagasy

Despite spoken in Africa, Malagasy has its root
in Asia, and belongs to the Malayo-Polynesian
branch of the Austronesian language family.
Malagasy and English have very different word
order (VOS versus SVO). Generally, Malagasy is
a typical head-initial language: Determiners pre-
cede nouns, while other modifiers and relative
clauses follow nouns (e.g. ny “the” ankizilahy
“boy” kely “little”). The significant differences in
word order pose great challenges for both parsing
and decipherment.

5.1 Data

Table 2 lists the sizes of monolingual and parallel
data used in this experiment, released by Dou et al.
(2014). The monolingual data in Malagasy con-
tains news text collected from Madagascar web-
sites. The English monolingual data contains Gi-
gaword and an additional 300 million tokens of
African news. Parallel data (used for evaluation) is
collected from GlobalVoices, a multilingual news
website, where volunteers translate news into dif-
ferent languages.

5.2 Systems

The baseline system is the same as the base-
line used in Spanish/English decipherment exper-
iments. We use data provided in previous work
(Dou et al., 2014) to build a Malagasy depen-
dency parser. For English, we use the Turbo
parser, trained on the Penn Treebank (Martins et

Malagasy English

Training
16 million 1.2 billion

(Web)
(Gigaword
and Web)

Evaluation
2.0 million 1.8 million

(GlobalVoices) (GlobalVoices)

Table 2: Size of data in tokens used in Mala-
gasy/English decipherment experiment. Glob-
alVoices is a parallel corpus.

al., 2013).
Because the Malagasy parser does not predict

dependency relation types, we use the following
head-child part-of-speech (POS) tag patterns to se-
lect a subset of dependency bigrams for decipher-
ment:
• Verb / Noun
• Verb / Proper Noun
• Verb / Personal Pronoun
• Preposition / Noun
• Preposision / Proper Noun
• Noun / Adjective
• Noun / Determiner
• Noun / Verb Particle
• Noun / Verb Noun
• Noun / Cardinal
• Noun / Noun

5.3 Sampling Procedure

We use the same sampling protocol designed for
Spanish/English decipherment. We double the
number of random starts to 20. Further more,
compared with Spanish/English decipherment, we
find the base distribution plays a more important
role in achieving higher decipherment accuracy
for Malagasy/English. Therefore, we set αe to 10,
50, and 200 when deciphering 100k, 1 million, and
20 million token ciphtertexts, respectively.

6 Results

In this section, we first compare decipherment ac-
curacy of the baseline with our new approach.
Then, we evaluate the quality of the base distri-
bution through visualization.

We use top-5 type accuracy as our evaluation
metric for decipherment. Given a word type f
in Spanish, we find top-5 translation pairs (f, e)
ranked by P (e|f) from the learned decipherent
translation table. If any pair (f, e) can also be
found in a gold translation lexicon Tgold, we treat
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Spanish/English Malagasy/English
Top 5k 10k 5k 10k

System Baseline DMRE Baseline DMRE Baseline DMRE Baseline DMRE
100k 1.9 12.4 1.1 7.1 1.2 2.7 0.6 1.4

1 million 7.3 37.7 4.2 23.6 2.5 5.8 1.3 3.2
10 million 29.0 64.7 23.4 43.7 5.4 11.2 3.0 6.9
100 million 45.8 67.4 39.4 58.1 N/A N/A N/A N/A

Table 3: Spanish/English, Malagasy/English decipherment top-5 accuracy (%) of 5k and 10k most fre-
quent word types

the word type f as correctly deciphered. Let |C|
be the number of word types correctly deciphered,
and |V | be the total number of word types evalu-
ated. We define type accuracy as |C||V | .

To create Tgold, we use GIZA to align a small
amount of Spanish/English parallel text (1 mil-
lion tokens for each language), and use the lexi-
con derived from the alignment as our gold trans-
lation lexicon. Tgold contains a subset of 4233
word types in the 5k most frequent word types,
and 7479 word types in the top 10k frequent word
types. We decipher the 10k most frequent Span-
ish word types to the 10k most frequent English
word types, and evaluate decipherment accuracy
on both the 5k most frequent word types as well
as the full 10k word types.

We evaluate accuracy for the 5k and 10k most
frequent word types for each language pair, and
present them in Table 3.

Figure 2: Learning curves of top-5 accuracy eval-
uated on 5k most frequent word types for Span-
ish/English decipherment.

We also present the learning curves of de-
cipherment accuracy for the 5k most frequent
word types. Figure 2 compares the baseline with

DMRE in deciphering Spanish into English. Per-
formance of the baseline is in line with previous
work (Dou and Knight, 2013). (The accuracy re-
ported here is higher as we evaluate top-5 accu-
racy for each word type.) With 100k tokens of
Spanish text, the baseline achieves 1.9% accuracy,
while DMRE reaches 12.4% accuracy, improving
the baseline by over 6 times. Although the gains
attenuate as we increase the number of ciphertext
tokens, they are still large. With 100 million ci-
pher tokens, the baseline achieves 45.8% accuracy,
while DMRE reaches 67.4% accuracy.

Figure 3: Learning curves of top-5 accuracy eval-
uated on 5k most frequent word types for Mala-
gasy/English decipherment.

Figure 3 compares the baseline with our new
approach in deciphering Malagasy into English.
With 100k tokens of data, the baseline achieves
1.2% accuracy, and DMRE improves it to 2.4%.
We observe consistent improvement throughout
the experiment. In the end, the baseline accuracy
obtains 5.8% accuracy, and DMRE improves it to
11.2%.

Low accuracy in Malagasy-English decipher-
ment is attributed to the following factors: First,
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compared with the Spanish parser, the Mala-
gasy parser has lower parsing accuracy. Second,
word alignment between Malagasy and English is
more challenging, producing less correct transla-
tion pairs. Last but not least, the domain of the
English language model is much closer to the do-
main of the Spanish monolingual text compared
with that of Malagasy.

Overall, we achieve large consistent gains
across both language pairs. We hypothesize the
gain comes from a better base distribution that
considers larger context information. This helps
prevent the language model driving deicpherment
to a wrong direction.

Since our learned transformation matrix M sig-
nificantly improves decipherment accuracy, it’s
likely that it is translation preserving, that is,
plaintext words are transformed from their native
vector space to points in the ciphertext such that
translations are close to each other. To visualize
this effect, we take the 5k most frequent plaintext
words and transform them into new embeddings
in the ciphertext embedding space ve′ = vTeM ,
where M is learned from 10 million Spanish bi-
gram data. We then project the 5k most fre-
quent ciphertext words and the projected plain-
text words from the joint embedding space into a
2−dimensional space using t-sne (?).

In Figure 4, we see an instance of a recur-
ring phenomenon, where translation pairs are very
close and sometimes even overlap each other, for
example (judge, jueces), (secret, secretos). The
word “magistrado” does not appear in our evalu-
ation set. However, it is placed close to its possi-
ble translations. Thus, our approach is capable of
learning word translations that cannot be discov-
ered from limited parallel data.

We often also see translation clusters, where
translations of groups of words are close to each
other. For example, in Figure 5, we can see that
time expressions in Spanish are quite close to their
translations in English. Although better quality
translation visualizations (Mikolov et al., 2013b)
have been presented in previous work, they exploit
large amounts of parallel data to learn the mapping
between source and target words, while our trans-
formation is learned on non-parallel data.

These results show that our approach can
achieve high decipherment accuracy and discover
novel word translations from non-parallel data.

Figure 4: Translation pairs are often close and
sometimes overlap each other. Words in spanish
have been appended with spanish

Figure 5: Semantic groups of word-translations
appear close to each other.

7 Conclusion and Future Work

We proposed a new framework that simultane-
ously performs decipherment and learns a cross-
lingual mapping of word embeddings. Our
method is both theoretically appealing and prac-
tically powerful. The mapping is used to give de-
cipherment a better base distribution.

Experimental results show that our new algo-
rithm improved state-of-the-art decipherment ac-
curacy significantly: from 45.8% to 67.4% for
Spanish/English, and 5.1% to 11.2% for Mala-
gasy/English. This improvement could lead to fur-
ther advances in using monolingual data to im-
prove end-to-end MT.

In the future, we will work on making the our
approach scale to much larger vocabulary sizes us-
ing noise contrastive estimation (?), and apply it to
improve MT systems.
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Università di Pisa

Largo B. Pontecorvo, 3
56127 Pisa, Italy

attardi@di.unipi.it

Abstract

The quality of statistical machine
translation performed with phrase
based approaches can be increased by
permuting the words in the source
sentences in an order which resem-
bles that of the target language. We
propose a class of recurrent neu-
ral models which exploit source-side
dependency syntax features to re-
order the words into a target-like or-
der. We evaluate these models on
the German-to-English and Italian-to-
English language pairs, showing sig-
nificant improvements over a phrase-
based Moses baseline. We also com-
pare with state of the art German-to-
English pre-reordering rules, showing
that our method obtains similar or bet-
ter results.

1 Introduction

Statistical machine translation is typically
performed using phrase-based systems
(Koehn et al., 2007). These systems can
usually produce accurate local reordering
but they have difficulties dealing with the
long-distance reordering that tends to occur
between certain language pairs (Birch et al.,
2008).

The quality of phrase-based machine trans-
lation can be improved by reordering the
words in each sentence of source-side of the
parallel training corpus in a ”target-like” or-
der and then applying the same transforma-
tion as a pre-processing step to input strings
during execution.

When the source-side sentences can be ac-
curately parsed, pre-reordering can be per-
formed using hand-coded rules. This ap-
proach has been successfully applied to
German-to-English (Collins et al., 2005) and
other languages. The main issue with it is that
these rules must be designed for each spe-
cific language pair, which requires consider-
able linguistic expertise.

Fully statistical approaches, on the other
hand, learn the reordering relation from word
alignments. Some of them learn reordering
rules on the constituency (Dyer and Resnik,
2010) (Khalilov and Fonollosa, 2011) or pro-
jective dependency (Genzel, 2010), (Lerner
and Petrov, 2013) parse trees of source sen-
tences. The permutations that these meth-
ods can learn can be generally non-local
(i.e. high distance) on the sentences but lo-
cal (parent-child or sibling-sibling swaps) on
the parse trees. Moreover, constituency or
projective dependency trees may not be the
ideal way of representing the syntax of non-
analytic languages such as German or Ital-
ian, which could be better described using
non-projective dependency trees (Bosco and
Lombardo, 2004). Other methods, based on
recasting reordering as a combinatorial opti-
mization problem (Tromble and Eisner, 2009),
(Visweswariah et al., 2011), can learn to gen-
erate in principle arbitrary permutations, but
they can only make use of minimal syntactic
information (part-of-speech tags) and there-
fore can’t exploit the potentially valuable
structural syntactic information provided by
a parser.

In this work we propose a class of reorder-
ing models which attempt to close this gap by
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exploiting rich dependency syntax features
and at the same time being able to process
non-projective dependency parse trees and
generate permutations which may be non-
local both on the sentences and on the parse
trees.
We represent these problems as sequence pre-
diction machine learning tasks, which we ad-
dress using recurrent neural networks.

We applied our model to reorder German
sentences into an English-like word order as
a pre-processing step for phrase-based ma-
chine translation, obtaining significant im-
provements over the unreordered baseline
system and quality comparable to the hand-
coded rules introduced by Collins et al.
(2005). We also applied our model to Italian-
to-English pre-reordering, obtaining a con-
siderable improvement over the unreordered
baseline.

2 Reordering as a walk on a
dependency tree

In order to describe the non-local reordering
phenomena that can occur between language
pairs such as German-to-English and Italian-
to-English, we introduce a reordering frame-
work similar to (Miceli Barone and Attardi,
2013), based on a graph walk of the depen-
dency parse tree of the source sentence. This
framework doesn’t restrict the parse tree to be
projective, and allows the generation of arbi-
trary permutations.

Let f ≡ ( f1, f2, . . . , fL f ) be a source sen-
tence, annotated by a rooted dependency
parse tree: ∀j ∈ 1, . . . , L f , hj ≡ PARENT(j)

We define a walker process that walks from
word to word across the edges of the parse
tree, and at each steps optionally emits the
current word, with the constraint that each
word must be eventually emitted exactly
once.
Therefore, the final string of emitted words f ′
is a permutation of the original sentence f ,
and any permutation can be generated by a
suitable walk on the parse tree.

2.1 Reordering automaton

We formalize the walker process as a non-
deterministic finite-state automaton.
The state v of the automaton is the tuple v ≡

(j, E, a) where j ∈ 1, . . . , L f is the current ver-
tex (word index), E is the set of emitted ver-
tices, a is the last action taken by the automa-
ton.
The initial state is: v(0) ≡ (root f , {}, null)
where root f is the root vertex of the parse tree.

At each step t, the automaton chooses one
of the following actions:

• EMIT: emit the word f j at the current
vertex j. This action is enabled only if the
current vertex has not been already emit-
ted:

j /∈ E

(j, E, a) EMIT→ (j, E ∪ {j}, EMIT)
(1)

• UP: move to the parent of the current
vertex. Enabled if there is a parent and
we did not just come down from it:

hj 6= null, a 6= DOWNj

(j, E, a) UP→ (hj, E, UPj)
(2)

• DOWNj′ : move to the child j′ of the cur-
rent vertex. Enabled if the subtree s(j′)
rooted at j′ contains vertices that have
not been already emitted and if we did
not just come up from it:

hj′ = j, a 6= UPj′ , ∃k ∈ s(j′) : k /∈ E

(j, E, a)
DOWNj′→ (j′, E, DOWNj′)

(3)

The execution continues until all the vertices
have been emitted.

We define the sequence of states of the
walker automaton during one run as an execu-
tion v̄ ∈ GEN( f ). An execution also uniquely
specifies the sequence of actions performed
by the automation.

The preconditions make sure that all execu-
tion of the automaton always end generating
a permutation of the source sentence. Fur-
thermore, no cycles are possible: progress is
made at every step, and it is not possible to
enter in an execution that later turns out to be
invalid.
Every permutation of the source sentence can
be generated by some execution. In fact, each
permutation f ′ can be generated by exactly
one execution, which we denote as v̄( f ′).
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We can split the execution v̄( f ′) into a se-
quence of L f emission fragments v̄j( f ′), each
ending with an EMIT action.
The first fragment has zero or more DOWN∗
actions followed by one EMIT action, while
each other fragment has a non-empty se-
quence of UP and DOWN∗ actions (always
zero or more UPs followed by zero or more
DOWNs) followed by one EMIT action.

Finally, we define an action in an execution
as forced if it was the only action enabled at
the step where it occurred.

2.2 Application

Suppose we perform reordering using a
typical syntax-based system which pro-
cesses source-side projective dependency
parse trees and is limited to swaps between
pair of vertices which are either in a parent-
child relation or in a sibling relation. In such
execution the UP actions are always forced,
since the ”walker” process never leaves a sub-
tree before all its vertices have been emitted.

Suppose instead that we could perform re-
ordering according to an ”oracle”. The ex-
ecutions of our automaton corresponding to
these permutations will in general contain
unforced UP actions. We define these ac-
tions, and the execution fragments that ex-
hibit them, as non-tree-local.

In practice we don’t have access to a
reordering ”oracle”, but for sentences pairs
in a parallel corpus we can compute heuristic
”pseudo-oracle” reference permutations of
the source sentences from word-alignments.

Following (Al-Onaizan and Pap-
ineni, 2006), (Tromble and Eisner, 2009),
(Visweswariah et al., 2011), (Navratil et al.,
2012), we generate word alignments in both
the source-to-target and the target-to-source
directions using IBM model 4 as imple-
mented in GIZA++ (Och et al., 1999) and then
we combine them into a symmetrical word
alignment using the ”grow-diag-final-and”
heuristic implemented in Moses (Koehn et
al., 2007).

Given the symmetric word-aligned corpus,
we assign to each source-side word an in-
teger index corresponding to the position of
the leftmost target-side word it is aligned to
(attaching unaligned words to the following

aligned word) and finally we perform a sta-
ble sort of source-side words according to this
index.

2.3 Reordering example

Consider the segment of a German sentence
shown in fig. 1. The English-reordered
segment ”die Währungsreserven anfangs
lediglich dienen sollten zur Verteidigung”
corresponds to the English: ”the reserve as-
sets were originally intended to provide
protection”.

In order to compose this segment from the
original German, the reordering automaton
described in our framework must perform a
complex sequence of moves on the parse tree:

• Starting from ”sollten”, de-
scend to ”dienen”, descent to
”Währungsreserven” and finally
to ”die”. Emit it, then go up to
”Währungsreserven”, emit it and
go up to ”dienen” and up again to
”sollten”. Note that the last UP is
unforced since ”dienen” has not been
emitted at that point and has also un-
emitted children. This unforced action
indicates non-tree-local reordering.

• Go down to ”anfangs”. Note that the
in the parse tree edge crosses another
edge, indicating non-projectivity. Emit
”anfangs” and go up (forced) back to
”sollten”.

• Go down to ”dienen”, down to ”zur”,
down to ”lediglich” and emit it. Go
up (forced) to ”zur”, up (unforced) to
”dienen”, emit it, go up (unforced) to
”sollten”, emit it. Go down to ”dienen”,
down to ”zur” emit it, go down to
”Verteidigung” and emit it.

Correct reordering of this segment would
be difficult both for a phrase-based system
(since the words are further apart than both
the typical maximum distortion distance and
maximum phrase length) and for a syntax-
based system (due to the presence of non-
projectivity and non-tree-locality).
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Figure 1: Section of the dependency parse tree of a German sentence.

3 Recurrent Neural Network
reordering models

Given the reordering framework described
above, we could try to directly predict the ex-
ecutions as Miceli Barone and Attardi (2013)
attempted with their version of the frame-
work. However, the executions of a given
sentence can have widely different lengths,
which could make incremental inexact decod-
ing such as beam search difficult due to the
need to prune over partial hypotheses that
have different numbers of emitted words.

Therefore, we decided to investigate a dif-
ferent class of models which have the prop-
erty that state transition happen only in corre-
spondence with word emission. This enables
us to leverage the technology of incremental
language models.

Using language models for reordering is
not something new (Feng et al., 2010), (Dur-
rani et al., 2011), (Bisazza and Federico, 2013),
but instead of using a more or less standard
n-gram language model, we are going to base
our model on recurrent neural network language
models (Mikolov et al., 2010).

Neural networks allow easy incorpora-
tion of multiple types of features and can
be trained more specifically on the types
of sequences that will occur during decod-
ing, hence they can avoid wasting model
space to represent the probabilities of non-
permutations.

3.1 Base RNN-RM

Let f ≡ ( f1, f2, . . . , fL f ) be a source sentence.
We model the reordering system as a deter-
ministic single hidden layer recurrent neural
network:

v(t) = τ(Θ(1) · x(t) + ΘREC · v(t− 1)) (4)

where x(t) ∈ Rn is a feature vector associated
to the t-th word in a permutation f ′, v(0) ≡
vinit, Θ(1) and ΘREC are parameters1 and τ(·)
is the hyperbolic tangent function.

If we know the first t− 1 words of the per-
mutation f ′ in order to compute the proba-
bility distribution of the t-th word we do the
following:

• Iteratively compute the state v(t − 1)
from the feature vectors x(1), . . . , x(t −
1).

• For the all the indices of the words that
haven’t occurred in the permutation so
far j ∈ J(t) ≡ ([1, L f ] − īt−1:), compute
a score hj,t ≡ ho(v(t − 1), xo(j)), where
xo(·) is the feature vector of the candidate
target word.

• Normalize the scores using the logistic
softmax function: P( Īt = j| f , īt−1:, t) =

exp(hj,t)
∑j′∈J(t) exp(hj′ ,t)

.

The scoring function ho(v(t− 1), xo(j)) ap-
plies a feed-forward hidden layer to the fea-
ture inputs xo(j), and then takes a weighed
inner product between the activation of this
layer and the state v(t − 1). The result is
then linearly combined to an additional fea-
ture equal to the logarithm of the remaining
words in the permutation (L f − t),2 and to a
bias feature:

hj,t ≡< τ(Θ(o) · xo(j)), θ(2) � v(t− 1) >

+ θ(α) · log(L f − t) + θ(bias)
(5)

where hj,t ≡ ho(v(t− 1), xo(j)).

1we don’t use a bias feature since it is redundant
when the layer has input features encoded with the
”one-hot” encoding

2since we are then passing this score to a softmax of
variable size (L f − t), this feature helps the model to
keep the score already approximately scaled.
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We can compute the probability of an entire
permutation f ′ just by multiplying the proba-
bilities for each word: P( f ′| f ) = P( Ī = ī| f ) =

∏
L f
t=1 P( Īt = īt| f , t)

3.1.1 Training

Given a training set of pairs of sentences and
reference permutations, the training problem
is defined as finding the set of parameters
θ ≡ (vinit, Θ(1), θ(2), ΘREC, Θ(o), θ(α), θ(bias))
which minimize the per-word empirical
cross-entropy of the model w.r.t. the reference
permutations in the training set. Gradients
can be efficiently computed using backpropa-
gation through time (BPTT).

In practice we used the following training
architecture:
Stochastic gradient descent, with each train-
ing pair ( f , f ′) considered as a single mini-
batch for updating purposes. Gradients com-
puted using the automatic differentiation fa-
cilities of Theano (Bergstra et al., 2010) (which
implements a generalized BPTT). No trun-
cation is used. L2-regularization 3. Learn-
ing rates dynamically adjusted per scalar pa-
rameter using the AdaDelta heuristic (Zeiler,
2012). Gradient clipping heuristic to prevent
the ”exploding gradient” problem (Graves,
2013). Early stopping w.r.t. a validation set to
prevent overfitting. Uniform random initial-
ization for parameters other than the recur-
rent parameter matrix ΘREC. Random initial-
ization with echo state property for ΘREC, with
contraction coefficient σ = 0.99 (Jaeger, 2001),
(Gallicchio and Micheli, 2011).

Training time complexity is O(L2
f ) per sen-

tence, which could be reduced to O(L f ) using
truncated BTTP at the expense of update ac-
curacy and hence convergence speed. Space
complexity is O(L f ) per sentence.

3.1.2 Decoding

In order to use the RNN-RM model for pre-
reordering we need to compute the most

likely permutation
∗
f ′ of the source sentence

f :
∗
f ′ ≡ argmax

f ′∈GEN( f )
P( f ′| f ) (6)

3λ = 10−4 on the recurrent matrix, λ = 10−6 on the
final layer, per minibatch.

Solving this problem to the global optimum is
computationally hard4, hence we solve it to a
local optimum using a beam search strategy.

We generate the permutation incrementally
from left to right. Starting from an initial
state consisting of an empty string and the ini-
tial state vector vinit, at each step we generate
all possible successor states and retain the B-
most probable of them (histogram pruning),
according to the probability of the entire pre-
fix of permutation they represent.

Since RNN state vectors do not decompose
in a meaningful way, we don’t use any hy-
pothesis recombination.
At step t there are L f − t possible succes-
sor states, and the process always takes ex-
actly L f steps5, therefore time complexity is
O(B · L2

f ) and space complexity is O(B).

3.1.3 Features
We use two different feature configurations:
unlexicalized and lexicalized.

In the unlexicalized configuration, the state
transition input feature function x(j) is com-
posed by the following features, all encoded
using the ”one-hot” encoding scheme:

• Unigram: POS(j), DEPREL(j), POS(j) ∗
DEPREL(j). Left, right and parent un-
igram: POS(k), DEPREL(k), POS(k) ∗
DEPREL(k), where k is the index of re-
spectively the word at the left (in the
original sentence), at the right and the
dependency parent of word j. Unique
tags are used for padding.

• Pair features: POS(j) ∗ POS(k), POS(j) ∗
DEPREL(k), DEPREL(j) ∗ POS(k),
DEPREL(j) ∗ DEPREL(k), for k defined
as above.

• Triple features POS(j) ∗ POS(le f tj) ∗
POS(rightj), POS(j) ∗ POS(le f tj) ∗
POS(parentj), POS(j) ∗ POS(rightj) ∗
POS(parentj).

• Bigram: POS(j) ∗ POS(k), POS(j) ∗
DEPREL(k), DEPREL(j) ∗ POS(k)
where k is the previous emitted word in
the permutation.

4NP-hard for at least certain choices of features and
parameters

5actually, L f − 1, since the last choice is forced
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• Topological features: three binary fea-
tures which indicate whether word j
and the previously emitted word are in
a parent-child, child-parent or sibling-
sibling relation, respectively.

The target word feature function xo(j) is
the same as x(j) except that each feature is
also conjoined with a quantized signed dis-
tance6 between word j and the previous emit-
ted word. Feature value combinations that
appear less than 100 times in the training set
are replaced by a distinguished ”rare” tag.

The lexicalized configuration is equivalent
to the unlexicalized one except that x(j) and
xo(j) also have the surface form of word j (not
conjoined with the signed distance).

3.2 Fragment RNN-RM

The Base RNN-RM described in the previ-
ous section includes dependency informa-
tion, but not the full information of reorder-
ing fragments as defined by our automa-
ton model (sec. 2). In order to determine
whether this rich information is relevant to
machine translation pre-reordering, we pro-
pose an extension, denoted as Fragment RNN-
RM, which includes reordering fragment fea-
tures, at expense of a significant increase of
time complexity.
We consider a hierarchical recurrent neural
network. At top level, this is defined as the
previous RNN. However, the x(j) and xo(j)
vectors, in addition to the feature vectors de-
scribed as above now contain also the final
states of another recurrent neural network.
This internal RNN has a separate clock and
a separate state vector. For each step t of
the top-level RNN which transitions between
word f ′(t− 1) and f ′(t), the internal RNN is
reinitialized to its own initial state and per-
forms multiple internal steps, one for each ac-
tion in the fragment of the execution that the
walker automaton must perform to walk be-
tween words f ′(t− 1) and f ′(t) in the depen-
dency parse (with a special shortcut of length
one if they are adjacent in f with monotonic
relative order).

6values greater than 5 and smaller than 10 are quan-
tized as 5, values greater or equal to 10 are quantized as
10. Negative values are treated similarly.

The state transition of the inner RNN is de-
fined as:

vr(t) = τ(Θ(r1) · xr(tr)+ ΘrREC · vr(tr− 1))(7)

where xr(tr) is the feature function for the
word traversed at inner time tr in the execu-
tion fragment. vr(0) = vinit

r , Θ(r1) and ΘrREC

are parameters.
Evaluation and decoding are performed es-
sentially in the same was as in Base RNN-
RM, except that the time complexity is now
O(L3

f ) since the length of execution fragments
is O(L f ).
Training is also essentially performed in the
same way, though gradient computation is
much more involved since gradients prop-
agate from the top-level RNN to the inner
RNN. In our implementation we just used the
automatic differentiation facilities of Theano.

3.2.1 Features
The unlexicalized features for the inner RNN
input vector xr(tr) depend on the current
word in the execution fragment (at index tr),
the previous one and the action label: UP,
DOWN or RIGHT (shortcut). EMIT actions
are not included as they always implicitly oc-
cur at the end of each fragment.
Specifically the features, encoded with the
”one-hot” encoding are: A ∗ POS(tr) ∗
POS(tr − 1), A ∗ POS(tr) ∗ DEPREL(tr −
1), A ∗ DEPREL(tr) ∗ POS(tr − 1), A ∗
DEPREL(tr) ∗ DEPREL(tr − 1).
These features are also conjoined with the
quantized signed distance (in the original
sentence) between each pair of words.
The lexicalized features just include the surface
form of each visited word at tr.

3.3 Base GRU-RM

We also propose a variant of the Base RNN-
RM where the standard recurrent hidden
layer is replaced by a Gated Recurrent Unit
layer, recently proposed by Cho et al. (2014)
for machine translation applications.
The Base GRU-RM is defined as the Base
RNN-RM of sec. 3.1, except that the recur-
rence relation 4 is replaced by fig. 2

Features are the same of unlexicalized Base
RNN-RM (we experienced difficulties train-
ing the Base GRU-RM with lexicalized fea-
tures).
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vrst(t) = π(Θ(1)
rst · x(t) + ΘREC

rst · v(t− 1))

vupd(t) = π(Θ(1)
upd · x(t) + ΘREC

upd · v(t− 1))

vraw(t) = τ(Θ(1) · x(t) + ΘREC · v(t− 1)� vupd(t))

v(t) = vrst(t)� v(t− 1) + (1− vrst(t))� vraw(t)

(8)

Figure 2: GRU recurrence equations. vrst(t) and vupd(t) are the activation vectors of the ”reset”
and ”update” gates, respectively, and π(·) is the logistic sigmoid function.

.

Training is also performed in the same
way except that we found more benefi-
cial to convergence speed to optimize using
Adam (Kingma and Ba, 2014) 7 rather than
AdaDelta.
In principle we could also extend the Frag-
ment RNN-RM into a Fragment GRU-RM,
but we did not investigate that model in this
work.

4 Experiments

We performed German-to-English pre-
reordering experiments with Base RNN-RM
(both unlexicalized and lexicalized), Frag-
ment RNN-RM and Base GRU-RM.

In order to validate the experimental re-
sults on a different language pair, we addi-
tionally performed an Italian-to-English pre-
reordering experiment with the Base GRU-
RM, after assessing that this was the model
that obtained the largest improvement on
German-to-English.

4.1 Setup

The German-to-English baseline phrase-
based system was trained on the Europarl v7
corpus (Koehn, 2005). We randomly split it
in a 1,881,531 sentence pairs training set, a
2,000 sentence pairs development set (used
for tuning) and a 2,000 sentence pairs test
set. The English language model was trained
on the English side of the parallel corpus
augmented with a corpus of sentences from
AP News, for a total of 22,891,001 sentences.
The baseline system is phrase-based Moses
in a default configuration with maximum
distortion distance equal to 6 and lexicalized
reordering enabled. Maximum phrase size is

7with learning rate 2 · 10−5 and all the other hyper-
parameters equal to the default values in the article.

equal to 7.
The language model is a 5-gram
IRSTLM/KenLM.
The pseudo-oracle system was trained on
the training and tuning corpus obtained by
permuting the German source side using
the heuristic described in section 2.2 and is
otherwise equal to the baseline system.
In addition to the test set extracted from
Europarl, we also used a 2,525 sentence
pairs test set (”news2009”) a 3,000 sentence
pairs ”challenge” set used for the WMT 2013
translation task (”news2013”).

The Italian-to-English baseline system was
trained on a parallel corpus assembled from
Europarl v7, JRC-ACQUIS v2.2 (Steinberger
et al., 2006) and additional bilingual articles
crawled from online newspaper websites8, to-
taling 3,081,700 sentence pairs, which were
split into a 3,075,777 sentence pairs phrase-
table training corpus, a 3,923 sentence pairs
tuning corpus, and a 2,000 sentence pairs test
corpus.

Non-projective dependency parsing for our
models, both for German and Italian was
performed with the DeSR transition-based
parser (Attardi, 2006).

We also trained a German-to-English
Moses system with pre-reordering performed
by Collins et al. (2005) rules, implemented by
Howlett and Dras (2011).
Constituency parsing for Collins et al. (2005)
rules was performed with the Berkeley parser
(Petrov et al., 2006). For Italian-to-English
we did not compare with a hand-coded
reordering system as we are not aware of
any strong pre-reordering baseline for this
language pair.

For our experiments, we extract approxi-

8Corriere.it and Asianews.it
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mately 300,000 sentence pairs from the Moses
training set based on a heuristic confidence
measure of word-alignment quality (Huang,
2009), (Navratil et al., 2012). We randomly
removed 2,000 sentences from this filtered
dataset to form a validation set for early stop-
ping, the rest were used for training the pre-
reordering models.

4.2 Results

The hidden state size s of the RNNs was set to
100 while it was set to 30 for the GRU model,
validation was performed every 2,000 train-
ing examples. After 50 consecutive validation
rounds without improvement, training was
stopped and the set of training parameters
that resulted in the lowest validation cross-
entropy were saved.
Training took approximately 1.5 days for the
unlexicalized Base RNN-RM, 2.5 days for the
lexicalized Base RNN-RM and for the unlexi-
calized Base GRU-RM and 5 days for the un-
lexicalized Fragment RNN-RM on a 24-core
machine without GPU (CPU load never rose
to more than 400%).

Decoding was performed with a beam size
of 4. Decoding the whole German corpus
took about 1.0-1.2 days for all the models ex-
cept Fragment RNN-RM for which it took
about 3 days. Decoding for the Italian corpus
for the Base GRU-RM took approximately 1.5
days.

Effects on monolingual reordering score
are shown in fig. 3 (German) and fig. 4
(Italian), effects on translation quality are
shown in fig. 5 (German-to-English) and fig.
6 (Italian-to-English)9.

4.3 Discussion and analysis

All our German-to-English models signifi-
cantly improved over the phrase-based base-
line, performing as well as or almost as well
as (Collins et al., 2005), which is an interesting
result since our models doesn’t require any
specific linguistic expertise.

Surprisingly, the lexicalized version of Base
RNN-RM performed worse than the unlexi-

9Although the baseline systems were trained on the
same datasets used in Miceli Barone and Attardi (2013),
the results are different since we used a different ver-
sion of Moses

calized one. This goes contrary to expectation
as neural language models are usually lexical-
ized and in fact often use nothing but lexical
features.

The unlexicalized Fragment RNN-RM was
quite accurate but very expensive both dur-
ing training and decoding, thus it may not be
practical.

The unlexicalized Base GRU-RM per-
formed very well, especially on the Europarl
dataset (where all the scores are much higher
than the other datasets) and it never per-
formed significantly worse than the unlexi-
calized Fragment RNN-RM which is much
slower.

We also performed exploratory experi-
ments with different feature sets (such as
lexical-only features) but we couldn’t obtain
a good training error. Larger network sizes
should increase model capacity and may pos-
sibly enable training on simpler feature sets.

The Italian-to-English experiment with
Base GRU-RM confirmed that this model per-
forms very well on a language pair with dif-
ferent reordering phenomena than German-
to-English.

5 Conclusions

We presented a class of statistical syntax-
based, non-projective, non-tree-local pre-
reordering systems for machine translation.
Our systems processes source sentences
parsed with non-projective dependency
parsers and permutes them into a target-
like word order, suitable for translation
by an appropriately trained downstream
phrase-based system.

The models we proposed are completely
trained with machine learning approaches
and is, in principle, capable of generating ar-
bitrary permutations, without the hard con-
straints that are commonly present in other
statistical syntax-based pre-reordering meth-
ods.
Practical constraints depend on the choice
of features and are therefore quite flexible,
allowing a trade-off between accuracy and
speed.

In our experiments with the RNN-RM and
GRU-RM models we managed to achieve
translation quality improvements compara-
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Reordering BLEU improvement
none 62.10
unlex. Base RNN-RM 64.03 +1.93
lex. Base RNN-RM 63.99 +1.89
unlex. Fragment RNN-RM 64.43 +2.33
unlex. Base GRU-RM 64.78 +2.68

Figure 3: German ”Monolingual” reordering scores (upstream system output vs. ”oracle”-
permuted German) on the Europarl test set. All improvements are significant at 1% level.

Reordering BLEU improvement
none 73.11
unlex. Base GRU-RM 81.09 +7.98

Figure 4: Italian ”Monolingual” reordering scores on the Europarl test set. All improvements
are significant at 1% level.

Test set system BLEU improvement
Europarl baseline 33.00
Europarl ”oracle” 41.80 +8.80
Europarl Collins 33.52 +0.52
Europarl unlex. Base RNN-RM 33.41 +0.41
Europarl lex. Base RNN-RM 33.38 +0.38
Europarl unlex. Fragment RNN-RM 33.54 +0.54
Europarl unlex. Base GRU-RM 34.15 +1.15
news2013 baseline 18.80
news2013 Collins NA NA
news2013 unlex. Base RNN-RM 19.19 +0.39
news2013 lex. Base RNN-RM 19.01 +0.21
news2013 unlex. Fragment RNN-RM 19.27 +0.47
news2013 unlex. Base GRU-RM 19.28 +0.48
news2009 baseline 18.09
news2009 Collins 18.74 +0.65
news2009 unlex. Base RNN-RM 18.50 +0.41
news2009 lex. Base RNN-RM 18.44 +0.35
news2009 unlex. Fragment RNN-RM 18.60 +0.51
news2009 unlex. Base GRU-RM 18.58 +0.49

Figure 5: German-to-English RNN-RM translation scores. All improvements are significant at
1% level.

Test set system BLEU improvement
Europarl baseline 29.58
Europarl unlex. Base GRU-RM 30.84 +1.26

Figure 6: Italian-to-English RNN-RM translation scores. Improvement is significant at 1% level.
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ble to those of the best hand-coded pre-
reordering rules.
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Abstract

Deception detection has been formulated
as a supervised binary classification prob-
lem on single documents. However, in
daily life, millions of fraud cases involve
detailed conversations between deceivers
and victims. Deceivers may dynamically
adjust their deceptive statements accord-
ing to the reactions of victims. In addition,
people may form groups and collaborate
to deceive others. In this paper, we seek to
identify deceptive groups from their con-
versations. We propose a novel subgroup
detection method that combines linguis-
tic signals and signed network analysis for
dynamic clustering. A social-elimination
game called Killer Game is introduced as a
case study1. Experimental results demon-
strate that our approach significantly out-
performs human voting and state-of-the-
art subgroup detection methods at dynam-
ically differentiating the deceptive groups
from truth-tellers.

1 Introduction

Deception generally entails messages and infor-
mation intentionally transmitted to create a false
conclusion (Buller et al., 1994). Deception detec-
tion is an important task for a wide range of ap-
plications including law enforcement, intelligence
gathering, and financial fraud. Most of the previ-
ous work (e.g., (Ott et al., 2011; Feng et al., 2012))
focused on content analysis of a single document
in isolation (e.g., a product review). The promot-
ers of a product may post fake complimentary re-
views, while their competitors may hire people to
write fake negative reviews (Ott et al., 2011).

1The data set is publicly available for research purposes
at: http://nlp.cs.rpi.edu/data/killer.zip

However, when we want to detect deception
from text or voice conversations, the deception be-
havior may be affected by the following factors be-
yond textual statements.

1. Dynamic. Recent research in social science
suggests that deception communication is dy-
namic and involves interactions among peo-
ple (e.g., (Buller and Burgoon, 1996)). Addi-
tionally, the research postulates that human’s
capacity to learn by observation enables him
to acquire large, integrated units of behav-
ior by example (Bandura, 1971). Therefore,
a person’s behavior concerning deception or
truth-telling can change constantly, while he
learns from others’ statements during conver-
sations.

2. Global. People may form groups for purpose
of deception. Research in social psychology
has shown that an individual’s object-related
behavior may be affected by the attitudes of
other people due to group dynamics (Fried-
kin, 2010).

Recent studies typically have been conducted
over “static” written or oral deceptive statements.
There is no obligatory requirement for communi-
cation between the author and the readers of these
statements (Yancheva and Rudzicz, 2013). As a
result, a victim of deception tends to trust the sto-
ry mainly based on the statement he reads (Ott et
al., 2011). However, in daily life, millions of fraud
cases involve detailed conversations between de-
ceivers and victims. A deceiver may make a state-
ment, which is partially true in order to deceive
or mislead victims and adjust his deceptive strate-
gies based on the reactions of victims (Zhou et al.,
2004). Therefore, it is more challenging to identity
a deceiver in an interactive process of deception.

Most deception detection research addressed in-
dividual deceivers, but deceivers often act in pairs
or larger groups (Vrij et al., 2010). The interac-
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Figure 1: Deceptive group detection for a single round.

tions within a deceptive group have been ignored.
For example, a product review from a deceiver
may be supported by his teammates so that his
deceptive comments can be read by more poten-
tial buyers. In this case, we can identify a decep-
tive group based on their collaborations and com-
mon characteristics, which is more promising than
the typical methods of classifying individual state-
ments as deceptive or trustworthy.

In order to identify deceptive groups by analyz-
ing the evolution of a person’s deception strategy
during his interactions with victims and the inter-
actions within the deceptive group from conver-
sations, we use a social-elimination game called
Killer Game which contains the ground-truth of
subgroups.

The killer game has many variants that involve
different roles and skills. We choose a classical
version played by three roles/teams: detectives, c-
itizens, and killers. The role of each player (game
participant) is randomly assigned by a third-party
game judge. Every killer/detective is given the i-
dentities of his teammates. There are two alter-
nating phases of the game: “night”, when killer-
s may covertly “murder” a player and detectives
may learn one player’s role; and “day”, when sur-
viving players are informed of who was killed last
“night” and then asked to speculate about the roles
of other surviving players. Before a “day” ends,
every surviving player should vote for a suspect.
The candidate with the most votes is eliminated. A
player’s identity is not exposed after his “death”.
The game continues until all killers have been e-
liminated or all detectives have been killed. The
killers are treated as deceivers, and citizens and
detectives as truth-tellers.

In this paper, we present an unsupervised ap-
proach for differentiating the deceptive groups

from truth-tellers in a game. During each round,
we use Natural Language Processing (NLP) tech-
niques to identify a player’s attitude toward other
players (Section 2), which are used to construc-
t a vector of attitudes for each surviving player
(Section 3.1) and a signed social network repre-
sentation (Section 3.2) for the discussions. Then
we use a clustering algorithm to cluster the atti-
tude vector space and obtain results for each round
(Section 3.1). We also implement a greedy op-
timization algorithm to partition the singed net-
work based on the attitude clustering result (Sec-
tion 3.2). Finally, we apply a pairwise-similarity
approach that makes use of the predicted co-
occurrence relations between players to combine
all results from each round (Section 3.3). Figure 1
provides an overview of our system pipeline.

The major novel contributions of this paper are
as follows.

• This is the first study to investigate conversa-
tions and deceptive groups for computerized
deception detection.
• The proposed clustering technique is shown

to be successful in separating deceptive
groups from truth-tellers.
• The method can be applied to dynamically

detect subgroups in a network with discus-
sants who tend to change their opinions.

2 Attitude Identification

In this section, we describe how we take a player’s
statement in a single round as input to extract his
attitudes toward other players and represent them
by an attitude 3-tuple (speaker, target, polarity)
list. For this work, the polarity of attitudes (Bal-
ahur et al., 2009) can be positive (1), negative (-1)
or neutral (0). A game log from a single round

858



will be used as our illustrative example, as shown
in Figure 2.

as shown in Figure 2.

(1), negative (-1) or neutral (0). A game log
from a single round will be used as our illustrative
example, as shown in Figure 2.

tuple list is: [(16, 16, +1), (16, 11, -1), (16, 2, -1),
(16, 1, 0), (16, 3, 0), . . . , (16, 15, 0)].
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Combining Group Conversations and Signed Network Analysis for
Deception Detection

Abstract

In previous studies, deception detection was
formulated as a traditional binary classification
problem. For example, given a product review, su-
pervised learning methods could predict whether
it was deceptive or genuine with high accuracy.
However, in a daily life, millions of fraud cases
involve detailed conversations between criminals
and victims. Deceivers may adjust their decep-
tive statements according to the reactions of their
victims rather than simply making a single state-
ment. In addition, people may form a group and
collaborate to deceive others. In this paper, we
aim to identify a deceptive group from dynamic
conversations. We propose a novel subgroup de-
tection method that combines content and signed
network analyses for dynamic clustering. A social
elimination game called Killer Game is introduced
as a case study. Experimental results demonstrate
that our approach significantly outperforms hu-
man voting and state-of-the-art subgroup detection
methods at dynamically differentiating the decep-
tive group from the people telling truths.

1 Introduction

Deception generally entails messages and infor-
mation intentionally transmitted to create a false
conclusion (Buller et al., 1994). Deception detec-
tion is an important task for a wide range of ap-
plications including law enforcement, intelligence
gathering, and financial fraud. Most of the previ-
ous work (e.g., (Ott et al., 2011; Feng et al., 2012))
focused on a content analysis of a single document
in isolation (e.g., hotel reviews). However, when
we aim to detect deceptions from conversations,
the deception behavior may be affected by other
factors beyond textual statements. These factors
can be both

1. Dynamic. The interpersonal deception
theory (Buller and Burgoon, 1996) suggests

that deception communication is not static
but rather dynamic and involves interaction
between people. The social learning
theory (Bandura, 1971) states that human’s
capacity to learn by observation enables
him/her to acquire large, integrated units of
behavior by example. Therefore, a person’s
behavior on deception or truth-telling can
change constantly, while s/he learns from
others’ statements during conversation and

2. Global. In some scenarios, people may form
groups for deception. The social influence
network theory (Friedkin, 2010) states that
individuals’ object-related behaviors may be
affected by the attitudes of other persons due
to the group dynamics.

There are numerous ways to categorize decep-
tion. According to the distance between partici-
pants, we can classify deception into two types.
The first type is a face-to-face deception, where
cues include the deceiver’s body movement, pulse,
facial expressions, etc.. The other type is based
on text or voice messages. For example, in
product reviews, promoters of a product may post
fake complimentary reviews, while their com-
petitors may hire people to write fake negative
reviews (Ott et al., 2011).

Recent studies have been typically conducted
over “static” written or oral deceptive statements.
There is no obligatory requirement for communi-
cation between the author and readers for these
statements (Yancheva and Rudzicz, 2013). As a
result, a person being deceived tends to trust the
story mainly based on the statement she reads (Ott
et al., 2011). However, in daily life, millions
of fraud cases involve detailed conversations be-
tween criminals and victims. Deceivers may make
a statement, which is partially true in order to de-
ceive or mislead victims and adjust their deceptive
strategies based on the reactions of victims (Zhou
et al., 2004). Therefore, it is more challenging to

Figure 2: Killer game sample log (1st round).

C: citizen; D: detective; K: killer
System: First Round.
System: 15 was killed last night.
15(C): I’m a citizen. Over.
16(K): I’m a good person. 11 and 2 are suspicious.
1(K): I’m a good person. It has been a long time since I played as a
killer. I’m a citizen. I don’t want to comment on 16’s statement.
2(C): I’m a detective. 6 was proved as a killer last night. Over.
3(C): I don’t know 2’s identity. It’s hard to judge 16’s statement. 1
seems to be a good person. I’m a citizen.
4(C): Citizen. I cannot find a killer. I trust 2 since 2 sounds a good
person. 16 is suspicious. I regard 16 as a killer. I’m 2’s teammate.
5(D): I’m a detective. I verify 2’s identity and 2 is a killer. 13 is good.
6(C): Why do you want to attack 2? I don’t understand. 14 is suspicious.
7(K): It’s hard to define 6’s identity. 4 may be a citizen. I will vote for
2. 6 sounds very strange and I found 6 very suspicious. I will follow the
detective 5 to vote for 2.
8(C): We should calm down. 7 seems to be a bad person.
9(C): 1 and 7 seem to be killers. There is no evidence to support 2 as a
detective. 3 is a citizen. 4 is possibly a detective. 6 is also good.
10(D): I agree with you. 7 must be a killer. 2 and 7 should debate.
11(C): I don’t know 2 but I think 2 is good. 3 is good. There should be
one or two killers among 1, 4 and 7.
12(K): 11 sounds like a killer. 2 is a killer. I’m a citizen. Vote for 2.
13(D): 15 is a citizen. 16 is logically good. I think 1, 8, 9, 10 are OK. I
don’t think 2 is a killer. I doubt 7’s intention. Please vote for 7.
14(D): 10, 13, 16 are good. I don’t think 7 must be a killer. 2 is
obviously bad. I’m a citizen.
System: 16, 11, 14, 7, 1, 3, 8, 12, 4 vote for 2. 10, 13, 5, 2 vote for 7. 9,
6 vote for 11. 2 is out.

2.1 Target and Attitude Word Identification
We start by identifying targets and attitudes
from the conversations. In the killer game, a
target is represented by his/her player ID. We
create a domain-specific vocabulary by applying
word segmentation and part-of-speech (POS)
tagging (Zhang et al., 2003) to identify game
terms from the game’s website 1 and related
discussion forums. We collected 41 terms in
total. There are two kinds of game terms:
positive and negative. Positive attitude words
include “citizen”, “good person”, “good person
certified by the detectives”, “detective”, etc..
Negative attitude words include “killer”, “killer
verified by the detectives”, “a killer who claimed
himself/herself to be a detective”, etc.. We assign
the polarity score +1, -1 to positive and negative
terms respectively.

2.2 Attitude-Target Pairing
Then we associate each attitude term with its
corresponding target. We remove interrogative
and exclamatory sentences and only keep the sen-
tences that include at least one attitude term from
a player’s statement during each round.

We propose a rule-based approach for attitude-
target pairing: if there is at least one ID in the
sentence, we associate all attitude terms in that
sentence with it. Otherwise, if ”I” is the only
subject or there are no subjects at all, we associate
attitude terms with the speaker. We reverse the
polarity of an attitude word if it appears in a
negation context. For each attitude-target pair, we
check the POS-tag sequence between them. If
there exists an attitude term, a belief-oriented verb
such as “think”, “believe”, “feel”, or more than
two verbs, we will discard this pair because the
statement is too subjective.

For those targets, the speaker didn’t mention
or there is no positive/negative attitude word used
when they are mentioned, the attitude polarity
score is set to 0.

3 Clustering

In this section, we introduce a method to construct
an attitude profile for each player and a signed
network based on the attitude tuple list in Section 2
and combine them to handle a dynamic network
with discussants telling lies and truths, which has
not been explored previously.

1e.g., http://www.3j3f.com/how/
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9(C): 1 and 7 seem to be killers. There is no evidence to support 2 as a
detective. 3 is a citizen. 4 is possibly a detective. 6 is also good.
10(D): I agree with you. 7 must be a killer. 2 and 7 should debate.
11(C): I don’t know 2 but I think 2 is good. 3 is good. There should be
one or two killers among 1, 4 and 7.
12(K): 11 sounds like a killer. 2 is a killer. I’m a citizen. Vote for 2.
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System: First Round.
System: 15 was killed last night.
15(C): I’m a citizen. Over.
16(K): I’m a good person. 11 and 2 are suspicious.
1(K): I’m a good person. It has been a long time since I played as a
killer. I’m a citizen. 11 is suspicious and I don’t want to comment on
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2(C): I’m a detective. 6 was proved as a killer last night. Over.
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seems to be a good person. I’m a citizen.
4(C): Citizen. I cannot find a killer. I trust 2 since 2 sounds a good
person. 16 is suspicious. I regard 16 as a killer. I’m 2’s teammate.
5(D): I’m a detective. I verify 2’s identity and 2 is a killer. 13 is good.
6(C): Why do you want to attack 2? I don’t understand. 14 is suspicious.
7(K): It’s hard to define 6’s identity. 4 may be a citizen. I will vote for
2. 6 sounds very weird and I found 6 very suspicious. I will follow the
detective 5 to vote for 2.
8(C): We should calm down. 7 seems to be a bad person.
9(C): 1 and 7 seem to be killers. There is no evidence to support 2 as a
detective. 3 is a citizen. 4 is possibly a detective. 6 is also good.
10(D): I agree with you. 7 must be a killer. 2 and 7 should debate.
11(C): I don’t know 2 but I think 2 is good. 3 is good. There should be
one or two killers among 1, 4 and 7.
12(K): 11 sounds like a killer. 2 is a killer. I’m a citizen. Vote for 2.
13(D): 15 is a citizen. 16 is logically good. I think 1, 8, 9, 10 are OK. I
don’t think 2 is a killer. I doubt 7’s intention. Please vote for 7.
14(D): 10, 13, 16 are good. I don’t think 7 must be a killer. 2 is
obviously bad. I’m a citizen.
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2.1 Target and Attitude Word Identification
We start by identifying targets and attitudes from
the conversations. In the killer game, a target is
represented by his/her player ID and game terms
are regarded as attitude words. We collected

41 terms in total from the game’s website 1 and
related discussion forum. ICTCLAS (Zhang et
al., 2003) is used for word segmentation and part-
of-speech (POS) tagging (Zhang et al., 2003).
There are two kinds of game terms: positive and
negative. Positive terms include “citizen”, “good
person”, “good person certified by the detectives”,
“detective”, etc.. Negative terms include “killer”,
“killer verified by the detectives”, “a killer who
claimed himself/herself to be a detective”, etc..
We assign the polarity score +1, -1 to positive and
negative terms respectively.

2.2 Attitude-Target Pairing

Then we associate each attitude term with its
corresponding target. We remove interrogative
and exclamatory sentences and only keep the sen-
tences that include at least one attitude term from
a player’s statement during each round.

We develop a rule-based approach for attitude-
target pairing: if there is at least one ID in the
sentence, we associate all attitude terms in that
sentence with it. Otherwise, if ”I” is the only
subject or there are no subjects at all, we associate
attitude terms with the speaker. We reverse the
polarity of an attitude word if it appears in a
negation context.

For each attitude-target pair, we check the POS
tag sequence between them. If there exists an at-
titude term, a belief-oriented verb such as “think”,
“believe”, “feel”, or more than two verbs in the
sequence, we will discard this pair. In our task, we
assume that a target and an attitude term can form
a pair if the target is dominated by the term. (Yu
et al., 2015) showed that we can judge if a word
is dominated by any other word by analyzing the
POS tag sequence between them.

For those targets, the speaker didn’t mention
or there is no positive/negative attitude term used
when they are mentioned, the attitude polarity
score is set to 0.

3 Clustering

In this section, we introduce a method to construct
an attitude profile for each player and a signed net-
work based on the attitude tuple list in Section 2,
and combine them to handle a dynamic network
with discussants telling lies and truths.

1e.g., http://www.3j3f.com/how/
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C: citizen; D: detective; K: killer
System: First Round.
System: 15 was killed last night.
15(C): I’m a citizen. Over.
16(K): I’m a good person. 11 and 2 are suspicious.
1(K): I’m a good person. It has been a long time since
I played as a killer. I’m a citizen. 11 is suspicious and
I don’t want to comment on 16’s statement.
2(C): I’m a detective. 6 was proved as a killer last night. Over.
3(C): I don’t know 2’s identity. It’s hard to judge 16’s statement. 1
seems to be a good person. I’m a citizen.
4(C): Citizen. I cannot find a killer. I trust 2 since 2 sounds a good
person. 16 is suspicious. I regard 16 as a killer. I’m 2’s teammate.
5(D): I’m a detective. I verify 2’s identity and 2 is a killer. 13 is good.
6(C): Why do you want to attack 2? I don’t understand. 14 is suspicious.
7(K): It’s hard to define 6’s identity. 4 may be a
citizen. I will vote for 2. 6 sounds very weird and
I found 6 very suspicious. I will follow the detective
5 to vote for 2.
8(C): We should calm down. 7 seems to be a bad person.
9(C): 1 and 7 seem to be killers. There is no evidence to support 2 as a
detective. 3 is a citizen. 4 is possibly a detective. 6 is also good.
10(D): I agree with you. 7 must be a killer. 2 and 7 should debate.
11(C): I don’t know 2 but I think 2 is good. 3 is good. There should be
one or two killers among 1, 4 and 7.
12(K): 11 sounds like a killer. 2 is a killer. I’m a
citizen. Vote for 2.
13(D): 15 is a citizen. 16 is logically good. I think 1, 8, 9, 10 are OK. I
don’t think 2 is a killer. I doubt 7’s intention. Please vote for 7.
14(D): 10, 13, 16 are good. I don’t think 7 must be a killer. 2 is
obviously bad. I’m a citizen.
System: 16, 11, 14, 7, 1, 3, 8, 12, 4 vote for 2 · · · 10, 13, 5, 2 vote for
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2.1 Target and Attitude Word Identification

We start by identifying targets and attitude words
from conversations. In the killer game, a target

is represented by his/her unique ID1 and game
terms are regarded as attitude words. We collected
41 terms in total from the game’s website 2 and
related discussion forum. ICTCLAS (Zhang et
al., 2003) is used for word segmentation and part-
of-speech (POS) tagging. There are two kinds
of game terms: positive and negative. Positive
terms include “citizen”, “good person”, “good
person certified by the detectives”, “detective”,
etc.. Negative terms include “killer”, “killer ver-
ified by the detectives”, “a killer who claimed
himself/herself to be a detective”, etc.. We assign
the polarity score +1, -1 to positive and negative
terms respectively.

2.2 Attitude-Target Pairing

Then we associate each attitude word with its
corresponding target. We remove interrogative
and exclamatory sentences and only keep the sen-
tences that include at least one attitude word from
a player’s statement during each round.

We develop a rule-based approach for attitude-
target pairing: if there is at least one ID in the
sentence, we associate all attitude words in that
sentence with it. Otherwise, if ”I” is the only
subject or there are no subjects at all, we associate
attitude words with the speaker. We reverse the
polarity of an attitude word if it appears in a
negation context.

Previous methods pair a target and an atti-
tude word if they satisfy at least one dependency
rules (e.g.,(Somasundaran and Wiebe, 2009)). We
check the POS tag sequence between them. For
each attitude-target pair, if there exists an attitude
word, a belief-oriented verb such as “think”, “be-
lieve”, “feel”, or more than two verbs in the se-
quence, we will discard this pair. The assumption
is that POS tag sequences can be used to roughly
summarize dependency rules when statements are
relatively short.

For those targets, the speaker didn’t mention
or there is no positive/negative attitude word used
when they are mentioned, the attitude polarity
score is set to 0. For instance, given Player 16’s
statement in Figure 2, its attitude tuple list is: [(16,
16, +1), (16, 11, -1), (16, 2, -1), (16, 1, 0), (16, 3,
0), . . . , (16, 15, 0)].

1Each player has a game ID, assigned by the online game
system based on when s/he entered the game room.

2e.g., http://www.3j3f.com/how/

Figure 2: Killer game sample log (1st round).
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System: First Round.
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2(C): I’m a detective. 6 was proved as a killer last night. Over.
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4(C): Citizen. I cannot find a killer. I trust 2 since 2 sounds a good
person. 16 is suspicious. I regard 16 as a killer. I’m 2’s teammate.
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14(D): 10, 13, 16 are good. I don’t think 7 must be a killer. 2 is
obviously bad. I’m a citizen.
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2.1 Target and Attitude Word Identification

We start by identifying targets and attitude words
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is represented by his/her unique ID1 and game
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41 terms in total from the game’s website 2 and
related discussion forum. ICTCLAS (Zhang et
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of-speech (POS) tagging. There are two kinds
of game terms: positive and negative. Positive
terms include “citizen”, “good person”, “good
person certified by the detectives”, “detective”,
etc.. Negative terms include “killer”, “killer
verified by the detectives”, “a killer who claimed
himself/herself to be a detective”, etc.. We assign
the polarity score +1, -1 to positive and negative
terms respectively.

2.2 Attitude-Target Pairing

Then we associate each attitude word with its
corresponding target. We remove interrogative
and exclamatory sentences and only keep the
sentences that include at least one attitude word
from a player’s statement during each round.

We develop a rule-based approach for attitude-
target pairing: if there is at least one ID in the
sentence, we associate all attitude words in that
sentence with it. Otherwise, if ”I” is the only
subject or there are no subjects at all, we associate
attitude words with the ID of the speaker. We
reverse the polarity of an attitude word if it appears
in a negation context.

Previous methods pair a target and an attitude
word if they satisfy at least one dependency rules
(e.g.,(Somasundaran and Wiebe, 2009)). We
check the POS tag sequence between them. For
each attitude-target pair, if there exists an attitude
word, a belief-oriented verb such as “think”,
“believe”, “feel”, or more than two verbs in
the sequence, we will discard this pair. The
assumption is that POS tag sequences can be used
to roughly summarize dependency rules when
statements are relatively short.

For those targets, the speaker didn’t mention
or there is no positive/negative attitude word used
when they are mentioned, the attitude polarity
score is set to 0. For instance, given Player 16’s
statement in Figure 2, its attitude tuple list is: [(16,

1Each player has a game ID, assigned by the online game
system based on when s/he entered the game room.

2e.g., http://www.3j3f.com/how/

Figure 2: Killer game sample log (1st round).

C: CITIZEN; D: DETECTIVE; K: KILLER

System: First Round.
System: 15 was killed last night. 15, please leave your last words.
15(C): I’m a citizen. Over.
16(K): I’m a good person. 11 and 2 are suspicious.
1(K): I’m a good person. It has been a long time since I played as a
killer. I’m a citizen. 11 is suspicious and I don’t want to comment
on 16’s statement.
2(C): I’m a detective. 6 was proved as a killer last night. Over.
3(C): I don’t know 2’s identity. It’s hard to judge 16’s statement. 1
seems to be a good person. I’m a citizen.
4(C): Citizen. I cannot find a killer. I trust 2 since 2 sounds a good
person. 16 is suspicious. I regard 16 as a killer. I’m 2’s teammate.
5(D): I’m a detective. I verify 2’s identity and 2 is a killer. 13 is good.
6(C): Why do you want to attack 2? I don’t understand. 14 is
suspicious.
7(K): It’s hard to define 6’s identity. 4 may be a citizen. I will vote
for 2. 6 sounds very weird and I found 6 very suspicious. I will
follow the detective 5 to vote for 2.
8(C): We should calm down. 7 seems to be a bad person.
9(C): 1 and 7 seem to be killers. There is no evidence to support 2 as a
detective. 3 is a citizen. 4 is possibly a detective. 6 is also good.
10(D): I agree with you. 7 must be a killer. 2 and 7 should debate.
11(C): I don’t know 2 but I think 2 is good. 3 is good. There should be
one or two killers among 1, 4 and 7.
12(K): 11 sounds like a killer. 2 is a killer. I’m a citizen. Vote for 2.
13(D): 15 is a citizen. 16 is logically good. I think 1, 8, 9, 10 are OK. I
don’t think 2 is a killer. I doubt 7’s intention. Please vote for 7.
14(D): 10, 13, 16 are good. I don’t think 7 must be a killer. 2 is
obviously bad. I’m a citizen.
System: 16, 11, 14, 7, 1, 3, 8, 12, 4 vote for 2 · · · 10, 13, 5, 2 vote for
7 · · · 9, 6 vote for 11 · · · 2 is out.

2.1 Target and Attitude Word Identification
We start by identifying targets and attitude words
from conversations. In the killer game, a target is

represented by his/her unique ID1 and game terms
are regarded as attitude words. We collected 41
terms in total from the game’s website 2 and re-
lated discussion forum. ICTCLAS (Zhang et al.,
2003) is used for word segmentation and part-of-
speech (POS) tagging. There are two kinds of
game terms: positive and negative. Positive terms
include “citizen”, “good person”, “good person
certified by the detectives”, “detective”, etc.. Neg-
ative terms include “killer”, “killer verified by the
detectives”, “a killer who claimed himself/herself
to be a detective”, etc.. We assign the polarity s-
core +1, -1 to positive and negative terms respec-
tively.

2.2 Attitude-Target Pairing

Then we associate each attitude word with it-
s corresponding target. We remove interrogative
and exclamatory sentences and only keep the sen-
tences that include at least one attitude word from
a player’s statement during each round.

We develop a rule-based approach for attitude-
target pairing: if there is at least one ID in the sen-
tence, we associate all attitude words in that sen-
tence with it. Otherwise, if ”I” is the only subject
or there are no subjects at all, we associate atti-
tude words with the ID of the speaker. We reverse
the polarity of an attitude word if it appears in a
negation context.

Previous methods pair a target and an atti-
tude word if they satisfy at least one dependency
rules (e.g.,(Somasundaran and Wiebe, 2009)). We
check the POS tag sequence between them. For
each attitude-target pair, if there exists an attitude
word, a belief-oriented verb such as “think”, “be-
lieve”, “feel”, or more than two verbs in the se-
quence, we will discard this pair. The assumption
is that POS tag sequences can be used to summa-
rize dependency rules when statements are rela-
tively short.

For those targets, the speaker didn’t mention
or there is no positive/negative attitude word used
when they are mentioned, the attitude polarity s-
core is set to 0. For instance, given Player 16’s s-
tatement in Figure 2, its attitude tuple list is: [(16,
16, +1), (16, 11, -1), (16, 2, -1), (16, 1, 0), (16, 3,
0), . . . , (16, 15, 0)].

1Each player has a game ID, assigned by the online game
system based on when s/he entered the game room.

2e.g., http://www.3j3f.com/how/

Figure 2: Killer game sample log (the 1st round).

2.1 Target and Attitude Word Identification

We start by identifying targets and attitude word-
s from conversations. In the killer game, a target
is represented by his unique ID2 and game terms
are regarded as attitude words. We collected 41
terms in total from the game’s website 3 and re-
lated discussion forum posts. ICTCLAS (Zhang
et al., 2003) is used for word segmentation and
part-of-speech (POS) tagging. There are two kind-
s of game terms: positive and negative. Posi-
tive terms include “citizen”, “good person”, “good
person certified by the detectives” and “detective”.
Negative terms include “killer”, “killer verified by
the detectives” and “a killer who claimed him-
self/herself to be a detective”. We assign the po-
larity score +1, -1 to positive and negative terms
respectively.

2Each player has a game ID, assigned by the online game
system based on when he entered the game room.

3e.g., http://www.3j3f.com/how/

2.2 Attitude-Target Pairing

Then we associate each attitude word with it-
s corresponding target. We remove interrogative
and exclamatory sentences and only keep the sen-
tences that include at least one attitude word from
a player’s statement during each round.

We develop a rule-based approach for attitude-
target pairing: if there is at least one ID in the sen-
tence, we associate all attitude words in that sen-
tence with it. Otherwise, if “I” is the only subject
or there are no subjects at all, we associate atti-
tude words with the ID of the speaker. We reverse
the polarity of an attitude word if it appears in a
negation context.

Previous methods pair a target and an attitude
word if they satisfy at least one dependency rule
(e.g., (Somasundaran and Wiebe, 2009)). We
check the POS tag sequence between them. For
each attitude-target pair, if there exists an attitude
word, a belief-oriented verb such as “think”, “be-
lieve”, “feel”, or more than two verbs in the se-
quence, we will discard this pair. The assumption
is that POS tag sequences can be used to summa-
rize dependency rules when statements are rela-
tively short.

For those targets, the speaker didn’t mention
or there is no positive/negative attitude word used
when they are mentioned, the attitude polarity s-
core is set to 0. For instance, given Player 16’s s-
tatement in Figure 2, its attitude tuple list is: [(16,
16, +1), (16, 11, -1), (16, 2, -1), (16, 1, 0), (16, 3,
0), . . . , (16, 15, 0)].

3 Clustering

Since the statements in conversations are relatively
short and concise, it is difficult to identify which
one is deceptive, even using deep linguistic fea-
tures such as the language style.

In this section, we introduce a method to con-
struct an attitude profile for each player and a
signed network based on the attitude tuple list in
Section 2, and combine them to analyze a dynam-
ic network with discussants telling lies and truths.

3.1 Clustering based on Attitude Profile

We use a vector containing numerical values to
represent each player’s attitude toward identified
targets in each round. The values correspond to
the polarity scores in a player’s attitude tuple list.
For example, the polarity score of player 16’s atti-
tude toward target 11 is −1 as shown in Figure 2.
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We call this vector as the discussant attitude pro-
file (DAP) following (Abu-Jbara et al., 2012a).

Suppose there are n players who participate in
a single game. Since a player’s identity is not ex-
posed to the public after his death4, people can still
analyze the identity of a “dead” player. Therefore,
the number of possibly mentioned targets in each
round equals to n. Given all the statements from
m surviving players in a single round, each play-
er’s DAP has n+ 1 dimensions including his vote
and thus we can have a m × (n + 1) attitude ma-
trixA whereAij represents the attitude polarity of
i toward j we got from Section 2. Ai(n+1) repre-
sents i’s vote.

In a certain round, given a set of m surviving
players X = {x1, x2, · · · , xm} to be clustered
and their respective DAPs, we can modify the Eu-
clidean metric to compute the differences in atti-
tudes and get an m×m distance matrix M :

Mij =

√√√√ n∑
k=1

(Aik −Ajk)2 + (2− 2δAi(n+1),Aj(n+1))
2

(1)

The Kronecker delta function δ is:

δij =

{
1 i = j
0 i 6= j

(2)

We use this function to compare the votes of t-
wo players separately because a player’s vote can
be inconsistent with his previous statements. We
assume that there is a larger distance between two
players when they vote for different suspects.

A common assumption in previous research was
that a member is more likely to show a positive
attitude toward other members in the same group,
and a negative attitude toward the opposing group-
s (Abu-Jbara et al., 2012a). However, a deceiver
may pretend to be innocent by supporting those
truth-tellers and attacking his teammates, whose i-
dentities have already been exposed. Therefore,
it is not enough to judge the relationship between
two players by simply measuring the distance be-
tween their DAPs.

In addition to comparing DAPs between player-
s i and j, we also consider the attitudes of other
players toward i and j, as well as their attitudes

4Each round, the player killed by killers and the player
with the most votes are out.

toward each other. We modify Mij as follows and
show it in Figure 3:

M
′
ij = Mij +

√√√√ m∑
k=1

(Aki −Akj)2 + (h(Aij) + h(Aji))
2

(3)

where the function h detects the negative atti-
tudes. h(x) = 0 if x ≥ 0 and h(x) = −1 other-
wise.

We perform hierarchical clustering on the con-
densed distance matrix ofM and use the complete
linkage method to compute the distance between
two clusters (Voorhees, 1986). We set the num-
ber of clusters as 3 since there are three natural
groups in the game. We focus on separating de-
ceivers (killers) from truth-tellers (citizens and de-
tectives).

𝑖 𝑗 

𝑖 

𝑗 

compare  𝑖 
and 𝑗′s DAPs 

Figure 3: Computation of the distance between
player i and j based on the attitude matrix.

3.2 Signed Network Partition

When we computed the distance between two
players in Section 3.1, we did not consider the net-
work structure among all the players. For exam-
ple, if A supports C, B supports D and C and D
dislike each other, A and B may belong to differ-
ent groups. Thus, we propose to capture the in-
teractions in the social network to further improve
the attitude-profile-based clustering result.

We can easily convert the attitude matrix A into
a signed network by adding a directed edge i→ j
between i and j if Aij 6= 0. We denote a directed
graph corresponding to a signed network as G =
(V, S,N,W ), where V is the set of nodes, S is the
set of positive edges,N is the set of negative edges
and W : (V × V ) → {−1, 1} is a function that
maps every directed edge to a value, W (i, j) =
Aij .

We use a greedy optimization algorithm (Dor-
eian and Mrvar, 1996) to find partitions. A criteri-
on function for an optimal partitioning procedure
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is constructed such that positive links are dense
within groups and negative links are dense be-
tween groups. For any potential partition C, we
seek to minimize the following error function:

E(C) =
∑
C∈C

[(1− γ)
∑
i∈C
j /∈C

W (i, j)Si,j − γ
∑

i,j∈C

W (i, j)Ni,j ]

(4)

where γ ∈ [0, 1] controls the balance of the
penalty difference between putting a positive edge
across and a negative edge within a group. We re-
gard these two types of errors as equally important
and set γ = 0.5 for our experiments.

Initially, we use the clustering result in Sec-
tion 3.1 to partition nodes into three differen-
t groups and an error function, E, is evaluated for
that cluster. Every cluster has a set of neighbor
clusters in the cluster space. A neighbor cluster
is obtained by moving a node from one group to
another, or exchanging two nodes in two different
groups. E is evaluated for all the neighbor clusters
of the current cluster and the one with the lowest
value is set as the new cluster. The algorithm is
repeated until it finds a minimal solution5. We set
the upper limit for the number of subgroups to 3.

3.3 Cluster Ensembles

The relationships between players are dynamic
throughout the game. For example, a killer tends
to hide his identity and pretends to be friendly to
others at later stages in order to survive. Thus, it
is insufficient to rely on a single round’s discus-
sion to cluster players. In addition, for each single
round, we also need to combine the clustering re-
sults from the attitude profiles of the players and
the signed network.

In a game with information gathered from up
to r rounds, let P = {P1, P2, · · · , Pr} be the set
of r clusterings (partitionings) based on attitude
profiles and P

′
= {P ′

1, P
′
2, · · · , P

′
r} be the set of

r clusterings based on the signed network.
Using the co-occurrence relations between

players, we can generate a n × n pairwise simi-
larity matrix T based on the information of all r
rounds:

T rij =
λ · voteij + (1− λ) · vote′ij

rij
(5)

5Since our graphs are small, we search through all parti-
tions. We repeated 1000 times in our experiment.

where voteij , vote
′
ij are the number of times

that player i and j are assigned to the same cluster
in P and P

′
respectively. rij denotes the number

of rounds when both of them survived (rij ≤ r).
T rij ∈ [0, 1]. We assign a higher weight to the re-
sult of P1 and set λ = 2/3 in our experiments.

Given the input in Figure 2, x3 and x4 are as-
signed to the same cluster in P1 (vote34 = 1) and
in P

′
1 (vote

′
34 = 1) respectively as shown in Fig-

ure 4. x3 and x4 co-occurred in the first round
(r34 = 1). T 1

34 = (2/3× 1 + 1/3× 1)/1 = 1.

𝑥16   

𝑷𝟏   

𝑷′𝟏   

Round 1 

𝑥2   

𝑥11   

𝑥1   

𝑥7   

𝑥12    
𝑥14    

𝑥3 

𝑥15   
𝑥4   

𝑥5   

𝑥13   

𝑥10  

𝑥8   𝑥9   

𝑥6   

𝑥2   

𝑥11   

𝑥14   

𝑥3 

𝑥15   
𝑥4   

𝑥5   

𝑥13   

𝑥10   

𝑥8   
𝑥9   

𝑥6   

𝑥16    

𝑥1   

𝑥7   𝑥12   

KILLER CITIZEN OR DETECTIVE 

Figure 4: Example of cluster ensemble for a single
round.

We apply hierarchical clustering (Voorhees,
1986) to the similarity matrix above to obtain the
final global clustering results.

4 Experiments

4.1 Dataset Construction

We recorded 10 games from 3J3F6, one of the
most popular Chinese online killer game web-
sites 7. A screenshot of the game system inter-
face is shown in Figure 5. There are 16 partic-
ipating players per game: 4 detectives, 4 killer-
s and 8 citizens. Each player occupies a posi-
tion in 1 . All the surviving players can express
their attitudes via a voice channel using 2 , while
detectives and killers can also communicate with
teammates in their respective private team chan-
nels 3 via texts. The system provides real-time
updates on the game progress, voting results, and
so on using the public channel 4 . We manually
transcribed speech and stored the text information
in the public channel, which contains the voting
and death information. The average game length

6http://www.3j3f.com
7All data sets and resources will be made available for

research purposes upon the acceptance of the paper.
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Game
#

Purity (%) Entropy
D N H eD eD +N D N H eD eD +N

1 68.8 75.0 75.0 68.8 75.0 0.48 0.50 0.78 0.63 0.50
2 75.0 68.8 68.8 43.8 81.3 0.71 0.69 0.81 0.73 0.43
3 43.8 81.3 56.3 75.0 75.0 0.77 0.67 0.81 0.72 0.72
4 75.0 62.5 75.0 93.8 93.8 0.78 0.68 0.74 0.28 0.28
5 62.5 75.0 81.3 75.0 75.0 0.61 0.50 0.61 0.72 0.72
6 81.3 81.3 75.0 81.3 81.3 0.64 0.38 0.74 0.60 0.60
7 81.3 75.0 81.3 81.3 87.5 0.65 0.70 0.68 0.51 0.51
8 87.5 75.0 75.0 93.8 93.8 0.41 0.73 0.78 0.23 0.23
9 75.0 43.8 75.0 81.3 87.5 0.76 0.80 0.78 0.67 0.49

10 62.5 75.0 87.5 81.3 81.3 0.78 0.60 0.51 0.61 0.67
Average 71.3 71.3 75.0 77.5 83.2 0.66 0.62 0.72 0.57 0.51

Table 1: Results on subgroup detection. D refers to DAPC, N refers to Network, H refers to Human Voting, and eD
refers to extended DAPC.

is about 76.3 minutes and there are on average 5
rounds and 411 sentences per game. Note that our
method is language-independent and could easily
be adapted to other languages.

Current Speaker: 14 

TEAM CHANNEL 

PUBLIC CHANNEL  

START END 

OUT 

1 

2 

3 

4 

Figure 5: Screenshot of the online killer game in-
terface.

4.2 Evaluation Metrics
We use two metrics to evaluate the clustering ac-
curacy: Purity and Entropy. Purity (Manning et
al., 2008) is a metric in which each cluster is as-
signed to the class with the majority vote in the
cluster, and then the accuracy of this assignmen-
t is measured by dividing the number of correctly
assigned instances by the total number of instances
N . More formally:

purity(Ω, C) =
1
N

∑
k

maxj |wk ∩ cj | (6)

where Ω = {w1, w2, · · · , wk} is the set of clusters
and C = {c1, c2, · · · , cj} is the set of classes. wk
is interpreted as the set of instances in wk and cj
is the set of instances in cj . The purity increases
as the quality of clustering improves.

Entropy (Steinbach et al., 2000) measures the
uniformity of a cluster. The entropy for all clusters

is defined by the weighted sum of the entropy of
each cluster:

Entropy = −
j∑ nj

n

i∑
P (i, j)× log2P (i, j)

(7)

where P (i, j) is the probability of finding an el-
ement from the category i in the cluster j, nj is
the number of items in cluster j and n is the total
number of items in the distribution. The entropy
decreases as the quality of clustering improves.

4.3 Overall Performance

We compare our approach with two state-of-the-
art subgroup detection methods and human perfor-
mance as follows:

1. DAPC: In Section 3.1, we introduced our im-
plementation of the discussant attitude profile
clustering (DAPC) method proposed in (Abu-
Jbara et al., 2012a). In the original DAPC
method, for each opinion target, there are 3
dimensions in the feature vector, correspond-
ing to (1) the number of positive expression-
s, (2) negative expressions toward the tar-
get from the online posts and (3) the num-
ber of times the discussant mentioned the tar-
get. For our experiment, we only keep one
dimension representing the discussant’s atti-
tude (positive, negative, neutral) toward the
target since a discussant attitude remains the
same in his statement within a single round.

2. Network: We also implemented the signed
network partition method for subgroup detec-
tion proposed by (Hassan et al., 2012). To
determine the number of subgroups t, we set
an upper limit of t = 3 in order to minimize
the optimization function.
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3. Human Voting: We also compare our meth-
ods with human voting results. There are two
subgroups based on the voting results. The
players with the highest votes each round be-
long to one subgroup and the rest of the play-
ers are in the other subgroup.

Table 1 shows the overall performance of vari-
ous methods on subgroup detection and Figure 6
depicts the average performance. We can see that
our method significantly outperforms two baseline
methods and human voting. The human perfor-
mance is not satisfying, which indicates it’s very
challenging even for a human to identify a deceiv-
er whose deceptive statement is mixed with plenty
of truthful opinions (Xu and Zhao, 2012).

1 Human_Voting
BL_DAPC

BL_Network
EDAPC

EDAPC+Network

50

55

60

65

70

75

80

85

%

Method

 Purity
 Entropy

Figure 6: An overview of the average performance
of all the methods.

By extending the DAPC method (EDPAC), we
can estimate the distance between two players
more accurately by considering the attitudes of
other players toward them and their attitudes to-
ward each other. Given the log in Figure 2 as in-
put, players 5 (detective) and 7 (killer) are clus-
tered into one group when DAPC is applied s-
ince they don’t have conflicting views on the i-
dentities of other players. However, 5 voted for
7 and is supported by more players compared with
7, which indicates that they are less likely to be
teammates. We can successfully separate them af-
ter re-computing the distance between them.

Adding network information provided 5.7%
further gain in Purity. In some cases, the perfor-
mance remains the same when EDAPC clustering
result is already optimal with the minimum value
of the criterion function.

4.4 Dynamic Subgroup Detection

As shown in Figure 7, the performance of our
approach improves as the game proceeds. Play-
ers seldom maintain their opinions throughout a
game. Figure 2 shows that most killers (16,1,12)
insisted that citizen 11 should be a killer except 7.
As a response to the group pressure (Asch, 1951),
7 changed his opinion and stated that 11 could be
a killer in the following round.

In reality, a discussant who participates in an
online discussion tends to change his opinion-
s about a target as he learns more information,
which shows both the necessity and importance of
the dynamic detection of subgroups. Our method
can be applied to detect subgroups dynamically by
grouping posts into multiple discussion “rounds”
based on their timestamps.

1 

Purity Entropy

50

60

70

80
%
 1st round
 1st + 2nd rounds
 all rounds

Figure 7: Average performance based on different
rounds.

5 Related Work

5.1 Opinion Analysis

Our work on mining a player’s attitude toward oth-
er players is related to opinion mining. Attitudes
and opinions are related and can be regarded as
the same in our task. Compared with the previ-
ous work (e.g.,(Qiu et al., 2011; Kim and Hovy,
2006)), the opinion words and targets in our task
are relatively easier to recognize due to the sim-
plicity of statements. Some recent work (e.g., (So-
masundaran and Wiebe, 2009; Abu-Jbara et al.,
2012a)) developed syntactic rules to pair an opin-
ion word and a target if they satisfy at least one
specific dependency rule. We use POS tag se-
quences to efficiently help us filter out irrelevant
pairs.
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5.2 Deception Detection

Most of the previous computational work for
deception detection used supervised/semi-
supervised classification methods (Li et al.,
2013b). Besides lexical and syntactical fea-
tures (Ott et al., 2011; Feng et al., 2012; Yancheva
and Rudzicz, 2013), Feng and Hirst (2013) pro-
posed using profile compatibility to distinguish
fake and genuine reviews. Xu and Zhao (2012)
used deep linguistic features such as text genre
to detect deceptive opinion spams. Banerjee et
al. (2014) used extended linguistic signals such
as keystroke patterns. Li et al. (2013a) used topic
models to detect the difference between deceptive
and truthful topic-word distribution. Researchers
have began to realize the importance of analyzing
computer-mediated communication in deception
detection. Zhou and Sung (2008) conducted
an empirical study on deception cues using the
killer game as a task scenario and obtained many
interesting findings (e.g., deceivers send fewer
messages than truth-tellers).

Our work is most related to the work of Chit-
taranjan and Hung (2010) on detecting deceptive
roles in the Werewolf Game which is another vari-
ant of the killer game. They created a Werewolf
data set by audio-visual recording 8 games played
by 2 groups of people face-to-face and extract-
ed audio features and interaction features for their
experiments. However, we should note that non
face-to-face deception detection emphasizes ver-
bal and linguistic cues over less controllable non-
verbal communication cues (Walther, 1996).

5.3 Subgroup Detection

In online discussions, people usually split into
subgroups based on various topics. The member
of a subgroup is more likely to show positive at-
titude to the members of the same subgroup, and
negative attitude to the members of opposing sub-
groups (Abu-Jbara et al., 2012a). Previous work
also studied subgroup detection in social media
sites. Abu-Jbara et al. (2012a) constructed a dis-
cussant attitude profile (DAP) for each discussant
and then used clustering techniques to cluster their
attitudes. Hassan et al. (2012; 2012b; 2013) pro-
posed various methods to automatically construct
a signed social network representation of discus-
sions and then identify subgroups by partitioning
their signed networks. Qiu et al. (2013) applied
collaborative filtering through Probabilistic Matrix

Factorization (PMF) to generalize and improve ex-
tracted opinion matrices.

An underlying assumption of the previous work
was that a participant will not tell lies nor hide his
own stance. Moreover, their work did not take in-
to account that a person’s attitude or stance will
change as he learns more by reading the com-
ments from others and acquiring more background
knowledge (Bandura, 1971). Our contribution is
that we extend the DAP method and combine it
with the signed network partition in order to clus-
ter the hidden group members. We also develop a
novel cluster ensemble approach in order to ana-
lyze the dynamic network.

6 Conclusions and Future Work

Using the killer game as a case study, we present
an effective clustering method to detect subgroups
from dynamic conversations with lies and truth-
s. This is the first work to utilize the dynam-
ics of group conversations for deception detec-
tion. Experiments demonstrated that truth-tellers
and deceptive groups are separable and the pro-
posed method significantly outperforms baseline
approaches and human voting.

Our work builds a pathway to future work in
deception detection in content-rich dynamic envi-
ronments such as electronic commerce and repeat-
ed interrogation which will require sophisticated
content and network analysis. In real-life suspects
may be interrogated about particular events on nu-
merous occasions. Our method can potentially be
modified to find criminals who act in groups based
on their statements. Other applications of this re-
search include law enforcement, financial fraud,
fraudulent ad campaigns and social engineering.

This study focuses on analyzing the verbal con-
tent in conversations. It will be interesting to study
non-verbal features such as blink rate, gaze aver-
sion and pauses (Granhag and Strömwall, 2002)
when people play this game face-to-face and com-
bine the non-verbal and verbal features for decep-
tion detection. In addition, it is worth exploring
the impact of cross-cultural analysis in detecting
deception. When attempting to detect deceit in
people of other ethnic origin than themselves, peo-
ple perform even worse in terms of lie detection
accuracy than when judging people of their own
ethnic origin (Vrij, 2000). For the future work,
we aim to use automatic prediction of deceivers to
help truth-tellers win games more easily.
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Abstract

Stubs on Wikipedia often lack comprehen-
sive information. The huge cost of edit-
ing Wikipedia and the presence of only a
limited number of active contributors curb
the consistent growth of Wikipedia. In this
work, we present WikiKreator, a system
that is capable of generating content au-
tomatically to improve existing stubs on
Wikipedia. The system has two compo-
nents. First, a text classifier built using
topic distribution vectors is used to as-
sign content from the web to various sec-
tions on a Wikipedia article. Second, we
propose a novel abstractive summariza-
tion technique based on an optimization
framework that generates section-specific
summaries for Wikipedia stubs. Experi-
ments show that WikiKreator is capable of
generating well-formed informative con-
tent. Further, automatically generated con-
tent from our system have been appended
to Wikipedia stubs and the content has
been retained successfully proving the ef-
fectiveness of our approach.

1 Introduction

Wikipedia provides comprehensive information
on various topics. However, a significant percent-
age of the articles are stubs1 that require exten-
sive effort in terms of adding and editing content
to transform them into complete articles. Ideally,
we would like to create an automatic Wikipedia
content generator, which can generate a compre-
hensive overview on any topic using available in-
formation from the web and append the gener-
ated content to the stubs. Addition of automati-
cally generated content can provide a useful start-

1https://en.wikipedia.org/wiki/
Wikipedia:Stub

ing point for contributors on Wikipedia, which can
be improved upon later.

Several approaches to automatically generate
Wikipedia articles have been explored (Sauper
and Barzilay, 2009; Banerjee et al., 2014; Yao
et al., 2011). To the best of our knowledge, all
the above mentioned methods identify informa-
tion sources from the web using keywords and
directly use the most relevant excerpts in the fi-
nal article. Information from the web cannot
be directly copied into Wikipedia due to copy-
right violation issues (Banerjee et al., 2014).
Further, keyword search does not always sat-
isfy information requirements (Baeza-Yates et al.,
1999). To address the above-mentioned issues,
we present WikiKreator – a system that can au-
tomatically generate content for Wikipedia stubs.
First, WikiKreator does not operate using keyword
search. Instead, we use a classifier trained using
topic distribution features to identify relevant con-
tent for the stub. Topic-distribution features are
more effective than keyword search as they can
identify relevant content based on word distribu-
tions (Song et al., 2010). Second, we propose a
novel abstractive summarization (Dalal and Malik,
2013) technique to summarize content from mul-
tiple snippets of relevant information.2

Figure 1 shows a stub that we attempt to im-
prove using WikiKreator. Generally, in stubs, only
the introductory content is available; other sec-
tions (s1, ..., sr) are absent. The stub also belongs
to several categories (C1,C2, etc. in Figure) on
Wikipedia. In this work, we address the following
research question: Given the introductory content,
the title of the stub and information on the cate-
gories - how can we transform the stub into a com-

2An example of our system’s output can be found
here – https://en.wikipedia.org/wiki/2014_
Enterovirus_D68_outbreak – content was added on
5th Jan, 2015. The sections on Epidemiology, Causes and
Prevention have been added using content automatically gen-
erated by our method.
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Figure 1: Overview of our word-graph based generation (left) to populate Wikipedia template (right)

prehensive Wikipedia article?
Our proposed approach consists of two stages.

First, a text classifier assigns content retrieved
from the web into specific sections of the
Wikipedia article. We train the classifier using
a set of articles within the same category. Cur-
rently, we limit the system to learn and assign
content into the 10 most frequent sections in any
given category. The training set includes con-
tent from the most frequent sections as instances
and their corresponding section titles as the class
labels. We extract topic distribution vectors us-
ing Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) and use the features to train a Random For-
est (RF) Classifier (Liaw and Wiener, 2002). To
gather web content relevant to the stub, we for-
mulate queries and retrieve top 20 search results
(pages) from Google. We use boilerplate detec-
tion (Kohlschütter et al., 2010) to retain the im-
portant excerpts (text elements) from the pages.
The RF classifier classifies the excerpts into one of
the most frequent classes (section titles). Second,
we develop a novel Integer Linear Programming
(ILP) based abstractive summarization technique
to generate text from the classified content. Previ-
ous work only included the most informative ex-
cerpt in the article (Sauper and Barzilay, 2009); in
contrast, our abstractive summarization approach
minimizes loss of information that should ideally
be in an Wikipedia article by fusing content from
several sentences. As shown in Figure 1, we con-
struct a word-graph (Filippova, 2010) using all the
sentences (WG1) assigned to a specific class (Epi-

demiology) by the classifier. Multiple paths (sen-
tences) between the start and end nodes in the
graph are generated (WG2). We represent the gen-
erated paths as variables in the ILP problem. The
coefficients of each variable in the objective func-
tion of the ILP problem is obtained by combin-
ing the information score and the linguistic quality
score of the path. We introduce several constraints
into our ILP model. We limit the summary for
each section to a maximum of 5 sentences. Fur-
ther, we avoid redundant sentences in the summary
that carry similar information. The solution to the
optimization problem decides the paths that are se-
lected in the final section summary. For example,
in Figure 1, the final paths determined by the ILP
solution, – 1 and 2 in WG2, are assigned to a sec-
tion (sr), where (sr) is the section title Epidemiol-
ogy.

To the best of our knowledge, this work is
the first to address the issue of generating con-
tent automatically to transform Wikipedia stubs
into comprehensive articles. Further, we address
the issue of abstractive text summarization for
Wikipedia content generation. We evaluate our
approach by generating articles in three differ-
ent categories: Diseases and Disorders3, Amer-
ican Mathematicians4 and Software companies
of the United States5. Our LDA-based classi-

3
https://en.wikipedia.org/wiki/Category:

Diseases_and_disorders
4
https://en.wikipedia.org/wiki/Category:

American_mathematicians
5
https://en.wikipedia.org/wiki/Category:

Software_companies_of_the_United_States
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fier outperforms a TFIDF-based classifier in all
the categories. We use ROUGE (Lin, 2004) to
compare content generated by WikiKreator and
the corresponding Wikipedia articles. The re-
sults of our evaluation confirm the benefits of us-
ing abstractive summarization for content genera-
tion over approaches that do not use summariza-
tion. WikiKreator outperforms other comparable
approaches significantly in terms of content selec-
tion. On ROUGE-1 scores, WikiKreator outper-
forms the perceptron-based baseline (Sauper and
Barzilay, 2009) by ∼20%. We also analyze re-
viewer reactions, by appending content into sev-
eral stubs on Wikipedia, most of which (∼77%)
have been retained by reviewers.

2 Related Work

Wikipedia has been used to compute semantic re-
latedness (Gabrilovich and Markovitch, 2007), in-
dex topics (Medelyan et al., 2008), etc. How-
ever, the problem of enhancing the content of
a Wikipedia article has not been addressed ad-
equately. Learning structures of templates from
the Wikipedia articles have been attempted in the
past (Sauper and Barzilay, 2009; Yao et al., 2011).
Both these efforts use queries to extract excerpts
from the web and the excerpts ranked as the most
relevant are added into the article. However, as al-
ready pointed out, current standards of Wikipedia
requires rewriting of web content to avoid copy-
right violation issues.

To address the issue of copyright violation,
multi-document abstractive summarization is re-
quired. Various abstractive approaches have been
proposed till date (Nenkova et al., 2011). How-
ever, these methods suffer from severe deficien-
cies. Template-based summarization methods
work well, but, it assumes prior domain knowl-
edge (Li et al., 2013). Writing style across ar-
ticles vary widely; hence learning templates au-
tomatically is difficult. In addition, such tech-
niques require handcrafted rules for sentence re-
alization (Gerani et al., 2014). Alternatively, we
can use text-to-text generation (T2T) (Ganitke-
vitch et al., 2011) techniques. WikiKreator con-
structs a word-graph structure similar to (Filip-
pova, 2010) using all the sentences that are as-
signed to a particular section by a text classifier.
Multiple paths (sentences) from the graph are gen-
erated. WikiKreator selects few sentences from
this set of paths using an optimization problem
formulation that jointly maximizes the informa-
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Figure 2: WikiKreator System Architecture: Con-
tent Retrieval and Content Summarization

tiveness and readability of section-specific snip-
pets and generates output that is informative, well-
formed and readable.

3 Proposed Approach

Figure 2 shows the system architecture of
WikiKreator. We are required to generate content
to populate sections of the stubs (S1, S2, etc.) that
belong to category C1. Categories on Wikipedia
group together pages on similar subjects. Hence,
categories characterize Wikipedia articles surpris-
ingly well (Zesch and Gurevych, 2007). Naturally,
we leverage knowledge existing in the categories
to build our text classifier. To learn category spe-
cific templates, the system should learn from ar-
ticles contained within the same or similar cate-
gories. WikiKreator learns category-specific tem-
plates using all the articles that can be reached us-
ing a top-down approach from the particular cate-
gory. For example, in addition to C1, WikiKreator
also learns templates from articles in C2 and C3

(the subcategories of C1). As shown in the Fig-
ure 2, we deploy a two stage process to generate
content for a stub:
[i] Content Retrieval and
[ii] Content Summarization.
In the first stage, our focus is to retrieve content
that is relevant to the stub, say, S1 that belongs
to C1. We extract all the articles that belong to C1

and the subcategories, namely,C2 andC3. A train-
ing set is created with the contents in the sections
of the articles as instances and the section titles as
the corresponding classes. Topic distribution vec-
tors for each section content are generated using
LDA (Blei et al., 2003). We train a Random Forest
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(RF) classifier using the topic distribution vectors.
As mentioned earlier, only the top 10 most fre-
quent sections are considered for the multi-class
classification task. We retrieve relevant excerpts
from the web by formulating queries. The topic
model infers the topic distribution features of each
excerpt and the RF classifier predicts the section
(s1, s2, etc.) of the excerpt. All web automation
tasks are performed using HTMLUnit6. In the sec-
ond stage, our ILP based summarization approach
synthesizes information from multiple excerpts as-
signed to a section and presents the most informa-
tive and linguistically well-formed summary as the
corresponding content for each section. A word-
graph is constructed that generates several sen-
tences; only a few of the sentences are retained
based on the ILP solution. The predicted section
is entered in the stub article along with the final
sentences selected by the ILP solution as the cor-
responding section-specific content on Wikipedia.

3.1 Content Retrieval
Article Extraction: Wikipedia provides an API7

to download articles in the XML format. Given a
category, the API is capable of extracting all the
articles under it. We recursively extract articles
by identifying all the categories in the hierarchy
that can be reached by the crawler using top-down
traversal. We use a simple python script8 to ex-
tract the section titles and the corresponding text
content from the XML dump.
Classification model: WikiKreator uses Latent
Dirichlet Allocation (LDA) to represent each doc-
ument as a vector of topic distributions. Each
topic is further represented as a vector of proba-
bilities of word distributions. Our intuition is that
the topic distribution vectors of the same sections
across different articles would be similar. Our ob-
jective is to learn these topic representations, such
that we can accurately classify any web excerpt by
inferring the topics in the text. Say C, a category
on Wikipedia, has k Wikipedia articles (W ).

(C) = {W1, W2, W3, W4, ..., Wk}
Each article Wj has several sections denoted as
sjicji where sji and cji refer to the section title and
content of the ith section in the jth article, respec-
tively. We concentrate on the 10 most frequent

6http://htmlunit.sourceforge.net/
7https://en.wikipedia.org/wiki/

Special:Export
8http://medialab.di.unipi.it/wiki/

Wikipedia_Extractor

sections in any category. Training using content
from sections that are not frequent might result in
sub-optimal classification models. In our experi-
ments, each frequent section had enough instances
to optimally train a classifier. Let us denote the 10
most frequent sections in any category as S. If
any sji from Wj exists in S, the content (cji) is
included in the training set along with the section
title (sji) as the corresponding class label. These
steps are repeated for all the articles in the cate-
gory. Each instance is then represented as:
cji = {pji(t1), pji(t2), pji(t3), . . . , pji(tm)}

where m is the number of topics. sji is the cor-
responding label for this training instance. The
set of topics are t1, t2, t3,. . ., tm while pji(tm)
refers to the probability of topic m of content cji.
Contents from the most frequent sections are each
considered as a document and LDA is applied to
generate document-topic distributions. We exper-
iment with several values of m and use the value
that generates the best classification model in each
category. The topic vectors and the correspond-
ing labels are used to train a Random Forest (RF)
classifier. As the classes might be unbalanced, we
apply resampling on the training set.
Predicting sections: In this step, we search the
web for relevant content on the stub and assign
them to their respective sections. We formulate
search queries to retrieve web pages using a search
engine. We extract multiple excerpts from the
pages and then the RF classifier predicts the class
(section label) for each excerpt.
(i) Query Generation: To search the web, we
formulate queries by combining the stub title and
keyphrases extracted from the first sentence of the
introductory content of the stub. The first sen-
tence generally contains the most important key-
words that represent the article. Focused queries
increases relevance of extraction as well as helps
in disambiguation of content. We use the topia
term extractor (Chatti et al., 2014) to extract
keyphrases. For example, the query generated for
a stub on Hereditary hyperbilirubinemia is Hered-
itary hyperbilirubinemia bilirubin metabolic dis-
order where bilirubin metabolic disorder are the
keyphrases generated from the first sentence of the
stub from Wikipedia. The query is used to identify
the top 20 URLs (search results) from Google9.
(ii) Boilerplate removal: Web content from the
search results obtained in the previous step re-

9http://www.google.com
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quires cleaning to retain only the relevant informa-
tion. Removal of irrelevant content is done using
boilerplate detection (Kohlschütter et al., 2010).
The web pages contain several excerpts (text el-
ements) in between the HTML tags. Only the ex-
cerpts that are classified as relevant by the boiler-
plate detection technique are retained.

(iii) Classification and assignment of excerpts:
The LDA model generated earlier infers topic dis-
tribution of each excerpt based on word distribu-
tions. The RF classifier predicts the class (section
title) for each excerpt based on the topic distribu-
tion. However, predictions that do not have a high
level of confidence might lead to excerpts being
appended to inappropriate sections. Therefore, we
set the minimum confidence level at 0.5. If the
prediction confidence of the RF classifier for a par-
ticular excerpt is above the minimum confidence
level, the excerpt is assigned to the class; other-
wise, the excerpt is discarded.

In the next step, we apply summarization on the
excerpts assigned to each section.

3.2 Content Summarization

To summarize content for Wikipedia effectively,
we formulate an ILP problem to generate abstrac-
tive summaries for each section with the objective
of maximizing linguistic quality and information
content.
Word-graph: A word-graph is constructed using
all the sentences included in the excerpts assigned
to a particular section. We used the same tech-
nique to construct the word-graph as (Filippova,
2010) where the nodes represent the words (along
with parts-of-speech (POS)) and directed edges
between the nodes are added if the words are adja-
cent in the input sentences. Each sentence is con-
nected to dummy start and end nodes to mark the
beginning and ending of the sentences. The sen-
tences from the excerpts are added to the graph
in an iterative fashion. Once the first sentence
is added, words from the following sentences are
mapped onto a node in the graph provided that
they have the exact same word form and the same
POS tag. Inclusion of POS information prevents
ungrammatical mappings. The words are added to
the graph in the following order:

• Content words are added for which there are
no candidates in the existing graph;

• Content words for which multiple mappings
are possible or such words that occur more

than once in the sentence;

• Stopwords.

If multiple mappings are possible, the context of
the word is checked using word overlaps to the left
and right within a window of two words. Even-
tually, the word is mapped to that node that has
the highest context. We also changed Filippova’s
method by adding punctuations as nodes to the
graph. Figure 1 shows a simple example of the
word-graph generation technique. We do not show
POS and punctuations in the figure for the sake of
clarity. The Figure also shows that several pos-
sible paths (sentences) exist between the dummy
start and end nodes in the graph. Ideally, excerpts
for any section would contain multiple common
words as they belong to the same topic and have
been assigned the same section. The presence of
common words ensure that new sentences can be
generated from the graph by fusing original set of
sentences in the graph. Figure 1 shows an illus-
tration of our approach where the set of sentences
assigned to a particular section (WG1) are used to
create the word-graph. The word-graph generates
several possible paths between the dummy nodes;
we show only three such paths (WG2). To obtain
abstractive summaries, we remove generated paths
from the graph that are same or very similar to any
of the original sentences. If the cosine similarity
of a generated path to any of the original sentences
is greater than 0.8, we do not retain the path. We
compute cosine similarity after applying stopword
removal. However, we do not apply stemming as
our graph construction is based on words existing
in the same form in multiple sentences. Similar to
Filippova’s work, we set the minimum path length
(in words) to eight to avoid incomplete sentences.
Paths without verbs are discarded. The final set of
generated paths after discarding the ineligible ones
are used in the next step of summary generation.

3.2.1 ILP based Path Selection
Our goal is to select paths that maximize the in-
formativeness and linguistic quality of the gener-
ated summaries. To select the best multiple pos-
sible sentences, we apply an overgenerate and se-
lect (Walker et al., 2001) strategy. We formulate
an optimization problem that ‘selects’ a few of
the many generated paths in between the dummy
nodes from the word-graph. Let pi denote each
path obtained from the word-graph. We introduce
three different factors to judge the relevance of
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a path – Local informativeness (I loc(pi)), Global
informativeness (Iglob(pi)) and Linguistic quality
(LQ(pi)). Any sentence path should be relevant
to the central topic of the article; this relevance
is tackled using Iglob(pi). I loc(pi) models the
importance of a sentence among several possible
sentences that are generated from the word-graph.
Linguistic quality (LQ(pi)) is computed using a
trigram language model (Song and Croft, 1999)
that assigns a logarithmic score of probabilities of
occurrences of three word sequences in the sen-
tences.
Local Informativeness: In principle, we can use
any existing method that computes sentence im-
portance to account for Local Informativeness. In
our model, we use TextRank scores (Mihalcea and
Tarau, 2004) to generate an importance value of
each path. TextRank creates a graph of words from
the sentences. The score of each node in the graph
is calculated as shown in Equation (1):

S(Vi) = (1− d) + d×∑Vj∈adj(Vi)
wji∑

Vk∈adj(Vi)
wjk

S(Vi)

(1)
where Vi represents the words and adj(Vi) denotes
the adjacent nodes of Vi. Setting d to 0.80 in our
experiments provided the best content selection re-
sults. The computation convergences to return fi-
nal word importance scores. The informativeness
score of a path I loc(pi) is obtained by adding the
importance scores of the individual words in the
path.
Global Informativeness: To compute global
informativeness, we compute the relevance of a
sentence with respect to the query to assign higher
weights to sentences that explicitly mention the
main title or mention certain keywords that are
relevant to the article. We compute the cosine
similarity using TFIDF features between each
sentence and the original query that was formu-
lated during the web search stage. We define
global informativeness as follows:

Iglob(pi) = CosineSimilarity(Q, pi) (2)

where Q denotes the formulated query.
Linguistic Quality: In order to compute Linguis-
tic quality, we use a language model that assigns
probabilities to sequence of words to compute lin-
guistic quality. Suppose a path contains a se-
quence of q words {w1, w2, ..., wq}. The score
LQ(pi) assigned to each path is defined as fol-

lows:

LQ(pi) = 1
1−LL(w1,w2,...,wq) , (3)

where LL(w1, w2, ..., wq) is defined as:

LL(w1, . . . , wq) = 1
L · log2

∏q
t=3 P (wt|wt−1wt−2).

(4)
As can be seen from Equation (4), we com-
bine the conditional probability of different sets
of 3-grams (trigrams) in the sentence and aver-
aged the value by L – the number of conditional
probabilities computed. The LL(w1, w2, . . . , wq)
scores are negative; with higher magnitude imply-
ing lower importance. Therefore, in Equation (3),
we take the reciprocal of the logarithmic value
with smoothing to compute LQ(pi). In our exper-
iments, we used a 3-gram model10 that is trained
on the English Gigaword corpus. Trigram models
have been successfully used in several text-to-text
generation tasks (Clarke and Lapata, 2006; Filip-
pova and Strube, 2008) earlier.
ILP Formulation: To select the best paths, we
combine all the above mentioned factors I loc(pi),
Iglob(pi) and linguistic quality LQ(pi) in an opti-
mization framework. We maximize the following
objective function:

F (p1, . . . , pK) =
∑K

i=1
1

T (pi)
· I loc(pi) · Iglob(pi) · LQ(pi) · pi

(5)
where K represents the total number of generated
paths. Each pi represents a binary variable, that
can be either 0 or 1, depending on whether the path
is selected in the final summary or not. In addition,
T (pi) – the number of tokens in a path, is included
in the objective function. The term 1

T (pi)
normal-

izes the Textrank scores by the length of the sen-
tences. First, we ensure that a maximum of Smax
sentences are selected in the summary using Equa-
tion (6).

K∑
i=1

pi ≤ Smax (6)

In our experiments, we set Smax to 5 to generate
short concise summaries in each section. Using a
length constraint enables us to only populate the
sections using the most informative content. We
introduce Equation (7) to prevent similar informa-
tion (cosine similarity≥ 0.5) from being conveyed

10The model is available here: http://www.keithv.
com/software/giga/. We used the VP 20K vocab ver-
sion.
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Category Most Frequent Sections
American Mathematicians Awards, Awards and honors, Biography, Books, Career, Education, Life, Publications, Selected publications, Work
Diseases and Disorders Causes, Diagnosis, Early life, Epidemiology, History, Pathophysiology, Prognosis, Signs and symptoms, Symptoms, Treatment
US Software companies Awards, Criticism, Features, Games, History, Overview, Products, Reception, Services, Technology

Table 1: Data characteristics of three domains on Wikipedia

Category #Articles #Instances
American Mathematicians ∼ 2100 1493
Diseases and Disorders ∼ 7000 9098
US Software companies ∼ 3600 2478

Table 2: Dataset used for classification

by different sentences. This constraint reduces re-
dundancy. If two sentences have a high degree of
similarity, only one out of the two can be selected
in the summary.

∀i, i′ ∈ [1,K], i 6= i′,
pi + pi′ ≤ 1 if sim(pi, pi′) ≥ 0.5.

(7)

The ILP problem is solved using the Gurobi op-
timizer (2015). The solution to the problem de-
cides the paths that should be included in the final
summary. We populate the sections on Wikipedia
using the final summaries generated for each sec-
tion along with the section title. All the refer-
ences that have been used to generate the sen-
tences are appended along with the content gen-
erated on Wikipedia.

4 Experimental Results

To evaluate the effectiveness of our proposed tech-
nique, we conduct several experiments. First, we
evaluate our content generation approach by gen-
erating content for comprehensive articles that al-
ready exist on Wikipedia. Second, we analyze re-
viewer reactions on our system generated articles
by adding content to several stubs on Wikipedia.
Our experiments were designed to answer the fol-
lowing questions:
(i)What are the optimal number of topic distribu-
tion features for each category? What are the clas-
sification accuracies in each domain?
(ii)To what extent can our technique generate the
content for articles automatically?
(iii)What are the general reviewer reactions on
Wikipedia and what percentage of automatically
generated content on Wikipedia is retained?
Dataset Construction: As mentioned earlier
in Section 3.1, we crawl Wikipedia articles by
traversing the category graph. Articles that contain
at least three sections were included in the training
set; other articles having lesser number of sections

Figure 3: Performance of Classifier in the three
categories based on the number of topics.

are generally labeled as stubs and hence not used
for training. Table 1 shows the most frequent sec-
tions in each category. Further, Table 2 shows the
total number of articles retrieved from Wikipedia
in each category. The total number of instances are
also shown. The number of instances denotes the
total number of the most frequent sections in each
category. As can be seen from the table, the num-
ber of instances is higher than the number of arti-
cles only in case of the category on diseases. This
implies that there are generally more common sec-
tions in the diseases category than the other cate-
gories.

In each category, the content from only the most
frequent sections were used to generate a topic
model. The topic model is further used to in-
fer topic distribution vectors from the training in-
stances. We used the MALLET toolkit (McCal-
lum, 2002) for generating topic distribution vec-
tors and the WEKA package (Hall et al., 2009) for
the classification tasks.
Optimal number of topics: The LDA model re-
quires a pre-defined number of topics. We exper-
iment with several values of the number of top-
ics ranging from 10 to 100. The topic distribution
features of the content of the instances are used
to train a Random Forest Classifier with the cor-
responding section titles as the class labels. As
can be seen in the Figure 3, the classification per-
formance varies across domains as well as on the
number of topics. The optimal number of top-
ics based on the dataset are marked in blue cir-
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Category LDA-RF SVM-WV
American Mathematicians 0.778 0.478
Diseases and Disorders 0.886 0.801
US Software companies 0.880 0.537

Table 3: Classification: Weighted F-Scores

cles (40, 50 and 20 topics for Diseases, Software
Companies in US and American mathematicians,
respectively) in the Figure. We classify web ex-
cerpts using the best performing classifiers trained
using the optimal number of topic features in each
category.
Classification performance: We use 10-fold
cross validation to evaluate the accuracy of our
classifier. According to the F-Scores, our classifier
(LDA-RF) performs similarly in the categories on
Diseases and US Software companies. However,
the accuracy is lower in the American Mathemati-
cians category. We also experimented with a base-
line classifier, that is trained on TFIDF features
(upto trigrams). A Support vector machine (Cortes
and Vapnik, 1995) classifier obtained the best per-
formance using the TFIDF features. The base-
line system is referred to as SVM-WV. We exper-
imented with several other combinations of classi-
fiers; however, we show only the best performing
systems using the LDA and TFIDF features. As
can be seen from the Table 3, our classifier (LDA-
RF) outperforms SVM-WV significantly in all the
domains. SVM-WV performs better in the cate-
gory on diseases than the other two categories and
the performance is comparable to (LDA-RF). The
diseases category has more uniformity in terms of
the section titles, hence specific words or phrases
characterize the sections well. In contrast, word
distributions (LDA) work significantly better than
TFIDF features in the other two categories.
Error Analysis: We performed error analysis to
understand the reason for misclassifications. As
can be seen from the Table 1, all the categories
have several overlapping sections. For example,
Awards and honors and Awards contain similar
content. Authors use various section names for
similar content in the articles within the same cat-
egory. We analyzed the confusion matrices, and
found that multiple instances in Awards were clas-
sified into the class of Awards and honors. Simi-
lar observations are made on the Books and Pub-
lications classes – which are related sections in
the context of academic biographies. In future,
we plan to use semantic measures to relate similar
classes automatically and group them in the same

Category System ROUGE-1 ROUGE-2
WikiKreator 0.522 0.311

American Mathematicians Perceptron 0.431 0.193
Extractive 0.471 0.254
WikiKreator 0.537 0.323

Diseases and Disorders Perceptron 0.411 0.197
Extractive 0.473 0.232
WikiKreator 0.521 0.321

US Software companies Perceptron 0.421 0.228
Extractive 0.484 0.257

Table 4: ROUGE-1 and 2 Recall values – Com-
paring system generated articles to model articles

class during classification.
Content Selection Evaluation: To evaluate the
effectiveness of our content generation process,
we generated the content of 500 randomly se-
lected articles that already exist on Wikipedia in
each of the categories. We compare WikiKreator’s
output against the current content of those ar-
ticles on Wikipedia using ROUGE (Lin, 2004).
ROUGE matches N-gram sequences that exist
in both the system generated articles and the
original Wikipedia articles (gold standard). We
also compare WikiKreator’s output with an ex-
isting Wikipedia generation system [Perceptron]
of Sauper and Barzilay (2009)11 that employs a
perceptron learning framework to learn topic spe-
cific extractors. Queries devised using the con-
junction of the document title and the section ti-
tle were used to obtain excerpts from the web
using a search engine, which were used in the
perceptron model. In Perceptron, the most im-
portant sections in the category was determined
using a bisectioning algorithm to identify clus-
ters of similar sections. To understand the ef-
fectiveness of our abstractive summarizer, we de-
sign a system (Extractive) that uses an extrac-
tive summarization module. In Extractive, we use
LexRank (Erkan and Radev, 2004) as the summa-
rizer instead of our ILP based abstractive summa-
rization model. We restrict the extractive sum-
maries to 5 sentences for accurate comparison of
both the systems. The same content was received
as input from the classifier by the Extractive as
well as our ILP-based system.

As can be seen from the Table 4, the ROUGE
scores obtained by WikiKreator is higher than that
of the other comparable systems in all the cat-
egories. The higher ROUGE scores imply that
WikiKreator is generally able to retrieve useful
information from the web, synthesize them and
present the important information in the article.

11The system is available here: https://github.
com/csauper/wikipedia
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Statistics Count
Number of stubs edited 40
Number of stubs retained without any changes 21
Number of stubs that required minor editing 6
Number of stubs where edits were modified by reviewers 4
Number of stubs in which content was removed 9
Average change in size of stubs 515 bytes
Average number of edits made post content-addition ∼3

Table 5: Statistics of Wikipedia generation

However, it may also be noted that the Extractive
system outperforms the Perceptron framework.
Summarization from multiple sources generates
more informative summaries and is more effective
than ‘selection’ of the most informative excerpt,
which is often inadequate due to potential loss of
information. WikiKreator performs better than the
extractive system on all the categories. Our ILP-
based abstractive summarization system fuses and
selects content from multiple sentences, thereby
aggregating information successfully from multi-
ple sources. In contrast, LexRank ‘extracts’ the
top 5 sentences that results in some information
loss.
Analysis of Wikipedia Reviews: To compare our
method with the other techniques, it is necessary
to generate content and append to Wikipedia stubs
using all the techniques. However, recent work on
article generation (Banerjee et al., 2014) has al-
ready shown that content directly copied from web
sources cannot be used on Wikipedia. Further,
bots using copyrighted content might be banned
and real-users would have to read sub-standard ar-
ticles due to the internal tests we perform. Due to
the above mentioned reasons, we appended con-
tent generated only using our abstractive summa-
rization technique.

We published content generated by WikiKreator
on Wikipedia and appended the content to 40 ran-
domly selected stubs. As can be seen from the
Table 5, the content generated using our system
was generally accepted by the reviewers. Half of
the articles did not require any further changes;
while in 6 cases (15%) the reviewers asked us to
fix grammatical issues. In 9 stubs, the reliability of
the cited references was questioned. Information
sources on Wikipedia need to satisfy a minimum
reliability standard, which our algorithm currently
cannot determine. On an average, 3 edits were
made to the Wikipedia articles that we generated.
In general, there is an average increase in the con-
tent size of the stubs that we edited showing that
our method is capable of producing content that
generally satisfy Wikipedia criterion.

Analysis of section assignment: We manually in-
spected generated content of 20 articles in each
category. Generated summaries are both informa-
tive and precise. However, in certain cases, the
generated section title is not the same as the sec-
tion title in the original Wikipedia article. For
example, we generated content for the section
“Causes” for the article on Middle East Respira-
tory Syndrome (MERS)12:
Milk or meat may play a role in the transmission of the virus

. People should avoid drinking raw camel milk or meat that

has not been properly cooked . There is growing evidence

that contact with live camels or meat is causing MERS.

The corresponding content on the Wikipedia is in
a section labeled as “Transmission”. Section ti-
tles at the topmost level in a category might not be
relevant to all the articles. Instead of using a top-
down approach of traversing the category-graph,
we can also use a bottom-up approach where we
learn from all the categories that an article be-
longs to. For example, the article on MERS be-
longs to two categories: Viral respiratory tract in-
fection and Zoonoses. Training using all the cat-
egories will allow context-driven section identifi-
cation. Most frequent sections at a higher level in
the category graph might not always be relevant to
all the articles within a category.

5 Conclusions and Future Work

In this work, we presented WikiKreator that
can generate content automatically to improve
Wikipedia stubs. Our technique employes a topic-
model based text classifier that assigns web ex-
cerpts into various sections on an article. The
excerpts are summarized using a novel abstrac-
tive summarization technique that maximizes in-
formativeness and linguistic quality of the gen-
erated summary. Our experiments reveal that
WikiKreator is capable of generating well-formed
informative content. The summarization step en-
sures that we avoid any copyright violation issues.
The ILP based sentence generation strategy en-
sures that we generate novel content by synthesiz-
ing information from multiple sources and thereby
improve content selection. In future, we plan to
cluster related sections using semantic relatedness
measures. We also plan to estimate reliabilities of
sources to retrieve information only from reliable
sources.

12https://en.wikipedia.org/wiki/Middle_
East_respiratory_syndrome
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Abstract

Using natural language to write programs
is a touchstone problem for computational
linguistics. We present an approach that
learns to map natural-language descrip-
tions of simple “if-then” rules to executable
code. By training and testing on a large cor-
pus of naturally-occurring programs (called
“recipes”) and their natural language de-
scriptions, we demonstrate the ability to
effectively map language to code. We
compare a number of semantic parsing ap-
proaches on the highly noisy training data
collected from ordinary users, and find that
loosely synchronous systems perform best.

1 Introduction

The ability to program computers using natural lan-
guage would clearly allow novice users to more
effectively utilize modern information technology.
Work in semantic parsing has explored mapping
natural language to some formal domain-specific
programming languages such as database queries
(Woods, 1977; Zelle and Mooney, 1996; Berant et
al., 2013), commands to robots (Kate et al., 2005),
operating systems (Branavan et al., 2009), smart-
phones (Le et al., 2013), and spreadsheets (Gulwani
and Marron, 2014). Developing such language-
to-code translators has generally required specific
dedicated efforts to manually construct parsers or
large corpora of suitable training examples.

An interesting subset of the possible program
space is if-then “recipes,” simple rules that allow
users to control many aspects of their digital life
including smart devices. Automatically parsing

∗Work performed while visiting Microsoft Research.

these recipes represents a step toward complex nat-
ural language programming, moving beyond single
commands toward compositional statements with
control flow.

Several services, such as Tasker and IFTTT, al-
low users to create simple programs with “triggers”
and “actions.” For example, one can program their
Phillips Hue light bulbs to flash red and blue when
the Cubs hit a home run. A somewhat complicated
GUI allows users to construct these recipes based
on a set of information “channels.” These chan-
nels represent many types of information. Weather,
news, and financial services have provided constant
updates through web services. Home automation
sensors and controllers such as motion detectors,
thermostats, location sensors, garage door openers,
etc. are also available. Users can then describe the
recipes they have constructed in natural language
and publish them.

Our goal is to build semantic parsers that al-
low users to describe recipes in natural language
and have them automatically mapped to exe-
cutable code. We have collected 114,408 recipe-
description pairs from the http://ifttt.com website.
Because users often provided short or incomplete
English descriptions, the resulting data is extremely
noisy for the task of training a semantic parser.
Therefore, we have constructed semantic-parser
learners that utilize and adapt ideas from several
previous approaches (Kate and Mooney, 2006;
Wong and Mooney, 2006) to learn an effective in-
terpreter from such noisy training data. We present
results on our collected IFTTT corpus demonstrat-
ing that our best approach produces more accurate
programs than several competing baselines. By
exploiting such “found data” on the web, seman-
tic parsers for natural-language programming can
potentially be developed with minimal effort.
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2 Background

We take an approach to semantic parsing that
directly exploits the formal grammar of the tar-
get meaning representation language, in our case
IFTTT recipes. Given supervised training data in
the form of natural-language sentences each paired
with their corresponding IFTTT recipe, we learn
to introduce productions from the formal-language
grammar into the derivation of the target program
based on expressions in the natural-language input.
This approach originated with the SILT system
(Kate et al., 2005) and was further developed in
the WASP (Wong and Mooney, 2006; Wong and
Mooney, 2007b) and KRISP (Kate and Mooney,
2006) systems.

WASP casts semantic parsing as a syntax-based
statistical machine translation (SMT) task, where
a synchronous context-free grammar (SCFG) (Wu,
1997; Chiang, 2005; Galley et al., 2006) is used
to model the translation of natural language into a
formal meaning representation. It uses statistical
models developed for syntax-based SMT for lexical
learning and parse disambiguation. Productions in
the formal-language grammar are used to construct
synchronous rules that simultaneously model the
generation of the natural language. WASP was sub-
sequently “inverted” to use the same synchronous
grammar to generate natural language from the for-
mal language (Wong and Mooney, 2007a).

KRISP uses classifiers trained using a Support-
Vector Machine (SVM) to introduce productions
in the derivation of the formal translation. The
productions of the formal-language grammar are
treated like semantic concepts to be recognized
from natural-language expressions. For each pro-
duction, an SVM classifier is trained using a string
subsequence kernel (Lodhi et al., 2002). Each clas-
sifier can then estimate the probability that a given
natural-language substring introduces a production
into the derivation of the target representation. Dur-
ing semantic parsing, these classifiers are employed
to estimate probabilities on different substrings
of the sentence to compositionally build the most
probable meaning representation for the sentence.
Unlike WASP whose synchronous grammar needs
to be able to directly parse the input, KRISP’s ap-
proach to “soft matching” productions allows it
to produce a parse for any input sentence. Conse-
quently, KRISP was shown to be much more robust
to noisy training data than previous approaches to
semantic parsing (Kate and Mooney, 2006).

Since our “found data” for IFTTT is extremely
noisy, we have taken an approach similar to KRISP;
however, we use a probabilistic log-linear text clas-
sifier rather than an SVM to recognize productions.

This method of assembling well-formed pro-
grams guided by a natural language query bears
some resemblance to Keyword Programming (Lit-
tle and Miller, 2007). In that approach, users en-
ter natural language queries in the middle of an
existing program; this query drives a search for
programs that are relevant to the query and fit
within the surrounding program. However, the
function used to score derivations is a simple match-
ing heuristic relying on the overlap between query
terms and program identifiers. Our approach uses
machine learning to build a correspondence be-
tween queries and recipes based on parallel data.

There is also a large body of work applying Com-
binatory Categorical Grammars to semantic pars-
ing, starting with Zettlemoyer and Collins (2005).
Depending on the set of combinators used, this ap-
proach can capture more expressive languages than
synchronous context-free MT. In practice, however,
synchronous MT systems have competitive accu-
racy scores (Andreas et al., 2013). Therefore, we
have not yet evaluated CCG on this task.

3 If-this-then-that recipes

The recipes considered in this paper are diverse and
powerful despite being simple in structure. Each
recipe always contains exactly one trigger and one
action. Whenever the conditions of the trigger are
satisfied, the action is performed. The resulting
recipes can perform tasks such as home automation
(“turn on my lights when I arrive home”), home
security (“text me if the door opens”), organization
(“add receipt emails to a spreadsheet”), and much
more (“remind me to drink water if I’ve been at
a bar for more than two hours”). Triggers and
actions are drawn from a wide range of channels
that must be activated by each user. These channels
can represent many entities and services, including
devices (such as Android devices or WeMo light
switches) and knowledge sources (such as ESPN
or Gmail). Each channel exposes a set of functions
for both trigger and action.

Several services such as IFTTT, Tasker, and
Llama allow users to author if-this-then-that
recipes. IFTTT is unique in that it hosts a large
set of recipes along with descriptions and other
metadata. Users of this site construct recipes using
a GUI interface to select the trigger, action, and the
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parameters for both trigger and action. After the
recipe is authored, the user must provide a descrip-
tion and optional set of notes for this recipe and
publish the recipe. Other users can browse and use
these published recipes; if a user particularly likes
a recipe, they can mark it as a favorite.

As of January 2015, we found 114,408 recipes
on http://ifttt.com. Among the available recipes we
encountered a total of 160 channels. In total, we
found 552 trigger functions from 128 of those chan-
nels, and 229 action functions from 99 channels,
for a total of 781 functions. Each recipe includes
a number of pieces of information: description1,
note, author, number of uses, etc. 99.98% of the
entries have a description, and 35% contain a note.
Based on availability, we focused primarily on the
description, though there are cases where the note
is a more explicit representation of program intent.

The recipes at http://ifttt.com are represented as
HTML forms, with combo boxes, inline maps, and
other HTML UI components allowing end users
to select functions and their parameters. This is
convenient for end users, but difficult for automated
approaches. We constructed a formal grammar of
possible program structures, and from each HTML
form we extracted an abstract syntax tree (AST)
conforming to this grammar. We model this as a
context-free grammar, though this assumption is
violated in some cases. Consider the program in
Figure 1, where some of the parameters used the
action are provided by the trigger.

This data could be used in a variety of ways.
Recipes could be suggested to users based on their
activities or interests, for instance, or one could
train a natural language generation system to give
a readable description of code.

In this paper, the paired natural language descrip-
tions and abstract syntax trees serve as training data
for semantic parsing. Given a description, a system
must produce the AST for an IFTTT recipe. We
note in passing that the data was constructed in
the opposite direction: users first implemented the
recipe and then provided a description afterwards.
Ideal data for our application would instead start
with the description and construct the recipe based
on this description. Yet the data is unusually large
and diverse, making it interesting training data for
mapping natural language to code.

1The IFTTT site refers to this as “title”.

4 Program synthesis methods

We consider a number of methods to map the natu-
ral language description of a problem into its for-
mal program representation.

4.1 Program retrieval
One natural baseline is retrieval. Multiple users
could potentially have similar needs and therefore
author similar or even identical programs. Given
a novel description, we can search for the closest
description in a table of program-description pairs,
and return the associated program. We explored
several text-similarity metrics, and found that string
edit distance over the unmodified character se-
quence achieved best performance on the devel-
opment set. As the corpus of program-description
pairs becomes larger, this baseline should increase
in quality and coverage.

4.2 Machine Translation
The downside to retrieval is that it cannot general-
ize. Phrase-based SMT systems(Och et al., 1999;
Koehn et al., 2003) can be seen as an incremental
step beyond retrieval: they segment the training
data and attempt to match and assemble those seg-
ments at runtime. If the phrase length is unbounded,
retrieval is almost a special case: it could return
whole programs from the training data when the
description matches exactly. In addition, they can
find subprograms that are relevant to portions of the
input, and assemble those subprograms into whole
programs.

As a baseline, we adopt a recent approach (An-
dreas et al., 2013) that casts semantic parsing as
phrasal translation. First, the ASTs are converted
into flat sequences of code tokens using a pre-order
left-to-right traversal. The tokens are annotated
with their arity, which is sufficient to reconstruct
the tree given a well formed sequence of tokens
using a simple stack algorithm. Given this paral-
lel corpus of language and code tokens, we train
a conventional statistical machine translation sys-
tem that is similar in structure and performance to
Moses (Koehn et al., 2007). We gather the k-best
translations, retaining the first such output that can
be successfully converted into a well-formed pro-
gram according to the formal grammar. Integration
of the well-formedness constraint into decoding
would likely produce better translations, but would
require more modifications to the MT system.

Approaches to semantic parsing inspired by ma-
chine translation have proven effective when the
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(A) CHANNELS

(B) FUNCTIONS

(C) PARAMETERS

IF

ACTION

Google Drive

Add row to spreadsheet

Drivefolder path

IFTTT Android

Formatted row

{{OccurredAt}} {{FromNumber}} {{ContactName}}

Spreadsheet name

missed

TRIGGER

Android Phone Call

Any phone call missed

Archive your missed calls from Android to Google Drive

Figure 1: Example recipe with description, with nodes corresponding to (a) Channels, (b) Functions, and (c) Parameters indicated
with specific boxes. Note how some of the fields in braces, such as OccurredAt, depend on the trigger.

data is very parallel. In the IFTTT dataset, however,
the available pairs are not particularly clean. Word
alignment quality suffers, and production extrac-
tion suffers in turn. Descriptions in this corpus are
often quite telegraphic (e.g., “Instagram to Face-
book”) or express unnecessary pieces of informa-
tion, or are downright unintelligible (“ 2Mrl14”).
Approaches that rely heavily on lexicalized infor-
mation and assume a one-to-one correspondence
between source and target (at the phrase, if not the
word level) struggle in this setting.

4.3 Generation without alignment

An alternate approach is to treat the source lan-
guage as context and a general direction, rather than
a hard constraint. The target derivation can be pro-
duced primarily according to the formal grammar
while guided by features from the source language.

For each production in the formal grammar, we
can train a binary classifier intended to predict
whether that production should be present in the
derivation. This classifier uses general features of
the source sentence. Note how this allows produc-
tions to be inferred based on context: although a
description might never explicitly say that a pro-
duction is necessary, the surrounding context might
strongly imply it.

We assign probabilities to derivations by looking
at each production independently. A derivation ei-
ther uses or does not use each production. For each
production used in the derivation, we multiply by
the probability of its inclusion. Likewise for each
production not used in the derivation, we multiply
by one minus the probability of its inclusion.

Let G = (V,Σ, R, S) be the formal grammar

with non-terminals V , terminal vocabulary Σ, pro-
ductions R and start symbol S. E represents a
source sentence, and D, a formal derivation tree
for that sentence. R(D) is the set of productions
in that derivation. The score of a derivation is the
following product:

P (D|E) =
∏

r∈R(D)

P (r|E)
∏

r∈R\R(D)

P (¬r|E)

The binary classifiers are log-linear models over
features, F , of the input string: P (r|E) ∝
exp

(
θ>r F (E)

)
.

4.3.1 Training

For each production, we train a binary classifier
predicting its presence or absence. Given a train-
ing set of parallel descriptions and programs, we
create |R| binary classifier training sets, one for
each classifier. We currently use a small set of
simple features: word unigrams and bigrams, and
character trigrams.

4.3.2 Inference

When presented with a novel utterance, E, our sys-
tem must find the best code corresponding to that
utterance. We use a top-down, left-to-right gener-
ation strategy, where each search node contains a
stack of symbols yet to be expanded and a log prob-
ability. The initial node is 〈[S] , 0〉; and a node is
complete when its stack of non-terminals is empty.

Given a search node with a non-terminal as its
first symbol on the stack, we expand with any pro-
duction for that symbol, putting its yield onto the
stack and updating the node cost to include its
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derivation score:

〈[X,α] , p〉 (X → β) ∈ R
〈[β, α] , p+ logP (X → β|E)〉〉

If the first stack item is a terminal, it is scanned:

〈[a, α] , p〉 a ∈ Σ
〈[α] , p〉

Using these inference rules, we utilize a simple
greedy approach that only accounts for the produc-
tions included in the derivation. To account for the
negative

∏
r∈R\R(D) P (¬r|E) factors, we use a

beam search, and rerank the n-best final outcomes
from this search based on the probability of all pro-
ductions that are not included. Partial derivations
are grouped into beams according to the number of
productions in that derivation.

4.4 Loosely synchronous generation
The above method learns distributions over pro-
ductions given the input, but treats the sentence as
an undifferentiated bag of linguistic features. The
syntax of the source sentence is not leveraged at all,
nor is any correspondence between the language
syntax and the program structure used. Often the
pairs are not in sufficient correspondence to sug-
gest synchronous approaches, but some loose corre-
spondence to maintain at least a notion of coverage
could be helpful.

We pursue an approach similar to KRISP (Kate
and Mooney, 2006), with several differences. First,
rather than a string kernel SVM, we use a log-linear
model with character and word n-gram features. 2

Second, we allow the model to consider both span-
internal features and contextual features.

This approach explicitly models the correspon-
dence between nodes in the code side and tokens in
the language. Unlike standard MT systems, word
alignment is not used as a hard constraint. Instead,
this phrasal correspondence is induced as part of
model training.

We define a semantic derivation D of a natu-
ral language sentence E as a program AST where
each production in the AST is augmented with a
span. The substrings covered by the children of
a production must not overlap, and the substring
covered by the parent must be the concatenation
of the substrings covered by the children. Figure 2
shows a sample semantic derivation.

2We have a preference for log-linear models given their
robustness to hyperparameter settings, ease of optimization,
and flexible incorporation of features. An SVM trained with
similar features should have similar performance, though.

IF[1-6]

ACTION[1-2]

Phone call[1-2]

Call my phone[1-2]

TRIGGER[3-6]

ESPN[3-6]

New in-game update[3-6]

Chicago Cubs[5-5]

1 2 3 4 5 6
Call me if the Cubs score

Figure 2: An example training pair with its semantic deriva-
tion. Note the correspondence between formal language and
natural language denoted with indices and spans.

The core components of KRISP are string-kernel
classifiers P (r, i..j|E) denoting the probability
that a production r in the AST covers the span
of words i..j in the sentence E. Here, i < j are
positions in the sentence indicating the span of
tokens most relevant to this production. In other
words, the substring E[i..j] denotes the production
r with probability P (r, i..j|E). The probability of
a semantic derivation D is defined as follows:

P (D|E) =
∏

(r,i..j)∈D
P (r, i..j|E)

That is, we assume that each production is indepen-
dent of all others, and is conditioned only on the
string to which it is aligned. This can be seen as a
refinement of the above production classification
approach using a notion of correspondence.

Rather than using string kernels, we use logis-
tic regression classifiers with word unigram, word
bigram, and character trigram features. Unlike
KRISP, we include features from both inside and
outside the substring. Consider the production
“Phone call→ Call my phone” with span 1-2 from
Figure 2. Word unigram features indicate that “call”
and “me” are inside the span; the remaining words
are outside the span. Word bigram features indicate
that “call me” is inside the span, “me if” is on the
boundary of the span, and all remaining bigrams
are outside the span.

4.4.1 Training
These classifiers are trained in an iterative EM-
like manner (Kate and Mooney, 2006). Starting
with some initial classifiers and a training set of
NL and AST pairs, we search for the most likely
derivation. If the AST underlying this derivation
matches the gold AST, then this derivation is added
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to the set of positive instances. Otherwise, it is
added to the set of negative instances, and the best
derivation constrained to match the gold standard
AST is found and added to the positive instances.
Given this revised training data, the classifiers are
retrained. After each pass through the training data,
we evaluate the current model on the development
set. This procedure is repeated until development-
set performance begins to fall.

4.4.2 Inference
To find the most probable derivation according to
the grammar, KRISP uses a variation on Earley
parsing. This is similar to the inference method
from Section 4.3.2, but each item now additionally
maintains a position and a span. Inference proceeds
left-to-right through the source string. The natural
language may present information in a different
order than the formal language, so all permutations
of rules are considered during inference.

We found this inference procedure to be quite
slow for larger data sets, especially because wide
beams were needed to prevent search failure. To
speed up inference, we used scores from the
position-independent classifiers as completion-cost
estimates.

The completion-cost estimate for a given sym-
bol is defined recursively. Terminals have a cost of
zero. Productions have a completion cost of the log
probability of the production given the sentence,
plus the completion cost of all non-terminal sym-
bols. The completion cost for a non-terminal is
the max cost of any production rooted in that non-
terminal. Computing this cost requires traversing
all productions in the grammar for each sentence.

Given a partial hypothesis, we use exact scores
for the left-corner subtree that has been fully con-
structed, and completion estimates for all the sym-
bols and productions whose left and right spans are
not yet fully instantiated.

5 Experimental Evaluation

Next we evaluate the accuracy of these approaches.
The 114,408 recipes described in Section 3 were
first cleaned and tokenized. We kept only one
recipe per unique description, after mapping to low-
ercase and normalizing punctuation.3 Finally the
recipes were split by author, randomly assigning
each to training, development, or test, to prevent

3We found many recipes with the same description, likely
copies of some initial recipe made by different users. We
selected one representative using a deterministic heuristic.

Language Code

Recipes 77,495 77,495
Train Tokens 527,368 1,776,010

Vocabulary 58,102 140,871

Recipes 5,171 5,171
Dev Tokens 37,541 110,074

Vocabulary 7,741 14,804

Recipes 4,294 4,294
Test Tokens 28,214 94,367

Vocabulary 6,782 13,969

Table 1: Statistics of the data after cleaning and separating
into training, development, and test sets. In each case, the
number of recipes, tokens (including punctuation, etc.) and
vocabulary size are included.

overfitting to the linguistic style of a particular au-
thor. Table 1 presents summary statistics for the
resulting data.

Although certain trigger-action pairs occur much
more often than others, the recipes in this data
are quite diverse. The top 10 trigger-action pairs
account for 14% of the recipes; the top 100 account
for 37%; the top 1000 account for 72%.

5.1 Metrics
To evaluate system performance, several different
measures are employed. Ideally a system would
output exactly the correct abstract syntax tree. One
measure is to count the number of exact matches,
though almost all methods receive a score of 0.4

Alternatively, we can look at the AST as a set of
productions, computing balanced F-measure. This
is a much more forgiving measure, giving partial
credit for partially correct results, though it has the
caveat that all errors are counted equally.

Correctly assigning the trigger and action is the
most important, especially because some of the pa-
rameter values are tailored for particular users. For
example, “turn off my lights when I leave home”
requires a “home” location, which varies for each
user. Therefore, we also measure accuracy at iden-
tifying the correct trigger and action, both at the
channel and function level.

5.2 Human comparison
One remaining difficulty is that multiple programs
may be equally correct. Some descriptions are very
difficult to interpret, even for humans. Second,

4Retrieval gets an exact match 3.7% of the time, likely due
to near-duplicates from copied recipes.
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multiple channels may provide similar functional-
ity: both Phillips Hue and WeMo channels provide
the ability to turn on lights. Even a well-authored
description may not clarify which channel should
be used. Finally, many descriptions are underspec-
ified. For instance, the description “notify me if
it rains” does not specify whether the user should
receive an Android notification, an iOS notification,
an email, or an SMS. This is difficult to capture
with an automatic metric.

To address the prevalence and impact of under-
specification and ambiguity in descriptions, we
asked humans to perform a very similar task.
Human annotators on Amazon Mechanical Turk
(“turkers”) were presented with recipe descriptions
and asked to identify the correct channel and func-
tion (but not parameters). Turkers received careful
instructions and several sample description-recipe
pairs, then were asked to specify the best recipe for
each input. We requested they try their best to find
an action and a trigger even when presented with
vague or ambiguous descriptions, but they could
tag inputs as ‘unintelligible’ if they were unable to
make an educated guess. Turkers created recipes
only for English descriptions, applying the label
’non-English’ otherwise. Five recipes were gath-
ered for each description. The resulting recipes are
not exactly gold, as they have limited training at the
task. However, we imposed stringent qualification
requirements to control the annotation quality.5

Our workers were in fair agreement with one an-
other and the gold standard, producing high quality
annotation at wages calibrated to local minimum
wage. We measure turker agreement with Krippen-
dorff’s α (Krippendorff, 1980), which is a statis-
tical measure of agreement between any number
of coders. Unlike Cohen’s κ (Cohen, 1960), the α
statistic does not require that coders be the same for
each unit of analysis. This property is particularly
desirable in our case, since turkers generally differ
across HITs. A value of α = 1 indicates perfect
agreement, while α ≤ 0 suggests the absence of
agreement or systematic disagreement. Agreement
measures on the Mechanical Turk data are shown
in Table 2. This shows encouraging levels of agree-
ment for both the trigger and the action, especially
considering the large number of categories. Krip-
pendorff (1980) advocates a 0.67 cutoff to allow

5Turkers must have 95% HIT approval rating and be native
speakers of English (As an approximation of the latter, we
required Turkers be from the U.S.). Manual inspection of an-
notation on a control set drawn from the training data ensured
there was no apparent spam.

Trigger Action
C C+F C C+F

# of categories 128 552 99 229

all .592 .492 .596 .532
Intelligible English .687 .528 .731 .627

Table 2: Annotator agreement as measured by Krippendorff’s
α coefficient (Krippendorff, 1980). Agreement is measured
on either channel (C) or channel and function (C+F), and
on either the full test set (4294 recipes) or its English and
intelligible subset (2262 recipes).

“tentative conclusion” of agreement, and turkers are
relatively close to that level for both trigger and
action channels. However, it is important to note
that the coding scheme used by turkers is not mutu-
ally exclusive, as several triggers and actions (e.g.,
“SMS” vs. “Android SMS” actions) accomplish
similar effects. Thus, our levels of agreement are
likely to be greater than suggested by measures in
the table. Finally, we also measured agreement on
the English and intelligible subset of the data, as we
found that confusion between the two labels “non-
English” and “unintelligible” was relatively high.
As shown in the table, this substantially increased
levels of agreement, up to the point where α for
both trigger and action channels are above the 0.67
cutoff drawing tentative conclusion of agreement.

5.3 Systems and baselines

The retrieval method searches for the closest de-
scription in the training data based on character
string-edit-distance and returns the recipe for that
training program. The phrasal method uses phrase-
based machine translation to generate candidate
outputs, searching the resulting n-best candidates
for the first well-formed recipe. After exploring
multiple word alignment approaches, we found
that an unsupervised feature-rich method (Berg-
Kirkpatrick et al., 2010) worked best, leverag-
ing features of string similarity between the de-
scription and the code. We ran MERT on the de-
velopment data to tune parameters. We used a
phrasal decoder with performance similar to Moses.
The synchronous grammar method, a recreation of
WASP, uses the same word alignment as above,
but extracts a synchronous grammar rules from
the parallel data (Wong and Mooney, 2006). The
classifier approach described in Section 4.3 is in-
dependent of word alignment. Finally, the posclass
approach from Section 4.4 derives its own deriva-
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tion structure from the data.
The human annotations are used to establish the

mturk human-performance baseline by taking the
majority selection of the trigger and action over
5 HITs for each description and comparing the
result to the gold standard. The oracleturk human-
performance baseline shows how often at least one
of the turkers agreed with the gold standard.

In addition, we evaluated all systems on a sub-
set of the test data where at least three human-
generated recipes agreed with the gold standard.
This subset represents those programs that are
easily reproducible by human workers. A good
method should strive to achieve 100% accuracy
on this set, and we should perhaps not be overly
concerned about the remaining examples where
humans disagree about the correct interpretation.

5.4 Results and discussion

Table 3 summarizes the main evaluation results.
Most of the measures are in concordance.

Interestingly, retrieval outperforms the phrasal
MT baseline. With a sufficiently long phrase limit,
phrasal MT approaches retrieval, but with a few
crucial differences. First, phrasal requires an exact
match of some substring of the input to some sub-
string of the training data, where retrieval can skip
over words. Second, the phrases are heavily depen-
dent on word alignment; we find the word align-
ment techniques struggle with the noisy IFTTT
descriptions. Sync performs similarly to phrasal.
The underspecified descriptions challenge assump-
tions in synchronous grammars: much of the target
structure is implied rather than stated.

In contrast, the classification method performs
quite well. Some productions may be very likely
given a prior alone, or may be inferred given other
productions and the need for a well-formed deriva-
tion. Augmenting this information with positional
information as in posclass can help with the attri-
bution problem. Consider the input “Download
Facebook Photos you’re tagged in to Dropbox”:
we would like the token “Facebook” to invoke only
the trigger, not the action. We believe further gains
could come from better modeling of the correspon-
dence between derivation and natural language.

We find that semantic parsing systems have ac-
curacy nearly as high or even higher than turkers
in certain conditions. There are several reasons for
this. First, many of the channels overlap in func-
tionality (Gmail vs. email, or Android SMS vs.
SMS); likewise functions may be very closely re-

Channel +Func Prod F1

(a) All: 4,294 recipes

retrieval 28.2 19.3 40.8
phrasal 17.3 10.0 34.8
sync 16.2 9.5 34.9
classifier 46.3 33.0 47.3
posclass 47.4 34.5 48.0
mturk 33.4 22.6 –n/a–
oracleturk 48.8 37.8 –n/a–

(b) Omit non-English: 3,741 recipes

retrieval 28.9 20.2 41.7
phrasal 19.3 11.3 35.3
sync 18.1 10.6 35.1
classifier 48.8 35.2 48.4
posclass 50.0 36.9 49.3
mturk 38.4 26.0 –n/a–
oracleturk 56.0 43.5 –n/a–

(c) Omit non-English & unintelligible: 2,262 recipes

retrieval 36.8 25.4 49.0
phrasal 27.8 16.4 39.9
sync 26.7 15.5 37.6
classifier 64.8 47.2 56.5
posclass 67.2 50.4 57.7
mturk 59.0 41.5 –n/a–
oracleturk 86.2 59.4 –n/a–

(d) ≥3 turkers agree with gold: 758 recipes

retrieval 43.3 32.3 56.2
phrasal 37.2 23.5 45.5
sync 36.5 24.1 42.8
classifier 79.3 66.2 65.0
posclass 81.4 71.0 66.5
mturk 100.0 100.0 –n/a–
oracleturk 100.0 100.0 –n/a–

Table 3: Evaluation results. The first column measures how
often the channels are selected correctly for both trigger and
action (e.g. Android Phone Call and Google Drive in Fig-
ure 1). The next column measures how often both the channel
and function are correctly selected for both trigger and ac-
tion (e.g. Android Phone Call::Any phone call missed and
Google Drive::Add row to spreadsheet). The last column
shows balanced F-measure against the gold tree over all pro-
ductions in the proposed derivation, from the root production
down to the lowest parameter. We show results on (a) the
full test data; (b) omitting descriptions marked as non-English
by a majority of the crowdsourced workers; (c) omitting de-
scriptions marked as either non-English or unintelligible by
the crowd; and (d) only recipes where at least three of five
workers agreed with the gold standard.

lated (Post a tweet vs. Post a tweet with an image).
All the systems with access to thousands of train-
ing pairs are at a strong advantage; they can, for
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INPUT Park in garage when snow tomorrow
(a) IFTTT Weather : Tomorrow’s forecast calls for =⇒ SMS : Send me an SMS

OUTPUT Weather : Tomorrow’s forecast calls for =⇒ SMS : Send me an SMS
INPUT Suas fotos do instagr.am salvas no dropbox

(b) IFTTT Instagram : Any new photo by you =⇒ Dropbox : Add file from URL
OUTPUT Instagram : Any new photo by you =⇒ Dropbox : Add file from URL
INPUT Foursquare check-in archive

(c) IFTTT Foursquare : Any new check-in =⇒ Evernote : Create a note
OUTPUT Foursquare : Any new check-in =⇒ Google Drive : Add row to spreadsheet
INPUT if i post something on blogger it will post it to wordpress

(d) IFTTT Blogger : Any new post =⇒WordPress : Create a post
OUTPUT Feed : New feed item =⇒ Blogger : Create a post
INPUT Endless loop!

(e) IFTTT Gmail : New email in inbox from =⇒ Gmail : Send an email
OUTPUT SMS : Send IFTTT any SMS =⇒ Philips hue : Turn on color loop

Table 4: Example output from the posclass system. For each input instance, we show the original query, the recipe originally
authored through IFTTT, and our system output. Instance (a) demonstrates a case where the correct program is produced even
though the input is rather tricky. Even the Portuguese query of (b) is correctly predicted, though keywords help here. In instance
(c), the query is underspecified, and the system predicts that archiving should be done in Google Drive rather than evernote.
Instance (d) shows how we sometimes confuse the trigger and action. Certain queries, such as (e), would require very deep
inference: the IFTTT recipe sets up an endless email loop, where our system assembles a strange interpretation based on keyword
match.

instance, more effectively break such ties by learn-
ing a prior over which channels are more likely.
Turkers, on the other hand, have neither specific
training at this job nor a background corpus and
more frequently disagree with the gold standard.
Second, there are a number of non-English and
unintelligible descriptions. Although the turkers
were asked to skip these sentences, the machine-
learning systems may still correctly predict the
channel and action, since the training set also con-
tains non-English and cryptic descriptions. For
the cases where humans agree with each other and
with the gold standard, the best automated system
(posclass) does fairly well, getting 81% channel
and 71% function accuracy.

Table 4 has some sample outputs from the
posclass system, showing both examples where
the system is effective and where it struggles to
find the intended interpretation.

6 Conclusions

The primary goal of this paper is to highlight
a new application and dataset for semantic pars-
ing. Although if-this-then-that recipes have a lim-
ited structure, many potential recipes are possible.
This is a small step toward broad program synthe-
sis from natural language, but is driven by real
user data for modern hi-tech applications. To en-
courage further exploration, we are releasing the

URLs of recipes along with turker annotations at
http://research.microsoft.com/lang2code/.

The best performing results came from a loosely
synchronous approach. We believe this is a very
promising direction: most work inspired by pars-
ing or machine translation has assumed a strong
connection between the description and the opera-
ble semantic representation. In practical situations,
however, many elements of the semantic representa-
tion may only be implied by the description, rather
than explicitly stated. As we tackle domains with
greater complexity, identifying implied but neces-
sary information will be even more important.

Underspecified descriptions open up new inter-
face possibilities as well. This paper considered
only single-turn interactions, where the user de-
scribes a request and the system responds with an
interpretation. An important next step would be
to engage the user in an interactive dialogue to
confirm and refine the user’s intent and develop a
fully-functional correct program.
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Abstract 

We develop an approach for generating 

deep (i.e, high-level) comprehension 

questions from novel text that bypasses 

the myriad challenges of creating a full se-

mantic representation. We do this by de-

composing the task into an ontology-

crowd-relevance workflow, consisting of 

first representing the original text in a 

low-dimensional ontology, then crowd-

sourcing candidate question templates 

aligned with that space, and finally rank-

ing potentially relevant templates for a 

novel region of text. If ontological labels 

are not available, we infer them from the 

text. We demonstrate the effectiveness of 

this method on a corpus of articles from 

Wikipedia alongside human judgments, 

and find that we can generate relevant 

deep questions with a precision of over 

85% while maintaining a recall of 70%. 

1 Introduction 

Questions are a fundamental tool for teachers in 

assessing the understanding of their students. 

Writing good questions, though, is hard work, and 

harder still when the questions need to be deep 

(i.e., high-level) rather than factoid-oriented. 

These deep questions are the sort of open-ended 

queries that require deep thinking and recall rather 

than a rote response, that span significant amounts 

of content rather than a single sentence. Unsur-

prisingly, it is these deep questions that have the 

greatest educational value (Anderson, 1975; An-

dre, 1979; McMillan, 2001). They are thus a key 

assessment mechanism for a spectrum of online 

educational options, from MOOCs to interactive 

tutoring systems. As such, the problem of auto-

matic question generation has long been of inter-

est to the online education community (Mitkov 

and Ha, 2003; Schwartz, 2004), both as a means 

of providing self-assessments directly to students 

and as a tool to help teachers with question author-

ing. Much work to date has focused on questions 

based on a single sentence of the text (Becker et 

al., 2012; Lindberg et al., 2013; Mazidi and Niel-

sen, 2014), and the ideal of creating deep, concep-

tual questions has remained elusive. In this work, 

we hope to take a significant step towards this 

challenge by approaching the problem in a some-

what unconventional way. 

 

Figure 1: Overview of our ontology-crowd-rele-

vance approach. 

While one might expect the natural path to gener-

ating deep questions to involve first extracting a 

semantic representation of the entire text, the 

state-of-the-art in this area is at too early a stage 

to achieve such a representation effectively. Ra-

ther we take a step back from full understanding, 

and instead propose an ontology-crowd-relevance 

workflow for generating high-level questions, 

shown in Figure 1. This involves 1) decomposing 

a text into a meaningful, intermediate, low-dimen-

sional ontology, 2) soliciting high-level templates 

from the crowd, aligned with this intermediate 

representation, and 3) for a target text segment, re-

trieving a subset of the collected templates based 
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on its ontological categories and then ranking 

these questions by estimating the relevance of 

each to the text at hand. 

In this work, we apply the proposed workflow 

to the Wikipedia corpus. For our ontology, we use 

a Cartesian product of article categories (derived 

from Freebase) and article section names (directly 

from Wikipedia) as the intermediate representa-

tion (e.g. category: Person, section: Early life), 

henceforth referred to as category-section pairs. 

We use these pairs to prompt our crowd workers 

to create relevant templates; for instance, (Person, 

Early Life) might lead a worker to generate the 

question “Who were the key influences on <Per-

son> in their childhood?”, a good example of the 

sort of deep question that can’t be answered from 

a single sentence in the article. We also develop 

classifiers for inferring these categories when ex-

plicit or matching labels are not available. Given 

a database of such category-section-specific ques-

tion templates, we then train a binary classifier 

that can estimate the relevance of each to a new 

document. We hypothesize that the resulting 

ranked questions will be both high-level and rele-

vant, without requiring full machine understand-

ing of the text – in other words, deep questions 

without deep understanding. 

In the sections that follow, we detail the various 

components of this method and describe the ex-

periments showing their efficacy at generating 

high-quality questions. We begin by motivating 

our choice of ontology and demonstrating its cov-

erage properties (Section 3). We then describe our 

crowdsourcing methodology for soliciting ques-

tions and question-article relevance judgments 

(Section 4), and outline our model for determining 

the relevance of these questions to new text (Sec-

tion 5). After this we describe the two datasets that 

we construct for the evaluation of our approach 

and present quantitative results (Section 6) as well 

as examples of our output and an error analysis 

(Section 7) before concluding (Section 8). 

2 Related Work 

We consider three aspects of past research in au-

tomatic question generation: work that focuses on 

the grammaticality of natural language question 

generation, work that focuses on the semantic 

quality of generated questions, i.e. the “what to 

ask about” rather than “how to ask it,” and finally 

work that builds a semantic representation of text 

in order to generate higher-level questions. 

Approaches focusing on the grammaticality of 

question generation date back to the AU-

TOQUEST system (Wolfe, 1976), which exam-

ined the generation of Wh-questions from single 

sentences. Later systems addressing the same goal 

include methods that use transformation rules 

(Mitkov and Ha, 2003), template-based genera-

tion (Chen et al., 2009; Curto et al., 2011) and 

overgenerate-and-rank methods (Heilman and 

Smith, 2010a).  Another approach has been to cre-

ate fill-in-the-blank questions from single sen-

tences to ensure grammaticality (Agarwal et al. 

2011, Becker et al. 2012). 

More relevant to our direction is work on the 

semantic aspect of question generation, which has 

become a more active research area in the past 

several years. Several authors (Mazidi and Niel-

sen 2014; Linberg et al. 2013) generate questions 

according to the semantic role patterns extracted 

from the source sentence. Becker et al. (2012) also 

leverage semantic role labeling within a sentence 

in a supervised setting. We hope to continue in 

this direction of semantic focus, but extend the ca-

pabilities of question generation to include open-

ended questions that go far beyond the scope of a 

single sentence. 

Other work has taken on the challenge of 

deeper questions by attempting to build a seman-

tic representation of arbitrary text. This has in-

cluded work using concept maps over keywords 

(Olney et al. 2012) and minimal recursion seman-

tics (Yao 2010) to reason over concepts in the text. 

While the work of (Olney et al. 2012) is impres-

sive in its possibilities, the range of the types of 

questions that can be generated is restricted by a 

relatively specific set of relations (e.g. Is-A, Part-

Of) captured in the ontology of the domain (biol-

ogy textbook). Mannem et al. (2010) observe as 

we have that "capturing the exact true meaning of 

a paragraph is beyond the reach of current NLP 

systems;" thus, in their system for Shared Task A 

(for paragraph-level questions (Rus et al. 2010)) 

they make use of predicate argument structures 

along with semantic role labeling. However, the 

generation of these questions is restricted to the 

first sentence of the paragraph. Though motivated 

by the same noble impulses of these authors to 

achieve higher-level questions, our hope is that we 

can bypass the challenges and constraints of se-

mantic parsing and generate deep questions via a 

more holistic approach.  

890



3 An Ontology of Categories and Sec-

tions 

The key insight of our approach is that we can lev-

erage an easily interpretable (for crowd workers), 

low-dimensional ontology for text segments in or-

der to crowdsource a set of high-level, reusable 

templates that generalize well to many docu-

ments. The choice of this representation must 

strike a balance between domain coverage and the 

crowdsourcing effort required to obtain that cov-

erage. Inasmuch as Wikipedia is deemed to have 

broad coverage of human knowledge, we can es-

timate domain coverage by measuring what frac-

tion of that corpus is covered by the proposed rep-

resentation. In our work, we have developed a cat-

egory-section ontology using annotations from 

Freebase and Wikipedia (English), and now de-

scribe its structure and coverage in detail.  

For the high-level categories, we make use of 

the Freebase “notable type” for each Wikipedia 

article. In contrast to the noisy default Wikipedia 

categories, the Freebase “notable types” provide a 

clean high-level encapsulation of the topic or en-

tity discussed in a Wikipedia article. As we wish 

to maximize coverage, we compute the histogram 

by type and take the 300 most common ones 

across Wikipedia. We further merge these into 

eight broad categories to reduce crowdsourcing 

effort: Person, Location, Event, Organization, 

Art, Science, Health, and Religion. These eight 

categories cover 78% of Wikipedia articles (see 

Figure 2a); the mapping between Freebase types 

and our categories will be made available as part 

of our corpus (see Section 8). 

 To achieve greater specificity of questions 

within the articles, we make use of Wikipedia sec-

tions, which offer a high-level segmentation of the 

content. The Cartesian product of our categories 

from above and the most common Wikipedia sec-

tion titles (per category) then yield an interpreta-

ble, low-dimensional representation of the article. 

For instance, the set of category-section pairs for 

an article about Albert Einstein contains (Person, 

Early_life), (Person, Awards), and (Person, Polit-

ical_views) as well as several others.  

For each category, the section titles that occur 

most frequently represent central themes in arti-

cles belonging to that category. We therefore hy-

pothesize that question templates authored for 

such high-coverage titles are likely to generalize 

to a large number of articles in that category. Ta-

ble 1 below shows the four most frequent sections 

for each of our eight categories.  
 

Person Location Organiza-

tion 

Art 

Early life History History Plot 

Career Geography Geography Reception 

Pers. life Economy Academics History 

Biography Demo-

graphics 

Demo-

graphics 

Production 

 

Science Event Health Religion 

Descript. Background Treatment Etymology 

Taxonomy Aftermath Diagnosis Icongraphy 

History Battle Causes Worship 

Distributn. Prelude History Mythology 

 

Table 1: Most frequent section titles by category. 

As the crowdsourcing effort is directly propor-

tional to the size of the ontology, our goal is to 

select the smallest set of pairs that will provide 

sufficient coverage. As with categories, the cut-

 

Figure 2: Coverage properties of our category-section representation: (a) fraction of  Wikipedia 

articles covered by the top j most common Freebase types, grouped by our eight higher-level 

categories. (b) Average fraction of sections covered per document if only the top k most frequent 

sections are used; each line represents one of our eight categories. 
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off for the number of sections used for each cate-

gory is guided by the trade-off between coverage 

and crowdsourcing costs. Figure 2b plots the av-

erage fraction of an article covered by the top k 

sections from each category. We found that the 

top 50 sections cover 30% to 55% of the sections 

of an individual article (on average) across our 

categories. This implies that by only crowdsourc-

ing question templates for those 50 sections per 

category, we would be able to ask questions about 

a third to a half of the sections of any article.  

Of course, if we were to limit ourselves to only 

segments with these labels at runtime, we would 

completely miss many articles as well as texts out-

side of Wikipedia. To extend our reach, we also 

develop the means for category and section infer-

ence from raw text in Section 5 below, for cases 

in which ontological labels are either not available 

or are not contained within our limited set. 

4 Crowdsourcing Methodology 

We designed a two-stage crowdsourcing pipeline 

to 1) collect templates targeted to a set of cate-

gory-section pairs and 2) obtain binary relevance 

judgments for the generated templates in relation 

to a set of article segments (for Wikipedia, these 

are simply sections) that match in category-sec-

tion labels. We recruit Mechanical Turk workers 

for both stages of the pipeline, filtering for work-

ers from the United States due to native English 

proficiency. A total of 307 unique workers partic-

ipated in the two tasks combined (78 and 229 

workers for the generation and ratings tasks re-

spectively). 
 

 

Figure 3: Prompt for the generation task for the 

category-section pair (Person, Legacy). 

4.1 Question generation task 

Following the coverage analysis above, we select 

the 50 most frequent sections for the top two cat-

egories, Person and Location, yielding 100 cate-

gory-section pairs. As these two categories cover 

nearly 50% of all articles on Wikipedia, we be-

lieve that they suffice in demonstrating the effec-

tiveness of the proposed methodology. For each 

category-section pair, we instructed 10 (median) 

workers to generate a question regarding a hypo-

thetical entity belonging to the target with the 

prompt in Figure 3. Additional instructions and an 

interactive tutorial were pre-administered, guid-

ing the workers to formulate appropriately deep 

questions, i.e. questions that are likely to general-

ize to many articles, while avoiding factoid ques-

tions like “When was X born?”  

In total, 995 question templates were added to 

our question database using this methodology 

(only 0.5% of all generated questions were exact 

repeats of existing questions). We confirm in sec-

tion 4.2 that workers were able to formulate deep, 

interesting and relevant questions whose answers 

spanned more than a single sentence and that gen-

eralized to many articles using this prompt.  

In earlier pilots, we tried an alternative prompt 

which also presented the text of a specific article 

segment. In Figure 4, we show the average scope 

and relevance of questions generated by workers 

under both prompt conditions. As the figure 

demonstrates, the alternative prompt showing 

specific article text resulted in questions that gen-

eralized less well (workers’ questions were found 

to be relevant to fewer articles), likely because the 

details in the text distracted the workers from 

thinking broadly about the domain. These ques-

tions also had a smaller scope on average, i.e., an-

swers to these questions were contained in shorter 

spans in the text. The differences in scope and rel-

evance between the two prompt designs were both 

significant (p-values: 0.006 and 4.5e-11 respec-

tively, via two-sided Welch’s t-tests). 

 

 

Figure 4: Average relevance and scope of 

worker-generated questions versus how the 

workers were prompted. 
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4.2 Question relevance rating task 

For our 100 category-section pairs, 4 (median) ar-

ticle segments within reasonable length for a Me-

chanical Turk task (200-1000 tokens) were drawn 

at random from the Wikipedia corpus; this re-

sulted in a set of 513 article segments. Each 

worker was then presented with one of these seg-

ments alongside at most 10 questions from the 

question template database matching in category-

section; templates were converted into questions 

by filling in the article-specific entity extracted 

from the title. Workers were requested to rate each 

question along three dimensions: relevance, qual-

ity, and scope, as detailed below. Quality and 

scope ratings were only requested when the 

worker determined the question to be relevant.  
 

 Relevance: 1 (not relevant) – 4 (relevant) 

  Does the article answer the question? 

 Quality: 1 (poor) – 4 (excellent) 

  Is this question well-written? 

 Scope: 1 (single-sentence) – 4 (multi-sen-

tence/paragraph) 

  How long is the answer to this question? 
 

A median of 3 raters provided an independent 

judgment for each question-article pair. The mean 

relevance, quality and scope ratings across the 995 

questions were 2.3 (sd=0.83), 3.5 (sd=.65) and 2.6 

(sd=1.0) respectively. Note that the sample sizes 

for scope and quality were smaller, 774 and 778 

respectively, as quality/scope judgments were not 

gathered for questions deemed irrelevant. We note 

that 80% of the relevant crowd-sourced questions 

had a median scope rating larger than 1 sentence, 

and 23% had a median scope rating of 4, defined 

as “the answer to this question can be found in 

many sentences and paragraphs,” corresponding 

to the maximum attainable scope rating. Note that 

while in this work, we have only used the scope 

judgments to report summary statistics about the 

generated questions, in future work these ratings 

could be used to build a scope classifier to filter 

out questions targeting short spans of text. 

As described in Section 5.2, the relevance judg-

ments are converted to binary relevance ratings 

for training the relevance classifier (we consider 

relevance ratings {1, 2} as “not relevant” and {3, 

4} as “relevant”). In terms of agreement between 

raters for these binary relevance labels, we ob-

tained a Fleiss’ Kappa of 0.33, indicating fair 

agreement.  

5 Model 

There are two key models to our system: the first 

is for category and section inference of a novel ar-

ticle segment, which allows us to infer the keys to 

our question database when explicit labels are not 

available. The second is for question relevance 

prediction, which lets us decide which question 

templates from the database’s store for that cate-

gory-section actually apply to the text at hand.  

5.1 Category/section inference 

Both category and section inference were cast as 

standard text-classification problems. Category 

inference is performed on the whole article, while 

section inference is performed on the individual 

article segments (i.e., sections). We trained indi-

vidual logistic regression classifiers for the eight 

categories and the 50 top section types for each 

one (a total of 400) using the default L2 regulari-

zation parameter in LIBLINEAR (Fan, 2008). For 

section inference, a total of 736,947 article seg-

ments were sampled from Wikipedia (June 2014 

snapshot), each belonging to one of the 400 sec-

tion types and within the same length bounds from 

Section 4.2 (200-1000 tokens). For category infer-

ence, we sampled a total of 86,348 articles with at 

least 10 sentences and belonging to one of our 

eight categories.  

In both cases, a binary dataset was constructed 

for a one-against-all evaluation, where the nega-

tive instances were sampled randomly from the 

negative categories or sections (there was an av-

erage 17% and 32% positive skew in the section 

and category datasets, respectively). Basic tf-idf 

features (using a vocabulary of 200,000 after 

eliminating stopwords) were used in both text 

classification tasks. Applying the category/section 

inference to held-out portions of the dataset (30% 

for each category/section) resulted in balanced ac-

curacies of 83%/95% respectively, which gave us 

confidence in the inference. Keep in mind that this 

is not a strict bound on our question generation 

performance, since the inferred category/section, 

while not matching the label perfectly, could still 

be sufficiently close to produce relevant questions 

(for instance, we could misrecognize “Childhood” 

as “Early Life”). We explore the ramifications of 

this in our end-to-end experiments in Section 6. 

5.2 Relevance Classification 

We also cast the problem of question/article rele-

vance prediction as one of binary classification, 

where we map a question-article pair to a rele-

vance score; as such our features had to combine 

893



aspects of both the question and the article. Our 

core approach was to use a vector of the compo-

nent-wise Euclidean distances between individual 

features of the question and article segment, i.e., 

the ith feature vector component 𝑓𝑖  is given by 

𝑓𝑖 = (𝑞𝑖 − 𝑎𝑖)
2, where 𝑞𝑖  and 𝑎𝑖  are the compo-

nents of the question and article feature vectors. 

For the feature representation, we utilized a con-

catenation of continuous embedding features: 300 

features from a Word2Vec embedding (Mikolov, 

2013) and 200,000 tfidf features (as with cate-

gory/section classification above).  

As question templates are typically short, 

though, we found that this representation alone 

performed poorly. As a result, we augmented the 

vector by concatenating additional distance fea-

tures between the target article segment and one 

specific instance of an entire article for which the 

question applied. This augmenting article was se-

lected at random from all those for which the tem-

plate was judged to be relevant. The resulting fea-

ture vector was thus doubled in length, where the 

first 𝑘 distances were between the question tem-

plate and the target segment, and the next 𝑘 were 

between the augmenting article and the target seg-

ment. Note that the augmenting article segments 

were removed from the training/test sets. 

To train this classifier, we assumed that we 

would be able to acquire at least 𝑛 positive rele-

vance labels for each question template, i.e., 𝑛 ar-

ticle segments judged to be relevant to each tem-

plate for inclusion in the training set. We explore 

the effect of increasing values of 𝑛, from 0 (where 

no relevance labels are available) to 3 (referred to 

as conditions T0..T3 in Figure 5). We then trained 

and evaluated the relevance classifier, a single lo-

gistic regression model using LIBLINEAR with 

default L2 regularization, using 10-fold cross-val-

idation on DATASET I (see Section 6).  

Figure 5 depicts a series of ROC curves sum-

marizing the performance of our template rele-

vance classifier on unseen article segments. As 

expected, we see increasing performance with in-

creasing 𝑛. However, the benefit drops off after 3 

instances (i.e., T4 is only marginally better than 

T3). While the character of the curves is modest, 

keep in mind we are already filtering questions by 

retrieving them from the database for the inferred 

category-section (which by itself gives us a preci-

sion of .74 – see green bars in Figure 6); this ROC 

represents the “lift” achieved by further filtering 

the questions with our relevance classifier, result-

ing in far higher precision (.85 to .95 – see blue 

bars in Figure 6).  

 

Figure 5: ROC curves for the task of question-to-

article relevance prediction. Tn means that n pos-

itively labeled article segments were available 

for each question template during training. 

6 Experiments and Results 

In this section, we describe the datasets used for 

training the relevance classifier in Section 5.2 

(DATASET I) as well as for end-to-end perfor-

mance on unlabeled text segments (DATASET II). 

We then evaluate the performance on this second 

dataset under three settings: first, when the cate-

gory and section are known, second, when those 

labels are unavailable, and third, when neither the 

labels nor the relevance classifier are available. 

6.1 DATASET I: for the Relevance Classifier 

The first dataset (DATASET I) was intended for 

training and evaluating the relevance classifier, 

and for this we assumed the category and section 

labels were known. As such, judgments were col-

lected only for questions templates authored for a 

given article’s actual category and section labels. 

After filtering out annotations from unreliable 

workers (based on their pre-test results) as well as 

those with inter-annotator agreement below 60%, 

we were left with a set of 995 rated questions, 

spanning across two categories (Person and Loca-

tion) and 50 sections per category (100 category-

section pairs total). This corresponded to a total of 

4439 relevance tuples (label, question, article) 

where label is a binary relevance rating aggre-

gated via majority vote across multiple raters. The 

relevance labels were skewed towards the positive 

(relevant) class with 63% relevant instances. 

This is of course a mostly unrealistic data set-

ting for applications of question generation 

(known category and section labels), but greatly 
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useful in developing and evaluating the relevance 

classifier; we thus used this dataset only for that 

purpose (see Section 5.2 and Figure 5). 

6.2 DATASET II: for End-to-End Evaluation 

For an end-to-end evaluation we need to examine 

situations where the category and section labels 

are not available and we must rely on inference 

instead. As this is the more typical use case for our 

method, it is critical to understand how the perfor-

mance will be affected. For DATASET II, then, we 

first sampled articles from the Wikipedia corpus 

at random (satisfying the constraints described in 

Section 3) and then performed category and sec-

tion inference on the article segments. The cate-

gory c with the highest posterior probability was 

chosen as the inferred category, while all section 

types 𝑠𝑖 with a posterior probability greater than 

0.6 were considered as sources for templates. 

Only articles whose inferred category was Person 

or Location were considered, but given the noise 

in inference there was no guarantee that the true 

labels were of these categories. We continued this 

process until we retrieved a total of 12 articles. For 

each article segment in these 12, we drew a ran-

dom subset of at most 20 question templates from 

our database matching the inferred category and 

section(s), then ordered them by their estimated 

relevance for presentation to judges.  

We then solicited an additional 62 Mechanical 

Turk workers to a rating task set up according to 

the same protocol as for DATASET I. After aggre-

gation and filtering in the same way, the second 

dataset contained a total 256 (label, question, ar-

ticle) relevance tuples, skewed towards the posi-

tive class with 72% relevant instances. 

6.3 Information Retrieval–based Evaluation 

As our end-to-end task is framed as the retrieval 

of a set of relevant questions for a given article 

segment, we can measure performance in terms of 

an information retrieval-based metric. Consider a 

user who supplies an article segment (the “query” 

in IR terms) for which she wants to generate a 

quiz: the system then presents a ranked list of re-

trieved questions, ordered according to their esti-

mated relevance to the article. As she makes her 

way down this ranked list of questions, adding a 

question at a time to the quiz (set Q), the behavior 

of the precision and recall (with respect to rele-

vance to the article segment) of the questions in 

Q, summarizes the performance of the retrieval 

system (i.e. the Precision-Recall (PR) curve 

(Manning, 2008)). We summarize the perfor-

mance of our system by averaging the individual 

article segments’ PR curves (linearly interpolated) 

from DATASET II, and present the average preci-

sion over bins of recall values in Figure 6. We 

consider the following experimental conditions: 
 

 Known category/section, using relevance 

classifier (red): This is the case in which the 

actual category and section labels of the query 

article are known, and only the questions that 

match exactly in category and section are con-

sidered for relevance classification (i.e. added 

to Q if found relevant by the classifier). Recall 

is computed with respect to the total number 

of relevant questions in DATASET II, including 

those corresponding to sections different from 

the section label of the article. 

 Inferred category/section, using relevance 

classifier (blue): This is the expected use 

case, where the category/section labels are not 

known. Questions matching in category and 

section(s) to the inferred category and section 

of each article are considered and ranked in Q 

by their score from the relevance classifier. 

Recall is computed with respect to the total 

number of relevant questions in DATASET II. 

 Inferred category/section, ignoring rele-

vance classifier (green): This is a baseline 

where we only use category/section inference 

and then retrieve questions from the database 

without filtering: all questions that match in 

inferred category and section(s) of the article 

are added to Q in a random ranking order, 

without performing relevance classification.  
 

As we examine Figure 6, it is important to point 

out a subtlety in our choice to calculate recall of 

the known category/section condition (red bars) 

with respect to the set of all relevant questions, 

including those that are matched to sections dif-

ferent from the original (labeled) sections. While 

this condition by construction does not have ac-

cess to questions of any other section, the result-

ing limitation in recall underlines the importance 

of performing section inference: without infer-

ence, we achieve a recall of no greater than 0.4.  

As we had hypothesized, while the labels of the 

sections play an instrumental role in instructing 

the crowd to generate relevant questions, the re-

sulting questions often tend to be relevant to con-

tent found under different but semantically related 

sections as well. Leveraging the available ques-

tions of these related sections (by performing in-

ference) boosts recall at the expense of only a 

small degree of precision (blue bars). If we forgo 

relevance classification entirely, we get a constant 

precision of 0.74 (green bars) as mentioned in 
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Section 5.2; it is clear that the relevance classifier 

results in a significant advantage. 

While there is a slight drop in precision when 

using inference, this is at least partly due to the 

constraints that were imposed during data-collec-

tion and relevance classifier training, i.e., all pairs 

of articles and questions belonged to the same cat-

egory and section. While this constraint made the 

crowdsourcing methodology proposed in this 

work tractable, it also prevented the inclusion of 

training examples for sections that could poten-

tially be inferred at test time. One possible ap-

proach to remedy this would be sample from arti-

cle segments that are similar in text (in terms of 

our distance metric) as opposed to only segments 

exactly matching in category and section. 

 

 Figure 6: Precision-recall results for the end-to-

end experiment, grouped in bins of recall ranges. 

7 Examples and Error Analysis  

In Table 2 we show a set of sample retrieved ques-

tions and the corresponding correctness of the rel-

evance classifier’s decision with respect to the 

judgment labels; examining the errors yields some 

interesting insights. Consider the false positive 

example shown in row 8, where the category cor-

rectly inferred as Location, but section title was 

inferred as Transportation instead of Services. 

This mismatch resulted in the following template 

authored for (Location, Transportation) being re-

trieved: "What geographic factors influence the 

preferred transport methods in <entity>?" To the 

relevance classifier, this particular template (con-

taining the word “transport”) appears to be rele-

vant on the surface level to the text of an article 

segment about schedules (Services) at a railway 

station. However, as this template never appeared 

to judges in the context of a Services segment – a 

section that differs considerably in theme from the 

inferred section (Transportation) – the relevance 

classifier unsurprisingly makes the wrong call. 
 

True 

section 

Inferred 

section 

Re-

sult 

Generated  

Question 

Hon-

ours 

Later 

Life 
TP 

What accomplishments 

characterized the later ca-

reer of Colin Cowdrey? 

Acting 

Career 

Televi-

sion 
TP 

How did Corbin Bern-

stein’s television career 

evolve over time? 

Route 

De-

scrip-

tion 

Geogra-

phy 
TP 

What are some unique ge-

ographic features of 

Puerto Rico Highway 10? 

Athlet-

ics 
Athletics TN 

How much significance do 

people of DeMartha Cath-

olic High School place on 

athletics? 

Route 

De-

scrip-

tion 

Geogra-

phy 
TN 

How does the geography 

of Puerto Rico Highway 

10 impact its resources? 

Work 
Recep-

tion 
FN 

What type of reaction did 

Thornton Dial receive? 

Acting 

Career 

Later  

Career 
FP 

What were the most im-

portant events in the later 

career of Corbin Berstein? 

Ser-

vices 

Transpor-

tation 
FP 

What geographic factors 

influence the preferred 

transport methods in Wey-

mouth Railway Station? 

Later 

Career 
Legacy FP 

How has Freddy Mitch-

ell’s legacy shaped current 

events? 

Table 2: Examples of retrieved questions. TP, TN, 

FP, FN stand for true/false positive/negative with 

respect to the relevance classification. 

In considering additional sources of relevance 

classification errors, recall that we employ a sin-

gle relevant article segment for the purpose of 

augmenting a template’s feature representation. In 

the case of the false negative example (row 6 in 

Table 2), the sensitivity of the classifier to the par-

ticular augmenting article used is apparent. Upon 

inspecting the target article segment (article: 

Thornton Dial, section: Work), and the augment-

ing article segment (article: Syed Masood, section: 

Reception), it’s clear that the inferred section Re-

ception is a reasonable title for the Work section 

of the article on Thornton Dial, making the ques-

tion “What type of reaction did Thornton Dial re-

ceive?” a relevant question to the target article (as 

reflected in the human judgment). However, alt-

hough both segments generally talk about “recep-

tion,” the language across the two segments is dis-

tinct: the critical reception of Thornton Dial the 

visual artist is described in a different way from 

the reception of Syed Masood the actor, resulting 

in little overlap in surface text, and as a result the 

relevance classifier falsely rejects the question.  
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Reasonable substitutions for inferred sections 

can also lead to false positives, as in row 9, for the 

article Freddy Mitchell. In this case, while Legacy 

(the inferred section) is a believable substitute for 

the true label of Later Career, in this case the ar-

ticle segment did not discuss his legacy. However, 

there was a good match between the augmenting 

article for this template and the section. We hy-

pothesize that in both this and the previous exam-

ples a broader sample of augmenting article seg-

ments for each category/section is likely to be ef-

fective at mitigating these types of errors.  

8 Conclusion 

We have presented an approach for generating rel-

evant, deep questions that are broad in scope and 

apply to a wide range of documents, all without 

constructing a detailed semantic representation of 

the text. Our three primary contributions are 1) 

our insight that a low-dimensional ontological 

document representation can be used as an inter-

mediary for retrieving and generalizing high-level 

question templates to new documents, 2) an effi-

cient crowdsourcing scheme for soliciting such 

templates and relevance judgments (of templates 

to article) from the crowd in order to train a rele-

vance classification model, and 3) using cate-

gory/section inference and relevance prediction to 

retrieve and rank relevant deep questions for new 

text segments. Note that the approach and work-

flow presented here constitute a general frame-

work that could potentially be useful in other lan-

guage generation applications. For example, a 

similar setup could be used for high-level summa-

rization, where question templates would be re-

placed with “summary snippets.”  

Finally, to encourage the community to further 

explore this approach as well as to compare it with 

others, we are releasing all of our data (category 

mappings, generated templates, and relevance 

judgments) at http://research.microsoft.com/~su-

mitb/questiongeneration . 
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Abstract

This paper presents the NL2KR platform
to build systems that can translate text to
different formal languages. It is freely-
available1, customizable, and comes with
an Interactive GUI support that is use-
ful in the development of a translation
system. Our key contribution is a user-
friendly system based on an interactive
multistage learning algorithm. This effec-
tive algorithm employs Inverse-λ, Gener-
alization and user provided dictionary to
learn new meanings of words from sen-
tences and their representations. Using
the learned meanings, and the Generaliza-
tion approach, it is able to translate new
sentences. NL2KR is evaluated on two
standard corpora, Jobs and GeoQuery and
it exhibits state-of-the-art performance on
both of them.

1 Introduction and Related Work

For natural language interaction with systems one
needs to translate natural language text to the input
language of that system. Since different systems
(such as a robot or database system) may have dif-
ferent input language, we need a way to translate
natural language to different formal languages as
needed by the application. We have developed a
user friendly platform, NL2KR, that takes exam-
ples of sentences and their translations (in a de-
sired target language that varies with the applica-
tion), and some bootstrap information (an initial
lexicon), and constructs a translation system from
text to that desired target language.

1http://nl2kr.engineering.asu.edu/

Our approach to translate natural language text
to formal representation is inspired by Montague’s
work (Montague, 1974) where the meanings of
words and phrases are expressed as λ-calculus ex-
pressions and the meaning of a sentence is built
from semantics of constituent words through ap-
propriate λ-calculus (Church, 1936) applications.
A major challenge in using this approach has been
the difficulty of coming up with the λ-calculus
representation of words.

Montague’s approach has been widely used in
(Zettlemoyer and Collins, 2005; Kwiatkowski et
al., 2010) to translate natural language to formal
languages. In ZC05 (Zettlemoyer and Collins,
2005) the learning algorithm requires the user to
provide the semantic templates for all words. A
semantic template is a λ-expression (e.g. λx.p(x)
for an arity one predicate), which describes a par-
ticular pattern of representation in that formal lan-
guage. With all these possible templates, the
learning algorithm extracts the semantic represen-
tation of the words from the formal representa-
tion of a sentence. It then associates the extracted
meanings to the words of the sentence in all possi-
ble ways and ranks the associations according to
some goodness measure. While manually com-
ing up with semantic templates for one target lan-
guage is perhaps reasonable, manually doing it for
different target languages corresponding to differ-
ent applications may not be a good idea as manual
creation of semantic templates requires deep un-
derstanding of translation to the target language.
This calls for automating this process. In UBL
(Kwiatkowski et al., 2010) this process is auto-
mated by restricting the choices of formal rep-
resentation and learning the meanings in a brute
force manner. Given, a sentence S and its rep-
resentation M in the restricted formal language,
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it breaks the sentence into two smaller substrings
S1, S2 and uses higher-order unification to com-
pute two λ-termsM1,M2 which combines to pro-
duce M . It then recursively learns the meanings
of the words, from the sub-instance < S1,M1 >
and < S2,M2 >. Since, there are many ways
to split the input sentence S and the choice of
M1,M2 can be numerous, it needs to consider all
possible splittings and their combinations; which
produces many spurious meanings. Most impor-
tantly, their higher-order unification algorithm im-
poses various restrictions (such as limited num-
ber of conjunctions in a sentence, limited forms of
functional application) on the meaning representa-
tion language which severely limits its applicabil-
ity to new applications. Another common draw-
back of these two algorithms is that they both suf-
fer when the test sentence contains words that are
not part of the training corpus.

Our platform NL2KR uses a different auto-
mated approach based on Inverse-λ (section 2.1)
and Generalization (section 2.2) which does not
impose such restrictions enforced by their higher-
order unification algorithm. Also, Generaliza-
tion algorithm along with Combinatory Categor-
ical Grammar (Steedman, 2000) parser, allows
NL2KR to go beyond the training dictionary and
translate sentences which contain previously un-
seen words. The main aspect of our approach is as
follows: given a sentence, its semantic representa-
tion and an initial dictionary containing the mean-
ing of some words, NL2KR first obtains several
derivation of the input sentence in Combinatory
Categorical Grammar (CCG). Each CCG deriva-
tion tree describes the rules of functional appli-
cation through which constituents combine with
each other. With the user provided initial dictio-
nary, NL2KR then traverses the tree in a bottom-
up fashion to compute the semantic expressions
of intermediate nodes. It then traverses the aug-
mented tree in a top-down manner to learn the
meaning of missing words using Inverse-λ (sec-
tion 2.1). If Inverse-λ is not sufficient to learn the
meaning of all unknown words, it employs Gen-
eralization (section 2.2) to guess the meanings of
unknown words with the meaning of known sim-
ilar words. It then restarts the learning process
with the updated knowledge. The learning pro-
cess stops if it learns the meanings of all words or
fails to learn any new meaning in an iteration. In
the latter case, it shows the augmented tree to the

user. The user can then provide meanings of some
unknown words and resumes the learning process.

Another distinguishing feature of NL2KR is its
user-friendly interface that helps users in creating
their own translation system. The closest system
to NL2KR is the UW Semantic Parsing Frame-
work (UW SPF) (Artzi and Zettlemoyer, 2013)
which incorporates the algorithms in (Zettlemoyer
and Collins, 2005; Kwiatkowski et al., 2010) .
However, to use UW SPF for the development of
a new system, the user needs to learn their coding
guidelines and needs to write new code in their
system. NL2KR does not require the users to
write new code and guides the development pro-
cess with its rich user interface.

We have evaluated NL2KR on two standard
datasets: GeoQuery (Tang and Mooney, 2001) and
Jobs (Tang and Mooney, 2001). GeoQuery is a
database of geographical questions and Jobs con-
tains sentences with job related query. Experi-
ments demonstrate that NL2KR can exhibit state-
of-the-art performance with fairly small initial dic-
tionary. The rest of the paper is organized as fol-
lows: we first present the algorithms and archi-
tecture of the NL2KR platform in section 2; we
discuss about the experiments in section 3; and fi-
nally, we conclude in section 4.

2 Algorithms and Architecture

The NL2KR architecture (Figure 1) has two sub-
parts which depend on each other (1) NL2KR-
L for learning and (2) NL2KR-T for translation.
The NL2KR-L sub-part takes the following as in-
put: (1) a set of training sentences and their tar-
get formal representations, and (2) an initial lexi-
con or dictionary consisting of some words, their
CCG categories, and their meanings in terms of λ-
calculus expressions. It then constructs the CCG
parse trees and uses them for learning of word
meanings.

Learning of word meanings is done by using
Inverse-λ and Generalization (Baral et al., 2012;
Baral et al., 2011) and ambiguity is addressed
by a Parameter Learning module that learns the
weights of the meanings. The learned meanings
update the lexicon. The translation sub-part uses
this updated lexicon to get the meaning of all the
words in a new sentence, and combines them to get
the meaning of the new sentence. Details of each
module will be presented in the following subsec-
tions.
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Figure 1: Architecture of NL2KR

The NL2KR platform provides a GUI (Figure 2)
with six features: λ-application, Inverse-λ, Gen-
eralization, CCG-Parser, NL2KR-L and NL2KR-
T. The fourth feature is a stand-alone CCG parser
and the first four features can help on user with
constructing the initial lexicon. The user can then
use NL2KR-L to update the lexicon using train-
ing data and the NL2KR-T button then works as a
translation system.

2.1 Inverse-λ
Inverse-λ plays a key role in the learning pro-
cess. Formally, given two λ-expressions H and
G with H = F@G or H = G@F , the
Inverse-λ operation computes the λ expression
F . For example, given the meaning of “is texas”
as λx2.x2@stateid(texas) and the meaning of
“texas” as stateid(texas), with the additional
information that “is” acts as the function while
“texas” is the argument, the Inverse-λ algorithm
computes the meaning of “is” as λx3.λx2.x2@x3
(Figure 4). NL2KR implements the Inverse-λ al-
gorithm specified in (Baral et al., 2012). The
Inverse-λ module is separately accessible through
the main GUI (Figure 2).

2.2 Generalization
Generalization (Baral et al., 2012; Baral et al.,
2011) is used when Inverse-λ is not sufficient to
learn new semantic representation of words. In
contrast to Inverse-λ which learns the exact mean-
ing of a word in a particular context, General-
ization learns the meanings of a word from sim-
ilar words with existing representations. Thus,
Generalization helps NL2KR to learn meanings
of words that are not even present in the train-
ing data set. In the current implementation, two

words are considered as similar if they have the
exact same CCG category. As an example, if
we want to generalize the meaning of the word
“plays” with CCG category (S\NP )/NP ) and
the lexicon already contains an entry for “eats”
with the same CCG category, and the mean-
ing λy.λx.eats(x, y), the algorithm will ex-
tract the template λy.λx.WORD(x, y) and ap-
ply the template to plays to get the meaning
λy.λx.plays(x, y).

2.3 Combinatory Categorial Grammar
Derivation of a sentence in Combinatory Catego-
rial Grammar (CCG) determines the way the con-
stituents combine together to establish the mean-
ing of the whole. CCG is a type of phrase struc-
ture grammar and clearly describes the predicate-
argument structure of constituents.

Figure 3 shows an example output of NL2KR’s
CCG parser. In the figure, “John” and “home”
have the category [N] (means noun) and can
change to [NP] (means noun phrase). The
phrase“walk home” has the category [S\NP],
which means that it can combine with a con-
stituent with category [NP] (“John” in this case)
from left with the backward application to form
category [S] (sentence). The word “walk” has
the category [(S\NP)/NP], which means it can
combine with a constituent with category [NP]
(“home”) from right through the forward appli-
cation combinator to form category [S\NP] (of
“walk home”).

A detailed description on CCG goes beyond the
scope of this paper (see (Steedman, 2000) for more
details). Since, natural language sentences can
have various CCG parse trees, each expressing a
different meaning of the sentence, a key challenge
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Figure 2: NL2KR’s main GUI, Version 1.7.0001

Figure 3: CCG parse tree of ”John walked home”.

in the learning and the translation process is to find
a suitable CCG parse tree for a sentence in natu-
ral language. We overcome this impediment by
allowing our learning and translation subsystem
to work with multiple weighted parse trees for a
given sentence and determining on the fly, the one
that is most suitable. We discuss more on this in
sections 2.4-2.6.

Existing CCG parsers (Curran et al., 2007; Lier-
ler and Schüller, 2012) either return a single best
parse tree for a given sentence or parse it in all
possible ways with no preferential ordering among
them. In order to overcome this shortcoming and
generate more than one weighted candidate parse
trees, we have developed a new parser using beam
search with Cocke-Younger-Kasami(CYK) algo-
rithm. NL2KRs CCG parser uses the C&C model

(Curran et al., 2007) and constraints from the Stan-
ford parser (Socher et al., 2013; Toutanova et al.,
2003) to guide the derivation of a sentence. The
output of the CCG parser is a set of k weighted
parse trees, where the parameter k is provided by
the user.

NL2KR system allows one to use the CCG
parser independently through the interactive GUI.
The output graphs look like the one in Figure 3. It
can be zoomed in/out and its nodes can be moved
around, making it easier to work with complex
sentences.

2.4 Multistage learning approach

Learning meanings of words is the major com-
ponent of our system. The inputs to the learning
module are a list of training sentences, their target
formal representations and an initial lexicon con-
sisting of triplets of the form <word, CCG cate-
gory, meaning>, where meanings are represented
in terms of λ-calculus expressions. The output
of the algorithm is a final dictionary containing
a set of 4-tuples (word, CCG category, meaning,
weight).

Interactive Multistage Learning Algorithm
(IMLA) NL2KR employs an Interactive Multi-
stage Learning Algorithm (Algorithm 1) that runs
many iterations on the input sentences. In each
iteration, it goes through one or more of the fol-
lowing stages:

Stage 1 In Stage 1, it gets all the unfinished
sentences. It then employs Bottom Up-Top Down
algorithm (Algorithm 2) to learn new meanings
(by Inverse-λ). For a sentence, if it has com-
puted the meanings of all its constituents, which
can be combined to produce the given representa-
tion, that sentence is considered as learned. Each

902



Algorithm 1 IMLA algorithm

1: function IMLA(initLexicon,sentences,
sentsMeanings)

2: regWords← ∅
3: generalize← false
4: lexicon← initLexicon
5: repeat
6: repeat
7: repeat
8: for all s ∈ sentences do
9: newMeanings ←

BT(s,lexicon,sentsMeanings)
10: lexicon← lexicon ∪ newMeanings
11: for all n ∈ newMeanings do
12: ms← GENERALIZE(regWords, n)
13: lexicon← lexicon ∪ms
14: end for
15: end for
16: until newMeanings = ∅
17: if generalize=false then
18: generalize← true
19: for all t ∈ unfinishedSents do
20: words← GETALLWORDS(t)
21: ms← GENERALIZE(words)
22: lexicon← lexicon ∪ms
23: regWords← regWords ∪ words
24: end for
25: end if
26: until newMeanings = ∅
27: INTERATIVELEARNING

28: until unfinishedSents = ∅ OR userBreak
29: lexicon ← PARAMETERESTIMA-

TION(lexicon,sentences)
30: return lexicon
31: end function

new meaning learned by this process is used to
generalize the words in a waiting list. Initially,
this waiting list is empty and is updated in stage
2. When no more new meaning can be learned
by Bottom Up-Top Down algorithm, IMLA (Algo-
rithm 1) enters stage 2.

Stage 2 In this stage, it takes all the sentences
for which the learning is not yet finished and ap-
plies Generalization process on all the words of
those sentences. At the same time, it populates
those words into the waiting list, so that from now
on, Bottom Up-Top Down will try to generalize
new meanings for them when it learns some new
meanings. It then goes back to stage 1. Next time,

after exiting stage 1, it directly goes to stage 3.

Stage 3 When both aforementioned stages
can not learn all the sentences, the Interactive
Learning process is invoked and all the unfinished
sentences are shown on the interactive GUI (Fig-
ure 4). Users can either skip or provide more in-
formation on the GUI and the learning process is
continued.

After finishing all stages, IMLA (Algorithm 1)
calls Parameter Estimation (section 2.5) algorithm
to compute the weight of each lexicon tuple.

Bottom Up-Top Down learning For a given
sentence, the CCG parser is used for the CCG
parse trees like the one of how big is texas in Fig-
ure 4. For each parse tree, two main processes
are called, namely “bottom up” and “top down”.
In the first process, all the meanings of the words
in the sentences are retrieved from the lexicon.
These meanings are populated in the leaf nodes
of a parse tree (see Figure 4), which are combined
in a bottom-up manner to compute the meanings
of phrases and full sentences. We call these mean-
ings, the current meanings.

In the “top down” process, using Inverse-λ al-
gorithm, the given meaning of the whole sentence
(called the expected meaning of the sentence) and
the current meanings of the phrases, we calcu-
late the expected meanings of each of the phrases
from the root of the tree to the leaves. For ex-
ample, given the expected meaning of how big is
texas and the current meaning of how big, we use
Inverse-λ algorithm to get the meaning (expected)
of is texas. This expected meaning is used together
with current meanings of is (texas) to calculate
the expected meanings of texas (is). The expected
meanings of the leaf nodes we have just learned
will be saved to the lexicon and will be used in the
other sentences and in subsequent learning itera-
tion. The “top down” process is stopped when the
expected meanings are same as the current mean-
ings. And in both “bottom up” and “top-down”
processes, the beam search algorithm is used to
speed-up the learning process.

Interactive learning In the interactive learning
process it opens a GUI which shows the unfinished
sentences. Users can see the current and expected
meanings for the unfinished sentences. When the
user gives additional meanings of word(s), the λ-
application or Inverse-λ operation is automatically
performed to update the new meaning(s) to related
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Figure 4: Interactive learning GUI. The box under each node show: the corresponding phrases [CCG category], the expected
meanings and the current meanings. Click on the red node will show the window to change the current meaning (CLE)

Algorithm 2 BottomUp-TopDown (BT) algo-
rithm

1: function BT(
sentence, lexicon, sentsMeanings)

2: parseTrees← CCGPARSER(sentence)
3: for all tree ∈ parseTrees do
4: t← BOTTOMUP(tree,lexicon)
5: TOPDOWN(t,sentsMeanings)
6: end for
7: end function

word(s). Once satisfied, the user can switch back
to the automated learning mode.

Example Let us consider the ques-
tion “How big is texas?” with meaning
answer(size(stateid(texas))) (see Figure
4).

Let us assume that the initial dictionary has
the following entries: how := NP/(N/N) :
λx.λy.answer(x@y), big := N/N : λx.size(x)
and texas :=NP : stateid(texas). The algorithm
then proceeds as follows.

First, the meanings of “how” and “big” are com-
bined to compute the current meaning of “how
big” := NP : λx.answer(size(x)) in the “bot-
tom up” process. Since the meaning of “is” is un-
known, the current meaning of “is texas” still re-
mains unknown.

It then starts the “top down” process where

it knows the expected meaning of “How big is
texas” := S : answer(size(stateid(texas)))
and the current meaning of “how big”. Using
them in the Inverse-λ algorithm, it then com-
pute the meaning of “is texas” := S\NP :
λx1.x1@stateid(texas). Using this expected
meaning and current meaning of “texas” := NP :
stateid(texas), it then calculates the expected
meaning of “is” as “is” := (S\NP )/NP :
λx2.λx1.x1@x2. This newly learned expected
meaning is then saved into the lexicon.

Since the meaning of all the words in the ques-
tion are known, the learning algorithm stops here
and the Interactive Learning is never called.

If initially, the dictionary contains only two
meanings: “big” := N/N : λx.size(x) and
“texas” := NP : stateid(texas), NL2KR tries
to first learn the sentence but fails to learn
the complete sentence and switches to Inter-
active Learning which shows the interactive
GUI (see Figure 4). If the user specifies
that “how” means λx.λy.answer(x@y), NL2KR
combines its meaning with the meaning of “big”
to get the meaning “how big” := NP :
λx.answer(size(x)). It will then use Inverse-
λ to figure out the meaning of “is texas” and
then the meaning of “is”. Now all the mean-
ings are combined to compute the current mean-
ing answer(size(stateid(texas))) of “How big
is texas”. This meaning is same as the expected
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meaning, so we know that the sentence is suc-
cessfully learned. Now, the user can press Retry
Learning to switch back to automated learning.

2.5 Parameter Estimation

The Parameter Estimation module estimates a
weight for each word-meaning pair such that the
joint probability of the training sentences getting
translated to their given representation is maxi-
mized. It implements the algorithm described in
Zettlemoyer et. al.(2005).

2.6 Translation

The goal of this module is to convert input sen-
tences into the target formalism using the lexi-
con previously learned. The algorithm used in
Translation module (Algorithm 3) is similar to the
bottom-up process in the learning algorithm. It
first obtains several weighted CCG parse trees of
the input sentence. It then computes a formal rep-
resentation for each of the parse trees using the
learned dictionary. Finally, it ranks the transla-
tions according to the weights of word-meaning
pairs and the weights of the CCG parse trees.
However, test sentences may contain words which
were not present in the training set. In such cases,
Generalization is used to guess the meanings of
those unknown words from the meanings of the
similar words present in the dictionary.

Algorithm 3 Translation algorithm

1: function TRANSLATE(sentence, lexicon)
2: candidates← ∅
3: parseTrees← CCGPARSER(sentence)
4: for all tree ∈ parseTrees do
5: GENERALIZE(tree);
6: t← BOTTOMUP(tree)
7: candidates← candidates ∪ t
8: end for
9: output← VERIFY-RANK(candidates)

10: return output
11: end function

3 Experimental Evaluation

We have evaluated NL2KR on two standard cor-
pora: GeoQuery and Jobs. For both the corpus, the
output generated by the learned system has been
considered correct if it is an exact replica of the
logical formula described in the corpus.

We report the performance in terms of precision
(percentage of returned logical-forms that are cor-
rect), recall (percentage of sentences for which the
correct logical-form was returned), F1-measure
(harmonic mean of precision and recall) and the
size of the initial dictionary.

We compare the performance of our sys-
tem with recently published, directly-comparable
works, namely, FUBL (Kwiatkowski et al.,
2011), UBL (Kwiatkowski et al., 2010), λ-WASP
(Wong and Mooney, 2007), ZC07 (Zettlemoyer
and Collins, 2007) and ZC05 (Zettlemoyer and
Collins, 2005) systems.

3.1 Corpora
GeoQuery GeoQuery (Tang and Mooney, 2001)
is a corpus containing questions on geographical
facts about the United States. It contains a total of
880 sentences written in natural language, paired
with their meanings in a formal query language,
which can be executed against a database of the
geographical information of the United States.
We follow the standard training/testing split of
600/280. An example sentence meaning pair is
shown below.

Sentence: How long is the Colorado river?
Meaning: answer(A,(len(B,A),const(B,
riverid(colorado)), river(B)))

Jobs The Jobs (Tang and Mooney, 2001) dataset
contains a total of 640 job related queries written
in natural language. The Prolog programming
language has been used to represent the meaning
of a query. Each query specifies a list of job
criteria and can be directly executed against a
database of job listings. An example sentence
meaning pair from the corpus is shown below.

Question: What jobs are there for program-
mers that know assembly?
Meaning: answer(J,(job(J),title(J,T),
const(T,’Programmer’),language(J,L),
const(L,’assembly’))))

The dataset contains a training split of 500 sen-
tences and a test split of 140 sentences.

3.2 Initial Dictionary Formulation
GeoQuery For GeoQuery corpus, we manually
selected a set of 100 structurally different sen-
tences from the training set and initiated the learn-
ing process with a dictionary containing the repre-
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GUI Driven Initial Dictionary Learned Dictionary
] <word, category > 31 118 401

] <word, category, meaning> 36 127 1572
] meaning 30 89 819

Table 1: Comparison of Initial and Learned dictionary for GeoQuery corpus on the basis of the number of entries in the
dictionary, number of unique <word, CCG category> pairs and the number of unique meanings across all the entries. “GUI
Driven” denotes the amount of the total meanings given through interactive GUI and is a subset of the Initial dictionary.

GUI Driven Initial Dictionary Learned Dictionary
] <word, category> 58 103 226

] <word, category, meaning> 74 119 1793
] meaning 57 71 940

Table 2: Comparison of Initial and Learned dictionary for Jobs corpus.

sentation of the nouns and question words. These
meanings were easy to obtain as they follow sim-
ple patterns. We then trained the translation sys-
tem on those selected sentences. The output of
this process was used as the initial dictionary for
training step. Further meanings were provided on
demand through interactive learning. A total of
119 word meanings tuples (Table 1, ] <word, cat-
egory, meaning >) were provided from which the
NL2KR system learned 1793 tuples. 45 of the 119
were representation of nouns and question words
that were obtained using simple patterns. The re-
maining 74 were obtained by a human using the
NL2KR GUI. These numbers illustrate the useful-
ness of the NL2KR GUI as well as the NL2KR
learning component. One of our future goals is to
further automate the process and reduce the GUI
interaction part.

Table 1 compares the initial and learned dic-
tionary for GeoQuery on the basis of number
of unique <word, category, meaning> entries in
dictionary, number of unique <word, category>
pairs and the number of unique meanings across
all the entries in the dictionary. Since each unique
<word, CCG category> pair must have at least
one meaning, the total number of unique <word,
category> pairs in the training corpus provides a
lower bound on the size of the ideal output dictio-
nary. However, one <word, category> pair may
have multiple meanings, so the ideal dictionary
can be much bigger than the number of unique
<word, category> pairs. Indeed, there were many
words such as “of”, “in” that had multiple mean-
ings for the same CCG category. Table 1 clearly
describes that the amount of initial effort is sub-
stantially less compared to the return.

Jobs For the Jobs dataset, we followed a similar
process as in the GeoQuery dataset. A set of 120
structurally different sentences were selected and a
dictionary was created which contained the repre-
sentation of the nouns and the question words from
the training corpus. A total of 127 word meanings
were provided in the process. Table 2 compares
the initial and learned dictionary for Jobs. Again,
we can see that the amount of initial effort is sub-
stantially less in comparison to the return.

3.3 Precision, Recall and F1-measure

Figure 5: Comparison of Precision, Recall and F1-measure
on GeoQuery and Jobs dataset.

Table 3, Table 4 and Figure 5 present the com-
parison of the performance of NL2KR on the Geo-
Query and Jobs domain with other recent works.
NL2KR obtained 91.1% precision value, 92.1%
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System Precision Recall F1
ZC05 0.963 0.793 0.87
ZC07 0.916 0.861 0.888
λ-WASP 0.9195 0.8659 0.8919
UBL 0.885 0.879 0.882
FUBL 0.886 0.886 0.886
NL2KR 0.911 0.921 0.916

Table 3: Comparison of Precision, Recall and F1-measure on
GeoQuery dataset.

recall value and a F1-measure of 91.6% on Geo-
Query (Figure 5, Geo880) dataset. For Jobs cor-
pus, the precision, recall and F1-measure were
95.43%, 94.03% and 94.72% respectively. In
all cases, NL2KR achieved state-of-the-art recall
and F1 measures and it significantly outperformed
FUBL (the latest work on translation systems) on
GeoQuery.

For both GeoQuery and Jobs corpus, our recall
is significantly higher than existing systems be-
cause meanings discovered by NL2KRs learning
algorithm is more general and reusable. In other
words, meanings learned from a particular sen-
tence are highly likely to be applied again in the
context of other sentences. It may be noted that,
larger lexicons do not necessarily imply higher re-
call as lambda expressions for two phrases may
not be suitable for functional application, thus
failing to generate any translation for the whole.
Moreover, the use of a CCG parser maximizes the
recall by exhibiting consistency and providing a
set of weighted parse trees. By consistency, we
mean that the order of the weighted parse tree re-
mains same over multiple parses of the same sen-
tence and the sentences having similar syntactic
structures have identical ordering of the deriva-
tions, thus making Generalization to be more ef-
fective in the process of translation.

The sentences for which NL2KR did not have
a translation are the ones having structural dif-
ference with the sentences present in the train-
ing dataset. More precisely, their structure was
not identical with any of the sentences present in
the training dataset or could not be constructed by
combining the structures observed in the training
sentences.

We analyzed the sentences for which the trans-
lated meaning did not match the correct one and
observed that the translation algorithm selected
the wrong meaning, even though it discovered the
correct one as one of the possible meanings the

System Precision Recall F1
ZC05 0.9736 0.7929 0.8740
COCKTAIL 0.9325 0.7984 0.8603
NL2KR 0.9543 0.9403 0.9472

Table 4: Comparison of Precision, Recall and F1-measure on
Jobs dataset.

sentence could have had in the target formal lan-
guage. Among the sentences for which NL2KR
returned a translation, there were very few in-
stances where it did not discover the correct mean-
ing in the set of possible meanings.

It may be noted that even though our preci-
sion is lower than ZC05 and very close to ZC07
and WASP; we have achieved significantly higher
F1 measure than all the related systems. In
fact, ZC05, which achieves the best precision for
both the datasets, is better by a margin of only
0.019 on the Jobs dataset and 0.052 on the Geo-
Query dataset. We think one of the main rea-
sons is that it uses manually predefined lambda-
templates, which we try to automate as much as
possible.

4 Conclusion

NL2KR is a freely available2, user friendly, rich
graphical platform for building translation systems
to convert sentences from natural language to their
equivalent formal representations in a wide vari-
ety of domains. We have described the system al-
gorithms and architecture and its performance on
the GeoQuery and Jobs datasets. As mentioned
earlier, the NL2KR GUI and the NL2KR learning
module help in starting from a small initial lex-
icon (for example, 119 in Table 2) and learning
a much larger lexicon (1793 in Table 2). One of
our future goals is to reduce the initial lexicon to
be even smaller by further automating the NL2KR
GUI interaction component .
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Abstract

We investigate multiple many-to-many
alignments as a primary step in integrat-
ing supplemental information strings in
string transduction. Besides outlining DP
based solutions to the multiple alignment
problem, we detail an approximation of
the problem in terms of multiple sequence
segmentations satisfying a coupling con-
straint. We apply our approach to boosting
baseline G2P systems using homogeneous
as well as heterogeneous sources of sup-
plemental information.

1 Introduction

String-to-string translation (string transduction) is
the problem of converting one string x over an
alphabet Σ into another string y over a possi-
bly different alphabet Γ. The most prominent
applications of string-to-string translation in nat-
ural language processing (NLP) are grapheme-
to-phoneme conversion, in which x is a letter-
string and y is a string of phonemes, translit-
eration (Sherif and Kondrak, 2007), lemmatiza-
tion (Dreyer et al., 2008), and spelling error cor-
rection (Brill and Moore, 2000). The classi-
cal learning paradigm in each of these settings
is to train a model on pairs of strings {(x,y)}
and then to evaluate model performance on test
data. Thereby, all state-of-the-art modelings we
are aware of (e.g., (Jiampojamarn et al., 2007;
Bisani and Ney, 2008; Jiampojamarn et al., 2008;
Jiampojamarn et al., 2010; Novak et al., 2012))
proceed by first aligning the string pairs (x,y)
in the training data. Also, these modelings ac-
knowledge that alignments may typically be of a
rather complex nature in which several x sequence

ph oe n i x
f i n I ks

Table 1: Sample monotone many-to-many align-
ment between x = phoenix and y = finIks.

characters may be matched up with several y se-
quence characters; Table 1 illustrates. Once the
training data is aligned, since x and y sequences
are then segmented into equal number of seg-
ments, string-to-string translation may be seen as
a sequence labeling (tagging) problem in which x
(sub-)sequence characters are observed variables
and y (sub-)sequence characters are hidden states
(Jiampojamarn et al., 2007; Jiampojamarn et al.,
2010).

In this work, we extend the problem of classi-
cal string-to-string translation by assuming that, at
training time, we have available (M + 2)-tuples
of strings {(x, ŷ(1), . . . , ŷ(M),y)}, where x is the
input string, ŷ(m), for 1 ≤ m ≤ M , are sup-
plemental information strings, and y is the de-
sired output string; at test time, we wish to pre-
dict y from (x, ŷ(1), . . . , ŷ(M)). Generally, we
may think of ŷ(1), . . . , ŷ(M) as arbitrary strings
over arbitrary alphabets Σ(m), for 1 ≤ m ≤ M .
For example, x might be a letter-string and ŷ(m)

might be a transliteration of x in language Lm (cf.
Bhargava and Kondrak (2012)). Alternatively, and
this is our model scenario in the current work, x
might be a letter input string and ŷ(m) might be
the predicted string of phonemes, given x, pro-
duced by an (offline) system Tm. This situation
is outlined in Table 3. In the table, we also illus-
trate a multiple (monotone) many-to-many align-
ment of (x, ŷ(1), . . . , ŷ(M),y). By this, we mean
an alignment where (1) subsequences of allM +2
strings may be matched up with each other (many-
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to-many alignments), and where (2) the match-
ing up of subsequences obeys monotonicity. Note
that such a multiple alignment generalizes classi-
cal monotone many-to-many alignments between
pairs of strings, as shown in Table 1. Furthermore,
such an alignment may apparently be quite useful.
For instance, while none of the strings ŷ(m) in the
table equals the true phonetic transcription y of x,
taking a position-wise majority vote of the multi-
ple alignment of (ŷ(1), . . . , ŷ(M)) yields y. More-
over, analogously as in the case of pairs of aligned
strings, we may perceive the so extended string-
to-string translation problem as a sequence label-
ing task once (x, ŷ(1), . . . , ŷ(M),y) are multiply
aligned, but now, with additional observed vari-
ables (or features), namely, (sub-)sequence char-
acters of each string ŷ(m).

To further motivate our approach, consider the
situation of training a new G2P system on the ba-
sis of, e.g., Combilex (Richmond et al., 2009).
For each letter form in its database, Combilex
provides a corresponding phonetic transcription.
Now, suppose that, in addition, we can poll an
external knowledge source such as Wiktionary for
(its) phonetic transcriptions of the respective Com-
bilex letter words as outlined in Table 2. The cen-

Input form Wiktionary Combilex
neutrino nju:tôi:noU nutrinF
wooded wUdId wUd@d
wrench ôEnúS rEn<

Table 2: Input letter words, Wiktionary and Com-
bilex transcriptions.

tral question we want to answer is: can we train
a system using this additional information which
performs better than the ‘baseline’ system that ig-
nores the extra information? Clearly, a system
with more information should not perform worse
than a system with less information (unless the ad-
ditional information is highly noisy), but it is a
priori not clear at all how the extra information
can be included, as Bhargava and Kondrak (2012)
note: output predictions may be in distinct alpha-
bets and/or follow different conventions, and sim-
ple rule-based conversions may even deteriorate
a baseline system’s performance. Their solution
to the problem is to let the baseline system out-
put its n-best phonetic transcriptions, and then to
re-rank these n-best predictions via an SVM re-
ranker trained on the supplemental representations

x = schizo s ch i z o
ŷ(1) = skaIz@U s k aI z @U
ŷ(2) = saIz@U s - aI z @U
ŷ(3) = skIts@ s k I ts @
ŷ(4) = Sits@U S - i ts @U
ŷ(5) = skIts@ s k I ts @
y = skIts@U s k I ts @U

Table 3: Left: Input string x, predictions of 5
systems, and output string y. Right: A multiple
many-to-many alignment of (x, ŷ(1), . . . , ŷ(5),y).
Skips are marked by a dash (‘-’).

(see their figure 2). Our approach is much differ-
ent from this: we character (or substring) align
the supplemental information strings with the in-
put letter strings and then sequentially transduce
input character substrings as in the standard G2P
approach, but where the sequential transducer is
aware of the corresponding subsequences of the
supplemental information strings.

Our goals in the current work are first, in Sec-
tion 2, to formally introduce the multiple many-
to-many alignment problem, which, to our knowl-
edge, has not yet been formally considered, and
to indicate how it can be solved (by standard ex-
tensions of well-known DP recursions). Secondly,
we outline an ‘approximation algorithm’, also in
Section 2, with much better runtime complexity,
to solving the multiple many-to-many alignment
problem. This proceeds by optimally segmenting
individual strings to align under the global con-
straint that the number of segments must agree
across strings. Thirdly, we demonstrate exper-
imentally, in Section 5, that multiple many-to-
many alignments may be an extremely useful first
step in boosting the performance of a G2P model.
In particular, we show that by conjoining a base
system with additional systems very high perfor-
mance increases can be achieved. We also inves-
tigate the effects of using our introduced approxi-
mation algorithm instead of ‘exactly’ determining
alignments. We discuss related work in Section
3, present data and systems in Section 4 and con-
clude in Section 6.

2 Mult. Many-to-Many Alignm. Models

We now formally define the problem of multiply
aligning several strings in a monotone and many-
to-many alignment manner. For notational conve-
nience, in this section, let the N strings to align be
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denoted by w1, . . . ,wN (rather than x, ŷ(m),y,
etc.). Let each wn, for 1 ≤ n ≤ N , be an arbitrary
string over some alphabet Σ(n). Let `n = |wn| de-
note the length of wn. Moreover, assume that a set
S ⊆ ∏N

n=1{0, . . . , `n}\{0N} of allowable steps
is specified, where 0N = (0, . . . , 0︸ ︷︷ ︸

N times

).1 We interpret

the elements of S as follows: if (s1, s2, . . . , sN ) ∈
S, then subsequences of w1 of length s1, subse-
quences of w2 of length s2, . . ., subsequences of
wN of length sN may be matched up with each
other. In other words, S defines the types of valid
‘many-to-many match-up operations’.2 While we
could drop S from consideration and simply al-
low every possible matching up of character sub-
sequences, it is convenient to introduce S because
algorithmic complexity may then be specified in
terms of S, and by choosing particular S, one may
retrieve special cases otherwise considered in the
literature (see next section).

As indicated, for us, a multiple alignment of
(w1, . . . ,wN ) is any scheme

w1,1 w1,2 · · · w1,k

w2,1 w2,2 · · · w2,k
...

...
. . .

...
wN,1 wN,2 · · · wN,k

such that (|w1,i| , . . . , |wN,i|) ∈ S, for all i =
1, . . . , k, and such that wn = wn,1 · · ·wn,k, for
all 1 ≤ n ≤ N . Let AS = AS(w1, . . . ,wN )
denote the set of all multiple alignments of
(w1, . . . ,wN ). For an alignment a ∈ AS , de-
note by score(a) = f(a) the score of align-
ment a under alignment model f , where f :
AS(w1, . . . ,wN )→ R. We now investigate solu-
tions to the problem of finding the alignment with
maximal score under different choices of align-
ment models f , i.e., we search to efficiently solve

max
a∈AS(w1,...,wN )

f(a). (1)

Unigram alignment model For our first align-
ment model f , we assume that f(a), for a ∈ AS ,
is the score

f(a) =
k∑
i=1

sim1(w1,i, . . . ,wN,i) (2)

1Here,
∏

denotes the Cartesian product of sets.
2In the case of two strings, this is sometimes denoted in

the manner M -N (e.g., 3-2, 1-0), indicating that M charac-
ters of one string may be matched up withN characters of the
other string. Analogously, we could write here s1-s2-s3-· · · .

for a real-valued similarity function sim1 :∏N
n=1

(
Σ(n)

)∗ → R. We call the model f in
(2) a unigram model because f(a) is the sum
of the similarity scores of the matched-up subse-
quences (w1,i, . . . ,wN,i), ignoring context. Due
to this independence assumption, solving max-
imization problem in Eq. (1) under specifica-
tion (2) is straightforward via a dynamic pro-
gramming (DP) recursion. To do so, define by
MS,sim1(i1, i2, . . . , iN ) the score of the best align-
ment, under alignment model f =

∑
sim1 and

set of steps S, of (w1(1 : i1), . . . ,wN (1 : iN )).3
Then, MS,sim1(i1, . . . , iN ) is equal to

max
(j1,...,jN )∈S

MS,sim1(i1 − j1, . . . , iN − jN )

+ sim1

(
w(i1 − j1 + 1 : i1), . . . ,w(iN − jN + 1 : jN )

)
.

(3)

This recurrence directly leads to a DP algorithm,
shown in Algorithm 1, for computing the score
of the best alignment of (w1, . . . ,wN ); the ac-
tual alignment can be found by storing pointers to
the maximizing steps taken. If similarity evalua-
tions sim1(w1,i, . . . ,wN,i) are thought of as tak-
ing constant time, this algorithm’s run time is
O(
∏N
n=1 `n · |S|). When ` = `1 = · · · = `n and

|S| = `N − 1 (‘worst case’ size of S), then the al-
gorithm’s runtime is thus O(`2N ), which quickly
becomes untractable as N , the number of strings
to align, increases.

Of course, the unigram alignment model could
be generalized to an m-gram alignment model.
Anm-gram alignment model would exhibit worst-
case runtime complexity of O(`(m+1)N ) under
analogous DP recursions as for the unigram
model.

Algorithm 1
1: procedure UNIGRAM-ALIGN(w1, . . . ,wN ;
S, sim1)

2: M(i1, . . . , iN ) ← −∞ for all
(i1, . . . , iN ) ∈ ZN

3: M(0N )← 0
4: for i1 = 0 . . . `1 do
5: for · · · do
6: for iN = 0 . . . `N do
7: if (i1, . . . , iN ) 6= 0N then
8: M(i1, . . . , iN )← Eq. (3)

9: return M(`1, . . . , `N )

Separable alignment models For our sec-
ond model class, assume that, for any a ∈

3We denote by x(a : b) the substring xaxa+1 · · ·xb of
the string x1x2 · · ·xt.
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AS(w1, . . . ,wN ), f(a) decomposes into

f(a) = Ψ
(
fw1(w1,1 · · ·w1,k), . . . , fwN (wN,1 · · ·wN,k)

)
(4)

for some models fw1 , . . . , fwN and where Ψ :
RN → R is non-decreasing in its arguments (e.g.,
Ψ(fw1 , . . . , fwN ) =

∑N
n=1 fwn). If f(a) decom-

poses in such a manner, then f(a) is called sep-
arable.4 The advantage with separable models is
that we can solve the ‘subproblems’ fw1 , . . . , fwN

independently. Thus, in order to find optimal
multiple alignments of (w1, . . . ,wN ) under such
a specification, we would only have to find the
best segmentations of sequences wn under mod-
els fwn , for 1 ≤ n ≤ N , subject to the constraint
that the segmentations must agree in their number
of segments (the coupling variable). Let Swn ⊆
{0, 1, . . . , `n} denote the constraints on segment
lengths, similar to the interpretation of steps in
S. If fwn is a unigram segmentation model then
the problem of finding the best segmentation of
wn with exactly j segments can be solved in time
O(`n |Swn | j). Thus, if each fwn is a unigram
segmentation model, worst-case time complexity
for each subproblem would be O(`3n) (if string
wn can be segmented into at most `n segments)
and then the overall problem (1) under specifica-
tion (4) is solvable in worst-case time N · O(`3).
More generally, if each fwn is an m-gram seg-
mentation model, then worst-case time complexity
amounts to N · O(`m+2). Importantly, this scales
linearly with the number N of strings to align,
rather than exponentially as the O(`(m+1)N ) un-
der the (non-separable) m-gram alignment model
discussed above.

Unsupervised alignments The algorithms pre-
sented may be applied iteratively in order to in-
duce multiple alignments in an unsupervised (EM-
like) fashion in which sim1 is gradually learnt
(e.g., starting from a uniform initialization of
sim1). We skip details of this, as we do not make
us of it in our current experiments. Rather, in our
experiments below, we directly specify sim1 as a
sum of pairwise similarity scores which we ex-
tract from alignments produced by an off-the-shelf
pairwise aligner.

4Note the difference between Eqs. (2) and (4). While each
fwn in (4) operates on a ‘row’ of an alignment scheme, sim1

in (2) acts on the ‘columns’. In other words, the unigram
alignment model correlates the multiply matched-up subse-
quences, while the separable alignment model assumes inde-
pendence here.

3 Related work

Monotone alignments have a long tradition, both
in NLP and bioinformatics. The classical
Needleman-Wunsch algorithm (Needleman and
Wunsch, 1970) computes the optimal alignment
between two sequences when only single charac-
ter matches, mismatches, and skips are allowed.
It is a special case of the unigram model (2)
in optimization problem (1) for which N = 2,
S = {(1, 0), (0, 1), (1, 1)} and sim1 takes on val-
ues from {0,−1}, depending on whether com-
pared input subsequences match or not. As is
well-known, this alignment specification is equiv-
alent to the edit distance problem (Levenshtein,
1966) in which the minimal number of inser-
tions, deletions and substitutions is sought that
transforms one string into another. Substring-
to-substring edit operations — or equivalently,
(monotone) many-to-many alignments — have ap-
peared in the NLP context, e.g., in (Deligne et
al., 1995), (Brill and Moore, 2000), (Jiampoja-
marn et al., 2007), (Bisani and Ney, 2008), (Ji-
ampojamarn et al., 2010), or, significantly earlier,
in (Ukkonen, 1985), (Véronis, 1988). Learning
edit distance/monotone alignments in an unsuper-
vised manner has been the topic of, e.g., (Ris-
tad and Yianilos, 1998), (Cotterell et al., 2014),
besides the works already mentioned. All of
these approaches are special cases of our uni-
gram model outlined in Section 2 — i.e., they
consider particular S (most prominently, S =
{(1, 0), (0, 1), (1, 1)}) and/or restrict attention to
only N = 2 strings.5

Alignments between multiple sequences, i.e.,
multiple sequence alignment, has also been an is-
sue both in NLP (e.g., Covington (1998), Bhar-
gava and Kondrak (2009)) and bioinformatics
(e.g., Durbin et al. (1998)). An interesting applica-
tion of alignments of multiple sequences is to de-
termine what has been called median string (Ko-
honen, 1985) or Steiner consensus string (Gus-
field, 1997), defined as the string s̄ that minimizes
the sum of distances, for a given distance function
d(x,y), to a list of strings s1, . . . , sN (Jiang et al.,
2012); typically, d is the standard edit distance.
As Gusfield (1997) shows, the Steiner consen-
sus string may be retrieved from a multiple align-

5In Cotterell et al. (2014), context influences alignments,
so that the approach goes beyond the unigram model sketched
in (2), but there, too, the focus is on the situation N = 2 and
S = {(1, 0), (0, 1), (1, 1)}.

912



ment of s1, . . . , sN by concatenating the column-
wise majority characters in the alignment, ignor-
ing skips. Since median string computation (and
hence also the multiple many-to-many alignment
problem, as we consider) is an NP-hard problem
(Sim and Park, 2003), designing approximations is
an active field of research. For example, Marti and
Bunke (2001) ignore part of the search space by
declaring matches-up of distant characters as un-
likely, and Jiang et al. (2012) apply an approxima-
tion based on string embeddings in vector spaces.
Paul and Eisner (2012) apply dual decomposition
to compute Steiner consensus strings. Via the ap-
proach taken in this paper, median strings may be
computed in case d is a (distance) function tak-
ing substring-to-substring edit operations into ac-
count, a seemingly straightforward, yet extremely
useful generalization in several NLP applications,
as indicated in the introduction.

Our approach may also be seen in the context of
classifier combination for string-valued variables.
While ensemble methods for structured prediction
have been considered in several works (see, e.g.,
Nguyen and Guo (2007), Cortes et al. (2014), and
references therein), a typical assumption in this
situation is that the sequences to be combined have
equal length, which clearly cannot be expected
to hold when, e.g., the outputs of several G2P,
transliteration, etc., systems must be combined. In
fact, the multiple many-to-many alignment models
investigated in this work could act as a preprocess-
ing step in this setup, since the alignment precisely
serves the functionality of segmenting the strings
into equal number of segments/substructures. Of
course, combining outputs with varying number
of elements is also an issue in machine transla-
tion (e.g., Macherey and Och (2007), Heafield et
al. (2009)), but, there, the problem is harder due to
the potential non-monotonicities in the ordering of
elements, which typically necessitates (additional)
heuristics. One approach for constructing multi-
ple alignments is here progressive multiple align-
ment (Feng and Doolittle, 1987) in which a multi-
ple (typically one-to-one) alignment is iteratively
constructed from successive pairwise alignments
(Bangalore et al., 2001). Matusov et al. (2006)
apply word reordering and subsequent pairwise
monotone one-to-one alignments for MT system
combination.

4 Data and systems

4.1 Data

We conduct experiments on the General Ameri-
can (GA) variant of the Combilex data set (Rich-
mond et al., 2009). This contains about 144,000
grapheme-phoneme pairs as exemplarily illus-
trated in Table 2. In our experiments, we split
the data into two disjoint parts, one for test-
ing (about 28,000 word pairs) and one for train-
ing/development (the remainder).

4.2 Systems

BASELINE Our baseline system is a linear-chain
conditional random field model (CRF)6 (Lafferty
et al., 2001) which we apply in the manner in-
dicated in the introduction: after many-to-many
aligning the training data as in Table 1, at training
time, we use the CRF as a tagging model that is
trained to label each input character subsequence
with an output character subsequence. As fea-
tures for the CRF, we use all n-grams of subse-
quences of x that fit inside a window of size 5
centered around the current subsequence (context
features). We also include linear-chain features
which allow previously generated output character
subsequences to influence current output charac-
ter subsequences. In essence, our baseline model
is a standard discriminative approach to G2P. It is,
all in all, the same approach as described in Ji-
ampojamarn et al. (2010), except that we do not
include joint n-gram features. At test time, we first
segment a new input string x and then apply the
CRF. Thereby, we train the segmentation module
on the segmented x sequences, as available from
the aligned training data.7

BASELINE+X As competitors for the base-
line system, we introduce systems that rely on
the predictions of one or several additional (black
box/offline) systems. At training time, we first
multiply many-to-many align the input string x,
the predictions ŷ(1), . . . , ŷ(M) and the true tran-
scription y as illustrated in Table 3 (see Section
4.3 for details). Then, as for the baseline sys-
tem, we train a CRF to label each input character

6We made use of the CRF++ package available at
https://code.google.com/p/crfpp/.

7To be more precise on the training of the segmentation
module, in an alignment as in Table 1, we consider the seg-
mented x string — ph-oe-n-i-x — and then encode this seg-
mentation in a binary string where 1’s indicate splits. Thus,
segmentation becomes, again, a sequence labling task; see,
e.g., Bartlett et al. (2008) or Eger (2013) for details.
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subsequence with the corresponding output char-
acter subsequence. However, this time, the CRF
has access to the subsequence suggestions (as the
alignments indicate) produced by the offline sys-
tems. As features for the extended models, we ad-
ditionally include context features for all predicted
strings ŷ(m) (all n-grams in a window of size 3
centered around the current subsequence predic-
tion). We also include a joint feature firing on
the tuple of the current subsequence value of x,
ŷ(1), . . . , ŷ(M). To illustrate, when BASELINE+X
tags position 2 in the (split up) input string in Ta-
ble 3, it sees that its value is ch, that the previous
input position contains s, that the next contains
i, that the next two contain (i,z), that the predic-
tion of the first system at position 2 is k, that the
first system’s next prediction is ai, and so forth.
At test time, we first multiply many-to-many align
x, ŷ(1), . . . , ŷ(M), and then apply the enhanced
CRF.

4.3 Alignments
To induce multiple monotone many-to-many
alignments of input strings, offline system predic-
tions and output strings, we proceed in one of two
manners.

Exact alignments Firstly, we specify sim1 in
Eq. (2), as sim1(xi, ŷ

(1)
i , . . . , ŷ(M)

i ,yi) =

( M∑
m=1

psim(xi, ŷ
(m)
i )

)
+ psim(xi,yi),

where psim is a pair-similarity function. The ad-
vantage with this specification is that the similarity
of a tuple of subsequences is defined as the sum of
pairwise similarity scores, which we can directly
estimate from pairwise alignments of (x, ŷ(m))
that an off-the-shelf pairwise aligner can produce
(we use the Phonetisaurus aligner for this). We set
psim(u,v) as log-probability of observing the tu-
ple (u,v) in the training data of pairwise aligned
sequences. To illustrate, we define the similar-
ity of (o,@U,@U,@,@U,@,@U) in the example in Table
3 as the pairwise similarity of (o,@U) (as inferred
from pairwise alignments of x strings and sys-
tem 1 transcriptions) plus the pairwise similarity
of (o,@U) (as inferred from pairwise alignments of
x strings and system 2 transcriptions), etc. At test
time, we use the same procedure but drop the term
psim(xi,yi) when inducing alignments. For our
current purposes, we label the outlined modus as
exact (alignment) modus.

Approx. alignments Secondly, we derive the
optimal multiple many-to-many alignment of the
strings in question by choosing an alignment that
satisfies the condition that (1) each individual
string x, ŷ(1), . . . , ŷ(M),y is optimally segmented
(e.g., ph-oe-n-i-x rather than pho-eni-x, f-i-n-I-ks
rather than f-inIk-s) subject to the global constraint
that (2) the number of segments must agree across
the strings to align. This constitutes a separa-
ble alignment model as discussed in Section 2,
and thus has much lower runtime complexity as
the first model. Segmentation models can be di-
rectly learned from the pairwise alignments that
Phonetisaurus produces by focusing on either the
segmented x or y/ŷ(m) sequences; we choose to
implement bigram individual segmentation mod-
els. This second model type may be considered an
approximation of the first, since in a good align-
ment, we would not only expect individually good
segmentations and agreement of segment numbers
but also that subsegments are likely correlations
of each other, precisely as our first model type
captures. Therefore, we shall call this alignment
modus approximate (alignment) modus, for our
present purposes.

5 Experiments

We now describe two sets of experiments, a con-
trolled experiment on the Combilex data set
where we can design our offline/black box sys-
tems ourselves and where the black box systems
are trained on a similar distribution as the base-
line and the extended baseline systems. In partic-
ular, the black box systems operate on the same
output alphabet as the extended baseline systems,
which constitutes an ‘ideal’ situation. Thereafter,
we investigate how our extended baseline system
performs in a ‘real-world’ scenario: we train a
system on Combilex that has as supplemental in-
formation corresponding Wiktionary (and PTE, as
explained below) transcriptions.

Throughout, we use as accuracy measures for
all our systems word accuray (WACC). Word ac-
curacy is defined as the number of correctly tran-
scribed strings among all transcribed strings in a
test sample. WACC is a strict measure that penal-
izes even tiny deviations from the gold-standard
transcriptions, but has nowadays become standard
in G2P.
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5.1 A controlled experiment

In our first set of experiments, we let our of-
fline/black box systems be the Sequitur G2P mod-
eling toolkit (Bisani and Ney, 2008) (S) and
the Phonetisaurus modeling toolkit (Novak et
al., 2012) (P). We train them on disjoint sets
of 20,000 grapheme-to-phoneme Combilex string
pairs each. The performance of these two sys-
tems, on the test set of size 28,000, is indicated
in Table 4. Next, we train BASELINE on dis-

Phonetisaurus Sequitur
WACC 72.12 71.70

Table 4: Word-accuracy (in %) on the test data, for
the two systems indicated.

joint sets (disjoint from both the training sets of
P and S) of size 2,000, 5,000, 10,000 and 20,000.
Making BASELINE’s training sets disjoint from
the training sets of the offline systems is both re-
alistic (since a black box system would typically
follow a partially distinct distribution from one’s
own training set distribution) and also prevents
the extended baseline systems from fully adapting
to the predictions of either P or S, whose train-
ing set accuracy is an upward biased representa-
tion of their true accuracy. As baseline extensions,
we consider the systems BASELINE+P (+P), and
BASELINE+P+S (+P+S).8

Results are shown in Figures 1 and 2. We
see that conjoining the base system with the
predictions of the offline Phonetisaurus and Se-
quitur models substantially increases the base-
line WACC, especially in the case of little train-
ing data. In fact, WACC increases here by al-
most 100% when the baseline system is comple-
mented by ŷ(P) and ŷ(S). As training set size
increases, differences become less and less pro-
nounced. Eventually, we would expect them to
drop to zero, since beyond some training set size,
the additional features may provide no new infor-
mation.9 We also note that conjoining the two sys-
tems is more valuable than conjoining only one
system, and, in Figure 2, that the models which are
based on exact multiple alignments outperform the
models based on approximate alignments, but not

8We omit BASELINE+S since it yielded similar results as
BASELINE+P.

9In fact, in follow-up work, we find that the additional
information may also confuse the base system when training
set sizes are large enough.

by a wide margin.
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Figure 1: WACC as a function of training set size
for the system indicated. Exact align. modus.
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Figure 2: Comparison of models based on exact
and approximate alignments; WACC as a function
of training set size. APRX denotes the approxima-
tion alignment model.

Concerning differences in alignments between
the two alignment types, exact vs. approximate, an
illustrative example where the approximate model
fails and the exact model does not is (‘false’ align-
ment based on the approximate model indicated):

r ee n t e r e d
r i E n t @‘ r d
r i E n t @‘ r d

which nicely captures the inability of the approx-
imate model to account for correlations between
the matched-up subsequences. That is, while the
segmentations of the three shown sequences ap-
pear acceptable, a matching of graphemic t with
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phonemic n, etc., seems quite unlikely. Still, it
is very promising to see that these differences in
alignment quality translate into very small differ-
ences in overall string-to-string translation model
performance, as Figure 2 outlines. Namely, dif-
ferences in WACC are typically on the level of
1% or less (always in favor of the exact alignment
model). This is a very important finding, as it in-
dicates that string-to-string translation need not be
(severely) negatively impacted by switching to the
approximate alignment model, a tractable alterna-
tive to the exact models, which quickly become
practically infeasible as the number of strings to
align increases.

5.2 Real-world experiments
To test whether our approach may also succeed in
a ‘real-world setting’, we use as offline/black box
systems GA Wiktionary transcriptions of our in-
put forms as well as PhotoTransEdit (PTE) tran-
scriptions,10 a lexicon-based G2P system which
offers both GA and RP (received pronunciation)
transcription of English strings. We train and test
on input strings for which both Combilex and PTE
transcriptions are available, and for which both
Combilex and Wiktionary transcriptions are avail-
able.11 Test set sizes are about 1,500 in the case of
PTE and 3,500 in the case of Wiktionary. We only
test here the performance of the exact alignment
method, noting that, as before, approximate align-
ments produced slightly weaker results.

Clearly, Wiktionary and PTE differ from the
Combilex data. First, both Wiktionary and PTE
use different numbers of phonemic symbols than
Combilex, as Table 5 illustrates. Some differences

Dataset |Σ|
Combilex 54
WiktionaryGA 107
WiktionaryRP 116
PTEGA 44
PTERP 57

Table 5: Sizes of phonetic inventaries of different
data sets.

arise from the fact that, e.g., lengthening of vowels
is indicated by two output letters in some data sets

10Downloadable from http://www.photransedit.com/.
11This yields a clear method of comparison. An alternative

would be to provide predictions for missing transcriptions. In
any case, by our task definition, all systems must provide a
hypothesis for an input string.

and only one in others. Also, phonemic transcrip-
tion conventions differ, as becomes most strikingly
evident in the case of RP vs. GA transcriptions —
Table 6 illustrates. Finally, Wiktionary has many
more phonetic symbols than the other datasets, a
finding that we attribute to its crowd-sourced na-
ture and lacking of normalization. Despite these
differences in phonemic annotation standards be-
tween Combilex, Wiktionary and PTE, we observe
that conjoining input strings with predicted Wik-
tionary or PTE transcriptions via multiple align-
ments leads to very good improvements in WACC
over only using the input string as information
source. Indeed, as shown in Table 7, for PTE,
WACC increases by as much as 80% in case of
small training sample (1,099 string pairs) and as
much as 37% in case of medium-sized training
sample (2,687 string pairs). Thus, comparing with
the previous situation of homogenous systems, we
also observe that the gain from including hetero-
geneous system is relatively weaker, as we would
expect due to distinct underlying assumptions, but
still impressive. Performance increases when in-
cluding Wiktionary are slightly lower, most likely
because it constitutes a very heterogenous source
of phonetic transcriptions with user-idiosyncratic
annotations (however, training set sizes are also
different).12

BASEL. BASEL.+PTEGA BASEL.+PTERP

1,099 31.34 56.47 50.22
2,687 45.75 60.80 62.80

BASEL. BASEL.+WikGA BASEL.+WikRP

2,000 38.44 60.71 62.18
5,000 51.69 65.81 65.96

10,000 58.97 67.30 68.66

Table 7: Top: WACC in % for baseline CRF
model and the models that integrate PTE in the
GA versions and RP versions, respectively. Bot-
tom: BASELINE and BASELINE+Wiktionary.

6 Conclusion

We have generalized the task description of string
transduction to include supplemental information
strings. Moreover, we have suggested multiple

12To provide, for the interested reader, a comparison with
Phonetisaurus and Sequitur: for the Wiktionary GA data,
performance of Phonetisaurus is 41.80% (training set size
2,000), 55.70% (5,000) and 62.47% (10,000). Respective
numbers for Sequitur are 40.58%, 54.84%, and 61.58%. On
PTE, results are, similarly, slightly higher than our baseline,
but substantially lower than the extended baseline.
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b o t ch i ng
b o t S I N
b A - tS I N

b a rr ed
b a - d
b A r d

a s th m a t i c s
æ s - m æ t I k s
a z 0 m a t I k s

Table 6: Multiple alignments of input string, predicted PTE transcription and true (Combilex) transcrip-
tion. Differences may be due to alternative phonemic conventions (e.g., Combilex has a single phonemic
character representing the sound tS) and/or due to differences in pronunciation in GA and RP, resp.

many-to-many alignments — and a subsequent
standardly extended discriminative approach —
for solving string transduction (here, G2P) in this
generalized setup. We have shown that, in a real-
world setting, our approach may significantly beat
a standard discriminative baseline, e.g., when we
add Wiktionary transcriptions or predictions of
a rule-based system as additional information to
the input strings. The appeal of this approach
lies in the fact that almost any sort of external
knowledge source may be integrated to improve
the performance of a baseline system. For exam-
ple, supplemental information strings may appear
in the form of transliterations of an input string
in other languages; they may be predictions of
other G2P systems, whether carefully manually
crafted or learnt from data; they might even ap-
pear in the form of phonetic transcriptions of the
input string in other dialects or languages. What
distinguishes our solution to integrating supple-
mental information strings in string transduction
settings from other research (e.g., (Bhargava and
Kondrak, 2011; Bhargava and Kondrak, 2012)) is
that rather than integrating systems on the global
level of strings, we integrate them on the lo-
cal level of smaller units, namely, substrings ap-
propriated to the domain of application (e.g., in
our context, phonemes/grapheme substructures).
Both approaches may be considered complemen-
tary. Finally, another important contribution of our
work is to outline an ‘approximation algorithm’
to inducing multiple many-to-many alignments of
strings, which is otherwise an NP-hard problem
for which (most likely) no efficient exact solu-
tions exist, and to investigate its suitability for the
problem task. In particular, we have seen that ex-
act alignments lead to better overall model perfor-
mance, but that the margin over the approximation
is not wide.

The scope for future research of our modeling is
huge: multiple many-to-many alignments may be
useful in aligning cognates in linguistic research;
they may be the first necessary step for many other

ensemble techniques in string transduction as we
have considered (Cortes et al., 2014), and they
may allow, on a large scale, to boost G2P (translit-
eration, lemmatization, etc.) systems by inte-
grating them with many traditional (or modern)
knowledge resources such as rule- and dictionary-
based lemmatizers, crowd-sourced phonetic tran-
scriptions (e.g., based on Wiktionary), etc., with
the outlook of significantly outperforming current
state-of-the-art models which are based solely on
input string information.

Finally, we note that we have thus far shown
that supplemental information strings may be ben-
eficial in case of overall little training data and that
improvements decrease with data size. Further in-
vestigating this relationship will be of importance.
Morevoer, it will be insightful to compare the
exact and approximate alignment algorithms pre-
sented here with other (heuristic) alignment meth-
ods, such as iterative pairwise alignments as em-
ployed in machine translation, and to investigate
how alignment quality of multiple strings impacts
overall G2P performance in the setup of additional
information strings.
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Abstract

In this paper, we propose a syllable-based
method for tweet normalization to study
the cognitive process of non-standard
word creation in social media. Assuming
that syllable plays a fundamental role in
forming the non-standard tweet words,
we choose syllable as the basic unit and
extend the conventional noisy channel
model by incorporating the syllables to
represent the word-to-word transitions
at both word and syllable levels. The
syllables are used in our method not
only to suggest more candidates, but also
to measure similarity between words.
Novelty of this work is three-fold: First,
to the best of our knowledge, this is an
early attempt to explore syllables in tweet
normalization. Second, our proposed
normalization method relies on unlabeled
samples, making it much easier to adapt
our method to handle non-standard words
in any period of history. And third, we
conduct a series of experiments and prove
that the proposed method is advantageous
over the state-of-art solutions for tweet
normalization.

1 Introduction

Due to the casual nature of social media, there
exists a large number of non-standard words in
text expressions which make it substantially dif-
ferent from formal written text. It is reported in
(Liu et al., 2011) that more than 4 million dis-
tinct out-of-vocabulary (OOV) tokens are found
in the Edinburgh Twitter corpus (Petrovic et al.,
2010). This variation poses challenges when
performing natural language processing (NLP)
tasks (Sproat et al., 2001) based on such texts.
Tweet normalization, aiming at converting these

OOV non-standard words into their in-vocabulary
(IV) formal forms, is therefore viewed as a very
important pre-processing task.

Researchers focus their studies in tweet normal-
ization at different levels. A character-level tag-
ging system is used in (Pennell and Liu, 2010) to
solve deletion-based abbreviation. It was further
extended in (Liu et al., 2012) using more charac-
ters instead of Y or N as labels. The character-level
machine translation (MT) approach (Pennell and
Liu, 2011) was modified in (Li and Liu, 2012a)
into character-block. While a string edit distance
method was introduced in (Contractor et al., 2010)
to represent word-level similarity, and this ortho-
graphical feature has been adopted in (Han and
Baldwin, 2011), and (Yang and Eisenstein, 2013).

Challenges are encountered in these different
levels of tweet normalization. In the character-
level sequential labeling systems, features are re-
quired for every character and their combinations,
leading to much more noise into the later reverse
table look-up process (Liu et al., 2012). In the
character-block level MT systems equal number of
blocks and their corresponding phonetic symbols
are required for alignment (Li and Liu, 2012b).
This strict restriction can result in a great difficulty
in training set construction and a loss of useful
information. Finally, word-level normalization
methods cannot properly model how non-standard
words are formed, and some patterns or consisten-
cies within words can be omitted and altered.

We observe the cognitive process that, given
non-standard words like tmr, people tend to first
segment them into syllables like t-m-r. Then
they will find the corresponding standard word
with syllables like to-mor-row. Inspired by
this cognitive observation, we propose a syllable
based tweet normalization method, in which non-
standard words are first segmented into syllables.
Since we cannot predict the writers deterministic
intention in using tmr as a segmentation of tm-r

920



(representing tim-er) or t-m-r (representing
to-mor-row), every possible segmentation for-
m is considered. Then we represent similarity
of standard syllables and non-standard syllables
using an exponential potential function. After
every transition probabilities of standard syllable
and non-standard syllable are assigned, we then
use noisy channel model and Viterbi decoder to
search for the most possible standard candidate in
each tweet sentence.

Our empirical study reveals that syllable is a
proper level for tweet normalization. The syllable
is similar to character-block but it represents pho-
netic features naturally because every word is pro-
nounced with syllables. Our syllable-based tweet
normalization method utilizes effective features of
both character- and word-level: (1) Like character-
level, it can capture more detailed information
about how non-standard words are generated; (2)
Similar to word-level, it reduces a large amount of
noisy candidates. Instead of using domain-specific
resources, our method makes good use of standard
words to extract linguistic features. This makes
our method extendable to new normalization tasks
or domains.

The rest of this paper is organized as follows:
previous work in tweet normalization are reviewed
and discussed in Section 2. Our approach is
presented in Section 3. In Section 4 and Section 5,
we provide implementation details and results.
Then we make some analysis of the results in
Section 6. This work is finally concluded in
Section 7.

2 Related Work

Non-standard words exhibit different forms and
change rapidly, but people can still figure out
their original standard words. To properly model
this human ability, researchers are studying what
remain unchanged under this dynamic character-
istic. Human normalization of an non-standard
word can be as follows: After realizing the word is
non-standard, people usually first figure out stan-
dard candidate words in various manners. Then
they replace the non-standard words with the stan-
dard candidates in the sentence to check whether
the sentence can carry a meaning. If not, they
switch to a different candidate until a good one is
found. Most normalization methods in existence
follow the same procedure: candidates are first
generated, and then put into the sentence to check

whether a reasonable sentence can be formed.
Differences lie in how the candidates are generated
and weighted. Related work can be classified into
three groups.

2.1 Orthographical similarity
Orthographical similarity is built upon the as-
sumption that the non-standard words look like its
standard counterparts, leading to a high Longest
Common Sequence (LCS) and low Edit Distance
(ED). This method is widely used in spell checker,
in which the LCS and ED scores are calculat-
ed for weighting possible candidates. However,
problems are that the correct word cannot always
be the most looked like one. Taking the non-
standard word nite for example, note looks
more likely than the correct form night. To
overcome this problem, an exception dictionary
of strongly-associated word pairs are constructed
in (Gouws et al., 2011). Further, these pairs are
added into a unified log-linear model in (Yang
and Eisenstein, 2013) and Monte Carlo sampling
techniques are used to estimate parameters.

2.2 Phonetic similarity
The assumption underlying the phonetic similarity
is that during transition, non-standard words sound
like the standard counterparts, thus the pronunci-
ation of non-standard words can be traced back
to a standard dictionary. The challenge is the
algorithm to annotate pronunciation of the non-
standard words. Double Metaphone algorithm
(Philips, 2000) is used to decode pronunciation
and then to represent phonetic similarity by edit
distance of these transcripts (Han and Baldwin,
2011). IPA symbols are utilized in (Li and Liu,
2012b) to represent sound of words and then word
alignment-based machine translation is applied to
generate possible pronunciation of non-standard
words. And also, phoneme is used in (Liu et al.,
2012) as one kind of features to train their CRF
model.

2.3 Contextual similarity
It is accepted that after standard words are trans-
formed into non-standard words, the meaning of a
sentence remains unchanged. So the normalized
standard word must carry a meaning. Most re-
searchers use n-gram language model to normal-
ize a sentence, and several researches use more
contextual information. For example, training
pairs are generated in (Liu et al., 2012) by a
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cosine contextual similarity formula whose items
are defined by TF-IDF scheme. A bipartite graph
is constructed in (Hassan and Menezes, 2013) to
represent tokens (both non-standard and standard
words) and their context. Thus, random walks
on the graph can represent contextual-similarity
between non-standard and standard words. Very
recently, word-embedding (Mikolov et al., 2010;
Mikolov et al., 2013) is utilized in (Li and Liu,
2014) to represent more complex contextual rela-
tionship.

In word-to-word candidate selection, most re-
searches use orthographical similarity and phonet-
ic similarity separately. In the log-linear model
(Yang and Eisenstein, 2013), edit distance is mod-
eled as major feature. In the character- and phone-
based approaches (Li and Liu, 2012b), ortho-
graphical information and phonetic information
were treated separately to generate candidates.

In (Han and Baldwin, 2011), candidates from
lexical edit distance and phonemic edit distance
are merged together. Then an up to 16% increas-
ing recall was reported when adding candidates
from phonetic measure. But improper processing
level makes it difficult to model the two types of
information simultaneously: (1) Single character
can hardly reflect orthographical features of one
word. (2) As fine-grained reasonable restrictions
are lacked, as showed in (Han and Baldwin, 2011),
several times of candidates are included when
adding phonetic candidates and this will bring
much more noise. To combine orthographical
and phonetic measure in a fine-grained level, we
proposed the syllable-level approach.

3 Approach

3.1 Framework

The framework of the proposed tweet normal-
ization method is presented in Figure 1. The
proposed method extends the basic HMM channel
model (Choudhury et al., 2007; Cook and Steven-
son, 2009) into syllable level. And the following
four characteristics are very intersting.

(1) Combination: When reading a sentence,
fast subvocalization will occur in our mind.
In the process, some non-standard words
generated by phonetic substitution are cor-
rectly pronounced and then normalized. And
also, because subvocalization is fast, people
tend to ignore some minor flaws in spelling

intentionally or unintentionally. As this often
occurs in people’s real-life interacting with
these social media language, we believe the
combination of phonetic and orthographical
information is of great significance.

(2) Syllable level: Inspired by Chinese normal-
ization (Xia et al., 2006) using pinyin (pho-
netic transcripts of Chinese), syllable can be
seen as basic unit when processing pronunci-
ation. Different from mono-syllable Chinese
words, English words can be multi-syllable;
this will bring changes in our method that
extra layers of syllables must be put into
consideration. Thus, apart from word-based
noisy-channel model, we extend it into a
syllable-level framework.

(3) Priori knowledge: Priori knowledge is ac-
quired from standard words, meaning that
both standard syllabification and pronunci-
ation can shed some lights to non-standard
words. This assumption makes it possible
to obtain non-standard syllables by standard
syllabification and gain pronunciation of syl-
lables by standard words and rules generated
with them.

(4) General patterns: Social media language
changes rapidly while labeled data is ex-
pensive thus limited. To effectively solve
the problem, linguistic features instead of
statistical features should be emphasized. We
exploit standard words of their syllables, pro-
nunciation and possible transition pattern-
s and proposed the four-layer HMM-based
model (see Figure 1).

In our method, non-standard words ci are first
segmented into syllables sc(1)

i . . . sc
(k)
i , and for

standard syllable sw(j)
i mapping to non-standard

syllable sw
(j)
i , we calculate their similarity by

combining the orthographical and phonetic mea-
sures. Standard syllables sw(1)

i . . . sw
(k)
i make

up one standard candidates. Since candidates
are generated and weighted, we can use Viterbi
decoder to perform sentence normalization. Ta-
ble 1 shows some possible candidates for the non-
standard word tmr.

3.2 Method
We extend the noisy channel model to syllable-
level as follows:
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Figure 1: Framework of the propose tweet normalization method.

ŵ = argmax p(w|c)
= argmax p(c|w)× p(w)
= argmax p(~sc| ~sw)× p( ~sw),

(1)

where w indicates the standard word and c the
non-standard word, and sw and sc represent their
syllabic form, respectively. To simplify the prob-
lem, we restrict the number of standard syllables
equals to the number of non-standard syllables in
our method.

Assuming that syllables are independent of each
other in transforming, we obtain:

p(~sc| ~sw) =
k∏
j=1

p(scj |swj). (2)

For syllable similarity, we use an exponential
potential function to combine orthographical dis-
tance and phonetic distance. Because pronun-
ciation can be represented using letter-to-phone
transcripts, we can treat string similarity of these

tmr t-mr tm-r t-m-r
tamer ta-mer tim-er to-mor-row

ti-mor tim-ber tri-mes-ter
ti-more ton-er tor-men-tor
tu-mor tem-per ta-ma-ra

. . . . . . . . .

Table 1: Standard candidates of tmr in syllable lev-
el. The first row gives the different segmentations
and the second row presents the candidates.

transcripts as phonetic similarity. Thus the sylla-
ble similarity can be calculated as follows.

p(scj |swj , λ) =
Φ(scj , swj)
Z(swj)

(3)

Z(swj) =
∑
scj

Φ(scj , swj) (4)

Φ(sc, sw) = exp(λ(LCS(sc, sw)− ED(sc, sw))
+(1− λ)(PLCS(sc, sw)− PED(sc, sw)))

(5)

Exponential function grows tremendously as its
argument increases, so much more weight can be
assigned if syllables are more similar. The param-
eter λ here is used to empirically adjust relative
contribution of letters and sounds. Longest com-
mon sequence (LCS) and edit distance (ED) are
used to measure orthographical similarity, while
phonetic longest common sequence (PLCS) and
phonetic edit distant (PED) are used to measure
phonetic similarity but based on letter-to-sound
transcripts. The PLCS are defined as basic LCS
but PED here is slightly different.

When performing phonetic similarity calcula-
tion based on syllables, we follow (Xia et al.,
2006) in treating consonant and vowels separate-
ly because transition of consonants can make a
totally different pronunciation. So if consonants
of scj and swj are exactly the same or fit rules
listed in Table 2, PED(scj , swj) equals to edit
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Description Rules Examples
1. -ng as suffix: g-dropping -n/-ng do-in/do-ing, go-in/go-ing, talk-in/talk-ing, mak-in/mak-ing
2. -ng as suffix: n-dropping -g/-ng tak-ig/tak-ing, likig/lik-ing
3. suffix: z/s equaling -z/-s, -s/-z jamz/james, plz/please
4. suffix: n/m equaling -m/-n, -n/-m in-portant/im-portant, get-tim/get-ting
5. suffix: t/d equaling -t/-d, -d/-t shid/shit, shult/should
6. suffix: t-dropping -/-t jus/just, wha/what, mus/must, ain/ain’t
7. suffix: r-dropping -/-r holla/holler, t-m-r/tomorrow
8. prefix: th-/d- equaling d-/th-, th-/d- de/the, dat/that, dats/that’s, dey/they

Table 2: The consonant rules.

distance of letter-to-phone transcripts, or it will
be assigned infinity to indicate that their pronun-
ciation are so different that this transition can
seldom happen. For example, as consonantal
transition between suffix z and s can always
happen, PED(plz,please) equals string edit
distance of their transcripts. But as consonatal
transition of f and d is rare, phonetic distance
of fly and sky is assigned infinity. Note the
consonant rules in Table 2 are manually defined
in our empirical study, which represent the most
commonly used ones.

3.3 Parameter

Parameter in the proposed method is only the
λ in Equation (5), which represents the rela-
tive contribution of orthographical similarity and
phonetic similarity. Because the limited number
of annotated corpus, we have to enumerate the
parameter in {0, 0.1, 0.2, ..., 1} in the experiment
to find the optimal setting.

4 Implementation

The method described in the previous section are
implemented with the following details.

4.1 Preprocessing

Before performing normalization, we need to pro-
cess several types of non-standard words:

• Words containing numbers: People usually
substitute some kind of sounds with number-
s like 4/four, 2/two and 8/eight or
numbers can be replacement of some letters
like 1/i, 4/a. So we replace numbers with
its words or characters and then use them to
generate possible candidates.

• Words with repeating letters: As our
method is syllable-based, repeating letters

for sentiment expressing (like cooool,
(Brody and Diakopoulos, 2011)) can cause
syllabifying failure. For repeating letters, we
reduce it to both two and one to generate
candidate separately. Then the two lists are
merged together to form the whole candidate
list.

4.2 Letter-to-sound conversion

Syllable in this work refers to orthographic sylla-
bles. For example, we convert word tomorrow
into to-mor-row. However, when comparing
the syllable of a standard word and that of a non-
standard word, sound (i.e., phones) of the syllables
are considered. Thus letter-to-sound conversion
tools are required.

Several TTS system can perform the task ac-
cording to some linguistic rules, even for non-
standard words. The Double Metaphone algorith-
m used in (Han and Baldwin, 2011) is one of
them. But it uses consonants to encode a word,
which gives less information than we need. In our
method, we use freeTTS (Walker et al., 2002) with
CMU lexicon1 to transform words into APRA-
bet2 symbols. For example, word tomorrow is
transcribed to {T-UW M-AA R-OW} and tmr to
{T M R}.
4.3 Dictionary preparation

• Dictionary #1: In-vocabulary (IV) words

Following (Yang and Eisenstein, 2013), our
set of IV words is also based on the GNU as-
pell dictionary (v0.60.6). Differently, we use
a collection of 100 million tweets (roughly
the same size of Edinburgh Twitter corpus)
because the Edinburgh Twitter corpus is no
longer available due to Twitter policies. The

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
2http://en.wikipedia.org/wiki/Arpabet
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final IV dictionary contains 51,948 standard
words.

• Dictionary #2: Syllables for the standard
words
Following (Pennell and Liu, 2010), we use
the online dictionary3 to extract syllables
for each standard words. We encountered
same problem when accessing words with
prefixes or suffixes, which are not syllabified
in the same format as the base words on the
website. To address the issue, we simply
regard these prefixes and suffixes as syllables.

• Dictionary #3: Pronunciation of the sylla-
bles
Using the CMU pronouncing dictionary
(Weide, 1998) and dictionary 2, and knowing
all possible APRAbet symbol for all
consonant characters, we can program to
capture every possible pronunciation of all
syllables in the standard dictionary.

4.4 Automatic syllabification of non-standard
words

Automatic syllabification of non-standard words
is a supervised problem. A straightforward idea
is to train a CRF model on manually labeled
syllables of non-standard words. Unfortunately,
such a corpus is not available and very expensive
to produce.

We assume that both standard and non-standard
forms follow the same syllable rules (i.e., the
cognitive process). Thus we propose to train the
CRF model on the corpus of syllables of standard
words (which is easy to obtain) to construct an
automatic annotation system based on CRF++
(Kudo, 2005). In this work, we extract syllables
of standard words from Dictionary #2 as training
set. Annotations follow (Pennell and Liu, 2010) to
identify boundaries of syllables and in our work,
CRF++ can suggest several candidate solutions,
rather than an optimal segmentation solution for
syllable segmentation of the non-standard words.
In the HMM channel model, the candidate solu-
tions are included as part of the search space.

4.5 Language model
Using Tweets from our corpus that contain no
OOV words besides hashtags and username men-
tions (following (Han and Baldwin, 2011)), the

3http://www.dictionary.com

Kneser-Ney smoothed tri-gram language model is
estimated using SRILM toolkit (Stolcke, 2002).
Note that punctuations, hashtags, and username
mentions have some syntactic value (Kaufmann
and Kalita, 2010) to some extent, we replace them
with ’<PUNCT>’, ’<TOPIC>’ and ’<USER>’.

5 Evaluation

5.1 Datasets

We use two labeled twitter datasets in existence to
evaluate our tweet normalization method.

• LexNorm1.1 contains 549 complete tweets
with 1184 non-standard tokens (558 unique
word type) (Han and Baldwin, 2011).

• LexNorm1.2 is a revised version of LexNor-
m1.1 (Yang and Eisenstein, 2013). Some
inconsistencies and errors in LexNorm1.1 are
corrected and some more non-standard words
are properly recovered.

In both datasets, to-be-normalized non-standard
words are detected manually as well as the corre-
sponding standard words.

5.2 Evaluation criteria

Here we use precision, recall and F-score to e-
valuate our method. As normalization methods
on these datasets focused on the labeled non-
standard words (Yang and Eisenstein, 2013), re-
call is the proportion of words requiring normal-
ization which are normalized correctly; precision
is the proportion of normalizations which are cor-
rect. When we perform the tweet normalization
methods, every error is both a false positive and
false negative, so in the task, precision equals to
recall.

5.3 Sentence level normalization

We choose the following prior normalization
methods:

• (Liu et al., 2012): the extended character-
level CRF tagging system;

• (Yang and Eisenstein, 2013): log-linear mod-
el using string edit distance and longest com-
mon sequence measures as major features;

• (Hassan and Menezes, 2013): bipartite graph
major exploit contextual similarity;
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Method Dataset Precision Recall F-measure
(Han and Baldwin, 2011)

LexNorm 1.1

75.30 75.30 75.30
(Liu et al., 2012) 84.13 78.38 81.15
(Hassan and Menezes, 2013) 85.37 56.4 69.93
(Yang and Eisenstein, 2013) 82.09 82.09 82.09
Syllable-based method 85.30 85.30 85.30
(Yang and Eisenstein, 2013)

LexNorm 1.2
82.06 82.06 82.06

Syllable-based method 86.08 86.08 86.08

Table 3: Experiment results of the tweet normalization methods.

• (Han and Baldwin, 2011): the orthography-
phone combined system using lexical edit
distance and phonemic edit distance.

In our method, we set λ=0.7 because it is
found best in our experiments (see Figure 2).
The experimental results are presented in Table 3,
which indicate that our method outperforms the
state-of-the-art methods. Details on how to adjust
parameter is given in Section 5.4.

Recall we argue that combination of three simi-
larity is necessary when performing sentence-level
normalization. Apart from contextual similarity
like language model or graphic model, methods
in (Yang and Eisenstein, 2013) or (Hassan and
Menezes, 2013) do not include phonetic measure,
causing loss of important phonetic information.
Though using phoneme, morpheme boundary and
syllable boundary as features (Liu et al., 2012), the
character-level reversed approach will bring much
more noise into the later reversed look-up table,
and also, features of whole word are omitted.

Like (Han and Baldwin, 2011), we also use
lexical measure and phonetic measure. Great
difference between the two approaches is the pro-
cessing level: word level and syllable level. In
their work, average candidates number suffers
times of increase when adding phonetic measure.
This is because when introducing phonemic edit
distance, important pronunciations can be altered
(phonemic edit distance of night-need and
night-kite is equal). Syllable level allows us
to reflect consistencies during transition in a finer-
grained level. Thus the phonetic similarity can be
more precisely modeled.

5.4 Contributions of phone and orthography
In our method, the parameter λ in Equation 5 is
used to represent the relatively contributions of
both phonetic and orthographical information. But

as the lack of prior knowledge, we cannot judge
an optimal λ. We choose to conduct experiments
varying λ = {0, 0.1, ..., 1} to find out how this
adjustment can affect performance. The experi-
mental results are presented in Figure 2.
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Figure 2: Contribution of phone and orthography.

As shown in Figure 2, when λ is set 0 or 1 (indi-
cating no contribution of either orthographical or
phonetic in assigning weight to candidates), our
method performs much worse. In our experiment,
when λ = 0.7, the models performs best, showing
that orthographical measure makes relatively more
contribution over phonetic measure, but the latter
is indispensable. This justifies the effectiveness of
combining orthographical and phonetic measure,
indicating that human normalization process is
properly modeled.

6 Analysis

6.1 Our exceptions
Deeper observation of our normalization results
shows that there are several types of exceptions
beyond our consonant-based rules. For example,
thanks fails to be selected as a candidate for the
non-standard word thx because the pronunciation
of thanks contains an N but thx does not.
The same situation happens when we process
stong/strong because of the lacking R. We
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believe some more consonant should be exploited
and more precisely described.

6.2 Non-standard words involving multiple
syllables

There are one type of transition that we
cannot solve like acc/accelerate and
bio/biology because the mapping is between
single-syllable word and multi-syllable word.
We add possible standard syllable sw

(i)
0 and

sw
(i)
k+1 to the head and tail of origin syllables,

but this extended form failed to be assigned high
probability because the string edit distances are
too large. We leave this problem for further
research.

6.3 Annotation issue

Though similar, our results of LexNorm1.2 is
better than LexNorm1.1. After scrutinizing, we
notice that several issues in LexNorm1.1 are fixed
in LexNorm1.2. So our results like meh/me
(meaning the non-standard word meh are correct-
ed to me) in LexNorm1.1 is wrong but in LexNor-
m1.2 is right. Even in LexNorm1.2, there exist
some inconsistencies and errors. For example,
our result buyed/bought is wrong for both
datasets, which is actually correct. For another
example, til is normalized to until in some
cases but to till in other cases. We show that the
LexNorm test corpus is still imperfect. We appeal
for systematic efforts to produce a standard dataset
under a widely-accepted guideline.

6.4 Conventions

Social media language often contains words that
are culture-specific and widely used in daily life.
Some word like congrats, tv and pic are
included into several dictionaries. We also ob-
served several transitions like atl/atlanta or
wx/weather in the datasets. These kinds of
conventional abbreviations pose great difficulty
to us. Normalization of those conventional non-
standard words still needs further study.

7 Conclusion

In this paper, a syllable-based tweet normalization
method is proposed for social media text normal-
ization. Results on publicly available standard
datasets justify our assumption that syllable plays
a fundamental role in social media non-standard
words. Advantage of our proposed method lies

in that syllable is viewed as the basic processing
unit and syllable-level similarity. This accords to
the human cognition in creating and understanding
the social non-standard words. Our method is
domain independent. It is robust on non-standard
words in any period of history. Furthermore, give
the syllable transcription tool, our method can be
easily adapted to a new language.
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Abstract

Most previous work of text normalization
on informal text made a strong assumption
that the system has already known which
tokens are non-standard words (NSW) and
thus need normalization. However, this is
not realistic. In this paper, we propose
a method for NSW detection. In addi-
tion to the information based on the dic-
tionary, e.g., whether a word is out-of-
vocabulary (OOV), we leverage novel in-
formation derived from the normalization
results for OOV words to help make deci-
sions. Second, this paper investigates two
methods using NSW detection results for
named entity recognition (NER) in social
media data. One adopts a pipeline strat-
egy, and the other uses a joint decoding
fashion. We also create a new data set
with newly added normalization annota-
tion beyond the existing named entity la-
bels. This is the first data set with such
annotation and we release it for research
purpose. Our experiment results demon-
strate the effectiveness of our NSW detec-
tion method and the benefit of NSW detec-
tion for NER. Our proposed methods per-
form better than the state-of-the-art NER
system.

1 Introduction

Short text messages or comments from social me-
dia websites such as Facebook and Twitter have
become one of the most popular communication
forms in recent years. However, abbreviations,
misspelled words and many other non-standard
words are very common in short texts for vari-
ous reasons (e.g., length limitation, need to con-
vey much information, writing style). They post
problems to many NLP techniques in this domain.

There are many ways to improve language pro-
cessing performance on the social media data. One
is to leverage normalization techniques to auto-
matically convert the non-standard words into the
corresponding standard words (Aw et al., 2006;
Cook and Stevenson, 2009; Pennell and Liu, 2011;
Liu et al., 2012a; Li and Liu, 2014; Sonmez and
Ozgur, 2014). Intuitively this will ease subsequent
language processing modules. For example, if
‘2mr’ is converted to ‘tomorrow’, a text-to-speech
system will know how to pronounce it, a part-of-
speech (POS) tagger can label it correctly, and an
information extraction system can identify it as a
time expression. This normalization task has re-
ceived an increasing attention in social media lan-
guage processing.

However, most of previous work on normaliza-
tion assumed that they already knew which tokens
are NSW that need normalization. Then differ-
ent methods are applied only to these tokens. To
our knowledge, Han and Baldwin (2011) is the
only previous work which made a pilot research on
NSW detection. One straight forward method to
do this is to use a dictionary to classify a token into
in-vocabulary (IV) words and out-of-vocabulary
(OOV) words, and just treat all the OOV words as
NSW. The shortcoming of this method is obvious.
For example, tokens like ‘iPhone’, ‘PES’(a game
name) and ‘Xbox’ will be considered as NSW,
however, these words do not need normalization.
Han and Baldwin (2011) called these OOV words
correct-OOV, and named those OOV words that
do need normalization as ill-OOV. We will follow
their naming convention and use these two terms
in our study. In this paper, we propose two meth-
ods to classify tokens in informal text into three
classes: IV, correct-OOV, and ill-OOV. In the fol-
lowing, we call this task the NSW detection task,
and these three labels NSW labels or classes. The
novelty of our work is that we incorporate a to-
ken’s normalization information to assist this clas-
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sification process. Our experiment results demon-
strate that our proposed system gives a signifi-
cant performance improvement on NSW detection
compared with the dictionary baseline system.

On the other hand, the impact of normalization
or NSW detection on NER has not been well stud-
ied in social media domain. In this paper, we pro-
pose two methods to incorporate the NSW detec-
tion information: one is a pipeline system that just
uses the predicted NSW labels as additional fea-
tures in an NER system; the other one uses joint
decoding, where we can simultaneously decide a
token’s NSW and NER labels. Our experiment re-
sults show that our proposed joint decoding per-
forms better than the pipeline method, and it out-
performs the state-of-the-art NER system.

Our contributions in this paper are as follows:
(1) We proposed a NSW detection model by lever-
aging normalization information of the OOV to-
kens. (2) We created a data set with new NSW
and normalization information, in addition to the
existing NER labels. (3) It is the first time to our
knowledge that an effective and joint approach is
proposed to combine the NSW detection and NER
techniques to improve the performance of these
two tasks at the same time on social media data.
(4) We demonstrate the effectiveness of our pro-
posed method. Our proposed NER system outper-
forms the state-of-the-art system.

2 Related Work

There has been a surge of interest in lexical nor-
malization with the advent of social media data.
Lots of approaches have been developed for this
task, from using edit distance (Damerau, 1964;
Levenshtein, 1966), to the noisy channel model
(Cook and Stevenson, 2009; Pennell and Liu,
2010; Liu et al., 2012a) and machine transla-
tion method (Aw et al., 2006; Pennell and Liu,
2011; Li and Liu, 2012b; Li and Liu, 2012a).
Normalization performance on some benchmark
data has been improved a lot. Currently, unsuper-
vised models are widely used to extract latent rela-
tionship between non-standard words and correct
words from a huge corpus. Hassan and Menezes
(2013) applied the random walk algorithm on a
contextual similarity bipartite graph, constructed
from n-gram sequences on a large unlabeled text
corpus to build relation between non-standard to-
kens and correct words. Yang and Eisenstein
(2013) presented a unified unsupervised statistical

model, in which the relationship between the stan-
dard and non-standard words is characterized by
a log-linear model, permitting the use of arbitrary
features. Chrupała (2014) proposed a text normal-
ization model based on learning edit operations
from labeled data while incorporating features in-
duced from unlabeled data via recurrent network
derived character-level neural text embeddings.

These studies only focused on how to normal-
ize a given ill-OOV word and did not address the
problem of detecting an ill-OOV word. Han and
Baldwin (2011) is the only previous study that
conducted the detection work. For any OOV word,
they replaced it with its possible correct candi-
date, then if the possible candidate together with
OOV’s original context adheres to the knowledge
they learned from large formal corpora, the re-
placement could be considered as a better choice
and that OOV token is classified as ill-OOV. In this
paper, we propose a different method for NSW
detection. Similar to (Han and Baldwin, 2011),
we also use normalization information for OOV
words, but we use a feature based learning ap-
proach.

In order to improve robustness of NLP mod-
ules in social media domain, some works chose
to design specific linguistic information. For ex-
ample, by designing or annotating POS, chunking
and capitalized information on tweets, (Ritter et
al., 2011) proposed a system which reduced the
POS tagging error by 41% compared with Stan-
ford POS Tagger, and by 50% in NER compared
with the baseline systems. Gimpel et al. (2011)
created a specific set of POS tags for twitter data.
With this tag set and word cluster information ex-
tracted from a huge Twitter corpus, their proposed
system obtained significant improvement on POS
tagging accuracy in Twitter data.

At the same time, increasing research work has
been done to integrate lexical normalization into
the NLP tasks in social media data. Kaji and Kit-
suregawa (2014) combined lexical normalization,
word segmentation and POS tagging on Japanese
microblog. They used rich character-level and
word-level features from the state-of-the-art mod-
els of joint word segmentation and POS tagging
in Japanese (Kudo et al., 2004; Neubig et al.,
2011). Their model can also be trained on a par-
tially annotated corpus. Li and Liu (2015) con-
ducted a similar research on joint POS tagging
and text normalization for English. Wang and Kan
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(2013) proposed a method of joint ill-OOV word
recognition and word segmentation in Chinese Mi-
croblog. But with their method, ill-OOV words
are merely recognized and not normalized. There-
fore, they did not investigate how to exploit the
information that may be derived from normaliza-
tion to increase word segmentation accuracy. Liu
et al. (2012b) studied the problem of named entity
normalization (NEN) for tweets. They proposed a
novel graphical model to simultaneously conduct
NER and NEN on multiple tweets. Although this
work involved text normalization, it only focused
on the NER task, and there was no reported re-
sult for normalization. On Turkish tweets, Ku-
cuk and Steinberger (2014) adapted NER rules
and resources to better fit Twitter language by re-
laxing its capitalization constraint, expanding its
lexical resources based on diacritics, and using a
normalization scheme on tweets. These showed
positive effect on the overall NER performance.
Rangarajan Sridhar et al. (2014) decoupled the
SMS translation task into normalization followed
by translation. They exploited bi-text resources,
and presented a normalization approach using dis-
tributed representation of words learned through
neural networks.

In this study, we propose new methods to ef-
fectively integrate information of OOV words and
their normalization for the NER task. In particu-
lar, by adopting joint decoding for both NSW de-
tection and NER, we are able to outperform state-
of-the-art results for both tasks. This is the first
study that systematically evaluates the effect of
OOV words and normalization on NER in social
media data.

3 Proposed Method

3.1 NSW Detection Methods

The task of NSW detection is to find those words
that indeed need normalization. Note that in
this study we only consider single-token ill-OOV
words (both before and after normalization). For
example, we would consider snds (sounds) as ill-
OOV, but not smh (shaking my head).

For a data set, our annotation process is as fol-
lows. We first manually label whether a token is
ill-OOV and if so its corresponding standard word.
We only consider tokens consisting of alphanu-
meric characters. Then based on a dictionary, the
tokes that are not labeled as ill-OOV can be cat-
egorized into IV and OOV words. These OOV

words will be considered as correct-OOV. There-
fore all the tokens will have these three labels: IV,
ill-OOV, and correct-OOV.

Throughout this paper, we use GNU spell dic-
tionary (v0.60.6.1) to determine whether a token is
OOV.1 Twitter mentions (e.g., @twitter), hashtags
and urls are excluded from consideration for OOV.
Dictionary lookup of Internet slang2 is performed
to filter those ill-OOV words whose correct forms
are not single words.

We propose two methods for NSW detection.
The first one is a two-step method, where we first
label a token as IV or OOV based on the given
dictionary and some filter rules, then a statistical
classifier is applied on those OOV tokens to fur-
ther decide their classes: ill-OOV or correct-OOV.
We use a maximum entropy classifier for this. The
second model directly does 3-way classification to
predict a token’s label to be IV, correct-OOV, or
ill-OOV. We use a CRF model in this method.3

Table 1 shows the features used in these two
methods. The first dictionary feature is not appli-
cable for the two-step method because all the in-
stances in that process have the same feature value
‘OOV’. However, this dictionary feature is an im-
portant feature for the 3-way classification model
– a token with a feature value ‘IV’ has a very high
probability of being ‘IV’. Lexical features focus
on a token’s surface information to judge whether
it is a regular English word or not. It is because
most of correct-OOV words (e.g., location and
person names) are still some regular words, com-
plying with the general rules of word formation.
For example, features 5-8 consider English word
formation rules that at least one vowel character
is needed for a correct word4. Feature 9 consid-
ers that a correct English word does not contain
more than three consecutive same character. The
character level language model used in Feature 10
is trained from a dictionary. A higher probability
may indicate that it is a correct word.

The motivation for the normalization features is
1We remove all the one-character tokens, except a and I.
25452 items are collected from http://www.noslang.com.
3We can also use a maximum entropy classifier to imple-

ment this model. Our experiments showed that using CRFs
has slightly better results. But the main reason we adopt
CRFs is because we use CRFs for NER, therefore we can
easily integrate the two models in joint decoding in Section
3.2 for NER and NSW detection. We do not use CRFs in
the two-step system because the labeling is performed on a
subset of the words, not the entire sequence.

4Although some exceptions exist, this rule applies to most
words.
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Dictionary Feature
1. is token categorized as IV or OOV by the
given dictionary (Only used in 3-way classifi-
cation)
Lexical Features
2. word identity
3. whether token’s first character is capitalized
4. token’s length
5. how many vowel character chunks does this
token have
6. how many consonant character chunks does
this token have
7. the length of longest consecutive vowel
character chunk
8. the length of longest consecutive consonant
character chunk
9. whether this token contains more than 3 con-
secutive same character
10. character level probability of this token
based on a character level language model
Normalization Features
11. whether each individual candidate list has
any candidates for this token
12. how many candidates each individual can-
didate list has
13. whether each individual list’s top 10 candi-
dates contain this token itself
14. the max number of lists that have the same
top one candidate
15. the similarity value between each in-
dividual normalization system’s first candi-
date w and this token t, calculated by
longest common string(w,t)

length(t)

16. the similarity value between each in-
dividual normalization system’s first candi-
date w and this token t, calculated by
longest common sequence(w,t)

length(t)

Table 1: Features used in NSW detection system.

to leverage the normalization result of an OOV to-
ken to help its classification. Before we describe
the reason why normalization information could
benefit this task, we first introduce the normal-
ization system we used. We apply a state-of-the-
art normalization system proposed by (Li and Liu,
2014). Briefly, in this normalization system there
are three supervised and two unsupervised sub-
systems for each OOV token, resulting in six can-
didate lists (one system provides two lists). Then
a maximum entropy reranking model is adopted

to combine and rerank these candidate lists, using
a rich set of features. Please refer to (Li and Liu,
2014) for more details. By analyzing each individ-
ual system, we find that for ill-OOV words most
normalization systems can generate many candi-
dates, which may contain a correct candidate; for
correct-OOV words, many normalization systems
have few candidates or may not provide any can-
didates. For example, only two of the six lists have
candidates for the token Newsfeed and Metropcs.
Therefore, we believe the patterns of these normal-
ization results contain useful information to clas-
sify OOVs. Note that this kind of feature is only
applicable for those tokens that are judged as OOV
by the given dictionary (normalization is done on
these OOV words). The bottom of Table 1 shows
the normalization features we designed.

3.2 NER Methods

The NER task we study in this paper is just about
segmenting named entities, without identifying
their types (e.g., person, location, organization).
Following most previous work, we model it as a
sequence-labeling task and use the BIO encoding
method (each word either begins, is inside, or out-
side of a named entity).

Intuitively, NSW detection has an impact on
NER, because many named entities may have the
correct-OOV label. Therefore, we investigate if
we can leverage NSW label information for NER.
First, we adopt a pipeline method, where we first
perform NSW detection and the results are used
as features in the NER system. Table 2 shows the
features we designed. One thing worth mentioning
is that the POS tags we used are from (Gimpel et
al., 2011). This POS tag set consists of 25 coarse-
grained tags designed for social media text. We
use CRFs for this NER system.

The above method simply incorporates a to-
ken’s predicted NSW label as features in the NER
model. Obviously it has an unavoidable limitation
– the errors from the NSW detection model would
affect the downstream NER process. Therefore we
propose a second method, a joint decoding process
to determine a token’s NSW and NER label at the
same time. The 3-way classification method for
NSW detection and the above NER system both
use CRFs. The decoding process for these two
tasks is performed separately, using their corre-
sponding trained models. The motivation of our
proposed joint decoding process is to combine the
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two processes together, therefore we can avoid the
error propagation in the pipeline system, and allow
the two models to benefit from each other.

Part (A) and (B) of Figure 1 show the trellis for
decoding word sequence ‘Messi is well-known’ in
the NER and NSW detection systems respectively.
As shown in (A), every black box with dashed line
is a hidden state (possible BIO tag) for the corre-
sponding token. Two sources of information are
used in decoding. One is the label transition prob-
ability p(yi|yj), from the trained model, where yi
and yj are two BIO tags. The other is p(yi|ti),
where yi is a BIO label for token ti. Similarly,
during decoding in NSW detection, we need the

Basic Features
1. Lexical features (word n-gram):
Unigram: Wi(i = 0)
Bigram: WiWi+1(i = −2,−1, 0, 1)
Trigram: Wi−1WiWi+1(i = −2,−1, 0, 1)
2. POS features (POS n-gram):
Unigram: Pi(i = 0)
Bigram: PiPi+1(i = −2,−1, 0, 1)
Trigram: Pi−1PiPi+1(i = −2,−1, 0, 1)
3. Token’s capitalization information:
Trigram: Ci−1CiCi+1(i = 0) (Ci = 1 means
this token’s first character is capitalized.)
Additional Features by Incorporating Pre-
dicted NSW Label
4. Token’s dictionary categorization label:
Unigram: Di(i = 0)
Bigram: DiDi+1(i = −2,−1, 0, 1)
Trigram: Di−1DiDi+1(i = −2,−1, 0, 1)
5. Token’s predicted NSW label:
Unigram: Li(i = 0)
Bigram: LiLi+1(i = −2,−1, 0, 1)
Trigram: Li−1LiLi+1(i = −2,−1, 0, 1)
6. Compound features using lexical and NSW
labels: WiDi,WiLi,WiDiLi(i = 0)
7. Compound features using POS and NSW
labels: PiDi, PiLi, PiDiLi(i = 0)
8. Compound features using word, POS, and
NSW labels:
WiPiDiLi(i = 0)

Table 2: Features used in the NER System. W
and P represent word and POS. D and L represent
labels classified by the dictionary and 3-way NSW
detection system. Subscripts i, i − 1 and i + 1
indicate the word position. For example, when i
equals to -1, i+ 1 means the current word.

probability of p(oi|oj) and p(oi|ti). The only dif-
ference is that oi is a NSW label. Part (C) of Figure
1 shows the trellis used in our proposed joint de-
coding approach for NSW detection and NER. In
this figure, three places are worth pointing out: (1)
the label is a combination of NSW and NER la-
bels, and thus there are nine in total; (2) the label
transition probability is a linear sum of the previ-
ous two transition probabilities: p(yi oi|yj oj) =
p(yi|yj) + β ∗ p(oi|oj), where yi and yj are BIO
tags and oi and oj are NSW tags; (3) similarly,
p(yi oi|ti) equals to p(yi|ti) +α ∗ p(oi|ti). Please
note all these probabilities are log probabilities
and they are trained separately from each system.

4 Data and Experiment

4.1 Data Set and Experiment Setup
The NSW detection model is trained using the data
released by (Li and Liu, 2014). It has 2,577 Twit-
ter messages (selected from the Edinburgh Twit-
ter corpus (Petrovic et al., 2010)), in which there
are 2,333 unique pairs of NSW and their standard
words. This data is used for training the different
normalization models. We labeled this data set us-
ing the given dictionary for NSW detection. 4,121
tokens are labeled as ill-OOV, 1,455 as correct-
OOV, and the rest 33,740 tokens are IV words.

We have two test sets for evaluating the NSW
detection system. One is from (Han and Baldwin,
2011), which includes 549 tweets. Each tweet
contains at least one ill-OOV and the correspond-
ing correct word. We call it Test set 1 in the fol-
lowing. The other is from (Li and Liu, 2015), who
further processed the tweets data from (Owoputi
et al., 2013). Briefly, Owoputi et al. (2013) re-
leased 2,347 tweets with their designed POS tags
for social media text, and then Li and Liu (2015)
further annotated this data with normalization in-
formation for each token. The released data by (Li
and Liu, 2015) contains 798 tweets with ill-OOV.
We use these 798 tweets as the second data set for
NSW detection, and call it Test set 2 in the follow-
ing. In addition, we use all of these 2,347 tweets
to train a POS model which then is used to predict
tokens’ POS tags for NER (see Section 3.2 about
the POS tags). The CRF model is implemented us-
ing the pocket-CRF toolkit5. The SRILM toolkit
(Stolcke, 2002) is used to build the character-level
language model (LM) for generating the LM fea-
tures in NSW detection system.

5http://sourceforge.net/projects/pocket-crf-1/
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Figure 1: Trellis Viterbi decoding for different systems.

The data with the NER labels are from (Ritter
et al., 2011) who annotated 2,396 tweets (34K to-
kens) with named entities, but there is no infor-
mation on the tweets’ ill-OOV words. In order to
evaluate the impact of ill-OOV on NER, we ask six
annotators to annotate the ill-OOV words and the
corresponding standard words in this data. There
are only 1,012 sentences with ill-OOV words. We
use all the sentences (2,396) for the NER exper-
iments. This data set,6 to our knowledge, is the
first one having both ill-OOV and NER annotation
in social media domain. For joint decoding, the
parameters α and β are empirically set as 0.95 and
0.5.

4.2 Experiment Results

4.2.1 NSW Detection Results
For NSW detection, we compared our two pro-
posed systems on the two test sets described
above, and also conducted different experiments to
investigate the effectiveness of different features.
We use the categorization of words by the dictio-
nary as the baseline for this task. Table 3 shows the
results for three NSW detection systems. We use
Recall, Precision and F value for the ill-OOV class
as the evaluation metrics. The Dictionary base-
line can only recognize the token as IV and OOV,
and thus label all the OOV words as ill-OOV. Both
the two-step and the 3-way classification meth-
ods in Table 3 leverage all the features described

6http://www.hlt.utdallas.edu/∼chenli/normalization ner

in Table 1. First note because of the property of
the two-step method (it further divides the OOV
words from the dictionary-based method into ill-
OOV and correct-OOV), the upper bound of its
recall is the recall of the dictionary based method.
We can see that in Test set 1, both the two-step and
the 3-way classification methods have a significant
improvement compared to the Dictionary method.
However, in Test set 2, the two-step method per-
forms much worse than that of the 3-way classifi-
cation method, although it outperforms the dictio-
nary method. This can be attributed to the charac-
teristics of that data set and also the system’s upper
bounded recall. We will provide a more detailed
analysis in the following feature analysis part.

Table 4 and 5 show the performance of the two
systems on the two test sets with different features.
Note that the dictionary feature is not applicable to
the two-step method, and the results for the two-
step method using dictionary feature (feature 1,
first line in the tables) are the same as the dictio-
nary baseline in Table 3. From these two tables,
we can see that: (1) For both systems, normaliza-
tion features (11∼16) and lexical features (2∼10)
both perform better than the dictionary feature. (2)
In general, the combination of any two kinds of
features has better performance than any one fea-
ture type. Using all the features (results shown in
Table 3) yields the best performance, which signif-
icantly improves the performance compared with
the baseline. (3) There are some differences across
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the two data sets in terms of the feature effective-
ness on the two methods. On Test set 2, when
lexical features are combined with other features
(forth and fifth line of Table 5), the 3-way classifi-
cation method significantly outperforms the two-
step method. It is because this data set has a
large number of ill-OOV words that are dictionary
words. For example, token ‘its’ appears 31 times
as ill-OOV, ‘ya’ 13 times, and ‘bro’ 10 times. Such
ill-OOV words occur more than two hundred times
in total. Since these tokens are included in the dic-
tionary, they are already classified as IV by the
dictionary, and their label will not change in the
second step. This is also the reason why in Table
3, the performance of 3-way classification is sig-
nificantly better than that of the two-step method
using all the features. However, we also find that
when we only use lexical features (2∼10), the two
methods have similar performance on Test set 2,
but the two-step method has much better perfor-
mance than the 3-way classifier method on Test
set 1. We believe this shows that lexical features
themselves are not reliable for the NSW detection
task, and other information such as normalization
features may be more stable.

System
Test Set 1 Test Set 2

R P F R P F

Dictionary 88.73 72.35 79.71 67.87 69.59 68.72

Two-step 81.66 88.74 85.05 57.60 90.04 70.26

3-way 87.63 83.49 85.51 73.53 90.42 81.10

Table 3: NSW detection results.

Features
Two-Step 3-way Classification

R P F R P F

1 88.73 72.35 79.71 87.13 70.04 77.66

2∼10 87.21 77.44 82.04 82.59 67.49 74.28

11∼16 86.45 78.77 82.43 91.75 74.97 82.51

1∼10 76.78 92.87 84.07 77.12 93.09 84.36

2∼16 81.16 89.02 84.90 87.13 86.54 85.30

1,11∼16 78.30 91.00 84.17 78.55 93.77 85.48

Table 4: Feature impact on NSW detection on Test
Set 1. The feature number corresponds to that in
Table 1.

4.2.2 NER Results
For the NER task, in order to make a fair compari-
son with (Ritter et al., 2011), we conducted 4-fold
cross validation experiments as they did. First we
present the result on the NSW detection task on
this date set when using our proposed joint de-

Features
Two-Step 3-way Classification

R P F R P F

1 67.86 69.59 68.72 66.45 64.27 65.34

2∼10 64.33 79.52 71.12 69.56 76.26 72.76

11∼16 53.78 91.34 67.70 54.35 91.42 68.17

1∼10 63.12 81.53 71.16 78.41 81.65 80.00

2∼16 56.40 89.02 69.06 72.32 90.28 80.31

1,11∼16 56.40 92.35 70.03 56.68 92.81 70.38

Table 5: Feature impact on NSW detection on Test
Set 2.

coding method integrating NER and NSW. This
is done using the 1,012 sentences that contain ill-
OOV words. Table 6 shows such results on the
NER data described in Section 4.1. The 3-way
classification method for NSW detection is used
as a baseline here. It is the same model as used
in the previous section, and applied to the entire
NER data. For each cross validation experiment
of the joint decoding method, the NSW detection
model is kept the same (from 3-way classifica-
tion method), but NER model is tested on 1/4 of
the data and trained from the remaining 3/4 of the
data. From the Table 6, we can see that joint de-
coding yields some marginal improvement for the
NSW detection task.

System R P F

3-way classification 58.65 72.83 64.97

Joint decoding w all features 59.53 72.96 65.56

Table 6: NSW detection results on the data from
(Ritter et al., 2011) with our new NSW annotation.

In the following, we will focus on the impact
of NSW detection on NER. Table 7 shows the
NER performance from different systems on the
data with NER and NSW labels. From this table,
we can see that when using our pipeline system,
adding NSW label features has a significant im-
provement compared to the basic features. The F
value of 67.4% when using all the features is even
higher than the state-of-the-art performance from
(Ritter et al., 2011). Please note that Ritter et al.
(2011) used much more information than us for
this task, such as dictionaries including a set of
type lists gathered from Freebase, brown clusters,
and outputs of their specifically designed chunk
and capitalization labels components7. Then they

7The chunk and capitalization components are specially
created by them for social media domain data. Then they
created a data set to train these models.
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improved their baseline performance from 65% to
the reported best one at 67%. However, we only
added our predicted NSW labels and related fea-
tures, and we already achieved similar or slightly
better results. Using joint decoding can further
boost the performance to 69%.

System R P F

Pipeline w basic features 55.85 74.33 63.76

Pipeline w all features 60.00 77.09 67.40

Joint decoding w all features 73.56 65.02 69.00

(Ritter et al., 2011) 73.00 61.00 67.00

Table 7: NER results from different systems on
data from (Ritter et al., 2011).

Table 8 shows the impact of different features.
This analysis is based on the pipeline system.
First, we can see that adding feature 4 and 5 (Uni-,
Bi- and Tri-gram of the dictionary and predicted
NSW labels) yields the most improvement com-
pared with other features, and between these two
kinds of features, using predicted NSW labels is
better than the dictionary labels. It also shows the
effectiveness of our NSW detection system. Sec-
ond, comparing adding feature 6 and 7, it shows
that combination of word/POS and its dictionary
or NSW label is not as good as only considering
the label’s n-gram. We also explored various other
n-gram features, but did not find any that outper-
formed feature 4 or 5. Another finding is that the
POS related features are not as good as that of
words.

Features R P F

Basic 55.85 74.33 63.76

Basic + 4 57.71 75.04 65.23

Basic + 5 57.47 75.87 65.37

Basic + 6 56.53 74.20 64.12

Basic + 7 56.13 74.66 64.06

Basic + 8 57.14 74.55 64.66

Table 8: Pipeline NER performance using differ-
ent features. The feature number corresponds to
that in Table 2.

4.2.3 Error Analysis
A detailed error analysis further shows what im-
provement our proposed method makes and what
errors it is still making. For example, for the

tweet ‘Watching the VMA pre-show again ...’, the
token VMA is annotated as B-tvshow in NER la-
bels. Without using predicted NSW labels, the
baseline system labels this token as O (outside of
named entity). However, after using the NSW pre-
dicted label correct-OOV and related features, the
pipeline NER system predicts its label as B. We
noticed that joint decoding can solve some com-
plicated cases that are hard for the pipeline sys-
tem, especially for some OOVs, or when there are
consecutive named entity tokens. For example, in
a tweet, ‘Let’s hope the Serie A continues to be
on the tv schedule next week’, Seria A is a proper
noun (meaning Italian soccer league). The anno-
tation for Seria and A is correct-OOV/B and IV/I.
We find the joint decoding system successfully la-
bels A as I after Seria is labeled as B. However, the
pipeline system labels A as O even it correctly la-
bels Seria. Take another example, in a tweet ‘I was
gonna buy a Zune HD ...’, Zune HD is consecutive
named entities. The pipeline system recognized
Zune as correct-OOV and HD as ill-OOV, then
labeled both them as O. But the joint decoding
system identified HD as correct-OOV and labeled
‘Zune HD’ as B and I. These changes may have
happened because of adjusting the transition prob-
ability and observation probability during Viterbi
decoding.

5 Conclusion and Future Work

In this paper, we proposed an approach to detect
NSW. This makes the lexical normalization task
as a complete applicable process. The proposed
NSW detection system leveraged normalization
information of an OOV and other useful lexical
information. Our experimental results show both
kinds of information can help improve the predic-
tion performance on two different data sets. Fur-
thermore, we applied the predicted labels as ad-
ditional information for the NER task. In this
task, we proposed a novel joint decoding approach
to label every token’s NSW and NER label in a
tweet at the same time. Again, experimental re-
sults demonstrate that the NSW label has a sig-
nificant impact on NER performance and our pro-
posed method improves performance on both tasks
and outperforms the best previous results in NER.

In future work, we propose to pursue a number
of directions. First, we plan to consider how to
conduct NSW detection and normalization at the
same time. Second, we like to try a joint method to
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simultaneously train the NSW detection and NER
models, rather than just combining models in de-
coding. Third, we want to investigate the impact of
NSW and normalization on other NLP tasks such
as parsing in social media data.
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Abstract

Many high level natural language process-
ing problems can be framed as determin-
ing if two given sentences are a rewrit-
ing of each other. In this paper, we pro-
pose a class of kernel functions, referred
to as type-enriched string rewriting ker-
nels, which, used in kernel-based machine
learning algorithms, allow to learn sen-
tence rewritings. Unlike previous work,
this method can be fed external lexical se-
mantic relations to capture a wider class
of rewriting rules. It also does not assume
preliminary syntactic parsing but is still
able to provide a unified framework to cap-
ture syntactic structure and alignments be-
tween the two sentences. We experiment
on three different natural sentence rewrit-
ing tasks and obtain state-of-the-art results
for all of them.

1 Introduction

Detecting implications of sense between state-
ments stands as one of the most sought-after goals
in computational linguistics. Several high level
tasks look for either one-way rewriting between
single sentences, like recognizing textual entail-
ment (RTE) (Dagan et al., 2006), or two-way
rewritings like paraphrase identification (Dolan et
al., 2004) and semantic textual similarity (Agirre
et al., 2012). In a similar fashion, selecting sen-
tences containing the answer to a question can be
seen as finding the best rewritings of the ques-
tion among answer candidates. These problems
are naturally framed as classification tasks, and
as such most current solutions make use of super-
vised machine learning. They have to tackle sev-
eral challenges: picking an adequate language rep-
resentation, aligning semantically equivalent el-
ements and extracting relevant features to learn

the final decision. Bag-of-words and by extension
bag-of-ngrams are traditionally the most direct ap-
proach and features rely mostly on lexical match-
ing (Wan et al., 2006; Lintean and Rus, 2011;
Jimenez et al., 2013). Moreover, a good solving
method has to account for typically scarce labeled
training data, by enriching its model with lexical
semantic resources like WordNet (Miller, 1995)
to bridge gaps between surface forms (Mihalcea
et al., 2006; Islam and Inkpen, 2009; Yih et al.,
2013). Models based on syntactic trees remain the
typical choice to account for the structure of the
sentences (Heilman and Smith, 2010; Wang and
Manning, 2010; Socher et al., 2011; Calvo et al.,
2014). Usually the best systems manage to com-
bine effectively different methods, like Madnani et
al.’s meta-classifier with machine translation met-
rics (Madnani et al., 2012).
A few methods (Zanzotto et al., 2007; Zanzotto
et al., 2010; Bu et al., 2012) use kernel func-
tions to learn what makes two sentence pairs sim-
ilar. Building on this work, we present a type-
enriched string rewriting kernel giving the oppor-
tunity to specify in a fine-grained way how words
match each other. Unlike previous work, rewrit-
ing rules learned using our framework account for
syntactic structure, term alignments and lexico-
semantic typed variations in a unified approach.
We detail how to efficiently compute our kernel
and lastly experiment on three different high-level
NLP tasks, demonstrating the vast applicability of
our method. Our system based on type-enriched
string rewriting kernels obtains state-of-the-art re-
sults on paraphrase identification and answer sen-
tence selection and outperforms comparable meth-
ods on RTE.

2 Type-Enriched String Rewriting
Kernel

Kernel functions measure the similarity between
two elements. Used in machine learning methods
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like SVM, they allow complex decision functions
to be learned in classification tasks (Vapnik, 2000).
The goal of a well-designed kernel function is to
have a high value when computed on two instances
of same label, and a low value for two instances of
different label.

2.1 String rewriting kernel

String rewriting kernels (Bu et al., 2012) count
the number of common rewritings between two
pairs of sentences seen as sequences of words.
The rewriting rule (A) in Figure 1 can be viewed
as a kind of phrasal paraphrase with linked vari-
ables (Madnani and Dorr, 2010). Rule (A) rewrites
(B)’s first sentence into its second but it does not
however rewrite the sentences in (C), which is
what we try to fix in this paper.
Following the terminology of string kernels, we
use the term string and character instead of sen-
tence and word. We denote (s, t) ∈ (Σ∗ × Σ∗) an
instance of string rewriting, with a source string
s and a target string t, both finite sequences of
elements in Σ the finite set of characters. Sup-
pose that we are given training data of such in-
stances labeled in {+1,−1}, for paraphrase/non-
paraphrase or entailment/non-entailment in appli-
cations. We can use a kernel method to train on
this data and learn to automatically classify unla-
beled instances. A kernel on string rewriting in-
stances is a map:

K : (Σ∗ × Σ∗)× (Σ∗ × Σ∗)→ R

such that for all (s1, t1), (s2, t2) ∈ Σ∗ × Σ∗,

K((s1, t1), (s2, t2)) = 〈Φ(s1, t1),Φ(s2, t2)〉 (1)

where Φ maps each instance into a high dimen-
sion feature space. Kernels allow us to avoid the
potentially expensive explicit representation of Φ
through the inner product space they define. The
purpose of the string rewriting kernels is to mea-
sure the similarity between two pairs of strings in
term of the number of rewriting rules of a set R
that they share. Φ is thus naturally defined by
Φ(s, t) = (φr(s, t))r∈R with φr(s, t) = n the
number of contiguous substring pairs of (s, t) that
rewriting rule r matches.

2.2 Typed rewriting rules

Let the wildcard domain D ⊆ Σ∗ be the set of
strings which can be replaced by wildcards. We

now present the formal framework of the type-
enriched string rewriting kernels.
Let Γp be the set of pattern types and Γv the set of
variable types.
To a type γp ∈ Γp, we associate the typing relation
γp≈ ⊆ Σ× Σ.
To a type γv ∈ Γv,we associate the typing relation
γv
; ⊆ D ×D.
Together with the typing relations, we call the as-
sociation of Γp and Γv the typing scheme of the
kernel. Let Σp be defined as

Σp =
⋃
γ∈Γ

{[a|b] | ∃a, b ∈ Σ, a
γ≈ b} (2)

We finally define typed rewriting rules. A typed
rewriting rule is a triple r = (βs, βt, τ), where
βs, βt ∈ (Σp ∪ {∗})∗ denote source and target
string typed patterns and τ ⊆ ind∗(βs)×ind∗(βt)
denotes the alignments between the wildcards in
the two string patterns. Here ind∗(β) denotes the
set of indices of wildcards in β.
We say that a rewriting rule (βs, βt, τ) matches a
pair of strings (s, t) if and only if the following
conditions are true:

• string patterns βs, resp. βt, can be turned into
s, resp. t, by:

– substituting each element [a|b] of Σp in
the string pattern with an a or b (∈ Σ)

– substituting each wildcard in the string
pattern with an element of the wildcard
domain D

• ∀(i, j) ∈ τ , s, resp. t, substitutes the wild-
cards at index i, resp. j, by s∗ ∈ D, resp. t∗,
such that there exists a variable type γ ∈ Γv
with s∗

γ
; t∗.

A type-enriched string rewriting kernel (TESRK)
is simply a string rewriting kernel as defined in
Equation 1 but with R a set of typed rewriting
rules. This class of kernels depends on wildcard
domain D and the typed rewriting rules R which
can be tuned to allow for more flexibility in the
matching of pairs of characters in a rewriting rule.
Within this framework, the k-gram bijective string
rewriting kernel (kb-SRK) is defined by the wild-
card domain D = Σ and the ruleset

R = {(βs, βt, τ) | βs, βt ∈ (Σp∪{∗})k, τ bijective}

under Γp = Γv = {id} with a
id≈ b, resp. a id

; b,
if and only if a = b.
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heard

was

I heard Mary shouting.

Mary was shouting.

I caught him snoring.

He was sleeping.

(A) (B) (C)

Figure 1: Rewriting rule (A) matches pair of strings (B) but does not match (C).

We now present an example of how kb-SRK is
applied to real pairs of sentences, what its limita-
tions are and how we can deal with them by re-
working its typing scheme. Let us consider again
Figure 1, (A) is a rewriting rule with βs = (heard,
∗, ∗), βt = (∗, was, ∗), τ = {(2, 1); (3, 3)}. Each
string pattern has the same length, and pairs of
wildcards in the two patterns are aligned bijec-
tively. This is a valid rule for kb-SRK. It matches
the pair of strings (B): each aligned pair of wild-
cards is substituted in source and target sentences
by the same word and string patterns of (A) can in-
deed be turned into pairs of substrings of the sen-
tences. However, it cannot match the pair of sen-
tences (C) in the original kb-SRK. We change Γp

to {hypernym, id} where a
hypernym≈ b if and only

if a and b have a common hypernym in WordNet.
And we change Γv to Γv = {same pronoun, en-
tailment, id} where a

same pronoun
; b if and only if

a and b are a pronoun of the same person and same
number, and a entailment

; b if and only if verb a has
a relation of entailment with b in WordNet.
By redefining the typing scheme, rule (A) can now
match (C).

3 Computing TESRK

3.1 Formulation

The k-gram bijective string rewriting kernel can be
computed efficiently (Bu et al., 2012). We show
that we can compute its type-enriched equivalent
at the price of a seemingly insurmountable loosen-
ing of theoretical complexity boundaries. Experi-
ments however show that its computing time is of
the same order as the original kernel.
A type-enriched kb-SRK is parameterized by k the
length of k-grams, and its typing scheme the sets
Γp and Γv and their associated relations. The an-
notations of Γp and Γv toKk and K̄k will be omit-
ted for clarity and because they typically will not
change while we test different values for k.
We rewrite the inner product in Equation 1 to bet-

ter fit the k-gram framework:

Kk((s1, t1), (s2, t2))

=
∑

αs1∈k-grams(s1)

αt1
∈k-grams(t1)

∑
αs2∈k-grams(s2)

αt2
∈k-grams(t2)

K̄k((αs1 , αt1), (αs2 , αt2))

(3)

where K̄k is the number of different rewriting
rules which match two pairs of k-grams (the same
rule cannot trigger twice in k-gram substrings):

K̄k((αs1 , αt1), (αs2 , αt2))

=
∑
r∈R

1r(αs1 , αt1)1r(αs2 , αt2) (4)

with 1r the indicator function of rule r: 1 if r
matches the pair of k-grams, 0 otherwise.
Computing Kk as defined in Equation 3 is obvi-
ously intractable. There is O((n− k + 1)4) terms
in the sum, where n is the length of the longest
string, and each term involves enumerating every
rewriting rule in R.

3.2 Computing K̄k in type-enriched kb-SRK
Enumerating all rewriting rules in Equation 4 is
itself intractable: there are more than |Σ|2k rules
without wildcards, where |Σ| is conceivably the
size of a typical lexicon. In fact, we just have
to constructively generate the rules which substi-
tute their string patterns correctly to simultane-
ously produce both pairs of k-grams (αs1 , αt1) and
(αs2 , αt2).

Let the operator ⊗ be such that α1 ⊗ α2 =
((α1[1], α2[1]), ..., (α1[k], α2[k])). This operation
is generally known as zipping in functional pro-
gramming. We use the function CountPerfect-
Matchings computed by Algorithm 1 to recur-
sively count the number of rewriting rules match-
ing both (αs1 , αt1) and (αs2 , αt2). The workings
of the algorithm will make clearer why we can
compute K̄k with the following formula:

K̄k((αs1 , αt1), (αs2 , αt2))
= CountPerfectMatchings(αs1 ⊗ αs2 , αt1 ⊗ αt2)

(5)
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Algorithm 1 takes as input remaining character
pairs in αs1 ⊗ αs2 and αt1 ⊗ αt2 , and outputs the
number of ways they can substitute aligned wild-
cards in a matching rule.
First (lines 2 and 3) we have the base case where
both remaining sets are empty. There is exactly 1
way the empty set’s wildcards can be aligned with
each other: nothing is aligned. In lines 4 to 9, there
is no source pairs anymore, so the algorithm con-
tinues to deplete target pairs as long as they have
a common pattern type, i.e. as long as they do
not have to substitute a wildcard. If a candidate
wildcard is found, as the opposing set is empty,
we cannot align it and we return 0. In the general
case (lines 11 to 19), consider the first character
pair (a1, a2) in the reminder of αs1 ⊗ αs2 in line
12. What follows in the computation depends on
its types. Every character pair in αt1 ⊗ αt2 that
can be paired through variable types with (a1, a2)
(lines 15 to 19) is a new potential wildcard align-
ment, so we try all the possible alignment and re-
cursively continue the computation after removing
both aligned pairs. And if (a1, a2) does not need to
substitute a wildcard because it has common pat-
tern types (lines 13 and 14), we can choose to not
create any wildcard pairing with it and ignore it in
the recursive call.
This algorithm enumerates all configurations such
that each character pair has a common pattern type
or is matched 1-for-1 with a character pair with
common variable types, which is exactly the defi-
nition of a rewriting rule in TESRK.

This problem is actually equivalent to count-
ing the perfect matchings of the bipartite graph
of potential wildcards. It has been shown in-
tractable (Valiant, 1979) and Algorithm 1 is a
naive recursive algorithm to solve it. In our im-
plementation we represent the graph with its bi-
adjacency matrix, and if our typing relations are
independent of k, the function has a O(k) time
complexity without including its recursive calls.
The number of recursive calls can be greater than
k!2 which is the number of perfect matchings in a
complete bipartite graph of 2k vertices. In our ex-
periments on linguistic data however, we observed
a linear number of recursive calls for low values
of k, and up to a quadratic number for k > 10
–which is way past the point where the kernel be-
comes ineffective.

As an example, Figure 2 shows the zipped k-
grams for source and target as a bipartite graph

Algorithm 1: Counting perfect matchings

1 CountPerfectMatchings(remS, remT)
Data: remS: remaining char. pairs in source
remT: remaining char. pairs in target
graph: αs1 ⊗ αs2 and αt1 ⊗ αt2 as a bipartite
graph, not added in the arguments to avoid
cluttering the recursive calls
ruleSet: Γp and Γv
Result: Number of rewriting rules matching

(αs1 , αt1) and (αs2 , αt2)
2 if remS == ∅ and remT == ∅ then
3 return 1;
4 else if remS == ∅ then
5 (b1, b2) = remT.first();

6 if ∃γ ∈ Γp | b1
γ≈ b2 then

7 return CountPerfectMatchings(∅,
remT - {(b1, b2)});

8 else
9 return 0;

10 else
11 result = 0;
12 (a1, a2) = remS.first();

13 if ∃γ ∈ Γp | a1
γ≈ a2 then

14 res += CountPerfectMatchings(remS -
{(a1, a2)}, remT);

15 for (b1, b2) ∈ remT
16 | ∃γ ∈ Γv | a1

γ
; b1 and a2

γ
; b2 do

17 res += CountPerfectMatchings(
18 remS - {(a1, a2)},
19 remT - {(b1, b2)}
20 );

(s[1], s[1]) (s[k], s[k])

(t[1], t[1]) (t[k], t[k])

(a, a)

(b, b') (e1, e2) (f1, f2)

(d1, d2)(c1, c2)... ... ... ...

............

Figure 2: Bipartite graph of character pairs, with
edges between potential wildcards

with 2k vertices and potential wildcard edges. As-
suming that vertices (a, a) and (b, b′) have com-
mon pattern types, they can be ignored as in lines
7 and 14. (c1, c2) to (f1, f2) however must substi-
tute wildcards in a matching rewriting rule. If we
align (c1, c2) with (e1, e2) in line 16, the recur-
sive call will return 0 because the other two pairs
cannot be aligned. A valid rule is generated if c’s
are paired with f ’s and d’s with e’s. This kind of
choices is the main source of computational cost.
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This problem did not arise in the original kb-SRK
because of the transitivity of its only type (iden-
tity). In type-enriched kb-SRK, wildcard pairing
is less constrained.

3.3 Computing Kk

Even with an efficient method for computing K̄k,
implementing Kk directly by applying Equation 3
remains impractical. The main idea is to effi-
ciently compute a reasonably sized set C of el-
ements ((αs1 , αt1), (αs2 , αt2)) which has the es-
sential property of including all elements such that
K̄k((αs1 , αt1), (αs2 , αt2)) 6= 0.
By definition of C, we can compute efficiently

Kk((s1, t1), (s2, t2))

=
∑

((αs1 ,αs2 ),(αt1 ,αt2 ))∈C

K̄k((αs1 , αt1), (αs2 , αt2)) (6)

There are a number of ways to do it, with a
trade-off between computation time and num-
ber of elements in the reduced domain C.
The main idea of our own algorithm is that
K̄k((αs1 , αt1), (αs2 , αt2)) = 0 if the character
pairs (a1, a2) ∈ αs1 ⊗ αs2 with no common pat-
tern type are not all matched with pairs (b1, b2) ∈
αt1⊗αt2 such that a1

γ
; b1 and a2

γ
; b2 for some

γ ∈ Γv. This is conversely true for character pairs
in αt1 ⊗ αt2 with no common pattern type. More
simply, character pairs with no common pattern
type are mismatched and have to substitute a wild-
card in a rewriting rule matching both (αs1 , αt1)
and (αs2 , αt2). But introducing a wildcard on one
side of the rule means that there is a matching
wildcard on the other side, so we can eliminate
k-gram quadruples that do not fill this wildcard
inclusion. This filtering can be done efficiently
and yields a manageable number of quadruples on
which to compute K̄k.

Algorithm 2 computes a set C to be used in
Equation 6 for computing the final value of kernel
Kk. In our experiments, it efficiently produces a
reasonable number of inputs. All maps in the algo-
rithm are maps to multisets, and multisets are used
extensively throughout. Multisets are an extension
of sets where elements can appear multiple times,
the number of times being called the multiplicity.
Typically implemented as hash tables from set
elements to integers, they allow for constant-time
retrieval of the number of a given element. Union
(∪) and intersection (∩) have special definitions
on multisets. If 1A(x) is the multiplicity of x in

A, we have 1A∪B(x) = max(1A(x),1B(x)) and
1A∩B(x) = min(1A(x),1B(x)).

Algorithm 2: Computing a set including all
elements on which K̄k 6= 0
Data: s1, t1, s2, t2 strings, and k an integer
Result: Set C which include all inputs such

that K̄k 6= 0
1 Initialize maps eis→t and maps eit→s, for
i ∈ {1, 2};

2 for i ∈ {1, 2} do
3 for a ∈ si, b ∈ ti | a γ

; b, γ ∈ Γv do
4 eis→t[a] += (b, γ); eit→s[b] += (a, γ);

5 ws→t, aPt =
OneWayInclusion(s1, s2, t1, t2, e

1
s→t, e2

s→t);
6 wt→s, aPs =

OneWayInclusion(t1, t2, s1, s2, e
1
t→s, e2

t→s);
7 Initialize multiset res;
8 for (αs1 , αs2) ∈ aPs do
9 for (αt1 , αt2) ∈ aPt do

10 res += ((αs1 , αs2), (αt1 , αt2));

11 res = res ∪ws→t ∪ wt→s.map(swap);
12 return res;
13

14 OneWayInclusion(s1, s2, t1, t2, e
1, e2)

Initialize map d multisets resWildcards,
resAllPatterns;

15 for (αs1 , αs2) ∈ kgrams(s1)× kgrams(s2) do
16 for (b1, b2) | ∃γ ∈ Γv, (a1, a2) ∈

αs1 ⊗ αs2 , (bi, γ) ∈ ei[ai] ∀i ∈ {1, 2} do
17 d[(b1, b2)] += (αs1 , αs2);

18 for (αt1 , αt2) ∈ kgrams(t1)× kgrams(t2) do

19 for (b1, b2) ∈ αt1 ⊗ αt2 | b1
γ

6= b2∀γ ∈ Γp
do

20 if compatWkgrms not initialized then
21 Initialize multiset compatWkgrms

= d[(b1, b2)];

22 compatWkgrms = compatWkgrms
∩ d[(b1, b2)];

23 if compatWkgrms not initialized then
24 resAllPatterns += (αt1 , αt2);

25 for (αs1 , αs2) ∈ compatWkgrms do
26 resWildcards+=((αs1 , αs2), (αt1 , αt2));

27 return (resWildcards, resAllPatterns);

Let us now comment on how the algorithm un-
folds. In lines 1 to 4, we index characters in source
strings by characters in target strings which have
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common variable types, and vice versa. It allows
in lines 15 to 19 to quickly map a character pair to
the set of opposing k-gram pairs with a matching
–in the sense of variable types– character pair, i.e.
potential aligned wildcards. In lines 20 to 28 we
keep only the k-gram quadruples whose wildcard
candidates (character pairs with no common pat-
tern) from one side all find matches on the other
side. We do not check for the other inclusion,
hence the name of the function OneWayInclusion.
At line 26, we did not find any character pair with
no common pattern, so we save the k-gram pair as
”all-pattern”. All-pattern k-grams will be paired
in lines 8 to 10 in the result. Finally, in line 11,
we add the union of one-way compatible k-gram
quadruples; calling swap on all the pairs of one
set is necessary to consistently have sources on the
left side and targets on the right side in the result.

4 Experiments

4.1 Systems
We experimented on three tasks: paraphrase iden-
tification, recognizing textual entailment and an-
swer sentence selection. The setup we used for all
experiments was the same save for the few param-
eters we explored such as: k, and typing scheme.
We implemented 2 kernels, kb-SRK, henceforth
simply denoted SRK, and the type-enriched kb-
SRK, denoted TESRK. All sentences were tok-
enized and POS-tagged using OpenNLP (Mor-
ton et al., 2005). Then they were stemmed us-
ing the Porter stemmer (Porter, 2001) in the case
of SRK. Various other pre-processing steps were
applied in the case of TESRK: they are consid-
ered as types in the model and are detailed in Ta-
ble 1. We used LIBSVM (Chang and Lin, 2011)
to train a binary SVM classifier on the training
data with our two kernels. The default SVM al-
gorithm in LIBSVM uses a parameter C, roughly
akin to a regularization parameter. We 10-fold
cross-validated this parameter on the training data,
optimizing with a grid search for f-score, or MRR
for question-answering. All kernels were normal-
ized using K̃(x, y) = K(x,y)√

K(x,x)
√
K(y,y)

. We de-

note by ”+” a sum of kernels, with normalizations
applied both before and after summing. Follow-
ing Bu et al. (Bu et al., 2012) experimental setup,
we introduced an auxiliary vector kernel denoted
PR of features named unigram precision and re-
call, defined in (Wan et al., 2006). In our experi-
ments a linear kernel seemed to yield the best re-

sults. Our Scala implementation of kb-SRKs has
an average throughput of about 1500 original kb-
SRK computations per second, versus 500 type-
enriched kb-SRK computations per second on a 8-
core machine. It typically takes a few hours on
a 32-core machine to train, cross-validate and test
on a full dataset.
Finally, Table 1 presents an overview of our types
with how they are defined and implemented. Ev-
ery type can be used both as a pattern type or
as a variable type, but the two roles are differ-
ent. Pattern types are useful to unify different sur-
face forms of rewriting rules that are semantically
equivalent, i.e. having semantically similar pat-
terns. Variable types are useful for when the se-
mantic relation between 2 entities across the same
rewriting is more important than the entities them-
selves. That is why some types in Table 1 are in-
herently more fitted to be used for one role rather
than the other. For example, it is unlikely that
replacing a word in a pattern of a rewriting rule
by one of its holonyms will yield a semantically
similar rewriting rule, so holonym would not be a
good pattern type for most applications. On the
contrary, it can be very useful in a rewriting rule
to type a wildcard link with the relation holonym,
as this provides constrained semantic roles to the
linked wildcards in the rule, thus holonym would
be a good variable type.

4.2 Paraphrase identification

Paraphrase identification asks whether two sen-
tences have the same meaning. The dataset we
used to evaluate our systems is the MSR Para-
phrase Corpus (Dolan and Brockett, 2005), con-
taining 4,076 training pairs of sentences and 1,725
testing pairs. For example, the sentences ”An in-
jured woman co-worker also was hospitalized and
was listed in good condition.” and ”A woman was
listed in good condition at Memorial’s HealthPark
campus, he said.” are paraphrases in this corpus.
On the other hand, ”’There are a number of lo-
cations in our community, which are essentially
vulnerable,’ Mr Ruddock said.” and ”’There are
a range of risks which are being seriously exam-
ined by competent authorities,’ Mr Ruddock said.”
are not paraphrases.

We report in Table 2 our best results, the sys-
tem TESRK + PR, defined by the sum of PR and
typed-enriched kb-SRKs with k from 1 to 4, with
types Γp = Γv = {stem, synonym}. We observe
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Type Typing relation on words (a, b) Tool/resources
id words have same surface form and tag OpenNLP tagger
idMinusTag words have same surface form OpenNLP tokenizer
lemma words have same lemma WordNetStemmer
stem words have same stem Porter stemmer
synonym, antonym words are [type] WordNet
hypernym, hyponym b is a [type] of a WordNet
entailment, holonym
ne a and b are both tagged with the same Named Entity BBN Identifinder
lvhsn words are at edit distance of 1 Levenshtein distance

Table 1: Types

Paraphrase system Accuracy F-score
All paraphrase 66.5 79.9
Wan et al. (2006) 75.6 83.0
Bu et al. (2012) 76.3 N/A
Socher et al. (2011) 76.8 83.6
Madnani et al. (2012) 77.4 84.1
PR 73.5 82.1
SRK + PR 76.2 83.6
TESRK 76.6 83.7
TESRK + PR 77.2 84.0

Table 2: Evaluation results on MSR Paraphrase

that our results are state-of-the-art and in particu-
lar, they improve on the orignal kb-SRK by a good
margin. We tried other combinations of types but
it did not yield good results, this is probably due to
the nature of the MSR corpus, which did not con-
tain much more advanced variations from Word-
Net. The only statistically significant improve-
ment we obtained was between TESRK + PR and
our PR baseline (p < 0.05). The performances
obtained by all the cited systems and ours are not
significantly different in any statistical sense. We
made a special effort to try to reproduce as best as
we could the original kb-SRK performances (Bu et
al., 2012), although our implementation and theirs
should theoretically be equivalent.

Figure 3 plots the average number of recursive
calls to CountPerfectMatchings (algorithm 1) dur-
ing a kernel computation, as a function of k. Com-
posing with logk, we can observe whether the em-
piric number of recursive calls is closer toO(k) or
O(k2). We conclude that this element of complex-
ity is linear for low values of k, but tends to ex-
plode past k = 7. Thankfully, counting common
rewriting rules on pairs of 7-to-10-grams rarely
yields non-zero results, so in practice using high
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Figure 3: Evolution of the number of recursive
calls to CountPerfectMatchings with k
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Figure 4: Evolution of the size of C with k

values of k is not interesting.
Figure 4 plots the average size of set C computed
by algorithm 2, as a function of k (divided by
the sum of lengths of the 4 sentences involved in
the kernel computation). We can observe that this
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RTE system Accuracy
All entailments 51.2
Heilman and Smith (2010) 62.8
Bu et al. (2012) 65.1
Zanzotto et al. (2007) 65.8
Hickl et al. (2006) 80.0
PR 61.8
TESRK (All) 62.1
SRK + PR 63.8
TESRK (Syn) + PR 64.1
TESRK (All) + PR 66.1

Table 3: Evaluation results on RTE-3

quantity is small, except for a peak at low values of
k, which is not an issue because the computation
of K̄k is very fast for those values of k.

4.3 Recognizing textual entailment

Recognizing Textual Entailment asks whether the
meaning of a sentence hypothesis can be inferred
by reading a sentence text. The dataset we used
to evaluate our systems is RTE-3. Following sim-
ilar work (Heilman and Smith, 2010; Bu et al.,
2012), we took as training data (text, hypothe-
sis) pairs from RTE-1 and RTE-2’s whole datasets
and from RTE-3’s training data, which amounts to
3,767 sentence pairs. We tested on RTE-3 test-
ing data containing 800 sentence pairs. For ex-
ample, a valid textual entailment in this dataset is
the pair of sentences ”In a move widely viewed
as surprising, the Bank of England raised UK in-
terest rates from 5% to 5.25%, the highest in five
years.” and ”UK interest rates went up from 5% to
5.25%.”: the first entails the second. On the other
hand, the pair ”Former French president General
Charles de Gaulle died in November. More than
6,000 people attended a requiem mass for him at
Notre Dame cathedral in Paris.” and ”Charles de
Gaulle died in 1970.” does not constitute a textual
entailment.

We report in Table 3 our best results, the sys-
tem TESRK (All) + PR, defined by the sum of
PR, 1b-SRK and typed-enriched kb-SRKs with k
from 2 to 4, with types Γp = {stem, synonym}
and Γv = {stem, synonym, hypernym, hyponym,
entailment, holonym}. Our results are to be com-
pared with systems using techniques and resources
of similar nature, but as reference the top perfor-
mance at RTE-3 is still reported. This time we did
not manage to fully reproduce Bu et al. 2012’s
performance, but we observe that type-enriched

kb-SRK greatly improves upon our original imple-
mentation of kb-SRK and outperforms their sys-
tem anyway. Combining TESRK and the PR base-
line yields significantly better results than either
one alone (p < 0.05), and performs significantly
better than the system of (Heilman and Smith,
2010), the only one which was evaluated on the
same three tasks as us (p < 0.10). We tried
with less types in our system TESRK (Syn) + PR
by removing all WordNet types but synonyms but
got lower performance. This seems to indicate
that rich types indeed help capturing more com-
plex sentence rewritings. Note that we needed for
k = 1 to replace the type-enriched kb-SRK by the
original kernel in the sum, otherwise the perfor-
mance dropped significantly. Our conclusion is
that including richer types is only beneficial if they
are captured within a context of a couple of words
and that including all those variations on unigrams
only add noise.

4.4 Answer sentence selection

Answer sentence selection is the problem of se-
lecting among single candidate sentences the ones
containing the correct answer to an open-domain
factoid question. The dataset we used to evalu-
ate our system on this task was created by (Wang
et al., 2007) based on the QA track of past Text
REtrieval Conferences (TREC-QA)1. The train-
ing set contains 4718 question/answer pairs, for
94 questions, originating from TREC 8 to 12.
The testing set contains 1517 pairs for 89 ques-
tions. As an example, a correct answer to the
question ”What do practitioners of Wicca wor-
ship?” is ”An estimated 50,000 Americans prac-
tice Wicca, a form of polytheistic nature worship.”
On the other hand, the answer candidate ”When
people think of Wicca, they think of either Sa-
tanism or silly mumbo jumbo.” is incorrect. Sen-
tences with more than 40 words and questions with
only positive or only negative answers were fil-
tered out (Yao et al., 2013). The average frac-
tion of correct answers per question is 7.4% for
training and 18.7% for testing. Performances are
evaluated as for a re-ranking problem, in term of
Mean Average Precision (MAP) and Mean Re-
ciprocal Rank (MRR). We report our results in
Table 4. We evaluated several combinations of
features. IDF word-count (IDF) is a baseline of

1Available at http://nlp.stanford.edu/
mengqiu/data/qg-emnlp07-data.tgz
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System MAP MRR
Random baseline 0.397 0.493
Wang et al. (2007) 0.603 0.685
Heilman and Smith (2010) 0.609 0.692
Wang and Manning (2010) 0.595 0.695
Yao et al. (2013) 0.631 0.748
Yih et al. (2013) LCLR 0.709 0.770
IDF word-count (IDF) 0.596 0.650
SRK 0.609 0.669
SRK + IDF 0.620 0.677
TESRK (WN) 0.642 0.725
TESRK (WN+NE) 0.656 0.744
TESRK (WN) + IDF 0.678 0.759
TESRK (WN+NE) + IDF 0.672 0.768

Table 4: Evaluation results on QA

IDF-weighted common word counting, integrated
in a linear kernel. Then we implemented SRK
and TESRK (with k from 1 to 5) with two typing
schemes: WN stands for Γp = {stem, synonym}
and Γv = {stem, synonym, hypernym, hyponym,
entailment, holonym}, and WN+NE adds type ne
to both sets of types. We finally summed our ker-
nels with the IDF baseline kernel. We observe that
types which make use of WordNet variations seem
to increase the most our performance. Our as-
sumption was that named entities would be useful
for question answering and that we could learn as-
sociations between question type and answer type
through variations: NE does seem to help a little
when combined with WN alone, but is less use-
ful once TESRK is combined with our baseline of
IDF-weighted common words. Overall, typing ca-
pabilities allow TESRK to obtain way better per-
formances than SRK in both MAP and MRR, and
our best system combining all our features is com-
parable to state-of-the-art systems in MRR, and
significantly outperforms SRK + IDF, the system
without types (p < 0.05).

5 Related work

Lodhi et al. (Lodhi et al., 2002) were among the
first in NLP to use kernels: they apply string ker-
nels which count common subsequences to text
classification. Sentence pair classification how-
ever require the capture of 2 types of links: the
link between sentences within a pair, and the link
between pairs. Zanzotto et al. (Zanzotto et al.,
2007) used a kernel method on syntactic tree pairs.
They expanded on graph kernels in (Zanzotto et

al., 2010). Their method first aligns tree nodes
of a pair of sentences to form a single tree with
placeholders. They then use tree kernel (Mos-
chitti, 2006) to compute the number of common
subtrees of those trees. Bu et al. (Bu et al.,
2012) introduced a string rewriting kernel which
can capture at once lexical equivalents and com-
mon syntactic dependencies on pair of sentences.
All these kernel methods require an exact match
or assume prior partial matches between words,
thus limiting the kind of learned rewriting rules.
Our contribution addresses this issue with a type-
enriched string rewriting kernel which can account
for lexico-semantic variations of words. Limita-
tions of our rewriting rules include the impossibil-
ity to skip a pattern word and to replace wildcards
by multiple words.
Some recent contributions (Chang et al., 2010;
Wang and Manning, 2010) also provide a uniform
way to learn both intermediary representations and
a decision function using potentially rich feature
sets. They use heuristics in the joint learning pro-
cess to reduce the computational cost, while our
kernel approach with a simple sequential repre-
sentation of sentences has the benefit of efficiently
computing an exact number of common rewriting
rules between rewriting pairs. This in turn allows
to precisely fine-tune the shape of desired rewrit-
ing rules through the design of the typing scheme.

6 Conclusion

We developed a unified kernel-based framework
for solving sentence rewriting tasks. Types al-
low for an increased flexibility in counting com-
mon rewriting rules, and can also add a semantic
layer to the rewritings. We show that we can effi-
ciently compute a kernel which takes types into ac-
count, called type-enriched k-gram bijective string
rewriting kernel. A SVM classifier with this kernel
yields state-of-the-art results in paraphrase identi-
fication and answer sentence selection and outper-
forms comparable systems in recognizing textual
entailment.
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Abstract

Selectional preferences (SPs) are widely
used in NLP as a rich source of semantic
information. While SPs have been tradi-
tionally induced from textual data, human
lexical acquisition is known to rely on both
linguistic and perceptual experience. We
present the first SP learning method that si-
multaneously draws knowledge from text,
images and videos, using image and video
descriptions to obtain visual features. Our
results show that it outperforms linguistic
and visual models in isolation, as well as
the existing SP induction approaches.

1 Introduction

Selectional preferences (SPs) are the semantic con-
straints that a predicate places onto its arguments.
This means that certain classes of entities are more
likely to fill the predicate’s argument slot than oth-
ers. For instance, while the sentences “The au-
thors wrote a new paper.” and “The cat is eating
your sausage!” sound natural and describe plausi-
ble real-life situations, the sentences “The carrot
ate the keys.” and “The law sang a driveway.” ap-
pear implausible and difficult to interpret, as the
arguments do not satisfy the verbs’ common pref-
erences. SPs provide generalisations about word
meaning and use and find a wide range of appli-
cations in natural language processing (NLP), in-
cluding word sense disambiguation (Resnik, 1997;
McCarthy and Carroll, 2003; Wagner et al., 2009),
resolving ambiguous syntactic attachments (Hindle
and Rooth, 1993), semantic role labelling (Gildea
and Jurafsky, 2002; Zapirain et al., 2010), natural
language inference (Zanzotto et al., 2006; Pantel
et al., 2007), and figurative language processing

(Fass, 1991; Mason, 2004; Shutova et al., 2013; Li
et al., 2013). Automatic acquisition of SPs from
linguistic data has thus become an active area of
research. The community has investigated a range
of techniques to tackle data sparsity and to per-
form generalisation from observed arguments to
their underlying types, including the use of Word-
Net synsets as SP classes (Resnik, 1993; Li and
Abe, 1998; Clark and Weir, 1999; Abney and Light,
1999; Ciaramita and Johnson, 2000), word cluster-
ing (Rooth et al., 1999; Bergsma et al., 2008; Sun
and Korhonen, 2009), distributional similarity met-
rics (Erk, 2007; Peirsman and Padó, 2010), latent
variable models (Ó Séaghdha, 2010; Ritter et al.,
2010), and neural networks (Van de Cruys, 2014).

Little research, however, has been concerned
with the sources of knowledge that underlie the
learning of SPs. There is ample evidence in cogni-
tive and neurolinguistics that our concept learning
and semantic representation are grounded in per-
ception and action (Barsalou, 1999; Glenberg and
Kaschak, 2002; Barsalou, 2008; Aziz-Zadeh and
Damasio, 2008). This suggests that word mean-
ing and relational knowledge are acquired not only
from linguistic input but also from our experiences
in the physical world. Multi-modal models of word
meaning have thus enjoyed a growing interest in se-
mantics (Bruni et al., 2014), outperforming purely
text-based models in tasks such as similarity es-
timation (Bruni et al., 2014; Kiela et al., 2014),
predicting compositionality (Roller and Schulte
im Walde, 2013), and concept categorization (Sil-
berer and Lapata, 2014). However, to date these
approaches relied on low-level image features such
as color histograms or SIFT keypoints to repre-
sent the meaning of isolated words. To the best
of our knowledge, there has not yet been a multi-
modal semantic approach performing extraction of
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predicate-argument relations from visual data. In
this paper, we propose the first SP model integrat-
ing information about predicate-argument interac-
tions from text, images, and videos. We expect
it to outperform purely text-based models of SPs,
which suffer from two problems: topic bias and
figurative uses of words. Such bias stems from the
fact that we typically write about abstract topics
and events, resulting in high coverage of abstract
senses of words and comparatively lower coverage
of the original physical senses (Shutova, 2011). For
instance, the verb cut is used predominantly in the
domains of economics and finance and its most fre-
quent direct objects are cost and price, according
to the British National Corpus (BNC) (Burnard,
2007). Predicate-argument distributions acquired
from text thus tend to be skewed in favour of ab-
stract domains and figurative uses, inadequately
reflecting our daily experiences with cutting, which
guide human acquisition of meaning. Integrating
predicate-argument relations observed in the physi-
cal world (in the form of image and video descrip-
tions) with the more abstract text-based relations
is likely to yield a more realistic semantic model,
with real prospects of improving the performance
of NLP applications that rely on SPs.

We use the BNC as an approximation of linguis-
tic knowledge and a large collection of tagged im-
ages and videos from Flickr (www.flickr.com)
as an approximation of perceptual knowledge. The
human-annotated labels that accompany media on
Flickr enable us to acquire predicate-argument co-
occurrence information. Our experiments focus on
verb preferences for their subjects and direct ob-
jects. In summary, our method (1) performs word
sense disambiguation and part-of-speech (PoS) tag-
ging of Flickr tag sequences to extract verb-noun
co-occurrence; (2) clusters nouns to induce SP
classes using linguistic and visual features; (3)
quantifies the strength of preference of a verb for
a given class by interpolating linguistic and visual
SP distributions. We investigate the impact of per-
ceptual information at different levels – from none
(purely text-based model) to 100% (purely visual
model). We evaluate our model directly against a
dataset of human plausibility judgements of verb-
noun pairs, as well as in the context of a semantic
task: metaphor interpretation. Our results show
that the interpolated model combining linguistic
and visual relations outperforms the purely linguis-
tic model in both evaluation settings.

2 Related work

2.1 Selectional preference induction
The widespread interest in automatic acquisition of
SPs was triggered by the work of Resnik (1993),
who treated SPs as probability distributions over all
potential arguments of a predicate, rather than a sin-
gle argument class assigned to the predicate. The
original study used WordNet to define SP classes
and to map the words in the corpus to those classes.
Since then, the field has moved toward automatic
induction of SP classes from corpus data. Rooth et
al. (1999) presented a probabilistic latent variable
model of verb preferences. In their approach, verb-
argument pairs are generated from a latent variable,
which represents a cluster of verb-argument inter-
actions. The latent variable distribution and the
probabilities that a latent variable generates the
verb and the argument are learned from the data
using Expectation Maximization (EM). The latent
variables enable the model to recognise previously
unseen verb-argument pairs. Ó Séaghdha (2010)
and Ritter et al. (2010) similarly model SPs within a
latent variable framework, but use Latent Dirichlet
Allocation (LDA) to learn the probability distri-
butions, for single-argument and multi-argument
preferences respectively.

Padó et al. (2007) and Erk (2007) used simi-
larity metrics to approximate selectional prefer-
ence classes. Their underlying hypothesis is that
a predicate-argument combination (p, a) is felici-
tous if the predicate p is frequently observed in the
data with the arguments a′ similar to a. The sys-
tems compute similarities between distributional
representations of arguments in a vector space.

Bergsma et al. (2008) trained an SVM classifier
to discriminate between felicitous and infelicitous
verb-argument pairs. Their training data consisted
of observed verb-argument pairs (positive exam-
ples) with unobserved, randomly-generated ones
(negative examples). They classified nominal ar-
guments of verbs, using their verb co-occurrence
probabilities and information about their semantic
classes as features. Bergsma and Goebel (2011) ex-
tended this method by incorporating image-driven
noun features. They extract color and SIFT key-
point features from images found for a particular
noun via Google image searches and add them to
the feature vectors to classify nouns as felicitous
or infelicitous arguments of a given verb. This
method is the closest in spirit to ours and the only
one so far to investigate the relevance of visual fea-
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tures to lexical preference learning. However, our
work casts the problem in a different framework:
rather than relying on low-level visual properties of
nouns in isolation, we explicitly model interactions
of predicates and arguments within an image or a
video frame.

Van de Cruys (2014) recently presented a deep
learning approach to SP acquisition. He trained
a neural network to discriminate between felic-
itous and infelicitous arguments using the data
constructed of positive (observed) and negative
(randomly-generated) examples for training. The
network weights were optimized by requiring the
model to assign a higher score to an observed pair
than to the unobserved one by a given margin.

2.2 Multi-modal methods in semantics

Previous work has used multimodal data to de-
termine distributional similarity or to learn multi-
modal embeddings that project multiple modalities
into the same vector space. Some studies rely on
extensions of LDA to obtain correlations between
words and visual features (Feng and Lapata, 2010;
Roller and Schulte im Walde, 2013). Bruni et al.
(2012) integrated visual features into distributional
similarity models using simple vector concatena-
tion. Instead of generic visual features, Silberer et
al. (2013) relied on supervised learning to train 412
higher-level visual attribute classifiers.

Applications of multimodal embeddings include
zero-shot object detection, i.e. recognizing objects
in images without training data for the object class
(Socher et al., 2013; Frome et al., 2013; Lazaridou
et al., 2014), and automatic generation of image
captions (Kulkarni et al., 2013), video descriptions
(Rohrbach et al., 2013), or tags (Srivastava et al.,
2014). Other applications of multimodal data in-
clude language modeling (Kiros et al., 2014) and
knowledge mining from images (Chen et al., 2013;
Divvala et al., 2014). Young et al. (2014) apply sim-
plification rules to image captions, showing that the
resulting hierarchy of mappings between natural
language expressions and images can be used for
entailment tasks.

3 Experimental data

Textual data. We extract linguistic features for
our model from the BNC. In particular, we parse
the corpus using the RASP parser (Briscoe et al.,
2006) and extract subject–verb and verb–object re-
lations from its dependency output. These relations

are then used as features for clustering to obtain SP
classes, as well as to quantify the strength of asso-
ciation between a particular verb and a particular
argument class.

Visual data. For the visual features of our model,
we mine the Yahoo! Webscope Flickr-100M dataset
(Shamma, 2014). Flickr-100M contains 99.3 mil-
lion images and 0.7 million videos with language
tags annotated by users, enabling us to generalise
SPs at a large scale. The tags reflect how humans
describe objects and actions from a visual perspec-
tive. We first stem the tags and remove words that
are absent in WordNet (typically named entities
and misspellings), then identify their PoS based
on their visual context and extract verb–noun co-
occurrences.

4 Identifying visual verb-noun
co-occurrence

In the Flickr-100M dataset, tags are assigned to im-
ages and videos in the form of sets of words, rather
than grammatically coherent sentences. However,
the roles that individual words play are still dis-
cernible from their visual context, as manifested by
the other words in a given set. In order to identify
verbs and nouns co-occurring in the same images,
we propose a list sense disambiguation method that
first maps each word to a set of possible WordNet
senses (accompanied by PoS information) and then
performs a joint optimization on the space of candi-
date word senses, such that their overall similarity
is maximized. This amounts to assigning those
senses and PoS tags to the words in the set that best
fit together.

For a given word i and one of its candidate Word-
Net senses j, we consider an assignment variable
xij and compute a sense frequency-based prior for
it as Pij = 1

1+R , where R is the WordNet rank
of the sense. We then compute a similarity score
Sij,i′j′ between all pairs of sense choices for two
words i,i′ and their respective candidate senses j,j′.
For these, we rely on WordNet’s taxonomic path-
based similarities (Pedersen et al., 2004) in the case
of noun-noun sense pairs, the Adapted Lesk sim-
ilarity measure for adjective-adjective pairs, and
finally, WordNet verb-groups and VerbNet class
membership (Kipper-Schuler, 2005) for verb-verb
pairs. Note that even parts of speech that are dis-
regarded later on can still be helpful at this stage,
as we aim at a joint optimization over all words.
After the similarities have been obtained for all rel-
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evant sense pairs, we maximize the coherence of
the senses of the words in the set as an Integer Lin-
ear Program, using the Gurobi Optimizer (Gurobi
Optimization, 2014) and solving

maximize∑
i
Pijxij +

∑
ij

∑
i′j′
Sij,i′j′Bij,i′j′

subject to∑
j xij ≤ 1 ∀i, xij ∈ {0, 1} ∀i, j,

Bij,i′j′ ≤ xij , Bij,i′j′ ≤ xi′j′ ,
Bij,i′j′ ∈ {0, 1} ∀i, j, i′j′.

The binary variables Bij,i′j′ are 1 iff xij = 1 and
xi′j′ = 1, indicating that both senses were simulta-
neously chosen. The optimizer disambiguates the
input words by selecting sense tuples x1j , x2j , . . . ,
from which we can directly obtain the correspond-
ing PoS information. Verb-noun co-occurrence
information is then extracted from the PoS-tagged
sets.

5 Selectional preference model

5.1 Acquisition of argument classes

To address the issue of data sparsity, we generalise
selectional preferences over argument classes, as
opposed to individual arguments. We obtain SP
classes by means of spectral clustering of nouns
with lexico-syntactic features, which has been
shown effective in previous lexical classification
tasks (Brew and Schulte im Walde, 2002; Sun and
Korhonen, 2009).

Spectral clustering partitions the data, relying on
a similarity matrix that records similarities between
all pairs of data points. We use Jensen-Shannon
divergence to measure the similarity between fea-
ture vectors for two nouns, wi and wj , defined as
follows:

dJS(wi, wj) =
1
2
dKL(wi||m) +

1
2
dKL(wj ||m),

(1)
where dKL is the Kullback-Leibler divergence, and
m is the average of wi and wj . We construct the
similarity matrix S computing similarities Sij as
Sij = exp(−dJS(wi, wj)). The matrix S then en-
codes a similarity graph G (over our nouns), where
Sij are the adjacency weights. The clustering prob-
lem can then be defined as identifying the optimal
partition, or cut, of the graph into clusters, such
that the intra-cluster weights are high and the inter-
cluster weights are low. We use the multiway nor-
malized cut (MNCut) algorithm of Meila and Shi
(2001) for this purpose. The algorithm transforms

S into a stochastic matrix P containing transition
probabilities between the vertices in the graph as

P = D−1S, (2)

where the degree matrix D is a diagonal matrix
with Dii =

∑N
j=1 Sij . It then computes the K

leading eigenvectors of P , where K is the desired
number of clusters. The graph is partitioned by
finding approximately equal elements in the eigen-
vectors using a simpler clustering algorithm, such
as k-means. Meila and Shi (2001) have shown that
the partition I derived in this way minimizes the
MNCut criterion:

MNCut(I) =
K∑
k=1

(1− P (Ik → Ik|Ik)), (3)

which is the sum of transition probabilities across
different clusters. Since k-means starts from a ran-
dom cluster assignment, we run the algorithm mul-
tiple times and select the partition that minimizes
the cluster distortion, i.e. distances to cluster cen-
troid.

We cluster nouns using linguistic and visual fea-
tures in two independent experiments.

Clustering with linguistic features: We first clus-
ter the 2,000 most frequent nouns in the BNC, us-
ing their grammatical relations as features. The
features consist of verb lemmas appearing in the
subject, direct object and indirect object relations
with the given nouns in the RASP-parsed BNC,
indexed by relation type. The feature vectors are
first constructed from the corpus counts, and sub-
sequently normalized by the sum of the feature
values.

Clustering with visual features: We also clus-
ter the 2,000 most frequent nouns in the Flickr
data. Since our goal is to create argument classes
for verb preferences, we extract co-occurrence fea-
tures that map to verb-noun relations from PoS-
disambiguated image tags. We use the verb lem-
mas co-occurring with the noun in the same images
and videos as features for clustering. The feature
values are again normalised by their sum.

SP classes: Example clusters produced using lin-
guistic and visual features are shown in Figures 1
and 2. Our cluster analysis reveals that the image-
derived clusters tend to capture scene-like relations
(e.g. beach and ocean; guitar and concert), as
opposed to types of entities, yielded by the lin-
guistic features and better suited to generalise over
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desire hostility anxiety passion doubt fear curiosity enthusi-
asm impulse instinct emotion feeling suspicion
official officer inspector journalist detective constable police
policeman reporter
book statement account draft guide advertisement document
report article letter

Figure 1: Clusters obtained using linguistic fea-
tures

pilot aircraft plane airline landing flight wing arrival departure
airport
concert festival music guitar alternative band instrument audi-
ence event performance rock benjamin
cost benefit crisis debt credit customer consumer

Figure 2: Clusters obtained using visual features

predicate-argument structure. In addition, the im-
age features tend to be sparse for abstract concepts,
reducing both the quality and the coverage of ab-
stract clusters. We thus use the noun clusters de-
rived with linguistic features as an approximation
of SP classes.

5.2 Quantifying selectional preferences
Once the SP classes have been obtained, we need
to quantify the strength of association of a given
verb with each of the classes. We adopt an informa-
tion theoretic measure proposed by Resnik (1993)
for this purpose. Resnik first measures selectional
preference strength (SPS) of a verb in terms of
Kullback-Leibler divergence between the distribu-
tion of noun classes occurring as arguments of this
verb, p(c|v), and the prior distribution of the noun
classes, p(c).

SPSR(v) =
∑
c

p(c|v) log
p(c|v)
p(c)

, (4)

where R is the grammatical relation for which SPs
are computed. SPS measures how strongly the
predicate constrains its arguments. Selectional as-
sociation of the verb with a particular argument
class is then defined as a relative contribution of
that argument class to the overall SPS of the verb.

AssR(v, c) =
1

SPSR(v)
p(c|v) log

p(c|v)
p(c)

(5)

We use this measure to quantify verb SPs based
on linguistic and visual co-occurrence information.
We first extract verb-subject and verb-direct object
relations from the RASP-parsed BNC, map the ar-
gument heads to SP classes and quantify selectional
association of a given verb with each SP class, thus
acquiring its base preferences. Since visual verb-
noun co-occurrences do not contain information

about grammatical relations, we rely on linguistic
data to provide a set of base arguments of the verb
for a given grammatical relation. We then interpo-
late the verb-argument probabilities from linguistic
and visual models for the base arguments of the
verb, thus preserving information about grammati-
cal relations.

5.3 Linguistic and visual model interpolation
We investigate two model interpolation techniques:
simple linear interpolation and predicate-driven lin-
ear interpolation.

Linear interpolation combines information from
component models by computing a weighted aver-
age of their probabilities. The interpolated probabil-
ity of an event e is derived as pLI(e) =

∑
i λipi(e),

where pi(e) is the probability of e in the model i
and λi is the interpolation weight defined such that∑

i λi = 1; and λi ∈ [0, 1]. In our experiments, we
interpolate the probabilities p(c) and p(c|v) in the
linguistic (LM) and visual (VM) models, as follows:

pLI(c) = λLMpLM(c) + λVMpVM(c) (6)

pLI(c|v) = λLMpLM(c|v) + λVMpVM(c|v) (7)

We experiment with a number of parameter settings
for λLM and λVM.

Predicate-driven linear interpolation derives
predicate-specific interpolation weights directly
from the data, as opposed to pre-setting them uni-
versally for all verbs. For each predicate v, we com-
pute the interpolation weights based on its promi-
nence in the respective corpus, as follows:

λi(v) =
reli(v)∑
k relk(v)

, (8)

where rel is the relevance function of model i for
verb v, computed as its relative frequency in the
respective corpus: reli(v) = fi(v)∑

V fi(v)
. The interpo-

lation weights for LM and VM are then computed
as

λLM(v) =
relLM(v)

relLM(v) + relVM(v)
(9)

λVM(v) =
relVM(v)

relLM(v) + relVM(v)
. (10)

The motivation for this approach comes from the
fact that not all verbs are represented equally well
in linguistic and visual data. For instance, while
concrete verbs, such as run, push or throw, are
more likely to be prominent in visual data, abstract
verbs, such as understand or speculate, are best
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represented in text. Relative linguistic and visual
frequencies of a verb provide a way to estimate the
relevance of linguistic and visual features to its SP
learning.

6 Direct evaluation and data analysis

We evaluate the predicate-argument scores as-
signed by our models against a dataset of hu-
man plausibility judgements of verb-direct object
pairs collected by Keller and Lapata (2003). Their
dataset is balanced with respect to the frequency
of verb-argument relations, as well as their plausi-
bility and implausibility, thus creating a realistic
SP evaluation task. Keller and Lapata selected 30
predicates and matched each of them to three ar-
guments from different co-occurrence frequency
bands according to their BNC counts, e.g. divert
attention (high frequency), divert water (medium)
and divert fruit (low). This constituted their dataset
of Seen verb-noun pairs, 90 in total. Each of the
predicates was then also paired with three randomly
selected arguments with which it did not occur in
the BNC, creating the Unseen dataset. The pairs in
both datasets were then rated for their plausibility
by 27 human subjects, and their judgements were
aggregated into a gold standard. We compare the
verb-argument scores generated by our linguistic
(LSP), visual (VSP) and interpolated (ISP) SP mod-
els against these two datasets in terms of Pearson
correlation coefficient, r, and Spearman rank cor-
relation coefficient, ρ. The selectional association
score of the cluster to which a given noun belongs
is taken to represent the preference score of the
verb for this noun. If a noun is not present in our
argument clusters, we match it to its nearest clus-
ter, as determined by its distributional similarity
to the cluster centroid in terms of Jensen-Shannon
divergence.

We first compare LSP, VSP and ISP with static
and predicate-driven interpolation weights. The
results, presented in Table 1, demonstrate that
the interpolated model outperforms both LSP and
VSP used on their own. The best performance is
attained with the static interpolation weights of
λLM = 0.8 (r = 0.540; ρ = 0.728) and λLM = 0.9
(r = 0.548; ρ = 0.699). This suggests that while
linguistic input plays a crucial role in SP induction
(by providing both semantic and syntactic informa-
tion), visual features further enhance the quality
of SPs, as we expected. Figure 3 shows LSP- and
VSP-acquired direct object preferences of the verb

Seen Unseen
r ρ r ρ

VSP 0.180 0.126 0.118 0.132
ISP: λLM = 0.1 0.279 0.532 0.220 0.371
ISP: λLM = 0.2 0.349 0.556 0.278 0.411
ISP: λLM = 0.3 0.385 0.558 0.305 0.423
ISP: λLM = 0.4 0.410 0.571 0.320 0.428
ISP: λLM = 0.5 0.448 0.579 0.329 0.430
ISP: λLM = 0.6 0.461 0.591 0.330 0.431
ISP: λLM = 0.7 0.523 0.713 0.335 0.431
ISP: λLM = 0.8 0.540 0.728 0.339 0.430
ISP: λLM = 0.9 0.548 0.699 0.342 0.429
ISP: Predicate-driven 0.476 0.597 0.391 0.551
LSP 0.512 0.688 0.412 0.559

Table 1: Model comparison on the plausibility data
of Keller and Lapata (2003)

LSP: (1) 0.309 expenditure cost risk expense emission budget
spending; (2) 0.201 dividend price rate premium rent rat-
ing salary wages; (3) 0.088 employment investment growth
supplies sale import export production [..]
ISP predicate-driven λLM = 0.65
(1) 0.346 expenditure cost risk expense emission budget
spending; (2) 0.211 dividend price rate premium rent rat-
ing salary wages; (3) 0.126 tail collar strand skirt trousers
hair curtain sleeve
VSP: (1) 0.224 tail collar strand skirt trousers hair curtain
sleeve; (2) 0.098 expenditure cost risk expense emission bud-
get spending; (3) 0.090 management delivery maintenance
transport service housing [..]

Figure 3: Top three direct object classes for cut
and their association scores, assigned by different
models

cut, as well as the effects of merging the features
in the interpolated model – the verbs’ experiential
arguments (e.g. hair or fabric) are emphasized by
the visual features.

However, the model based on visual features
alone performs poorly on the dataset of Keller and
Lapata (2003). This is partly explained by the fact
that a number of verbs in this dataset are abstract
verbs, whose visual representations in the Flickr
data are sparse. In addition, VSP (as other visual
models used in isolation from text) is not syntax-
aware and is unable to discriminate between differ-
ent types of semantic relations. VSP thus acquires
sets of verb-argument relations that are closer in
nature to scene descriptions and semantic frames
than to lexico-syntactic paradigms. Figure 4 shows
the differences between linguistic and visual ar-
guments of the verb kill ranked by LSP and VSP.
While LSP produces mainly semantic objects of kill,
VSP output contains other types of arguments, such
as weapon (instrument) and death (consequence).

Taking the argument classes produced by the
linguistic model as a basis and then re-ranking
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LSP: (1) 0.523 girl other woman child person people; (2)
0.164 fleet soldier knight force rebel guard troops crew army
pilot; (3) 0.133 sister daughter parent relative lover cousin
friend wife mother husband brother father; (4) 0.048 being
species sheep animal creature horse baby human fish male
lamb bird rabbit [..]; (5) 0.045 victim bull teenager prisoner
hero gang enemy rider offender youth killer thief [..]
VSP: (1) 0.180 defeat fall death tragedy loss collapse decline
[..]; (2) 0.141 girl other woman child person people; (3) 0.128
abuse suicide killing offence murder breach crime; (4) 0.113
handle weapon horn knife blade stick sword [..]; (5) 0.095
victim bull teenager prisoner hero gang enemy rider offender
youth killer thief [..]

Figure 4: Top five arguments of kill and their asso-
ciation scores, assigned by LSP and VSP

(1) 0.442 drink coffee champagne pint wine beer; (2) 0.182
mixture dose substance drug milk cream alcohol chemical
[..]; (3) 0.091 girl other woman child person people; (4) 0.053
sister daughter parent relative lover cousin friend wife mother
husband brother father; (5) 0.050 drop tear sweat paint blood
water juice

Figure 5: Error analysis: Mixed subjects and direct
objects of drink, assigned by the predicate-driven
ISP

them to incorporate visual statistics helps to avoid
the above problem for the interpolated models,
whose output corresponds to grammatical relations.
However, static interpolation weights (emphasiz-
ing linguistic features over the visual ones for all
verbs equally) outperformed the predicate-driven
interpolation technique, attaining correlations of
r = 0.548 and r = 0.476 respectively. This is
mainly due to the fact that some verbs are over-
represented in the visual data (e.g. the predicate-
driven interpolation weight for the verb drink is
λLM = 0.08). As a result, candidate argument
classes (selected based on syntactically-parsed lin-
guistic input) are ranked predominantly based on
visual statistics. This makes it possible to empha-
size incorrectly parsed arguments (such as subject
relations in the direct object SP distribution and
vice versa). The predicate-driven ISP output for
direct object SPs of drink, for instance, contains
a mixture of subject and direct object classes, as
shown in Figure 5. Using a static model with a
high λLM weight helps to avoid such errors and,
therefore, leads to a better performance.

In order to investigate the composition of the
visual and linguistic datasets, we assess the average
level of concreteness of the verbs and nouns present
in the datasets. We use the concreteness ratings
from the MRC Psycholinguistic Database (Wilson,
1988) for this purpose. In this database, nouns and

Figure 6: WordNet top level class distributions for
verbs in the visual and textual corpora

Seen Unseen
r ρ r ρ

Rooth et al. (1999)* 0.455 0.487 0.479 0.520
Padó et al. (2007)* 0.484 0.490 0.398 0.430
O’Seaghdha (2010) 0.520 0.548 0.564 0.605
VSP 0.180 0.126 0.118 0.132
ISP (best) 0.548 0.699 0.342 0.429
LSP 0.512 0.688 0.412 0.559

Table 2: Comparison to other SP induction meth-
ods. * Results reported in O’Seaghdha (2010).

verbs are rated for concreteness on a scale from
100 (highly abstract) to 700 (highly concrete). We
map the verbs and nouns in our textual and visual
corpora to their MRC concreteness scores. We then
calculate a dataset-wide concreteness score as an
average of the concreteness scores of individual
verbs and nouns weighted by their frequency in
the respective corpus. The average concreteness
scores in the visual dataset were 506.4 (nouns) and
498.1 (verbs). As expected, they are higher than the
respective scores in the textual data: 433.1 (nouns)
and 363.4 (verbs). In order to compare the types
of actions that are common in each of the datasets,
we map the verbs to their corresponding top level
classes in WordNet. Figure 6 shows the comparison
of prominent verb classes in visual and textual data.
One can see from the Figure that the visual dataset
is well suited for representing motion, perception
and contact, while abstract verbs related to e.g.
communication, cognition, possession or change
are more common in textual data.

We also compare the performance of our models
to existing SP induction methods: the EM-based
clustering method of Rooth et al. (1999), the vec-
tor space similarity-based method of Padó et al.
(2007) and the LDA topic modelling approach of
Ó Séaghdha (2010)1. The best ISP configuration

1Since Rooth et al.’s (1999) and Padó et al.’s (2007) models
were not originally evaluated on the same dataset, we use the
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(λLM = 0.9) outperforms all of these methods, as
well as our own LSP, on the Seen dataset, con-
firming the positive contribution of visual features.
However, it achieves less success on the Unseen
data, where the methods of Ó Séaghdha (2010)
and Rooth et al. (1999) are leading. This result
speaks in favour of latent variable models for acqui-
sition of SP estimates for rarely attested predicate-
argument pairs. In turn, this suggests that integrat-
ing our ISP model (that currently outperforms oth-
ers on more common pairs) with such techniques
is likely to improve SP prediction across frequency
bands.

7 Task-based evaluation

In order to investigate the applicability of perceptu-
ally grounded SPs in wider NLP, we evaluate them
in the context of an external semantic task – that of
metaphor interpretation. Since metaphor is based
on transferring imagery and knowledge across do-
mains – typically from more familiar domains of
physical experiences to the sphere of vague and
elusive abstract thought – metaphor interpretation
provides an ideal framework for testing perceptu-
ally grounded SPs. Our experiments rely on the
metaphor interpretation method of Shutova (2010),
in which text-derived SPs are a central component
of the system. We replace the SP component with
our LSP and ISP (λLM = 0.8) models and com-
pare their performance in the context of metaphor
interpretation.

Shutova (2010) defined metaphor interpretation
as a paraphrasing task, where literal paraphrases
for metaphorical expressions are derived from cor-
pus data using a set of statistical measures. For
instance, their system interprets the metaphor “a
carelessly leaked report” as “a carelessly disclosed
report”. Focusing on metaphorical verbs in subject
and direct object constructions, Shutova first ap-
plies a maximum likelihood model to extract and
rank candidate paraphrases for the verb given the
context, as follows:

P (i, w1, ..., wN ) =
∏N
n=1 f(wn, i)

(f(i))N−1 ·∑k f(ik)
, (11)

where f(i) is the frequency of the paraphrase on
its own and f(wn, i) the co-occurrence frequency
of the paraphrase with the context word wn. This

results for their re-implementation reported by O’Seaghdha
(2010), who conducted a comprehensive evaluation of SP
models on the plausibility data of Keller and Lapata (2003).

model favours paraphrases that match the given
context best. These candidates are then filtered
based on the presence of shared features with the
metaphorical verb, as defined by their location and
distance in the WordNet hierarchy. All the can-
didates that have a common hypernym with the
metaphorical verb within three levels of the Word-
Net hierarchy are selected. This results in a set of
paraphrases retaining the meaning of the metaphor-
ical verb. However, some of them are still figura-
tively used. Shutova further applies an SP model
to discriminate between figurative and literal para-
phrases, treating a strong selectional preference fit
as a likely indicator of literalness. The candidates
are re-ranked by the SP model, emphasizing the
verbs whose preferences the noun in the context
matches best. We use LSP and ISP scores to per-
form this re-ranking step.

We evaluate the performance of our models on
this task using the metaphor paraphrasing gold stan-
dard of Shutova (2010). The dataset consists of 52
verb metaphors and their human-produced literal
paraphrases. Following Shutova, we evaluate the
performance in terms of mean average precision
(MAP), which measures the ranking quality of GS
paraphrases across the dataset. MAP is defined as
follows:

MAP =
1
M

M∑
j=1

1
Nj

Nj∑
i=1

Pji,

where M is the number of metaphorical expres-
sions, Nj is the number of correct paraphrases for
the metaphorical expression j, Pji is the precision
at each correct paraphrase (the number of correct
paraphrases among the top i ranks). As compared
to the gold standard, ISP attains a MAP score of
0.65, outperforming both the LSP (MAP = 0.62)
and the original system of Shutova (2010) (MAP
= 0.62), demonstrating the positive contribution of
visual features.

8 Conclusion

We have presented the first SP induction method
that simultaneously draws knowledge from text,
images and videos. Our experiments show that it
outperforms linguistic and visual models in iso-
lation, as well as the previous approaches to SP
learning. We believe that this model has a wide
applicability in NLP, where many systems already
rely on automatically induced SPs. It can also
benefit image caption generation systems, which
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typically focus on objects rather than actions, by
providing information about predicate-argument
structure.

In the future, it would be interesting to derive
the information about predicate-argument relations
from low-level visual features directly. However, to
our knowledge, reliably mapping images to actions
(i.e. verbs) at a large-scale is still a challenging
task. Human-annotated image and video descrip-
tions allow us to investigate what types of verb–
noun relations are in principle present in the visual
data and the ways in which they are different from
the ones found in text. Our results show that visual
data is better suited for capturing physical proper-
ties of concepts as well as containing relations not
explicitly described in text.

The presented interpolation techniques are also
applicable outside multi-modal semantics. For in-
stance, they can be generalised to acquire SPs from
unbalanced corpora of different sizes (e.g. for lan-
guages lacking balanced corpora) or to perform
domain adaptation of SPs. In the future, we would
like to apply SP interpolation to multilingual SP
learning, i.e. integrating data from multiple lan-
guages for more accurate SP induction and project-
ing universal semantic relations to low-resource
languages. It is also interesting to investigate SP
learning at the level of semantic predicates (e.g.
automatically inducing FrameNet-style frames),
where combining the visual and linguistic knowl-
edge is likely to outperform text-based models on
their own.
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Abstract
Existing methods for Japanese predicate
argument structure (PAS) analysis identify
case arguments of each predicate without
considering interactions between the tar-
get PAS and others in a sentence. How-
ever, the argument structures of the pred-
icates in a sentence are semantically re-
lated to each other. This paper proposes
new methods for Japanese PAS analysis
to jointly identify case arguments of all
predicates in a sentence by (1) modeling
multiple PAS interactions with a bipar-
tite graph and (2) approximately search-
ing optimal PAS combinations. Perform-
ing experiments on the NAIST Text Cor-
pus, we demonstrate that our joint analysis
methods substantially outperform a strong
baseline and are comparable to previous
work.

1 Introduction

Predicate argument structure (PAS) analysis is a
shallow semantic parsing task that identifies ba-
sic semantic units of a sentence, such as who does
what to whom, which is similar to semantic role
labeling (SRL)1.

In Japanese PAS analysis, one of the most prob-
lematic issues is that arguments are often omitted
in the surface form, resulting in so-called zero-
pronouns. Consider the sentence of Figure 1.

1We use “PAS analysis” in this paper following previous
work on Japanese PAS analysis.

Figure 1: An example of Japanese PAS. The En-
glish translation is “Because ϕi caught a cold, Ii
skipped school.”. The upper edges are dependency
relations, and the under edges are case arguments.
“NOM” and “ACC” represents the nominative and
accusative arguments, respectively. “ϕi” is a zero-
pronoun, referring to the antecedent “watashii”.

The case role label “NOM” and “ACC” respec-
tively represents the nominative and accusative
roles, and ϕi represents a zero-pronoun. There
are two predicates “hiita (caught)” and “yasunda
(skipped)”. For the predicate “yasunda (skipped)”,
“watashii-wa (Ii)” is the “skipper”, and “gakko-wo
(school)” is the “entity skipped”. It is easy to iden-
tify these arguments, since syntactic dependency
between an argument and its predicate is a strong
clue. On the other hand, the nominative argument
of the predicate “hiita (caught)” is “watashii-wa
(Ii)”, and this identification is more difficult be-
cause of the lack of the direct syntactic depen-
dency with “hiita (caught)”. The original nomina-
tive argument appears as a zero-pronoun, so that
we have to explore the antecedent, an element re-
ferred to by a zero-pronoun, as the argument. As
the example sentence shows, we cannot use ef-
fective syntactic information for identifying such
arguments. This type of arguments is known as
implicit arguments, a very problematic language
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phenomenon for PAS analysis (Gerber and Chai,
2010; Laparra and Rigau, 2013).

Previous work on Japanese PAS analysis at-
tempted to solve this problem by identifying argu-
ments per predicate without considering interac-
tions between multiple predicates and arguments
(Taira et al., 2008; Imamura et al., 2009). How-
ever, implicit arguments are likely to be shared
by semantically-related predicates. In the above
example (Figure 1), the implicit argument of the
predicate “hiita (caught)” is shared by the other
predicate “yasunda (skipped)” as its nominative
argument “watashii (Ii)”.

Based on this intuition, we propose methods to
jointly identify optimal case arguments of all pred-
icates in a sentence taking their interactions into
account. We represent the interactions as a bipar-
tite graph that covers all predicates and candidate
arguments in a sentence, and factorize the whole
relation into the second-order relations. This in-
teraction modeling results in a hard combinatorial
problem because it is required to select the optimal
PAS combination from all possible PAS combina-
tions in a sentence. To solve this issue, we extend
the randomized hill-climbing algorithm (Zhang et
al., 2014) to search all possible PAS in the space
of bipartite graphs.

We perform experiments on the NAIST Text
Corpus (Iida et al., 2007), a standard bench-
mark for Japanese PAS analysis. Experimental
results show that compared with a strong base-
line, our methods achieve an improvement of
1.0-1.2 points in F-measure for total case argu-
ment identification, and especially improve per-
formance for implicit argument identification by
2.0-2.5 points. In addition, although we exploit no
external resources, we get comparable results to
previous work exploiting large-scale external re-
sources (Taira et al., 2008; Imamura et al., 2009;
Sasano and Kurohashi, 2011). These results sug-
gest that there is potential for more improvement
by adding external resources.

The main contributions of this work are: (1) We
present new methods to jointly identify case ar-
guments of all predicates in a sentence. (2) We
propose global feature templates that capture inter-
actions over multiple PAS. (3) Performing experi-
ments on the NAIST Text Corpus, we demonstrate
our methods are superior to a strong baseline and
comparable to the methods of representative pre-
vious work.

2 Japanese Predicate Argument
Structure Analysis

2.1 Task Overview
In Japanese PAS analysis, we identify arguments
taking part in the three major case roles, nomina-
tive (NOM), accusative (ACC) and dative (DAT)
cases, for each predicate. Case arguments can be
divided into three categories according to the posi-
tions relative to their predicates (Hayashibe et al.,
2011):

Dep: The arguments that have direct syntactic de-
pendency with the predicate.

Zero: The implicit arguments whose antecedents
appear in the same sentence and have no di-
rect syntactic dependency with the predicate.

Inter-Zero: The implicit arguments whose an-
tecedents do not appear in the same sentence.

For example, in Figure 1, the accusative argu-
ment “gakko-wo (school)” of the predicate “ya-
sunda (skipped)” is regarded as Dep, and the
nominative argument “watashii-wa (I)” (the an-
tecedent of zero-pronoun “ϕi”) of the predicate
“hiita (caught)” is Zero.

In this paper, we focus on the analysis for intra-
sentential arguments (Dep and Zero). In order to
identify inter-sentential arguments (Inter-Zero), it
is required to search a much broader space, such
as the whole document, resulting in a much harder
analysis than intra-sentential arguments.2 There-
fore, we believe that quite different approaches are
necessary to realize an inter-sentential PAS analy-
sis with high accuracy, and leave it for future work.

2.2 Related Work
For Japanese PAS analysis research, the NAIST
Text Corpus has been used as a standard bench-
mark (Iida et al., 2007). One of the representa-
tive researches using the NAIST Text Corpus is
Imamura et al. (2009). They built three distinct
models corresponding to the three case roles by
extracting features defined on each pair of a predi-
cate and a candidate argument. Using each model,
they select the best candidate argument for each
case per predicate. Their models are based on
maximum entropy model and can easily incorpo-
rate various features, resulting in high accuracy.

2Around 10-20% in F measure has been achieved in pre-
vious work (Taira et al., 2008; Imamura et al., 2009; Sasano
and Kurohashi, 2011).
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Figure 2: Intuitive image of a predicate-argument
graph. This graph is factorized into the local and
global features. The different line color/style indi-
cate different cases.

While in Imamura et al. (2009) one case ar-
gument is identified at a time per predicate, the
method proposed by Sasano and Kurohashi (2011)
simultaneously determines all the three case argu-
ments per predicate by exploiting large-scale case
frames obtained from large raw texts. They fo-
cus on identification of implicit arguments (Zero
and Inter-Zero), and achieves comparable results
to Imamura et al. (2009).

In these approaches, case arguments were iden-
tified per predicate without considering interac-
tions between multiple predicates and candidate
arguments in a sentence. In the semantic role la-
beling (SRL) task, Yang and Zong (2014) pointed
out that information of different predicates and
their candidate arguments could help each other
for identifying arguments taking part in semantic
roles. They exploited a reranking method to cap-
ture the interactions between multiple predicates
and candidate arguments, and jointly determine ar-
gument structures of all predicates in a sentence
(Yang and Zong, 2014). In this paper, we propose
new joint analysis methods for identifying case ar-
guments of all predicates in a sentence capturing
interactions between multiple predicates and can-
didate arguments.

3 Graph-Based Joint Models

3.1 A Predicate-Argument Graph

We define predicate argument relations by exploit-
ing a bipartite graph, illustrated in Figure 2. The
nodes of the graph consist of two disjoint sets: the
left one is a set of candidate arguments and the
right one is a set of predicates. In this paper, we
call it a predicate-argument (PA) graph.

Each predicate node has three distinct edges
corresponding to nominative (NOM), accusative
(ACC), and dative (DAT) cases. Each edge with
a case role label joins a candidate argument node
with a predicate node, which represents a case ar-
gument of a predicate. For instance, in Figure 2
a1 is the nominative argument of p1, and a3 is the
accusative argument of p2.

Formally, a PA graph is a bipartite graph
⟨A,P,E⟩, where A is the node set consisting of
candidate arguments, P the node set consisting of
predicates, and E the set of edges subject to that
there is exactly one edge e with a case role label c
outgoing from each of the predicate nodes p to a
candidate argument node a. A PA graph is defined
as follows:

A = {a1, ..., an, an+1 = NULL}
P = {p1, ..., pm}
E = {⟨a, p, c⟩ | deg(p, c) = 1,

∀a ∈ A, ∀p ∈ P, ∀c ∈ C }
where deg(p, c) is the number of edges with a case
role c outgoing from p, and C is the case role label
set. We add a dummy node an+1, which is defined
for the cases where the predicate requires no case
argument or the required case argument does not
appear in the sentence. An edge e ∈ E is repre-
sented by a tuple ⟨a, p, c⟩, indicating the edge with
a case role c joining a candidate argument node a
and a predicate node p. An admissible PA graph
satisfies the constraint deg(p, c) = 1, representing
that each predicate node p has only one edge with
a case role c.

To identify the whole PAS for a sentence x, we
predict the PA graph with an edge set correspond-
ing to the correct PAS from the admissible PA
graph set G(x) based on a score associated with
a PA graph y as follows:

ỹ = argmax
y∈G(x)

Score(x, y)

A scoring function Score(x, y) receives a sen-
tence x and a candidate graph y as its input, and
returns a scalar value.

In this paper, we propose two scoring functions
as analysis models based on different assumptions:
(1) Per-Case Joint Model assumes the interac-
tion between multiple predicates (predicate inter-
action) and the independence between case roles,
and (2) All-Cases Joint Model assumes the in-
teraction between case roles (case interaction) as
well as the predicate interaction.
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3.2 Per-Case Joint Model

Per-Case Joint Model assumes that different case
roles are independent from each other. However,
for each case, interactions between multiple pred-
icates are considered jointly.

We define the score of a PA graph y to be the
sum of the scores for each case role c of the set of
the case roles C:

Scoreper(x, y) =
∑
c∈C

Scorec(x, y) (1)

The scores for each case role are defined as the dot
products between a weight vector θc and a feature
vector ϕc(x,E(y, c)):

Scorec(x, y) = θc · ϕc(x, E(y, c)) (2)

where E(y, c) is the edge set associated with a
case role c in the candidate graph y, and the feature
vector is defined on the edge set.

The edge set E(y, c) in the equation (2) is uti-
lized for the two types of features, the local fea-
tures and global features, inspired by (Huang,
2008), defined as follows:

θc · ϕc(x,E(y, c)) =∑
e∈E(y,c)

θc ϕl(x, e) + θc ϕg(x, E(y, c)) (3)

where ϕl(x, e) denotes the local feature vector,
and ϕg(x,E(y, c)) the global feature vector. The
local feature vector ϕl(x, e) is defined on each
edge e in the edge set E(y, c) and a sentence x,
which captures a predicate-argument pair. Con-
sider the example of Figure 2. For Per-Case Joint
Model, we use edges, ea1p1 , ea1p2 , and ea2p3 , as
local features to compute the score of the edge set
with the nominative case.

In addition, the global feature vector
ϕg(x,E(y, c)) is defined on the edge set
E(y, c), and enables the model to utilize lin-
guistically richer information over multiple
predicate-argument pairs. In this paper, we
exploit second-order relations, similar to the
second-order edge factorization of dependency
trees (McDonald and Pereira, 2006). We make a
set of edge pairs Epair by combining two edges
ei, ej in the edge set E(y, c), as follows:

Epair = { {ei, ej} | ∀ei, ej ∈ E(y, c), ei ̸= ej }

For instance, in the PA graph in Figure 2, to com-
pute the score of the nominative arguments, we
make three edge pairs:

{{ea1p1 , ea1p2}, {ea1p1 , ea2p3}, {ea1p2 , ea2p3}}
Then, features are extracted from these edge pairs
and utilized for the score computation. For the
accusative and dative cases, their scores are com-
puted in the same manner. Then, we obtain the
resulting score of the PA graph by summing up
the scores of the local and global features. If we
do not consider the global features, the model re-
duces to a per-case local model similar to previous
work (Imamura et al., 2009).

3.3 All-Cases Joint Model
While Per-Case Joint Model assumes the predi-
cate interaction with the independence between
case roles, All-Cases Joint Model assumes the
case interaction together with the predicate inter-
action. Our graph-based formulation is very flex-
ible and easily enables the extension of Per-Case
Joint Model to All-Cases Joint Model. Therefore,
we extend Per-Case Joint Model to All-Cases Joint
Model to capture the interactions between predi-
cates and all case arguments in a sentence.

We define the score of a PA graph y based on
the local and global features as follows:

Scoreall(x, y) =∑
e∈E(y)

θ · ϕl(x, e) + θ · ϕg(x,E(y)) (4)

where E(y) is the edge set associated with all the
case roles on the candidate graph y, ϕl(x, e) is the
local feature vector defined on each edge e in the
edge set E(y), and ϕg(x,E(y)) is the global fea-
ture vector defined on the edge set E(y).

Consider the PA graph in Figure 2. The local
features are extracted from each edge:

Nominative : ea1p1 , ea1p2 , ea2p3

Accusative : ea2p1 , ea3p2 , ea3p3

Dative : ea3p1 , ea4p2 , ea4p3

For the global features, we make a set of edge
pairs Epair by combining two edges ei, ej in the
edge set E(y), like Per-Case Joint Model. How-
ever, in the All-Cases Joint Model, the global fea-
tures may involve different cases (i.e. mixing
edges with different case roles). For the PA graph
in Figure 2, we make the edge pairs {ea1p1 , ea2p1},
{ea3p1 , ea1p2}, {ea3p2 , ea4p3}, and so on. From
these edge pairs, we extract information as global
features to compute a graph score.

964



Structure Name Description
Diff-Arg PAIR ⟨ pi.rf ◦ pj .rf ◦ pi.vo ◦ pj .vo ⟩,

⟨ ai.ax ◦ ai.rp ◦ pi.ax ◦ pi.vo ⟩, ⟨ aj .ax ◦ aj .rp ◦ pj .ax ◦ pj .vo ⟩
TRIANGLE ⟨ ai.ax ◦ ai.ax ◦ ai.rp ◦ aj .rp ◦ pi.ax ◦ pi.vo ⟩,

⟨ ai.ax ◦ aj .ax ◦ ai.rp ◦ aj .rp ◦ pj .ax ◦ pj .vo ⟩,
QUAD ⟨ ai.ax ◦ aj .ax ◦ ai.rp ◦ aj .rp ◦ pi.vo ◦ pj .vo ⟩

⟨ ai.ax ◦ aj .ax ◦ pi.ax ◦ pj .ax ◦ ai.rp ◦ aj .rp ◦ pi.vo ◦ pj .vo ⟩
⟨ ai.ax ◦ aj .ax ◦ pi.rf ◦ pj .rf ◦ ai.rp ◦ ai.rp ◦ pi.vo ◦ pi.vo ⟩

Co-Arg BI-PREDS ⟨ ai.rp ◦ pi.rf ◦ pj .rf ⟩,
⟨ ai.ax ◦ ai.rp ◦ pi.rf ◦ pj .rf ⟩

DEP-REL ⟨ ai.ax ◦ ai.rp ◦ pi.ax ◦ pj .ax ◦ pi.vo ◦ pj .vo ◦ (x, y).dep ⟩
if x depends on y for x,y in (pi,pj), (ai,pi), (ai,pj), (pi,ai), (pj ,ai)

Table 1: Global feature templates. pi, pj is a predicate, ai is the argument connected with pi, and
aj is the argument connected with pj . Feature conjunction is indicated by ◦; ax=auxiliary, rp=relative
position, vo=voice, rf=regular form, dep=dependency. All the features are conjoined with the relative
position and the case role labels of the two predicates.

4 Global Features

Features are extracted based on feature tem-
plates, which are functions that draw information
from the given entity. For instance, one feature
template ϕ100 = a.ax ◦ p.vo is a conjunction of
two atomic features a.ax and p.vo, representing an
auxiliary word attached to a candidate argument
(a.ax) and the voice of a predicate (p.vo). We
design several feature templates for characterizing
each specific PA graph. Consider the PA graph
constructed from the sentence in Figure 1, and a
candidate argument “kaze-wo (a cold)” and a pred-
icate “hiita (caught)” are connected with an edge.
To characterize the graph, we draw some linguis-
tic information associated with the edge. Since the
auxiliary word attached to the candidate argument
is “wo” and the voice of the predicate is “active”,
the above feature template ϕ100 will generate a
feature instance as follows.

(a.ax = wo) ◦ (p.vo = active)
Such features are utilized for the local and global
features in the joint models.

We propose the global feature templates that
capture multiple PAS interactions based on the
Diff-Arg and Co-Arg structures, depicted in the
right part of Figure 1. The Diff-Arg structure rep-
resents that the two predicates have different can-
didate arguments, and the Co-Arg structure repre-
sents that the two predicates share the same can-
didate argument. Based on these structures, we
define the global feature templates that receive a
pair of edges in a PA graph as input and return a
feature vector, shown in Table 1.

4.1 Diff-Arg Features

The feature templates based on the Diff-Arg struc-
ture are three types: PAIR (a pair of predicate-
argument relation), TRIANGLE (a predicate and
its two arguments relation), and QUAD (two
predicate-argument relations).

PAIR These feature templates denote where the
target argument is located relative to another argu-
ment and the two predicates in the Diff-Arg struc-
ture. We combine the relative position information
(rp) with the auxiliary words (ax) and the voice of
the two predicates (vo).

TRIANGLE This type of feature templates cap-
tures the interactions between three elements: two
candidate arguments and a predicate. Like the
PAIR feature templates, we encode the relative po-
sition information of two candidate arguments and
a predicate with the auxiliary words and voice.

QUAD When we judge if a candidate argu-
ment takes part in a case role of a predicate, it
would be beneficial to grasp information of an-
other predicate-argument pair. The QUAD fea-
ture templates capture the mutual relation between
four elements: two candidate arguments and pred-
icates. We encode the relative position informa-
tion, the auxiliary words, and the voice.

4.2 Co-Arg Features

To identify predicates that take implicit (Zero) ar-
guments, we set two feature types, BI-PREDS and
DEP-REL, based on the Co-Arg structure.

BI-PREDS For identifying an implicit argu-
965



Input: the set of cases to be analyzed C,
parameter θc, sentence x

Output: a locally optimal PA graph ỹ

1: Sample a PA graph y(0) from G(x)
2: t← 0
3: for each case c ∈ C do
4: repeat
5: Yc ← NeighborG(y(t), c) ∪ y(t)

6: y(t+1) ← argmax
y∈Yc

θc · ϕc(x,E(y, c))

7: t← t + 1
8: until y(t) = y(t+1)

9: end for
10: return ỹ ← y(t)

Figure 3: Hill-Climbing for Per-Case Joint Model

Input: the set of cases to be analyzed C,
parameter θ, sentence x

Output: a locally optimal PA graph ỹ

1: Sample a PA graph y(0) from G(x)
2: t← 0
3: repeat
4: Y ← NeighborG(y(t)) ∪ y(t)

5: y(t+1) ← argmax
y∈Y

θ · ϕ(x,E(y))

6: t← t + 1
7: until y(t) = y(t+1)

8: return ỹ ← y(t)

Figure 4: Hill-Climbing for All-Cases Joint Model

ment of a predicate, information of another
semantically-related predicate in the sentence
could be effective. We utilize bi-grams of the reg-
ular forms (rf) of the two predicates in the Co-Arg
structure to capture the predicates that are likely to
share the same argument in the sentence.

DEP-REL We set five distinct feature templates
to capture dependency relations (dep) between the
shared argument and the two predicates. If two
elements have a direct dependency relation, we
encode its dependency relation with the auxiliary
words and the voice.

5 Inference and Training

5.1 Inference for the Joint Models

Global features make the inference of finding the
maximum scoring PA graph more difficult. For
searching the graph with the highest score, we pro-

pose two greedy search algorithms by extending
the randomized hill-climbing algorithm proposed
in (Zhang et al., 2014), which has been shown to
achieve the state-of-the-art performance in depen-
dency parsing.

Figure 3 describes the pseudo code of our pro-
posed algorithm for Per-Case Joint Model. Firstly,
we set an initial PA graph y(0) sampled uniformly
from the set of admissible PA graphs G(x) (line 1
in Figure 3). Then, the union Yc is constructed
from the set of neighboring graphs with a case
NeighborG(y(t), c), which is a set of admissible
graphs obtained by changing one edge with the
case c in y(t), and the current graph y(t) (line 5).
The current graph y(t) is updated to a higher scor-
ing graph y(t+1) selected from the union Yc (line
6). The algorithm continues until no more score
improvement is possible by changing an edge with
the case c in y(t) (line 8). This repetition is exe-
cuted for other case roles in the same manner. As
a result, we can get a locally optimal graph ỹ.

Figure 4 describes the pseudo code of the algo-
rithm for All-Cases Joint Model. The large part of
the algorithm is the same as that for Per-Case Joint
Model. The difference is that the union Y consists
of the current graph y(t) and the neighboring graph
set obtained by changing one edge in y(t) regard-
less of case roles (line 4 in Figure 4), and that the
iteration process for each case role (line 3 in Fig-
ure 3) is removed. The algorithm also continues
until no more score improvement is possible by
changing an edge in y(t), resulting in a locally op-
timal graph ỹ.

Following Zhang et al. (2014), for a given sen-
tence x, we repeatedly run these algorithms with
K consecutive restarts. Each run starts with initial
graphs randomly sampled from the set of admis-
sible PA graphs G(x), so that we obtain K local
optimal graphs by K restarts. Then the highest
scoring one of K graphs is selected for the sen-
tence x as the result. Each run of the algorithms is
independent from each other, so that multiple runs
are easily executable in parallel.

5.2 Training

Given a training data set D = {(x̂, ŷ)}Ni , the
weight vectors θ (θc) in the scoring functions of
the joint models are estimated by using machine
learning techniques. We adopt averaged percep-
tron (Collins, 2002) with a max-margin technique:
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∀i ∈ {1, ..., N}, y ∈ G(xi),
Score(x̂i, ŷi) ≥ Score(x̂i, y) + ∥ŷi − y∥1 − ξi

where ξi ≥ 0 is the slack variable and ∥ŷi− y∥1 is
the Hamming distance between the gold PA graph
ŷi and a candidate PA graph y of the admissible
PA graphs G(xi). Following Zhang et al. (2014),
we select the highest scoring graph ỹ as follows:

TRAIN : ỹ = argmax
y∈G(x̂i)

{Score(x̂i, y)+∥ŷi−y∥1}
TEST : ỹ = argmax

y∈G(x)
{Score(x, y)}

Using the weight vector tuned by the training, we
perform analysis on a sentence x in the test set.

6 Experiment

6.1 Experimental Settings
Data Set We evaluate our proposed methods on
the NAIST Text Corpus 1.5, which consists of
40,000 sentences of Japanese newspaper text (Iida
et al., 2007). While previous work has adopted
the version 1.4 beta, we adopt the latest version.
The major difference between version 1.4 beta and
1.5 is revision of dative case (corresponding to
Japanese case particle “ni”). In 1.4 beta, most of
adjunct usages of “ni” are mixed up with the argu-
ment usages of “ni”, making the identification of
dative cases seemingly easy. Therefore, our results
are not directly comparable with previous work.

We adopt standard train/dev/test split (Taira et
al., 2008) as follows:

Train Articles: Jan 1-11, Editorials: Jan-Aug
Dev Articles: Jan 12-13, Editorials: Sept
Test Articles: Jan 14-17, Editorials: Oct-Dec

We exclude inter-sentential arguments (Inter-
Zero) in our experiments. Our features make use
of the annotated POS tags, phrase boundaries, and
dependency relations annotated in the NAIST Text
Corpus. We do not use any external resources.

Baseline We adopt the pointwise method (using
only local features) proposed by Imamura et al.
(2009) as the baseline. They built three distinct
models corresponding to the three case roles. By
using each model, they estimate the likelihood that
each candidate argument plays a case role of the
target predicate as a score, and independently se-
lect the highest scoring one per predicate.

feature Dep Zero Total
PC Joint local 84.59 42.55 77.89

+ global 85.51 44.54 78.85
AC Joint local 84.17 41.33 77.43

+ global 85.92 44.45 79.17

Table 2: Global vs Local features on the develop-
ment sets in F-measures. “PC Joint” denotes the
Per-Case Joint Model, and “AC Joint” denotes the
All-Cases Joint Model.

Features The baseline utilizes the Baseline Fea-
tures used in Imamura et al. (2009) and Grammat-
ical features used in Hayashibe et al. (2009), as
the “Local Features”. In addition, the joint models
utilize the “Global Features” in Table 1.

Implementation Details For our joint models
with hill-climbing, we report the average per-
formance across ten independent runs with 10
restarts, which almost reaches convergence 3. We
train the baseline and our joint models for 20 iter-
ations with averaged perceptron.

6.2 Results

Local Features vs Global Features
Table 2 shows the effectiveness of the global fea-
tures on the development sets. We incrementally
add the global features to the both models that uti-
lize only the local features. The results show that
the global features improve the performance by
about 1.0 point in F-measures in total. For and
are particularly beneficial to the implicit (Zero)
argument identification (an improvement of 1.99
points in Per-Case Joint Model and 3.12 points in
All-Cases Joint Model).

Pointwise Methods vs Joint Methods
Table 3 presents the F-measures of the baseline
and our joint methods on the test set of the NAIST
Text Corpus. We used the bootstrap resampling
method as the significance test. In most of the met-
rics, our proposed joint methods outperform the
baseline pointwise method. Note that since Per-
Case Joint Model yields better results compared
with the baseline, capturing the predicate inter-
action is beneficial to Japanese PAS analysis. In
addition, the joint methods achieve a considerable
improvement of 2.0-2.5 points in F-measure for

3Performance did not change when increasing the number
of restarts
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Case Type # of Args. Baseline PC Joint AC Joint
NOM Dep 14055 86.50 87.54 † 88.13 † ‡

Zero 4935 45.56 47.62 48.11
Total 18990 77.31 78.39 † 79.03 † ‡

ACC Dep 9473 92.84 ⋆ 93.09 † ⋆ 92.74
Zero 833 21.38 22.73 24.43
Total 10306 88.86 ⋆ 89.00 † ⋆ 88.47

DAT Dep 2518 30.97 34.29 † 38.39 † ‡
Zero 239 0.83 0.83 4.80
Total 2757 29.02 32.20 † 36.35 † ‡

ALL Dep 26046 85.06 85.79 † 86.07 † ‡
Zero 6007 41.65 43.60 44.09
Total 32053 78.15 78.91 † 79.23 † ‡

Table 3: F-measures of the three methods in the test sets. The bold values denote the highest F-measures
among all the three methods. Statistical significance with p < 0.05 is marked with † compared with
Baseline, ‡ compared with PC Joint, and ⋆ compared with AC Joint.

Dep Zero
NOM ACC DAT NOM ACC DAT

TA08 75.53 88.20 89.51 30.15 11.41 3.66
IM09 87.0 93.9 80.8 50.0 30.8 0.0

S&K11 - - - 39.5 17.5 8.9
PC Joint 87.54 93.09 34.19 47.62 22.73 0.83
AC Joint 88.13 92.74 38.39 48.11 24.44 4.80

Table 4: Comparison with previous work using the NAIST Text Corpus in F-measure. TA08 is Taira et
al. (2008), IM09 is Imamura et al. (2009), and S&K11 is Sasano & Kurohashi (2011). Their results are
not directly comparable to ours since they use external resources and the NAIST Text Corpus 1.4 beta.

the implicit arguments (Zero), one of the problem-
atic issues in Japanese PAS analysis.

Comparing the joint methods, each of our two
joint methods is effective for a different case role.
Per-Case Joint Model is better at the ACC case,
and All-Cases Joint Model is better at the NOM
and DAT cases. One of the possible explanations is
that the distribution of ACC cases is different from
NOM cases. While the ratio of Dep and Zero argu-
ments for ACC cases is 90:10, the ratio for NOM
cases is 75:25. This might have some negative
effects on the ACC case identification with All-
Cases Joint Model. However, in total, All-Cases
Joint Model achieves significantly better results.
This suggests that capturing case interactions im-
proves performance of Japanese PAS analysis.

Existing Methods vs Joint Methods
To compare our proposed methods with previous
work, we pick the three pieces of representative
previous work exploiting the NAIST Text Cor-

pus: Taira et al. (2008) (TA08), Imamura et al.
(2009) (IM09), and Sasano and Kurohashi (2011)
(S&K11). Sasano and Kurohashi (2011) focus on
the analysis for the Zero and Inter-Zero arguments,
and do not report the results on the Dep arguments.
With respect to the Dep arguments, the All-Cases
Joint Model achieves the best result for the NOM
cases, Imamura et al. (2009) the best for the ACC
cases, and Taira et al. (2008) the best for the DAT
cases. In terms of the Zero arguments, Imamura
et al. (2009) is the best for the NOM and ACC
cases, and Sasano and Kurohashi (2011) the best
for the DAT cases. Our joint methods achieve high
performance comparable to Imamura et al. (2009).

However, because they used additional exter-
nal resources and a different version of the NAIST
Text Corpus, the results of previous work are not
directly comparable to ours. Our research direc-
tion and contributions are orthogonal to theirs, and
adding their external resources could potentially
leads to much better results.
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7 Conclusion

We have presented joint methods for Japanese PAS
analysis, which model interactions between mul-
tiple predicates and arguments using a bipartite
graph and greedily search the optimal PAS combi-
nation in a sentence. Experimental results shows
that capturing the predicate interaction and case
interaction is effective for Japanese PAS analy-
sis. In particular, implicit (Zero) argument identi-
fication, one of the problematic issues in Japanese
PAS analysis, is improved by taking such interac-
tions into account. Since this framework is appli-
cable to the argument classification in SRL, apply-
ing our methods to that task is an interesting line
of the future research. In addition, the final results
of our joint methods are comparable to represen-
tative existing methods despite using no external
resources. For future work, we plan to incorporate
external resources for our joint methods.
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Abstract

We introduce C-PHRASE, a distributional
semantic model that learns word repre-
sentations by optimizing context predic-
tion for phrases at all levels in a syntactic
tree, from single words to full sentences.
C-PHRASE outperforms the state-of-the-
art C-BOW model on a variety of lexical
tasks. Moreover, since C-PHRASE word
vectors are induced through a composi-
tional learning objective (modeling the
contexts of words combined into phrases),
when they are summed, they produce sen-
tence representations that rival those gen-
erated by ad-hoc compositional models.

1 Introduction

Distributional semantic models, that induce
vector-based meaning representations from pat-
terns of co-occurrence of words in corpora, have
proven very successful at modeling many lexical
relations, such as synonymy, co-hyponomy and
analogy (Mikolov et al., 2013c; Turney and Pan-
tel, 2010). The recent evaluation of Baroni et al.
(2014b) suggests that the C-BOW model intro-
duced by Mikolov et al. (2013a) is, consistently,
the best across many tasks.1

Interestingly, C-BOW vectors are estimated
with a simple compositional approach: The
weights of adjacent words are jointly optimized so
that their sum will predict the distribution of their
contexts. This is reminiscent of how the parame-
ters of some compositional distributional seman-

1We refer here not only to the results reported in
Baroni et al. (2014b), but also to the more exten-
sive evaluation that Baroni and colleagues present in
the companion website (http://clic.cimec.unitn.
it/composes/semantic-vectors.html). The ex-
periments there suggest that only the Glove vectors of Pen-
nington et al. (2014) are competitive with C-BOW, and only
when trained on a corpus several orders of magnitude larger
than the one used for C-BOW.

tic models are estimated by optimizing the pre-
diction of the contexts in which phrases occur in
corpora (Baroni and Zamparelli, 2010; Guevara,
2010; Dinu et al., 2013). However, these compo-
sitional approaches assume that word vectors have
already been constructed, and contextual evidence
is only used to induce optimal combination rules
to derive representations of phrases and sentences.

In this paper, we follow through on this observa-
tion to propose the new C-PHRASE model. Sim-
ilarly to C-BOW, C-PHRASE learns word repre-
sentations by optimizing their joint context pre-
diction. However, unlike in flat, window-based
C-BOW, C-PHRASE groups words according to
their syntactic structure, and it simultaneously op-
timizes context-predictions at different levels of
the syntactic hierarchy. For example, given train-
ing sentence “A sad dog is howling in the park”,
C-PHRASE will optimize context prediction for
dog, sad dog, a sad dog, a sad dog is howling,
etc., but not, for example, for howling in, as these
two words do not form a syntactic constituent by
themselves.

C-PHRASE word representations outperform
C-BOW on several word-level benchmarks. In ad-
dition, because they are estimated in a composi-
tional way, C-PHRASE word vectors, when com-
bined through simple addition, produce sentence
representations that are better than those obtained
when adding other kinds of vectors, and competi-
tive against ad-hoc compositional methods on var-
ious sentence meaning benchmarks.

2 The C-PHRASE model

We start with a brief overview of the models pro-
posed by Mikolov et al. (2013a), as C-PHRASE
builds on them. The Skip-gram model derives
the vector of a target word by setting its weights
to predict the words surrounding it in the corpus.
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More specifically, the objective function is:

1
T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt) (1)

where the word sequence w1, w2, ..., wT is the
training corpus and c is the size of the window
around the target word wt, consisting of the con-
text words wt+j that must be predicted by the in-
duced vector representation for the target.

While Skip-gram learns each word represen-
tation separately, the C-BOW model takes their
combination into account. More precisely, it tries
to predict a context word from the combination of
the previous and following words, where the com-
bination method is vector addition. The objective
function is:

1
T

T∑
t=1

log p(wt|wt−c..wt−1, wt+1..wt+c) (2)

While other distributional models consider se-
quences of words jointly as context when estimat-
ing the parameters for a single word (Agirre et al.,
2009; Melamud et al., 2014), C-BOW is unique
in that it estimates the weights of a sequence of
words jointly, based on their shared context. In
this respect, C-BOW extends the distributional hy-
pothesis (Harris, 1954) that words with similar
context distributions should have similar meanings
to longer sequences. However, the word combi-
nations of C-BOW are not natural linguistic con-
stituents, but arbitrary n-grams (e.g., sequences of
5 words with a gap in the middle). Moreover, the
model does not attempt to capture the hierarchical
nature of syntactic phrasing, such that big brown
dog is a meaningful phrase, but so are its children
brown dog and dog.

C-PHRASE aims at capturing the same intu-
ition that word combinations with similar con-
text distributions will have similar meaning, but
it applies it to syntactically motivated, potentially
nested phrases. More precisely, we estimate word
vectors such that they and their summed combi-
nations are able to predict the contexts of words,
phrases and sentences. The model is formalized
as follows. We start from a parsed text corpus
T, composed of constituents C[wl, · · · , wr], where
wl, · · · , wr are the words spanned by the con-
stituent, located in positions l to r in the corpus.
We minimize an objective function analogous to

equations (1) and (2), but instead of just using in-
dividual words or bags of words to predict context,
we use summed vector representations of well-
formed constituents at all levels in the syntactic
tree to predict the context of these constituents.
There are similarities with both CBOW and Skip-
gram. At the leaf nodes, C-PHRASE acts like
Skip-gram, whereas at higher node in the parse
tree, it behaves like CBOW model. Concretely, we
try to predict the words located within a window
cC from every constituent in the parse tree.2 In or-
der to do so, we learn vector representations for
words vw by maximizing the sum of the log prob-
abilities of the words in the context window of the
well-formed constituents with stochastic gradient
descent:

∑
C[wl,··· ,wr]∈T

∑
1≤j≤cC

(
log p(wl−j |C[wl, · · · , wr])

+ log p(wr+j |C[wl, · · · , wr])
)

(3)

with p theoretically defined as:

p(wO|C[wl, · · · , wr])

=
exp

(
v′>wO

∑r
i=l vwi
r−l+1

)
∑W

w=1 exp
(
v′>w

∑r
i=l vwi
r−l+1

)
where W is the size of the vocabulary, v′ and v

denote output (context) and input vectors, respec-
tively, and we take the input vectors to represent
the words. In practice, since the normalization
constant for the above probability is expensive to
compute, we follow Mikolov et al. (2013b) and
use negative sampling.

We let the context window size cC vary as a
function of the height of the constituent in the
syntactic tree. The height h(C) of a constituent
is given by the maximum number of intermedi-
ate nodes separating it from any of the words it
dominates (such that h = 0 for words, h = 1 for
two-word phrases, etc.). Then, for a constituent
of height h(C), C-PHRASE considers cC = c1 +
h(C)c2 context words to its left and right (the non-
negative integers c1 and c2 are hyperparameters of
the model; with c2 = 0, context becomes constant

2Although here we only use single words as context,
the latter can be extended to encompass any sensible lin-
guistic item, e.g., frequent n-grams or, as discussed below,
syntactically-mediated expressions
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Figure 1: C-PHRASE context prediction objec-
tive for the phrase small cat and its children. The
phrase vector is obtained by summing the word
vectors. The predicted window is wider for the
higher constituent (the phrase).

across heights). The intuition for enlarging the
window proportionally to height is that, for shorter
phrases, narrower contexts are likely to be most in-
formative (e.g., a modifying adjective for a noun),
whereas for longer phrases and sentences it might
be better to focus on broader “topical” information
spread across larger windows (paragraphs contain-
ing sentences about weather might also contain the
words rain and sun, but without any tendency for
these words to be perfectly adjacent to the target
sentences).

Figure 1 illustrates the prediction objective for
a two-word phrase and its children. Since all
constituents (except the topmost) form parts of
larger constituents, their representations will be
learned both from the objective of predicting their
own contexts, and from error propagation from the
same objective applied higher in the tree. As a side
effect, words, being lower in the syntactic tree,
will have their vectors updated more often, and
thus might have a greater impact on the learned pa-
rameters. This is another reason for varying win-
dow size with height, so that the latter effect will
be counter-balanced by higher constituents having
larger context windows to predict.

For lexical tasks, we directly use the vectors
induced by C-PHRASE as word representations.
For sentential tasks, we simply add the vectors of
the words in a sentence to obtain its representation,
exploiting the fact that C-PHRASE was trained to
predict phrase contexts from the additive combi-
nation of their elements.

Joint optimization of word and phrase vectors
The C-PHRASE hierarchical learning objective

can capture, in parallel, generalizations about the
contexts of words and phrases at different levels
of complexity. This results, as we will see, in bet-
ter word vectors, presumably because C-PHRASE
is trained to predict how the contexts of a word
change based on its phrasal collocates (cup will
have very different contexts in world cup vs. cof-
fee cup ). At the same time, because the vectors are
optimized based on their occurrence in phrases of
different syntactic complexity, they produce good
sentence representations when they are combined.
To the best of our knowledge, C-PHRASE is the
first model that is jointly optimized for lexical and
compositional tasks. C-BOW uses shallow com-
position information to learn word vectors. Con-
versely, some compositional models –e.g., Kalch-
brenner et al. (2014), Socher et al. (2013)– in-
duce word representations, that are only optimized
for a compositional task and are not tested at the
lexical level. Somewhat relatedly to what we
do, Hill et al. (2014) evaluated representations
learned in a sentence translation task on word-
level benchmarks. Some a priori justification for
treating word and sentence learning as joint prob-
lems comes from human language acquisition, as
it is obvious that children learn word and phrase
meanings in parallel and interactively, not sequen-
tially (Tomasello, 2003).

Knowledge-leanness and simplicity For train-
ing, C-PHRASE requires a large, syntactically-
parsed corpus (more precisely, it only requires the
constituent structure assigned by the parser, as it
is blind to syntactic labels). Both large unan-
notated corpora and efficient pre-trained parsers
are available for many languages, making the C-
PHRASE knowledge demands feasible for practi-
cal purposes. There is no need to parse the sen-
tences we want to build representations for at test
time, since the component word vectors are sim-
ply added. The only parameters of the model are
the word vectors; specifically, no extra parameters
are needed for composition (composition models
such as the one presented in Socher et al. (2012)
require an extra parameter matrix for each word
in the vocabulary, and even leaner models such as
the one of Guevara (2010) must estimate a param-
eter matrix for each composition rule in the gram-
mar). This makes C-PHRASE as simple as addi-
tive and multiplicative composition (Mitchell and
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Lapata, 2010),3 but C-PHRASE is both more ef-
fective in compositional tasks (see evaluation be-
low), and it has the further advantage that it learns
its own word vectors, thus reducing the number of
arbitrary choices to be made in modeling.

Supervision Unlike many recent composition
models (Kalchbrenner and Blunsom, 2013; Kalch-
brenner et al., 2014; Socher et al., 2012; Socher
et al., 2013, among others), the context-prediction
objective of C-PHRASE does not require anno-
tated data, and it is meant to provide general-
purpose representations that can serve in differ-
ent tasks. C-PHRASE vectors can also be used
as initialization parameters for fully supervised,
task-specific systems. Alternatively, the current
unsupervised objective could be combined with
task-specific supervised objectives to fine-tune C-
PHRASE to specific purposes.

Sensitivity to syntactic structure During train-
ing, C-PHRASE is sensitive to syntactic structure.
To cite an extreme example, boy flowers will be
joined in a context-predicting phrase in “these are
considered [boy flowers]”, but not in “he gave
[the boy] [flowers]”. A more common case is
that of determiners, that will only occur in phrases
that also contain the following word, but not nec-
essarily the preceding one. Sentence composi-
tion at test time, on the other hand, is additive,
and thus syntax-insensitive. Still, the vectors be-
ing combined will reflect syntactic generalizations
learned in training. Even if C-PHRASE produces
the same representation for red+car and car+red,
this representation combines a red vector that, dur-
ing training, has often occurred in the modifier
position of adjective-noun phrases, whereas car
will have often occurred in the corresponding head
position. So, presumably, the red+car=car+red
vector will encode the adjective-noun asymmetry
induced in learning. While the model won’t be
able to distinguish the rare cases in which car red
is genuinely used as a phrase, in realistic scenar-
ios this won’t be a problem, because only red car
will be encountered. In this respect, the successes
and failures of C-PHRASE can tell us to what ex-
tent word order information is truly distinctive in
practice, and to what extent it can instead be re-
constructed from the typical role that words play
in sentences.

3We do not report results for component-wise multiplica-
tive in our evaluation because it performed much worse than
addition in all the tasks.

Comparison with traditional syntax-sensitive
word representations Syntax has often been
exploited in distributional semantics for a richer
characterization of context. By relying on a syn-
tactic parse of the input corpus, a distributional
model can take more informative contexts such
as subject-of-eat vs. object-of-eat into account
(Baroni and Lenci, 2010; Curran and Moens,
2002; Grefenstette, 1994; Erk and Padó, 2008;
Levy and Goldberg, 2014a; Padó and Lapata,
2007; Rothenhäusler and Schütze, 2009). In this
approach, syntactic information serves to select
and/or enrich the contexts that are used to build
representations of target units. On the other hand,
we use syntax to determine the target units that
we build representations for (in the sense that we
jointly learn representations of their constituents).
The focus is thus on unrelated aspects of model in-
duction, and we could indeed use syntax-mediated
contexts together with our phrasing strategy. Cur-
rently, given eat (red apples), we treat eat as
window-based context of red apples, but we could
also take the context to be object-of-eat.

3 Evaluation

3.1 Data sets

Semantic relatedness of words In this classic
lexical task, the models are required to quantify
the degree of semantic similarity or relatedness of
pairs of words in terms of cosines between the cor-
responding vectors. These scores are then com-
pared to human gold standards. Performance is as-
sessed by computing the correlation between sys-
tem and human scores (Spearman correlation in
all tasks except rg, where it is customary to re-
port Pearson). We used, first of all, the MEN
(men) data set of Bruni et al. (2014), that is split
into 1K pairs for training/development, and 1K
pairs for testing. We used the training set to tune
the hyperparameters of our model, and report per-
formance on the test set. The C-BOW model
of Baroni et al. (2014b) achieved state-of-the art
performance on MEN test. We also evaluate on
the widely used WordSim353 set introduced by
Finkelstein et al. (2002), which consists of 353
word pairs. The WordSim353 data were split by
Agirre et al. (2009) into similarity (wss) and re-
latedness (wsr) subsets, focusing on strictly taxo-
nomic (television/radio) vs. broader topical cases
(Maradona/football), respectively. State-of-the-
art performance on both sets is reported by Baroni
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et al. (2014b), with the C-BOW model. We fur-
ther consider the classic data set of Rubenstein and
Goodenough (1965) (rg), consisting of 65 noun
pairs. We report the state-of-the-art from Hassan
and Mihalcea (2011), which exploited Wikipedia’s
linking structure.

Concept categorization Systems are asked to
group a set of nominal concepts into broader cate-
gories (e.g. arthritis and anthrax into illness; ba-
nana and grape into fruit). As in previous work,
we treat this as an unsupervised clustering task.
We feed the similarity matrix produced by a model
for all concepts in a test set to the CLUTO toolkit
(Karypis, 2003), that clusters them into n groups,
where n is the number of categories. We use
standard CLUTO parameters from the literature,
and quantify performance by cluster purity with
respect to the gold categories. The Almuhareb-
Poesio benchmark (Almuhareb, 2006) (ap) con-
sists of 402 concepts belonging to 21 categories.
A distributional model based on carefully chosen
syntactic relations achieved top ap performance
(Rothenhäusler and Schütze, 2009). The ESSLLI
2008 data set (Baroni et al., 2008) (esslli) consists
of 6 categories and 42 concepts. State of the art
was achieved by Katrenko and Adriaans (2008) by
using full-Web queries and manually crafted pat-
terns.

Semantic analogy The last lexical task we pick
is analogy (an), introduced in Mikolov et al.
(2013c). We focus on their semantic challenge,
containing about 9K questions. In each question,
the system is given a pair exemplifying a relation
(man/king) and a test word (woman); it is then
asked to find the word (queen) that instantiates the
same relation with the test word as that of the ex-
ample pair. Mikolov et al. (2013c) subtract the
vector of the first word in a pair from the sec-
ond, add the vector of the test word and look for
the nearest neighbor of the resulting vector (e.g.,
find the word whose vector is closest to king -
man + woman). We follow the method introduced
by Levy and Goldberg (2014b), which returns the
word x maximizing cos(king,x)×cos(woman,x)

cos(man,x) . This
method yields better results for all models. Per-
formance is measured by accuracy in retrieving
the correct answer (in our search space of 180K
words). The current state of the art on the seman-
tic part and on the whole data set was reached by
Pennington et al. (2014), who trained their word

representations on a huge corpus consisting of 42B
words.

Sentential semantic relatedness Similarly to
word relatedness, composed sentence representa-
tions can be evaluated against benchmarks where
humans provided relatedness/similarity scores for
sentence pairs (sentences with high scores, such as
“A person in a black jacket is doing tricks on a mo-
torbike”/“A man in a black jacket is doing tricks
on a motorbike” from the SICK data-set, tend to
be near-paraphrases). Following previous work on
these data sets, Pearson correlation is our figure
of merit, and we report it between human scores
and sentence vector cosine similarities computed
by the models. SICK (Marelli et al., 2014) (sick-r)
was created specifically for the purpose of evalu-
ating compositional models, focusing on linguistic
phenomena such as lexical variation and word or-
der. Here we report performance of the systems
on the test part of the data set, which contains 5K
sentence pairs. The top performance (from the
SICK SemEval shared task) was reached by Zhao
et al. (2014) using a heterogeneous set of features
that include WordNet and extra training corpora.
Agirre et al. (2012) and Agirre et al. (2013) cre-
ated two collections of sentential similarities con-
sisting of subsets coming from different sources.
From these, we pick the Microsoft Research video
description dataset (msrvid), where near para-
phrases are descriptions of the same short video,
and the OnWN 2012 (onwn1) and OnWN 2013
(onwn2) data sets (each of these sets contains 750
pairs). The latter are quite different from other
sentence relatedness benchmarks, since they com-
pare definitions for the same or different words
taken from WordNet and OntoNotes: these glosses
often are syntactic fragments (“cause something
to pass or lead somewhere”), rather than full sen-
tences. We report top performance on these tasks
from the respective shared challenges, as sum-
marized by Agirre et al. (2012) and Agirre et al.
(2013). Again, the top systems use feature-rich,
supervised methods relying on distributional sim-
ilarity as well as other sources, such as WordNet
and named entity recognizers.

Sentential entailment Detecting the presence
of entailment between sentences or longer pas-
sages is one of the most useful features that the
computational analysis of text could provide (Da-
gan et al., 2009). We test our model on the SICK
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entailment task (sick-e) (Marelli et al., 2014).
All SICK sentence pairs are labeled as ENTAIL-
ING (“Two teams are competing in a football
match”/”Two groups of people are playing foot-
ball”), CONTRADICTING (“The brown horse is
near a red barrel at the rodeo”/“The brown horse
is far from a red barrel at the rodeo”) or NEU-
TRAL (“A man in a black jacket is doing tricks on
a motorbike”/”A person is riding the bicycle on
one wheel”). For each model, we train a simple
SVM classifier based on 2 features: cosine simi-
larity between the two sentence vectors, as given
by the models, and whether the sentence pair con-
tains a negation word (the latter has been shown
to be a very informative feature for SICK entail-
ment). The current state-of-the-art is reached by
Lai and Hockenmaier (2014), using a much richer
set of features, that include WordNet, the denota-
tion graph of Young et al. (2014) and extra training
data from other resources.

Sentiment analysis Finally, as sentiment analy-
sis has emerged as a popular area of application
for compositional models, we test our methods on
the Stanford Sentiment Treebank (Socher et al.,
2013) (sst), consisting of 11,855 sentences from
movie reviews, using the coarse annotation into
2 sentiment degrees (negative/positive). We fol-
low the official split into train (8,544), develop-
ment (1,101) and test (2,210) parts. We train an
SVM classifier on the training set, using the sen-
tence vectors composed by a model as features,
and report accuracy on the test set. State of the
art is obtained by Le and Mikolov (2014) with the
Paragraph Vector approach we describe below.

3.2 Model implementation

The source corpus we use to build the lex-
ical vectors is created by concatenating three
sources: ukWaC,4 a mid-2009 dump of the En-
glish Wikipedia5 and the British National Corpus6

(about 2.8B words in total). We build vectors for
the 180K words occurring at least 100 times in
the corpus. Since our training procedure requires
parsed trees, we parse the corpus using the Stan-
ford parser (Klein and Manning, 2003).

C-PHRASE has two hyperparameters (see Sec-
tion 2 above), namely basic window size (c1) and
height-dependent window enlargement factor (c2).

4http://wacky.sslmit.unibo.it
5http://en.wikipedia.org
6http://www.natcorp.ox.ac.uk

Moreover, following Mikolov et al. (2013b), dur-
ing training we sub-sample less informative, very
frequent words: this option is controlled by a pa-
rameter t, resulting in aggressive subsampling of
words with relative frequency above it. We tune
on MEN-train, obtaining c1 = 5, c2 = 2 and
t = 10−5. As already mentioned, sentence vec-
tors are built by summing the vectors of the words
in them.

In lexical tasks, we compare our model to the
best C-BOW model from Baroni et al. (2014b),7

and to a Skip-gram model built using the same hy-
perparameters as C-PHRASE (that also led to the
best MEN-train results for Skip-gram).

In sentential tasks, we compare our model
against adding the best C-BOW vectors pre-
trained by Baroni and colleagues,8 and adding our
Skip-gram vectors. We compare the additive ap-
proaches to two sophisticated composition mod-
els. The first is the Practical Lexical Function
(PLF) model of Paperno et al. (2014). This is a
linguistically motivated model in the tradition of
the “functional composition” approaches of Co-
ecke et al. (2010) and Baroni et al. (2014a), and
the only model in this line of research that has
been shown to empirically scale up to real-life sen-
tence challenges. In short, in the PLF model all
words are represented by vectors. Words acting
as argument-taking functions (such as verbs or ad-
jectives) are also associated to one matrix for each
argument they take (e.g., each transitive verb has
a subject and an object matrix). Vector represen-
tations of arguments are recursively multiplied by
function matrices, following the syntactic tree up
to the top node. The final sentence representa-
tion is obtained by summing all the resulting vec-
tors. The PLF approach requires syntactic parsing
both in training and in testing and, more cumber-
somely, to train a separate matrix for each argu-
ment slot of each function word (the training ob-
jective is again a context-predicting one). Here,
we report PLF results on msrvid and onwn2 from
Paperno et al. (2014), noting that they also used
two simple but precious cues (word overlap and
sentence length) we do not adopt here. We used
their pre-trained vectors and matrices also for the
SICK challenges, while the number of new ma-

7For fairness, we report their results when all tasks were
evaluated with the same set of parameters, tuned on rg: this
is row 8 of their Table 2.

8http://clic.cimec.unitn.it/composes/
semantic-vectors.html

976



trices to estimate made it too time-consuming to
implement this model in the onwn1 and sst tasks.

Finally, we test the Paragraph Vector (PV) ap-
proach recently proposed by Le and Mikolov
(2014). Under PV, sentence representations are
learned by predicting the words that occur in them.
This unsupervised method has been shown by
the authors to outperform much more sophisti-
cated, supervised neural-network-based composi-
tion models on the sst task. We use our own imple-
mentation for this approach. Unlike in the original
experiments, we found the PV-DBOW variant of
PV to consistently outperform PV-DM, and so we
report results obtained with the former.

Note that PV-DBOW aims mainly at providing
representations for sentences, not words. When
we do not need to induce vectors for sentences
in the training corpus, i.e., only train to learn
single words’ representations and the softmax
weights, PV-DBOW essentially reduces to Skip-
gram. Therefore, we produce the PV-DBOW vec-
tors for the sentences in the evaluation data sets
using the softmax weights learned by Skip-gram.
However, it is not clear that, if we were to train PV-
DBOW jointly for words and sentences, we would
get word vectors as good as those that Skip-gram
induces.

4 Results

The results on the lexical tasks reported in Table 1
prove that C-PHRASE is providing excellent word
representations, (nearly) as good or better than the
C-BOW vectors of Baroni and colleagues in all
cases, except for ap. Whenever C-PHRASE is not
close to the state of the art results, the latter relied
on richer knowledge sources and/or much larger
corpora (ap, esslli, an).

Turning to the sentential tasks (Table 2), we first
remark that using high-quality word vectors (such
as C-BOW) and summing them leads to good re-
sults in all tasks, competitive with those obtained
with more sophisticated composition models. This
confirms the observation made by Blacoe and La-
pata (2012) that simple-minded composition mod-
els are not necessarily worse than advanced ap-
proaches. Still, C-PHRASE is consistently better
than C-BOW in all tasks, except sst, where the two
models reach the same performance level.

C-PHRASE is outperforming PV on all tasks
except sick-e, where the two models have the same
performance, and onwn2, where PV is slightly

better. C-PHRASE is outperforming PLF by a
large margin on the SICK sets, whereas the two
models are equal on msrvid, and PLF better on
onwn2. Recall, however, that on the latter two
benchmarks PLF used extra word overlap and sen-
tence length features, so the comparison is not en-
tirely fair.

The fact that state-of-the-art performance is
well above our models is not surprising, since the
SOA systems are invariably based on a wealth
of knowledge sources, and highly optimized for
a task. To put some of our results in a broader
perspective, C-PHRASE’s sick-r performance is
1% better than the median result of systems that
participated in the SICK SemEval challenge, and
comparable to that of Beltagy et al. (2014), who
entered the competition with a system combining
distributional semantics with a supervised proba-
bilistic soft logic system. For sick-e (the entail-
ment task), C-PHRASE’s performance is less than
one point below the median of the SemEval sys-
tems, and slightly above that of the Stanford sub-
mission, that used a recursive neural network with
a tensor layer.

Finally, the performance of all our models, in-
cluding PV, on sst is remarkably lower than the
state-of-the-art performance of PV as reported by
Le and Mikolov (2014). We believe that the
crucial difference is that these authors estimated
PV vectors specifically on the sentiment treebank
training data, thus building ad-hoc vectors encod-
ing the semantics of movie reviews. We leave it
to further research to ascertain whether we could
better fine-tune our models to sst by including the
sentiment treebank training phrases in our source
corpus.

Comparing vector lengths of C-BOW and C-
PHRASE We gather some insight into how the
C-PHRASE objective might adjust word represen-
tations for composition with respect to C-BOW by
looking at how the length of word vectors changes
across the two models.9 While this is a very coarse
measure, if a word vector is much longer/shorter
(relative to the length of other word vectors of the
same model) for C-PHRASE vs. C-BOW, it means
that, when sentences are composed by addition,
the effect of the word on the resulting sentence
representation will be stronger/weaker.

9We performed the same analysis for C-PHRASE and
Skip-gram, finding similar general trends to the ones we re-
port for C-PHRASE and C-BOW.
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men wss wsr rg ap esslli an
Skip-gram 78 77 66 80 65 82 63
C-BOW 80 78 68 83 71 77 68
C-PHRASE 79 79 70 83 65 84 69
SOA 80 80 70 86 79 91 82

Table 1: Lexical task performance. See Section 3.1 for figures of merit (all in percentage form) and
state-of-the-art references. C-BOW results (tuned on rg) are taken from Baroni et al. 2014b.

sick-r sick-e msrvid onwn1 onwn2 sst
Skip-gram 70 72 74 66 62 78
C-BOW 70 74 74 69 63 79
C-PHRASE 72 75 79 70 65 79
PLF 57 72 79 NA 67 NA
PV 67 75 77 66 66 77
SOA 83 85 88 71 75 88

Table 2: Sentential task performance. See Section 3.1 for figures of merit (all in percentage form) and
state-of-the-art references. The PLF results on msrvid and onwn2 are taken from Paperno et al. 2014.

The relative-length-difference test returns the
following words as the ones that are most severely
de-emphasized by C-PHRASE compared to C-
BOW: be, that, an, not, they, he, who, when,
well, have. Clearly, C-PHRASE is weighting
down grammatical terms that tend to be context-
agnostic, and will be accompanied, in phrases, by
more context-informative content words. Indeed,
the list of terms that are instead emphasized by
C-PHRASE include such content-rich, monose-
mous words as gnawing, smackdown, demograph-
ics. This is confirmed by a POS-level analysis
that indicates that the categories that are, on av-
erage, most de-emphasized by C-PHRASE are:
determiners, modals, pronouns, prepositions and
(more surprisingly) proper nouns. The ones that
are, in relative terms, more emphasized are: -ing
verb forms, plural and singular nouns, adjectives
and their superlatives. While this reliance on con-
tent words to the detriment of grammatical terms
is not always good for sentential tasks (“not al-
ways good” means something very different from
“always good”!), the convincing comparative per-
formance of C-PHRASE in such tasks suggests
that the semantic effect of grammatical terms is
in any case beyond the scope of current corpus-
based models, and often not crucial to attain com-
petitive results on typical benchmarks (think, e.g.,
of how little modals, one of the categories that C-
PHRASE downplays the most, will matter when
detecting paraphrases that are based on picture de-
scriptions).

We also applied the length difference test to
words in specific categories, finding similar pat-
terns. For example, looking at -ly adverbs only,
those that are de-emphasized the most by C-
PHRASE are recently, eventually, originally, no-
tably and currently – all adverbs denoting tempo-
ral factors or speaker attitude. On the other hand,
the ones that C-PHRASE lengthens the most, rel-
ative to C-BOW, are clinically, divinely, ecolog-
ically, noisily and theatrically: all adverbs with
more specific, content-word-like meanings, that
are better captured by distributional methods, and
are likely to have a bigger impact on tasks such as
paraphrasing or entailment.

Effects of joint optimization at word and
phrase levels As we have argued before, C-
PHRASE is able to obtain good word representa-
tions presumably because it learns to predict how
the context of a word changes in the presence of
different collocates. To gain further insight into
this claim, we looked at the nearest neighbours
of some example terms, like neural, network and
neural network (the latter, composed by addition)
both in C-PHRASE and C-BOW. The results for
this particular example can be appreciated in Ta-
ble 3.

Interestingly, while for C-BOW we observe
some confusion between the meaning of the indi-
vidual words and the phrase, C-PHRASE seems
to provide more orthogonal representations for
the lexical items. For example, neural in C-
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C-BOW C-PHRASE
neural network neural network neural network neural network

neuronal networks network neuronal networks network
neurons superjanet4 neural cortical internetwork neural
hopfield backhaul networks connectionist wans perceptron
cortical fiber-optic hopfield neurophysiological network. networks

connectionist point-to-multipoint packet-switched sensorimotor multicasting hebbian
feed-forward nsfnet small-world sensorimotor nsfnet neurons
feedforward multi-service local-area neocortex networking neocortex

neuron circuit-switched superjanet4 electrophysiological tymnet connectionist
backpropagation wide-area neuronal neurobiological x.25 neuronal

Table 3: Nearest neighbours of neural, network and neural network both for C-BOW and C-PHRASE

BOW contains neighbours that fit well with neu-
ral network, like hopfield, connectionist and feed-
forward. Conversely, neural network has neigh-
bours that correspond to network like local-area
and packet-switched. In contrast, C-PHRASE
neighbours for neural are mostly related to the
brain sense of the word, e.g., cortical, neurophys-
iological, etc. (with the only exception of connec-
tionist). The first neighbour of neural network, ex-
cluding its own component words, quite sensibly,
is perceptron.

5 Conclusion

We introduced C-PHRASE, a distributional se-
mantic model that is trained on the task of pre-
dicting the contexts surrounding phrases at all lev-
els of a hierarchical sentence parse, from single
words to full sentences. Consequently, word vec-
tors are induced by taking into account not only
their contexts, but also how co-occurrence with
other words within a syntactic constituent is af-
fecting these contexts.

C-PHRASE vectors outperform state-of-the-art
C-BOW vectors in a wide range of lexical tasks.
Moreover, because of the way they are induced,
when C-PHRASE vectors are summed, they pro-
duce sentence representations that are as good or
better than those obtained with sophisticated com-
position methods.

C-PHRASE is a very parsimonious approach:
The only major resource required, compared
to a completely knowledge-free, unsupervised
method, is an automated parse of the training cor-
pus (but no syntactic labels are required, nor pars-
ing at test time). C-PHRASE has only 3 hyperpa-
rameters and no composition-specific parameter to
tune and store.

Having established a strong empirical baseline
with this parsimonious approach, in future re-
search we want to investigate the impact of possi-

ble extensions on both lexical and sentential tasks.
When combining the vectors, either for induction
or composition, we will try replacing plain addi-
tion with other operations, starting with something
as simple as learning scalar weights for different
words in a phrase (Mitchell and Lapata, 2010).
We also intend to explore more systematic ways
to incorporate supervised signals into learning, to
fine-tune C-PHRASE vectors to specific tasks.

On the testing side, we are fascinated by the
good performance of additive models, that (at test
time, at least) do not take word order nor syntactic
structure into account. We plan to perform a sys-
tematic analysis of both existing benchmarks and
natural corpus data, both to assess the actual im-
pact that such factors have on the aspects of mean-
ing we are interested in (take two sentences in an
entailment relation: how often does shuffling the
words in them make it impossible to detect entail-
ment?), and to construct new benchmarks that are
more challenging for additive methods.

The C-PHRASE vectors described in this paper
are made publicly available at: http://clic.
cimec.unitn.it/composes/.
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Klaus Rothenhäusler and Hinrich Schütze. 2009.
Unsupervised classification with dependency based
word spaces. In Proceedings of the EACL GEMS
Workshop, pages 17–24, Athens, Greece.

Herbert Rubenstein and John Goodenough. 1965.
Contextual correlates of synonymy. Communica-
tions of the ACM, 8(10):627–633.

Richard Socher, Brody Huval, Christopher Manning,
and Andrew Ng. 2012. Semantic compositionality
through recursive matrix-vector spaces. In Proceed-
ings of EMNLP, pages 1201–1211, Jeju Island, Ko-
rea.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of EMNLP, pages 1631–1642,
Seattle, WA.

Michael Tomasello. 2003. Constructing a Language:
A Usage-Based Theory of Language Acquisition.
Harvard University Press, Cambridge, MA.

Peter Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of se-
mantics. Journal of Artificial Intelligence Research,
37:141–188.

Peter Young, Alice Lai, Micah Hodosh, and Julia
Hockenmaier. 2014. From image descriptions to
visual denotations: New similarity metrics for se-
mantic inference over event descriptions. Transac-
tions of the Association for Computational Linguis-
tics, 2:67–78.

Jiang Zhao, Tiantian Zhu, and Man Lan. 2014. Ecnu:
One stone two birds: Ensemble of heterogenous
measures for semantic relatedness and textual entail-
ment. In Proceedings of the 8th International Work-
shop on Semantic Evaluation (SemEval 2014), pages
271–277, Dublin, Ireland, August. Association for
Computational Linguistics and Dublin City Univer-
sity.

981



Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 982–991,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Robust Subgraph Generation Improves Abstract Meaning Representation
Parsing

Keenon Werling
Stanford University

keenon@stanford.edu

Gabor Angeli
Stanford University

angeli@stanford.edu

Christopher D. Manning
Stanford University

manning@stanford.edu

Abstract

The Abstract Meaning Representation
(AMR) is a representation for open-
domain rich semantics, with potential use
in fields like event extraction and machine
translation. Node generation, typically
done using a simple dictionary lookup, is
currently an important limiting factor in
AMR parsing. We propose a small set
of actions that derive AMR subgraphs by
transformations on spans of text, which
allows for more robust learning of this
stage. Our set of construction actions
generalize better than the previous ap-
proach, and can be learned with a sim-
ple classifier. We improve on the previ-
ous state-of-the-art result for AMR pars-
ing, boosting end-to-end performance by
3 F1 on both the LDC2013E117 and
LDC2014T12 datasets.

1 Introduction

The Abstract Meaning Representation (AMR)
(Banarescu et al., 2013) is a rich, graph-based lan-
guage for expressing semantics over a broad do-
main. The formalism is backed by a large data-
labeling effort, and it holds promise for enabling a
new breed of natural language applications rang-
ing from semantically aware MT to rich broad-
domain QA over text-based knowledge bases. Fig-
ure 1 shows an example AMR for “he gleefully ran
to his dog Rover,” and we give a brief introduction
to AMR in Section 2. This paper focuses on AMR
parsing, the task of mapping a natural language
sentence into an AMR graph.

We follow previous work (Flanigan et al., 2014)
in dividing AMR parsing into two steps. The
first step is concept identification, which generates
AMR nodes from text, and which we’ll refer to as
NER++ (Section 3.1). The second step is relation

Figure 1: The AMR graph for He gleefully ran to
his dog Rover. We show that improving the gen-
eration of low level subgraphs (e.g., Rover gener-
ating name

:op1−−→ “Rover”) significantly improves
end-to-end performance.

identification, which adds arcs to link these nodes
into a fully connected AMR graph, which we’ll
call SRL++ (Section 3.2).

We observe that SRL++ is not the hard part of
AMR parsing; rather, much of the difficulty in
AMR is generating high accuracy concept sub-
graphs from the NER++ component. For example,
when the existing AMR parser JAMR (Flanigan
et al., 2014) is given a gold NER++ output, and
must only perform SRL++ over given subgraphs
it scores 80 F1 – nearly the inter-annotator agree-
ment of 83 F1, and far higher than its end to end
accuracy of 59 F1.

SRL++ within AMR is relatively easy given a
perfect NER++ output, because so much pressure
is put on the output of NER++ to carry meaningful
information. For example, there’s a strong type-
check feature for the existence and type of any arc
just by looking at its end-points, and syntactic de-
pendency features are very informative for remov-
ing any remaining ambiguity. If a system is con-
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Figure 2: A graphical explanation of our method. We represent the derivation process for He gleefully
ran to his dog Rover. First the tokens in the sentence are labeled with derivation actions, then these
actions are used to generate AMR subgraphs, which are then stitched together to form a coherent whole.

sidering how to link the node run-01 in Figure 1,
the verb-sense frame for “run-01” leaves very little
uncertainty for what we could assign as an ARG0
arc. It must be a noun, which leaves either he or
dog, and this is easily decided in favor of he by
looking for an nsubj arc in the dependency parse.

The primary contribution of this paper is a novel
approach to the NER++ task, illustrated in Fig-
ure 2. We notice that the subgraphs aligned to lexi-
cal items can often be generated from a small set of
generative actions which generalize across tokens.
For example, most verbs generate an AMR node
corresponding to the verb sense of the appropri-
ate PropBank frame – e.g., run generates run-01
in Figure 1. This allows us to frame the NER++
task as the task of classifying one of a small num-
ber of actions for each token, rather than choosing
a specific AMR subgraph for every token in the
sentence.

Our approach to the end-to-end AMR parsing
task is therefore as follows: we define an action
space for generating AMR concepts, and create
a classifier for classifying lexical items into one
of these actions (Section 4). This classifier is
trained from automatically generated alignments
between the gold AMR trees and their associated
sentences (Section 5), using an objective which fa-
vors alignment mistakes which are least harmful to
the NER++ component. Finally, the concept sub-
graphs are combined into a coherent AMR parse
using the maximum spanning connected subgraph

algorithm of Flanigan et al. (2014).
We show that our approach provides a large

boost to recall over previous approaches, and that
end to end performance is improved from 59 to
62 smatch (an F1 measure of correct AMR arcs;
see Cai and Knight (2013)) when incorporated into
the SRL++ parser of Flanigan et al. (2014). When
evaluating the performance of our action classifier
in isolation, we obtain an action classification ac-
curacy of 84.1%.

2 The AMR Formalism

AMR is a language for expressing semantics as
a rooted, directed, and potentially cyclic graph,
where nodes represent concepts and arcs are re-
lationships between concepts. AMR is based
on neo-Davidsonian semantics, (Davidson, 1967;
Parsons, 1990). The nodes (concepts) in an AMR
graph do not have to be explicitly grounded in the
source sentence, and while such an alignment is
often generated to train AMR parsers, it is not pro-
vided in the training corpora. The semantics of
nodes can represent lexical items (e.g., dog), sense
tagged lexical items (e.g., run-01), type markers
(e.g., date-entity), and a host of other phenomena.

The edges (relationships) in AMR describe one
of a number of semantic relationships between
concepts. The most salient of these is seman-
tic role labels, such as the ARG0 and destination
arcs in Figure 2. However, often these arcs define
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Figure 3: AMR representation of the word sailor,
which is notable for breaking the word up into
a self-contained multi-node unit unpacking the
derivational morphology of the word.

a semantics more akin to syntactic dependencies
(e.g., mod standing in for adjective and adverbial
modification), or take on domain-specific mean-
ing (e.g., the month, day, and year arcs of a date-
entity).

To introduce AMR and its notation in more de-
tail, we’ll unpack the translation of the sentence
“he gleefully ran to his dog Rover.” We show in
Figure 1 the interpretation of this sentence as an
AMR graph.

The root node of the graph is labeled run-01,
corresponding to the PropBank (Palmer et al.,
2005) definition of the verb ran. run-01 has an
outgoing ARG0 arc to a node he, with the usual
PropBank semantics. The outgoing mod edge
from run-01 to glee takes a general purpose se-
mantics corresponding to adjective, adverbial, or
other modification of the governor by the depen-
dent. We note that run-01 has a destination arc to
dog. The label for destination is taken from a finite
set of special arc sense tags similar to the prepo-
sition senses found in (Srikumar, 2013). The last
portion of the figure parses dog to a node which
serves as a type marker similar to named entity
types, and Rover into the larger subgraph indicat-
ing a concept with name “Rover.”

2.1 AMR Subgraphs

The mapping from tokens of a sentence to AMR
nodes is not one-to-one. A single token or span
of tokens can generate a subgraph of AMR con-
sisting of multiple nodes. These subgraphs can
logically be considered the expression of a single
concept, and are useful to treat as such (e.g., see
Section 3.1).

Many of these multi-node subgraphs capture
structured data such as time expressions, as in Fig-

Figure 4: AMR representation of the span Jan-
uary 1, 2008, an example of how AMR can rep-
resent structured data by creating additional nodes
such as date-entity to signify the presence of spe-
cial structure.

ure 4. In this example, a date-entity node is cre-
ated to signify that this cluster of nodes is part of
a structured sub-component representing a date,
where the nodes and arcs within the component
have specific semantics. This illustrates a broader
recurring pattern in AMR: an artificial node may,
based on its title, have expected children with spe-
cial semantics. A particularly salient example of
this pattern is the name node (see “Rover” in Fig-
ure 1) which signifies that all outgoing arcs with
label op comprise the tokens of a name object.

The ability to decouple the meaning representa-
tion of a lexical item from its surface form allows
for rich semantic interpretations of certain con-
cepts in a sentence. For example, the token sailor
is represented in Figure 3 by a concept graph rep-
resenting a person who performs the action sail-
01. Whereas often the AMR node aligned to a
span of text is a straightforward function of the
text, these cases remain difficult to capture in a
principled way beyond memorizing mappings be-
tween tokens and subgraphs.

3 Task Decomposition

To the best of our knowledge, the JAMR parser
is the only published end-to-end AMR parser at
the time of publication. An important insight in
JAMR is that AMR parsing can be broken into
two distinct tasks: (1) NER++ (concept identifi-
cation): the task of interpreting what entities are
being referred to in the text, realized by gener-
ating the best AMR subgraphs for a given set of
tokens, and (2) SRL++ (relation identification):
the task of discovering what relationships exist be-
tween entities, realized by taking the disjoint sub-
graphs generated by NER++ and creating a fully-
connected graph. We describe both tasks in more
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detail below.

3.1 NER++

Much of the difficulty of parsing to AMR lies in
generating local subgraphs representing the mean-
ing of token spans. For instance, the formalism
implicitly demands rich notions of NER, lemma-
tization, word sense disambiguation, number nor-
malization, and temporal parsing; among others.
To illustrate, a correct parse of the sentence in Fig-
ure 2 requires lemmatization (gleefully → glee),
word sense tagging (run→ run-01), and open do-
main NER (i.e., Rover), Furthermore, many of the
generated subgraphs (e.g., sailor in Figure 3) have
rich semantics beyond those produced by standard
NLP systems.

Formally, NER++ is the task of generating a
disjoint set of subgraphs representing the mean-
ings of localized spans of words in the sentence.
For NER++, JAMR uses a simple Viterbi sequence
model to directly generate AMR-subgraphs from
memorized mappings of text spans to subgraphs.
This paper’s main contribution, presented in Sec-
tion 4, is to make use of generative actions to gen-
erate these subgraphs, rather than appealing to a
memorized mapping.

3.2 SRL++

The second stage of the AMR decomposition con-
sists of generating a coherent graph from the set of
disjoint subgraphs produced by NER++. Whereas
NER++ produces subgraphs whose arcs encode
domain-specific semantics (e.g., month), the arcs
in SRL++ tend to have generally applicable se-
mantics. For example, the many arcs encode con-
ventional semantic roles (e.g., ARG0 and desti-
nation in Figure 2), or a notion akin to syntac-
tic dependencies (e.g., mod and poss in Figure 2).
For SRL++, JAMR uses a variation of the max-
imum spanning connected graph algorithm aug-
mented by dual decomposition to impose linguis-
tically motivated constraints on a maximum likeli-
hood objective.

4 A Novel NER++ Method

The training sets currently available for AMR are
not large. To illustrate, 38% of the words in the
LDC2014E113 dev set are unseen during training
time. With training sets this small, memorization-
based approaches are extremely brittle. We re-
move much of the necessity to memorize map-

pings in NER++ by partitioning the AMR sub-
graph search space in terms of the actions needed
to derive a node from its aligned token. At test
time we do a sequence labeling of input tokens
with these actions, and then deterministically de-
rive the AMR subgraphs from spans of tokens
by applying the transformation decreed by their
actions. We explain in Section 4.1 how exactly
we manage this partition, and in Section 4.3 how
we create training data from existing resources to
setup and train an action-type classifier.

4.1 Derivation actions
We partition the AMR subgraph space into a set of
9 actions, each corresponding to an action that will
be taken by the NER++ system if a token receives
this classification.

IDENTITY This action handles the common
case that the title of the node corresponding to a
token is identical to the source token. To execute
the action, we take the lowercased version of the
token to be the title of the corresponding node.

NONE This action corresponds to ignoring this
token, in the case that the node should not align to
any corresponding AMR fragment.

VERB This action captures the verb-sense dis-
ambiguation feature of AMR. To execute on a to-
ken, we find the most similar verb in PropBank
based on Jaro-Winkler distance, and adopt its most
frequent sense. This serves as a reasonable base-
line for word sense disambiguation, although of
course accuracy would be expected to improve if
a sophisticated system were incorporated.

VALUE This action interprets a token by its in-
teger value. The AMR representation is sensitive
to the difference between a node with a title of 5
(the integer value) and “5” or “five” – the string
value. This is a rare action, but is nonetheless dis-
tinct from any of the other classes. We execute this
action by extracting an integer value with a regex
based number normalizer, and using the result as
the title of the generated node.

LEMMA AMR often performs stemming and
part-of-speech transformations on the source to-
ken in generating a node. For example, we get
glee from gleefully. We capture this by a LEMMA
action, which is executed by using the lemma of
the source token as the generated node title. Note
that this does not capture all lemmatizations, as
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there are often discrepancies between the lemma
generated by the lemmatizer and the correct AMR
lemma.

NAME AMR often references names with a
special structured data type: the name construc-
tion. For example, Rover in Figure 1. We can
capture this phenomenon on unseen names by at-
taching a created name node to the top of a span.

PERSON A variant of the NAME action, this
action produces a subgraph identical to the NAME
action, but adds a node person as a parent. This
is, in effect, a name node with an implicit entity
type of person. Due to discrepancies between the
output of our named entity tagger and the richer
AMR named entity ontology, we only apply this
tag to the person named entity tag.

DATE The most frequent of the structured data
type in the data, after name, is the date-entity con-
struction (for an example see Figure 4). We de-
terministically take the output of SUTime (Chang
and Manning, 2012) and convert it into the date-
entity AMR representation.

DICT This class serves as a back-off for the
other classes, implementing an approach similar
to Flanigan et al. (2014). In particular, we mem-
orize a simple mapping from spans of text (such
as sailor) to their corresponding most frequently
aligned AMR subgraphs in the training data (i.e.,
the graph in Figure 3). See Section 5 for details
on the alignment process. At test time we can do a
lookup in this dictionary for any element that gets
labeled with a DICT action. If an entry is not
found in the mapping, we back off to the second
most probable class proposed by the classifier.

It is worth observing at this point that our ac-
tions derive much of their power from the similar-
ity between English words and their AMR coun-
terparts; creating an analogue of these actions for
other languages remains an open problem.

4.2 Action Reliability

In many cases, multiple actions could yield the
same subgraph when applied to a node. In this
section we introduce a method for resolving this
ambiguity based on comparing the reliability with
which actions generate the correct subgraph, and
discuss implications.

Even given a perfect action classification for
a token, certain action executions can introduce

Figure 5: Reliability of each action. The top row
are actions which are deterministic; the second
row occasionally produce errors. DICT is the least
preferred action, with a relatively high error rate.

errors. Some of our actions are entirely deter-
ministic in their conversion from the word to the
AMR subgraph (e.g., IDENTITY), but others are
prone to making mistakes in this conversion (e.g.,
VERB, DICT). We define the notion of action re-
liability as the probability of deriving the correct
node from a span of tokens, conditioned on hav-
ing chosen the correct action.

To provide a concrete example, our dictionary
lookup classifier predicts the correct AMR sub-
graph 67% of the time on the dev set. We therefore
define the reliability of the DICT action as 0.67.
In contrast to DICT, correctly labeling a node as
IDENTITY, NAME, PERSON, and NONE have
action reliability of 1.0, since there is no ambigu-
ity in the node generation once one of those ac-
tions have been selected, and we are guaranteed to
generate the correct node given the correct action.

We can therefore construct a hierarchy of reli-
ability (Figure 5) – all else being equal, we pre-
fer to generate actions from higher in the hierar-
chy, as they are more likely to produce the cor-
rect subgraph. This hierarchy is useful in resolv-
ing ambiguity throughout our system. During the
creation of training data for our classifier (Sec-
tion 4.3) from our aligner, when two actions could
both generate the aligned AMR node we prefer the
more reliable one. In turn, in our aligner we bias
alignments towards those which generating more
reliable action sequences as training data (see Sec-
tion 5).

The primary benefit of this action-based
NER++ approach is that we can reduce the us-
age of low reliability actions, like DICT. The
approach taken in Flanigan et al. (2014) can be
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Action # Tokens % Total
NONE 41538 36.2
DICT 30027 26.1
IDENTITY 19034 16.6
VERB 11739 10.2
LEMMA 5029 4.5
NAME 4537 3.9
DATE 1418 1.1
PERSON 1336 1.1
VALUE 122 0.1

Table 1: Distribution of action types in the
proxy section of the newswire section of the
LDC2014T12 dataset, generated from automati-
cally aligned data.

Input token; word embedding
Left+right token / bigram
Token length indicator
Token starts with “non”
POS; Left+right POS / bigram
Dependency parent token / POS
Incoming dependency arc
Bag of outgoing dependency arcs
Number of outgoing dependency arcs
Max Jaro-Winkler to any lemma in PropBank
Output tag of the VERB action if applied
Output tag of the DICT action if applied
NER; Left+right NER / bigram
Capitalization
Incoming prep * or appos + parent has NER
Token is pronoun
Token is part of a coref chain
Token pronoun and part of a coref chain

Table 2: The features for the NER++ maxent clas-
sifier.

thought of as equivalent to classifying every token
as the DICT action.

We analyze the empirical distribution of actions
in our automatically aligned corpus in Table 1.
The cumulative frequency of the non-DICT ac-
tions is striking: we can generate 74% of the to-
kens with high reliability (p ≥ 0.9) actions. In this
light, it is unsurprising that our results demonstrate
a large gain in recall on the test set.

4.3 Training the Action Classifier

Given a set of AMR training data, in the form of
(graph, sentence) pairs, we first induce alignments
from the graph nodes to the sentence (see Sec-
tion 5). Formally, for every node ni in the AMR
graph, alignment gives us some token sj (at the
jth index in the sentence) that we believe gener-
ated the node ni.

Then, for each action type, we can ask whether
or not that action type is able to take token sj and
correctly generate ni. For concreteness, imagine
the token sj is running, and the node ni has the
title run-01. The two action types we find that are
able to correctly generate this node are DICT and
VERB. We choose the most reliable action type
of those available (see Figure 5) to generate the
observed node – in this case, VERB.

In cases where an AMR subgraph is generated
from multiple tokens, we assign the action label to
each token which generates the subgraph. Each of
these tokens are added to the training set; at test
time, we collapse sequences of adjacent identical
action labels, and apply the action once to the re-
sulting token span.

Inducing the most reliable action (according to
the alignments) for every token in the training cor-
pus provides a supervised training set for our ac-
tion classifier, with some noise introduced by the
automatically generated alignments. We then train
a simple maxent classifier1 to make action deci-
sions at each node. At test time, the classifier takes
as input a pair 〈i, S〉, where i is the index of the to-
ken in the input sentence, and S is a sequence to-
kens representing the source sentence. It then uses
the features in Table 2 to predict the actions to take
at that node.

5 Automatic Alignment of Training Data

AMR training data is in the form of bi-text, where
we are given a set of (sentence, graph) pairs, with
no explicit alignments between them. We would
like to induce a mapping from each node in the
AMR graph to the token it represents. It is per-
fectly possible for multiple nodes to align to the
same token – this is the case with sailors, for in-
stance.

It is not possible, within our framework, to rep-
resent a single node being sourced from multi-
ple tokens. Note that a subgraph can consist of
many individual nodes; in cases where a subgraph
should align to multiple tokens, we generate an
alignment from the subgraph’s nodes to the associ-
ated tokens in the sentence. It is empirically very
rare for a subgraph to have more nodes than the
token span it should align to.

There have been two previous attempts at pro-
ducing automatic AMR alignments. The first was

1A sequence model was tried and showed no improve-
ment over a simple maxent classifier.
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published as a component of JAMR, and used a
rule-based approach to perform alignments. This
was shown to work well on the sample of 100
hand-labeled sentences used to develop the sys-
tem. Pourdamghani et al. (2014) approached the
alignment problem in the framework of the IBM
alignment models. They rendered AMR graphs as
text, and then used traditional machine translation
alignment techniques to generate an alignment.

We propose a novel alignment method, since
our decomposition of the AMR node generation
process into a set of actions provides an additional
objective for the aligner to optimize, in addition to
the accuracy of the alignment itself. We would like
to produce the most reliable sequence of actions
for the NER++ model to train from, where reliable
is taken in the sense defined in Section 4.2. To give
an example, a sequence of all DICT actions could
generate any AMR graph, but is very low reliabil-
ity. A sequence of all IDENTITY actions could
only generate one set of nodes, but does it with
absolute certainty.

We formulate this objective as a Boolean LP
problem. Let Q be a matrix in {0, 1}|N|×|S| of
Boolean constrained variables, where N are the
nodes in an AMR graph, and S are the tokens in
the sentence. The meaning of Qi,j = 1 can be
interpreted as node ni having being aligned to to-
ken sj . Furthermore, let V be a matrix T |N|×|S|,
where T is the set of NER++ actions from Sec-
tion 4. Each matrix element Vi,j is assigned the
most reliable action which would generate node
ni from token sj . We would like to maximize the
probability of the actions collectively generating a
perfect set of nodes. This can be formulated lin-
early by maximizing the log-likelihood of the ac-
tions. Let the function REL(l) be the reliability of
action l (probability of generating intended node).
Our objective can then be formulated as follows:

max
Q

∑
i,j

Qi,j [log(REL(Vi,j)) + αEi,j ] (1)

s.t.
∑
j

Qi,j = 1 ∀i (2)

Qk,j + Ql,j ≤ 1 ∀k, l, j; nk = nl (3)

where E is the Jaro-Winkler similarity between the
title of the node i and the token j, α is a hyper-
parameter (set to 0.8 in our experiments), and the
operator = denotes that two nodes in the AMR
graph are both not adjacent and do not have the
same title.

The constraint (2), combined with the binary
constraint on Q, ensures that every node in the
graph is aligned to exactly one token in the source
sentence. The constraint (3) ensures that only ad-
jacent nodes or nodes that share a title can refer to
the same token.

The objective value penalizes alignments which
map to the unreliable DICT tag, while rewarding
alignments with high overlap between the title of
the node and the token. Note that most incorrect
alignments fall into the DICT class by default, as
no other action could generate the correct AMR
subgraph. Therefore, if there exists an alignment
that would consume the token using another ac-
tion, the optimization prefers that alignment. The
Jaro-Winkler similarity term, in turn, serves as
a tie-breaker between equally (un)reliable align-
ments.

There are many packages which can solve
this Boolean LP efficiently. We used Gurobi
(Gurobi Optimization, 2015). Given a matrix Q
that maximizes our objective, we can decode our
solved alignment as follows: for each i, align ni
to the j s.t. Qi,j = 1. By our constraints, exactly
one such j must exist.

6 Related Work

Prior work in AMR and related formalisms in-
clude Jones et al. (2012), and Flanigan et al.
(2014). Jones et al. (2012), motivated by appli-
cations in Machine Translation, proposed a graph-
ical semantic meaning representation that predates
AMR, but is intimately related. They propose
a hyper-edge replacement grammar (HRG) ap-
proach to parsing into and out of this graphical
semantic form. Flanigan et al. (2014) forms the
basis of the approach of this paper. Their system
introduces the two-stage approach we use: they
implement a rule-based alignment to learn a map-
ping from tokens to subgraphs, and train a vari-
ant of a maximum spanning tree parser adapted to
graphs and with additional constraints for their re-
lation identifications (SRL++) component. Wang
et al. (2015) uses a transition based algorithm
to transform dependency trees into AMR parses.
They achieve 64/62/63 P/R/F1 with contributions
roughly orthogonal to our own. Their transforma-
tion action set could be easily augmented by the
robust subgraph generation we propose here, al-
though we leave this to future work.

Beyond the connection of our work with Flani-
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gan et al. (2014), we note that the NER++ com-
ponent of AMR encapsulates a number of lex-
ical NLP tasks. These include named entity
recognition (Nadeau and Sekine, 2007; Finkel et
al., 2005), word sense disambiguation (Yarowsky,
1995; Banerjee and Pedersen, 2002), lemmatiza-
tion, and a number of more domain specific tasks.
For example, a full understanding of AMR re-
quires normalizing temporal expressions (Verha-
gen et al., 2010; Strötgen and Gertz, 2010; Chang
and Manning, 2012).

In turn, the SRL++ facet of AMR takes many
insights from semantic role labeling (Gildea and
Jurafsky, 2002; Punyakanok et al., 2004; Sriku-
mar, 2013; Das et al., 2014) to capture the rela-
tions between verbs and their arguments. In addi-
tion, many of the arcs in AMR have nearly syntac-
tic interpretations (e.g., mod for adjective/adverb
modification, op for compound noun expressions).
These are similar to representations used in syn-
tactic dependency parsing (de Marneffe and Man-
ning, 2008; McDonald et al., 2005; Buchholz and
Marsi, 2006).

More generally, parsing to a semantic represen-
tation is has been explored in depth for when the
representation is a logical form (Kate et al., 2005;
Zettlemoyer and Collins, 2005; Liang et al., 2011).
Recent work has applied semantic parsing tech-
niques to representations beyond lambda calculus
expressions. For example, work by Berant et al.
(2014) parses text into a formal representation of
a biological process. Hosseini et al. (2014) solves
algebraic word problems by parsing them into a
structured meaning representation. In contrast to
these approaches, AMR attempts to capture open
domain semantics over arbitrary text.

Interlingua (Mitamura et al., 1991; Carbonell et
al., 1999; Levin et al., 1998) are an important in-
spiration for decoupling the semantics of the AMR
language from the surface form of the text being
parsed; although, AMR has a self-admitted En-
glish bias.

7 Results

We present improvements in end-to-end AMR
parsing on two datasets using our NER++ compo-
nent. Action type classifier accuracy on an auto-
matically aligned corpus and alignment accuracy
on a small hand-labeled corpus are also reported.

Dataset System P R F1

2014T12
JAMR 67.1 53.2 59.3
Our System 66.6 58.3 62.2

2013E117
JAMR 66.9 52.9 59.1
Our System 65.9 59.0 62.3

Table 3: Results on two AMR datasets for JAMR
and our NER++ embedded in the JAMR SRL++
component. Note that recall is consistently higher
across both datasets, with only a small loss in pre-
cision.

7.1 End-to-end AMR Parsing

We evaluate our NER++ component in the context
of end-to-end AMR parsing on two corpora: the
newswire section of LDC2014T12 and the split
given in Flanigan et al. (2014) of LDC2013E117,
both consisting primarily of newswire. We com-
pare two systems: the JAMR parser (Flanigan
et al., 2014),2 and the JAMR SRL++ component
with our NER++ approach.

AMR parsing accuracy is measured with a met-
ric called smatch (Cai and Knight, 2013), which
stands for “s(emantic) match.” The metric is the F1

of a best-match between triples implied by the tar-
get graph, and triples in the parsed graph – that is,
the set of (parent, edge, child) triples in the graph.

Our results are given in Table 3. We report
much higher recall numbers on both datasets, with
only small (≤ 1 point) loss in precision. This
is natural considering our approach. A better
NER++ system allows for more correct AMR sub-
graphs to be generated – improving recall – but
does not in itself necessarily improve the accuracy
of the SRL++ system it is integrated in.

7.2 Component Accuracy

We evaluate our aligner on a small set of 100 hand-
labeled alignments, and evaluate our NER++ clas-
sifier on automatically generated alignments over
the whole corpus,

On a hand-annotated dataset of 100 AMR
parses from the LDC2014T12 corpus,3 our aligner
achieves an accuracy of 83.2. This is a measure-
ment of the percentage of AMR nodes that are
aligned to the correct token in their source sen-
tence. Note that this is a different metric than the

2Available at https://github.com/jflanigan/
jamr.

3Our dataset is publicly available at http://nlp.
stanford.edu/projects/amr
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precision/recall of prior work on alignments, and
is based on both a different alignment dataset and
subtly different alignment annotation scheme. In
particular, we require that every AMR node aligns
to some token in the sentence, which forces the
system to always align nodes, even when unsure.
A standard semantics and annotation guideline for
AMR alignment is left for future work; our accu-
racy should be considered only an informal metric.

We find our informativeness-based alignment
objective slightly improves end-to-end perfor-
mance when compared to the rule-based approach
of (Flanigan et al., 2014), improving F1 by roughly
1 point (64/59/61 P/R/F1 to 65/59/62 P/R/F1).

On the automatic alignments over the
LDC2014T12 corpus, our action classifier
achieved a test accuracy of 0.841. The classifier’s
most common class of mistakes are incorrect
DICT classifications. It is reassuring that some of
these errors can be recovered from by the naı̈ve
dictionary lookup finding the correct mapping.

The DICT action lookup table achieved an ac-
curacy of 0.67. This is particularly impressive
given that our model moves many of the difficult
semantic tasks onto the DICT tag, and that this
lookup does not make use of any learning beyond
a simple count of observed span to subgraph map-
pings.

8 Conclusion

We address a key challenge in AMR parsing: the
task of generating subgraphs from lexical items
in the sentence. We show that a simple classi-
fier over actions which generate these subgraphs
improves end-to-end recall for AMR parsing with
only a small drop in precision, leading to an over-
all gain in F1. A clear direction of future work is
improving the coverage of the defined actions. For
example, a richer lemmatizer could shift the bur-
den of lemmatizing unknown words into the AMR
lemma semantics and away from the dictionary
lookup component. We hope our decomposition
provides a useful framework to guide future work
in NER++ and AMR in general.
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Abstract

We focus on the task of interpreting com-
plex natural language instructions to a
robot, in which we must ground high-level
commands such as microwave the cup to
low-level actions such as grasping. Pre-
vious approaches that learn a lexicon dur-
ing training have inadequate coverage at
test time, and pure search strategies can-
not handle the exponential search space.
We propose a new hybrid approach that
leverages the environment to induce new
lexical entries at test time, even for new
verbs. Our semantic parsing model jointly
reasons about the text, logical forms, and
environment over multi-stage instruction
sequences. We introduce a new dataset
and show that our approach is able to suc-
cessfully ground new verbs such as dis-
tribute, mix, arrange to complex logical
forms, each containing up to four predi-
cates.

1 Introduction
The task of mapping natural language instructions
to actions for a robot has been gaining momen-
tum in recent years (Artzi and Zettlemoyer, 2013;
Tellex et al., 2011; Misra et al., 2014; Bollini
et al., 2011; Guadarrama et al., 2013; Matuszek
et al., 2012b; Fasola and Mataric, 2013). We
are particularly interested in instructions contain-
ing verbs such as “microwave” denoting high-level
concepts, which correspond to more than 10 low-
level symbolic actions such as grasp. In this
setting, it is common to find new verbs requiring
new concepts at test time. For example, in Fig-
ure 1, suppose that we have never seen the verb
“fill”. Can we impute the correct interpretation,
and moreover seize the opportunity to learn what
“fill” means in a way that generalizes to future in-
structions?

Text: “get the cup, fill it with water and then microwave the cup”

grasping cup3 ∧

near(robot1,cup3)

in cup3,microwave ∧

state(microwave1,is-on)

state cup3,water ∧

on(cup3,sink)

Unseen verb “ fill ” is grounded
at test time using environment.

Figure 1: A lexicon learned on the training data
cannot possibly cover all the verb-concept map-
pings needed at test time. Our algorithm learns
the meaning of new verbs (e.g., “fill”) using the
environment context.

Previous work in semantic parsing handles lex-
ical coverage in one of two ways. Kwiatkowski et
al. (2010) induces a highly constrained CCG lex-
icon capable of mapping words to complex log-
ical forms, but it would have to skip new words
(which in Figure 1 would lead to microwaving an
empty cup). Others (Berant and Liang, 2014) take
a freer approach by performing a search over log-
ical forms, which can handle new words, but the
logical forms there are much simpler than the ones
we consider.

In this paper, we present an hybrid approach
that uses a lexicon to represent complex concepts
but also strongly leverages the environment to
guide the search space. The environment can pro-
vide helpful cues in several ways:
• Only a few environments are likely for a given

scenario—e.g., the text is unlikely to ask the
robot to microwave an empty cup or put books
on the floor.
• The logical form of one segment of text con-

strains that of the next segment—e.g., the text is
unlikely to ask the robot to pick a cup and then
put it back immediately in the same spot.
We show that this environment context provides
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Action Sequence: 𝑚𝑜𝑣𝑒𝑡𝑜 𝑥𝑏𝑜𝑥1 ; 𝑔𝑟𝑎𝑠𝑝 𝑥𝑏𝑜𝑥1 ; 𝑝𝑟𝑒𝑠𝑠 𝑝𝑜𝑤𝑒𝑟_𝑏𝑢𝑡𝑡𝑜𝑛1 ; 𝑚𝑜𝑣𝑒𝑡𝑜 𝑐𝑑2 ; 𝑔𝑟𝑎𝑠𝑝 𝑐𝑑2 ; 𝑖𝑛𝑠𝑒𝑟𝑡(𝑐𝑑2, 𝑥𝑏𝑜𝑥1) ⋯

Environment: Logical Form z = (ℓ, 𝜉)

Frame Node

ℓ: 𝑝𝑢𝑡 ⇒ [𝜆  𝑣.state v1,has-cd

∧ near v1,v2 , 𝜉′]
𝜉: {𝑣1 → 𝑥𝑏𝑜𝑥1; 𝑣2 → 𝑟𝑜𝑏𝑜𝑡1}
𝜉′: old mapping 

𝑥𝑏𝑜𝑥1

𝑠𝑛𝑎𝑐𝑘𝑡𝑎𝑏𝑙𝑒2
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Semantic Parsing Model
(Section 5)

zk−1

planner

𝑎k−1

simulator

Text: “Turn on xbox. Take Far Cry Game CD and put in xbox.
Throw out beer, coke and sketchy stuff in bowl.⋯ ”

𝜈: throw, 
𝜔: [ beer, coke, sketchy stuff, bowl ]
r: { in: sketchy stuff → bowl }

Figure 2: Graphical model overview: we first deterministically shallow parse the text x into a control
flow graph consisting of shallow structures {ci}. Given an initial environment e1, our semantic parsing
model maps these frame nodes to logical forms {zi} representing the postconditions. From this, a planner
and simulator generate the action sequences {ai} and resulting environments {ei}.

a signal for inducing new lexical entries that map
previously unseen verbs to novel concepts. In the
example in Figure 1, the algorithm learns that mi-
crowaving an empty cup is unlikely and this sug-
gests that the verb “fill” must map to actions that
end up making the cup not empty.

Another contribution of this paper is using post-
conditions as logical forms rather than actions, as
in previous work (Artzi and Zettlemoyer, 2013;
Misra et al., 2014). Postconditions not only re-
duce the search space of logical forms, but are also
a more natural representation of verbs. We define
a conditional random field (CRF) model over post-
conditions, and use a planner to convert postcon-
ditions into action sequences and a simulator to
generate new environments.

At test time, we use the lexicon induced from
the training data, but also perform an environment-
guided search over logical forms to induce new
lexical entries on-the-fly. If the predicted action
sequence uses a new lexical entry generated by the
search, it is added to the lexicon, where it can be
reused in subsequent test examples.

We evaluate our algorithm on a new corpus con-
taining text commands for a household robot. The
two key findings of our experiments are: First, the
environment and task context contain enough in-
formation to allow us to learn lexical entries for
new verbs such as “distribute” and “mix” with
complex semantics. Second, using both lexical
entries generated by a test-time search and those
from the lexicon induced by the training data out-
performs the two individual approaches. This sug-
gests that environment context can help allevi-

ate the problem of having a limited lexicon for
grounded language acquisition.

2 Problem Statement
At training time, we are given a set of examples
D = {(x(m), e(m), a(m), π(m))}Mm=1, where x(m)

is a text containing natural language instructions,
e(m) is an initial environment, a(m) is a human-
annotated sequence of actions, and π(m) specifies
a monotonic alignment between segments of x(m)

and segments of a(m). For example, given words
x(m) = x1x2 and a(m) = a1a2a3, π(m) might
specify that x1 aligns to a1a2 and x2 aligns to a3.

At test time, given a sequence of text-
environment pairs as input {(x(n), e(n))}Nn=1, we
wish to generate a sequence of actions a(n) for
each input pair. Note that our system is allowed to
use information about one test example to improve
performance on subsequent ones. We evaluate a
system on its ability to recover a human-annotated
sequence of actions.

3 Approach Overview
Figure 2 shows our approach for mapping text x
to actions a1:k given the initial environment e1.

3.1 Representation

We use the following representation for the differ-
ent variables in Figure 2.
Environment. An environment ei is represented
by a graph whose nodes are objects and edges
represent spatial relations between these objects.
We consider five basic spatial relations: near,
grasping, on, in and below. Each object has an
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instance ID (e.g., book9), a category name (e.g.,
chair, xbox), a set of properties such as graspable,
pourable used for planning and a set of boolean
states such as has-water, at-channel3, whose
values can be changed by robot actions. The robot
is also an object in the environment. For example,
the objects xbox1, snacktable2, are two objects
in e1 in Figure 2 with relation on between them.
Postconditions. A postcondition is a conjunction
of atoms or their negations. Each atom consists of
either a spatial relation between two objects (e.g.,
on(book9, shelf3)) or a state and a value (e.g.,
state(cup4, has-water)). Given an environment
e, the postcondition evaluates to true or false.
Actions. Each action in an action sequence ai
consists of an action name with a list of argu-
ments (e.g., grasp(xbox1)). The action name
is one of 15 values (grasp, moveto, wait, etc.),
and each argument is either an object in the envi-
ronment (e.g., xbox1), a spatial relation (e.g., in
for keep(ramen2, in, kettle1), or a postcondi-
tion (e.g., for wait(state(kettle1, boiling))).
Logical Forms. The logical form zi is a pair
(`, ξ) containing a lexical entry ` and a map-
ping ξ. The lexical entry ` contains a parameter-
ized postcondition such as λ~v.grasping(v1, v2)
∧¬near(v3, v2), and ξ maps the variables~v to ob-
jects in the environment. Applying the parame-
terized postcondition on ξ yields a postcondition;
note that a postcondition can be represented by
different logical forms. A lexical entry contains
other information which are used for defining fea-
tures, which is detailed in Section 4.
Control Flow Graphs. Following previous work
(Tellex et al., 2011; Misra et al., 2014), we convert
the text x to a shallow representation. The par-
ticular representation we choose is a control flow
graph, which encodes the sequential relation be-
tween atomic segments in the text. Figure 3 shows
the control flow graph for an example text. In a
control flow graph, each node is either a frame
node or a conditional node. A frame node rep-
resents a single clause (e.g., “change the chan-
nel to a movie”) and has at most one successor
node. Specifically, a frame node consists of a verb
ν (e.g., arrange, collect), a set of object descrip-
tions {ωi} which are the arguments of the verb
(e.g., the guinness book, movie channel), and spa-
tial relations r between the arguments (e.g., be-
tween, near). The object description ω is either an
anaphoric reference (such as “it”) or a tuple con-
taining the main noun, associated modifiers, and
relative clauses.

Text: “If any of the pots have food in them, then dump them out in the
garbage can and then put them on the sink else keep it on the table.”

∃e category e,cup ∧state(e,food)

𝜈: dump
𝝎: [them, the garbage can]
𝑟: { in: them → garbage can }

𝜈: put
𝝎: [them, the sink]
𝑟: {𝑜n: them → the sink }

𝜈: keep
𝝎: [it, the table]
𝑟: {𝑜n: it → the table }

Conditional node (𝑒𝑥𝑝𝑟)

Frame Node 𝜈,𝝎, 𝑟
𝜈:  verb
𝝎: set of object description 𝜔
𝜔: (main noun or pronoun, modifiers)
𝑟: relationship between descriptions

Figure 3: We deterministically parse text into a
shallow structure called a control flow graph.

A conditional node contains a logical postcon-
dition with at most one existentially quantified
variable (in contrast to a frame node, which con-
tains natural language). For example, in Figure 3
the conditional node contains the expression cor-
responding to the text “if any of the pots has food”
There are two types of conditional nodes: branch-
ing and temporal. A branching conditional node
represents an “if ” statement and has two succes-
sor nodes corresponding to whether the condition
evaluates to true or false in the current environ-
ment. A temporal conditional node represents an
“until” statement and waits until the condition is
false in the environment.

3.2 Formal Overview

Shallow Parsing. We deterministically convert
the text x into its control flow graph G using a set
of manual rules applied on its constituency parse
tree from the Stanford parser (Klein and Manning,
2003). Conditionals in our dataset are simple and
can be converted into postconditions directly using
a few rules, unlike the action verbs (e.g., “fill”),
which is the focus of this paper. The details of
our shallow parsing procedure is described in the
appendix.

Given an environment e1, G is reduced to a sin-
gle sequence of frame nodes c1, . . . , ck, by evalu-
ating all the branch conditionals on e1.
Semantic Parsing Model. For each frame node ci
and given the current environment ei, the seman-
tic parsing model (Section 5) places a distribution
over logical forms zi. This logical form zi rep-
resents a postcondition on the environment after
executing the instructions in ci.
Planner and Simulator. Since our semantic rep-
resentations involve postconditions but our model
is based on the environment, we need to connect
the two. We use planner and a simulator that to-
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gether specify a deterministic mapping from the
current environment ei and a logical form zi to
a new environment ei+1. Specifically, the plan-
ner takes the current environment ei and a logical
form zi and computes the action sequence ai =
planner(ei, zi) for achieving the post condition
represented by zi.1 The simulator takes the current
environment ei and an action sequence ai and re-
turns a new environment ei+1 = simulator(ei, ai).

4 Anchored Verb Lexicons
Like many semantic parsers, we use a lexicon to
map words to logical forms. Since the environ-
ment plays an central role in our approach, we pro-
pose an anchored verb lexicon, in which we store
additional information about the environment in
which lexical entries were previously used. We
focus only on verbs since they have the most com-
plex semantics; object references such as “cup”
can be mapped easily, as described in Section 5.

More formally, an anchored verb lexicon Λ con-
tains lexical entries ` of the following form: [ν ⇒
(λ~v.S, ξ)] where, ν is a verb, S is a postcondition
with free variables ~v, and ξ is a mapping of these
variables to objects. An example lexical entry is:
[ pour⇒ (λv1v2v3.S, ξ)], where:
S = grasping(v1, v2)∧ near(v1, v3)∧¬state(v2, milk)

∧ state(v3, milk)
ξ = {v1 → robot1, v2 → cup1, v3 → bowl3} (anchoring)

As Table 1 shows, a single verb will in general
have multiple entries due to a combination of pol-
ysemy and the fact that language is higher-level
than postconditions.
Advantages of Postconditions. In contrast to pre-
vious work (Artzi and Zettlemoyer, 2013; Misra et
al., 2014), we use postconditions instead of action
sequence for two main reasons. First, postcondi-
tions generalize better. To illustrate this, consider
the action sequence for the simple task of filling a
cup with water. At the time of learning the lexi-
con, the action sequence might correspond to us-
ing a tap for filling the cup while at test time, the
environment may not have a tap but instead have
a pot with water. Thus, if the lexicon maps to ac-
tion sequence, then it will not be applicable at test
time whereas the postcondition state(z1, water)
is valid in both cases. We thus shift the load of in-
ferring environment-specific actions onto planners

1We use the symbolic planner of Rintanen (2012) which
can perform complex planning. For example, to pick up a
bottle that is blocked by a stack of books, the planner will
first remove the books before grasping the bottle. In contrast,
Artzi and Zettlemoyer (2013) use a simple search over im-
plicit actions.

Table 1: Some lexical entries for the verb “turn”
Sentence Context Lexical entry [turn⇒ (λ~v.S, ξ)]
“turn on the TV” state(v1, is-on) ∧ near(v2, v1)

ξ : v1 → tv1, v2 → robot1
“turn on the right state(v1, fire3) ∧ near(v2, v1)
back burner” ξ : v1 → stove1, v2 → robot1

“turn off the water” ¬state(v1, tap-on)
ξ : v1 → sink1

“turn the television state(v1, channel6) ∧ near(v1, v2)
input to xbox” ξ : v1 → tv1, v2 → xbox1

and use postconditions for representation, which
better captures the semantics of verbs.

Second, because postconditions are higher-
level, the number of atoms needed to repre-
sent a verb is much less than the correspond-
ing number of actions. For example, the
text “microwave a cup”, maps to action se-
quence with 10–15 actions, the postcondition
only has two atoms: in(cup2, microwave1) ∧
state(microwave, is-on). This makes search-
ing for new logical forms more tractable.
Advantages of Anchoring. Similar to the VEIL
templates of Misra et al. (2014), the free variables
~v are associated with a mapping ξ to concrete ob-
jects. This is useful for resolving ellipsis. Suppose
the following lexical entry was created at train-
ing time based on the text “throw the drinks in the
trash bag”:
[`: throw⇒ λxyz.S(x, y, z)], where
S = in(x, y) ∧ ¬grasping(z, x) ∧ ¬state(z, closed)
ξ = {x→ coke1, y→ garbageBin1, z→ robot1}

Now consider a new text at test time “throw
away the chips”, which does not explicitly men-
tion where to throw the chips. Our semantic pars-
ing algorithm (Section 5) will use the previous
mapping y → garbabeBin1 to choose an object
most similar to a garbage bin.

5 Semantic Parsing Model
Given a sequence of frame nodes c1:k and an ini-
tial environment e1, our semantic parsing model
defines a joint distribution over logical forms z1:k.
Specifically, we define a conditional random field
(CRF) over z1:k, as shown in Figure 2:

pθ(z1:k | c1:k, e1)∝exp

(
k∑
i=1

φ(ci, zi−1, zi, ei) · θ
)
, (1)

where φ(ci, zi−1, zi, ei) is the feature vector and
θ is the weight vector. Note that the environ-
ments e1:k are a deterministic function of the log-
ical forms z1:k through the recurrence ei+1 =
simulator(ei, planner(ei, zi)), which couples the
different time steps.
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Features. The feature vector φ(ci, zi−1, zi, ei)
contains 16 features which capture the dependen-
cies between text, logical forms, and environment.
Recall that zi = ([ν ⇒ (λ~v.S, ξ)], ξi), where ξ
is the environment in which the lexical entry was
created and ξi is the current environment. Let
fi = (λ~v.S)(ξi) be the current postcondition.
Here we briefly describe the important features
(see the supplemental material for the full list):
• Language and logical form: The logical form
zi should generally reference objects mentioned
in the text. Assume we have computed a cor-
relation ρ(ω, o) between each object description
ω and object o, whose construction is described
later. We then define two features: precision cor-
relation, which encourages zi to only use objects
referred to in ci; and recall correlation, which
encourages zi to use all the objects referred to in
ci.
• Logical form: The postcondition fi should be

based on previously seen environments. For ex-
ample, microwaving an empty cup and grasp-
ing a couch are unlikely postconditions. We
define features corresponding to the average
probability (based on the training data) of all
conjunctions of at most two atoms in the
postcondition (e.g., grasping(robot, cup)}).
We do the same with their abstract versions
({grasping(v1, v2)}). In addition, we build the
same set of four probability tables conditioned
on verbs in the training data. For example, the
abstract postcondition state(v1, water) has a
higher probability conditioned on the verb “fill”.
This gives us a total of 8 features of this type.
• Logical form and environment: Recall that an-

choring helps us in dealing with ellipsis and
noise. We add a feature based on the average
correlation between the objects of the new map-
ping ξi with the corresponding objects in the an-
chored mapping ξ.
The other features are based on the relationship

between object descriptions, similarity between ξ
and ξi and transition probabilities between logi-
cal forms zi−1 and zi. These probabilities are also
learned from training data.
Mapping Object Descriptions. Our features rely
on a mapping from object descriptions ω (e.g.,
“the red shiny cup”) to objects o (e.g., cup8),
which has been addressed in many recent works
(Matuszek et al., 2012a; Guadarrama et al., 2014;
Fasola and Matari’c, 2014).

One key idea is: instead of computing rigid lex-
ical entries such as cup→ cup1, we use a contin-

uous correlation score ρ(ω, o) ∈ [0, 1] that mea-
sures how well ω describes o. This flexibility al-
lows the algorithm to use objects not explicitly
mentioned in text. Given “get me a tank of wa-
ter”, we might choose an approximate vessel (e.g.,
cup2).

Given an object description ω, an object o, and a
set of previously seen objects (used for anaphoric
resolution), we define the correlation ρ(ω, o) using
the following approach:
• If ω is a pronoun, ρ(ω, o) is the ratio of the posi-

tion of the last reference of o to the length of the
action sequence computed so far, thus preferring
recent objects.
• Otherwise, we compute the correlation using

various sources: the object’s category; the
object’s state for handling metonymy (e.g.,
the description “coffee” correlates well with
the object mug1 if mug1 contains coffee—
state(mug1, has-coffee) is true), WordNet
(Fellbaum, 1998) for dealing synonymy and hy-
ponymy; and word alignments between the ob-
jects and text from Giza++ (Och and Ney, 2003)
to learn domain-specific references (e.g., “Guin-
ness book” refers to book1, not book2). More
details can be found in the supplemental mate-
rial.

6 Lexicon Induction from Training Data
In order to map text to logical forms, we first in-
duce an initial anchored lexicon Λ from the train-
ing data {(x(m), e(m), a(m), π(m))}Mm=1. At test
time, we add new lexical entries (Section 7) to Λ.

Recall that shallow parsing x(m) yields a list of
frame nodes c1:k. For each frame node ci and its
aligned action sequence ai, we take the conjunc-
tion of all the atoms (and their negations) which
are false in the current one ei but true in the
next environment ei+1. We parametrize this con-
junction by replacing each object with a variable,
yielding a postcondition S parametrized by free
variables ~v and the mapping ξ from ~v to objects
in ei. We then add the lexical entry [verb(ci) ⇒
(λ~v.S, ξ)] to Λ.
Instantiating Lexical Entries. At test time, for
a given clause ci and environment ei, we generate
set of logical forms zi = (`i, ξi). To do this, we
consider the lexical entries in Λ with the same verb
as ci. For each such lexical entry `i, we can map its
free variables ~v to objects in ei in an exponential
number of ways. Therefore, for each `i we only
consider the logical form (`i, ξi) where the map-
ping ξi obtains the highest score under the current
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model: ξi = arg maxξ′ φ(ci, zi−1, (`i, ξ′), ei) ·
θ. For the feature vector φ that we consider,
this approximately translates to solving an integer
quadratic program with variables [yij ] ∈ {0, 1},
where yij = 1 only if vi maps to object j.

7 Environment-Driven Lexicon
Induction at Test Time

Unfortunately, we cannot expect the initial lexicon
Λ induced from the training set to have full cover-
age of the required postconditions. Even after us-
ing 90% of the data for training, we encountered
17% new postconditions on the remaining 10%.
We therefore propose generating new lexical en-
tries at test time and adding them to Λ.

Formally, for a given environment ei and frame
node ci, we want to generate likely logical forms.
Although the space of all possible logical forms
is very large, the environment constrains the pos-
sible interpretations. We first compute the set
of atoms that are false in ei and that only con-
tain objects o that are “referred” to by either
ci or ci−1, where “refers” means that there ex-
ists some argument ω in ci for which o ∈
arg maxo′ ρ(ω, o′). For example, if ci corresponds
to the text “distribute pillows among the couches”,
we consider the atom on(pillow1, armchair1)
but not on(pillow1, snacktable2) since the ob-
ject armchair1 has the highest correlation to the
description “couches”.

Next, for each atom, we convert it into a logi-
cal form z = (`, ξ) by replacing each object with
a variable. While this generalization gives us a
mapping ξ, we create a lexical entry `i = [ν ⇒
(λ~v.S, ∅)] without it, where S is the parameter-
ized atom. Note that the anchored mapping is
empty, representing the fact that this lexical en-
try was unseen during training time. For example,
the atom state(tv1, mute) would be converted to
the logical form (`, ξ), where ` = [verb(ci) ⇒
(λv.state(v, mute), ∅] and ξ = {v → tv1}. We
do not generalize state names (e.g., mute) because
they generally are part of the meaning of the verb.

The score φ(ci, zi−1, zi, ei) · θ is computed
for the logical form zi produced by each post-
condition. We then take the conjunction of ev-
ery pair of postconditions corresponding to the
200 highest-scoring logical forms. This gives us
new set of postconditions on which we repeat
the generalization-scoring-conjunction cycle. We
keep doing this while the scores of the new logi-
cal forms is increasing or while there are logical
forms remaining.

Train Time Anchored Lexicon 𝚲 (Sec 6)

ℓ = [𝑣𝑒𝑟𝑏 ⇒ (𝜆  𝑣. 𝑆, 𝜉)]
such that 𝑣𝑒𝑟𝑏 = 𝑣(𝑐𝑖)

Test Time Search for Logical Forms (Sec 7)

Set of Logical Forms for 𝒄𝒊−𝟏𝒄𝒊, 𝒆𝒊, 𝒛𝒊−𝟏

𝑧𝑖 = (ℓ, 𝜉𝑖)
𝜉𝑖 is the new assignment

𝑧𝑖 = ℓ, 𝜉𝑖

where ℓ = [𝑣𝑒𝑟𝑏 ⇒ (𝜆  𝑣. 𝑆 , ∅)]
is a test time lexical entry

Figure 4: Logical forms for a given clause ci, en-
vironment ei, and previous logical form zi−1 are
generated from both a lexicon induced from train-
ing data and a test-time search procedure based on
the environment.

If a logical form z = ([ν ⇒ (λ~v.S, ∅)], ξ) is
used by the predicted action sequence, we add the
lexical entry [ν ⇒ (λ~v.S, ξ)] to the lexicon Λ.
This is different to other lexicon induction proce-
dures such as GENLEX (Zettlemoyer and Collins,
2007) which are done at training time only and
require more supervision. Moreover, GENLEX
does not use the environment context in creating
new lexical entries and thus is not appropriate at
test time, since it would vastly overgenerate lexi-
cal entries compared to our approach. For us, the
environment thus provides implicit supervision for
lexicon induction.

8 Inference and Parameter Estimation
Inference. Given a text x (which is converted to
c1:k via Section 3.2) and an initial environment
e1, we wish to predict an action sequence a based
on pθ(a1:k | c1:k, e1), which marginalizes over all
logical forms z1:k (see Figure 2).

To enumerate possible logical forms, semantic
parsers typically lean heavily on a lexicon (Artzi
and Zettlemoyer, 2013), leading to high preci-
sion but lower recall, or search more aggressively
(Berant et al., 2013), leading to higher recall but
lower precision. We adopt the following hybrid
approach: Given ei, ci−1, ci and zi−1, we use both
the lexical entries in Λ as explained in Section 6
and the search procedure in Section 7 to generate
the set of possible logical forms for zi (see Fig-
ure 4). We use beam search, keeping only the
highest-scoring logical form with satisfiable post-
conditions for each i ∈ {1, . . . , k} and resulting
action sequence a1:i.
Parameter Estimation. We split 10% of our
training data into a separate tuning set (the 90%
was used to infer the lexicon). On each example
in this set, we extracted the full sequence of logi-
cal forms z1:k from the action sequence a1:k based
on Section 6. For efficiency, we used an objective
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similar to pseudolikelihood to estimate the param-
eters θ. Specifically, we maximize the average log-
likelihood over each adjacent pair of logical forms
under p̃θ:

p̃θ(zi | zi−1, ci, ei) ∝ exp(φ(ci, zi−1, zi, ei)
>θ). (2)

The weights were initialized to 0. We per-
formed 300 iterations over the validation set with
a learning rate of 0.005

N .

9 Dataset and Experiments
9.1 Dataset

We collected a dataset of 500 examples from 62
people using a crowdsourcing system similar to
Misra et al. (2014). We consider two different 3D
scenarios: a kitchen and a living room, each con-
taining an average of 40 objects. Both of these
scenarios have 10 environments consisting of dif-
ferent sets of objects in different configurations.
We define 10 high-level objectives, 5 per scenario,
such as clean the room, make coffee, prepare room
for movie night, etc.

One group of users wrote natural language com-
mands to achieve the high-level objectives. An-
other group controlled a virtual robot to accom-
plish the commands given by the first group. The
dataset contains considerable variety, consisting of
148 different verbs, an average of 48.7 words per
text, and an average of 21.5 actions per action se-
quence. Users make spelling and grammar errors
in addition to occasionally taking random actions
not relevant to the text. The supplementary mate-
rial contains more details.

We filtered out 31 examples containing fewer
than two action sequences. Of the remaining ex-
amples, 378 were used for training and 91 were
used for test. Our algorithm is tested on four new
environments (two from each scenario).

9.2 Experiments and Results

Evaluation Metrics. We consider two metrics,
IED and END, which measure accuracy based on
the action sequence and environment, respectively.
Specifically, the IED metric (Misra et al., 2014) is
the edit distance between predicted and true action
sequence. The END metric is the Jaccard index of
sets A and B, where A is the set of atoms (e.g.,
on(cup1,table1)) whose truth value changed
due to simulating the predicted action sequence,
and B is that of the true action sequence.
Baselines. We compare our algorithm with the
following baselines:

Table 3: Results on the metrics and baselines de-
scribed in section 9.2. The numbers are normal-
ized to 100 with larger values being better.
Algorithm IED END
Chance 0.3 0.5
Manually Defined Templates 2.5 1.8
UBL- Best Parse (Kwiatkowski et al., 2010) 5.3 6.9
VEIL (Misra et al., 2014) 14.8 20.7
Model with only train-time lexicon induction 20.8 26.8
Model with only test-time lexicon induction 21.9 25.9
Full Model 22.3 28.8

1. Chance: Randomly selects a logical form for
every frame node from the set of logical forms
generated by generalizing all possible postcon-
ditions that do not hold in the current environ-
ment. These postconditions could contain up to
93 atoms.
2. Manually Defined Templates: Defines a set
of postcondition templates for verbs similar to
Guadarrama (2013).
3. UBL-Best Parse (Kwiatkowski et al., 2010):
UBL algorithm trained on text aligned with post-
conditions and a noun-phrase seed lexicon. The
planner uses the highest scoring postcondition
given by UBL to infer the action sequence.
4. VEIL (Misra et al., 2014): Uses action se-
quences as logical forms and does not generate
lexical entries at test time.
We also consider two variations of our model: (i)
using only lexical entries induced using the train-
ing data, and (ii) using only the logical forms in-
duced at test-time by the search procedure.

The results are presented in Table 3. We ob-
serve that our full model outperforms the baseline
and the two pure search- and lexicon-based varia-
tions of our model. We further observe that adding
the search procedure (Section 7) improved the ac-
curacy by 1.5% on IED and 2% on END. The log-
ical forms generated by the search were able to
successfully map 48% of the new verbs.

Table 2 shows new verbs and concepts that the
algorithm was able to induce at test time. The
algorithm was able to correctly learn the lexi-
cal entries for the verbs “distribute” and “mix”,
while the ones for verbs “change” and “boil” were
only partly correct. The postconditions in Table 2
are not structurally isomorphic to previously-seen
logical forms; hence they could not have been
handled by using synonyms or factored lexicons
(Kwiatkowski et al., 2011). The poor performance
of UBL was because the best logical form often
produced an unsatisfiable postcondition. This can
be remedied by joint modeling with the environ-
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Table 2: New verbs and concepts induced at test time (Section 7).
Text Postcondition represented by the learned logical form # Log. forms explored
“mix it with ice cream and syrup”state(cup2, ice-cream1) ∧ state(cup2, vanilla) 15
“distribute among the couches” ∧j∈{1,3}on(pillowj, loveseat1) ∧ on(pillowi+1, armchairi+1)386
“boil it on the stove” state(stove, stovefire1) ∧ state(kettle, water) 109
“change the channel to a movie” state(tv1, channel4) ∧ on(book1, loveseat1) 98

ment. The VEIL baseline used actions for repre-
sentation and does not generalize as well as the
postconditions in our logical forms.

It is also instructive to examine the alternate
postconditions that the search procedure consid-
ers. For the first example in Table 2, the following
postcondition was considered by not selected:
grasping(robot, icecream2)∧grasping(robot, syrup1)

While this postcondition uses all the objects de-
scribed in the text, the environment-based features
suggest it makes little sense for the task to end with
the robot eternally grasping objects. For the sec-
ond example, alternate postconditions considered
included:

1. on(pillow1, pillow2) ∧ on(pillow3, pillow4)

2. ∧4j=1 on(pillowj, loveseat1)

3. ∧3j=1 near(robot1, armchairj)

The algorithm did not choose options 1 or 3
since the environment-based features recognizes
these as unlikely configurations. Option 2 was
ruled out since the recall correlation feature real-
izes that not all the couches are mentioned in the
postcondition.

To test how much features on the environment
help, we removed all such features from our full
model. We found that the accuracy fell to 16.0%
on the IED metric and 16.6% on the END metric,
showing that the environment is crucial.

In this work, we relied on a simple deterministic
shallow parsing step. We found that shallow pars-
ing was able to correctly process the text in only
46% of the test examples, suggesting that improv-
ing this initial component or at least modeling the
uncertainty there would be beneficial.

10 Related Work
Our work uses semantic parsing to map nat-
ural language instructions to actions via novel
concepts, which brings together several themes:
actions, semantic parsing, novel concepts, and
robotics.
Mapping Text to Actions. Several works (Brana-
van et al., 2009; Branavan et al., 2010; Vogel and
Jurafsky, 2010) use reinforcement learning to di-
rectly map to text to actions, and do not even re-
quire an explicit model of the environment. How-

ever, they can only handle simple actions, whereas
our planner and simulator allows us to work with
postconditions, and thus tackle high-level instruc-
tions. Branavan et al. (2012) extract precondi-
tion relations from text, learn to map text to sub-
goals (postconditions) for a planner. However,
their postconditions are atomic, whereas ours are
complex conjunctions.

Other works (Chen and Mooney, 2011; Kim
and Mooney, 2012; Kollar et al., 2010; Fasola and
Mataric, 2013) have focused only on navigational
verbs and spatial relations, but do not handle high-
level verbs. Artzi and Zettlemoyer (2013) also fall
into the above category and offer a more composi-
tional treatment. They focus on how words com-
pose; we focus on unraveling single words.

The broader problem of grounded language ac-
quisition, involving connecting words to aspects of
a situated context has been heavily studied (Duval-
let et al., 2014; Yu and Siskind, 2013; Chu et al.,
2013; Chen and Mooney, 2008; Mooney, 2008;
Fleischman and Roy, 2005; Liang et al., 2009).
Semantic Parsing. In semantic parsing, much
work has leveraged CCG (Zettlemoyer and
Collins, 2005; Zettlemoyer and Collins, 2007;
Kwiatkowski et al., 2010). One challenge behind
lexically-heavy approaches is ensuring adequate
lexical coverage. Kwiatkowski et al. (2011) en-
hanced generalization by factoring a lexical entry
into a template plus a lexeme, but the rigidity of
the template remains. This is satisfactory when
words map to one (or two) predicates, which is the
case in most existing semantic parsing tasks. For
example, in Artzi and Zettlemoyer (2013), verbs
are associated with single predicates (“move” to
move, “walk” to walk, etc.) In our setting, verbs
contain multi-predicate postconditions, for which
these techniques would not be suitable.

As annotated logical forms for training seman-
tic parsers are expensive to obtain, several works
(Clarke et al., 2010; Liang et al., 2011; Berant et
al., 2013; Kwiatkowski et al., 2013) have devel-
oped methods to learn from weaker supervision,
and as in our work, use the execution of the logi-
cal forms to guide the search. Our supervision is
even weaker in that we are able to learn at test time
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from partial environment constraints.
Grounding to Novel Concepts. Guadarrama et
al. (2014) map open vocabulary text to objects in
an image using a large database. Matuszek et al.
(2012a) create new predicates for every new ad-
jective at test time. Others (Kirk et al., 2014) ask
users for clarification. In contrast, we neither have
access to large databases for this problem, nor do
we do create new predicates or use explicit super-
vision at test time.
Robotic Applications. Our motivation behind this
work is to build robotic systems capable of taking
commands from users. Other works in this area
have considered mapping text to a variety of ma-
nipulation actions (Sung et al., 2015). Levine et
al. (2015) and Lenz et al. (2015) focus on spe-
cific manipulation actions. In order to build a rep-
resentation of the environment, Ren et al. (2012)
and Wu et al. (2014) present vision algorithms but
only output symbolic labels, which could act as
inputs to our system. In future work, we also plan
to integrate our work with RoboBrain (Saxena et
al., 2014) to leverage these existing systems for
building a robotic system capable of working with
physical world data.

11 Conclusion
We have presented an algorithm for mapping text
to actions that induces lexical entries at test time
using the environment. Our algorithm couples the
lexicon extracted from training data with a test-
time search that uses the environment to reduce
the space of logical forms. Our results suggest that
using the environment to provide lexical coverage
of high-level concepts is a promising avenue for
further research.
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Appendix: Parsing Text into Control Flow
Graph.

We first decompose the text x into its control

flow graph G using a simple set of rules:
• The parse tree of x is generated using the Stan-

ford parser (Klein and Manning, 2003) and a
frame node is created for each non-auxiliary
verb node in the tree.
• Conditional nodes are discovered by look-

ing for the keywords until, if, after, when.
The associated subtree is then parsed deter-
ministically using a set of a rules. For
example, a rule parses “for x minutes” to
for(digit :x,unit :minutes). We found that
all conditionals can be interpreted against the
initial environment e1, since our world is fully-
observable, deterministic, and the user giving
the command has full view of the world.
• To find objects, we look for anaphoric terminal

nodes or nominals whose parent is not a nominal
or which have a PP sibling. These are processed
into object descriptions ω.
• Object descriptions ω are attached to the frame

node, whose verb is nearest in the parse tree to
the main noun of ω.
• Nodes corresponding to {IN,TO,CC,“,”} are

added as the relation between the corresponding
argument objects.
• If there is a conjunction between two objects in

a frame node and if these objects have the same
relation to other objects, then we split the frame
node into two sequential frame nodes around
these objects. For example, a frame node corre-
sponding to the text segment “take the cup and
bowl from table” is split into two frame nodes
corresponding to “take the cup from table” and
“take bowl from table”.
• A temporal edge is added between successive

frame nodes in the same branch of a condition.
A temporal edge is added between a conditional
node and head of the true and false branches of
the condition. The end of all branches in a sen-
tence are joined to the starting node of the suc-
cessive sentence.
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Abstract

This paper studies the use of structural
representations for learning relations be-
tween pairs of short texts (e.g., sentences
or paragraphs) of the kind: the second
text answers to, or conveys exactly the
same information of, or is implied by, the
first text. Engineering effective features
that can capture syntactic and semantic re-
lations between the constituents compos-
ing the target text pairs is rather complex.
Thus, we define syntactic and semantic
structures representing the text pairs and
then apply graph and tree kernels to them
for automatically engineering features in
Support Vector Machines. We carry out
an extensive comparative analysis of state-
of-the-art models for this type of relational
learning. Our findings allow for achiev-
ing the highest accuracy in two differ-
ent and important related tasks, i.e., Para-
phrasing Identification and Textual Entail-
ment Recognition.

1 Introduction

Advanced NLP systems, e.g., IBM Watson system
(Ferrucci et al., 2010), are the result of effective
use of syntactic/semantic information along with
relational learning (RL) methods. This research
area is rather vast including, extraction of syntac-
tic relations, e.g., (Nastase et al., 2013), predicate
relations, e.g., Semantic Role Labeling (Carreras
and Màrquez, 2005) or FrameNet parsing (Gildea
and Jurafsky, 2002) and relation extraction be-
tween named entities, e.g., (Mintz et al., 2009).

Although extremely interesting, the above
methods target relations only between text con-
stituents whereas the final goal of an intelligent
system would be to interpret the semantics of
larger pieces of text, e.g., sentences or para-
graphs. This line of research relates to three

broad fields, namely, Question Answering (QA)
(Voorhees and Tice, 1999), Paraphrasing Identifi-
cation (PI) (Dolan et al., 2004) and Recognition
of Textual Entailments (RTE) (Giampiccolo et al.,
2007). More generally, RL from text can be denied
as follows: given two text fragments, the main
goal is to derive relations between them, e.g., ei-
ther if the second fragment answers the question,
or conveys exactly the same information or is im-
plied by the first text fragment. For example, the
following two sentences:
- License revenue slid 21 percent, however, to
$107.6 million.
- License sales, a key measure of demand, fell 21
percent to $107.6 million.
express exactly the same meaning, whereas the
next one:
- She was transferred again to Navy when the
American Civil War began, 1861.
implies:
- The American Civil War started in 1861.

Automatic learning a model for deriving the re-
lations above is rather complex as any of the text
constituents, e.g., License revenue, a key measure
of demand, in the two sentences plays an important
role. Therefore, a suitable approach should ex-
ploit representations that can structure the two sen-
tences and put their constituents in relation. Since
the dependencies between constituents can be an
exponential number and representing structures in
learning algorithms is rather challenging, auto-
matic feature engineering through kernel methods
(Shawe-Taylor and Cristianini, 2004; Moschitti,
2006) can be a promising direction.

In particular, in (Zanzotto and Moschitti, 2006),
we represented the two evaluating sentences for
the RTE task with syntactic structures and then ap-
plied tree kernels to them. The resulting system
was very accurate but, unfortunately, it could not
scale to large datasets as it is based on a compu-
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tationally exponential algorithm. This prevents its
application to PI tasks, which typically require a
large dataset to train the related systems.

In this paper, we carry out an extensive exper-
imentation using different kernels based on trees
and graphs and their combinations with the aim of
assessing the best model for relation learning be-
tween two entire sentences (or even paragraphs).
More in detail, (i) we design many models for RL
combining state-of-the-art tree kernels and graph
kernels and apply them to innovative computa-
tional structures. These innovative combinations
use for the fist time semantic/syntactic tree ker-
nels and graph kernels for the tackled tasks. (ii)
Our kernels provide effective and efficient solu-
tions, which solve the previous scalability problem
and, at the same time, exceed the state of the art
on both RTE and PI. Finally, our study suggests
research directions for designing effective graph
kernels for RL.

2 Related Work

In this paper, we apply kernel methods, which en-
able an efficient comparison of structures in huge,
possibly infinite, feature spaces. While for trees, a
comparison using all possible subtrees is possible,
designing kernel functions for graphs with such
property is an NP-Hard problem (i.e., it shows the
same complexity of the graph isomorphism prob-
lem) (Gartner et al., 2003). Thus most kernels
for graphs only associate specific types of sub-
structures with features, such as paths (Borgwardt
and Kriegel, 2005; Heinonen et al., 2012), walks
(Kashima et al., 2003; Vishwanathan et al., 2006)
and tree structures (Cilia and Moschitti, 2007;
Mahé and Vert, 2008; Shervashidze et al., 2011;
Da San Martino et al., 2012).

We exploit structural kernels for PI, whose task
is to evaluate whether a given pair of sentences is
in the paraphrase class or not, (see for example
(Dolan et al., 2004)). Paraphrases can be seen as
a restatement of a text in another form that pre-
serves the original meaning. This task has a pri-
mary importance in many other NLP and IR tasks
such as Machine Translation, Plagiarism Detec-
tion and QA. Several approaches have been pro-
posed, e.g., (Socher et al., 2011) apply a recursive
auto encoder with dynamic pooling, and (Madnani
et al., 2012) use eight machine translation metrics
to achieve the state of the art. To our knowledge no
previous model based on kernel methods has been

applied before: with such methods, we outperform
the state of the art in PI.

A description of RTE can be found in (Giampic-
colo et al., 2007): it is defined as a directional
relation extraction between two text fragments,
called text and hypothesis. The implication is sup-
posed to be detectable only based on the text con-
tent. Its applications are in QA, Information Ex-
traction, Summarization and Machine translation.
One of the most performing approaches of RTE 3
was (Iftene and Balahur-Dobrescu, 2007), which
largely relies on external resources (i.e., WordNet,
Wikipedia, acronyms dictionaries) and a base of
knowledge developed ad hoc for the dataset. In
(Zanzotto and Moschitti, 2006), we designed an
interesting but computationally expensive model
using simple syntactic tree kernels. In this pa-
per, we develop models that do not use external
resources but, at the same time, are efficient and
approach the state of the art in RTE.

3 Structural kernels

Kernel Machines carry out learning and classifi-
cation by only relying on the inner product be-
tween instances. This can be efficiently and im-
plicitly computed by kernel functions by exploit-
ing the following dual formulation of the model
(hyperplane):

∑
i=1..l yiαiφ(oi) · φ(o) + b = 0,

where yi are the example labels, αi the support
vector coefficients, oi and o are two objects, φ is
a mapping from the objects to feature vectors ~xi
and φ(oi) · φ(o) = K(oi, o) is the kernel func-
tion implicitly defining such mapping. In case
of structural kernels, K maps objects in substruc-
tures, thus determining their size and shape. Given
two structures S1 and S2, our general definition of
structural kernels is the following:

K(S1, S2) =
∑

s1⊆S1,s2⊆S2,si∈S
kiso(s1, s2), (1)

where si are substructures of Si, S is the set of ad-
missible substructures, and kiso determines if the
two substructures are isomorphic, i.e., it outputs 1
if s1 and s2 are isomorphic and 0 otherwise.

In the following, we also provide a more
computational-oriented definition of structural
kernels to more easily describe those we use in our
work:
Let the set S = {s1, s2, . . . , s|S|} be the substruc-
ture space and χi(n) be an indicator function,
equal to 1 if the target si is rooted at node n and
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equal to 0 otherwise. A structural-kernel function
over S1 and S2 is

K(S1, S2) =
∑

n1∈NS1

∑
n2∈NS2

∆(n1, n2), (2)

where NS1 and NS2 are the sets of the S1’s and
S2’s nodes, respectively and

∆(n1, n2) =
|S|∑
i=1

χi(n1)χi(n2). (3)

The latter is equal to the number of common
substructures rooted in the n1 and n2 nodes.
In order to have a similarity score between 0
and 1, a normalization in the kernel space, i.e.,

K(S1,S2)√
K(S1,S1)×K(S2,S2)

is usually applied. From a

practical computation viewpoint, it is convenient
to divide structural kernels in two classes of algo-
rithms working either on trees or graphs.

3.1 The Partial Tree Kernel (PTK)
PTK (Moschitti, 2006) generalizes a large class
of tree kernels as it computes one of the most
general tree substructure spaces. Given two trees
S1 and S2, PTK considers any connected subset
of nodes as possible feature of the substructure
space, and counts how many of them are shared
by S1 and S2. Its computation is carried out by
Eq. 2 using the following ∆PTK function:
if the labels of n1 and n2 are different
∆PTK(n1, n2) = 0; else ∆PTK(n1, n2) =

µ
(
λ2+

∑
~I1,~I2,l(~I1)=l(~I2)

λd(~I1)+d(~I2)

l(~I1)∏
j=1

∆PTK(cn1(~I1j), cn2(~I2j))
)

where µ, λ ∈ [0, 1] are two decay factors, ~I1 and
~I2 are two sequences of indices, which index sub-
sequences of children u, ~I = (i1, ..., i|u|), in se-
quences of children s, 1 ≤ i1 < ... < i|u| ≤ |s|,
i.e., such that u = si1 ..si|u| , and d(~I) = i|u| −
i1 + 1 is the distance between the first and last
child. The PTK computational complexity is
O(pρ2|NS1 ||NS2 |) (Moschitti, 2006), where p is
the largest subsequence of children that we want
to consider and ρ is the maximal outdegree ob-
served in the two trees. However the average run-
ning time tends to be linear for natural language
syntactic trees (Moschitti, 2006).

3.2 Smoothed Partial Tree Kernel (SPTK)
Constraining the application of lexical simi-
larity to words embedded in similar structures

provides clear advantages over all-vs-all words
similarity, which tends to semantically di-
verge. Indeed, syntax provides the necessary
restrictions to compute an effective semantic
similarity. SPTK (Croce et al., 2011) gen-
eralizes PTK by enabling node similarity
during substructure matching. More formally,
SPTK is computed by Eq. 2 using the following
∆SPTK(n1, n2) =

∑|S|
i,j=1 χi(n1)χj(n2)Σ(si, sj),

where Σ is a similarity between structures1. The
recursive definition of ∆SPTK is the following:
1. if n1 and n2 are leaves ∆SPTK(n1, n2) =
µλσ(n1, n2);
2. else ∆SPTK(n1, n2) = µσ(n1, n2)×

(
λ2+

∑
~I1,~I2,l(~I1)=l(~I2)

λd(
~I1)+d(~I2)

l(~I1)∏
j=1

∆σ(cn1(~I1j), cn2(~I2j))
)
,

where σ is any similarity between nodes, e.g., be-
tween their lexical labels, and the other variables
are the same of PTK. The worst case complexity
of SPTK is identical to PTK and in practice is
not higher than O(|NS1 ||NS2 |).

3.3 Neighborhood Subgraph Pairwise
Distance Kernel (NSPDK)

When general subgraphs are used as features in a
kernel computation, eq. 1 and 2 become computa-
tionally intractable (Gartner et al., 2003). To solve
this problem, we need to restrict the set of consid-
ered substructures S. (Costa and De Grave, 2010)
defined NSPDK such that the feature space is
only constituted by pairs of subgraphs (substruc-
tures) that are (i) centered in two nodes n1 and n2

such that their distance is not more than D; and
(ii) constituted by all nodes (and their edges) at
an exact distance h from n1 or n2, where the dis-
tance between two nodes is defined as the num-
ber of edges in the shortest path connecting them.
More formally, let G, NG and EG be a graph and
its set of nodes and edges, respectively, the sub-
structure space S = SG(H,D) used byNSPDK
in eqs 2 and 3 is:

{(γh(n), γh(n′)) : 1 ≤ h ≤ H,n, n′ ∈ NG,

d(n, n′) ≤ D},
where γh(n) returns the subgraph obtained by ex-
ecuting h steps of a breadth-first visit ofG starting
from node n and d(n, n′) is the distance between
two nodes in the graph. Note that (i) any feature

1Note that this generalizes Eq. 3.
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of the space is basically a pair of substructures;
and (ii) there is currently no efficient (implicit) for-
mulation for computing such kernel. In contrast,
whenH andD are limited, it is simple to compute
the space SG(H,D) explicitly. In such case, the
complexity of the kernel is given by the substruc-
ture extraction step, which is O(|NG| × hρ log ρ).

3.4 Kernel Combinations

Previous sections have shown three different ker-
nels. Among them, NSPDK is actually an ex-
plicit kernel, where the features are automatically
extracted with a procedure. In NLP, features are
often manually defined by domain experts, who
know the linguistic phenomena involved in the
task. When available, such features are important
as they encode some of the background knowledge
on the task. Therefore, combining different feature
spaces is typically very useful. Fortunately, ker-
nel methods enable an easy integration of different
kernels or feature spaces, i.e., the kernel sum pro-
duces the joint feature space and it is still a valid
kernel. In the next section, we show representa-
tions of text, i.e., structures and features, specific
to PI and RTE.

4 Representations for RL from text

The kernels described in the previous section can
be applied to generic trees and graphs. Auto-
matic feature engineering using structural kernels
requires the design of structures for representing
data examples that are specific to the learning task
we want to tackle. In our case, we focus on RL,
which consists in deriving the semantic relation
between two entire pieces of text. We focus on
two well-understood relations, namely, paraphras-
ing and textual implications. The tasks are simply
defined as: given two texts a1 and a2, automati-
cally classify if (i) a1 is a paraphrase of a2 and/or
(ii) a1 implies a2. Although the two tasks are lin-
guistically and conceptually rather different, they
can be modeled in a similar way from a shallow
representation viewpoint. This is exactly the per-
spective we would like to keep for showing the ad-
vantage of using kernel methods. Therefore, in the
following, we define sentence representations that
can be suitably used for both tasks and then we
rely on structural kernels and the adopted learning
algorithm for exploring the substructures relevant
to the different tasks.

4.1 Tree Representations

An intuitive understanding of our target tasks
suggests that syntactic information is essential to
achieve high accuracy. Therefore, we consider
the syntactic parse trees of the pair of sentences
involved in the evaluation. For example, Fig. 1
shows the syntactic constituency trees of the
sentences reported in the introduction (these
do not include the green label REL and the
dashed edges). Given two pairs of sentences,
pa = 〈a1, a2〉 and pb = 〈b1, b2〉, an initial kernel
for learning the tasks, can be the simple tree
kernel sum, e.g., PTK(a1, b1) + PTK(a2, b2)
as was defined in (Moschitti, 2008). This kernel
works in the space of the union of the sets of all
subtrees from the upper and lower trees, e.g.:

a1:
{
[PP [TO [to::t]][NP [QP [$

[$::$]][QP [CD [107.6::c]]]]]], [PP

[TO][NP [QP [$][QP [CD [107]]]]]], [PP

[TO][NP [QP [QP [CD]]]]], [PP [NP [QP

[QP]]]], ...
}

⋃
a2:

{
[NP [NP [DT [a::d]] [JJ [key::j]

NN]][PP]], [NP [NP [DT] [JJ NN]][PP]], [NP
[NP [JJ NN]][PP]], [NP [NP [NN]][PP]],

[NP [NP [JJ]][PP]], ...
}

However, such features cannot capture the rela-
tions between the constituents (or semantic lexical
units) from the two trees. In contrast, these are es-
sential to learn the relation between the two entire
sentences2.

To overcome this problem, in (Zanzotto and
Moschitti, 2006), we proposed the use of place-
holders for RTE: the main idea was to annotate the
matches between the constituents of the two sen-
tences, e.g., 107.6 millions, on both trees. This
way the tree fragments in the generated kernel
space contained an index capturing the correspon-
dences between a1 and a2. The critical drawback
of this approach is that other pairs, e.g., pb, will
have in general different indices, making the rep-
resentation very sparse. Alternatively, we experi-
mented with models that select the best match be-
tween all possible placeholder assignments across
the two pairs. Although we obtained a good im-
provement, such solution required an exponential
computational time and the selection of the max

2Of course assuming that text meaning is compositional.
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Figure 1: Text representations for PI and RTE: (i) pair of trees, a1 (upper) and a2 (lower), (ii) combined
in a graph with dashed edges, and (iii) labelled with the tag REL (in green). The nodes highlighted in
yellow constitute a feature for the NSPDK kernel (h = 1, D = 3) centered at the nodes ADVB and
NP-REL.

assignment made our similarity function a non-
valid kernel.

Thus, for this paper, we prefer to rely on a more
recent solution we proposed for passage reranking
in the QA domain (Severyn and Moschitti, 2012;
Severyn et al., 2013a; Severyn et al., 2013b), and
for Answer Selection (Severyn and Moschitti,
2013). It consists in simply labeling matching
nodes with a special tag, e.g., REL, which
indicates the correspondences between words.
REL is attached to the father and grandfather
nodes of the matching words. Fig. 1 shows
several green REL tags attached to the usual
POS-tag and constituent node labels of the parse
trees. For example, the lemma license is matched
by the two sentences, thus both its father, JJ,
and its grandfather, NP, nodes are marked with
REL. Thanks to such relational labeling the
simple kernel, PTK(a1, b1) + PTK(a2, b2), can
generate relational features from a1, e.g., [NP

[NP-REL [JJ-REL] NN]][PP]], [NP [NP-REL

[NN]][PP]], [NP [NP-REL [JJ-REL]][PP]],...

If such features are matched in b1, they provide
the fuzzy information: there should be a match
similar to [NP [NP-REL [JJ-REL]] also between
a2 and b2. This kind of matches establishes a sort
of relational pair features.

It should be noted that we proposed more
complex REL tagging policies for Passage Re-
ranking, exploiting additional resources such as
Linked Open Data or WordNet (Tymoshenko et
al., 2014). Another interesting application of this
RL framework is the Machine Translation Evalua-
tion (Guzmán et al., 2014). Finally, we used a sim-
ilar model for translating questions to SQL queries
in (Giordani and Moschitti, 2012).

4.2 Graph Representations

The relational tree representation can capture re-
lational features but the use of the same REL
tag for any match between the two trees prevents
to deterministically establish the correspondences
between nodes. For exactly representing such
matches (without incurring in non-valid kernels
or sparsity problems), a graph representation is
needed. If we connect matching nodes (or also
nodes labelled as REL) in Fig. 1 (see dashed
lines), we obtain a relational graph. Substructures
of such graph clearly indicate how constituents,
e.g., NPs, VPs, PPs, from one sentence map into
the other sentence. If such mappings observed
in a pair of paraphrase sentences are matched
in another sentence pair, there may be evidence
that also the second pair contains paraphrase sen-
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tences.

Unfortunately, the kernel computing the space
of all substructures of a graph (even if only con-
sidering connected nodes) is an intractable prob-
lem as mentioned in Sec. 3.3. Thus, we opt for the
use of NSPDK, which generates specific pairs
of structures. Intuitively, the latter can capture re-
lational features between constituents of the two
trees. Figure 1 shows an example of features gen-
erated by the NSPDK with parameters H =
1, D = 3 (the substructures are highlighted in
yellow), i.e., [ADVB [VP] [RB]], [NP-REL [VP]

[CD-REL] [NN-REL]].

4.3 Basic Features

In addition to structural representations, we also
use typical features for capturing the degrees of
similarity between two sentences. In contrast,
with the previous kernels these similarities are
computed intra-pair, e.g., between a1 and a2. Note
that any similarity measure generates only one fea-
ture. Their description follows:
– Syntactic similarities, which apply the cosine
function to vectors of n-grams (with n = 1, 2, 3, 4)
of word lemmas and part-of-speech tags.
– Kernel similarities, which use PTK or SPTK
applied to the sentences within the pair.

We also used similarity features from the
DKPro of the UKP Lab (Bär et al., 2012), tested
in the Semantic Textual Similarity (STS) task:
– Longest common substring measure and Longest
common subsequence measure, which determine
the length of the longest substring shared by two
text segments.
– Running-Karp-Rabin Greedy String Tiling pro-
vides a similarity between two sentences by count-
ing the number of shuffles in their subparts.
– Resnik similarity based on the WordNet hierar-
chy.
– Explicit Semantic Analysis (ESA) similar-
ity (Gabrilovich and Markovitch, 2007) repre-
sents documents as weighted vectors of con-
cepts learned from Wikipedia, WordNet and Wik-
tionary.
– Lexical Substitution (Szarvas et al., 2013):
a supervised word sense disambiguation system
is used to substitute a wide selection of high-
frequency English nouns with generalizations,
then Resnik and ESA features are computed on the
transformed text.

4.4 Combined representations
As mentioned in Sec. 3.4, we can combine ker-
nels for engineering new features. LetK be PTK
or SPTK, given two pairs of sentences pa =
〈a1, a2〉 and pb = 〈b1, b2〉, we build the following
kernel combinations for the RTE task:

(i) K+(pa, pb) = K(a1, b1) +K(a2, b2), which
simply sums the similarities between the first
two sentences and the second two sentences
whose implication has to be derived.

(ii) An alternative kernel combines the two
similarity scores above with the product:
K×(pa, pb) = K(a1, b1) ·K(a2, b2).

(iii) The symmetry of the PI task requires differ-
ent kernels. The most intuitive applies K
between all member combinations and sum
all contributions: all+K(pa, pb)=K(a1, b1) +
K(a2, b2) +K(a1, b2) +K(a2, b1).

(iv) It is also possible to combine pairs of
corresponding kernels with the product:
all×K(pa, pb) = K(a1, b1)K(a2, b2) +
K(a1, b2)K(a2, b1).

(v) An alternative kernel selects only the best be-
tween the two products above: MK(pa, pb) =
max(K(a1, b1)K(a2, b2),K(a1, b2)K(a2, b1)).
This is motivated by the observation that
before measuring the similarity between
two pairs, we need to establish which
ai is more similar to bj . However, the
max operator causes MK not to be a
valid kernel function, thus we substi-
tute it with a softmax function, which
is a valid kernel, i.e., SMK(pa, pb) = soft-
max(K(a1, b1)K(a2, b2),K(a1, b2)K(a2, b1)),
where softmax(x1, x2) = 1

c log(ecx1 + ecx2)
(c=100 was accurate enough).

The linear kernel (LK) over the basic features
(described previously) and/or NSPDK can be of
course added to all the above kernels.

5 Experiments

5.1 Setup
MSR Paraphrasing: we used the Microsoft Re-
search Paraphrase Corpus (Dolan et al., 2004) con-
sisting of 4,076 sentence pairs in the training set
and 1,725 sentence pairs in test set, with a distri-
bution of about 66% between positive and negative
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Vs Test 5 Fold Cross Validation
Kernel Acc (%) P R F1 Acc (%) P R F1

w
ithoutR

E
L

tagging

LK 75.88 0.784 0.881 0.829 75.54± 0.45 0.786± 0.009 0.876± 0.019 0.828± 0.004
GK 72.81 0.720 0.967 0.825 72.49± 1.22 0.723± 0.014 0.957± 0.011 0.824± 0.008

SMP T K 72.06 0.722 0.943 0.818 72.04± 1.08 0.725± 0.009 0.940± 0.017 0.819± 0.009
SMSP T KLSA

72.12 0.722 0.943 0.818 72.56± 1.10 0.731± 0.010 0.937± 0.017 0.821± 0.009
SMSP T KW2V

71.88 0.719 0.946 0.817 72.23± 1.07 0.727± 0.009 0.938± 0.017 0.820± 0.009

all×P T K 71.42 0.718 0.939 0.814 71.57± 0.86 0.724± 0.007 0.933± 0.015 0.815± 0.008

all×SP T KLSA
72.29 0.725 0.941 0.819 72.06± 0.62 0.730± 0.007 0.928± 0.014 0.817± 0.006

all×SP T KW2V
71.59 0.717 0.947 0.816 71.61± 0.76 0.725± 0.008 0.931± 0.013 0.815± 0.007

all+P T K 70.78 0.716 0.930 0.809 70.76± 0.91 0.720± 0.008 0.924± 0.017 0.809± 0.009

all+SP T KLSA
71.48 0.720 0.934 0.813 71.42± 0.91 0.727± 0.008 0.920± 0.020 0.812± 0.009

all+SP T KW2V
70.72 0.714 0.935 0.809 71.19± 1.22 0.723± 0.010 0.927± 0.018 0.812± 0.011

MP T K 72.17 0.725 0.935 0.817 72.31± 0.67 0.731± 0.007 0.930± 0.015 0.819± 0.007
MSP T KLSA

72.00 0.725 0.934 0.816 72.32± 0.44 0.732± 0.006 0.927± 0.014 0.818± 0.005
MSP T KW2V

71.71 0.722 0.933 0.814 71.99± 0.96 0.730± 0.008 0.926± 0.016 0.816± 0.008

w
ith

R
E

L
tagging

GK 75.07 0.752 0.933 0.833 74.69± 2.52 0.749± 0.029 0.940± 0.008 0.834± 0.018
SMP T K 76.17 0.765 0.927 0.838 75.42± 0.86 0.771± 0.007 0.903± 0.012 0.832± 0.008

SMSP T KLSA
76.52 0.767 0.929 0.840 75.62± 0.90 0.772± 0.007 0.905± 0.013 0.833± 0.007

SMSP T KW2V
76.35 0.766 0.929 0.839 75.64± 0.77 0.771± 0.004 0.907± 0.012 0.833± 0.007

all×P T K 75.36 0.767 0.905 0.830 74.76± 0.71 0.769± 0.006 0.892± 0.016 0.826± 0.008

all×SP T KLSA
75.65 0.770 0.903 0.831 74.83± 0.92 0.771± 0.009 0.891± 0.011 0.826± 0.008

all×SP T KW2V
75.88 0.772 0.905 0.833 75.26± 0.81 0.771± 0.008 0.898± 0.011 0.830± 0.008

all+P T K 74.49 0.762 0.895 0.824 73.99± 1.04 0.767± 0.010 0.880± 0.013 0.820± 0.009

all+SP T KLSA
75.07 0.767 0.899 0.827 73.87± 0.85 0.766± 0.009 0.880± 0.010 0.819± 0.007

all+SP T KW2V
75.42 0.772 0.894 0.829 74.16± 0.75 0.768± 0.008 0.882± 0.012 0.821± 0.007

GK+SMSP T KW2V
76.70 0.782 0.901 0.837 76.12± 0.96 0.787± 0.008 0.885± 0.015 0.833± 0.009

LK+GK 78.67 0.802 0.902 0.849 77.85± 1.00 0.804± 0.008 0.886± 0.015 0.843± 0.009
LK+SMSP T KW2V

77.74 0.794 0.899 0.843 77.52± 1.41 0.802± 0.011 0.885± 0.016 0.841± 0.011
LK+GK+SMSP T KW2V

79.13 0.807 0.901 0.852 78.11± 0.94 0.811± 0.005 0.879± 0.016 0.844± 0.009
(Socher et al., 2011) 76.8 − − 0.836 − − − −

(Madnani et al., 2012) 77.4 − − 0.841 − − − −

Table 1: Results on Paraphrasing Identification

examples. These pairs were extracted from top-
ically similar Web news articles, applying some
heuristics that select potential paraphrases to be
annotated by human experts.
RTE-3. We adopted the RTE-3 dataset (Giampic-
colo et al., 2007), which is composed by 800 text-
hypothesis pairs in both the training and test sets,
collected by human annotators. The distribution
of the examples among the positive and negative
classes is balanced.

5.1.1 Models and Parameterization
We train our classifiers with the C-SVM learning
algorithm (Chang and Lin, 2011) within KeLP3, a
Kernel-based Machine Learning platform that im-
plements tree kernels. In both tasks, we applied
the kernels described in Sec. 4, where the trees are
generated with the Stanford parser4.
SPTK uses a node similarity function

σ(n1, n2) implemented as follows: if n1 and n2

are two identical syntactic nodes σ = 1. If n1

and n2 are two lexical nodes with the same POS
tag, their similarity is evaluated computing the
cosine similarity of their corresponding vectors in
a wordspace. In all the other cases σ = 0. We
generated two different wordspaces. The first is

3
https://github.com/SAG-KeLP

4
http://nlp.stanford.edu/software/corenlp.shtml

a co-occurrence LSA embedding as described in
(Croce and Previtali, 2010). The second space is
derived by applying a skip-gram model (Mikolov
et al., 2013) with the word2vec tool5. SPTK
using the LSA will be referred to as SPTKLSA,
while when adopting word2vec it will be indicated
with SPTKW2V . We used default parameters
both for PTK and SPTK whereas we selected
h and D parameters of NSPDK that obtained
the best average accuracy using a 5-fold cross
validation on the training set.

5.1.2 Performance measures

The two considered tasks are binary classification
problems thus we used Accuracy, Precision, Re-
call and F1. The adopted corpora have a prede-
fined split between training and test sets thus we
tested our models according to such settings for
exactly comparing with previous work. Addition-
ally, to better assess our results, we performed a 5-
fold cross validation on the complete datasets. In
case of PI, the same sentence can appear in mul-
tiple pairs thus we distributed the pairs such that
the same sentence can only appear in one fold at a
time.

5
https://code.google.com/p/word2vec/
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Vs Test 5 Fold Cross Validation
Kernel Acc (%) P R F1 Acc (%) P R F1

w
ithoutR

E
L

tagging

LK 62 0.608 0.729 0.663 62.94± 5.68 0.635± 0.057 0.679± 0.083 0.652± 0.049
GK 55.375 0.555 0.651 0.599 55.63± 1.81 0.564± 0.022 0.612± 0.087 0.584± 0.032

PTK+ 56.13 0.560 0.676 0.612 54.13± 3.26 0.547± 0.024 0.637± 0.051 0.587± 0.027

SPTK+
LSA 56.88 0.566 0.683 0.619 53.63± 2.50 0.543± 0.024 0.622± 0.060 0.578± 0.027

SPTK+
W2V 56.63 0.563 0.683 0.617 54.06± 2.34 0.546± 0.022 0.634± 0.060 0.585± 0.026

PTK× 55.88 0.558 0.671 0.609 52.81± 1.99 0.535± 0.025 0.623± 0.055 0.574± 0.028

SPTK×LSA 56.25 0.561 0.671 0.611 53.56± 2.09 0.543± 0.022 0.616± 0.065 0.576± 0.026

SPTK×W2V 55.25 0.554 0.646 0.597 52.50± 1.77 0.533± 0.027 0.619± 0.071 0.571± 0.034

w
ith

R
E

L
tagging

GK 61.63 0.603 0.734 0.662 59.81± 3.84 0.599± 0.037 0.678± 0.071 0.634± 0.026

PTK+ 66.00 0.627 0.829 0.714 67.75± 7.17 0.655± 0.067 0.817± 0.038 0.725± 0.046

SPTK+
LSA 65.38 0.622 0.824 0.709 67.81± 7.30 0.656± 0.069 0.816± 0.036 0.725± 0.047

SPTK+
W2V 66.38 0.629 0.837 0.718 68.00± 7.15 0.658± 0.068 0.816± 0.039 0.726± 0.046

PTK× 66.13 0.629 0.827 0.714 67.75± 7.37 0.658± 0.071 0.804± 0.038 0.722± 0.049

SPTK×LSA 66.00 0.629 0.822 0.712 68.00± 7.62 0.661± 0.074 0.808± 0.039 0.725± 0.049

SPTK×W2V 67.00 0.636 0.834 0.722 67.69± 6.95 0.658± 0.069 0.804± 0.040 0.722± 0.043

GK+SPTK×W2V 66.38 0.634 0.815 0.713 66.00± 6.79 0.648± 0.069 0.769± 0.034 0.701± 0.044
LK+GK 62.25 0.609 0.737 0.667 62.06± 5.49 0.620± 0.051 0.702± 0.053 0.656± 0.036

LK+SPTK×W2V 66.13 0.628 0.829 0.715 68.25± 7.54 0.663± 0.076 0.816± 0.032 0.728± 0.047

LK+GK+SPTK×W2V 66.00 0.633 0.800 0.707 66.31± 7.35 0.652± 0.075 0.770± 0.053 0.703± 0.052
(Zanzotto et al., 2009) 66.75 0.667 − − − − − −

(Iftene and Balahur-Dobrescu, 2007) 69.13 − − − − − − −

Table 2: Results on Textual Entailment Recognition

5.2 Results on PI

The results are reported in Table 1. The first col-
umn shows the use of the relational tag REL in
the structures (discussed in Sec. 4.1). The second
column indicates the kernel models described in
sections 3 and 4 as well as the combination of the
best models. Columns 3-6 report Accuracy, Pre-
cision, Recall and F1 derived on the fixed test set,
whereas the remaining columns regard the results
obtained with cross validation. We note that:

First, when REL information is not used in the
structures, the linear kernel (LK) on basic fea-
tures outperforms all the structural kernels, which
all perform similarly. The best structural kernel is
the graph kernel, NSPDK (GK in short). This
is not surprising as without REL, GK is the only
kernel that can express relational features.

Second, SPTK is only slightly better than
PTK. The reason is mainly due to the ap-
proach used for building the dataset: potential
paraphrases are retrieved applying some heuristics
mostly based on the lexical overlap between sen-
tences. Thus, in most cases, the lexical similarity
used in SPTK is not needed as hard matches oc-
cur between the words of the sentences.

Third, when REL is used on the structures, all
kernels reach or outperform the F1 (official mea-
sure of the challenge) of LK. The relational struc-
tures seem to drastically reduce the inconsistent
matching between positive and negative examples,
reflecting in remarkable increasing in Precision. In
particular, SMSPTKLSA

achieves the state of the

art6, i.e., 84.1 (Madnani et al., 2012).
Next, combining our best models produces a

significant improvement of the state of the art, e.g.,
LK+GK+SMSPTKW2V

outperforms the result
in (Madnani et al., 2012) by 1.7% in accuracy and
1.1 points in F1.

Finally, the cross-validation experiments con-
firm the system behavior observed on the fixed
test set. The Std. Dev. (specified after the ± sign)
shows that in most cases the system differences are
significant.

5.3 Results on RTE

We used the same experimental settings performed
for PI to carry out the experiments on RTE. The
results are shown in Table 2 structured in the same
way as the previous table. We note that:

(i) Findings similar to PI are obtained.

(ii) Again the relational structures (using REL)
provide a remarkable improvement in Ac-
curacy (RTE challenge measure), allowing
tree kernels to compete with the state of the
art. This is an impressive result consider-
ing that our models do not use any exter-
nal resource, e.g., as in (Iftene and Balahur-
Dobrescu, 2007).

(iii) This time, SPTK×W2V improves onPTK by
1 absolute percent point.

6The performance of the several best systems improved
by our models are nicely summarized at http://aclweb.
org/aclwiki/index.php?title=Paraphrase_
Identification_(State_of_the_art)
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(iv) The kernel combinations are not more effec-
tive than SPTK alone.

Finally, the cross-fold validation experiments con-
firm the fixed-test set results.

6 Discussion and Conclusions

In this paper, we have engineered and studied
several models for relation learning. We utilized
state-of-the-art kernels for structures and created
new ones by combining kernels together. Addi-
tionally, we provide a novel definition of effective
and computationally feasible structural kernels.
Most importantly, we have designed novel com-
putational structures for trees and graphs, which
are for the first time tested in NLP tasks. Our ker-
nels are computationally efficient thus solving one
of the most important problems of previous work.

We empirically tested our kernels on two of the
most representative tasks of RL from text, namely,
PI and RTE. The extensive experimentation us-
ing many kernel models also combined with tradi-
tional feature vector approaches sheds some light
on how engineering effective graph and tree ker-
nels for learning from pairs of entire text frag-
ments. In particular, our best models significantly
outperform the state of the art in PI and the best
kernel model for RTE 3, with Accuracy close to
the one of the best system of RTE 3.

It should be stressed that the design of previous
state-of-the-art models involved the use of several
resources, annotation and heavy manually engi-
neering of specific rules and features: this makes
the portability of such systems on other domains
and tasks extremely difficult. Moreover the un-
availability of the used resources and the opacity
of the used rules have also made such systems very
difficult to replicate.

On the contrary, the models we propose enable
researchers to:

(i) build their system without the use of spe-
cific resources. We use a standard syntactic
parser, and for some models we use well-
known and available corpora for automati-
cally learning similarities with word embed-
ding algorithms; and

(ii) reuse our work for different (similar) tasks
(see paraphrasing) and data.

The simplicity and portability of our system is a
significant contribution to a very complex research
area such as RL from two entire pieces of text.

Our study has indeed shown that our kernel
models, which are very simple to be implemented,
reach the state of the art and can be used with large
datasets.

Furthermore, it should be noted that our mod-
els outperform the best tree kernel approach of the
RTE challenges (Zanzotto and Moschitti, 2006)
and also its extension that we proposed in (Zan-
zotto et al., 2009). These systems are also adapt-
able and easy to replicate, but they are subject to
an exponential computational complexity and can
thus only be used on very small datasets (e.g., they
cannot be applied to the MSR Paraphrase corpus).
In contrast, the model we proposed in this paper
can be used on large datasets, because its kernel
complexity is about linear (on average).

We believe that disseminating these findings
to the research community is very important, as
it will foster research on RL, e.g., on RTE, us-
ing structural kernel methods. Such research has
had a sudden stop as the RTE data in the latest
challenges increased from 800 instances to sev-
eral thousands and no tree kernel model has been
enough accurate to replace our computational ex-
pensive models (Zanzotto et al., 2009).

In the future, it would be interesting defining
graph kernels that can combine more than two sub-
structures. Another possible extension regards the
use of node similarity in graph kernels. Addition-
ally, we would like to test our models on other
RTE challenges and on several QA datasets, which
for space constraints we could not do in this work.
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Abstract

Neural network methods have achieved
promising results for sentiment classifica-
tion of text. However, these models on-
ly use semantics of texts, while ignoring
users who express the sentiment and prod-
ucts which are evaluated, both of which
have great influences on interpreting the
sentiment of text. In this paper, we ad-
dress this issue by incorporating user- and
product- level information into a neural
network approach for document level sen-
timent classification. Users and product-
s are modeled using vector space mod-
els, the representations of which capture
important global clues such as individu-
al preferences of users or overall quali-
ties of products. Such global evidence
in turn facilitates embedding learning pro-
cedure at document level, yielding better
text representations. By combining ev-
idence at user-, product- and document-
level in a unified neural framework, the
proposed model achieves state-of-the-art
performances on IMDB and Yelp dataset-
s1.

1 Introduction

Document-level sentiment classification is a fun-
damental problem in the field of sentiment analy-
sis and opinion mining (Pang and Lee, 2008; Liu,
2012). The task is to infer the sentiment polari-
ty or intensity (e.g. 1-5 or 1-10 stars on review
sites) of a document. Dominating studies follow
Pang et al. (2002; 2005) and regard this problem
as a multi-class classification task. They usually

∗Corresponding author.
1The codes and datasets are available at http://ir.

hit.edu.cn/˜dytang/

use machine learning algorithms, and build sen-
timent classifier from documents with accompa-
nying sentiment labels. Since the performance
of a machine learner is heavily dependent on the
choice of data representations (Domingos, 2012),
many works focus on designing effective features
(Pang et al., 2002; Qu et al., 2010; Kiritchenko et
al., 2014) or learning discriminative features from
data with neural networks (Socher et al., 2013;
Kalchbrenner et al., 2014; Le and Mikolov, 2014).

Despite the apparent success of neural network
methods, they typically only use text information
while ignoring the important influences of users
and products. Let us take reviews with respect to
1-5 rating scales as an example. A critical user
might write a review “it works great” and mark 4
stars, while a lenient user might give 5 stars even if
he posts an (almost) identical review. In this case,
user preference affects the sentiment rating of a re-
view. Product quality also has an impact on review
sentiment rating. Reviews towards high-quality
products (e.g. Macbook) tend to receive higher
ratings than those towards low-quality products.
Therefore, it is feasible to leverage individual pref-
erences of users and overall qualities of products
to build a smarter sentiment classifier and achieve
better performance2.

In this paper, we propose a new model dubbed
User Product Neural Network (UPNN) to capture
user- and product-level information for sentiment
classification of documents (e.g. reviews). UPNN
takes as input a variable-sized document as well
as the user who writes the review and the product
which is evaluated. It outputs sentiment polarity
label of a document. Users and products are en-
coded in continuous vector spaces, the representa-
tions of which capture important global clues such

2One can manually design a small number of user and
product features (Gao et al., 2013). However, we argue that
they are not effective enough to capture sophisticated seman-
tics of users and products.
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as user preferences and product qualities. These
representations are further integrated with contin-
uous text representation in a unified neural frame-
work for sentiment classification.

We apply UPNN to three datasets derived from
IMDB and Yelp Dataset Challenge. We compare
to several neural network models including recur-
sive neural networks (Socher et al., 2013), para-
graph vector (Le and Mikolov, 2014), sentiment-
specific word embedding (Tang et al., 2014b),
and a state-of-the-art recommendation algorithm
JMARS (Diao et al., 2014). Experimental results
show that: (1) UPNN outperforms baseline meth-
ods for sentiment classification of documents; (2)
incorporating representations of users and prod-
ucts significantly improves classification accuracy.
The main contributions of this work are as follows:
• We present a new neural network method

(UPNN) by leveraging users and products for
document-level sentiment classification.
• We validate the influences of users and prod-

ucts in terms of sentiment and text on massive
IMDB and Yelp reviews.
• We report empirical results on three datasets,

and show that UPNN outperforms state-of-the-art
methods for sentiment classification.

2 Consistency Assumption Verification

We detail the effects of users and products in terms
of sentiment (e.g. 1-5 rating stars) and text, and
verify them on review datasets.

We argue that the influences of users and prod-
ucts include the following four aspects.
• user-sentiment consistency. A user has spe-

cific preference on providing sentiment ratings.
Some users favor giving higher ratings like 5 stars
and some users tend to give lower ratings. In oth-
er words, sentiment ratings from the same user are
more consistent than those from different users.
• product-sentiment consistency. Similar

with user-sentiment consistency, a product also
has its “preference” to receive different average
ratings on account of its overall quality. Sentiment
ratings towards the same product are more consis-
tent than those towards different products.
• user-text consistency. A user likes to use per-

sonalized sentiment words when expressing opin-
ion polarity or intensity. For example, a strict user
might use “good” to express an excellent attitude,
but a lenient user may use “good” to evaluate an
ordinary product.

Algorithm 1 Consistency Assumption Testing
Input: data X , number of users/products m,
number of iterations n
Output: meaSamek, meaDiffk, 1 ≤ k ≤ n
for k = 1 to n do
meaSamek = 0, meaSamek = 0
for i = 1 to m do

Sample xi, x+
i , x

−
i from X

meaSamek += measure(xi, x+
i )

meaDiffk += measure(xi, x−i )
end for
meaSamek /= m, meaDiffk /= m

end for

• product-text consistency. Similar with user-
text consistency, a product also has a collection of
product-specific words suited to evaluate it. For
example, people prefer using “sleek” and “stable”
to evaluate a smartphone, while like to use “wire-
less” and “mechanical” to evaluate a keyboard.

We test four consistency assumptions men-
tioned above with the same testing criterion,
which is formalized in Algorithm 1. For each
consistency assumption, we test it for n = 50 iter-
ations on each of IMDB, Yelp Dataset Challenge
2013 and 2014 datasets. Taking user-sentiment
consistency as an example, in each iteration,
we randomly select two reviews xi, x+

i written
by the same user ui, and a review x−i written
by another randomly selected user. Afterwards,
we calculate the measurements of (xi, x+

i ) and
(xi, x−i ), and aggregate these statistics for m
users. In user-sentiment assumption test, we use
absolute rating difference ||ratinga − ratingb||
as the measurement between two reviews a and
b. We illustrate the results in Figure 1 (a)3,
where 2013same/2014same/amzsame (red
plots) means that two reviews are written by a
same user, and 2013diff/2014diff/amzdiff
(black plots) means that two reviews are written
by different users. We can find that: the absolute
rating differences between two reviews written by
a same user are lower than those written by dif-
ferent users (t-test with p-value < 0.01). In other
words, sentiment ratings from the same user are
more consistent than those from different users.
This validates the user-sentiment consistency.

For testing product-sentiment consistency, we

3Since the rating scale of IMDB (1-10) is different from
Yelp (1-5), we divide the rating difference of IMDB reviews
by two for better visualizing and analyzing the results.
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Figure 1: Assumption testing of user-sentiment, product-sentiment, user-text and product-text consisten-
cies. We test them on the datasets from IMDB and Yelp Dataset Challenge in 2013 and 2014.

use absolute rating difference as the measuremen-
t. The reviews xi, x+

i are towards a same product
pi, and x−i is towards another randomly selected
product. From Figure 1 (b), we can see that sen-
timent ratings towards the same product are more
consistent than those towards different products.
In order to verify the assumptions of user-text and
product-text consistencies, we use cosine similar-
ity between bag-of-words of two reviews as the
measurement. Results are given in Figure 1 (c) and
(d). We can see that the textual similarity between
two reviews written by a same user (or towards a
same product) are higher than those written by d-
ifferent users (or towards different products).

3 User Product Neural Network (UPNN)
for Sentiment Classification

We present the details of User Product Neural Net-
work (UPNN) for sentiment classification. An il-
lustration of UPNN is given in Figure 2. It takes
as input a review, the user who posts the review,
and the product which is evaluated. UPNN cap-
tures four kinds of consistencies which are veri-
fied in Section 2. It outputs the sentiment category

(e.g. 1-5 stars) of a review by considering not only
the semantics of review text, but also the informa-
tion of user and product. In following subsection-
s, we first describe the use of neural network for
modeling semantics of variable-sized documents.
We then present the methods for incorporating us-
er and product information, followed by the use
of UPNN in a supervised learning framework for
sentiment classification.

3.1 Modeling Semantics of Document

We model the semantics of documents based on
the principle of compositionality (Frege, 1892),
which states that the meaning of a longer expres-
sion (e.g. a sentence or a document) comes from
the meanings of its words and the rules used to
combine them. Since a document consists of a list
of sentences and each sentence is made up of a list
of words, we model the semantic representation of
a document in two stages. We first produce con-
tinuous vector of each sentence from word repre-
sentations. Afterwards, we feed sentence vectors
as inputs to compose document representation.

For modeling the semantics of words, we rep-
resent each word as a low dimensional, continu-
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Figure 2: An illustration of the neural network approach for sentiment classification. wi means the
i-th word of a review text. uk and pj are continuous vector representations of user k and product j
for capturing user-sentiment and product-sentiment consistencies. Uk and Pj are continuous matrix
representations of user k and product j for capturing user-text and product-text consistencies.

ous and real-valued vector, also known as word
embedding (Bengio et al., 2003). All the word
vectors are stacked in a word embedding matrix
Lw ∈ Rd×|V |, where d is the dimension of word
vector and |V | is the size of word vocabulary.
These word vectors can be randomly initialized
from a uniform distribution, regarded as a param-
eter and jointly trained with other parameters of
neural networks. Alternatively, they can be pre-
trained from text corpus with embedding learning
algorithms (Mikolov et al., 2013; Pennington et
al., 2014; Tang et al., 2014b), and applied as ini-
tial values of word embedding matrix. We adopt
the latter strategy which better exploits the seman-
tic and grammatical associations of words.

To model semantic representations of sentences,
convolutional neural network (CNN) and recur-
sive neural network (Socher et al., 2013) are t-
wo state-of-the-art methods. We use CNN (Kim,
2014; Kalchbrenner et al., 2014) in this work as
it does not rely on external parse tree. Specifical-
ly, we use multiple convolutional filters with dif-
ferent widths to produce sentence representation.
The reason is that they are capable of capturing lo-
cal semantics of n-grams of various granularities,
which are proven powerful for sentiment classifi-
cation. The convolutional filter with a width of 3
essentially captures the semantics of trigrams in a
sentence. Accordingly, multiple convolutional fil-
ters with widths of 1, 2 and 3 encode the semantics
of unigrams, bigrams and trigrams in a sentence.

An illustration of CNN with three convolu-
tional filters is given in Figure 3. Let us

denote a sentence consisting of n words as
{w1, w2, ...wi, ...wn}. Each word wi is mapped to
its embedding representation ei ∈ Rd. A convo-
lutional filter is a list of linear layers with shared
parameters. Let lcf be the width of a convolution-
al filter, and let Wcf , bcf be the shared parameters
of linear layers in the filter. The input of a linear
layer is the concatenation of word embeddings in a
fixed-length window size lcf , which is denoted as
Icf = [ei; ei+1; ...; ei+lcf−1] ∈ Rd·lcf . The output
of a linear layer is calculated as

Ocf = Wcf · Icf + bcf (1)

where Wcf ∈ Rlen×d·lcf , bcf ∈ Rlen, len is the
output length of linear layer. In order to capture
the global semantics of a sentence, we feed the
output of a convolutional filter to an average pool-
ing layer, resulting in an output vector with fixed-
length. We further add hyperbolic tangent func-
tions (tanh) to incorporate element-wise nonlin-
earity, and fold (average) their outputs to generate
sentence representation.

We feed sentence vectors as the input of an av-
erage pooling layer to obtain the document rep-
resentation. Alternative document modeling ap-
proaches include CNN or recurrent neural net-
work. However, we prefer average pooling for its
computational efficiency and good performance in
our experiment.

3.2 Modeling Semantics of Users and
Products

We integrate semantic representations of users
and products in UPNN to capture user-sentiment,
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Figure 3: Convolutional neural network with mul-
tiple convolutional filters for sentence modeling.

product-sentiment, user-text and product-text con-
sistencies.

For modeling user-sentiment and product-
sentiment consistencies, we embed each user as
a continuous vector uk ∈ Rdu and embed each
product as a continuous vector pj ∈ Rdp , where du
and dp are dimensions of user vector and product
vector, respectively. The basic idea behind this is
to map users with similar rating preferences (e.g.
prefer assigning 4 stars) into close vectors in user
embedding space. Similarly, the products which
receive similar averaged ratings are mapped into
neighboring vectors in product embedding space.

In order to model user-text consistency, we rep-
resent each user as a continuous matrix Uk ∈
RdU×d, which acts as an operator to modify the
semantic meaning of a word. This is on the basis
of vector based semantic composition (Mitchel-
l and Lapata, 2010). They regard compositional
modifier as a matrix X1 to modify another com-
ponent x2, and use matrix-vector multiplication
y = X1 × x2 as the composition function. Multi-
plicative semantic composition is suitable for our
need of user modifying word meaning, and it
has been successfully utilized to model adjective-
noun composition (Clark et al., 2008; Baroni and
Zamparelli, 2010) and adverb-adjective composi-
tion (Socher et al., 2012). Similarly, we model
product-text consistency by encoding each prod-
uct as a matrix Pj ∈ RdP×d, where d is the di-
mension of word vector, dP is the output length
of product-word multiplicative composition. After
conducting user-word multiplication and product-
word multiplication operations, we concatenate
their outputs and feed them to CNN (detailed in
Section 3.1) for producing user and product en-
hanced document representation.

3.3 Sentiment Classification

We apply UPNN to document level sentiment clas-
sification under a supervised learning framework
(Pang and Lee, 2005). Instead of using hand-
crafted features, we use continuous representation
of documents, users and products as discrimina-
tive features. The sentiment classifier is built from
documents with gold standard sentiment labels.

As is shown in Figure 2, the feature represen-
tation for building rating predictor is the concate-
nation of three parts: continuous user representa-
tion uk, continuous product representation pj and
continuous document representation vd, where vd
encodes user-text consistency, product-text consis-
tency and document level semantic composition.
We use softmax to build the classifier because its
outputs can be interpreted as conditional probabil-
ities. Softmax is calculated as given in Equation
2, where C is the category number (e.g. 5 or 10).

softmaxi =
exp(xi)∑C
i′=1 exp(xi′)

(2)

We regard cross-entropy error between
gold sentiment distribution and predicted sen-
timent distribution as the loss function of
softmax. We take the derivative of loss
function through back-propagation with re-
spect to the whole set of parameters θ =
[W 1,2,3

cf ; b1,2,3cf ;uk; pj ;Uk;Pj ;Wsoftmax, bsoftmax],
and update parameters with stochastic gradient
descent. We set the widths of three convolutional
filters as 1, 2 and 3. We learn 200-dimensional
sentiment-specific word embeddings (Tang et
al., 2014b) on each dataset separately, randomly
initialize other parameters from a uniform distri-
bution U(−0.01, 0.01), and set learning rate as
0.03.

4 Experiment

We conduct experiments to evaluate UPNN by ap-
plying it to sentiment classification of documents.

4.1 Experimental Setting

Existing benchmark datasets for sentiment clas-
sification such as Stanford Sentiment Treebank
(Socher et al., 2013) typically only have text infor-
mation, but do not contain users who express the
sentiment or products which are evaluated. There-
fore, we build the datasets by ourselves. In order
to obtain large scale corpora without manual anno-
tation, we derive three datasets from IMDB (Diao
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Dataset #users #products #reviews #docs/user #docs/product #sents/doc #words/doc
IMDB 1,310 1,635 84,919 64.82 51.94 16.08 394.6
Yelp 2014 4,818 4,194 231,163 47.97 55.11 11.41 196.9
Yelp 2013 1,631 1,633 78,966 48.42 48.36 10.89 189.3

Table 1: Statistical information of IMDB, Yelp 2014 and Yelp 2013 datasets used for sentiment classifi-
cation. The rating scale of IMDB dataset is 1-10. The rating scale of Yelp 2014 and Yelp 2013 datasets is
1-5. |V | is the vocabulary size of words in each dataset. #users is the number of users, #docs/user means
the average number of documents per user posts in the corpus.

et al., 2014) and Yelp Dataset Challenge4 in 2013
and 2014. Statistical information of the generated
datasets are given in Table 1.

We split each corpus into training, development
and testing sets with a 80/10/10 split, and conduct
tokenization and sentence splitting with Stanford
CoreNLP (Manning et al., 2014). We use standard
accuracy (Manning and Schütze, 1999; Jurafsky
and Martin, 2000) to measure the overall senti-
ment classification performance, and use MAE
and RMSE to measure the divergences between
predicted sentiment ratings (pr) and ground truth
ratings (gd).

MAE =
∑

i |gdi − pri|
N

(3)

RMSE =

√∑
i(gdi − pri)2

N
(4)

4.2 Baseline Methods
We compare UPNN with the following baseline
methods for document-level sentiment classifica-
tion.

(1) Majority is a heuristic baseline method,
which assigns the majority sentiment category in
training set to each review in the test dataset.

(2) In Trigram, we use unigrams, bigrams and
trigrams as features and train classifier with sup-
ported vector machine (SVM) (Fan et al., 2008).

(3) In TextFeature, we implement hand-crafted
text features including word/character ngrams,
sentiment lexicon features, negation features, etc
al. (Kiritchenko et al., 2014).

(4) We extract user-leniency features (Gao et al.,
2013) and corresponding product features (denot-
ed as UPF) from training data, and concatenate
them with the features in baseline (2) and (3).

(5) We learn word embeddings from training
and development sets with word2vec (Mikolov et
al., 2013), average word embeddings to get docu-
ment representation, and train a SVM classifier.

4http://www.yelp.com/dataset_challenge

(6) We learn sentiment-specific word embed-
dings (SSWE) from training and development set-
s, and use max/min/average pooling (Tang et al.,
2014b) to generate document representation.

(7) We represent sentence with RNTN (Socher
et al., 2013) and compose document representa-
tion with recurrent neural network. We average
hidden vectors of recurrent neural network as the
features for sentiment classification.

(8) We re-implement PVDM in Paragraph Vec-
tor (Le and Mikolov, 2014) because its codes are
not officially provided. The window size is tuned
on development set.

(9) We compare with a state-of-the-art recom-
mendation algorithm JMARS (Diao et al., 2014),
which leverages user and aspects of a review with
collaborative filtering and topic modeling.

4.3 Model Comparisons
Experimental results are given in Table 2. The re-
sults are separated into two groups: the methods
above only use texts of review, and the methods
below also use user and product information.

From the first group, we can see that majori-
ty performs very poor because it does not cap-
ture any text or user information. SVM classi-
fiers with trigrams and hand-crafted text features
are powerful for document level sentiment classi-
fication and hard to beat. We compare the word
embedding learnt from each corpus with off-the-
shell general word embeddings5. Results show
that tailored word embedding from each corpus
performs slightly better than general word embed-
dings (about 0.01 improvement in terms of accu-
racy). SSWE performs better than context-based
word embedding by incorporating sentiment in-
formation of texts. Setting a large window size
(e.g. 15) is crucial for effectively training SS-
WE from documents with accompanying senti-

5We compare with Glove embeddings learnt from
Wikipedia and Twitter http://nlp.stanford.edu/
projects/glove/
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IMDB Yelp 2014 Yelp 2013
Acc MAE RMSE Acc MAE RMSE Acc MAE RMSE

Majority 0.196 1.838 2.495 0.392 0.779 1.097 0.411 0.744 1.060
Trigram 0.399 1.147 1.783 0.577 0.487 0.804 0.569 0.513 0.814
TextFeature 0.402 1.134 1.793 0.572 0.490 0.800 0.556 0.520 0.845
AvgWordvec + SVM 0.304 1.361 1.985 0.530 0.562 0.893 0.526 0.568 0.898
SSWE + SVM 0.312 1.347 1.973 0.557 0.523 0.851 0.549 0.529 0.849
Paragraph Vector 0.341 1.211 1.814 0.564 0.496 0.802 0.554 0.515 0.832
RNTN + Recurrent 0.400 1.133 1.764 0.582 0.478 0.821 0.574 0.489 0.804
UPNN (no UP) 0.405 1.030 1.629 0.585 0.483 0.808 0.577 0.485 0.812
Trigram + UPF 0.404 1.132 1.764 0.576 0.471 0.789 0.570 0.491 0.803
TextFeature + UPF 0.402 1.129 1.774 0.579 0.476 0.791 0.561 0.509 0.822
JMARS N/A 1.285 1.773 N/A 0.710 0.999 N/A 0.699 0.985
UPNN (full) 0.435 0.979 1.602 0.608 0.447 0.764 0.596 0.464 0.784

Table 2: Sentiment classification on IMDB, Yelp 2014 and Yelp 2013 datasets. Evaluation metrics are
accuracy (Acc, higher is better), MAE (lower is better) and RMSE (lower is better). Our full model is
UPNN (full). Our model without using user and product information is abbreviated as UPNN (no UP).
The best method in each group is in bold.

ment labels. RNTN+Reccurent is a strong per-
former by effectively modeling document repre-
sentation with semantic composition. Our text
based model (UPNN no UP) performs slightly bet-
ter than RNTN+Reccurent, trigram and text fea-
tures.

From the second group, we can see that con-
catenating user product feature (UPF) with exist-
ing feature sets does not show significant improve-
ments. This is because the dimension of existing
feature sets is typically huge (e.g. 1M trigram fea-
tures in Yelp 2014), so that concatenating a smal-
l number of UPF features does not have a great
influence on the whole model. We do not evalu-
ate JMARS in terms of accuracy because JMARS
outputs real-valued ratings. Our full model UPNN
yields the best performance on all three dataset-
s. Incorporating semantic representations of us-
er and product significantly (t-test with p-value <
0.01) boosts our text based model (UPNN no UP).
This shows the effectiveness of UPNN over stan-
dard trigrams and hand-crafted features when in-
corporating user and product information.

4.4 Model Analysis: Effect of User and
Product Representations

We investigate the effects of vector based user and
product representations (uk, pj) as well as ma-
trix based user and product representations (Uk,
Pj) for sentiment classification. We remove vec-
tor based representations (uk, pj) and matrix based

representations (Uk, Pj) from UPNN separately,
and conduct experiments on three datasets. From
Table 3, we can find that vector based representa-
tions (uk, pj) are more effective than matrix based
representations (Uk, Pj). This is because uk and
pj encode user-sentiment and product-sentiment
consistencies, which are more directly associat-
ed with sentiment labels than user-text (Uk) and
product-text (Pj) consistencies. Another reason
might be that the parameters of vector represen-
tations are less than the matrix representations, so
that the vector representations are better estimat-
ed. We also see the contribution from each of user
and product by removing (Uk, uk) and (Pj , pj)
separately. Results are given in Table 3. It is in-
teresting to find that user representations are obvi-
ously more effective than product representations
for review rating prediction.

4.5 Discussion: Out-Of-Vocabulary Users
and Products

Out-of-vocabulary (OOV) situation occurs if a us-
er or a product in testing/decoding process is n-
ever seen in training data. We give two natu-
ral solutions (avg UP and unk UP) to deal with
OOV users and products. One solution (avg UP)
is to regard the averaged representations of user-
s/products in training data as the representation of
OOV user/product. Another way (unk UP) is to
learn a shared “unknown” user/product represen-
tation for low-frequency users in training data, and
apply it to OOV user/product.
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IMDB Yelp 2014 Yelp 2013
Acc MAE RMSE Acc MAE RMSE Acc MAE RMSE

UPNN (full) 0.435 0.979 1.602 0.608 0.447 0.764 0.596 0.464 0.784
UPNN − uk − pj 0.409 1.021 1.622 0.585 0.483 0.808 0.572 0.491 0.823
UPNN − Uk − Pj 0.426 0.993 1.607 0.597 0.465 0.789 0.585 0.482 0.802
UPNN − Uk − uk 0.324 1.209 1.743 0.577 0.475 0.778 0.566 0.505 0.828
UPNN − Pj − pj 0.397 1.075 1.712 0.595 0.462 0.776 0.590 0.476 0.802

Table 3: Influence of user and product representations. For user k and product j, uk and pj are their
continuous vector representations, Uk and Pj are their continuous matrix representations (see Figure 2).

IMDB Yelp 2014 Yelp 2013
0.35

0.4

0.45

0.5

0.55

0.6

0.65

 

 

no UP
avg UP
unk UP
full UP

Figure 4: Accuracy of OOV user and product on
OOV test set.

In order to evaluate the two strategies for OOV
problem, we randomly select 10 percent users and
products from each development set, and mask
their user and product information. We run avg
UP, unk UP together with UPNN (no UP) which
only uses text information, and UPNN (full) which
learns tailored representation for each user and
product. We evaluate classification accuracy on
the extracted OOV test set. Experimental results
are given in Figure 5. We can find that these two
strategies perform slightly better than UPNN (no
UP), but still worse than the full model.

5 Related Work

5.1 Sentiment Classification

Sentiment classification is a fundamental prob-
lem in sentiment analysis, which targets at infer-
ring the sentiment label of a document. Pang and
Lee (2002; 2005) cast this problem a classifica-
tion task, and use machine learning method in
a supervised learning framework. Goldberg and
Zhu (2006) use unlabelled reviews in a graph-
based semi-supervised learning method. Many s-
tudies design effective features, such as text top-
ic (Ganu et al., 2009), bag-of-opinion (Qu et al.,
2010) and sentiment lexicon features (Kiritchenko
et al., 2014). User information is also used for

sentiment classification. Gao et al. (2013) de-
sign user-specific features to capture user lenien-
cy. Li et al. (2014) incorporate textual topic and
user-word factors with supervised topic modeling.
Tan et al. (2011) and Hu et al. (2013) utilize user-
text and user-user relations for Twitter sentimen-
t analysis. Unlike most previous studies that use
hand-crafted features, we learn discriminative fea-
tures from data. We differ from Li et al. (2014) in
that we encode four kinds of consistencies and use
neural network approach. User representation is
also leveraged for recommendation (Weston et al.,
2013), web search (Song et al., 2014) and social
media analytics (Perozzi et al., 2014).

5.2 Neural Network for Sentiment
Classification

Neural networks have achieved promising results
for sentiment classification. Existing neural net-
work methods can be divided into two groups:
word embedding and semantic composition. For
learning word embeddings, (Mikolov et al., 2013;
Pennington et al., 2014) use local and global con-
texts, (Maas et al., 2011; Labutov and Lipson,
2013; Tang et al., 2014b; Tang et al., 2014a;
Zhou et al., 2015) further incorporate sentiment of
texts. For learning semantic composition, Glorot
et al. (2011) use stacked denoising autoencoder,
Socher et al. (2013) introduce a family of recursive
deep neural networks (RNN). RNN is extended
with adaptive composition functions (Dong et al.,
2014), global feedbackward (Paulus et al., 2014),
feature weight tuning (Li, 2014), and also used
for opinion relation detection (Xu et al., 2014).
Li et al. (2015) compare the effectiveness of re-
cursive neural network and recurrent neural net-
work on five NLP tasks including sentiment clas-
sification. (Kalchbrenner et al., 2014; Kim, 2014;
Johnson and Zhang, 2014) use convolutional neu-
ral networks. Le and Mikolov (2014) introduce

1021



Paragraph Vector. Unlike existing neural network
approaches that only use the semantics of texts,
we take consideration of user and product rep-
resentations and leverage their connections with
text semantics for sentiment classification. This
work is an extension of our previous work (Tang et
al., 2015), which only takes consideration of user-
word association.

6 Conclusion

In this paper, we introduce User Product Neu-
ral Network (UPNN) for document level senti-
ment classification under a supervised learning
framework. We validate user-sentiment, product-
sentiment, user-text and product-text consistencies
on massive reviews, and effectively integrate them
in UPNN. We apply the model to three datasets
derived from IMDB and Yelp Dataset Challenge.
Empirical results show that: (1) UPNN outper-
forms state-of-the-art methods for document level
sentiment classification; (2) incorporating contin-
uous user and product representations significantly
boosts sentiment classification accuracy.
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Abstract

Central to many sentiment analysis tasks
are sentiment lexicons (SLs). SLs exhibit
polarity inconsistencies. Previous work
studied the problem of checking the con-
sistency of an SL for the case when the en-
tries have categorical labels (positive, neg-
ative or neutral) and showed that it is NP-
hard. In this paper, we address the more
general problem, in which polarity tags
take the form of a continuous distribution
in the interval [0, 1]. We show that this
problem is polynomial. We develop a gen-
eral framework for addressing the consis-
tency problem using linear programming
(LP) theory. LP tools allow us to uncover
inconsistencies efficiently, paving the way
to building SL debugging tools. We show
that previous work corresponds to 0-1 inte-
ger programming, a particular case of LP.
Our experimental studies show a strong
correlation between polarity consistency
in SLs and the accuracy of sentiment tag-
ging in practice.

1 Introduction

Many sentiment analysis algorithms rely on sen-
timent lexicons (SLs), where word forms or word
senses1 are tagged as conveying positive, negative
or neutral sentiments. SLs are constructed by one
of three methods (Liu, 2012; Feldman, 2013): (1)
Manual tagging by human annotators is gener-
ally reliable, but because it is labor-intensive, slow,
and costly, this method has produced small-sized
SLs comprising a few thousand words, e.g., Opin-
ion Finder (OF) (Wilson et al., 2005), Appraisal
Lexicon (AL) (Taboada and Grieve, 2004), Gen-
eral Inquirer (GI) (Stone et al., 1966), and Micro-
WNOp (Cerini et al., 2007). (2) Dictionary-

1We refer to a string of letters or sounds as a word form &
to a pairing of a word form with a meaning as a word sense.

based acquisition relies on a set of seed words
to expand its coverage to similar words. There
are over thirty dictionary-based techniques (An-
dreevskaia and Bergler, 2006; Blum et al., 2004;
Chen and Skiena, 2014; Choi and Wiebe, 2014;
Esuli and Sebastiani, 2006; Feng et al., 2013; Has-
san and Radev, 2010; Kamps et al., 2004; Moham-
mad et al., 2009; Takamura et al., 2005; Turney,
2002; Williams and Anand, 2009), most of them
based on WordNet (Fellbaum, 1998), such as Sen-
tiWordNet (SWN)(Baccianella et al., 2010) and
Q-WordNet (QWN) (Agerri and Garcı́a-Serrano,
2010). (3) Corpus-based acquisition expands a
set of seed words with the use of a large docu-
ment corpus (Breck et al., 2007; Bross and Ehrig,
2013; Choi and Cardie, 2009; Ding et al., 2008;
Du et al., 2010; Hatzivassiloglou and McKeown,
1997; Jijkoun et al., 2010; Kaji and Kitsuregawa,
2007; Klebanov et al., 2013; Lu et al., 2011; Peng
and Park, 2011; Tang et al., 2014; Wu and Wen,
2010). Method (1) generally produces the most
reliable annotations, however the considerable ef-
fort required to yield substantial lexicons makes
it less useful in practice. The appeals of (2) and
(3) lie in the formalism of their models and their
capability of producing large-sized SLs. SLs are
either word or sense/synset oriented. We refer to
the former as Sentiment Word Lexicons (SWLs),
e.g., GI, OF, and AL, and to the latter as Senti-
ment Sense Lexions (SSLs), e.g., SWN, QWN,
and Micro-WNOp. Besides the method of compi-
lation, SLs may also vary with regard to sentiment
annotation.

Polarity disagreements are noted across SLs
that do (SWN, Q-WordNet) and do not (AL, GI)
reference WordNet. For instance, the adjectives
panicky and terrified, have negative and
positive polarities in OF, respectively. They each
have only one synset which they share in Word-
Net: “thrown into a state of intense fear or des-
peration”. Assuming that there is an intrinsic re-
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lationship between the sentiments of a word and
its meanings, a single synset polarity assignment
to this synset cannot agree with both positive and
negative at the word level. If the information given
in WordNet is accurate (the Oxford and Cam-
bridge dictionaries give only this meaning for both
words) then there must be an annotation inconsis-
tency in OF, called a polarity inconsistency. While
some inconsistencies are easy to detect, manual
consistency checking of an entire SL is an imprac-
tical endeavor, primarily because of the sheer size
(SWN has over 206,000 word-sense pairs). Ad-
ditionally, WordNet’s complex network structure
renders manual checking virtually impossible; an
instance of a polarity inconsistency may entail an
entire sub-network of words and senses. In this
paper we develop a rigorous formal method based
on linear programming (LP)(Schrijver, 1986) for
polarity consistency checking of SLs with accom-
panying methods to unearth mislabeled words and
synsets when consistency is not satisfied.

We translate the polarity consistency problem
(PCP) into a form of the LP problem, suitable
as the input to a standard LP solver, and utilize
the functionality available in modern LP software
(e.g., identifying an irreducible infeasible subset)
to pinpoint the sources of inconsistencies when
they occur. In our experimentation we are able to
quickly uncover numerous intra- and inter-lexicon
inconsistencies in all of the input SLs tested and to
suggest lexicon entries for a linguist to focus on in
“debugging” the lexicon.

Background and Previous Work

Sentiment resources have taken two basic ap-
proaches to polarity annotation: discrete and frac-
tional. In the discrete approach, polarity is defined
to be one of the discrete values positive, negative,
or neutral. A word or a synset takes exactly one
of the three values. QWN, AL, GI, and OF follow
the discrete polarity annotation. In the fractional
approach, polarity is defined as a 3-tuple of non-
negative real numbers that sum to 1, correspond-
ing to the positive, negative, and neutral values re-
spectively. SWN, Micro-WNOp, and Hassan and
Radev (2010) employ a fractional polarity anno-
tation. For example, the single synset of the ad-
jective admissible in WordNet has the senti-
ment tags positive in QWN and 〈.25, .625, .125〉
in SWN, so here SWN gives a primarily negative
polarity with some positive and less neutral polar-
ity. We denote by PCP-D and PCP-F the polarity

laughable :
positive risible : ?

comic :
negative

s2 : “of or relating
to or characteristic

of comedy”

s3 : “arousing
or provoking

laughter”

s1 : “so unrea-
sonable as to

invite derision”

0.5 0.5 1 0.6 0.4

Figure 1: Discrete vs. fractional polarity consis-
tency. Example taken from Dragut et al. (2012).

consistency problem for the discrete and fractional
polarity annotations, respectively.

Dragut et al. (2012) introduces the PCP for do-
main independent SLs and gives a solution to a
particular form of the PCP-D, but that method
cannot solve PCP-F. For example, they show
that the adjectives laughable, comic, and
risible (Figure 1) constitute an inconsistency
in the discrete case. AL gives positive polarity for
laughable and OF gives negative for comic.
If s2 is not positive then laughable is not pos-
itive and if s2 is not negative then comic is not
negative, so there is no assignment of s2 that satis-
fies the whole system. Hence there is an incon-
sistency. However, the following fractional po-
larity tags do satisfy the system: s1 : 〈1, 0, 0〉,
s2 : 〈.66, .34, 0〉, s3 : 〈0, 1, 0〉, where the meaning
of the second tag, for instance, is that s2 is .66 pos-
itive, .34 negative, and 0 neutral. We thus see that
the discrete polarity annotation is rigid and leads
to more inconsistencies, whereas the fractional an-
notation captures more naturally the polarity spec-
trum of a word or synset. In this paper we give
a solution to the PCP-F. The differences between
our solution and that of Dragut et al. (2012) give
some insight into the general differences between
the fractional and discrete problems. First, the
discrete case is intractable, i.e., computationally
NP-complete (Dragut et al., 2012); we show in
this paper (Section 3.2) that the fractional case is
tractable (solvable in polynomial time). Second,
the PCP-D is solved in Dragut et al. (2012) by
translation to the Boolean satisfiability problem
(SAT) (Schaefer, 1978); here we recast the PCP-
F in terms of LP theory. Third, we show that the
LP framework is a natural setting for the PCP as
a whole, and that the PCP-D corresponds to the 0-
1 integer LP problem (Section 3.2), a classic NP-
complete problem (Karp, 2010).

Our experiments (Section 5.4) show that cor-
recting even a small number of inconsistencies can
greatly improve the accuracy of sentiment annota-
tion tasks. We implement our algorithm as a versa-
tile tool for debugging SLs, which helps locate the
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sources of error in SLs. We apply our algorithm to
both SWLs and SSLs and demonstrate the useful-
ness of our approach to improving SLs.

The main contributions of this paper are:

• solve the PCP-F;
• show that the PCP-F is tractable;
• show that the PCP is an instance of LP;
• develop a technique for identifying inconsis-

tencies in SLs of various types;
• implement our algorithm as a prototype SL

debugger;
• show that there is a strong correlation be-

tween polarity inconsistency in SLs and the
performance of sentiment tagging tools de-
veloped on them.

2 Problem Definition

In this section we give a formal characterization
of the polarity assignment of words and synsets in
SLs using WordNet. We use −, +, 0 to denote
negative, positive, and neutral polarities, respec-
tively, throughout the paper.

2.1 Polarity Representation
We define the polarity of a synset or word
r in WordNet to be a discrete probabil-
ity distribution, called a polarity distribution:
P+(r), P−(r), P0(r) ≥ 0 with P+(r) + P−(r) +
P0(r) = 1. P+(r), P−(r) and P0(r) represent
the “likelihoods” that r is positive, negative or
neutral, respectively. For instance, the WordNet
synset “worthy of reliance or trust” of the adjec-
tive reliable is given the polarity distribution
P+ = .375, P− = .0 and P0 = .625 in Senti-
WordNet. We may drop r from the notation if the
meaning is clear from context. The use of a polar-
ity distribution to describe the polarity of a word
or synset is shared with many previous works (An-
dreevskaia and Bergler, 2006; Baccianella et al.,
2010; Kim and Hovy, 2006).

2.2 WordNet
A word-synset network N is a 4-tuple (W,S, E ,
f) where W is a finite set of words, S is a finite
set of synsets, E ⊆ W × S and f is a function
assigning a positive integer to each element in E .
For any word w and synset s, s is a synset of w if
(w, s) ∈ E . For a pair (w, s) ∈ E , f(w, s) is called
the frequency of use of w in the sense given by
s. For a word w, we let freq(w) denote the sum
of all f(w, s) such that (w, s) ∈ E . We define

the relative frequency of w with s by rf(w, s) =
f(w,s)
freq(w) . If f(w, s) = 0, the frequency of each
synset of w is increased by a small constant ε. We
use ε = .1 in our prototype.

2.3 Word Polarities

We contend that there exists a relation between the
sentiment orientation of a word and the polarities
of its related senses (synsets), and we make the as-
sumption that this relation takes the form of a lin-
ear function. Thus, for w ∈ W and p ∈ {+,−, 0},
the polarity distribution of w is defined as:

Pp(w) =
∑
s∈Sw

g(w, s) · Pp(s), (1)

where Pp(s) is the polarity value of synset s
with polarity p and g(w, s) is a rational num-
ber. For example, g can be the relative frequency
of s with respect to w in WordNet: g(w, s) =
rf(w, s);∀w ∈ W, s ∈ S. Alternatively, for each
word w we can draw g(w, ·) from a Zipfian dis-
tribution, following the observation that the distri-
bution of word senses roughly follows a Zipfian
power-law (Kilgarriff, 2004; Sanderson, 1999). In
this paper, we will assume g(w, s) = rf(w, s).

For example, the three synsets of the adjec-
tive reliable with relative frequencies 9

11 , 1
11 ,

and 1
11 , respectively, are given the distributions

〈.375, 0, .625〉, 〈.5, 0, .5〉, and 〈.625, 0, .375〉 in
SentiWordNet. So for reliable we have P+ =
9
110.375 + 1

110.5 + 1
110.625 ≈ 0.41, P− = 0, and

P0 = 9
110.625 + 1

110.5 + 1
110.375 ≈ 0.59.

2.4 Modeling Sentiment Orientation in SLs

Words and synsets have unique polarities in some
SLs, e.g., AL and OF. For instance, reliable
has positive polarity in AL, GI, and OF. The
question is: what does a discrete annotation of
reliable tell us about its polarity distribution?
One might take it to mean that the polarity distri-
bution is simply 〈1, 0, 0〉. This contradicts the in-
formation in SWN, which gives some neutral po-
larity for all of the synsets of reliable. So a
better polarity distribution would allow P0 > 0.
Furthermore, given that 〈.41, 0, .59〉, 〈.40, 0, .60〉,
and 〈.45, 0, .55〉 give virtually identical informa-
tion to a sentiment analyst, it seems unreasonable
to expect exactly one to be the correct polarity
tag for reliable and the other two incorrect.
Therefore, instead of claiming to pinpoint an ex-
act polarity distribution for a word, we propose to
set a boundary on its variation. This establishes a
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range of values, instead of a single point, in which
SLs can be said to agree.

Thus, for a word w, we can define

polarity(w) =
{

+ if P+ > P−
− if P− > P+

(2)

which we refer to as MAX POL. This model is
adopted either explicitly or implicitly by numer-
ous works (Hassan and Radev, 2010; Kim and
Hovy, 2004; Kim and Hovy, 2006; Qiu et al.,
2009). Another model is the majority sense model,
called MAJORITY, (Dragut et al., 2012), where

polarity(w) =
{

+ if P+ > P− + P0

− if P− > P+ + P0
(3)

Another polarity model, MAX, is defined as

polarity(w)=
{

+ if P+>P−&P+>P0

− if P−>P+ &P−>P0
(4)

For instance, reliable conveys positive po-
larity according to MAX POL, since P+ > P−,
but neutral according to MAJORITY. When the
condition of being neither positive nor negative
can be phrased as a conjunction of linear in-
equalities, as is the case with MAJORITY and
MAX POL, then we define neutral as not positive
and not negative. These model definitions can be
applied to synsets as well.

2.5 Polarity Consistency Definition
Instead of defining consistency for SLs dependent
on a choice of model, we develop a generic defi-
nition applicable to a wide variety of models, in-
cluding all of those discussed above. We require
that the polarity of a word or synset in the network
N be characterized by a set of linear inequalities
(constraints) with rational coefficients. Formally,
for each word w ∈ W , the knowledge that w has
a discrete polarity p ∈ {+,−, 0} is characterized
by a set of linear inequalities:

ψ(w, p) = {ai,0P+ +ai,1P−+ai,2P0 � bi}, (5)

where �∈ {≤, <} and ai,0, ai,1, ai,2, bi ∈ Q,
i = 0, 1, . . . ,m. For instance, if the MAX model
is used, for w = worship whose polarity is pos-
itive in OF, we get the following set of inequali-
ties: ψ(w,+) = {P+−P− > 0, P+−P0 > 0} =
{(−1)P++1P−+0P0<0, (−1)P++0P−+1P0<0}.

Let L be an SL. We denote the system of in-
equalities introduced by all words and synsets
in L with known polarities in the network N
by Ψ′(N ,L). The variables in Ψ′(N ,L) are

perseverance
w1 : +

persistence
w2 : 0

pertinacity
w3 : −

tenacity
w4 : +

s1 : “persistent
determination”

s3 : “the property
of a continuous
period of time”

s2 : “the act
of persisting or

persevering”

0.5 0.29
1 10.5

0.7
0.01

Figure 2: A network of 4 words and 3 synsets

P+(r), P−(r) and P0(r), r ∈ W ∪ S. Denote by
Υ′(N ,L) the set of constraints implied by the po-
larity distributions for all r ∈ L: P+(r)+P−(r)+
P0(r) = 1 and Pp∈{+,−,0}(r) ≥ 0, ∀r ∈ W ∪ S.
Let Φ′(N ,L) = Ψ′(N ,L) ∪Υ′(N ,L).

Example 1. Let w1, w2, w3, and w4 be
the nouns perseverance, persistence,
pertinacity, and tenacity, respectively,
which are in OF with polarities +, 0, −,
and +, respectively (Figure 2). Assuming the
MAJORITY model, ψ(w1,+) = {P+(w1) >
P−(w1) + P0(w1)} = {P+(w1) > 1 −
P+(w1)} = {−P+(w1) < −1

2}, and ψ(w2, 0) =
{P+(w2) ≤ P−(w2) + P0(w2), P−(w2) ≤
P+(w2) + P0(w2)} = {P+(w2) ≤ 1

2 , P−(w2) ≤
1
2}. Similarly, ψ(w3,−) = {−P−(w3) < −1

2}
and ψ(w4,−) = {−P+(w4) < −1

2}.
Definition 1. A sentiment lexiconL is consistent if
the system Φ′(N,L) is feasible, i.e., has a solution.

The PCP is then the problem of deciding if a
given SL L is consistent. In general, PCP can be
stated as follows: Given an assignment of polar-
ities to the words, does there exist an assignment
of polarities to the synsets that agrees with that of
the words? If the polarity annotation is discrete,
we have the PCP-D; if the polarity is fractional,
we have PCP-F. Our focus is PCP-F in this paper.

The benefits of a generic problem model are at
least two-fold. First, different linguists may have
different views about the kinds of inequalities one
should use to express the probability distribution
of a word with a unique polarity in some SL. The
new model can accommodate divergent views as
long as they are expressed as linear constraints.
Second, the results proven for the generic model
will hold for any particular instance of the model.

3 Polarity Consistency: an LP Approach

A careful analysis of the proposed formulation
of the problem of SL consistency checking re-
veals that this can be naturally translated into an
LP problem. The goal of LP is the optimiza-
tion of a linear objective function, subject to lin-
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ear (in)equality constraints. LP problems are ex-
pressed in standard form as follows:

minimize cTx

subject to Ax ≤ b (6)
and x ≥ 0

x represents the
vector of variables
(to be determined),
c and b are vec-
tors of (known) co-
efficients, A is a (known) matrix of coefficients,
and (·)T is the matrix transpose. An LP algorithm
finds a point in the feasible region where cTx has
the smallest value, if such a point exists. The feasi-
ble region is the set of x that satisfy the constraints
Ax ≤ b and x ≥ 0.

There are several non-trivial challenges that
need to be addressed in transforming our prob-
lem (i.e., the system Φ′(N ,L)) into an LP prob-
lem. For instance, we have both strict and weak
inequalities in our model, whereas standard LP
does not include strict inequalities. We describe
the steps of this transformation next.

3.1 Translation to LP
In our problem, x is the concatenation of all the
triplets 〈P+(r), P−(r), P0(r)〉 for all r ∈ W ∪ S .

Eliminate Word Related Variables. For each
wordw ∈ Lwe replaceP+(w), P−(w) andP0(w)
with their corresponding expressions according to
Equation 1; then the linear system Φ′(N ,L) has
only the synset variables P+(s), P−(s) and P0(s)
for s ∈ S.

Example (continued). Using the relative fre-
quencies of Figure 2 in Equation 1 we get:
ψ(w1,+)= {−.5P+(s1)− .5P+(s2) < −1

2},
ψ(w2,0)={.29P+(s1)+.01P+(s2)+.7P+(s3)≤ 1

2 ,
.29P−(s1) + .01P−(s2) + .7P−(s3) ≤ 1

2},
ψ(w3,−)= {−P−(s1) < −1

2}, and
ψ(w4,+)= {−P+(s1) < −1

2}.
Equality. The system Φ′(N ,L) contains con-

straints of the form P+(s)+P−(s)+P0(s)=1 for
each s ∈ S, but observe that there are no equal-
ity constraints in the standard LP form (Equation
6). The usual conversion procedure is to replace a
given equality constraint: aTx= b, with: aTx≤ b
and −aTx ≤ −b. However, this procedure in-
creases the number of constraints in Φ′(N ,L) lin-
early. This can have a significant computation im-
pact since Φ′(N ,L) may have thousands of con-
straints (see discussion in Section 5.3). Instead,
we can show that the system F obtained by per-
forming the following two-step transformation is
equivalent to Φ′(N ,L), in the sense that F is fea-
sible iff Φ′(N ,L) is feasible. For every s ∈ S ,

(Step 1) we convert each P+(s)+P−(s)+P0(s)=1
to P+(s)+P−(s)≤1, and (Step 2) we replace ev-
ery P0(s) in Φ′(N ,L) with 1−P+(s)−P−(s).

Strict Inequalities. Strict inequalities are not
allowed in LP and their presence in inequality sys-
tems in general poses difficulties to inequality sys-
tem solvers (Goberna et al., 2003; Goberna and
Rodriguez, 2006; Ghaoui et al., 1994). Fortu-
nately results developed by the LP community al-
low us to overcome this obstacle and maintain the
flexibility of our proposed model. We introduce
a new variable y ≥ 0, and for every strict con-
straint of the form aTx < b, we rewrite the in-
equality as aTx + y ≤ b. Let Φ′′(N ,L) be this
new system of constraints. We modify the objec-
tive function (previously null) to maximize y (i.e.,
minimize −y). Denote by F ′ the LP that maxi-
mizes y subject to Φ′′(N ,L). We can show that
Φ′(N ,L) is feasible iff F ′ is feasible and y 6= 0.
A sketch of the proof is as follows: if y > 0 then
aTx + y ≤ b implies aTx < b. Conversely, if
aTx < b then ∃y > 0 such that aTx + y ≤ b,
and maximizing for y will yield a y > 0 iff one is
feasible. This step is omitted if we have no strict
constraints in Φ′(N ,L).

Example (continued). The formulations of
ψ(w1,+), ψ(w3,−), and ψ(w4,+) involve strict
inequalities, so they are rewritten in Φ′′(N ,L),
e.g., ψ′′(w4,+) = {−P+(s1) + y ≤ −1

2}.
We denote by Φ(N ,L) the standard form of

Φ′(N ,L) obtained by applying the above steps.
This is the input to an LP solver.

Theorem 1. Sentiment lexicon L is polarity con-
sistent iff Φ(N ,L) is feasible.

3.2 Time Complexity

For the network N and an SL L, the above trans-
lation algorithm converts the PCP into an LP
problem on the order of O(|E|), a polynomial
time conversion. The general class of linear pro-
gramming problems includes subclasses that are
NP-hard, such as the integer linear programming
(ILP) problems, as well as polynomial solvable
subclasses. We observe that our problem is rep-
resented by a system of rational linear inequali-
ties. This class of LP problems is solvable in poly-
nomial time (Khachiyan, 1980; Gács and Lovász,
1981). This (informally) proves that the PCP-F is
solvable in polynomial time. PCP is NP-complete
in the discrete case (Dragut et al., 2012). This is
not surprising since in our LP formulation of the
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PCP, the discrete case corresponds to the 0-1 in-
teger programming (BIP) subclass. (Recall that in
the discrete case each synset has a unique polar-
ity.) BIP is the special case of integer program-
ming where variables are required to be 0 or 1. BIP
is a classic NP-hard problem (Garey and Johnson,
1990). We summarize these statements in the fol-
lowing theorem.

Theorem 2. The PCP-F problem is P and the
PCP-D is NP-complete.

We proved a more general and more compre-
hensive result than Dragut et al. (2012). The PCP
solved by Dragut et al. (2012) is a particular case
of PCP-D: it can be obtained by instantiating our
framework with the MAJORITY model (Equation
3) and requiring each synset to take a unique polar-
ity. We believe that the ability to encompass both
fractional and discrete cases within one frame-
work, that of LP, is an important contribution, be-
cause it helps to give structure to the general prob-
lem of polarity consistency and to contextualize
the difference between the approaches.

4 Towards Debugging SLs

Simply stating that an SL is inconsistent is of lit-
tle practical use unless accompanying assistance
in diagnosing and repairing inconsistencies is pro-
vided. Automated assistance is necessary in the
face of the scale and complexity of modern SLs:
e.g., AL has close to 7,000 entries, SWN annotates
the entirety of WordNet, over 206,000 word-sense
pairs. There are unique and interesting problems
associated with inconsistent SLs, among them: (1)
isolate a (small) subset of words/synsets that is po-
larity inconsistent, but becomes consistent if one
of them is removed; we call this an Irreducible
Polarity Inconsistent Subset (IPIS); (2) return an
IPIS with smallest cardinality (intuitively, such a
set is easiest to repair); (3) find all IPISs, and (4)
find the largest polarity consistent subset of an in-
consistent SL. In the framework of linear systems
of constraints, the problems (1) - (4) correspond
to (i) the identification of an Irreducible Infeasi-
ble Subset (IIS) of constraints within Φ(N ,L), (ii)
finding IIS of minimum cardinality, (iii) finding all
IISs and (iv) finding the largest set of constraints
in Φ(N ,L) that is feasible, respectively. An IIS
is an infeasible subset of constraints that becomes
feasible if any single constraint is removed. Prob-
lems (ii) - (iv) are NP-hard and some may even be
difficult to approximate (Amaldi and Kann, 1998;

Chinneck, 2008; Chakravarti, 1994; Tamiz et al.,
1996). We focus on problem (1) in this paper,
which we solve via IIS discovery. We keep a bi-
jective mapping from words and synsets to con-
straints such that for any given constraint, we can
uniquely identify the word or synset in Φ(N ,L)
from which it was introduced. Hence, once an IIS
is isolated, we know the corresponding words or
synsets. Modern LP solvers typically can give an
IIS when a system is found to be infeasible, but
none give all IISs or the IIS of minimum size.
Example (continued). The polarity assignments
of w1, w2, w3, and w4, are consistent iff there exist
polarity distributions 〈P+(si), P−(si), P0(si)〉 for
i = 1, 2, 3, such that: y > 0
ψ(w1,+): −.5P+(s1) + .5P+(s2) + y ≤ −1

2 ,
ψ(w2,0):.29P+(s1) + .01P+(s2) + .7P+(s3)≤ 1

2
AND .29P−(s1) + .01P−(s2) + .7P−(s3)≤ 1

2 ,
ψ(w3,−) : −P−(s1) + y ≤ −1

2 ,
ψ(w4,+) : −P+(s1) + y ≤ −1

2 ,
υ(s1):P+(s1)+P−(s1)≤ 1AND P+(s1), P−(s1)≥0,
υ(s2):P+(s2)+P−(s2)≤ 1AND P+(s2), P−(s2)≥0,
υ(s3):P+(s3)+P−(s3)≤ 1AND P+(s3), P−(s3)≥0.

Upon examination, if y > 0, then ψ(w3,−) im-
plies P−(s1) > 1

2 and ψ(w4,+) implies P+(s1) >
1
2 . Then P+(s1) + P−(s1) > 1, contradicting
υ(s1). Hence, this LP system is infeasible. More-
over {ψ(w3,−), ψ(w4,+), υ(s1)} is an IIS. Trac-
ing back we get that the set of words {w3, w4} is
inconsistent. Therefore it is an IPIS.

Isolating IPISs helps focus SL diagnosis and re-
pair efforts. Fixing SLs via IIS isolation proceeds
iteratively: (1) isolate an IIS, (2) determine a re-
pair for this IIS, (3) if the model is still infeasi-
ble, go to step (1). This approach is well sum-
marized by Greenberg’s aphorism: “diagnosis =
isolation + explanation” (Greenberg, 1993). The
proposed use requires human interaction to effect
the changes to the lexicon. One might ask if this
involvement is strictly necessary; in response we
draw a parallel between our SL debugger and a
software debugger. A software debugger can iden-
tify a known programming error, say the use of
an undefined variable. It informs the program-
mer, but it does not assign a value to the vari-
able itself. It requires the user to make the de-
sired assignment. Similarly, our debugger can
deterministically identify an inconsistent compo-
nent, but it cannot deterministically decide which
elements to adjust. In most cases, this is simply
not an objective decision. To illustrate this point,
from our example, we know that minimally one
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SL adj. adv. noun verb total
UN 3,084 940 2,340 1,812 8,176
AL 1,486 377 2 0 1,865
GI 1,337 121 1,474 1,050 3,982SW

L
s

OF 2,608 775 1,907 1,501 6,791
SWN 18,156 3,621 82,115 13,767 117,659
QWN 4,060 40 7,404 4,006 15,510

SS
L

s

MWN 255 30 487 283 1,055

Table 1: Counts of words/synsets in each SL

of pertinacity(−) and tenacity(+) must
be adjusted, but the determination as to which re-
quires the subjective analysis of a domain expert.

In this paper, we do not repair any of the dis-
covered inconsistencies. We focus on isolating as
many IPISs as possible.

5 Experiments

The purpose of our experimental work is manifold,
we show that: (1) inconsistencies exist in and be-
tween SLs, (2) our algorithm is effective at uncov-
ering them in the various types of SLs proposed
in the literature, (3) fractional polarity representa-
tion is more flexible than discrete, giving orders
of magnitude fewer inconsistencies, and (4) senti-
ment analysis is significantly improved when the
inconsistencies of a basis SL are corrected.

Experiment Setup: We use four SWLs: GI,
AL, OF and their union, denoted UN, and three
SSLs: QWN, SWN and MicroWN-Op. The dis-
tribution of their entries is given in Table 1. The
MAJORITY model (Equation 3) is used in all tri-
als. This allows for direct comparison with Dragut
et al. (2012). We implemented our algorithm in
Java interfacing with the GUROBI LP solver2, and
ran the tests on a 4× 1.70GHz core computer with
6GB of main memory.

5.1 Inconsistencies in SWLs

In this set of experiments, we apply our algorithm
to GI, AL, OF and UN. We find no inconsisten-
cies in AL, only 2 in GI, and 35 in both UN and
OF (Table 2). (Recall that an inconsistency is a
set of words whose polarities cannot be concomi-
tantly satisfied.) These numbers do not represent
all possible inconsistencies (See discussion in Sec-
tion 4). In general, the number of IISs for an infea-
sible system can be exponential in the size of the
system Φ(N ,L) (Chakravarti, 1994), however our
results suggest that in practice this does not occur.

Compared with Dragut et al. (2012), we see a
marked decrease in the number of inconsistencies.

2www.gurobi.com

adj. adv. noun verb total
UN 8 14 5 8 35
AL 0 0 0 - 0
GI 2 0 0 0 2
OF 7 15 4 9 35

Table 2: SWL-Internal Inconsistencies
Inconsistency Ratios

SWL adj. adv. noun verb total
UN 0.67 0.89 0.85 0.81 0.78
AL 0.63 0.8 1 - 0.66
GI 0.6 0.41 0.87 0.91 0.78
OF 0.66 0.87 0.82 0.77 0.76

Table 3: SentiWordNet paired with SWLs

They found 249, 2, 14, and 240 inconsistencies in
UN, AL, GI, and OF, respectively. These incon-
sistencies are obtained in the first iteration of their
SAT-Solver. This shows that about 86% of incon-
sistent words in a discrete framework can be made
consistent in a fractional system.

5.2 Inconsistencies in SSLs

In this set of experiments we check the polarity
inconsistencies between SWLs and SSLs. We pair
each SSL with each of the SWLs.

SentiWordNet. SWN is an automatically gen-
erated SL with a fractional polarity annotation of
every synset in WordNet. Since SWN annotates
every synset in WordNet, there are no free vari-
ables in this trial. Each variable Pp∈{+,−,0}(s)
for s ∈ S is fully determined by SWN, so this
amounts to a constant on the left hand side of each
inequality. Our task is to simply check whether the
inequality holds between the constant on the left
and that on the right. Table 3 gives the proportion
of words from each SWL that is inconsistent with
SWN. We see there is substantial disagreement be-
tween SWN and all of the SWLs, in most cases
more than 70% disagreement. For example, 5,260
of the 6,921 words in OF do not agree with the
polarities assigned to their senses in SWN. This
outcome is deeply surprising given that all these
SLs are domain independent – no step in their
construction processes hints to a specific domain
knowledge. This opens up the door to future anal-
ysis of SL acquisition. For instance, examining
the impact that model choice (e.g., MAJORITY
vs. MAX) has on inter-lexicon agreement.

Q-WordNet. QWN gives a discrete polarity for
15,510 WordNet synsets. When a synset is an-
notated in QWN, its variables, Pp∈{+,−,0}(s), are
assigned the QWN values in Φ; a feasible assign-
ment is sought for the remaining free variables. An
inconsistency may occur among a set of words, or
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UN AL GI OF
total 345 34 139 325

Table 4: Q-WordNet paired with SWLs.

a set of words and synsets. Table 4 depicts the
outcome of this study. We obtain 345 inconsis-
tencies between QWN and UN. The reduced num-
ber of inconsistencies with AL (34) is explained by
their limited “overlay” (QWN has only 40 adverb
synsets). Dragut et al. (2012) reports 455 incon-
sistencies between QWN and UN, 110 more than
we found here. Again, this difference is due to the
rigidity of the discrete case, which leads to more
inconsistencies in general.

Micro-WNOp. This is a fractional SSL of
1,105 synsets from WordNet manually annotated
by five annotators. The synsets are divided into
three groups: 110 annotated by the consensus
of the annotators, 496 annotated individually by
three annotators, and 499 annotated individually
by two annotators. We take the average polarities
of groups 2 and 3 and include this data as two ad-
ditional sets of values. Table 5 gives the inconsis-
tencies per user in each group. For Groups 2 and
3, we give the average number of inconsistencies
among the users (Avg. Incons. in Table 5) as well
as the inconsistencies of the averaged annotations
(Avg. User in Table 5).

Micro-WNOp gives us an opportunity to an-
alyze the robustness of our method by compar-
ing the number of inconsistencies of the individ-
ual users to that of the averaged annotation. Intu-
itively, we expect that the average number of in-
consistencies in a group of users to be close to the
number of inconsistencies for the user averaged
annotations. This is clearly apparent from Table
5, when comparing Lines 4 and 5 in Group 2 and
Lines 3 and 4 in Group 3. For example, Group 2
has an average of 68 inconsistencies for OF, which
is very close to the number of inconsistencies, 63,
obtained for the group averaged annotations. This
study suggests a potential application of our al-
gorithm: to estimate the confidence weight (trust)
of a user’s polarity annotation. A user with good
polarity consistency receives a higher weight than
one with poor polarity consistency. This can be
applied in a multi-annotator SL scenario.

5.3 Computation

We provide information about the runtime execu-
tion of our method in this section. Over all of our
experiments, the resulting systems of constraints
can be as small as 2 constraints with 2 variables

UN AL GI OF
Common 45 3 13 43

User 1 88 10 59 75
User 2 50 8 24 48
User 3 97 12 64 82

Avg. Incons. 78 10 49 68G
ro

up
2

Avg. User 1,2,3 69 8 40 63
User 4 72 9 46 60
User 5 70 8 46 59

Avg. Incons. 71 9 46 60

G
ro

up
3

Avg. User 4,5 68 8 42 57

Table 5: Micro-WNOp – SWD Inconsistencies

and as large as 3,330 constraints with 4,946 vari-
ables. We achieve very good overall execution
times, 68 sec. on average. At its peak, our algo-
rithm requires 770MB of memory. Compared to
the SAT approach by Dragut et al. (2012), which
takes about 10 min. and requires about 10GB of
memory, our method is several orders of magni-
tude more efficient and more practical, paving the
way to building practical SL debugging tools.

5.4 Inconsistency & Sentiment Annotation

This experiment has two objectives: (1) show that
two inconsistent SLs give very different results
when applied to sentiment analysis tasks and (2)
given an inconsistent SL D, and D′ an improved
version ofD with fewer inconsistencies, show that
D′ gives better results than D in sentiment anal-
ysis tasks. We use a third-party sentiment anno-
tation tool that utilizes SLs, Opinion Parser (Liu,
2012). We give the instantiations of D below.

In (1), we use the dataset aclImdb (Maas et al.,
2011), which consists of 50,000 reviews, and the
SLs UN and SWN. Let UN′ and SWN′ be the sub-
sets of UN and SWN, respectively, with the prop-
erty that they have the same set of (word, pos)
pair entries and word appears in aclImdb. UN′

and SWN′ have 6,003 entries. We select from
aclImdb the reviews with the property that they
contain at least 50 words in SWN′ and UN′. This
gives 516 negative and 567 positive reviews, a to-
tal of 1,083 reviews containing a total of 31,701
sentences. Opinion Parser is run on these sen-
tences using SWN′ and UN′. We obtain that
16,741 (52.8%) sentences acquire different polar-
ities between the two SLs.

In (2), we use 110 randomly selected sentences
from aclImdb, which we manually tagged with
their overall polarities. We use OF and OF′, where
OF′ is the version of OF after just six inconsisten-
cies are manually fixed. We run Opinion Parser on
these sentences using OF and OF′. We obtain an
accuracy of 42% with OF and 47% with OF′, an
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improvement of 8.5% for just a small fraction of
corrected inconsistencies.

These two experiments show a strong correla-
tion between polarity inconsistency in SLs and its
effect on sentiment tagging in practice.

6 Conclusion

Resolving polarity inconsistencies helps to im-
prove the accuracy of sentiment analysis tasks. We
show that LP theory provides a natural framework
for the polarity consistency problem. We give a
polynomial time algorithm for deciding whether
an SL is polarity consistent. If an SL is found to
be inconsistent, we provide an efficient method to
uncover sets of words or word senses that are in-
consistent and require linguists’ attention. Effec-
tive SL debugging tools such as this will help in
the development of improved SLs for use in senti-
ment analysis tasks.
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Abstract

Automatically detecting verbal irony
(roughly, sarcasm) in online content is
important for many practical applications
(e.g., sentiment detection), but it is dif-
ficult. Previous approaches have relied
predominantly on signal gleaned from
word counts and grammatical cues. But
such approaches fail to exploit the context
in which comments are embedded. We
thus propose a novel strategy for verbal
irony classification that exploits contex-
tual features, specifically by combining
noun phrases and sentiment extracted
from comments with the forum type
(e.g., conservative or liberal) to which
they were posted. We show that this
approach improves verbal irony classifica-
tion performance. Furthermore, because
this method generates a very large feature
space (and we expect predictive contextual
features to be strong but few), we propose
a mixed regularization strategy that places
a sparsity-inducing `1 penalty on the
contextual feature weights on top of the `2
penalty applied to all model coefficients.
This increases model sparsity and reduces
the variance of model performance.

1 Introduction and Motivation

Automated verbal irony detection is a challenging
problem.1 But recognizing when an author has in-
tended a statement ironically is practically impor-
tant for many text classification tasks (e.g., senti-
ment detection).

Previous models for irony detection (Tsur et
al., 2010; Lukin and Walker, 2013; Riloff et al.,

1In this paper we will be a bit cavalier in using the terms
‘verbal irony’ and ‘sarcasm’ interchangeably. We recognize
that the latter is a special type of the former, the definition of
which is difficult to pin down precisely.

Guys who the fuck cares?! Leave him alone, there are real problems 
like bridge-gate scandal with Chris Cristie 

Figure 1: A reddit comment illustrating contextualizing fea-
tures that we propose leveraging to improve classification.
Here the highlighted entities (external the comment text it-
self) provide contextual signals indicating that the shown
comment was intended ironically. As we shall see, Oba-
macare is in general a strong indicator of irony when present
in posts to the conservative subreddit, but less so in posts to
the progressive subreddit.

2013) have relied predominantly on features in-
trinsic to the texts to be classified. By contrast,
here we propose exploiting contextualizing infor-
mation, which is often available for web-based
classification tasks. More specifically, we exploit
signal gleaned from the conversational threads to
which comments belong. Our approach capital-
izes on the intuition that members of different user
communities are likely to be sarcastic about dif-
ferent things. As a proxy for user community,
we leverage knowledge of the specific forums to
which comments were posted. For example, one
may surmise that the statement ‘I really am proud
of Obama’ is likely to have been intended iron-
ically if it was posted to a forum frequented by
political conservatives. But if this same utterance
were posted to a liberal-leaning forum, it is more
likely to have been intended in earnest. This sort
of information is often directly or indirectly avail-
able on social media, but previous models have not
capitalized on it. This is problematic; recent work
has shown that humans require such contextualiz-
ing information to infer ironic intent (Wallace et
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al., 2014).
As a concrete example, we consider the task

of identifying verbal irony in comments posted to
reddit (http://www.reddit.com), a social-
news website. Users post content (e.g., links to
news stories) to reddit, which are then voted on by
the community. Users may also discuss this con-
tent on the website; these are the comments that
we will work with here. Reddit comprises many
subreddits, which are user communities centered
around specific topics of interest. In this work
we consider comments posted to two pairs of po-
larized user communities, or subreddits: (1) pro-
gressive and conservative subreddits (comprising
individuals on the left and right of the US polit-
ical spectrum, respectively), and (2) atheism and
Christianity subreddits.

Our aim is to develop a model that can recog-
nize verbal irony in comments posted to such fo-
rums, e.g., automatically discern that the user who
posted the comment shown in Figure 1 intended
his or her comment ironically. To this end, we pro-
pose a strategy that capitalizes on available con-
textualizing information, such as interactions be-
tween the user community (subreddit) that com-
ments were posted to, extracted entities (here we
use noun phrases, or NNPs) and inferred senti-
ment.

The contributions of this work are summarized
as follows.

• We demonstrate that contextual information,
such as inferred user-community (in this
case, the subreddit) can be crossed with ex-
tracted entities and sentiment to improve de-
tection of verbal irony. This improves perfor-
mance over baseline models (including those
that exploit inferred sentiment, but not con-
text).

• We introduce a novel composite regular-
ization strategy that applies a sparsifying
`1 penalty to the contextual/sentiment/entity
feature weights in addition to the standard
squared `2 penalty to all feature weights.
This induces more compact, interpretable
models that exhibit lower variance.

While discerning ironic comments on reddit
is our immediate task, the proposed approach is
generally applicable to a wide-range of subjec-
tive, web-based text classification tasks. Indeed,
this approach would be useful for any scenario in

which we expect different groups of individuals
producing content to tend to discuss different en-
tities in a way that correlates with the target cate-
gorization. The key is in identifying an available
proxy for user groupings (here we rely on the sub-
reddits to which a comment was posted). Such
information is often available (or can be derived)
for comments posted to different mediums on the
web: for example on Twitter we know who a user
follows; and on YouTube we know the channels to
which videos belong.

2 Exploiting context

2.1 Communities and sentiment

As discussed above, a shortcoming with existing
models for detecting sarcasm/verbal irony on the
web is their failure to capitalize on contextualiz-
ing information. But such information is critical
to discerning irony. A large body of work on the
use and interpretation of verbal irony supports this
supposition (Grice, 1975; Clark and Gerrig, 1984;
Wallace, 2013; Wallace et al., 2014). Individu-
als will be more likely, in general, to use sarcasm
when discussing specific entities. Which entities
will depend in part on the community to which
the individual belongs. As a proxy for user com-
munity, here we leverage the subreddits to which
comments were posted.

Sentiment may also play an important role. In
general, verbal irony is almost always used to con-
vey negative views via ostensibly positive utter-
ances (Sperber and Wilson, 1981). And recent
work (Riloff et al., 2013) has exploited features
based on sentiment to improve irony detection.

To summarize: when assuming an ironic voice
we expect that individuals will convey ostensibly
positive sentiment about entities, and that these en-
tities will depend on the type of individual in ques-
tion. We propose capitalizing on such informa-
tion by introducing features that encode subred-
dits, sentiment and noun phrases (NNPs), as we
describe next.

2.2 Features

We leverage the feature sets enumerated in Ta-
ble 1. Subreddits are observed variables. Noun
phrase (NNP) extraction and sentiment inference
are performed automatically via state of the art
NLP tools. In particular, we use the Stanford Sen-
timent Analysis tool (Socher et al., 2013) to infer
sentiment. To extract NNPs we use the Stanford
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Feature Description
Sentiment The inferred sentiment (nega-

tive/neutral or positive) for a given
comment.

Subreddit the subreddit (e.g., progressive or con-
servative; atheism or Christianity) to
which a comment was posted.

NNP Noun phrases (e.g., proper nouns) ex-
tracted from comment texts.

NNP+ Noun phrases extracted from comment
texts and the thread to which they be-
long (for example, ‘Obamacare’ from
the title in Figure 1).

Table 1: Feature types that we exploit. We view the (ob-
served) subreddit as a proxy for user type. We combine this
with sentiment and extracted noun phrases (NNPs) to im-
prove classifier performance.

Part of Speech tagger (Toutanova et al., 2003). We
then introduce ‘bag-of-NNP’ features and features
that indicate whether the sentiment inferred for a
given sentence was positive or not.

Additionally, we introduce ‘interaction’ fea-
tures that capture combinations of these. For ex-
ample, a feature that indicates whether a given
sentence mentions Obamacare (which will be one
of many NNPs automatically extracted) and was
posted in the conservative subreddit. This is an
example of a two-way interaction. We also exper-
iment with three-way interactions, crossing senti-
ment with NNPs and subreddits. An example is a
feature that indicates if a sentence was: inferred
to be positive and mentions Obamacare (NNP)
and was part of a comment made in the conserva-
tive subreddit. Finally, we experiment with adding
NNPs extracted from the comment thread in addi-
tion to the comment text.

These are rich features that capture signal not
directly available from the sentences themselves.
Features that encode subreddits crossed with ex-
tracted NNP’s, in particular, offer a chance to ex-
plicitly account for differences in how the ironic
device is used by individuals in different com-
munities. However, this has the downside of in-
troducing a large number of irrelevant terms into
the model: we expect, a priori, that many enti-
ties will not correlate with the use of verbal irony.
We would therefore expect this strategy to exhibit
high variance in terms of predictive performance,
and we later confirm this empirically. Ideally, a
model would perform feature selection during pa-
rameter estimation, thus dropping irrelevant inter-
action terms. We next introduce a composite `1/`2
regularization strategy toward this end.

3 Enforcing sparsity

3.1 Preliminaries
In this work we consider linear models with bi-
nary outputs (y ∈ {−1,+1}). We will assume
we have access to a training dataset comprising n
instances, x = {x1, ...,xn} and associated labels
y = {y1, ..., yn}. We then aim to find a weight-
vector w that optimizes the following objective.

argmin
w

n∑
i=1

L(sign{w · xi}, yi) + αR(w) (1)

Where L is a loss function, R(w) is a regulariza-
tion term and α is a parameter expressing the rel-
ative emphasis placed on achieving minimum em-
pirical loss versus producing a simple model (i.e.,
a weight vector with small weights). Typically one
searches for a good α using the available train-
ing data. For L, we will use the log-loss in this
work, though other loss functions may be used in
its place.

3.2 Sparsity via Regularization
Concerning R, one popular regularization func-
tion is the squared `2 norm:∑

j

w2
j (2)

This is the norm used in the standard Support Vec-
tor Machine (SVM) formulation, for example, and
has been shown empirically to work well for text
classification (Joachims, 1998). An alternative is
to use the `1 norm: ∑

j

|wj | (3)

Which has the advantage of inducing sparse mod-
els: i.e., using the `1 norm as a penalty tends to
drive feature weights to 0.

Returning to the present task of detecting ver-
bal irony in comments, it seems reasonable to as-
sume that there will be a relatively small set of
entities that correlate with sarcasm. But because
we are introducing ‘interaction’ features that enu-
merate the cross-product of subreddits and entities
(and, in some cases, sentiment), we have a large
feature-space. This space includes features that
correspond to NNPs extracted from, and sentiment
inferred for, the sentence itself: we will denote the
indices for these by I. Other interaction features
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correspond to entities extracted from the threads
associated with comments: we denote the corre-
sponding set of indices by T . We expect only a
fraction of the features comprising both I and T
to have non-zero weights (i.e., to signal ironic in-
tent).

This scenario is prone to the undesirable prop-
erty of high-variance, and hence calls for stronger
regularization. But in general replacing the
squared `2 norm with an `1 penalty (over all
weights) hampers classification performance (in-
deed, as we later report, this strategy performs
very poorly here). Therefore, in our scenario we
would like to place a sparsifying `1 regularizer
over the contextual (interaction) features while
still leveraging the squared `2-norm penalty for the
standard bag-of-words (BoW) features.2 We thus
propose the following composite penalty:∑

j

w2
j +

∑
k∈I
|wk|+

∑
l∈T
|wl| (4)

The idea is that this will drive many of the weights
associated with the contextual features to zero,
which is desirable in light of the intuition that a
relatively small number of entities will likely in-
dicate sarcasm. At the same time, this composite
penalty applies only the squared `2 norm to the
standard BoW features, given the comparatively
strong predictive performance realized with this
strategy.

Putting this together, we modify the original ob-
jective (Equation 1) as follows:

argmin
w

n∑
i=1

L(sign{w · xi}, yi)+

α0

∑
j

w2
j + α1

∑
k∈I
|wk|+α2

∑
l∈T
|wl| (5)

Where we have placed separate α scalars on the re-
spective penalty terms. Note that this is similar to
the elastic net (Zou and Hastie, 2005) joint regu-
larization and variable selection strategy. The dis-
tinction here is that we only apply the `1 penalty
to (i.e., perform feature selection for) the subset
of ‘interaction’ feature weights, which is in con-
trast to the elastic net, which imposes the compos-
ite penalty to all feature weights. One can view
this as using the regularizer to encourage a spar-
sity pattern specific to the task at hand.

2Note that we apply both `1 and `2 penalties to the fea-
tures in I and T .

3.3 Inference

We fit this model via Stochastic Gradient Descent
(SGD).3 During each update, we impose both the
squared `2 and `1 penalties; the latter is applied
only to the contextual/interaction features in I and
T . For the `1 penalty, we adopt the cumulative
truncated gradient method proposed by Tsuruoka
et al. (2009).

4 Experimental Setup

4.1 Datasets

For our development dataset, we used a subset of
the reddit irony corpus (Wallace et al., 2014) com-
prising annotated comments from the progressive
and conservative subreddits. We also report re-
sults from experiments performed using a sepa-
rate, held-out portion of this data, which we did
not use during model refinement. Furthermore, we
later present results on comments from the athe-
ism and Christianity subreddits (we did not use
this data during model development, either).

The development dataset includes 1,825 anno-
tated comments (876 and 949 from the progressive
and conservative subreddits, respectively). These
comprise 5,625 sentences in total, each of which
was independently labeled by three annotators as
having been intended ironically or not. For addi-
tional details on the annotation process, see (Wal-
lace et al., 2014). For simplicity, we consider a
sentence to be ‘ironic’ (y = 1) when at least two
of the three annotators designated it as such, and
‘unironic’ (y = −1) otherwise. Using this crite-
ria, 286 (5%) of the labeled sentences are labeled
‘ironic’.

The test portion of the political dataset com-
prises 996 annotated comments (409 progressive
and 587 conservative comments), totalling 2,884
sentences. Using the same criteria as above – at
least 2/3 annotators labeling a given sentence as
‘ironic’ – we have 154 ‘ironic’ sentences (again
about 5%).

The ‘religion’ dataset (comments from athe-
ism and Christianity) contains 1,682 labeled com-
ments comprising 5615 sentences (2,966 and
2,649 from the atheism and Christian subreddits,
respectively); 313 (∼6%) were deemed ‘ironic’.

3We have implemented this within the sklearn package
(Pedregosa et al., 2011).
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4.2 Experimental Details
We recorded results from 500 independently per-
formed experiments on random train (80%)/test
(20%) splits of the data. These splits were per-
formed at the comment (rather than sentence)
level, so as not to test on sentences belonging to
comments encountered in the training set. We
measured performance, however, at the sentence
level (often only a single sentence in a given com-
ment will have been labeled as ‘ironic’).

Our baseline approach is a standard squared-`2
regularized log-loss linear model (fit via SGD) that
leverages uni- and bi-grams and features indicat-
ing grammatical cues, such as exclamation points
and emoticons. We also experiment with a model
that includes inferred sentiment indicators, but not
context. We performed standard English stop-
wording, and we used Term Frequency Inverse-
Document Frequency (TF-IDF) feature weighting.
For the gradient descent procedure, we used a de-
caying learning rate (specifically, 1

t , where t is the
update count). We performed a coarse grid search
to find values for α that maximize F1 on the train-
ing datasets. We took five full passes over the
training data before terminating descent.

We report paired recalls and precisions, as ob-
served on each random train/test split of the data.
The former is defined as TP

TP+FN and the latter
as TP

TP+FP , where TP denotes the true positive
count, FN the number of false negatives and FP
the false positive count. We report these sepa-
rately - rather than collapsing into F1 - because
it is not clear that one would value recall and pre-
cision equally for irony detection, and because this
allows us to tease out how the models differ in per-
formance. Notably, for example, sentiment and
context features both improve recall, but the lat-
ter does so without harming precision.

5 Results

5.1 Results on the Development Corpus
Figure 2 and Table 2 summarize the performance
of the different approaches over 500 indepen-
dently performed train/test splits of the political
development corpus. For reference, a random
chance strategy (which predicts ‘ironic’ with prob-
ability equal to the observed prevalence) achieves
a median recall of 0.048 and a median precision of
0.047.

Figure 2 shows histograms of the observed ab-
solute differences between the baseline linear clas-

Figure 4: Empirical distributions (violin plots) of non-zero
feature counts in the NNP × subreddit model (rows 3 and 4
in Figure 3) using standard `2-norm (left) and the proposed
`1`2-norm (right) regularization approaches on the athe-
ism/Christianity data over 500 independent train/test splits.
The composite norm achieves much greater sparsity, result-
ing in lower variance. This sparsity also (arguably) provides
greater interpretability; one can inspect contextual features
with non-zero weights.

sifier and the proposed augmentations. Adding
the proposed features (which capitalize on senti-
ment and NNP-mentions on specific subreddits)
increases absolute median recall by 3.4 percent-
age points (a relative gain of ∼12%). And this is
achieved without sacrificing precision (in contrast
to exploiting only sentiment). Furthermore, as we
can see in Figures 2 and 3, the proposed regular-
ization strategy shrinks the variance of the classi-
fier. This variance reduction is achieved through
greater model sparsity, as can be seen in Figure
4, which improves interpretability. We note that
leveraging only an `1 regularization penalty (with
the full feature-set) results in very poor perfor-
mance (median recall and precision of 0.05 and
0.09, respectively). Similarly, the elastic-net strat-
egy (Zou and Hastie, 2005) (in which we do not
specify which features to apply the `1 penalty to),
here achieves a median recall of 0.11 and a median
precision of 0.07.

5.2 Results on the Held-out (Test) Corpus

Table 4 reports results on the held-out political test
dataset, achieved after training the models on the
entirety of the development corpus. To account
for the variance inherent to inference via SGD, we
performed 100 runs of the SGD procedure and re-
port median results from these runs. These results
mostly agree with those reported for the develop-
ment corpus: the proposed strategy improves me-
dian recall on the held-out corpus by nearly 4.0
percentage points, at a median cost of about 1
point in precision. By contrast, sentiment alone
provides a 2% absolute improvement in recall at
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mean; median (25th, 75th) mean; median (25th, 75th)
baseline (BoW) 0.288; 0.283 (0.231, 0.333) 0.129; 0.124 (0.103, 0.149)

∆ recall ∆ precision
(overall) sent. +0.036; +0.037 (+0.015, +0.063) -0.008; -0.007 (-0.018, +0.003)
NNP +0.021; +0.018 (+0.000, +0.036) -0.008; -0.008 (-0.016, -0.001)
NNP× subreddit +0.013; +0.016 (+0.000, +0.031) -0.002; -0.003 (-0.009, +0.004)
NNP× subreddit (`1 `2) +0.010; +0.000 (+0.000, +0.021) -0.002; -0.002 (-0.007, +0.004)
NNP+× sent. × subreddit + sent. +0.036; +0.038 (+0.000, +0.065) -0.000; -0.001 (-0.012, +0.011)
NNP+× sent. × subreddit + sent. (`1 `2) +0.035; +0.034 (+0.000, +0.062) +0.001; +0.000 (-0.011, +0.011)

Table 2: Summary results over 500 random train/test splits of the development dataset. The top row reports mean and median
baseline (BoW) recall and precision and lower and upper (25th and 75th) percentiles. We report pairwise differences w.r.t. this
baseline in terms of recall and precision for each strategy. Exploiting NNP features and subreddits improves recall with little
to not cost in precision. Capitalizing on sentiment alone improves recall but at a greater cost in precision. The proposed `1`2
regularization strategy achieves comparable performance with fewer features, and shrinks the variance over different train/test
splits (as can bee seen in Figure 2).

mean; median (25th, 75th) mean; median (25th, 75th)
baseline (BoW) 0.281; 0.268 (0.222, 0.327) 0.189; 0.187 (0.144, 0.230)

∆ recall ∆ precision
(overall) sent. +0.001; +0.000 (-0.011, +0.015) -0.014; -0.012 (-0.023, -0.002)
NNP +0.018; +0.018 (+0.000, +0.039) -0.009; -0.010 (-0.021, +0.001)
NNP× subreddit +0.024; +0.025 (+0.000, +0.046) +0.002; +0.001 (-0.011, +0.013)
NNP× subreddit (`1 `2) +0.013; +0.015 (+0.000, +0.033) +0.002; +0.002 (-0.009, +0.011)
NNP+× sent. × subreddit + sent. +0.023; +0.024 (+0.000, +0.046) +0.001; +0.001 (-0.012, +0.013)
NNP+× sent. × subreddit + sent. (`1 `2) +0.014; +0.015 (+0.000, +0.036) -0.008; -0.008 (-0.021, +0.004)

Table 3: Results on the atheism and Christianity subreddits. In general sentiment does not help on this dataset (see row 1). But
the NNP and subreddit features again consistently improve recall without hurting precision. And, as above, `1`2 regularization
shrinks variance (see Figures 2 and 3).

Figure 2: Results from 500 independent train/test splits of the development subset of our political data. Shown are histograms
with smoothed kernel density estimates of differences in recall and precision between the baseline bag-of-words based approach
and each feature space/method (one per row). The solid black line at 0 indicates no difference; solid and dotted blue lines
demarcate means and medians, respectively. Features are as in Table 1. The × symbol denotes interactions; + indicates
addition. The proposed contextual features substantially improve recall, with little to no loss in precision. Moreover, in general,
the `1`2 regularization approach reduces variance. (We note that in constructing histograms we have excluded a handful of
points – never more than 1% – where the difference exceeded 0.15).

median recall (std. dev.) median precision (std. dev.)
baseline 0.331 (0.146) 0.148 (0.022)
(overall) sent. 0.351 (0.054) 0.125 (0.003)
NNP 0.364 (0.119) 0.135 (0.021)
NNP× subreddit 0.357 (0.108) 0.143 (0.020)
NNP+× sent. × subreddit 0.344 (0.116) 0.142 (0.019)
NNP+× sent. × subreddit (`1 `2) 0.325 (0.052) 0.141 (0.008)
NNP+× sent. × subreddit + sent. 0.377 (0.104) 0.141 (0.014)
NNP+× sent. × subreddit + sent. (`1 `2) 0.370 (0.056) 0.140 (0.008)

Table 4: Results on the held-out political dataset, using the entire development corpus as a training set. Abbreviations are as
described in the caption for Figure 2. Due to the variance inherent to the stochastic gradient descent procedure, we repeat
the experiment 100 times and report the median performance and standard deviations (of different SGD runs). Results are
consistent with those reported for the development corpus.
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Figure 3: Results from 500 independent train/test splits of the development subset of the religion corpus). The description is
the same as for Figure 2.

the expense of more than 2 points in precision.

5.3 Results on the religion dataset

To assess the general applicability of the proposed
approach, we also evaluate the method on com-
ments from a separate pair of polarized communi-
ties: atheism and Christianity, as described in Sec-
tion 4.1. This dataset was not used during model
development. We follow the experimental setup
described in Section 4.2.

In this case, capitalizing on the NNP × subred-
dit features produces a mean 2.3% absolute gain in
recall (median: 2.4%) over the baseline approach,
with a (very) slight gain in precision. The `1 `2
approach achieves a lower expected gain in recall
(median: 1.5%), but again shrinks the variance
w.r.t. model performance (see Figure 3). More-
over, as we show in Figure 4, this is achieved with
a much more compact (sparser) model. We note
that for the religion data, inferred sentiment fea-
tures do not seem to improve performance, in con-
trast to the results on the political subreddits. At
present, we are not sure why this is the case.

These results demonstrate that introducing fea-
tures that encode entities and user communities
(NNPs × subreddit) improve recall for irony de-
tection in comments addressing relatively diverse
topics (politics and religion).

5.4 Predictive features

We report the interaction features that are the best
predictors of verbal irony in the respective subred-

progressive conservative
feature weight feature weight

freedom 0.102 (0.048) racist 0.148 (0.043)
god 0.085 (0.045) news 0.100 (0.044)
christmas 0.081 (0.046) way 0.078 (0.044)
jesus 0.060 (0.038) obamacare 0.068 (0.041)
kenya 0.052 (0.035) white 0.059 (0.037)
brave 0.043 (0.035) let 0.058 (0.038)
bravo 0.041 (0.035) course 0.046 (0.033)
know 0.038 (0.030) huh 0.044 (0.036)
dennis 0.038 (0.029) education 0.043 (0.032)
ronald 0.036 (0.030) president 0.039 (0.031)

Table 5: Average weights (and standard deviations calculated
across samples) for top 10 NNP × subreddit features from
the progressive and conservative subreddits.

dits (for both polar community pairs). Specifically,
we estimated the weights for every interaction fea-
ture using the entire training dataset, and repeated
this process 100 times to account for variation due
to the SGD procedure.

Table 5 displays the top 10 NNP × subreddit
features for the political subreddits, with respect to
the mean magnitude of the weights associated with
them. We report these means and the standard de-
viations calculated across the 100 runs. This table
implies, for example, that mentions of ‘freedom’
and ‘kenya’ indicate irony in the progressive sub-
reddit; while mentions of ‘obamacare’ and ‘pres-
ident’ (for example) in the conservative subreddit
tend to imply irony.

Table 6 reports analagous results for the religion
subreddits. Here we can see, e.g., that ‘god’ is a
good predictor of irony in the atheism subreddit,
and ‘professor’ is in the Christianity subreddit.

We also report the top ranking ‘three-way’ in-
teraction features that cross NNP’s extracted from
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atheism Christianity
feature weight feature weight
right 0.353 (0.014) professor 0.297 (0.013)
god 0.324 (0.013) let 0.084 (0.014)
women 0.214 (0.013) peter 0.080 (0.019)
christ 0.160 (0.014) geez 0.054 (0.016)
news 0.146 (0.013) evil 0.054 (0.015)
trust 0.139 (0.013) killing 0.053 (0.015)
shit 0.132 (0.015) liberal 0.049 (0.014)
believe 0.123 (0.013) antichrist 0.049 (0.014)
great 0.121 (0.016) rock 0.047 (0.014)
ftfy 0.108 (0.016) pedophilia 0.046 (0.014)

Table 6: Top 10 NNP × subreddit features from the atheism
and Christianity subreddits.

progressive conservative
feature weight feature weight

american (+) 0.045 (0.023) mr (+) 0.041 (0.021)
yay (+) 0.042 (0.022) cruz (+) 0.040 (0.021)
ollie (+) 0.036 (0.019) king (+) 0.036 (0.019)
north (+) 0.036 (0.019) onion (+) 0.035 (0.018)
fuck (+) 0.034 (0.018) russia (+) 0.034 (0.018)
washington (+) 0.034 (0.018) oprah (+) 0.030 (0.016)
times* (+) 0.034 (0.018) science (+) 0.027 (0.015)
world (+) 0.030 (0.016) math (+) 0.027 (0.015)
magic (+) 0.024 (0.013) america (+) 0.026 (0.014)
where (+) 0.024 (0.013) ben (+) 0.020 (0.011)

Table 7: Average weights for top 10 NNP × subreddit ×
sentiment features. The parenthetical ‘+’ indicates that the
inferred sentiment was positive. In general, (ostensibly) pos-
itive sentiment indicates irony.

sentences with subreddits and the inferred senti-
ment for the political corpus (Table 7). This would
imply, e.g., that if a sentence in the progressive
subreddit conveys an ostensibly positive sentiment
about the political commentator ‘Ollie’,4 then this
sentence is likely to have been intended ironically.

Some of these may seem counter-intuitive, such
as ostensibly positive sentiment regarding ‘Cruz’
(as in the conservative senator Ted Cruz) in the
conservative subreddit. On inspection of the com-
ments, it would seem Ted Cruz does not find
general support even in this community. Exam-
ple comments include: “Stay classy Ted Cruz”
and “Great idea on the talkathon Cruz”. The
‘mr’ and ‘king’ terms are almost exclusively ref-
erences to Obama in the conservative subreddit.
In any case, because these are three-way interac-
tion terms, they are all relatively rare: therefore we
would caution against over interpretation here.

6 Related Work

The task of automated irony detection has recently
received a great deal of attention from the NLP and
ML communities (Tepperman et al., 2006; Davi-
dov et al., 2010; Carvalho et al., 2009; Burfoot and
Baldwin, 2009; Tsur et al., 2010; González-Ibáñez
et al., 2011; Filatova, 2012; Reyes et al., 2012;
Lukin and Walker, 2013; Riloff et al., 2013). This
work has mostly focussed on exploiting token-

4‘Ollie’ is a conservative political commentator.

based indicators of verbal irony. For example, it
is clear that gratuitous punctuation (e.g. “oh re-
ally??!!!”) signals irony (Carvalho et al., 2009).

Davidov et al. (2010) proposed a semi-
supervised approach in which they look for sen-
tence templates indicative of irony. Elsewhere,
Riloff et al. (2013) proposed a method that ex-
ploits apparently contrasting sentiment in the same
utterance to detect irony. While innovative, these
approaches still rely on features intrinsic to com-
ments; i.e., they do not attempt to capitalize on
contextualizing features external to the comment
text. This means that there will necessarily be cer-
tain (subtle) ironies that escape detection by such
approaches. For example, without any additional
information about the speaker, it would be impos-
sible to deduce whether the comment “Obamacare
is a great program” is intended sarcastically.

Other related recent work has shown the
promise of sparse models, both for prediction and
interpretation (Eisenstein et al., 2011a; Eisenstein
et al., 2011b; Yogatama and Smith, 2014a). Yo-
gatama (2014a; 2014b), e.g., has leveraged the
group lasso approach to impose ‘structured’ spar-
sity on feature weights. Our work here may simi-
larly be viewed as assuming a specific sparsity pat-
tern (specifically that feature weights for ‘interac-
tion features’ will be sparse) and expressing this
via regularization.

7 Conclusions and Future Directions

We have shown that we can leverage contextual-
izing information to improve identification of ver-
bal irony in online comments. This is in contrast
to previous models, which have relied predomi-
nantly on features that are intrinsic to the texts
to be classified. We exploited features that indi-
cate user communities crossed with sentiment and
extracted noun phrases. This led to consistently
improved recall with little to no cost in precision.
We also proposed a novel composite regulariza-
tion strategy that imposes a sparsifying `1 penalty
on the interaction features, as we expect most of
these to be irrelevant. This reduced performance
variance.

Future work will include expanding the corpus
and experimenting with datasets outside of the po-
litical domain. We also plan to evaluate this strat-
egy on data from different online sources, e.g.,
Twitter or YouTube.
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Abstract 

Predicting emotion categories, such as anger, 
joy, and anxiety, expressed by a sentence is 
challenging due to its inherent multi-label 
classification difficulty and data sparseness. 
In this paper, we address above two chal-
lenges by incorporating the label dependence 
among the emotion labels and the context de-
pendence among the contextual instances into 
a factor graph model. Specifically, we recast 
sentence-level emotion classification as a fac-
tor graph inferring problem in which the label 
and context dependence are modeled as vari-
ous factor functions. Empirical evaluation 
demonstrates the great potential and effective-
ness of our proposed approach to sentence-
level emotion classification. 1 

1 Introduction 

Predicting emotion categories, such as anger, joy, 

and anxiety, expressed by a piece of text encom-

passes a variety of applications, such as online 

chatting (Galik et al., 2012), news classification 

(Liu et al., 2013) and stock marketing (Bollen et 

al., 2011). Over the past decade, there has been a 

substantial body of research on emotion classifi-

cation, where a considerable amount of work has 

focused on document-level emotion classification. 

Recently, the research community has become 

increasingly aware of the need on sentence-level 

emotion classification due to its wide potential ap-

plications, e.g. the massively growing importance 

of analyzing short text in social media (Ki-

ritchenko et al., 2014; Wen and Wan, 2014). In 

general, sentence-level emotion classification ex-

hibits two challenges. 

                                                 
1 *  Corresponding author 

…… 

<S1>她们都睡了，我蹑手蹑脚摸黑上了
床，凑上去想亲嫣一下，她突然一个转身，
小手‘啪’地搭在了我的脸颊上。</S1> <S2>
现在我终于如愿以偿。</S2> <S3>感受着小手
的温度，享受着这份她对我的依恋，生怕动
一下，会让她的小手离我而去。</S3>…… 

(English: …… 

<S1> The girls fall to sleep, so I make my way 
noiselessly onto the bed, wishing I could get a 
chance to give a kiss to Yan, suddenly she turn 
over to me and her little soft hand fall onto my 
face.</S1> <S2>Praise the Lord, that is all I 
want.</S2> <S3>Feeling the warm of her hand 
and the attachment she hold to me, I couldn’t af-
ford to move even a little, fearing I may lost her 
hand.</S3>)……) 

------------------------------------------------------------------- 

Sentence-level Emotion Classification 

 Input:      S1, S2, S3 

 Output:     S1 :   joy, love 

S2:   joy 

S3:  joy, love, anxiety 

Figure 1: An example of a paragraph and the 

sentences therein with their emotion categories 

from the corpus collected by Quan and Ren 

(2009) 

 

On one hand, like document-level emotion 

classification, sentence-level emotion classifica-

tion is naturally a multi-label classification prob-

lem. That is, each sentence might involve more 

than one emotion category. For example, as 

shown in Figure 1, in one paragraph, two sen-

tences, i.e., S1 and S3, have two and three emotion 

categories respectively. Automatically classifying 

instances with multiple possible categories is 
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sometimes much more difficult than classifying 

instances with a single label.  

On the other hand, unlike document-level emo-

tion classification, sentence-level emotion classi-

fication is prone to the data sparseness problem 

because a sentence normally contains much less 

content. Given the short text of a sentence, it is 

often difficult to predict its emotion due to the 

limited information therein. For example, in S2, 

only one phrase “如愿以偿(that is all I want)” ex-

presses the joy emotion. Once this phrase fails to 

appear in the training data, it will be hard for the 

classifier to give a correct prediction according to 

the limited content in this sentence. 

In this paper, we address above two challenges 

in sentence-level emotion classification by mod-

eling both the label and context dependence. Here, 

the label dependence indicates that multiple emo-

tion labels of an instance are highly correlated to 

each other. For instance, the two positive emo-

tions, joy and love, are more likely to appear at the 

same time than the two counterpart emotions, joy 

and hate. The context dependence indicates that 

two neighboring sentences or two sentences in the 

same paragraph (or document) might share the 

same emotion categories. For instance, in Figure 

1, S1, S2, and S3, from the same paragraph, all 

share the emotion category joy.  

Specifically, we propose a factor graph, namely 

Dependence Factor Graph (DFG), to model the la-

bel and context dependence in sentence-level 

emotion classification. In our DFG approach, both 

the label and context dependence are modeled as 

various factor functions and the learning task aims 

to maximize the joint probability of all these fac-

tor functions. Empirical evaluation demonstrates 

the effectiveness of our DFG approach to captur-

ing the inherent label and context dependence. To 

the best of our knowledge, this work is the first 

attempt to incorporate both the label and context 

dependence of sentence-level emotion classifica-

tion into a unified framework. 

The remainder of this paper is organized as fol-

lows. Section 2 overviews related work on emo-

tion analysis. Section 3 presents our observations 

on label and context dependence in the corpus. 

Section 4 proposes our DFG approach to sen-

tence-level emotion classification. Section 5 eval-

uates the proposed approach. Finally, Section 6 

gives the conclusion and future work. 

2 Related Work  

Over the last decade, there has been an explosion 

of work exploring various aspects of emotion 

analysis, such as emotion resource creation 

(Wiebe et al., 2005; Quan and Ren, 2009; Xu et 

al., 2010), writer’s emotion vs. reader’s emotion 

analysis (Lin et al., 2008; Liu et al., 2013), emo-

tion cause event analysis (Chen et al., 2010), doc-

ument-level emotion classification (Alm et al., 

2005; Li et al., 2014) and sentence-level or short 

text-level emotion classification (Tokushisa et al., 

2008; Bhowmick et al., 2009; Xu et al., 2012). 

This work focuses on sentence-level emotion clas-

sification. 

Among the studies on sentence-level emotion 

classification, Tokushisa et al. (2008) propose a 

data-oriented method for inferring the emotion of 

an utterance sentence in a dialog system. They 

leverage a huge collection of emotion-provoking 

event instances from the Web to deal with the data 

sparseness problem in sentence-level emotion 

classification. Bhowmick et al. (2009) and 

Bhowmick et al. (2010) apply KNN-based classi-

fication algorithms to classify news sentences into 

multiple reader emotion categories. Although the 

multi-label classification difficulty has been no-

ticed in their study, the label dependence is not 

exploited. More recently, Xu et al. (2012) pro-

poses a coarse-to-fine strategy for sentence-level 

emotion classification. They deal with the data 

sparseness problem by incorporating the transfer 

probabilities from the neighboring sentences to 

refine the emotion categories. To some extent, this 

can be seen a specific kind of context information. 

However, they ignore the label dependence by di-

rectly applying Binary Relevance to overcome the 

multi-label classification difficulty. 

Unlike all above studies, this paper emphasizes 

the importance of the label dependence and ex-

ploits it in sentence-level emotion classification 

via a factor graph model. Moreover, besides the 

label dependence, our factor graph-based ap-

proach incorporates the context dependence in a 

unified framework to further improve the perfor-

mance of sentence-level emotion classification. 

3 Observations 

To better illustrate our motivation of modeling the 

label and context dependence, we systematically 

investigate both dependence phenomena in our 

evaluation corpus. 
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Figure 2: Probability distribution of most and least frequently-occurred pairs of emotion categories, 

with left four most frequently-occurred and right four least frequently-occurred, among all 28 pairs 

 

 

The corpus contains 100 documents, randomly 

selected from Quan and Ren (2009). There are to-

tally 2751 sentences and each of them is manually 

annotated with one or more emotion labels. 

 

Table 1: The numbers of the sentences in each 

emotion category 
 

Emotion #Sentence  Emotion #Sentence 

joy 691  anxiety 567 

hate 532  surprise 180 

love 1025  anger 287 

sorrow 611  expect 603 

 

Table 2: The numbers of the sentences 

grouped by the emotion labels they contain 
 

 #Sentence 

No Label 180 

One Label 1096 

Two Labels 1081 

Three Labels 346 

Four or more labels 48 

ALL 2751 

 

Table 1 shows the sentence distribution of the 

eight emotion categories. Obviously, the distribu-

tion is a bit imbalanced. While about to one quar-

ter of sentences express the emotion category love, 

only ~6% and ~10% express surprise and anger 

respectively, with the remaining 5 emotion cate-

gories distributed rather evenly from ~20% to 

~25%. Table 2 shows the numbers of the sen-

tences grouped by the emotion labels they contain. 

From this table, we can see that more than half 

sentences have two or more emotion labels. This 

indicates the popularity of the multi-label issue in 

sentence-level emotion classification. 

To investigate the phenomenon of label de-

pendence, we first assume that dX R denotes 

an input domain of instances and 1 2{ , ,..., }mY l l l

be a finite domain of possible emotion labels. 

Each instance is associated with a subset of Y and 

this subset is described as an m-dimensional vec-

tor 1 2{ , ,..., }my y y y where =1iy  only if in-

stance x has label .il  and =0iy  otherwise. Then, 

we can calculate the probability that an instance 

takes both emotion labels il and jl , denoted as 

( , )i jp l l . Figure 2 shows the probability distribu-

tion of most and least frequently-occurred pairs of 

emotion categories, with left four most fre-

quently-occurred and right four least frequently-

occurred, among all 28 pairs. From this figure, we 

can see that some pairs, e.g., joy and love, are 

much more likely to be taken by one sentence than 

some other pairs, e.g. joy and anger. 

Finally, we investigate the phenomenon of the 

context dependence by calculating the probabili-

ties that two instances kx and lx have at least one 

identical emotion label, i.e., )k lp y y （  in 

different settings.
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Figure 4: An example of DFG when two instances are involved: sentence-1 with the label vector [1, 0, 

1] and sentence-2 with the label vector [1, 1, 0] 

Note: each multi-label instance is transformed into three pseudo samples, represented as  ( 1,2,3)k

iX k  . 

( )f   represents a factor function for modeling textual features. ( )g  represents a factor function for mod-

eling the label dependence between two pseudo samples. ( )h  represents a factor function for modeling 

the context dependence between two instances in the same context. 

 

  
Figure 3: Probabilities that two instances have 

an identical emotion label in different settings 

 

Figure 3 shows the probabilities that two in-

stances have at least one identical emotion label in 

different settings, where neighbor, paragraph, 

document and random mean two neighboring in-

stances, two instances from the same paragraph, 

two instances from the same document, and two 

instances from a random selection, respectively. 

From this figure, we can see that two instances 

from the same context are much more likely to 

take an identical emotion label than two random 

instances. 

From above statistics, we come to two basic ob-

servations: 

1) Label dependency: One sentence is more 

likely to take some pair of emotion labels, e.g., 

hate and angry than some other pair of emo-

tion labels, e.g., hate and happy. 

2) Context dependency: Two instances from the 

same context are more likely to share the same 

emotion label than those from a random selec-

tion. 

4 Dependence Factor Graph Model 

In this section, we propose a dependence factor 

graph (DFG) model for learning emotion labels of 

sentences with both label and context dependence. 

4.1 Preliminary 

Factor Graph 

A factor graph consists of two layers of nodes, i.e., 

variable nodes and factor nodes, with links be-

tween them. The joint distribution over the whole 

set of variables can be factorized as a product of 

all factors. Figure 4 gives an example of our de-

pendence factor graph (DFG) when two instances, 

i.e., sentence-1 and sentence-2 are involved. 

Binary Relevance 

A popular solution to multi-label classification is 

called binary relevance which constructs a binary 

classifier for each label, resulting a set of inde-
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pendent binary classification problems (Tsouma-

kas and Katakis, 2007; Tsoumakas et al., 2009). 

In our approach, binary relevance is utilized as a 

preliminary step so that each original instance is 

transformed into K pseudo samples, where K is 

the number of categories. For example, in Figure 

4, 
1

1X , 
2

1X , and 
3

1X  represent the three pseudo 

samples, generated from the same original in-

stance sentence-1.  

4.2 Model Definition 

Formally, let  , ,G V E X represent an instance 

network, where V denotes a set of sentence in-

stances. E V V  is a set of relationships be-

tween sentences. Two kinds of relationship exist 

in our instance network: One represents the label 

dependence between each two pseudo instances 

generated from the same original instance, while 

the other represents the context dependence when 

the two instances are from the same context, e.g., 

the same paragraph. X  is the textual feature vec-

tor associated with a sentence. 

We model the above network with a factor 

graph and our objective is to infer the emotion cat-

egories of instances by learning the following 

joint distribution: 

                                                                                      

 

       , , ,k k k k k k

i i i i i i

k i

P Y G

f X y g y G y h y H y




 (1)   

where three kinds of factor functions are used. 

1) Textual feature factor function:  ,k k

i if X y  

denotes the traditional textual feature factor 

functions associated with each text 
k

iX . The 

textual feature factor function is instantiated as 

follows: 

   
1

1
, exp ,k k k k

i i kj ij i

j

f X y x y
Z


 

  
 
    (2) 

Where  ,k k

ij ix y is a feature function and 
k

ijx

represents a textual feature, i.e., a word feature 

in this study. 

2) Label dependence factor function: 

  ,k k

i ig y G y  denotes the additional label de-

pendence relationship among the pseudo in-

stances, where  k

iG y  is the label set of the 

instances connected to
k

iy .  k

iG y and 
k

iy  are 

labels of the pseudo instances generated from 

the same original instance. The label depend-

ence factor function is instantiated as follows: 

   
2

( )2

1
, ( ) exp

l k
i i

k k k l

i i ikl i i

y G y

g y G y y y
Z




  
  

  
  

(3) 

Where 
ikl  is the weight of the function, rep-

resenting the influence degree of the two in-

stances 
k

iy and 
l

iy . 

3)  Context dependence factor function:  

  ,k k

i ih y H y  denotes the additional context 

dependence relationship among the instances, 

where  k

iH y  is the set of the instances con-

nected to k

iy .  k

iH y  and k

iy  are the labels of 

the pseudo instances from the same context but 

generated from different original instances. 

The context dependence factor function is in-

stantiated as follows: 

    
2

( )3

1
, ( ) exp

k k
j i

k k k k

i i ijk i j

y H y

h y H y y y
Z




  
  

  


(4)   

Where ijk  is the weight of the function, repre-

senting the influence degree of the two in-

stances 
k

iy and 
k

jy . 

4.3 Model Learning 

Learning the DFG model is to estimate the best 

parameter configuration ({ },{ },{ })     to 

maximize the log-likelihood objective function

   logL P Y G  , i.e., 

                                                                               

 * argmax L                        (5) 

In this study, we employ the gradient decent 

method to optimize the objective function. For ex-

ample, we can write the gradient of each kj with 

regard to the objective function:  

                                                        

 
     |

, ,
kj

k k

ij i ij iP Y G

kj

L
E x y E x y








      
   

  (6)                                               

Where  , k

ij iE x y 
 

is the expectation of feature 

function  , k

ij ix y  given the data distribution. 

   |
,

kj

k

ij iP Y G
E x y



 
   is the expectation of feature 

function  , k

ij ix y under the distribution 

 
kj

P Y G  given by the estimated model. Figure 5 

illustrates the detailed algorithm for learning the 

parameter  . Note that LBP denotes the Loopy 
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Belief Propagation (LBP) algorithm which is ap-

plied to approximately infer the marginal distribu-

tion in a factor graph (Frey and MacKay, 1998). 

A similar gradient can be derived for the other pa-

rameters.  

 

Input: Learning rate    

Output: Estimated parameters    

Initialize 0    

Repeat 

1) Calculate  , k

ij iE x y 
 

 using LBP  

2) Calculate    |
,

kj

k

ij iP Y G
E x y



 
   using LBP 

3) Calculate the gradient of   according to 

Eq. (6) 

4) Update parameter   with the learning 

rate   

               
 

new old

L 
  


   

Until Convergence 
 

Figure 5: The learning algorithm for DGP model 
 

4.4 Model Prediction 

With the learned parameter configuration  , the 

prediction task is to find a *UY  which optimizes 

the objective function, i.e., 

 * argmax , ,U U LY P Y Y G                (7) 

Where *UY  are the labels of the instances in the 

testing data.  

Again, we utilize LBP to calculate the marginal 

probability of each instance  , ,k L

iP y Y G   and 

predict the label with the largest marginal proba-

bility. As all instances in the test data are con-

cerned, above prediction is performed in an itera-

tion process until the results converge. 

5 Experimentation 

We have systematically evaluated our DFG ap-

proach to sentence-level emotion classification. 

5.1 Experimental Setting 

Corpus 

The corpus contains 100 documents (2751 sen-

tences) from the Ren-CECps corpus (Quan and 

Ren, 2009). In our experiments, we use 80 docu-

ments as the training data and the remaining 20 

documents as the test data. 

Features 

Each instance is treated as a bag-of-words and 

transformed into a binary vector encoding the 

presence or absence of word unigrams. 

Evaluation Metrics 

In our study, we employ three evaluation metrics 

to measure the performances of different ap-

proaches to sentence-level emotion classification. 

These metrics have been popularly used in some 

multi-label classification problems (Godbole and 

Sarawagi, 2004; Schapire and Singer, 2000).  

1) Hamming loss: It evaluates how many times 

an instance-label pair is misclassified consid-

ering the predicted set of labels and the 

ground truth set of labels, i.e., 

'

1 1

1
1 1 j j

i i

q m

y y
i j

hloss
mq 

 

         (8) 

where q is the number of all test instances and 

m is the number of all emotion labels. 'j

iy is 

the estimated label while j

iy is the true label. 

2) Accuracy: It gives an average degree of the 

similarity between the predicted and the 

ground truth label sets of all test examples, i.e., 

'

'
1

1 q

i i

i i i

y y
Accuracy

q y y





              (9) 

3) F1-measure: It is the harmonic mean between 

precision and recall. It can be calculated from 

true positives, true negatives, false positive 

and false negatives based on the predictions 

and the corresponding actual values, i.e., 

'

'
1

1 q
i i

i i i

y y
F1

q y y





             (10) 

Note that smaller Hamming loss corresponds to 

better classification quality, while larger accuracy 

and F-measure corresponds to better classifica-

tion quality. 
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Figure 6: Performance comparison of different approaches to sentence-level emotion classification 

with the label dependence only 

 

  
Figure 7: Performance comparison of different approaches to sentence-level emotion classification 

with the context dependence only 

 

5.2 Experimental Results with Label De-

pendence 

In this section, we compare following approaches 

which only consider the label dependence among 

pseudo instances:  

 Baseline: As a baseline, this approach applies 

a maximum entropy (ME) classifier with only 

textual features, ignoring both the label and 

context dependence. 

 LabelD: As the state-of-the-art approach to 

handling multi-label classification, this ap-

proach incorporates label dependence, as de-

scribed in (Wang et al., 2014). Specifically, 

this approach first utilizes a Bayesian network 

to infer the relationship among the labels and 

then employ them in the classifier. 

 DFG-label: Our DFG approach with the label 

dependence. 

Figure 6 compares the performance of different 

approaches to sentence-level emotion classifica-

tion with the label dependence. From this figure, 

we can see that our DFG approach improves the 

baseline approach with an impressive improve-

ment in all three kinds of evaluation metrics, i.e., 

23.5% reduction in Hloss, 25.6% increase in Ac-

curacy, and 11.8% increase in F1. This result ver-

ifies the effectiveness of incorporating the label 

dependence in sentence-level emotion classifica-

tion. Compared to the state-of-the-art LabelD ap-

proach, our DFG approach is much superior. Sig-

nificant test show that our DFG approach signifi-

cantly outperforms both the baseline approach and 

LabelD (p-value<0.01). One reason that LabelD 

performs worse than our approach is possibly due 

to their separating learning on textual features and 

label relationships. Also, different from ours, their 

approach could not capture the information be-

tween two conflict emotion labels, such as “happy” 

and “sad” (they are not possibly appearing to-

gether). 

5.3 Experimental Results with Context De-

pendence 

In this section, we compare following approaches 

which only consider the context dependence 

among pseudo instances:  
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 Baseline: same as the one in Section 5.2, 

which applies a maximum entropy (ME) clas-

sifier with only textual features, ignoring both 

the label and context dependence.  

 Transfer: As the state-of-the-art approach to 

incorporating contextual information in sen-

tence-level emotion classification (Xu et al., 

2012), this approach utilizes the label transfor-

mation probability to refine the classification 

results.  

 DFG-label (Neighbor): Our DFG approach 

with the context dependence only. Specifically, 

the neighboring instances are considered as 

context.  

 DFG-label (Paragraph): Our DFG approach 

with the context dependence only. Specifically, 

the instances in the same paragraph are consid-

ered as context. 

 DFG-label (Document): Our DFG approach 

with the context dependence only. Specifically, 

the instances in the same document are consid-

ered as context. 

Figure 7 compares the performance of different 

approaches to sentence-level emotion classifica-

tion with the context dependence only. From this 

figure, we can see that our DFG approach consist-

ently improves the state-of-the-art in all three 

kinds of evaluation metrics, i.e., 6.1% reduction in 

Hloss, 6.5% increase in Accuracy, and 3.1% in-

crease in F1 when the neighboring instances are 

considered as context. Among the three kinds of 

context, the neighboring setting performs best. 

We also find that using the whole document as the 

context is not helpful and it performs even worse 

than the baseline approach. Compared to the state-

of-the-art Transfer approach, our DFG approach 

with the neighboring context dependence is much 

superior. Significant test show that our DFG ap-

proach with the neighboring context dependence 

significantly outperforms the baseline approach 

and the state-of-the-art LabelD approach (p-

value<0.01). 

5.4 Experimental Results with Both Label 

and Context Dependence 

Table 3 shows the performance of our DFG ap-

proach with both label and context dependence, 

denoted as DGF-both. From this table, we can see 

that using both label and context dependence fur-

ther improves the performance.  

Figure 8 shows the performance of our DGF-

both approach when different sizes of training 

data are used to train the model. From this figure, 

we can see that incorporating both the label and 

context dependence consistently improves the 

performance with a large margin, irrespective of 

the amount of training data available. 

 

Table 3: Performance of our DFG approach 

with both label and context dependence 
 

 Hloss Accuracy F1 

Baseline  0.447 0.378 0.261 

DFG-label 0.254 0.621 0.372 

DFG-context 0.416 0.443 0.292 

DFG-both 0.242 0.634 0.379 

 

 

 

  
Figure 8: Performance of our DGF-both ap-

proach when different sizes of training data are 

used 

6 Conclusion 

In this paper, we propose a novel approach to sen-

tence-level emotion classification by incorporat-

ing both the label dependence among the emotion 

labels and the context dependence among the con-

textual instances into a factor graph, where the la-

bel and context dependence is modeled as various 

factor functions. Empirical evaluation shows that 
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our DFG approach performs significantly better 

than the state-of-the-art. 

In the future work, we would like to explore bet-

ter ways of modeling the label and context de-

pendence and apply our DFG approach in more 

applications, e.g. micro-blogging emotion classi-

fication.  
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Abstract

A review text is normally represented as
a bag-of-words (BOW) in sentiment clas-
sification. Such a simplified BOW model
has fundamental deficiencies in modeling
some complex linguistic phenomena such
as negation. In this work, we propose a
dual-view co-training algorithm based on
dual-view BOW representation for semi-
supervised sentiment classification. In
dual-view BOW, we automatically con-
struct antonymous reviews and model a
review text by a pair of bags-of-words
with opposite views. We make use of the
original and antonymous views in pairs,
in the training, bootstrapping and test-
ing process, all based on a joint observa-
tion of two views. The experimental re-
sults demonstrate the advantages of our ap-
proach, in meeting the two co-training re-
quirements, addressing the negation prob-
lem, and enhancing the semi-supervised
sentiment classification efficiency.

1 Introduction

In the past decade, there has been an explosion
of user-generated subjective texts on the Internet
in forms of online reviews, blogs and microblogs.
With the need of automatically identifying senti-
ments and opinions from those online texts, senti-
ment classification has attracted much attention in
the field of natural language processing.

Lots of previous research focused on the task
of supervised sentiment classification. However,
in some domains, it is hard to obtain a sufficient
amount of labeled training data. Manual annota-
tion is also very expensive and time-consuming.
To address this problem, semi-supervised learning

approaches were employed in sentiment classifica-
tion, to reduce the need for labeled reviews by tak-
ing advantage of unlabeled reviews.

The dominating text representation method in
both supervised and semi-supervised sentiment
classification is known as the bag-of-words (BOW)
model, which is difficult to meet the requirements
for understanding the review text and dealing with
complex linguistic structures such as negation. For
example, the BOW representations of two opposite
reviews “It works well” and “It doesn’t work well”
are considered to be very similar by most statistical
learning algorithms.

In supervised sentiment classification, many ap-
proaches have been proposed in addressing the
negation problem (Pang et al., 2002; Na et al.,
2004; Polanyi and Zaenen , 2004; Kennedy and
Inkpen, 2006; Ikeda et al., 2008; Li et al., 2010b;
Orimaye et al., 2012; Xia et al., 2013). Nev-
ertheless, in semi-supervised sentiment classifica-
tion, most of the current approaches directly ap-
ply standard semi-supervised learning algorithms,
without paying attention to appropriate representa-
tion for review texts. For example, Aue and Ga-
mon (2005) applied the naı̈ve Bayes EM algorithm
(Nigam et al., 2000). Goldberg and Zhu (2006) ap-
plied a graph-based semi-supervised learning algo-
rithm by (Zhu et al., 2003). Wan (2009) employed
a co-training approach for cross-language senti-
ment classification. Li et al. (2010a) employed co-
training with personal and impersonal views. Ren
et al. (2011) explored the use of label propagation
(Zhu and Ghahramani, 2002).

As pointed by (Goldberg and Zhu, 2006): it is
necessary to investigate better review text represen-
tations and similarity measures based on linguis-
tic knowledge, as well as reviews’ sentiment pat-
terns. However, to the best knowledge, such inves-
tigations are very scarce in the research of semi-

1054



supervised sentiment classification.
In (Xia et al., 2013), we have developed a

dual sentiment analysis approach, which creates
antonymous reviews and makes use of original and
antonymous reviews together for supervised sen-
timent classification. In this work, we propose
a dual-view co-training approach based on dual-
view BOW representation for semi-supervised sen-
timent classification. Specifically, we model both
the original and antonymous reviews by a pair of
bags-of-words with opposite views. Based on such
a dual-view representation, we design a dual-view
co-training approach. The training, bootstrapping
and testing processes are all performed by observ-
ing two opposite sides of one review. That is, we
consider not only how positive/negative the orig-
inal review is, but also how negative/positive the
antonymous review is.

In comparison with traditional methods, our
dual-view co-training approach has the following
advantages:

• Effectively address the negation problem;
• Automatically learn the associations among

antonyms;
• Better meet the two co-training requirements

in (Blum and Mitchell, 1998).

2 Related Work

The mainstream of the research in sentiment clas-
sification focused on supervised and unsupervised
learning tasks. In comparison, semi-supervised
sentiment classification has much less related stud-
ies. In this section, we focus on reviewing the work
of semi-supervised sentiment classification.

Aue and Gamon (2005) combined a small
amount of labeled data with a large amount of
unlabeled data in target domain for cross-domain
sentiment classification based on the EM algo-
rithm. Goldberg and Zhu (2006) presented a graph-
based semi-supervised learning algorithm (Zhu et
al., 2003) for the sentiment analysis task of rat-
ing inference. Dasgupta and Ng (2009) proposed
a semi-supervised approach to mine the unambigu-
ous reviews at first and then exploiting them to
classify the ambiguous reviews, via a combination
of active learning, transductive learning and en-
semble learning. Ren et al. (2011) explored the
use of label propagation (LP) (Zhu and Ghahra-
mani, 2002) in building a semi-supervised senti-
ment classifier, and compared their results with
Transductive SVMs(T-SVM). LP and T-SVM are

transductive learning methods where the test data
should participate in the training process.

Zhou et al. (2010) proposed a deep learning
approach called active deep networks to address
semi-supervised sentiment classification with ac-
tive learning. Socher et al. (2012) introduced a
deep learning framework called semi-supervised
recursive autoencoders for predicting sentence-
level sentiment distributions. The limitation of
deep learning approaches might be their depen-
dence on a considerable amount of unlabeled data
to learn the representations and the inability to ex-
plicitly model the negation problem.

One line of semi-supervised learning research
is to bootstrap class labels using techniques like
self-training, co-training and their variations. Wan
(2009) proposed a co-training approach to address
the cross-lingual sentiment classification problem.
They made use of the machine translation service
to produce two views (a English view and a Chi-
nese view) for co-training a Chinese review senti-
ment classifier, based on English corpus and unla-
beled Chinese corpus. Li et al. (2010a) proposed
an unsupervised method at first to automatically
separate the review text into a personal view and an
impersonal view, based on which the standard co-
training algorithm is then applied to build a semi-
supervised sentiment classifier. Li et al. (2011)
further studied semi-supervised learning for imbal-
anced sentiment classification by using a dynamic
co-training approach. Su et al. (2012) proposed
a multi-view learning approach to semi-supervised
sentiment classification with both feature partition
and language translation strategies (Wan , 2009).
Following (Li et al., 2010a), Li (2013) proposed
a co-training approach which exploits subjective
and objective views for semi-supervised sentiment
classification. Our approach can also be viewed as
a variation of co-training. The innovation of our
approach is the dual-view construction technique
by incorporating antonymous reviews and the boot-
strapping mechanism by observing two opposite
sides of one review.

3 The Proposed Approach

3.1 Dual-view BOW Representation for
Review Texts

Every coin has two sizes. In this work, we are mo-
tivated to automatically construct the antonymous
reviews, consider the original and antonymous re-
views as two opposite sides of one review, and rep-

1055



1

1

1

1

1

1

1

0

1

1

0

1

1

0

1

1

app

phone

didn't

work

well

disappointing

recommend

satisfactory

Feature 
Space

Original
View

Antonymous
View

Figure 1: An illustration of the dual-view BOW
representation. The feature vector with black font
color and grey background denotes the original
view; while the one with white font color and
black background denotes the reversed antony-
mous view.

resent them in pairs by a dual-view BOW model.
Look at the following example:

Original Review: “The app doesn’t
work well on my phone. Disappointing.
Don’t recommend it.”

Antonymous Review: “The app works
well on my phone. Satisfactory. Recom-
mend it.”

Given an original review, its antonymous review
is automatically created as follows1: 1) We first de-
tect the negations in each subsentence of the review
text; 2) If there is a negation, we remove negators
in that subsentence; 3) Otherwise, we reverse all
the sentiment words in the subsentence into their
antonyms, according to a pre-defined antonym dic-
tionary2.

We subsequently use a dual-view BOW model to
represent such a pair of reviews, as shown in Fig-
ure 1. The original and antonymous reviews will
be used in pairs in our dual-view semi-supervised
learning approach. As we determine the sentiment
of one review, we could observe not only the orig-
inal view, but also the antonymous view.

1It is worth noting that our emphasis here is not to generate
natural-language-like review texts. Since either the original or
the created antonymous review will be represented as a vector
of independent words in the BOW model, the grammatical
requirement is not as strict as that in human languages.

2In our experiments, we extract the antonym dic-
tionary from the WordNet lexicon http://wordnet.
princeton.edu/.

Antonymous ViewAntonymous ViewOriginal View

Antonymous
Sentiment
Classifier

Original
Sentiment
Classifier

Labeled
Original
Reviews

Labeled
Antonymous
Reviews

Unlabeled
Original
Reviews

Unlabeled
Antonymous
Reviews

Review
Reversion

Bootstrapping

Review
Reversion

Dual-view
Sentiment 
Consensus

Dual
Sentiment
Classifier

Figure 2: The process of dual-view co-training.
Again, the white font color and black background
are used to denote the antonymous view.

It is important to notice that the antony-
mous view removes all negations and incorporates
antonymous features. On this basis, we design a
dual-view co-training approach. We will introduce
our approach in detail in Section 3.2, and analyze
its potential advantages in Section 3.3.

3.2 The Dual-view Co-training Approach

Since the original and antonymous views form two
different views of one review text, it is natural to
employ the co-training algorithm, which requires
two views for semi-supervised classification.

Co-training is a typical bootstrapping algorithm
that first learns a separate classifier for each view
using the labeled data. The most confident predic-
tions of each classifier on the unlabeled data are
then used to construct additional labeled training
data iteratively. Co-training has been extensively
used in NLP, including statistical parsing (Sarkar ,
2001), reference resolution (Ng and Cardie, 2003),
part-of-speech tagging (Clark et al., 2003), word
sense disambiguation (Mihalcea, 2004), and senti-
ment classification (Wan , 2009; Li et al., 2010a).

But it should be noted that the dual views in
our approach are different from traditional views.
One important property of our approach is that
two views are opposite and therefore associated
with opposite class labels. Figure 2 illustrates the
process of dual-view co-training.
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(1) Dual-view training

For each instance in the initial labeled set, we con-
struct the dual-view representations. Let xlo and
xla denote the bags of words in the original view
and the antonymous view, respectively. Note that
the class labels in two views are kept opposite:
yla = 1 − ylo (y ∈ {0, 1}). That is, we reverse
the class label in the original view (i.e., positive to
negative, or vice versa), as the class label of the
created antonymous view.

Suppose L is the labeled set, with Lo and La
denoting the original-view and antonymous-view
labeled sets, respectively. We train two distinct
classifiers: the original-view classifier ho and the
antonymous-view classifier ha , based on Lo and
La, respectively. We further train a joint classifier
by using Lo and La together as the training data,
and refer to it as hd.

(2) Dual-view bootstrapping

In standard co-training, we allow each classifier to
examine the unlabeled set U and select the most
confidently predicted examples in each category.
The selected examples are then added into L ,
along with the predicted class labels.

In this work, we design a dual-view co-training
algorithm to bootstrap the class labels by a joint ob-
servation of two sides of one review. Specifically,
we propose a new bootstrapping mechanism, based
on a principle called dual-view sentiment consen-
sus. Given an unlabeled instance {xuo , xua}, dual
view sentiment consensus requires that, the orig-
inal prediction yuo and the antonymous prediction
should be opposite: yua = 1− yuo . In other words,
we only select the instances of which the original
prediction is positive/negative, and the same time
the antonymous prediction is negative/positive. To
increase the degree of sentiment consensus, we fur-
ther require that the predition yud of hd should be
the same as yuo .

We sort all unlabeled instances according to the
dual-view predictions in each class, filter the list
according to the dual-view sentiment consensus
principle, and add the top-ranked s instances in
each class to the labeled set. For each selected un-
labeled instance, its original view xuo is added into
Lo with class label yuo ; and the antonymous view
xua is added into La, with an opposite class label
yua = 1− yuo . When Lo and La receive the supple-
mental labeled instances, we update ho and ha.

Our bootstrapping mechanism differs from the
traditional methods in two major aspects: First, in
traditional co-training, given the same instance,
the class labels in two views are the same. But in
our approach, the class labels in two views need
to be opposite. Second, in traditional co-training,
the most confidently predicted examples in each
view are selected to extend the amount of labeled
data. It is dangerous to believe the confident but
incorrect predictions. While in our approach, the
candidates are further filtered by the principle of
dual-view sentiment consensus. In this way, the
labeling accuracy and learning efficiency can be
improved.

(3) Dual-view testing
Finally, in the testing stage, standard co-training
uses a joint set of features in two views to train the
classifier. In dual-view testing, we use ho and ha
to predict the test example in two views, and make
the final prediction by considering both sizes of the
review.

Given a test example xte with its original view
denoted by xteo and antonymous view denoted
by xtea , let po(·|xteo ) be the posterior probability
predicted by the original-view classifier ho, and
pa(·|xtea ) be the posterior probability predicted by
ha. The dual-view testing process can be formu-
lated as follows:

p(+|xte) = p(+|xteo , xtea ) =
po(+|xteo ) + pa(−|xtea )

2
;

p(−|xte) = p(−|xteo , xtea ) =
po(−|xteo ) + pa(+|xtea )

2
.

That is, the final positive score is assigned by
measuring not only how positive the original re-
view is, but also how negative the antonymous one
is; the negative score is assigned by measuring not
only how positive the original review is, but also
how negative the antonymous one is.

3.3 Advantages of Dual-view Co-training
Our proposed dual-view co-training approach has
the following three advantages.

(1) Effectively address the negation issue
We use the antonymous review as a view to effec-
tively address the negation issue. Let us revisit the
example in Section 3.1 and assume that the orig-
inal review (i.e., “The app doesn’t work well on
my phone. Disappointing. Do not recommend it.”)
is an unlabeled sample. Because the traditional
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BOW model cannot well represent negative struc-
tures, the review is likely to be incorrectly labeled
as positive and then added into the labeled set.

In our proposed approach, the antonymous re-
view (i.e., “The app works well on my phone. Sat-
isfactory. Recommend it.”) removed all the neg-
ative structures, and is thus more suited for the
BOW representation. In this example, the antony-
mous review is also likely to be marked as positive.
Hence, in this case, both the original review and
its antonymous review will be labeled as positive,
which violates the principle of dual-view sentiment
consensus as mentioned in Section 3.2. As a result,
the unlabeled instance will not be added into the
labeled set.

Therefore, our approach can overcome the limi-
tations of the conventional methods in addressing
the negation issue and reduce the labeling error
rate (caused by the negative structures) during the
bootstrapping process.

(2) Automatically learn the associations among
antonyms

In semi-supervised sentiment classification, only
limited association information between the words
and categories can be obtained from a small num-
ber of initial labeled data.

For instance, in the above example “disappoint-
ing” and “satisfactory” are a pair of antonyms.
From the initial labeled data, we may only learn
that “disappointing” is derogatory, but we cannot
infer that “satisfactory” is commendatory.

During the bootstrapping process in our
approach, when constructing the dual view rep-
resentation, the original view and its antonymous
view are required to have opposite class labels.
Hence we can automatically infer the relationship
between “satisfactory” and “disappointing” (e.g.,
one is positive and one is negative), thereby
improving the learning efficiency of the system.

(3) Better meet two co-training requirements

Compared with traditional methods, our dual-view
co-training can better meet the two co-training re-
quirements: 1) sufficient condition (i.e., each view
is sufficient for classification); 2) complementary
condition (i.e., the two views are conditionally in-
dependent).

First, for the sufficient condition, we use a dif-
ferent view construction method. Most traditional
methods construct the two views by feature parti-
tioning (i.e., dividing the original feature set into

two subsets), while we use data expansion by gen-
erating antonymous reviews. We will demonstrate
in the experimental section (Section 4.6), that our
data expansion method can construct better views
than the feature partition method in terms of pre-
dicting the class labels from individual views.

Second, as we know, every coin has two sides
and the two sides are often complementary. In
our proposed approach, the original review and its
antonymous review (i.e., two sides of one review)
are used as two views for co-training and they can
better meet the complementary condition. We will
illustrate this point in Section 4.6 by calculating the
KL divergence between the two views.

4 Experimental Study

4.1 Datasets and Experimental Settings
We conduct the experiments on the multi-domain
sentiment datasets, which were introduced in
(Blitzer et al., 2007) and have been widely used in
sentiment classification. It consists of four domains
(Book, DVD, Electronics, and Kitchen) of reviews
extracted from Amazon.com. Each of the four
datasets contains 1,000 positive and 1,000 negative
reviews. Following the experimental settings used
in (Li et al., 2010a), we randomly separate all the
reviews in each class into a labeled data set, a un-
labeled data set, and a test set, with a proportion of
10%, 70% and 20%, respectively. We report the av-
eraged results of 10-fold cross-validation in terms
of classification accuracy.

Note that our approach is a general framework
that allows different classification algorithms. Due
to the space limitation, we only report the results by
using logistic regression3. Note the similar conclu-
sions can be obtained by using the other algorithms
such as SVMs and naı̈ve Bayes. The LibLinear
toolkit4 is utilized, with a dual L2-regularized fac-
tor, and a default tradeoff parameter c. Similar to
(Wan , 2009; Li et al., 2010a), we carry out the ex-
periments with the unigram features without fea-
ture selection. Presence is used as the term weight-
ing scheme as it was reported in (Pang et al., 2002)
that it performed better than TF and TF-IDF. Fi-
nally, the paired t-test (Yang and Liu , 1999) is per-
formed to test the significance of the difference be-

3Logistic regression is quite similar to Maximum Entropy,
and has been proved to be more efficient in sentiment clas-
sification than some other classification algorithms including
naı̈ve Bayes and SVMs (Pang et al., 2002).

4http://www.csie.ntu.edu.tw/˜cjlin/
liblinear/
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BOOK DVD ELEC KITC Avg.
Baseline 0.680 0.691 0.726 0.740 0.709

LP 0.681 0.676 0.697 0.722 0.694
T-SVM 0.671 0.677 0.716 0.729 0.698

EM 0.702 0.706 0.758 0.744 0.728
Self-Training 0.689 0.705 0.736 0.751 0.720
Self-Reserved 0.690 0.708 0.735 0.754 0.722

Co-Static 0.696 0.714 0.745 0.762 0.729
Co-Dynamic 0.701 0.725 0.756 0.767 0.737

Co-PI 0.702 0.716 0.746 0.769 0.733
Our approach 0.721 0.738 0.769 0.780 0.752

Table 1: The semi-supervised classification accu-
racy of ten systems.

tween two systems, with a default significant level
of 0.05.

4.2 Compared Systems

We implement the following nine systems and
compare them with our approach:

• Baseline, the supervised baseline trained with
the initial labeled data only;
• Expectation Maximization (EM), with the

naı̈ve Bayes model proposed by Nigam et al.
(2000);
• Label Propagation (LP), a graph-based

semi-supervised learning method proposed by
Zhu and Ghahramani (2002);
• Transductive SVM (T-SVM), an extension

of SVM so that it can exploit unlabeled data in
semi-supervised learning ( Joachims, 1999);
• Self-Training, a bootstrapping model that

first trains a classifier, uses it to classify the
unlabeled data, and adds the most confident
data to the labeled set;
• Self-Reserved, a variation of self-training

proposed in (Liu et al., 2013),with a reserved
procedure to incorporate some less confident
examples;
• Co-Static, the co-training algorithm by using

two static partitions of feature set as two views
(Blum and Mitchell, 1998);
• Co-Dynamic, a variation of co-training that

uses dynamic feature space in each loop. It
was reported in (Li et al., 2011) that the Co-
Dynamic significantly outperforms Co-Static
significantly;
• Co-PI, another variation of co-training pro-

posed by (Li et al., 2010a), by using personal
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Figure 3: Comparsion of different boostrapping
methods.

and impersonal views for co-training.

4.3 Performance Comparison
In table 1, we report the semi-supervised classifica-
tion accuracy of ten evaluated systems. We report
the results with 200 labeled, 1400 unlabeled and
400 test reviews. Note that the similar conclusions
can be obtained when the size of the initial labeled
data changes. We will discuss its influence later.

As can be seen, trained with only 200 labeled
data, the supervised baseline yields an average ac-
curacy of 0.709. Self-training gains an improve-
ment of 1.1%. Self-reserved does not show sig-
nificant priority against Self-training. Three co-
training systems (Co-static, Co-dynamic and Co-
PI) get significant improvements. They increase
the supervised baseline by 2.0%, 2.8% and 2.4%,
respectively.

It is somehow surprising that T-SVM and LP do
not outperform the supervised baseline, probably
because the supervised baseline is obtained by lo-
gistic regression, which was reported to be more ef-
fective than SVMs in sentiment classification (the
supervised result of SVMs is 0.695).

Our proposed approach significantly outper-
forms all the other methods. It gains the improve-
ment over the supervised baseline, Self-training,
Co-static, Co-dynamic and Co-PI by 4.3%, 3.2%,
2.3%, 1.5% and 1.9%, respectively. All of the im-
provements are significant according to the paired
t-test.

4.4 Comparison of Bootstrapping Methods
In Figure 3, we further compare five bootstrap-
ping methods by drawing the accuracy curve dur-
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Figure 4: Influence of the size of initial labeled
data.

ing the bootstrapping process. The x-axis denotes
the number of new labeled data bootstrapped from
the unlabeled data.

We can roughly rank five bootstrapping methods
as follows: Our approach � Co-dynamic > Co-
PI > Co-static� Self-training. Self-training gives
the worst performance. Co-static works better but
the effect is limited. Co-PI and Co-dynamic are
significantly better. Our proposed approach outper-
forms the other systems robustly, along with the in-
creased number of the new labeled data. It suggests
that our approach is very efficient in bootstrapping
the class labels from the unlabeled data.

4.5 Influence of the Size of the Initial Labeled
Set

The above results are obtained with 200 labeled,
1400 unlabeled and 400 test reviews. We now tune
the size of the initial labeled set (from 20 to 400),
and report its influence in Figure 4. For all the set-
tings, we fix the size of test set as 400. The x-axis
denotes the number of initial labeled set. For ex-
ample, “20” denotes the setting of 20 labeled and
1580 unlabeled data.

We can observe that our all methods improve as
the initial size increases. But the improvements be-
come limited when the size becomes larger. When
the initial size is 400, the semi-supervised perfor-
mance is close to the golden result obtained by the
supervised classifier trained with all 1600 labeled
data.

Our approach performs consistently the best
across different sizes of the initial sizes. The
smaller the initial size is, the more improvements
our approach can gain, in comparison with the
other methods. This confirms our analysis in Sec-
tion 3.3 that the technique of dual-view construc-
tion is very effective to boost the semi-supervised
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Figure 5: Comparison of different views on the
DVD and Electronics datasets.

classification performance, especially when the
size of the initial labeled set is small.

4.6 Discussion on the Two Co-training
Requirements

Ideally, co-training requires that each view is
sufficient for classification (sufficient condition)
and two views provide complementary informa-
tion of the instance,(complementary condition).In
this section, we answer the following question
empirically: whether our approach could meet the
two requirements?

(1) Sufficient condition

In Figure 5, we report the classification perfor-
mance obtained by the classifiers trained with dis-
tinct views and compared them with the two views
in Co-PI, on the DVD and Electronics datasets.
The observation in Book is similar to that in Elec-
tronics; the observation in DVD is similar to that in
Kitchen.

Seen from Figure 5, the classification perfor-
mance of both the original-view and antonymous-
view classifiers are satisfactory. It shows that in
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our approach, each individual view is sufficient to
predict the sentiment. In comparison with the two
views in Co-PI (i.e., the personal and impersonal
views), two views in our approach perform signifi-
cantly better.

As has been mentioned in Section 3.3, in tradi-
tional methods, such as Co-PI and Co-dynamic,
two views are created by data partition (or feature
partition). In comparison, the two views in our
approach are constructed in a manner of data ex-
pansion. By creating a new antonymous view, our
approach can provide more sufficient information
of the reviews than traditional methods.

(2) Complementary condition
Since we have not found a direct measure of the
complementarity of two views, we instead calcu-
late the Kullback-Leibler (KL) divergence between
them, based on an assumption that two views with
higher KL divergence can provide more comple-
mentary information of the instance.

KL divergence is a widely used metric of statis-
tical distance. We assume that distribution of the
review text is multinomial, and calculate the K-L
divergence between two views as follows:

DKL(p||q) =
V∑
i=1

pi log
(
pi
qi

)
where pi and qi are the probabilities of word ap-
pearing in two views, respectively. In our ex-
periments, we use information gain (IG) to select
a set of discriminative words with the dimension
V = 2000.

In Table 2, we report the results of three differ-
ent methods: 1) dataset random partition; 2) per-
sonal and impersonal views in Co-PI; 3) original
and antonymous views in our approach. We can
observe from Table 2 that, random partition has
the lowest KL divergence. It shows that the dis-
tributional distance between two randomly parti-
tioned views is very small. Co-PI is a higher value,
but it still does not have significant difference in
two views. By contrast, the KL divergence be-
tween the original view and the antonymous view
is much higher than both random partition and Co-
PI. It demonstrates that the distributions of two
views in our approach are significantly different.
We thereby infer that the two views constructed in
our approach can provide more complementary in-
formation than traditional methods. It is reason-
able since the antonymous view incorporates the

KL divergence
Random Partition 2.43

Co-PI 4.59
Our approach 12.33

Table 2: The average KL divergence between two
views across four datasets.

antonyms that might have not appeared in the origi-
nal view (e.g., “satisfactory” in the example in Sec-
tion 3.2). These features might provide new infor-
mation about the instance.

4.7 The Effect of Dual-view Testing

In Figure 5, we can further observe the effect of
dual-view testing. On the Electronics dataset, the
antonymous view performs better than the orig-
inal view. This suggests the advantage of the
antonymous view, as it removes the negations and
thus is more suitable for the BOW representa-
tion. On the DVD dataset, the original view is
slightly better. This is also reasonablel, because the
antonymous review is automatically created and its
quality might be limited in some cases. By tak-
ing two opposite views into a joint consideration,
our dual-view testing technique guarantees a satis-
factory classification performance across different
datasets.

Note that in the current version, the original-
view and antonymous-view classifiers have the
same predicting weight. We believe that by learn-
ing the tradeoff between two views in different set-
tings may further improve our approach’s perfor-
mance. For example, if the original view on the
Electronics dataset gets a relatively larger weight,
dual-view testing might gain more improvements.

5 Conclusions

In this work, a review text is represented by a
pair of bags-of-words with opposite views (i.e., the
original and antonymous views). By making use
of two views in pairs, a dual-view co-training al-
gorithm is proposed for semi-supervised sentiment
classification. The dual-view representation is in a
good accordance with the two co-training require-
ments (i.e., sufficient condition and complemen-
tary condition). The experimental results demon-
strate the effect of our approach, in addressing the
negation problem and enhancing the bootstrapping
efficiency for semi-supervised sentiment classifica-
tion.
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Abstract

This paper tackles the issue of the detec-
tion of user’s verbal expressions of likes
and dislikes in a human-agent interaction.
We present a system grounded on the theo-
retical framework provided by (Martin and
White, 2005) that integrates the interac-
tion context by jointly processing agent’s
and user’s utterances. It is designed as
a rule-based and bottom-up process based
on a symbolic representation of the struc-
ture of the sentence. This article also
describes the annotation campaign – car-
ried out through Amazon Mechanical Turk
– for the creation of the evaluation data-
set. Finally, we present all measures for
rating agreement between our system and
the human reference and obtain agreement
scores that are equal or higher than sub-
stantial agreements.

1 Introduction

In the research field of the embodied conversa-
tional agents (ECA), detecting sentiment-related
phenomena 1 appears as a key task to improve
human-agent interactions and to build long-term
social relationships (Pecune et al., 2013). Sev-
eral models and applications have been proposed
which mostly take into account non-verbal cues
(acoustic features, facial or bodily expressions)
to determine the user’s emotions (Schuller et al.,
2011). The verbal content is more and more inte-
grated but still partially exploited in human-agent
interactions. The very infrequent works, integrat-
ing the detection of user’s sentiments in ECAs

1The term sentiment-related phenomena is used in (Clavel
et al., 2013) to regroup all the phenomena related to sentiment
in the literature, from opinion to affect and emotion.

based on linguistic cues, concern avatars and vi-
sualisation issues rather than face-to-face interac-
tion, (Zhang et al., 2008; Neviarouskaya et al.,
2010b). We identify so far two studies that in-
tegrate a sentiment detection module for human-
agent interaction (Smith et al., 2011; Yildirim et
al., 2011).

However, the research field of sentiment anal-
ysis and opinion mining provides a set of inter-
esting works dealing with the subjective informa-
tion conveyed by the verbal content. Three types
of approaches are considered: machine-learning,
rule-based approaches and hybrid approaches that
are a combination of the first two types. Machine
learning methods have proven their worth for the
positive and negative classification of sentences
or texts (Pang and Lee, 2008). Rule-based ap-
proaches are grounded on syntactic and semantic
analyses of the sentence and provide deeper anal-
yses of sentiment-related phenomena. For exam-
ple, (Neviarouskaya et al., 2010a) and (Moilanen
and Pulman, 2007) provide linguistic rules deal-
ing with the principle of compositionality in or-
der to improve the detection of opinion targets and
the resolution of polarity. Similarly, (Shaikh et al.,
2009) provide a linguistic adaptation of the OCC
model (Ortony, Clore and Collins (Ortony et al.,
1990) based on logic and semantic rules. Hybrid
approaches also begin to be used for more fine-
grained opinion and sentiment analysis (Yang and
Cardie, 2013)

Sentiment/opinion detection methods used in
human-agent interaction are rare and, when they
are employed, they are not different from the ones
used in opinion mining: they are consequently
not designed for socio-affective interactions. In-
deed, the development of a module for the detec-
tion of sentiment-related phenomena in face-to-
face human-agent interactions requires to tackle
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various scientific issues: the delimitation of the
relevant sentiment-phenomenon to detect, the in-
tegration of the multi-modal context and the man-
agement of the spontaneous and conversational
speech.

The present paper tackles two of the issues: the
integration of the conversational context and the
delimitation of the relevant phenomenon. Regard-
ing the first issue, we propose a system relying on
a rule-based method that allows us to model the
agent’s utterances in order to help the detection of
user’s sentiment-related phenomena.

Then, we delimit and specify the linguistic phe-
nomenon to detect by focusing on one specific as-
pect required by ECAs for modelling social rela-
tionships: the user’s likings that are given by the
expressions of user’s likes and dislikes in the ver-
bal content.

This paper is organised as follows: first, we
present the theoretical model which our system is
grounded on (Section 2). Then, we provide a de-
scription of the system: each stage of the bottom-
up process is described, including the linguistic
rules and the patterns used by the system. In Sec-
tion 4, we introduce the annotation campaign we
launched on Amazon Mechanical Turk (AMT) in
order to create a data-set for the evaluation of our
system. Finally, we present and discuss the results
of the system evaluation (Section 5).

2 Theoretical background

The liking is one of the key dimensions used
for the modelling of social relationships (Pecune
et al., 2013). The definition of this concept is
grounded on the Heider’s Balance Theory (Heider,
1958) and is defined as: “the way relations among
persons involving some impersonal entity are cog-
nitively experienced by the individual” (Zajonc,
1960). Heider’s theory is integrated in social agent
computational models by defining scenarios where
the agent and the user’s likings toward each other
are determined by their liking toward other entities
(things, process or events). In such scenarios, the
analysis of user’s verbal content has a key role as
a major source of information for determining of
the user’s likes and dislikes. Therefore, a linguis-
tic description of this phenomenon is required to
design a detection system.

In the research field of Opinion Mining and Sen-
timent Analysis, the majority of opinion/sentiment
detection systems focus on the positive/negative

distinction or on the classification of a restricted
number of emotion categories. Other in-depth ap-
proaches, as (Wiebe et al., 2005; Breck et al.,
2007), refer to the Private State Theory, which
defines mental states as involving opinions, be-
liefs, judgements, appraisals and affects. Beside
those models, the model proposed by (Martin and
White, 2005) is increasingly used in several works
(Neviarouskaya et al., 2010a; Bloom et al., 2007;
Whitelaw et al., 2005). This model provides a lin-
guistic description and a focus on the verbal ex-
pressions of sentiment and opinion and proposes a
complex framework, for describing how attitudes
are expressed in English. It distinguishes affects
– which are concerned with emotional reactions
– from judgements and appreciations – which re-
late to evaluations toward people’s behaviours and
semiotic or natural phenomena. Finally, it mod-
els attitudinal expressions as relying on three ele-
ments: a source, the person evaluating or experi-
encing, a target, the entity which is evaluated or
which triggers an affect and a linguistic clue ex-
pressing the evaluation.

In this model, likes and dislikes can be consid-
ered as a subcategory of the Attitudes. This subcat-
egory overlaps the three categories (affect, judg-
ment, appreciation) defined by (Martin and White,
2005). For example, the sentence “This painting
makes me sad” is considered as an affect, while
the sentence “This painting is a master-work” is
considered as an appreciation. But, in both cases,
we can consider them as a user’s like. How-
ever, among the expressions of attitudes where the
source is the user, some of them do not refer to
a like or dislike. For example, “I’m very happy”
refers to an affect and does not give any clue re-
garding a possible like or dislike. Thus, a selec-
tion of relevant attitudes have to be done. The
rules used for this selection are presented in the
next section.

3 A rule-based and symbolic method

On the basis of the Martin and White’s model de-
scribed in the previous section, we design a system
able to detect expressions of attitudes correspond-
ing to the user’s likes and dislikes. It is grounded
on linguistic rules modelling the syntactic and se-
mantic structure of the sentences.

3.1 Integrating the interaction context
The system presented in Figure 1 successively
processes each adjacency pair (AP) of the dialogue
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Figure 1: Process overview

(Sacks et al., 1974), i.e. each user’s speech turn
and the agent’s one immediately preceding it. We
aim to detect two kinds of user’s attitudinal expres-
sions that can occur during the interaction: the first
ones which are spontaneous and do not depend on
the agent’s sentence (Agent: What did you do to-
day? User: I saw a great movie); and the second
ones which are triggered by the agent’s sentence
(Agent: Do you like outdoors activities? User:
Yeah very much).

In the last case, the detection of the attitude ex-
pressed in the agent’s sentence appears as a neces-
sary step for the detection of the user’s ones. This
detection has to be done in an automatic way as,
in the agent platform we use (the Greta platform,
(Bevacqua et al., 2010), the agent’s speech turns
are not automatically generated but scripted. Thus,
we cannot obtain the linguistic and semantic infor-
mation about attitude by using the generation data.
Furthermore, in order to make the dialogue setting
as light as possible, it is not possible to script such
values for each agent’s sentence.

3.2 A bottom-Up process

The relevant expressions of attitudes are de-
tected by using a bottom-up and rule-based

process, which launches successively the different
levels of analysis: lexical level, chunk level,
sentence level. These three stages comprise
formal grammars, which are implemented within
the Unitex plateform (Paumier, 2015). During
these various stages, values are assigned to the
three boolean variables which are finally used to
decide whether the user is expressing a like or a
dislike: RelevantAttExpr(agtSentence),
RelevantAttExpr(usrSentence),
Y esNoAnswer(usrSentence).

3.2.1 Lexical level

After a tokenisation and a POS-tagging, the sys-
tem checks whether the sentence (the user or
the agent’s one) contains lexical clues of atti-
tudinal expressions. Three parts of speech are
taken into account: the nouns, the adjectives
and the verbs. We use a re-adaptation of the
Wordnet-affect lexicon (Valitutti, 2004). In or-
der to adapt this lexicon to our goal, a selec-
tion of relevant lexical entries has to be done.
Among all the synsets, we select those which can
be linked to like and dislike and that belong to
the following main categories: positive-emotion,
negative-emotion, neutral-emotion. As the lexi-
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Figure 2: Patterns and polarity rules used for the chunk level

con is applied by the Unitex plateform, we turn
the Wordnet-Affect lexicon into a unitex dictio-
nary format. Finally, this transformation provides
three dictionaries: one for the nouns, one for the
adjectives and one for the verbs. If the lexical pro-
cessing has found one or several lexical clues of
attitude, the system continues the analysis and get
to the next stage, else RelevantAttExpr(X) =
False and the system quits the analysis of the sen-
tence. Regarding the user’s sentence, the system
also checks if one or several tokens of sentence
match with a yes or a no word, by using a short
lexicon manually built which comprises less than
ten words for each sentence type. If the test suc-
ceeds Y esNoAnswer(usrSentence) = True,
else Y esNoAnswer(usrSentence) = False.

3.2.2 Chunk level
At this level, we design formal grammar – imple-
mented as finite state automatons within the Uni-
tex plateform. Three main chunks are defined: the
verbal, the adjectival and the nominal chunks. All
these chunks can imply a lexical unit of attitude. In
such case, a polarity value is assigned to the entire
chunk by applying rules which consider valence
shifters and polarity conflict (see Figure 2).

3.2.3 Sentence level
Attitudinal value The system parse of each sen-
tence for checking if the sentence matches with
an attitudinal expression, according to its syntactic

structure. This parsing phase is grounded on a set
of patterns (see Figure 3). Among the attitudinal
patterns provided in the literature (Neviarouskaya
et al., 2010a; ?), we selected those expressing
a like or dislike according to a previous corpus-
based study (Langlet and Clavel, 2014) (develop-
ment corpus presented in Section 4.1). Depend-
ing on the speaker of the processed sentence – the
agent or the user – sentence structures can be in-
terrogative or affirmative surface structures. In the
agent’s sentence, the system looks for both affir-
mative and interrogative forms, while in the user’s
sentences, it only takes into account affirmative
structures.

Type of the source Simultaneously, the system
checks the source of the attitude. The type of a
relevant source varies depending on the sentence
processed: in the agent’s sentence, the system
aims to detect attitudes able to be validated or in-
validated by the user and whose source is either
the agent – lexically represented by a first person
pronoun (Src(agt) → “I”|“me”) – or the user –
lexically represented by a second person pronoun
(Src(usr) → “you’); in the user’s sentence, the
system aims to detect only the attitudes whose
source is the user – represented by a first person
pronoun (Src(usr)→ “I”|“me”).

Target and polarity At this stage, the system is
also able to define the polarity of the expression

1067



Figure 3: Patterns and polarity rules used for the sentence level: the second column presents examples
of sentences matching with the patterns detailed in the first column. The rules introduced in the third
column are applied according to the sentence pattern detected.

by detecting the valence shifters which can modify
the polarity of the attitudinal chunk and by apply-
ing the appropriate polarity rules described in Fig-
ure 3. Regarding the target, the system is only able
to assign to the target one of four generic classes.
The first two classes concern the two members of
the conversation – agent and user. The third class,
called other, deals with all entities and processes
which are neither the agent or the user. The last
one – unknown – concerns all the target referring
by a pronoun, and whose class – even generic –
cannot be known. In a future work, the other cate-
gory could be detailed by using an ontological re-
source, and unknown category by referring to an
anaphora resolution.

3.2.4 User’s utterance level within the AP

Generating attitude feature set Once the sen-
tence level is done, the True value is assigned to
the relevantAttExpr(usrSentence) variable in
two steps.

Firstly, the syntactic structure of the user’s
sentence matches with one of the attitudinal
patterns (Figure 3) whose source is the user
(Src(user)). The feature set of the atti-
tudinal expression is generated according to

the information found at the parsing stage:
source ∈ {user, agent}, polarity ∈ {neg, pos},
targetType ∈ {user, agent, other, unknown}.

Secondly, if the agent’s sentence matches with
one of the attitudinal patterns whose source is
either the user or the agent (Src(user|agent)),
then relevantAttExpr(agtSentence) =
True. In this second case, if
Y esNoAnswer(usrSentence) == True,
the user validates or invalidates the
attitude. Thus, the system defines
relevantAttExpr(usrSentence) == True,
even if any sentence matching with a relevant
pattern has been found in the user’s sentence.
The feature set associated to the user’s attitude is
built according to those assigned to the attitudinal
expression found is the agent’s sentence. Since
the user assumes or rejects the attitude expressed
by the agent, the system considers that he/she
utters an attitudinal expression that he/she is
the source. Regarding the polarity, if the user
validates the statement expressed by the agent,
the polarity of his/her attitude is the same as the
agent’s one. Otherwise, if the user expresses a no
answer, the polarity is the opposite of the agent’s
one.
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Converting attitude into like-dislike The pat-
terns used for the parsing phase refer to
attitudes that are good candidates for ex-
pressions of like or dislike. When the
relevantAttExpr(usrSentence) == True, the
system converts the attitude into a like or a dis-
like on the basis of the feature set associated to
the expression of attitude: an attitude with a pos-
itive polarity (attitude(pol : pos)) is considered
as a like, and an attitude with a negative polarity
(attitude(pol : neg)) is considered as a dislike.
The target is the same as the attitudinal expression.

4 Corpus for evaluating the system

4.1 Semaine corpus

In order to evaluate our system, an annotated data
set of sentences extracted from the Semaine cor-
pus (McKeown et al., 2011) has been created.
This corpus comprises 65 manually-transcribed
sessions where a human user interacts with a hu-
man operator playing the role of the virtual agent.
These interactions are based on a scenario involv-
ing four agent characters: Poppy, happy and out-
going, Prudence, sensible and level-headed, Spike,
angry and confrontational and Obadiah, depres-
sive and gloomy. Agent’s sentences are con-
strained by a script (however, some deviations to
the script occur in the database) aimed at putting
the user in the same state as the one of the played
character. 30 sessions of the corpus have been
used for the development set. The rest of the data
has been considered to build the evaluation corpus
following the protocol described in the next para-
graph.

4.2 Annotation protocol on AMT

We use AMT platform to carry out the annota-
tion campaign. It allows us to easily recruit a
large number of English native speakers. Recent
works have shown the reliability of the annota-
tions provided by this platform. For various tasks
of language annotation – evaluation of machine
translation (Callison-Burch, 2009), affect recogni-
tion (Snow et al., 2008), or dictionary validation
(Taboada et al., 2011) – they observe a high agree-
ment of non-expert raters with the gold standards.

For our annotation protocol, the recruited anno-
tators are put in the same conditions as the system:
each annotator has to label the user’s likes and
dislikes by only considering the AP (without the
whole interaction) and the verbal content (with-

out the audio and video). Among the pairs having
less than thirty words in the evaluation corpus, we
randomly selected 600 APs – made of an agent’s
speech turn and a user’s one (see Section 3.1).
This length of the sentence has been restricted to
avoid annotation difficulties.

The dataset is divided in 60 subsets of 10 APs.
In order to secure the annotation and to prevent
the annotators from doing the annotation task two
times, we use TurkGate tool (Goldin and Darlow,
2013). The AMT workers have been selected ac-
cording to their approval rate – greater than or
equal to 99% – and to the number of task approved
– greater than or equal to 10000. Each subset of
the corpus is randomly assigned to one annotator,
and the order in which the AP are presented to
each annotator is also randomly defined. A train-
ing phase is previously subjected to each annotator
in order to familiarise him/her to the annotation
principles. Finally, 240 AMT workers have par-
ticipated to the annotation campaign (4 for each
subset).

Questionnaire As the annotation is done by
non-expert annotators, we design a simplified and
intuitive annotation process: for each pair, the an-
notators have to answer to a set of questions fea-
tured in Figure 4. The goal of the questionnaire
is to determine whether the annotator is able to
deduce a user’s like or dislike from the APs. In
order to facilitate the annotation and to make the
interpretation of each sentence as spontaneous as
possible, the question have been designed without
linguistic technical word. In this way, the task is
more functional for the annotator and it is easier
for him/her to put his/herself to the place of the
hearer. Each question of the questionnaire focuses
on one of the outputs of the detection system:

• The first question examines the presence of
an expression of like or dislike and provides
a yes/no answer.

• the second question deals with the multiple
occurrences of like/dislike expressions in the
same speech turn. We limited the answer
to “4” (maximum number of like/dislike ex-
pressions observed in the dataset). If the an-
notator detects more than one expression of
like/dislike, the questions 3 to 4 are asked for
each expression of like/dislike.

• the third question deals with the type of the
target. As answers, only the four types –
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Figure 4: Annotation process on AMT

those the system is able to detect – are pro-
posed.

• The fourth question concerns the polarity
of the expression: positive (like) or negative
(dislike).

4.3 Inter-annotator agreement and
consistency

We measure the inter-annotators agreement or
consistency at each stage of the questionnaire. All
the measures presented in the section have been
applied for each subset of the corpus (60 subsets
of 10 APs, 4 annotators for each subset).

Fleiss’ Kappa Cronbach’s alpha
Max 0.79 0.90

Median 0.32 0.72
Average 0.25 0.59

Table 1: Fleiss’ kappa scores and Cronbach’s al-
pha coefficients obtained in on the 60 subsets

Regarding the answer to the first question of
the questionnaire, we measure how the annota-
tors are agreeing on the presence of at least one
user expression of like or dislike by using the
Fleiss’ Kappa (Fleiss, 1971) (see Table 1). Sec-
ond, we measure the consistency on the annotation
of the number of user’s expressions to each pair
by using the Cronbach’s alpha coefficient (Cron-
bach, 1951). As, for labeling the number of likes-
dislikes expressed in each pair, the crowd-workers
have to select a value on a scale (from 1 to 4), it ap-
pears as suitable to measure the relative similarity

between ratings rather than the agreement about
an exact value. The Cronbach’s alpha is designed
for evaluating the internal consistency of a scale
annotation. In this way, it measures the degree to
which different raters or observers make consis-
tent estimates of the same phenomenon.

The obtained scores are encouraging. Regard-
ing the agreement on the presence of an expres-
sion of like or dislike, even if the median score
is comprised between 0.30 and 0.40, the maxi-
mal value equals to 0.79. Moreover, 40% of the
subsets has a kappa score comprised between 0.40
and 0.60. The consistency score is also significant:
51% of the annotated sub-corpus has a score equal
or higher than 0.7, which is considered as an ac-
ceptable level of agreement (George and Mallery,
2010).

For the polarity and the target type, we select
the pairs where at least two annotators agree on
the presence of an expression of like or dislike,
and we consider only the annotations provided by
these annotators. After this selection, we obtain
a sub-set of ratings with a unfixed set of annota-
tors. As the Fleiss’ Kappa must be applied on data
with an invariable and fixed set of raters, we con-
sider the percent agreement (Gwet, 2010) as more
appropriate. Even though, it seems sometimes
difficult for the annotators to agree on the pres-
ence of a user’s expression of like or dislike, their
agreement on the polarity of such expressions ap-
pears as more significant: 41% of the sub-corpus
has a percentage of agreement between 50% and
75% and 52% of the sub-corpus has a percentage
of agreement upper than 75%. The agreement is
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also significant regarding the target: 61% of the
sub-corpus has a percentage of agreement upper
than 50%. All these results are quite positive for
a system-oriented annotation of a such subjective
phenomenon.

5 Evaluation of the system

5.1 Protocol
From the 600 pairs of the previously annotated
corpus, we keep 503 pairs for the evaluation of the
system by removing the pairs where a consensus
can not be found between the 4 annotators – that
is that we keep as a reference the majority vote
corresponding to the data where at least three an-
notators agree. We use three different measures
to evaluate the system performance relying on the
agreement measures presented in Section 4.3: the
detection of the presence of a user’s expression of
like or dislike is evaluated by the Fleiss’ kappa
between the system output and the reference; the
consistency on the number of detected expressions
is evaluated by the Cronbach’s alpha coefficient;
the agreement on the polarity is measured by us-
ing the Fleiss’ kappa; and the agreement on the
target type with the percentage of agreement.

5.2 Results
Table 2 presents the results obtained for each de-
tection task (presence of a like/dislike expression,
detection of the correct number of expressions
contained in an sentence, and correct classification
between like and dislike). The agreement between

No Expr-Expr k = 0.61
Nb of expressions rated α = 0.67

Polarity k = 0.84
Target type p = 53%

Table 2: Agreement scores between the system
output and the reference

the system output and the reference is substantial
for the detection of the presence of a user expres-
sion (k = 0.61) and the number of user expres-
sions is also correctly detected by the system (ac-
ceptable α largely higher than 0.6). However, the
major part of the corpus contains no more than 1
like/dislike expression (98% of the pairs are an-
notated by the reference and the system as con-
taining 0 or 1 like/dislike expression). 4% of the
pairs (25 pairs) is annotated by the system as con-
taining 1 expression, while the referred annotation

does not indicate the presence of any like/dislike
expression. For 8% of the pairs (43 pairs), it is the
opposite phenomenon (1 expression annotated by
the reference but not by the system). The Fleiss’
kappa score obtained for the polarity is really en-
couraging since it equals 0.844. Regarding the
target type, we obtain a percentage of agreement
at 53%. The disagreement frequently concerns a
confusion between the unknown and other cate-
gories.

5.3 Discussion

We have carried out an in-depth analysis of the
disagreement between the system outputs and the
human annotations in order to identify tracks for
the improvement of the system. We identified two
main types of difficulties.

The first difficulty concerns the processing of
spontaneous speech. The Semaine corpus con-
tains a great number of disfluent utterances that
disrupt the syntactical structure of the speech turn
and thus hinder both the annotation process and
the detection system. In the following pair, Agent:
‘‘Oh!” – User: ‘‘are just very good really good
film and read a book”, the grammatical structure
of the user sentence is fuzzy (absence of the sub-
ject, presence of repairs) which makes the pars-
ing of the sentence and thus the detection of atti-
tudinal patterns difficult. However, the annotators
have here correctly identified the presence of a like
and the type of the target (“the film” in the Others
category), which is not the case for all the anno-
tations of the disfluent utterances. To handle this
difficulty, it would be interesting to integrate a sys-
tem able to automatically label disfluencies, such
as the one presented in (Dutrey et al., 2014). The
disfluent structure of the sentence could thus be in-
tegrated to our syntactic and semantic rules. How-
ever, the automatic detection of disfluencies is still
an open challenge, in particular in the case of edit
disfluencies where the speaker corrects or alters
the utterance or abandons it entirely and starts over
(Strassel, 2004).

The second difficulty concerns the lack of con-
text provided by some of the APs. Our system of-
fers a first step in the integration of the interac-
tion context by considering jointly the user’s ut-
terance and the previous agent’s one that allow us
to correctly analyse a large scale of expressions.
However, the system and the annotators have to fo-
cus on the APs without considering the preceding
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speech turns, which can cause disagreements not
only between the system outputs and the human
annotations, but also between the human annota-
tors. In the following example, Agent: “good. ah
good” – User: “my favourite emotion”, the source
(here, the user) can be easily identified but the in-
formation contained in the AP is not sufficient to
identify the target. An interesting answer to this
issue is to take into account the whole conversa-
tion preceding a user’s utterance as a significant
context for the latter. This will imply the design
of new complex rules taking into account a larger
interaction context.

6 Conclusion and future works

We have introduced a NLP-based system able to
detect user’s expressions of likes and dislikes in
the conversation with an ECA. This system re-
lies on syntactic and semantic rules integrating
the interaction context by analysing the content of
the agent’s utterances to help the analysis of the
user’s ones. It is designed as a bottom-up and
rule-based process. The system has been evalu-
ated by using an evaluation data set created under
AMT platform. This first and pioneering version
of the system shows encouraging results for the
different tasks performed by the system that con-
cern the detection of relevant like/dislike expres-
sions (substantial agreement with a Fleiss kappa
at 0.61), the categorization of the expressions be-
tween like and dislike (almost perfect agreement
with a Fleiss kappa at 0.84) – polarity assignment
– and the identification of the target type (53%
of agreement between the reference and the sys-
tem output). Beyond these quite optimistic results,
we have provided some tracks for the system im-
provement that concerns a deeper integration of
the interaction context and the processing of spon-
taneous speech features.
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Abstract

We investigate a technique to adapt unsu-
pervised word embeddings to specific ap-
plications, when only small and noisy la-
beled datasets are available. Current meth-
ods use pre-trained embeddings to initial-
ize model parameters, and then use the la-
beled data to tailor them for the intended
task. However, this approach is prone to
overfitting when the training is performed
with scarce and noisy data. To overcome
this issue, we use the supervised data to
find an embedding subspace that fits the
task complexity. All the word representa-
tions are adapted through a projection into
this task-specific subspace, even if they do
not occur on the labeled dataset. This ap-
proach was recently used in the SemEval
2015 Twitter sentiment analysis challenge,
attaining state-of-the-art results. Here we
show results improving those of the chal-
lenge, as well as additional experiments in
a Twitter Part-Of-Speech tagging task.

1 Introduction

The success of supervised systems largely depends
on the amount and quality of the available train-
ing data, oftentimes, even more than the particu-
lar choice of learning algorithm (Banko and Brill,
2001). Labeled data is, however, expensive to ob-
tain, while unlabeled data is widely available. In
order to exploit this fact, semi-supervised learn-
ing methods can be used. In particular, it is pos-
sible to derive word representations by exploiting
word co-occurrence patterns in large samples of
unlabeled text. Based on this idea, several meth-
ods have been recently proposed to efficiently es-
timate word embeddings from raw text, leverag-
ing neural language models (Huang et al., 2012;
Mikolov et al., 2013; Pennington et al., 2014; Ling

et al., 2015). These models work by maximizing
the probability that words within a given window
size are predicted correctly. The resulting embed-
dings are low-dimensional dense vectors that en-
code syntactic and semantic properties of words.
Using these word representations, Turian et al.
(2010) were able to improve near state-of-the-art
systems for several tasks, by simply plugging in
the learned word representations as additional fea-
tures. However, because these features are esti-
mated by minimizing the prediction errors made
on a generic, unsupervised, task they might be
suboptimal for the intended purposes.

Ideally, word features should be adapted to the
specific supervised task. One of the reasons for
the success of deep learning models for language
problems, is the use unsupervised word embed-
dings to initialize the word projection layer. Then,
during training, the errors made in the predictions
are backpropagated to update the embeddings, so
that they better predict the supervised signal (Col-
lobert et al., 2011; dos Santos and Gatti, 2014a).
However, this strategy faces an additional chal-
lenge in noisy domains, such as social media.
The lexical variation caused by the typos, use of
slang and abbreviations leads to a great number
of singletons and out-of-vocabulary words. For
these words, the embeddings will be poorly re-
estimated. Even worse, words not present on the
training set will never get their embeddings up-
dated.

In this paper, we describe a strategy to adapt un-
supervised word embeddings when dealing with
small and noisy labeled datasets. The intuition be-
hind our approach is the following. For a given
task, only a subset of all the latent aspects captured
by the word embeddings will be useful. Therefore,
instead of updating the embeddings directly with
the available labeled data, we estimate a projec-
tion of these embeddings into a low dimensional
sub-space. This simple method brings two funda-

1074



mental advantages. On the one hand, we obtain
low dimensional embeddings fitting the complex-
ity of the target task. On the other hand, we are
able to learn new representations for all the words,
even if they do not occur in the labeled dataset.

To estimate the low dimensional sub-space, we
propose a simple non-linear model equivalent to a
neural network with one single hidden layer. The
model is trained in supervised fashion on the la-
beled dataset, learning jointly the sub-space pro-
jection and a classifier for the target task. Using
this model, we built a system to participate in the
SemEval 2015 Twitter sentiment analysis bench-
mark (Rosenthal et al., 2015). Our submission at-
tained state-of-the-art results without hand-coded
features or linguistic resources (Astudillo et al.,
2015). Here, we further investigate this approach
and compare it against several state-of-the-art sys-
tems for Twitter sentiment classification. We also
report on additional experiments to assess the ad-
equacy of this strategy in other natural language
problems. To this end, we apply the embedding
sub-space layer to Ling et al. (2015) deep learning
model for part-of-speech tagging. Even though
the gains were not as significant as in the senti-
ment polarity prediction task, the results suggest
that our method is indeed generalizable to other
problems.

The rest of the paper is organized as follows: the
related work is reviewed in Section 2. Section 3,
briefly describes the model used to pre-train the
word embeddings. In Section 4, we introduce the
concept of embedding sub-space, as well as the
the non-linear sub-space model for text classifica-
tion. Section 5, details the experiments performed
with the SemEval corpora. Section 6 describes ad-
ditional experiments applying the embedding sub-
space method to a Part-of-Speech tagging model
for Twitter data. Finally, Section 7 draws the con-
clusions.

2 Related Work

NLP systems can benefit from a very large pool
of unlabeled data. While raw documents are usu-
ally not annotated, they contain structure, which
can be leveraged to learn word features. Con-
text is one strong indicator for word similarity,
as related words tend to occur in similar con-
texts (Firth, 1968). Approaches that are based on
this concept include, Latent Semantic Analysis,
where words are represented as rows in the low-

rank approximation of a term co-occurrence ma-
trix (Dumais et al., 1988), word clusters obtained
with hierarchical clustering algorithms based on
Hidden Markov Models (Brown et al., 1992), and
continuous word vectors learned with neural lan-
guage models (Bengio et al., 2003). The result-
ing clusters and vectors, can then be used as more
generalizable features in supervised tasks, as they
also provide representations for words not present
in the labeled data (Bespalov et al., 2011; Owoputi
et al., 2013; Chen and Manning, 2014).

A great amount of work has been done on the
problem of learning better word representations
from unsupervised data. However, not many stud-
ies have discussed the best ways to use them in
supervised tasks. Typically, in these cases, word
representations are directly used as features or to
initialize the parameters of more complex mod-
els. In some tasks, this approach is however prone
to overfitting. The work presented here aims to
provide a simple approach to overcome this last
scenario. It is thus directly related to Labutov
and Lipson (2013), where a method to learn task-
specific representations from general pre-trained
embeddings was presented. In this work, new fea-
tures were estimated with a convex objective func-
tion that combined the log-likelihood of the train-
ing data, with regularization penalizing the Frobe-
nius norm of the distortion matrix. That is, the ma-
trix of the differences between the original and the
new embeddings. Even though the adapted em-
beddings performed better than the purely unsu-
pervised features, both were significantly outper-
formed by a simple bag-of-words baseline.

Most other approaches, simply rely on addi-
tional training data to fine tune the embeddings for
a given supervised task. In Bansal et al. (2014),
better word embeddings for dependency parsing
were obtained by using a corpus created to cap-
ture dependency context. This technique requires,
nevertheless, of a pre-existing dependency parser
or, at least a parsed corpus. For some other tasks,
it is possible to collect weakly labeled corpora by
making strong assumptions about the data. In Go
et al. (2009) a corpus for Twitter sentiment anal-
ysis was built by assuming that tweets with posi-
tive emoticons imply positive sentiment, whereas
tweets with negative emoticons imply negative
sentiment. Using a similar corpus, Tang et al.
(2014b) induced sentiment specific word embed-
dings, for the Twitter domain. The embeddings
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were estimated with a neural network that mini-
mized a linear combination of two loss functions,
one penalized the errors made at predicting the
center word within a sequence of words, while the
other penalized mistakes made at deciding the sen-
timent label. Weakly labeled data has also been
used to refine unsupervised embeddings, by re-
training them to predict the noisy labels before us-
ing the actual task-specific supervised data (Sev-
eryn and Moschitti, 2015).

3 Unsupervised Structured Skip-Gram
Word Embeddings

Word embeddings are generally trained by opti-
mizing an objective function that can be measured
without annotations. One popular approach is to
estimate the embeddings by maximizing the prob-
ability that the words within a given window size
are predicted correctly. Our previous work has
compared several such models, namely the skip-
gram and CBOW architectures (Mikolov et al.,
2013), GloVe (Pennington et al., 2014), and the
structured skip-gram approach (Ling et al., 2015),
suggesting that they all have comparable capabil-
ities. Thus, in this study we only use embeddings
derived with the structured skip-gram approach, a
modification of the skip-gram architecture that has
been shown to outperform the original model in
syntax based tasks such as, part-of-speech tagging
and dependency parsing.

Central to the structured skip-gram is a log lin-
ear model of word prediction. Let w = i denote
that a word at a given position of a sentence is
the i-th word on a vocabulary of size v, and let
wp = j denote that the word p positions further
in the sentence is the j-th word on the vocabu-
lary. The structured skip-gram models the follow-
ing probability:

p(wp = j|w = i) ∝ exp
(
Cp
j ·E ·wi

)
(1)

Here, wi ∈ {1, 0}v×1 is a one-hot representa-
tion of w = i. That is, a vector of zeros of the
size of the vocabulary v with a 1 on the i-th entry
of the vector. The symbol · denotes internal prod-
uct and exp() acts element-wise. The log-linear
model is parametrized by the following matrices:
E ∈ Re×v, is the embedding matrix, transform-
ing the one-hot representation into a compact real
valued space of size e, Cp

j ∈ Rv×e is a set of out-
put matrices, one for each relative word position p,

projecting the real-valued representation to a vec-
tor with the size of the vocabulary v. By learn-
ing a different matrix Cp for each relative word
position, the model captures word order informa-
tion, unlike the original skip-gram approach that
uses only one output matrix. Finally, a distribution
over all possible words is attained by exponentiat-
ing and normalizing over the v possible options. In
practice, negative sampling is used to avoid having
to normalize over the whole vocabulary (Goldberg
and Levy, 2014).

As most other neural network models, the struc-
tured skip-gram is trained with gradient-based
methods. After a model has been trained, the low
dimensional embedding E · wi ∈ Re×1 encapsu-
lates the information about each word wi and its
surrounding contexts. This embbeding can thus
be used as input to other learning algorithms to
further enhance performance.

4 Adapting Embeddings with Sub-space
Projections

As detailed in the introduction and related work,
word embeddings are a useful unsupervised tech-
nique to attain initial model values or features
prior to supervised training. These models can
be then retrained using the available labeled data.
However, even if the embeddings provide a com-
pact real valued representation of each word in a
vocabulary, the total number of parameters in the
model can be rather high. If, as it is often the
case, only a small amount of supervised data is
available, this can lead to severe overfitting. Even
if regularization is used to reduce the overfitting
risk, only a reduced subset of the words will actu-
ally be present in the labeled dataset. Words not
seen during training will never get their embed-
dings updated. Furthermore, rare words will re-
ceive very few updates, and thus their embeddings
will be poorly adapted for the intended task. We
propose a simple solution to avoid this problem.

4.1 Embedding Sub-space

Let E ∈ Re×v denote the original embedding
matrix obtained, e.g. with the structured skip-
gram model described in Equation 1. We define
the adapted embedding matrix as the factorization
S · E, where S ∈ Rs×e, with s � e. We estimate
the parameters of the matrix S using the labeled
dataset, while E is kept fixed. In other words, we
determine the optimal projection of the embedding
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matrix E into a sub-space of dimension s.
The idea of embedding sub-space rests on two

fundamental principles:

1. With dimensionality reduction of the embed-
dings, the model can better fit the complexity
of the task at hand or the amount of available
data.

2. Using a projection, all the embeddings are
indirectly updated, not only those of words
present in the labeled dataset.

One question that arises from this approach, is
if the estimated projection is also optimal for the
words not present in the labeled dataset. We as-
sume that the words on the labeled dataset are, to
some extent, representative of the words found in
the unlabeled corpus. This is a reasonable assump-
tion since both datasets can be seen as samples
drawn from the same power-law distribution. If
this holds, for every unknown word, there will be
some other word sufficiently close it in the embed-
ding space. Consequently, the projection matrix
S will also be approximately valid for those un-
seen words. It is often the case that a relatively
small number of words of the labeled dataset are
not present on the unlabeled corpus. These words
are not represented in E. One way to deal with this
case, is to simply set the embeddings of unknown
words to zero. But in this case, the embeddings
will not be adapted during training. Random ini-
tializations of the embeddings seems to be help-
ful for tasks that have a higher penalty for missing
words, although it remains unclear if better initial-
ization strategies exist.

4.2 Non-Linear Embedding Sub-space Model

The concept of embedding sub-space can be ap-
plied to log-linear classifiers or any deep learning
architecture that uses embeddings. We now de-
scribe an application of this method for short text
classification tasks. In what follows, we will refer
to this approach as Non-Linear Sub-space Embed-
ding (NLSE) model. The NLSE can be interpreted
as a simple feed-forward neural network model
(Rumelhart et al., 1985) with one single hidden
layer utilizing the embedding sub-space approach,
as depicted in Fig. 1. Let

m = [w1 · · ·wn] (2)

denote a message of n words. Each column
w ∈ {0, 1}v×1 of m represents a word in one-
hot form, as described in Section 3. Let y de-
note a categorical random variable overK classes.
The NLSE model, estimates thus the probability of
each possible category y = k ∈ K given a mes-
sage m as

p(y = k|m) ∝ exp (Yk · h · 1) . (3)

Here, h ∈ {0, 1}e×n are the activations of the hid-
den layer for each word, given by

h = σ (S ·E ·m) (4)

where σ() is a sigmoid function acting on each
element of the matrix. The matrix Y ∈ R3×s

maps the embedding sub-space to the classifica-
tion space and 1 ∈ 1n×1 is a matrix of ones that
sums the scores for all words together, prior to nor-
malization. This is equivalent to a bag-of-words
assumption. Finally, the model computes a prob-
ability distribution over the K classes, using the
softmax function.

Compared to a conventional feed-forward net-
work employing embeddings for natural language
classification tasks, two main differences arise.
First, the input layer is factorized into two com-
ponents, the embeddings attained in unsupervised
form, E, and the projection matrix S. Second, the
size of the sub-space, in which the embeddings are
projected, is much smaller than that of the origi-
nal embeddings with typical reductions above one
order of magnitude. As usual in this kind of mod-
els, all the parameters can be trained with gradient
methods, using the backpropagation update rule.

5 NLSE for Twitter Sentiment Analysis

In this section, we apply the NLSE model to the
message polarity classification task proposed by
SemEval, for their well-known Twitter sentiment
analysis challenge (Nakov et al., 2013). Given a
message, the goal is to decide whether it expresses
a positive, negative, or neutral sentiment. Most
of the top performing systems that participated in
this challenge, relied on linear classification mod-
els and the bag-of-words assumption, representing
messages as sparse vectors of the size of the vo-
cabulary. In the case of social media, this approach
is particularly inefficient, due to the large vocabu-
laries necessary to account for all the lexical vari-
ation found in this domain. Thus, these models
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Figure 1: Illustration of the NLSE model, applied
to sentiment polarity prediction.

Positive Neutral Negative
Development 3230 4109 1265
Tweets 2015 1032 983 364
Tweets 2014 982 669 202
Tweets 2013 1572 1640 601

Table 1: Number of examples per class in each
SemEval dataset. The first row shows the training
data; the other rows are sets used for testing.

need to be enriched with additional hand-crafted
features that try to capture more discriminative as-
pects of the content, most of which require exter-
nal tools (e.g., part-of-speech taggers and parsers)
or linguistic resources (e.g., dictionaries and sen-
timent lexicons) (Miura et al., 2014; Kiritchenko
et al., 2014). With the embedding sub-space ap-
proach, however, we are able to attain state-of-
the-art performance while requiring only minimal
processing of the data and few hyperparameters.
To make our results comparable to other systems
for this task, we adopted the guidelines from the
benchmark. Our system was trained and tuned
using only the development data. The evaluation
was performed on the test sets, shown in Table 1,
and we report the results in terms of the average
F-measure for the positive and negative classes.

5.1 Experimental Setup

The first step of our approach requires a corpus of
raw text for the unsupervised pre-training of the
embedding matrix E. We resorted to the corpus of
52 million tweets used in (Owoputi et al., 2013)
and the tokenizer described in the same work. The
messages were previously pre-processed as fol-
lows: lower-casing, replacing Twitter user men-
tions and URLs with special tokens and reducing
any character repetition to at most 3 characters.
Words occurring less than 40 times in the cor-
pus were discarded, resulting in a vocabulary of
around 210,000 types. Then, a modified version
of the word2vec tool1 was used to compute the
word embeddings, as described in Section 3. The
window size and negative sampling rate were set
to 5 and 25 words, respectively, and embeddings
of 50, 200, 400 and 600 dimensions were built.

Our system accepts as input a sentence rep-
resented as a matrix, obtained by concatenating
the one-hot vectors that represent each individual
word. Therefore, we first performed the afore-
mentioned normalization and tokenization steps
and then, converted each tweet into this represen-
tation. The development set was split into 80%
for parameter learning and 20% for model evalu-
ation and selection, maintaining the original rela-
tive class proportions in each set. All the weights
were initialized uniformly at random, as proposed
in (Glorot and Bengio, 2010). The model was
trained with conventional Stochastic Gradient De-
scent (Rumelhart et al., 1985) with a fixed learning
rate of 0.01, and the weights were updated after
each message was processed. Variations of learn-
ing rate to smaller values, e.g. 0.005, were con-
sidered but did not lead to a clear pattern. We ex-
plored different configurations of the hyperparam-
eters e (embedding size) and s (sub-space size).
Model selection was done by early stopping, i.e.,
we kept the configuration with best F-measure on
the evaluation set after 5-8 iterations.

5.2 Results

In general, the NLSE model showed consistent
and fast convergence towards the optimum in very
few iterations. Despite using class log-likelihood
as training criterion, it showed good performance
in terms of the average F-measure for positive
and negative sentiments. We found that all em-
bedding sizes yield comparable performances, al-

1https://github.com/wlin12/wang2vec
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Figure 2: Average F-measure on the SemEval
test sets varying with embedding sub-space size
s. Sub-space size 0 used to denote the baseline
(log-linear model).

though larger embeddings tend to perform better.
Therefore, we only report results obtained with the
600 dimensional vectors. In Figure 2, we show the
variation of system performance with sub-space
size s. The baseline is a log-linear using the em-
beddings in E as features. As it can be seen, the
performance is sharply improved when the em-
bedding sub-spaces are used. By choosing dif-
ferent values of s, we can adjust the model to the
complexity of the task and the amount of labeled
data available. Given the small size of the train-
ing set, the best results were attained with the use
of smaller sub-spaces, in the range of 5-10 dimen-
sions.

Figure 3, presents the main results of the ex-
perimental evaluation. As baselines, we consid-
ered two simple approaches: LOG-LINEAR, which
uses the unsupervised embeddings directly as fea-
tures in a log-linear classifier, and LOG-LINEAR*,
also using the unsupervised embeddings as fea-
tures in a log-linear classifier, but updating the em-
beddings with the training data. These baselines,
were compared against two variations of the non-
linear sub-space embedding model: NLSE, where
we only train the S and Y weights while the em-
beddings are kept fixed, and NLSE*, where we
also update the embedding matrix during training.
For these experiments, we set s = 10. The re-
sults in Figure 3a, show that our model largely
outperforms the simpler baselines. Furthermore,
we observe that updating the embeddings always
leads to inferior results. This suggests that pre-

computed embeddings should be kept fixed, when
little labeled data is available to re-train them.

Comparison with the state-of-the-art
We now compare the NLSE model with state-of-
the-art systems, including the best submissions to
previous SemEval benchmarks. We also include
two other approaches that are related to the one
here proposed, where a neural network initialized
with pre-trained word embeddings is used to learn
relevant features. Specifically, we compare the
following systems:
• NRC (Kiritchenko et al., 2014), a support

vector machine classifier with a large set
of hand-crafted features, including word and
character n-grams, brown clusters, POS tags,
morphological features, and a set of features
based on five sentiment lexicons. Most of the
performance was due to the combination of
these lexicons. This was the top system in
the 2013 edition of SemEval.

• TEAMX (Miura et al., 2014), a logistic re-
gression classifier using a similar set of fea-
tures. Additional features based on two dif-
ferent POS taggers and a word sense dis-
ambiguator were also included in the model.
This approach attained the highest ranking in
the 2014 edition.

• CHARSCNN (dos Santos and Gatti, 2014b),
a deep learning architecture with two con-
volutional layers that exploit character-level
and word-level information. The features are
extracted by converting a sentence into a se-
quence of word embeddings, and the individ-
ual words into sequences of character embed-
dings. Convolution filters followed by max
pooling are applied to these sequences, to
produce fixed size vectors. These vectors are
then combined and transfered to a set of non-
linear activation functions, to generate more
complex representations of the input. The
predictions, based on these learned features
are computed with a softmax classifier.

• COOOOLLL (Tang et al., 2014a), a support
vector machine classifier that leverages the
sentiment specific word embeddings, dis-
cussed in Section 2. The embeddings are
also processed with a convolution filter, but
the output of this operation is used to pro-
duce three representations obtained with dif-
ferent strategies, namely with max, min and
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(a) Comparison of two baselines with two variations
of the NLSE model

(b) Performance of state-of-the-art systems for Twitter senti-
ment prediction

Figure 3: Average F-measure on the SemEval test sets

average pooling. The final feature vector is
obtained by concatenating these representa-
tions and Kiritchenko et al. (2014) feature set.

• UNITN (Severyn and Moschitti, 2015), an-
other deep convolutional neural network that
jointly learns internal representations and a
softmax classifier. The network is trained
in three steps: (i) unsupervised pre-training
of embeddings, (ii) refinement of the em-
beddings using a weakly labeled corpus, and
(iii) fine tuning the model with the labeled
data from SemEval. It should be noted that
the system was trained with a labeled corpus
65% larger than ours2. This system made the
best submission on the 2015 edition of the
benchmark.

The results in Figure 3b, show that despite be-
ing simpler and requiring less resources and la-
beled data, the NLSE model is extremely compet-
itive, even outperforming most other systems, in
predicting the sentiment polarity of Twitter mes-
sages.

6 Generalization to Other Tasks

While the embedding sub-space method works
well for the sentiment prediction task, we would
like to know its impact in other settings that are
known to benefit from unsupervised embeddings.
Thus, we decided to replicate the part-of-speech
tagging work in (Ling et al., 2015), where pre-
training embeddings have been shown to improve

2The UNITN system was trained with around 11,400 la-
beled examples, whereas we used only 6,900.

the quality of the results significantly.

6.1 Sub-space Window Model
Part-of-speech tagging is a word labeling task,
where each word is to be labeled with its syntactic
function in the sentence. More formally, given an
input sentence w1, . . . , wn of n words, we wish to
predict a sequence of labels y1, . . . , yn, which are
the POS tags of each of the words. This task is
scored by the ratio between the number of correct
labels and the number of words to be labeled.

We modified (Collobert et al., 2011) window
model, to include the sub-space matrix S. The
probability of labeling the word wt with the POS
tag k is given by

p(y = k|mt+p
t−p) ∝ exp (Yk · ht + b) , (5)

where

mt+p
t−p = [wt−p · · ·wt · · ·wt+p] (6)

denotes a context window of words around the
t-th word, with a total span of 2p + 1 words. ht
denotes the activations of a hidden layer given by

ht = tanh

H ·


S ·E ·wt+p

· · ·
S ·E ·wt

· · ·
S ·E ·wt−p


 . (7)

Here tanh denotes the hyperbolic tangent, act-
ing element-wise. Aside from embedding E and
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sub-space S matrices, the model is parametrized
by the weights H ∈ Rh×ps and Y ∈ Rv×h as well
as a bias b ∈ Rv×1.

Note that if S is set to the identity matrix, this
would be equivalent to the original Collobert et al.
(2011) model.

Tanh

Softmax
  over
  Tags

Subspace 

Word Embeddings 

ppl r juz unrealiableSome

Window

Verb

Figure 4: Illustration of the window model
by (Collobert et al., 2011) using a sub-space layer.

6.2 Experiments

Tests were performed in Gimpel et al. (2011) Twit-
ter POS dataset, which uses the universal POS tag
set composed by 25 different labels (Petrov et al.,
2012). The dataset contains 1000 annotated tweets
for training, 327 tweets for tuning and 500 tweets
for testing. The number of word tokens in these
sets are 15000, 5000 and 7000, respectively. There
are 5000, 2000 and 3000 word types.

Once again, we initialized the embeddings
with unsupervised pre-training using the struc-
tured skip-gram approach. As for the hyperpa-
rameters of the model, we used embeddings with
e = 50 dimensions, a hidden layer with h = 200
dimensions and a context of p = 2 as used in (Ling
et al., 2015). Training employed mini-batch gradi-
ent descent, with mini batches of 100 sentences
and a momentum of 0.95. The learning rate was
set to 0.2. Finally, we used early stopping by
choosing the epoch with the highest accuracy in

the tuning set. As for the sub-space layer size, we
tried three different hyperparameterizations: 10,
30 and 50 dimensions.

6.3 Results

Figure 5 displays the results. Using the setup that
led to the best results in the sentiment prediction
task (FIX), that is, fixing E and updating S, leads
to lower accuracies than the baseline (TRAIN-ALL,
s = 0). We also see that different values of s do
not have a very strong impact in the final results.

Sentiment polarity prediction and POS tagging
differ in multiple aspects and there may be more
than one reason for this poorer performance. One
particularly relevant aspect, in our opinion, is the
way words that have no pre-trained embedding are
treated. In the case of sentiment prediction, these
words were set to having and embedding of zero.
This fits the use of the bag-of-words assumption
and the fact that only one label is produced per
message, as there are many other words to draw
evidence from. In the case of POS tagging a hy-
pothesis must be drawn for each word, using a
shorter context. Thus, ignoring a word means that
context is used instead, which is a frequent cause
of errors.

One way around this problem would be to up-
date the parameters of S and E, but this leads to
results similar to the experiment without the sub-
space projections (TRAIN-ALL). This is expected
as the sub-space layer was designed to work on
fixed word embeddings, if these are updated its
benefits are lost. Thus, we solve this problem
by fixing all the embeddings, except for the word
types not found in the pre-training corpus. That
is, instead of leaving the unknown words as the
zero vector, we use the labeled data to learn a bet-
ter representation. Using this setup (TRAIN-OOV),
we can obtain a small but consistent improvement
over the baseline. While these improvements are
not significant, as this task is not as prone to over-
fitting as in sentiment analysis, this is a good check
of the validity of our method.

7 Conclusions

We presented a new approach to use unsupervised
word embeddings based on the idea of finding a
sub-space projection of the embeddings for a given
task. This approach offers two main advantages.
On the one hand, it allows to indirectly update
embeddings unseen during training. On the other
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Figure 5: Results for the part-of-speech task on
the ARK POS dataset, for different strategies to
update the embeddings and with variations of the
sub-space size. Sub-space size 0 used to denote
the baseline (window model).

hand, it reduces the number of model parameters
to fit the complexity of the task. These properties
make this method particularly useful for the cases
where only small amounts of noisy data are avail-
able to train the model.

Experiments on the SemEval challenge corpora
validated these ideas, showing that such a simple
approach can attain state-of-the-art results compa-
rable with the best systems of past SemEval edi-
tions and often outperforming them in all datasets.
It should be noted that this is attained while keep-
ing the original embedding matrix E fixed and
only learning the projection S with the supervised
data. Additional experiments on the Twitter POS
tagging task indicate however that, the technique
is not always as effective as in the sentiment clas-
sification task. One possible explanation for the
different behavior is the use of embeddings of ze-
ros for words without pre-trained embedding. It is
plausible that this has a stronger effect on the POS
tagging task. Another aspect to be taken into ac-
count is the fact that both tasks could have a differ-
ent complexity which would explain why adapting
E in the POS taks yields better results. Optimality
of the embeddings for each of the tasks might also
come into play here.

The implementation of the proposed method
and our Twitter Sentiment Analysis system has
been made publicly available3.

3https://github.com/ramon-astudillo/
NLSE
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Abstract

In this paper, we address the problem
of evaluating spontaneous speech us-
ing a combination of machine learning
and crowdsourcing. Machine learning
techniques inadequately solve the stated
problem because automatic speaker-
independent speech transcription is
inaccurate. The features derived from it
are also inaccurate and so is the machine
learning model developed for speech
evaluation. To address this, we post the
task of speech transcription to a large
community of online workers (crowd).
We also get spoken English grades from
the crowd. We achieve 95% transcription
accuracy by combining transcriptions
from multiple crowd workers. Speech
and prosody features are derived by force
aligning the speech samples on these
highly accurate transcriptions. Addi-
tionally, we derive surface and semantic
level features directly from the transcrip-
tion. To demonstrate the efficacy of our
approach we performed experiments on
an expert–graded speech sample of 319
adult non–native speakers. Using these
features in a regression model, we are
able achieve a Pearson correlation of
0.76 with expert grades, an accuracy
much higher than any previously reported
machine learning approach. Our approach
has an accuracy that rivals that of expert
agreement. This work is timely given
the huge requirement of spoken English
training and assessment.

1 Introduction

Automatic evaluation of spoken English has been
of keen interest for more than two decades (Zech-
ner et al., 2007; Neumeyer et al., 1996; Franco

et al., 2000; Cucchiarini et al., 1997). It can
help learners get feedback in a scalable manner,
help build better English training software and
also help companies and institutions filter and se-
lect prospective employees more effectively. The
problem acquires significance given the evidence
that better English leads to better employment out-
come, wages and promotions (Guven and Islam,
2013).

There has been a considerable success in auto-
matically scoring spoken English, when the spo-
ken text is known a priori (Cucchiarini et al.,
2000; Franco et al., 2000). In these cases, the
candidate is asked to either read a given text or
listen to some speech and repeat it. For these
tasks, the scores generated by an automatic sys-
tem on parameters such as pronunciation and flu-
ency closely mimic those given by human ex-
perts. The primary approach behind a majority of
these systems is to force align the speech sample
on the known text using an HMM–based acous-
tic model. Features such as likelihood, posterior
probability and fluency related features are derived
from the aligned speech and a machine learning
model is used to predict expert grades (Neumeyer
et al., 1996; Franco et al., 2000; Cucchiarini et al.,
1997). Some approaches additionally use prosody
and energy related features (Dong et al., 2004).
More recently, this research has moved towards
the assessment of higher granularity metrics like
the mispronunciation of particular phonemes (Li
et al., 2009; Ito et al., 2006; Koniaris and Engwall,
2011).

In spontaneous speech evaluation, the candidate
is asked to speak on a topic or answer a question
and what he/she speaks isn’t known priori. Evalu-
ation of spontaneous speech is the ultimate test of
a candidate’s proficiency in speaking a language
(Hagley, 2010; Halleck, 1995). While scores from
the evaluation of read/repeat speech do correlate
with spontaneous speech evaluation, there remains
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an unexplained variance in the spontaneous speech
scores (see Section 5). Generally, candidates who
score high on spontaneous speech also score high
on read speech and not vice versa.

Given the primacy of spontaneous speech eval-
uation in judging a person’s language capabil-
ity, there is considerable interest in doing it au-
tomatically (Cucchiarini et al., 1997; Dong et
al., 2004). Automated approaches for the same
have not worked well (Powers et al., 2002; Cuc-
chiarini et al., 2000) primarily because speaker-
independent speech recognition is a tough com-
puter science problem. This is exacerbated when
the speakers are not proficient in the language or
are non-natives (Powers et al., 2002). Given that
speech to text conversion for such candidates has a
low accuracy, force alignment of the speech on this
inaccurate text makes the features and the model
inaccurate.

We present a semi-automated approach to grade
short duration (45 seconds) spontaneous speech.
We accurately predict a holistic score which is
based on the pronunciation, fluency, content char-
acteristics and grammar of the speech sample, as
determined by experts. Multiple previous studies
in language acquisition and second language re-
search conclusively show that proficiency in a sec-
ond language can be characterized by these factors
(Bhat et al., 2014). Being able to provide a holistic
score is of high interest in both educational test-
ing (Zechner et al., 2009) and job related testing
(Streeter et al., 2011). Institutions and firms look
for a holistic score, say based on CEFR, a stan-
dard to describe spoken English assessment (Lit-
tle, 2006; Little, 2007), to make an accept or reject
decision on candidates. Currently, an expert based
assessment is used for these purposes.

Our method involves combining machine learn-
ing with a crowdsourcing layer. Crowdsourcing
(Estellés-Arolas and González-Ladrón-de Gue-
vara, 2012) is the process of getting human in-
telligence tasks performed by a large community
of online workers (crowd) as opposed to tradi-
tional employees.1 The responses from the hu-
man intelligence tasks are then used to create rel-
evant features for machine learning. Human in-

1Our approach is different from peer grading (Lejk
and Wyvill, 2001) or crowd grading (Van Houdnos, 2011;
Tetreault et al., 2010; Madnani et al., 2011) approaches.
These approaches directly ask the crowd to grade the re-
sponse. The primary feature of our technique is using the
crowd in the feature extraction step of machine learning.

telligence tasks are defined as those which most
humans find easy, but are hard for machines. For
instance, a classic example is the task of finding
a particular object in an image. There is a large
research community that uses crowdsourcing and
has demonstrated that it can help perform tasks in-
expensively, in large volumes and within reason-
able time (Howe, 2006; Whitla, 2009).

Our system design for evaluation of sponta-
neous speech is illustrated in Figure 1. We post
the task2 of speech transcription to the crowd. We
get a final accurate transcription by combining the
transcriptions from more than one crowd worker
for the same speech sample. Once we have this
accurate transcription, we force-align (Erling and
Seargeant, 2013; Sjölander, 2003) the speech of
the candidate on this text to derive various features
which go into a machine learning engine. We also
collect spoken English grades of the speech from
the crowd (Lejk and Wyvill, 2001), which are used
as additional features. With these accurately iden-
tified features and crowd grades, machine learning
is able to grade spontaneous speech with high ac-
curacy. We found that this approach does much
better than a pure machine learning approach.

Crowdsourcing has been used for almost a
decade in various problems in speech analysis,
grading and language learning (Kunath and Wein-
berger, 2010; Peabody, 2011; Wang et al., 2014).
Within assessment of speech, currently all such
approaches use the crowd to directly grade cer-
tain parts of the speech (Wang and Meng, 2012).
Our work is uniquely positioned where we use the
crowd to do accurate transcription, a human intel-
ligence task, and use it in a machine learning based
algorithm.3 We show that such a system provides
an accuracy rivaling that of experts.

In this paper, we solve a hitherto unsolved prob-
lem of spontaneous speech evaluation (Zechner et
al., 2009). The paper makes the following contri-
butions:

• We show that spoken English can be graded
with accuracy by combining machine learn-
ing and crowdsourcing higher than a pure
machine learning approach.

2Even though speaker-independent speech recognition is
a hard problem for machines, it is fairly easy for a native
speaker or anyone with reasonable command over the lan-
guage.

3Again, speech transcription has been done previously us-
ing crowdsourcing (Zaidan and Callison-Burch, 2011), but
not used for a grading purpose or combined with machine
learning.
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Figure 1: System Design

• We show that the features derived from
crowdsourced transcriptions perform as well
as crowd grades in predicting expert grades.
However, crowd grades add additional pre-
dictive value.

• We propose a scalable and accurate way to
perform evaluation of spontaneous speech, a
huge requirement in the industry and else-
where.

The paper is organized as follows– Section 2
describes the procedure and aim of the speech
assessment task; Section 3 describes the feature
classes used in the prediction algorithm; Section
4 describes the crowdsourcing framework which
is used as an input to machine learning meth-
ods; Section 5 demonstrates how this framework
is used with machine learning techniques to pre-
dict a composite spoken English score; Section 6
discusses the future work and concludes the paper.

2 Grading Task

We want to assess the quality of spoken English
of candidates based on their spontaneous speech
samples. The speech samples of the candidates
were collected using Aspiring Minds’ automated
speech assessment tool– SVAR (SVAR, 2014).
SVAR is conducted over phone as well as on a
computer. The test has multiple sections where
the candidate is required to: read sentences aloud,
listen and repeat sentences, listen to a passage or
conversation and answer multiple choice questions
and finally spontaneously speak on a given topic.

In the spontaneous speech section, the candidates4

are provided with a topic and given 30 seconds5 to
think, take notes and then speak on the topic for
45 seconds. The topic is repeated to ensure task
clarity. The complete test takes 16-20 minutes to
complete, depending on the test version.

Currently, SVAR evaluates speech samples
from the read and repeat sections with high accu-
racy (SVAR, 2014). Our goal in this paper is to
evaluate the spontaneous speech of the candidate
and provide a composite score based on it.

A 5 point rubric for the composite score, similar
to CEFR (Examinations, 2011), was prepared with
the help of experts. This score is a function of the
pronunciation, fluency, content organization and
grammar quality of the speech sample. Broadly
speaking, Pronunciation (Dobson, 1957) refers to
the correctness in the utterance of the phonemes
of a word by the students as per neutral accent.
Fluency (Brumfit and Brumfit, 1984) refers to a
desired rate of speech along with the absence of
hesitations, false starts and stops etc. Content or-
ganization (Stalnaker, 1999) measures the candi-
date’s ability to structure the information disposi-
tion and present it coherently. Grammar (Brazil,
1995) measures how well the syntax of the lan-
guage was followed by the candidate.

4The subjects of our study use English as their second lan-
guage and hail from various backgrounds, dialects and edu-
cational qualifications.

5This is as per global standards of spoken English assess-
ment. High stake tests such as TOEFL provide the candidate
15-30 seconds to think before responding to a spontaneous
speech task.
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Figure 2: Our intuition of how different features
predict the holistic score.

In the next section we discuss the features which
are used in the prediction algorithm.

3 Features

We use three classes of features– Crowd Grades
(CG), Force Alignment features (FA) and Natu-
ral Language Processing features (NLP). The spo-
ken English samples are posted to the crowd to get
the transcription and spoken English grades (Fig-
ure 1). Each task was completed by three workers.
The crowd grades become one set of features. A
second set, i.e., FA features, are derived by align-
ing (Erling and Seargeant, 2013; Sjölander, 2003)
the speech sample on the crowdsourced transcrip-
tions. A third set, i.e., NLP features, are also de-
rived from the crowdsourced text. These are ex-
plained in the succeeding paragraphs.

• Crowd Grades: The crowd transcribes the
speech in addition to providing scores on
each of the following– pronunciation, flu-
ency, content organization and grammar.
These grades are combined to form a com-
posite score per worker per candidate. These
are further averaged across workers to give a
final score.6

• FA features: The speech sample is forced
aligned (Erling and Seargeant, 2013;
Sjölander, 2003) on the crowdsourced tran-
scription using the HTK speech recognizer
(Young et al., 2006). We used an acoustic
model based on TIMIT (Garofolo et al.,
1993) for our experiments. TIMIT is a

6Advanced Expectation-Maximization techniques (Hos-
seini et al., 2012) may also be used for an aggregation strat-
egy, once the number of tasks done by every individual
worker increases. In our current experiments, this number
wasn’t very high.

corpus of phonemically and lexically tran-
scribed speech of American English speakers
of different sexes and dialects.

A number of speech quality features are de-
rived, which include– rate of speech, posi-
tion and length of pauses, log likelihood of
recognition, posterior probability, hesitations
and repetitions etc. These features are well
known in literature and may be referred from
(Neumeyer et al., 1996; Zechner et al., 2009;
Cucchiarini et al., 2000). These features are
predictive of the pronunciation and fluency of
the candidate.

• NLP features: These features predict the con-
tent quality and grammar of the spoken con-
tent7. They were derived using standard NLP
packages (LightSide, 2013; AfterTheDead-
line, 2014) on the crowdsourced transcrip-
tion. The package calculates surface level
features such as the number of words, com-
plexity or difficulty of words and the num-
ber of common words used. It also calculates
semantic features like the coherency in text,
context of the words spoken, sentiment of the
text and grammar correctness. In the current
system, we do not use any prompt specific
features such as occurrence of specific words
or phrases. These features are predictive of
the grammar and content organization of the
sample.

All the features described above were obtained
for the spontaneous speech sample. We also
derived features similar to FA features for the
candidate’s read and repeat speech samples col-
lected during his/her SVAR test. The speech and
prosody features are calculated by force aligning
the speech on the known text. One of the mod-
els (RS/LR) in our experiments is based on these
features and has been included for comparison.
These features do not have any bearing on our final
model for spontaneous speech evaluation.

4 Crowdsourcing

The spoken English sample was given to the
crowd to transcribe and provide grades. The task
was posted on a popular crowdsourcing platform–
Amazon Mechanical Turk (AMT) (Paolacci et al.,

7We were looking at prompt independent features only, at
this point.
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2010). AMT is a popular crowdsourcing market-
place. It is inspired by the famous 18th century au-
tomated chess playing machine, running on the in-
telligence of a hidden human operator. It has more
than 500, 000 online workers from 190 countries
(Turk, 2014). One can post tasks on the platform
online and offer fixed remuneration for their com-
pletion.

A clean and simple interface was provided to
the worker with standard features needed for tran-
scription. Additionally, an advanced audio player
was embedded with the ability to play the speech
sample in repeat mode, rewind and forward, apart
from standard play/pause functionality to help the
worker. The different transcriptions were com-
bined using the ROVER algorithm (Fiscus, 1997).
ROVER is a sophisticated voting algorithm to
combine multiple transcriptions with errors, to ob-
tain the best estimate of the correct transcription.
It is reported to lead to an error reduction of 20-
25%. ROVER proceeds in two stages: first the
outputs are aligned and a single word transcription
network (WTN) is built. The second stage consists
of selecting the best scoring word (with the highest
number of votes) at each node.

Several methods have been used in the past for
increasing the reliability of the grades given by the
crowd by identifying and correcting any biases and
removing non-serious/low quality workers (Aker
et al., 2012). One of the key techniques for this
involves inserting gold standard tasks with known
answers to get an estimate of the worker’s abil-
ity (Nguyen et al., 2013). The gold standard tasks
are similar to real tasks and the workers have no
way to distinguish between the two. Our tasks
took workers a reasonable amount of time (8-10
minutes). It wasn’t hence feasible to insert a gold
standard task, as done typically, with every task to
be completed.

To overcome this problem, we propose an in-
novative approach where a risk is assigned to a
worker based on his/her performance on the gold
standard tasks. We conceptualized this system as
a state machine that determines the risk level of
a worker and proposes actions based on it (Re-
fer to Figure 3). All workers started with an ini-
tial risk level of 0.2. Gold standard tasks were
probabilistically inserted among real tasks based
on the worker’s risk level. Workers with a higher
risk level saw more gold standard tasks. Also,
the risk level of the worker was updated based on

Figure 3: Risk Level State Diagram: In the above
figure, each node corresponds to a risk level asso-
ciated with a worker. The values range between
0 (min) - 1 (max). The worker is either assigned
a gold standard task (G) or a normal task (N) on
the basis of his/her present risk level. The risk
level changes every time a task is Accepted (A) or
Rejected (R). Additionally worker may be warned
(W) or blocked (B) in case of rejection.

his/her performance on the gold standard tasks.
Workers who consistently performed poorly on
gold standard tasks were allocated a higher risk
level and a notification was sent to them with
a corrective course of action. Beyond a certain
level, the worker was barred from attempting fu-
ture work. We did not do any retrospective correc-
tion of the barred worker’s completed tasks and
simply stopped him/her from attempting newer
tasks. This approach allowed us to control for the
quality of workers, provide feedback, remove un-
suitable workers and also adaptively control the
balance between real and gold standard tasks.8

We describe the experimental setup and the re-
sults in the next section.

5 Experiments

We conducted the experiments to answer the fol-
lowing questions:

• Can read/repeat features predict spontaneous
speech grades accurately?

• How accurate is a pure machine learning ap-
proach (without crowdsourced transcription)
in predicting grades as compared to grades
given by human experts?

• How much better is the ML-CS approach in

8Specific details of the implementation are beyond the
scope of the paper.
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predicting grades as compared to a pure ML
approach and to using Crowd Grades only?

• Do Crowd Grades add additional value in
predicting grades over and above the features
derived from the crowdsourced transcription?

We conducted the experiments on 319 sponta-
neous speech samples which were graded by ex-
pert assessors. To answer the questions stated
above, we used different sets of features to develop
models and compared their accuracy. The mod-
els were built against expert grades using super-
vised learning techniques. We experimented with
three machine learning techniques– Ridge Regres-
sion, SVMs and Neural Networks with different
features selection algorithms. The data set used in
the experiments is discussed in the next section.

5.1 Data Set

Our data set contains 319 spontaneous speech re-
sponses. The speech samples were from seniors
(non–native English speakers in final year of un-
dergraduate education) pursuing bachelor’s degree
in India. The candidates were asked to describe
one of the following scenes: a hospital, flood, a
crowded market and a school playground. The
candidates were given 30 seconds to think and take
notes and were then asked to speak for the next
45 seconds. The responses were collected on the
phone during the SVAR test (SVAR, 2014). Apart
from the spontaneous speech response, each can-
didate was asked to read 12 given sentences and
repeat 9 given sentences immediately after listen-
ing to each of them. Empty or very noisy re-
sponses (not humanly discernible) were not in-
cluded in the final 319 sample set.

These responses were graded by two experts
who had more than fifteen years of experience in
grading spoken English responses. There were
two set of scores. The first was a holistic score
on the spontaneous speech samples based on its
pronunciation, fluency, content characteristics and
grammar. The second was a score on the pronun-
ciation and fluency quality of the read/repeat sen-
tences. The correlation between grades given by
the two experts was 0.86 and 0.83 respectively for
the two cases. For each of the two scores, the av-
erage of the scores by the two expert grades was
used for further purposes.

The correlation between the expert scores on
spontaneous speech and read/repeat speech was

0.54. This shows that there is a considerable unex-
plained variance (70%) in the spontaneous speech
score, not addressed by the read/repeat scores.
This could be due to a difference in the pronun-
ciation quality and fluency of the candidates in
reading/repeating text vs. speaking spontaneously
and also due to the additional parameters of gram-
mar and content characteristics in the spontaneous
speech score. Thus, an automatic score mimick-
ing the read/repeat expert grades, which is a solved
problem, is inadequate for our task.

The first score is used for all subsequent discus-
sion and development of models.

5.2 Crowdsourced Tasks

The 319 speech sample assessment task was
posted on Amazon Mechanical Turk (AMT). Each
task was completed by three workers. In total, 71
unique workers completed the tasks. The majority
of workers (90%) belonged to USA and India.

The task took on an average 8–9 minutes to
complete and a worker was paid between 6–10
cents per task including a bonus which was paid
on completion of every 4 tasks. We also got the
speech transcribed by experts to find the accuracy
we could get from turks. The average transcrip-
tion accuracy for a worker was 82.4%9. This sig-
nificantly improved to 95.4% when the transcrip-
tions of the three workers were combined using
the ROVER algorithm. In comparison, the aver-
age automatic transcription of a speech recogni-
tion engine was 59.8%.

5.3 Regression Modeling

The data set was split into two sets: train and vali-
dation. The train-set had 75% of the sample points
whereas the validation set had 25%. The split was
done randomly making sure that the grade distri-
bution in both the sets was similar. While learning
the model, a 4-fold cross validation was performed
on the train sample.

Linear ridge regression, Neural Networks and
SVM regression with different kernels were used
to build the models. The least cross-validation er-
ror was used to select the models. We used some
simple techniques for feature selection including
forward feature selection and the algorithm which
removes all but the k highest correlating features.

Regression parameters: For linear regression
with regularization, optimal ridge coefficient λ,

9PHP similar text function was used as similarity metric.
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Table 1: Regression Results

Technique Model Code Feature Type Train r Validation r
RR-1 RS/LR 0.51 0.47

Ridge Regression
RR-2 Pure ML 0.54 0.47
RR-3 Crowd Grades 0.63 0.57
RR-4 ML-CS 0.55 0.60
RR-5 All 0.76 0.76
SVM-1 RS/LR 0.50 0.46

SVM
SVM-2 Pure ML 0.53 0.46
SVM-3 Crowd Grades 0.62 0.57
SVM-4 ML-CS 0.60 0.61
SVM-5 All 0.75 0.74
NN-1 RS/LR 0.56 0.51

Neural Networks
NN-2 Pure ML 0.60 0.44
NN-3 Crowd Grades 0.63 0.57
NN-4 ML-CS 0.66 0.57
NN-5 All 0.80 0.76

between 1 and 1000, was selected based on the the
least RMS error in cross-validation. For support
vector machines we tested two kernels: linear and
radial basis function. In order to select the optimal
SVM model, we varied the penalty factor C, pa-
rameters γ and ε, the SVM kernel and the selected
set of values that gave us the lowest RMS error in
cross-validation. The Neural Networks model had
one hidden layer and 5 to 10 neurons.

Feature sets used: The experiments were car-
ried out on five sets of features:

• RS/LR: A set of features generated by force
aligning read/repeated by candidates.

• Pure ML: Features generated by automatic
speech transcription of spontaneous speech
using a speech recognizer.

• Crowd Grades: A set of features pertaining to
grades given by the crowd.

• ML–CS: NLP and FA features generated by
force aligning free speech on crowdsourced
transcription.

• All: NLP and FA features from crowd-
sourced transcription and Crowd Grades.

Here, the first set, RS/LR, helps us to know how
well we can predict spontaneous speech grades by
simply using the read/speak speech of the candi-
date and without using his/her spontaneous speech

sample. This provides a comparison baseline. The
second approach evaluates how well we can grade
spontaneous speech of the candidate using ma-
chine learning approaches only. The third feature
shows the efficacy of directly using grades given
by crowd, while the fourth finds how well machine
learning can do if it has a fairly accurate transcrip-
tion of the speech by the crowd. The final fifth
set tests what happens if we combine the third and
fourth set of features, i.e. make use of both the
crowdsourced transcription and the crowd grades.

In the following subsection, the features per-
taining to ML-CS approach are referred to as ML-
CS, those pertaining to natural language process-
ing on crowdsourced transcription are referred to
as NLP features while the one pertaining to crowd
grades are referred to as Crowd Grades.

5.4 Observations

The results of the experiments are tabulated in Ta-
ble 1. We report the Pearson coefficient of corre-
lation (r) for the different models against the ex-
pert grades. These are the results for the models
selected according to least cross-validation error.
The best cross-validation error in case of SVMs
was obtained for the linear kernel.

All the following observations are based on the
validation error. All three techniques perform sim-
ilarly with Neural Networks doing slightly worse
in some cases. The broad trends across fea-
ture–sets remain similar across different modeling
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techniques. We will be referring to the ridge re-
gression results for further discussion.

Firstly, it is observed that the read/repeat fea-
tures predict the spontaneous speech score with
low accuracy (r = 0.47). This implies that read-
/repeat speech and derived features are inadequate
to grade a person’s spontaneous speech, the ulti-
mate test of a person’s spoken language skills.

The second observation is that the ML-only ap-
proach using spontaneous speech features (Model
RR-2) is also inadequate to grade spontaneous
speech and does worse than approaches that uses
features from crowdsourced transcription (Model
RR-4). This clearly shows the value of getting ac-
curate transcription from workers towards better
features and model.

Further, among the crowdsourcing approaches,
we find that the crowd-grades (Model RR-3) does
equivalently well (and sometimes worse) than the
model using features derived from the crowd-
sourced speech (Model RR-4). However, when
we combine all the features from crowdsourcing
including the crowd grades, we find much better
prediction accuracy (r = 0.76). This shows that
the crowd grades feature provides some orthogo-
nal information as compared to the features from
the crowdsourced transcription, towards predict-
ing the grade given by experts.

The validation r for Model RR-5 is 0.76. We
find that the expert agreement on the validation
sample is 0.78. Thus, our predicted score rivals the
agreement of experts. This shows great promise
for the technique to be used in a high-stake test
setting.

In summary, we show the following:

• Read/repeat speech features are inadequate to
predict spontaneous speech scores.

• ML only approach based on spontaneous
speech samples is also inadequate for the pur-
pose.

• Features derived from crowdsourced tran-
scription (or even crowd grades) do better
than a ML only approach.

• When considering features from crowd-
sourced transcription and crowd grades to-
gether, we can predict spontaneous speech
scores as well as those done by experts.

6 Conclusions

We addressed the problem of evaluating spon-
taneous speech using a combination of machine
learning and crowdsourcing. To achieve this, we
post the task of speech transcription to the crowd.
Additionally, we also get spoken English grades
from the crowd. We are able to derive accurate
features by force aligning the speech sample on
the crowdsourced text. We experimented our tech-
nique on expert–graded speech samples of adult
non–native speakers. Using these features in a
regression model, we are able to predict expert
grades with much higher accuracy than a machine
learning only approach. These features also pre-
dict equivalent or better than crowd grades and a
combination of these two outperforms all other ap-
proaches. Our approach shows an accuracy that
rivals that of expert agreement.

Our technique has a promise of higher accuracy
but has some trade-offs compared to fully auto-
mated approaches. First, there is a cost for ev-
ery assessment done and the scalability depends
on the number of non-expert workers available.
Though these drawbacks exist, we were able get
tasks done inexpensively. We recently had the
crowd rate a hundred samples in a day without any
challenge. Second, our approach doesn’t provide
instant grades. This works fine in many scenarios,
but doesn’t cater well to providing real-time feed-
back. Real time crowdsourcing has been an active
area of research (Bernstein et al., 2011; Lasecki et
al., 2013) and is an area for future work for us as
well.
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Abstract

ROVER is a widely used method to
combine the output of multiple auto-
matic speech recognition (ASR) systems.
Though effective, the basic approach and
its variants suffer from potential draw-
backs: i) their results depend on the order
in which the hypotheses are used to feed
the combination process, ii) when applied
to combine long hypotheses, they disre-
gard possible differences in transcription
quality at local level, iii) they often rely on
word confidence information. We address
these issues by proposing a segment-based
ROVER in which hypothesis ranking is
obtained from a confidence-independent
ASR quality estimation method. Our re-
sults on English data from the IWSLT2012
and IWSLT2013 evaluation campaigns
significantly outperform standard ROVER
and approximate two strong oracles.

1 Introduction

In automatic speech recognition (ASR), the com-
bination of transcription hypotheses produced by
multiple systems usually leads to significant word
error rate (WER) reductions compared to the out-
put of each individual system. Systems’ diversity
and complementarity have been exploited in dif-
ferent ways to synthetically obtain more accurate
transcriptions. Recognizer output voting error re-
duction – ROVER (Fiscus, 1997), the most widely
used method, performs hypothesis fusion in two
steps. First, the 1-best transcriptions from multi-
ple systems are aligned by means of dynamic pro-
gramming to build a single, minimal word tran-
sition network. Then, the resulting network is
searched to select the best scoring word at each
node. The final hypothesis is constructed via a ma-
jority voting mechanism and, if available, by using
word confidence measures.

This general strategy has been improved in sev-
eral ways but, despite their proven effectiveness,
ROVER and its variants have three potential draw-
backs. The first one is intrinsic to their implemen-
tation: the fusion process starts from one of the
input hypotheses, which is used as “skeleton” for
the greedy alignment of the others. The order in
which the hypotheses are used to feed the process
can hence determine significant variations in the
WER of the resulting combination. This calls for
automatic methods for ranking the hypotheses
to initialise and carry on the fusion process.

The second drawback is inherent to the way
ROVER is usually run: the fusion process is typi-
cally fed with transcriptions of entire audio record-
ings (lasting up to hours). With this level of granu-
larity, the skeleton used as basis for the alignment
may consist of long transcriptions whose quality
can considerably vary at local level. For instance,
the worst transcription of an entire audio recording
(globally) could be the best one for some passages
(locally). This calls for solutions capable to op-
erate at higher granularity levels (e.g. segments
lasting up to few seconds) to better exploit the
local diversity of the combined transcriptions.

The third drawback relates to the applicability
of ROVER-like fusion methods: their common
trait is the reliance on information about the in-
ner workings of the combined systems. Indeed,
the standard voting scheme with confidence scores
is usually much more reliable than the simpler
frequency-based voting. The access to confidence
scores, however, is a too rigid constraint in ap-
plication scenarios where the hypotheses to be
combined come from unknown (“black-box”) sys-
tems.1 This calls for confidence-independent fu-
sion methods.

1One example, among the many possible ones, is the sce-
nario in which an array of microphones (e.g. in a room or a
vehicle) sends input to one or more commercial ASR systems
which do not provide confidence information.
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L3 L4 L5 L6 L7 L8
SysO 12.2 11.7 11.8 11.9 12.1 12.1
InSysO 19.8 16.6 15.1 13.9 13.4 13.3
SegO 10.5 11.0 11.4 11.6 11.7 11.7
InSegO 22.9 19.6 17.4 15.8 14.4 13.0

Table 1: Motivation: the influence of hypothesis
order and granularity on standard ROVER results.

The impact of the first two issues is evident from
the figures provided in Table 1. The results refer to
the WER achieved by different “oracles” obtained
from the output of eight ASR systems that partici-
pated in the IWSLT2013 campaign (Cettolo et al.,
2013).2 Such oracles combine:

• Different numbers of transcriptions (from
three – L3 to eight – L8);

• At different granularity levels (whole utter-
ance – SysO and segment – SegO);

• In different orders (best to worst – SysO,
SegO and inverse – InSysO, InSegO).

As shown in the table, the gap between
utterance-based (SysO) and segment-based
(SegO) is evident at all levels: WER differences
vary from 0.3 (11.9 vs. 11.6 at L6) to 1.7 points
(12.2 vs. 10.5 at L3). Another gap is evident
between best-to-worst and inverse rankings,
with WER differences up to 7.6 points at whole
utterance level (SysO vs. InSysO at L3) and
12.4 points at segment level (SegO vs. InSegO
at L3). Another interesting observation is that
top results (i.e. lower WER) are obtained when
combining a subset of the outputs (respectively
four at utterance level and three at segment level).
Referring to this analysis, the goal of computing
ROVER based on hypothesis ranking at higher
granularity levels is well motivated.

A crucial need to achieve this goal is the avail-
ability of a confidence-independent method to pre-
dict the quality of ASR transcriptions at segment
level. This “quality estimation” (QE) task has
been recently addressed in (Negri et al., 2014;
C. de Souza et al., 2015) as a supervised regres-
sion problem in which transcriptions’ WER is pre-
dicted without having access to reference tran-
scripts.3 Different feature sets have been evalu-
ated, showing that even with those extracted only

2Details about this dataset will be provided in Section 6.1.
3This formulation is very similar to the machine transla-

tion counterpart of the task (Specia et al., 2009; Mehdad et
al., 2012; Turchi et al., 2014; C. de Souza et al., 2014).

from the signal and the transcription (i.e. disre-
garding information about the decoding process)
the prediction error is sufficiently low to open to
real applications. However, though promising, ex-
perimental results stem from an intrinsic evalua-
tion in which QE is only addressed in isolation.

By applying it to inform ROVER, we pro-
pose for the first time an application-oriented ex-
trinsic evaluation of ASR QE (our first contri-
bution). To this aim, we extend previous ASR
QE methods with new features (second contribu-
tion), and report significant improvements over
standard ROVER on a shared dataset (third con-
tribution). For the sake of brevity, our compar-
ison is performed only against standard ROVER
and in “black-box” conditions. However it’s worth
remarking that our approach can be straightfor-
wardly applied to any ROVER-like variant and, if
available, by exploiting confidence features.

2 Related work

This paper gathers three main research strands to-
gether: ASR system combination, ASR quality es-
timation and machine-learned ranking.

Fiscus (1997) proposed ROVER as an approach
to produce a composite ASR output. The basic ap-
proach has been extended in several ways. N-Best
ROVER (Stolcke et al., 2000) improves the orig-
inal method by combining multiple alternatives
from each combined system. Schwenk and Gau-
vain (2000) exploit a secondary language model
to rescore the final n-best hypotheses generated by
ROVER. iROVER (Hillard et al., 2007) exploits a
classifier to choose the system that is most likely to
be correct at each word location. cROVER (Abida
et al., 2011) integrates a semantic pre-filtering step
in which the word transition network is scanned to
flag and eliminate erroneous words to facilitate the
voting. Other approaches to ASR system combi-
nation make use of word lattices or confusion net-
works (Mangu, 2000; Li et al., 2002; Evermann
and Woodland, 2000; Hoffmeister et al., 2006;
Bougares et al., 2013, inter alia). Note that all
these combination methods require to have access
to the inner structure of the ASR decoder, while
ASR systems, especially the commercial ones, of-
ten do not provide this information.

ASR quality estimation allows us to overcome
this problem and obtain confidence-independent
estimates of ASR output quality. Based on the
positive intrinsic evaluation results reported in
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(Negri et al., 2014; C. de Souza et al., 2015), here
we extend the approach with new features and per-
form an extrinsic evaluation in a real application
scenario. Our new features are inspired by re-
search on ASR error detection at word level (Gold-
water et al., 2010; Pellegrini and Trancoso, 2010).

Machine-learned ranking (MLR) or learning to
rank (Hang, 2011) is widely used in information
retrieval to order the answers to a user’s query
(Cao et al., 2007; McFee and Lanckriet, 2010;
McSherry and Najork, 2008). We use it to order
the transcription hypotheses produced by multiple
ASR systems and feed ROVER with the resulting
ranked lists.

3 Method

Given an utterance and a set of M transcription
hypotheses produced by M different (possibly un-
known) ASR systems, our goal is to:

1. Split the utterance into segments (ideally at
sentence level);

2. For each segment, automatically estimate the
quality (e.g. in terms of WER) of the corre-
sponding M (segment-level) hypotheses;

3. Use the estimates to rank the hypotheses and
feed ROVER based on the ranking;

4. Reconstruct the entire utterance transcrip-
tion by concatenating the combined segment-
level transcriptions produced by ROVER;

5. Measure the overall WER differences against
standard ROVER and other oracles.

Step 1 is performed by a start-end point detection
module based on signal energy, which is followed
by a segment classification module based on Gaus-
sian Mixture Models similar to (Cettolo and Fed-
erico, 2000). Although the comparison with al-
ternative splitting methods might lead to different
results, this is not the main focus of the paper and
is left as future work. Steps 2–4, instead, repre-
sent the core of our contribution and are described
in the following sections.

4 Segment-based QE-informed ROVER

ROVER uses iterative dynamic programming to
build a word transition network (WTN) from mul-
tiple ASR output hypotheses. The resulting WTN
can be seen as a confusion network with an equal

number of word arc hypotheses (one for each ASR
system entering the combination) in each corre-
spondence slot. The best word sequence is deter-
mined from the WTN via majority voting among
the words in each slot. Most of the extensions of
ROVER, such as iROVER (Hillard et al., 2007),
cROVER (Abida et al., 2011) and the one de-
scribed in (Zhang and Rudnicky, 2006), aim to
learn a scoring function that allows improving the
reordering of words inside each slot. In particu-
lar, iROVER reorders the words in each slot by
means of a classifier trained with features that
characterize the individual ASR systems. This ap-
proach, however, needs first to properly normal-
ize the word lattices generated by each system, in
order to exhibit the same vocabulary and similar
densities, and to generate a unified segmentation
for joining the lattices.

In a similar way, motivated by the analysis
shown in Table 1, our method applies reordering
of the ASR hypotheses at segment level. However,
differently from iROVER, it does not require to
access the inner components of the decoders (e.g.
word lattices or word confidences), nor to apply
pre-processing steps that can distort the outputs of
individual ASR components.
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Figure 1: Segment-based ROVER

Figure 1 illustrates the difference between stan-
dard ROVER (RV, shown at the rightmost verti-
cal) which works at the utterance level (lasting
up to few hours) and the segment-based ROVER
(SRV, shown at the bottom horizontal) that works
at the segment level (lasting up to few seconds).
RV keeps the order of the systems static along
the whole utterance (A � B � C, i.e. system
A has generated a better transcription than sys-
tem B which, in turn is better than system C) for
all the segments RV (TA1..n, T

B
1..n, T

C
1..n). SRV, in-

stead, dynamically changes the system order from
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one segment to the other. For example, the system
order for the first segment is A � B � C, while
for the next segment it is A � C � B. Our hy-
pothesis is that, with a proper segment-based rank-
ing, SRV will result in lower WER scores than RV.

Note that, as depicted in Figure 1, segment-
based ROVER requires that all the ASR systems
share a common segmentation. This is easy to ob-
tain by force-aligning the transcriptions of each
system with a given segmentation (e.g. one ran-
domly chosen among those employed by each
ASR system).

In this paper we approach segment-level ASR
QE as a supervised learning task, by comparing
two alternative strategies: ranking by regression
(Section 4.1) and machine-learned ranking (Sec-
tion 4.2). Both methods rely on the features used
in (Negri et al., 2014), extended with a new set of
word-level features described in Section 5.

4.1 Ranking by regression (RR)

The first ranking strategy is based on training a re-
gressor on a set of (signal, transcription, WER)
triples, and use it to predict the WER score for
new, unseen (signal, transcription) test instances.
Then, based on the predicted WERs, a ranked list
is produced for each segment to feed ROVER.

To train the regressor, we are given N seg-
ments (Si, 1 ≤ i ≤ N ), their automatic transcrip-
tions ({T 1

i . . . T
M
i }i=Ni=1 ) produced byM ASR sys-

tems, and manual references from which the true
WERs ({TW 1

i . . . TW
M
i }i=Ni=1 ) can be computed

for each segment i. The whole set of train-
ing data is hence represented by instances: I =
{(Si, T ji , TW j

i ), 1 ≤ j ≤ M, 1 ≤ i ≤ N }.
Training is performed with two alternative strate-
gies, which differ in the amount of training data
used. The first one, RR1, employs the whole train-
ing set I . The second one, RR2, uses only one
transcription for each segment, randomly chosen
from the M available. In this case, the training set
becomes: I ′ = {(Si, T ji , TW j

i ), 1 ≤ i ≤ N, j =
rnd(M)} where rnd(M) is a random number be-
tween 1 to M . In practice, RR2 learns from a
smaller but more diverse training set compared to
RR1. On the one side, in fact, RR1 deals with
a larger number of training instances (M times
more), but the feature vectors will share the same
values for the features extracted from the signal of
each utterance. On the other side, RR2 reduces the
size of the training set I ′ down to 1

M of I , but only

one feature vector is extracted for each utterance.
The unpredictable effect of such differences on QE
results motivates experiments with both methods.

4.2 Machine-learned ranking (MLR)

The second strategy relies on directly training
a ranking model from a set of instances I =
{(Si, T ji , TRji ), 1 ≤ i ≤ N, 1 ≤ j ≤ M }, where
Si and T ji respectively represent segments and
transcriptions, and TRji represents “true ranks”
computed from the corresponding reference WER
values TW j

i . That is, given two transcriptions, T ji
and T ki and the true WERs, then TRji � TRki , if
TW j

i ≤ TW k
i .

It is worth to note that MLR, differently from
the two regression methods described above, per-
forms a pairwise comparison between the seg-
ment candidates. That is, for each pair of seg-
ment transcriptions, the algorithm processes their
corresponding feature vectors against each other
and decides to place one transcription ahead of the
other, as long as returning a score for this decision.
Based on this score, the algorithm is then able to
rank more than two candidates.

5 Features

We use two sets of features. One consists of the
basic features described in (Negri et al., 2014); the
other includes several word-based features specif-
ically introduced for our ranking task.

5.1 Basic features

Basic features can be further divided in three
groups:

Signal features (16 in total) aim to capture the
difficulty to transcribe a given input by looking
at the signal as a whole. They are obtained by
analyzing the audio waveform with a window of
20ms at a frame rate of 10ms. For each analysed
window, 12 Mel Frequency Cepstral Coefficients
(MFCCs) are evaluated (MFCC of order 0 is dis-
carded) plus log energy. Then, to form the signal
feature vector for each given segment, we com-
pute the mean/min/max values of raw energy, as
well as the mean MFCCs values and total segment
duration.

Hybrid features (26) provide a more fine-
grained way to capture the difficulty of transcrib-
ing the signal. They are computed based on
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the forced alignment between the M given auto-
matic transcriptions of each segment and the cor-
responding acoustic observations obtained from
raw features. For each transcription hypothesis
hybrid features are: signal to noise ratio (SNR),
mean/min/max noise energy, mean/min/max word
energy, (max word - min noise) energy, number of
silences (#sil), #sil per second, number of words
(#wrd) per second, #sil

#wrd , total duration of words
(Dwrd), total duration of silences (Dsil), mean du-
ration of words, mean duration of silences, Dsil

Dwrd
,

Dwrd −Dsil, standard deviation (std) of word du-
ration, std of silence duration, mean/std/min/max
of pitch4, number of hesitations, frequency of hes-
itations.

Textual features (10) aim to capture the plausi-
bility (i.e. the fluency) of a transcription. For each
hypothesis textual features are: number of words,
LM log probability, LM log probability of part of
speech (POS), log perplexity, LM log perplexity
of POS, percentage (%) of numbers, % of tokens
which do not contain only “[a-z]”, % of content
words, % of nouns, % of verbs.

5.2 Word-based features

To compensate the absence of ASR confidence in-
formation, we also designed a set of “word-based”
features inspired by previous approaches to ASR
error detection (Chieu and Ng, 2002; Pellegrini
and Trancoso, 2010; Goldwater et al., 2010; Tam
et al., 2014). They aim to capture words’ pronun-
ciation difficulty, which is determined by the num-
ber of lexical neighbors (similar pronunciations)
and the types of phonemes that form the words.
From the ASR error detection field we also borrow
additional language model features based on re-
current neural network language model (RNNLM)
probability (Mikolov et al., 2010).

Word-based features (22) are: POS tag and
score of the previous/current/next words (6),
RNNLM probabilities (2) given by models
trained on in-domain and out-of-domain data, in-
domain/out-of-domain 4-gram LM probability (2),
number of phoneme classes (including fricatives,
liquids, nasals, stops and vowels) (5), number of
homophones (1), number of lexical neighbors (1)
and binary features answering the three questions:
“is stop word?” (1), “is before/after repetition?”

4Pitch features have been computed with the Praat soft-
ware tool (Boersma and Weenink, 2005).

Dataset duration sent token voc talks
tst2012 1h45m 1,124 19.2k 2.8k 11
tst2013 4h50m 2,246 41.6k 5.6k 28

Table 2: Dataset statistics: duration, number of
sentences, number of tokens, vocabulary size,
number of talks.

System tst2012 tst2013
FBK 16.8 23.2
KIT 12.7 14.4
MITLL 13.3 15.9
NAIST – 16.2
NICT 12.4 13.5
PRKE – 27.2
RWTH 13.6 16.0
UEDIN 14.4 22.1

Table 3: Official WER[%] scores of the partic-
ipants in the IWSLT2012 and IWSLT2013 ASR
evaluations.

(2), “is before/after silence?” (2). Since the ASR
hypotheses of a given segment might contain dif-
ferent numbers of words, we average the values of
the word-based features for each hypothesis.

6 Experimental setup

In this section we illustrate the audio data used in
our experiments, the methods used to inform and
run ROVER, the evaluation metric and the signifi-
cance testing method applied.

6.1 Data

We experiment with two sets of speech recordings
collected from English TED talks and used for
the 2012 (IWSLT2012) and 2013 (IWSLT2013)
editions of the International Workshop on Spo-
ken Language Translation (Federico et al., 2012;
Cettolo et al., 2013). Statistics for both datasets
are shown in Table 2. Six teams participated
in the 2012 evaluation: FBK, KIT, MITLL,
NICT, RWTH and UEDIN. Two more competi-
tors, NAIST and PRKE, took part in the 2013 edi-
tion of the campaign. The related WERs are re-
ported in Table 3. For detailed system descrip-
tions we refer the reader to the IWSLT20125 and
IWSLT20136 proceedings.

In the experiments, we used tst2012 for train-
ing with 4-fold cross-validation, and tst2013 for
testing purposes. Note that cross-validation was
applied ensuring that a given speaker does not ap-

5http://workshop2012.iwslt.org
6http://workshop2013.iwslt.org
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pear simultaneously both in the training and vali-
dation sets. The same condition holds for the test
set: speakers in tst2012 do not occur in tst2013.
These conditions, and the use of two different
sets of talks (acquired in different IWSLT editions
and transcribed by different sets of ASR systems),
make our task particularly difficult and guarantee
the congruence with real-life scenarios in which
training and test data are totally independent.

As previously mentioned, a common segmenta-
tion needs to be shared among the various ASR
components. To do this we decided to use the
one provided by our internal ASR system, and to
force-align to it all the other ones.

6.2 Terms of comparison

We compare our segment-based QE-informed
ROVER against three methods that differ in the
granularity of the combined hypotheses and in the
way they are ranked:

Random ROVER. It is obtained by averaging
the results of 100 runs of standard, system-level
ROVER (i.e. the WTN is obtained by com-
bining transcriptions of the whole utterance) in
which the systems to be combined are ranked ran-
domly. Note that this is the only possible way
to run ROVER in absence of information about
the reliability of the combined systems. Random
ROVER is the standard fusion method adopted
in IWSLT2013 to produce the final transcriptions
that are sent to the machine translation phase.

System-based Oracle (SysO). It is obtained
by computing the standard, system-level ROVER
based on the true system ranking (i.e. the actual
ranking of the IWSLT2013 participants). We con-
sider it as an oracle since the true ranking repre-
sents prior knowledge about systems’ reliability
which is not available in real testing conditions.

Segment-based Oracle (SegO). It is obtained
by computing ROVER at segment-level, using the
true system ranking for each segment. Also this
oracle relies on information about systems’ rank-
ing (at a higher granularity level), which is not
available in real testing conditions. As shown in
Table 1, this is the strongest term of comparison
and actually represents out upper bound.

6.3 Evaluation metric and significance test

As usually done in ASR evaluation, performance
results are measured in terms of WER.7 Our
segment-based, QE-informed ROVER is hence
compared against the other methods based on the
WER computed on the test set (tst2013).

To measure if two methods produce statistically
different results, we run the matched-pairs signif-
icance test (Gillick and Cox, 1989). It is based
on averaging the differences between the number
of errors (insertions, deletions and substitutions)
produced by the two approaches for the individual
segments. If the average falls in the [-0.05,+0.05]
interval, then the global WER difference between
the two methods is not statistically significant.

In terms of results’ significance tests, our suc-
cess criteria are: i) a statistically significant im-
provement over random ROVER, and ii) non-
significant differences with respect to the two
strong oracles. For the sake of comparison, we
define three symbols for the evaluation results re-
ported in Table 4:

1. “†” indicates that the corresponding WER
score is not significantly different from ran-
dom ROVER (a negative result);

2. “•” indicates that the WER score is not sig-
nificantly different from the system-based
ROVER oracle (a positive result);

3. “?” indicates that the WER score is not sig-
nificantly different from the segment-based
ROVER oracle (the best result).

6.4 Ranking Models

Ranking by regression (see Section 4.1) is per-
formed using the implementation of the extremely
randomized trees algorithm (Geurts et al., 2006)
provided by the Scikit-learn package (Pedregosa
et al., 2011). Extra-trees are a tree-based ensemble
method for supervised classification and regres-
sion, which we successfully used in the past both
for MT (de Souza et al., 2013) and ASR quality
estimation (Negri et al., 2014). The model used
for machine learned ranking (see Section 4.2) is
based on the implementation of the random forest

7The word error rate is the minimum edit distance be-
tween an hypothesis and the reference transcription. Edit dis-
tance is calculated as the number of edits (word insertions,
deletions, substitutions) divided by the number of words in
the reference. Lower WERs (↓) indicate better transcriptions.
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method-number of combined systems L3 L4 L5 L6 L7 L8
Random ROVER 14.6 13.7 13.2 12.8 12.7 12.4
SegO 10.5 11.0 11.4 11.6 11.7 11.7
SysO 12.2 11.7 11.8 11.9 12.1 12.1
RR1 +Basic 13.9 13.1 12.6 12.4 12.4 12.3 † •
RR1 +WordBased 14.0 13.0 12.5 12.2 12.3 • 12.3 † •
RR1 +Basic+WordBased 14.0 13.0 12.5 12.2 12.3 • 12.3 † •
RR2 +Basic 13.8 13.0 12.6 12.4 12.3 • 12.3 † •
RR2 +WordBased 14.2 13.1 12.7 12.4 12.5 † 12.4 † •
RR2 +Basic+WordBased 13.7 12.8 12.4 12.2 12.2 • 12.2 † •
MLR +Basic 12.9 12.4 12.3 12.1 • 12.3 12.2 † •
MLR +WordBased 12.4 • 12.1 12.0 12.0 • 12.2 • 12.2 † •
MLR +Basic+WordBased 12.4 • 12.1 12.0 • 11.9 • ? 12.2 • 12.2 † •

Table 4: WER[%] (↓) of random, oracle and QE-informed ROVERs. The symbols assigned to some
scores indicate their statistical significance (p ≤ 0.05 computed with the matched-pairs test). In particu-
lar: “†” = the result is not statistically different from random ROVER; “•” = the result is not statistically
different from SysO; “?” the result is not statistically different from SegO.

ensemble method (Breiman, 2001) provided in the
RankLib library.8

As mentioned in Section 6.1, all the ranking
models are trained in 4-fold cross validation. RR1
uses all the instances in tst2012 (i.e. 1,124 seg-
ments transcribed by 6 ASR systems, which re-
sults in a total of 6,744 training instances). RR2
uses only one instance per segment, which is ran-
domly selected among the 6 automatic transcrip-
tions available in tst2012 (resulting in a total of
1,124 training instances). Similar to RR1, MLR
uses all the instances in tst2012 (6,744 in total).
The learning parameters of each model (number
of bags, number of trees per bag, number of leaves
per tree and minimum number of instances per
leaf) are tuned by maximising Mean Average Pre-
cision as the objective function (Hang, 2011).

All the models are trained using the ba-
sic features (+Basic), the word-based ones
(+WordBased) and their combination (+Ba-
sic+WordBased).

7 Results and discussion

Table 4 reports the WER results obtained on
tst2013 by ROVER methods fed with: different
numbers of hypotheses (from 3 to 8), at different
granularity levels (whole utterance vs. segment),
ranked with different models (random, RR1, RR2
and MLR) trained with different sets of features

8http://sourceforge.net/p/lemur/wiki/
RankLib/

(Basic, WordBased, Basic+WordBased).

The first three rows present the results achieved
by our terms of comparison: random ROVER,
the segment-based oracle (SegO) and the system-
based oracle (SysO). As anticipated when moti-
vating our work (see Table 1), the WER achieved
by SegO is always lower than the scores achieved
by SysO. Note also that the performance of SegO
decreases as the number of combined hypotheses
increases, due to the introduction in the input of
progressively worse transcripts. Instead, SysO ex-
hibits a less coherent behaviour, with close WER
values at all levels, and a minimum in correspon-
dence of column L4 (the combination of four
transcriptions of the whole utterance). We inter-
pret these results as a further motivation for our
work: feeding ROVER with a good ranking that
exploits local (segment-level) differences between
the combined hypotheses seems to be more reli-
able than relying on system-level ranks based on
global WER scores. A theoretical analysis of the
relation between the diversity of the combined hy-
potheses and ROVER results is presented in (Au-
dhkhasi et al., 2014). In light of this analysis,
our results open an interesting issue concerning
the trade-offs between optimal hypothesis ranking
and their (local) diversity. We initially explore this
problem in Section 7.1, but leave for future work
a more systematic investigation.

Rows 4-6 show the results achieved by RR1
(ranking by regression, trained with all the tran-
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scriptions for each input segment). When trained
only with basic features, it always outperforms
random ROVER. At L8 the gain is not statisti-
cally significant but, at the same time, also the
WER difference with SysO is not significant. Note
that, proceeding from L3 to L8, the WER differ-
ence between RR1+Basic and random ROVER de-
creases from 0.7 to 0.1. This can be explained by
the fact that when the number of candidates in-
creases, then the role of majority voting dominates
the role of hypothesis ranking. Similar trends are
shown by all other approaches, including the or-
acles. RR1+WordBased slightly improves over
RR1+Basic, indicating the possible usefulness of
this new set of features. However, when used
in combination (RR1+Basic+WordBased), the two
feature sets do not yield further WER reductions.
Nevertheless, what is worth to remark is that at L7
and L8 the distance from Sys0 is not statistically
significant (a positive result).

As shown in rows 7-9, the situation changes
with RR2 (ranking by regression, trained with one
transcription per segment). When trained with the
combined feature sets (RR2+Basic+WordBased),
the model always leads to slight WER reductions
over RR2+Basic. Also in this case, the gains over
random ROVER are consistent (they range from
0.9 at L3 to 0.2 at L8), and the difference with re-
spect to SysO is not statistically significant at L7
and L8 (a positive result).

As shown in rows 10-12, results are further im-
proved by MLR. Except for L8, the improvement
over random ROVER is statistically significant,
large and consistent with all feature sets. The
WER reduction obtained by MLR+Basic varies
from 1.7 to 0.2 WER points, indicating a higher ef-
fectiveness of machine-learned ranking compared
to ranking by regression. MLR+WordBased pro-
duces further WER reductions, with differences
with SysO that become statistically not-significant
at four levels (L3, L6, L7 and L8). Finally, when
trained with the combined feature sets, the ranking
model leads to the lowest WER scores. Notice-
ably, such results are not only on par with SysO
(the difference is statistically significant only at
L4), but in one case (L6) they even reach those
of SegO, the strongest competitor (best result).

Overall, as evidenced by the L8 column, when
the number of input components becomes large
our QE-informed approaches are not significantly
better than random ROVER and SysO. This raises

the need of a stopping criterion to avoid entering
useless inputs into the ROVER combination. To-
gether with the trade-off between ranking perfor-
mance and hypotheses’ diversity, this represents
an interesting topic for future work.

7.1 The role of hypotheses’ diversity

To gain further insights on our results, and as
a first step along the research directions previ-
ously outlined, we analysed the relation between
ROVER results and hypotheses’ diversity. To this
aim, Figure 2 plots the WER of our best method
(MLR+Basic+WordBased) and the two oracles
as a function of hypotheses’ diversity at L6, for
which we obtain the best results.
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Figure 2: Results on tst2013 of the oracles and our
best model, as functions of hypotheses’ diversity.

Diversity is measured by computing the difference
between the maximum and the minimum WERs
of the input transcriptions. All the segments are
then grouped with regard to this difference. For
example 10 on the x-axis refers to the group of
segments whose diversities lay in the interval of
[0,10); 20 refers to the segments whose diversities
are in [10,20) and consequently, 100 represents the
segments whose diversities lay in [90,100]. This
latter means that for each segment there is at least
one transcription that is perfect or close to perfec-
tion, and one that is (almost completely) wrong.

For segments with diversity smaller than 70, the
performance of the system-based oracle (line with
circle marks) and our segment-level QE-informed
ROVER (line with triangle marks) is almost iden-
tical. Instead, for segments with a “high” level
of diversity (in the interval [70,100]), our method
significantly outperforms the system-based oracle.
With a maximum gain larger than 3 WER points, it
approaches the strong segment-based oracle (line
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with asterisk marks). Remarkably, for diversity
values in the interval [90,100], our method is able
to halve the distance that separates the two oracles.

The considerable WER reductions observed for
diversity values larger than 70 shed new light on
the global results reported in Table 4. The fact that
such performance gains are hidden in the global
scores can be explained by looking at the dashed
line in Figure 2, which shows the percentage of
segments belonging to each diversity level. As
it can be observed, the vast majority of the seg-
ments (∼95%) falls in diversity bins in the inter-
val [10,70). The large WER reductions obtained
on the few remaining segments are definitely not
enough to boost global results. Overall, this find-
ing suggests that our segment-level QE-informed
ROVER can fully unfold its potential in applica-
tion scenarios featuring high diversity among the
transcriptions.

7.2 Prediction of overall ranks

Since our results strongly depend on the reliabil-
ity of hypothesis ranking, our final analysis fo-
cuses on the correlation between QE-based rank-
ing methods and the “true” ranks used as prior
knowledge by the system-based oracle (the official
ranking of the IWSLT2013 participants). In order
to predict the overall IWSLT2013 ranking, we first
run our QE models on each segment. Systems are
then ordered based on the average ranking score
received by their transcriptions. Finally, the alter-
native QE-based methods (RR1, RR2 and MLR)
are compared by measuring their Spearman corre-
lation with the TRUE systems’ order.

Table 5 reports the resulting rankings and the
corresponding correlation with the true, official
one. Among all the possible combinations (8 fac-
torial), our two best methods (RR2 and MLR) re-
sult in a systems’ ordering with high correlation
with the official IWSLT2013 ranking. In particu-
lar, MLR achieves correlation of 0.905 with three
out of eight systems (1, 2 and 8) that are correctly
positioned. The correlation values of the differ-
ent approaches reflect the performance reported
in Table 4, in which the WER achieved by us-
ing MLR is usually better than the ones obtained
from RR1 and RR2. It is interesting to note in
the last column of Table 5 that the ranking errors
are represented by switches between systems with
similar WERs, while it seems easier to discrimi-
nate between systems with more distant WER val-

ues. This consideration is in line with the findings
of Section 7.1 concerning the higher potential of
segment-level QE-informed ROVER in scenarios
featuring a higher diversity between the combined
systems.

tst2013 WER TRUE RR1 RR2 MLR
NICT 13.5 1 6 2 1
KIT 14.4 2 3 4 2
MITLL 15.9 3 1 1 4
RWTH 16.0 4 2 3 5
NAIST 16.2 5 5 5 3
UEDIN 22.1 6 8 8 7
FBK 23.2 7 4 6 6
PRKE 27.2 8 7 7 8

Spearman correlation 0.429 0.809 0.905

Table 5: True and predicted IWSLT2013 system
ranks (correct predictions are shown in bold).

8 Conclusions

We presented a novel approach to improve the
combination of multiple automatic transcription
hypotheses using ROVER. Our method is based on
informing the fusion process with accurate word
error rate predictions obtained from ASR quality
estimation models. First, to exploit the possible
local diversity among the combined hypotheses,
it performs quality prediction and ranking at seg-
ment level. Then, the predicted ranks for each
segment are used to feed ROVER. Finally, the
combined hypotheses are concatenated to recon-
struct the entire utterance transcription. To rank
predictions, we compared two different regression
models with a machine-learned ranking method.
We carried out experiments on a set of English
TED talks collected for two editions of the IWSLT
ASR evaluation campaign. Results show that our
segment-level QE-informed ROVER outperforms
the standard random ROVER and performs on par
(differences are not statistically significant) with
a system-based ROVER oracle that exploits prior
knowledge about systems’ reliability. Moreover,
compared to a very strong segment-based ROVER
oracle, in one case the performance of our method
is not statistically different. These results are par-
ticularly encouraging, especially in light of the
fact that our approach does not exploit confidence
information related to the internal behaviour of the
ASR decoders. Overall, this represents the first
confirmation, obtained in an extrinsic evaluation
setting, of the good potential of reference-free and
system-agnostic ASR quality estimation.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. The Journal of Ma-
chine Learning Research, 12:2825–2830.

Thomas Pellegrini and Isabel Trancoso. 2010. Im-
proving ASR Error Detection with Non-decoder
Based Features. In Proceedings of INTERSPEECH
2010, 11th Annual Conference of the International
Speech Communication Association, pages 1950–
1953, Makuhari, Chiba, Japan, September.

Holger Schwenk and Jean-Luc Gauvain. 2000. Im-
proved ROVER using Language Model Information.

In ASR2000-Automatic Speech Recognition: Chal-
lenges for the new Millenium ISCA Tutorial and Re-
search Workshop (ITRW).

Lucia Specia, Nicola Cancedda, Marc Dymetman,
Marco Turchi, and Nello Cristianini. 2009. Es-
timating the Sentence-Level Quality of Machine
Translation Systems. In Proceedings of the 13th
Annual Conference of the European Association
for Machine Translation (EAMT’09), pages 28–35,
Barcelona, Spain.

Andreas Stolcke, Harry Bratt, John Butzberger, Ho-
racio Franco, Venkata Ramana Gadde, Madelaine
Plauche, Colleen Richey, Elizabeth Shriberg, Kemal
Sonmez, F Weng, and Jing Zheng. 2000. The SRI
march 2000 HUB5 conversational speech transcrip-
tion system.

Yik-Cheung Tam, Yun Lei, Jing Zheng, and Wen
Wang. 2014. ASR Error Detection using Recur-
rent Neural Network Language Model and Comple-
mentary ASR. In Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal
Processing, (ICASSP 2014), pages 2312–2316, Flo-
rence, Italy, May.

Marco Turchi, Antonios Anastasopoulos, José G. C. de
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Abstract

Natural language generation of coherent
long texts like paragraphs or longer doc-
uments is a challenging problem for re-
current networks models. In this paper,
we explore an important step toward this
generation task: training an LSTM (Long-
short term memory) auto-encoder to pre-
serve and reconstruct multi-sentence para-
graphs. We introduce an LSTM model that
hierarchically builds an embedding for a
paragraph from embeddings for sentences
and words, then decodes this embedding
to reconstruct the original paragraph. We
evaluate the reconstructed paragraph us-
ing standard metrics like ROUGE and En-
tity Grid, showing that neural models are
able to encode texts in a way that preserve
syntactic, semantic, and discourse coher-
ence. While only a first step toward gener-
ating coherent text units from neural mod-
els, our work has the potential to signifi-
cantly impact natural language generation
and summarization1.

1 Introduction

Generating coherent text is a central task in natural
language processing. A wide variety of theories
exist for representing relationships between text
units, such as Rhetorical Structure Theory (Mann
and Thompson, 1988) or Discourse Representa-
tion Theory (Lascarides and Asher, 1991), for ex-
tracting these relations from text units (Marcu,
2000; LeThanh et al., 2004; Hernault et al., 2010;
Feng and Hirst, 2012, inter alia), and for extract-
ing other coherence properties characterizing the
role each text unit plays with others in a discourse
(Barzilay and Lapata, 2008; Barzilay and Lee,

1Code for models described in this paper are available at
www.stanford.edu/˜jiweil/.

2004; Elsner and Charniak, 2008; Li and Hovy,
2014, inter alia). However, applying these to text
generation remains difficult. To understand how
discourse units are connected, one has to under-
stand the communicative function of each unit,
and the role it plays within the context that en-
capsulates it, recursively all the way up for the
entire text. Identifying increasingly sophisticated
human-developed features may be insufficient for
capturing these patterns. But developing neural-
based alternatives has also been difficult. Al-
though neural representations for sentences can
capture aspects of coherent sentence structure (Ji
and Eisenstein, 2014; Li et al., 2014; Li and Hovy,
2014), it’s not clear how they could help in gener-
ating more broadly coherent text.

Recent LSTM models (Hochreiter and Schmid-
huber, 1997) have shown powerful results on gen-
erating meaningful and grammatical sentences in
sequence generation tasks like machine translation
(Sutskever et al., 2014; Bahdanau et al., 2014; Lu-
ong et al., 2015) or parsing (Vinyals et al., 2014).
This performance is at least partially attributable
to the ability of these systems to capture local
compositionally: the way neighboring words are
combined semantically and syntactically to form
meanings that they wish to express.

Could these models be extended to deal with
generation of larger structures like paragraphs or
even entire documents? In standard sequence-
to-sequence generation tasks, an input sequence
is mapped to a vector embedding that represents
the sequence, and then to an output string of
words. Multi-text generation tasks like summa-
rization could work in a similar way: the sys-
tem reads a collection of input sentences, and
is then asked to generate meaningful texts with
certain properties (such as—for summarization—
being succinct and conclusive). Just as the local
semantic and syntactic compositionally of words
can be captured by LSTM models, can the com-
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positionally of discourse releations of higher-level
text units (e.g., clauses, sentences, paragraphs, and
documents) be captured in a similar way, with
clues about how text units connect with each an-
other stored in the neural compositional matrices?

In this paper we explore a first step toward this
task of neural natural language generation. We fo-
cus on the component task of training a paragraph
(document)-to-paragraph (document) autoencoder
to reconstruct the input text sequence from a com-
pressed vector representation from a deep learn-
ing model. We develop hierarchical LSTM mod-
els that arranges tokens, sentences and paragraphs
in a hierarchical structure, with different levels of
LSTMs capturing compositionality at the token-
token and sentence-to-sentence levels.

We offer in the following section to a brief de-
scription of sequence-to-sequence LSTM models.
The proposed hierarchical LSTM models are then
described in Section 3, followed by experimental
results in Section 4, and then a brief conclusion.

2 Long-Short Term Memory (LSTM)

In this section we give a quick overview of LSTM
models. LSTM models (Hochreiter and Schmid-
huber, 1997) are defined as follows: given a
sequence of inputs X = {x1, x2, ..., xnX}, an
LSTM associates each timestep with an input,
memory and output gate, respectively denoted as
it, ft and ot. For notations, we disambiguate e and
h where et denote the vector for individual text
unite (e.g., word or sentence) at time step t while
ht denotes the vector computed by LSTM model
at time t by combining et and ht−1. σ denotes the
sigmoid function. The vector representation ht for
each time-step t is given by:

[ it
ft
ot
lt

]
=

[ σ
σ
σ

tanh

]
W ·

[
ht−1

et

]
(1)

ct = ft · ct−1 + it · lt (2)

hst = ot · ct (3)

where W ∈ R4K×2K In sequence-to-sequence
generation tasks, each input X is paired with
a sequence of outputs to predict: Y =
{y1, y2, ..., ynY }. An LSTM defines a distribution
over outputs and sequentially predicts tokens us-

ing a softmax function:

P (Y |X)

=
∏

t∈[1,ny ]

p(yt|x1, x2, ..., xt, y1, y2, ..., yt−1)

=
∏

t∈[1,ny ]

exp(f(ht−1, eyt))∑
y′ exp(f(ht−1, ey′))

(4)
f(ht−1, eyt) denotes the activation function be-
tween eh−1 and eyt , where ht−1 is the representa-
tion outputted from the LSTM at time t− 1. Note
that each sentence ends up with a special end-of-
sentence symbol <end>. Commonly, the input
and output use two different LSTMs with differ-
ent sets of convolutional parameters for capturing
different compositional patterns.

In the decoding procedure, the algorithm termi-
nates when an <end> token is predicted. At each
timestep, either a greedy approach or beam search
can be adopted for word prediction. Greedy search
selects the token with the largest conditional prob-
ability, the embedding of which is then combined
with preceding output for next step token predic-
tion. For beam search, (Sutskever et al., 2014) dis-
covered that a beam size of 2 suffices to provide
most of benefits of beam search.

3 Paragraph Autoencoder

In this section, we introduce our proposed hierar-
chical LSTM model for the autoencoder.

3.1 Notation
Let D denote a paragraph or a document, which
is comprised of a sequence of ND sentences,
D = {s1, s2, ..., sND , endD}. An additional
”endD” token is appended to each document.
Each sentence s is comprised of a sequence of
tokens s = {w1, w2, ..., wNs} where Ns denotes
the length of the sentence, each sentence end-
ing with an “ends” token. The word w is as-
sociated with a K-dimensional embedding ew,
ew = {e1w, e2w, ..., eKw }. Let V denote vocabu-
lary size. Each sentence s is associated with a K-
dimensional representation es.

An autoencoder is a neural model where output
units are directly connected with or identical to in-
put units. Typically, inputs are compressed into
a representation using neural models (encoding),
which is then used to reconstruct it back (decod-
ing). For a paragraph autoencoder, both the input
X and output Y are the same document D. The
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autoencoder first compresses D into a vector rep-
resentation eD and then reconstructs D based on
eD.

For simplicity, we define LSTM(ht−1, et) to
be the LSTM operation on vectors ht−1 and et to
achieve ht as in Equ.1 and 2. For clarification,
we first describe the following notations used in
encoder and decoder:

• hwt and hst denote hidden vectors from LSTM
models, the subscripts of which indicate
timestep t, the superscripts of which indi-
cate operations at word level (w) or sequence
level (s). hst (enc) specifies encoding stage
and hst (dec) specifies decoding stage.

• ewt and est denotes word-level and sentence-
level embedding for word and sentence at po-
sition t in terms of its residing sentence or
document.

3.2 Model 1: Standard LSTM

The whole input and output are treated as one
sequence of tokens. Following Sutskever et al.
(2014) and Bahdanau et al. (2014), we trained
an autoencoder that first maps input documents
into vector representations from a LSTMencode
and then reconstructs inputs by predicting to-
kens within the document sequentially from a
LSTMdecode. Two separate LSTMs are imple-
mented for encoding and decoding with no sen-
tence structures considered. Illustration is shown
in Figure 1.

3.3 Model 2: Hierarchical LSTM

The hierarchical model draws on the intuition that
just as the juxtaposition of words creates a joint
meaning of a sentence, the juxtaposition of sen-
tences also creates a joint meaning of a paragraph
or a document.

Encoder We first obtain representation vectors
at the sentence level by putting one layer of LSTM
(denoted as LSTMword

encode) on top of its containing
words:

hwt (enc) = LSTMword
encode(e

w
t , h

w
t−1(enc)) (5)

The vector output at the ending time-step is used
to represent the entire sentence as

es = hwends

To build representation eD for the current doc-
ument/paragraph D, another layer of LSTM (de-
noted as LSTM sentence

encode ) is placed on top of all sen-
tences, computing representations sequentially for
each timestep:

hst (enc) = LSTM sentence
encode (est , h

s
t−1(enc)) (6)

Representation esendD
computed at the final time

step is used to represent the entire document:
eD = hsendD

.
Thus one LSTM operates at the token level,

leading to the acquisition of sentence-level rep-
resentations that are then used as inputs into the
second LSTM that acquires document-level repre-
sentations, in a hierarchical structure.

Decoder As with encoding, the decoding algo-
rithm operates on a hierarchical structure with two
layers of LSTMs. LSTM outputs at sentence level
for time step t are obtained by:

hst (dec) = LSTM sentence
decode (est , h

s
t−1(dec)) (7)

The initial time step hs0(d) = eD, the end-to-end
output from the encoding procedure. hst (d) is used
as the original input into LSTMword

decode for subse-
quently predicting tokens within sentence t + 1.
LSTMword

decode predicts tokens at each position se-
quentially, the embedding of which is then com-
bined with earlier hidden vectors for the next time-
step prediction until the ends token is predicted.
The procedure can be summarized as follows:

hwt (dec) = LSTM sentence
decode (ewt , h

w
t−1(dec)) (8)

p(w|·) = softmax(ew, hwt−1(dec)) (9)

During decoding, LSTMword
decode generates each

word token w sequentially and combines it with
earlier LSTM-outputted hidden vectors. The
LSTM hidden vector computed at the final time
step is used to represent the current sentence.

This is passed to LSTM sentence
decode , combined

with hst for the acquisition of ht+1, and outputted
to the next time step in sentence decoding.

For each timestep t, LSTM sentence
decode has to first

decide whether decoding should proceed or come
to a full stop: we add an additional token endD to
the vocabulary. Decoding terminates when token
endD is predicted. Details are shown in Figure 2.
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Figure 1: Standard Sequence to Sequence Model.

Figure 2: Hierarchical Sequence to Sequence Model.

Figure 3: Hierarchical Sequence to Sequence Model with Attention.

3.4 Model 3: Hierarchical LSTM with
Attention

Attention models adopt a look-back strategy by
linking the current decoding stage with input sen-
tences in an attempt to consider which part of the

input is most responsible for the current decoding
state. This attention version of hierarchical model
is inspired by similar work in image caption gen-
eration and machine translation (Xu et al., 2015;
Bahdanau et al., 2014).

Let H = {hs1(e), hs2(e), ..., hsN (e)} be the
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collection of sentence-level hidden vectors for
each sentence from the inputs, outputted from
LSTMSentence

encode . Each element in H contains in-
formation about input sequences with a strong fo-
cus on the parts surrounding each specific sentence
(time-step). During decoding, suppose that est de-
notes the sentence-level embedding at current step
and that hst−1(dec) denotes the hidden vector out-
putted from LSTM sentence

decode at previous time step
t−1. Attention models would first link the current-
step decoding information, i.e., hst−1(dec) which
is outputted from LSTM sentence

dec with each of the
input sentences i ∈ [1, N ], characterized by a
strength indicator vi:

vi = UT f(W1 · hst−1(dec) +W2 · hsi (enc)) (10)

W1,W2 ∈ RK×K , U ∈ RK×1. vi is then normal-
ized:

ai =
exp(vi)∑
i′ exp(v′i)

(11)

The attention vector is then created by averaging
weights over all input sentences:

mt =
∑

i∈[1,ND]

aih
s
i (enc) (12)

LSTM hidden vectors for current step is then
achieved by combining ct, est and hst−1(dec):

[ it
ft
ot
lt

]
=

[ σ
σ
σ

tanh

]
W ·

[ hst−1(dec)
est
mt

]
(13)

ct = ft · ct−1 + it · lt (14)

hst = ot · ct (15)

where W ∈ R4K×3K . ht is then used for word
predicting as in the vanilla version of the hierar-
chical model.

3.5 Training and Testing
Parameters are estimated by maximizing likeli-
hood of outputs given inputs, similar to standard
sequence-to-sequence models. A softmax func-
tion is adopted for predicting each token within
output documents, the error of which is first back-
propagated through LSTMword

decode to sentences,
then through LSTM sentence

decode to document repre-
sentation eD, and last through LSTM sentence

encode and
LSTMword

encode to inputs. Stochastic gradient de-
scent with minibatches is adopted.

dataset S per D W per D W per S
Hotel-Review 8.8 124.8 14.1

Wikipedia 8.4 132.9 14.8

Table 1: Statistics for the Datasets. W, S and D re-
spectively represent number of words, number of
sentences, and number of documents/paragraphs.
For example, “S per D” denotes average number
of sentences per document.

For testing, we adopt a greedy strategy with
no beam search. For a given document D, eD
is first obtained given already learned LSTMencode
parameters and word embeddings. Then in decod-
ing, LSTM sentence

decode computes embeddings at each
sentence-level time-step, which is first fed into the
binary classifier to decide whether sentence de-
coding terminates and then into LSTMword

decode for
word decoding.

4 Experiments

4.1 Dataset

We implement the proposed autoencoder on two
datasets, a highly domain specific dataset consist-
ing of hotel reviews and a general dataset extracted
from Wkipedia.

Hotel Reviews We use a subset of hotel reviews
crawled from TripAdvisor. We consider only re-
views consisting sentences ranging from 50 to 250
words; the model has problems dealing with ex-
tremely long sentences, as we will discuss later.
We keep a vocabulary set consisting of the 25,000
most frequent words. A special “<unk>” token
is used to denote all the remaining less frequent
tokens. Reviews that consist of more than 2 per-
cent of unknown words are discarded. Our train-
ing dataset is comprised of roughly 340,000 re-
views; the testing set is comprised of 40,000 re-
views. Dataset details are shown in Table 1.

Wikipedia We extracted paragraphs from
Wikipedia corpus that meet the aforementioned
length requirements. We keep a top frequent
vocabulary list of 120,000 words. Paragraphs
with larger than 4 percent of unknown words are
discarded. The training dataset is comprised of
roughly 500,000 paragraphs and testing contains
roughly 50,000.
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4.2 Training Details and Implementation

Previous research has shown that deep LSTMs
work better than shallow ones for sequence-to-
sequence tasks (Vinyals et al., 2014; Sutskever et
al., 2014). We adopt a LSTM structure with four
layer for encoding and four layer for decoding,
each of which is comprised of a different set of pa-
rameters. Each LSTM layer consists of 1,000 hid-
den neurons and the dimensionality of word em-
beddings is set to 1,000. Other training details are
given below, some of which follow Sutskever et al.
(2014).
• Input documents are reversed.
• LSTM parameters and word embeddings are

initialized from a uniform distribution be-
tween [-0.08, 0.08].
• Stochastic gradient decent is implemented

without momentum using a fixed learning
rate of 0.1. We stated halving the learning
rate every half epoch after 5 epochs. We
trained our models for a total of 7 epochs.
• Batch size is set to 32 (32 documents).
• Decoding algorithm allows generating at

most 1.5 times the number of words in inputs.
• 0.2 dropout rate.
• Gradient clipping is adopted by scaling gra-

dients when the norm exceeded a threshold
of 5.

Our implementation on a single GPU2 processes a
speed of approximately 600-1,200 tokens per sec-
ond. We trained our models for a total of 7 itera-
tions.

4.3 Evaluations

We need to measure the closeness of the output
(candidate) to the input (reference). We first adopt
two standard evaluation metrics, ROUGE (Lin,
2004; Lin and Hovy, 2003) and BLEU (Papineni
et al., 2002).

ROUGE is a recall-oriented measure widely
used in the summarization literature. It measures
the n-gram recall between the candidate text and
the reference text(s). In this work, we only have
one reference document (the input document) and
ROUGE score is therefore given by:

ROUGEn =

∑
gramn∈input countmatch(gramn)∑

gramn∈input count(gramn)
(16)

2Tesla K40m, 1 Kepler GK110B, 2880 Cuda cores.

where countmatch denotes the number of n-grams
co-occurring in the input and output. We report
ROUGE-1, 2 and W (based on weighted longest
common subsequence).

BLEU Purely measuring recall will inappropri-
ately reward long outputs. BLEU is designed to
address such an issue by emphasizing precision.
n-gram precision scores for our situation are given
by:

precisionn =

∑
gramn∈output countmatch(gramn)∑

gramn∈output count(gramn)
(17)

BLEU then combines the average logarithm of
precision scores with exceeded length penaliza-
tion. For details, see Papineni et al. (2002).

Coherence Evaluation Neither BLEU nor
ROUGE attempts to evaluate true coherence.
There is no generally accepted and readily avail-
able coherence evaluation metric.3 Because of
the difficulty of developing a universal coherence
evaluation metric, we proposed here only a
tailored metric specific to our case. Based on the
assumption that human-generated texts (i.e., input
documents in our tasks) are coherent (Barzilay
and Lapata, 2008), we compare generated outputs
with input documents in terms of how much
original text order is preserved.

We develop a grid evaluation metric similar to
the entity transition algorithms in (Barzilay and
Lee, 2004; Lapata and Barzilay, 2005). The key
idea of Barzilay and Lapata’s models is to first
identify grammatical roles (i.e., object and sub-
ject) that entities play and then model the transi-
tion probability over entities and roles across sen-
tences. We represent each sentence as a feature-
vector consisting of verbs and nouns in the sen-
tence. Next we align sentences from output doc-
uments to input sentences based on sentence-to-
sentence F1 scores (precision and recall are com-
puted similarly to ROUGE and BLEU but at sen-
tence level) using feature vectors. Note that multi-
ple output sentences can be matched to one input

3Wolf and Gibson (2005) and Lin et al. (2011) proposed
metrics based on discourse relations, but these are hard to ap-
ply widely since identifying discourse relations is a difficult
problem. Indeed sophisticated coherence evaluation metrics
are seldom adopted in real-world applications, and summa-
rization researchers tend to use simple approximations like
number of overlapped tokens or topic distribution similarity
(e.g., (Yan et al., 2011b; Yan et al., 2011a; Celikyilmaz and
Hakkani-Tür, 2011)).
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Input-Wiki washington was unanimously elected President by the electors in both the 1788 – 1789 and
1792 elections . he oversaw the creation of a strong, well-financed national government that
maintained neutrality in the french revolutionary wars , suppressed the whiskey rebellion , and
won acceptance among Americans of all types . washington established many forms in govern-
ment still used today , such as the cabinet system and inaugural address . his retirement after
two terms and the peaceful transition from his presidency to that of john adams established a
tradition that continued up until franklin d . roosevelt was elected to a third term . washington
has been widely hailed as the ” father of his country ” even during his lifetime.

Output-Wiki washington was elected as president in 1792 and voters <unk> of these two elections until
1789 . he continued suppression <unk> whiskey rebellion of the french revolution war gov-
ernment , strong , national well are involved in the establishment of the fin advanced operations
, won acceptance . as in the government , such as the establishment of various forms of inau-
guration speech washington , and are still in use . <unk> continued after the two terms of his
quiet transition to retirement of <unk> <unk> of tradition to have been elected to the third
paragraph . but , ” the united nations of the father ” and in washington in his life , has been
widely praised .

Input-Wiki apple inc . is an american multinational corporation headquartered in cupertino , california ,
that designs , develops , and sells consumer electronics , computer software , online services ,
and personal com - puters . its bestknown hardware products are the mac line of computers , the
ipod media player , the iphone smartphone , and the ipad tablet computer . its online services
include icloud , the itunes store , and the app store . apple’s consumer software includes the os
x and ios operating systems , the itunes media browser , the safari web browser , and the ilife
and iwork creativity and productivity suites .

Output-Wiki apple is a us company in california , <unk> , to develop electronics , softwares , and pc , sells
. hardware include the mac series of computers , ipod , iphone . its online services , including
icloud , itunes store and in app store . softwares , including os x and ios operating system ,
itunes , web browser , < unk> , including a productivity suite .

Input-Wiki paris is the capital and most populous city of france . situated on the seine river , in the north of
the country , it is in the centre of the le-de-france region . the city of paris has a population of
2273305 inhabitants . this makes it the fifth largest city in the european union measured by the
population within the city limits .

Output-Wiki paris is the capital and most populated city in france . located in the<unk> , in the north of the
country , it is the center of <unk> . paris , the city has a population of <num> inhabitants .
this makes the eu ’ s population within the city limits of the fifth largest city in the measurement
.

Input-Review on every visit to nyc , the hotel beacon is the place we love to stay . so conveniently located
to central park , lincoln center and great local restaurants . the rooms are lovely . beds so
comfortable , a great little kitchen and new wizz bang coffee maker . the staff are so accommo-
dating and just love walking across the street to the fairway supermarket with every imaginable
goodies to eat .

Output-Review every time in new york , lighthouse hotel is our favorite place to stay . very convenient , central
park , lincoln center , and great restaurants . the room is wonderful , very comfortable bed , a
kitchenette and a large explosion of coffee maker . the staff is so inclusive , just across the street
to walk to the supermarket channel love with all kinds of what to eat .

Table 2: A few examples produced by the hierarchical LSTM alongside the inputs.

sentence. Assume that sentence sioutput is aligned
with sentence si

′
input, where i and i′ denote position

index for a output sentence and its aligned input.
The penalization score L is then given by:

L =
2

Noutput · (Noutput − 1)

×
∑

i∈[1,Noutput−1]

∑
j∈[i+1,Noutput]

|(j − i)− (j′ − i′)|

(18)

Equ. 18 can be interpreted as follows: (j − i)
denotes the distance in terms of position index be-
tween two outputted sentences indexed by j and i,
and (j′ − i′) denotes the distance between their
mirrors in inputs. As we wish to penalize the

degree of permutation in terms of text order, we
penalize the absolute difference between the two
computed distances. This metric is also relevant
to the overall performance of prediction and re-
call: an irrelevant output will be aligned to a ran-
dom input, thus being heavily penalized. The de-
ficiency of the proposed metric is that it concerns
itself only with a semantic perspective on coher-
ence, barely considering syntactical issues.

4.4 Results

A summary of our experimental results is given
in Table 3. We observe better performances for
the hotel-review dataset than the open domain
Wikipedia dataset, for the intuitive reason that
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Model Dataset BLEU ROUGE-1 ROUGE-2 Coherence(L)
Standard Hotel Review 0.241 0.571 0.302 1.92

Hierarchical Hotel Review 0.267 0.590 0.330 1.71
Hierarchical+Attention Hotel Review 0.285 0.624 0.355 1.57

Standard Wikipedia 0.178 0.502 0.228 2.75
Hierarchical Wikipedia 0.202 0.529 0.250 2.30

Hierarchical+Attention Wikipedia 0.220 0.544 0.291 2.04

Table 3: Results for three models on two datasets. As with coherence score L, smaller values signifies
better performances.

documents and sentences are written in a more
fixed format and easy to predict for hotel reviews.

The hierarchical model that considers sentence-
level structure outperforms standard sequence-
to-sequence models. Attention models at the
sentence level introduce performance boost over
vanilla hierarchical models.

With respect to the coherence evaluation, the
original sentence order is mostly preserved: the hi-
erarchical model with attention achieves L = 1.57
on the hotel-review dataset, equivalent to the fact
that the relative position of two input sentences
are permuted by an average degree of 1.57. Even
for the Wikipedia dataset where more poor-quality
sentences are observed, the original text order can
still be adequately maintained with L = 2.04.

5 Discussion and Future Work

In this paper, we extended recent sequence-to-
sequence LSTM models to the task of multi-
sentence generation. We trained an autoencoder
to see how well LSTM models can reconstruct in-
put documents of many sentences. We find that
the proposed hierarchical LSTM models can par-
tially preserve the semantic and syntactic integrity
of multi-text units and generate meaningful and
grammatical sentences in coherent order. Our
model performs better than standard sequence-to-
sequence models which do not consider the intrin-
sic hierarchical discourse structure of texts.

While our work on auto-encoding for larger
texts is only a preliminary effort toward allowing
neural models to deal with discourse, it nonethe-
less suggests that neural models are capable of en-
coding complex clues about how coherent texts are
connected .

The performance on this autoencoder task could
certainly also benefit from more sophisticated neu-
ral models. For example one extension might align
the sentence currently being generated with the

original input sentence (similar to sequence-to-
sequence translation in (Bahdanau et al., 2014)),
and later transform the original task to sentence-
to-sentence generation. However our long-term
goal here is not on perfecting this basic multi-text
generation scenario of reconstructing input docu-
ments, but rather on extending it to more important
applications.

That is, the autoencoder described in this work,
where input sequenceX is identical to output Y , is
only the most basic instance of the family of doc-
ument (paragraph)-to-document (paragraph) gen-
eration tasks. We hope the ideas proposed in
this paper can play some role in enabling such
more sophisticated generation tasks like summa-
rization, where the inputs are original documents
and outputs are summaries or question answering,
where inputs are questions and outputs are the ac-
tual wording of answers. Sophisticated genera-
tion tasks like summarization or dialogue systems
could extend this paradigm, and could themselves
benefit from task-specific adaptations. In sum-
marization, sentences to generate at each timestep
might be pre-pointed to or pre-aligned to specific
aspects, topics, or pieces of texts to be summa-
rized. Dialogue systems could incorporate infor-
mation about the user or the time course of the
dialogue. In any case, we look forward to more
sophi4d applications of neural models to the im-
portant task of natural language generation.
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Aix Marseille Université, CNRS, LIF UMR 7279
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Abstract

Complex conjunctions and determiners
are often considered as pretokenized units
in parsing. This is not always realistic,
since they can be ambiguous. We pro-
pose a model for joint dependency parsing
and multiword expressions identification,
in which complex function words are rep-
resented as individual tokens linked with
morphological dependencies. Our graph-
based parser includes standard second-
order features and verbal subcategoriza-
tion features derived from a syntactic lex-
icon.We train it on a modified version of
the French Treebank enriched with mor-
phological dependencies. It recognizes
81.79% of ADV+que conjunctions with
91.57% precision, and 82.74% of de+DET

determiners with 86.70% precision.

1 Introduction

Standard NLP tool suites for text analysis are of-
ten made of several processes that are organized
as a pipeline, in which the input of a process is
the output of the preceding one. Among these
processes, one commonly finds a tokenizer, which
segments a sentence into words, a part-of-speech
(POS) tagger, which associates to every word a
part-of-speech tag, and a syntactic parser, which
builds a parse tree for the sentence1. These three
processes correspond to three formal operations
on the string: segmentation into linguistically rel-
evant units (words), tagging the words with POS
tags and linking the (word, POS) pairs by means
of syntactic dependencies.

This setup is clearly not ideal, as some decisions
are made too early in the pipeline (Branco and
Silva, 2003). More specifically, some tokenization
and tagging choices are difficult to make without

1This paper considers dependency syntactic structures.

taking syntax into account. To avoid the pitfall of
premature decisions, probabilistic tokenizers and
taggers can produce several solutions in the form
of lattices (Green and Manning, 2010; Goldberg
and Elhadad, 2011). Such approaches usually lead
to severe computational overhead due to the huge
search space in which the parser looks for the opti-
mal parse tree. Besides, the parser might be biased
towards short solutions, as it compares scores of
trees associated to sequences of different lengths
(De La Clergerie, 2013).

This problem is particularly hard when parsing
multiword expressions (MWEs), that is, groups of
tokens that must be treated as single units (Bald-
win and Kim, 2010). The solution we present
in this paper is different from the usual pipeline.
We propose to jointly parse and tokenize MWEs,
transforming segmentation decisions into linking
decisions. Our experiments concentrate on two
difficult tokenization cases. Hence, it is the parser
that will choose, in such cases, whether to group
or not several tokens.

Our first target phenomenon is the family of
ADV+que constructions, a type of complex con-
junction in French. They are formed by adverbs
like bien (well) or ainsi (likewise) followed by the
subordinative conjunction que (that). They func-
tion like English complex conjunctions so that and
now that. Due to their structure, ADV+que con-
structions are generally ambiguous, like in the fol-
lowing examples:

1. Je mange bien que je n’aie pas faim
I eat although I am not hungry

2. Je pense bien que je n’ai pas faim
I think indeed that I am not hungry

In example 1, the sequence bien que forms a
complex conjunction (although) whereas in exam-
ple 2, the adverb bien (indeed) modifies the verb
pense (think), and the conjunction que (that) intro-
duces the sentential complement je n’ai pas faim
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(I am not hungry). In treebanks, the different read-
ings are represented through the use of words-
with-spaces in the case of complex conjunctions.

Our second target phenomenon is the family of
partitive articles which are made of the preposition
de (of ) followed by the definite determiner le, la,
l’ or les2 (the). These de+DET constructions are
ambiguous, as shown in the following examples:

3. Il boit de la bière
He drinks some beer

4. Il parle de la bière
I talks about the beer

In example 3, the sequence de la forms a deter-
miner (some) whereas in example 4, de is a prepo-
sition (about) and la is the determiner (the) of the
noun bière (bière).

We focus on these constructions for two rea-
sons. First, because they are extremely frequent.
For instance, in the frWaC corpus, from a total of
54.8M sentences, 1.15M sentences (2.1%) contain
one or more occurrences of our target ADV+que
constructions and 26.7M sentences (48.6%) con-
tain a de+DET construction (see Tables 1 and 2).
Moreover, in a corpus of 370 M words in French,3

des is the 7th most frequent word. Second, be-
cause they are perfect examples of phenomena
which are difficult to process by a tokenizer. In or-
der to decide, in example 1, that bien que is a com-
plex subordinate conjunction, non-trivial morpho-
logical, lexical and syntactic clues must be taken
into account, such as the subcategorization frame
of the verb of the principal clause and the mood of
the subordinate clause. All these clues are difficult
to take into account during tokenization, where the
syntactic structure of the sentence is not yet ex-
plicit.

Ask the parser to perform tokenization will not
always solve the problem. Even state-of-the-art
parsers can fail to predict the right structure for
the cases we are dealing with. The main reason
is that they are trained on treebanks of limited
size, and some lexico-syntactic phenomena can-
not be well modeled. This brings us to the sec-
ond topic of this paper, which is the integration of
external linguistic resources in a treebank-trained
probabilistic parser. We show that, in order to cor-

2Sequences de le and de les do not appear as such in
French. They have undergone a morpho-phonetic process
known as amalgamation and are represented as tokens du and
des. In our pipeline, they are artificially detokenized.

3Newspaper Le Monde from 1986 to 2002.

rectly solve the two problems at hand, the parser
must have access to lexico-syntactic information
that can be found in a syntactic lexicon. We pro-
pose a simple way to introduce such information in
the parser by defining new linguistic features that
blend smoothly with treebank features used by the
parser when looking for the optimal parse tree.

The paper is organized as follows: Section 2 de-
scribes related work on MWE parsing. Section 3
proposes a way to represent multiword units by
means of syntactic dependencies. In Section 4, we
briefly describe the parser that has been used in
this work, and in Section 5, we propose a way to
integrate a syntactic lexicon into the parser. Sec-
tion 6 describes the data sets used for the experi-
ments, which results are presented and discussed
in Section 7. Section 8 concludes the paper.

2 Related Work

The famous “pain-in-the-neck” article by Sag et
al. (2002) discusses MWEs in parsers, contrasting
two representation alternatives in the LinGO ERG
HPSG grammar of English: compositional rules
and words-with-spaces. The addition of composi-
tional rules for flexible MWEs has been tested in a
small-scale experiment which showed significant
coverage improvements in HPSG parsing by the
addition of 21 new MWEs to the grammar (Villav-
icencio et al., 2007).

It has been demonstrated that pre-grouping
MWEs as words-with-spaces can improve the per-
formance of shallow parsing for English (Ko-
rkontzelos and Manandhar, 2010). Nivre and Nils-
son (2004) obtained similar results for dependency
parsing of Swedish. They compare models trained
on two representations: one where MWEs are
linked by a special ID dependency, and another
one based on gold pre-tokenization. Their results
show that the former model can recognize MWEs
with F1=71.1%, while the latter can significantly
improve parsing accuracy and robustness in gen-
eral. However, the authors admit that “it remains
to be seen how much of theoretically possible im-
provement can be realized when using automatic
methods for MWU recognition”.

Several methods of increasing complexity have
been proposed for fully automatic MWE tokeniza-
tion: simple lexicon projection onto a corpus
(Kulkarni and Finlayson, 2011), synchronous lex-
icon lookup and parsing (Wehrli et al., 2010; Sere-
tan, 2011), token-based classifiers trained using

1117



association measures and other contextual features
(Vincze et al., 2013a), or contextual sequence
models like conditional random fields (Constant
and Sigogne, 2011; Constant et al., 2013b; Vincze
et al., 2013b) and structured perceptron (Schnei-
der et al., 2014). In theory, compound function
words like ADV+que and de+DET allow no inter-
nal variability, thus they should be represented as
words-with-spaces. However, to date no satisfac-
tory solution has been proposed for automatically
tokenizing ambiguous MWEs.

Green et al. (2013) propose a constituency pars-
ing model which, as a by-product, performs MWE
identification. They propose a flat representation
for contiguous expressions in which all elements
are attached to a special node, and then they com-
pare several parsing models, including an origi-
nal factored-lexicon PCFG and a tree substitution
grammar. These generic parsing models can be
used for parsing in general, but they have inter-
esting memorization properties which favor MWE
identification. Their experiments on French and
Arabic show that the proposed models beat the
baseline in MWE identification while producing
acceptable general parsing results.

Candito and Constant (2014) and Vincze et al.
(2013c) present experiments on dependency pars-
ing for MWE identification which are the closest
to our settings. Vincze et al. (2013c) focus on light
verb constructions in Hungarian. They propose
distinguishing regular verbal dependencies from
light verbs and their complements through four
special labels prefixed by LCV-. Then, they train
the Bohnet parser (Bohnet, 2010) using standard
parameters and features, and evaluate on a gold
test set. They report no significant changes in at-
tachment scores, whereas F1 for light verb iden-
tification is 75.63%, significantly higher than the
baseline methods of lexicon projection (21.25%)
and classification (74.45%).

Candito and Constant (2014) compare several
architectures for dependency parsing and MWE
identification in French. For regular MWEs like
noun compounds, they use regular expressions to
automatically generate an internal syntactic struc-
ture, combining standard and MWE-dedicated de-
pendency labels. Irregular expressions like com-
plex conjunctions are represented as separate to-
kens, with a special DEP CPD dependency that
links all tokens to the first MWE word (Constant
et al., 2013a). They compare different architec-

tures for MWE identification before, during and
after parsing, showing that the best architecture
depends on whether the target MWEs are regular
or irregular.

Similarly to these two papers, we use a special
dependency to model MWEs and evaluate pars-
ing and identification accuracy. Our work departs
from theirs on three important aspects. First, we
concentrate on syntactically irregular compounds,
that we represent with a new kind of dependency.
Second, we integrate into the parser a syntactic
lexicon in order to help disambiguate ADV+que
and de+DET constructions. Third, we built a spe-
cific evaluation corpus to get a better estimation of
the performances of our model on ADV+que and
de+DET constructions.

3 The MORPH Dependency

In order to let the parser take the tokenization de-
cisions, we propose not to group sequences of to-
kens of the form ADV+que and de+DET at tok-
enization time. Instead, we transform the task of
segmentation decision into a parsing decision task.

We associate a syntactic structure to ADV+que
and de+DET constructions by introducing a new
type of dependency that we call MORPH. It is not
a standard syntactic dependency, but a reminiscent
of the morphological dependencies of Mel’čuk
(1988), similar to the DEP CPD label proposed by
Candito and Constant (2014) or the ID depen-
dency of Nivre and Nilsson (2004), except that we
focus on syntactically-motivated MWEs, propos-
ing a regular structure for them.

The syntactic structures of examples 1 and 2,
introduced in Section 1, are represented below4.

Example 1.

CLS VRB ADV CSU ... VRB ...
Je mange bien que ... aie ...

SUJ

MOD

MORPH

OBJ

Example 2.

CLS VRB ADV CSU ... VRB ...
Je pense bien que ... ai ...

SUJ

OBJ

MOD

OBJ

4In the examples, parts of speech CLS, VRB, ADV and CSU
respectively stand for subject clitic pronoun, verb, adverb and
subordinating conjunction. Syntactic labels SUJ, MOD, OBJ,
DE-OBJ and SPE stand for subject, modifier, object, indirect
object introduced by the preposition de and specifier.

1118



In example 1, the complex conjunction bien que
is represented by the presence of the MORPH de-
pendency, whereas, in example 2, the adverb bien
modifies the verb pense and que introduces its ob-
ject. From an NLP perspective, the two readings
are treated the same way by the tokenizer and the
tagger. It is only at parsing time that the presence
of the complex conjunction is predicted.

The syntactic structures of examples 3 and 4 are
represented below. In example 3, the partitive ar-
ticle de la is represented by means of the MORPH

dependency. Example 4 exhibits a standard prepo-
sitional phrase structure.

Example 3.

CLI VRB PRE DET NOM
Il boit de la bière

SUJ

OBJ

SPEMORPH

Example 4.

CLI VRB PRE DET NOM
Il parle de la bière

SUJ DE-OBJ

OBJ

SPE

4 Parsing

The parser used in this study is a second-order
graph-based parser (Kübler et al., 2009). Given
a sentence W = w1 . . . wl, the parser looks for the
dependency tree T̂ of W that maximizes the score
s:

T̂ = arg max
T∈T (W )

∑
F∈F(T )

s(F )

where T (W ) is the set of all possible depen-
dency trees for sentence W and F(T ) is the set of
all relevant subparts, called factors, of tree T and
s(F ) is the score of factor F . The values of these
scores are parameters estimated during training.

We can define different models of increasing
complexity depending on the decomposition of the
tree into factors. The most simple one is the arc-
factored or first-order model, which simply de-
composes a tree into single dependencies and as-
signs them a score, independently of their context.
We used a second-order parser which decomposes
a tree into factors of three types:

1. first-order factors, made of one dependency;
2. sibling factors, made of two dependencies

sharing a common governor;

3. grandchildren factors, made of two depen-
dencies where the dependent of one of them
is the governor of the other one.

5 Integration with a Syntactic Lexicon

Although this kind of parsers achieve state-of-the-
art performances (Bohnet, 2010), their predictions
are limited to the phenomena that occur in the tree-
banks they are trained on. In particular, they of-
ten fail at correctly distinguishing elements that
are subcategorized by a verb (henceforth comple-
ments) from others (modifiers). This is due to the
fact that the nature and number of the comple-
ments is specific to each verb. If the verb did not
occur, or did not occur often enough, in the tree-
bank, the nature and number of its complements
will not be correctly modeled by the parser.

A precise description of verb complements
plays an important role in the task of predicting
the MORPH dependency, as we illustrate in exam-
ple 1. In this example, the verb manger (eat) does
not accept an object introduced by the subordinate
conjunction que (that) . This is a vital information
in order to predict the correct syntactic structure
of the sentence. If the parser cannot link the con-
junction que to the verb manger with an OBJ de-
pendency, then it has to link it with a MOD depen-
dency (it has no other reasonable solution). But
que by itself cannot be a MOD of the verb unless it
is a complex conjunction. The parser has therefore
no other choice than linking que with the adverb
using a MORPH dependency.

In order to help the parser build the right
solution in such cases, we have introduced infor-
mation derived from a syntactic lexicon in the
parser. The syntactic lexicon associates, each
verb lemma, the features +/-QUE and +/-DE, that
indicate respectively if the verb accepts an object
introduced by the subordinating conjunction que
and by the preposition de. The verbs of our
examples would have the following values:

manger -QUE -DE

penser +QUE -DE

boire -QUE -DE

parler -QUE +DE

We will call such features subcat features (SFs).
The semantics of positive feature values are quite
different from the semantics of negative ones. The
former indicates that a verb may (but does not need
to) license a complement introduced by the con-
junction que or the preposition de, whereas the
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latter indicates that the verb cannot license such a
complement. Negative feature values have, there-
fore, a higher predictive power.

Every verbal lemma occurrence in the treebank
is enriched with subcat features and three new fac-
tor templates have been defined in the parser in or-
der to model the co-occurrence of subcat features
and some syntactic configurations. These tem-
plates are represented in Figure 1. The first one is
a first-order template and the others are grandchil-
dren templates. In the template description, G, D

and GD stand respectively for governor, dependent
and grand-dependent. SF, POS, FCT and LEM re-
spectively stand for subcat feature, part of speech,
syntactic function and lemma.

1 G.SF G.POS D.FCT D.POS

2 G.SF G.POS D.FCT D.POS GD.POS

3 G.SF G.POS D.FCT D.LEM GD.POS

Figure 1: Factor templates modeling the co-
occurrence of subcat features and syntactic con-
figurations.

Two factors, of the types 1 and 3, have been rep-
resented in Figure 2. The first one models the co-
occurrence of subcat feature -QUE and an object
introduced by a subordinating conjunction. Such
feature will receive a negative score at the end
of training, since a verb having the -QUE feature
should not license a direct object introduced by
a subordinating conjunction. The second feature
models the co-occurrence of the feature -QUE and
a modifier introduced by the subordinating con-
junction QUE and having an adverb as a depen-
dent. Such a feature will receive a positive score.

1 -QUE VRB OBJ CSU

3 -QUE VRB MOD QUE ADV

Figure 2: Two factors modeling the co-occurrence
of subcat features and syntactic configurations.

6 Experimental Setup

We test the proposed model to verify the linguistic
plausibility and computational feasibility of using
MORPH links to represent syntactically idiosyn-
cratic MWEs in a dependency parser enriched
with subcat features. Therefore, we train a prob-
abilistic dependency parsing model on modified
treebank, representing ADV+que and de+DET con-
structions using this special syntactic relation in-

stead of pretokenization. Furthermore, in addition
to regular features learned from the treebank, we
also introduce and evaluate subcat features based
on a lexicon of verbal valency, which helps iden-
tifying subordinative clauses and de prepositional
phrases (see Section 5). We evaluate parsing pre-
cision and MWE identification on a test treebank
and, more importantly, on a dataset built specifi-
cally to study the representation of our target con-
structions. All experiments used the NLP tool
suite MACAON5, which comprises a second-order
graph-based parser.

6.1 Data Sets and Resources

French Treebank (FTB) The parser was trained
on the French Treebank, a syntactically annotated
corpus of news articles from Le Monde (Abeillé et
al., 2003). We used the version which was trans-
formed into dependency trees by Candito et al.
(2009), and which was also used by Candito and
Constant (2014) for experiments on MWE pars-
ing. We used a standard split of 9,881 sentences
(278K words) for training and 1,235 sentences
for test (36K words). We applied simple rules to
transform the flat representation of ADV+que and
de+DET constructions into MORPH-linked individ-
ual tokens. All other MWEs are kept unchanged in
training and test data. They are represented as sin-
gle tokens, not decomposed into individual words.

MORPH Dataset The test portion of the FTB
contains relatively few instances of our target con-
structions (see Tables 4 and 6). Thus, we have
created two specific data sets to evaluate the pre-
diction of MORPH links. As for ADV+que con-
structions, we manually selected the 7 most po-
tentially ambiguous combinations from the top-20
most frequent combinations in the French Web as
Corpus – frWaC (Baroni and Bernardini, 2006).6

As for de+DET constructions, we selected all 4
possible combinations. For each target ADV+que
and de+DET construction, we randomly selected
1,000 sentences from the frWaC based on two cri-
teria: (1) sentences should contain only one oc-
currence of the target construction and (2) sen-
tences should have between 10 and 20 words, to
avoid distracting the annotators while still provid-
ing enough context. Additionally, for de+DET we
selected only sentences in which a verb preceded
the construction, in order to minimize the occur-

5http://macaon.lif.univ-mrs.fr
6http://wacky.sslmit.unibo.it/
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ADV+que #sent conj. other #occur
ainsi 103 76.7 23.3 498,377
alors 110 88.2 11.8 291,235
autant 107 86.0 14.0 39,401
bien 99 37.4 62.6 156,798
encore 93 21.5 78.5 18,394
maintenant 120 55.8 44.2 16,567
tant 98 20.4 79.6 168,485
Total 730 56.4 43.6 1,189,257

Table 1: Annotations for ADV+que combinations
in MORPH dataset: number of annotated sen-
tences, proportion (%) of complex conjunction
uses (MORPH) and other uses, number of occur-
rences in frWaC.

de+DET #sent det. other #occur
le (du) 136 33.1 66.9 16,609,049
la 138 21.0 79.0 10,849,384
les (des) 129 77.5 22.5 23,395,857
l’ 136 16.9 83.1 8,204,687
Total 539 36.5 63.5 59,058,977

Table 2: Annotations for de+DET combina-
tions MORPH dataset: number of annotated sen-
tences, proportion (%) of complex determiner uses
(MORPH) and other uses, number of occurrences
in frWaC.

rence of nominal complements (président de la
république - president of the republic) and focus
on the determiner/preposition ambiguity. Two ex-
pert French native speakers annotated around 100
sentences per construction. Malformed or am-
biguous sentences were discarded. Disagreements
were either discussed and resolved or the sentence
was discarded.7

We can see in Table 1 that ADV+que construc-
tions are highly ambiguous, with 56.4% of the
cases being complex conjunctions. However, they
also present high variability: even though they
share identical syntactic behavior, some of them
tend to form complex conjunctions very often
(alors) while others occur more often in other syn-
tactic configurations (tant and encore). As one can
see in Table 2, de+DET sequences tend to function
as prepositions followed by a determiner with the
notable exception of de les. The reason is that de

7The dataset is available at http://pageperso.
lif.univ-mrs.fr/%7Ecarlos.ramisch/?page=
downloads/morph

les (actually the amalgame des) is actually the plu-
ral of the indefinite article (un), used with any plu-
ral noun, while the other determiners are partitives
that tend to be used only with massive nouns. The
last column of these tables shows the number of
occurrences of each construction in the frWaC cor-
pus. We can see that they are very recurrent com-
binations, specially de+DET constructions, which
account for 3.7% of the total number of bigrams
in the corpus. This underlines the importance of
correctly predicting their syntactic structure in a
parser.

DicoValence Lexicon DicoValence (van den
Eynde and Mertens, 2003) is a lexical resource
which lists the subcategorization frames of more
than 3, 700 French verbs.8 It describes more
specifically the number and nature of the verbs’
complements. Dicovalence gives a more fine-
grained description of the complements than what
is needed in our feature templates. We have only
kept, as described in Section 5, the subcat features
-QUE, +QUE, -DE and +DE of each verb. Table 3
below shows the number of verbal entries having
each of our four subcat features. Although the
number of verbs described in DicoValence is mod-
erate, its coverage is high on our data sets. It is
equal to 97.82% on the FTB test set and is equal
to 95.48% on the MORPH dataset.

-QUE +QUE -DE +DE

3,814 356 3,450 720

Table 3: Number of verbs in DicoValence per
value of subcat feature.

6.2 Evaluation

We evaluate our models on two aspects: parsing
quality and MWE identification (Nivre and Nils-
son, 2004; Vincze et al., 2013c; Candito and Con-
stant, 2014). First, we use standard parsing at-
tachment scores to verify whether our models im-
pact parsing performance in general. We compare
the generated dependency trees with the reference
in the test portion of the FTB, reporting the pro-
portion of matched links, both in terms of struc-
ture – unlabeled attachment score (UAS) – and of
labeled links – labeled attachment score (LAS).

Since our focus is on MWE parsing, we are also

8http://bach.arts.kuleuven.be/
dicovalence/
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interested in MWE identification metrics. We fo-
cus on words whose dependency label is MORPH

and calculate the proportion of correctly predicted
MORPH links among those in the parser output
(precision), among those in the reference (recall)
and the F1 average. Since some of the phenomena
are quite rare in the FTB test portion, we focus
on the MORPH dataset, which contains around 100
instances of each target construction.

We compare our approach with two simple
baselines. The first one consists in pretokenizing
ADV+que systematically as a single token, while
de+DET is systematically left as two separate to-
kens. This baseline emulates the behavior of most
parsing pipelines, which deal with functional com-
plex words during tokenization. This corresponds
to choosing the majority classes in the last row of
Tables 1 and 2. For ADV+que, the precision of the
baseline is 56.4%. If we assume recall is 100%,
this yields an F1 score of 72.2%. For de+DET,
however, recall is 0% since no MORPH link is pre-
dicted at all. Therefore, we only look at the base-
line’s precision of 63.5%. A second, slightly more
sophisticated baseline, consists in choosing the
majority class for each individual construction and
average precisions over the constructions. In this
case, the average precision is 75.3% for ADV+que
and 76.6% for de+DET.

We compare our model to the one proposed
by Green et al. (2013). We used the pretrained
model available as part of the Stanford parser9.
Their model outputs constituent trees, which were
automatically converted to unlabeled dependency
structures. We ignore the nature of the dependency
link, only checking whether the target construction
elements are linked in the correct order.

Our experiments use the MACAON tool suite.
For the FTB, gold POS and gold lemmas are given
as input to the parser. In the case of the MORPH

dataset, for which we do not have gold POS and
lemmas, they are predicted by MACAON. The first
best prediction is given as input to the parser.

7 Evaluation Results

7.1 ADV+que Constructions
Table 4 reports the performances of the parser10

on the test set of FTB. The rows of the table
9http://nlp.stanford.edu/software/

lex-parser.shtml
10Trained on the modified train set of the FTB, where com-

plex conjunctions and partitive determiners have been repre-
sented by means of the MORPH dependency

SF LAS UAS MORPH Prec. Rec.
no 88.98 90.63 27 87.10 100
yes 88.96 90.56 27 81.81 100

Table 4: Attachment scores, count, precision and
recall of the MORPH dependency for ADV+que in
FTB test, without and with subcat features (SF).

respectively display the results obtained without
and with the use of subcat features (SF). The sec-
ond and third columns represent standard attach-
ment metrics, column four displays the number of
ADV+que conjunctions present in the FTB test set
FTB and the two last columns show the precision
and recall of the MORPH dependency prediction.
The table shows that the number of occurrences
of ADV+que conjunctions is very small (27). It is
therefore difficult draw clear conclusions concern-
ing the task of predicting the MORPH dependency.
The precision and recall have nevertheless been re-
ported. The recall is perfect (all MORPH depen-
dencies have been predicted) and the the precision
is reasonable (the parser overpredicts a little). The
table also shows that the use of subcat features is
not beneficial, as attachment scores as well as pre-
cision decrease. The decrease of precision is mis-
leading, though, due to the small number of occur-
rences it has been computed on.

Table 5 displays the precision, recall and F1 of
the prediction of the MORPH dependency on the
730 ADV+que sentences of the MORPH dataset,
without and with the use of subcat features. The
scores obtained are lower than the same experi-
ments on the FTB.Precision is higher than recall,
which indicates that the parser has a tendency to
underpredict. We also present the precision of
the two baselines described in Section 6.2. Only
in two cases the per-construction majority base-
line (indiv.) outperforms our parser without sub-
cat features. These two constructions do not tend
to form complex conjunctions, that is, the parser
overgenerates MORPH dependencies. Here, subcat
features help increasing precision, systematically
outperforming the baselines.

The introduction of subcat features has a ben-
eficial but limited impact on the results, increas-
ing precision and lowering a bit recall, augment-
ing the tendency of the parser to under predict
MORPH dependencies. Overall, our models are
more precise than the Stanford parser at predict-
ing MORPH links, specially for bien que and en-
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Baseline prec. Green et Without SF With SF
ADV+que global indiv. al. (2013) Prec. Recall F1 Prec. Recall F1
ainsi que 76.7 76.7 81.44 96.00 91.14 93.50 95.94 89.87 92.81
alors que 88.2 88.2 95.10 92.78 92.78 92.78 93.81 93.81 93.81
autant que 86.0 86.0 92.00 86.95 65.21 74.53 86.66 70.65 77.84
bien que 37.4 62.6 55.22 86.84 89.18 88.00 91.66 89.18 90.41
encore que 21.5 78.5 64.52 72.72 80.00 76.19 92.85 65.00 76.47
maintenant que 55.8 55.8 87.01 85.24 77.61 81.25 90.91 74.62 81.96
tant que 20.4 79.6 90.91 78.94 75.00 76.92 82.35 70.00 75.67
Total 56.4 75.3 83.06 88.71 82.03 85.24 91.57 81.79 86.41

Table 5: MORPH link prediction for ADV+que constructions: precision of global majority baseline, preci-
sion of individual per-construction baseline, precision of Green et al. (2013) constituent parser, precision,
recall and F1 of our dependency parser without and with subcat features.

core que. However, this is not verified for all in-
dividual ADV+que constructions. The table also
shows an important variety among the seven com-
plex conjunctions studied. Some of them are very
well predicted (F1 = 93.5) while others are poorly
predicted (F1 = 75.67). This is partly due to the
tendency of some ADV+que sequences to be part
of larger frozen or semi-frozen constructions and
to be used with a different semantico-syntactic be-
havior. An error analysis performed on the tant
que sequence revealed that 40% of the errors were
due to the occurrence of tant que as part of the
larger en tant que expression, while 20% of the
errors were due to the usage of tant que as a com-
parative expression.

7.2 de+DET Constructions

SF LAS UAS MORPH Prec. Rec.
no 89.02 90.23 145 85.85 81.12
yes 88.37 89.67 145 86.52 83.92

Table 6: Attachment scores, count, precision and
recall of the MORPH dependency for de+DET in
FTB test, without and with subcat features (SF).

Table 6 reports the results of the same experi-
ments on de+DET constructions. It shows that the
frequency of de+DET constructions is higher than
ADV+que constructions. It also shows that the in-
troduction of subcat features has a positive impact
on the prediction of the MORPH dependency, but a
negative effect on the attachment scores.

Table 7 reveals that the prediction of the correct
structure of de+DET constructions is more difficult
than that of ADV+que constructions for the parser.

Here, not only the majority class is the non-MWE
analysis (63.5%), but also there is higher ambigu-
ity because of nominal and adverbial complements
that have the same structure. This impacts the per-
formance of the Stanford parser, which overgener-
ates MORPH links, achieving the lowest precision
for all constructions except for des. Results also
show that the introduction of subcat features has
an important impact on the quality of the predic-
tion (F1 jumps from 75% to 84.67%). The use
of subcat features slightly improves the identifi-
cation of de les, which is a determiner most of
the time. On the other hand, it greatly improves
F1 for other constructions, which appear less of-
ten as determiners. We believe that the higher im-
pact of subcat frames on de+DET is mainly due to
the fact that the number of verbs licensing comple-
ments introduced by the preposition de is higher
than the number of verbs licensing complements
introduced by the conjunction que (see Table 3).
Therefore, the parser trained without subcat fea-
tures can only rely on the examples present in the
FTB which are proportionally smaller in the first
case than in the second.

8 Conclusions

This paper introduced and evaluated a joint pars-
ing and MWE identification model that can ef-
fectively detect and represent ambiguous com-
plex function words. The difficulty of process-
ing such expressions is underestimated because
of their limited variability. They often are pre-
grouped as words-with-spaces in many parsing ar-
chitectures (Sag et al., 2002). However, we did
not use gold tokenization, unrealistic for ambigu-
ous MWEs (Nivre and Nilsson, 2004; Korkontze-
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Baseline prec. Green et Without SF With SF
de+DET global indiv. al. (2013) Prec. Recall F1 Prec. Recall F1
de le 66.9 79.0 56.96 72.50 64.44 68.23 85.41 91.11 88.17
de la 79.0 77.5 22.83 58.13 86.20 69.44 81.25 89.65 85.24
de les 22.5 66.9 87.72 97.36 74.00 84.09 98.70 76.00 85.87
de l’ 83.1 83.1 18.55 57.14 69.56 62.74 64.51 86.95 74.07
Total 63.5 76.6 44.37 77.00 73.09 75.00 86.70 82.74 84.67

Table 7: MORPH link prediction for de+DET constructions: precision of global majority baseline, preci-
sion of individual per-construction baseline, precision of Green et al. (2013) constituent parser, precision,
recall and F1 of our dependency parser without and with subcat features.

los and Manandhar, 2010).
We proposed to deal with these constructions

during parsing, when the required syntactic infor-
mation to disambiguate them is available. Thus,
we trained a graph-based dependency parser on a
modified treebank where complex function words
were linked with a MORPH dependency. Our re-
sults demonstrate that a standard parsing model
can correctly learn such special links and predict
them for unseen constructions. Nonetheless, the
model is more accurate when we integrate exter-
nal information from a syntactic lexicon. This
improved precision for ADV+que and specially
de+DET constructions. For the latter, F1 improved
in almost 10%, going from 75% to 84.61%.

This study raised several linguistic and compu-
tational questions. Some complex function words
include more than two elements, like si bien que
(so much that) and d’autant (plus) que (especially
as). Moreover, they may contain nested expres-
sions with different meanings and structures, e.g.
tant que (as long as) is a conjunction but en tant
que (as) is a preposition. The same applies for
quantified partitive determiners, like beaucoup de
(much) and un (petit) peu de (a (little) bit of ).
Their identification and representation is planned
as a future extension to this work.

We also would like to compare our approach to
sequence models (Schneider et al., 2014). Care-
ful error analysis could help us understand in
which cases syntactic features can help. More-
over, different variants of the syntactic features
and more sophisticated representation for syntac-
tic lexicons can help improve MWE parsing fur-
ther. For instance, we represent the subcat fea-
tures of pronominal verbs and their simple ver-
sions with the same features, but they should be
distinguished, e.g. se rappeler (remember) is +DE

but rappeler (remind) is -DE.
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Abstract

Semantic role labeling (SRL) is one of the
basic natural language processing (NLP)
problems. To this date, most of the suc-
cessful SRL systems were built on top of
some form of parsing results (Koomen et
al., 2005; Palmer et al., 2010; Pradhan et
al., 2013), where pre-defined feature tem-
plates over the syntactic structure are used.
The attempts of building an end-to-end
SRL learning system without using pars-
ing were less successful (Collobert et al.,
2011). In this work, we propose to use
deep bi-directional recurrent network as an
end-to-end system for SRL. We take on-
ly original text information as input fea-
ture, without using any syntactic knowl-
edge. The proposed algorithm for seman-
tic role labeling was mainly evaluated on
CoNLL-2005 shared task and achieved F1

score of 81.07. This result outperforms
the previous state-of-the-art system from
the combination of different parsing trees
or models. We also obtained the same
conclusion with F1 = 81.27 on CoNLL-
2012 shared task. As a result of simplicity,
our model is also computationally efficient
that the parsing speed is 6.7k tokens per
second. Our analysis shows that our model
is better at handling longer sentences than
traditional models. And the latent vari-
ables of our model implicitly capture the
syntactic structure of a sentence.

1 Introduction

Semantic role labeling (SRL) is a form of shal-
low semantic parsing whose goal is to discover
the predicate-argument structure of each predicate
in a given input sentence. Given a sentence, for
each target verb (predicate) all the constituents in

the sentence which fill a semantic role of the verb
have to be recognized. Typical semantic argu-
ments include Agent, Patient, Instrument, etc., and
also adjuncts such as Locative, Temporal, Man-
ner, Cause, etc.. SRL is useful as an intermedi-
ate step in a wide range of natural language pro-
cessing (NLP) tasks, such as information extrac-
tion (Bastianelli et al., 2013), automatic document
categorization (Persson et al., 2009) and question-
answering (Dan and Lapata, 2007; Surdeanu et al.,
2003; Moschitti et al., 2003).

SRL is considered as a supervised machine
learning problem. In traditional methods, linear
classifier such as SVM is often employed to per-
form this task based on features extracted from the
training corpus. Actually, people often treat this
problem as a multi-step classification task. First,
whether an argument is related to the predicate is
determined; next the detail relation type was de-
cided(Palmer et al., 2010).

Syntactic information is considered to play an
essential role in solving this problem (Punyakanok
et al., 2008a). The location of an argument on syn-
tactic tree provides an intermediate tag for improv-
ing the performance. However, building this syn-
tactic tree also introduces the prediction risk in-
evitably. The analysis in (Pradhan et al., 2005)
found that the major source of the incorrect pre-
dictions was the syntactic parser. Combination of
different syntactic parsers was proposed to address
this problem, from both feature level and model
level (Surdeanu et al., 2007; Koomen et al., 2005;
Pradhan et al., 2005).

Besides, feature templates in this classification
task strongly rely on the expert experience. They
need iterative modification after analyzing how the
system performs on development data. When the
corpus and data distribution are changed, or when
people move to another language, the feature tem-
plates have to be re-designed.

To address the above issues, (Collobert et al.,
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2011) proposed a unified neural network architec-
ture using word embedding and convolution. They
applied their architecture on four standard NLP
tasks: Part-Of-Speech tagging (POS), chunking
(CHUNK), Named Entity Recognition (NER) and
Semantic Role Labeling (SRL). They were able to
reach the previous state-of-the-art performance on
all these tasks except for SRL. They had to resort
to parsing features in order to make the system
competitive with state-of-the-art performance.

In this work, we propose an end-to-end system
using deep bi-directional long short-term memo-
ry (DB-LSTM) model to address the above dif-
ficulties. We take only original text as the in-
put features, without any intermediate tag such
as syntactic information. The input features are
processed by the following 8 layers of LSTM bi-
directionally. At the top locates the conditional
random field (CRF) model for tag sequence pre-
diction. We achieve the state-of-the-art perfor-
mance of f-score F1 = 81.07 on CoNLL-2005
shared task and F1 = 81.27 on CoNLL-2012
shared task. At last, we find the traditional syn-
tactic information can also be inferred from the
learned representations.

2 Related Work

People solve SRL problems in two major ways.
The first one follows the traditional spirit widely
used in NLP basic problems. A linear classifier is
employed with feature templates. Most efforts fo-
cus on how to extract the feature templates that
can best describe the text properties from train-
ing corpus. One of the most important features
is from syntactic parsing, although syntactic pars-
ing is also considered as a difficult problem. Thus
system combination appear to be the general solu-
tion.

In the work of (Pradhan et al., 2005), the syn-
tactic tags are produced by Charniak parser (Char-
niak, 2000; Charniak and Johnson, 2005) and
Collins parser (Collins, 2003) respectively. Based
on this, different systems are built to generate
SRL tags. These SRL tags are used to extend the
original feature templates, along with flat syntactic
chunking results. At last another classifier learns
the final SRL tag from the above results. In their
analysis, the combination of three different syntac-
tic view brings large improvement for the system.

Similarly, Koomen et al. (Koomen et al., 2005)
combined the system in another way. They built

multiple classifiers and then all outputs are com-
bined through an optimization problem. Surdeanu
et al. fully discussed the combination strategy in
(Surdeanu et al., 2007).

Beyond the above traditional methods, the sec-
ond way try to solve this problem without feature
engineering. Collobert et al. (Collobert et al.,
2011) introduced a neural network model consists
of word embedding layer, convolution layers and
CRF layer. This pipeline addressed the data spar-
sity by initializing the model with word embed-
dings which is trained from large unlabeled text
corpus. However, the convolution layer is not the
best way to model long distance dependency since
it only includes words within limited context. So
they processed the whole sequence for each giv-
en pair of argument and predicate. This results in
the computational complexity ofO(npL2), with L
denoting the sequence length and np the number
of predicate, while the complexity of our model is
linear (O(npL)). Moreover, in order to catch up
with the performance of traditional methods, they
had to incorporate the syntactic features by using
parse trees of Charniak parser (Charniak, 2000)
which still provides the major contribution.

At the inference stage, structural constraints of-
ten lead to improved results (Punyakanok et al.,
2008b). The constraints comes from annotation
conventions of the task and other linguistic consid-
erations. With dynamic programming, (Täckström
et al., 2015) enhance the inference efficiency fur-
ther. But designation of the constraints depends
much on the linguistic knowledge.

Nevertheless, the attempts of building end-to-
end systems for NLP become popular in recen-
t years. Inspired by the work in computer vi-
sion, people hierarchically organized a window of
words through convolution layers in deep form
to account for the higher level of organization to
solve the document classification task (Kim, 2014;
Zhang and LeCun, 2015). Step further, people
have also achieved success in directly mapping
the sequence to sequence level target as the work
in dependency parsing and machine translation
(Vinyals et al., 2014; Sutskever et al., 2014).

3 Approaches

In this paper, we propose an end-to-end system
based on recurrent topology. Recurrent neural net-
work (RNN) has natural advantage in modeling
sequence problems. The past information is built
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up through the recurrent layer when model con-
sumes the sequence word by word as shown in E-
q. 1. x and y are the input and output of the recur-
rent layer with (t) denoting the time step, wmf and
wmi are the matrix from input or recurrent layer to
hidden layer. σ is the activation function. With-
out y(t−1) term, the rnn model returns to the feed
forward form.

y(t)
m = σ(

∑
f

wmf x
(t)
f +

∑
i

wmi y
(t−1)
i ) (1)

However, people often met with two difficulties.
First, information of the current word strongly de-
pends on distant words, rather than its neighbor-
hood. Second, gradient parameters may explode
or vanish especially in processing long sequences
(Bengio et al., 1994). Thus long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
was proposed to address the above difficulties.

In the following part, we will first give a brief
introduction about the LSTM and then demon-
strate how to build up a network based on LSTM
to solve a typical sequence tagging problem: se-
mantic role labeling.

3.1 Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997; Graves et al., 2009) is an
RNN architecture specifically designed to address
the vanishing gradient and exploding gradient
problems. The hidden neural units are replaced
by a number of memory blocks. Each memory
block contains several cells, whose activations are
controlled by three multiplicative gates: the input
gate, forget gate and output gate. With the above
change, the original rnn model is improved to be:

y(t)
m = σ(s(t)c,m) · π(t)

m (2)

= σ(n(t)
m ρ

(t)
m + φ(t)

m s
(t−1)
c,m ) · π(t)

m (3)

Now y is the memory block output. n is equivalent
to the original hidden value y in rnn model. ρ, φ
and π are the input, forget and output gates value.
sc,m is state value of cell c in blockm and c is fixed
to be 1 and omitted in common work. The compu-
tation of three multiplicative gates comes from in-
put value, recurrent value and cell state value with
different activations σ respectively as shown in the

following and Fig. 1:

n(t)
m : σn(

∑
f

wmf,nx
(t)
f +

∑
i

wmi,ny
(t−1)
i ) (4)

ρ(t)
m : σρ(

∑
f

wmf,ρx
(t)
f +

∑
i

wmi,ρy
(t−1)
i + wmρ s

(t−1)
m )

φ(t)
m : σφ(

∑
f

wmf,φx
(t)
f +

∑
i

wmi,φy
(t−1)
i + wmφ s

(t−1)
m )

π(t)
m : σπ(

∑
f

wmf,πx
(t)
f +

∑
i

wmi,πy
(t−1)
i + wmπ s

(t)
m )

Figure 1: LSTM memory block with a single cell.
(Graves et al., 2009)

The effect of the gates is to allow the cells to
store and access information over long periods of
time. When the input gate is closed, the new com-
ing input information will not affect the previous
cell state. Forget gate is used to remove the histor-
ical information stored in the cells. The rest of the
network can access the stored value of a cell only
when its output gate is open.

In language related problems, the structural
knowledge can be extracted out by processing se-
quences both forward and backward so that the
complementary information from the past and the
future can be integrated for inference. Thus bi-
directional LSTM (B-LSTM) containing two hid-
den layers were proposed(Schuster and Paliwal,
1997). Both hidden layers connect to the same in-
put layer and output layer, processing the same se-
quence in two directions respectively (A. Graves,
2013).

In this work, we utilize the bi-directional infor-
mation in another way. First a standard LSTM
processes the sequence in forward direction. The
output of this LSTM layer is taken by the next
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LSTM layer as input, processed in reversed di-
rection. These two standard LSTM layers com-
pose a pair of LSTM. Then we stack LSTM layer-
s pair after pair to obtain the deep LSTM model.
We call this topology as deep bi-directional LSTM
(DB-LSTM) network. Our experiments show that
this architecture is critical to achieve good perfor-
mance.

3.2 Pipeline

We process the sequence word by word. Two in-
put features play an essential role in this pipeline:
predicate (pred) and argument (argu), with argu-
ment describing the word under processing. The
output for this pair of words is their semantic role.
If a sequence has np predicates, we will process
this sequence np times.

We also introduce two other features, predicate
context (ctx-p) and region mark (mr). Since a s-
ingle predicate word can not exactly describe the
predicate information, especially when the same
words appear more than one times in a sentence.
With the expanded context, the ambiguity can be
largely eliminated. Similarly, we use region mark
mr = 1 to denote the argument position if it lo-
cates in the predicate context region, or mr = 0
if not. These four simple features are all we need
for our SRL system. In Tab. 1 we give an example
sequence with the labels for each word. We do not
use other types of features such as part of speech
(POS), syntactic parsing, etc..

time argu pred ctx-p mr label
1 A set been set . 0 B-A1
2 record set been set . 0 I-A1
3 date set been set . 0 I-A1
4 has set been set . 0 O
5 n’t set been set . 0 B-AM-NEG
6 been set been set . 1 O
7 set set been set . 1 B-V
8 . set been set . 1 O

Table 1: An example sequence with 4 input fea-
tures: argument, predicate, predicate context (con-
text length is 3) , region mark. “IOB” tagging
scheme is used (Collobert et al., 2011).

Because the large number of parameters asso-
ciated with the argument words, similar to (Col-
lobert et al., 2011), the pre-trained word represen-
tations are employed to address the data sparsity
issue. We used a large unlabeled text corpus to
train a neural language model (NLM) (Bengio et
al., 2006; Bengio et al., 2003) and then initial-

ized the argument and predicate word representa-
tions with parameters from the NLM representa-
tions. There are various ways of obtaining good
word representations (Mikolov et al., 2013; Col-
lobert and Weston, 2008; Mnih and Kavukcuoglu,
2013; Yu et al., 2014). A systematic comparison
of them on the task of SRL is beyond the scope of
this work.

The above four features are concatenated to be
the input representation at this time step for the
following LSTM layers. As described in Sec. 3.1,
we use DB-LSTM topology to learn the sequence
knowledge and we build up to 8 layers of DB-
LSTM in our work.

As in traditional methods, we employ CRF
(Lafferty et al., 2001) on top of the network for
the final prediction. It takes the representations
provided by the last LSTM layer as input to model
the strong dependance among adjacent tags.

Figure 2: DB-LSTM network.Shadow part denote
the predicate context within length 1.

The complete model with 4 LSTM layers is il-
lustrated in Fig. 2. At the bottom of the graph lo-
cates the word sequence in Tab. 1. For a given time
step (step 2 as an example), argument and predi-
cate are specified with different color. We use the
shadowed region to denote the predicate contex-
t. The temporal expanded version of the model is
shown in Fig. 3. L-H denotes the LSTM hidden
layer.

We use the stochastic gradient descent (SGD)
algorithm as the training technique for the whole
pipeline (Lecun et al., 1998). For a given se-
quence, we look up the embedding of each word
and process this vector with the following LSTM
layers for the high level representation. After hav-
ing finished the whole sequence, we take the rep-
resentations of all time steps as the input features
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Figure 3: Temporal expanded DB-LSTM network.
Bars denote that the connections are blocked by
the closed gates. Shadow part denotes the predi-
cate context.

for CRF to perform the sequence tagging task. The
traditional viterbi decoding is used for inference.
The gradient of the log-likelihood of the tag se-
quence with respect to the input of the CRF is cal-
culated and back-propagated to all the DB-LSTM
layers to get the gradient of the parameters (Col-
lobert et al., 2011).

4 Experiments

We mainly evaluated and analyzed our system on
the commonly used CoNLL-2005 shared task da-
ta set and the conclusions are also validated on
CoNLL-2012 shared task.

4.1 Data set

CoNLL-2005 data set takes section 2-21 of Wall
Street Journal (WSJ) data as training set, and sec-
tion 24 as development set. The test set consist-
s of section 23 of WSJ concatenated with 3 sec-
tions from Brown corpus (Carreras and Màrquez,
2005). CoNLL-2012 data set is extracted from
OntoNotes v5.0 corpus. The description and sep-
aration of train, development and test data set can
be found in (Pradhan et al., 2013).

4.2 Word embedding

We trained word embeddings with English
Wikipedia (Ewk) corpus using NLM (Bengio et
al., 2006). The corpus contains 995 million to-
kens. We transformed all the words into their
lowercase and the vocabulary size is 4.9 million.
About 5% words in CoNLL 2005 data set can not
be found in Ewk dictionary and are marked as

<unk>. In all experiments, we use the same word
embedding with dimension 32.

4.3 Network topology

In this part, we will analyze the performance of
two different networks, the CNN and LSTM net-
work. Although at last we find CNN can not pro-
vide the results as good as that from LSTM, the
analysis still help us to gain a deep insight of this
problem. In CNN, we add argument context as
the fifth feature and the other four features are the
same as that used in LSTM. In order to have good
understanding of the contribution from each mod-
eling decision, we started from a simple model and
add more units step by step.

4.3.1 Convolutional neural network
Using CNN to solve SRL problem has been intro-
duced in (Collobert et al., 2011). Since we only
focus on the analysis of features, a simplified ver-
sion is used here.

Our feature set consists of five parts as de-
scribed above. The representation of argument
and predicate can be obtained by looking up the
Emb(Ewk) dictionary. And the representation of
argument context and predicate context can be ob-
tained by concatenating the embedding of each
word in the context. For each of the above four
parts, we add a hidden layer. Then all these four
hidden layers together with region mark are pro-
jected onto the next hidden layer. At last we use a
CRF layer for prediction (See Fig. 4). With above
set up, the computational complexity is O(npL).

Figure 4: CNN Pipeline. Shadow parts denote
the argument context and predicate context respec-
tively

The size of hidden layers connected to argu-
ment or predicate is set to be h1w = 32. The size
of the other two hidden layers connected to con-
text embedding is set to be h1c = 128 since the
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corresponding inputs are larger. To simplify the
parameter setting and results comparison, we use
the same learning rate l = 1× 10−3 for each layer
and keep this rate a constant during model train-
ing. The second hidden layer dimension h2 is also
128. All hidden layer activation function is tanh.

In Tab. 2, it is shown that longer argument
and predicate context result in better performance,
since longer context brings more information. We
observe the same trends in other NLP experiments,
such as NER, POS tagging. The difference is that
we do not need to use the context length up to 11.
This is because most of the useful information for
NER and POS tagging is local respect the label
position, while in SRL there exists long distance
relationship. So in traditional methods for SRL,
syntactic trees are often introduced to account for
such relation. In order to see whether the improve-
ment from CNN-2 to CNN-3 is due to longer con-
text or larger model size, we tested a model CNN-
6 with same context length but more model param-
eters. As we can see from the result of CoNLL-
2005 data set (Tab. 2), larger model does not im-
prove the result.

name h1c ctx-a ctx-p mr F1(dev) F1

CNN-1 128 1 5 y 41.22 41.24
CNN-2 128 5 5 y 51.83 52.09
CNN-3 128 11 5 y 52.81 53.07
CNN-4 128 11 1 y 49.69 50.70
CNN-5 128 11 5 n 36.40 37.50
CNN-6 256 5 5 y 51.60 51.91

Table 2: F1 of CNN method on development set
and test set of CoNLL-2005 data set.

Without using region mark (mr) feature, the F1

drops from the 53.07 of CNN-3 to the 37.50 of
CNN-5. Since it is generally believed that words
near the predicate are more likely to be related to
the predicate.

SRL is a typical problem with long distance de-
pendency, while the convolution operation can on-
ly learn the knowledge from the limited neighbor-
hood. This is why we have to introduce long con-
text. However, the language information can not
be expressed just by linearly expanding the con-
text as what we did in CNN pipeline. In order to
better summarize the sequence structure, we turn
to LSTM network.

4.3.2 LSTM network
Here the feature set consists of four parts. Ar-
gument and predicate are necessary parts in this

problem. In recurrent model, argument context
(ctx-a) is no longer needed and we only expand the
predicate context. We also need the region mark
defined in the same way as in CNN. The archi-
tecture has been shown in Fig. 2 and described in
Sec. 3.2.

Since it is difficult to propagate the error from
the top to the bottom layers, we use two learning
rates. At the bottom, i.e. from embeddings to the
first LSTM layer, we use lb = 1 × 10−2 for mod-
el depth d <= 4 and lb = 2 × 10−2 for d > 4.
For the other LSTM layers and CRF layer, we set
learning rate l = lb × 10−3. We kept all learn-
ing rates constant during training. The model size
can be enlarged by increasing the number of LST-
M layers (d) or the dimension of hidden layers (h).
L2 weight decay in SGD is used for model regu-
larization and we set its strength r2 = 8× 10−4:

w ← w − l · (g + r2 · w) (5)

where w denotes the parameter, g the gradient of
the log likelihood of the label with respect to the
parameter.

We started on CoNLL-2005 dataset from a
small model with only one LSTM layer and h =
32. All word embeddings were randomly initial-
ized. Predicate context length was 1. Region
mark is not used. With this model, we obtained
F1 = 49.44 (Tab. 3), better than that of CNN with-
out using argument context (41.24) or region mark
(37.50). This result suggests that, the recurrent
structure can extract sequential information more
effectively than CNN.

By adding predicate context with length 5, F1

is improved from 49.44 to 56.85 (Tab. 3). This is
because we only recurrently process the argument
word, so we still need predicate context for more
detail. Further more, F1 rises to 58.71 with re-
gion mark feature. The reason is the same as we
explained in CNN pipeline.

Next we change the random initialization of
word representation to the pre-trained word rep-
resentation from Emb(Ewk). This representation
is fixed in the training process. F1 rises to 65.11
(See Tab. 3).

So far, we have shown the effect from each part
of features in LSTM network. The conclusion is
consistent with what we found in CNN network.
Besides, LSTM exhibits better abilities to learn the
sequence structure. Next, we gradually increase
the model size to further enhance the performance.

1132



Emb d ctx-p mr h F1(dev) F1

CoNLL-2005 data set
Ran 1 1 n 32 47.88 49.44
Ran 1 5 n 32 54.63 56.85
Ran 1 5 y 32 57.13 58.71
Ewk 1 5 y 32 64.48 65.11
Ewk 2 5 y 32 72.72 72.56
Ewk 4 5 y 32 75.08 75.74
Ewk 6 5 y 32 76.94 78.02
Ewk 8 5 y 32 77.50 78.28
Ewk 8 5 y 64 77.69 79.46
Ewk 8 5 y 128 79.10 80.28

fine tuning
Ewk 8 5 y 128 79.55 81.07

CoNLL-2012 data set
Ewk 8 5 y 128 80.51 80.70

fine tuning
Ewk 8 5 y 128 81.07 81.27

Table 3: F1 with LSTM method on development
set and test set of CoNLL-2005 data set and
CoNLL-2012 data set. Emb: the type of embed-
ding. d: the number of LSTM layers. ctx-p: pred-
icate context length. mr: region mark feature. h:
hidden layer size.

We find that the critical improvement comes
from increasing the depth of LSTM network. Af-
ter adding a reversed LSTM layer, F1 is improved
from 65.11 to 72.56. And the F1 of the system
with d = 4, 6, 8 are 75.74, 78.02 and 78.28 re-
spectively. With 6-layer network, we have outper-
formed the CoNLL-2005 shared task winner sys-
tem with F1 = 77.92 (Koomen et al., 2005). Our
experiment results also show that the further per-
formance gain by increasing the depth from 6 to 8
is relative small.

Another way to increase the model size is to in-
crease the hidden layer dimension h. We gradually
increase the dimension from 32 to 64, 128, and the
corresponding results are listed in Tab. 3. The best
F1 we obtained is 80.28 with h = 128. We al-
so show the result F1 = 80.70 on CoNLL-2012
dataset in Tab. 3 with exactly the same setup.

In the above experiments, learning rate and
weight decay rate are fixed for the sake of sim-
plicity in comparing different models. To fur-
ther improve the model, we perform a fine tuning
step to adjust the parameters based on previous-
ly trained model. This includes the relaxation of
weight decay and decrease of learning rate. We
set r2 = 4 × 10−4 and lb = 1 × 10−2, and obtain
F1 = 81.07 as the final result of CoNLL-2005 da-
ta set and F1 = 81.27 of CoNLL-2012 data set.

F1 F1

CoNLL-2005 dev test WSJ Brown
Koomen 77.35 77.92 79.44 67.75
Koomen (single parser) 74.76 - - -
Pradhan 78.34 77.30 78.63 68.44
Collobert (w/ parser) 75.42 76.06 - -
Collobert (w/o parser) 72.29 74.15 - -
Surdeanu - - 80.6 70.1
Toutanova 78.6 - 80.3 68.8
Täckström 78.6 - 79.9 71.3
Ours 79.55 81.07 82.84 69.41

F1 F1

CoNLL-2012 dev test - -
Pradhan - 75.53
Täckström 79.1 79.4
Ours 81.07 81.27

Table 4: Comparison with previous methods.

In Tab. 4, we compare the performance of oth-
er works. On CoNLL-2005 shared task, merg-
ing syntactic tree at feature level instead of model
level exhibits the similar performance with F1 =
77.30 (Pradhan et al., 2005). After further investi-
gation on model combination, Surdeanu et al. ob-
tained a better system (Surdeanu et al., 2007). We
also list the results from (Toutanova et al., 2008)
and (Täckström et al., 2015) of the joint model
with additional considerations of standard linguis-
tic assumptions. For convolution based methods
(Collobert et al., 2011), the best F1 is 76.06, in
which syntactic parser plays an essential role. The
result without using parser drops down to 74.15.
On Brown set, we observe the better performance
from the work of (Surdeanu et al., 2007) and
(Täckström et al., 2015). We hypothesize that DB-
LSTM is a data-driven method that can not per-
forms well on out-domain dataset.

On CoNLL-2012 data set, the traditional
method gives F1 = 75.53 (Pradhan et al., 2013)
and a dynamic programming algorithm for effi-
cient constrained inference in SRL gives F1 =
79.4 (Täckström et al., 2015) , both of them also
rely on syntax trees.

Since the input feature size is much smaller then
the traditional sparse feature templates, the infer-
ence stage is very efficient that the model can pro-
cess 6.7k tokens per second on average.

4.4 Analysis

We analyze our results on CoNLL-2005 data set.
First we list the details including the performance
on each sub-classes in Tab. 5. The results of
CoNLL-2005 shared task winner system (Koomen
et al., 2005) are also shown for comparison. Their
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Results (Koomen et.al.) Results (Ours)
Data set P R F1 P R F1
dev 80.05 74.83 77.35 79.69 79.41 79.55
dev (s) 75.40 74.13 74.76 79.69 79.41 79.55
test WSJ 82.28 76.78 79.44 82.92 82.75 82.84
test Brown 73.38 62.93 67.75 70.70 68.17 69.41
test 81.18 74.92 77.92 81.33 80.80 81.07
A0 88.22 87.88 88.05 90.08 89.73 89.91
A1 82.25 77.69 79.91 82.00 82.87 82.43
A2 78.27 60.36 68.16 70.50 72.63 71.55
A3 82.73 52.60 64.31 63.98 55.68 59.54
AM-ADV 63.82 56.13 59.73 66.03 53.00 58.80
AM-DIS 75.44 80.62 77.95 73.76 78.07 75.85
AM-LOC 66.67 55.10 60.33 65.17 58.48 61.65
AM-MNR 66.79 53.20 59.22 56.36 54.63 55.48
AM-MOD 96.11 98.73 97.40 94.62 98.60 96.57
AM-NEG 97.40 97.83 97.61 95.70 95.36 95.53
AM-TMP 78.16 76.72 77.44 78.61 82.74 80.62
R-A0 89.72 85.71 87.67 94.72 93.57 94.14
R-A1 70.00 76.28 73.01 80.00 90.40 84.88
V 98.92 97.10 98.00 98.63 98.63 98.63

Table 5: F1 on each sub sets and classes (CoNLL-
2005). (We remove the classes with low statistics.)

final system is the combination of the results of
5 parsing trees from two different parsers. They
also reported the scores of each single system on
development set and we list the best one of them
(dev(s)).

We observe the improvement of F1 on develop-
ment set and test set are 2.20 and 3.15 respective-
ly. For single system, the improvement is 4.79 on
development set. We also notice that our model
show improvement on both WSJ and Brown test
set. The advantage of our model is even more sig-
nificant when comparing with the previous effort
of end-to-end training of SRL model (Collobert et
al., 2011). Without using linguistic features from
parse tree, the F1 of Collobert’s model is 74.15,
which is 6.92 lower than our model.

Figure 5: F1 vs. sentence length (CoNLL-2005).

In order to analyze the performance of our mod-
el on the sentences with different lengths, we split
the data into 6 bins according to the sentence
length, with bin width being 10 words and the last

bin includes sequences with L > 50 because of in-
sufficient data for longer sentences. Fig. 5 shows
F1 scores at different sequence lengths on WSJ
test data and Brown test data for our model and
Koomen’s model (baseline) (Koomen et al., 2005).
In all curves, performance degrades with increased
sentence length. However, the performance gain
of our model over the baseline model is larger for
longer sentences.

Figure 7: Averaged Forget gates value vs. Syn-
tactic distance (CoNLL-2005). The last point in-
cludes instances with syntactic distance ds ≥ 6.

Since we do not use any syntactic information
as input feature, we are curious about whether this
information can be extracted out from the system
parameters. In LSTM, forget gates are used to
control the use of historical information. We com-
pute the average value vfg of forget gates of the
7th LSTM layer at word position for a given sen-
tence. We also introduce a variable named syntac-
tic distance ds to represent the number of edges
between argument word and predicate word in the
dependency parsing tree. Four example sentences
are shown in Fig. 6. For each figure, the bottom
axis denotes an example sentence. At the top of
each graph is the corresponding dependency tree
built from gold dependency parsing tag. At the
bottom, vfg and ds are shown in black and red
line. Noticed that the higher forget gates values
means “Remember” and smaller values “Forget”.
Smaller ds means that it is easy to make prediction
that long history is unnecessary. On the contrary,
large ds results in a difficult prediction that long
historical information is needed. We also com-
puted the average vfg over instances and found it
monotonously increases with ds(Fig. 7). The co-
incidence of vfg and ds suggests that the model
implicitly captures some syntactic structure.

5 Conclusion and Future work

We investigate a traditional NLP problem SRL
with DB-LSTM network. With this model, we are
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Figure 6: Forget gates value vs. Syntactic distance on four example sentences. Top: dependency parsing
tree from gold tag. Green square word: predicate word. Bottom black solid lines: forget gates value at
each time step. Bottom red empty square lines: gold syntactic distance between the current argument
and predicate.

able to bypass the traditional steps for extracting
the intermediate NLP features such as POS and
syntactic parsing and avoid human engineering the
feature templates. The model is trained to predict
the SRL tag directly from the original word se-
quence with four simple features without any ex-
plicit linguistic knowledge. Our model achieves
F1 score of 81.07 on CoNLL-2005 shared task
and 81.27 on CoNLL-2012 shared task, both out-
performing the previous systems based on parsing
results and feature engineering, which heavily re-
ly on the linguistic knowledge from expert. Fur-
thermore, the simplified feature templates results
in high inference efficiency with 6.7k tokens per
second.

In our experiments, increasing the model depth
is the major contribution to the final improvement.
With deep model, we achieve strong ability of
learning semantic rules without worrying about
over-fitting even on such limited training set. It al-
so outperforms the convolution method with large
context length. Moreover, with more sophisti-
catedly designed network and training technique
based on LSTM, such as the attempt to integrate
the parse tree concept into LSTM framework (Tai
et al., 2015), we believe the better performance
can be achieved.

We show in our analysis that for long sequences

our model has even larger advantage over the tra-
ditional models. On one hand, LSTM network is
capable of capturing the long distance dependen-
cy especially in its deep form. On the other hand,
the traditional feature templates are only good at
describing the properties in neighborhood and a
small mistake in syntactic tree will results in large
deviation in SRL tagging. Moreover, from the
analysis of the internal states of the deep network,
we see that the model implicitly learn to capture
some syntactic structure similar to the dependen-
cy parsing tree.

It is encouraging to see that deep learning mod-
els with end-to-end training can outperform tra-
ditional models on tasks which are previously
believed to heavily depend on syntactic parsing
(Koomen et al., 2005; Pradhan et al., 2013). How-
ever, we recognize that semantic role labeling it-
self is an intermediate step towards the language
problems we really care about, such as question
answering, information extraction etc. We believe
that end-to-end training with some suitable deep
structure yet to be invented might be proven to
be effective to solving these problems. And we
are seeing some recent active research exploring
this possibility (Weston et al., 2014; Weston et al.,
2015; Graves et al., 2014).
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Abstract

The performance of discriminative con-
stituent parsing relies crucially on feature
engineering, and effective features usu-
ally have to be carefully selected through
a painful manual process. In this paper,
we propose to automatically learn a set
of effective features via neural networks.
Specifically, we build a feedforward neu-
ral network model, which takes as input
a few primitive units (words, POS tags
and certain contextual tokens) from the lo-
cal context, induces the feature represen-
tation in the hidden layer and makes pars-
ing predictions in the output layer. The
network simultaneously learns the feature
representation and the prediction model
parameters using a back propagation al-
gorithm. By pre-training the model on a
large amount of automatically parsed data,
and then fine-tuning on the manually an-
notated Treebank data, our parser achieves
the highest F1 score at 86.6% on Chi-
nese Treebank 5.1, and a competitive F1

score at 90.7% on English Treebank. More
importantly, our parser generalizes well
on cross-domain test sets, where we sig-
nificantly outperform Berkeley parser by
3.4 points on average for Chinese and 2.5
points for English.

1 Introduction

Constituent parsing seeks to uncover the phrase
structure representation of sentences that can be
used in a variety of natural language applications
such as machine translation, information extrac-
tion and question answering (Jurafsky and Martin,
2008). One of the major challenges for this task is
that constituent parsers require an inference algo-
rithm of high computational complexity in order

to search over their large structural space, which
makes it very hard to efficiently train discrimina-
tive models. So, for a long time, the task was
mainly solved with generative models (Collins,
1999; Charniak, 2000; Petrov et al., 2006). In
the last few years, however, with the use of ef-
fective parsing strategies, approximate inference
algorithms, and more efficient training methods,
discriminative models began to surpass the gen-
erative models (Carreras et al., 2008; Zhu et al.,
2013; Wang and Xue, 2014).

Just like other NLP tasks, the performance of
discriminative constituent parsing crucially relies
on feature engineering. If the feature set is too
small, it might underfit the model and leads to low
performance. On the other hand, too many fea-
tures may result in an overfitting problem. Usu-
ally, an effective set of features have to be de-
signed manually and selected through repeated ex-
periments (Sagae and Lavie, 2005; Wang et al.,
2006; Zhang and Clark, 2009). Not only does
this procedure require a lot of expertise, but it
is also tedious and time-consuming. Even af-
ter this painstaking process, it is still hard to say
whether the selected feature set is complete or op-
timal to obtain the best possible results. A more
desirable alternative is to learn features automat-
ically with machine learning algorithms. Lei et
al. (2014) proposed to learn features by represent-
ing the cross-products of some primitive units with
low-rank tensors for dependency parsing. How-
ever, to achieve competitive performance, they had
to combine the learned features with the tradi-
tional hand-crafted features. For constituent pars-
ing, Henderson (2003) employed a recurrent neu-
ral network to induce features from an unbounded
parsing history. However, the final performance
was below the state of the art.

In this work, we design a much simpler neu-
ral network to automatically induce features from
just the local context for constituent parsing. Con-
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cretely, we choose the shift-reduce parsing strat-
egy to build the constituent structure of a sentence,
and train a feedforward neural network model
to jointly learn feature representations and make
parsing predictions. The input layer of the net-
work takes as input a few primitive units (words,
POS tags and certain contextual tokens) from the
local context, the hidden layer aims to induce
a distributed feature representation by combining
all the primitive units with different weights, and
the output layer attempts to make parsing predic-
tions based on the feature representation. Dur-
ing the training process, the model simultaneously
learns the feature representation and prediction
model parameters using a backpropagation algo-
rithm. Theoretically, the learned feature represen-
tation is optimal (or at least locally optimal) for
the parsing predictions. In practice, however, our
model does not work well if it is only trained on
the manually annotated Treebank data sets. How-
ever, when pre-trained on a large amount of auto-
matically parsed data and then fine-tuned on the
Treebank data sets, our model achieves a fairly
large improvement in performance. We evaluated
our model on both Chinese and English. On stan-
dard data sets, our model reaches F1 = 86.6%
for Chinese and outperforms all the state-of-the-
art systems, and for English our final performance
is F1 = 90.7% and this result surpasses that of
all the previous neural network based models and
is comparable to the state-of-the-art systems. On
cross-domain data sets, our model outperforms the
Berkeley Parser 1 by 3.4 percentage points for Chi-
nese and 2.5 percentage points for English.

The remainder of this paper is organized as fol-
lows: Section 2 introduces the shift-reduce con-
stituent parsing approach. Section 3 describes our
feature optimization model and some parameter
estimation techniques. We discuss and analyze
our experimental results in Section 4. Section 5
discusses related work. Finally, we conclude this
paper in Section 6.

2 Shift-Reduce Constituent Parsing

Shift-reduce constituent parsing utilizes a series of
shift-reduce decisions to construct syntactic trees.
Formally, the shift-reduce system is a quadruple
C = (S, T, s0, St), where S is a set of parser
states (sometimes called configurations), T is a fi-
nite set of actions, s0 is an initialization function

1https://code.google.com/p/berkeleyparser/
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Figure 1: An example of constituent tree.

to map each input sentence into a unique initial
state, and St ∈ S is a set of terminal states. Each
action t ∈ T is a transition function that maps a
state into a new state. A parser state s ∈ S is
defined as a tuple s = (σ, β), where σ is a stack
which is maintained to hold partial subtrees that
are already constructed, and β is a queue which
is used for storing remaining unprocessed words.
In particular, the initial state has an empty stack σ
and a queue β containing the entire input sentence,
and the terminal states have an empty queue β and
a stack σ containing only one complete parse tree.
The task of parsing is to scan the input sentence
from left to right and perform a sequence of shift-
reduce actions to transform the initial state into a
terminal state.

In order to jointly assign POS tags and construct
a constituent structure for an input sentence, we
define the following actions for the action set T ,
following Wang and Xue (2014):

• SHIFT-X (sh-x): remove the first word from
β, assign a POS tag X to the word and push it
onto the top of σ;

• REDUCE-UNARY-X (ru-x): pop the top
subtree from σ, construct a new unary node
labeled with X for the subtree, then push the
new subtree back onto σ. The head of the
new subtree is inherited from its child;

• REDUCE-BINARY-{L/R}-X (rl/rr-x): pop
the top two subtrees from σ, combine them
into a new tree with a node labeled with X,
then push the new subtree back onto σ. The
left (L) and right (R) versions of the action
indicate whether the head of the new subtree
is inherited from its left or right child.

With these actions, our parser can process
trees with unary and binary branches easily.
For example, in Figure 1, for the sentence “the
assets are sold”, our parser can construct the
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parse tree by performing the action sequence
{sh-DT, sh-NNS, rr-NP, sh-VBP,
sh-VBN, ru-VP, rr-VP, rr-S}. To pro-
cess multi-branch trees, we employ binarization
and debinarization processes described in Zhang
and Clark (2009) to transform multi-branch trees
into binary trees and restore the generated binary
trees back to their original forms. For inference,
we employ the beam search decoding algorithm
(Zhang and Clark, 2009) to balance the tradeoff
between accuracy and efficiency.

3 Feature Optimization Model

3.1 Model

To determine which action t ∈ T should be per-
formed at a given state s ∈ S, we need a model
to score each possible 〈s, t〉 combination. In pre-
vious approaches (Sagae and Lavie, 2005; Wang
et al., 2006; Zhang and Clark, 2009), the model is
usually defined as a linear model Score(s, t) =
−→w · Φ(s, t), where Φ(s, t) is a vector of hand-
crafted features for each state-action pair and −→w
is the weight vector for these features. The hand-
crafted features are usually constructed by com-
pounding primitive units according to some fea-
ture templates. For example, almost all the pre-
vious work employed the list of primitive units in
Table 1(a), and constructed hand-crafted features
by concatenating these primitive units according
to the feature templates in Table 1(b). Obviously,
these feature templates are only a small subset of
the cross products of all the primitive units. This
feature set is the result of a large number of exper-
iments through trial and error from previous work.
Still we cannot say for sure that this is the optimal
subset of features for the parsing task.

To cope with this problem, we propose to si-
multaneously optimize feature representation and
parsing accuracy via a neural network model. Fig-
ure 2 illustrates the architecture of our model. Our
model consists of input, projection, hidden and
output layers. First, in the input layer, all primi-
tive units (shown in Table 1(a)) are imported to the
network. We also import the suffixes and prefixes
of the first word in the queue, because these units
have been shown to be very effective for predict-
ing POS tags (Ratnaparkhi, 1996). Then, in the
projection layer, each primitive unit is projected
into a vector. Specifically, word-type units are
represented as word embeddings, and other units
are transformed into one-hot representations. The

(1)
p0w, p0t,p0c, p1w, p1t,p1c,
p2w, p2t,p2c, p3w, p3t,p3c

(2)
p0lw, p0lc, p0rw, p0rc,p0uw, p0uc,
p1lw, p1lc, p1rw, p1rc,p1uw, p1uc

(3) q0w, q1w, q2w, q3w

(a) Primitive Units

unigrams

p0tc, p0wc, p1tc, p1wc, p2tc
p2wc, p3tc, p3wc, q0wt, q1wt
q2wt, q3wt, p0lwc, p0rwc
p0uwc, p1lwc, p1rwc, p1uwc

bigrams

p0wp1w, p0wp1c, p0cp1w, p0cp1c
p0wq0w, p0wq0t, p0cq0w, p0cq0t
q0wq1w, q0wq1t, q0tq1w, q0tq1t
p1wq0w, p1wq0t, p1cq0w, p1cq0t

trigrams
p0cp1cp2c, p0wp1cp2c, p0cp1wq0t
p0cp1cp2w, p0cp1cq0t, p0wp1cq0t
p0cp1wq0t, p0cp1cq0w

(b) Feature Templates

Table 1: Primitive units (a) and feature templates
(b) for shift-reduce constituent parsing, where pi
represents the ith subtree in the stack and qi de-
notes the ith word in the queue. w refers to the
head word, t refers to the head POS, and c refers
to the constituent label. pil and pir refer to the
left and right child for a binary subtree pi, and piu
refers to the child of a unary subtree pi.

vectors of all primitive units are concatenated to
form a holistic vector for the projection layer. The
hidden layer corresponds to the feature representa-
tion we want to learn. Each dimension in the hid-
den layer can be seen as an abstract factor of all
primitive units, and it calculates a weighted sum
of all nodes from the projection layer and applies
a non-linear activation function to yield its acti-
vation. We choose the logistic sigmoid function
for the hidden layer. The output layer is used for
making parsing predictions. Each node in the out-
put layer corresponds to a shift-reduce action. We
want to interpret the activation of the output layer
as a probability distribution over all possible shift-
reduce actions, therefore we normalize the out-
put activations (weighted summations of all nodes
from the hidden layer) with the softmax function.

3.2 Parameter Estimation

Our model consists of three groups of parameters:
(1) the word embedding for each word type unit,
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Figure 2: Neural network architecture for con-
stituent parsing, where wi denotes word type unit,
ti denotes POS tag unit, ci denotes constituent la-
bel unit, suffixi and prefixi (1 ≤ i ≤ 4) de-
notes i-character word suffix or prefix for the first
word in the queue.

(2) the connections between the projection layer
and the hidden layer which are used for learning
an optimal feature representation and (3) the con-
nections between the hidden layer and the output
layer which are used for making accurate pars-
ing predictions. We decided to learn word em-
beddings separately, so that we can take advantage
of a large amount of unlabeled data. The remain-
ing two groups of parameters can be trained si-
multaneously by the back propagation algorithm
(Rumelhart et al., 1988) to maximize the likeli-
hood over the training data.

We also employ three crucial techniques to seek
more effective parameters. First, we utilize mini-
batched AdaGrad (Duchi et al., 2011), in which
the learning rate is adapted differently for differ-
ent parameters at different training steps. With this
technique, we can start with a very large learning
rate which decreases during training, and can thus
perform a far more thorough search within the pa-
rameter space. In our experiments, we got a much
faster convergence rate with slightly better accu-
racy by using the learning rate α = 1 instead of
the commonly-used α = 0.01. Second, we initial-
ize the model parameters by pre-training. Unsu-
pervised pre-training has demonstrated its effec-
tiveness as a way of initializing neural network
models (Erhan et al., 2010). Since our model re-
quires many run-time primitive units (POS tags
and constituent labels), we employ an in-house
shift-reduce parser to parse a large amount of unla-
beled sentences, and pre-train the model with the
automatically parsed data. Third, we utilize the
Dropout strategy to address the overfitting prob-

lem. However, different from Hinton et al. (2012),
we only use Dropout during testing, because we
found that using Dropout during training did not
improve the parsing performance (on the dev set)
while greatly slowing down the training process.

4 Experiment

4.1 Experimental Setting
We conducted experiments on the Penn Chinese
Treebank (CTB) version 5.1 (Xue et al., 2005) and
the Wall Street Journal (WSJ) portion of Penn En-
glish Treebank (Marcus et al., 1993). To fairly
compare with other work, we follow the standard
data division. For Chinese, we allocated Articles
001-270 and 400-1151 as the training set, Articles
301-325 as the development set, and Articles 271-
300 as the testing set. For English, we use sec-
tions 2-21 for training, section 22 for developing
and section 23 for testing.

We also utilized some unlabeled corpora and
used the word2vec2 toolkit to train word em-
beddings. For Chinese, we used the unlabeled
Chinese Gigaword (LDC2003T09) and performed
Chinese word segmentation using our in-house
segmenter. For English, we randomly selected 9
million sentences from our in-house newswire cor-
pus, which has no overlap with our training, test-
ing and development sets. We use Evalb3 toolkit
to evaluate parsing performance.

4.2 Characteristics of Our Model
There are several hyper-parameters in our model,
e.g., the word embedding dimension (wordDim),
the hidden layer node size (hiddenSize), the
Dropout ratio (dropRatio) and the beam size for
inference (beamSize). The choice of these hyper-
parameters may affect the final performance. In
this subsection, we present some experiments to
demonstrate the characteristics of our model, and
select a group of proper hyper-parameters that we
use to evaluate our final model. All the experi-
ments in this subsection were performed on Chi-
nese data and the evaluation is performed on Chi-
nese development set.

First, we evaluated the effectiveness of vari-
ous primitive units. We set wordDim = 300,
hiddenSize = 300, beamSize = 8, and did not
apply Dropout (dropRatio = 0). Table 2 presents
the results. By comparing numbers in other rows

2https://code.google.com/p/word2vec/
3http://nlp.cs.nyu.edu/evalb/
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Figure 3: Influence of hyper-parameters.

with row “All Units”, we found that ablating the
Prefix and Suffix units (“w/o Prefix & Suffix”)
significantly hurts both POS tagging and parsing
performance. Ablating POS units (“w/o POS”)
or constituent label units (“w/o NT”) has little ef-
fect on POS tagging accuracy, but hurts parsing
performance. When only keeping the word type
units (“Only Word”), both the POS tagging and
parsing accuracy drops drastically. So the Prefix
and Suffix units are crucial for POS tagging, and
POS units and constituent label units are helpful
for parsing performance. All these primitive units
are indispensable to better performance.

Second, we uncovered the effect of the dimen-
sion of word embedding. We set hiddenSize =
300, beamSize = 8, dropRatio = 0 and var-
ied wordDim among {50, 100, 300, 500, 1000}.
Figure 3(a) draws the parsing performance curve.
When increasing wordDim from 50 to 300, pars-
ing performance improves more than 1.5 percent-
age points. After that, the curve flattens out, and
parsing performance only gets marginal improve-
ment. Therefore, in the following experiments, we
fixed wordDim = 300.

Third, we tested the effect of hidden layer node
size. We varied hiddenSize among {50, 100,
300, 500, 1000}. Figure 3(b) draws the pars-
ing performance curve. We found increasing
hiddenSize is helpful for parsing performance.
However, higher hiddenSize would greatly in-
crease the amount of computation. To keep the
efficiency of our model, we fixed hiddenSize =
300 in the following experiments.

Fourth, we applied Dropout and tuned the
Dropout ratio through experiments. Figure 3(c)
shows the results. We found that the peak
performance occurred at dropRatio = 0.5,
which brought about an improvement of more
than 1 percentage point over the model without
Dropout (dropRatio = 0). Therefore, we fixed

Primitive Units F1 POS

All Units 86.7 96.7
w/o Prefix & Suffix 85.7 95.4
w/o POS 86.0 96.7
w/o NT 86.2 96.6
Only Word 82.7 95.2

Table 2: Influence of primitive units.

dropRatio = 0.5.
Finally, we investigated the effect of beam size.

Figure 3(d) shows the curve. We found increasing
beamSize greatly improves the performance ini-
tially, but no further improvement is observed after
beamSize is greater than 8. Therefore, we fixed
beamSize = 8 in the following experiments.

4.3 Semi-supervised Training
In this subsection, we investigated whether we
can train more effective models using automati-
cally parsed data. We randomly selected 200K
sentences from our unlabeled data sets for both
Chinese and English. Then, we used an in-house
shift-reduce parser4 to parse these selected sen-
tences. The size of the automatically parsed data
set may have an impact on the final model. So
we trained many models with varying amounts of
automatically parsed data. We also designed two
strategies to exploit the automatically parsed data.
The first strategy (Mix-Train) is to directly add the
automatically parsed data to the hand-annotated
training set and train models with the mixed data
set. The second strategy (Pre-Train) is to first pre-
train models with the automatically parsed data,
and then fine-tune models with the hand-annotated
training set.

Table 3 shows results of different experimen-
tal configurations for Chinese. For the Mix-Train

4Its performance is F1 =83.9 on Chinese and F1 =90.8%
on English.
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Mix-Train Pre-Train
# Auto Sent F1 POS F1 POS

0 87.8 97.0 — —
50K 87.2 96.8 88.4 97.1
100K 88.7 96.9 89.5 97.1
200K 89.2 97.2 89.5 97.4

Table 3: Semi-supervised training for Chinese.

Mix-Train Pre-Train
# Auto Sent F1 POS F1 POS

0 89.7 96.6 — —
50K 89.4 96.1 90.2 96.4
100K 89.5 96.0 90.4 96.5
200K 89.2 95.8 90.8 96.7

Table 4: Semi-supervised training for English.

strategy, when we only use 50K automatically
parsed sentences, the performance drops in com-
parison with the model trained without using any
automatically parsed data. When we increase the
automatically parsed data to 100K sentences, the
parsing performance improves about 1 percent but
the POS tagging accuracy drops slightly. When
we further increase the automatically parsed data
to 200K sentences, both the parsing performance
and POS tagging accuracy improve. For the Pre-
Train strategy, the performance of all three config-
urations improves performance against the model
that does not use any automatically parsed data.
The Pre-Train strategy consistently outperforms
the Mix-Train strategy when the same amount of
automatically parsed data is used. Therefore, for
Chinese, the Pre-Train strategy is much more help-
ful, and the more automatically parsed data we use
the better performance we get.

Table 4 presents results of different experimen-
tal configurations for English. The performance
trend for the Mix-Train strategy is different from
that of Chinese. Here, no matter how much auto-
matically parsed data we use, there is a consistent
degradation in performance against the model that
does not use any automatically parsed data at all.
And the more automatically parsed data we use,
the larger the drop in accuracy. For the Pre-Train
strategy, the trend is similar to Chinese. The pars-
ing performance of the Pre-Train setting consis-
tently improves as the size of automatically parsed
data increases.

Type System F1

Ours
Supervised*‡ 83.2
Pretrain-Finetune*‡ 86.6

SI
Petrov and Klein (2007) 83.3
Wang and Xue (2014)‡ 83.6

SE
Zhu et al. (2013)‡ 85.6
Wang and Xue (2014)‡ 86.3

RE
Charniak and Johnson (2005) 82.3
Wang and Zong (2011) 85.7

Table 5: Comparison with the state-of-the-art sys-
tems on Chinese test set. * marks neural network
based systems. ‡ marks shift-reduce parsing sys-
tems.

4.4 Comparing With State-of-the-art
Systems

In this subsection, we present the performance
of our models on the testing sets. We trained
two systems. The first system (“Supervised”)
is trained only with the hand-annotated training
set, and the second system (“Pretrain-Finetune”)
is trained with the Pre-Train strategy described
in subsection 4.3 using additional automatically
parsed data. The best parameters for the two sys-
tems are set based on their performance on the de-
velopment set. To further illustrate the effective-
ness of our systems, we also compare them with
some state-of-the-art systems. We group parsing
systems into three categories: supervised single
systems (SI), semi-supervised single systems (SE)
and reranking systems (RE). Both of our two mod-
els belong to semi-supervised single systems, be-
cause our “Supervised” system utilized word em-
beddings in its input layer.

Table 5 lists the performance of our systems as
well as the state-of-the-art systems on Chinese test
set. Comparing the performance of our two sys-
tems, we see that our “Pretrain-Finetune” system
shows a fairly large gain over the “Supervised”
system. One explanation is that our neural net-
work model is a non-linear model, so the back
propagation algorithm can only reach a local op-
timum. In our “Supervised” system the starting
points are randomly initialized in the parameter
space, so it only reaches local optimum. In com-
parison, our “Pretrain-Finetune” system gets to
see large amount of automatically parsed data, and
initializes the starting points with the pre-trained
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Type System F1

Ours
Supervised*‡ 89.4
Pretrain-Finetune*‡ 90.7

SI

Collins (1999) 88.2
Charniak (2000) 89.5
Henderson (2003)* 88.8
Petrov and Klein (2007) 90.1
Carreras et al. (2008) 91.1
Zhu et al. (2013)‡ 90.4

SE

Huang et al. (2010) 91.6
Collobert (2011)* 89.1
Zhu et al. (2013)‡ 91.3

RE

Henderson (2004)* 90.1
Charniak and Johnson (2005) 91.5
McClosky et al. (2006) 92.3
Huang (2008) 91.7
Socher et al. (2013)* 90.4

Table 6: Comparing with the state-of-the-art sys-
tems on English test set. * marks neural network
based systems. ‡ marks shift-reduce parsing sys-
tems.

parameters. So it finds a much better local opti-
mum than the “Supervised” system. Comparing
our “Pretrain-Finetune” system with all the state-
of-the-art systems, we see our system surpass all
the other systems. Although our system only uti-
lizes some basic primitive units (in Table 1(a)),
it still outperforms Wang and Xue (2014)’s shift-
reduce parsing system which uses more complex
structural features and semi-supervised word clus-
ter features. Therefore, our model can simultane-
ously learn an effective feature representation and
make accurate parsing predictions for Chinese.

Table 6 presents the performance of our systems
as well as the state-of-the-art systems on the En-
glish test set. Our “Pretrain-Finetune” system still
achieves much better performance than the “Su-
pervised” system, although the gap is smaller than
that of Chinese. Our “Pretrain-Finetune” system
also outperforms all other neural network based
systems (systems marked with *). Although our
system does not outperform all the state-of-the-art
systems, the performance is comparable to most
of them. So our model is also effective for English
parsing.

4.5 Cross Domain Evaluation

In this subsection, we examined the robustness of
our model by evaluating it on data sets from var-
ious domains. We use the Berkeley Parser as our
baseline parser, and trained it on our training set.

For Chinese, we performed our experiments on
the cross domain data sets from Chinese Treebank
8.0 (Xue et al., 2013). It consists of six domains:
newswire (nw), magazine articles (mz), broadcast
news (bn), broadcast conversation (bc), weblogs
(wb) and discussion forums (df). Since all of the
mz domain data is already included in our train-
ing set, we only selected sample sentences from
the other five domains as the test sets 5, and made
sure these test sets had no overlap with our tree-
bank training, development and test sets. Note
that we did not use any data from these five do-
mains for training or development. The models
are still the ones described in the previous sub-
section. The results are presented in Table 7. Al-
though our “Supervised” model got slightly worse
performance than the Berkeley Parser (Petrov and
Klein, 2007), as shown in Table 5, it outper-
formed the Berkeley Parser on the cross-domain
data sets. This suggests that the learned fea-
tures can better adapt to cross-domain situations.
Compared with the Berkeley Parser, on average
our “Pretrain-Finetune” model is 3.4 percentage
points better in terms of parsing accuracy, and
3.2 percentage points better in terms of POS tag-
ging accuracy. We also presented the performance
of our pre-trained model (“Only-Pretrain”). We
found the “Only-Pretrain” model performs poorly
on this cross-domain data sets. But even pre-
training based on this less than competitive model,
our “Pretrain-Finetune” model achieves signifi-
cant improvement over the “Supervised” model.
So the Pre-Train strategy is crucial to our model.

For English, we performed our experiments on
the cross-domain data sets from OntoNote 5.0
(Weischedel et al., 2013), which consists of nw,
mz, bn, bc, wb, df and telephone conversations
(tc). We also performed experiments on the SMS
domain, using data annotated by the LDC for
the DARPA BOLT Program. We randomly se-
lected 300 sentences for each domain as the test
sets 5. Table 8 presents our experimental results.
To save space, we only presented the results of
our “Pretrain-Finetune” model and the Berkeley

5The selected sentences can be downloaded from
http://www.cs.brandeis.edu/ xuen/publications.html
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Only-Pretrain Supervised Pretrain-Finetune BerkeleyParser
domain F1 POS F1 POS F1 POS F1 POS

bc 61.6 81.1 72.9 90.2 74.9 91.2 68.2 86.4
bn — — 78.2 93.2 80.8 94.2 78.3 91.2
df 65.6 84.5 76.2 91.7 78.5 92.6 75.9 90.3
nw 72.0 86.1 82.1 95.2 85.0 95.8 82.9 93.6
wb 65.4 81.5 74.6 89.5 76.9 90.2 73.8 86.7

average 66.2 83.3 76.8 92.0 79.2 92.8 75.8 89.6

Table 7: Cross-domain performance for Chinese. The “Only-Pretrain” model cannot successfully parse
some sentences in bn domain, so we didn’t give the numbers.

Pretrain-Finetune BerkeleyParser
Domain F1 POS F1 POS

bc 77.7 92.2 76.0 91.1
bn 88.1 95.4 88.2 95.0
df 82.5 93.3 79.4 92.4
nw 89.6 95.3 86.2 94.6
wb 83.3 93.1 82.0 91.2
sms 79.2 85.8 74.6 85.3
tc 74.2 88.0 71.1 87.6

average 82.1 91.9 79.6 91.0

Table 8: Cross-domain performance for English.

Parser. Except for the slightly worse performance
on the bn domain, our model outperformed the
Berkeley Parser on all the other domains. While
our model is only 0.6 percentage point better than
the Berkeley Parser (Petrov and Klein, 2007) when
evaluated on the standard Penn TreeBank test set
(Table 6), our parser is 2.5 percentage points bet-
ter on average on the cross domain data sets. So
our parser is also very robust for English on cross-
domain data sets.

5 Related Work

There has been some work on feature optimization
in dependency parsing, but most prior work in this
area is limited to selecting an optimal subset of
features from a set of candidate features (Nilsson
and Nugues, 2010; Ballesteros and Bohnet, 2014).
Lei et al. (2014) proposed to learn features for de-
pendency parsing automatically. They first repre-
sented all possible features with a multi-way ten-
sor, and then transformed it into a low-rank tensor
as the final features that are actually used by their
system. However, to obtain competitive perfor-
mance, they had to combine the learned features

with traditional hand-crafted features. Chen and
Manning (2014) proposed to learn a dense fea-
ture vector for transition-based dependency pars-
ing via neural networks. Their model had to learn
POS tag embeddings and dependency label em-
beddings first, and then induced the dense feature
vector based on these embeddings. Comparing
with their method, our model is much simpler. Our
model learned features directly based on the orig-
inal form of primitive units.

There have also been some attempts to use
neural networks for constituent parsing. Hender-
son (2003) presented the first neural network for
broad coverage parsing. Later, he also proposed
to rerank k-best parse trees with a neural net-
work model which achieved state-of-the-art per-
formance (Henderson, 2004). Collobert (2011)
designed a recurrent neural network model to con-
struct parse tree by stacks of sequences labeling,
but its final performance is significantly lower than
the state-of-the-art performance. Socher et al.
(2013) built a recursive neural network for con-
stituent parsing. However, rather than performing
full inference, their model can only score parse
candidates generated from another parser. Our
model also requires a parser to generate training
samples for pre-training. However, our system is
different in that, during testing, our model per-
forms full inference with no need of other parsers.
Vinyals et al. (2014) employed a Long Short-Term
Memory (LSTM) neural network for parsing. By
training on a much larger hand-annotated data set,
their performance reached 91.6% for English.

6 Conclusion

In this paper, we proposed to learn features via
a neural network model. By taking as input the
primitive units, our neural network model learns
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feature representations in the hidden layer and
made parsing predictions based on the learned fea-
tures in the output layer. By employing the back-
propagation algorithm, our model simultaneously
induced features and learned prediction model pa-
rameters. We show that our model achieved signif-
icant improvement from pretraining on a substan-
tial amount of pre-parsed data. Evaluated on stan-
dard data sets, our model outperformed all state-
of-the-art parsers on Chinese and all neural net-
work based models on English. We also show
that our model is particularly effective on cross-
domain tasks for both Chinese and English.
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Abstract

Dependency parsers are usually evaluated
on attachment accuracy. Whilst easily in-
terpreted, the metric does not illustrate
the cascading impact of errors, where the
parser chooses an incorrect arc, and is sub-
sequently forced to choose further incor-
rect arcs elsewhere in the parse.

We apply arc-level constraints to MST-
parser and ZPar, enforcing the correct
analysis of specific error classes, whilst
otherwise continuing with decoding. We
investigate the direct and indirect impact
of applying constraints to the parser. Er-
roneous NP and punctuation attachments
cause the most cascading errors, while in-
correct PP and coordination attachments
are frequent but less influential. Punctu-
ation is especially challenging, as it has
long been ignored in parsing, and serves
a variety of disparate syntactic roles.

1 Introduction

Dependency parsers are evaluated using word-
level attachment accuracy. Whilst comparable
across systems, this does not provide insight into
why the parser makes certain errors, or whether
certain misattachments are caused by other errors.
For example, incorrectly identifying a modifier
head may only introduce a single attachment error,
while misplacing the root of a sentence will create
substantially more errors elsewhere. In projective
dependency parsing, erroneous arcs can also force
the parser to select other incorrect arcs.

Kummerfeld et al. (2012) propose a static post-
parsing analysis to categorise groups of bracket er-
rors in constituency parsing into higher level error

classes such as clause attachment. However, this
cannot account for cascading changes resulting
from repairing errors, or limitations which may
prevent the parser from applying a repair. It is un-
clear whether the parser will apply the repair op-
eration in its entirety, or if it will introduce other
changes in response to the repairs.

We develop an evaluation procedure to evalu-
ate the influence of each error class in dependency
parsing without making assumptions about how
the parser will behave. We define error classes
based on dependency labels, and use the depen-
dencies in each class as arc constraints specifying
the correct head and label for particular words in
each sentence. We adapt parsers to apply these
constraints, whilst otherwise proceeding with de-
coding under their grammar and model. By eval-
uating performance with and without constraints,
we can directly observe the cascading impact of
each error class on each the parser.

We implement our procedure for the graph-
based MSTparser (McDonald and Pereira, 2006)
and the transition-based ZPar (Zhang and Clark,
2011) using basic Stanford dependencies over the
OntoNotes 4.0 release of the WSJ Penn Treebank
data. Our results show that erroneously attach-
ing NPs, PPs, modifiers, and punctuation have the
largest overall impact on UAS. Of those, NPs and
punctuation have the most substantial cascading
impact, indicating that these errors have the most
effect on the remainder of the parse. Enforcing
correct punctuation arcs has a particularly large
impact on accuracy, even though most evaluation
scripts ignore punctuation. We find that punctu-
ation arcs are commonly misplaced by large dis-
tances in the final parse, crossing over and forcing
other arcs to be incorrect in the process.

We will make our source code available, and
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Figure 1: MSTparser output (top) and the gold parse (bottom) for a WSJ 22 sentence. MSTparser pro-
duces two independent errors: an NP bracketing error (red, dotted), and an incorrect root (blue, dashed).

Parser UAS LAS usent lsent
MSTparser 91.3 87.5 41.3 26.1
ZPar 91.7 89.3 45.1 35.9

Table 1: Baseline UAS and LAS scores on Stanford
dependencies over WSJ 22.

hope that our findings will drive efforts address-
ing the remaining dependency parsing errors.

2 Motivation

Table 1 summarises the performance of MST-
parser and ZPar on Stanford dependencies over
OntoNotes 4 WSJ 22. ZPar performs slightly
better than MSTparser on UAS, and substantially
better on LAS. However, these numbers do not
show what types of errors are being made by each
parser, what errors remain to be addressed, or hint
at what underlying problems cause each error.

Figure 1 depicts a WSJ 22 sentence as parsed by
MSTparser, and the gold parse. The UAS is 47.1%,
with 8 of 17 arcs correct. By contrast, ZPar (parse
not shown) scores 94.1%, with the sole attachment
error being on LME (as with MSTparser). While
there are nine incorrect arcs overall, MSTparser
seems to have made only two underlying errors:

• LME attached to decline rather than stocks (NP

internal). Correcting this repairs one error;

• expected being chosen as the root rather than
was. Correcting the root and moving all at-
tachments to it from the old root repairs the
remaining eight errors.

Intuitively, it seems that the impact of the NP

error is limited. By contrast, the root selection

error has a substantial impact on the second half
of the sentence, causing a misplaced subject, mis-
attached punctuation, and incorrect coordination.
These cascaded errors appear to be caused by the
incorrect root.

What we do not know is whether these intu-
itions actually hold. Many dependency parsers,
including MSTparser and ZPar, construct trees by
repeatedly combining fragments together until a
spanning analysis is found, using a small window
of information to make each arc decision. An er-
ror in one part of the tree may have no influence
on a different part of the tree. Alternatively, er-
rors may exert long-range influence — particularly
if there are higher-order features or algorithmic
constraints such as projectivity over the tree. As
parsing algorithms are complex, we wish to repair
various error types in isolation without otherwise
making assumptions regarding the subsequent ac-
tions of the parser.

3 Applying Constraints

We investigate how each parser behaves when cer-
tain errors in the tree are corrected. We force each
parser to select the correct head and label for spe-
cific words, but otherwise allow it to construct its
best parse. Given a set of constraints, each of
which lists a word with the head and label to which
it must be attached, we investigate two measures:

1. errors directly corrected by the constraints,
called the constrained accuracy impact;

2. the indirect impact of the constraints, includ-
ing errors indirectly corrected, and correct
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arcs indirectly destroyed, together called the
cascaded accuracy impact.

The constrained accuracy impact tells us how
often the parser makes errors in the set of words
covered by the constraints. The cascaded accu-
racy impact is less predictable, as it describes what
effect the errors made over the constrained set of
arcs have over the rest of the sentence. It is the
influence of the set of constraints over the other
attachments, which may be mediated through pro-
jectivity requirements, or changes in the context
used for other parsing decisions.

The core of our procedure is adapting each
parser to accept a set of constraints. Following
Kummerfeld et al. (2012), we define meaningful
error classes grouped with the operations that re-
pair them. In dependency parsing, error classes
are groups of Stanford dependency labels, rather
than groups of node repair operations. The Stan-
ford labels provide a rich distinction in NP internal
structure, clauses, and modifiers, and map well to
the error categories of Kummerfeld et al. (2012),
allowing us to avoid excessive heuristics in the
mapping process. Our technique can be applied to
other dependency schemes such as LTH (Johans-
son and Nugues, 2007) by defining new mappings
from labels to error types.

The difficulty of the mapping task depends on
the intricacies of each formalism. The major
challenge with LTH dependencies is the enormous
skew towards the nominal modifier NMOD label.
This label occurs 11,335 times in WSJ 22, more
than twice as frequently as the next most fre-
quent punctuation P. By contrast, the most com-
mon Stanford label is punctuation, at 4,731 occur-
rences. The NMOD label is split into many smaller,
but more informative nominal labels in the Stan-
ford scheme, making it better suited for our goal
of error analysis.

The label grouping was performed with refer-
ence to the Stanford dependencies manual v2.04
(de Marneffe and Manning, 2008, updated 2012).
For each error class, we generate a set of con-
straints over WSJ 22 for all words with a gold-
standard label in the set associated with the class.
Our types are defined as follows:
NP attachment: any label specifically attaching

an NP, includes appos, dobj, iobj, nsubj,
nsubjpass, pobj, and xsubj.

NP internal: any label marking nominal struc-
ture (not including adjectival modifiers), in-

cludes abbrev, det, nn, number, poss,
possessive, and predet.

PP attachment: any label attaching a preposi-
tional phrase, includes prep. Also includes
pcomp if the POS of the word is TO or IN.

Clause attachment: any label attaching a
clause, includes advcl, ccomp, csubj,
csubjpass, purpcl, rcmod, and xcomp.
Also includes pcomp if the POS of the word is
not TO or IN.

Modifier attachment: any label attaching
an adverbial or adjectival modifier, includes
advmod, amod, infmod, npadvmod, num,
partmod, quantmod, and tmod.

Coordination attachment: conj, cc, and
preconj.

Root attachment: the root label.
Punctuation attachment: the punct label.
Other attachment: all other Stanford labels,

specifically acomp, attr, aux, auxpass,
complm, cop, dep, expl, mark, mwe, neg,
parataxis, prt, ref, and rel.
For example, Root constraints specify sentence

roots, while PP constraints specify heads of prepo-
sitional phrases.

One deficiency of our implementation is that we
apply constraints to all arcs of a particular error
type in each sentence, and do not isolate multiple
instances of the same error class in a sentence. We
do this since applying single constraints to a sen-
tence at a time would require substantial modifica-
tions to the standard evaluation regime.

3.1 MSTparser implementation

MSTparser is a graph-based, second-order parser
that uses Eisner (1996)’s algorithm for projective
decoding (McDonald and Pereira, 2006).1 Eis-
ner’s algorithm constructs and caches subtrees
which span progressively larger sections of the
sentence. These spans are marked either as com-
plete, consisting of a head, a dependent, and all
of the descendants of that head to one side, or in-
complete, consisting of a head, a dependent, and
an unfilled region where additional tokens may be
attached. Dependencies are formed between the
head and dependent in each complete span, while
label assignment occurs as a separate process.

We enforce constraints by allowing complete
spans to be formed only from constrained tokens

1As the variant of Stanford dependencies we use are pro-
jective, we did not use non-projective decoding.
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to their correct heads with the correct labels. Any
complete span between an incorrect head and the
constrained token is forbidden. The algorithm is
forced to choose the constrained spans as it builds
the parse; these constraints have no impact on the
parser’s coverage as all possible head selections
are considered.

3.2 ZPar implementation

ZPar is an arc-eager transition-based parser
(Zhang and Clark, 2011) that uses an incremen-
tal process with a stack storing partial parse states
(Nivre et al., 2004). Each state represents tokens
that may accept further arcs. The tokens of a sen-
tence are initially stored in a buffer, and at each
point during parsing, the parser decides whether
or not to create an arc between the front token of
the buffer and the top token on the stack.

We apply constraints in a similar way to Nivre
et al. (2014). Arc creation actions are factored on
the dependency label to be assigned to the arc.
ZPar scores each possible action using a percep-
tron model over features from the front of the
buffer and the top of the stack (as well as some ad-
ditional context features which refer to previously
created states). The highest scoring actions and
their resulting states are kept in a beam; during
parsing, ZPar finds the optimal action for all items
in the beam, and retains the highest scoring new
states at each step.

We disallow any arc creation action that would
create an arc that conflicts with any constraints.
Due to the use of beam search, it is possible for all
of the partial states containing the constrained arcs
to be evicted from the beam if they score lower
under the model than other states. When this hap-
pens, the parser will fail to find an analysis for the
sentence, as no head will exist in the beam for the
constrained token. We have deliberately chosen to
not address this issue as any solution (e.g. increas-
ing the beam size from its default of 64) would
change the decisions of the parser and model.

We verified that our modifications were work-
ing correctly for both parsers by passing in zero
constraints (checking that the output matched the
baseline performance), and every possible con-
straint (checking that the output scored 100%).

4 Related Work

Kummerfeld et al. (2012) perform a comprehen-
sive classification of constituency bracket errors

and their cascading impact, and their work is
philosophically similar to ours. They associate
groups of bracket errors in the parse with abstract
error classes, and identify the tree operations that
repair these error types, such as the insertion, dele-
tion, or substitution of nodes in the parse tree.
The error classes in a particular parser’s output
are identified through a heuristic procedure that re-
peatedly applies the operation repairing the largest
number of bracket errors. This approach differs
from our methodology as it is a static post-process
that assumes the parser would respond perfectly to
each repair, when it is possible that the parser may
not perform the repair in full, or even be incapable
of constructing the repaired tree.

McDonald and Nivre (2011) perform an in-
depth comparison of the graph-based MSTparser
and transition-based MaltParser. However, Malt-
Parser uses support vector machines to determinis-
tically predict the next transition, rather than stor-
ing the most probable options in a beam like ZPar.
Additionally, they do not focus on the cascad-
ing impact of errors, and instead concentrate on
higher-level error classification (e.g. by POS tag,
labels and dependency lengths) in lieu of examin-
ing how the parsers respond to forced corrections.

Nivre et al. (2014) describe several uses for arc-
level constraints in transition-based parsing. How-
ever, these applications focus on improving pars-
ing accuracy when constraints can be readily iden-
tified, e.g. imperatives at the beginning of a sen-
tence are likely to be the root. We focus our con-
straints on evaluation, attempting to identify im-
portant sources of error in dependency parsers.

Our constraint-based approach shares similar-
ities to oracle training and decoding methods,
where an external source of truth is used to ver-
ify parser decisions. An oracle source of parser
actions is a necessary component for training
transition-based parsers (Nivre, 2009). Oracle de-
coding, where a system is forced to produce cor-
rect output if possible, can be used to assess its up-
per performance bounds (Ng and Curran, 2012).

Constraining the parser’s internal search space
is akin to an optimal pruning operation. Char-
niak and Johnson (2005) use a coarse-to-fine, it-
erative pruning approach for efficiently generat-
ing high-quality n-best parses for a discriminative
reranker. Rush and Petrov (2012) use a similar
coarse-to-fine algorithm with vine grammars (Eis-
ner and Smith, 2005) to accelerate graph-based de-
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Figure 2: MSTparser output for the sentence in Figure 1, where the root dependency is forced to
its correct value. The incorrect noun phrase error is not affected by the constraint (dashed, red), six
attachment errors are repaired (solid, blue), and two new errors are introduced (dotted, purple).

Constraints 3 7 Remaining Errors
None 8 9 see Figure 1
nn 9 8 All except decline→ LME
root 14 3 decline→ LME

about → expected
was→ about

punct 14 3 decline→ LME
about → expected
was→ about

ccomp 16 1 decline→ LME

Table 2: Correct and incorrect arcs, and the re-
maining errors after applying various sets of con-
straints to the sentence in Figure 1.

pendency parsing, achieving parsing speeds close
to linear-time transition parsers despite encoding
more complex features. Supertagging (Clark and
Curran, 2007) and chart pruning (Zhang et al.,
2010) have been used to constrain the search space
of a CCG parser, and to remove unlikely or for-
bidden spans from repeated consideration. In our
work, we use pruning not for parsing speed, but
evaluation, and so we prune items based on gold-
standard constraints rather than heuristics.

5 Evaluation

We use the training (sections 2-21) and develop-
ment (section 22) data from the OntoNotes 4.0
release of the Penn Treebank WSJ data (Mar-
cus et al., 1993), as supplied by the SANCL

2012 Shared Task on Parsing the Web (Petrov
and McDonald, 2012). OntoNotes annotates en-
riched NP structure compared to the Penn Tree-
bank (Weischedel et al., 2011), meaning that deter-
mining NP attachments is less trivial. We changed
all marker tokens in the corpus (e.g. -LRB- and
-LCB-) to their equivalent unescaped punctuation
marks to ensure correct evaluation. The corpus has
been converted to basic Stanford dependencies us-
ing the Stanford Parser v2.0,2 and part-of-speech

2
nlp.stanford.edu/software/lex-parser.shtml

tagged using MXPOST (Ratnaparkhi, 1996). A
model trained on WSJ sections 2-21 was used to
tag the development set, and 10-fold jackknife
training was used to tag the training data.

We implement a custom evaluation script to
facilitate a straightforward comparative analysis
between the unconstrained and constrained out-
put. The script is based on and produces identi-
cal scores to eval06.pl, the official evaluation
for the CoNLL-X Shared Task on Multilingual
Dependency Parsing (Buchholz and Marsi, 2006).
We ignore punctuation as defined by eval06.pl
in our evaluation; experiments with constraints
over punctuation tokens constrain those tokens in
the parse, but ignore them during evaluation.

We run the modified parsers over WSJ 22 with
and without each set of constraints. We ex-
amine the overall unlabeled and labeled attach-
ment scores (UAS and LAS), as well as identify-
ing the contribution to the overall UAS improve-
ment from directly (constrained) and indirectly
corrected arcs.

MSTparser uses coarse-grained tags and fine-
grained POS tags in its features, both of which
were provided by the CoNLL-X Shared Task. We
approximate the coarse-grained POS tags by taking
the first character of the MXPOST-assigned POS

tag, a technique also used by Bansal et al. (2014)3.

6 Results

Figure 2 and Table 2 show the impact of applying
constraints on tokens with various labels to MST-
parser for the sentence in Figure 1. Enforcing the
gold nn arc between decline and LME repairs that
noun phrase error, but does not affect any of the
other errors. Conversely, enforcing the gold root
arc does not affect the noun phrase error, but re-
pairs nearly every other error in the parse. Un-
fortunately, the constrained root arc introduces

3Mohit Bansal, p.c.
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Error class cover eff eff % disp UAS LAS ∆UAS ∆c ∆u
Baseline 100.0 - - - 91.3 87.5 - - -
NP attachment 95.6 312 4.9 5.2 94.1 90.7 2.3 1.2 1.1
NP internal 98.2 206 3.2 2.8 92.6 89.2 1.1 0.8 0.3
Modifier attachment 96.8 321 7.9 3.8 93.4 90.3 1.7 1.2 0.5
PP attachment 98.3 378 13.1 4.3 93.2 89.5 1.7 1.4 0.3
Coordination attachment 97.7 238 16.0 5.8 92.9 89.5 1.3 0.9 0.4
Clause attachment 96.7 228 17.9 6.9 93.0 89.6 1.4 0.9 0.5
Root attachment 99.1 77 5.8 9.3 92.2 88.3 0.8 0.3 0.5
Punctuation attachment 93.2 469 14.2 7.4 93.9 89.9 1.8 0.1 1.7
Other attachment 94.3 210 7.0 6.1 93.5 90.8 1.4 0.8 0.6
All attachments 98.5 2912 9.3 5.8 100.0 100.0 8.6 8.6 0.0

Table 3: The coverage, effective constraints and percentage, error displacement, UAS, LAS, ∆UAS over
the corrected arcs, and the constrained and cascaded ∆ for MSTparser over WSJ 22 (covered by ZPar).

Error class cover eff eff % disp UAS LAS ∆UAS ∆c ∆u
Baseline 100.0 - - - 91.7 89.2 - - -
NP attachment 95.6 277 4.3 4.8 94.9 92.7 2.4 1.0 1.4
NP internal 98.2 197 3.0 3.0 93.2 91.1 1.2 0.7 0.5
Modifier attachment 96.8 303 7.5 3.9 94.0 92.3 1.8 1.1 0.7
PP attachment 98.3 357 12.4 3.9 93.8 91.4 1.7 1.3 0.4
Coordination attachment 97.7 240 16.2 5.8 93.5 91.1 1.3 0.9 0.4
Clause attachment 96.7 166 13.0 5.6 93.4 91.2 1.2 0.6 0.6
Root attachment 99.1 57 4.3 9.9 92.4 89.9 0.5 0.2 0.3
Punctuation attachment 93.2 430 13.0 7.3 94.5 92.1 1.6 0.2 1.5
Other attachment 94.3 187 6.3 5.5 94.2 92.7 1.3 0.7 0.6
All attachments 98.5 2760 8.8 5.8 100.0 100.0 8.0 8.0 0.0

Table 4: The coverage, effective constraints and percentage, error displacement, UAS, LAS, ∆UAS over
the baseline, and the constrained and cascaded ∆ for ZPar over WSJ 22.

two new errors, with the parser incorrectly attach-
ing the clausal complement headed by expected
and the modifier headed by about . In fact, cor-
recting the ccomp arc in isolation rather than the
root arc leads to MSTparser producing the full
correct analysis for the second half of the sentence
(though again, it does not repair the separate noun
phrase error). This example highlights why we
have chosen to implement our evaluation as a set
of constraints in the parser, rather than Kummer-
feld et al. (2012)’s post-processing approach, as
we cannot know that the parser will react as we
expect it to when repairing errors.

Tables 3 and 4 summarise our results on MST-
parser and ZPar, calculated over the sentences
covered by ZPar in WSJ 22. Results over the full
WSJ 22 for MSTparser were consistent with these
figures. We focus on discussing UAS results in this
paper, since LAS results are consistent.

The UAS of constrained arcs in each experiment
is the expected 100%. Effective constraints repair
an error in the baseline, and the effective constraint
percentage is this figure expressed as a percentage,
i.e. the error rate. Error displacement is the av-
erage number of words that effective constraints
moved an attachment point. The overall ∆UAS

improvement is divided into ∆c, the constrained
impact, and ∆u, the cascaded impact.

It is important to note that a parser may make
a substantial number of mistakes on a particular
error class (large effective constraint percentage),
but correcting those mistakes may have very little
cascading impact (small ∆c), limiting the overall
∆UAS improvement. Conversely, there may be a
class with a small effective constraint percentage,
but a large ∆UAS due to a large cascading impact
from the corrections, or simply because the class
contains more constraints.
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6.1 Overall Parser Comparison

When applying all constraints, ZPar has a 8.8%
effective constraint percentage compared to 9.3%
for MSTparser. This is directly related to the UAS

difference between the parsers. Aside from coor-
dination, where the parsers made a nearly identi-
cal number of errors, ZPar is more accurate across
the board. It makes substantially fewer mistakes
on clause attachments, punctuation dependencies,
and NP attachments, whilst maintaining a small
advantage across all of the other categories.

The relative rank of the effective constraint per-
centage per error category is similar across the
parsers, with PP attachment, punctuation, modi-
fiers, and coordination recording the largest num-
ber of effective constraints, and thus the most er-
rors. This illustrates that the behaviour of both
parsers is very consistent, despite one considering
every possible attachment point, and the other us-
ing a linear transition-based beam search. ZPar
is able to make fewer mistakes across each error
category, suggesting that the beam search pruning
is maintaining more desired states than the graph-
based parser is able to rank during its search.

ZPar’s coverage is 98.5% when applying all
constraints. However, as the number of con-
straints is reduced, coverage also drops. This
seems counter-intuitive, but applying more con-
straints eliminates more undesired states, leaving
more space in the beam for satisfying states. Re-
ducing the number of constraints permits more
states which do not yet violate a constraint, but
only yield undesired states later.

Punctuation constraints have the largest impact
on coverage, reducing it to 93.2%. NP attach-
ments, clauses, and modifier attachments also in-
cur substantial coverage reductions. This suggests
that ZPar’s performance will degrade substantially
over the sentences which it cannot cover, as they
must contain constructions which are dispreferred
by the model and fall out of the beam. Constraints
with the smallest effect on coverage include root
attachments, which only occur once per sentence
and are rarely incorrect, and NP internal and PP at-
tachments. For the latter two, the small displace-
ments suggest that alternate attachment points of-
ten lie within the same projective span.

6.2 Noun phrases

Applying NP attachment constraints causes a 4.4%
drop in coverage for ZPar, and the effective con-

straint percentage is below 5% for both parsers.
However, these constraints still result in the largest
∆UAS for both parsers, at 2.6% for MSTparser
and 2.2% for ZPar. This reflects the prevalence
of NP attachments in the corpus.

∆UAS is split evenly between correcting con-
strained (1.4%) and cascaded arcs (1.2%) for
MSTparser, while it skews towards cascaded arcs
for ZPar (1.0% and 1.4%). Most error classes
skew in the other direction, while repairing one NP

attachment error typically repairs another non-NP

attachment error.
For NP internal attachments, both parsers have

a similar error rate, with 206 effective constraints
for MSTparser and 197 for ZPar. Although this is
the second largest class, applying these constraints
gives the second smallest ∆u for both parsers.
This implies that determining NP internal struc-
ture is a strength, even with the more complex
OntoNotes 4 NP structure. ∆c is also small for
both parsers, reinforcing the limited displacement
and cascading impact of NP internal errors.

Despite fewer effective constraints (i.e. less
errors to fix), ZPar exhibits more cascading re-
pair than MSTparser using both NP and NP in-
ternal constraints. This will be a common theme
through this evaluation: the transition-based ZPar
is better at propagating effective constraints into
cascaded impact than the graph-based MSTparser,
even though ZPar almost always begins with fewer
effective constraints due to its better baseline per-
formance. One possibility to explain this is that
the beam is actually pruning away other erroneous
states, while the graph-based MSTparser must still
consider all of them.

Table 5 summarises the error classes of cor-
rected cascaded arcs for the two NP constraint
types, which are closely related. NP attachment
constraints directly identify the head of the NP as
well as its correct attachment, providing strong
cues for determining the internal structure. NP in-
ternal constraints implicitly identify the head of an
NP. We can see that for both types of constraints,
many of the cascaded corrections come from the
other NP error class.

Table 5 also shows that, compared to MST-
parser, ZPar repairs nearly twice as many NP inter-
nal and coordination errors when using NP attach-
ment constraints, and vice versa when using NP

internal constraints. This suggests that ZPar has
more difficulty identifying the correct heads for
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NP attachment NP internal
Error class MSTparser ZPar MSTparser ZPar

NP attachment - - 45 69
NP internal 43 80 - -
Modifier attachment 65 68 24 30
PP attachment 26 36 2 10
Coordination attachment 37 67 20 41
Clause attachment 59 65 1 1
Root attachment 24 21 2 1
Punctuation attachment 79 80 26 41
Other attachment 68 76 7 11
Total 401 493 127 204

Table 5: The number of unconstrained errors repaired per error class when enforcing NP attachment and
NP internal constraints for MSTparser and ZPar over WSJ 22.

nominal coordination, and often chooses a word
which should be a nominal modifier instead.

6.3 Coordination, Modifiers and PPs

These categories are large error classes for both
parsers, with constraints leading to UAS improve-
ments of 1.3 to 1.7%.

PPs and coordination have high effective con-
straint percentages relative to the other error
classes for both parsers. However, they are also
amongst the most isolated errors, with only 0.3%
and 0.4% ∆u for MSTparser and ZPar respec-
tively. These errors also have minimal impact on
ZPar’s coverage. Both classes seem to have rela-
tively contained attachment options within a lim-
ited projective span. The small error displace-
ments reinforce this idea.

Modifiers are relatively isolated errors for MST-
parser (0.5% ∆u), but less so for ZPar (0.7% ∆u).
There are substantially more modifier constraints
than PP or coordination, despite all yielding a sim-
ilar UAS increase. This suggests that modifiers are
actually relatively well analysed by both parsers,
but there are so many of them that they form a
large source of error.

6.4 Clause attachment

MSTparser performs substantially worse than
ZPar on clause attachments, with an effective con-
straint percentage of 17.9% compared to 13.0%,
and ∆c of 0.9% compared with 0.6%. MST-
parser’s error rate is the worst of any error class
on clause attachments, while it is second to coor-
dination attachments for ZPar. Attaching clauses
is very challenging for dependency parsers, partic-

ularly considering the small size of the class.
ZPar again achieves a slightly larger cascaded

impact than MSTparser (0.6% to 0.5%), despite
having far fewer effective constraints. This im-
plies that the additional clause errors being made
by MSTparser are largely self-contained, as they
have not triggered a corresponding increase in ∆u.

6.5 Root attachment

Both parsers make few root attachment errors,
though MSTparser is less accurate than ZPar.
However, root constraints provide the largest UAS

improvement per number of constraints for both
parsers. Root errors are also the most displaced of
any error class, at 9.3 words for MSTparser and
9.9 for ZPar. When the root is incorrect, it is of-
ten very far from its correct location, and causes
substantial cascading errors.

6.6 Punctuation

Despite ignoring punctuation dependencies in
evaluation, applying punctuation constraints led to
substantial UAS improvements. On MSTparser,
∆u is 0.1% (due to some punctuation not being
excluded from evaluation), but ∆c is 1.7%. On
ZPar, the equivalent metrics are 0.2% and 1.5%.
Enforcing correct punctuation has a disproportion-
ate impact on the remainder of the parse.

For both parsers, punctuation errors occur more
frequently than any other error type, with 469
and 430 effective constraints respectively (though
the majority of these corrected errors are on non-
evaluated arcs). ZPar’s coverage is worst of all
when enforcing punctuation constraints, suggest-
ing that the remaining uncovered sentences will
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Error class MSTparser ZPar
NP attachment 75 51
NP internal 25 27
Modifier attachment 33 43
PP attachment 45 55
Coordination attachment 87 106
Clause attachment 66 48
Root attachment 59 27
Other attachment 65 69
Total 455 426

Table 6: The number of unconstrained errors re-
paired per error class when enforcing punctuation
constraints for MSTparser and ZPar.

contain even more punctuation errors.
Incorrect punctuation heads are displaced from

their correct locations by 7.4 words for MSTparser
and 7.3 words for ZPar on average, second only to
root attachments. Given that we are using projec-
tive parsers and a projective grammar, the large av-
erage displacement caused by errors indicates that
punctuation affects and is in turn affected by the
requirement for non-crossing arcs.

Table 6 summarises the error classes of the re-
paired cascaded arcs when punctuation constraints
are applied. MSTparser has a more even distri-
bution of repairs, while ZPar’s repairs are con-
centrated in coordination attachment. This shows
that MSTparser is relatively better at coordination
as a proportion of its overall performance com-
pared to ZPar. It also indicates that the majority of
punctuation errors in both parsers (and especially
ZPar) stem from incorrectly identified coordina-
tion markers such as commas.

Punctuation is commonly ignored in depen-
dency parser evaluation (Yamada and Matsumoto,
2003; Buchholz and Marsi, 2006), and they are
inconsistently treated across different grammars.
Our results show that enforcing the correct punc-
tuation attachments in a sentence has a substan-
tial cascading impact, suggesting that punctua-
tion errors are highly correlated with errors else-
where in the analysis. Given the broad simi-
larities between Stanford dependencies and other
dependency schemes commonly used in parsing
(Søgaard, 2013), we anticipate that the problems
with roots and punctuation will carry across dif-
ferent treebanks and schemes.

Punctuation is often placed at phrasal bound-
aries and serves to split sentences into smaller sec-

tions within a projective parser. Graph-based and
transition-based parsers, both of which use a lim-
ited local context to make parsing decisions, are
equally prone to the cascading impact of erroneous
punctuation. Removing the confounding presence
of punctuation from parsing and treating attach-
ment as a global post-process may help to allevi-
ate these issues. Alternatively, more punctuation-
specific features to account for its myriad roles in
syntax could serve to improve performance.

7 Conclusion

We have developed a procedure to classify the im-
portance of errors in dependency parsers without
any assumptions on how the parser will respond
to attachment repairs. Our approach constrains the
parser to allow only correct arcs for certain tokens,
whilst allowing it to otherwise form the parse that
it thinks is best. Compared to Kummerfeld et al.
(2012), we can observe exactly how the parser re-
sponds to the parse repairs, though at the cost of
requiring modifications to the parser itself.

Our results show that noun phrases remain chal-
lenging for dependency parsers, both in choosing
the correct head, and in determining the internal
structure. Punctuation, despite being commonly
ignored in parsers and evaluation, causes substan-
tial cascading errors when misattached.

We are extending our work to other popular de-
pendency parsers and non-projective parsing algo-
rithms, and hope to develop features to improve
and mitigate the cascading impact of punctuation
attachment errors in parsing. Given that con-
stituency parsers perform strongly when converted
to dependencies (Cer et al., 2010; Petrov and Mc-
Donald, 2012), it would also be interesting to in-
vestigate how they perform on our metrics.

We implement a robust procedure to identify
the cascading impact of dependency parser errors.
Our results provide insights into which errors are
most damaging in parsing, and will drive further
improvements in parsing accuracy.
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Abstract

In this work, we address the prob-
lem to model all the nodes (words or
phrases) in a dependency tree with the
dense representations. We propose a
recursive convolutional neural network
(RCNN) architecture to capture syntac-
tic and compositional-semantic represen-
tations of phrases and words in a depen-
dency tree. Different with the original re-
cursive neural network, we introduce the
convolution and pooling layers, which can
model a variety of compositions by the
feature maps and choose the most infor-
mative compositions by the pooling lay-
ers. Based on RCNN, we use a discrimina-
tive model to re-rank a k-best list of can-
didate dependency parsing trees. The ex-
periments show that RCNN is very effec-
tive to improve the state-of-the-art depen-
dency parsing on both English and Chi-
nese datasets.

1 Introduction

Feature-based discriminative supervised models
have achieved much progress in dependency pars-
ing (Nivre, 2004; Yamada and Matsumoto, 2003;
McDonald et al., 2005), which typically use mil-
lions of discrete binary features generated from a
limited size training data. However, the ability of
these models is restricted by the design of features.
The number of features could be so large that the
result models are too complicated for practical use
and prone to overfit on training corpus due to data
sparseness.

Recently, many methods are proposed to learn
various distributed representations on both syn-
tax and semantics levels. These distributed repre-
sentations have been extensively applied on many

∗Corresponding author.
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Figure 1: Illustration of a RCNN unit.

natural language processing (NLP) tasks, such as
syntax (Turian et al., 2010; Mikolov et al., 2010;
Collobert et al., 2011; Chen and Manning, 2014)
and semantics (Huang et al., 2012; Mikolov et al.,
2013). Distributed representations are to represent
words (or phrase) by the dense, low-dimensional
and real-valued vectors, which help address the
curse of dimensionality and have better general-
ization than discrete representations.

For dependency parsing, Chen et al. (2014)
and Bansal et al. (2014) used the dense vectors
(embeddings) to represent words or features and
found these representations are complementary
to the traditional discrete feature representation.
However, these two methods only focus on the
dense representations (embeddings) of words or
features. These embeddings are pre-trained and
keep unchanged in the training phase of parsing
model, which cannot be optimized for the specific
tasks.

Besides, it is also important to represent the
(unseen) phrases with dense vector in dependency
parsing. Since the dependency tree is also in re-
cursive structure, it is intuitive to use the recur-
sive neural network (RNN), which is used for con-
stituent parsing (Socher et al., 2013a). However,
recursive neural network can only process the bi-
nary combination and is not suitable for depen-
dency parsing, since a parent node may have two
or more child nodes in dependency tree.

In this work, we address the problem to rep-
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resent all level nodes (words or phrases) with
dense representations in a dependency tree. We
propose a recursive convolutional neural net-
work (RCNN) architecture to capture syntac-
tic and compositional-semantic representations of
phrases and words. RCNN is a general architec-
ture and can deal with k-ary parsing tree, there-
fore it is very suitable for dependency parsing. For
each node in a given dependency tree, we first use
a RCNN unit to model the interactions between it
and each of its children and choose the most infor-
mative features by a pooling layer. Thus, we can
apply the RCNN unit recursively to get the vector
representation of the whole dependency tree. The
output of each RCNN unit is used as the input of
the RCNN unit of its parent node, until it outputs a
single fixed-length vector at root node. Figure 1 il-
lustrates an example how a RCNN unit represents
the phrases “a red bike” as continuous vectors.

The contributions of this paper can be summa-
rized as follows.

• RCNN is a general architecture to model the
distributed representations of a phrase or sen-
tence with its dependency tree. Although
RCNN is just used for the re-ranking of the
dependency parser in this paper, it can be
regarded as semantic modelling of text se-
quences and handle the input sequences of
varying length into a fixed-length vector. The
parameters in RCNN can be learned jointly
with some other NLP tasks, such as text clas-
sification.

• Each RCNN unit can model the complicated
interactions of the head word and its children.
Combined with a specific task, RCNN can
capture the most useful semantic and struc-
ture information by the convolution and pool-
ing layers.

• When applied to the re-ranking model for
parsing, RCNN improve the accuracy of base
parser to make accurate parsing decisions.
The experiments on two benchmark datasets
show that RCNN outperforms the state-of-
the-art models.

2 Recursive Neural Network

In this section, we briefly describe the recur-
sive neural network architecture of (Socher et al.,
2013a).

a,Det red,JJ bike,NN

red bike,NP

a red bike,NP

Figure 2: Illustration of a RNN unit.

The idea of recursive neural networks (RNN)
for natural language processing (NLP) is to train a
deep learning model that can be applied to phrases
and sentences, which have a grammatical structure
(Pollack, 1990; Socher et al., 2013c). RNN can be
also regarded as a general structure to model sen-
tence. At every node in the tree, the contexts at the
left and right children of the node are combined
by a classical layer. The weights of the layer are
shared across all nodes in the tree. The layer com-
puted at the top node gives a representation for the
whole sentence.

Following the binary tree structure, RNN can
assign a fixed-length vector to each word at the
leaves of the tree, and combine word and phrase
pairs recursively to create intermediate node vec-
tors of the same length, eventually having one fi-
nal vector representing the whole sentence. Multi-
ple recursive combination functions have been ex-
plored, from linear transformation matrices to ten-
sor products (Socher et al., 2013c). Figure 2 illus-
trates the architecture of RNN.

The binary tree can be represented in the form
of branching triplets (p→ c1c2). Each such triplet
denotes that a parent node p has two children and
each ck can be either a word or a non-terminal
node in the tree.

Given a labeled binary parse tree,
((p2 → ap1), (p1 → bc)), the node represen-
tations are computed by

p1 = f(W
[

b
c

]
),p2 = f(W

[
a
p1

]
), (1)

where (p1,p2,a,b, c) are the vector representa-
tion of (p1, p2, a, b, c) respectively, which are de-
noted by lowercase bold font letters; W is a matrix
of parameters of the RNN.

Based on RNN, Socher et al. (2013a) intro-
duced a compositional vector grammar, which
uses the syntactically untied weights W to learn
the syntactic-semantic, compositional vector rep-
resentations. In order to compute the score of
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how plausible of a syntactic constituent a parent
is, RNN uses a single-unit linear layer for all pi:

s(pi) = v · pi, (2)

where v is a vector of parameters that need to be
trained. This score will be used to find the high-
est scoring tree. For more details on how standard
RNN can be used for parsing, see (Socher et al.,
2011).

Costa et al. (2003) applied recursive neural net-
works to re-rank possible phrase attachments in an
incremental constituency parser. Their work is the
first to show that RNNs can capture enough in-
formation to make the correct parsing decisions.
Menchetti et al. (2005) used RNNs to re-rank dif-
ferent constituency parses. For their results on full
sentence parsing, they re-ranked candidate trees
created by the Collins parser (Collins, 2003).

3 Recursive Convolutional Neural
Network

The dependency grammar is a widely used syntac-
tic structure, which directly reflects relationships
among the words in a sentence. In a dependency
tree, all nodes are terminal (words) and each node
may have more than two children. Therefore, the
standard RNN architecture is not suitable for de-
pendency grammar since it is based on the binary
tree. In this section, we propose a more general
architecture, called recursive convolutional neu-
ral network (RCNN), which borrows the idea of
convolutional neural network (CNN) and can deal
with to k-ary tree.

3.1 RCNN Unit

For ease of exposition, we first describe the ba-
sic unit of RCNN. A RCNN unit is to model a
head word and its children. Different from the
constituent tree, the dependency tree does not have
non-terminal nodes. Each node consists of a word
and its POS tags. Each node should have a differ-
ent interaction with its head node.

Word Embeddings Given a word dictionaryW ,
each word w ∈ W is represented as a real-valued
vector (word embedding) w ∈ Rm where m is the
dimensionality of the vector space. The word em-
beddings are then stacked into a embedding ma-
trix M ∈ Rm|W|. For a word w ∈ W , its cor-
responding word embedding Embed(w) ∈ Rm is
retrieved by the lookup table layer. The matrix M

xh =

xKx2x1

wh

d
(h,ci)

Convolution

Max pooling

···

···

···tanh

···
Phrase Representations of Children

Word Embedding

Distance Embedding

Figure 3: Architecture of a RCNN unit.

is initialized with pre-training embeddings and up-
dated by back-propagation.

Distance Embeddings Besides word embed-
dings, we also use distributed vector to represent
the relative distance of a head word h and one of
its children c. For example, as shown in Figure 1,
the relative distances of “bike” to “a” and “red” are
-2 and -1, respectively. The relative distances also
are mapped to a vector of dimension md (a hy-
perparameter); this vector is randomly initialized.
Distance embedding is a usual way to encode the
distance information in neural model, which has
been proven effectively in several tasks. Our ex-
perimental results also show that the distance em-
bedding gives more benefits than the traditional
representation. The relative distance can encode
the structure information of a subtree.

Convolution The word and distance embed-
dings are subsequently fed into the convolution
component to model the interactions between two
linked nodes.

Different with standard RNN, there are no non-
terminal nodes in dependency tree. Each node h
in dependency tree has two associated distributed
representations:

1. word embedding wh ∈ Rm, which is denoted
as its own information according to its word
form;

1161



2. phrase representation xh ∈ Rm, which is de-
noted as the joint representation of the whole
subtree rooted at h. In particular, when h is
leaf node, xh = wh.

Given a subtree rooted at h in dependency tree,
we define ci, 0 < i ≤ L as the i-th child node of
h, where L represents the number of children.

For each pair (h, ci), we use a convolutional
hidden layer to compute their combination repre-
sentation zi.

zi = tanh(W(h,ci)pi), 0 < i ≤ K, (3)

where W(h,ci) ∈ Rm×n is the linear composition
matrix, which depends on the POS tags of h and
ci; pi ∈ Rn is the concatenated representation of
h and the i-th child, which consists of the head
word embeddings wh, the child phrase represen-
tation xci and the distance embeddings dh,ci of h
and ci,

pi = xh ⊕ xci ⊕ d(h,ci), (4)

where ⊕ represents the concatenation operation.
The distances dh,ci is the relative distance of h

and ci in a given sentence. Then, the relative dis-
tances also are mapped to m-dimensional vectors.
Different from constituent tree, the combination
should consider the order or position of each child
in dependency tree.

In our model, we do not use the POS tags em-
beddings directly. Since the composition matrix
varies on the different pair of POS tags of h and
ci, it can capture the different syntactic combina-
tions. For example, the combination of adjective
and noun should be different with that of verb and
noun.

After the composition operations, we use tanh
as the non-linear activation function to get a hid-
den representation z.

Max Pooling After convolution, we get Z(h) =
[z1, z2, · · · , zK ], where K is dynamic and de-
pends on the number of children of h. To trans-
form Z to a fixed length and determine the most
useful semantic and structure information, we per-
form a max pooling operation to Z on rows.

x(h)
j = max

i
Z(h)
j,i , 0 < j ≤ m. (5)

Thus, we obtain the vector representation xh ∈
Rm of the whole subtree rooted at node h.

Figure 3 shows the architecture of our proposed
RCNN unit.

root

eat

sashimiI with

chopsticks

RCNN Unitw(eat)

w(I) w(sashimi) x(with)

x(eat)

RCNN Unit

x(root)

w(root)

RCNN Unitw(with)

w(chopsticks)

Figure 4: Example of a RCNN unit

Given a whole dependency tree, we can apply
the RCNN unit recursively to get the vector rep-
resentation of the whole sentence. The output of
each RCNN unit is used as the input of the RCNN
unit of its parent node.

Thus, RCNN can be used to model the dis-
tributed representations of a phrase or sentence
with its dependency tree and applied to many NLP
tasks. The parameters in RCNN can be learned
jointly with the specific NLP tasks. Each RCNN
unit can model the complicated interactions of the
head word and its children. Combined with a spe-
cific task, RCNN can select the useful semantic
and structure information by the convolution and
max pooling layers.

Figure 4 shows an example of RCNN to model
the sentence “I eat sashimi with chopsitcks”.

4 Parsing

In order to measure the plausibility of a subtree
rooted at h in dependency tree, we use a single-
unit linear layer neural network to compute the
score of its RCNN unit.

For constituent parsing, the representation of a
non-terminal node only depends on its two chil-
dren. The combination is relative simple and its
correctness can be measured with the final repre-
sentation of the non-terminal node (Socher et al.,
2013a).

However for dependency parsing, all combina-
tions of the head h and its children ci(0 < i ≤ K)
are important to measure the correctness of the
subtree. Therefore, our score function s(h) is
computed on all of hidden layers zi(0 < i ≤ K):

s(h) =
K∑
i=1

v(h,ci) · zi, (6)

where v(h,ci) ∈ Rm×1 is the score vector, which
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also depends on the POS tags of h and ci.
Given a sentence x and its dependency tree y,

the goodness of a complete tree is measured by
summing the scores of all the RCNN units.

s(x, y,Θ) =
∑
h∈y

s(h), (7)

where h ∈ y is the node in tree y; Θ =
{ΘW,Θv,Θw,Θd} including the combination
matrix set ΘW, the score vector set Θv, the word
embeddings Θw and distance embeddings Θd.

Finally, we can predict dependency tree ŷ with
highest score for sentence x.

ŷ = arg max
y∈gen(x)

s(x, y,Θ), (8)

where gen(x) is defined as the set of all possible
trees for sentence x. When applied in re-ranking,
gen(x) is the set of the k-best outputs of a base
parser.

5 Training

For a given training instance (xi, yi), we use the
max-margin criterion to train our model. We first
predict the dependency tree ŷi with the highest
score for each xi and define a structured margin
loss ∆(yi, ŷi) between the predicted tree ŷi and
the given correct tree yi. ∆(yi, ŷi) is measured
by counting the number of nodes yi with an incor-
rect span (or label) in the proposed tree (Goodman,
1998).

∆(yi, ŷi) =
∑
d∈ŷi

κ1{d /∈ yi} (9)

where κ is a discount parameter and d represents
the nodes in trees.

Given a set of training dependency parses D,
the final training objective is to minimize the loss
function J(Θ), plus a l2-regulation term:

J(Θ) =
1
|D|

∑
(xi,yi)∈D

ri(Θ) +
λ

2
‖Θ‖22, (10)

where

ri(Θ) = max
ŷi∈Y (xi)

( 0, st(xi, ŷi,Θ)

+ ∆(yi, ŷi)− st(xi, yi,Θ) ) . (11)

By minimizing this object, the score of the cor-
rect tree yi is increased and the score of the highest
scoring incorrect tree ŷi is decreased.

We use a generalization of gradient descent
called subgradient method (Ratliff et al., 2007)
which computes a gradient-like direction. The
subgradient of equation is:

∂J

∂Θ
=

1
|D|

∑
(xi,yi)∈D

(
∂st(xi, ŷi,Θ)

∂Θ
−

∂st(xi, yi,Θ)
∂Θ

) + λΘ. (12)

To minimize the objective, we use the diagonal
variant of AdaGrad (Duchi et al., 2011). The pa-
rameter update for the i-th parameter Θt,i at time
step t is as follows:

Θt,i = Θt−1,i − ρ√∑t
τ=1 g

2
τ,i

gt,i, (13)

where ρ is the initial learning rate and gτ ∈ R|θi|

is the subgradient at time step τ for parameter θi.

6 Re-rankers

Re-ranking k-best lists was introduced by Collins
and Koo (2005) and Charniak and Johnson (2005).
They used discriminative methods to re-rank the
constituent parsing. In the dependency parsing,
Sangati et al. (2009) used a third-order generative
model for re-ranking k-best lists of base parser.
Hayashi et al. (2013) used a discriminative for-
est re-ranking algorithm for dependency parsing.
These re-ranking models achieved a substantial
raise on the parsing performances.

Given T (x), the set of k-best trees of a sentence
x from a base parser, we use the popular mixture
re-ranking strategy (Hayashi et al., 2013; Le and
Mikolov, 2014), which is a combination of the our
model and the base parser.

ŷi = arg max
y∈T (xi)

αst(xi, y,Θ) + (1− α)sb(xi, y)

(14)
where α ∈ [0, 1] is a hyperparameter; st(xi, y,Θ)
and sb(xi, y) are the scores given by RCNN and
the base parser respectively.

To apply RCNN into re-ranking model, we first
get the k-best outputs of all sentences in train
set with a base parser. Thus, we can train the
RCNN in a discriminative way and optimize the
re-ranking strategy for a particular base parser.

Note that the role of RCNN is not fully valued
when applied in re-ranking model since that the
gen(x) in Eq.(8) is just the k-best outputs of a base
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parser, not the set of all possible trees for sentence
x. The parameters of RCNN could overfit to k-
best outputs of training set.

7 Experiments

7.1 Datasets
To empirically demonstrate the effectiveness of
our approach, we use two datasets in different lan-
guages (English and Chinese) in our experimen-
tal evaluation and compare our model against the
other state-of-the-art methods using the unlabeled
attachment score (UAS) metric ignoring punctua-
tion.

English For English dataset, we follow the stan-
dard splits of Penn Treebank (PTB), using
sections 2-21 for training, section 22 as de-
velopment set and section 23 as test set. We
tag the development and test sets using an au-
tomatic POS tagger (at 97.2% accuracy), and
tag the training set using four-way jackknif-
ing similar to (Collins and Koo, 2005).

Chinese For Chinese dataset, we follow the same
split of the Penn Chinese Treeban (CTB5)
as described in (Zhang and Clark, 2008) and
use sections 001-815, 1001-1136 as training
set, sections 886-931, 1148- 1151 as devel-
opment set, and sections 816-885, 1137-1147
as test set. Dependencies are converted by us-
ing the Penn2Malt tool with the head-finding
rules of (Zhang and Clark, 2008). And fol-
lowing (Zhang and Clark, 2008) (Zhang and
Nivre, 2011), we use gold segmentation and
POS tags for the input.

We use the linear-time incremental parser
(Huang and Sagae, 2010) as our base parser and
calculate the 64-best parses at the top cell of the
chart. Note that we optimize the training settings
for base parser and the results are slightly im-
proved on (Huang and Sagae, 2010). Then we use
max-margin criterion to train RCNN. Finally, we
use the mixture strategy to re-rank the top 64-best
parses.

For initialization of parameters, we train
word2vec embeddings (Mikolov et al., 2013) on
Wikipedia corpus for English and Chinese respec-
tively. For the combination matrices and score
vectors, we use the random initialization within
(0.01, 0.01). The parameters which achieve the
best unlabeled attachment score on the develop-
ment set will be chosen for the final evaluation.

7.2 English Dataset

We first evaluate the performances of the RCNN
and re-ranker (Eq. (14)) on the development set.
Figure 5 shows UASs of different models with
varying k. The base parser achieves 92.45%.
When k = 64, the oracle best of base parser
achieves 97.34%, while the oracle worst achieves
73.30% (-19.15%) . RCNN achieves the maxi-
mum improvement of 93.00%(+0.55%) when k =
6. When k > 6, the performance of RCNN de-
clines with the increase of k but is still higher
than baseline (92.45%). The reason behind this
is that RCNN could require more negative sam-
ples to avoid overfitting when k is large. Since the
negative samples are limited in the k-best outputs
of a base parser, the learnt parameters could easily
overfits to the training set.

The mixture re-ranker achieves the maximum
improvement of 93.50%(+1.05%) when k = 64.
In mixture re-ranker, α is optimised by searching
with the step-size 0.005.

Therefore, we use the mixture re-ranker in the
following experiments since it can take the advan-
tages of both the RCNN and base models.

Figure 6 shows the accuracies on the top ten
POS tags of the modifier words with the largest
improvements. We can see that our re-ranker
can improve the accuracies of CC and IN, and
therefore may indirectly result in rising the the
well-known coordinating conjunction and PP-
attachment problems.

The final experimental results on test set are
shown in Table 1. The hyperparameters of our
model are set as in Table 2. Our re-ranker achieves
the maximum improvement of 93.83%(+1.48%)
on test set. Our system performs slightly better
than many state-of-the-art systems such as Zhang
and Clark (2008) and Huang and Sagae (2010).
It outperforms Hayashi et al. (2013) and Le and
Zuidema (2014), which also use the mixture re-
ranking strategy.

Since the result of ranker is conditioned to k-
best results of base parser, we also do an experi-
ment to avoid this limitation by adding the oracle
to k-best candidates. With including oracle, the
re-ranker can achieve 94.16% on UAS, which is
shown in the last line (“our re-ranker (with ora-
cle)”) of Table 1.
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Figure 5: UAS with varying k on the development set. Oracle best: always choosing the best result in the
k-best of base parser; Oracle worst: always choosing the worst result in the k-best of base parser; RCNN:
choosing the most probable candidate according to the score of RCNN; Re-ranker: a combination of the
RCNN and base parser.
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Figure 6: Accuracies on the top ten POS tags of
the modifier words with the largest improvements
on the development set.

7.3 Chinese Dataset

We also make experiments on the Penn Chinese
Treebank (CTB5). The hyperparameters is the
same as the previous experiment on English except
that α is optimised by searching with the step-size
0.005.

The final experimental results on the test set
are shown in Table 3. Our re-ranker achieves the
performance of 85.71%(+0.25%) on the test set,
which also outperforms the previous state-of-the-
art methods. With adding oracle, the re-ranker can
achieve 87.43% on UAS, which is shown in the
last line (“our re-ranker (with oracle)”) of Table 3.

UAS
Traditional Methods
Zhang and Clark (2008) 91.4
Huang and Sagae (2010) 92.1
Distributed Representations
Stenetorp (2013) 86.25
Chen et al. (2014) 93.74
Chen and Manning (2014) 92.0
Re-rankers
Hayashi et al. (2013) 93.12
Le and Zuidema (2014) 93.12
Our baseline 92.35
Our re-ranker 93.83(+1.48)
Our re-ranker (with oracle) 94.16

Table 1: Accuracy on English test set. Our base-
line is the result of base parser; our re-ranker uses
the mixture strategy on the 64-best outputs of base
parser; our re-ranker(with oracle) is to add the or-
acle to k-best outputs of base parser.

Compared with the re-ranking model of Hayashi et
al. (2013), that use a large number of handcrafted
features, our model can achieve a competitive per-
formance with the minimal feature engineering.

7.4 Discussions

The performance of the re-ranking model is af-
fected by the base parser. The small divergence of
the dependency trees in the output list also results
to overfitting in training phase. Although our re-
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Word embedding size m = 25
Distance embedding size md = 25
Initial learning rate ρ = 0.1
Margin loss discount κ = 2.0
Regularization λ = 10−4

k-best k = 64

Table 2: Hyperparameters of our model

UAS
Traditional Methods
Zhang and Clark (2008) 84.33
Huang and Sagae (2010) 85.20
Distributed Representations
Chen et al. (2014) 82.94
Chen and Manning (2014) 83.9
Re-rankers
Hayashi et al. (2013) 85.9
Our baseline 85.46
Our re-ranker 85.71(+0.25)
Our re-ranker (with oracle) 87.43

Table 3: Accuracy on Chinese test set.

ranker outperforms the state-of-the-art methods, it
can also benefit from improving the quality of the
candidate results. It was also reported in other re-
ranking works that a larger k (eg. k > 64) results
the worse performance. We think the reason is that
the oracle best increases when k is larger, but the
oracle worst decrease with larger degree. The er-
ror types increase greatly. The re-ranking model
requires more negative samples to avoid overfit-
ting. When k is larger, the number of negative
samples also needs to multiply increase for train-
ing. However, we just can obtain at most k neg-
ative samples from the k-best outputs of the base
parser.

The experiments also show that the our model
can achieves significant improvements by adding
the oracles into the output lists of the base parser.
This indicates that our model can be boosted by
a better set of the candidate results, which can be
implemented by combining the RCNN in the de-
coding algorithm.

8 Related Work

There have been several works to use neural net-
works and distributed representation for depen-
dency parsing.

Σ

a,Det red,JJ bike,NN

a red bike,NN

Figure 7: Example of a DT-RNN unit

Stenetorp (2013) attempted to build recursive
neural networks for transition-based dependency
parsing, however the empirical performance of his
model is still unsatisfactory. Chen and Manning
(2014) improved the transition-based dependency
parsing by representing all words, POS tags and
arc labels as dense vectors, and modeled their in-
teractions with neural network to make predictions
of actions. Their methods aim to transition-based
parsing and can not model the sentence in seman-
tic vector space for other NLP tasks.

Socher et al. (2013b) proposed a composi-
tional vectors computed by dependency tree RNN
(DT-RNN) to map sentences and images into a
common embedding space. However, there are
two major differences as follows. 1) They first
summed up all child nodes into a dense vector vc
and then composed subtree representation from vc
and vector parent node. In contrast, our model
first combine the parent and each child and then
choose the most informative features with a pool-
ing layer. 2) We represent the relative position
of each child and its parent with distributed rep-
resentation (position embeddings), which is very
useful for convolutional layer. Figure 7 shows an
example of DTRNN to illustrates how RCNN rep-
resents phrases as continuous vectors.

Specific to the re-ranking model, Le and
Zuidema (2014) proposed a generative re-ranking
model with Inside-Outside Recursive Neural Net-
work (IORNN), which can process trees both
bottom-up and top-down. However, IORNN
works in generative way and just estimates the
probability of a given tree, so IORNN cannot fully
utilize the incorrect trees in k-best candidate re-
sults. Besides, IORNN treats dependency tree as a
sequence, which can be regarded as a generaliza-
tion of simple recurrent neural network (SRNN)
(Elman, 1990). Unlike IORNN, our proposed
RCNN is a discriminative model and can opti-
mize the re-ranking strategy for a particular base
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parser. Another difference is that RCNN computes
the score of tree in a recursive way, which is more
natural for the hierarchical structure of natural lan-
guage. Besides, the RCNN can not only be used
for the re-ranking, but also be regarded as general
model to represent sentence with its dependency
tree.

9 Conclusion

In this work, we address the problem to rep-
resent all level nodes (words or phrases) with
dense representations in a dependency tree. We
propose a recursive convolutional neural net-
work (RCNN) architecture to capture the syntac-
tic and compositional-semantic representations of
phrases and words. RCNN is a general architec-
ture and can deal with k-ary parsing tree, there-
fore RCNN is very suitable for many NLP tasks
to minimize the effort in feature engineering with
a external dependency parser. Although RCNN
is just used for the re-ranking of the dependency
parser in this paper, it can be regarded as seman-
tic modelling of text sequences and handle the in-
put sequences of varying length into a fixed-length
vector. The parameters in RCNN can be learned
jointly with some other NLP tasks, such as text
classification.

For the future research, we will develop an inte-
grated parser to combine RCNN with a decoding
algorithm. We believe that the integrated parser
can achieve better performance without the limi-
tation of base parser. Moreover, we also wish to
investigate the ability of our model for other NLP
tasks.
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Abstract

Constituent parsing is typically modeled
by a chart-based algorithm under prob-
abilistic context-free grammars or by a
transition-based algorithm with rich fea-
tures. Previous models rely heavily on
richer syntactic information through lex-
icalizing rules, splitting categories, or
memorizing long histories. However en-
riched models incur numerous parameters
and sparsity issues, and are insufficient for
capturing various syntactic phenomena.
We propose a neural network structure that
explicitly models the unbounded history of
actions performed on the stack and queue
employed in transition-based parsing, in
addition to the representations of partially
parsed tree structure. Our transition-based
neural constituent parsing achieves perfor-
mance comparable to the state-of-the-art
parsers, demonstrating F1 score of 90.68%
for English and 84.33% for Chinese, with-
out reranking, feature templates or addi-
tional data to train model parameters.

1 Introduction

A popular parsing algorithm is a cubic time chart-
based dynamic programming algorithm that uses
probabilistic context-free grammars (PCFGs).
However, PCFGs learned from treebanks are too
coarse to represent the syntactic structures of texts.
To address this problem, various contexts are in-
corporated into the grammars through lexicaliza-
tion (Collins, 2003; Charniak, 2000) or cate-
gory splitting either manually (Klein and Man-
ning, 2003) or automatically (Matsuzaki et al.,
2005; Petrov et al., 2006). Recently a rich feature
set was introduced to capture the lexical contexts

∗The first author is now affiliated with Google, Japan.

in each span without extra annotations in gram-
mars (Hall et al., 2014).

Alternatively, transition-based algorithms run in
linear time by taking a series of shift-reduce ac-
tions with richer lexicalized features considering
histories; however, the accuracies did not match
with the state-of-the-art methods until recently
(Sagae and Lavie, 2005; Zhang and Clark, 2009).
Zhu et al. (2013) show that the use of better transi-
tion actions considering unaries and a set of non-
local features can compete with the accuracies of
chart-based parsing. The features employed in a
transition-based algorithm usually require part of
speech (POS) annotation in the input, but the de-
layed feature technique allows joint POS inference
(Wang and Xue, 2014).

In both frameworks, the richer models require
that more parameters be estimated during train-
ing which can easily result in the data sparseness
problems. Furthermore, the enriched models are
still insufficient to capture various syntactic rela-
tions in texts due to the limited contexts repre-
sented in latent annotations or non-local features.
Recently Socher et al. (2013) introduced composi-
tional vector grammar (CVG) to address the above
limitations. However, they employ reranking over
a forest generated by a baseline parser for efficient
search, because CVG is built on cubic time chart-
based parsing.

In this paper, we propose a neural network-
based parser — transition-based neural con-
stituent parsing (TNCP) — which can guarantee
efficient search naturally. TNCP explicitly models
the actions performed on the stack and queue em-
ployed in transition-based parsing. More specif-
ically, the queue is modeled by recurrent neural
network (RNN) or Elman network (Elman, 1990)
in backward direction (Henderson, 2004). The
stack structure is also modeled similarly to RNNs,
and its top item is updated using the previously
constructed hidden representations saved in the
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stack. The representations from both the stack and
queue are combined with the representations prop-
agated from the partially parsed tree structure in-
spired by the recursive neural networks of CVGs.
Parameters are estimated efficiently by a variant
of max-violation (Huang et al., 2012) which con-
siders the worst mistakes found during search and
updates parameters based on the expected mistake.

Under similar settings, TCNP performs compa-
rably to state-of-the-art parsers. Experimental re-
sults obtained using the Wall Street Journal corpus
of the English Penn Treebank achieved a labeled
F1 score of 90.68%, and the result for the Penn
Chinese Treebank was 84.33%. Our parser per-
forms no reranking with computationally expen-
sive models, employs no templates for feature en-
gineering, and requires no additional monolingual
data for reliable parameter estimation. The source
code and models will be made public1.

2 Related Work

Our study is largely inspired by recursive neural
networks for parsing, first pioneered by Costa et
al. (2003), in which parsing is treated as a ranking
problem of finding phrasal attachment. Such net-
work structures have been used successfully as a
reranker for k-best parses from a baseline parser
(Menchetti et al., 2005) or parse forests (Socher et
al., 2013), and have achieved gains on large data.
Stenetorp (2013) showed that the recursive neu-
ral networks are comparable to the state-of-the-art
system with a rich feature set under dependency
parsing. Our model is not a reranking model, but
a discriminative parsing model, which incorpo-
rates the representations of stacks and queues em-
ployed in the transition-based parsing framework,
in addition to the representations of the tree struc-
tures. The use of representations outside of the
partial parsed trees is very similar to the recently
proposed inside-outside recursive neural networks
(Le and Zuidema, 2014) which can assign proba-
bilities in a top-down manner, in the same way as
PCFGs.

Henderson (2003) was the first to demonstrate
the successful use of neural networks to represent
derivation histories under large-scale parsing ex-
periments. He employed synchrony networks, i.e.,
feed-forward style networks, to assign a probabil-
ity for each step in the left-corner parsing condi-
tioning on all parsing steps. Henderson (2004)

1http://github.com/tarowatanabe/trance

later employed a discriminative model and showed
further gains by conditioning on the representa-
tion of the future input in addition to the history
of parsing steps. Similar feed-forward style net-
works are successfully applied for transition-based
dependency parsing in which limited contexts are
considered in the feature representation (Chen and
Manning, 2014). Our model is very similar in that
the score of each action is computed by condition-
ing on all previous actions and future input in the
queue.

The use of neural networks for transition-based
shift-reduce parsing was first presented by May-
berry and Miikkulainen (1999) in which the stack
representation was treated as a hidden state of an
RNN. In their study, the hidden state is updated
recurrently by either a shift or reduce action, and
its corresponding parse tree is decoded recursively
from the hidden state (Berg, 1992) using recursive
auto-associative memories (Pollack, 1990). We
apply the idea of representing a stack in a contin-
uous vector; however, our method differs in that
it memorizes all hidden states pushed to the stack
and performs push/pop operations. In this man-
ner, we can represent the local contexts saved in
the stack explicitly and use them to construct new
hidden states.

3 Transition-based Constituent Parsing

Our transition-based parser is based on a study by
Zhu et al. (2013), which adopts the shift-reduce
parsing of Sagae and Lavie (2005) and Zhang and
Clark (2009). However, our parser differs in that
we do not differentiate left or right head words.
In addition, POS tags are jointly induced during
parsing in the same manner as Wang and Xue
(2014). Given an input sentence w0, · · · , wn−1,
the transition-based parser employs a stack of par-
tially constructed constituent tree structures and a
queue of input words. In each step, a transition
action is applied to a state 〈i, f, S〉, where i is the
next input word position in the queuewi, f is a flag
indicating the completion of parsing, i.e., whether
the ROOT of a constituent tree covering all the
input words is reached, and S represents a stack of
tree elements, s0, s1, · · · .

The parser consists of five actions:

shift-X consumes the next input word, wi, from
the queue and pushes a non-terminal symbol
(or a POS label) as a tree of X → wi.
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axiom 0 : 〈0, false, 〈eps〉〉 : 0
goal (2 + u)n : 〈n, true, S〉 : ρ

shift-X
j : 〈i, false, S〉 : ρ

j + 1 : 〈i+ 1, false, S|X〉 : ρ+ ρsh

reduce-X
j : 〈i, false, S|s1|s0〉 : ρ

j + 1 : 〈i, false, S|X〉 : ρ+ ρre

unary-X
j : 〈i, false, S|s0〉 : ρ

j + 1 : 〈i, false, S|X〉 : ρ+ ρun

finish
j : 〈n, false, S〉 : ρ

j + 1 : 〈n, true, S〉 : ρ+ ρfi

idle
j : 〈n, true, S〉 : ρ

j + 1 : 〈n, true, S〉 : ρ+ ρid

Figure 1: Deduction system for shift-reduce pars-
ing, where j is a step size and ρ is a score.

reduce-X pops the top two items s0 and s1 out of
the stack and combines them as a partial tree
with the constituent label X as its root, and
with s0 and s1 as right and left antecedents,
respectively (X → s1s0). The newly created
tree is then pushed into the stack.

unary-X is similar to reduce-X; however, it con-
sumes only the top most item s0 from the
stack and pushes a new tree of X → s0.

finish indicates the completion of parsing, i.e.,
reaching the ROOT .

idle preserves completion until the goal is
reached.

The whole procedure is summarized as a deduc-
tion system in Figure 1. We employ beam search
which starts from an axiom consisting of a stack
with a special symbol 〈eps〉, and ends when we
reach a goal item (Zhang and Clark, 2009). A set
of agenda B = B0, B1, · · · maintains the k-best
states for each step j at Bj , which is first initial-
ized by inserting the axiom in B0. Then, at each
step j = 0, 1, · · · , every state in the agenda Bj is
extended by applying one of the actions and the
new states are inserted into the agenda Bj+1 for
the next step, which retains only the k-best states.

We limit the maximum number of consecutive
unary actions to u (Sagae and Lavie, 2005; Zhang
and Clark, 2009) and the maximum number of
unary actions in a single derivation to u×n. Thus,
the process is repeated until we reach the final step

of (2+u)n, which keeps the completed states. The
idle action is inspired by the padding method of
Zhu et al. (2013), such that the states in an agenda
are comparable in terms of score even if differ-
ences exist in the number of unary actions. Un-
like Zhu et al. (2013) we do not terminate parsing
even if all the states in an agenda are completed
(f = true).

The score of a state is computed by summing
the scores of all the actions leading to the state. In
Figure 1, ρsh, ρre, ρun, ρfi and ρid are the scores
of shift-X , reduce-X , unary-X , finish and idle ac-
tions, respectively, which are computed on the ba-
sis of the history of actions.

4 Neural Constituent Parsing

The score of a state is defined formally as the total
score of transition actions, or a (partial) derivation
d = d0, d1, · · · leading to the state as follows:

ρ(d) =
|d|−1∑
j=0

ρ(dj |dj−1
0 ). (1)

Note that the score of each action is dependent on
all previous actions. In previous studies, the score
is computed by a linear model, i.e., a weighted
sum of feature values derived from limited histo-
ries, such as those that consider two adjacent con-
stituent trees in a stack (Sagae and Lavie, 2005;
Zhang and Clark, 2009; Zhu et al., 2013). Our
method employs an RNN or Elman network (El-
man, 1990) to represent an unlimited stack and
queue history.

Formally, we use an m-dimensional vector for
each hidden state unless otherwise stated. Here, let
xi ∈ Rm′×1 be an m′-dimensional vector repre-
senting the input word wi and the dimension may
not match with the hidden state sizem. qi ∈ Rm×1

denotes the hidden state for the input word wi in a
queue. Following the RNN in backward direction
(Henderson, 2004), the hidden state for each word
wi is computed right-to-left, qn−1 to q0, beginning
from a constant qn:

qi = τ (Hquqi+1 +Wquxi + bqu) , (2)

where Hqu ∈ Rm×m, Wqu ∈ Rm×m′ , bqu ∈
Rm×1 and τ(x) is hard-tanh applied element-
wise2.

2τ(x) = −1 for x < 1, 1 for x > 1 otherwise x.
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(c) unary-X action

Figure 2: Example neural network for constituent
parsing. The thick arrows indicate the context of
tree structures, and the gray arrows represent in-
teractions from the stack and queue. The dotted
arrows denote popped states.

Shift: Now, let hlj ∈ Rm×1 represent a hidden
state associated with the lth stack item for the jth
action. We define the score of a shift action:

h0
j+1 = τ

(
HX

shh
0
j +QXshqi +WX

shxi + bXsh
)

(3)

ρ(dj = shift-X|dj−1
0 ) = V X

sh h
0
j+1 + vXsh (4)

where HX
sh ∈ Rm×m, QXsh ∈ Rm×m, WX

sh ∈
Rm×m′ and bXsh ∈ Rm×1. Figure 2(a) shows the
network structure for Equation 3. HX

sh represents
an RNN-style architecture that propagates the pre-
vious context in the stack. QXsh can reflect the
queue context qi, or the future input sequence from
wi through wn−1, while WX

sh directly expresses
the leaf of a tree structure using the shifted input
word representation xi for wi. The hidden state
h0
j+1 is used to compute the score of a derivation
ρ(dj |dj−1

0 ) in Equation 4, which is based on the
matrix V X

sh ∈ R1×m and the bias term vXsh ∈ R.
Note that hlj+1 = hl−1

j for l = 1, 2, · · · because
the stack is updated by the newly created partial
tree label X associated with the new hidden state
h0
j+1.
Inspired by CVG (Socher et al., 2013), we dif-

ferentiate the matrices for each non-terminal (or
POS) labelX rather than using shared parameters.

However, our model differs in that the parameters
are untied on the basis of the left hand side of a
rule, rather than the right hand side, because our
model assigns a score discriminatively for each ac-
tion with the left hand side label X unlike a gen-
erative model derived from PCFGs.

Reduce: Similarly, the score for a reduce action
is obtained as follows:

h0
j+1 = τ

(
HX

reh
2
j +QXreqi +WX

re h
[0:1]
j + bXre

)
(5)

ρ(dj = reduce-X|dj−1
0 ) = V X

re h
0
j+1 + vXre , (6)

where HX
re ∈ Rm×m, QXre ∈ Rm×m, WX

re ∈
Rm×2m, bXre ∈ Rm×1, and h[l:l′] denotes the verti-
cal matrix concatenation of hidden states from hl

to hl
′
.

Note that the reduce-X action pops top two
items in the stack that correspond to the two hid-
den states of h[0:1]

j as represented by Figure 2(b).
By pushing a newly created tree with the con-
stituent X , its corresponding hidden state h0

j+1 is
pushed to the stack with each remaining hidden
state hlj+1 = hl+1

j for l = 1, 2, · · · . The hid-
den state of the top stack item h0

j is a represen-
tation of the right antecedent of a newly created
binary tree with h0

j+1 as a root, while the hidden
state of the next top stack item h1

j corresponds
to the left antecedent of the binary tree. Thus,
the two hidden states capture the recursive neural
network-like structure (Costa et al., 2003), while
h2
j = h1

j+1 represents the RNN-like linear history
in the stack.

Unary: In the same manner as the reduce action,
the unary action is defined by simply reducing a
single item from a stack and by pushing a new item
(Figure 2(c)):

h0
j+1 = τ

(
HX

unh
1
j +QXunqi +WX

unh
0
j + bXun

)
(7)

ρ(dj = unary-X|dj−1
0 ) = V X

unh
0
j+1 + vXun, (8)

where HX
un ∈ Rm×m, QXun ∈ Rm×m, WX

un ∈
Rm×m and bXun ∈ Rm×1. Note that hlj+1 = hlj
for l = 1, 2, · · · , because only the top item is up-
dated in the stack by creating a partial tree with h0

j

together with the stack history h1
j .

In summary, the number of model parameters
for the three actions is 9×m2+m×m′+6×m+3
for each non-terminal label X . The scores for a
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finish action and an idle action are defined analo-
gous to the unary-X action with special labels for
X , 〈finish〉 and 〈idle〉, respectively3.

5 Parameter Estimation

Let θ =
{
HX

sh, Q
X
sh, · · ·

} ∈ RM be an M -
dimensional vector of all model parameters. The
parameters are initialized randomly by following
Glorot and Bengio (2010), in which the random
value range is determined by the size of the in-
put/output layers. The bias parameters are initial-
ized to zeros.

We employ a variant of max-violation (Huang
et al., 2012) as our training objective, in which pa-
rameters are updated based on the worst mistake
found during search, rather than the first mistake
as performed in the early update perceptron al-
gorithm (Collins and Roark, 2004). Specifically,
given a training instance (w,y) where w is an in-
put sentence and y is its gold derivation, i.e., a se-
quence of actions representing the gold parse tree
forw, we seek for the step j∗ where the difference
of the scores is the largest:

j∗ = arg min
j

{
ρθ(y

j
0)− max

d∈Bj

ρθ(d)
}
. (9)

Then, we define the following hinge-loss function:

L(w,y;B,θ) = max
{

0, 1− ρθ(yj
∗

0 ) + EB̃j∗
[ρθ]
}
,

(10)

wherein we consider the subset of sub-derivations
B̃j∗ ⊂ Bj∗ consisting of those scored higher than
ρθ(y

j∗
0 ):

B̃j∗ =
{
d ∈ Bj∗

∣∣ρθ(d) > ρθ(y
j∗
0 )
}

(11)

pθ(d) =
exp(ρθ(d))∑

d′∈B̃j∗
exp(ρθ(d′))

(12)

EB̃j∗
[ρθ] =

∑
d∈B̃j∗

pθ(d)ρθ(d). (13)

Unlike Huang et al. (2012) and inspired by Tamura
et al. (2014), we consider all incorrect sub-
derivations found in B̃j∗ through the expected
score EB̃j∗

[ρθ]4. The loss function in Equation

3Since h1
j and qn are constants for the finish and idle ac-

tions, we enforce HX
un = 0 and QX

un = 0 for those special
actions.

4We can use all the sub-derivations in Bj∗ ; however, our
preliminary studies indicated that the use of B̃j∗ was better.

10 can be intuitively considered an expected mis-
take suffered at the maximum violated step j∗,
which is measured by the Viterbi violation in
Equation 9. Note that if we replace EB̃j∗

[ρθ] with
maxd∈Bj∗ ρθ(d) in Equation 10, it is exactly the
same as the max-violation objective (Huang et al.,
2012)5.

To minimize the loss function, we use a di-
agonal version of AdaDec (Senior et al., 2013)
— a variant of diagonal AdaGrad (Duchi et al.,
2011) — under mini-batch settings. Given the
sub-gradient gt ∈ RM of Equation 10 at time t
computed by the back-propagation through struc-
ture (Goller and Küchler, 1996), we maintain ad-
ditional parametersGt ∈ RM :

Gt ← γGt−1 + gt � gt, (14)

where� is the Hadamard product (or the element-
wise product). θt−1 is updated using the element
specific learning rate ηt ∈ RM derived from Gt

and a constant η0 > 0:

ηt ← η0 (Gt + ε)−
1
2 (15)

θt− 1
2
← θt−1 − ηt � gt (16)

θt ← arg min
θ

1
2
‖θ − θt− 1

2
‖22 + λη>t abs(θ).

(17)

Compared with AdaGrad, the squared sum of the
sub-gradients decays over time using a constant
0 < γ ≤ 1 in Equation 14. The learning
rate in Equation 15 is computed element-wise and
bounded by a constant ε ≥ 0, and if we set ε ≥ η2

0 ,
it is always decayed6. In our preliminary stud-
ies, AdaGrad eventually becomes very conserva-
tive to update parameters when training longer it-
erations. AdaDec fixes the problem by ignoring
older histories of sub-gradients in G, which is re-
flected in the learning rate η. In each update, we
employ `1 regularization through FOBOS (Duchi
and Singer, 2009) using a hyperparameter λ ≥ 0
to control the fitness in Equation 16 and 17. For
testing, we found that taking the average of the pa-
rameters over period 1

T+1

∑T
t=0 θt under training

iterations T was very effective as demonstrated by
Hashimoto et al. (2013).

Parameter estimation is performed in parallel
by distributing training instances asynchronously

5Or, setting pθ(d∗) = 1 for the Viterbi derivation d∗ =
arg maxd∈Bj∗ ρθ(d) and zero otherwise.

6Note that AdaGrad is a special case of AdaDec with γ =
1 and ε = 0.
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in each shard and by updating locally copied pa-
rameters using the sub-gradients computed from
the distributed mini-batches (Dean et al., 2012).
The sub-gradients are broadcast asynchronously
to other shards to reflect the updates in one shard.
Unlike Dean et al. (2012), we do not keep a cen-
tral storage for model parameters; the replicated
parameters are synchronized in each iteration by
choosing the model parameters from one of the
shards with respect to the minimum of `1 norm7.
Note that we synchronize θ, but G is maintained
as shard local parameters.

6 Experiments

6.1 Settings

We conducted experiments for transition-based
neural constituent parsing (TNCP) for two lan-
guages — English and Chinese. English data were
derived from the Wall Street Journal (WSJ) of the
Penn Treebank (Marcus et al., 1993), from which
sections 2-21 were used for training, 22 for de-
velopment and 23 for testing. Chinese data were
extracted from the Penn Chinese Treebank (CTB)
(Xue et al., 2005); articles 001-270 and 440-
1151 were used for training, 301-325 for develop-
ment, and 271-300 for testing. Inspired by jack-
knifing (Collins and Koo, 2005), we reassigned
POS tags for training data using the Stanford tag-
ger (Toutanova et al., 2003)8. The treebank trees
were normalized by removing empty nodes and
unary rules with X over X (or X → X), then
binarized in a left-branched manner.

The possible actions taken for our shift-reduce
parsing, e.g., X → w in shift-X , were learned
from the normalized treebank trees. The words
that occurred twice or less were handled differ-
ently in order to consider OOVs for testing: They
were simply mapped to a special token 〈unk〉when
looking up their corresponding word representa-
tion vector. Similarly, when assigning possible
POS tags in shift actions, they fell back to their
corresponding “word signature” in the same man-
ner as the Berkeley parser9. A maximum number
of consecutive unary actions was set to u = 3 for
WSJ and u = 4 for CTB, as determined by the

7We also tried averaging among shards. However we ob-
served no gains likely because we performed averaging for
testing.

8http://nlp.stanford.edu/software/
tagger.shtml

9https://code.google.com/p/
berkeleyparser/

rep. size 32 64 128 256 512 1024

de
v

WSJ-32 89.91 90.15 90.48 90.70 90.75 90.87
64 90.37 90.73 90.81 90.62 90.71 91.11

CTB-32 79.25 81.59 82.80 82.68 84.17 85.12
64 84.04 83.29 82.92 85.12 85.24 85.77

te
st

WSJ-32 89.03 89.49 89.75 90.45 90.37 90.01
64 89.74 90.16 90.48 90.06 89.91 90.68

CTB-32 75.19 78.29 80.46 81.87 83.16 82.64
64 80.11 81.35 81.67 82.91 83.76 84.33

Table 1: Comparison of various state/word rep-
resentation dimension size measured by labeled
F1(%). “-32” denotes the hidden state size m =
32. The numbers in bold indicate the best results
for each hidden state dimension.

treebanks.
Parameter estimation was performed on 16

cores of a Xeon E5-2680 2.7GHz CPU. It took
approximately one day for 100 training iterations
with m = 32 and m′ = 128 under a mini-
batch size of 4 and a beam size of 32. Dou-
bling either one of m or m′ incurred approxi-
mately double training time. We chose the fol-
lowing hyperparameters by tuning toward the de-
velopment data in our preliminary experiments10:
η0 = 10−2, γ = 0.9, ε = 1. The choice of λ from
{10−5, 10−6, 10−7} and the number of training it-
erations were very important for different training
objectives and models in order to avoid overfitting.
Thus, they were determined by the performance
on the development data for each different train-
ing objective and/or network configuration, e.g.,
the dimension for a hidden state. The word rep-
resentations were initialized by a tool developed
in-house for an RNN language model (Mikolov et
al., 2010) trained by noise contrastive estimation
(Mnih and Teh, 2012). Note that the word repre-
sentations for initialization were learned from the
given training data, not from additional unanno-
tated data as done by Chen and Manning (2014).

Testing was performed using a beam size of 64
with a Xeon X5550 2.67GHz CPU. All results
were measured by the labeled bracketing metric
PARSEVAL (Black et al., 1991) using EVALB11

after debinarization.

6.2 Results

Table 1 shows the impact of dimensions on
the parsing performance. We varied the hid-

10We confirmed that this hyperparameter setting was ap-
propriate for different models experimented in Section 6.2
through our preliminary studies.

11http://nlp.cs.nyu.edu/evalb/
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model tree +stack +queue

de
v WSJ 77.70 90.54 91.11

CTB 69.74 84.70 85.77

te
st WSJ 76.48 90.00 90.68

CTB 66.03 82.85 84.33

Table 2: Comparison of network structures mea-
sured by labeled F1(%).

den vector size m = {32, 64} and the word
representation (embedding) vector size m′ =
{32, 64, 128, 256, 512, 1024}12. As can be seen,
the greater word representation dimensions are
generally helpful for both WSJ and CTB on the
closed development data (dev), which may match
with our intuition that the richer syntactic and se-
mantic knowledge representation for each word is
required for parsing. However, overfitting was ob-
served when using a 32-dimension hidden vector
in both tasks, i.e., drops of performance on the
open test data (test) when m′ = 1024, probably
caused by the limited generalization capability in
the smaller hidden state size. In the rest of this pa-
per, we show the results with m = 64 and m′ =
1024 as determined by the performance on the
development data, wherein we achieved 91.11%
and 85.77% labeled F1 for WSJ and CTB, respec-
tively. The total number of parameters were ap-
proximately 28.3M and 22.0M for WSJ and CTB,
respectively, among which 17.8M and 13.4M were
occupied for word representations, respectively.

Table 2 differentiated the network structure.
The tree model computes the new hidden state
h0
j+1 using only the recursively constructed net-

work by ignoring parameters from the stack and
queue, e.g., by enforcing HX

sh = 0 and QXsh = 0
in Equation 3, which is essentially similar to the
CVG approach (Socher et al., 2013). Adding the
context from the stack in +stack boosts the per-
formance significantly. Further gains are observed
when the queue context +queue is incorporated in
the model. These results clearly indicate that ex-
plicit representations of the stack and queue are
very important when applying a recursive neural
network model for transition-based parsing.

We then compared the expected mistake with
the Viterbi mistake (Huang et al., 2012) as our
training objective by replacing EB̃j∗

[ρθ] with
maxd∈Bj∗ ρθ(d) in Equation 10. Table 3 shows
that the use of the expected mistake (expected)
as a loss function is significantly better than that

12We experimented larger dimensions in Appendix A.

loss Viterbi expected

de
v WSJ 90.89 91.11

CTB 84.94 85.77

te
st WSJ 90.21 90.68

CTB 82.62 84.33

Table 3: Comparison of loss functions measured
by labeled F1(%).
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Figure 3: Plots for training iterations and labeled
F1(%) on WSJ.

of the Viterbi mistake (Viterbi) by considering all
the incorrect sub-derivations at maximum violated
steps during search. Figure 3 and 4 plot the train-
ing curves for WSJ and CTB, respectively. The
plots clearly demonstrate that the use of the ex-
pected mistake is faster in convergence and stabler
in learning when compared with that of the Viterbi
mistake13.

Next, we compare our parser, TNCP, with other
parsers listed in Table 4 for WSJ and Table 5 for
CTB on the test data. The Collins parser (Collins,
1997) and the Berkeley parser (Petrov and Klein,
2007) are chart-based parsers with rich states, ei-
ther through lexicalization or latent annotation.
SSN is a left-corner parser (Henderson, 2004), and
CVG is a compositional vector grammar-based
parser (Socher et al., 2013)14. Both parsers rely on
neural networks to represent rich contexts, similar
to our work; however they differ in that they es-
sentially perform reranking from either the k-best
parses or parse forests15. The word representa-

13The labeled F1 on those plots are slightly different from
EVALB in that all the syntactic labels are considered when
computing bracket matching. Further, the scores on the train-
ing data are approximation since they were obtained as a by-
product of online learning.

14http://nlp.stanford.edu/software/
lex-parser.shtml

15Strictly speaking, SSN can work as a standalone parser;
Table 4 shows the result after reranking (Henderson, 2004).
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Figure 4: Plots for training iterations and labeled
F1(%) on CTB.

parser test
Collins (Collins, 1997) 87.8
Berkeley (Petrov and Klein, 2007) 90.1
SSN (Henderson, 2004) 90.1
ZPar (Zhu et al., 2013) 90.4
CVG (Socher et al., 2013) 90.4
Charniak-R (Charniak and Johnson, 2005) 91.0
This work: TNCP 90.7

Table 4: Comparison of different parsers on the
WSJ test data measured by labeled F1(%).

tion in CVG was learned from large monolingual
data (Turian et al., 2010), but our parser learns
word representation from only the provided train-
ing data. Charniak-R is a discriminative rerank-
ing parser with non-local features (Charniak and
Johnson, 2005). ZPar is a transition-based shift-
reduce parser (Zhu et al., 2013)16 that influences
the deduction system in Figure 1, but differs in that
scores are computed by a large number of features
and POS tagging is performed separately. The re-
sults shown in Table 4 and 5 come from the feature
set without extra data, i.e., semi-supervised fea-
tures. Joint is the joint POS tagging and transition-
based parsing with non-local features (Wang and
Xue, 2014). Similar to ZPar, we present the result
without cluster features learned from extra unan-
notated data.

Finally, we measured the speed for parsing by
varying beam size and hidden dimension (Table
6). When testing, we applied a pre-computation
technique for layers involving word representation
vectors (Devlin et al., 2014), i.e., Wqu in Equation
2 and WX

sh in Equation 3. Thus, the parsing speed
was influenced by only the hidden state size m. It
is clear that the enlarged beam size improves per-

16http://sourceforge.net/projects/zpar/

parser test
ZPar (Zhu et al., 2013) 83.2
Berkeley (Petrov and Klein, 2007) 83.3
Joint (Wang and Xue, 2014) 84.9
This work: TNCP 84.3

Table 5: Comparison of different parsers on the
CTB test data measured by labeled F1(%).

beam 32 64 128
WSJ-32 15.42/89.95 7.90/90.01 3.97/90.04

64 7.31/90.56 3.56/90.68 1.76/90.73
CTB-32 13.67/82.35 6.95/82.64 3.68/82.84

64 6.15/84.12 3.11/84.33 1.53/83.83

Table 6: Comparison of parsing speed by varying
beam size and hidden dimension; each cell shows
the number of sentences per second/labeled F1(%)
measured on the test data.

formance by trading off run time in most cases.
Note that Berkeley, CVG and ZPar took 4.74, 1.54
and 37.92 sentences/sec, respectively, with WSJ.
Although it is more difficult to compare with other
parsers, our parser implemented in C++ is on par
with Java implementations of Berkeley and CVG.
The large run time difference with the C++ imple-
mented ZPar may come from the network compu-
tation and joint POS inference in our model which
impact parsing speed significantly.

6.3 Error Analysis
To assess parser error types, we used the tool pro-
posed by Kummerfeld et al. (2012)17. The average
number of errors per sentence is listed in Table 7
for each error type on the WSJ test data. Gener-
ally, our parser results in errors that are compara-
ble to the state-of-the-art parsers; however, greater
reductions are observed for various attachments
errors. One of the largest gains comes from the
clause attachment, i.e., 0.12 reduction in average
errors from Berkeley and 0.05 from CVG. The av-
erage number of errors is also reduced by 0.09
from Berkeley and 0.06 from CVG for the PP at-
tachment. We also observed large reductions in
coordination and unary rule errors.

7 Conclusion

We have introduced transition-based neural con-
stituent parsing — a neural network architecture
that encodes each state explicitly — as a con-
tinuous vector by considering the recurrent se-

17https://code.google.com/p/
berkeley-parser-analyser/

1176



error type Berkeley CVG TNCP
PP Attach 0.82 0.79 0.73
Clause Attach 0.50 0.43 0.38
Diff Label 0.29 0.29 0.29
Mod Attach 0.27 0.27 0.27
NP Attach 0.37 0.31 0.32
Co-ord 0.38 0.32 0.29
1-Word Span 0.28 0.31 0.30
Unary 0.24 0.22 0.18
NP Int 0.18 0.19 0.20
Other 0.41 0.41 0.45

Table 7: Comparison of different parsers on the
WSJ test data measured by average number of er-
rors per sentence; the numbers in bold indicate the
least errors in each error type.

quences of the stack and queue in the transition-
based parsing framework in addition to recursively
constructed partial trees. Our parser works in
a standalone fashion without reranking and does
not rely on an external POS tagger or additional
monolingual data for reliable estimates of syntac-
tic and/or semantic representations of words. The
parser achieves performance that is comparable to
state-of-the-art systems.

In the future, we plan to apply our neural net-
work structure to dependency parsing. We are also
interested in using long short-term memory neu-
ral networks (Hochreiter and Schmidhuber, 1997)
to better model the locality of propagated infor-
mation from the stack and queue. The parameter
estimation under semi-supervised setting will be
investigated further.

Acknowledgments

We would like to thank Lemao Liu for suggestions
while drafting this paper. We are also grateful for
various comments from anonymous reviewers.

References

George Berg. 1992. A connectionist parser with recur-
sive sentence structure and lexical disambiguation.
In Proc. of AAAI ’92, pages 32–37.

Ezra Black, Steve Abney, Dan Flickinger, Claudia
Gdaniec, Ralph Grishman, Phil Harrison, Don Hin-
dle, Robert Ingria, Fred Jelinek, Judith Klavans,
Mark Liberman, Mitchell Marcus, Salim Roukos,
Beatrice Santorini, and Tomek Strzalkowski. 1991.
Procedure for quantitatively comparing the syntac-
tic coverage of english grammars. In Proc. of the
Workshop on Speech and Natural Language, pages
306–311, Stroudsburg, PA, USA.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative
reranking. In Proc. of ACL 2005, pages 173–180,
Ann Arbor, Michigan, June.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In Proc. of NAACL 2000, pages
132–139, Stroudsburg, PA, USA.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proc. of EMNLP 2014, pages 740–750,
Doha, Qatar, October.

Michael Collins and Terry Koo. 2005. Discriminative
reranking for natural language parsing. Computa-
tional Linguistics, 31(1):25–70, March.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In Proc. of
ACL 2004, pages 111–118, Barcelona, Spain, July.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In Proc. of ACL ’97,
pages 16–23, Madrid, Spain, July.

Michael Collins. 2003. Head-driven statistical models
for natural language parsing. Computational Lin-
guistics, 29(4):589–637, December.

Fabrizio Costa, Paolo Frasconi, Vincenzo Lombardo,
and Giovanni Soda. 2003. Towards incremental
parsing of natural language using recursive neural
networks. Applied Intelligence, 19(1-2):9–25, May.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Marc’aurelio Ranzato,
Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le,
and Andrew Y. Ng. 2012. Large scale distributed
deep networks. In Advances in Neural Information
Processing Systems 25, pages 1223–1231. Curran
Associates, Inc.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas
Lamar, Richard Schwartz, and John Makhoul. 2014.
Fast and robust neural network joint models for sta-
tistical machine translation. In Proc. of ACL 2014,
pages 1370–1380, Baltimore, Maryland, June.

John Duchi and Yoram Singer. 2009. Efficient online
and batch learning using forward backward splitting.
Journal of Machine Learning Research, 10:2899–
2934, December.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12:2121–2159, July.

Jeffrey L. Elman. 1990. Finding structure in time.
Cognitive Science, 14(2):179–211.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proc. of the Thirteenth International
Conference on Artificial Intelligence and Statistics
(AISTATS-10), volume 9, pages 249–256.

1177



Christoph Goller and Andreas Küchler. 1996. Learn-
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A Additional Results

We conducted additional experiments by enlarg-
ing the word representation vector size m′ in Ta-
ble 8. In general, we observed further gains with
richer word representation, but suffered overfit-
ting effects when setting m′ = 4096. The re-
sults with m = 64 and m′ = 4096 achieved
the best performance on the development data,
91.36% and 86.94% labeled F1 for WSJ and CTB,
respectively, wherein we observed the accuracies
of 90.94% and 84.38% on the test data, respec-
tively. Note that it took approximately one week
to train the model when m′ = 4096 under WSJ,
which was impractical to analyze the results fur-
ther, e.g. comparison with other training objec-
tives.
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Abstract

Given a set of basic binary features, we
propose a new L1 norm SVM based
feature selection method that explicitly
selects the features in their polynomial
or tree kernel spaces. The efficiency
comes from the anti-monotone property
of the subgradients: the subgradient with
respect to a combined feature can be
bounded by the subgradient with respect
to each of its component features, and
a feature can be pruned safely without
further consideration if its corresponding
subgradient is not steep enough. We
conduct experiments on the English
dependency parsing task with a third
order graph-based parser. Benefiting
from the rich features selected in the
tree kernel space, our model achieved the
best reported unlabeled attachment score
of 93.72 without using any additional
resource.

1 Introduction

In Natural Language Processing (NLP) domain,
existing linear models typically adopt exhaustive
search to generate tons of features such that
the important features are included. However,
the brute-force approach will guickly run out
of memory when the feature space is extremely
large. Unlike linear models, kernel methods
provide a powerful and unified framework for
learning a large or even infinite number of features
implicitly using limited memory. However, many
kernel methods scale quadratically in the number
of training samples, and can hardly reap the
benefits of learning a large dataset. For example,
the popular Penn Tree Bank (PTB) corpus for
training an English part of speech (POS) tagger
has approximately 1M words, thus it takes 1M2

time to compute the kernel matrix, which is
unacceptable using current hardwares.

In this paper, we propose a new feature selection
method that can efficiently select representative
features in the kernel space to improve the
quality of linear models. Specifically, given
a limited number of basic features such as
the commonly used unigrams and bigrams, our
method performs feature selection in the space
of their combinations, e.g, the concatenation of
these n-grams. A sparse discriminative model
is produced by training L1 norm SVMs using
subgradient methods. Different from traditional
training procedures, we divide the feature vector
into a number of segments, and sort them in a
coarse-to-fine order: the first segment includes
the basic features, the second segment includes
the combined features composed of two basic
features, and so on. In each iteration, we calculate
the subgradient segment by segment. A combined
feature and all its further combinations in the
following segments can be safely pruned if the
absolute value of its corresponding subgradient is
not sufficiently large. The algorithm stops until
all features are pruned. Besides, two simple yet
effective pruning strategies are proposed to filter
the combinations.

We conduct experiments on English
dependency parsing task. Millions of deep,
high order features derived by concatenating
contextual words, POS tags, directions and
distances of dependencies are selected in the
polynomial kernel and tree kernel spaces. The
result is promising: these features significantly
improved a state-of-the-art third order dependency
parser, yielding the best reported unlabeled
attachment score of 93.72 without using any
additional resource.
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2 Related Works

There are two solutions for learning in ultra high
dimensional feature space: kernel method and
feature selection.

Fast kernel methods have been intensively
studied in the past few years. Recently,
randomized methods have attracted more attention
due to its theoretical and empirical success, such
as the Nyström method (Williams and Seeger,
2001) and random projection (Lu et al., 2014).
In NLP domain, previous studies mainly focused
on polynomial kernels, such as the splitSVM and
approximate polynomial kernel (Wu et al., 2007).

In feature selection domain, there has been
plenty of work focusing on fast computation,
while feature selection in extremely high
dimensional feature space is relatively less
studied. Zhang et al. (2006) proposed a
progressive feature selection framework that splits
the feature space into tractable disjoint sub-spaces
such that a feature selection algorithm can be
performed on each one of them, and then merges
the selected features from different sub-spaces.
The search space they studied contained more
than 20 million features. Tan et al. (2012)
proposed adaptive feature scaling (AFS) scheme
for ultra-high dimensional feature selection. The
dimensionality of the features in their experiments
is up to 30 millions.

Previous studies on feature selection in kernel
space typically used mining based approaches
to prune feature candidates. The key idea for
efficient pruning is to estimate the upper bound of
statistics of features without explicit calculation.
The simplest example is frequent mining where
for any n-gram feature, its frequency is bounded
by any of its substrings.

Suzuki et al. (Suzuki et al., 2004) proposed to
select features in convolution kernel space based
on their chi-squared values. They derived a
concise form to estimate the upper bound of chi-
square values, and used PrefixScan algorithm to
enumerates all the significant sub-sequences of
features efficiently.

Okanohara and Tsujii (Okanohara and Tsujii,
2009) further combined the pruning technique
with L1 regularization. They showed the
connection between L1 regularization and
frequent mining: the L1 regularizer provides a
minimum support threshold to prune the gradients
of parameters. They selected the combination

features in a coarse-to-fine order, the gradient
value for a combination feature can be bounded
by each of its component feature, hence may be
pruned without explicit calculation. They also
sorted the features to tighten the bound. Our idea
is similar with theirs, the difference is that our
search space is much larger: we did not restrict the
number of component features. We recursively
pruned the feature set and in each recursion we
selected feature in a batch manner. We further
adopted an efficient data structure, spectral bloom
filter, to estimate the gradients for the candidate
features without generating them.

3 The Proposed Method

3.1 Basic Idea

Given n training samples x1 . . . xn with labels
y1 . . . yn ∈ Y , we extend the kernel over the input
space to the joint input and output space by simply
defining fT (xi, y)f(xi, y

′) = K(xi, xj)I(y ==
y′), which is the same as Taskar’s (see (Taskar,
2004), Page 68), where f is the explicit feature
map for the kernel, and I(·, ·) is the indicator
function.

Our task is to select a subset of representative
elements in the feature vector f . Unlike previously
studied feature selection problems, the dimension
of f could be extremely high. It is impossible to
store the feature vector in the memory or even on
the disk.

For easy illustration, we describe our method
for the polynomial kernel, and it can be easily
extended to the tree kernel space.

The R degree polynomial kernel space is
established by a set of basic features B = {b0 =
1, b1, . . . , b|B|} and their combinations. In other
words, each feature is the product of at most R
basic features fj = bj1 ∗ bj2 ∗ · · · ∗ bjr , r ≤
R. As we assume that all features are binary
1, fj can be rewritten as the minimum of these
basic features: fj = min{bj1 , bj2 , . . . , bjr}. We
use Bj = {bj1 , bj2 , . . . , bjr} to denote the set of
component basic features for fj . r is called the
order of feature fj . For two features fj , fk, we
say fk is an extension of fj if Bj ⊂ Bk.

Take the document classification task as an
example, the basic features could be word n-
grams, and the quadratic kernel (degree=2) space
includes the combinated features composed of two

1Binary features are often used in NLP.
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n-grams, a second order feature is true if both n-
grams appear in the document, it is an extension of
any of its component n-grams (first order features).

We use L1 norm SVMs for feature selection.
Traditionally, the L1 norm SVMs can be trained
using subgradient descent and generate a sparse
weight vector w for feature f . Due to the high
dimensionality in our case, we divide f into a
number of segments according to the order of
the feature, the k-th segment includes the k-order
features. In each iteration, we update the weights
of features segment by segment. When updating
the weight of feature fj in the k-th segment, we
estimate the subgradients with respective to fj’s
extensions in the rest k + 1, k + 2, . . . segments
and keep their weights at zero if the subgradients
are not sufficiently steep. In this way, we could
ignore these features without explicit calculation.

3.2 L1 Norm SVMs
Specifically, the objective function for learning L1

norm SVMs is:

min
w
O(w) = C∥w∥1 +

∑
i

loss(i)

where

loss(i) = max
y∈Y
{wT ∆f(xi, y) + δ(yi, y)}

is the hinge loss function for the i-th sample.
∆f(xi, y) = f(xi, yi) − f(xi, y) is the residual
feature vector, δ(a, b) = 0 if a = b, otherwise
δ(a, b) = 1. Regularization parameter C controls
the sparsity of w. With higher C, more zero
elements are generated. We call a feature is fired
if its value is 1.

The objective function is a sum of piecewise
linear functions, hence is convex. Subgradient
descent algorithm is one poplar approach for
minimizing non-differentiable convex functions, it
updates w using

wnew = w − gαt

where g is the subgradient of w, αt is the step
size in the t-th iteration. Subgradient algorithm
converges if the step size sequence is properly
selected (Boyd and Mutapcic, 2006).

We are interested in the non-differentiable point
wj = 0. Let y∗i = maxy{wT ∆f(xi, y) +
δ(yi, y)}, the prediction of the current model.
According to the definition of subgradient, we

have, for each sample xi, ∆f(xi, y
∗
i ) is a

subgradient of loss(i), thus,
∑

i ∆f(xi, y
∗
i ) is a

subgradient of
∑

i loss(i).
Adding the penalty term C∥w∥1, we get the

subset of subgradients at wj = 0 for the objective
function∑

i

∆fj(xi, y
∗
i )− C ≤ gj ≤

∑
i

∆fj(xi, y
∗
i ) + C

We can pick any gj to update wj . Remind that
our purpose is to keep the model sparse, and we
would like to pick gj = 0 if possible. That is, we
can keep wj = 0 if |∑i ∆fj(xi, y

∗
i )| ≤ C.

Obviously, for any j, we have
|∑i ∆fj(xi, y

∗
i )| ≤

∑
i

∑
y fj(xi, y) = #fj ,

i.e., the frequency of feature fj . Thus, we have

Proposition 1 Let C be the threshold of the
frequency, the model generated by the subgradient
method is sparser than frequent mining.

3.3 Feature Selection Using Gradient Mining
Now the problem is how to estimate
|∑i ∆fj(xi, y

∗
i )| without explicit calculation

for each fj .
In the following, we mix the terminology

gradient and subgradient without loss of clarity.
We define the positive gradient and negative
gradient for wj

#f+
j =

∑
i,yi ̸=y∗i

fj(xi, yi)

#f−j =
∑

i,yi ̸=y∗i

fj(xi, y
∗
i )

We have∑
i

∆fj(xi, y
∗
i ) =

∑
i,y∗i ̸=yi

∆fj(xi, y
∗
i )

= #f+
j −#f−j

The estimation problem turns out to be a counting
problem: we collect all the incorrectly predicted
samples, and count #f+

j , the frequency of fj fired
by the gold labels, and #f−j the frequency of fj

fired by the predictions.
As mentioned above, each feature in

polynomial kernel space is defined as
fj = min{b ∈ Bj} = min{bj1 , . . . , bjr}.
Equivalently, we can define fj in a recursive
way, which is more frequently used in
the rest of the paper. That is, fj =
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min{min{bj2 , . . . , bjr}, min{bj1 , bj3 , . . . , bjr}, . . . },
which is the mimum of r features of order r − 1.
Formally, denote B−i

j as the subset of Bj by
removing its i-th element, then the r-order
feature, we have fj = min{h1, . . . , hr}, where
hk = min{b ∈ B−k

j }, 1 ≤ k ≤ r.
We have the following anti-monotone property,

which is the basis of our method

#f+
j ≤ #h+

k ∀k
#f−j ≤ #h−k ∀k

If there exists a k, such that #h+
k ≤ C and #h−k ≤

C, we have

|
∑

i

∆fj(xi, y
∗
i )|

= |#f+
j −#f−j |

≤ max{#f+
j ,#f−j }

≤ max{min
k
{#h+

k },min
k
{#h−k }}

≤ min
k
{max{#h+

k , #h−k }}
≤ C

The third inequality comes from the well
known min-max inequality: maxi minj{aij} ≤
minj maxi{aij}. Thus, we could prune fj without
calculating its corresponding gradient.

This is a chain rule, which means that any
feature that has fj as its component can also
be pruned safely. To see this, suppose ϕ =
min{. . . , fj , . . . } is such a combined feature, we
have

|#ϕ+ −#ϕ−| ≤ max{#ϕ+, #ϕ−}
≤ max{#f+

j , #f−j }
≤ C

Based on this, we present the gradient mining
based feature selection framework in Algorithm 1.

4 Prune the Candidate Set

In practice, Algorithm 1 is far from efficient
because Line 17 may generate large amounts
of candidate features that quickly consume the
memory. In this section, we introduce two pruning
strategies that could greatly reduce the size of
candidates.

Algorithm 1 Feature Selection Using Gradient
Mining
Require: Samples X = {x1, . . . , xn} with labels

{y1, . . . , yn}, basic features B = {b1, . . . , b|B|},
threshold C > 0, max iteration number M , degree of
polynomial kernel R, sequence of learning step {αt}.

Ensure: Set of selected features S = {fj}, where fj =
min{b ∈ Bj},Bj ⊆ B, |Bj | ≤ R.

1: Sr = ∅, r = 1, . . . , R {Sr denotes the selected r-order
features}

2: for t = 1 → M do
3: Set S =

∪R
r=1 Sr , f = the vector of features in S.

4: Calculate y∗i = maxy{wT f(xi, y) + δ(yi, y)}, ∀i.
5: Initialize candidate set A = B
6: for r = 1 → R do
7: for all fj ∈ A do
8: Calculate #f+

j =
∑

i,yi ̸=y∗i
fj(xi, yi) and

#f−j =
∑

i,yi ̸=y∗i
fj(xi, y

∗
i )

9: if #f+
j , #f−j ≤ C and wj = 0 then

10: Remove fj from A
11: else
12: wj = wj +(#f+

j −#f−j +Csign(wj))α
t

13: end if
14: end for
15: Sr = A
16: if r < R then
17: Generate order-r + 1 candidates: A =

Sr+1

∪{h|h = min{f1, . . . fr ∈ Sr}, order
of h is r + 1}

18: end if
19: end for
20: end for

4.1 Pre-Training

Usually, the weights of features are initialized
with 0 in the training procedure. However,
this will select too many features in the first
iteration, because all samples are mis-classified
in Line 4, the gradients #f+

j and #f−j equal
to the frequencies of the features, and many of
them could be larger than C. Luckily, due to
the convexity of piecewise linear function, the
optimality of subgradient method is irrelevant with
the initial point. So we can start with a well trained
model using a small subset of features such as the
set of lower order features so that the prediction
is more accurate and the gradients #f+ and #f−

are much lower.

4.2 Bloom Filter

The second strategy is to use bloom filter to reduce
candidates before putting them into the candidate
set A.

A bloom filter (Bloom, 1970) is a space efficient
probabilistic data structure designed to rapidly
check whether an element is present in a set. In
this paper, we use one of its extension, spectral
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bloom filter (Cohen and Matias, 2003), which
can efficiently calculate the upper bound of the
frequencies of elements.

The base data structure of a spectral bloom
filter is a vector of L counters, where all counters
are initialized with 0. The spectral bloom filter
uses m hash functions, h1, . . . , hm, that map the
elements to the range {1, . . . L}. When adding an
element f to the bloom filter, we hash it using
the m hash functions, and get the hash codes
h1(f), . . . , hm(f), then we check the counters at
positions h1(f), . . . , hm(f), and get the counts
{c1, . . . , cm}. Let c∗ be the minimal count among
these counts: c∗ = min{c1, . . . , cm}, we increase
only the counters whose counts are c∗, while
keeping other counters unchanged.

To check the frequency of an element, we hash
the element and check the counters in the same
way. The minimum count c∗ provides the upper
bound of the frequency. In other words, when
pruning elements with frequencies no greater than
a predefined threshold θ, we could safely prune the
element if c∗ ≤ θ.

In our case, we use the spectral bloom filter to
eliminate the low-frequency candidates.

To estimate the gradients of newly generated
r + 1-order candidates, we run Line 17 twice. In
the first round, we estimate the upper bound of
#h+ for each candidate and add the candidate
to A if its upper bound is greater than a
predefined threshold θ. The second round is
similar, we add the candidates using the upper
bound of h−. We did not estimate #h+ and
#h− simultaneously, because this needs two
bloom filters for positive and negative gradients
respectively, which consumes too much memory.

Specifically, in the first round, we initialize
the spectral bloom filter so that all counters are
set to zero. Then for each incorrectly predicted
sample xi, we generate r + 1-order candidates
by combining r-order candidates that are fired by
the gold label i.e., f(xi, yi) = 1. Once a new
candidate is generated, we hash it and check its
corresponding m counters in the spectral bloom
filter. If the minimal count c∗ = θ, we know
that its positive gradient #f+ may be greater than
θ. So we keep all counts unchanged, and add
the candidate to A. Otherwise, we increase the
counts by 1 using the method described above.
The second round is similar.

He

won

game

the

today

PRP/V
BD

th
e/g

ame

VBD/NNV
B

D
/N

N

won

game

the

won

game today He

won

today

Figure 1: A dependency parse tree (top), one of
its feature trees (middle) and some of its subtrees
(bottom). He ← won → today is not a subtree
because He and today are not adjacent siblings.

5 Efficient Candidate Generation

5.1 Polynomial Kernel

As mentioned above, we generate the r + 1-
order candidates by combining the candidates of
order r. An efficient feature generation algorithm
should be carefully designed to avoid duplicates,
otherwise #f+ and #f− may be over counted.

The candidate generation algorithm is kernel
dependent. For polynomial kernel, we just
combine any two r-order candidates and remove
the combined feature if its order is not r + 1.
This method requires square running time for each
example.

5.2 Dependency Tree Kernel

5.2.1 Definition
Collins and Duffy (2002) proposed tree kernels for
constituent parsing which includes the all-subtree
features. Similarly, we define dependency tree
kernel for dependency parsing. For compatibility
with the previously studied subtree features
for dependency parsing, we propose a new
dependency tree kernel that is different from
Culotta and Sorensen’s (Culotta and Sorensen,
2004). Given a dependency parse tree T
composed of L words, L − 1 arcs, each arc has
several basic features, such as the concatenation
of the head word and the modifier word, the
concatenation of the word left to the head and the
lower case of the word right to the modifier, the
distance of the arc, the direction of the arc, the
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concatenation of the POS tags of the head and the
modifier, etc.

A feature tree of T is a tree that has the same
structure as T , while each arc is replaced by any
of its basic features. For a parse tree that has
L − 1 arcs, and each arc has d basic features, the
number of the feature trees is dL−1. For example,
the dependency parse tree for sentence He won the
game today is shown in Figure 1. Suppose each
arc has two basic features: word pair and POS tag
pair. Then there are 24 feature trees, because each
arc can be replaced by either word pair or POS tag
pair.

A subtree of a tree is a connected fragment in
the tree. In this paper, to reduce computational
cost, we restrict that adjacent siblings in the
subtrees must be adjacent in the original tree. For
example He← won→ game is a subtree, but He
← won→ today is not a subtree. The motivation
of the restriction is to reduce the number of
subtrees, for a node having k children, there are
k(k−1)/2 subtrees, but without the restriction the
number of subtrees is exponential: 2k.

A sub feature tree of a dependency tree T is a
feature tree of any of its subtrees. For example,
the dependency tree in Figure 1 has 12 subtrees
including four arcs, four arc pairs, the three arc
triples and the full feature tree, and each subtree
having s arcs has 2s sub feature trees. Thus the
dependency tree has 2∗4+4∗22+3∗23+24 = 64
sub feature trees.

Given two dependency trees T1 and T2, the
dependency tree kernel is defined as the number of
common sub feature trees of T1 and T2. Formally,
the kernel function is defined as

K(T1, T2) =
∑

n1∈T1,n2∈T2

∆(n1, n2)

where ∆(n1, n2) denotes the number of common
sub feature trees rooted in n1 and n2 nodes.

Like tree kernel, we can calculate ∆(n1, n2)
recursively. Let ci and c′j denote the i-th
child of n1 and j-th child of n2 respectively,
let STp,l(n1) denote the set of the sub feature
trees rooted in node n1 and the children of the
root are cp, cp+1, . . . , cp+l−1, we denote STq,l(n2)
similarly. Then we define

∆p,q,l(n1, n2) =
∑
p,q

|STp,l(n1)
∩

STq,l(n2)|

the number of common sub feature trees in
STp,l(n1) and STq,l(n2).

a

b

Figure 2: For any subtree rooted in a with the
rightmost leaf b, we could extend the subtree by
any arc below or right to the path from a to b
(shown in black)

To calculate ∆p,q,l(n1, n2), we first consider the
sub feature trees with only two levels, i.e., sub
feature trees that are composed of n1, n2 and some
of their children. We initialize ∆p,q,1(n1, n2) with
number of the common features of arcs n1 → cp

and n2 → c′q. Then we calculate ∆p,q,l(n1, n2)
recursively using

∆p,q,l(n1, n2)
=∆p,q,l−1(n1, n2) ∗∆p+l,q+l,1(n1, n2)

And ∆(n1, n2) =
∑

p,q,l ∆p,q,l(n1, n2)
Next we consider all the sub feature trees, we

have

∆p,q,l(n1, n2)
=∆p,q,l−1(n1, n2) ∗

(
1 + ∆(cp+l−1, c

′
q+l−1)

)
Computing the dependency tree kernel for two
parse trees requires |T1|2 ∗ |T2|2 ∗min{|T1|, |T2|}
running time in the worst case, as we need to
enumerate p, q, l and n1, n2.

One way to incorporate the dependency tree
kernel for parsing is to rerank the K best candidate
parse trees generated by a simple linear model.
Suppose there are n training samples, the size
of the kernel matrix is (K ∗ n)2, which is
unacceptable for large datasets.

5.2.2 Candidate Generation
For constituent parsing, Kudo et al. showed
such an all-subtrees representation is extremely
redundant and a comparable accuracy can be
achieved using just a small set of subtrees (Kudo
et al., 2005). Suzuki et al. even showed that the
over-fitting problem often arises when convolution
kernels are used in NLP tasks (Suzuki et al., 2004).
Now we attempt to select representative sub

1185



feature trees in the kernel space using Algorithm
1. The r-order features in dependency tree kernel
space are the sub feature trees with r arcs. The
candidate feature generation in Line 17 has two
steps: first we generate the subtrees with r arcs,
then we generate the sub feature trees for each
subtree.

The simplest way for subtree generation is to
enumerate the combinations of r + 2 words in the
sentence, and check if these words form a subtree.

We can speed up the generation by using the
results of the subtrees with r + 1 words (r arcs).
For each subtree Sr with r arcs, we can add an
extra word to Sr and generate Sr+1 if the words
form a subtree.

This method has three issues: first, the time
complexity is exponential in the length of the
sentence, as there are 2L combinations of words,
L is the sentence length; second, it may generate
duplicated subtrees, and over counts the gradients.
For example, there are two ways to generate the
subtree He won the game in Figure 1: we can
either add word He to the subtree won the game,
or add word the to the subtree He won game; third,
checking a fragment requires O(L) time.

These issues can be solved using the well
known rightmost-extension method (Zaki, 2002;
Asai et al., 2002; Kudo et al., 2005) which
enumerates all subtrees from a given tree
efficiently. This method starts with a set of trees
consisting of single nodes, and then expands each
subtree attaching a new node.

Specifically, it first indexes the words in the pre-
order of the parse tree. When generating Sr+1,
only the words whose indices are larger than the
greatest index of the words in Sr are considered.
In this way, each subtree is generated only once.
Thus, we only need to consider two types of
words: (i) the children of the rightmost leaf of Sr,
(ii) the adjacent right sibling of the any node in Sr,
as shown in Figure 2.

The total number of subtrees is no greater than
L3, because the level of a subtree is less than L,
and for the children of each node, there are at most
L2 subsequences of siblings. Therefore the time
complexity for subtree extraction is O(L3).

6 Experiments

6.1 Experimental Results on English Dataset
6.1.1 Settings
First we used the English Penn Tree Bank (PTB)
with standard train/develop/test for evaluation.
Sections 2-21 (around 40K sentences) were used
as training data, section 22 was used as the
development set and section 23 was used as the
final test set.

We extracted dependencies using Joakim
Nivre’s Penn2Malt tool with Yamada and
Matsumoto’s rules (Yamada and Matsumoto,
2003). Unlabeled attachment score (UAS)
ignoring punctuation is used to evaluate parsing
quality.

We apply our technique to rerank the parse trees
generated by a third order parser (Koo and Collins,
2010) trained using 10 best MIRA algorithm
with 10 iterations. We generate the top 10 best
candidate parse trees using 10 fold cross validation
for each sentence in the training data. The gold
parse tree is added if it is not in the candidate
list. Then we learn a reranking model using these
candidate trees. During testing, the score for a
parse tree T is a linear combination of the two
models:

score(T ) = βscoreO3(T ) + scorererank(T )

where the meta-parameter β = 5 is tuned
by grid search using the development dataset.
scoreO3(T ) and scorererank(T ) are the outputs of
the third order parser and the reranking classifier
respectively.

For comparison, we implement the following
reranking models:

• Perceptron with Polynomial kernels
K(a,b) = (aTb + 1)d, d = 2, 4, 8

• Perceptron with Dependency tree kernel.

• Perceptron with features generated by
templates, including all siblings and fourth
order features.

• Perceptron with the features selected in
polynomial and tree kernel spaces, where
threshold C = 3.

The basic features to establish the kernel spaces
include the combinations of contextual words or
POS tags of head and modifier, the length and
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whwm, phpm, whpm, phwm

ph−1pm, ph−1wm, phpm−1, whpm−1

ph+1pm, ph+1wm, phpm+1, whpm+1

ph−1phpm, phph+1pm, phpm−1pm, phpmpm+1

Concatenate features above with length and direction
phpbpm

Table 1: Basic features in polynomial and
dependency tree kernel spaces, wh: the word of
head node, wm denotes the word of modifier node,
ph: the POS of head node, pm denotes the POS
of modifier node, ph+1: POS to the right of head
node, ph−1: POS to the left of modifier node,
pm+1: POS to the right of head node, pm−1: POS
to the left of modifier node, pb: POS of a word in
between head and modifier nodes.

direction of the arcs, and the POS tags of the words
lying between the head and modifier, as shown in
Table 1. The POS tags are automatically generated
by 10 fold cross validation during training, and
a POS tagger trained using the full training data
during testing which has an accuracy of 96.9% on
the development data and 97.3% on the test data.

As kernel methods are not scalable for large
datasets, we applied the strategy proposed by
Collins and Duffy (2002), to break the training set
into 10 chunks of roughly equal size, and trained
10 separate kernel perceptrons on these data sets.
The outputs from the 10 runs on test examples
were combined through the voting procedure.

For feature selection, we set the maximum
iteration number M = 100. We use the first order
and second order features for pre-training. We
choose the constant step size αt = 1 because we
find this could quickly reduce the prediction error
in very few iterations.

We use the SHA-1 hash function to generate
the hash codes for the spectral bloom filter. The
SHA-1 hash function produces a 160-bit hash code
for each candidate feature. The hash code is then
segmented into 5 segments, in this way we get
five hash codes h1, . . . , h5. Each code has 32 bits.
Then we create 232(4G) counters. The threshold
θ is set to 3, thus each counter requires 2 bits to
store the counts. The spectral bloom filter costs
1G memory in total.

Furthermore, to reduce memory cost, we save
the local data structure such as the selected
features in Step 15 of Algorithm 1 whenever
possible, and load them into the memory when
needed.

After feature selection, we did not use the L1

System UAS Training
Time

Third Order Parser 93.07 20 hrs
Quadratic Kernel(QK) 93.41 6 hrs

Biquadratic Kernel(BK) 93.45 6 hrs
8-th Degree Polynomial Kernel(8K) 93.27 6 hrs

Dependency Tree Kernel (DTK) 93.65 10 days
LM with Template Features 93.39 4 mins

LM with Features in QK 93.39 9 mins
LM with Features in BK 93.44 0.5 hrs
LM with Features in 8K 93.30 6 hrs

LM with Features in DTK 93.72 36 hrs
(Zhang and McDonald, 2014) 93.57 N/A

(Zhang et al., 2013) 93.50 N/A
(Ma and Zhao, 2012) 93.40 N/A

(Bohnet and Kuhn, 2012) 93.39 N/A
(Rush and Petrov, 2012) 93.30 N/A

(Qian and Liu, 2013) 93.17 N/A
(Hayashi et al., 2013) 93.12 1 hr
(Martins et al., 2013) 93.07 N/A

(Zhang and McDonald, 2012) 93.06 N/A
(Koo and Collins, 2010) 93.04 N/A
(Zhang and Nivre, 2011) 92.90 N/A

Table 2: Comparison between our system and the
state-of-art systems on English dataset. LM is
short for Linear Model, hrs, mins are short for
hours and minutes respectively

SVM for testing, instead, we trained an averaged
perceptron with the selected features. Because
we find that the averaged perceptron significantly
outperforms L1 SVM.

6.1.2 Results

Experimental results are listed in Table 2, all
systems run on a 64 bit Fedora operation system
with a single Intel core i7 3.40GHz and 32G
memory. We also include results of representative
state-of-the art systems.

It is clear that the use of kernels or the deep
features in kernel spaces significantly improves
the baseline third order parser and outperforms
the reranking model with shallow, template-
generated features. Besides, our feature selection
outperforms kernel methods in both efficiency and
accuracy.

It is unsurprising that the dependency tree
kernel outperforms polynomial kernels, because
it captures the structured information. For
example, polynomial kernels can not distinguish
the grand-child feature or sibling feature from the
combination of two separated arc features.

When no additional resource is available, our
parser achieved the best reported performance
93.72% UAS on English PTB dataset. It is
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C #Feat #Template Hours Mem(G) UAS
1 0.34G N/A stalled OOM N/A
2 0.34G N/A stalled OOM N/A
3 33.1M 11.4K 36 4.0 93.72
5 6.32M 2.1K 20 2.2 93.55
10 2.10M 1.6K 5 1.4 93.40

Table 3: Feature selection in dependency kernel
space with different threshold C.

worth pointing that our method is orthogonal to
other reported systems that benefit from advanced
inference algorthms, such as cube pruning (Zhang
and McDonald, 2014), AD3 (Martins et al., 2013),
etc. We believe that combining our techniques
with others’ will achieve further improvement.

Reranking the candidate parse trees of 2416
testing sentences takes 67 seconds, about 36
sentences per second.

To further understand the complexity of our
algorithm, we perform feature selection in
dependency tree kernel space with different
thresholds C and record the number of selected
features and feature templates, the speed and
memory cost. Table 3 shows the results. We
can see that our algorithm works efficiently when
C ≥ 3, but for C < 3, the number of selected
features grows drastically, and the program runs
out of memory (OOM).

6.2 Experimental Results on CoNLL 2009
Dataset

Now we looked at the impact of our system on
non-English treebanks. We evaluate our system on
six other languages from the CoNLL 2009 shared-
task. We used the best setting in the previous
experiment: reranking model is trained using the
features selected in the dependency tree kernel
space. For POS tag features we used the predicted
tags.

As the third order parser can not handle
non-projective parse trees, we used the graph
transformation techniques to produce non-
projective structures (Nivre and Nilsson,
2005). First, the training data for the parser
is projectivized by applying a number of lifting
operations (Kahane et al., 1998) and encoding
information about these lifts in arc labels. We
used the path encoding scheme where the label of
each arc is concatenated with two binary tags, one
indicates if the arc is lifted, the other indicates if
the arc is along the lifting path from the syntactic
to the linear head. Then we train a projective

Language Ours Official Best
Chinese 76.77 79.17
Japanese 92.68 92.57
German 87.40 87.48
Spanish 87.82 87.64
Czech 80.51 80.38

Catalan 86.98 87.86

Table 4: Experimental Results on CoNLL 2009
non-English datasets.

parser on the transformed data without arc label
information and a classifier to predict the arc
labels based on the projectivized gold parse tree
structure. During testing, we run the parser and
the classifier in a pipeline to generate a labeled
parse tree. Labeled syntactic accuracy is reported
for comparison.

Comparison results are listed in Table 4.
We achieved the best reported results on three
languages, Japanese, Spanish and Czech. Note
that CoNLL 2009 also provide the semantic
labeling annotation which we did not used in our
system. While some official systems benefit from
jointly learning parsing and semantic role labeling
models.

7 Conclusion

In this paper we proposed a new feature selection
algorithm that selects features in kernel spaces
in a coarse to fine order. Like frequent mining,
the efficiency of our approach comes from
the anti-monotone property of the subgradients.
Experimental results on the English dependency
parsing task show that our approach outperforms
standard kernel methods. In the future, we would
like to extend our technique to other real valued
kernels such as the string kernels and tagging
kernels.
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Abstract

Incremental parsing is the task of assign-
ing a syntactic structure to an input sen-
tence as it unfolds word by word. Incre-
mental parsing is more difficult than full-
sentence parsing, as incomplete input in-
creases ambiguity. Intuitively, an incre-
mental parser that has access to seman-
tic information should be able to reduce
ambiguity by ruling out semantically im-
plausible analyses, even for incomplete in-
put. In this paper, we test this hypothesis
by combining an incremental TAG parser
with an incremental semantic role labeler
in a discriminative framework. We show
a substantial improvement in parsing per-
formance compared to the baseline parser,
both in full-sentence F-score and in incre-
mental F-score.

1 Introduction

When humans listen to speech, the input becomes
available gradually as the speech signal unfolds.
Reading happens in a similarly gradual manner
when the eyes scan a text. There is good evidence
that the human language processor is adapted to
this and works incrementally, i.e., computes an in-
terpretation for an incoming sentence on a word-
by-word basis (Tanenhaus et al., 1995; Altmann
and Kamide, 1999). Also language processing
systems often deal with speech as it is spoken, or
text as it is typed. A dialogue system should start
interpreting a sentence while it is spoken, and an
information retrieval system should start retrieving
results while the user is typing.

Incremental processing is therefore essential
both for realistic models of human language pro-
cessing and for NLP applications that react to
user input in real time. In response to this, a
number of incremental parsers have been devel-
oped, which use context-free grammar (Roark,

2001; Schuler et al., 2010), dependency grammar
(Chelba and Jelinek, 2000; Nivre, 2007; Huang
and Sagae, 2010), or tree-substitution grammars
(Sangati and Keller, 2013). Typical applications
of incremental parsers include speech recognition
(Chelba and Jelinek, 2000; Roark, 2001; Xu et al.,
2002), machine translation (Schwartz et al., 2011;
Tan et al., 2011), reading time modeling (Demberg
and Keller, 2008), or dialogue systems (Stoness
et al., 2004).

Incremental parsing, however, is considerably
harder than full-sentence parsing: when process-
ing the n-th word in a sentence, an, the parser only
has access to the left context (words a1 . . .an−1);
the right context (words an+1 . . .aN) is not known
yet. This can lead to local ambiguity, i.e., pro-
duce additional syntactic analyses that are valid
for the sentence prefix, but become invalid as the
right context is processed. As an example consider
the sentence prefix in (1):

(1) The athlete realized her goals . . .
a. at the competition
b. were out of reach

The prefix could continue as in (1-a), i.e., as a
main clause structure. Or the next words could
be as in (1-b), in which case her goals is part of a
subordinate clause.

Intuitively, an incremental parser that has access
to semantic information would be able to decide
which of these two analyses is likely to be correct,
even without knowing the rest of the sentence. If
the NP her goals is a likely ARG1 of realized the
parser should prefer the main clause structure. On
the other hand, if the NP is a likely ARG0 of an (as
yet unseen) embedded verb, then the parser should
go for the subordinate clause structure. This is il-
lustrated in Figure 2. Note that the preference can
easily be reversed: if the prefix was the athlete re-
alized her shoes, then her shoes is very likely to
be an ARG0 rather than an ARG1.
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The basis of this paper is the hypothesis that
semantic information can aid incremental parsing.
To test this hypothesis, we combine an incremen-
tal TAG parser with an incremental semantic role
labeling (iSRL) system. The iSRL system takes
prefix trees and computes their most likely seman-
tic role assignments. We show that these role as-
signments can be used to re-rank the output of
the incremental parser, leading to substantial im-
provements in parsing performance compared to
the baseline parser, both in full-sentence F-score
and in incremental F-score.

2 Incremental Semantic Role Labeling

The current work builds on an existing incremen-
tal parser, the Psycholinguistically Motivated Tree
Adjoining Grammar (PLTAG) parser of Demberg
et al. (2013). The distinguishing feature of this
parser is that it builds fully connected structures
(no words are left unattached during incremental
parsing); this requires it to make predictions about
the right context, which are verified as more of
the input becomes available. Konstas et al. (2014)
show that semantic information can be attached to
PLTAG structures, making it possible to assign se-
mantic roles incrementally. In the present paper,
we use these semantic roles to re-rank the output
of the PLTAG parser.

2.1 Psycholinguistically Motivated TAG
PLTAG extends standard TAG (Joshi and Sch-
abes, 1992) in order to enable incremental parsing.
Standard TAG assumes a lexicon of elementary
trees, each of which contains at least one lexical
item as an anchor and at most one leaf node as
a foot node, marked with A∗. All other leaves
are marked with A↓ and are called substitution
nodes. To derive a TAG parse for a sentence, we
start with the elementary tree of the head of the
sentence and integrate the elementary trees of the
other lexical items of the sentence using two oper-
ations: adjunction at an internal node and substi-
tution at a substitution node (the node at which the
operation applies is the integration point). Stan-
dard TAG derivations are not guaranteed to be in-
cremental, as adjunction can happen anywhere in
a sentence, possibly violating left-to-right process-
ing order. PLTAG addresses this limitation by in-
troducing prediction trees, elementary trees with-
out a lexical anchor. These are used to predict
syntactic structure anchored by words that appears
later in an incremental derivation. This ensures

a

S

 B↓  C↓ a

S

B  C↓ 

b

a

S

 B↓ C

c

(a) valid (b) invalid

Figure 1: The current fringe (dashed line) indi-
cates where valid substitutions can occur. Other
substitutions result in an invalid prefix tree.

that fully connected prefix trees can be built for
every prefix of the input.

In order to efficiently parse PLTAG, Demberg
et al. (2013) introduce the concept of fringes.
Fringes capture the fact that in an incremental
derivation, a prefix tree can only be combined with
an elementary tree at a limited set of nodes. For
instance, the prefix tree in Figure 1 has two substi-
tution nodes, for B and C. However, only substi-
tution into B leads to a valid new prefix tree; if we
substitute into C, we obtain the tree in Figure 1b,
which is not a valid prefix tree (i.e., it represents a
non-incremental derivation).

2.2 Incremental Role Propagation
The output of a semantic role labeler is a set of
semantic dependency triples 〈l,r, p〉, where l is a
semantic role label (e.g., ARG0, ARG1, ARGM in
Propbank), and r and p are the words (argument
and predicate) to which the role applies. An incre-
mental semantic role labeler assigns semantic de-
pendency triples to a prefix of the input sentence.
Note that not every word is an argument to a pred-
icate, therefore the set of triples will not necessar-
ily change at every input word. Also, triples can be
incomplete, as either the predicate or the argument
may not have been observed yet.

Konstas et al. (2014) propose an iSRL system
based on a PLTAG parser with a semantically aug-
mented lexicon. They parse an input sentence in-
crementally, applying their incremental role prop-
agation algorithm (IRPA) to the resulting prefix
trees. This creates new semantic triples (or up-
dates existing, incomplete ones) whenever an el-
ementary or prediction tree that carries semantic
role information is attached to the prefix tree. As
soon as a triple is completed a two-stage classifica-
tion process is applied, that first identifies whether
the predicate/argument pair is a good candidate,
and then disambiguates the role label (often multi-
ple roles are possible for a lexical entry). Figure 2
shows the incremental role assignment for the two
readings of the prefix the athlete realized her goals
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NP

NNS

goals
{A1}

DT
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VP

VBD
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NP

NN
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{A0}

DT

The

〈A0,athlete,realized〉
〈A1,goals,realized〉

(a)

S

VP

SBAR

VP
{A1}

NP

NNS

goals
{A0}

DT

her

VP

VBD

realized

NP

NN

athlete
{A0}

DT

The

〈A0,athlete,realized〉
〈A1,nil,realized〉
〈A0,goals,nil〉

(b)

Figure 2: Incremental Role Propagation Algorithm application for two different prefix trees of the sen-
tence prefix the athlete realized her goals. In (a) the parser builds a main clause, so IRPA assigns an A1
to goals with realized as predicate. In (b) the parser predicts an embedded clause, so IRPA delays the
assignment of the A1 to realized, and instead introduces two incomplete triples: the first one is predicate-
incomplete, with the argument goals assigned an A0, waiting to be attached to a predicate. The second
one is argument-incomplete with predicate realized assigned an A1, waiting for an argument to follow.

(see Section 1). Note the use of incomplete seman-
tic role triples in Figure 2b.

3 Model

We use a discriminative model in order to re-rank
the output of the baseline PLTAG parser based on
semantic roles assigned by the iSRL system.

3.1 Problem Formulation
Our overall approach is closely related to the
discriminative incremental parsing framework of
Collins and Roark (2004). The goal is to learn
a mapping from input sentences x ∈ X to parse
trees y ∈ Y . For a given set of training pairs of
sentences and gold-standard parse trees (x,y) ∈
X ×Y , the output ŷ can be defined as:

ŷ = argmax
y∈GEN(x)

Φ(x,y) · w̄ (1)

where GEN(x) is a function that enumerates can-
didate parse trees for a given input x, Φ is a rep-
resentation that maps each training example (x,y)
to a feature vector Φ(x,y) ∈ Rd , and w̄ ∈ Rd is a
vector of feature weights.

During training, the task is to estimate w̄ given
the training examples. In terms of efficiency, a
crucial part of Equation (1) is the search strategy
over parses produced by GEN and, to a smaller
degree, the dimensionality of w̄. One common de-
coding technique is to implement a dynamic pro-
gram, thus avoiding the explicit enumeration of

all analyses for a given timestamp (Huang, 2008).
However, central to the discriminative approach is
the exploration of features that cannot be straight-
forwardly embedded into the parser using a dy-
namic program. These include arbitrarily long-
range dependencies contained in a parse tree, and
more importantly non-isomorphic representations
of the input sentence such as its semantic frame,
i.e., the set of all semantic roles tripes that pertain
to the same predicate. In order to accommodate
these, we decode via beam search over candidate
parses. We keep a list of the k-best analyses and
prune those whose score scr(x) = Φ(x,y) · w̄ falls
below a threshold.

3.2 Incremental k-best Parsing

What we described in the previous section could
equally apply to k-best re-ranking for full-sentence
parsing (e.g., Charniak and Johnson, 2005). For
incremental parsing, in addition to outputting ŷ for
the full sentence, we need to output prefix trees
ŷn for every prefix of length n ∈ {1 . . .N} of sen-
tence x = a1 . . .aN with length N. Let 〈xn, ŷn,n〉,
be the state of our model after we have parsed the
first n words of sentence x, resulting in analysis ŷn.
The initial state is defined as 〈x0, /0,0〉, where /0 is
the empty analysis, and the final state is 〈x, ŷ,N〉,
which represents a full analysis for the input sen-
tence. We need a function ADV that transitions
from a state at word an to a set of states at word
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an+1 by combining the prefix tree ŷn with an+1:

ADV
(〈xn, ŷn,n〉

)
= 〈xn, ŷn,n〉⊗an+1

= {〈xn+1, ŷn+1,n+1〉}
Next, we define the set of states representing
prefix trees as π, with π0 = {〈x0, /0,0〉}, and
πn = ∪π′∈πn−1ADV (π′). We can now redefine
GEN(xn) = πn, for any prefix of length n.

We enumerate prefix trees (function GEN) with
the incremental parser of Demberg et al. (2013).
The states of the model are stored in a chart; each
cell holds the top-k prefix trees. The transition
to the next state (function ADV ) is performed by
combining each prefix tree with a set of candidate
of elementary (and prediction) trees via adjunc-
tion and substitution, subject to restrictions im-
posed by incrementallity (see Figure 2). In or-
der to efficiently compute all combinations, the
PLTAG parser computes only the fringes (see Sec-
tion 2) of the prefix tree, and the candidate ele-
mentary trees and matches these two; this avoids
the computation of the prefix tree entirely.1

Each prefix tree is weighted using a probabil-
ity model estimated over PLTAG operations and
the lexicon. This probability is used as a feature
in Φ. In addition, we define a set of features of
increasing sophistication, which include features
specific to PLTAG, standard tree-based features,
and, crucially, features extracted from the seman-
tic role triples produced incrementally by the iSRL
system of Konstas et al. (2014). The features are
computed for each prefix tree yn, so Φ can be re-
written as Φ(xn,yn), and therefore Equation (1) be-
comes:

ŷn = argmax
yn∈πn

Φ(xn,yn) · w̄ (2)

Our goal now becomes to learn mappings between
sentence prefixes xn and prefix trees ŷn. In contrast
to models that estimate features weights on full
sentence parses (Collins and Roark, 2004; Char-
niak and Johnson, 2005), we do not observe gold-
standard prefix trees during training. However, we
can use gold-standard lexicon entries when pars-
ing the training data with the PLTAG parser, which
gives an approximation of gold-standard prefix
trees y+

n . Finally, during testing, given an unseen
sentence x and a trained set of feature weights w̄,
our model generates prefix trees yn for every sen-
tence prefix of size n.

1As in a chart parser, the prefix tree can be re-constructed
by following backpointers in the chart. This is done only
for evaluation at the end of the sentence or incrementally on
demand.

4 Reranking Features

This section describes the features used for rerank-
ing the prefix trees generated by the incremental
parser. We include three different classes of fea-
tures, based on local information from PLTAG el-
ementary trees, based on global and structural in-
formation from prefix trees, and based on seman-
tic information provided by iSRL triples. In con-
trast to work on discriminative full-sentence pars-
ing (e.g., Charniak and Johnson, 2005; Collins and
Koo, 2005), we can only use features extracted
from the prefix trees being constructed incremen-
tally as the sentence is parsed. The right context of
the current word cannot be used, as this would vio-
late incrementality. Every feature combination we
try also includes the following baseline features:

Prefix Tree Probability is the log probability of
the prefix tree as scored by the probability model
of the baseline parser. The score is normalized by
prefix length, to avoid getting larger negative log
probability scores for longer prefixes.

Elementary Tree Probability is the log proba-
bility of the elementary tree corresponding to the
word just added to the prefix tree according to the
probability model of the baseline parser.

4.1 PLTAG Features
The baseline generative model of the PLTAG
parser employs features based on parsing actions,
the elementary trees used at each timestamp, and
the previous word and PoS tag. In the discrimi-
native model, we extend the locality of these fea-
tures, as well as addressing sparsity issues arising
from rare elementary trees. In all cases, both lex-
icalized and unlexicalized versions of the elemen-
tary trees are used.

Unigram Trees is a family of binary features
that record the local elementary trees chosen by
the parser for the n-th word, i.e., current word for
n = 1 and previous word for n = 2.

Parent-Unigram Trees is a variation of the pre-
vious feature, where we encode the elementary
tree of the current word along with the category of
the node it attaches to in the prefix tree. This cap-
tures the attachment decisions the parser makes.

Bigram Trees are pairs of elementary trees for
adjacent words (i.e., the elementary tree currently
added to the prefix tree and the previous one).
This extends the history the parser has access to,
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and captures pairs of elementary trees that are fre-
quently chosen together, e.g., a verb-headed tree
with a PP foot node, followed by an NP-headed
prepositional tree.

4.2 Tree Features

The following features are inspired by Charniak
and Johnson (2005) and attempt to encode proper-
ties of the prefix tree, as well as capture regulari-
ties for specific syntactic construction such as co-
ordination. Even though the PLTAG parser builds
fully connected structures and predicts upcoming
context, some constituents in a given prefix tree
may be incomplete. We therefore compute the fea-
tures in this group only for those constituents that
have been completed in the current prefix tree (i.e.,
constituents that are complete at word an, but were
incomplete at word an−1). This ensures each of
the features is only counted once per constituent.
For example, the coordination parallelism feature
(see below) should be computed only after all the
words in the yield of the CC non-terminal have
been observed.

Right Branch encodes the number of nodes on
the longest path from the root of the prefix tree to
the rightmost pre-terminal. We also include the
symmetrical feature which records the number of
the remaining nodes in the prefix tree. This feature
allows the parser to prefer right-branching trees,
commonly found in English syntax.

Coordination Parallelism records whether the
two sibling subtrees of a coordination node are
identical in terms of structure and node categories
up to depth l. We encode identity in a bit mask,
and set l = 4 (e.g., 1100 means the subtrees have
identical children and grandchildren).

Coordination Parallelism Length indicates the
binned difference in size between the yields of
each sibling subtree under a coordination node. It
also stores whether the second subtree is at the end
of the sentence.

Heavy stores the category of each node in a
completed constituent, along with the binned
length of its yield and whether it is at the end of
the sentence. This feature captures the tendency
of larger constituents to occur towards the end of
the sentence.

Neighbors encodes the category of each node in
the completed constituent, the binned yield size,

and the PoS tags of the l preceding words, were
l = 1 or 2.

Word stores the current word along with the cat-
egories of its l immediate ancestor nodes (exclud-
ing pre-terminals); l = 2 or 3.

4.3 SRL Features

The features in this group are extracted from the
output of iSRL system of Konstas et al. (2014),
which annotates prefix trees with semantic roles.
The setup proposed in the current paper makes
it possible to feed the semantic information back
to the PLTAG parser by using it to re-rank the k-
best prefix trees generated by the parser. (The re-
ranked prefix trees could then also result in better
iSRL performance, an issue we will return to in
Section 6.3.)

Recall that the SRL information comes in the
form of triples 〈l,r, p〉, where l is a semantic role
label and r and p are the words to which the role
applies (see Figure 2 for examples). For each fea-
ture, we also compute an unlexicalized version
by replacing the argument and predicates in the
triples with their PoS tags.

Complete SRL Triples stores the complete
triples (if any) generated by the current word. The
word can be the predicate or the argument in one
or more dependency relations involving previous
words.

Semantic Frame records all the arguments of
a predicate (if present) for frequent semantic la-
bels, i.e., A0, A1 and A2, as well as the presence
of a modifier (e.g., AM-TMP, AM-LOC, etc.).
This feature usually fires when a verb is added to
the prefix tree and generates several complete SRL
triples. The feature captures the semantic frame of
a verb as a whole (while the previous feature just
records it as a collection of triples).

Back-off SRL Triples are generated by remov-
ing either the argument, or the predicate, or the
role label, from a complete triple. This provides
a way of generalizing between triples that share
some information without being completely iden-
tical.

Predicate/Argument/Role encodes the ele-
ments of a complete SRL triple individually
(argument, predicate, or role). This allows for
further generalization and reduces sparsity.
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5 Feature Weight Estimation

We estimate the vector of feature weights w̄ in
Equation (2) using the averaged structured percep-
tron algorithm of Collins (2002); we give the pseu-
docode in Algorithm 1. The perceptron makes
T passes over L training examples. In each it-
eration, for each sentence prefix/prefix tree pair
(xn,yn), it computes the best scoring prefix tree ŷn
among the candidate prefix trees, given the cur-
rent feature weights w̄. In line 7, the algorithm
updates w̄ with the difference (if any) between the
feature representations of the best scoring prefix
tree ŷn and the approximate gold-standard prefix
tree y+

n (see Section 3.2). Note that since we use
a constant beam during decoding with the PLTAG
parser in order to enumerate the set of prefix trees
πn, there is no guarantee that the argmax in line 5
will find the highest scoring (in terms of F-score)
prefix tree y∗n 6= ŷn. Search errors due to the best
analysis falling out of the beam at a given pre-
fix length will create errors both when decoding
unseen sentences at test time, and when learning
the feature weights with the perceptron algorithm.
The final weight vector w̄ is the average of the
weight vectors over T iterations, L examples and
N words. The averaging avoids overfitting and
produces more stable results (Collins, 2002).

Note that features are computed for every prefix
of the input sentence. Recall that the parser avoids
the explicit computation of the prefix trees in πn
through the use of the fringes (see Sections 2.1
and 3.2). This is sufficient for the computation of
PLTAG and SRL features, but we need to explic-
itly calculate every prefix tree yn for the computa-
tion of the tree features (see Section 4.2). This is
an expensive operation if we are parsing the whole
training corpus. To overcome this time bottleneck,
we compute features only for those analyses of
every input sentence prefix that belongs to the k-
best analyses at the end of the sentence. In other
words, πn is the set of only those prefix trees that
are used by the k-best analyses at the end of the
sentence. This results in a much smaller number
of prefix trees that need to be computed for each
word. However, during testing, given the trained
w̄ and an unseen sentence, we compute all features
for each prefix length of the sentence, hence calcu-
late all prefix trees in πn and incrementally re-rank
the chart entries of the parser on the fly.

Algorithm 1: Averaged Structured Perceptron
Input: Training Examples: (x,y)L

i=1,xi = a1 . . .aN
1 w̄← 0
2 for t← 1 . . .T do
3 for i← 1 . . .L do
4 for n← 1 . . .N do
5 ŷn = argmaxyn∈πn

Φ(xn,yn) · w̄
6 if y+

n 6= ŷn then
7 w̄← w̄+Φ(xn,y+

n )−Φ(xn,yn)
8 return 1

T ∑T
t=1

1
L ∑L

i=1 ∑N
n=1

1
N wt,i,n

6 Experiments

6.1 Setup
We use the PLTAG parser of Demberg et al. (2013)
to enumerate prefix trees yn and to compute the
prefix tree and word probability scores which we
use as features. We also use the iSRL system
of Konstas et al. (2014) to generate incremental
SRL triples. Their system includes a semantically-
enriched lexicon extracted from the Wall Street
Journal (WSJ) part of the Penn Treebank corpus
(Marcus et al., 1993), converted to PLTAG for-
mat. Semantic role annotation is sourced from
Propbank. We trained the probability model of
the parser and the identification and labeling clas-
sifiers of the iSRL system using the intersection of
Sections 2–21 of WSJ and the English portion of
the CoNLL 2009 Shared Task (Hajič et al., 2009).
We learn the weight vector w̄ by training the per-
ceptron algorithm also on Sections 2–21 of WSJ
(see Section 5 for details). We use the PoS tags
predicted by the parser, rather than gold standard
PoS tags. Testing is performed on section 23 of
WSJ, for sentences up to 40 words.

6.2 Evaluation
In addition to standard full-sentence labeled
bracket score, we evaluate our model incremen-
tally, by scoring the prefix trees generated for each
sentence prefix (Sangati and Keller, 2013). For
each prefix of the input sentence (two words or
more), we compute the labeled bracket score for
the minimal structure spanning that prefix. The
minimal structure is defined as the subtree rooted
in the lowest common ancestor of the prefix nodes,
while removing any leftover intermediate nodes
on the right edge of the subtree that do not have
a word in the prefix as their yield.

Although not the main focus of this paper, we
also report full-sentence combined SRL accuracy
(counting verb-predicates only). This score is ob-
tained by re-applying the iSRL system to the syn-
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System Prec Rec F AUC SRL
BASELINE 75.51 76.93 76.21 71.49 69.43
TREE 75.99 77.52 76.75 73.02 68.80
SRL 75.99 77.65 76.81 73.97 69.96
TREE+PLTAG 76.67 78.27 77.47 72.27 70.27
TREE+PLTAG

+SRL

77.00 78.57 77.77 74.97 70.00

Table 1: Full-sentence parsing results2, area under
the curve (AUC) for the incremental parsing re-
sults of Figure 3, and combined SRL score across
different groups of features.

tactic parses output by our re-ranker. (In contrast,
Konstas et al. (2014) work with gold-standard syn-
tactic parses.)

We evaluate four variants of our model (see Sec-
tion 4 for an explanation of the different groups of
features):

TREE is the model that uses tree features
only; this essentially simulates standard parse re-
ranking approaches such as the one of Charniak
and Johnson (2005).

SRL uses only features based on iSRL triples;
it provides a proof-of-concept, demonstrating that
the semantic information encoded in SRL triples
can help the parser building better syntactic trees.

TREE+PLTAG adds PLTAG Features to the
TREE model, taking advantage of local infor-
mation specific to elementary PLTAG trees;
TREE+PLTAG essentially provides a strong
syntax-only baseline.

TREE+PLTAG+SRL combines SRL features
and syntactic features.

Finally, our baseline is the PLTAG parser of
Demberg et al. (2013), using the original proba-
bility model without any re-ranking. A compari-
son with other incremental parsers would be de-
sirable, but is not trivial to achieve. This is be-
cause the PLTAG parser is trained and evaluated
on a version of the Penn Treebank that was con-
verted to PLTAG format. This renders our results
not directly comparable to parsers that reproduce
the Penn Treebank bracketing. For example, the
PLTAG parser produces deeper tree structures in-
formed by Propbank and the noun phrase annota-
tion of Vadas and Curran (2007).

10 20 30 40
0.65

0.7

0.75

0.8

0.85

0.9

Prefix Length

F-
sc

or
e

BASELINE

TREE

SRL

TREE+PLTAG

TREE+PLTAG+SRL

Figure 3: Incremental parsing F-score for increas-
ing sentence prefixes, up to 40 words.

6.3 Results

Figure 3 gives the results of evaluating incre-
mental parsing performance. The x-axis shows
prefix length, and the y-axis shows incremental
F-score computed as suggested by Sangati and
Keller (2013). Each point is averaged over all pre-
fixes of a given length in the test set. To quantify
the trends shown in this figure, we also compute
the area under the curve (AUC) for each feature
combination; this is given in Table 1.

We find that TREE performs consistently bet-
ter than the baseline for short prefixes (up to the
first 20 words), and then is very close to the base-
line. This is expected given that tree features add
structure-specific information (e.g., about coordi-
nation) to the baseline model, and is consistent
with results obtained using similar features in the
literature (Charniak and Johnson, 2005). Adding
PLTAG features (TREE+PLTAG) hurts incremen-
tal performance for short prefixes (up to about 20
words), but then performance gradually increases
over the baseline and over TREE alone. It seems
that the PLTAG features, which are specific to the
grammar formalism used, are able to help with
longer and more complex prefixes, but introduce
noise in smaller prefixes.

The SRL feature set, on the other hand, results
in a consistent increase in performance compared

2Note that the baseline score is lower than the published
F = 77.41 of Demberg et al. (2013). This is expected, since
we use a semantically-enriched lexicon, which increases the
size of the lexicon, resulting in higher ambiguity per word as
well as increased sparsity in the probability model.
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to the baseline, across all prefix lengths. SRL pro-
vides semantic knowledge, while TREE provides
syntactic knowledge, but the performance of both
feature sets is very close to each other, up to a
prefix length of about 30 words, after which SRL

has a clear advantage. SRL features seem to fil-
ter out local ambiguity caused by creating pre-
fix trees incrementally and result in correct parses
closer to the end of sentence, even without the
use of the syntactic information contained in the
TREE+PLTAG feature set. Recall that SRL uses in-
formation provided by the semantic frame, some-
thing that a syntax-only model does not have ac-
cess to. It seems that this makes it possible for SRL

to (partially) compensate for mistakes made by the
parser. The AUC of SRL is higher by 0.95 and 1.7
points compared to TREE and TREE+PLTAG, re-
spectively.

We observe an additional boost in perfor-
mance when using all features together in the
TREE+PLTAG+SRL configuration, which outper-
forms SRL alone by 1.0 points in AUC. Recall that
SRL features do not apply to every word; they fire
only when semantic information is introduced to
the parser via the semantically-enriched lexicon.
Hence by adding tree and PLTAG features, which
normally apply for every new word, we are able to
perform effective re-ranking for all sentence pre-
fixes, which explains the boost in performance.
Note that for all variants of our model we observe
a dip in performance at around 38 words. This is
probably due to noise, caused by the small number
of sentences of this length. The upward trend seen
around word 40 is probably the effect of observ-
ing the end of the sentence, which boosts parsing
accuracy.

Turning to full sentence evaluation (Table 1),
we observe a similar trend. Both TREE and
SRL beat the baseline by about 0.55 points in F-
score. Progressively adding features increases per-
formance, with the greatest gain of 1.56 points
attained by the combination of all features in
TREE+PLTAG+SRL.

We also report combined SRL F-score com-
puted on the re-ranked syntactic trees (rightmost
column of Table 1). We find that compared to
the baseline, only a small improvement of 0.55
points is achieved by TREE+PLTAG+SRL, while
TREE+PLTAG improves by 0.84 points. The
syntax-only variant therefore outperforms the full
model, but only by a small margin.

7 Related Work

The most similar approach in the literature is
Collins and Roark’s (2004) re-ranking model for
incremental parsing. They learn the syntactic fea-
tures of Roark (2001) using the perceptron model
of Collins (2002). Similar to us, they use the in-
cremental parser to search over candidate parses.
However, they limited themselves to local deriva-
tion features (akin to our PLTAG features), and do
not explore global syntactic feature (tree features)
or SRL features. Even though they re-rank the
output of an incremental parser, they only evalu-
ate full sentence parsing performance. Other re-
ranking approaches to syntactic parsing make use
of an extensive set of global features, but apply it
on the k-best list of full sentence parses (Charniak
and Johnson, 2005; Collins and Koo, 2005) or the
k-best list of derivations of a packed forest (Huang,
2008), i.e., these approaches are not incremental.

Based on the CoNLL Shared Tasks (e.g., Hajič
et al., 2009), a number of systems exist that per-
form syntactic parsing and semantic role label-
ing jointly. Toutanova et al. (2008), Sutton and
McCallum (2005) and Li et al. (2010) combine
the scores of two separate models, i.e., a syntac-
tic parser and a semantic role labeler, and re-rank
the combination using features from each domain.
Titov et al. (2009) and Gesmundo et al. (2009),
instead of combining models, create a common
search space for syntactic parsing and SRL, using
a shift reduce-style technique (Nivre, 2007) and
learn a latent variable model (Incremental Sigmoid
Belief Networks) that optimizes over both tasks at
the same time. Volokh and Neumann (2008) use a
variant of Nivre’s (2007) incremental shift-reduce
parser and rely only on the current word and pre-
vious content to output partial dependency trees;
then they output role labels given the full parser
output. In contrast to all the joint approaches, we
perform both parsing and semantic role labeling
strictly incrementally, without having access to the
whole sentence, outputting prefix trees and iSRL
triples for every sentence prefix. Our approach
creates a feedback loop, i.e., we generate a prefix
tree using the baseline model, give it as input to
iSRL, then re-rank it using a set of syntactic and
SRL features. The resulting new prefix tree can
then be fed back into iSRL, etc.
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8 Conclusions

We started from the observation that human pars-
ing uses semantic knowledge to rule out parses
that lead to implausible interpretations. Based on
this, we hypothesized that also in NLP, an incre-
mental syntactic parser should benefit from se-
mantic information. To test this hypothesis, we
combined an incremental TAG parser with an in-
cremental semantic role labeler. We used the out-
put of the iSRL system to derive features that can
be used to re-rank the prefix trees generated by the
incremental parser. We found that SRL features,
both in isolation and together with standard syn-
tactic features, improve parsing performance, both
when measured using full-sentence F-score, and in
terms of incremental F-score.

In future work, we plan to combine our incre-
mental parsing/role labeling approach with a com-
positional model of semantics, which would have
to be modified to take semantic role triples as in-
put (rather than words or word pairs). The re-
sulting plausibility estimates could then be used
as another source of semantic information for the
parser, or employed in down-stream tasks.
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Abstract

We present an extension to incremental
shift-reduce parsing that handles discon-
tinuous constituents, using a linear clas-
sifier and beam search. We achieve very
high parsing speeds (up to 640 sent./sec.)
and accurate results (up to 79.52 F1 on
TiGer).

1 Introduction

Discontinuous constituents consist of more than
one continuous block of tokens. They arise
through phenomena which traditionally in linguis-
tics would be analyzed as being the result of some
kind of “movement”, such as extraposition or top-
icalization. The occurrence of discontinuous con-
stituents does not necessarily depend on the de-
gree of freedom in word order that a language al-
lows for. They can be found, e.g., in almost equal
proportions in English and German treebank data
(Evang and Kallmeyer, 2011).

Generally, discontinuous constituents are ac-
counted for in treebank annotation. One annota-
tion method consists of using trace nodes that de-
note the source of a movement and are co-indexed
with the moved constituent. Another method is
to annotate discontinuities directly by allowing for
crossing branches. Fig. 1 shows an example for
the latter approach with which we are concerned
in this paper, namely, the annotation of (1). The
tree contains a discontinuous VP due to the fact
that the fronted pronoun is directly attached.

(1) Das
That

wollen
want

wir
we

umkehren
reverse

“This is what we want to reverse”

Several methods have been proposed for pars-
ing such structures. Trace recovery can been

Das

PDS

wollen
VMFIN

wir

PPER

umkehren

VVINF

VP

S

Figure 1: Example annotation with discontinuous
constituents from TiGer

framed as a separate pre-, post- or in-processing
task to PCFG parsing (Johnson, 2002; Dienes and
Dubey, 2003; Jijkoun, 2003; Levy and Manning,
2004; Schmid, 2006; Cai et al., 2011, among
others); see particularly Schmid (2006) for more
details. Directly annotated discontinuous con-
stituents can be parsed with a dependency parser,
given a reversible transformation from discontin-
uous constituency trees to non-projective depen-
dency structures. Transformations have been pro-
posed by Hall and Nivre (2008), who use com-
plex edge labels that encode paths between lexical
heads, and recently by Fernández-González and
Martins (2015), who use edge labels to encode the
attachment order of modifiers to heads.

Direct parsing of discontinuous constituents can
be done with Linear Context-Free Rewriting Sys-
tem (LCFRS), an extension of CFG which allows
its non-terminals to cover more than one contin-
uous block (Vijay-Shanker et al., 1987). LCFRS
parsing is expensive: CYK chart parsing with a
binarized grammar can be done in O(n3k) where
k is the block degree, the maximal number of con-
tinuous blocks a non-terminal can cover (Seki et
al., 1991). For a typical treebank LCFRS (Maier
and Søgaard, 2008), k ≈ 3, instead of k = 1 for
PCFG. In order to improve on otherwise imprac-
tical parsing times, LCFRS chart parsers employ
different strategies to speed up search: Kallmeyer
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and Maier (2013) use A∗ search; van Cranenburgh
(2012) and van Cranenburgh and Bod (2013) use a
coarse-to-fine strategy in combination with Data-
Oriented Parsing; Angelov and Ljunglöf (2014)
use a novel cost estimation to rank parser items.
Maier et al. (2012) apply a treebank transforma-
tion which limits the block degree and therewith
also the parsing complexity.

Recently Versley (2014) achieved a break-
through with a EaFi, a classifier-based parser that
uses an “easy-first” approach in the style of Gold-
berg and Elhadad (2010). In order to obtain dis-
continuous constituents, the parser uses a strat-
egy known from non-projective dependency pars-
ing (Nivre, 2009; Nivre et al., 2009): For every
non-projective dependency tree, there is a projec-
tive dependency tree which can be obtained by
reordering the input words. Non-projective de-
pendency parsing can therefore be viewed as pro-
jective dependency parsing with an additional re-
ordering of the input words. The reordering can
be done online during parsing with a “swap” op-
eration that allows to process input words out of
order. This idea can be transferred, because also
for every discontinuous constituency tree, one can
find a continuous tree by reordering the terminals.
Versley (2014) uses an adaptive gradient method
to train his parser. He reports a parsing speed of
40-55 sent./sec. and results that surpass those re-
ported for the above mentioned chart parsers.

In (continuous) constituency parsing, incremen-
tal shift-reduce parsing using the structured per-
ceptron is an established technique. While the
structured perceptron for parsing has first been
used by Collins and Roark (2004), classifier-based
incremental shift-reduce parsing has been taken up
by Sagae and Lavie (2005). A general formula-
tion for the application of the perceptron algorithm
to various problems, including shift-reduce con-
stituency parsing, has been introduced by Zhang
and Clark (2011b). Improvements have followed
(Zhu et al., 2012; Zhu et al., 2013). A similar strat-
egy has been shown to work well for CCG parsing
(Zhang and Clark, 2011a), too.

In this paper, we contribute a perceptron-based
shift-reduce parsing architecture with beam search
(following Zhu et al. (2013) and Bauer (2014))
and extend it such that it can create trees with
crossing branches (following Versley (2014)). We
present strategies to improve performance on dis-
continuous structures, such as a new feature set.

Our parser is very fast (up to 640 sent./sec.),
and produces accurate results. In our evaluation,
where we pay particular attention to the parser
performance on discontinuous structures, we show
among other things that surprisingly, a grammar-
based parser has an edge over a shift-reduce ap-
proach concerning the reconstruction of discontin-
uous constituents.

The remainder of the paper is structured as fol-
lows. In subsection 2.1, we introduce the gen-
eral parser architecture; the subsections 2.2 and
2.3 introduce the features we use and our strat-
egy for handling discontinuous structures. Section
3 presents and discusses the experimental results,
section 4 concludes the article.

2 Discontinuous Shift-Reduce Parsing

Our parser architecture follows previous work,
particularly Zhu et al. (2013) and Bauer (2014).

2.1 Shift-reduce parsing with perceptron
training

An item in our parser consists of a queue q of
token/POS-pairs to be processed, and a stack s,
which holds completed constituents.1 The parser
uses different transitions: SHIFT shifts a termi-
nal from the queue on to the stack. UNARY-X
reduces the first element on the stack to a new
constituent labeled X. BINARY-X-L and BINARY-
X-R reduce the first two elements on the stack to
a new X constituent, with the lexical head com-
ing from the left or the right child, respectively.
FINISH removes the last element from the stack.
We additionally use an IDLE transition, which can
be applied any number of times after FINISH, to
improve the comparability of analyses of different
lengths (Zhu et al., 2013).

The application of a transition is subject to re-
strictions. UNARY-X, e.g., can only be applied
when there is at least a single item on the stack.
We implement all restrictions listed in the ap-
pendix of Zhang and Clark (2009), and add addi-
tional restrictions that block transitions involving
the root label when not having arrived at the end of
a derivation. We do not use an underlying gram-
mar to filter out transitions which have not been
seen during training.

For decoding, we use beam search (Zhang and
Clark, 2011b). Decoding is started by putting the

1As in other shift-reduce approaches, we assume that POS
tagging is done outside of the parser.
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Figure 2: Binarization example

start item (empty stack, full queue) on the beam.
Then, repeatedly, a candidate list is filled with all
items that result from applying legal transitions to
the items on the beam, followed by putting the
highest scoring n of them back on the beam (given
a beam size of n). Parsing is finished if the high-
est scoring item on the beam is a final item (stack
holds one item labeled with the root label, queue
is empty), which can be popped. Item scores are
computed as in Zhang and Clark (2011b): The
score of the i+1th item is computed as the sum of
the score of the ith item and the dot product of a
global feature weight vector and the local weight
vector resulting from the changes induced by the
corresponding transition to the i + 1th item. The
start item has score 0. We train the global weight
vector with an averaged Perceptron with early up-
date (Collins and Roark, 2004).

Parsing relies on binary trees. As in previ-
ous work, we binarize the incoming trees head-
outward with binary top and bottom productions.
Given a constituent X which is to be binarized,
all intermediate nodes which are introduced will
be labeled @X . Lexical heads are marked with
Collins-style head rules. As an example, Fig. 2
shows the binarized version of the tree of Fig. 1.

Finally, since we are learning a sparse model,
we also exploit the work of Goldberg and Elhadad
(2011) who propose to include a feature in the cal-
culation of a score only if it has been observed ≥
MINUPDATE times.

2.2 Features

Features are generated by applying templates to
parser items. They reflect different configurations
of stack and queue. As BASELINE features, we
use the feature set from Zhang and Clark (2009)
without the bracketing features (as used in Zhu et
al. (2013)). We furthermore experiment with fea-
tures that reflect the presence of separating punctu-
ation “,”, “:”, “;” (SEPARATOR) (Zhang and Clark,
2009), and with the EXTENDED features of Zhu et

unigrams
s0tc, s0wc, s1tc, s1wc, s2tc, s2wc, s3tc, s3wc,
q0wt, q1wt, q2wt, q3wt,
s0lwc, s0rwc, s0uwc, s1lwc, s1rwc, s1uwc
bigrams
s0ws1w, s0ws1c, s0cs1w, s0cs1c, s0wq0w, s0wq0t,
s0cq0w, s0cq0t, s1wq0w, s1wq0t, s1cq0w, s1cq0t,
q0wq1w, q0wq1t, q0tq1w, q0tq1t
trigrams
s0cs1cs2w, s0cs1cs2c, s0cs1cq0w, s0cs1cq0t,
s0cs1wq0w, s0cs1wq0t, s0ws1cs2c, s0ws1cq0t
extended
s0llwc, s0lrwc, s0luwc, s0rlwc, s0rrwc,
s0ruwc, s0ulwc, s0urwc, s0uuwc, s1llwc,
s1lrwc, s1luwc, s1rlwc, s1rrwc, s1ruwc
separator
s0wp, s0wcp, s0wq, s0wcq, s0cs1cp, s0cs1cq
s1wp, s1wcp, s1wq, s1wcq

Figure 3: Feature templates

al. (2013), which look deeper into the trees on the
stack, i.e., up to the grand-children instead of only
to children.

Fig. 3 shows all the feature templates. Note that
si and qi stands for the ith stack and queue item,
w stands for the head word, t for the head tag and
c for the constituent label (w, t and c are identi-
cal on POS-level). l and r (ll and rr) represent
the left and right children (grand-children) of the
element on the stack; u handles the unary case.
Concerning the separator features, p is a unique
separator punctuation between the head words of
s0 and s1, q is the count of any separator punctua-
tion between s0 and s1.

2.3 Handling Discontinuities

In order to handle discontinuities, we use two
variants of a swap transition which are similar
to swap-eager and swap-lazy from Nivre (2009)
and Nivre et al. (2009). The first variant, SIN-
GLESWAP, swaps the second item of the stack
back on the queue. The second variant COM-
POUNDSWAPi bundles a maximal number of ad-
jacent swaps. It swaps i items starting from the
second item on the stack, with 1 ≤ i < |s|. Both
swap operations can only be applied if

1. the item has not yet been FINISHed and the
last transition has not been a transition with
the root category,

2. the queue is not empty,

3. all elements to be swapped are pre-terminals,
and
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4. if the first item of the stack has a lower index
than the second (this inhibits swap loops).

SINGLESWAP can only been applied if there
are at least two items on the stack. For COM-
POUNDSWAPi, there must be at least i+ 1 items.

Transition sequences are extracted from tree-
bank trees with an algorithm that traverses the tree
bottom-up and collects the transitions. For a given
tree τ , intuitively, the algorithm works as follows.
We start out with a queue t containing the pre-
terminals of τ , a stack σ that receives finished con-
stituents, a counter s that keeps track of the num-
ber of terminals to be swapped, and an empty se-
quence r that holds the result. First, the first ele-
ment of t is pushed on σ and removed from t.

While |σ| > 0 or |t| > 0, we repeat the follow-
ing two steps.

1. Repeat while transitions can be added:

(a) if the top two elements on σ, l and r,
have the same parent p labeled X and
l/r is the head of p, add BINARY-X-l/r
to r, pop two elements from σ and push
p;

(b) if the top element on σ is the only child
of its parent p labeled X , add UNARY-
X, pop an element of σ and push p.

2. If |t| > 0, while the first element of t is not
equal to the leftmost pre-terminal dominated
by the right child of the parent of the top el-
ement on σ (i.e., while there are terminals
that must be swapped), add SHIFT to r, in-
crement s, push the first element of t on σ
and remove it from t. Finally, add another
SHIFT to r, push first element of t to σ and
remove it from t (this will contribute to the
next reduction). If s > 0, we must swap. Ei-
ther we add s many SWAP transitions or one
COMPOUNDSWAPs to r. Then we move s
many elements from σ to the front of t, start-
ing with the second element of σ. Finally we
set s = 0.

As an example, consider the transition sequence
we would extract from the tree in Fig. 2. Using
SINGLESWAP, we would obtain SHIFT, SHIFT,
SHIFT, SHIFT, SINGLESWAP, SINGLESWAP,
BINARY-VP-R, SHIFT, BINARY-@S-R, SHIFT,
BINARY-S-L, FINISH. Using COMPOUNDSWAPi,
instead of two SINGLESWAPs, we would just ob-
tain a single COMPOUNDSWAP2.

unigrams
s0xwc, s1xwc, s2xwc, s3xwc,
s0xtc, s1xwc, s2xtc, s3xwc,
s0xy, s1xy, s2xy, s3xy
bigrams
s0xs1c, s0xs1w, s0xs1x, s0ws1x, s0cs1x,
s0xs2c, s0xs2w, s0xs2x, s0ws2x, s0cs2x,
s0ys1y, s0ys2y, s0xq0t, s0xq0w

Figure 4: Features for discontinuous structures

We explore two methods which improve the
performance on discontinuous structures. Even
though almost a third of all sentences in the Ger-
man NeGra and TiGer treebanks contains at least
one discontinuous constituent, among all con-
stituents, the discontinuous ones are rare, making
up only around 2%. The first, simple method ad-
dresses this sparseness by raising the importance
of the features that model the actual discontinu-
ities by counting all feature occurrences at a gold
swap transition twice (IMPORTANCE).

Secondly, we use a new feature set (DISCO)
with bigram and unigram features that conveys in-
formation about discontinuities. The features con-
dition the possible occurrence of a gap on previ-
ous gaps and their properties.2 The feature tem-
plates are shown in Fig. 4. x denotes the gap
type of a tree on the stack. There are three possi-
ble values, either “none” (tree is fully continuous),
“pass” (there is a gap at the root, i.e., this gap must
be filled later further up in the tree), or “gap” (the
root of this tree fills a gap, i.e., its children have
gaps, but the root does not). Finally, y is the sum
of all gap lengths.

3 Experiments

3.1 Data

We use the TiGer treebank release 2.2 (TIGER),
and the NeGra treebank (NEGRA). For TIGER,
we use the first half of the last 10,000 sentences
for development and the second half for testing.3

We also recreate the split of Hall and Nivre (2008)
(TIGERHN), for which we split TiGer in 10 parts,
assigning sentence i to part imod10. The first of
those parts is used for testing, the concatenation of
the rest for training.

2See Maier and Lichte (2011) for a formal account on
gaps in treebanks.

3This split, which corresponds to the split used in the
SPMRL 2013 shared task (Seddah et al., 2013), was proposed
in Farkas and Schmid (2012). We exclude sentences 46,234
and 50,224, because of annotation errors. Both contain nodes
with more than one parent node.
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From NeGra, we exclude all sentences longer
than 30 words (in order to make a comparison
with rparse possible, see below), and split off
the last 10% of the treebank for testing, as well
as the previous 10% for development. As a pre-
processing step, in both treebanks we remove spu-
rious discontinuities that are caused by material
which is attached to the virtual root node (mainly
punctuation). All such elements are attached to the
least common ancestor node of their left and right
terminal neighbors (as proposed by Levy (2005),
p. 163). We furthermore create a continuous vari-
ant NEGRACF of NEGRA with the method usu-
ally used for PCFG parsing: For all maximal con-
tinuous parts of a discontinuous constituent, a sep-
arate node is introduced (Boyd, 2007). Subse-
quently, all nodes that do not cover the head child
of the discontinuous constituent are removed.

No further preprocessing or cleanup is applied.

3.2 Experimental Setup

Our parser is implemented in Java. We run all our
experiments with Java 8 on an Intel Core i5, al-
locating 15 GB per experiment. All experiments
are carried out with gold POS tags, as in previous
work on shift-reduce constituency parsing (Zhang
and Clark, 2009). Grammatical function labels are
discarded.

For the evaluation, we use the corresponding
module of discodop.4 We report several metrics
(as implemented in discodop):

• Extended labeled bracketing, in which a
bracket for a single node consists of its la-
bel and a set of pairs of indices, delimiting
the continuous blocks it covers. We do not
include the root node in the evaluation and
ignore punctuation. We report labeled preci-
sion, recall and F1, as well as exact match (all
brackets correct).

• Leaf-ancestor (Sampson and Babarczy,
2003), for which we consider all paths from
leaves to the root.

• Tree edit distance (Emms, 2008), which con-
sists of the minimum edit distance between
gold tree and parser output.

Aside from a full evaluation, we also evaluate only
the constituents that are discontinuous.

4http://github.com/andreasvc/discodop
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Figure 5: NEGRA dev results (F1) for different
beam sizes

We perform 20 training iterations unless indi-
cated otherwise. When training stops, we average
the model (as in Daumé III (2006)).

We run further experiments with rparse5

(Kallmeyer and Maier, 2013) to facilitate a com-
parison with a grammar-based parser.

3.3 Results

We start with discontinuous parsing experiments
on NEGRA and TIGER, followed by continu-
ous parsing experiments, and a comparison to
grammar-based parsing.

3.3.1 Discontinuous Parsing

NeGra The first goal is to determine the effect
of different beam sizes with BASELINE features
and the COMPOUNDSWAPi operation. We run ex-
periments with beam sizes 1, 2, 4 and 8; Fig. 5
shows the results obtained on the dev set after
each iteration. Fig. 6 shows the average decod-
ing speed during each iteration for each beam size
(both smoothed).

Tracking two items instead of one results in a
large improvement. Raising the beam size from
2 to 4 results in a smaller improvement. The im-
provement obtained by augmenting the beam size
from 4 to 8 is even smaller. This behavior is mir-
rored by the parsing speeds during training: The
differences in parsing speed roughly align with the
result differences. Note that fast parsing during
training means that the parser does not perform
well (yet) and that therefore, early update is done
more often. Note finally that the average parsing
speeds on the test set after the last training iteration

5http://github.com/wmaier/rparse
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All Discont. only
LR LP LF1 E LR LP LF1 E

BASELINE combined with

SWAP 74.74 75.60 75.17 43.54 15.70 15.82 15.76 12.31
COMPOUNDSWAPi 75.60 76.37 75.98 43.04 16.46 19.96 18.05 12.05
BASELINE + COMPOUNDSWAPi combined with

SEPARATOR 75.20 75.74 75.47 42.61 13.11 16.73 14.70 9.89
EXTENDED 76.15 76.92 76.53 44.46 15.09 20.62 17.43 12.70
DISCO 75.86 76.39 76.12 43.94 15.42 22.95 18.45 12.86
IMPORTANCE 75.72 76.61 76.16 43.86 16.16 20.42 18.04 12.38
BASELINE + COMPOUNDSWAPi + DISCO combined with

EXTENDED 76.68 77.19 76.93 44.10 15.27 26.88 19.47 13.61
EXTENDED + SEPARATOR 76.21 76.45 76.33 43.29 15.57 26.56 19.63 13.52
IMPORTANCE 76.22 76.86 76.54 43.75 16.01 29.41 20.73 13.89
EXTENDED + IMPORTANCE 76.76 77.13 76.95 44.30 15.09 28.86 19.82 13.23

Table 1: Results NEGRA, beam size 8
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Figure 6: NEGRA dev average parsing speeds per
sentence for different beam sizes

range from 640 sent./sec. (greedy) to 80 sent./sec.
(beam size 8).

For further experiments on NeGra, we choose
a beam size of 8. Tab. 1 shows the bracketing
scores for various parser setups. In Tab. 2, the
corresponding TED and Leaf-Ancestor scores are
shown.

In the first block of the tables, we com-
pare SWAP with COMPOUNDSWAPi. On all

TED LA
BASELINE combined with

SWAP 89.19 91.62
COMPOUNDSWAPi 89.60 91.93
BASELINE + COMPOUNDSWAPi combined with

SEPARATOR 89.41 91.77
EXTENDED 89.68 91.99
DISCO 89.42 91.83
BASELINE + COMPOUNDSWAPi + DISCO combined with

IMPORTANCE 89.64 91.90
EXTENDED 89.68 91.99
EXTENDED + SEPARATOR 89.52 91.86
EXTENDED + IMPORTANCE 89.80 91.98

Table 2: Results NEGRA TED and Leaf-Ancestor

constituents, the latter beats the former by 0.8
(F1). On discontinuous constituents, using COM-
POUNDSWAPi gives an improvement of more than
four points in precision and of about 0.8 points
in recall. A manual analysis confirms that as
expected, particularly discontinuous constituents
with large gaps profit from bundling swap transi-
tions.

In the second block, we run the BASELINE

features with COMPOUNDSWAPi combined with
SEPARATOR, EXTENDED and DISCO. The SEP-
ARATOR features were not as successful as they
were for Zhang and Clark (2009). All scores for
discontinuous constituents drop (compared to the
baseline). The EXTENDED features are more ef-
fective and give an improvement of about half a
point F1 on all constituents, as well as the highest
exact match among all experiments. On discontin-
uous constituents, precision raises slightly but we
loose about 1.4% in recall (compared to the base-
line). The latter seems to be due to the fact that
in comparison to the baseline, with EXTENDED,
more sentences get erroneously analyzed as not
containing any crossing branches. This effect can
be explained with data sparseness and is less pro-
nounced when more training data is available (see
below). Similarly to EXTENDED, the new DISCO

features lead to a slight gain over the baseline (on
all constituents). As with EXTENDED, on discon-
tinuous constituents, we again gain precision (3%)
but loose recall (0.5%), because more sentences
wrongly analyzed as not having discontinuities
than in the BASELINE. A category-based evalua-
tion of discontinuous constituents reveals that EX-
TENDED has an advantage over DISCO when con-
sidering all constituents. However, we can also see
that the DISCO features yield better results than
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EXTENDED particularly on the frequent discontin-
uous categories (NP, VP, AP, PP), which indicates
that the information about gap type and gap length
is useful for the recovery of discontinuities. IM-
PORTANCE (see Sec. 2.3) is not very successful,
yielding results which lie in the vicinity of those
of the BASELINE.

In the third block of the tables, we test the per-
formance of the DISCO features in combination
with other techniques, i.e., we use the BASELINE

and DISCO features with COMPOUNDSWAPi and
combine it with EXTENDED and SEPARATOR fea-
tures as well as with the IMPORTANCE strategy.
All experiments beat the BASELINE/DISCO com-
bination in terms of F1. EXTENDED and DISCO

give a cumulative advantage, resulting in an in-
crease of precision of almost 4%, resp. over 6% on
discontinuous constituents, compared to the use
of DISCO, resp. EXTENDED alone. Adding the
SEPARATOR features to this combination does not
bring an advantage. The IMPORTANCE strategy
is the most successful one in combination with
DISCO, causing a boost of almost 10% on preci-
sion of discontinuous constituents, leading to the
highest overall discontinuous F1 of 29.41 (notably
more than 12 points higher than the baseline); also
on all constituents we obtain the third-highest F1.
Combining DISCO with IMPORTANCE and EX-
TENDED leads to the highest overall F1 on all con-
stituents of 76.95, however, the results on discon-
tinuous constituents are slightly lower than for IM-
PORTANCE alone. This confirms the previously
observed behavior: The EXTENDED features help
when considering all constituents, but they do not
seem to be effective for the recovery of disconti-
nuities in particular.

In the TED and LA scores (Tab. 2), we see much
less variation than in the bracketing scores. As re-
ported in the literature (e.g., Rehbein and van Gen-
abith (2007)), this is because of the fact that with
bracketing evaluation, a single wrong attachment
can “break” brackets which otherwise would be
counted as correct. Nevertheless, the trends from
bracketing evaluation repeat.

To sum up, the COMPOUNDSWAPi operation
works better than SWAP because the latter misses
long gaps. The most useful feature sets were EX-
TENDED and DISCO, both when used indepen-
dently and when used together. DISCO was partic-
ularly useful for discontinuous constituents. SEP-
ARATOR yielded no usable improvements. IM-

PORTANCE has also proven to be effective, yield-
ing the best results on discontinuous constituents
(in combination with DISCO). Over almost all ex-
periments, a common error is that on root level,
CS and S get confused, indicating that the present
features do not provide sufficient information for
disambiguation of those categories. We can also
confirm the tendency that discontinuous VPs in
relatively short sentences are recognized correctly,
as reported by Versley (2014).

TiGer We now repeat the most successful exper-
iments on TIGER. Tab. 3 shows the parsing results
for the test set.

Some of the trends seen on the experiments with
NEGRA are repeated. EXTENDED and DISCO

yields an improvement on all constituents. How-
ever, now not only DISCO, but also EXTENDED

lead to improved scores on discontinuous con-
stituents. As mentioned above, this can be ex-
plained with the fact that for the EXTENDED fea-
tures to be effective, the amount of training data
available in NEGRA was not enough. Other than
in NEGRA, the DISCO features are now more ef-
fective when used alone, leading to the highest
overall F1 on discontinuous constituents of 19.45.
They are, however, less effective in combination
with EXTENDED. This is partially remedied by
giving the swap transitions more IMPORTANCE,
which leads to the highest overall F1 on all con-
stituents of 74.71.

The models we learn are sparse, therefore, as
mentioned above, we can exploit the work of
Goldberg and Elhadad (2011). They propose to
only include the weight of a feature in the compu-
tation of a score if it has been seen more than MIN-
UPDATE times. We repeat the BASELINE experi-
ment with two different MINUPDATE settings (see
Tab. 3). As expected, the MINUPDATE models are
much smaller. The final model with the baseline
experiment uses 8.3m features (parsing speed on
test set 73 sent./sec.), with MINUPDATE 5 3.3m
features (121 sent./sec.) and with MINUPDATE

10 1.8m features (124 sent./sec.). With MINUP-
DATE 10, the results do degrade. However, with
MINUPDATE 5 in addition to the faster parsing we
consistently improve over the baseline.

Finally, in order to check the convergence, we
run a further experiment in which we limit train-
ing iterations to 40 instead of 20, together with
beam size 4. We use the BASELINE features with
COMPOUNDSWAPi combined with DISCO, EX-
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All Discont. only
LR LP LF1 E LR LP LF1 E

BASELINE + COMPOUNDSWAPi 72.69 74.77 73.71 36.47 16.08 18.72 17.30 12.96
+ EXTENDED 73.52 75.50 74.50 37.26 15.86 20.04 17.71 13.20
+ DISCO 73.77 75.35 74.55 37.08 16.68 23.32 19.45 14.43
+ DISCO + EXTENDED 73.97 75.29 74.62 37.54 15.56 22.21 18.30 13.64
+ DISCO + EXTENDED + IMPORTANCE 74.01 75.41 74.71 37.20 15.61 23.53 18.77 13.84
BASELINE + COMPOUNDSWAPi with

MINUPDATE 5 73.04 75.03 74.03 37.36 16.25 19.72 17.82 13.28
MINUPDATE 10 72.71 74.55 73.62 36.85 15.78 18.56 17.06 13.07

Table 3: Results TIGER, beam size 4

LR LP LF1 E
BASELINE 81.89 82.49 82.19 49.05
EXTENDED 82.20 82.70 82.45 49.54

Table 4: Results NEGRACF

TENDED, and IMPORTANCE. The parsing speed
on the test set drops to around 39 sentences per
second. However, we achieve 75.10 F1, i.e., a
slight improvement over the experiments in Tab. 3
that confirms the tendencies visible in Fig. 5.

3.3.2 Continuous Parsing
We investigate the impact of the swap transitions
on both speed and parsing results by running an
experiment with NEGRACF using the BASELINE

and EXTENDED features. The corresponding re-
sults are shown in Tab. 4.

Particularly high frequency categories (NP, VP,
S) are much easier to find in the continuous case
and show large improvements. This explains why
without the swap transition, F1 with BASELINE

features is 6.9 points higher than the F1 on discon-
tinuous constituents (with COMPOUNDSWAPi).
With the EXTENDED features, we obtain a small
improvement.

Note that with the shift-reduce approach, the
difference between the computational cost of pro-
ducing discontinuous constituents vs. the cost of
producing continuous constituents is much lower
than for a grammar-based approach. When pro-
ducing continuous constituents, parsing is only
20% faster than with the swap transition, namely
97 instead of 81 sentences per second.

In order to give a different perspective on the
role of discontinuous constituents, we perform two
further evaluations. First, we remove the dis-
continuities from the output of the discontinuous
baseline parser using the procedure described in
Sec. 3.1 and evaluate the result against the con-
tinuous gold data. We obtain an F1 of 76.70,
5.5 points lower than the continuous baseline.

LR LP LF1 E
All constituents 69.72 68.85 69.28 33.89
Disc. only 25.77 27.51 26.61 17.77

Table 5: Results NEGRA rparse

Secondly, we evaluate the output of the continu-
ous baseline parser against the discontinuous gold
data. This leads to an F1 78.89, 2.9 point more
than the discontinuous baseline. Both evaluations
confirm the intuition that parsing is much easier
when discontinuities (i.e., in our case the swap
transition) do not have to be considered.

3.3.3 Comparison with other Parsers
rparse In order to compare our parser with a
grammar-based approach, we now parse NEGRA

with rparse, with the same training and test sets as
before (i.e., we do not use the development set).
We employ markovization with v = 1, h = 2 and
head driven binarization with binary top and bot-
tom productions.

The first thing to notice is that rparse is much
slower than our parser. The average parsing speed
is about 0.3 sent./sec.; very long sentences require
over a minute to be parsed. The parsing results
are shown in Tab. 5. They are about 5 points
worse than those reported by Kallmeyer and Maier
(2013). This is due to the fact that they train on the
first 90% of the treebank, and not on the first 80%
as we do, which leads to an increased number of
unparsed sentences. In comparison to the baseline
setting of the shift-reduce parser with beam size
8, the results are around 10 points worse. How-
ever, rparse reaches an F1 of 26.61 on discontinu-
ous constituents, which is 5.9 points more than we
achieved with the best setting with our parser.

In order to investigate why the grammar-based
approach outperforms our parser on discontinuous
constituents, we count the frequency of LCFRS
productions of a certain gap degree in the bina-
rized grammar used in the rparse experiment. The
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LF1 E
Versley (2014) 74.23 37.32
this work 79.52 44.32
H&N (2008) 79.93 37.78
F&M (2015) 85.53 51.21

Table 6: Results TIGERHN, sentence length≤ 40

average occurrence count of rules with gap degree
0 is 12.18. Discontinuous rules have a much lower
frequency, the average count of productions with
one, two and three gaps being 3.09, 2.09, and 1.06,
respectively. In PCFG parsing, excluding low fre-
quency productions does not have a large effect
(Charniak, 1996); however, this does not hold for
LCFRS parsing, where they have a major influ-
ence (cf. Maier (2013, p. 205)): This means that
removing low frequency productions has a nega-
tive impact on the parser performance particularly
concerning discontinuous structures; however, it
also means that low frequency discontinuous pro-
ductions get triggered reliably. This hypothesis
is confirmed by the fact that the our parser per-
forms much worse on discontinuous constituents
with a very low frequency (such as CS, making
up only 0.62% of all discontinuous constituents)
than it performs on those with a high frequency
(such as VP, making up 60.65% of all discontin-
uous constituents), while rparse performs well on
the low frequency constituents.

EaFi and Dependency Parsers We run an ex-
periment with 40 iterations on TIGERHN, using
DISCO, EXTENDED and IMPORTANCE. Tab. 6
lists the results, together with the correspond-
ing results of Versley (2014), Hall and Nivre
(2008) (H&N) and Fernández-González and Mar-
tins (2015) (F&M).

Our results exceed those of EaFi6 and the ex-
act match score of H&N. We are outperformed by
the F&M parser. Note, that particularly the com-
parison to EaFi must be handled with care, since
Versley (2014) uses additional preprocessing: PP-
internal NPs are annotated explicitly, and the par-
enthetical sentences are changed to be embedded
by their enclosing sentence (instead of vice versa).

We postpone a thorough comparison with both
EaFi and the dependency parsers to future work.

6Note that Versley (2014) reports a parsing speed of 40-
55 sent./sec.; depending on the beam size and the training set
size, per second, our parser parses 39-640 sentences.

3.4 Discussion
To our knowledge, surprisingly, numerical scores
for discontinuous constituents have not been re-
ported anywhere in previous work. The relatively
low overall performance with both grammar-based
and shift-reduce based parsing, along with the fact
that the grammar-based approach outperforms the
shift-reduce approach, is striking. We have shown
that it is possible to push the precision on discon-
tinuous constituents, but not the recall, to the level
of what can be achieved with a grammar-based ap-
proach.

Particularly the outcome of the experiments
involving the EXTENDED features and IMPOR-
TANCE drives us to the conclusion that the major
problem when parsing discontinuous constituents
is data sparseness. More features cannot be the
only solution: A more reliable recognition of dis-
continuous constituents requires a more robust
learning from larger amounts of data.

4 Conclusion

We have presented a shift-reduce parser for dis-
continuous constituents which combines previous
work in shift-reduce parsing for continuous con-
stituents with recent work in easy-first parsing of
discontinuous constituents. Our experiments con-
firm that an incremental shift-reduce architecture
with a swap transition can indeed be used to parse
discontinuous constituents. The swap transition is
associated with a low computational cost. We have
obtained a speed-up of up to 2,000% in compar-
ison to the grammar-based rparse, and we have
shown that we obtain better results than with the
grammar-based parser, even though the grammar-
based strategy does better at the reconstruction of
discontinuous constituents.

In future work, we will concentrate on methods
that could remedy the data sparseness concerning
discontinuous constituents, such as self-training.
Furthermore, we will experiment with larger fea-
ture sets that add lexical information. An for-
mal investigation of the expressivity of our parsing
model is currently under way.
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Abstract

Neural probabilistic parsers are attrac-
tive for their capability of automatic fea-
ture combination and small data sizes.
A transition-based greedy neural parser
has given better accuracies over its lin-
ear counterpart. We propose a neural
probabilistic structured-prediction model
for transition-based dependency parsing,
which integrates search and learning.
Beam search is used for decoding, and
contrastive learning is performed for max-
imizing the sentence-level log-likelihood.
In standard Penn Treebank experiments,
the structured neural parser achieves a
1.8% accuracy improvement upon a com-
petitive greedy neural parser baseline, giv-
ing performance comparable to the best
linear parser.

1 Introduction

Transition-based methods have given competitive
accuracies and efficiencies for dependency pars-
ing (Yamada and Matsumoto, 2003; Nivre and
Scholz, 2004; Zhang and Clark, 2008; Huang and
Sagae, 2010; Zhang and Nivre, 2011; Goldberg
and Nivre, 2013). These parsers construct depen-
dency trees by using a sequence of transition ac-
tions, such as SHIFT and REDUCE, over input sen-
tences. High accuracies are achieved by using a
linear model and millions of binary indicator fea-
tures. Recently, Chen and Manning (2014) pro-
pose an alternative dependency parser using a neu-
ral network, which represents atomic features as
dense vectors, and obtains feature combination au-
tomatically other than devising high-order features
manually.

The greedy neural parser of Chen and Man-
ning (2014) gives higher accuracies compared to

∗Work done while the first author was visiting SUTD.

the greedy linear MaltParser (Nivre and Scholz,
2004), but lags behind state-of-the-art linear sys-
tems with sparse features (Zhang and Nivre,
2011), which adopt global learning and beam
search decoding (Zhang and Nivre, 2012). The
key difference is that Chen and Manning (2014) is
a local classifier that greedily optimizes each ac-
tion. In contrast, Zhang and Nivre (2011) leverage
a structured-prediction model to optimize whole
sequences of actions, which correspond to tree
structures.

In this paper, we propose a novel framework for
structured neural probabilistic dependency pars-
ing, which maximizes the likelihood of action se-
quences instead of individual actions. Follow-
ing Zhang and Clark (2011), beam search is ap-
plied to decoding, and global structured learn-
ing is integrated with beam search using early-
update (Collins and Roark, 2004). Designing such
a framework is challenging for two main reasons:

First, applying global structured learning to
transition-based neural parsing is non-trivial. A
direct adaptation of the framework of Zhang and
Clark (2011) under the neural probabilistic model
setting does not yield good results. The main rea-
son is that the parameter space of a neural network
is much denser compared to that of a linear model
such as the structured perceptron (Collins, 2002).
Due to the dense parameter space, for neural mod-
els, the scores of actions in a sequence are rela-
tively more dependent than that in the linear mod-
els. As a result, the log probability of an action se-
quence can not be modeled just as the sum of log
probabilities of each action in the sequence, which
is the case of structured linear model. We address
the challenge by using a softmax function to di-
rectly model the distribution of action sequences.

Second, for the structured model above,
maximum-likelihood training is computationally
intractable, requiring summing over all possible
action sequences, which is difficult for transition-
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based parsing. To address this challenge, we take
a contrastive learning approach (Hinton, 2002; Le-
Cun and Huang, 2005; Liang and Jordan, 2008;
Vickrey et al., 2010; Liu and Sun, 2014). Using
the sum of log probabilities over the action se-
quences in the beam to approximate that over all
possible action sequences.

In standard PennTreebank (Marcus et al., 1993)
evaluations, our parser achieves a significant accu-
racy improvement (+1.8%) over the greedy neu-
ral parser of Chen and Manning (2014), and gives
the best reported accuracy by shift-reduce parsers.
The incremental neural probabilistic framework
with global contrastive learning and beam search
could be used in other structured prediction tasks.

2 Background

2.1 Arc-standard Parsing

Transition-based dependency parsers scan an in-
put sentence from left to right, and perform a se-
quence of transition actions to predict its parse
tree (Nivre, 2008). In this paper, we employ
the arc-standard system (Nivre et al., 2007),
which maintains partially-constructed outputs us-
ing a stack, and orders the incoming words in the
input sentence in a queue. Parsing starts with an
empty stack and a queue consisting of the whole
input sentence. At each step, a transition action
is taken to consume the input and construct the
output. The process repeats until the input queue
is empty and stack contains only one dependency
tree.

Formally, a parsing state is denoted as ⟨j, S, L⟩,
where S is a stack of subtrees [. . . s2, s1, s0], j
is the head of the queue (i.e. [ q0 = wj , q1 =
wj+1 · · · ]), and L is a set of dependency arcs. At
each step, the parser chooses one of the following
actions:

• SHIFT: move the front word wj from the
queue onto the stacks.

• LEFT-ARC(l): add an arc with label l between
the top two trees on the stack (s1 ← s0), and
remove s1 from the stack.

• RIGHT-ARC(l): add an arc with label l be-
tween the top two trees on the stack (s1 →
s0), and remove s0 from the stack.

The arc-standard parser can be summarized as
the deductive system in Figure 1, where k denotes

input : w0 . . . wn−1

axiom : 0 : ⟨0, ϕ, ϕ, 0⟩
goal : 2n− 1 : ⟨n, s0, L⟩

SHIFT
k : ⟨j, S, L⟩

k + 1 : ⟨j + 1, S|wj , L⟩

LEFT-ARC(l)
k : ⟨j, S|s1|s0, L⟩

k + 1 : ⟨j, S|s0, L ∪ {s1
l←− s0}⟩

RIGHT-ARC(l)
k : ⟨j, S|s1|s0, L⟩

k + 1 : ⟨j, S|s1, L ∪ {s1
l−→ s0}⟩

Figure 1: The deductive system for arc-standard
dependency parsing.

the current parsing step. For a sentence with size
n, parsing stops after performing exactly 2n − 1
actions.

MaltParser uses an SVM classifier for deter-
ministic arc-standard parsing. At each step, Malt-
Parser generates a set of successor states according
to the current state, and deterministically selects
the highest-scored one as the next state.

2.2 Global Learning and Beam Search

The drawback of deterministic parsing is error
propagation. An incorrect action will have a nega-
tive influence to its subsequent actions, leading to
an incorrect output parse tree.

To address this issue, global learning and beam
search (Zhang and Clark, 2011; Bohnet and Nivre,
2012; Choi and McCallum, 2013) are used. Given
an input x, the goal of decoding is to find the
highest-scored action sequence globally.

y = arg max
y′∈GEN(x)

score(y′) (1)

Where GEN(x) denotes all possible action se-
quences on x, which correspond to all possible
parse trees. The score of an action sequence y is:

score(y) =
∑
a∈y

θ · Φ(a) (2)

Here a is an action in the action sequence y, Φ
is a feature function for a, and θ is the parameter
vector of the linear model. The score of an action
sequence is the linear sum of the scores of each
action. During training, action sequence scores are
globally learned.
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The parser of Zhang and Nivre (2011) is devel-
oped using this framework. The structured percep-
tron (Collins, 2002) with early update (Collins and
Roark, 2004) is applied for training. By utilizing
rich manual features, it gives state-of-the-art accu-
racies in standard Penn Treebank evaluation. We
take this method as one baseline.

2.3 Greedy Neural Network Model
Chen and Manning (2014) build a greedy neural
arc-standard parser. The model can be regarded as
an alternative implementation of MaltParser, using
a feedforward neural network to replace the SVM
classifier for deterministic parsing.

2.3.1 Model
The greedy neural model extracts n atomic fea-
tures from a parsing state, which consists of
words, POS-tags and dependency labels from the
stack ans queue. Embeddings are used to rep-
resent word, POS and dependency label atomic
features. Each embedding is represented as a d-
dimensional vector ei ∈ R. Therefore, the full
embedding matrix is E ∈ Rd×V , where V is the
number of distinct features. A projection layer is
used to concatenate the n input embeddings into a
vector x = [e1; e2 . . . en], where x ∈ Rd·n. The
purpose of this layer is to fine-tune the embedding
features. Then x is mapped to a dh-dimensional
hidden layer by a mapping matrix W1 ∈ Rdh×d·n

and a cube activation function:

h = (W1x + b1)3 (3)

Finally, h is mapped into a softmax output layer
for modeling the probabilistic distribution of can-
didate shift-reduce actions:

p =softmax(o) (4)

where

o = W2h (5)

W2 ∈ Rdo×dh and do is the number of shift-reduce
actions.

2.3.2 Features
One advantage of Chen and Manning (2014) is
that the neural network parser achieves feature
combination automatically. Their atomic features
are defined by following Zhang and Nivre (2011).
As shown in Table 1, the features are categorized

Templates

F w

s0w, s2w, q0w, q1w, q2w, lc1(s0)w, lc2(s0)w
s1w, rc2(s0)w, lc1(s1)w, lc2(s1)w, rc2(s1)w
rc1(s0)w, rc1(s1)w, lc1(lc1(s0))w, lc1(lc1(s1))w
rc1(rc1(s1))w, rc1(rc1(s0))w

F t

s0t, q0t, q1t, q2t, rc1(s0)t, lc1(s0)t, lc2(s0)t
s1t, s2t, lc1(s1)t, lc2(s1)t, rc1(s1)t, rc2(s0)t
rc2(s1)t, lc1(lc1(s0))t, lc1(lc1(s1))t
rc1(rc1(s0))t, rc1(rc1(s1))t

F l
rc1(s0)l, lc1(s0)l, lc2(s0)l, lc1(s1)l, lc2(s1)l
rc1(s1)l, rc2(s0)l, rc2(s1)l, lc1(lc1(s0))l
lc1(lc1(s1))l, rc1(rc1(s0))l, rc1(rc1(s1))l

Table 1: Feature templates.

into three types: Fw, F t, F l, which represents
word features, POS-tag features and dependency
label features, respectively.

For example, s0w and q0w represent the
first word on the stack and queue, respectively;
lc1(s0)w and rc1(s0)w represent the leftmost and
rightmost child of s0, respectively. Similarly,
lc1(s0)t and lc1(s0)l represent the POS-tag and
dependency label of the leftmost child of s0, re-
spectively.

Chen and Manning (2014) find that the cube
activation function in Equation (3) is highly ef-
fective in capturing feature interaction, which is
a novel contribution of their work. The cube func-
tion achieves linear combination between atomic
word, POS and label features via the product of
three element combinations. Empirically, it works
better compared to a sigmoid activation function.

2.4 Training
Given a set of training examples, the training ob-
jective of the greedy neural parser is to minimize
the cross-entropy loss, plus a l2-regularization
term:

L(θ) = −
∑
i∈A

log pi +
λ

2
∥ θ ∥2 (6)

θ is the set of all parameters (i.e. W1, W2, b,
E), and A is the set of all gold actions in the train-
ing data. AdaGrad (Duchi et al., 2011) with mini-
batch is adopted for optimization. We take the
greedy neural parser of Chen and Manning (2014)
as a second baseline.

3 Structured Neural Network Model

We propose a neural structured-prediction model
that scores whole sequences of transition actions,
rather than individual actions. As shown in Ta-
ble 2, the model can be seen as a neural prob-
abilistic alternative of Zhang and Nivre (2011),
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local
classifier

structured
prediction

linear
sparse

Section 2.1
(Nivre

et al., 2007)

Section 2.2
(Zhang and

Nivre, 2011)

neural
dense

Section 2.3
(Chen and

Manning, 2014)
this work

Table 2: Correlation between different parsers.

or a structured-prediction alternative of Chen and
Manning (2014). It combines the advantages of
both Zhang and Nivre (2011) and Chen and Man-
ning (2014) over the greedy linear MaltParser.

3.1 Neural Probabilistic Ranking
Given the baseline system in Section 2.2, the most
intuitive structured neural dependency parser is
to replace the linear scoring model with a neu-
ral probabilistic model. Following Equation 1, the
score of an action sequence y, which corresponds
to its log probability, is sum of log probability
scores of each action in the sequence.

s(y) =
∑
a∈y

log pa (7)

where pa is defined by the baseline neural model
of Section 2.3 (Equation 4). The training objec-
tive is to maximize the score margin between the
gold action sequences (yg) and these of incorrectly
predicated action sequences (yp):

L(θ) = max(0, δ−s(yg)+s(yp))+
λ

2
∥ θ ∥2 (8)

With this ranking model, beam search and
early-update are used. Given a training instance,
the negative example is the incorrectly predicted
output with largest score (Zhang and Nivre, 2011).

However, we find that the ranking model works
poorly. One explanation is that the actions in a
sequence is probabilistically dependent on each
other, and therefore using the total log probabil-
ities of each action to compute the log probabil-
ity of an action sequence (Equation 7) is inaccu-
rate. Linear models do not suffer from this prob-
lem, because the parameter space of linear models
is much more sparse than that of neural models.
For neural networks, the dense parameter space is
shared by all the actions in a sequence. Increasing
the likelihood of a gold action may also change the

likelihood of incorrect actions through the shared
parameters. As a result, increasing the scores of a
gold action sequence and simultaneously reducing
the scores of an incorrect action sequence does not
work well for neural models.

3.2 Sentence-Level Log-Likelihood

To overcome the above limitation, we try to di-
rectly model the probabilistic distribution of whole
action sequences. Given a sentence x and neural
networks parameter θ, the probability of the action
sequence yi is given by the softmax function:

p(yi | x, θ) =
ef(x, θ)i∑

yj∈GEN(x)

ef(x, θ)j
(9)

where

f(x, θ)i =
∑

ak∈yi

o(x, yi, k, ak) (10)

Here GEN(s) is the set of all possible valid ac-
tion sequences for a sentence x; o(x, yi, k, ak)
denotes the neural network score for the action
ak given x and yi. We use the same sub net-
work as Chen and Manning (2014) to calculate
o(x, yi, k, ak) (Equation 5). The same features
in Table 1 are used.

Given the training data as (X , Y ), our train-
ing objective is to minimize the negative log-
likelihood:

L(θ) = −
∑

(xi, yi)∈(X,Y )

log p(yi | xi, θ) (11)

= −
∑

(xi, yi)∈(X,Y )

log
ef(xi,θ)i

Z(xi, θ)
(12)

=
∑

(xi, yi)∈(X,Y )

log Z(xi, θ)− f(xi, θ)i

(13)

where

Z(x, θ) =
∑

yj∈GEN(x)

ef(x, θ)j (14)

Here, Z(x, θ) is called the partition function.
Following Chen and Manning(2014), we apply l2-
regularization for training.

For optimization, we need to compute gradients
for L(θ), which includes gradients of exponential
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numbers of negative examples in partition func-
tion Z(x, θ). However, beam search is used for
transition-based parsing, and no efficient optimal
dynamic program is available to estimate Z(x, θ)
accurately. We adopt a novel contrastive learning
approach to approximately compute Z(x, θ).

3.3 Contrastive Learning
As an alternative to maximize the likelihood on
some observed data, contrastive learning (Hinton,
2002; LeCun and Huang, 2005; Liang and Jordan,
2008; Vickrey et al., 2010; Liu and Sun, 2014) is
an approach that assigns higher probabilities to ob-
served data and lower probabilities to noisy data.

We adopt the contrastive learning approach, as-
signing higher probabilities to the gold action se-
quence compared to incorrect action sequences in
the beam. Intuitively, this method only penalizes
incorrect action sequences with high probabilities.
Our new training objective is approximated as:

L′(θ) = −
∑

(xi, yi)∈(X,Y )

log p′(yi | xi, θ) (15)

= −
∑

(xi, yi)∈(X,Y )

log
ef(xi,θ)i

Z ′(xi, θ)
(16)

=
∑

(xi, yi)∈(X,Y )

log Z ′(xi, θ)− f(xi, θ)i

(17)

where

Z ′(x, θ) =
∑

yj∈BEAM(x)

ef(x, θ)j (18)

p′(yi | x, θ) is the relative probability of the ac-
tion sequence yi, computed over only the action
sequences in the beam. Z ′(x, θ) is the contrastive
approximation of Z(x, θ). BEAM(x) returns the
predicated action sequences in the beam and the
gold action sequence.

We assume that the probability mass concen-
trates on a relatively small number of action se-
quences, which allows the use of a limited num-
ber of probable sequences to approximate the full
set of action sequences. The concentration may be
enlarged dramatically with an exponential activa-
tion function of the neural network (i.e. a > b ⇒
ea ≫ eb ).

3.4 The Neural Probabilistic
Structured-Prediction Framework

We follow Zhang and Clark (2011) to integrate
search and learning. Our search and learning

Algorithm 1: Training Algorithm for Struc-
tured Neural Parsing
Input: training examples (X, Y)
Output: θ
θ← pretrained embedding
for i← 1 to N do

x, y = RANDOMSAMPLE(X, Y)
δ = 0
foreach xj , yj ∈ x, y do

beam = ϕ
goldState = null
terminate = false
beamGold = true
while beamGold and not terminate
do

beam = DECODE(beam, xj , yj)
goldState =
GOLDMOVE(goldState, xj , yj)
if not ISGOLD(beam) then

beamGold = false
if ITEMSCOMPLETE(beam) then

terminate = true;

δ = δ + UPDATE(goldState, beam)
θ = θ + delta

framework for dependency parsing is shown as
Algorithm 1. In every training iteration i, we
randomly sample the training instances, and per-
form online learning with early update (Collins
and Roark, 2004). In particular, given a training
example, we use beam-search to decode the sen-
tence. At any step, if the gold action sequence falls
out of the beam, we take all the incorrect action
sequences in the beam as negative examples, and
the current gold sequence as a positive example
for parameter update, using the training algorithm
of Section 3.3. AdaGrad algorithm (Duchi et al.,
2011) with mini-batch is adopted for optimization.

In this way, the distribution of ot only full ac-
tion sequences (i.e. complete parse trees), but also
partial action sequences (i.e. partial outputs) are
modeled, which makes training more challenging.
The advantage of early update is that training is
used to guide search, minimizing search errors.
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4 Experiments

4.1 Set-up

Our experiments are performed using the English
Penn Treebank (PTB; Marcus et al., (1993)). We
follow the standard splits of PTB3, using sections
2-21 for training, section 22 for development test-
ing and section 23 for final testing. For compar-
ison with previous work, we use Penn2Malt1 to
convert constituent trees to dependency trees. We
use the POS-tagger of Collins (2002) to assign
POS automatically. 10-fold jackknifing is per-
formed for tagging the training data.

We follow Chen and Manning (2014), and use
the set of pre-trained word embeddings2 from
Collobert et al. (2011) with a dictionary size of
13,000. The word embeddings were trained on the
entire English Wikipedia, which contains about
631 million words.

4.2 WSJ Experiments

4.2.1 Development experiments
We set the following hyper-parameters according
to the baseline greedy neural parser (Chen and
Manning, 2014): embedding size d = 50, hidden
layer size dh = 200, regularization parameter λ =
10−8, initial learning rate of Adagrad α = 0.01.
For the structured neural parser, beam size and
mini-batch size are important to the parsing per-
formance. We tune them on the development set.

Beam size. Beam search enlarges the search
space. More importantly, the larger the beam is,
the more accurate our training algorithm is. the
Contrastive learning approximates the exact prob-
abilities over exponential many action sequences
by computing the relative probabilities over action
sequences in the beam (Equation 18). Therefore,
the larger the beam is, the more accurate the rela-
tive probability is.

The first column of Table 3 shows the accura-
cies of the structured neural parser on the devel-
opment set with different beam sizes, which im-
proves as the beam size increases. We set the final
beam size as 100 according to the accuracies on
development set.

The effect of integrating search and learning.
We also conduct experiments on the parser of

1http://stp.lingfil.uu.se/ nivre/research/Penn2Malt.html
2http://ronan.collobert.com/senna/

Description UAS
Baseline 91.63

structured greedy
beam = 1 74.90 91.63
beam = 4 84.64 91.92
beam = 16 91.53 91.90
beam = 64 93.12 91.84
beam = 100 93.23 91.81

Table 3: Accuracies of structured neural parsing
and local neural classification parsing with differ-
ent beam sizes.

Description UAS
greedy neural parser 91.47
ranking model 89.08
beam contrastive learning 93.28

Table 4: Comparison between sentence-level log-
likelihood and ranking model.

Chen and Manning (2014) with beam search de-
coding. The score of a whole action sequence
is computed by the sum of log action probabili-
ties (Equation 7). As shown in the second col-
umn of Table 3, beam search can improve pars-
ing slightly. When the beam size increases beyond
16, however, accuracy improvements stop. In con-
trast, by integrating beam search and global learn-
ing, our parsing performance benefits from large
beam sizes much more significantly. With a beam
size as 16, the structured neural parser gives an
accuracy close to that of baseline greedy parser3.
When the beam size is 100, the structured neural
parser outperforms baseline by 1.6%.

Zhang and Nivre (2012) find that global learn-
ing and beam search should be used jointly for
improving parsing using a linear transition-based
model. In particular, increasing the beam size,
the accuracy of ZPar (Zhang and Nivre, 2011) in-
creases significantly, but that of MaltParser does
not. For structured neural parsing, our finding is
similar: integrating search and learning is much
more effective than using beam search only in de-
coding.

Our results in Table 3 are obtained by using
the same beam sizes for both training and testing.
Zhang and Nivre (2012) also find that for their lin-

3Our baseline accuracy is a little lower than accuracy re-
ported in baseline paper (Chen and Manning, 2014), because
we use Penn2Malt to convert the Penn Treebank, and they use
LTH Conversion.
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Figure 2: Parsing performance with different
training batch sizes.

ear model, the best results are achieved by using
the same beam sizes during training and testing.
We find that this observation does not apply to our
neural parser. In our case, a large training beam al-
ways leads to better results. This is likely because
a large beam improves contrastive learning. As a
result, our training beam size is set to 100 for the
final test.

Batch size. Parsing performance using neural
networks is highly sensitive to the batch size of
training. In greedy neural parsing (Chen and Man-
ning, 2014), the accuracy on the development data
improves from 85% to 91% by setting the batch
size to 10 and 100000, respectively. In structured
neural parsing, we fix the beam size as 100 and
draw the accuracies on the development set by the
training iteration.

As shown in Figure 2, in 5000 training itera-
tions, the parsing accuracies improve as the itera-
tion grows, yet different batch sizes result in dif-
ferent convergence accuracies. With a batch size
of 5000, the parsing accuracy is about 25% higher
than with a batch size of 1 (i.e. SGD). For the re-
maining experiments, we set batch size to 5000,
which achieves the best accuracies on develop-
ment testing.

4.2.2 Sentence-level maximum likelihood vs.
ranking model

We compare parsing accuracies of the sentence-
level log-likelihood + beam contrastive learning
(Section 3.2), and the structured neural parser with
probabilistic ranking (Section 3.1). As shown
in Table 4, performance of global learning with
ranking model is weaker than the baseline greedy

System UAS LAS Speed
baseline greedy parser 91.47 90.43 0.001
Huang and Sagae (2010) 92.10 0.04
Zhang and Nivre (2011) 92.90 91.80 0.03
Choi and McCallum (2013) 92.96 91.93 0.009
Ma et al. (2014) 93.06
Bohnet and Nivre (2012)†‡ 93.67 92.68 0.4
Suzuki et al. (2009)† 93.79
Koo et al. (2008)† 93.16
Chen et al. (2014)† 93.77

beam size
training decoding

100 100 93.28 92.35 0.07
100 64 93.20 92.27 0.04
100 16 92.40 91.95 0.01

Table 5: Results on WSJ. Speed: sentences per
second. †: semi-supervised learning. ‡: joint
POS-tagging and dependency parsing models.

parser. In contrast, structured neural parsing
with sentence-level log-likelihood and contrastive
learning gives a 1.8% accuracy improvement upon
the baseline greedy parser.

As mentioned in Section 3.1, a likely reason
for the poor performance of the structured neu-
ral ranking model may be that, the likelihoods of
action sequences are highly influenced by each
other, due to the dense parameter space of neural
networks. To maximize likelihood of gold action
sequence, we need to decrease the likelihoods of
more than one incorrect action sequences.

4.2.3 Final Results

Table 5 shows the results of our final parser and
a line of transition-based parsers on the test set.
Our structured neural parser achieves an accu-
racy of 93.28%, 0.38% higher than Zhang and
Nivre (2011), which employees millions of high-
order binary indicator features in parsing. The
model size of ZPar (Zhang and Nivre, 2011) is
over 250 MB on disk. In contrast, the model size
of our structured neural parser is only 25 MB. To
our knowledge, the result is the best reported re-
sult achieved by shift-reduce parsers on this data
set.

Bohnet and Nivre (2012) obtain an accuracy of
93.67%, which is higher than our parser. How-
ever, their parser is a joint model of parsing and
POS-tagging, and they use external data in pars-
ing. We also list the result of Chen et al. (2014),
Koo et al. (2008) and Suzuki et al. (2009) in
Table 5, which make use of large-scale unanno-
tated text to improve parsing accuracies. The
input embeddings of our parser are also trained
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over large raw text, and in this perspective our
model is correlated with the semi-supervised mod-
els. However, because we fine-tune the word em-
beddings in supervised training, the embeddings
of in-vocabulary words become systematically dif-
ferent from these of out-of-vocabulary words af-
ter training, and the effect of pre-trained out-of-
vocabulary embeddings become uncertain. In this
sense, our model can also be regarded as an al-
most fully supervised model. The same applies to
the models of Chen and Manning (2014).

We also compare the speed of the structured
neural parser on an Intel Core i7 3.40GHz CPU
with 16GB RAM. The structured neural parser
runs about as fast as Zhang and Nivre (Zhang and
Nivre, 2011) and Huang and Sagae (Huang and
Sagae, 2010). The results show that our parser
combines the benefits of structured models and
neural probabilistic models, offering high accura-
cies, fast speed and slim model size.

5 Related Work

Parsing with neural networks. A line of work
has been proposed to explore the effect of neu-
ral network models for constituent parsing (Hen-
derson, 2004; Mayberry III and Miikkulainen,
2005; Collobert, 2011; Socher et al., 2013;
Legrand and Collobert, 2014). Performances of
most of these methods are still well below the
state-of-the-art, except for Socher et al.(2013),
who propose a neural reranker based on a PCFG
parser. For transition-based dependency parsing,
Stenetorp (2013) applies a compositional vector
method (Socher et al., 2013), and Chen and Man-
ning (2014) propose a feed-forward neural parser.
The performances of these neural parsers lag be-
hind the state-of-the-art.

More recently, Dyer et al. (2015) propose a
greedy transition-based dependency parser, using
three stack LSTMs to represent the input, the stack
of partial syntactic trees and the history of parse
actions, respectively. By modeling more history,
the parser gives significant better accuracies com-
pared to the greedy neural parser of Chen and
Manning (2014).

Structured neural models. Collobert et
al. (2011) presents a unified neural network
architecture for various natural language pro-
cessing (NLP) tasks. They propose to use
sentence-level log-likelihood to enhance a neural
probabilistic model, which inspires our model.

Sequence labeling is used for graph-based de-
coding. Using the Viterbi algorithm, they can
compute the exponential partition function in
linear time without approximation. However, with
a dynamic programming decoder, their sequence
labeling model can only extract local features. In
contrast, our integrated approximated search and
learning framework allows rich global features.

Weiss et al. (2015) also propose a structured
neural transition-based parser by adopting beam
search and early updates. Their model is close
in spirit to ours in performing structured predic-
tion using a neural network. The main difference
is that their structured neural parser uses a greedy
parsing process for pre-training, and fine-tunes
an additional perceptron layer consisting of the
pre-trained hidden and output layers using struc-
tured perceptron updates. Their structured neural
parser achieves an accuracy of 93.36% on Stan-
ford conversion of the PTB, which is significant
higher than the baseline parser of Chen and Man-
ning (2014). Their results are not directly compa-
rable with ours due to different dependency con-
versions.

6 Conclusion

We built a structured neural dependency parsing
model. Compared to the greedy neural parser of
Chen and Manning (2014), our parser integrates
beam search and global contrastive learning. In
standard PTB evaluation, our parser achieved a
1.8% accuracy improvement over the parser of
Chen and Manning (2014), which shows the effect
of combining search and learning. To our knowl-
edge, the structured neural parser is the first neural
parser that outperforms the best linear shift-reduce
dependency parsers. The structured neural proba-
bilistic framework can be used in other incremen-
tal structured prediction tasks.
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Abstract

Treebanks are key resources for develop-
ing accurate statistical parsers. However,
building treebanks is expensive and time-
consuming for humans. For domains re-
quiring deep subject matter expertise such
as law and medicine, treebanking is even
more difficult. To reduce annotation costs
for these domains, we develop methods to
improve cross-domain parsing inference
using paraphrases. Paraphrases are eas-
ier to obtain than full syntactic analyses as
they do not require deep linguistic knowl-
edge, only linguistic fluency. A sentence
and its paraphrase may have similar syn-
tactic structures, allowing their parses to
mutually inform each other. We present
several methods to incorporate paraphrase
information by jointly parsing a sentence
with its paraphrase. These methods are ap-
plied to state-of-the-art constituency and
dependency parsers and provide signif-
icant improvements across multiple do-
mains.

1 Introduction

Parsing is the task of reconstructing the syntac-
tic structure from surface text. Many natural lan-
guage processing tasks use parse trees as a basis
for deeper analysis.

The most effective sources of supervision for
training statistical parsers are treebanks. Unfortu-
nately, treebanks are expensive, time-consuming
to create, and not available for most domains.
Compounding the problem, the accuracy of statis-
tical parsers degrades as the domain shifts away
from the supervised training corpora (Gildea,
2001; Bacchiani et al., 2006; McClosky et al.,
2006b; Surdeanu et al., 2008). Furthermore, for

∗Work performed during an IBM internship.

domains requiring subject matter experts, e.g., law
and medicine, it may not be feasible to produce
large scale treebanks since subject matter experts
generally don’t have the necessary linguistic back-
ground. It is natural to look for resources that
are more easily obtained. In this work, we ex-
plore using paraphrases. Unlike parse trees, para-
phrases can be produced quickly by humans and
don’t require extensive linguistic training. While
paraphrases are not parse trees, a sentence and its
paraphrase may have similar syntactic structures
for portions where they can be aligned.

We can improve parsers by jointly parsing a
sentence with its paraphrase and encouraging cer-
tain types of overlaps in their syntactic structures.
As a simple example, consider replacing an un-
known word in a sentence with a synonym found
in the training data. This may help disambiguate
the sentence without changing its parse tree. More
disruptive forms of paraphrasing (e.g., topicaliza-
tion) can also be handled by not requiring strict
agreement between the parses.

In this paper, we use paraphrases to improve
parsing inference within and across domains.
We develop methods using dual-decomposition
(where the parses of both sentences from a depen-
dency parser are encouraged to agree, Section 3.2)
and pair-finding (which can be applied to any n-
best parser, Section 3.3). Some paraphrases signif-
icantly disrupt syntactic structure. To counter this,
we examine relaxing agreement constraints and
building classifiers to predict when joint parsing
won’t be beneficial (Section 3.4). We show that
paraphrases can be exploited to improve cross-
domain parser inference for two state-of-the-art
parsers, especially on domains where they perform
poorly.

2 Related Work

Many constituency parsers can parse English
newswire text with high accuracy (Collins, 2000;
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Charniak and Johnson, 2005; Petrov et al., 2006;
Socher et al., 2013; Coppola and Steedman,
2013). Likewise, dependency parsers have rapidly
improved their accuracy on a variety of lan-
guages (Eisner, 1996; McDonald et al., 2005;
Nivre et al., 2007; Koo and Collins, 2010; Zhang
and McDonald, 2014; Lei et al., 2014). There
are many approaches tackling the problem of im-
proving parsing accuracy both within and across
domains, including self-training/uptraining (Mc-
Closky et al., 2006b; Petrov et al., 2010), rerank-
ing (Collins, 2000; McClosky et al., 2006b), incor-
porating word clusters (Koo et al., 2008), model
combination (Petrov, 2010), automatically weight-
ing training data (McClosky et al., 2010), and us-
ing n-gram counts from large corpora (Bansal and
Klein, 2011). Using paraphrases falls into the
semi-supervised category. As we show later, in-
corporating paraphrases provides complementary
benefits to self-training.

2.1 Paraphrases

While paraphrases are difficult to define rigor-
ously (Bhagat and Hovy, 2013), we only require a
loose definition in this work: a pair of phrases that
mean approximately the same thing. Paraphrases
can be constructed in various ways: replacing
words with synonyms, reordering clauses, adding
relative clauses, using negation and antonyms, etc.
Table 1 lists some example paraphrases.

There are a variety of paraphrase resources pro-
duced by humans (Dolan and Brockett, 2005) and
automatic methods (Ganitkevitch et al., 2013).
Recent works have shown that reliable para-
phrases can be crowdsourced at low cost (Ne-
gri et al., 2012; Burrows et al., 2013; Tschir-
sich and Hintz, 2013). Paraphrases have been
shown to help summarization (Cohn and Lap-
ata, 2013), question answering (Duboue and Chu-
Carroll, 2006; Fader et al., 2013), machine trans-
lation (Callison-Burch et al., 2006), and seman-
tic parsing (Berant and Liang, 2014). Paraphrases
have been applied to syntactic tasks, such as
prepositional phrase attachment and noun com-
pounding, where the corpus frequencies of differ-
ent syntactic constructions (approximated by web
searches) are used to help disambiguate (Nakov
and Hearst, 2005). One method for transforming
constructions is to use paraphrase templates.

How did Bob Marley die?
What killed Bob Marley?
How fast does a cheetah run?
What is a cheetah’s top speed?
He came home unexpectedly.
He wasn’t expected to arrive home like that.
They were far off and looked tiny.
From so far away, they looked tiny.
He turned and bent over the body of the Indian.
Turning, he bent over the Indian’s body.
No need to dramatize.
There is no need to dramatize.

Table 1: Example paraphrases from our dataset.

2.2 Bilingual Parsing
The closest task to ours is bilingual parsing where
sentences and their translations are parsed simul-
taneously (Burkett et al., 2010). While our meth-
ods differ from those used in bilingual parsing, the
general ideas are the same.1 Translating and para-
phrasing are related transformations since both ap-
proximately preserve meaning. While syntax is
only partially preserved across these transforma-
tions, the overlapping portions can be leveraged
with joint inference to mutually disambiguate. Ex-
isting bilingual parsing methods typically require
parallel treebanks for training and parallel text at
runtime while our methods only require parallel
text at runtime. Since we do not have a paral-
lel paraphrase treebank for training, we cannot di-
rectly compare to these methods.

3 Jointly Parsing Paraphrases

With a small number of exceptions, parsers typi-
cally assume that the parse of each sentence is in-
dependent. There are good reasons for this inde-
pendence assumption: it simplifies parsing infer-
ence and oftentimes it is not obvious how to relate
multiple sentences (though see Rush et al. (2012)
for one approach). In this section, we present two
methods to jointly parse paraphrases without com-
plicating inference steps. Before going into de-
tails, we give a high level picture of how jointly
parsing paraphrases can help in Figure 1. With
the baseline parser, the parse tree of the target sen-
tence is incorrect but its paraphrase (parsed by the
same parser) is parsed correctly. We use rough
alignments to map words across sentence pairs.

1Applying our methods to bilingual parsing is left as fu-
ture work.
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Note the similar syntactic relations when they are
projected across the aligned words.

Our goal is to encourage an appropriate level
of agreement between the two parses across align-
ments. We start by designing “hard” methods
which require complete agreement between the
parses. However, since parsers are imperfect and
alignments approximate, we also develop “soft”
methods which allow for disagreements. Addi-
tionally, we make procedures to decide whether to
use the original (non-joint) parse or the new joint
parse for each sentence since joint parses may be
worse in cases where the sentences are too differ-
ent and alignment fails.

3.1 Objective

In a typical parsing setting, given a sentence (x)
and its paraphrase (y), parsers find a∗(x) and b∗(y)
that satisfy the following equation:2

a∗, b∗ = argmax
a∈T (x),b∈T (y)

f(a) + f(b)

= argmax
a∈T (x)

f(a) + argmax
b∈T (y)

f(b)
(1)

where f is a parse-scoring function and T returns
all possible trees for a sentence. f can take many
forms, e.g., summing the scores of arcs (Eisner,
1996; McDonald et al., 2005) or multiplying prob-
abilities together (Charniak and Johnson, 2005).
The argmax over a and b of equation (1) is sepa-
rable; parsers make two sentence-level decisions.
For joint parsing, we modify the objective so that
parsers make one global decision:

a∗, b∗ = argmax
a∈T (x),b∈T (y)

: c(a,b)=0

f(a) + f(b) (2)

where c (defined below) measures the syntactic
similarity between the two trees. The smaller
c(a, b) is, the more similar a and b are. Intuitively,
joint parsers must retrieve the most similar pair of
trees with the highest sum of scores.

3.1.1 Constraints
The constraint function, c, ties two trees together
using alignments as a proxy for semantic informa-
tion. An alignment is a pair of words from sen-
tences x and y that approximately mean the same
thing. For example, in Figure 1, (helpx, helpy)
is one alignment and (pestilencex, diseasey) is

2When it is clear from context, we omit x and y to sim-
plify notation.

Set u0(i, j) = 0 for all i, j ∈ E
for k = 1 to K do
ak = argmax

a∈T (x)

(
f(a) +

∑
i,j∈E

uk(i, j)a(i, j)
)

bk = argmax
b∈T (y)

(
f(b)−

∑
i,j∈E

uk(i, j)b(i, j)
)

v, uk+1 = UPDATE(uk, δk, ak, bk)
if v = 0 then return ak, bk

return aK , bK

function UPDATE(u, δ, a, b)
v = 0, u′(i, j) = 0 for all i, j ∈ E
for i, j ∈ E do
u′(i, j) = u(i, j)− δ(a(i, j)− b(i, j))
if a(i, j) 6= b(i, j) then v = v + 1

return v, u′

Algorithm 1: Dual decomposition for jointly
parsing paraphrases pseudocode. E is the
set of all possible edges between any pair of
aligned words. Given ` aligned word pairs,
E = {1, . . . , `} × {1, . . . , `}. a(i, j) is one if
the ith aligned word is the head of jth aligned
word, zero otherwise. u(i, j) is the dual value
of an edge from the ith aligned word to the jth
aligned word. δk is the step size at kth itera-
tion.

another. To simplify joint parsing, we assume
the aligned words play the same syntactic roles
(which is obviously not always true and should
be revisited in future work). c measures the syn-
tactic similarity by computing how many pairs of
alignments have different syntactic head relations.
For the two trees in Figure 1, we see two differ-
ent relations: (help x−→ dying, help 6y−→ dying)
and (natives 6x−→ dying, natives

y−→ dying). The
rest have the same relation so c(a, b) = 2. As
we’ll show in Section 5, the constraints defined
above are too restrictive because of this strong as-
sumption. To alleviate the problem, we present
ways of appropriately changing constraints later.
We now turn to the first method of incorporating
constraints into joint parsing.

3.2 Constraints via Dual Decomposition
Dual decomposition (Rush and Collins, 2012) is
well-suited for finding the MAP assignment to
equation (2). When the parse-scoring function f
includes an arc-factored component as in McDon-
ald et al. (2005), it is straightforward to incorpo-
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(target sentence) x: help some natives dying of pestilence
(paraphrase) y: help some natives who were dying of disease

wrong

right

Figure 1: An illustration of joint parsing a sentence with its paraphrase. Unaligned words are gray. Joint
parsing encourages structural similarity and allows the parser to correct the incorrect arc.

rate constraints as shown in Algorithm 1. Essen-
tially, dual decomposition penalizes relations that
are different in two trees by adding/subtracting
dual values to/from arc scores. When dual de-
composition is applied in Figure 1, the arc score
of (help x−→ dying) decreases and the score for
(natives x−→ dying) increases in the second itera-
tion, which eventually leads the algorithm to favor
the latter.

We relax the constraints by employing soft dual
decomposition (Anzaroot et al., 2014) and replac-
ing UPDATE in Algorithm 1 with S-UPDATE from
Algorithm 2. The problem with the original con-
straints is they force every pair of alignments to
have the same relation even when some aligned
words certainly play different syntactic roles. The
introduced slack variable lets some alignments
have different relations when parsers prefer them.
Penalties bounded by the slack tend to help fix in-
correct ones and not change correct parses. In this
work, we use a single slack variable but it’s possi-
ble to have a different slack variable for each type
of dependency relation.3

3.3 Constraints via Pair-finding

One shortcoming of the dual decomposition ap-
proach is that it only applies to parse-scoring func-
tions with an arc-factored component. We intro-
duce another method for estimating equation (2)
that applies to all n-best parsers.

Given the n-best parses of x and the m-best
parses of y, Algorithm 3 scans through n×m pairs
of trees and chooses the pair that satisfies equa-
tion (2). If it finds one pair with c(a, b) = 0, then it
has found the answer to the equation. Otherwise, it

3We did pilot experiments with multiple slack variables.
Since they showed only small improvements and were harder
to tune, we stuck with a single slack variable for remaining
experiments.

function S-UPDATE(u, δ, a, b, s)
v = 0, u′(i, j) = 0 for all i, j ∈ E
for i, j ∈ E do
t = max(u(i, j)− δ(a(i, j)− b(i, j)), 0)
u′(i, j) = min(t, s)
if u′(i, j) 6= 0, u′(i, j) 6= s then
v = v + 1

return v, u′

Algorithm 2: The new UPDATE function of
soft dual decomposition for joint parsing. It
projects all dual values between 0 and s ≥ 0.
s is a slack variable that allows the algorithm
to avoid satisfying some constraints.

chooses the pair with the smallest c(a, b), breaking
ties using the scores of the parses (f(a) + f(b)).
This algorithm is well suited for finding solutions
to the equation but the solutions are not necessar-
ily good trees due to overly hard constraints.

The algorithm often finds bad trees far down the
n-best list because it is mainly interested in re-
trieving pairs of trees that satisfy all constraints.
Parsers find such pairs with low scores if they are
allowed to search through unrestricted space. To
mitigate the problem, we shrink the search space
by limiting n. Reducing the search space relies on
the fact that higher ranking trees are more likely to
be correct than the lower ranking ones. Note that
we decrease n because we are interested in recov-
ering the tree of the target sentence, x. m should
also be decreased to improve the parse of its para-
phrase, y.

3.4 Logistic Regression
One caveat of the previous two proposed methods
is that they do not know whether the original or
joint parse of x is more accurate. Sometimes they
increase agreement between the parses at the cost
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function PAIR-FINDING(a1:n, b1:m)
Set a, b = null,min =∞,max = −∞
for i = 1 to n do

for j = 1 to m do
v = C (ai, bj)
sum = f(ai) + f(bj)
if v < min then
a = ai, b = bj
min = v,max = sum

else if v = min, sum > max then
a = ai, b = bj
max = sum

return a, b

function C(a, b)
v = 0
for i, j ∈ E do

if a(i, j) 6= b(i, j) then v = v + 1
return v

Algorithm 3: The pair-finding scheme with a
constraint function, c. a1:n are the n-best trees
of x and b1:m are the m-best of y.

of accuracy. To remedy this problem, we use a
classifier (specifically logistic regression) to deter-
mine whether a modified tree should be used. The
classifier can learn the error patterns produced by
each method.

3.4.1 Features
Classifier features use many sources of informa-
tion: the target sentence x and its paraphrase y,
the original and new parses of x (a0 and a), and
the alignments between x and y.

Crossing Edges How many arcs cross when
alignments are drawn between paraphrases
on a plane divided by the length of x. It
roughly measures how many reorderings are
needed to change x to y.

Non-projective Edges Whether there are more
non-projective arcs in new parse (a) than the
original (a0).

Sentence Lengths Whether the length of x is
smaller than that of y. This feature exists be-
cause baseline parsers tend to perform better
on shorter sentences.

Word Overlaps The number of words in com-
mon between x and y normalized by the
length of x.

REL REL + RELp
REL + RELp + RELgp REL + RELgp
CP CP + CPp
CP + CPp + CPgp CP + CPgp
REL + CP REL + CP + CPp
REL + CPp + RELgp

Table 2: Feature templates: REL is the dependency
relation between the word and its parent. CP is
the coarse part-of-speech tag (first two letters) of a
word. p and gp select the parent and grandparent
of the word respectively.

Parse Structure Templates The feature genera-
tor goes through every word in {a0, a} and
sets the appropriate boolean features from Ta-
ble 2. Features are prefixed by whether they
come from a0 or a.

4 Data and Programs

This section describes our paraphrase dataset,
parsers, and other tools used in experiments.

4.1 Paraphrase Dataset

To evaluate the efficacy of the proposed methods
of jointly parsing paraphrases, we built a corpus
of paraphrases where one sentence in a pair of
paraphrases has a gold tree.4 We randomly sam-
pled 4,000 sentences5 from four gold treebanks:
Brown, British National Corpus (BNC), Question-
Bank6 (QB) and Wall Street Journal (section 24)
(Francis and Kučera, 1989; Foster and van Gen-
abith, 2008; Judge et al., 2006; Marcus et al.,
1993). A linguist provided a paraphrase for each
sampled sentence according to these instructions:

The paraphrases should more or less
convey the same information as the orig-
inal sentence. That is, the two sentences
should logically entail each other. The
paraphrases should generally use most
of the same words (but not necessarily
in the same order). Active/passive trans-
forms, changing words with synonyms,
and rephrasings of the same idea are all
examples of transformations that para-
phrases can use (others can be used too).

4The dataset is available upon request.
5We use sentences with 6 to 25 tokens to keep the para-

phrasing task in the nontrivial to easy range.
6With Stanford’s updates: http://nlp.stanford.

edu/data/QuestionBank-Stanford.shtml
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They can be as simple as just chang-
ing a single word in some cases (though,
ideally, a variety of paraphrasing tech-
niques would be used).

We also provided 10 pairs of sentences as ex-
amples. We evaluate our methods only on the
sampled sentences from the gold corpora because
the new paraphrases do not include syntactic trees.
The data was divided into development and test-
ing sets such that development and testing share
the same distribution over the four corpora. Para-
phrases were tokenized by the BLLIP tokenizer.
See Table 3 for statistics of the dataset.7

4.2 Meteor Word Aligner

We use Meteor, a monolingual word aligner de-
veloped by Denkowski and Lavie (2014), to find
alignments between paraphrases. It uses the ex-
act matches, stems, synonyms, and paraphrases8

to form these alignments. Because it uses para-
phrases, it sometimes aligns multiple words from
sentence x to one or more words from sentence y
or vice versa. We ignore these multiword align-
ments because our methods currently only handle
single word alignments. In pilot experiments, we
also tried using a simple aligner which required
exact word matches. Joint parsing with simpler
alignments improved parsing accuracy but not as
much as Meteor.9 Thus, all results in Section 5 use
Meteor for word alignment. On average across the
four corpora, 73% of the tokens are aligned.

4.3 Parsers

We use a dependency and constituency parser for
our experiments: RBG and BLLIP. RBG parser
(Lei et al., 2014) is a state-of-the-art dependency
parser.10 It is a third-order discriminative depen-
dency parser with low-rank tensors as part of its
features. BLLIP (Charniak and Johnson, 2005)
is a state-of-the-art constituency parser, which is

7The distribution over four corpora is skewed because
each corpus has a different number of sentences within length
constraints. Samples are collected uniformly over all sen-
tences that satisfy the length criterion.

8Here paraphrase means a single/multiword phrase that is
semantically similar to another single/multiword.

9The pilot was conducted on fewer than 700 sentence
pairs before all paraphrases were created. We give Meteor
tokenized paraphrases with capitalization. Maximizing accu-
racy rather than coverage worked better in pilot experiments.

10http://github.com/taolei87/RBGParser,
‘master’ version from June 24th, 2014.

composed of a generative parser and a discrimina-
tive reranker.11

To train RBG and BLLIP, we used the standard
WSJ training set (sections 2–21, about 40,000 sen-
tences).12 We also used the self-trained BLLIP
parsing model which is trained on an additional
two million Gigaword parses generated by the
BLLIP parser (McClosky et al., 2006a).

4.4 Logistic Regression

We use the logistic regression implementation
from Scikit-learn13 with hand-crafted features
from Section 3.4.1. The classifier decides to
whether to keep the parse trees from the joint
method. When it decides to disregard them, it re-
turns the parse from the baseline parser. We train
a separate classifier for each joint method.

5 Experiments

We ran all tuning and model design experiments
on the development set. For the final evaluation,
we tuned parameters on the development set and
evaluate them on the test set. Constituency trees
were converted to basic non-collapsed dependency
trees using Stanford Dependencies (De Marneffe
et al., 2006).14 We report unlabeled attachment
scores (UAS) for all experiments and labeled at-
tachment scores (LAS) as well in final evalua-
tion, ignoring punctuation. Averages are micro-
averages across all sentences.

5.1 Dual Decomposition

Since BLLIP is not arc-factored, these experi-
ments only use RBG. Several parameters need to
be fixed beforehand: the slack constant (s), the
learning rate (δ), and the maximum number of it-
erations (K). We set δ0 = 0.1 and δk = δ0

2t where
t is the number of times the dual score has in-
creased (Rush et al., 2010). We choose K = 20.
These numbers were chosen from pilot studies.
The slack variable (s = 0.5) was tuned with a
grid search on values between 0.1 and 1.5 with in-
terval 0.1. We chose a value that generalizes well
across four corpora as opposed to a value that does

11http://github.com/BLLIP/bllip-parser
12RBG parser requires predicted POS tags. We used the

Stanford tagger (Toutanova et al., 2003) to tag WSJ and
paraphrase datasets. Training data was tagged using 20-fold
cross-validation and the paraphrases were tagged by a tagger
trained on all of WSJ training.

13http://scikit-learn.org
14Version 1.3.5, previously numbered as version 2.0.5
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Development Test
BNC Brown QB WSJ Total BNC Brown QB WSJ Total

Sentences 247 558 843 352 2,000 247 558 844 351 2,000
Tokens 4,297 7,937 8,391 5,924 26,549 4,120 8,025 8,253 5,990 26,388
Tokens‖ 4,372 8,088 8,438 6,122 27,020 4,272 8,281 8,189 6,232 26,974
Word types 1,727 2,239 2,261 1,955 6,161 1,710 2,337 2,320 1,970 6,234
Word types‖ 1,676 2,241 2,261 1,930 6,017 1,675 2,335 2,248 1,969 6,094
OOV 11.2 5.1 5.4 2.4 5.6 11.5 5.1 5.8 2.2 5.7
OOV‖ 8.6 4.7 5.4 2.6 5.1 9.3 4.8 6.0 2.4 5.3
Tokens/sent. 17.4 14.2 10.0 16.8 13.3 16.7 14.4 7.8 17.1 13.2
Avg. aligned 13.1 10.5 6.9 13.0 9.7 12.6 10.7 6.7 13.0 9.7

Table 3: Statistics for the four corpora of the paraphrase dataset. Most statistics are counted from sen-
tences with gold trees, including punctuation. ‖ indicates the statistic is from the paraphrased sentences.
“Avg. aligned” is the average number of aligned tokens from the original sentences using Meteor. OOV
is the percentage of tokens not seen in the WSJ training.

Avg BNC Brown QB WSJ
RBG 86.4 89.2 90.9 75.8 93.7
+ Dual 84.7 87.5 87.8 76.0 91.0
+ S-Dual 86.8 89.8 90.9 76.5 94.0

Table 4: Comparison of hard and soft dual de-
composition for joint parsing (development sec-
tion, UAS).

very well on a single corpus. As shown in Ta-
ble 4, joint parsing with hard dual decomposition
performs worse than independent parsing (RBG).
This is expected because hard dual decomposition
forces every pair of alignments to form the same
relation even when they should not. With relaxed
constraints (S-Dual), joint parsing performs sig-
nificantly better than independent parsing. Soft
dual decomposition improves across all domains
except for Brown (where it ties).

5.2 Pair-finding

These experiments use the 50-best trees from
BLLIP parser. When converting to dependencies,
some constituency trees map to the same depen-
dency tree. In this case, trees with lower rankings
are dropped. Like joint parsing with hard dual de-
composition, joint parsing with unrestricted pair-
finding (n = 50) allows significantly worse parses
to be selected (Table 5). With small n values,
pair-finding improves over the baseline BLLIP
parser.15 Experiments with self-trained BLLIP
exhibit similar results so we use n = 2 for all

15Decreasing m did not lead to further improvement and
thus we don’t report the results of changing m.

n Avg BNC Brown QB WSJ
1 89.5 91.1 91.6 83.3 94.2
2 90.0 91.4 92.3 84.1 94.1
3 89.8 91.5 92.0 84.2 93.9
5 89.2 91.9 91.4 83.0 93.2
10 87.9 90.5 90.3 81.4 92.2
50 86.3 90.2 88.7 78.6 91.1

Table 5: UAS of joint parsing using the pair-
finding scheme with various n values on the de-
velopment portion. n = 1 is the baseline BLLIP
parser and n > 1 is BLLIP with pair-finding.

other experiments. Interestingly, each corpus has
a different optimal value for n which suggests we
might improve accuracy further if we know the do-
main of each sentence.

5.3 Logistic Regression

The classifier is trained on sentences where parse
scores (UAS) of the proposed methods are higher
or lower than those of the baselines16 from
the development set using leave-one-out cross-
validation. We use random greedy search to select
specific features from the 15 feature templates de-
fined in Section 3.4.1. Features seen fewer than
three times in the development are thrown out.
Separate regression models are built for three dif-
ferent parsers. The logistic regression classifier
uses an L1 penalty with regularization parameter
C = 1.

Logistic regression experiments are reported in

16We only use sentences with different scores to limit ceil-
ing effects.
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Avg BNC Brown QB WSJ
RBG 86.4 89.2 90.9 75.8 93.7
+ S-Dual 86.8 89.8 90.9 76.5 94.0
+ Logit 86.9 89.8 91.1 76.5 94.0
BLLIP 89.5 91.1 91.6 83.3 94.2
+ Pair 90.0 91.4 92.3 84.1 94.1
+ Logit 90.3 91.3 92.1 85.2 94.3
BLLIP-ST 90.1 92.7 92.3 84.3 93.8
+ Pair 90.7 93.5 92.5 85.6 93.8
+ Logit 91.1 93.3 92.6 86.7 93.9

Table 6: Effect of using logistic regression on
top of each method (UAS). Leave-one-out cross-
validation is performed on the development data.
+X means augmenting the above system with X.

Table 6. All parsers benefit from employing logis-
tic regression models on top of paraphrase meth-
ods. BLLIP experiments show a larger improve-
ment than RBG. This may be because BLLIP can-
not use soft constraints so its errors are more pro-
nounced.

5.4 Final Evaluation
We evaluate the three parsers on the test set using
the tuned parameters and logistic regression mod-
els from above. Joint parsing with paraphrases sig-
nificantly improves accuracy for all systems (Ta-
ble 7). Self-trained BLLIP with logistic regres-
sion is the most accurate, though RBG with S-
Dual provides the most consistent improvements.

Joint parsing without logistic regression (RBG
+ S-Dual) is more accurate than independent pars-
ing (RBG) overall. With the help of logistic re-
gression, the methods do at least as well as their
baseline counterparts on all domains with the ex-
ception of self-trained BLLIP on BNC. We believe
that the drop on BNC is largely due to noise as our
BNC test set is the smallest of the four. As on de-
velopment, logistic regression does not change the
accuracy much over the RBG parser with soft dual
decomposition.

Joint parsing provides the largest gains on
QuestionBank, the domain with the lowest base-
line accuracies. This fits with our goal of using
paraphrases for domain adaptation — parsing with
paraphrases helps the most on domains furthest
from our training data.

5.5 Error analysis
We analyzed the errors from RBG and BLLIP
along several dimensions: by dependency label,

sentence length, dependency length, alignment
status (whether a token was aligned), percentage
of tokens aligned in the sentence, and edit distance
between the sentence pairs. Most errors are fairly
uniformly distributed across these dimensions and
indicate general structural improvements when us-
ing paraphrases. BLLIP saw a 2.2% improvement
for the ROOT relation, though RBG’s improvement
here was more moderate. For sentence lengths,
BLLIP obtains larger boosts for shorter sentences
while RBG’s are more uniform. RBG gets a 1.4%
UAS improvement on longer dependencies (6 or
more tokens) while shorter dependencies are more
modestly improved by about 0.3-0.5% UAS. Sur-
prisingly, alignment information provides no sig-
nal as to whether accuracy improves.

Additionally, we had our annotator label a por-
tion of our dataset with the set of paraphrasing
operations employed.17 While most paraphrasing
operations generally improved performance un-
der joint inference, the largest reliable gains came
from lexical replacements (e.g., synonyms).

6 Conclusions and Future Work

Our methods of incorporating paraphrases im-
prove parsing across multiple domains for state-
of-the-art constituency and dependency parsers.
We leverage the fact that paraphrases often express
the same semantics with similar syntactic realiza-
tions. These provide benefits even on top of self-
training, another domain adaptation technique.

Since paraphrases are not available at most
times, our methods may seem limited. However,
there are several possible use cases. The best
case scenario is when users can be directly asked
to rephrase a question and provide a paraphrase.
For instance, question answering systems can ask
users to rephrase questions when an answer is
marked as wrong by users. Another option is to
use crowdsourcing to quickly create a paraphrase
corpus (Negri et al., 2012; Burrows et al., 2013;
Tschirsich and Hintz, 2013). As part of future
work, we plan to integrate existing larger para-
phrase resources, such as WikiAnswers (Fader et
al., 2013) and PPDB (Ganitkevitch et al., 2013).
WikiAnswers provides rough equivalence classes
of questions. PPDB includes phrasal and syntactic
alignments which could supplement our existing
alignments or be used as proxies for paraphrases.

17See the extended version of this paper for more informa-
tion about this task and its results.
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Avg BNC Brown QB WSJ
RBG 86.7 (81.3) 89.3 (83.7) 90.2 (84.1) 77.0 (71.0) 93.7 (89.9)
+ S-Dual 87.3 (81.7) 89.6 (83.8) 90.7 (84.6) 78.1 (71.8) 94.0 (90.2)
+ Logit 87.2 (81.6) 89.7 (83.9) 90.6 (84.5) 77.9 (71.7) 93.8 (89.9)
BLLIP 89.6 (86.1) 90.6 (87.2) 91.7 (87.9) 83.6 (79.9) 94.3 (91.6)
+ Pair 90.1 (86.5) 90.8 (87.3) 92.1 (88.4) 84.7 (80.7) 94.4 (91.6)
+ Logit 90.3 (86.8) 90.6 (87.2) 91.9 (88.1) 85.5 (81.7) 94.5 (91.7)
BLLIP-ST 90.4 (87.0) 91.8 (88.3) 92.7 (89.0) 84.8 (81.2) 94.3 (91.4)
+ Pair 90.5 (87.1) 91.1 (87.6) 92.7 (89.1) 85.5 (81.8) 94.2 (91.4)
+ Logit 91.0 (87.6) 91.4 (88.0) 92.9 (89.3) 86.6 (82.9) 94.3 (91.4)

Table 7: Final evaluation on testing data. Numbers are unlabeled attachment score (labeled attachment
score). +X indicates extending the above system with X. BLLIP-ST is BLLIP using the self-trained
model. Coloring indicates a significant difference over baseline (p < 0.01).

While these resources are noisy, the quantity of
data may provide additional robustness. Lastly, in-
tegrating our methods with paraphrase detection
or generation systems could help provide para-
phrases on demand.

There are many other ways to extend this work.
Poor alignments are one of the larger sources of
errors and improving alignments could help dra-
matically. One simple extension is to use multiple
paraphrases and their alignments instead of just
one. More difficult would be to learn the align-
ments jointly while parsing and adaptively learn
how alignments affect syntax. Our constraints can
only capture certain types of paraphrase transfor-
mations currently and should be extended to un-
derstand common tree transformations for para-
phrases, as in (Heilman and Smith, 2010). Fi-
nally, and perhaps most importantly, our methods
apply only at inference time. We plan to investi-
gate methods which use paraphrases to augment
parsing models created at train time.
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Abstract

This paper investigates the problem of
cross-lingual dependency parsing, aim-
ing at inducing dependency parsers for
low-resource languages while using only
training data from a resource-rich lan-
guage (e.g. English). Existing approaches
typically don’t include lexical features,
which are not transferable across lan-
guages. In this paper, we bridge the lex-
ical feature gap by using distributed fea-
ture representations and their composition.
We provide two algorithms for inducing
cross-lingual distributed representations of
words, which map vocabularies from two
different languages into a common vector
space. Consequently, both lexical features
and non-lexical features can be used in our
model for cross-lingual transfer.

Furthermore, our framework is able to in-
corporate additional useful features such
as cross-lingual word clusters. Our com-
bined contributions achieve an average rel-
ative error reduction of 10.9% in labeled
attachment score as compared with the
delexicalized parser, trained on English
universal treebank and transferred to three
other languages. It also significantly out-
performs McDonald et al. (2013) aug-
mented with projected cluster features on
identical data.

1 Introduction

Dependency Parsing has been one of NLP’s long-
standing central problems. The majority of work
on dependency parsing has been dedicated to
resource-rich languages, such as English and Chi-
nese. For these languages, there exist large-scale

∗This work was done while the author was visiting JHU.

annotated treebanks that can be used for super-
vised training of dependency parsers. However,
for most of the languages in the world, there are
few or even no labeled training data for parsing,
and it is labor intensive and time-consuming to
manually build treebanks for all languages. This
fact has given rise to a number of research on un-
supervised methods (Klein and Manning, 2004),
annotation projection methods (Hwa et al., 2005),
and model transfer methods (McDonald et al.,
2011) for predicting linguistic structures. In this
study, we focus on the model transfer methods,
which attempt to build parsers for low-resource
languages by exploiting treebanks from resource-
rich languages.

The major obstacle in transferring a parsing
system from one language to another is the lex-
ical features, e.g. words, which are not directly
transferable across languages. To solve this prob-
lem, McDonald et al. (2011) build a delexical-
ized parser - a parser that only has non-lexical
features. A delexicalized parser makes sense in
that POS tag features are significantly predic-
tive for unlabeled dependency parsing. How-
ever, for labeled dependency parsing, especially
for semantic-oriented dependencies like Stanford-
type dependencies (De Marneffe et al., 2006;
De Marneffe and Manning, 2008), these non-
lexical features are not predictive enough. Täck-
ström et al. (2012) propose to learn cross-lingual
word clusters from multilingual paralleled un-
labeled data through word alignments, and ap-
ply these clusters as features for semi-supervised
delexicalized parsing. Word clusters can be
thought as a kind of coarse-grained representa-
tions of words. Thus, this approach partially fills
the gap of lexical features in cross-lingual learning
of dependency parsing.

This paper proposes a novel approach for cross-
lingual dependency parsing that is based on pure
distributed feature representations. In contrast to
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the discrete lexical features used in traditional de-
pendency parsers, distributed representations map
symbolic features into a continuous representation
space, that can be shared across languages. There-
fore, our model has the ability to utilize both lexi-
cal and non-lexical features naturally. Specifically,
our framework contains two primary components:

• A neural network-based dependency parser.
We expect a non-linear model for depen-
dency parsing in our study, because dis-
tributed feature representations are shown to
be more effective in non-linear architectures
than in linear architectures (Wang and Man-
ning, 2013). Chen and Manning (2014) pro-
pose a transition-based dependency parser
using a neural network architecture, which
is simple but works well on several datasets.
Briefly, this model simply replaces the pre-
dictor in transition-based dependency parser
with a well-designed neural network classi-
fier. We will provide explanations for the
merits of this model in Section 3, as well as
how we adapt it to the cross-lingual task.

• Cross-lingual word representation learning.
The key to filling the lexical feature gap is to
project the representations of these features
from different languages into a common vec-
tor space, preserving the translational equiv-
alence. We will study and compare two ap-
proaches of learning cross-lingual word rep-
resentations in Section 4. The first approach
is robust projection, and the second approach
is based on canonical correlation analysis.
Both approaches are simple to implement and
are scalable to large data.

We evaluate our model on the universal multi-
lingual treebanks (McDonald et al., 2013). Case
studies include transferring from English to Ger-
man, Spanish and French. Experiments show that
by incorporating lexical features, the performance
of cross-lingual dependency parsing can be im-
proved significantly. By further embedding cross-
lingual cluster features (Täckström et al., 2012),
we achieve an average relative error reduction of
10.9% in labeled attachment score (LAS), as com-
pared with the delexicalized parsers. It also signif-
icantly outperforms McDonald et al. (2013) aug-
mented with cluster features on identical data. The
original major contributions of this paper include:

ROOT He has good control .
PRP VBZ JJ NN .

root
nsubj

dobj
amod

punct

Figure 1: An example labeled dependency tree.

• We propose a novel and flexible cross-lingual
learning framework for dependency parsing
based on distributed representations, which
can effectively incorporate both lexical and
non-lexical features.

• We present two novel and effective ap-
proaches for inducing cross-lingual word rep-
resentations, that bridge the lexical feature
gap in cross-lingual dependency parsing.

• We show that cross-lingual word cluster fea-
tures can be effectively embedded into our
model, leading to significant additive im-
provements.

2 Background

2.1 Dependency Parsing
Given an input sentence x = w0w1...wn, the goal
of dependency parsing is to build a dependency
tree (Figure 1), which can be denoted by d =

{(h,m, l) ∶ 0 ≤ h ≤ n; 0 <m ≤ n, l ∈ L}. (h,m, l)
indicates a directed arc from the head word wh to
the modifier wm with a dependency label l, and L
is the label set. The mainstream models that have
been proposed for dependency parsing can be de-
scribed as either graph-based models or transition-
based models (McDonald and Nivre, 2007).

Graph-based models view the parsing problem
as finding the highest scoring tree from a directed
graph. The score of a dependency tree is typi-
cally factored into scores of some small structures
(e.g. arcs) depending on the order of a model.
Transition-based models aim to predict a transi-
tion sequence from an initial parser state to some
terminal states, depending on the parsing history.
This approach has a lot of interest since it is fast
(linear time) and can incorporate rich non-local
features (Zhang and Nivre, 2011).

It has been considered that simple transition-
based parsing using greedy decoding and local
training is not as accurate as graph-based parsers
or transition-based parsers with beam-search and
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global training (Zhang and Clark, 2011). Recently,
Chen and Manning (2014) show that greedy
transition-based parsers can be greatly improved
by using a well-designed neural network architec-
ture. This approach can be considered as a new
paradigm of parsing, in that it is based on pure dis-
tributed feature representations. In this study, we
choose Chen and Manning’s architecture to build
our basic dependency parsing model.

2.2 Distributed Representations for NLP
In recent years, there has been a trend in the NLP
research community of learning distributed rep-
resentations for different natural language units,
from morphemes, words and phrases, to sentences
and documents. Using distributed representations,
these symbolic units are embedded into a low-
dimensional and continuous space, thus it is often
referred to as embeddings.1

In general, there are two major ways of apply-
ing distributed representations to NLP tasks. First,
they can be fed into existing supervised NLP sys-
tems as augmented features in a semi-supervised
manner. This kind of approach has been adopted
in a variety of applications (Turian et al., 2010).
Despite its simplicity and effectiveness, it has been
shown that the potential of distributed representa-
tions cannot be fully exploited in the generalized
linear models which are adopted in most of the ex-
isting NLP systems (Wang and Manning, 2013).
One remedy is to discretize the distributed feature
representations, as studied in Guo et al. (2014).
However, we believe that a non-linear system, e.g.
a neural network, is a more powerful and effec-
tive solution. Some decent progress has already
been made in this paradigm of NLP on various
tasks (Collobert et al., 2011; Chen and Manning,
2014; Sutskever et al., 2014).

3 Transition-based Dependency Parsing:
A Neural Network Architecture

In this section, we first briefly describe transition-
based dependency parsing and the arc-standard
parsing algorithm. Then we revisit the neural net-
work architecture for transition-based dependency
parsing proposed by Chen and Manning (2014).

As discussed in Section 2.1, transition-based
parsing aims to predict a transition sequence from
an initial parser state to the terminal state. Each
state is conventionally regarded as a configuration,

1In this paper, these two terms are used interchangeably.

Words POS tags Arc labels

Embeddings

Transition actions

ROOT    has_VBZ good_JJ control_NN ._.

He_PRP
nsubj

Configuration

Stack Buffer

Hidden units

𝐸𝑤 𝐸𝑡 𝐸𝑙

Distance, 
Valency, Cluster

𝐸𝑑, 𝐸𝑣, 𝐸𝑐

𝑊1

𝑊2

𝑔 𝑥 = 𝑥3

Figure 2: Neural network model for dependency
parsing. The Cluster features are introduced in
Section 5.2.

which typically consists of a stack S, a buffer B,
and a partially derived forest, i.e. a set of depen-
dency arcs A. Given an input word sequence x =

w1w2, ...,wn, the initial configuration can be rep-
resented as a tuple: ⟨[w0]S , [w1w2, ...,wn]B,∅⟩,
and the terminal configuration is ⟨[w0]S , []B,A⟩,
where w0 is a pseudo word indicating the root
of the whole dependency tree. We consider the
arc-standard algorithm (Nivre, 2004) in this pa-
per, which defines three types of transition actions:
LEFT-ARC(l), RIGHT-ARC(l), and SHIFT, l is the
dependency label.

The typical approach for greedy arc-standard
parsing is to build a multi-class classifier (e.g.,
SVM, MaxEnt) of predicting the transition ac-
tion given a feature vector extracted from a spe-
cific configuration. While conventional feature
engineering suffers from the problem of sparsity,
incompleteness and expensive feature computa-
tion (Chen and Manning, 2014), the neural net-
work model provides a potential solution.

The architecture of the neural network-based
dependency parsing model is illustrated in Fig-
ure 2. Primarily, three types of information are
extracted from a configuration in Chen and Man-
ning’s model: word features, POS features and la-
bel features respectively. In this study, we add dis-
tance features indicating the distance between two
items, and valency features indicating the num-
ber of children for a given item (Zhang and Nivre,
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Word features
Ew

Si
,Ew

Bi
, i = 0,1,2

Ew
lc1(Si),E

w
rc1(Si),E

w
lc2(Si),E

w
rc2(Si), i = 0,1

Ew
lc1(lc1(Si)),E

w
rc1(rc1(Si)), i = 0,1

POS features
Et

Si
,Et

Bi
, i = 0,1,2

Et
lc1(Si),E

t
rc1(Si),E

t
lc2(Si),E

t
rc2(Si), i = 0,1

Et
lc1(lc1(Si)),E

t
rc1(rc1(Si)), i = 0,1

Label features
El

lc1(Si),E
l
rc1(Si),E

l
lc2(Si),E

l
rc2(Si), i = 0,1

El
lc1(lc1(Si)),E

l
rc1(rc1(Si)), i = 0,1

Distance: Ed
⟨S0,S1⟩,E

d
⟨S0,B0⟩

Valency: Elv
S0 ,E

lv
S1 ,E

rv
S1

Table 1: Feature templates of the neural network
parsing model. Ewp ,E

t
p,E

l
p,E

d
p ,E

lv
p ,E

rv
p indi-

cate the {word, POS, label, distance, left/right va-
lency} embeddings of the element at position p,
correspondingly. lc1 / rc1 is the first child in the
left / right, lc2 / rc2 is the second child in the left
/ right. Si and Bi refer to the ith elements respec-
tively in the stack and buffer.

2011). All of these features are projected to an em-
bedding layer via corresponding embedding matri-
ces, which will be estimated through the training
process. The complete feature templates used in
our system are shown in Table 1. Then, feature
compositions are performed at the hidden layer via
a cube activation function: g(x) = x3.

The cube activation function can be viewed as
a special case of low-rank tensor. Formally, g(x)
can be expanded as:

g(w1x1 + ... +wmxm + b) =

∑
i,j,k

(wiwjwk)xixjxk +∑
i,j

b(wiwj)xixj + ...

If we treat the bias term as b × x0 where x0 =

1, then the weight corresponding to each feature
combination xixjxk is wiwjwk, which is exactly
the same as a rank-1 component tensor in the low-
rank form using CP tensor decomposition (Cao
and Khudanpur, 2014). Consequently, the cube
activation function implicitly derives full feature
combinations. An advantage of the cube activa-
tion function is that it is flexible for adding extra
features to the input. In fact, we can add as many
features as possible to the input layer to improve
the parsing accuracy. We will show in Section 5.2
that the Brown cluster features can be readily in-
corporated into our model.

Cross-lingual Transfer. The idea of cross-
lingual transfer using the parser we examined

above is straightforward. In contrast to tradi-
tional approaches that have to discard rich lexical
features (delexicalizing) when transferring mod-
els from one language to another, our model can
be transferred using the full model trained on the
source language side, i.e. English.

Since the non-lexical feature (POS, label, dis-
tance, valency) embeddings are directly transfer-
able between languages,2 the key component of
this framework is the cross-lingual learning of lex-
ical feature embeddings, i.e. word embeddings.
Once the cross-lingual word embeddings are in-
duced, we first learn a dependency parser at the
source language side. After that, the parser will be
directly used for parsing target language data.

4 Cross-lingual Word Representation
Learning

Prior to introducing our approaches for cross-
lingual word representation learning, we briefly
review the basic model for learning monolingual
word embeddings, which constitutes a subproce-
dure of the cross-lingual approaches.

4.1 Continuous Bag-of-Words Model

Various approaches have been studied for learn-
ing word embeddings from large-scale plain
texts. In this study, we consider the Continuous
Bag-of-Words (CBOW) model (Mikolov et al.,
2013) as implemented in the open-source toolkit
word2vec.3 The basic principle of the CBOW
model is to predict each individual word in a se-
quence given the bag of its context words within a
fixed window size as input, using a log-linear clas-
sifier. This model avoids the non-linear transfor-
mation in hidden layers, and hence can be trained
with high efficiency.

With large window size, grouped words us-
ing the resulting word embeddings are more topi-
cally similar; whereas with small window size, the
grouped words will be more syntactically similar.
So we set the window size to 1 in our parsing task.

Next, we introduce our approach for inducing
bilingual word embeddings. In general, we ex-
pect our bilingual word embeddings to preserve
translational equivalences. For example, “cook-
ing” (English) should be close to its translation:
“kochen” (German) in the embedding space.

2POS tags are language-independent here since we use the
universal POS tags (Section 5).

3http://code.google.com/p/word2vec/
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4.2 Robust Alignment-based Projection
Our first method for inducing cross-lingual word
embeddings has two stages. First, we learn word
embeddings from a source language (S) corpora
as in the monolingual case, and then project the
monolingual word embeddings to a target lan-
guage (T), based on word alignments.

Given a sentence-aligned parallel corpus D,
we first conduct unsupervised bidirectional word
alignment, and then collect an alignment dictio-
nary. Specifically, in each word-aligned sentence
pair of D, we keep all alignments with condi-
tional alignment probability exceeding a thresh-
old δ = 0.95 and discard the others. Specifically,
let AT ∣S = {(wTi ,w

S
j , ci,j), i = 1,2, ...,NT ; j =

1,2, ...,NS} be the alignment dictionary, where
ci,j is the number of times when the ith target word
wTi is aligned to the jth source word wSj . NS and
NT are vocabulary sizes. We use the shorthand
(i, j) ∈ AT ∣S to denote a word pair in AT ∣S . The
projection can be formalized as the weighted aver-
age of the embeddings of translation words:

v(wTi ) = ∑
(i,j)∈AT ∣S

ci,j

ci,⋅
⋅ v(wSj ) (1)

where ci,⋅ = Σjci,j , v(w) is the embedding of w.
Obviously, the simple projection method has

one drawback, it only assigns word embeddings
for those target language words that occur in the
word aligned data, which is typically smaller than
the monolingual datasets. Therefore, in order to
improve the robustness of projection, we utilize
a morphology-inspired mechanism, to propagate
embeddings from in-vocabulary words to out-of-
vocabulary (OOV) words. Specifically, for each
OOV word wToov, we extract a list of candidate
words that is similar to it in terms of edit distance,
and then set the averaged vector as the embedding
of wToov. Formally,

v(wToov) = Avg
w′∈C

(v(w′
))

where C = {w∣EditDist(wToov,w) ≤ τ}
(2)

To reduce noise, we choose a small edit distance
threshold τ = 1.

4.3 Canonical Correlation Analysis
The second approach we consider is similar
to Faruqui and Dyer (2014), which use CCA to
improve monolingual word embeddings with mul-
tilingual correlation. CCA is a way of measur-

Σ Ω𝑛1

𝑑1

𝑛2

𝑑2
Σ′ Ω′

𝑉 𝑊𝑑1

𝑑

𝑑2

𝑑

𝑛1

𝑑

𝑛2

𝑑

CCA

Σ∗ Ω∗

Figure 3: CCA for cross-lingual word representa-
tion learning.

ing the linear relationship between multidimen-
sional variables. For two multidimensional vari-
ables, CCA aims to find two projection matrices to
map the original variables to a new basis (lower-
dimensional), such that the correlation between
the two variables is maximized.

Let’s treat CCA as a blackbox here, and see how
to apply CCA for inducing bilingual word embed-
dings. Suppose there are already two pre-trained
monolingual word embeddings (e.g. English and
German): Σ ∈ Rn1×d1 and Ω ∈ Rn2×d2 . At the first
step, we extract a one-to-one alignment dictionary
D ∶ Σ′ ↔ Ω′ from the alignment dictionaryAS∣T .4

Here, Σ′ ⊆ Σ, indicating that every word in Σ′ is
translated to one word in Ω′ ⊆ Ω, and vice versa.

The process is illustrated in Figure 3. Denot-
ing the dimension of resulting word embeddings
by d ≤ min(d1, d2). First, we derive two projec-
tion matrices V ∈ Rd1×d,W ∈ Rd2×d respectively
for Σ′ and Ω′ using CCA:

V,W = CCA(Σ′,Ω′
) (3)

Then, V and W are used to project the entire vo-
cabulary Σ and Ω:

Σ∗
= ΣV, Ω∗

= ΩW (4)

where Σ∗ ∈ Rn1×d and Ω∗ ∈ Rn2×d are the result-
ing word embeddings for our cross-lingual task.

Contrary to the projection approach, CCA as-
signs embeddings for every word in the monolin-
gual vocabulary. However, one potential limita-
tion is that CCA assumes linear transformation of
word embeddings, which is difficult to satisfy.

4AT ∣S is also worth trying, but we observed slight perfor-
mance degradation in our experimental setting.
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Note that both approaches can be generalize
to lower-resource languages where parallel bitexts
are not available. In that way, the dictionaryA can
be readily obtained either using bilingual lexicon
induction approaches (Koehn and Knight, 2002;
Mann and Yarowsky, 2001; Haghighi et al., 2008),
or from resources like Wiktionary5 and Panlex.6

5 Experiments

5.1 Data and Settings

For the pre-training of word embeddings, we use
the WMT-2011 monolingual news corpora for En-
glish, German and Spanish.7 For French, we
combined the WMT-2011 and WMT-2012 mono-
lingual news corpora.8 We obtained the word
alignment counts using the fast-align toolkit in
cdec (Dyer et al., 2010) from the parallel news
commentary corpora (WMT 2006-10) combined
with the Europarl corpus for English-{German,
Spanish, French}.9

For the training of the neural network depen-
dency parser, we set the number of hidden units to
400. The dimension of embeddings for different
features are shown in Table 2.

Word POS Label Dist. Val. Cluster
Dim. 50 50 50 5 5 8

Table 2: Dimensions of feature embeddings.

Adaptive stochastic gradient descent (Ada-
Grad) (Duchi et al., 2011) is used for optimization.
For the CCA approach, we use the implementation
of Faruqui and Dyer (2014). The dimensions of
the monolingual embeddings (d1, d2) and the re-
sulting bilingual embeddings are set to 50 equally.

We employ the universal dependency treebanks
proposed by McDonald et al. (2013) for a reli-
able evaluation of our approach for cross-lingual
dependency parsing. The universal multilingual
treebanks are annotated using the universal POS
tagset (Petrov et al., 2011) which contains 12 POS
tags, as well as the universal dependencies which
contains 42 relations. We follow the standard split
of the treebanks for every language (DE, ES, and
FR).10

5https://www.wiktionary.org/
6http://panlex.org/
7http://www.statmt.org/wmt11/
8http://www.statmt.org/wmt12/
9http://www.statmt.org/europarl/

10http://code.google.com/p/uni-dep-tb/.

5.2 Baseline Systems

We compare our approach with three systems. For
the first baseline, we evaluate the delexicalized
transfer of our parser [DELEX], in which we only
use non-lexical features.

We also compare our approach with the delexi-
calized parser in McDonald et al. (2013) [McD13],
who used a perceptron-trained transition-based
parser with a beam of size 8, along with rich non-
local features (Zhang and Nivre, 2011).

Furthermore, we augment cross-lingual word
clusters to the perceptron-based delexicalized
parser, as proposed in Täckström et al. (2012). We
use the same alignment dictionary as described in
Section 4 to induce the cross-lingual word clus-
ters. We re-implement the PROJECTED cluster
approach in Täckström et al. (2012), which assigns
a target word to the cluster with which it is most
often aligned:

c(wTi ) = arg max
k

∑
(i,j)∈AT ∣S

ci,j ⋅ 1[c(w
S
j ) = k]

This method also has the drawback that words that
do not occur in the alignment dictionary (OOV)
cannot be assigned a cluster. Therefore, we use
the same strategy as described in Section 4.2 to
find the most likely clusters for the OOV words.
Instead of the clustering model of Uszkoreit and
Brants (2008), we use Brown clustering (Brown
et al., 1992) to induce hierarchical word clusters,
where each word is represented as a bit-string.
We use the same word cluster feature templates
from Täckström et al. (2012), and set the number
of Brown clusters to 256.

5.3 Experimental Results

All of the parsing models are trained using the de-
velopment data from English for early-stopping.
Table 3 lists the results of the cross-lingual trans-
fer experiments for dependency parsing. Table 4
further summarizes each of the experimental gains
detailed in Table 3.

Our delexicalized system obtains slightly lower
performance than those reported in McDonald
et al. (2013) (McD13), because we’re using

Before this dataset was carried out, the CoNLL multilingual
dependency treebanks (Buchholz and Marsi, 2006) were
often used for evaluation. However, the major problem is
that the dependency annotations vary for different languages
(e.g. the choice of lexical versus functional head), which
makes it impossible to evaluate the LAS.
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Unlabeled Attachment Score (UAS) Labeled Attachment Score (LAS)
EN DE ES FR AVG EN DE ES FR AVG

DELEX 83.67 57.01 68.05 68.85 64.64 79.42 47.12 56.99 57.78 53.96
PROJ 91.96 60.07 71.42 71.36 67.62 90.48 49.94 61.76 61.55 57.75
PROJ+Cluster 92.33 60.35 71.90 72.93 68.39 90.91 51.54 62.28 63.12 58.98
CCA 90.62† 59.42 68.87 69.58 65.96 88.88† 49.32 59.65 59.50 56.16
CCA+Cluster 92.03† 60.66 71.33 70.87 67.62 90.49† 51.29 61.69 61.50 58.16

MCD13 83.33 58.50 68.07 70.14 65.57 78.54 48.11 56.86 58.20 54.39

MCD13∗ 84.44 57.30 68.15 69.91 65.12 80.30 47.34 57.12 58.80 54.42
MCD13∗+Cluster 90.21 60.55 70.43 72.01 67.66 88.28 50.20 60.96 61.96 57.71

Table 3: Cross-lingual transfer dependency parsing from English on the test dataset of 4 universal multi-
lingual treebanks. Results measured by unlabeled attachment score (UAS) and labeled attachment score
(LAS). ∗ denotes our re-implementation of MCD13. Since the model varies for different target languages
in the CCA-based approach, † indicates the averaged UAS/LAS.

Experimental Contribution DE/ES/FR Avg
PROJ vs. DELEX +3.79 (8.2%)
CCA vs. DELEX +2.19 (4.8%)
PROJ vs. MCD13∗ +3.33 (7.3%)
CCA vs. MCD13∗ +1.74 (3.8%)
PROJ+Cluster vs. PROJ +1.23 (2.9%)
CCA+Cluster vs. CCA +2.00 (4.6%)
MCD13∗+Cluster vs. MCD13∗ +3.29 (7.2%)
PROJ+Cluster vs. DELEX +5.02 (10.9%)
CCA+Cluster vs. DELEX +4.20 (9.1%)
PROJ+Cluster vs. MCD13∗ +4.46 (9.8%)
CCA+Cluster vs. MCD13∗ +3.74 (8.2%)
PROJ+Cluster vs. MCD13∗+Cluster +1.27 (3.0%)
CCA+Cluster vs. MCD13∗+Cluster +0.45 (1.1%)

Table 4: Summary of each of the experimental
gains detailed in Table 3, in both absolute LAS
gain and relative error reduction. All gains are sta-
tistically significant using MaltEval at p < 0.01.12

greedy decoding and local training. Our re-
implementation of (McDonald et al., 2013) attains
comparable performance with MCD13.

For all languages we consider in this study, by
using cross-lingual word embeddings either from
alignment-based projection or CCA, we obtain
statistically significant improvements against the
delexicalized system, both in UAS and LAS.

Interestingly, we notice that PROJ consistently
performs better than CCA by a significant margin,
and is comparable to McD13∗+Cluster. We will
give further analysis to this observation in Sec-
tion 5.3.1 and 5.3.2.

Our framework is flexible for incorporating
richer features simply by embedding them into
continuous vectors. Thus we further embed the
cross-lingual word cluster features into our model,
together with the proposed cross-lingual word em-

beddings. The cluster feature template used here
is similar to the POS tag feature templates:

Cluster features
Ec

Si
,Ec

Bi
, i = 0,1,2

Ec
lc1(Si),E

c
rc1(Si),E

c
lc2(Si),E

c
rc2(Si), i = 0,1

Ec
lc1(lc1(Si)),E

c
rc1(rc1(Si)), i = 0,1

Table 5: Word cluster feature templates.

As shown in Table 3, additive improvements are
obtained for both PROJ and CCA. Compared with
our delexicalized system, the relative error is re-
duced by up to 13.1% in UAS, and up to 12.6% in
LAS. The combined system further outperforms
McD13∗ augmented with cluster features signifi-
cantly .

5.3.1 Effect of Robust Projection
Since in both PROJ and the induction of cross-
lingual word clusters, we use edit distance mea-
sure for OOV words, we would like to see how
this affects the performance of parsing.

Intuitively, higher coverage of projected words
in the test dataset should promote the parsing per-
formance more. To verify this, we further con-
duct experiments under both settings using the
PROJ+Cluster model. Results are shown in Ta-
ble 6. Improvements are observed for all lan-
guages when using robust projection with edit dis-
tance measure, especially for FR, where the high-
est coverage gain is obtained by robust projection.

5.3.2 Fine-tuning of Word Embeddings
Another reason for the effectiveness of PROJ over
CCA lies in the fine-tuning of word embeddings
while training the parser.
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Simple Robust ∆

DE
coverage 91.37 94.70 +3.33

UAS 59.74 60.35 +0.61
LAS 50.84 51.54 +0.70

ES
coverage 94.51 96.67 +2.16

UAS 70.97 71.90 +0.93
LAS 61.34 62.28 +0.94

FR
coverage 90.83 97.60 +6.77

UAS 71.17 72.93 +1.76
LAS 61.72 63.12 +1.40

Table 6: Effect of robust projection.

CCA can be viewed as a joint method for in-
ducing cross-lingual word embeddings. When
training the source language dependency parser
with cross-lingual word embeddings derived from
CCA, the EN word embeddings should be fixed.
Otherwise, the translational equivalence will be
broken. However, for PROJ, there is no such limi-
tation. Word embeddings can be updated as other
non-lexical feature embeddings, in order to obtain
a more accurate dependency parser. We refer to
this procedure as a fine-tuning process to the word
embeddings. To verify the benefits of fine-tuning,
we conduct experiments to see relative loss if word
embeddings are fixed while training. Results are
shown in Table 7, which indicates that fine-tuning
indeed offers considerable help.

Fix Fine-tune ∆

DE
UAS 59.74 60.07 +0.33
LAS 49.44 49.94 +0.50

ES
UAS 70.10 71.42 +1.32
LAS 61.31 61.76 +0.45

FR
UAS 70.65 71.36 +0.71
LAS 60.69 61.50 +0.81

Table 7: Effect of fine-tuning word embeddings.

5.4 Compare with Existing Bilingual Word
Embeddings

In this section, we compare our bilingual em-
beddings with several previous approaches in the
context of dependency parsing. To the best of
our knowledge, this is the first work on eval-
uation of bilingual word embeddings in syntac-
tic tasks. The approaches we consider include
the multi-task learning approach (Klementiev et
al., 2012) [MTL], the bilingual auto-encoder ap-
proach (Chandar et al., 2014) [BIAE], the bilingual
compositional vector model (Hermann and Blun-
som, 2014) [BICVM], and the bilingual bag-of-

words approach (Gouws et al., 2014) [BILBOWA].
For MTL and BIAE, we adopt their released

word embeddings directly due to the inefficiency
of training.13 For BICVM and BILBOWA, we re-
run their systems on the same dataset as our pre-
vious experiments.14 Results are summarized in
Table 8. CCA and PROJ consistently outperforms
all other approaches in all languages, and PROJ

performs the best. The inferior performance of
MTL and BIAE is partly due to the low word
coverage. For example, they cover only 31% of
words in the universal DE test treebank, whereas
the CCA and PROJ covers over 70%. Moreover,
BIAE, BICVM and BILBOWA are optimized using
semantic-related objectives. So we suggest that
they are probably not well fit for syntactic tasks.

It is worth noting that we don’t assume/require
bilingual parallel data in CCA and PROJ. What
we need in practice is a bilingual lexicon for each
paired languages. This is especially important
for generalizing our approaches to lower-resource
languages, where parallel texts are not available.

6 Related Studies

Existing approaches for cross-lingual dependency
parsing can be divided into three categories: cross-
lingual annotation projection methods, jointly
modeling methods and cross-lingual representa-
tion learning methods.

The cross-lingual annotation projection method
is first proposed in Yarowsky et al. (2001) for shal-
lower NLP tasks (POS tagging, NER, etc.). The
central idea is to project the syntactic annotations
from a resource-rich language to the target lan-
guage through word alignments, and then train a
supervised parser on the projected noisy annota-
tions (Hwa et al., 2005; Smith and Eisner, 2009;
Zhao et al., 2009; Jiang et al., 2011; Tiedemann,
2014; Tiedemann, 2015). Noises and errors intro-
duced by the word alignment and annotation pro-
jection processes can be reduced with robust pro-
jection methods by using graph-based label propa-
gation (Das and Petrov, 2011; Kim and Lee, 2012),
or by incorporating auxiliary resources (Kim et al.,
2012; Khapra et al., 2010).

The jointly modeling methods integrates the
monolingual grammar induction with bilingually-
projected dependency information (Liu et al.,
2013), or linguistic constraints via posterior

13The MTL embeddings are normalized before training.
14BICVM only uses the bilingual parallel dataset.
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DE ES FR
UAS LAS UAS LAS UAS LAS

MTL (Klementiev et al., 2012)‡ 57.70 47.13 68.04 58.78 67.66 57.30
BIAE (Chandar et al., 2014)‡ 53.74 43.68 58.81 46.66 60.10 49.47
BICVM (Hermann and Blunsom, 2014) 56.30 46.99 67.78 58.08 69.13 58.13
BILBOWA (Gouws et al., 2014) 51.65 41.83 65.02 54.35 63.35 51.65
CCA 59.42 49.32 68.87 59.65 69.58 59.50
PROJ 60.07 49.94 71.42 61.76 71.36 61.55

Table 8: Comparison with existing bilingual word embeddings. ‡For MTL and BIAE, we use their
released bilingual word embeddings.

regularization (Ganchev et al., 2009), manu-
ally constructed universal dependency parsing
rules (Naseem et al., 2010) and manually spec-
ified typological features (Naseem et al., 2012).
Besides dependency parsing, the joint modeling
method has also been applied for other multi-
lingual NLP tasks, including NER (Che et al.,
2013; Wang and Manning, 2014), SRL (Zhuang
and Zong, 2010; Titov and Klementiev, 2012) and
WSD (Guo and Diab, 2010).

The cross-lingual representation learning
method aims at building connections across
different languages by inducing language-
independent feature representations. After that, a
parser can be trained at the source-language side
within the induced feature space, and directly be
applied to the target language. Typical approaches
include cross-lingual word clustering (Täckström
et al., 2012) which is employed in this paper as a
baseline, projection features (Durrett et al., 2012).
Xiao and Guo (2014) learns cross-lingual word
embeddings and apply them with MSTParser for
linguistic transfer, which inspires this work.

It is worth mentioning that remarkable re-
sults on the universal dependency treebanks have
been achieved by using annotation projection
method (Tiedemann, 2014), treebank translation
method (Tiedemann and Nivre, 2014), and distri-
bution transferring method (Ma and Xia, 2014).
Unlike our approach, all of these methods in-
volve training a parser at the target language side.
Parallel bitexts are required in these methods,
which limits their scalability to lower-resource
languages. That said, these methods have the ad-
vantage that they are capable of capturing some
language-specific syntactic patterns which our ap-
proach cannot.15 These two kinds of approaches

15For example, in Spanish and French, adjectives often ap-
pears after nouns, thus forming a right-directed arc labeled
by amod, whereas in English, the amod arcs are mostly left-
directed.

are complementary, and can be integrated to push
the performance further.

7 Conclusion

This paper proposes a novel framework based on
distributed representations for cross-lingual de-
pendency parsing. Two algorithms are proposed
for the induction of cross-lingual word represen-
tations: robust projection and CCA, which bridge
the lexical feature gap.

Experiments show that by using cross-lingual
word embeddings derived from either approach,
the transferred parsing performance can be im-
proved significantly against the delexicalized sys-
tem. A notable observation is that our projection
method performs significantly better than CCA,
a joint method. Additionally, our framework is
flexibly able to incorporate the cross-lingual word
cluster features, with further significant gains in
each use. The combined system significantly
outperforms the delexicalized system on all lan-
guages, by an average of 10.9% error reduction
on LAS, and further significantly outperforms Mc-
Donald et al. (2013) augmented with projected
cluster features.16
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car Täckström, et al. 2013. Universal dependency
annotation for multilingual parsing. In ACL, pages
92–97.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tahira Naseem, Harr Chen, Regina Barzilay, and Mark
Johnson. 2010. Using universal linguistic knowl-
edge to guide grammar induction. In EMNLP, pages
1234–1244.

Tahira Naseem, Regina Barzilay, and Amir Globerson.
2012. Selective sharing for multilingual dependency
parsing. In ACL, pages 629–637.

Joakim Nivre. 2004. Incrementality in deterministic
dependency parsing. In Proceedings of the Work-
shop on Incremental Parsing: Bringing Engineering
and Cognition Together, pages 50–57.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2011.
A universal part-of-speech tagset. arXiv preprint
arXiv:1104.2086.

David A Smith and Jason Eisner. 2009. Parser adap-
tation and projection with quasi-synchronous gram-
mar features. In EMNLP, pages 822–831. Associa-
tion for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS, pages 3104–3112.
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Abstract
How we teach and learn is undergoing a
revolution, due to changes in technology
and connectivity. Education may be one
of the best application areas for advanced
NLP techniques, and NLP researchers
have much to contribute to this problem,
especially in the areas of learning to write,
mastery learning, and peer learning. In
this paper I consider what happens when
we convert natural language processors
into natural language coaches.

1 Why Should You Care, NLP
Researcher?

There is a revolution in learning underway. Stu-
dents are taking Massive Open Online Courses as
well as online tutorials and paid online courses.
Technology and connectivity makes it possible for
students to learn from anywhere in the world, at
any time, to fit their schedules. And in today’s
knowledge-based economy, going to school only
in one’s early years is no longer enough; in future
most people are going to need continuous, life-
long education.

Students are changing too — they expect to
interact with information and technology. For-
tunately, pedagogical research shows significant
benefits of active learning over passive methods.
The modern view of teaching means students work
actively in class, talk with peers, and are coached
more than graded by their instructors.

In this new world of education, there is a great
need for NLP research to step in and help. I hope
in this paper to excite colleagues about the pos-
sibilities and suggest a few new ways of looking
at them. I do not attempt to cover the field of
language and learning comprehensively, nor do I
claim there is no work in the field. In fact there
is quite a bit, such as a recent special issue on lan-
guage learning resources (Sharoff et al., 2014), the

long running ACL workshops on Building Edu-
cational Applications using NLP (Tetreault et al.,
2015), and a recent shared task competition on
grammatical error detection for second language
learners (Ng et al., 2014). But I hope I am cast-
ing a few interesting thoughts in this direction for
those colleagues who are not focused on this par-
ticular topic.

2 How Awkward

Perhaps the least useful feedback that an instructor
writes next to a block of prose on a learner’s essay
is ‘awkward’. We know what this means: some-
thing about this text does not read fluently. But this
is not helpful feedback; if the student knew how to
make the wording flow, he or she would have writ-
ten it fluently in the first place! Useful feedback is
actionable: it provides steps to take to make im-
provements.

A challenge for the field of NLP is how to build
writing tutors or coaches – as opposed to graders
or scorers. There is a vast difference between a
tool that performs an assessment of writing and
one that coaches students to help them as they are
attempting to write.

Current practice uses the output of scorers to
give students a target to aim for: revise your essay
to get a higher score. An alternative is to design
a system that watches alongside a learner as they
write an essay, and coaches their work at all levels
of construction – phrase level, clause level, sen-
tence level, discourse level, paragraph level, and
essay level.

Grammar checking technology has been excel-
lent for years now (Heidorn, 2000), but instead of
just showing the right answer as grammar check-
ers do, a grammar coach should give hints and
scaffolding the way a tutor would – not giving the
answer explicitly, but showing the path and letting
the learner fill in the missing information. When
the learner makes incorrect choices, the parser
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can teach principles and lessons for the concep-
tual stage that the learner is currently at. Different
grammars could be developed for learners at dif-
ferent competency levels, as well as for different
first-second language pairings in the case of sec-
ond language learning.

This suggests a different approach for building
a parser than what is the current standard. I am
not claiming that this has not been suggested in
the past; for instance Schwind (1988) designed a
parser to explain errors to learners. However, be-
cause of the renewed interest in technology for
teaching, this may be a pivotal time to recon-
sider how we develop parsing technology: perhaps
we should think fundamentally about parsers as
coaches rather than parsers as critics.

This inversion can apply to other aspects of
NLP technology as well. For instance, Dale and
Kilgarriff (2011) have held a series of workshop
to produce algorithms to identify errors introduced
into texts by non-native writers in the warmly
named “Helping Our Own” shared task (Dale et
al., 2012). Using the technology developed for
tasks like these, the challenge is to go beyond rec-
ognizing and correcting the errors to helping the
writer understand why the choices they are making
are not correct. Another option is to target practice
questions tailored for learners based on errors in a
fun manner (as described below).

Of course, for decades, the field of Intelligent
Tutoring Systems (ITS) (VanLehn, 2011) has de-
veloped technology for this purpose, so what is
new about what I am suggesting? First, we know
as NLP researchers that language analysis requires
specific technology beyond standard algorithms,
and so advances in Intelligent Tutoring Systems
on language problems most likely requires col-
laboration with experts in NLP. And, apparently
such collaborations have not been as robust as they
might be (Borin, 2002; Meurers, 2012). So there
is an opportunity for new advances at the intersec-
tion of these two fields.

And second, the newly expanded interest in on-
line learning and technology makes possible the
access of information about student writing be-
havior on a large scale that was not possible in
the past. Imagine thousands of students in cas-
caded waves, tasked with writing essays on the
same topic, and receiving real-time suggestions
from different algorithms. The first wave of stu-
dent responses to the feedback would be used to

Figure 1: Wordcraft user interface showing a farm
scene with four characters, a fully formed sen-
tence, the word tray with candidate additional
words colored by part of speech, and tool bar.
When the child completes a sentence correctly, the
corresponding action is animated.

improve the algorithms and these results would be
fed into the next wave of student work, and so on.
Students and instructors could be encouraged to
give feedback via the user interface. Very rapid
cycles of iteration should lead to accelerated im-
provements in understanding of how the interfaces
and the algorithms could be improved. A revo-
lution in understanding of how to coach student
writing could result!

Algorithms could be designed to give feedback
for partially completed work: partially written
sentences in the case of a parser; partially com-
pleted paragraphs in the case of a discourse writ-
ing tool, and so on, rather than only assessing
completed work after the fact.

3 Karaoke Anyone?

Beyond learning to write, new technology is
changing other aspects of language learning in
ways that should excite NLP researchers. In or-
der to write well, a student must have a good vo-
cabulary and must know syntax. Learning words
and syntax requires exposure to language in many

1246



contexts, both spoken and written, for a student’s
primary language was well as for learning a sec-
ond language.

Although computerized vocabulary tools have
been around for quite some time, the rise of mo-
bile, connected applications, the serious games
movement, and the idea of “microtasks” which
are done during interstices of time while out and
about during the day, opens the door to new ways
to expose students to repetitive learning tasks for
acquiring language (Edge et al., 2011). Some of
the most innovative approaches for teaching lan-
guage combine mobile apps with multimedia in-
formation.

For example, the Tip Tap Tones project (Edge
et al., 2012) attempts to help learners reduce the
the challenge of mastering a foreign phonetic sys-
tem by microtasking with minute-long episodes of
mobile gaming. This work focuses in particular
on helping learners acquire the tonal sound system
of Mandarin Chinese and combines gesture swipes
with audio on a smartphone.

The ToneWars app (Head et al., 2014) takes
this idea one step farther by linking second lan-
guage learners with native speakers in real time
to play a Tretis-like game against one another to
better learn Chinese pronunciation. The second
language learner feels especially motivated when
they are able to beat the native speaker, and the
native speaker contributes their expert tone record-
ings to the database, fine-tunes their understanding
of their own language, and enjoys the benefits of
tutoring others in a fun context.

Going beyond phonemes, the DuoLingo
second-language learning application (von Ahn,
2013) teaches syntax as well as vocabulary
through a game-based interface. For instance,
one of Duolingo’s games consists of a display of
a sentence in one language, and a jumbled list
of words in the opposing language presented as
cards to be dragged and dropped onto a tray in the
correct order to form a sentence. In some cases
the user must select between two confounding
choices, such as the articles “le” or “la” to modify
French nouns.

Our work on a game for children called Word-
Craft takes this idea one step further (Anand et al.,
2015) (see Figure 1). Children manipulate word
cards to build sentences which, when grammati-
cally well formed, come to life in a storybook-like
animated world to illustrate their meaning. Pre-

liminary studies of the use of Wordcraft found that
children between the ages of 4 and 8 were able to
observe how different sentence constructions re-
sulted in different meanings and encouraged chil-
dren to engage in metalinguistic discourse, espe-
cially when playing the game with another child.

A karaoke-style video simulation is used by the
Engkoo system to teach English to Chinese speak-
ers (Wang et al., 2012). The interface not only
generates audio for the English words, but also
shows the lip and facial shapes necessary for form-
ing English words using a 3D simulated model lip-
syncing the words in a highly realistic manner. To
generate a large number of sample sentences, the
text was drawn from bilingual sentence pairs from
the web.

These technologies have only become feasible
recently because of the combination of multime-
dia, fast audio and image processing, fast network
connectivity, and a connected population. NLP re-
searchers may want to let their imaginations con-
sider the possibilities that arise from this new and
potent combination.

4 Closing the Cheese Gap

Salman Kahn, the creator of Kahn Academy, talks
about the “Swiss cheese” model of learning in
which students learn something only partly before
they are forced to move on to the next topic, build-
ing knowledge on a foundation filled with holes,
like the cheese of the same name (Khan, 2012).
This is akin to learning to ride a bicycle without
perfecting the balancing part. In standard school-
ing, students are made to move one from one les-
son to the next even if they only got 70, 80, 90%
correct on the test. By contrast, mastery learn-
ing requires a deep understanding, working with
knowledge and probing it from every angle, try-
ing out the ideas and applying them to solve real
problems.

In many cases, mastery learning also requires
practicing with dozens, hundreds, or even thou-
sands of different examples, and getting feedback
on those examples. Automation can help with
mastery learning by generating personalized prac-
tice examples that challenge and interest students.
Automatically generated examples also reduce the
cost of creating new questions for instructors who
are concerned about answer sharing among stu-
dents from previous runs of a course.

Recently, sophisticated techniques developed in
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the programming languages field have begun to be
applied to automate repetitive and structured tasks
in education, including problem generation, solu-
tion generation, and feedback generation for com-
puter science and logic topics (Gulwani, 2014).

Closer to the subject at hand is the automated
generation of mathematical word problems that
are organized around themes of interest to kids,
such as “School of Wizardry” (Polozov et al.,
2015). The method allows the student to specify
personal preferences about the world and charac-
ters, and then creates mini “plots” for each word
problem by enforcing coherence across the sen-
tences using constraints in a logic programming
paradigm combined with hand-crafted discourse
tropes (constraints on logical graphs) and a natu-
ral language generation step. A sample generated
word problem is

Professor Alice assigns Elliot to make a
luck potion. He had to spend 9 hours
first reading the recipe in the textbook.
He spends several hours brewing 11 por-
tions of it. The potion has to be brewed
for 3 hours per portion. How many
hours did Elliot spend in total?

Results are close in terms of comprehensibility
and solubility to those of a textbook. The project’s
ultimate goal is to have the word problems actu-
ally tell a coherent story, but that challenge is still
an open one. But the programs can generate an
infinite number of problems with solutions. Other
work by the same research team generated person-
alized algebraic equation problems in a game en-
vironment and showed that students could achieve
mastery learning in 90 minutes or less during an
organized educational campaign (Liu et al., 2015).

Another way that NLP can help with mastery
learning is to aid instructors in the providing of
feedback on short answer test questions. There
has been significant work in this space (Kukich,
2000; Hirschman et al., 2000). The standard ap-
proach builds on the classic successful model of
essay scoring which compares the student’s text to
model essays using a similarity-based technique
such as LSA (Landauer et al., 2000; Mohler and
Mihalcea, 2009) or careful authoring of the answer
(Leacock and Chodorow, 2003).

Recent techniques pair with learning techniques
like Inductive Logic Programming with instructor
editing to induce logic rules that describe permis-
sible answers with high accuracy (Willis, 2015).

Unfortunately most approaches require quite a
large number of students’ answers to be marked
up manually by the instructor before the feedback
is accurate enough to be reliably used for a given
question; a recent study found on the order of 500-
800 items per question had to be marked up at
minimum in order to obtain acceptable correla-
tions with human scorers (Heilman and Madnani,
2015). This high initial cost makes the develop-
ment of hundreds of practice questions for a given
conceptual unit a daunting task for instructors.

Recent research in Learning at Scale has pro-
duced some interesting approaches to improving
“feedback at scale.” One approach (Brooks et al.,
2014) uses a variation on hierarchical text cluster-
ing in tandem with a custom user interface that al-
lows instructors to rapidly view clusters and deter-
mine which contain correct answers, incorrect an-
swers, and partially correct answers. This greatly
speeds up the markup time and allows instructors
to assign explanations to a large group of answers
with a click of a button.

An entirely different approach to providing
feedback that is becoming heavily used in Massive
Open Online Courses is peer feedback, in which
students assign grades or give feedback to other
students on their work (Hicks et al., 2015). Re-
searchers have studied how to refine the process
of peer feedback to train students to produce re-
views that come within a grade point of that of in-
structors, with the aid of carefully designed rubrics
(Kulkarni et al., 2013).

However, to ensure accurate feedback, several
peer assessments per assignment are needed in ad-
dition to a training exercise, and students some-
times complain about workload. To reduce the ef-
fort, Kulkarni et al. (2014) experimented with a
workflow that uses machine grading as a first step.
After training a machine learning algorithm for a
given assignment, assignments are scored by the
algorithm. The less confident the algorithm is in
its score, the more students are assigned to grade
the assignment, but high-confidence assignments
may need only one peer grader. This step was
found to successfully reduce the amount of feed-
back needed to be done with a moderate decrease
in grading performance. That said, the algorithm
did require the instructors to mark up 500 sam-
ple assignments, and there is room for improve-
ment in the algorithm in other ways, since only
a first pass at NLP techniques was used to date.
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Nonetheless, mixing machine and peer grading is
a promising technique to explore, as it has been
found to be useful in other contexts (Nguyen and
Litman, 2014; Kukich, 2000).

5 Are You a FakeBot?

Why is the completion rate of MOOCs so low?
This question vexes proponents and opponents of
MOOCs alike. Counting the window shopping en-
rollees of a MOOC who do not complete a course
is akin to counting everyone who visits a col-
lege campus as a failed graduate of that univer-
sity; many people are just checking the course out
(Jordan, 2014). That said, although the anytime,
anywhere aspect of online courses works well for
many busy professionals who are self-directed, re-
search shows that most people need to learn in an
environment that includes interacting with other
people.

Learning with others can refer to instructors and
tutors, and online tutoring systems have had suc-
cess comparable to that of human tutors in some
cases (VanLehn, 2011; Aleven et al., 2004). But
another important component of learning with oth-
ers refers to learning with other students. Lit-
erally hundreds of research papers show that an
effective way to help students learn is to have
them talk together in small groups, called struc-
tured peer learning, collaborative learning, or co-
operative learning (Johnson et al., 1991; Lord,
1998). In the classroom, this consists of activities
in which students confer in small groups to discuss
conceptual questions and to engage in problem-
solving. Studies and meta-analyses show the sig-
nificant pedagogical benefit of peer learning in-
cluding improved critical thinking skills, retention
of learned information, interest in subject matter,
and class morale (Hake, 1998; Millis and Cottell,
1998; Springer et al., 1999; Smith et al., 2009;
Deslauriers et al., 2011). Even studies of intelli-
gent tutoring systems find it hard to do better than
just having students discuss homework problems
in a structured setting online (Kumar et al., 2007).

The reasons for the success of peer learning in-
clude: students are at similar levels of understand-
ing that experts can no longer relate to well, people
learn material better when they have to explain it
to others, and identify the gaps in their current un-
derstanding, and the techniques of structured peer
learning introduce activities and incentives to help
students help one another.

S2 I think E is the right answer
S1 Hi, I think E is right, too
S3 Hi! This seems to be a nurture vs nature

question.
S3 Can scent be learned, or only at birth?
S2 Yeah, but answer A supports the author’s

conclusion
S1 I felt that about A too
S2 But the question was, which statement

would weaken the author’s conclusion
S3 So I choose A, showing that scent can be

learned at not only AT BIRTH.
S2 That’s why I think E is right
S3 Are you real, or fake?
S2 real
S1 I didn’t think that b or d had anything to

do with the statement
S3 Actually what you said makes sense.
S1 So, do we all agree that E was the correct

answer?
S2 I think so, yes.
S3 But I’m sticking with A since “no other

water could stimulate olfactory sites” abd
I suggests that other water could be de-
tected.

S3 *and
S1 I thought about c for awhile but it didn’t

really seem to have anything to do with
the topic of scent

S3 It has to be A or E. Other ones don’t have
anything do do with the question.

S2 but that “no other water” thing applies
equally well to E

S3 E is still about spawing ground water, I
think. this is a confusing question.

S1 I thought E contradicted the statement the
most

S2 me too
S3 I loving hits with other mturkers

Table 1: Transcript of a conversation among three
crowdworkers who discussed the options for a
multiple choice question for a GMAT logical rea-
soning task. Note the meta-discussion about the
prevalence of robots on the crowdsourcing plat-
form.

1249



In our MOOCChat research, we were inter-
ested in bringing structured peer learning into the
MOOC setting. We first tried out the idea on
a crowdsourcing platform (Coetzee et al., 2015),
showing that when groups of 3 workers discussed
challenging problems together, and especially if
they were incentivized to help each other arrive
at the correct answer, they achieved better results
than working alone. (A sample conversation is
shown in Table 1.) We also found that provid-
ing a mini-lesson in which workers consider the
principles underlying the tested concept and jus-
tify their answers leads to further improvements,
and combining the mini-lesson with the discussion
of the corresponding multiple-choice question in a
group of 3 leads to significant improvements on
that question. Crowd workers also expressed pos-
itive subjective responses to the peer interactions,
suggesting that discussions can improve morale in
remote work or learning settings.

When we tested the synchronous small-group
discussions in a live MOOC we found that, for
those students that were successfully placed into a
group of 3 for discussion, they were quite positive
about the experience (Lim et al., 2014). However,
there are significant challenges in getting students
to coordinate synchronously in very large low-cost
courses (Kotturi et al., 2015).

There is much NLP research to be done to en-
hance the online dialogues that are associated with
student discussion text beyond the traditional role
of intelligent tutoring systems. One idea is to mon-
itor discussions in real time and try to shape the
way the group works together (Tausczik and Pen-
nebaker, 2013). Another idea is to automatically
assess if students are discussing content at appro-
priate levels on Bloom’s taxonomy of educational
objectives (Krathwohl, 2002).

In our MOOCChat work with triad discussions
we observed that more workers will change their
answer from an incorrect to a correct one if at least
one member of the group starts out correct than
if no one is correct initially (Hearst et al., 2015).
We also noticed that if all group members start
out with the same answer — right or wrong — no
one is likely to change their answer in any direc-
tion. This behavior pattern suggests an interesting
idea for large scale online group discussions that
are not feasible in in-person environments: dy-
namically assign students to groups depending on
what their initial answers to questions are, and dy-

namically regroup students according to the mis-
conceptions and correct conceptions they have.
Rather than building an intelligent tutoring sys-
tem to prompt students with just the right state-
ment at just the right time, a more successful strat-
egy might be to mix students with other poeple
who for that particular discussion point have the
just the right level of conceptual understanding to
move the group forward.

6 Conclusions

In this paper I am suggesting inverting the stan-
dard mode of our field from that of processing,
correcting, identifying, and generating aspects of
language to one of recognizing what a person is
doing with language: NLP algorithms as coaches
rather than critics. I have outlined a number of
specific suggestions for research that are currently
outside the mainstream of NLP research but which
pose challenges that I think some of my colleagues
will find interesting. Among these are text ana-
lyzers that explain what is wrong with an essay at
the clause, sentence, discourse level as the student
writes it, promoting mastery learning by generat-
ing unlimited practice problems, with answers, in
a form that makes practice fun, and using NLP to
improve the manner in which peers learning takes
place online. The field of learning and education
is being disrupted, and NLP researchers should be
helping push the frontiers.
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Abstract

This paper proposes a novel approach
for incorporating discourse information
into machine comprehension applications.
Traditionally, such information is com-
puted using off-the-shelf discourse analyz-
ers. This design provides limited oppor-
tunities for guiding the discourse parser
based on the requirements of the target
task. In contrast, our model induces re-
lations between sentences while optimiz-
ing a task-specific objective. This ap-
proach enables the model to benefit from
discourse information without relying on
explicit annotations of discourse structure
during training. The model jointly iden-
tifies relevant sentences, establishes rela-
tions between them and predicts an an-
swer. We implement this idea in a discrim-
inative framework with hidden variables
that capture relevant sentences and rela-
tions unobserved during training. Our ex-
periments demonstrate that the discourse
aware model outperforms state-of-the-art
machine comprehension systems.1

1 Introduction

The task of machine comprehension concerns the
automatic extraction of answers from a given pas-
sage. Often, the relevant information required to
answer a question is distributed across multiple
sentences. Understanding the relation(s) between
these sentences is key to finding the correct an-
swer. Consider the example in fig. 1. To answer
the question about why Sally put on her shoes , we
need to infer that She put on her shoes and She
went outside to walk are connected by a causality
relation.

1Code and data are available at http://people.
csail.mit.edu/karthikn/mcdr.

Sally liked going outside. She put on her shoes.
She went outside to walk. [...] Missy the cat
meowed to Sally. Sally waved to Missy the cat.
[...] Sally hears her name. ”Sally, Sally, come
home”, Sally’s mom calls out. Sally runs home
to her Mom. Sally liked going outside.

Why did Sally put on her shoes?
A) To wave to Missy the cat
B) To hear her name
C) Because she wanted to go outside
D) To come home

Figure 1: Sample story excerpt from a passage in
the MCTest dataset.2 Correct answer is in italics.

Prior work has demonstrated the value of dis-
course relations in related applications such as
question answering (Jansen et al., 2014). Tradi-
tionally, however, these approaches rely on out-
puts from off-the-shelf discourse analyzers, us-
ing them as features for target applications. Such
pipeline designs provide limited opportunities for
guiding the discourse parser based on the require-
ments of the end task. Given a wide spectrum
of discourse frameworks (Mann and Thompson,
1988; Prasad et al., 2008; Wolf and Gibson, 2005),
it is not clear a priori what the optimal set of dis-
course annotations is for the task. Moreover, a
generic discourse parser may introduce additional
errors due to the mismatch between its training
corpus and a dataset used in an application. In fact,
the largest discourse treebanks are based on news-
paper corpora (Prasad et al., 2008; Carlson et al.,
2002), which differ significantly in style from text
used in machine comprehension corpora (Richard-
son et al., 2013).

In this paper, we propose a novel approach
for incorporating discourse structure into machine

2http://research.microsoft.com/en-us/
um/redmond/projects/mctest/
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comprehension applications. Rather than using a
standalone parser that is trained on external su-
pervised data to annotate discourse relations, the
model induces relations between sentences while
optimizing a task-specific objective. This design
biases the model to learn relations at a granu-
larity optimized for the machine comprehension
task. In contrast to a generic discourse analyzer,
our method can also utilize additional information
available in the machine comprehension context.
For instance, question types provide valuable cues
for determining discourse relations, and thus can
facilitate learning.

We implement these ideas in a discrimina-
tive log-linear model with hidden variables. The
model jointly identifies relevant sentences, estab-
lishes relations between them and predicts an an-
swer. Since the same set of sentences can give rise
to multiple questions, we do not limit the model
to a single discourse relation, but rather model a
distribution over possible relations. During train-
ing, we only have access to questions and gold
answers. Since relevant sentences and their rela-
tions are not known, we model them as hidden
variables. To guide the model towards linguisti-
cally plausible discourse relations, we add a few
seed markers that are typical of each relation. The
model predicts relations not only based on the sen-
tences, but also incorporates information about the
question. By decomposing the dependencies be-
tween model components, we can effectively train
the model using a standard gradient descent ap-
proach.

We evaluate our model using a recently re-
leased machine comprehension dataset (Richard-
son et al., 2013). In this corpus, roughly half of
the questions rely on multiple sentences in the pas-
sage to generate the correct answer. For baselines,
we use the best published results on this dataset.
Our results demonstrate that our relation-aware
model outperforms the individual baselines by up
to 5.7% and rivals the performance of a state-of-
the-art combination system. Moreover, we show
that the discourse relations it predicts for sentence
pairs exhibit considerable overlap with relations
identified by human annotators.

2 Related Work

Machine Comprehension Following traditional
methods in question answering, most approaches
to machine comprehension focus on analyzing the

connection between the question, candidate an-
swer and the document. For instance, Richardson
et al. (2013) show that using word overlap alone
provides a good starting point for the task. Using
textual entailment output (Stern and Dagan, 2011)
and embedding-based representations (Iyyer et al.,
2014) further improves the result. Even though
these methods operate at a paragraph level, they
do not model relations between sentences. For in-
stance, in their work on factoid question answer-
ing using recursive neural networks, Iyyer et al.
(2014) average the sentence vectors element-wise
when considering more than one sentence.

A notable exception is the approach proposed
by Berant et al. (2014). Their approach builds on
a semantic representation that encodes a number
of inter-event relations, such as cause and enable.
These relations straddle the boundary between dis-
course and semantic connections, since most of
them are specific to the domain of interest. These
relations are identified in a supervised fashion us-
ing a significant amount of manual annotations. In
contrast, we are interested in extracting discourse
relations with minimal additional annotation, re-
lying primarily on the available question-answer
pairs. As a result, we look at a smaller set of ba-
sic relations that can be learned without explicit
annotations.

Discourse analysis for Question Answering
Prior work has established the value of domain-
independent discourse relations in question an-
swering applications (Verberne et al., 2007; Jansen
et al., 2014; Chai and Jin, 2004). For instance,
Verberne et al. (2007) propose an answer extrac-
tion technique that treats question topics and an-
swers as siblings in a Rhetorical Structure The-
ory (RST) tree, significantly improving perfor-
mance on why-questions. Chai and Jin (2004) ar-
gue that incorporating discourse processing can
significantly help context question answering, a
task in which subsequent questions may refer to
entities or concepts in previous questions. Jansen
et al. (2014) utilize discourse information to im-
prove reranking of human-written answers for
non-factoid questions. They experiment with both
shallow discourse markers and deep representa-
tions based on RST parsers to rerank answers for
how and why-type questions3.

While the above approaches vary greatly in
3They use data from Yahoo! Answers and a Biology text-

book.
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terms of their design, they incorporate discourse
information in a similar fashion, adding it as fea-
tures to a supervised model. The discourse in-
formation is typically computed using discourse
parsers based on frameworks like RST (Feng and
Hirst, 2014) or PDTB (Lin et al., 2014), trained
using supervised data. In contrast, our goal is to
learn discourse relations driven by the task objec-
tive. The set of these relations does not capture
the richness of discourse representations consid-
ered in traditional discourse theories (Mann and
Thompson, 1988; Prasad et al., 2008). However,
we learn them without explicit annotations of dis-
course structure, and demonstrate that they im-
prove model performance.

3 Task Description and Approach

We focus on the task of machine comprehension,
which involves answering questions based on a
passage of text. Concretely, let us consider a pas-
sage pi = {Zi,Qi} to consist of a set of sentences
Zi = {zin} and a set of questions Qi = {qij},
with each question also having a set of answer
choices Aij = {aijk}. We denote the correct an-
swer choice for a question qij as a∗ij . Given a set of
training passages Ptrain with questions annotated
with the correct answer choice, the task is to be
able to answer questions accurately in a different
set of passages Ptest.

Figure 1 shows an example of a passage, along
with a question and answer choices. The only
(weak) source of supervision available is the cor-
rect answer choice for each question in training.
We do not use any extra annotations during train-
ing. We propose joint probabilistic models to ad-
dress this task, that can learn to identify single or
multiple relevant sentences given a question, es-
tablish a relation between them and score the an-
swer choices.

We explore three different discriminative mod-
els, ranging from a simple one that answers ques-
tions using a single sentence in the passage, to one
that infers relations between multiple sentences to
score answer choices. We defer the description of
the features used in our models to section 3.1.

Model 1 In our first model, we assume that each
question can be answered using a single sentence
from the passage. Treating the sentence as a hid-
den variable, we define a joint model for a sen-
tence z ∈ Z and an answer choice a ∈ Aj , given

a question qj .

(1)P (a, z | qj) = P (z | qj) · P (a | z, qj)
We define the joint probability as a product of two
distributions. The first is the conditional distribu-
tion of sentences in the paragraph given the ques-
tion. This is to help identify the right sentence re-
quired to answer the question. The second compo-
nent models the conditional probability of an an-
swer given the question q and a sentence z. For
both component probabilities, we use distributions
from the exponential family with features and as-
sociated weights:

P (z | q) ∝ eθ1·φ1(q,z)

P (a | z, q) ∝ eθ2·φ2(q,a,z)

where φs are the feature functions and θs are the
corresponding weight vectors.

We cast the learning problem as estimation of
the parameter weights to maximize the likelihood
of the correct answers in the training data. We con-
sider soft assignments to z and marginalize over
all its values to get the likelihood of an answer
choice:

(3)P (ajk | qj) =
∑
n

P (ajk, zn|qj)

This results in the following regularized likeli-
hood objective to maximize:

(4)

L1(θ;Ptrain)

= log
|Ptrain|∑
i=1

|Qi|∑
j=1

P (a∗ij | qij)− λ||θ||2

Model 2 We now propose a model for the multi-
sentence case where we make use of more than a
single relevant sentence pertaining to a question.
Considering that a majority of the questions in the
dataset can be answered using two sentences, we
restrict ourselves to sentence pairs for purposes of
computational tractability. We define the new joint
model as:

(5)P (a, z1, z2 | q) = P (z1 | q) · P (z2 | z1, q)
· P (a | z1, z2, q)

where the new components are also exponential-
family distributions:

P (z2 | z1, q) ∝ eθ3·φ3(q,z1,z2)

P (a | z1, z2, q) ∝ eθ2·φ2(q,a,z1,z2)
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Here, we have three components: the condi-
tional probability of a sentence z1 given q, of a sec-
ond sentence z2 given q and z1, and of the answer
a given q and the sentences.4 Ideally, we would be
able to consider all possible pairs of sentences in a
given paragraph. However, to reduce computation
costs in practice, we use a sentence window k and
consider only sentences that are at most k away
from each other.5 We hence maximize:

(7)L2(θ;Ptrain) =

log
|Ptrain|,|Qi|,|Zi|∑
i =1,j=1,m=1

∑
n∈[m−k,m+k]

P (a∗ij , zim, zin | qij)

− λ||θ||2

Model 3 In our next model, we aim to cap-
ture important relations between sentences. This
model has two novel aspects. First, we consider a
distribution over relations between sentence pairs
as opposed to a single relation. Second, we utilize
the cues from the question as context to resolve
ambiguities in sentences pairs with multiple plau-
sible relations.

We add in a hidden variable r ∈ R to represent
the relation type. We incorporate features that tie
in the question type with the relation type, and that
connect the type of relation to the lexical and syn-
tactic similarities between sentences. Our relation
setR consists of the following relations:
• Causal : Causes of events or reasons for facts.
• Temporal : Time-ordering of events
• Explanation : Predominantly dealing with how-

type questions.
• Other : A relation other than the above6

We can now modify the joint probability from
(5) by adding in relation type r to get:

(8)P (a, r, z1, z2 | q) = P (z1 | q) · P (r | q)
· P (z2 | z1, r, q) · P (a | z1, z2, r, q)

where

P (r | q) ∝ eθ4·φ4(q,r) (9a)

P (z2 | z1, r, q) ∝ eθ3·φ3(q,r,z1,z2) (9b)

P (a | z1, z2, r, q) ∝ eθ2·φ2(q,r,a,z1,z2) (9c)

The extra component P (r | q) is the conditional
distribution of the relation type r depending on the

4Since this component replaces the second component in
model 1, we use the same subscript 2 for its feature set φ.

5Including the case where z1 = z2.
6This includes the no-relation cases

question. This is to encourage the model to learn,
for instance, that why-questions correspond to the
causal relation. We also add in extra features to
P (z2 | z1, r), that help select a sentence pair con-
ditioned on a relation. The likelihood objective to
maximize is:

(10)L3(θ;Ptrain)
= log

∑
i,j,m,r∈R

∑
n∈[m−k,m+k]

P (a∗ij , zim, zin, r | qij)

− λ||θ||2

We maximize the likelihood objectives using
LBFGS-B (Byrd et al., 1995). We compute the
gradients required using Automatic Differentia-
tion (Corliss, 2002).

To predict an answer for a test question qj ,
we simply marginalize over all the hidden vari-
ables and choose the answer that maximizes
P (ajk | qj):

âj = argmax
k

P (ajk|qj)

3.1 Features
We use a variety of lexical and syntactic features
in our model. We employ the Stanford CoreNLP
tool (Manning et al., 2014) to pre-process the data.
Other than commonly used features in Q&A sys-
tems such as unigram and bigram matches, part-
of-speech tags, syntactic features, we also add in
features specific to our model.

We first define some terms used in our descrip-
tion. Entities are coreference-resolved nouns or
pronouns. Actions refer to verbs other than aux-
iliary ones such as is, are, was and were. An en-
tity graph is a graph between entities present in a
sentence. We create an entity graph by collapsing
nodes in the dependency graph and storing the in-
termediate nodes between any two entity nodes in
the edge between the nodes. We refer to the words
in a question q as q-words and similarly to words
in an answer a as a-words and those in a sentence
z as z-words. Figure 2 shows an example of an en-
tity graph constructed from the dependency graph
of a sentence.

We divide the features into 4 sets (φ1−4), cor-
responding to each component probability in (8).
Types 1 and 2 are inspired by prior work in
question classification/answering (Blunsom et al.,
2006; Jansen et al., 2014). Feature types 3 and 4
are specific to our models, primarily dealing with
relation types.
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My dog also likes spicy sausage

poss

nsubj

advmod

dobj

amod

root

dog sausage

likes

Figure 2: Top: Dependency graph, Bottom: En-
tity graph for an example sentence. Entities are in
bold, actions are in italics.

Relation Word list
Causal because, why, due, so

Temporal when, between, soon, before,
after, during, then, finally,

now, nowadays, first
Explanation how, by, using

Table 1: Seed marker words for relations used by
the model.

Type 1 (φ1) These features are primarily in-
tended to help the model select the most relevant
sentence from the passage for a question. We add
commonly used features such as unigram and bi-
gram matches, syntactic root match, entity and ac-
tion matches, missed entities/actions (in q but ab-
sent in z) and fractional coverage of q-words in z.
In addition, we use matches between the edges of
the entity graph of q and z. We also have second-
order features that are a cross of each feature men-
tioned above with the question word (how, what,
when, etc.).

Type 2 (φ2) Features in φ2 capture interactions
between the answer a, question q and sentence(s)
(z1, z2 in models 2,3 or z in model 1). For
the first-order features, we use ones similar to
those in φ1 for lexical, syntactic, entity and ac-
tion matches/misses between a and z. In addition,
we add in a neighbor match feature, which checks
for matches between the neighborhood of a word
from a that occurs in z, and q-words. Another fea-
ture we employ is the joint match between z-words
and the union of a-words and q-words. Finally, we
add in a sliding window (SW) feature, computing
its value as in Richardson et al. (2013).

Type 3 (φ3) The next set of features are spe-
cific to only models 2 and 3, used to connect sen-
tences z1 and z2 (and a relation r in model 3 only).

Split MC160 MC500
Passages Questions Passages Questions

Train 70 280 300 1200
Dev 30 120 50 200
Test 60 240 150 600

Table 2: Dataset Statistics

We use features like the inter-sentence distance
and the presence of relation-specific markers in
the sentences. We also cross the latter features
with entity and action matches between z1 and z2.
For the relation-specific words for each relation
(except Other), we use words (see Table 1) de-
rived mainly from Marcu (1997)’s list of discourse
markers.

Type 4 (φ4) The final set of features (used only
in model 3) are present to help the model learn
connections between the words in the question
and the relation type r. Specifically, we check if
the interrogative word in the question matches the
class represented by r. For instance, the word why
matches the Causal relation.

For the match-type features of all four types,
we use the match count as the feature value if the
count is non-zero. If the count is zero, we instead
set a corresponding zero feature7 to 1.

4 Experimental setup

Data and Setup We run our experiments on a
recently compiled dataset for machine comprehen-
sion: MCTest (Richardson et al., 2013). The data
consists of two distinct sets: MC160 and MC500,
which are of different sizes. Table 2 gives details
on the data splits for each dataset. Each passage
has 4 questions, with 4 answer choices each. The
questions are also annotated into 2 types: single,
if the question can be answered using a single sen-
tence in the passage, or multi otherwise. We do not
use the type information in our learning; we only
use it for categorizing accuracy during evaluation.
We report final results on all our models trained
with λ = 0.1, tuned using the Dev sets.

Evaluation We report accuracy scores for each
model averaged over the questions in the test data.
For each question, the system gains 1 point if
it scores the correct answer highest and 0 other-
wise. In case of ties, we use an inverse weighting

7For each match feature, like Entity-Match, we have a cor-
responding zero feature, Entity-Match-Zero
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Model
MC160 MC500

dev test dev test
Single Multi All Single Multi All Single Multi All Single Multi All

SWD 67.92 50.74 58.33 75.89 60.15 67.5 63.95 54.38 58.5 63.23 57.62 60.16
RTE 64.15 53.73 58.33 57.14 59.37 58.33 58.13 47.36 52 70.22 42.37 55

RTE+SWD 71.69 59.6 65 76.78 62.5 69.16 73.25 57.89 64.5 68.01 59.45 63.33
Model 1 78.45 60.57 68.47 83.25 60.35 71.04† 74.41 57.01 64.5† 70.58 57.77 63.58†

Model 2 74.68 60.07 66.52 81.47 64.25 72.29† 73.25 61.4 66.5∗† 66.17 59.9 62.75†

M2 + RST 72.79 58.58 64.86 79.68 61.91 70.20† 72.09 57.89 64.0† 66.54 59.29 62.58
Model 3 72.79 60.07 65.69 82.36 65.23 73.23∗† 72.09 60.52 65.5∗† 68.38 59.9 63.75†

Table 3: Accuracy (%) of the different baselines (in italics) and our models. Single: questions requiring
single sentence to answer; Multi: questions requiring multiple sentences to answer. Sentence window
(k) = 4 for models 2 and 3. Best scores are shown in bold. Statistical significance (shown only for All
columns) of p < 0.05 using two-tailed paired t-test: ∗vs SWD, †vs RTE.

scheme to assign partial credit. So, if three an-
swers (including the correct one) tie for the highest
score, the system gains 1/3 points.

Baselines We use the systems proposed by
Richardson et al. (2013) as our baselines. These
systems have the best reported scores on this
dataset. The first baseline, SWD, uses a sliding
window to count matches between the passage
words and the words in the answer. This is then
combined with a score representing the average
distance between answer and question words in
the passage. The second baseline, RTE, uses a
textual entailment recognizer (Stern and Dagan,
2011) to determine if the answer (turned into a
statement along with the question) is entailed by
the passage. The third system, RTE+SWD, is a
weighted combination of the first two baselines
and achieves the highest accuracy on the dataset.

5 Results

Comprehension accuracy Table 3 shows that
our relation-aware model 3 outperforms individ-
ual baselines on both test sets. On the MC160 test
set, the model achieves the best performance of
73.23% accuracy, outperforming the SWD base-
line by 5.7% and the RTE+SWD combination by
4.07%. The major gains of model 3, which uti-
lizes inter-sentential relations, over model 1 can be
seen in the accuracy of multi type questions with
a jump of almost 5% absolute in accuracy (statis-
tically significant with p < 0.05). On the MC500
test set, we again find that model 3, with a score
of 63.75%, provides a gain of 3.5% over SWD and
is comparable to the performance of RTE+SWD
(63.33%)

The importance of utilizing multiple relevant

sentences to score answers is evident from the
higher scores of models 2 and 3 on multi type
questions in both test sets. However, model 1,
which retrieves only a single relevant sentence for
each question, achieves the best scores on the sin-
gle type questions up to 83.25% on MC160 test.
One reason for this could be the larger search
space for model 3 over pairs of sentences com-
pared to just single sentences for model 1.

Table 4 shows the variation of our model’s accu-
racy with the question type. We see that the model
deals well with what, where and why type ques-
tions in MC500, achieving almost 67-69% accu-
racy.8 The major errors (in MC500) seem to come
from the how-questions, where the model’s accu-
racy is low (48%). In MC160, the accuracy is even
higher for what-questions (almost 80%). On the
other hand, the model does slightly worse on why-
questions, with only 60% accuracy.

RST augmented model Further, we experiment
with adding in relations extracted by a publicly
available RST parser (Feng and Hirst, 2012). The
parser extracts a tree with the passage sentences
as its leaves and relations as interior nodes in the
tree. From this tree, we compute the relation be-
tween a pair of sentences as their lowest common
ancestor. If one of the sentences is broken down
into clauses, we use them all to gather multiple re-
lations. We add in features that combine the RST-
predicted relation with the interrogation word of
the question, and with entity and action matches
between sentence pairs.

We can see from Table 3 that adding in RST
features to model 2 (M2+RST) does not give the

8Note that what-questions may also require
causal/temporal/explanation relations to answer.
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Question MC160 MC500
Type Dev Test Dev Test
how 50.00 (10) 71.42 (21) 54.54 (11) 48.83 (43)
what 64.40 (59) 79.36 (126) 63.15 (114) 67.19 (317)
where 30.76 (13) 91.66 (12) 82.60 (23) 68.96 (58)
which 75.00 (4) 33.33 (6) 25.00 (4) 48.00 (25)
who 70.50 (17) 67.85 (28) 62.50 (16) 59.74 (77)
why 85.71 (14) 59.45 (37) 65.38 (26) 69.35 (62)
when 100.0 (2) 80.00 (5) 100.0 (4) 62.50 (8)
whose - - - 66.67 (3)
(other) 100.0 (1) 40.00 (5) 50.00 (2) 14.28 (7)

Table 4: Accuracy (%) of model 3 by question type for question in MC160 and MC500 dev and test sets.
Numbers in parentheses indicate the number of questions of each type.

same performance as model 3. In fact, the model
performs slightly worse than model 2, which does
not utilize inter-sentential relations. Our analysis
of the RST trees reveals that for a vast majority of
sentence pairs (77%), the RST algorithm predicts
the elaboration relation which does not provide an
informative distinction.

5.1 Analysis

To gain further insight into the workings of our
model, we perform several analyses on model 3
using human judgements. We annotate 240 ques-
tions from the test set of MC160 with the most
relevant sentences9 in the passage for each ques-
tion. In addition, if they chose more than a sin-
gle relevant sentence, we also asked the annota-
tors to mark the most appropriate relation (from
our set of relations used in model 3) between the
sentence pairs.10 We find that 146 question anno-
tations contain a single relevant sentence and 94
contain multiple sentences.11 We obtain 103 sen-
tence pairs with annotated relations.

Annotation statistics We select a random sub-
set of 134 questions from this data to annotate
twice and compute inter-annotator agreement. The
second annotator agreed completely with the sen-
tence predictions of the first annotator in 76.11%
cases and both annotators agreed on at least one
sentence in 94.77% of the questions. The agree-
ment on relations annotated over common sen-

9The annotators are native English speakers.
10If there were more than two relevant sentences, we asked

them to mark relations between all pairs. This was a very rare
occurrence though.

11We found that some of the multiple questions did not re-
quire multiple sentences to answer and conversely, some sin-
gle questions required more than one sentence to answer.

tence pairs is 68.6%, with κ = 0.462. We find
that out of the 103 annotated sentence pairs, 67
are next to each other in the passage while 27 are
at a distance of two and 9 pairs are at a distance of
three or more.

It has been well documented that identifying
discourse relations without explicit markers is sig-
nificantly harder than with markers (Pitler et al.,
2008; Lin et al., 2009; Park and Cardie, 2012).
We compute statistics on the presence of discourse
markers anywhere in the manually picked sen-
tence(s) for each question. We find that only
33.89% of these pairs have a relevant discourse
marker present in either sentence. We consider
a discourse marker as relevant if it occurs in our
marker list for the annotated relation. Further, if
we only consider markers occurring at the begin-
ning or end of the sentences, this number drops to
9.23% of sentences. Since we consider relations
between sentence pairs, most explicit markers that
could help identify these relations would occur at
an extremity of either sentence. We point out that
these numbers are an over-estimation since many
of the markers occur in syntactic roles as opposed
to discourse in the sentences (ex. so in This is so
good compared to So, he decided to ...). These
statistics reflect the difficulty of the problem since
operating over implicit relations is much harder.

Sentence Retrieval We analyze our models’
ability to predict relevant sentences given only the
question. For each question, we order the pairs
scored by a model in descending order of their
probability according to P (z1, z2 | q) and com-
pare them to the annotated pairs, reporting recall
at various thresholds.

This is a stringent evaluation primarily due to
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Question R @ 1 R @ 2 R @ 5
Type (#) Freq M1 M2 M3 Freq M1 M2 M3 Freq M1 M2 M3
how (21) 9.67 29.03 32.25 35.48 9.67 32.25 45.16 48.38 19.35 51.61 58.06 64.51

what (126) 3.64 37.85 35.59 35.02 9.37 39.54 47.45 45.76 21.81 53.67 63.84 63.27
where (12) 13.63 50.00 50.00 56.25 13.63 50.00 68.75 62.5 45.45 68.75 75.00 81.25
which (6) 0.0 21.42 21.42 14.28 9.09 21.42 21.42 14.28 9.09 21.42 35.71 42.85
who (28) 2.12 45.45 45.45 42.42 4.25 45.45 60.60 57.57 23.40 63.63 72.72 75.75
why (37) 9.09 34.32 31.34 34.32 2.27 35.82 40.29 40.29 38.63 44.77 53.73 52.23
when (5) 0.0 57.14 57.14 57.14 0.0 57.14 71.42 71.42 25.00 85.71 100.0 85.71

(other) (5) 0.0 42.85 28.57 42.85 0.0 42.85 57.14 57.14 100.0 71.42 71.42 71.42
Single (146) 6.84 56.16 53.42 51.36 11.64 58.21 66.43 63.69 33.56 72.60 80.13 80.82
Multi (94) 3.88 24.27 23.30 25.72 9.70 25.24 34.46 33.98 29.61 39.32 50.00 50.48

Overall (240) 5.11 37.5 35.79 36.36 10.51 38.92 47.72 46.30 31.25 53.12 62.5 63.06

Table 5: Recall (%) of relevant sentence(s) in the ranking by models 1, 2 and 3 compared with a match-
frequency baseline (Freq) at various thresholds, for different question types in MC160. Question fre-
quencies are in parentheses. Bold numbers represent best scores.

two reasons. First, we do not use the candidate
answers in selecting relevant sentences. Second,
on the machine comprehension task, the model
predicts answers by marginalizing over the sen-
tences/sentence pairs. Hence, the model can score
answers correctly even if the relevant sentence(s)
are not at the top of its sentence distribution calcu-
lated here. We compute the distribution over sen-
tence pairs as:

P (z1, z2|q) =
∑

r∈R P (z1 | q) · P (r | q) · P (z2|z1, r, q)

For comparison, we add in a baseline (Freq) that
orders sentences using the sum of unigram and
bigram matches with the question (in descending
frequency).

Table 5 shows that our models perform signifi-
cantly better than the Freq baseline over all ques-
tion types. For the single-question case, we ob-
serve that model 3 ranks the annotated sentence
at the top of its distribution around 51% of the
time and 80% of the time in the top 5. For multi-
sentences, these recall numbers drop to around
25% (@1) and 50% (@5). We also observe that
models 2 and 3 perform better than model 1 on the
multi-sentence cases. The similar sentence recall
of models 2 and 3 also point to the fact that the
gains from model 3 on comprehension accuracy
are due to its ability to utilize relations between
the sentences.

We observe that where, when and who questions
have the highest recalls. This is likely because
these questions often have characteristic words oc-
curring in the sentences (such as here, there, af-
ter, before, him, her). In contrast, questions asking
how, which and why have lower recalls since they

often involve reasoning over multiple sentences.
What-questions are somewhere in between since
their complexity varies from question to question.

Relation Retrieval We examine how well our
model can predict relations between given sen-
tence pairs. For each annotated pair of sentences,
we calculate the relation distribution and compute
the relation recall at various thresholds of the rank-
ing by probability. The relation distribution is
computed as:

P (r|z1, z2, q) =
P (r | q) · P (z2|z1, r, q)∑

r′∈R P (r′ | q) · P (z2|z1, r′, q)
From table 6, we observe that our model’s top

prediction matches the manual annotations (over-
all) 51% of the time. The model predicts causal
and other relations more accurately than the other
two.

Relation (#) R @ 1 R @ 2
Causal (32) 56.25 75.00

Temporal (11) 27.27 54.54
Explanation (6) 16.66 33.33

Other (54) 57.40 64.81
Overall 51.45 65.04

Table 6: Recall of annotated relations at various
thresholds in the ordered relation distribution pre-
dicted by model 3. Relation frequencies are in
parentheses.

6 Conclusions

In this paper, we propose a new approach for in-
corporating discourse information into machine
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comprehension applications. The key idea is to
implant discourse analysis into a joint model for
comprehension. Our results demonstrate that the
discourse-aware model outperforms state-of-the-
art standalone systems, and rivals the performance
of a system combination. We also find that fea-
tures derived from an off-the-shelf parser do not
improve performance of the model. Our analysis
also demonstrates that the model accuracy varies
significantly according to the question type. Fi-
nally, we show that the predicted discourse rela-
tions exhibit considerable overlap with relations
identified by human annotators.
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Abstract

There is a growing interest in research-
ing null instantiations, which are those
implicit semantic arguments. Many of
these implicit arguments can be linked to
referents in context, and their discoveries
are of great benefits to semantic process-
ing. We address the issue of automat-
ically identifying and resolving implicit
arguments in Chinese discourse. For their
resolutions, we present an approach that
combines the information about overtly la-
beled arguments and frame-to-frame rela-
tions defined by FrameNet. Experimental
results on our created corpus demonstrate
the effectiveness of our approach.

1 Introduction

In natural discourse, only a small proportion of
the theoretically possible semantic arguments of
predicates tend to be locally instantiated. Other
locally unrealized semantic roles are called null
instantiations (NIs). Nevertheless, many of these
implicit roles, while linguistically unexpressed,
can often be bound to antecedent referents in
the discourse context. What’s more, capturing
such implicit semantic roles and linking them
to their antecedents can dramatically help text
understanding.

Example (1) shows an analyzed result (Li,
2012) by employing Chinese FrameNet (Liu,
2011), which is a lexical semantic knowledge base
based on the frame semantics of Fillmore (1982)
and takes Berkeley’s FrameNet Project (Baker et
al., 1998) as the reference. In Chinese FrameNet,
the predicates, called lexical units (LU), evoke
frames which roughly correspond to different
events or scenarios. Each frame defines a set of
arguments called Frame Elements (FE). The set
of FEs is further split into core FEs and non-core

FEs. Particularly, the core FEs are the essential
components of a frame and can be defined by
themselves. However, not all core FEs of a frame
can be realized simultaneously in a sentence.
These non-instantiated FEs are considered as null
instantiations of the frame elements. Depending
on the interpretation type of the omission, Chinese
FrameNet divides the NIs into two categories: 1)
Indefinite Null Instantiations (INIs), the missing
element which can be understood given interpre-
tational conventions and do not need resolution,
and 2) Definite Null Instantiations (DNIs), the
missing element which is something that can be
understood in the linguistic or discourse context,
and the fillers need to be inferred from the context
through resolutions.
(1) [U:¥(]Entity�´́́áááuuu,,,aaa [<E¥(]Category , Ú

�	¥(!Ï&¥(!í�¥(�Óá�a"

[The celestial burial satellite]Entity is Being_in_category

[artificial satellite]Category , and belongs to the same
category with reconnaissance, communications and
meteorological satellite.

ØÓ�´^å�É§´;�^5����Ý�¶pÝ

½ØÓ§��uuu���¦¦¦   £££ [�å/¥L¡3000õúp?

��¥;�þ]Goal"[Theme DNI] [Agent INI]

The purpose is different, specially used for storing
the urn; due to the different heights, generally
launched Cause_motion into [the orbit over 3000 kilo-
meters away from the surface of earth]Goal. [Theme

DNI] [Agent INI]

Particularly, in example (1), lexical unit (or
target) launched/u� evokes the semantic frame
Cause_motion, which has nine core FEs,
namely Agent, Theme, Source, Path, Goal, Area,
Cause, Result, Initial_State, but only one of them
is instantiated, i.e. Goal, whose filler is [the orbit
over 3000 kilometers away from the surface of
earth/�å/¥L¡3000õúp?��¥;�þ].
For another core FE Theme, it is filled by [The
celestial burial satellite/U:¥(] that occurs in
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the previous sentence.
Clearly, human beings have no problem to

infer these uninstantiated roles and find the cor-
responding fillers based on the relevant context
information, but this is beyond the capacity of
state-of-the-art semantic role labeling systems.

Next, we formalize the problem as follows:
given a discourse D = {S1, S2, ..., Sn}, where
Sk (k ∈ [1, n]) is the k-th sentence in D. The
lexical unit set in Sk is Tk = {Tk1, Tk2, ..., Tkp},
and Fk = {Fk1, Fk2, ..., Fkp} is relevant frame
set. For a particular frame Fki (i ∈ [1, p]), its core
FE set is Eki = {e1, e2, ..., em}, but it is possible
that only part of core FEs Cki appears in Sk,
i.e. Cki ⊆ Eki. Apparently the set Eki − Cki
includes the uninstantiated core FEs. Thus, we
need to determine which elements in Eki − Cki
are null instantiations. If em (em ∈ Eki−Cki) has
been identified as a null instantiated FE, we should
determine whether em is a DNI. If so, we need to
find the corresponding antecedent dm in context.

The major contributions of this paper can be
summarized as follows:

(i) We have created a null instantiation (NI)
annotations corpus, consisting of 164 Chinese
discourses across different fields.

(ii) We use frame-to-frame relations to find
antecedents from those explicit semantic roles.

2 Related Work

Among the researches of null instantiation on
English, the most representative work is the
task “Linking Events and Their Participants in
Discourse” shared by the SemEval-2010 (Ruppen-
hofer et al., 2010). The two systems participated
in the NI resolution task, VENSES++ and SE-
MAFOR, took very different approaches.

Tonelli and Delmonte (2010) develop a
knowledge-based system called VENSES++,
and describe two strategies depending on the
predicate class (either nominal or verbal). For
verbal predicates, they try to map the predicate
argument structure extracted by VENSES with
the valence patterns generated from FrameNet
data, to identify missing arguments. And NIs
are resolved by reasoning about the semantic
similarity between an NI and a potential filler
using WordNet. For nominal predicates, they
resolve NIs by utilizing a common sense reasoning
module that builds on ConceptNet (Liu and Singh,
2004). The final Precision and Recall are 4.62%

and 0.86% respectively.
Later on, Tonelli and Delmonte (2011) propose

a simpler role linking strategy that based on
computing a relevancy score for the nominal head
of each potential antecedent. The intuition is that
heads which often serve as role fillers and occur
close to the target NI are more likely to function
as antecedents for the NI. Finally they reported an
F-score of 8% for role linking. However, being
strongly lexicalized, their trained model seems
heavily dependent on the training data.

The second system (Chen et al., 2010) is
statistical based and extends an existing semantic
role labeler (Das et al., 2010). Resolving DNIs
is modeled in the same way as labeling overt
arguments, with the search space being extended
to nouns, pronouns, and noun phrases from the
previous three sentences. When evaluating a
potential filler, the syntactic features used in
argument labeling of overt arguments are replaced
by two semantic features: firstly the system checks
whether a potential filler fills the null instantiated
role overtly in at least one of the FrameNet sen-
tences and train data, if not, the system calculates
the distributional similarity between filler and role.
While this system achieved 5% in F-score, data
sparseness is a potential limiting factor.

Also closely related studies are as follows.
Silberer and Frank (2012) cast NI resolution as
a coreference resolution (CR) task, and employ
an entity-mention model. They experiment with
features of SRL and CR, and automatically expand
the training set with examples generated from
coreference corpus to avoid data sparseness, ulti-
mately achieving F-score of 7.1%.

Gorinski et al. (2013) present a weakly su-
pervised approach that investigates and combines
a number of linguistically motivated strategies,
which consist of four basic NI resolvers that
exploit different types of linguistic knowledge,
and achieve F-score of 12%.

Wang et al. (2013) conduct DNI resolution
on SemEval2010 task10 data. They considered
the task as a classified problem, by adding new
features such as the information of head word
and frame to traditional features, proposed a
rule to choose the best candidate words set and
combination of features, achieving F-score of
14.65% finally.

Laparra and Rigau (2013) present an attempt to
apply a set of features that have been traditionally
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used to model anaphora and coreference resolu-
tion tasks to implicit argument resolution, and got
the best results: F-score of 18%.

For nominal predicates, Gerber and Chai (2010)
investigate the linking of implicit arguments using
the PropBank role labeling scheme. In contrast to
the SemEval task, which focuses on a verbs and
nouns, their system is only applied to nouns and
is restricted to 10 predicates with 120 annotated
instances per predicate on average. They propose
a discriminative model that selects an antecedent
for an implicit role from an extended context
window. The approach incorporates some aspects
relating to CR that go beyond the SRL oriented
SemEval systems: A candidate representation
includes information about all the candidates’
coreferent mentions (determined by automatic
CR), in particular their semantic roles (provid-
ed by gold annotations) and WordNet synsets.
Patterns of semantic associations between filler
candidates and implicit roles are learned for all
mentions contained in the candidate’s entity chain.
They achieve an F-score of 42.3%, which is
noticeably higher than those obtained on the
SemEval data.

And Gerber (2011) presents an extended model
that incorporates strategies suggested in Burchardt
et al. (2005): using frame relations as well as
coreference patterns acquired from large corpora.
This model achieves an F-score of 50.3%.

Lei et al. (2013) conduct DNI identification on
SemEval2010 task10 data. They adopt the method
of combining rules and machine learning. Differ-
ent from them, we conduct two-level identifying
for NI detection and use more features on Chinese
data. Wang et al. (2013) take noun phrases and
pronoun as candidate words for DNI filler. We use
several similar features with them. The differences
are that 1) we take the fillers of overt instantiated
FE as candidate words and 2) we use Frame-to-
Frame relations. And Gerber (2011) also used
frame relations. Different from them, we limit
relation paths to 2.

3 Null Instantiation Detection

Now, we are ready to address the first subtask, i.e.
null instantiation detection.

3.1 Frame element relations

Not all core arguments of all frames can be
realized simultaneously. Some frames involve

core FEs that are mutually exclusive. In example
(2), in the Amalgamation frame, there are
four core FEs, namely Part_1, Part_2, Parts and
Whole, in which the first two FEs are mutually
exclusive with Parts, thus formed an Excludes
relation (relation 1). At the same time, Part_1
and Part_2 are in a Requires relation (relation
2), which means that if one of these two core
FEs is present, then the other must occur as well.
FE Whole, the result of the Amalgamation,
is only existentially bound within the discourse,
annotated as NI.

CoreSet (relation 3) specifies that at least one
of the set must be instantiated overtly, though
more of them can also be instantiated. As shown
in example (3), in the Awareness frame, the
two FEs Content and Topic are in one CoreSet.
As Content is overtly realized, we consider Topic
is not annotated as NI. The frame owning this
relation is complicated. Sometimes, if one FE of
this set is explicit, the absence of the other FEs in
the set is not annotated as NI, but sometimes it is
not true.
(2) [ÎN�]Part_1 Ú[#N�]Part_2 (((ÜÜÜ(((ÜÜÜ 3�å"

[Whole INI]

[The old system]Part_1 and [the new system]Part_2

are combined Amalgamation together. [Whole INI]

(3) [\P�]Cognizer ������������ [\�?Ö]Content"

[Your boss]Cognizer is awareAwareness [of your com-
mitment ]Content .

3.2 Modeling Null Instantiation detection

As shown in example (1), given a frame Fki
(e.g. Cause_motion evoked by launched/u
�), NI detector needs to determine whether core
FEs in EFki

− subEFki
are missing, relying on

information about the three types of the relations
among core FEs: CoreSetFki

, ExcludesFki
,

RequiresFki
(as discussed in Section 3.1). In

Cause_motion, the core FEs Initial_State,
Goal, Path, Source and Result belong to the
same CoreSet, and Goal is instantiated, thus
Initial_State, Path, Source and Result are not
annotated as NIs. Meanwhile core FEs Goal and
Area are connected by the Excludes relation, so
do Cause and Agent. Therefore, according to the
context, Area and Cause are not annotated as NIs.

Our approach for performing this detection
is described as follows. For the first-level of
detection, we make full use of the three types of
relations, and adopt a rule-based strategy proposed
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by Lei et al. (2013) to detect NIs. As for CoreSet
relation, in particular, as long as one of the FEs in
this set is expressed overtly, NIs are not annotated
for the absence of the other FEs in the set. If
none of CoreSet is expressed, the contextually
most relevant one should be annotated as a NI.
However, this is difficult for automatic detector,
which inevitably introduces some false detected
NIs.

Thus, we conduct a second-level identifying. To
be specific, for the current lexical unit, i.e. the
target word, we collect its frame element patterns
from the training dataset. Frame element patterns
are annotated semantic roles, which include the
roles annotated as NIs. Taking lexical unit
launched/u� as an example, Table 1 shows its
frame element patterns in our data. Depending on
this kind of patterns, we are able to filter out some
false NIs effectively.

Patte1 Time AgentINI Theme GoalINI

Patte2 Agent Theme GoalINI

Table 1: Frame element patterns for the target u
�/launched in our data

4 Definite Null Instantiation
Identification

In this section, we focus on our second task of
definite null instantiation (DNI) identification.

Before performing the implicit argument reso-
lution in discourse, we have to decide which null
instantiated frame elements should be selected, i.e.
which null instantiations are definite. As shown
in example (1) above, assuming one detected null
instantiated FE in the previous step is em (e.g.
Theme), we should determine whether em needs
to be filled or not, that is, we should determine em
as DNI or INI.

Num Feature names Feature Descriptions

T1 Target Target predicate

T2 Pos The part of speech of target

T3 Frame The frame that target evokes

T4 FENI NI of frame elements

T5 FE Overtly expressed FEs

Table 2: Features description in DNI Identification

We treat this issue as a classification problem,
and build a binary maximum entropy model to
predict the null instantiation type of em. Table

2 lists all features used for training our models.
In addition, we employ some similar features that
were used in Lei et al. (2013). Meanwhile, we
choose to learn a SVM classifier for comparison
purpose.

5 Definite Null Instantiation Resolution

In this section, we tackle the last subtask, namely
definite null instantiation resolution.

5.1 Frame-to-Frame Relations

The relations of Frame-to-Frame and FE-to-FE in
FrameNet, serve as important information sources,
to be leveraged for DNI resolutions.

FrameNet arranges frames into a net by defining
frame-to-frame relations, including Inheritance,
Inchoative Of, Subframe, Causative Of, Precedes,
Using, See_also and Perspective On. In the case
of Inheritance relation, it defines two frames,
i.e. one more general frame and the other more
specific frame. The specific frame Commerce
buy, for example, is inherited from the general
frame Getting.

As Figure 1 shows, the inheritance relation
allows a general frame (e.g., Getting) to be
specialized with a particular semantic interpreta-
tion (e.g., Commerce buy). Also the inheritance
relation exists between the frame elements of two
related frames. Each of the inheriting FEs contains
all semantic properties of the inherited general
frame elements and also owns its additional pri-
vate properties.

Getting

Core Recipient

Core Theme

Ncore Explanation

Ncore Manner

Ncore Means

Ncore Place

Ncore Purpose

Ncore Source

Ncore Time

Commerce buy

Core Goods

Core Buyer

Ncore Explanation

Ncore Time

Ncore Manner

Ncore Means

Ncore Place

Ncore Purpose

Ncore Seller

Ncore Result
Ncore Money

RateNcore 

Figure 1: FE-FE relations of frame Getting and
Commerce buy
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Number Features Name Features Description

F1 DistCT The number of sentences between candidate FE content and target

T1 F2 CanFEcon Candidate frame element content

F3 CanFEpt The phrase type or POS of candidate frame element content

F4 Frame The frame that target predicate evokes

T2 F5 FEDNI DNI frame element

F6 Target Target predicate

F7 TargetPOS The part of speech of target

Table 3: Features description in Overt Frame Elements Based Resolver

5.2 Modeling Definite Null Instantiation
Resolution

After accomplishing the previous processes, we
can perform DNI resolutions. If the uninstantiated
FE em (e.g., Theme in example (1)) has been
identified as DNI previously, we need to find the
corresponding antecedent mention dm (e.g., [The
celestial burial satellite/U:¥(] in example
(1)). Due to having fine-grained frame semantic
role labeled for each sentence, we think the filler
of DNI maybe also instantiates the FE of other
annotated frames in the context. Therefore, we
collect the overt FE content set ϕ instantiated in
the discourse, and this set forms the overall set of
candidates for DNI linking. Then, for DNI em, a
subset of candidates ϕm (ϕm ⊆ ϕ) is chosen as
candidate search space for resolving em.

We implement two semantic resolvers based
on different methods. For either of these two
resolvers, if two or more candidates score equally
well, the one closest to the target predicate is
chosen.

OvertFE is based on machine learning, and FFR
is an inference method. As the inherent difficulty
of task, it’s difficult to find all fillers for DNIs only
using one of them. Thus finally we simultaneously
employ OvertFE and FFR to find as many fillers
for DNIs as possible.
Overt Frame Elements Based Resolver
(OvertFE)
This resolver is based on the assumption that the
filler of DNI can be found among the overt FE
content set in context. Given a DNI em , DNI
linking can be treated as a classification problem
to judge whether a candidate overt FE content
d (d ∈ ϕm) could be taken as filler of a DNI.
Therefore, we employ a classification method to
solve the problem. Clearly, the performance of
classifiers largely depends on constructed features.
Since corresponding antecedent of DNI is not

overtly expressed, it is difficult to get some
information from context to describe them. What
we take as features is the information of candidate
frame element contents and frame information.
Table 3 lists all features used for training our
models. Some similar features were employed
by Wang et al. (2013) where they also considered
DNI linking as a classification problem.

Then maximum entropy models, widely used
in natural language processing (such as Chinese
word segmentation and machine translation), are
employed to predict whether a candidate FE
content is the filler of DNI.
Frame-to-Frame Relations Based Resolver (F-
FR)
Another way of finding the correct filler is through
searching Frame-to-Frame relations in a given
context window. This is because Frame-to-Frame
relations and FE-to-FE relations can provide rel-
evant information for finding DNI filler among
candidate frame element contents. Specifically,
for one frame f1 that contains a DNI, firstly we
need to find related frame f2 with it from context.
Then, if DNI frame element in f1 has relation with
the frame element (marked with fe2) of f2, the
filler of fe2 is the corresponding filler of this DNI.
The detailed steps are reported in Algorithm 1.

If frame names are the same, we think they
are related, and Figure 2 illustrates this case.
As the frames evoked in two sentences are both
Arriving, we link the antecedent of Goal in
the second sentence to [Tiananmen Square/US
�2|], which is the content of Goal in the first
sentence.

For other cases, we use the related frames
which at most contain two relation paths (e.g.,
the paths from Event to Process_start to
Activity_start in Figure 3). As shown in
Figure 3, the target initiated/uå in the first
sentence evokes the Activity_start frame,
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in which the two frame elements (Agent, Place) is
expressed in a single constituent [our country/·
I], i.e. the phenomenon of frame element
fusion arises. Frame Event is evoked by the
target happened/Ñy in the second sentence,
where Time and Event FEs are expressed overt-
ly, except the core FE Place. In the net of
FrameNet, frame Activity_start inherits
from the frame Process_start which further
inherits from the Event frame. These inheritance
relationships also hold between the frame ele-
ments of the related frames. According to the FE-
to-FE relations, the content of FE Place in the first
sentence, [our country/·I], is the corresponding
filler of implicit FE Place in the second sentence.

Algorithm 1 : Frame-to-Frame Relations Based
Resolver
Input: The frame set in discourse is F =
{f1, f2, ..., fn}; overt core frame element set
for frame fi is Ei = {e1, e2, ..., em}, its corre-
sponding filler set is Ai = {a1, a2, ..., am}; one
frame that contains DNI e∗ is f∗, target t evokes
the frame f∗; dis (ai, t) is the distance between
DNI filler ai and target t; relationpath (fi, f∗)
are the relation paths from fi to f∗; Atemp is
temporary DNI filler set

Output: the filler a∗ of DNI e∗

Atemp = φ
for each fi ∈ F do

if fi has frame relation with f∗ AND
relationpath (fi, f∗) ≤ 2 then

for each ei ∈ Ei, ai ∈ Ai do
if ei has relation with e∗ then
ai ∈ Atemp

end if
end for

else if fi = f∗ then
ai ∈ Atemp

end if
end for
if Atemp 6= φ then

for ai ∈ Atemp do
if dis (ai, t) is minimum then
a∗ = ai

end if
end for

end if
return a∗ ;

Time Thm Goal

Arriving

Time Thm

Goal DNI

Arriving

Figure 2: Two consecutive sentences owning the
same frame. Bold fonts represent lexical units or

frames. Dashed boxes represent FEs.

Event

Time Agent Place
In the 50's, our country initiated the movement of killing sparrows.

However, in the years after the vastly killing of sparrows, a plague of insects happened.

Time Event

Activity

Activity_start

Process_start

Time Place Event

Place DNI

Figure 3: Two consecutive sentences owing related
frames. Bold fonts represent lexical units or frames.

Dashed boxes represent FEs.

6 Experiments

6.1 Experimental Settings
Data: Experimental data set comes from Semantic
Computing and Chinese FrameNet Research Cen-
tor of Shanxi University1. Because of the current
low performance of CFN automatic semantic anal-
ysis systems, all discourses are labeled semantic
roles manually, and the process is similar with the
FrameNet annotation.

First, the ICTCLAS are used for part-of-speech
tagging (omitted in examples), and we treat verbs,
adjectives and nouns in each sentence as potential
targets. As not all potential targets can be
annotated, it is necessary to identify those targets
which can evoke frames.

Then, we choose corresponding frames for
those targets. For one verb target launched/u
� in example (1), we find its evoked frame
Cause_motion.

Then annotate semantic roles for those con-
stituents which share syntactical relations with this
target, so the span [the orbit over 3000 kilometers
away from the surface of earth/�å/¥L¡3000
õúp?��¥;�þ] is annotated as role Goal,
which is, however, the only one instantiated, out
of nine Cause_motion’s core frame elements.
So according to the context and frame element
relations, we need to determine whether each

1http://sccfn.sxu.edu.cn/
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missing frame element should be annotated as
DNI or INI.

Next, we generate the XML format for our
annotated corpus, which is similar to the data
format in SemEval-10 Task 10.

Our 164 discourses had been annotated by one
person (to make it consistent), and they consist
of 57 discourses from People’s Daily and 107
discourses from Chinese reading comprehension,
which cover technology, health care, social, geog-
raphy and other fields. Each discourse contains
10 sentences in average. The data set contains
about 37526 words in 1618 sentences; it has
175 frame types, including 2283 annotated frame
instances. Table 4 shows the detailed statistics
of our data set. we’ll share our data in the
website(http://sccfn.sxu.edu.cn/).

discourses sentences
frame

inst.

frame

types
INIs DNIs

164 1618 2283 175 213 212

Table 4: Corpus Statistics

Definite Null Instantiation identification and
resolution model: Our maximum entropy classi-
fication model uses the toolkit from Zhang (2005)
with the default parameter values. The SVM
classifier for comparison was trained via SVM
toolkit LIBSVM with the default parameter values
too.

6.2 Experimental Results

Based on the experimental methods described
in the previous section, we have systematically
evaluated our approach on the constructed Chinese
null instantiation corpus. Note all the perfor-
mances are achieved using 5-fold cross validation.
Null Instantiation Detection
Table 5 gives the performance of NI detection,
which achieves 72.71%, 86.12% and 78.84% in
precision, recall and F-score, respectively. Here,
the relatively lower precision is mainly due to the
heuristic rules used to detect NIs. However, it is
worth to point out that lower precision and higher
recall is highly beneficial, as higher recall means
less filtering of true NIs.

P% R% F%

Ours 72.71 86.12 78.84

Lei et al. 56.18 90.57 69.34

Table 5: Performance of NI Detection

To illustrate the effectiveness of our method,
we compare it with the Lei et al.’s method on
our data, as shown in the Table 5. The F-score
of our method is 78.84%, which is 9% higher
than that of Lei et al.’s method. Clearly, these
experimental results further prove that our second-
level identification is very effective.
Definite Null Instantiation Identification
Table 6 provides the performance of DNI iden-
tification on our automatic NI detection results.
It shows that DNI identification based on max-
imum entropy model achieves the performance
of 67.86%, 69.93% and 68.88% in terms of
precision, recall and F-score respectively, which
are better than the results using SVM classifier, as
well as the results employing Lei et al.’s method
on our data.

We observe, from Table 6, that the performance
of DNI identification is not high, possibly due to
the poorer results of NI detection in the previous
step. Moreover, because of the diversity of
NI distribution, the difference of frames, and
target words or missing core frame elements, the
interpretation of NI types may be quite different.
Thus it is difficult to build a suitable and accurate
uniform classification model.

P% R% F%

DNI IdenME 67.86 69.93 68.88

DNI IdenSVM 67.25 62.02 64.53

Lei et al. 64.58 67.73 66.12

Table 6: Performance of DNI Identification

Resolution on golden Definite Null Instantiation
In order to select the most effective features
for OvertFE resolver and choose the best search
space, we assume perfect results for the first
two steps, that is, we perform DNI resolution
experiment just with the correct DNIs in discourse.
After extensive experiments employing different
sets of features in different window sizes, we
conclude that combining all features can achieve
the best performance. Table 7 shows the results
on correct DNIs using the best feature set in the
window of 2, 3 and 4 sentences containing and
before the target predicate (Win2, Win3, Win4 for
short).

For OvertFE resolver, it shows that the F-score
with Win2 is higher than that in other windows,
because the bigger the window size, the more the
candidate fillers for DNI, and the more difficult for
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Win2 Win3 Win4

P% R% F% P% R% F% P% R% F%

OvertFE 45.22 18.20 25.95 43.04 17.64 25.02 38.63 15.23 21.84

FFR 65.56 16.29 26.11 63.50 16.81 26.58 58.53 17.32 26.72

OvertFE+FFR 51.17 31.59 39.06 52.41 32.02 39.75 45.88 31.10 37.07

Table 7: Results on golden DNI

OvertFE classifier to find right fillers.
For FFR resolver, it needs to find related frames,

and we find that its resolved DNIs are less than that
by OvertFE resolver, thereby resulting in the lower
precision of OvertFE than FFR.

Though performances of OvertFE and FFR both
are relatively low, FFR can resolve several DNIs
that OvertFE can not. Figures 2 and 3 both
are such cases. So when combining the two
resolvers, the final result of OvertFE+FFR outper-
forms that of each individual resolver. Meanwhile,
as shown in Table 7, for the combined resolver
OvertFE+FFR, the F-score is the highest when the
window size is 3 (i.e. Win3).
Overall: Null Instantiation Resolution
Table 8 gives the performance of overall null
instantiations resolution with automatic NI detec-
tion and automatic DNI determination. It shows
that our resolver OvertFE+FFR achieves 40.53%,
21.54% and 28.13% in terms of precision, recall
and F-score. In comparison with the results
(52.41%, 32.02% and 39.75% in P, R and F) in
Win3 of Table 7, it shows that the errors caused
by automatic NI detection and automatic DNI
determination decrease the performance of overall
NI resolution by about 11% in terms of F-score.

P% R% F%

OvertFE 33.28 13.78 19.49

FFR 52.95 9.71 16.41

OvertFE+FFR 40.53 21.54 28.13

Wang et al. 31.93 12.76 18.23

Table 8: Performance of NI resolution for our models
and comparative systems

For comparison, we also conduct DNI reso-
lution on our constructed corpus employing the
method proposed by Wang et al. (2013). Since our
corpus does not contain annotation of head words,
the results are obtained by using their features
without head word information. As the last line of
Table 8 shows, the performance behaves similarly
with our OvertFE resolver. In addition, we

notice current state-of-the-art approach of Laparra
and Rigau (2013) employs coreference models,
although our corpus does not contain coreference
annotation information. As such, we are not able
to conduct experiments on our dataset using their
method for comparison purpose.

Overall, the relatively low performance of res-
olution reflects the inherent difficulty of this task,
also reveals that further research is needed.

7 Conclusion and Future Work

Apparently, linking implicit participants of a pred-
icate is a challenging problem. We have presented
a study for identifying implicit arguments and
finding their antecedents in Chinese discourse.

As shown in this paper, we split the difficult
task into three subtasks: null instantiation detec-
tion, definite null instantiation identification and
definite null instantiation resolution. Among the
three subtasks, the third is our major focus. For the
third subtask, we build two different resolvers: 1)
OvertFE resolver, which represents that the filler
of a DNI can be found among those overt FE
content set in context, by employing classification
methods; 2) FFR resolver, which is the frame-
related search, leverages rich network of frame-
frame relations to find antecedents. We have
proved that these two resolvers are very useful
for the third subtask, and a combination of two
resolvers produced the best results.

In the near future, we plan to create and
release a larger null instantiation corpus. As null
instantiation detection and definite null instantia-
tion identification are the foundation of resolving
definite null instantiation, it is critical to improve
the performance of both subtasks. Moreover, as
different information sources have been used in
our study, we cannot directly compare with some
of the existing methods. For our future work, we
plan to manually annotate coreference information
so that we can compare with more methods.
Finally, we hope to exploit some additional knowl-
edge resources, such as HowNet, which could
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potentially further improve the performance of our
proposed method.
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Abstract

This paper describes a novel sequence la-
beling method for identifying generic ex-
pressions, which refer to kinds or arbitrary
members of a class, in discourse context.
The automatic recognition of such expres-
sions is important for any natural language
processing task that requires text under-
standing. Prior work has focused on iden-
tifying generic noun phrases; we present
a new corpus in which not only subjects
but also clauses are annotated for generic-
ity according to an annotation scheme mo-
tivated by semantic theory. Our context-
aware approach for automatically identi-
fying generic expressions uses conditional
random fields and outperforms previous
work based on local decisions when evalu-
ated on this corpus and on related data sets
(ACE-2 and ACE-2005).

1 Introduction

Distinguishing between statements about particu-
lar individuals or situations and generic sentences
is an important part of human language under-
standing. Consider example (1): sentence (a)
names characteristic attributes of a kind, which are
inherent to every (typical) individual, and sentence
(b) describes a specific individual.

(1) (a) The modern domestic horse has a life
expectancy of 25 to 30 years. (generic)

(a) Old Billy lived to the age of 62.
(non-generic)

The above example illustrates that generic and
non-generic sentences differ substantially in their
semantic impact and entailment properties. It can
be inferred from sentence (1a) that a typical horse
has a life expectancy of 25 to 30 years, and if we
know that Nelly is a horse, we can infer that its life

expectancy is 25 to 30 years. Sentence (1b) has
no such properties, it only allows inferences about
the particular individual Old Billy.

An automatic classifier that recognizes generic
expressions would be extremely valuable for var-
ious kinds of natural language processing sys-
tems: for text understanding and question answer-
ing systems, through the improvement of textual
entailment methods, and for systems acquiring
machine-readable knowledge from text. Machine-
readable knowledge bases have different repre-
sentations for statements corresponding to generic
knowledge about kinds and knowledge about spe-
cific individuals. The non-generic sentence (1b)
roughly speaking provides ABox content for a
machine-readable knowledge base, i.e., knowl-
edge about particular instances, e.g, “A is an in-
stance of B / has property X”. In contrast, the
generic sentence (1a) feeds the TBox, i.e., knowl-
edge of the form “All B are C / have property X”.
Reiter and Frank (2010) provide a detailed discus-
sion of the relevance of the distinction between
classes and instances for automatic ontology con-
struction.

In this paper, we present a new corpus anno-
tated in a linguistically motivated way for gener-
icity, and a context-sensitive computational model
for labeling sequences of clauses or noun phrases
(NPs) with their genericity status. Both manual
annotation and automatic recognition of generic
expressions are challenging tasks: virtually all NP
types – definites, indefinites and quantified NPs,
full NPs, pronouns, and even proper names (e.g.
species names such as Elephas maximus) – can be
found in generic and non-generic uses depending
on their clausal context.

In this work, we call clauses generic if they pro-
vide a general characterization of entities of a cer-
tain kind, and we call mentions of NPs generic if
they refer to kinds or arbitrary members of a class.
Although genericity on the clause- and NP-level
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are strongly interrelated, the concepts do not al-
ways coincide. As example (2) shows, sentences
describing episodic events can have a generic NP
as their subject. Note that references to species are
kind-referring / generic on the NP level (following
Krifka et al. (1995), see p. 65).

(2) In September 2013 the blobfish was voted the
“World’s Ugliest Animal”. (subject generic,
clause non-generic)

Genericity often cannot be annotated without
paying attention to the wider discourse context.
Clearly, coreference information is needed for the
genericity classification of pronouns. Often, even
genericity of full NPs or entire clauses cannot be
decided in isolation, as illustrated by example (3).
Sentence (b) could be part of a particular narrative
about a tree, or it could be a generic statement.
Only the context given by (a) clarifies that (b) in-
deed makes reference to any year’s new twigs and
is to be interpreted as generic.

(3) (a) Sugar maples also have a tendency to
color unevenly in fall. (generic)

(b) The recent year’s growth twigs are green
and turn dark brown. (generic)

In computational linguistics, most research on
detecting genericity has been done in relation to
the ACE corpora (Mitchell et al., 2003; Walker
et al., 2006), focusing on assigning genericity la-
bels to noun phrases (Suh et al., 2006; Reiter and
Frank, 2010), see Section 2. Our work is based
on these approaches, most notably on the work of
Reiter and Frank (2010), and extends upon them
in the following essential ways.

The major contributions of this work are: (1)
We create a new corpus of Wikipedia articles an-
notated with linguistically motivated genericity la-
bels both on the subject- and clause-level (see Sec-
tion 3). The corpus is balanced with respect to
genericity and about 10,000 clauses in size. (2) We
present a discourse-sensitive genericity labeler.
Technically, we use conditional random fields as
a sequence labeling method (Section 4). We train
and evaluate our method on the Wikipedia dataset
and the ACE corpora, evaluating both the tasks of
predicting NP genericity and the task of predicting
clause-level genericity. Our labeler outperforms
the state-of-the-art by a margin of 6.6-11.9% (de-
pending on the data set) in terms of accuracy, at the
same time increasing F1-score. Much of the per-
formance gain is due to the inclusion of discourse

information. For the discussion of our experimen-
tal results, see Section 5.

In this paper, we do not address the following
two important aspects of genericity. First, habit-
ual sentences form a class of generalizing state-
ments which bear a close relation to generics. As
can be seen in example (4), they describe a char-
acterizing property of either a specific entity or a
class by generalizing over situations instead of or
in addition to entities (Carlson, 2005). We clas-
sify habitual sentences with a generic subject as
generic, and habitual sentences which describe a
specific entity as non-generic, leaving the task of
habituality detection for future work.

(4) (a) John smokes after dinner.
(b) Gentlemen smoke after dinner.

Second, generic clauses express regularities
within classes of entities, and thus are similar to
universally quantified sentences in their truth con-
ditions and entailment properties. However, their
truth-conditional interpretation is tricky, since they
express typicality, describe stereotypes and al-
low exceptions, for example Dutchmen are good
sailors is not false even if most Dutchmen do not
sail at all (Carlson, 1977). We concentrate on the
decision of whether a clause is generic or not, and
leave the truth-conditional interpretation for fur-
ther work. For a detailed discussion of the seman-
tics of generics expressions see the comprehensive
survey by Krifka et al. (1995); a short and instruc-
tive overview can be found in the first part of (Re-
iter and Frank, 2010).

2 Related Work

In this section, we first briefly review previously
developed annotation schemes for genericity. We
then describe work on automatically predicting the
genericity of NPs or different types of clauses.

Annotation. ACE-2 (Mitchell et al., 2003) and
ACE-2005 (Walker et al., 2006) are the two most
notable annotation projects for labeling genericity
of NPs to date. In the ACE-2 corpus, 40106 en-
tity mentions in 520 newswire and broadcast doc-
uments are marked with regard to whether they re-
fer to “any member of the set in question” (GEN,
generic) rather than “some particular, identifiable
member of that set” (SPC, specific/non-generic).
The major drawback of ACE-2 is that genericity is
basically defined as lack of specificity, which leads
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to uncertainty and inconsistencies in the annota-
tion process, and to a heterogeneous set of NPs
labeled with GEN, including quantificational NPs
and NPs in modalized, future, conditional, hypo-
thetical, negated, uncertain, and question contexts.
In addition, in both ACE-2 and ACE-2005, pred-
icative and modifier uses of nouns, to which the
genericity distinction is not applicable, also re-
ceive labels (e.g. John seems to be a nice person /
a subway system).

In the updated guidelines of ACE-2005, the la-
bel USP (underspecified) is introduced for non-
generic non-specific reference, including NPs in
the various contexts mentioned above that were
improperly labeled as generic in ACE-2. The
class also contains mentions of an entity whose
identity would be ‘difficult to locate’ (Officials re-
ported ...). Moreover, annotators are asked to mark
truly ambiguous cases that have both a generic
and a non-generic reading as USP. Finally, NEG
(negated) marks negatively quantified entities that
refer to the empty set of the kind mentioned.

While we agree that in general there are under-
specified cases, the guidelines for ACE-2005 mix
other phenomena into the USP class, resulting in
a high confusion between USP and both of the
labels SPC and GEN in the manual annotations
(Friedrich et al., 2015). Data from two annota-
tors is available, and we compute an agreement of
Cohen’s κ = 0.53 over the four labels. The ACE
corpora consist only of news data, and the distribu-
tions of labels are highly skewed towards specific
mentions. For some criticism of the ACE annota-
tion scheme, see also Suh (2006).

Several linguistically motivated annotation
studies targeting genericity of noun phrases bear
similarity to our annotation scheme (Section 3),
but comprise very little data (Poesio, 2004; Herbe-
lot and Copestake, 2009). In the ARRAU corpus
(Poesio and Artstein, 2008), about 24321 mark-
ables are tagged for genericity.

Nedoluzhko (2013) survey the treatment of
genericity phenomena within coreference resolu-
tion research; they find a consistent definition of
genericity to be lacking. Friedrich and Palmer
(2014b) present an annotation scheme for situa-
tion types including generic sentences, which they
find to be infrequent in their corpus consisting of
news, jokes and (fund-raising) letters. Our new
WikiGenerics corpus contains more than 10,000
clauses, approximately half of which are generic.

Automatic Identification of Genericity. Suh et
al. (2006) propose a rule-based approach, which
extracts only bare plurals and singular NPs quanti-
fied with every or any as generic. Reiter and Frank
(2010) use a wide range of syntactic and semantic
features to train a supervised classifier for identi-
fying generic NPs. We compare to their method
(described in detail in Section 5.2) as a highly-
competitive baseline.

Palmer et al. (2007) classify clauses into several
types of situation entities including states, events,
generalizing sentences (habitual utterances refer-
ring to specific individuals) and generic sentences.
They find that using context by using the labels of
preceding clauses as features improves the classi-
fication of clause types, but generic sentences are
extremely sparse in their data set. Our present ap-
proach uses a sequence labeling model that com-
putes the best labeling for an entire sequence.

3 WikiGenerics: Data and Annotations

In order to study generics in a genre other than
news (as in ACE), we turn to an encyclopedia, in
which we expect many generics. We create our
WikiGenerics corpus1 as follows. We aim to cre-
ate a corpus that is balanced in the sense that it
contains many generic and non-generic sentences,
and also generics from many different domains.
We collect 102 texts about animals, organised
crime, ethnic groups, games, sports, medicine,
music, politics, religion, scientific disciplines and
biographies from Wikipedia. For example, some
sentences make statements about a ‘natural’ kind
(Blobfish are typically shorter than 30 cm), others
express definitions such as the rules of a football
game (The offensive team must line up in a legal
formation before they can snap the ball).

Generic clauses have the typical form of a pred-
icative statement about the sentence topic, which
is normally realized as the grammatical subject in
English. Intuitions about NP-level genericity and
its relation to clause-level genericity are quite reli-
able for topic NPs of clauses, which also typically
occur in subject position in English. Since gener-
ics in non-subject positions are less frequent and
hard to interpret (see the discussion of “dependent
generics” by Link (1995)), we decided to annotate
subject NPs only. We are aware that we are miss-
ing relevant cases (e.g. the less preferred reading

1The WikiGenerics corpus is freely available at:
www.coli.uni-saarland.de/projects/sitent
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of Cats chase mice, which attributes to mice the
property of being chased by cats), but in this work,
we want to study the “easier” subject cases as a
first step.

We use the discourse parser SPADE (Soricut
and Marcu, 2003) to automatically segment the
first 70 sentences of each article into clauses. Each
clause is manually annotated with the following
information (for more details on the annotation
scheme, see (Friedrich et al., 2015)):

• Task NP: whether or not the subject NP of the
clause refers to a class or kind (generic vs. non-
generic);
• Task Cl: whether the clause is generic, defined

as a clause that makes a characterizing state-
ment about a class or kind, or non-generic.
• Task Cl+NP: using the information from Task

NP and Cl above, we automatically derive the
following classification for each clause (com-
pare to the explanation of example (2)).
– GEN gen: generic clause, subject is generic

by definition (The lion is a predatory cat);
– NON-GEN non-gen: non-generic clause

with a non-generic subject ( Simba roared);
– or NON-GEN gen: episodic clause with a

generic subject (Dinosaurs died out).
– GEN non-gen does not exist by definition.

We construct the gold standard for our experi-
ments via majority voting over the labels given by
three paid annotators, students of computational
linguistics. Annotators were given a written man-
ual and a short training on documents not included
in the corpus. They are given the option to indicate
segmentation errors, e.g. that two segments should
actually be one, or that one segment contains mul-
tiple clauses. In the latter case, we ask them to give
labels for the first clause in the segment. 10240
(86%) of all pre-segmented clauses received labels
for all three tasks from all annotators, who were
allowed to skip clauses that do not contain a finite
verb. Our gold standard includes an additional 115
segments that did not receive a label by one an-
notator but were unanimously labeled by the other
two. The other segments are disregarded in the ex-
periments. Some of them have expletive subjects,
and most others are non-finite verb phrases such as
to-infinites or headlines that consist of only a NP.
Inter-annotator agreement measured as Fleiss’ κ
(Fleiss, 1971) on the segments labeled by all three
annotators is 0.70, 0.73 and 0.69 for Task NP, Task

Cl and Task Cl+NP respectively, indicating sub-
stantial agreement (Landis and Koch, 1977).

4 A Sequence Labeling Model for
Genericity

This section describes our method for identifying
generic clauses and NPs in context. We apply the
following methods on each of the three different
prediction tasks NP, Cl and Cl+NP introduced in
Section 3, varying only the type of labels on which
we train and test. In contrast to prior work, our
computational model integrates not only informa-
tion from each local instance, but also informa-
tion about the genericity status of surrounding in-
stances. The final labeling for the sequence of in-
stances of an entire document is optimized with
regard to these two types of information, which,
as we have argued in Section 1, both play a cru-
cial role in determining genericity. The sequences
to be labeled contain all clauses or NPs of a doc-
ument. We also tried labeling sequences for para-
graphs instead of documents, but the performance
was similar. A reason might be that paragraphs are
quite often linked by mentioning the same entities
(Friedrich and Palmer, 2014a).

Computational model. We use linear chain
conditional random fields (Lafferty et al., 2001)
to label sequences of mentions or sequences of
clauses with regard to their genericity. Conditional
random fields (CRFs) are well suited for our label-
ing task as they do not make an independence as-
sumption between the features. CRFs predict the
conditional probability of label sequence ~y given
an observation sequence ~x as follows:

P (~y|~x) =
1

Z(~x)
exp(

n∑
j=1

m∑
i=1

λifi(yj−1, yj , ~x, j))

Z(~x) is a normalization constant, the sum over
the scores of all possible label sequences for an
observation sequence with the length of ~x. The
weights λi of the feature functions are the param-
eters to be learned. They do not depend on the cur-
rent position j in the sequence. The feature func-
tions fi are in general allowed to look at the cur-
rent label yj , the previous label yj−1 and the entire
observation sequence ~x. We use a simple instan-
tiation of a linear chain CRF whose feature func-
tions take two forms, fi(yj , xj) and fi(yj−1, yj).
We create a linear chain CRF model using the
CRF++ toolkit2, using all the default parameters.

2https://code.google.com/p/crfpp
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NP-BASED FEATURES
number sg, pl
person 1, 2, 3
countability from Celex, e.g. count
noun type common, proper, pronoun
determiner type def, indef, demon
part-of-speech POS of head
bare plural true, false
WN granularity number of edges to top node
WN sense [0− 2] WN senses (head+hypernyms)
WN senseTop top sense in hypernym hierarchy
WN lexical filename person, artifact, event, ...
CLAUSE-BASED FEATURES
dependency [0− 4] dependency relation between

head and governor etc.
tense tense, aspect and voice informa-

tion, e.g. pres perf active
coarseTense pres, past, fut
progressive true, false
perfective true, false
passive true, false
temporal modifier true, false
number of modifiers numeric
part-of-speech POS of head
predicate lemma of head
adjunct-degree positive, comparative, superlative
adjunct-pred lemma of adverbial clauses’ head

Table 1: Features. WN=WordNet.

Feature functions. We extract the set of features
listed in Table 1 for each instance. This set of fea-
tures is inspired by Reiter and Frank (2010), see
also Section 5.2. In the case of the WikiGener-
ics corpus, the NP features are extracted for the
subject of the clause. We parse the data using the
Stanford parser (Klein and Manning, 2002) and
obtain the subject NPs from the collapsed depen-
dencies. For the ACE data, the NP features are
extracted for all mentions in the gold standard and
the clause features are extracted from the clause
in which the mention appears. Our feature func-
tions fi(yj , xj) are indicator functions combining
the current label and one of the feature values of
the current mention or clause, for example:
f = if (yj = GENERIC and xj.np.person=3)

return 1 else return 0

We create two versions of the CRF model: the
bigram3 model additionally uses indicator func-
tions f(yj−1, yj) for each combination of labels,
thus taking context into account. The unigram
model does not use these feature functions, it is
thus similar to a maximum entropy model (with a
different normalization). Log-linear models work
very well for many NLP tasks, especially if fea-
tures are correlated as it is the case here, so in or-

3Following CRF++ terminology.

der to get a fair estimate of the impact of using
the context (via the transition feature functions),
we give numbers for this ‘unigram’ model in ad-
dition, rather than simply comparing the bigram-
CRF to a Bayesian network, which is used by
Reiter and Frank (2010). Using more complex
feature functions did not result in significant per-
formance gains, so we chose the simplest model.
Note that even though the feature functions only
formulate relationships between adjacent labels in
the sequence, the optimal labeling is computed for
the entire sequence: the choices of labels assigned
to non-adjacent clauses do influence each other.

Two-step Approach for Task Cl+NP. Task
Cl+NP can be regarded as a combination of the
two decisions made in Task NP and Task Cl.
Therefore, we approach Task Cl+NP in two ways.
(a) We train a CRF which directly outputs the
three labels. (b) The two-step approach combines
the output from the labelers trained for Task NP
and Task Cl into one label in a rule-based way.
This leads to the additional class GEN non-gen,
of which no gold instances exist by definition. As
we evaluate in terms of F1-score and accuracy for
the existing classes, items classified into this arti-
ficial class will simply be counted as wrong and
lack from the recall counts.

5 Experiments

This section reports on our experiments, which
we evaluate in terms of precision (P), recall (R)
and F1-measure per class. We compute macro-
averages as Pmacro = 1

|c| ∗
∑|c|
i=1 Pi etc., where |c|

stands for the number of classes. Macro-F1 is the
harmonic mean of macro-average P and R. To re-
port on statistical significance of differences in ac-
curacy, we apply McNemar’s test with p < 0.01.

5.1 Experimental Settings and Data
We report results for cross validation (CV). Be-
cause we leverage contextual information by la-
beling sequences of clauses from entire docu-
ments, for all experiments presented in this sec-
tion, if not indicated otherwise, we put all in-
stances of one document into the same fold as
one sequence. Fold sizes differ slightly from each
other, but folds are kept constant for all experi-
ments.

On WikiGenerics, we carry out all three predic-
tion tasks as defined in Section 3. On the ACE cor-
pora, we only conduct Task NP because there are
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generic non-generic macro-avg
System P R F1 P R F1 P R F1 accuracy
Majority class baseline 0.0 0.0 0.0 86.8 100 92.9 43.4 50.0 46.5 86.8
Person baseline (R&F) 60.4 10.2 17.5 87.9 99.0 93.1 74.2 54.6 62.9 87.2
R&F (BayesNet) 37.7 72.0 49.5 95.0 81.9 88.0 66.4 76.9 71.3 80.6
Reimpl. (BayesNet) 38.1 67.7 48.8 94.4 83.3 88.5 66.3 75.5 70.6 81.2

Table 2: Results of reimplemented baseline on ACE-2 (original, unbalanced data set), 40106 instances
(annotated noun phrases). Weka’s stratified 10-fold cross validation, using all features.

no labels corresponding to Task Cl or Task Cl+NP.
For the experiments on WikiGenerics, we use

leave-one-document-out CV, i.e., we train on 101
of the 102 documents and test on the remain-
ing document in each fold. The total number of
clauses is 10355. From ACE-2005, we use the
newswire and broadcast news subsections.4 Due
to low frequency, we omit instances of NEG in our
experiments, and apply a three-way classification
task (GEN, SPC, USP). We present results for all
remaining 40106 mentions and for the subset of
18029 subject mentions, each time using 10-fold
CV.

5.2 Baseline: Local Classifier

The system for identifying generic NPs of Reiter
and Frank (2010), henceforth R&F, makes use of
the English ParGram LFG grammar for the XLE
parser (Butt et al., 2002). As this grammar is not
publicly available, we implement a similar system
using exclusively the Stanford CoreNLP toolsuite
(Manning et al., 2014), the Celex database of En-
glish nouns (Baayen et al., 1996) and WordNet
(Fellbaum, 1999). Our system is based on dkpro
(de Castilho and Gurevych, 2014). We extract the
features listed in Table 1 based on the POS tags
and syntactic dependencies assigned by the Stan-
ford parser (Klein and Manning, 2002). We could
not reimplement several tense- and aspect-related
ParGram-specific features. In order to compen-
sate for this, we add an additional feature (tense)
with finer-grained tense and voice information, us-
ing the rules described by Loaiciga et al. (2014).
Other additional features did not improve perfor-
mance, which shows that R&F’s set of features
captures the syntactic-semantic information rele-
vant to genericity classification quite well. There-
fore, we use this feature set also for the sequence
labeling model. Using the same feature set allows
us to attribute any performance gain to the context-

4The rest of the data comprise broadcast conversation,
weblog and forum texts as well as transcribed conversational
telephone, and would require specialized preprocessing.

awareness of our model rather than the features.
R&F train a Bayesian network using Weka

(Hall et al., 2009). The decisions of this clas-
sifier are local to each clause. They report the
performance of their system on the ACE-2 cor-
pus: Table 2 shows that the performance of our re-
implemented feature set5 is comparable to the sys-
tem of R&F.6 In all other other tables, “BayesNet
R&F” refers to our re-implemented system.

R&F present the “Person baseline” as a sim-
ple informed baseline (see Table 2). We trained
a J48 decision tree on this feature alone, which
confirmed that only second-person mentions (the
generic “you”) are classified as generic, while all
other mentions are classified as non-generic.

5.3 Results and Discussion

In this section, we first discuss the results of our
experiments in terms of identifying generic NPs or
clauses. Then we present some additional experi-
ments testing the influence of the different feature
classes and of other discourse-related information.

All tasks, WikiGenerics. The observations de-
scribed in this paragraph are the same for all three
prediction tasks on WikiGenerics. As Tables 3 and
4 show, our CRF models outperform the baseline
system of R&F by a large margin both in terms of
accuracy and F1-score on the WikiGenerics cor-
pus. In Task NP and Task Cl, precision and re-
call are quite balanced (not shown in tables). The
performance of the bigram model is significantly
better than that of the unigram model, increasing
accuracy by about 3%, at the same time increas-
ing F1. In an oracle experiment, we use the pre-
vious gold label instead of the predicted one for
fi(yj−1, yj), and scores increase by up to 6.6%
compared to the unigram model. These results
provide strong empirical evidence for our hypoth-

5Implementation available at:
www.coli.uni-saarland.de/projects/sitent

6Table 6 in Reiter and Frank’s paper contains some typo-
graphical errors here. We thank Nils Reiter for making avail-
able his ARFF files, so we can provide this updated version.
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Task NP: Genericity of Subject Task Cl: Genericity of Clause
generic non-gen. macro-avg generic non-gen. macro-avg

System F1 F1 F1 acc. F1 F1 F1 acc.
Majority class 71.9 0.0 35.9 56.1 60.3 3.7 35.1 43.7
BayesNet (R&F) 72.6 70.8 72.3 71.7 72.4 74.6 73.7 73.5
CRF (unigram) 79.3 72.6 75.9 76.4* 77.9 77.0 77.4 77.4†
CRF (bigram) 81.3 76.3 78.8 79.1* 80.8 80.6 80.7 80.7†
- only clause features 79.2 71.6 75.5 76.0 79.3 78.3 78.8 78.8
- only NP features 76.8 70.8 73.8 74.1 70.7 72.6 71.8 71.7
CRF (bigram, gold) 85.0 80.4 82.7 83.0 82.9 82.6 82.8 82.8

Table 3: Results on WikiGenerics for Task NP and Task C. *†Difference statistically significant.

Task Cl+NP: Genericity of Clause (three-way)
GEN gen NON-GEN non-gen NON-GEN gen macro-avg

System F1 F1 F1 P R F1 accuracy

Majority class 67.1 0.0 0.0 16.8 33.3 22.4 50.4
BayesNet (R&F) 69.1 69.1 26.1 54.5 58.4 56.4 65.2
CRF (unigram) 78.5 72.6 35.4 67.2 60.0 63.4 74.0*
CRF (bigram) 81.3 76.9 33.4 70.3 61.8 65.8 77.4*
- two-step 80.8 75.8 28.6 61.5 62.3 61.9 73.4
- only clause feat. 79.4 72.6 25.3 67.0 57.2 61.8 74.3
- only NP feat. 72.9 71.4 2.5 53.0 49.9 51.4 70.0
CRF (bigram, gold) 84.0 80.6 39.1 72.8 65.7 69.0 80.6

Table 4: Results on WikiGenerics for Task Cl+NP. *Difference statistically significant.

esis that using context information is useful for
identifying the genericity of NPs or clauses.

Task Cl+NP, WikiGenerics. In Task Cl+NP
(see Table 4), only about 6% of the instances
have the gold label NON-GEN gen (i.e., a non-
generic sentence with a generic subject), the other
instances are distributed roughly evenly between
the other two labels. The difficulty of Task Cl+NP
thus consists in identifying this infrequent case.
The three-way CRF outperforms the two-step ap-
proach both in terms of accuracy and macro-
average F1-score. The precision-recall tradeoff
differs: for the NON-GEN gen class, P and R
of the CRF are 55.2% and 24.5% and those of
the two-step-approach are 23.8% and 35.9%. The
two-step approach labels more instances as NON-
GEN gen but does so in a less precise way. While
the performance of our model leaves room for im-
provement on Task Cl+NP, especially with regard
to the class NON-GEN gen, it is worth noting
that the computational model captures something
about the nature of this latter class; its instances do
look different in the feature space. The context-
aware CRF using three labels performs best.

Feature set ablation. In this ablation test,
shown in Tables 3 and 4, our best model (CRF bi-
gram) uses either the set of clause-based or the set

of NP-based features at a time. Clause-based fea-
tures are more important than the NP-based fea-
tures for all three classification tasks. An inter-
esting observation is that the NP features alone
are not able to separate the infrequent class NON-
GEN gen from the other two at all, the F1-score
of 2.5 shows that almost all instances of this class
were labeled as one of the other two classes. In
sum, this shows that whether an NP is interpreted
as generic or not strongly depends on how it is
used in the clause.

Task NP, ACE. Both on ACE-2 (see Table 5)
and on ACE-2005 (see Table 6), the CRF outper-
forms the system of Reiter and Frank (2010) in
terms of accuracy, and has a higher F1-score. We
give results also for subjects only as this parallels
the setting of the WikiGenerics experiments (rea-
sons for the restriction to subjects were given in
Section 3). For subjects, the majority class SPC
is less frequent (compare the accuracies of the
two majority class baselines); only 7% of the sub-
jects are marked as GEN, the rest are labeled as
USP. The bigram model does not outperform the
unigram model, but our oracle experiments show
that context information is indeed useful: accuracy
increases significantly and F1 increases consider-
ably, especially for subjects.
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generic non-generic macro-avg
System F1 F1 P R F1 accuracy
Majority class 0.0 92.9 43.4 50.0 46.5 86.8
BayesNet (R&F) 47.4 87.9 65.5 74.6 69.8 80.4
CRF (unigrams) 49.1 93.5 75.5 68.7 71.3 88.5*
CRF (bigrams) 51.0 93.7 76.5 69.8 72.4 88.9
CRF (bigram, gold) 57.6 94.4 79.8 73.4 76.0 90.1*

Table 5: Results on ACE-2 for Task NP, 10-fold CV, folds contain complete documents. *Difference
statistically significant.

macro-avg
System P R F1 accuracy
all 18029 annotated mentions
Majority class 27.0 33.3 29.9 81.1
BayesNet (R&F) 50.8 57.2 53.8 74.5
CRF (unigram) 61.6 51.8 55.1 83.2*
CRF (bigram) 60.6 51.7 54.8 83.0
CRF (bigram, gold) 63.9 54.9 58.2 83.9*
5670 subject mentions
Majority class 25.0 33.3 28.6 75.1
BayesNet (R&F) 51.5 53.9 52.7 72.5
CRF (unigram) 58.0 51.3 53.6 77.7*
CRF (bigram) 58.3 51.3 53.7 77.8
CRF (bigram, gold) 62.4 56.1 58.6 79.6*

Table 6: Results on ACE-2005 (bn+nw),
Task NP, 10-fold CV, 3 classes: SPC, GEN, USP.
*Difference statistically significant.

We identify two reasons for the fact that when
evaluating on the ACE corpora, oracle information
is needed to show the benefit of using bigram fea-
ture functions: (a) The frequency of GEN men-
tions in the ACE corpora is low – news contains
only little generic information, so the context in-
formation is harder to leverage. (b) The ACE an-
notation guidelines contain some vagueness (see
Section 3); this makes it harder for an automatic
system to learn about regularities.

Higher-order Markov models. Another re-
search question is whether models incorporating
not only the previous label, but more preceding la-
bels would perform even better. We turn to the
Mallet toolkit (McCallum, 2002), whose CRF im-
plementation allows for using higher-order mod-
els.7 For example, an order-2 model considers the
two previous labels. We use L1-regularization dur-
ing training. Figure 1 shows that the optimum is
reached for order-1 (bigram) models for each of
the classification tasks for accuracy, the same ten-

7The CRF++ toolkit, which we use in all other exper-
iments, does not allow for higher-order models. We use
CRF++ in the main experiments as it comes with a concise
documentation; this helps to make our experiments easily
replicable.
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Figure 1: Labeling results for CRF models of var-
ious orders on WikiGenerics corpus.

dencies were observed for F1-score (not shown). It
seems sufficient to use bigram feature functions;
note that as explained in Section 4, the bigram
model does not mean that only adjacent clauses
influence each other – context is actually wider.

Using coreference information. In our approx-
imately balanced WikiGenerics corpus, 54% of
all pronouns are marked as generic and 46% are
marked as non-generic, which shows that there is
no preference for pronouns to occur with either
class. Some of the features (countability, noun
type, determiner type, bare plural, and the Word-
Net related features) are not informative when ap-
plied to personal or relative pronouns. Sometimes,
it is not even possible to determine number with-
out referring to the antecedent (e.g., in the case
of the relative pronoun ‘who’). We conduct the
following experiment: we automatically resolve
coreference using the Stanford coreference reso-
lution system (Raghunathan et al., 2010). We re-
place the NP features of each pronominal instance
with the features of the first link of the coreference
chain. We did not obtain a significant performance
gain. One reason is that this change of features
only applies to about 13% of the data. We observe
that any positive changes in the classification go
along with some negative changes which were of-
ten due to coreference resolution errors. One dif-
ficult step in manually annotating, and hence also
in automatically resolving coreference is to deter-
mine whether a NP is generic or not (Nedoluzhko,
2013). The task of identifying generic NPs and
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coreference resolution are intertwined. We plan to
manually annotate at least part of our corpus with
coreference information in order to test to what ex-
tent the classification of the pronouns’ genericity
status can profit from including antecedent infor-
mation.

6 Conclusion

We have presented a novel method for labeling se-
quences of clauses or their subjects with regard
to their genericity, showing that genericity should
be treated as a discourse-sensitive phenomenon.
Our experiments prove that context information
improves automatic labeling results, and that our
model outperforms previous approaches by a large
margin.

The major contributions of this work include the
study of genericity both on the NP- and clause-
level, and the study of the interaction of these two
levels. Our results of Task Cl+NP show that our
model indeed captures the three different types
of clauses resulting from the combination of NP-
level and clause-level genericity.

During the development of our annotation
scheme, we found that it is beneficial to focus
on genericity, disentangling it from the issue of
specificity. Our work provides a step forward to
finding reliable ways to apply semantic theories
of genericity in practice, and we also provide a
new state-of-the-art system for automatically la-
beling generic expressions. This in turn lays foun-
dations for natural language processing tasks re-
quiring text understanding.

Future Work. Our present approach for anno-
tating and automatically classifying targets the
subjects of each clause. We have not attempted
to tackle the task of classifying the genericity sta-
tus of other dependents, as they are even harder
to classify than subjects, and a concise annotation
scheme has to be worked out in order achieve an
acceptable inter-annotator agreement on this task.
Another related distinction is the one between ha-
bitual, stative and episodic sentences (Mathew and
Katz, 2009), which applies to both what we call
generic and non-generic sentences. No large cor-
pora exist to date, but studying the interaction of
these phenomena is on our research agenda.
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Abstract

This work develops a new statistical un-
derstanding of word embeddings induced
from transformed count data. Using the
class of hidden Markov models (HMMs)
underlying Brown clustering as a genera-
tive model, we demonstrate how canoni-
cal correlation analysis (CCA) and certain
count transformations permit efficient and
effective recovery of model parameters
with lexical semantics. We further show in
experiments that these techniques empir-
ically outperform existing spectral meth-
ods on word similarity and analogy tasks,
and are also competitive with other pop-
ular methods such as WORD2VEC and
GLOVE.

1 Introduction

The recent spike of interest in dense, low-
dimensional lexical representations—i.e., word
embeddings—is largely due to their ability to cap-
ture subtle syntactic and semantic patterns that
are useful in a variety of natural language tasks.
A successful method for deriving such embed-
dings is the negative sampling training of the
skip-gram model suggested by Mikolov et al.
(2013b) and implemented in the popular software
WORD2VEC. The form of its training objective
was motivated by efficiency considerations, but
has subsequently been interpreted by Levy and
Goldberg (2014b) as seeking a low-rank factor-
ization of a matrix whose entries are word-context
co-occurrence counts, scaled and transformed in
a certain way. This observation sheds new light
on WORD2VEC, yet also raises several new ques-
tions about word embeddings based on decompos-
ing count data. What is the right matrix to de-
compose? Are there rigorous justifications for the
choice of matrix and count transformations?

In this paper, we answer some of these ques-
tions by investigating the decomposition specified
by CCA (Hotelling, 1936), a powerful technique
for inducing generic representations whose com-
putation is efficiently and exactly reduced to that
of a matrix singular value decomposition (SVD).
We build on and strengthen the work of Stratos et
al. (2014) which uses CCA for learning the class
of HMMs underlying Brown clustering. We show
that certain count transformations enhance the ac-
curacy of the estimation method and significantly
improve the empirical performance of word rep-
resentations derived from these model parameters
(Table 1).

In addition to providing a rigorous justifica-
tion for CCA-based word embeddings, we also
supply a general template that encompasses a
range of spectral methods (algorithms employing
SVD) for inducing word embeddings in the lit-
erature, including the method of Levy and Gold-
berg (2014b). In experiments, we demonstrate that
CCA combined with the square-root transforma-
tion achieves the best result among spectral meth-
ods and performs competitively with other popu-
lar methods such as WORD2VEC and GLOVE on
word similarity and analogy tasks. We addition-
ally demonstrate that CCA embeddings provide
the most competitive improvement when used as
features in named-entity recognition (NER).

2 Notation

We use [n] to denote the set of integers {1, . . . , n}.
We denote the m×m diagonal matrix with values
v1 . . . vm along the diagonal by diag(v1 . . . vm).
We write [a1 . . . am] to denote a matrix whose i-
th column is ai. The expected value of a random
variable X is denoted by E[X]. Given a matrix Ω
and an exponent a, we distinguish the entrywise
power operation Ω〈a〉 (i.e., Ω〈a〉i,j = (Ωi,j)a) from
the matrix power operation Ωa (defined only for
square Ω).
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3 Background in CCA

In this section, we review the variational charac-
terization of CCA. This provides a flexible frame-
work for a wide variety of tasks. CCA seeks to
maximize a statistical quantity known as the Pear-
son correlation coefficient between random vari-
ables L,R ∈ R:

Cor(L,R) :=
E[LR]− E[L]E[R]√

E[L2]− E[L]2
√

E[R2]− E[R]2

This is a value in [−1, 1] indicating the degree of
linear dependence between L and R.

3.1 CCA objective
Let X ∈ Rn and Y ∈ Rn′ be two random vectors.
Without loss of generality, we will assume that X
and Y have zero mean.1 Let m ≤ min(n, n′).
CCA can be cast as finding a set of projection vec-
tors (called canonical directions) a1 . . . am ∈ Rn

and b1 . . . bm ∈ Rn′ such that for i = 1 . . .m:

(ai, bi) = arg max
a∈Rn, b∈Rn′

Cor(a>X, b>Y ) (1)

Cor(a>X, a>j X) = 0 ∀j < i

Cor(b>Y, b>j Y ) = 0 ∀j < i

That is, at each i we simultaneously optimize vec-
tors a, b so that the projected random variables
a>X, b>Y ∈ R are maximally correlated, subject
to the constraint that the projections are uncorre-
lated to all previous projections.

Let A := [a1 . . . am] and B := [b1 . . . bm].
Then we can think of the joint projections

X = A>X Y = B>Y (2)

as new m-dimensional representations of the orig-
inal variables that are transformed to be as corre-
lated as possible with each other. Furthermore, of-
ten m� min(n, n′), leading to a dramatic reduc-
tion in dimensionality.

3.2 Exact solution via SVD
Eq. (1) is non-convex due to the terms a and b that
interact with each other, so it cannot be solved
exactly using a standard optimization technique.
However, a method based on SVD provides an
efficient and exact solution. See Hardoon et al.
(2004) for a detailed discussion.

1This can be always achieved through data preprocessing
(“centering”).

Lemma 3.1 (Hotelling (1936)). Assume X and
Y have zero mean. The solution (A,B) to (1)
is given by A = E[XX>]−1/2U and B =
E[Y Y >]−1/2V where the i-th column of U ∈
Rn×m (V ∈ Rn′×m) is the left (right) singular
vector of

Ω := E[XX>]−1/2E[XY >]E[Y Y >]−1/2 (3)

corresponding to the i-th largest singular value σi.
Furthermore, σi = Cor(a>i X, b

>
i Y ).

3.3 Using CCA for word representations
As presented in Section 3.1, CCA is a general
framework that operates on a pair of random vari-
ables. Adapting CCA specifically to inducing
word representations results in a simple recipe for
calculating (3).

A natural approach is to set X to represent a
word and Y to represent the relevant “context”
information about a word. We can use CCA to
project X and Y to a low-dimensional space in
which they are maximally correlated: see Eq. (2).
The projected X can be considered as a new word
representation.

Denote the set of distinct word types by [n]. We
set X,Y ∈ Rn to be one-hot encodings of words
and their associated context words. We define a
context word to be a word occurring within ρ po-
sitions to the left and right (excluding the current
word). For example, with ρ = 1, the following
snippet of text where the current word is “souls”:

Whatever our souls are made of

will generate two samples of X × Y : a pair of
indicator vectors for “souls” and “our”, and a pair
of indicator vectors for “souls” and “are”.

CCA requires performing SVD on the following
matrix Ω ∈ Rn×n:

Ω =(E[XX>]− E[X]E[X]>)−1/2

(E[XY >]− E[X]E[Y ]>)

(E[Y Y >]− E[Y ]E[Y ]>)−1/2

At a quick glance, this expression looks daunting:
we need to perform matrix inversion and multipli-
cation on potentially large dense matrices. How-
ever, Ω is easily computable with the following
observations:

Observation 1. We can ignore the centering oper-
ation when the sample size is large (Dhillon et al.,
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2011). To see why, let {(x(i), y(i))}Ni=1 be N sam-
ples of X and Y . Consider the sample estimate of
the term E[XY >]− E[X]E[Y ]>:

1
N

N∑
i=1

x(i)(y(i))> − 1
N2

(
N∑
i=1

x(i)

)(
N∑
i=1

y(i)

)>

The first term dominates the expression whenN is
large. This is indeed the setting in this task where
the number of samples (word-context pairs in a
corpus) easily tends to billions.

Observation 2. The (uncentered) covariance
matrices E[XX>] and E[Y Y >] are diagonal.
This follows from our definition of the word
and context variables as one-hot encodings since
E[XwXw′ ] = 0 for w 6= w′ and E[YcYc′ ] = 0 for
c 6= c′.

With these observations and the binary definition
of (X,Y ), each entry in Ω now has a simple
closed-form solution:

Ωw,c =
P (Xw = 1, Yc = 1)√
P (Xw = 1)P (Yc = 1)

(4)

which can be readily estimated from a corpus.

4 Using CCA for parameter estimation

In a less well-known interpretation of Eq. (4),
CCA is seen as a parameter estimation algorithm
for a language model (Stratos et al., 2014). This
model is a restricted class of HMMs introduced by
Brown et al. (1992), henceforth called the Brown
model. In this section, we extend the result of
Stratos et al. (2014) and show that its correctness
is preserved under certain element-wise data trans-
formations.

4.1 Clustering under a Brown model

A Brown model is a 5-tuple (n,m, π, t, o) for
n,m ∈ N and functions π, t, o where

• [n] is a set of word types.

• [m] is a set of hidden states.

• π(h) is the probability of generating h ∈ [m]
in the first position of a sequence.

• t(h′|h) is the probability of generating h′ ∈
[m] given h ∈ [m].

• o(w|h) is the probability of generating w ∈
[n] given h ∈ [m].

Importantly, the model makes the following addi-
tional assumption:

Assumption 4.1 (Brown assumption). For each
word type w ∈ [n], there is a unique hidden state
H(w) ∈ [m] such that o(w|H(w)) > 0 and
o(w|h) = 0 for all h 6= H(w).

In other words, this model is an HMM in which
observation states are partitioned by hidden states.
Thus a sequence of N words w1 . . . wN ∈ [n]N

has probability π(H(w1))×∏N
i=1 o(wi|H(wi))×∏N−1

i=1 t(H(wi+1)|H(wi)).
An equivalent definition of a Brown model is

given by organizing the parameters in matrix form.
Under this definition, a Brown model has param-
eters (π, T,O) where π ∈ Rm is a vector and
T ∈ Rm×m, O ∈ Rn×m are matrices whose en-
tries are set to:

πh = π(h) h ∈ [m]
Th′,h = t(h′|h) h, h′ ∈ [m]
Ow,h = o(w|h) h ∈ [m], w ∈ [n]

Our main interest is in obtaining some represen-
tations of word types that allow us to identify their
associated hidden states under the model. For this
purpose, representing a word by the correspond-
ing row of O is sufficient. To see this, note that
each row of O must have a single nonzero entry
by Assumption 4.1. Let v(w) ∈ Rm be the w-
th row of O normalized to have unit 2-norm: then
v(w) = v(w′) iffH(w) = H(w′). See Figure 1(a)
for illustration.

A crucial aspect of this representational scheme
is that its correctness is invariant to scaling and
rotation. In particular, clustering the normalized
rows of diag(s)O〈a〉diag(s2)Q> where O〈a〉 is
any element-wise power of O with any a 6= 0,
Q ∈ Rm×m is any orthogonal transformation, and
s1 ∈ Rn and s2 ∈ Rm are any positive vectors
yields the correct clusters under the model. See
Figure 1(b) for illustration.

4.2 Spectral estimation

Thus we would like to estimate O and use its rows
for representing word types. But the likelihood
function under the Brown model is non-convex,
making an MLE estimation of the model param-
eters difficult. However, the hard-clustering as-
sumption (Assumption 4.1) allows for a simple
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Figure 1: Visualization of the representational scheme under a Brown model with 2 hidden states. (a)
Normalizing the original rows of O. (b) Normalizing the scaled and rotated rows of O.

spectral method for consistent parameter estima-
tion of O.

To state the theorem, we define an additional
quantity. Let ρ be the number of left/right context
words to consider in CCA. Let (H1, . . . ,HN ) ∈
[m]N be a random sequence of hidden states
drawn from the Brown model where N ≥ 2ρ+ 1.
Independently, pick a position I ∈ [ρ+ 1, N − ρ]
uniformly at random. Define π̃ ∈ Rm where
π̃h := P (HI = h) for each h ∈ [m].

Theorem 4.1. Assume π̃ > 0 and rank(O) =
rank(T ) = m. Assume that a Brown model
(π, T,O) generates a sequence of words. Let
X,Y ∈ Rn be one-hot encodings of words and
their associated context words. Let U ∈ Rn×m

be the matrix of m left singular vectors of Ω〈a〉 ∈
Rn×n corresponding to nonzero singular values
where Ω is defined in Eq. (4) and a 6= 0:

Ω〈a〉w,c =
P (Xw = 1, Yc = 1)a√
P (Xw = 1)aP (Yc = 1)a

Then there exists an orthogonal matrix Q ∈
Rm×m and a positive s ∈ Rm such that U =
O〈a/2〉diag(s)Q>.

This theorem states that the CCA projection of
words in Section 3.3 is the rows of O up to scaling
and rotation even if we raise each element of Ω in
Eq. (4) to an arbitrary (nonzero) power. The proof
is a variant of the proof in Stratos et al. (2014) and
is given in Appendix A.

4.3 Choice of data transformation
Given a corpus, the sample estimate of Ω〈a〉 is
given by:

Ω̂〈a〉w,c =
#(w, c)a√

#(w)a#(c)a
(5)

where #(w, c) denotes the co-occurrence count of
word w and context c in the corpus, #(w) :=

∑
c #(w, c), and #(c) :=

∑
w #(w, c). What

choice of a is beneficial and why? We use a = 1/2
for the following reason: it stabilizes the variance
of the term and thereby gives a more statistically
stable solution.

4.3.1 Variance stabilization for word counts
The square-root transformation is a variance-
stabilizing transformation for Poisson random
variables (Bartlett, 1936; Anscombe, 1948). In
particular, the square-root of a Poisson variable
has variance close to 1/4, independent of its mean.

Lemma 4.1 (Bartlett (1936)). Let X be a random
variable with distribution Poisson(n × p) for any
p ∈ (0, 1) and positive integer n. Define Y :=√
X . Then the variance of Y approaches 1/4 as

n→∞.

This transformation is relevant for word counts
because they can be naturally modeled as Pois-
son variables. Indeed, if word counts in a corpus
of length N are drawn from a multinomial distri-
bution over [n] with N observations, then these
counts have the same distribution as n indepen-
dent Poisson variables (whose rate parameters are
related to the multinomial probabilities), condi-
tioned on their sum equalingN (Steel, 1953). Em-
pirically, the peaky concentration of a Poisson dis-
tribution is well-suited for modeling word occur-
rences.

4.3.2 Variance-weighted squared-error
minimization

At the heart of CCA is computing the SVD of the
Ω〈a〉 matrix: this can be interpreted as solving the
following (non-convex) squared-error minimiza-
tion problem:

min
uw,vc∈Rm

∑
w,c

(
Ω〈a〉w,c − u>wvc

)2
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But we note that minimizing unweighted squared-
error objectives is generally suboptimal when the
target values are heteroscedastic. For instance, in
linear regression, it is well-known that a weighted
least squares estimator dominates ordinary least
squares in terms of statistical efficiency (Aitken,
1936; Lehmann and Casella, 1998). For our set-
ting, the analogous weighted least squares opti-
mization is:

min
uw,vc∈Rm

∑
w,c

1

Var
(

Ω〈a〉w,c
) (Ω〈a〉w,c − u>wvc

)2
(6)

where Var(X) := E[X2]−E[X]2. This optimiza-
tion is, unfortunately, generally intractable (Sre-
bro et al., 2003). The square-root transformation,
nevertheless, obviates the variance-based weight-
ing since the target values have approximately the
same variance of 1/4.

5 A template for spectral methods

Figure 2 gives a generic template that encom-
passes a range of spectral methods for deriving
word embeddings. All of them operate on co-
occurrence counts #(w, c) and share the low-rank
SVD step, but they can differ in the data transfor-
mation method (t) and the definition of the matrix
of scaled counts for SVD (s).

We introduce two additional parameters α, β ≤
1 to account for the following details. Mikolov et
al. (2013b) proposed smoothing the empirical con-
text distribution as p̂α(c) := #(c)α/

∑
c #(c)α

and found α = 0.75 to work well in practice. We
also found that setting α = 0.75 gave a small but
consistent improvement over setting α = 1. Note
that the choice of α only affects methods that make
use of the context distribution (s ∈ {ppmi, cca}).

The parameter β controls the role of singular
values in word embeddings. This is always 0
for CCA as it does not require singular values.
But for other methods, one can consider setting
β > 0 since the best-fit subspace for the rows
of Ω is given by UΣ. For example, Deerwester
et al. (1990) use β = 1 and Levy and Goldberg
(2014b) use β = 0.5. However, it has been found
by many (including ourselves) that setting β = 1
yields substantially worse representations than set-
ting β ∈ {0, 0.5} (Levy et al., 2015).

Different combinations of these aspects repro-
duce various spectral embeddings explored in the
literature. We enumerate some meaningful combi-
nations:

SPECTRAL-TEMPLATE
Input: word-context co-occurrence counts #(w, c), dimen-
sion m, transformation method t, scaling method s, context
smoothing exponent α ≤ 1, singular value exponent β ≤ 1
Output: vector v(w) ∈ Rm for each word w ∈ [n]
Definitions: #(w) :=

∑
c #(w, c), #(c) :=

∑
w #(w, c),

N(α) :=
∑
c #(c)α

1. Transform all #(w, c), #(w), and #(c):

#(·)←


#(·) if t = —

log(1 + #(·)) if t = log
#(·)2/3 if t = two-thirds√

#(·) if t = sqrt

2. Scale statistics to construct a matrix Ω ∈ Rn×n:

Ωw,c ←


#(w, c) if s = —

#(w,c)
#(w)

if s = reg

max
(

log #(w,c)N(α)
#(w)#(c)α , 0

)
if s = ppmi

#(w,c)√
#(w)#(c)α

√
N(α)
N(1)

if s = cca

3. Perform rank-m SVD on Ω ≈ UΣV > where Σ =
diag(σ1, . . . , σm) is a diagonal matrix of ordered sin-
gular values σ1 ≥ · · · ≥ σm ≥ 0.

4. Define v(w) ∈ Rm to be thew-th row of UΣβ normal-
ized to have unit 2-norm.

Figure 2: A template for spectral word embedding
methods.

No scaling
[
t ∈ {—, log, sqrt}, s = —

]
. This is

a commonly considered setting (e.g., in Penning-
ton et al. (2014)) where no scaling is applied to the
co-occurrence counts. It is however typically ac-
companied with some kind of data transformation.

Positive point-wise mutual information (PPMI)[
t = —, s = ppmi

]
. Mutual information is a pop-

ular metric in many natural language tasks (Brown
et al., 1992; Pantel and Lin, 2002). In this setting,
each term in the matrix for SVD is set as the point-
wise mutual information between wordw and con-
text c:

log
p̂(w, c)

p̂(w)p̂α(c)
= log

#(w, c)
∑

c #(c)α

#(w)#(c)α

Typically negative values are thresholded to 0 to
keep Ω sparse. Levy and Goldberg (2014b) ob-
served that the negative sampling objective of the
skip-gram model of Mikolov et al. (2013b) is im-
plicitly factorizing a shifted version of this ma-
trix.2

2This is not equivalent to applying SVD on this matrix,
however, since the loss function is different.
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Regression
[
t ∈ {—, sqrt}, s = reg

]
. An-

other novelty of our work is considering a low-
rank approximation of a linear regressor that pre-
dicts the context from words. Denoting the word
sample matrix by X ∈ RN×n and the context
sample matrix by Y ∈ RN×n, we seek U∗ =
arg minU∈Rn×n ||Y − XU ||2 whose closed-from
solution is given by:

U∗ = (X>X )−1X>Y (7)

Thus we aim to compute a low-rank approxima-
tion ofU∗ with SVD. This is inspired by other pre-
dictive models in the representation learning lit-
erature (Ando and Zhang, 2005; Mikolov et al.,
2013a). We consider applying the square-root
transformation for the same variance stabilizing
effect discussed in Section 4.3.

CCA
[
t ∈ {—, two-thirds, sqrt}, s = cca

]
.

This is the focus of our work. As shown in The-
orem 4.1, we can take the element-wise power
transformation on counts (such as the power of
1, 2/3, 1/2 in this template) while preserving the
representational meaning of word embeddings un-
der the Brown model interpretation. If there is no
data transformation (t = —), then we recover the
original spectral algorithm of Stratos et al. (2014).

6 Related work

We make a few remarks on related works not al-
ready discussed earlier. Dhillon et al. (2011) and
(2012) propose novel modifications of CCA (LR-
MVL and two-step CCA) to derive word embed-
dings, but do not establish any explicit connection
to learning HMM parameters or justify the square-
root transformation. Pennington et al. (2014) pro-
pose a weighted factorization of log-transformed
co-occurrence counts, which is generally an in-
tractable problem (Srebro et al., 2003). In contrast,
our method requires only efficiently computable
matrix decompositions. Finally, word embeddings
have also been used as features to improve per-
formance in a variety of supervised tasks such as
sequence labeling (Dhillon et al., 2011; Collobert
et al., 2011) and dependency parsing (Lei et al.,
2014; Chen and Manning, 2014). Here, we focus
on understanding word embeddings in the context
of a generative word class model, as well as in em-
pirical tasks that directly evaluate the word embed-
dings themselves.

7 Experiments

7.1 Word similarity and analogy

We first consider word similarity and analogy
tasks for evaluating the quality of word embed-
dings. Word similarity measures the Spearman’s
correlation coefficient between the human scores
and the embeddings’ cosine similarities for word
pairs. Word analogy measures the accuracy on
syntactic and semantic analogy questions. We re-
fer to Levy and Goldberg (2014a) for a detailed
description of these tasks. We use the multiplica-
tive technique of Levy and Goldberg (2014a) for
answering analogy questions.

For the choice of corpus, we use a pre-
processed English Wikipedia dump (http://
dumps.wikimedia.org/). The corpus con-
tains around 1.4 billion words. We only preserve
word types that appear more than 100 times and
replace all others with a special symbol, resulting
in a vocabulary of size around 188k. We define
context words to be 5 words to the left/right for all
considered methods.

We use three word similarity datasets each con-
taining 353, 3000, and 2034 word pairs.3 We
report the average similarity score across these
datasets under the label AVG-SIM. We use two
word analogy datasets that we call SYN (8000
syntactic analogy questions) and MIXED (19544
syntactic and semantic analogy questions).4

We implemented the template in Figure 2 in
C++.5 We compared against the public implemen-
tation of WORD2VEC by Mikolov et al. (2013b)
and GLOVE by Pennington et al. (2014). These
external implementations have numerous hyperpa-
rameters that are not part of the core algorithm,
such as random subsampling in WORD2VEC and
the word-context averaging in GLOVE. We refer
to Levy et al. (2015) for a discussion of the effect
of these features. In our experiments, we enable
all these features with the recommended default
settings.

We reserve a half of each dataset (by category)
3WordSim-353: http://www.cs.technion.ac.

il/˜gabr/resources/data/wordsim353/; MEN:
http://clic.cimec.unitn.it/˜elia.bruni/
MEN.html; Stanford Rare Word: http://www-nlp.
stanford.edu/˜lmthang/morphoNLM/.

4http://research.microsoft.com/en-us/
um/people/gzweig/Pubs/myz_naacl13_
test_set.tgz; http://www.fit.vutbr.cz/
˜imikolov/rnnlm/word-test.v1.txt

5The code is available at https://github.com/
karlstratos/singular.
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Configuration 500 dimensions 1000 dimensions
Transform (t) Scale (s) AVG-SIM SYN MIXED AVG-SIM SYN MIXED

— — 0.514 31.58 28.39 0.522 29.84 32.15
sqrt — 0.656 60.77 65.84 0.646 57.46 64.97
log — 0.669 59.28 66.86 0.672 55.66 68.62
— reg 0.530 29.61 36.90 0.562 32.78 37.65

sqrt reg 0.625 63.97 67.30 0.638 65.98 70.04
— ppmi 0.638 41.62 58.80 0.665 47.11 65.34

sqrt cca 0.678 66.40 74.73 0.690 65.14 77.70

Table 2: Performance of various spectral methods on the development portion of data.

Transform (t) AVG-SIM SYN MIXED
— 0.572 39.68 57.64
log 0.675 55.61 69.26

two-thirds 0.650 60.52 74.00
sqrt 0.690 65.14 77.70

Table 1: Performance of CCA (1000 dimensions)
on the development portion of data with different
data transformation methods (α = 0.75, β = 0).

as a held-out portion for development and use the
other half for final evaluation.

7.1.1 Effect of data transformation for CCA
We first look at the effect of different data trans-
formations on the performance of CCA. Table 1
shows the result on the development portion with
1000-dimensional embeddings. We see that with-
out any transformation, the performance can be
quite bad—especially in word analogy. But there
is a marked improvement upon transforming the
data. Moreover, the square-root transformation
gives the best result, improving the accuracy on
the two analogy datasets by 25.46% and 20.06%
in absolute magnitude. This aligns with the dis-
cussion in Section 4.3.

7.1.2 Comparison among different spectral
embeddings

Next, we look at the performance of various com-
binations in the template in Figure 2. We smooth
the context distribution with α = 0.75 for PPMI
and CCA. We use β = 0.5 for PPMI (which has
a minor improvement over β = 0) and β = 0 for
all other methods. We generally find that using
β = 0 is critical to obtaining good performance
for s ∈ {—, reg}.

Table 2 shows the result on the development
portion for both 500 and 1000 dimensions. Even

without any scaling, SVD performs reasonably
well with the square-root and log transformations.
The regression scaling performs very poorly with-
out data transformation, but once the square-root
transformation is applied it performs quite well
(especially in analogy questions). The PPMI scal-
ing achieves good performance in word similarity
but not in word analogy. The CCA scaling, com-
bined with the square-root transformation, gives
the best overall performance. In particular, it per-
forms better than all other methods in mixed anal-
ogy questions by a significant margin.

7.1.3 Comparison with other embedding
methods

We compare spectral embedding methods against
WORD2VEC and GLOVE on the test portion. We
use the following combinations based on their per-
formance on the development portion:

• LOG: log transform, — scaling

• REG: sqrt transform, reg scaling

• PPMI: — transform, ppmi scaling

• CCA: sqrt transform, cca scaling

For WORD2VEC, there are two model options:
continuous bag-of-words (CBOW) and skip-gram
(SKIP). Table 3 shows the result for both 500 and
1000 dimensions.

In word similarity, spectral methods generally
excel, with CCA consistently performing the best.
SKIP is the only external package that performs
comparably, with GLOVE and CBOW falling be-
hind. In word analogy, REG and CCA are signifi-
cantly better than other spectral methods. They are
also competitive to GLOVE and CBOW, but SKIP
does perform the best among all compared meth-
ods on (especially syntactic) analogy questions.
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Method 500 dimensions 1000 dimensions
AVG-SIM SYN MIXED AVG-SIM SYN MIXED

Spectral LOG 0.652 59.52 67.27 0.635 56.53 68.67
REG 0.602 65.51 67.88 0.609 66.47 70.48
PPMI 0.628 43.81 58.38 0.637 48.99 63.82
CCA 0.655 68.38 74.17 0.650 66.08 76.38

Others GLOVE 0.576 68.30 78.08 0.586 67.40 78.73
CBOW 0.597 75.79 73.60 0.509 70.97 60.12
SKIP 0.642 81.08 78.73 0.641 79.98 83.35

Table 3: Performance of different word embedding methods on the test portion of data. See the main text
for the configuration details of spectral methods.

7.2 As features in a supervised task
Finally, we use word embeddings as features in
NER and compare the subsequent improvements
between various embedding methods. The ex-
perimental setting is identical to that of Stratos
et al. (2014). We use the Reuters RCV1 cor-
pus which contains 205 million words. With fre-
quency thresholding, we end up with a vocabu-
lary of size around 301k. We derive LOG, REG,
PPMI, and CCA embeddings as described in Sec-
tion 7.1.3, and GLOVE, CBOW, and SKIP em-
beddings again with the recommended default set-
tings. The number of left/right contexts is 2 for all
methods. For comparison, we also derived 1000
Brown clusters (BROWN) on the same vocabu-
lary and used the resulting bit strings as features
(Brown et al., 1992).

Table 4 shows the result for both 30 and 50 di-
mensions. In general, using any of these lexical
features provides substantial improvements over
the baseline.6 In particular, the 30-dimensional
CCA embeddings improve the F1 score by 2.84
on the development portion and by 4.88 on the
test portion. All spectral methods perform com-
petitively with external packages, with CCA and
SKIP consistently delivering the biggest improve-
ments on the development portion.

8 Conclusion

In this work, we revisited SVD-based methods
for inducing word embeddings. We examined
a framework provided by CCA and showed that
the resulting word embeddings can be viewed as
cluster-revealing parameters of a certain model
and that this result is robust to data transformation.

6We mention that the well-known dev/test discrepancy in
the CoNLL 2003 dataset makes the results on the test portion
less reliable.

Features 30 dimensions 50 dimensions
Dev Test Dev Test

— 90.04 84.40 90.04 84.40
BROWN 92.49 88.75 92.49 88.75

LOG 92.27 88.87 92.91 89.67
REG 92.51 88.08 92.73 88.88
PPMI 92.25 89.27 92.53 89.37
CCA 92.88 89.28 92.94 89.01

GLOVE 91.49 87.16 91.58 86.80
CBOW 92.44 88.34 92.83 89.21
SKIP 92.63 88.78 93.11 89.32

Table 4: NER F1 scores when word embeddings
are added as features to the baseline (—).

Our proposed method gives the best result among
spectral methods and is competitive to other pop-
ular word embedding techniques.

This work suggests many directions for fu-
ture work. Past spectral methods that involved
CCA without data transformation (e.g., Cohen et
al. (2013)) may be revisited with the square-root
transformation. Using CCA to induce representa-
tions other than word embeddings is another im-
portant future work. It would also be interesting
to formally investigate the theoretical merits and
algorithmic possibility of solving the variance-
weighted objective in Eq. (6). Even though the
objective is hard to optimize in the worst case, it
may be tractable under natural conditions.
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A Proof of Theorem 4.1

We first define some random variables. Let ρ be
the number of left/right context words to consider
in CCA. Let (W1, . . . ,WN ) ∈ [n]N be a random
sequence of words drawn from the Brown model
where N ≥ 2ρ + 1, along with the correspond-
ing sequence of hidden states (H1, . . . ,HN ) ∈
[m]N . Independently, pick a position I ∈ [ρ +
1, N − ρ] uniformly at random; pick an integer
J ∈ [−ρ, ρ]\{0} uniformly at random. Define
B ∈ Rn×n, u, v ∈ Rn, π̃ ∈ Rm, and T̃ ∈ Rm×m

as follows:

Bw,c := P (WI = w,WI+J = c) ∀w, c ∈ [n]
uw := P (WI = w) ∀w ∈ [n]
vc := P (WI+J = c) ∀c ∈ [n]
π̃h := P (HI = h) ∀h ∈ [m]

T̃h′,h := P (HI+J = h′|HI = h) ∀h, h′ ∈ [m]

First, we show that Ω〈a〉 has a particular structure
under the Brown assumption. For the choice of
positive vector s ∈ Rm in the theorem, we define
sh := (

∑
w o(w|h)a)−1/2 for all h ∈ [m].

Lemma A.1. Ω〈a〉 = AΘ> where Θ ∈ Rn×m has
rank m and A ∈ Rn×m is defined as:

A := diag(Oπ̃)−a/2O〈a〉diag(π̃)a/2diag(s)

Proof. Let Õ := OT̃ . It can be algebraically
verified that B = Odiag(π̃)Õ>, u = Oπ̃, and
v = Õπ̃. By Assumption 4.1, each entry of B〈a〉

has the form

B〈a〉w,c =

∑
h∈[m]

Ow,h × π̃h × Õc,h

a

=
(
Ow,H(w) × π̃H(w) × Õc,H(w)

)a
= Oaw,H(w) × π̃aH(w) × Õac,H(w)

=
∑
h∈[m]

Oaw,h × π̃ah × Õac,h

Thus B〈a〉 = O〈a〉diag(π̃)a(Õ〈a〉)>. Therefore,

Ω〈a〉 =
(

diag(u)−1/2Bdiag(v)−1/2
)〈a〉

= diag(u)−a/2B〈a〉diag(v)−a/2

= diag(Oπ̃)−a/2O〈a〉diag(π̃)a/2diag(s)

diag(s)−1diag(π̃)a/2(Õ〈a〉)>diag(Õπ̃)−a/2

This gives the desired result.

Next, we show that the left component of Ω〈a〉

is in fact the emission matrix O up to (nonzero)
scaling and is furthermore orthonormal.

Lemma A.2. The matrix A in Lemma A.1 has the
expression A = O〈a/2〉diag(s) and has orthonor-
mal columns.

Proof. By Assumption 4.1, each entry ofA is sim-
plified as follows:

Aw,h =
o(w|h)a × π̃a/2h × sh
o(w|H(w))a/2 × π̃a/2H(w)

= o(w|h)a/2 × sh
This proves the first part of the lemma. Note that:

[A>A]h,h′ =
{
s2h ×

∑
w o(w|h)a if h = h′

0 otherwise

Thus our choice of s gives A>A = Im×m.

Proof of Theorem 4.1. With Lemma A.1 and A.2,
the proof is similar to the proof of Theorem 5.1 in
Stratos et al. (2014).
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Abstract

Existing distributed representations are
limited in utilizing structured knowledge
to improve semantic relatedness modeling.
We propose a principled framework of em-
bedding entities that integrates hierarchi-
cal information from large-scale knowl-
edge bases. The novel embedding model
associates each category node of the hi-
erarchy with a distance metric. To cap-
ture structured semantics, the entity sim-
ilarity of context prediction are measured
under the aggregated metrics of relevant
categories along all inter-entity paths. We
show that both the entity vectors and cat-
egory distance metrics encode meaningful
semantics. Experiments in entity linking
and entity search show superiority of the
proposed method.

1 Introduction

There has been a growing interest in distributed
representation that learns compact vectors (a.k.a
embedding) for words (Mikolov et al., 2013a),
phrases (Passos et al., 2014), and concepts (Hill
and Korhonen, 2014), etc. The induced vectors
are expected to capture semantic relatedness of
the linguistic items, and are widely used in senti-
ment analysis (Tang et al., 2014), machine transla-
tion (Zhang et al., 2014), and information retrieval
(Clinchant and Perronnin, 2013), to name a few.

Despite the impressive success, existing work
is still limited in utilizing structured knowledge
to enhance the representation. For instance, word
and phrase embeddings are largely induced from
plain text. Though recent knowledge graph em-
beddings (Lin et al., 2015; Wang et al., 2014) inte-
grate the relational structure among entities, they
primarily target at link prediction and lack an ex-
plicit relatedness measure.

In this paper, we propose to improve the dis-
tributed representations of entities by integrating
hierarchical information from large-scale knowl-
edge bases (KBs). An entity hierarchy groups en-
tities into categories which are further organized
to form a taxonomy. It provides rich structured
knowledge on entity relatedness (Resnik, 1995).
Our work goes beyond the previous heuristic use
of entity hierarchy which relies on hand-crafted
features (Kaptein and Kamps, 2013; Ponzetto
and Strube, 2007), and develops a principled
optimization-based framework. We learn a dis-
tance metric for each category node, and mea-
sure entity-context similarity under the aggregat-
ed metrics of all relevant categories. The met-
ric aggregation encodes the hierarchical property
that nearby entities tend to share common seman-
tic features. We further provide a highly-efficient
implementation in order to handle large complex
hierarchies.

We train a distributed representation for the w-
hole entity hierarchy of Wikipedia. Both the entity
vectors and the category distance metrics capture
meaningful semantics. We deploy the embedding
in both entity linking (Han and Sun, 2012) and
entity search (Demartini et al., 2010) tasks. Hi-
erarchy embedding significantly outperforms that
without structural knowledge. Our methods also
show superiority over existing competitors.

To the best of our knowledge, this is the first
work to learn distributed representations that in-
corporates hierarchical knowledge in a principled
framework. Our model that encodes hierarchy by
distance metric learning and aggregation provides
a potentially important and general scheme for u-
tilizing hierarchical knowledge.

The rest of the paper is organized as follows:
§2 describes the proposed embedding model; §3
presents the application of the learned embed-
ding; §4 evaluates the approach; §5 reviews related
work; and finally, §6 concludes the paper.
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Figure 1: The model architecture. The text context of an entity is based on its KB encyclopedia article.
The entity hierarchical structure is incorporated through distance metric learning and aggregation.

2 Entity Hierarchy Embedding

The objective of the embedding model is to find
a representation for each entity that is useful for
predicting other entities occurring in its contex-
t. We build entity’s context upon KB encyclope-
dia articles, where entity annotations are readily
available. We further incorporate the entity hierar-
chical structure in the context prediction through
distance metric learning and aggregation, which
encodes the rich structured knowledge in the in-
duced representations. Our method is flexible and
efficient to model large complex DAG-structured
hierarchies. Figure 1 shows an overview of the
model architecture.

2.1 Model Architecture

Our architecture builds on the skip-gram word
embedding framework (Mikolov et al., 2013b).
In the skip-gram model, a set of (target, con-
text) word pairs are extracted by sliding a fixed-
length context window over a text corpus, and the
word vectors are learned such that the similarity
of the target- and context-word vectors is maxi-
mized. We generalize both the context definition
and the similarity measure for entity hierarchy em-
bedding.

Unlike words that can be directly extracted from
plain text, entities are hidden semantics underly-
ing their surface forms. In order to avoid manual
annotation cost, we exploit the text corpora from
KBs where the referent entities of surface text are
readily annotated. Moreover, since a KB encyclo-
pedia article typically focuses on describing one
entity, we naturally extend the entity’s context as
its whole article, and obtain a set of entity pairs
D = {(eT , eC)}, where eT denotes the target-
entity and eC denotes the context-entity occurring
in entity eT ’s context.

Let E be the set of entities. For each entity e ∈

E , the model learns both a “target vector” ve ∈ Rn

and “context vector” v̄e ∈ Rn, by maximizing the
training objective

L =
1

|D|
∑

(eT ,eC)∈D
log p(eC |eT ), (1)

where the prediction probability is defined as a
softmax:

p(eC |eT ) =
exp {−d (eT , eC)}∑
e∈E exp {−d (eT , e)} . (2)

Here d(e, e′) is the distance between the target
vector of e (i.e., ve) and the context vector of e′

(i.e., v̄e′). We present the design in the following.

2.2 Hierarchical Extension
An entity hierarchy takes entities as leaf nodes and
categories as internal nodes, which provides key
knowledge sources on semantic relatedness that 1)
far-away entities in the hierarchy tend to be se-
mantically distant, and 2) nearby entities tend to
share common semantic features. We aim to en-
code this knowledge in our representations. As K-
B hierarchies are large complex DAG structures,
we develop a highly-efficient scheme to enable
practical training.

Specifically, we associate a separate distance
metric Mh ∈ Rn×n with each category h in the
hierarchy. A distance metric is a positive semidef-
inite (PSD) matrix. We then measure the distance
between two entities under some aggregated dis-
tance metric as detailed below. The local metrics
thus not only serve to capture the characteristics
of individual categories, but also make it possible
to share the representation across entities through
metric aggregation of relevant categories.

Metric aggregation Given two entities e and e′,
let Pe,e′ be the path between them. One obvious
way to define the aggregated metricMe,e′ ∈ Rn×n

is through a combination of the metrics on the
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Figure 2: Paths in a DAG-structured hierarchy. A
path P is defined as a sequence of non-duplicated
nodes with the property that there exists a turning
node t ∈ P such that any two consecutive nodes
before t are (child, parent) pairs, while consecu-
tive nodes after t are (parent, child) pairs. Thus a
turning node is necessarily a common ancestor.

path:
∑

h∈Pe,e′
Mh, leading to a nice property that

the more nodes a path has, the more distant the en-
tities tend to be (as Mh is PSD). This simple strat-
egy, however, can be problematic when the hier-
archy has a complex DAG structure, in that there
can be multiple paths between two entities (Fig-
ure 2). Though the shortest path can be selected, it
ignores other related category nodes and loses rich
information. In contrast, an ideal scheme should
not only mirror the distance in the hierarchy, but
also take into account all possible paths in order to
capture the full aspects of relatedness.

However, hierarchies in large KBs can be com-
plex and contains combinationally many paths be-
tween any two entities. We propose an efficien-
t approach that avoids enumerating paths and in-
stead models the underlying nodes directly. In par-
ticular, we extend Pe,e′ as the set of all category
nodes included in any of the e → e′ paths, and
define the aggregate metric as

Me,e′ = γe,e′
∑

h∈Pe,e′
πee′,hMh, (3)

where {πee′,h} are the relative weights of the cat-
egories such that

∑
h∈Pe,e′

πee′,h = 1. This serves
to balance the size of P across different entity
pairs. We set πee′,h ∝ ( 1

sh↓e + 1
sh↓e′

) with sh↓e
being the average #steps going down from node
h to node e in the hierarchy (infinite if h is not
an ancestor of e). This implements the intuition
that an entity (e.g., “Iphone”) is more relevant to
its immediate categories (e.g., “Mobile phones”)
than to farther and more generic ancestors (e.g.,
“Technology”). The scaling factor γe,e′ encodes
the distance of the entities in the hierarchy and can

be of various choices. We set γe,e′ = minh{sh↓e+
sh↓e′} to mirror the least common ancestor.

In Figure 2, Pe,e′ = {h2, h3, h4}, and the rel-
ative weights of the categories are πee′,h2 ∝ 3/2
and πee′,h3 = πee′,h4 ∝ 1. Category h2 is the least
common ancestor and γe,e′ = 3.

Based on the aggregated metric, the distance be-
tween a target entity eT and a context entity eC can
then be measured as

d (eT , eC) = (veT − v̄eC )>MeT ,eC (veT − v̄eC ). (4)

Note that nearby entities in the hierarchy tend to
share a large proportion of local metrics in Eq 3,
and hence can exhibit common semantic features
when measuring distance with others.

Complexity of aggregation As computing dis-
tance is a frequent operation in both training and
application stages, a highly efficient aggregation
algorithm is necessary in order to handle complex
large entity hierarchies (with millions of nodes).
Our formulation (Eq 3) avoids exhaustive enumer-
ation over all paths by modeling the relevant nodes
directly. We show that this allows linear complex-
ity in the number of children of two entities’ com-
mon ancestors, which is efficient in practice.

The most costly operation is to find Pe,e′ , i.e.,
the set of all category nodes that can occur in any
of e→ e′ paths. We use a two-step procedure that
(1) finds all common ancestors of entity e and e′

that are turning nodes of any e → e′ paths (e.g.,
h2 in Figure 2), denoted asQe,e′ ; (2) expands from
Qe,e′ to construct the full Pe,e′ . For the first step,
the following theorem shows each common ances-
tor can be efficiently assessed by testing only its
children nodes. For the second step, it is straight-
forward to see that Pe,e′ can be constructed by ex-
panding Qe,e′ with its descendants that are ances-
tors of either e or e′. Other parameters (πee′ and
γe,e′) of aggregation can be computed during the
above process.

We next provide the theorem for the first step.
LetAe be the ancestor nodes of entity e (including
e itself). For a node h ∈ Ae ∪ Ae′ , we define
its critical node th as the nearest (w.r.t the length
of the shortest path) descendant of h (including h
itself) that is in Qe,e′ ∪ {e, e′}. E.g., in Figure 2,
th1 = h2; th2 = h2; th3 = e. Let Ch be the set of
immediate child nodes of h.

Theorem 1. ∀h ∈ Ae ∩Ae′ , h ∈ Qe,e′ iff it satis-
fies the two conditions: (1) |Ch∩(Ae ∪ Ae′) | ≥ 2;
(2) ∃a, b ∈ Ch s.t. ta 6= tb.
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Proof. We outline the proof here, and provide the
details in the appendix.

Sufficiency: Note that e, e′ /∈ Qe,e′ . We prove
the sufficiency by enumerating possible situation-
s: (i) ta = e, tb = e′; (ii) ta = e, tb ∈ Qe,e′ ;
(iii) ta, tb ∈ Qe,e′ . For (i): as ta = e, there exists
a path e → · · · → a → h where any two con-
secutive nodes is a (child, parent) pair. Similarly,
there is a path h → b → · · · → e′ where any t-
wo consecutive nodes is a (parent, child) pair. It
is provable that the two paths intersect only at h,
and thus can be combined to form an e→ e′ path:
e → · · · → a → h → b → · · · → e′, yielding h
as a turning node. The cases (ii) and (iii) can be
proved similarly.

Necessity: We prove by contradiction. Suppose
that ∀a, b ∈ Ch ∩ (Ae ∪ Ae′) we have ta = tb.
W.l.o.g. we consider two cases: (i) ta = tb = e,
and (ii) ta = tb ∈ Qe,e′ . It is provable that both
cases will lead to contradiction.

Therefore, by checking common ancestors from
the bottom up, we can construct Qe,e′ with time
complexity linear to the number of all ancestors’
children.

2.3 Learning

For efficiency, we use negative sampling to refor-
mulate the training objective, which is then opti-
mized through coordinate gradient ascent.

Specifically, given the training data {(eT , eC)}
extracted from KB corpora, the representation
learning is formulated as maximizing the objec-
tive in Eq 1, subject to PSD constraints on distance
metrics Mh � 0, and ‖ve‖2 = ‖v̄e‖2 = 1 to avoid
scale ambiguity.

The likelihood of each data sample is defined
as a softmax in Eq 2, which iterates over all en-
tities in the denominator and is thus computation-
ally prohibitive. We apply the negative sampling
technique as in conventional skip-gram model, by
replacing each log probability log p(eC |eT ) with

log σ(−d (eT , eC)) +
∑k

i=1
Eei∼P (e) [log σ(−d (eT , ei))] ,

where σ(x) = 1/(1 + exp(−x)) is the sigmoid
function; and for each data sample we draw k neg-
ative samples from the noise distribution P (e) ∝
U(e)3/4 with U(e) being the unigram distribution
(Mikolov et al., 2013b).

The negative sampling objective is optimized
using coordinate gradient ascent, as shown in Al-

gorithm 1. To avoid overfitting and improve effi-
ciency, in practice we restrict the distance metrics
Mh to be diagonal (Xing et al., 2002). Thus the
PSD project of Mh (line 17) is simply taking the
positive part for each diagonal elements.

Algorithm 1 Entity Hierarchy Embedding
Input: The training data D = {(eT , eC)},

Entity hierarchy,
Parameters: n – dimension of the embedding

k – number of negative samples
η – gradient learning rate
B – minibatch size

1: Initialize v, v̄,M randomly such that ‖v‖2 = ‖v̄‖2 = 1
and M � 0.

2: repeat
3: Sample a batch B = {(eT , eC)i}Bi=1 from D
4: for all (eT , eC) ∈ B do
5: Compute {P,π, γ}eT ,eC for metric aggregation
6: Sample negative pairs {(eT , ei)}ki=1

7: Compute {{P,π, γ}eT ,ei}ki=1 for metric aggrega-
tion

8: end for
9: repeat

10: for all e ∈ E included in B do
11: ve = ve + η ∂L

∂ve

12: v̄e = v̄e + η ∂L
∂v̄e

13: ve, v̄e = Project to unit sphere(ve, v̄e)
14: end for
15: until convergence
16: repeat
17: for all h included in B do
18: Mh = Mh + η ∂L

∂Mh

19: Mh = Project to PSD(Mh)
20: end for
21: until convergence
22: until convergence
Output: Entity vectors v, v̄, and category dist. metricsM

3 Applications

One primary goal of learning semantic embedding
is to improve NLP tasks. The compact represen-
tations are easy to work with because they en-
able efficient computation of semantic relatedness.
Compared to word embedding, entity embedding
is particularly suitable for various language under-
standing applications that extract underlying se-
mantics of surface text. Incorporating entity hier-
archies further enriches the embedding with struc-
tured knowledge.

In this section, we demonstrate how the learned
entity hierarchy embedding can be utilized in t-
wo important tasks, i.e., entity linking and enti-
ty search. In both tasks, we measure the seman-
tic relatedness between entities as the reciprocal
distance defined in Eq 4. This greatly simpli-
fies previous methods which have used various
hand-crafted features, and leads to improved per-
formance as shown in our experiments.
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3.1 Entity Linking

The entity linking task is to link surface form-
s (mentions) of entities in a document to entities
in a reference KB. It is an essential first step for
downstream tasks such as semantic search and K-
B construction. The quality of entity relatedness
measure is critical for entity linking performance,
because of the key observation that entities in a
document tend to be semantically coherent. For
example, in sentence “Apple released an operating
system Lion”, The mentions “Apple” and “Lion”
refer to Apple Inc. and Mac OS X Lion, respec-
tively, as is more coherent than other configura-
tions like (fruit apple, animal lion).

Our algorithm finds the optimal configuration
for the mentions of a document by maximizing
the overall relatedness among assigned entities, to-
gether with the local mention-to-entity compatibil-
ity. Specifically, we first construct a mention-to-
entity dictionary based on Wikipedia annotations.
For each mention m, the dictionary contains a set
of candidate entities and for each candidate entity
e a compatibility score P (e|m) which is propor-
tional to the frequency that m refers to e. For effi-
ciency we only consider the top-5 candidate enti-
ties according to P (e|m). Given a set of mentions
M = {mi}Mi=1 in a document, let A = {emi}Mi=1

be a configuration of its entity assignments. The
score of A is formulated as probability

P (A|M) ∝
∏M

i=1
P (emi |mi)

∑M

j=1
j 6=i

1

d
(
emi , emj

)
+ ε

,

where for each entity assignment we define its
global relatedness to other entity assignments as
the sum of the reciprocal distances (ε = 0.01 is
a constant used to avoid divide-by-zero). Direct
enumeration of all potential configurations is com-
putationally prohibitive, we therefore use simulat-
ed annealing to search for an optimal solution.

3.2 Entity Search

Entity search has attracted a growing interest
(Chen et al., 2014b; Balog et al., 2011). Unlike
conventional web search that finds unorganized
web pages, entity search retrieves knowledge di-
rectly by generating a list of relevant entities in re-
sponse to a search request. The input of the entity
search task is a natural language questionQ along
with one or more desired entity categories C. For
example, a query can be Q =“films directed by
Akira Kurosawa” and C ={Japanese films}.

Previous methods typically score candidate en-
tities by measuring both the similarity between en-
tity content and the query question Q (text match-
ing), and the similarity between categories of en-
tities and the query categories C (category match-
ing).

We apply a similar category matching strate-
gy as in previous work (Chen et al., 2014b) that
assesses lexical (e.g., head words) similarity be-
tween category names, while replacing the text
matching with entity relatedness measure. Specif-
ically, we first extract the underlying entities men-
tioned inQ through entity linking, then score each
candidate entity by its average relatedness to the
entities in Q. For instance, the entity Rashomon
will obtain a high score in the above example as
it is highly related with the entity Akira Kurosawa
in the query. This scheme not only avoids complex
document processing (e.g., topic modeling) in tex-
t matching, but also implicitly augments the short
query text with background knowledge, and thus
improves the accuracy and robustness.

4 Experiments

We validate the quality of our entity representa-
tion by evaluating its applications of entity linking
and entity search on public benchmarks. In the
entity linking task, our approach improves the F1
score by 10% over state-of-the-art results. We al-
so validate the advantage of incorporating hierar-
chical structure. In the entity search task, our sim-
ple algorithm shows competitive performance. We
further qualitatively analyze the entity vectors and
category metrics, both of which capture meaning-
ful semantics, and can potentially open up a wide
rage of other applications.

Knowledge base We use the Wikipedia snap-
shot from Jan 12nd, 2015 as our training data and
KB. After pruning administrative information we
obtain an entity hierarchy including about 4.1M
entities and 0.8M categories organized into 12
layers. Loops in the original hierarchy are re-
moved by deleting bottom-up edges, yielding a
DAG structure. We extract a set of 87.6M entity
pairs from the wiki links on Wikipedia articles.

We train 100-dimensional vector represen-
tations for the entities and distance metrics
(100×100 diagonal matrixes) for the categories
(we would study the impact of dimensionality in
the future). We set the batch size B = 500, the
initial learning rate η = 0.1 and decrease it by a

1296



factor of 5 whenever the objective value does not
increase, and the negative sample size k = 5. The
model is trained on a Linux machine with 128G
RAM and 16 cores. It takes 5 days to converge.

4.1 Entity Linking

4.1.1 Setup
Dataset As our entities based on English
Wikipedia include not only named entities (e.g.,
persons, organizations) but also general concepts
(e.g., “computer” and “human”), we use a stan-
dard entity linking dataset IITB1 where mentions
of Wikipedia entities are manually annotated ex-
haustively. The dataset contains about 100 docu-
ments and 17K mentions in total. As in the base-
line work, we use only the mentions whose refer-
ent entities are contained in Wikipedia.

Criteria We adopt the common criteria, preci-
sion, recall, and F1. Let A∗ be the golden stan-
dard entity annotations, and A be the annotations
by entity linking model, then

precision =
|A∗ ∩ A|
|A| recall =

|A∗ ∩ A|
|A∗| .

The F1 score is then computed based on the aver-
age precision and recall across all documents.

Baselines We compare our algorithm with the
following approaches. All the competitors are de-
signed to be able to link general concept mentions
to Wikipedia.

CSAW (Kulkarni et al., 2009) has a similar
framework as our algorithm. It measures entity
relatedness using a variation of Jaccard similarity
on Wikipedia page incoming links.

Entity-TM (Han and Sun, 2012) models an en-
tity as a distribution over mentions and words, and
sets up a probabilistic generative process for the
observed text.

Ours-NoH. To validate the advantage of incor-
porating hierarchical structure, we design a base-
line that relies on entity embedding without enti-
ty hierarchy. That is, we obtain entity vectors by
fixing the distance metric in Eq 4 as an identity
matrix.

4.1.2 Results
Table 1 shows the performance of the competitors.
Our algorithm using the entity hierarchy embed-
ding gets 21% to 10% improvement in F1, and

1http://www.cse.iitb.ac.in/soumen/doc/CSAW/Annot

Methods Precision Recall F1
CSAW 0.65 0.74 0.69

Entity-TM 0.81 0.80 0.80
Ours-NoH 0.78 0.85 0.81

Ours 0.87 0.94 0.90

Table 1: Entity linking performance

over 6% and 14% improvements in Precision and
Recall, respectively. The CSAW model devises
a set of entity features based on text content and
link structures of Wikipedia pages, and combines
them to measure relatedness. Compared to these
hand-crafted features which are essentially heuris-
tic and hard to verify, our embedding model in-
duces semantic representations by optimizing a s-
ingle well-defined objective. Note that the em-
bedding actually also encodes the Wikipedia inter-
page network, as we train on the entity-context
pairs which are extracted from wiki links.

The Entity-TM model learns a representation
for each entity as a word distribution. However, as
noted in (Baroni et al., 2014), the counting-based
distributional model usually shows inferior perfor-
mance than context-predicting methods as ours.
Moreover, in addition to the text context, our mod-
el integrates the entity hierarchical structure which
provides rich knowledge of semantic relatedness.
The comparison between Ours and Ours-NoH fur-
ther reveals the effect of integrating the hierarchy
in learning entity vectors. With entity hierarchy,
we obtain more semantically meaningful represen-
tations that achieve 9% F1 improvement over en-
tity vectors without hierarchical knowledge.

4.2 Entity Search

4.2.1 Setup

Dataset We use the dataset from INEX 2009 en-
tity ranking track2, which contains 55 queries. The
golden standard results of each query contains a
set of relevant entities each of which corresponds
to a Wikipedia page.

Criteria We use the common criteria of
precision@k, i.e., the percentage of relevant
entities in the top-k results (we set k = 10), as
well as precision@R where R is the number of
golden standard entities for a query.

2http://www.inex.otago.ac.nz/tracks/entity-
ranking/entity-ranking.asp
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Baselines We compare our algorithm with the
following recent competitors.

Balog (Balog et al., 2011) develops a proba-
bilistic generative model which represents entities,
as well as the query, as distributions over both
words and categories. Entities are then ranked
based on the KL-divergence between the distribu-
tions.

K&K (Kaptein and Kamps, 2013) exploits
Wikipedia entity hierarchy to derive the content of
each category, which is in turn used to measure
relatedness with the query categories. It further
incorporates inter-entity links for relevance propa-
gation.

Chen (Chen et al., 2014b) creates for each en-
tity a context profile leveraging both the whole
document (long-range) and sentences around en-
tity (short-range) context, and models query text
by a generative model. Categories are weighted
based on the head words and other features. Our
algorithm exploits a similar method for category
matching.

Methods Precision@10 Precision@R
Balog 0.18 0.16
K&K 0.31 0.28
Chen 0.55 0.42
Ours 0.57 0.46

Table 2: Entity search performance.

4.2.2 Results

Table 2 lists the entity search results of the com-
petitors. Our algorithm shows superiority over the
previous best performing methods. Balog con-
structs representations for each entity merely by
counting (and smoothing) its co-occurrence be-
tween words and categories, which is inadequate
to capture relatedness accurately. K&K leverages
the rich resources in Wikipedia such as text, hi-
erarchy, and link structures. However, the hand-
crafted features are still suboptimal compared with
our learned representations.

Chen performs well by combining both long-
and short-context of entities, as well as catego-
ry lexical similarity. Our algorithm replaces it-
s text matching component with a semantic en-
richment step, i.e., grounding entity mentions in
the query text onto KB entities. This augments
the short query with rich background knowledge,
facilitating accurate relatedness measure based on
our high-quality entity embedding.

4.3 Qualitative Analysis

We qualitatively inspect the learned representa-
tions of the entity hierarchy. The results show that
both the entity vectors and the category distance
metrics capture meaningful semantics, and can po-
tentially boost a wide range of applications such as
recommendation and knowledge base completion.

Entity vectors Table 3 shows a list of target en-
tities, and their top-4 nearest entities in the whole
entity set or subsets belonging to given categories.
Measuring under the whole set (column 2) results
in nearest neighbors that are strongly related with
the target entity. For instance, the nearest enti-
ties for “black hole” are “faster-than-light”, “event
horizon”, “white hole”, and “time dilation”, all of
which are concepts from physical cosmology and
the theory of relativity. Similar results can be ob-
served from other 3 examples.

Even more interesting is to specify a category
and search for the most related entities under the
category. The third column of Table 3 shows sev-
eral examples. E.g., our model found that the most
related Chinese websites to Youtube are “Tudou”,
“56.com”, “Youku” (three top video hosting ser-
vices in China), and “YinYueTai” (a major MV
sharing site in China). The high-quality results
show that our embedding model is able to discov-
er meaningful relationships between entities from
the complex entity hierarchy and plain text. This
can be a useful feature in a wide range of appli-
cations such as semantic search (e.g., looking for
movies about black hole), recommendation (e.g.,
suggesting TV series of specific genre for kids),
and knowledge base completion (e.g., extracting
relations between persons), to name a few.

Target entity Most related entities

black hole

overall:
faster-than-light
event horizon
white hole
time dilation

American films:
Hidden Universe 3D
Hubble (film)
Quantum Quest
Particle Fever

Youtube

overall:
Instagram
Twitter
Facebook
Dipdive

Chinese websites:
Tudou
56.com
Youku
YinYueTai

Harvard
University

overall:
Yale University
University of Pennsylvania
Princeton University
Swarthmore College

businesspeople in software:
Jack Dangermond
Bill Gates
Scott McNealy
Marc Chardon

X-Men: Days of
Future Past (film)

overall:
Marvel Studios
X-Men: The Last Stand
X2 (film)
Man of Steel (film)

children’s television series:
Ben 10: Race Against Time
Kim Possible: A Sitch in Time
Ben 10: Alien Force
Star Wars: The Clone Wars

Table 3: Most related entities under specific cate-
gories. “Overall” represents the most general cat-
egory that includes all the entities.
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Figure 3: Distance metric visualization for the
subcategories of the category “Microsoft”. The t-
SNE (Van der Maaten and Hinton, 2008) algorith-
m is used to map the high-dimensional (diagonal)
matrixes into the 2D space.

Category distance metrics In addition to learn-
ing vector representations of entities, we also as-
sociate with each category a local distance metric
to capture the features of individual category. As
we restrict the distance metrics to be diagonal ma-
trixes, the magnitude of each diagonal value can
be viewed as how much a category is character-
ized by the corresponding dimension. Categories
with close semantic meanings are expected to have
similar metrics.

Figure 3 visualizes the metrics of all subcate-
gories under the category “Microsoft”, where we
amplify some parts of the figure to showcase the
clustering of semantically relevant categories. For
instance, the categories of Microsoft Windows op-
erating systems, and those of the Xbox games,
are embedded close to each other, respectively.
The results validate that our hierarchy embedding
model can not only encode relatedness between
leaf entities, but also capture semantic similarity
of the internal categories. This can be helpful in
taxonomy refinement and relation discovery.

5 Related Work

Distributed representation There has been a
growing interest in distributed representation of
words. Skip-gram model (Mikolov et al., 2013a)
is one of the most popular methods to learn word
representations. The model aims to find a rep-
resentation for each word that is useful for pre-
dicting its context words. Word-context simi-
larity is measured by simple inner product. A
set of recent works generalizing the basic skip-
gram to incorporate dependency context (Levy
and Goldberg, 2014), word senses (Chen et al.,
2014a), and multi-modal data (Hill and Korho-
nen, 2014). However, these work leverages lim-

ited structured knowledge. Our proposed method
goes beyond skip-gram significantly such that we
measures entity-context similarity under aggregat-
ed distance metrics of hierarchical category n-
odes. This effectively captures the structured
knowledge. Another research line learn knowl-
edge graph embedding (Lin et al., 2015; Wang et
al., 2014; Bordes et al., 2013), which models enti-
ties as vectors and relations as some operations on
the vector space (e.g., translation). These work-
s aim at relation prediction for knowledge graph
completion, and can be viewed as a supplement to
the above that extracts semantics from plain text.

Utilizing hierarchical knowledge Semantic hi-
erarchies are key sources of knowledge. Previ-
ous works (Ponzetto and Strube, 2007; Leacock
and Chodorow, 1998) use KB hierarchies to de-
fine relatedness between concepts, typically based
on path-length measure. Recent works (Yogatama
et al., 2015; Zhao et al., 2011) learn representa-
tions through hierarchical sparse coding that en-
forces similar sparse patterns between nearby n-
odes. Category hierarchies have also been wide-
ly used in classification (Xiao et al., 2011; Wein-
berger and Chapelle, 2009). E.g., in (Verma et al.,
2012) category nodes are endowed with discrim-
inative power by learning distance metrics. Our
approach differs in terms of entity vector learning
and metric aggregation on DAG hierarchy.

6 Conclusion
In this paper, we proposed to learn entity hierarchy
embedding to boost semantic NLP tasks. A princi-
pled framework was developed to incorporate both
text context and entity hierarchical structure from
large-scale knowledge bases. We learn a distance
metric for each category node, and measure enti-
ty vector similarity under aggregated metrics. A
flexible and efficient metric aggregation scheme
was also developed to model large-scale hierar-
chies. Experiments in both entity linking and enti-
ty search tasks show superiority of our approach.

The qualitative analysis indicates that our model
can be potentially useful in a wide range of other
applications such as knowledge base completion
and ontology refinement. Another interesting as-
pect of future work is to incorporate other sources
of knowledge to further enrich the semantics.
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Abstract

A recent distributional approach to word-
analogy problems (Mikolov et al., 2013b)
exploits interesting regularities in the
structure of the space of representations.
Investigating further, we find that per-
formance on this task can be related to
orthogonality within the space. Explic-
itly designing such structure into a neu-
ral network model results in represen-
tations that decompose into orthogonal
semantic and syntactic subspaces. We
demonstrate that learning from word-order
and morphological structure within En-
glish Wikipedia text to enable this de-
composition can produce substantial im-
provements on semantic-similarity, pos-
induction and word-analogy tasks.

1 Introduction

Distributional methods have become widely used
across computational linguistics. Recent applica-
tions include predicate clustering for question an-
swering (Lewis and Steedman, 2013), bilingual
embeddings for machine translation (Zou et al.,
2013) and enhancing the coverage of POS tag-
ging (Huang et al., 2013). The popularity of these
methods, stemming from their conceptual simplic-
ity and wide applicability, motivates a deeper anal-
ysis of the structure of the representations they
produce.

Commonly, these representations are made in a
single vector space with similarity being the main
structure of interest. However, recent work by
Mikolov et al. (2013b) on a word-analogy task
suggests that such spaces may have further use-
ful internal regularities. They found that seman-
tic differences, such as between big and small,
and also syntactic differences, as between big and
bigger, were encoded consistently across their

space. In particular, they solved the word-analogy
problems by exploiting the fact that equivalent re-
lations tended to correspond to parallel vector-
differences.

In this paper, we investigate orthogonality be-
tween relations rather than parallelism. While par-
allelism serves to ensure that the same relation
is encoded consistently, our hypothesis is that or-
thogonality serves to ensure that distinct relations
are clearly differentiable. We focus specifically
on semantic and syntactic relations as these are
probably the most distinct classes of properties en-
coded in distributional spaces.

Empirically, we demonstrate that orthogonal-
ity predicts performance on the word-analogy task
for three existing approaches to constructing word
vectors. We also attempt to enhance the weak-
est of these three models by imposing an orthog-
onal structure in its construction. In these exten-
sions, word representations decompose into or-
thogonal semantic and syntactic spaces, and we
use word-order and morphology to drive this sep-
aration. This decomposition also allows us to de-
fine a novel approach to solving the word-analogy
problems and our extended models become com-
petitive with the other two original models. In
addition, we show that the separate semantic and
syntactic sub-spaces gain improved performance
on semantic-similarity and POS-induction tasks
respectively.

Our experiments here are based on models that
construct vector-representations within a model
that predicts the occurence of words in context. In
particular we focus on the CBOW and Skip-gram
models of Mikolov etal. (2013b) and Pennington
et al.’s (2014) GloVe model. These models share
the property of producing a single general repre-
sentation for each word, which can be utilized in
a variety of tasks, from POS tagging to semantic
role labelling. In contrast, here we attempt to de-
compose the representations into separate seman-
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Figure 1: Geometric relationships between small,
smaller, big and bigger.

tic and syntactic components.

To motivate this decomposition, consider the
analogical reasoning task that Mikolov et al.
(2013b) apply neural embeddings to. In this task,
given vectors for the words big, bigger and small,
we try to predict the vector for smaller. They
find that in practice smaller ≈ small+ bigger−
big produces an estimate that is frequently closer
to the actual representation of smaller than any
other word vector. We can think of the vector
bigger − big as representing the syntactic rela-
tion that holds between an adjective and its com-
parative. Adding this syntactic structure to small
thus ends up at, or near, the relevant comparative,
smaller. Alternatively, we could think of the vec-
tor small−big as representing the semantic differ-
ence between small and big, and adding this rela-
tion to bigger produces a semantic transformation
to smaller.

Mikolov et al. (2013b) represent these sort of
relations in terms of a diagram similar to Figure 1.
The image places the four words in a 2D space and
represents the relations between them in terms of
arrows. The solid black arrows represent the syn-
tactic relations smaller−small and bigger−big,
while the gray dashed arrows represent the seman-
tic differences smaller−bigger and small−big.
Their solution to the analogy problem exploits the
fact that these pairs of relations are approximately
parallel to each other, i.e. that we can approx-
imate smaller − small with bigger − big, or
smaller − bigger with small − big. However,
knowing that opposite sides of the square in Fig-
ure 1 are parallel to each other still leaves open

the question of what happens at the corners. In
other words, what is the relationship between the
semantic differences, e.g. smaller − bigger, and
the syntactic differences, e.g. smaller − small?

In this paper we explore the idea that such se-
mantic and syntactic relations ought to be orthogo-
nal to each other. This hypothesis arises both from
the intuition that such distinct types of informa-
tion ought to be represented distinctly within our
space and also from the observation that solving
the word-analogy task requires that words can be
uniquely identified by combining these vector dif-
ferences and so small − big ought to be easily
differentiable from bigger− big as these relations
point to different end results starting from big. Es-
sentially, orthogonality will make better use of the
volume within the space, spreading words with
different semantic or syntactic characteristics fur-
ther from each other.

In terms of predicting smaller from big, bigger
and small, orthogonality of the relationship be-
tween smaller − bigger and smaller − small
can be expressed in terms of their dot product:

(smaller−bigger)·(smaller−small) = 0 (1)

If all semantic relations were genuinely orthog-
onal to all syntactic relations, then their space
would be decomposable into two orthogonal sub-
spaces: one semantic, the other syntactic. Any
word representation, v, would then be the combi-
nation of a unique semantic vector, b, within the
semantic subspace and a unique syntactic vector,
s, within the syntactic subspace. If b were given a
representation in terms of e components, and s in
terms of f components, then v would have a repre-
sentation in terms of d = e+f components which
would just be the concatenation of the two sets of
components, which we will represent in terms of
the operator ⊕.

v = b⊕ s (2)

Achieving this differentiation within the repre-
sentations requires that the model have a means
of differentiating semantic and syntactic informa-
tion in the raw text. We consider two very simple
approaches for this purpose, based on morpholog-
ical and word order features. Both these types of
features have been previously employed in simple
word co-occurrence models (e.g., McDonald and
Lowe, 1998; Clark, 2003), with bag-of-words and
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lemmatization being good for semantic applica-
tions, while sequential order and suffixes is more
useful for syntax. More recently, Mitchell (2013)
demonstrated that word order could be used to sep-
arate syntactic from semantic structure, but only
within a simple bigram language model, rather
than a neural network model, and without exploit-
ing morphology.

Our enhanced models are based on Mikolov
et al.’s (2013a) CBOW architecture, which is de-
scribed in Section 2. The novel extensions to
it, employing a semantic-syntactic decomposition,
are proposed in Section 3. We then describe our
evaluation tasks and provide their results in Sec-
tions 5 and 6 respectively. These evaluations are
based on the word-analogy dataset of Mikolov et
al. (2013b), a noun-verb similarity task (Mitchell,
2013) and a POS clustering task.

2 Continuous Bag-of-Words Model
(CBOW)

In the original CBOW model, the probability of a
central target word, wt, is predicted from a bag-
of-words representation of the context it occurs in,
as illustrated in Figure 2. This context representa-
tion, bcontext, is a simple sum of the CBOW vec-
tors, bi, that represent each item,wt+i, in a k-word
window either side of the target.

bcontext =
k∑

i=−k,i6=0

bi (3)

For speed, the output layer uses a hierarchi-
cal softmax function (Morin and Bengio, 2005).

Each word is given a Huffman code correspond-
ing to a path through a binary tree, and the output
predicts the binary choices on nodes of the tree
as independent variables. In comparison to the
computational cost of doing the full softmax over
the whole vocabulary, this hierarchical approach is
much more efficient.

Each node is associated with a vector, n, and
the output at that node, given a context vector,
bcontext, is:

p = logistic(n · bcontext) (4)

Here, p is the probability of choosing 1 over 0
at this node of the tree, or equivalently finding a 1
in the Huffman code of wt at the relevant position.

The objective function is the negative log-
likelihood of the data given the model.

O =
∑
− log(p) (5)

Where the sum is over tokens in the training cor-
pus and the relevant nodes in the tree. Training is
then based on stochastic gradient descent, with a
decreasing learning rate.

3 Extensions

3.1 Continuous Sequence of Words (CSOW)

A major feature of the CBOW model is its use of
a bag-of-words representation of the context and
this is achieved by summing over the vectors rep-
resenting words in the input. Although the model
does seem to produce representations that are ef-
fective on both semantic and syntactic tasks, we
want to be able to exploit word order information
to separate these two characteristics. We therefore
need to consider models which do not reduce the
context to a structureless bag-of-words. Modify-
ing the original model to retain the sequential in-
formation in the input is relatively straightforward.
Instead of summing the input representations, we
simply leave them as an ordered sequence of vec-
tors, si.

Then in the output layer, we require a vector for
every input position, i, on every node. In this way,
the output of the network depends on which con-
text word is in which position, rather than just the
set of words, irrespective of position in the input.

The network still learns a single representation
for each word independently of position, but the
output function has more parameters.
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p = logistic(
k∑

i=−k,i6=0

ni · si) (6)

Here each node of the tree is associated with one
vector, ni, for each position, i, in the input context,
giving 2k vectors in total at each node.

3.2 Continuous Bag and Sequence of Words
(CBSOW)

Having introduced a sequential version of the
CBOW model, what is really desired is a model
that combines both bag and sequence components.
Each word will have both an e-dimensional bag-
vector b and an f -dimensional sequence-vector s.
The full representation of a word, v, is then the
concatenation of the components of b and s.

Given this structure, the representation of a con-
text of 2k words will be made up of the sum,
bcontext, of their bag vectors, bi, as in the CBOW
model given by Equation 3, along with the ordered
sequence vectors, si, as in the CSOW model. Each
node in the tree then requires both a bag vector, nb,
to handle the bag context, and 2k sequence vec-
tors, nsi , to handle the sequence context vectors,
with probabilities given by:

p = logistic(nb · bcontext +
k∑

i=−k,i6=0

nsi · si) (7)

3.3 Continuous Bag of Morphemes (CBOM)

A second source of information which might be
used to differentiate semantic from syntactic rep-
resentations is morphology. Specifically, English
has the useful characteristic that the written words
themselves can often be broken into a semantic
stem on the left and a syntactic ending on the right.
For example, dancing = dance + ing and swim-
mer = swim + er. In fact, stemming or lemma-
tization is commonly used in constructing distri-
butional vectors precisely because throwing away
the syntactic information helps to enhance their se-
mantic content. Here, we want to use both the left
and right halves separately to enhance both the se-
mantic and syntactic components of the represen-
tations.

Our starting point is to break each word into
a left-hand stem and a right-hand ending using
CELEX (Baayen et al., 1995), as explained in
more detail in Section 4.1.

The simplest model is then to represent each of
these with its own vector, li and ri respectively,
and sum these vectors to form context representa-
tions of words in the input.

lcontext =
k∑

i=−k,i6=0

li (8)

rcontext =
k∑

i=−k,i6=0

ri (9)

The output function takes much the same form
as the original model but now each node needs
both a left and a right vector, corresponding to the
two context representations.

p = logistic(nl · lcontext + nr · rcontext) (10)

3.4 Continuous Bag and Sequence of Words
and Morphemes (CBSOWM)

Finally, we want to incorporate all these elements
in a single model, with the morphological and
word order elements of the model working in har-
mony. In particular, we want the sequential part
of the model to be guided by morphological infor-
mation without being constrained to give all words
with same ending the same representation. Our
solution is to add a constraint term to the objec-
tive function, which penalizes sequence vectors
that stray far from the relevant morphological rep-
resentation. The bag vectors, in contrast, are de-
termined directly by the left hand stems, with all
words having the same stem then sharing the same
bag vector, b = l.

The main structure of the model remains as in
the CBSOW model, with the context being rep-
resented by the sum of bag vectors alongside the
ordered sequence vectors. Output probabilities are
as given by Equation 7, and we add a morpholog-
ical penalty, m, to the objective function.

m =
k∑

i=−k,i6=0

1
2
λ|si − ri|2 (11)

The morphological representations r enter into
the model only through the penalty term, and they
adapt during training solely in terms of this in-
teraction with the sequence vectors. Gradient de-
scent results in the r vectors moving towards the
centre of the corresponding s vectors, and the s
vectors in turn being drawn towards that centre.
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The result is to elastically connect all the s vec-
tors corresponding to a single morphological ele-
ment through their r vectors, so that they are drawn
together, but can still develop idiosyncratically if
there is sufficient evidence in the data.

3.5 Application to the Word-Analogy Task

Decomposition of representations into separate se-
mantic and syntactic spaces enables us to utilise a
new approach to solving the word-analogy prob-
lems. Rather than using vector differences to
predict a vector, we can instead construct it by
copying the relevant bag and sequence vectors.
So, since small and smaller share very similar
semantic content, we can use the bag vector of
small as the bag vector of smaller, since that is
where the semantic content is mainly represented:
bsmaller ≈ bsmall. Similarly, we can use the se-
quence vector of bigger as the sequence vector for
smaller, since these words share common syntac-
tic behaviour: ssmaller ≈ sbigger.

The predicted representation of smaller is then
given by the concatenation of the components.

vsmaller ≈ bsmall ⊕ sbigger (12)

We find that this gives the best performance on
the models that use word-order features (CBSOW
and CBSOWM).

4 Training

Our experiments are based on the publicly avail-
able word2vec1 and GloVe2 packages. We mod-
ified the original CBOW code to incorporate the
CBSOW, CBOM and CBSOWM extensions de-
scribed above, and trained models on three En-
glish Wikipedia corpora of varying sizes, includ-
ing the enwik8 and enwik9 files3 suggested in the
word2vec documentation, containing the first 108

and 109 characters of a 2006 download, and also
a full download from 2009. On the smallest 17M
word corpus we explored a range of vector dimen-
sionalities from 10 to 1000. On the larger 120M
and 1.6B word corpus, we trained extended mod-
els with a 200-dimensional semantic component
and a 100-dimensional syntactic component com-
paring to 300-dimensional CBOW, Skip-gram and
GloVe models. The parameter, λ, in Equation 11
was set to 0.1 and the recommended window sizes

1https://code.google.com/p/word2vec/
2http://nlp.stanford.edu/projects/glove/
3http://mattmahoney.net/dc/text.html

of 5, 10 and 15 words either side of the central
word were used as context for the CBOW, Skip-
gram and GloVe models respectively.

4.1 CELEX

We attempted to split all the words in the training
data into a left hand and a right hand using CELEX
(Baayen et al., 1995), an electronic dictionary con-
taining morphological structure. In the cases of
words that were not found in the dictionary and
also those that were found but had no morpholog-
ical substructure, the left hand was just the whole
word and the right hand was a −NULL− token.
For the remaining words, we treated short suf-
fixes as being syntactic inflections and stripped all
these off to leave a left hand ‘semantic’ compo-
nent. The ‘syntactic’ component was then right-
most of these suffixes, with any additional suffixes
being ignored.

5 Evaluation

The hypothesis that orthogonality is useful to word
vector representations is investigated empirically
in two ways. Firstly, we attempt to quantify the
orthogonality that is already implicitly present in
the original CBOW, Skip-gram and GloVe repre-
sentations and relate that to their success in the
word-analogy task. Secondly, the extensions de-
scribed above are evaluated on a number of tasks
in order to evaluate the benefits of their explicit
orthogonality between components.

5.1 Orthogonality within the Original Models

Equation 1 relates orthogonality of vector differ-
ences to their dot product being zero, which cor-
responds to the fact the cosine of 90◦ is zero.
Thus, we can use the cosine as a quantifica-
tion of how close to orthogonal the vector dif-
ferences are and then relate that to performance
on the word-analogy dataset distributed with the
word2vec toolkit.

That task involves predicting a word vector
given vectors for other related words. So, for ex-
ample, given vectors for big, bigger and small,
we would try to predict a vector for smaller. We
then judge the success of this prediction in terms
of whether the predicted vector is in fact closer to
smaller’s actual word vector than any other word
vector. The dataset contains 19,544 items, bro-
ken down into 14 subtasks (e.g. capitals of com-
mon countries or adjective to adverb conversion).
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Figure 3: Proportion Correct against Average Co-
sine.

For each item, we measure the cosine of the an-
gle between the vector differences for the word
we are trying to predict (e.g. smaller − small
and smaller − bigger) and analyze these values
in terms of the success of the model’s prediction,
with smaller cosine values corresponding to angles
that are closer to orthogonal.

5.2 CBOW Extensions
We evaluate the extensions on three tasks. Along-
side the word-analogy problems, we also evalu-
ate the separate semantic and syntactic sub-spaces
on their own individual tasks. The semantic task
correlates predicted semantic similarities with the
noun-verb similarity ratings gathered by Mitchell
(2013), and the remaining task clusters the syntac-
tic representations and evaluates these clusters in
relation to the POS classes found in the Penn Tree-
bank.

On the word-analogy problem we compare to
the original CBOW, Skip-gram and GloVe mod-
els. In the case of these original models and
also the CBOM model, we follow Mikolov et
al.’s (2013b) method for making the word-analogy
predictions in terms of addition and subtraction:
smaller ≈ bigger − big + small. However, in
the case of the CBSOW and CBSOWM models,
we use the novel approach described in Section
3.5: vsmaller ≈ bsmall⊕ sbigger. Similarity is then
based on the cosine measure for all types of repre-
sentation.

The noun-verb similarity task is based on cor-
relating the model’s predicted semantic similarity
for words with human ratings gathered in an on-
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Figure 4: Frequency against Cosine.

line experiment. Such evaluations have been com-
monly used to evaluate distributional representa-
tions, with higher correlations indicating a model
which is more effective at forming vectors whose
relations to each other mirror human notions of se-
mantic similarity. Mitchell (2013) argued that pre-
dicting semantic similarity relations across syntac-
tic categories provided a measure of the extent to
which word representations succeed in separating
semantic from syntactic content, and gathered a
dataset of similarities for noun-verb pairs. Each
rated item consists of a noun paired with a verb,
and the pairs are constucted to range from high se-
mantic similarity, e.g. disappearance - vanish, to
low, e.g. transmitter - grieve. The dataset contains
ratings for 108 different pairs, each of which was
rated by 20 participants. For the CBOW model,
we predict similarities in terms of the cosine mea-
sure for the two word vectors. For the other mod-
els, we predict similarities from cosine applied to
just the bag or left-hand vectors.

The syntactic component of the representations
is evaluated by clustering the vectors and then
comparing the induced classes to the POS classes
found in the Penn Treebank. We use the many-
to-one measure (Christodoulopoulos et al., 2010;
Yatbaz et al., 2012) to determine the extent to
which the clusters agree with the POS classes.
Each cluster is mapped to its most frequent gold
tag and the reported score is the proportion of
word tokens correctly tagged using this mapping.
The clustering itself is a form of k-means cluster-
ing, where similarity is measured in terms of the
cosine measure. Each vector is assigned to a clus-
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Figure 5: Average Correlation on Noun-Verb
Evaluation Task against Size of Representations.

ter based on which cluster centroid it is most sim-
ilar to and then the cluster centroids are updated
given the new cluster assignments and the process
repeats. This clustering was applied to either the
sequence or right-hand vectors in the case of the
CBSOW, CBOM and CBSOWM models, and to
the whole vectors in the case of CBOW. We ran-
domly initialized 45 clusters and then evaluated af-
ter 100 iterations of the k-means algorithm.

6 Results

6.1 Original Models

Figure 3 is a plot of the proportion of correct pre-
dictions made by 100-dimensional CBOW, Skip-
Gram and GloVe models on the word-analogy task
against cosine of the angle between the vector dif-
ferences. The range of the cosine distribution was
broken into twenty intervals and the plotted values
were derived by calculating the proportion correct
and average cosine value within each interval. It
is clear from the resulting curves that cosine is a
fairly strong predictor for all models of whether
the model gets a word-analogy item correct, with
higher rates of success for smaller cosine values
- i.e. angles closer to orthogonality. This is con-
firmed by a significant (p < 0.001) result from
a logistic regression of correctness against cosine
value. Similar results are found for both the se-
mantic subtasks (e.g. capitals of common coun-
tries) and syntactic subtasks (e.g. adjective to ad-
verb conversion) considered separately.

The actual distribution of cosine values for each
type of model is given in Figure 4. This analy-
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Figure 6: Average Many-To-One Evaluation
against Size of Representations.

sis reveals that while the Skip-Gram and GloVe
models have fairly similar cosine distributions, the
CBOW model’s distribution is shifted to the right,
with more angles further from othogonality. This
begs the question of what the effect on perfor-
mance would be if we managed to push more of
the CBOW distribution towards zero, and in the
next section we examine the extensions that im-
plement this idea.

6.2 CBOW Extensions
We first consider the models trained on the smaller
17M word corpus, and the evaluations of these
models on the noun-verb similarity and POS clus-
tering tasks are presented in Figures 5 and 6 re-
spectively. These graphs depict the performance
as the representations grow in size. For the CBOW
model, this is just the dimension of the induced
vectors. For the other models, we consider mod-
els with equal sizes of semantic and syntactic sub-
spaces and report performance against the total di-
mensionality of the combined representation. For
both these tasks, the results were averaged over ten
repetitions of training with random initializations.

On the noun-verb similarity task, morphol-
ogy produces the largest performance gains, with
the CBOM model substantially outperforming the
CBOW model. Word order structure has no clear
impact.

On the syntactic task, in contrast, it is word or-
der that produces reliable gains, with the CBSOW
model clearly improving on the CBOW model.
The simplistic use of morphology in the CBOM
model results in a degradation of performance in
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Figure 7: Proportion Correct on the Analogy Task
against Size of Representations.

comparison to the CBOW model, but the CB-
SOWM model’s performance is comparable to
that of the CBSOW for larger representations.

Thus for these two tasks, the CBSOWM re-
sults appear to show a reasonable integration of
morphology and word order information giving
good performance on both semantic and syntac-
tic tasks. This conclusion is borne out the results
of the word-analogy tasks in Figure 7, where the
CBSOWM model outperforms all the other mod-
els. Here, morphology gives the greatest benefit
on its own, as evidenced in the differences be-
tween the CBOW and CBOM models. Nonethe-
less, word order still produces noticeable improve-
ments, with the CBSOW result beating the CBOW
results, and the CBSOWM beating the CBOM at
larger dimensions. There is considerable variation
in the effects on performance among the various
analogy subtasks, but even a task such as capi-
tals of common countries (e.g. predicting Iraq as
having Baghdad as its capital, given that Greece
has Athens) appears to benefit from decomposi-
tion of representations, despite not obviously in-
volving syntactic structure.

Table 1 compares 300-dimensional models
across different sizes of training data. In the
case of the CBSOW, CBOM and CBSOWM mod-
els we use representations with 200 semantic and
100 syntactic dimensions and compare these to
CBOW, Skip-gram and GloVe models of the same
total size. It is clear for all quantities of train-
ing data that all the extensions outperform the ba-
sic CBOW model, with morphology giving greater

Training Words
Model 17M 120M 1.6B
GloVe 29.53% 58.18% 72.54%
Skip-Gram 30.03% 52.67% 62.34%
CBOW 18.47% 38.48% 54.17%
CBSOW 20.83% 42.00% 59.41%
CBOM 44.29% 53.60% 61.87%
CBSOWM 48.92% 63.19% 68.32%

Table 1: Performance of 300-Dimensional Models
on the Word-Analogy Task

gains than word order, and the combined CB-
SOWM model outperforming both. This perfor-
mance advantage of the CBOM over CBSOW ap-
pears to weaken as the training data grows, which
is probably the effect of both the lack of morpho-
logical information for rare words encountered in
the larger datasets and also the diminishing returns
on that information as more data provides better
supervision of the training process. The sequen-
tial information, in contrast, is internal to the train-
ing data and seems to provide the same, or greater,
performance boost as the training set grows.

Comparing the results of our extended models
to the Skip-gram and GloVe models, we can see
that on the two smaller corpora CBSOWM outper-
forms both these models, while on the largest cor-
pus, it only beats the Skip-gram results and GloVe
achieves the best performance. Of course, nei-
ther the Skip-gram nor GloVe models has access to
the morphological information that the CBSOWM
model uses, but the results demonstrate that the
performance of the CBOW model can be sub-
stantially boosted by exploiting a representational
structure that decomposes into semantic and syn-
tactic sub-spaces. Similar methods could in prin-
ciple be applied to most word embedding models,
including Skip-gram and GloVe.

We can also examine the distribution of cosine
values for the new models. Figure 8 compares
the distribution of cosine values for CBOW, CB-
SOW, CBOM and CBSOWM models. Although,
in comparison to the original CBOW model, each
of the extended models shifts the distribution to-
wards zero, i.e. towards orthogonality, this shift
for the CBSOW model is marginal. In contrast,
the CBOM model has a large number of instances
where the cosine is exactly zero, corresponding
to cases where all of the relevant morphological
information is found in CELEX. The remainder
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of the data, however, seems to be less orthogo-
nal than the original CBOW distribution, suggest-
ing that words without a morphological analysis
need a more sophisticated treatment. The shift in
the CBSOWM distribution, in comparison, is less
radically bimodal, with more continuity between
those words with and without morphology. This
reflects the difference in these models handling of
suffixes, with the CBSOWM model’s greater flex-
ibility resulting in gains over the CBOM model on
the POS induction and word analogy tasks.

7 Conclusions

Our experiments demonstrate the utility of orthog-
onality within vector-space representations in a
number of ways. In terms of existing models,
we find that the cosines of vector-differences is
a strong predictor of the performance of CBOW,
Skip-gram and GloVe representations on the word
analogy task, with smaller cosine values - corre-
sponding to angles closer to orthogonality - being
associated with a greater proportion of correct pre-
dictions. With regard to developing new models,
this orthogonality of relationships inspired three
models which used word-order and morphology
to separate semantic and syntactic representations.
These separate sub-spaces were shown to have
enhanced performance in semantic similarity and
POS-induction tasks and the combined representa-
tions showed enhanced performance on the word-
analogy task, using a novel approach to solving
this problem that exploits the decomposable struc-
ture of the representations.

Both Botha and Blunsom (2014) and Luong et

al. (2013) take a more sophisticated approach to
morphology4, constructing a word’s embedding
by recursively combining representations of all
its morphemes, though only within a single non-
decomposed space. Future work ought to pursue
models in which all morphemes contribute both
semantic and syntactic content to the word repre-
sentations.

It would also be desirable to explore more prac-
tical applications of these representations than the
limited evaluations presented here. It seems fea-
sible that our decomposition of representations
could benefit tasks that need to differentiate their
treatment of semantic and syntactic content. In
particular, applications of word embeddings that
mainly involve syntax, such as POS tagging (e.g.,
Tsuboi, 2014) or supertagging for parsing (e.g.,
Lewis and Steedman, 2014), may be a reasonable
starting point.

Acknowledgements

We would like to thank Stella Frank, Sharon Gold-
water and other colleagues along with our review-
ers for criticism, advice and discussion. This
work was supported by ERC Advanced Fellow-
ship 249520 GRAMPLUS and EU Cognitive Sys-
tems project FP7-ICT-270273 Xperience.

References
Harald Baayen, Richard Piepenbrock, and Hedderik

van Rijn. 1995. CELEX2 LDC96L14. Web Down-
load. Philadelphia: Linguistic Data Consortium.

Jan A. Botha and Phil Blunsom. 2014. Compositional
Morphology for Word Representations and Lan-
guage Modelling. In Proceedings of the 31st Inter-
national Conference on Machine Learning (ICML),
Beijing, China.

Christos Christodoulopoulos, Sharon Goldwater, and
Mark Steedman. 2010. Two decades of unsuper-
vised POS induction: How far have we come? In
Proceedings of EMNLP, pages 575–584.

Alexander Clark. 2003. Combining distributional and
morphological information for part of speech induc-
tion. In Proceedings of the tenth Annual Meeting
of the European Association for Computational Lin-
guistics (EACL), pages 59–66.

4Though not neccessarily better performing. Luong et
al.’s published 50-dimensional embeddings trained on 986M
words scored only 13.57% on the word-analogy task, well
behind 40-dimensional CBOM (34.68%) and CBSOWM
(36.71%) models trained on 17M words.

1309



Fei Huang, Arun Ahuja, Doug Downey, Yi Yang,
Yuhong Guo, and Alexander Yates. 2013. Learn-
ing Representations for Weakly Supervised Natural
Language Processing Tasks. Computational Lin-
guistics, 40:85–120.

Mike Lewis and Mark Steedman. 2013. Combined
distributional and logical semantics. Transactions
of the Association for Computational Linguistics,
1:179–192.

Mike Lewis and Mark Steedman. 2014. A* CCG
parsing with a supertag-factored model. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
990–1000, Doha, Qatar, October. Association for
Computational Linguistics.

Thang Luong, Richard Socher, and Christopher Man-
ning. 2013. Better word representations with recur-
sive neural networks for morphology. In Proceed-
ings of the Seventeenth Conference on Computa-
tional Natural Language Learning, pages 104–113,
Sofia, Bulgaria, August. Association for Computa-
tional Linguistics.

Scott McDonald and Will Lowe. 1998. Modelling
functional priming and the associative boost. In Pro-
ceedings of the 20th Annual Meeting of the Cogni-
tive Science Society, pages 675–680. Erlbaum.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. In Proceedings of Workshop
at ICLR.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751, Atlanta,
Georgia, June. Association for Computational Lin-
guistics.

Jeff Mitchell. 2013. Learning semantic representa-
tions in a bigram language model. In Proceedings
of the 10th International Conference on Computa-
tional Semantics (IWCS 2013) – Short Papers, pages
362–368, Potsdam, Germany, March. Association
for Computational Linguistics.

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal probabilistic neural network language model. In
AISTATS05, pages 246–252.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar, October. Association for Computational Lin-
guistics.

Yuta Tsuboi. 2014. Neural networks leverage corpus-
wide information for part-of-speech tagging. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 938–950, Doha, Qatar, October. Association
for Computational Linguistics.

Mehmet Ali Yatbaz, Enis Sert, and Deniz Yuret. 2012.
Learning syntactic categories using paradigmatic
representations of word context. In Proceedings of
the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 940–951, Jeju
Island, Korea, July. Association for Computational
Linguistics.

Will Y. Zou, Richard Socher, Daniel M. Cer, and
Christopher D. Manning. 2013. Bilingual word em-
beddings for phrase-based machine translation. In
EMNLP, pages 1393–1398. ACL.

1310



Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 1311–1320,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Scalable Semantic Parsing with Partial Ontologies

Eunsol Choi Tom Kwiatkowski† Luke Zettlemoyer
Computer Science & Engineering

University of Washington
eunsol@cs.washington.edu, tomkwiat@google.com, lsz@cs.washington.edu

Abstract

We consider the problem of building scal-
able semantic parsers for Freebase, and
present a new approach for learning to do
partial analyses that ground as much of the
input text as possible without requiring that
all content words be mapped to Freebase
concepts. We study this problem on two
newly introduced large-scale noun phrase
datasets, and present a new semantic pars-
ing model and semi-supervised learning
approach for reasoning with partial onto-
logical support. Experiments demonstrate
strong performance on two tasks: refer-
ring expression resolution and entity at-
tribute extraction. In both cases, the par-
tial analyses allow us to improve precision
over strong baselines, while parsing many
phrases that would be ignored by existing
techniques.

1 Introduction

Recently, significant progress has been made in
learning semantic parsers for large knowledge
bases (KBs) such as Freebase (FB) (Cai and Yates,
2013; Berant et al., 2013; Kwiatkowski et al.,
2013; Reddy et al., 2014). Although these methods
can build general purpose meaning representations,
they are typically evaluated on question answering
tasks and are designed to only parse questions that
have complete ontological coverage, in the sense
that there exists a logical form that can be executed
against Freebase to get the correct answer.1 In this
paper, we instead consider the problem of learning
semantic parsers for open domain text containing

†Now at Google, NY.
1To ensure all questions are answerable, the data is man-

ually filtered. For example, the WebQuestions dataset intro-
duced by Berant et al. (2013) contains only the 7% of the
originally gathered questions.

W
ik

ip
ed

ia Haitian human rights activists
Art museums and galleries in New York
School buildings completed in 1897
Olympic gymnasts of Norway

A
pp

os
. the capital of quake-hit Sichuan Province

a major coal producing province
the relaxed seaside capital of Mozambique

Figure 1: Example noun phrases from Wikipedia
category labels and appositives in newswire text.

concepts that may or may not be representable us-
ing the Freebase ontology.

Even very large knowledge bases have two types
of incompleteness that provide challenges for se-
mantic parsing algorithms. They (1) have partial
ontologies that cannot represent the meaning of
many English phrases and (2) are typically miss-
ing many facts. For example, consider the phrases
in Figure 1. They include subjective or otherwise
unmodeled phrases such as “relaxed” and “quake-
hit.” Freebase, despite being large-scale, contains
a limited set of concepts that cannot represent the
meaning of these phrases. They also refer to enti-
ties that may be missing key facts. For example, a
recent study (West et al., 2014) showed that over
70% of people in FB have no birth place, and 99%
have no ethnicity. In our work, we introduce a new
semantic parsing approach that explicitly models
ontological incompleteness and is robust to miss-
ing facts, with the goal of recovering as much of a
sentence’s meaning as the ontology supports. We
argue that this will enable the application of se-
mantic parsers to a range of new tasks, such as
information extraction (IE), where phrases rarely
have full ontological support and new facts must
be added to the KB.

Because existing semantic parsing datasets have
been filtered to limit incompleteness, we introduce
two new corpora that pair complex noun phrases
with one or more entities that they describe. The

1311



(a
)W

ik
ip

ed
ia

ca
te

go
ry x : Symphonic Poems by Jean Sibelius

e : {The Bard, Finlandia,Pohjola’s Daughter, En Saga, Spring Song, Tapiola... }
l0 : λx.Symphonic(x) ∧ Poems(x) ∧ by(JeanSibelius, x)
y : λx.composition.form(x, Symphonicpoems) ∧ composer(JeanSibelius, x)

x : Defunct Korean football clubs
e : { Goyang KB Kookmin Bank FC,Hallelujah FC, Kyungsung FC }
l0 : λx.defunct(x) ∧ korean(x) ∧ football(x) ∧ clubs(x)
y : λx.OpenType[defunct](x) ∧ OpenRel(x, KOREA) ∧ football clubs(x))

(b
)A

pp
os

x : a driving force behind the project
e : Germany
l0 : λx.driving(x) ∧ force(x) ∧ behind(x, theproject)
y : λx.OpenType[driving force](x) ∧ OpenRel[behind](x, OpenEntity[the project])

x : an EU outpost in the Mediterranean
e : Malta
l0 : λx.outpost(x) ∧ EU(x) ∧ in(x, theMediterranean)
y : λx.OpenRel(x, EU) ∧ OpenType[outpost](x) ∧ contained by(x, MediterraneanSea)

Figure 2: Examples of noun phrases x, from the Wikipedia category and apposition datasets, paired with
the set of entities e they describe, their underspecified logical form l0, and their final logical form y.

first new dataset contains 365,000 Wikipedia cate-
gory labels (Figure 1, top), each paired with the list
of the associated Wikipedia entity pages. The sec-
ond has 67,000 noun phrases paired with a single
named entity, extracted from the appositive con-
structions in KBP 2009 newswire text (Figure 1,
bottom).2 This new data is both large scale, and
unique in the focus on noun phrases. Noun phrases
contain a number of challenging compositional
phenomena, including implicit relations and noun-
noun modifiers (e.g. see Gerber and Chai (2010)).

To better model text with only partial ontologi-
cal support, we present a new semantic parser that
builds logical forms with concepts from a target
ontology and open concepts that are introduced
when there is no appropriate concept match in
the target ontology. Figure 2 shows examples of
the meanings that we extract. Only the first of
these examples can be fully represented using Free-
base, all other examples require explicit modeling
of open concepts. To build these logical forms,
we follow recent work for Combinatory Categori-
cal Grammar (CCG) semantic parsing with Free-
base (Kwiatkowski et al., 2013), extended to model
when open concepts should be used. We develop
a two-stage learning algorithm: we first compute
broad coverage lexical statistics over all of the data,
which are then incorporated as features in a full
parsing model. The parsing model is tuned on a
hand-labeled data set with gold analyses.

Experiments demonstrate the benefits of the new
approach. It significantly outperforms strong base-

2All new data is available on the authors’ websites.

lines on both a referring expression resolution task,
where much like in the QA setting we directly eval-
uate if we recover the correct logical form for each
input noun phrase, and on entity attribute extrac-
tion, where individual facts are extracted from the
groundable part of the logical form. We also see
that modeling incompleteness significantly boosts
precision; we are able to more effectively deter-
mine which words should not be mapped to KB
concepts. When run on all of the Wikipedia cat-
egory data, we estimate that the learned model
would discover 12 million new facts that could be
added to Freebase with 72% precision.

2 Overview

Semantic Parsing with Open Concepts Our
goal is to learn to map noun phrase referring ex-
pressions x to logical forms y that describe their
meaning. In this work, y is built using both con-
cepts from a knowledge base K and open concepts
that lie outside of the scope of K. For example,
in Figure 2 the phrase “Defunct Korean football
clubs” is modeled using a logical form y that con-
tains the K concept football clubs(x) as well
as the open concepts OpenType[defunct](x).

In this paper we describe a new method for learn-
ing the mapping from x to y from corpora of refer-
ring expression noun phrases, paired with a sets of
entities e that these referring expressions describe.
Figure 2 shows examples of these data drawn from
two sources.

Tasks We introduce two new datasets (Sec. 3)
that pair referring noun phrases x with one or more
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entities e that they describe. These data support
evaluation for two tasks: referring expression reso-
lution and information extraction.

In referring expression resolution, the parser is
given x and is used to predict the referring expres-
sion logical form y that describes e. Since the
majority of our data cannot be fully modeled with
Freebase, we evaluate each y against a hand labeled
gold standard instead of trying to extract e from K.

The entity attribute extraction task also involves
mapping phrases x to logical forms y, with the
goal of adding new facts to the knowledge base K.
To do this, we assume each x is additionally paired
with an set of entities e. We also define an entity
attribute to be a literal in y that uses only concepts
from K. Finally, we extract, for each entity in
e, all of the attributes listed in y. For example,
the first logical form y in Figure 2 has two
entity attributes: composer(JeanSibelius, x)
and composition.form(x, Symphonic poems)
which can be added to K for the entities
{TheBard, Finlandia}.

Model and Learning Our approach extends
the two-stage semantic parser introduced by
Kwiatkowski et al (2013). We use CCG to build
domain-independent logical forms l0 and then in-
troduce a new method for reasoning about how
to map this intermediary representation onto both
open concepts and K concepts (Sec. 4).

To learn this model, we assume access to data
with two different types of annotations. The first
contains noun phrase descriptions x and described
entity sets e (as in Figure 2), which can be eas-
ily gathered at scale with no manual data labeling
effort. However, this data, in general, has signif-
icant amount of knowledge base incompleteness;
many described concepts and entity attributes will
be missing from K (see Sec. 3 for more details).
Therefore, to support effective learning, we will
also use a small hand-labeled dataset containing
x, e, a gold logical form y, an intermediary CCG
logical form l0, and a mapping from words in x to
constants inK and open concepts. Our full learning
approach (Sec. 5) estimates a linear model on the
small labeled dataset, with broad coverage features
derived from the larger dataset.

3 Data

We gathered two new datasets that pair complex
noun phrases with one or more Freebase entities.

The Wikipedia category dataset contains
365,504 Wikipedia category names paired with the
list of entities in that category. 3 Table 1 shows the
details of this dataset and examples are given in
Figure 2. For each development and test data, we
randomly select 500 categories consisted of 3-10
words and describing fewer than 100 entities.

The apposition dataset is a large set of com-
plex noun phrases paired with named entities, ex-
tracted from appositive constructions such as “Gus-
tav Bayer, a former Olympic gymnast for Norway.”
For this example, we extract the entity “Gustav
Bayer” and pair it with the noun phrase “a former
Olympic gymnast for Norway.” To identify apposi-
tive constructions, we ran the Stanford dependency
parser on the newswire section of the KBP 2009
source corpus,4 and selected noun phrases com-
posed of 3 to 10 words, starting with an article, and
paired with a named entity that is in Freebase.

This procedure of identifying complex entity de-
scriptions allows for information extraction from
a wide range of sources. However, it is also noisy
and challenging. The dependency parser makes er-
rors, for example “the next day against the United
States, Spain” is falsely detected as an apposition.
Furthermore, addressing context and co-reference
is often necessary. For example, “Puerto Montt, a
city south of the capital” or “the company’s par-
ent, Shenhua Group” requires reference resolution.
We gathered 67 thousand appositions, which will
be released to support future work, and randomly
selected 300 for testing.

Measuring Incompleteness To study the
amount of incompleteness in this data, we hand
labeled logical forms for 500 Wikipedia categories
in the development set. Examples of annotations
are given in the rows labeled y in Figure 2. We
use these to measure the schema and fact coverage
of Freebase. Many of the entities in this dataset
do not have the Freebase attributes described by
the category phrases. When a concept is not in
Freebase, we annotate it as OpenType or OpenRel,
as shown in Figure 2. On average, each Wikipedia
category name describes 2.58 Freebase attributes,
and 0.39 concepts that cannot be mapped to FB.
Overall, 27.2% of the phrases contain concepts
that do not exist in the Freebase schema.

3Compiled by the YAGO project, available at: www.mpi-
inf.mpg.de/departments/databases-and-information-
systems/research/yago-naga/yago/downloads/

4http://www.nist.gov/tac/2009/
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entire set dev test
# categories 365,504 500 500
# words per category 4.1 4.4 4.3
# unique words 84,996 1,100 1,063
# entities per category 19.9 19.1 18.7
# entities 2,813,631 9,511 9,281
# entity-category pairs 7,292,326 9,549 9,331

Table 1: Wikipedia category data statistics.

entire set test set
# appositions 66,924 300
# unique words 25,472 817
# words per apposition 5.73 5.93

Table 2: Appositive data statistics.

Each category may have multiple correct logical
forms. For example, “Hotels” can be mapped to:
hotel(x), accomodation.type(x, hotel), or
building function(x, hotel). There are also
genuine ambiguities in meaning. For example,
“People from Bordeaux” can be interpreted as
people(x) ∧ place lived(x, Bordeaux) or
people(x) ∧ place of birth(x, Bordeaux).
We made a best effort attempt to gather as many
correct logical forms as possible, finding on
average 1.8 logical forms per noun phrase. There
were 97 unique binary relations, and 247 unique
unary attributes in the annotation.

Given these logical forms, we also measured
factual coverage. For the 72.8% of phrases that
can be completely represented using Freebase, we
executed the logical forms and compared the result
to the labeled entity set. In total, 56% of the queries
returned no entities and those that did return results
have on average 15% overlap with the Wikipedia
entity set. We also measured how often attributes
from the labeled logical forms were assigned to the
Wikipedia entities in FB, finding that only 33.6%
were present. Given this rate, we estimate that it is
possible to add 12 million new facts into FB from
the 7 million entity-category pairs.

4 Mapping Text to Meaning

We adopt a two-stage semantic parsing ap-
proach (Kwiatkowski et al., 2013). We first use
a CCG parser to define a set CCG(x) of possible
logical forms l0. Then we will choose the logical
form l0 that closely matches the linguistic struc-
ture of the input text x, according to a learned
linear model, and use an ontological match step
that defines a set of transformations ONT(l0,K) to
map this meaning to a Freebase query y. Figure 2
shows examples of x, l0 and y. In this section we
describe our approach with the more detailed ex-

ample derivation in Figure 3. We also describe the
parameterization of a linear model that scores each
derivation.

CCG parsing We use a CCG (Steedman, 1996)
semantic parser (Kwiatkowski et al., 2013) to gen-
erate an underspecified logical form l0. Figure 3a
shows an example parse. The constants Former,
Municipalities, in, Brandenburgh in l0 are not
tied to the target knowledge base, causing the logi-
cal form to be underspecified. They can be replaced
with Freebase constants in the later ontology match-
ing step.

Ontological Matching The ontological match
step has structural match and constant match com-
ponents. Structural match operators can collapse
or expand sub-expressions in the logical forms
to match equivalent typed concepts in the target
knowledge base. We adopt existing structural
match operators (Kwiatkowski et al., 2013) and
refer readers to that work for details.

Constant match operators replace underspeci-
fied constants in the underspecified logical form
l0 with concepts from the target knowledge base.
There are four constant match operations used in
Figure 3. The first two constant matches, shown be-
low, match underspecified constants with constants
of the same type from Freebase.

in→ location.containedby

Brandenburgh→ BRANDENBURGH

However, because we are modeling the semantics
of phrases that are not covered by the Freebase
schema, we also require the following two constant
matches:

Former(x)→ OpenType

municipalities(x)→ OpenRel(x, Municipality)

Here, the word ‘former’ has been associated with
a placeholder typing predicate since Freebase has
no way of expressing end dates of administrative
divisions. There is also no Freebase type repre-
senting the concept ‘municipalities.’ However, this
word is associated with an entity in Freebase. Since
there is no suitable linking predicate for the entity
Municipality, we introduce a placeholder link-
ing predicate OpenRel in the step from l2 → l3.
Our constant match operators can also introduce
placeholder entities OpenEntity when there is no
good match in Freebase.
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(a) CCG parse builds an underspecified semantic representation of the sentence.

Former municipalities in Brandenburgh

N/N N N\N/NP NP
λfλx.f(x) ∧ former(x) λx.municipalities(x) λfλxλy.f(y) ∧ in(y, x) Brandenburg

> >
N N\N

λx.former(x) ∧municipalities(x) λfλy.f(y) ∧ in(y,Brandenburg)
<

N
l0 = λx.former(x) ∧municipalities(x) ∧ in(x,Brandenburg)

(b) Constant matches replace underspecified constants with Freebase concepts

l0 = λx.former(x) ∧municipalities(x) ∧ in(x,Brandenburg)

l1 = λx.former(x) ∧municipalities(x) ∧ in(x, Brandenburg)

l2 = λx.former(x) ∧municipalities(x) ∧ location.containedby(x, Brandenburg)

l3 = λx.former(x) ∧ OpenRel(x, Municipality) ∧ location.containedby(x, Brandenburg)

l4 = λx.OpenType(x) ∧ OpenRel(x, Municipality) ∧ location.containedby(x, Brandenburg)

Figure 3: Derivation of the analysis for “Former municipalities in Brandenburgh”. This analysis contains
a placeholder type and a placeholder relation as described in Section 4.

We also allow the creation of typing predicates
from matched entities through the introduction of
linking predicates. For example, there is no native
type associated with the word ‘actor’ in Freebase.
Instead we create a typing predicate by matching
the word to a Freebase entity Actor using Free-
base API and allowing the introduction of linked
predicates such as person.profession :

actor(x)→ person.profession(x, Actor)

Scoring Full Parses Our goal in this paper is to
learn a function from the phrase x to the correct
analysis y. We score each parse using a linear
model with features that signal attributes of the
underspecified parse φp and those that signal at-
tributes of the ontological match φont. Since the
model factors over the two stages of parser, we split
the prediction problem similarly. First, we select
the maximum scoring underspecified logical form:

l∗ = arg max
l∈CCG(x)

(θp · φp(l))

and then we select the highest scoring Freebase
analysis y∗ that can be built from l∗:

y∗ = arg max
r∈ONT(l∗,K)

(θont · φont(r))

We describe an approach to learning the parameter
vectors θp and θont below.

5 Learning

We introduce a learning approach that first collates
aggregate statistics from the 7 million Wikipedia
entity-category pairs and existing facts in FB, and
then uses a small labeled training set to tune the
weights for features that incorporate these statistics.

Wikipedia Category
Wars involving the Grand Duchy of Lituania
Entity Attribute

BattleOfGrunwald type(x, military.conflict)
GollubWar type(x, military.conflict)
BattleOfGrunwald time.event.loc(x, Grunwald)
. . . . . .

Entity Relation
BattleOfGrunwald military conflict.combatants
GollubWar time.event.start time
BattleOfGrunwald military conflict.commanders
. . . . . .

Figure 4: Labeled entities are associated with at-
tributes and relations.

Broad Coverage Lexical Statistics Each
Wikipedia category is associated with a number
of entities, most of which exist in FB. We use
these entities to extract relations and attributes in
FB associated with that category. For example,
in Figure 4 the category ‘Wars involving the
Grand Duchy of Lithuania’ is associated with
the relation military conflict.combatants
and the attribute type(x, military.conflict)
multiple times, because they are present in many of
the category’s entities. For each of the sub-phrases
in the category name we count these associations
over the entire Wikipedia category set.

We use these counts to calculate Pointwise
Mutual Information (PMI) between words and
Freebase attributes or relations. We choose PMI to
avoid overcompensating common words, attributes,
or relations. For example, the word ‘Wars’ is seen
with the incorrect analysis type(x, time.event)
more frequently than the correct analysis
type(x, military.conflict). However, PMI
penalizes the attribute type(x, time.event) for
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its popularity and the correct analysis is preferred.
As PMI has a tendency to emphasize rare counts,
we chose PMI squared, which takes the squared
value of the co-occurence count (PMI2(a, b) =
log count(a∧b)2

count(a)∗count(b) ), as a feature.

Structural KB Statistics Existing semantic
parsers typically make use of type constraints
to limit the space of possible logical forms.
These strong type constraints are not fea-
sible when the knowledge base is incom-
plete. For example, in Freebase the relation
military conflict.combatants expects an en-
tity of type military conflict.combatant as
its object. However, many countries that have been
involved in wars are not assigned this type.

We instead calculate type overlap statistics for
all Freebase entities, to find likely missing types.
For example, including the fact that the object of
military conflict.combatants is very often
of type location.country.

Learning from Labeled Data We train each
half of the prediction problem separately, as de-
fined in Section 4, using the labeled training data
introduced in Section 3. We use structured max-
margin perceptrons to learn feature weights for
both the underspecified parse and the ontological
match step following (Kwiatkowski et al., 2013).
The aggregate statistics collected from 7 million
category-entity pairs produce very useful lexical
features. We integrate these statistics into our linear
model by summing their values for each derivation
and treating them as a feature. All of the other fea-
tures described in Section 6 are not word specific
and are therefore far less sparse.

6 Features
We include a number of features that enable soft
type checking on the output logical form, described
first below, along with other features that measure
different aspects of the analysis.

Coherency features For example, con-
sider the phrase “The UK home city of
the Queen,” with Freebase logical form
y = λx.home(QEII, x) ∧ in(x, UK) ∧ city(x).
Each of the relations has expected types for
their argument: the relation 〈home〉 expects
a subject of type 〈person〉 and an object
of type 〈location〉. Each type in Freebase
lives in a hierarchy, so the type city implies
{location, administrative division, . . . }.

The next four features test agreement of these
types on different parts of the output logical form.

Relation arguments trigger a feature if their
type is in the set of types expected by the relation.
QEII is a person so this feature is triggered for the
relation-argument application in home(QEII, x).

Relation-relation pairs can share variable argu-
ments. For example, the variable x is the object
of 〈home〉 and the subject of 〈in〉. Each relation
expects a set of types of x. We have features to
signal if: these sets are disjoint; one set subsumes
the other; and the PMI between the highest level
expected type (described in Section 5) if the sets
are disjoint. In the example given here, the type
〈location〉 expected by 〈in〉 subsumes the type
〈city〉 expected by 〈home〉 so the second feature
fires. We treat types such as city(x) as unary
relations and include them in this feature set.

Type domain measures compatibility among do-
mains in Freebase. Freebase is split into high-level
domains and some of these are relevant, such as
‘football’ and ‘sports’. We identify those by count-
ing their co-occurrences. This becomes an indica-
tor feature that signals their co-occurrence in y.

Named entity type features test if the entity e
that we are extracting attributes for have Freebase
type “person”, “location” or “organization”. If it
does, we have a feature indicating if y defines a
set of the same type. This features is not used in
the referring expression task presented in Section 7
since we cannot assume access to the entities that
are described.

CCG parse feature signals which lexical items
were used in the CCG parse. Another feature fires
if capitalized words map to named entities.

String similarity features signal exact string
match, stemmed string match, and length weighted
string edit distance between a phrase in the sen-
tence and the name of the Freebase element it was
matched on. We also use the Freebase search API
to generate scores for phrase, entity pairs and in-
clude the log of this score as a features.

Lexical PMI feature includes the lexical Point-
wise Mutual Information described in Section 5.

Freebase constant features signal the use of
linking predicates, as defined in Section 4, and
the log frequency count of the Freebase attributes
across all entities in the Wikipedia category set.

1316



Other features indicate the use of OpenRel,
OpenEntity, OpenType in y and count repetitions
of Freebase concepts in y.

7 Experimental Setup

Knowledge base We use the Jan. 26, 2014 Free-
base dump. After pruning binary predicates taking
numeric values, it contains 9351 binary predicates,
2754 unary predicates, and 1.2 billion assertions.

Pruning and Feature Initialization We per-
form beam search at each semantic parsing stage,
using the Freebase search API to determine candi-
date named entities (10 per phrase), binary predi-
cates (300 per phrase), and unary predicates (500
per phrase). The ontology matching stage consid-
ers the highest scored underspecified parse.

The features are initialized to prefer well-typed
logical forms. Type checking features are initially
set to -2 for mismatch. Features signalling incom-
patible topic domains and repetition are initialized
as -10. All other initial feature weights are set to 1.

Datasets and Annotation We evaluate on the
Wikipedia category and appositive datasets intro-
duced in Sec. 3. On the Wikipedia development
data, we annotated 500 logical forms, underspeci-
fied logical forms and constant mappings for ontol-
ogy matching. The Wikipedia test data is composed
of 500 unseen categories. We did not train on the
appositive dataset, as it contains challenges such
as co-reference and parsing errors as described in
Sec. 3. Instead, we chose 300 randomly selected ex-
amples for evaluation, and ran on the model trained
on the Wikipedia development data.

Evaluation Metrics We report five-fold cross
validation for development but ran the final model
once on the test data, manually scoring the output.

For evaluation on the referring expression resolu-
tion performance (as defined in Sec. 2), we include
accuracy for the final logical form (Exact Match).
We also evaluate precision and recall for predicting
individual literals in this logical form on the devel-
opment set. To control for missing facts, we did
not evaluate the set of returned entities.

To evaluate entity attribute extraction perfor-
mance (as defined in Sec. 2), we identified three
classes of predictions. Extractions can be correct,
benign, or false. Correct attributes are actually
described in the phrase, benign extraction may
not have been described but are still true, and
false extractions are not true. For example, if

System Exact Partial Match
Match P R F1

KCAZ13 1.4 9.6 6.3 7.0
IE Baseline 6.8 37.0 23.3 28.6
NoPMI 11.0 23.7 20.8 21.6
NoOpenSchema 13.7 35.8 30.0 31.1
NoTyping 9.6 37.6 29.3 31.8
Our Approach 15.9 39.3 33.5 35.1
with Gold NE 20.8 46.6 40.5 42.3

Table 3: Referring expression resolution perfor-
mance on the development set on gold references.

Data System Exact Match Accuracy

Wikipedia IE Baseline 21.8%
Our Approach 28.4%

Appos IE Baseline 0.0%
Our Approach 4.7%

Table 4: Manual evaluation for referring expression
resolution on the test sets.

the phrase “the capital of the communist-ruled
nation” is mapped to the pair of attributes
capital of administrative division(x) ,
location(x), the first is correct and the second is
benign. Other incorrect facts would be false.

On the development set, we report precision and
recall against the union of the FB attributes in our
annotations without adjusting for benign extrac-
tions or the fact that the annotations are not com-
plete. For the test sets, we computed precision
(P) where benign extractions are considered to be
wrong, as well as an adjusted precision metric (P*)
where benign extractions are counted as correct. As
we do not have full test set annotations, we cannot
report recall. Finally, we report the average number
of facts extracted per noun phrase (fact #).

Comparison Systems We compare performance
to a number of ablated versions of the full system,
where we have removed the open-constant ontology
matching operators (NoOpenSchema), the PMI fea-
tures (NoPMI), or the type checking features (No-
Typing). For the referring expression resolution
task, we excluded the named entity type feature, as
this assumes typing information about the entity
we are extracting attributes for.

We report results without the PMI features and
the open schema matching operators (KCAZ13),
which is a reimplementation of a recent Freebase
QA model (Kwiatkowski et al., 2013). We also
learn with gold named entity linking (Gold NE).

For the entity attribute extraction, we built a su-
pervised learning baseline that combines the output
of two discrete SVMs, one for predicting unary re-
lations and one for binary relations. Each classifier
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System Top n P R F1 fact #
IE Baseline - 37.3 26.5 30.6 1.6

Our Approach

1 44.2 32.8 37.7 1.9
2 36.9 38.0 37.5 2.6
3 30.7 42.7 35.7 3.6
4 27.0 44.7 33.6 4.2
5 23.7 47.2 31.6 5.1
10 15.9 52.0 24.3 8.5

Table 5: Entity attribute extraction performance on
the Wikipedia category development set.

Data System P P* fact #

Wikipedia IE Baseline 56.7 58.7 1.6
Our Approach 61.2 72.6 2.0

Appos IE Baseline 4.9 13.9 1.3
Our Approach 33.2 61.4 0.9

Table 6: Manual evaluation for entity attribute ex-
traction on the test sets.

is trained using the annotated Wikipedia categories.
This dataset contains hundreds of unary and bi-
nary relations, which the IE baseline can predict.
Each classifier is further anchored on a specific
word, and includes n-gram and POS context fea-
tures around that word, following features from
Mintz et al (2009). To predict binary relations, we
used named entities as anchors. For unary attributes
we anchored on all possible nouns and adjectives.
The final logical form includes the best relation
predicted by each classifier. We use the Stanford
CoreNLP5 toolkit for tokenization, named entity
recognition, and part-of-speech tagging.

8 Results

Tables 3 and 4 show performance on the referring
expression resolution task. Tables 5 and 6 show
performance on the extraction task. Reported pre-
cision is lower on the labeled development set than
on the test set, where predicted logical forms are
manually evaluated. This reflects the fact that, de-
spite our best attempts, the development set labels
are incomplete, as discussed in Section 3.

Referring expression resolution The systems
retrieve the full meaning with 28.4% accuracy on
the Wikipedia test set, and 15.9% on the develop-
ment set. The gold named entity input improves
performance by modest amounts. This suggests
that the errors stem from ontology mismatches, as
we will describe in more detail later in the qualita-
tive analysis. We also see that all of the ablations

5http://nlp.stanford.edu/software/corenlp.html

hurt performance, and that the KCAZ13 model per-
forms extremely poorly. The independent classifier
baseline performs well at the sub-clause level, but
fails to form a full logical form of the referring
expression. Partial grounding and broad-coverage
data statistics are essential for this problem.

Entity attribute extraction In the two test sets,
the approach achieves high benign precision lev-
els (P*) of 72.6 and 61.4. However, the apposi-
tives data is significantly more challenging, and the
model misses many of the true facts that could be
extracted. Many errors comes in the early stages of
the pipeline, which can be attributed at least in part
to both (1) the higher levels of noise in the input
data (see Section 3), and (2) the fact that the CCG
parser was developed on the Wikipedia category la-
bels. While the IE baseline performs reasonably on
the Wikipedia test data, its performance degrades
significantly on appositions. As it is trained to pre-
dict pre-determined relations, it does not generalize
to different domains.

For the development set, Table 5 also shows the
precision-recall trade off for the set of Freebase
attributes that appear in the top-n predicted logical
forms. Precision drops quickly but recall can be
improved significantly, showing that the model can
produce many of the labeled facts.

Qualitative evaluation We sampled 100 errors
from the Wikipedia test set for qualitative analy-
sis. 10% came from entity linking. About 30%
come from choosing a superset or subset of the
desired meaning, for example by mapping “novel”
to book. About 10% of the errors are from do-
main ambiguity, such as mapping “stage actor” to
film.film actor. 10% of the cases are from spu-
rious string similarity, such as mapping “Hungarian
expatriates“ to nationality(x, Hungary). 15%
of the failures were due to incorrect underspecified
logical forms and, finally, about 10% of the errors
were because the typing features encouraged com-
pound nouns to be split into separate attributes. On
the apposition dataset, 65% of errors stems from
parsing, either in apposition detection or CCG pars-
ing. Better modeling the complex attachment deci-
sions for the noun phrases in the apposition dataset
remains an area for future work.

One advantage of our approach, especially in
comparison to classifier based models like the IE
baseline, is the ability to predict previously unseen
relations. Counting only the correctly predicted
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triples, we see that over 40% of the unique rela-
tions we predict is not in the development set; our
model learns to generalize based on the learned
PMI features and other lexical cues.

Finally, our approach extracted 2.0 entity at-
tributes per Wikipedia phrase and 0.9 per appo-
sition on average. This matches our intuition that
the apposition dataset contains many more words
that cannot be modeled with concepts in Freebase.

9 Related Work

Recent work has begun to study the problem of
knowledge base incompleteness and reasoning with
open concepts. Joshi et al. (2014) describes an
approach for mapping short search queries to a
single Freebase relation, that benefits from model-
ing schema incompleteness. Additionally, Krish-
namurthy et al. (2012; 2014) present a semantic
parser that builds partial meaning representations
with Freebase for information extraction applica-
tions. This is similar in spirit to the approach we
present here, however they focus on a small, fixed,
set of binary relations while we aim to represent as
much of the text as possible using the entire Free-
base ontology. Krishnamurthy and Mitchell (2015)
have also studied semantic parsing with open con-
cepts via matrix factorization. They use Freebase
entities but do not include Freebase concepts.

The problem of building complete sentence anal-
yses using all of the Freebase ontology has re-
cently received attention within the context of ques-
tion answering systems (Cai and Yates, 2013;
Kwiatkowski et al., 2013; Berant et al., 2013; Be-
rant and Liang, 2014; Reddy et al., 2014). Since
they do not model KB incompleteness, these mod-
els will not work well on data that cannot be fully
modeled by Freebase. In section 7, we report re-
sults using one of these systems to provide a refer-
ence point for our approach. There has also been
other work on Freebase question answering (Yao
and Van Durme, 2014; Bordes et al., 2014; Wang
et al., 2014) that directly searches the facts in the
KB to find answers without explicitly modeling
compositional semantic structure. Therefore, these
methods will suffer when facts are missing.

The syntactic and semantic structure of noun
phrases has been extensively studied. For example,
work on NomBank (Meyers et al., 2004; Gerber
and Chai, 2010) focus on the challenge of modeling
implicit arguments introduced by nominal predi-
cates. In a manual study, we discovered that the

65% of our noun phrases contain implicit relations.
We build on insights from Vadas and Curran (2008),
who studied how to model the syntactic structure
of noun phrases in CCGBank. While we are, to the
best of our knowledge, the first to study compound
noun phrases for semantic parsing to knowledge-
bases, semantic parsers for noun phrase referring
expressions have been built for visual referring ex-
pression (FitzGerald et al., 2013).

There has been little work on IE from compound
noun phrases. Most existing IE algorithms extract
a single relation, usually represented as a verb that
holds between a pair of named entities, for exam-
ple with supervised learning techniques (Freitag,
1998) or via distant supervision (Mintz et al., 2009;
Riedel et al., 2013; Hoffmann et al., 2011). We aim
to go beyond relations between entity pairs, and to
retrieve full semantics of noun phrases, extracting
unary and binary relations for a single entity. A
notable exception to this trend is the ReNoun sys-
tem (Yahya et al., 2014) which models noun phrase
structure for open information extraction. They
report that 97% of the attributes in Freebase are
commonly expressed as noun phrases. However,
unlike our work, they considered open information
extraction and did not ground the extractions in an
external KB.

10 Conclusion
In this paper, we present a semantic parsing ap-
proach with knowledge base incompleteness, ap-
plied to the problem of information extraction from
noun phrases. When run on all of the Wikipedia
category data, the approach would extract up to 12
million new Freebase facts at 72% precision.

There is significant potential for improving the
parsing models, as well as better optimizing the
precision recall trade-off for the extracted facts. It
would also be interesting to gather data with com-
positional phenomena, such as negation and dis-
junction, and study its impact on the performance
of the semantic parser.
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Abstract

We propose a novel semantic parsing
framework for question answering using a
knowledge base. We define a query graph
that resembles subgraphs of the knowl-
edge base and can be directly mapped to
a logical form. Semantic parsing is re-
duced to query graph generation, formu-
lated as a staged search problem. Unlike
traditional approaches, our method lever-
ages the knowledge base in an early stage
to prune the search space and thus simpli-
fies the semantic matching problem. By
applying an advanced entity linking sys-
tem and a deep convolutional neural net-
work model that matches questions and
predicate sequences, our system outper-
forms previous methods substantially, and
achieves an F1 measure of 52.5% on the
WEBQUESTIONS dataset.

1 Introduction

Organizing the world’s facts and storing them
in a structured database, large-scale knowledge
bases (KB) like DBPedia (Auer et al., 2007) and
Freebase (Bollacker et al., 2008) have become
important resources for supporting open-domain
question answering (QA). Most state-of-the-art
approaches to KB-QA are based on semantic pars-
ing, where a question (utterance) is mapped to its
formal meaning representation (e.g., logical form)
and then translated to a KB query. The answers to
the question can then be retrieved simply by exe-
cuting the query. The semantic parse also provides
a deeper understanding of the question, which can
be used to justify the answer to users, as well as to
provide easily interpretable information to devel-
opers for error analysis.

However, most traditional approaches for se-
mantic parsing are largely decoupled from the

knowledge base, and thus are faced with sev-
eral challenges when adapted to applications like
QA. For instance, a generic meaning represen-
tation may have the ontology matching problem
when the logical form uses predicates that differ
from those defined in the KB (Kwiatkowski et al.,
2013). Even when the representation language
is closely related to the knowledge base schema,
finding the correct predicates from the large vo-
cabulary in the KB to relations described in the
utterance remains a difficult problem (Berant and
Liang, 2014).

Inspired by (Yao and Van Durme, 2014; Bao et
al., 2014), we propose a semantic parsing frame-
work that leverages the knowledge base more
tightly when forming the parse for an input ques-
tion. We first define a query graph that can be
straightforwardly mapped to a logical form in λ-
calculus and is semantically closely related to λ-
DCS (Liang, 2013). Semantic parsing is then re-
duced to query graph generation, formulated as
a search problem with staged states and actions.
Each state is a candidate parse in the query graph
representation and each action defines a way to
grow the graph. The representation power of the
semantic parse is thus controlled by the set of le-
gitimate actions applicable to each state. In partic-
ular, we stage the actions into three main steps:
locating the topic entity in the question, finding
the main relationship between the answer and the
topic entity, and expanding the query graph with
additional constraints that describe properties the
answer needs to have, or relationships between the
answer and other entities in the question.

One key advantage of this staged design is
that through grounding partially the utterance to
some entities and predicates in the KB, we make
the search far more efficient by focusing on the
promising areas in the space that most likely lead
to the correct query graph, before the full parse
is determined. For example, after linking “Fam-

1321



ily Guy” in the question “Who first voiced Meg
on Family Guy?” to FamilyGuy (the TV show)
in the knowledge base, the procedure needs only
to examine the predicates that can be applied to
FamilyGuy instead of all the predicates in the
KB. Resolving other entities also becomes easy,
as given the context, it is clear that Meg refers
to MegGriffin (the character in Family Guy).
Our design divides this particular semantic pars-
ing problem into several sub-problems, such as en-
tity linking and relation matching. With this in-
tegrated framework, best solutions to each sub-
problem can be easily combined and help pro-
duce the correct semantic parse. For instance,
an advanced entity linking system that we em-
ploy outputs candidate entities for each question
with both high precision and recall. In addi-
tion, by leveraging a recently developed semantic
matching framework based on convolutional net-
works, we present better relation matching models
using continuous-space representations instead of
pure lexical matching. Our semantic parsing ap-
proach improves the state-of-the-art result on the
WEBQUESTIONS dataset (Berant et al., 2013) to
52.5% in F1, a 7.2% absolute gain compared to
the best existing method.

The rest of this paper is structured as follows.
Sec. 2 introduces the basic notion of the graph
knowledge base and the design of our query graph.
Sec. 3 presents our search-based approach for gen-
erating the query graph. The experimental results
are shown in Sec. 4, and the discussion of our ap-
proach and the comparisons to related work are in
Sec. 5. Finally, Sec. 6 concludes the paper.

2 Background

In this work, we aim to learn a semantic parser
that maps a natural language question to a logi-
cal form query q, which can be executed against a
knowledge baseK to retrieve the answers. Our ap-
proach takes a graphical view of bothK and q, and
reduces semantic parsing to mapping questions to
query graphs. We describe the basic design below.

2.1 Knowledge base

The knowledge base K considered in this work
is a collection of subject-predicate-object triples
(e1, p, e2), where e1, e2 ∈ E are the entities (e.g.,
FamilyGuy or MegGriffin) and p ∈ P is a
binary predicate like character. A knowledge
base in this form is often called a knowledge graph

Family Guy cvt2

Meg Griffin

Lacey Chabert

1/31/1999

cvt1

fr
om

12/26/1999

cvt3

series

Mila Kunis

Figure 1: Freebase subgraph of Family Guy

because of its straightforward graphical represen-
tation – each entity is a node and two related en-
tities are linked by a directed edge labeled by the
predicate, from the subject to the object entity.

To compare our approach to existing methods,
we use Freebase, which is a large database with
more than 46 million topics and 2.6 billion facts.
In Freebase’s design, there is a special entity cate-
gory called compound value type (CVT), which is
not a real-world entity, but is used to collect mul-
tiple fields of an event or a special relationship.

Fig. 1 shows a small subgraph of Freebase re-
lated to the TV show Family Guy. Nodes are the
entities, including some dates and special CVT en-
tities1. A directed edge describes the relation be-
tween two entities, labeled by the predicate.

2.2 Query graph

Given the knowledge graph, executing a logical-
form query is equivalent to finding a subgraph that
can be mapped to the query and then resolving the
binding of the variables. To capture this intuition,
we describe a restricted subset of λ-calculus in a
graph representation as our query graph.

Our query graph consists of four types of nodes:
grounded entity (rounded rectangle), existential
variable (circle), lambda variable (shaded circle),
aggregation function (diamond). Grounded enti-
ties are existing entities in the knowledge base K.
Existential variables and lambda variables are un-

1In the rest of the paper, we use the term entity for both
real-world and CVT entities, as well as properties like date or
height. The distinction is not essential to our approach.
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Family Guy cast

Meg Griffinargmin

xy

Figure 2: Query graph that represents the question
“Who first voiced Meg on Family Guy?”

grounded entities. In particular, we would like to
retrieve all the entities that can map to the lambda
variables in the end as the answers. Aggregation
function is designed to operate on a specific entity,
which typically captures some numerical proper-
ties. Just like in the knowledge graph, related
nodes in the query graph are connected by directed
edges, labeled with predicates in K.

To demonstrate this design, Fig. 2 shows one
possible query graph for the question “Who first
voiced Meg on Family Guy?” using Freebase.
The two entities, MegGriffin and FamilyGuy
are represented by two rounded rectangle nodes.
The circle node y means that there should exist
an entity describing some casting relations like
the character, actor and the time she started the
role2. The shaded circle node x is also called
the answer node, and is used to map entities re-
trieved by the query. The diamond node arg min
constrains that the answer needs to be the ear-
liest actor for this role. Equivalently, the logi-
cal form query in λ-calculus without the aggrega-
tion function is: λx.∃y.cast(FamilyGuy, y) ∧
actor(y, x) ∧ character(y,MegGriffin)
Running this query graph against K as in
Fig. 1 will match both LaceyChabert and
MilaKunis before applying the aggregation
function, but only LaceyChabert is the correct
answer as she started this role earlier (by checking
the from property of the grounded CVT node).

Our query graph design is inspired by (Reddy
et al., 2014), but with some key differences. The
nodes and edges in our query graph closely re-
semble the exact entities and predicates from the
knowledge base. As a result, the graph can
be straightforwardly translated to a logical form
query that is directly executable. In contrast, the
query graph in (Reddy et al., 2014) is mapped
from the CCG parse of the question, and needs fur-
ther transformations before mapping to subgraphs

2y should be grounded to a CVT entity in this case.

f Se Sp Sc

Ae Ap Aa/Ac

Aa/Ac

Figure 3: The legitimate actions to grow a query
graph. See text for detail.

of the target knowledge base to retrieve answers.
Semantically, our query graph is more related to

simple λ-DCS (Berant et al., 2013; Liang, 2013),
which is a syntactic simplification of λ-calculus
when applied to graph databases. A query graph
can be viewed as the tree-like graph pattern of a
logical form in λ-DCS. For instance, the path from
the answer node to an entity node can be described
using a series of join operations in λ-DCS. Differ-
ent paths of the tree graph are combined via the
intersection operators.

3 Staged Query Graph Generation

We focus on generating query graphs with the fol-
lowing properties. First, the tree graph consists of
one entity node as the root, referred as the topic
entity. Second, there exists only one lambda vari-
able x as the answer node, with a directed path
from the root to it, and has zero or more existential
variables in-between. We call this path the core
inferential chain of the graph, as it describes the
main relationship between the answer and topic
entity. Variables can only occur in this chain, and
the chain only has variable nodes except the root.
Finally, zero or more entity or aggregation nodes
can be attached to each variable node, including
the answer node. These branches are the addi-
tional constraints that the answers need to satisfy.
For example, in Fig. 2, FamilyGuy is the root
and FamilyGuy→ y → x is the core inferential
chain. The branch y → MegGriffin specifies
the character and y → arg min constrains that the
answer needs to be the earliest actor for this role.

Given a question, we formalize the query
graph generation process as a search problem,
with staged states and actions. Let S =⋃ {φ,Se,Sp,Sc} be the set of states, where each
state could be an empty graph (φ), a single-
node graph with the topic entity (Se), a core in-
ferential chain (Sp), or a more complex query
graph with additional constraints (Sc). Let A =⋃ {Ae,Ap,Ac,Aa} be the set of actions. An ac-
tion grows a given graph by adding some edges
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Family Guy
s1

Meg Griffin
s2

ϕ 
s0

Figure 4: Two possible topic entity linking actions
applied to an empty graph, for question “Who first
voiced [Meg] on [Family Guy]?”

and nodes. In particular, Ae picks an entity node;
Ap determines the core inferential chain; Ac and
Aa add constraints and aggregation nodes, respec-
tively. Given a state, the valid action set can be de-
fined by the finite state diagram in Fig. 3. Notice
that the order of possible actions is chosen for the
convenience of implementation. In principle, we
could choose a different order, such as matching
the core inferential chain first and then resolving
the topic entity linking. However, since we will
consider multiple hypotheses during search, the
order of the staged actions can simply be viewed
as a different way to prune the search space or to
bias the exploration order.

We define the reward function on the state space
using a log-linear model. The reward basically
estimates the likelihood that a query graph cor-
rectly parses the question. Search is done using
the best-first strategy with a priority queue, which
is formally defined in Appendix A. In the follow-
ing subsections, we use a running example of find-
ing the semantic parse of question qex = “Who
first voiced Meg of Family Guy?” to describe the
sequence of actions.

3.1 Linking Topic Entity

Starting from the initial state s0, the valid actions
are to create a single-node graph that corresponds
to the topic entity found in the given question. For
instance, possible topic entities in qex can either be
FamilyGuy or MegGriffin, shown in Fig. 4.

We use an entity linking system that is designed
for short and noisy text (Yang and Chang, 2015).
For each entity e in the knowledge base, the sys-
tem first prepares a surface-form lexicon that lists
all possible ways that e can be mentioned in text.
This lexicon is created using various data sources,
such as names and aliases of the entities, the an-
chor text in Web documents and the Wikipedia re-
direct table. Given a question, it considers all the

Family Guy
s1

Family Guy cast actor xy
s3

Family Guy writer start xy
s4

Family Guy genre x
s5

Figure 5: Candidate core inferential chains start
from the entity FamilyGuy.

consecutive word sequences that have occurred in
the lexicon as possible mentions, paired with their
possible entities. Each pair is then scored by a sta-
tistical model based on its frequency counts in the
surface-form lexicon. To tolerate potential mis-
takes of the entity linking system, as well as ex-
ploring more possible query graphs, up to 10 top-
ranked entities are considered as the topic entity.
The linking score will also be used as a feature for
the reward function.

3.2 Identifying Core Inferential Chain

Given a state s that corresponds to a single-node
graph with the topic entity e, valid actions to ex-
tend this graph is to identify the core inferential
chain; namely, the relationship between the topic
entity and the answer. For example, Fig. 5 shows
three possible chains that expand the single-node
graph in s1. Because the topic entity e is given,
we only need to explore legitimate predicate se-
quences that can start from e. Specifically, to re-
strict the search space, we explore all paths of
length 2 when the middle existential variable can
be grounded to a CVT node and paths of length 1 if
not. We also consider longer predicate sequences
if the combinations are observed in training data3.

Analogous to the entity linking problem, where
the goal is to find the mapping of mentions to en-
tities in K, identifying the core inferential chain
is to map the natural utterance of the question to
the correct predicate sequence. For question “Who
first voiced Meg on [Family Guy]?” we need to
measure the likelihood that each of the sequences
in {cast-actor, writer-start, genre}
correctly captures the relationship between Family
Guy and Who. We reduce this problem to measur-
ing semantic similarity using neural networks.

3Decomposing relations in the utterance can be done us-
ing decoding methods (e.g., (Bao et al., 2014)). However,
similar to ontology mismatch, the relation in text may not
have a corresponding single predicate, such as grandparent
needs to be mapped to parent-parent in Freebase.
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Figure 6: The architecture of the convolutional
neural networks (CNN) used in this work. The
CNN model maps a variable-length word se-
quence (e.g., a pattern or predicate sequence) to a
low-dimensional vector in a latent semantic space.
See text for the description of each layer.

3.2.1 Deep Convolutional Neural Networks
To handle the huge variety of the semantically
equivalent ways of stating the same question, as
well as the mismatch of the natural language ut-
terances and predicates in the knowledge base, we
propose using Siamese neural networks (Brom-
ley et al., 1993) for identifying the core inferen-
tial chain. For instance, one of our constructions
maps the question to a pattern by replacing the en-
tity mention with a generic symbol <e> and then
compares it with a candidate chain, such as “who
first voiced meg on<e>” vs. cast-actor. The
model consists of two neural networks, one for
the pattern and the other for the inferential chain.
Both are mapped to k-dimensional vectors as the
output of the networks. Their semantic similar-
ity is then computed using some distance func-
tion, such as cosine. This continuous-space rep-
resentation approach has been proposed recently
for semantic parsing and question answering (Bor-
des et al., 2014a; Yih et al., 2014) and has shown
better results compared to lexical matching ap-
proaches (e.g., word-alignment models). In this
work, we adapt a convolutional neural network
(CNN) framework (Shen et al., 2014b; Shen et al.,
2014a; Gao et al., 2014) to this matching problem.
The network architecture is illustrated in Fig. 6.

The CNN model first applies a word hashing
technique (Huang et al., 2013) that breaks a word
into a vector of letter-trigrams (xt → ft in Fig. 6).
For example, the bag of letter-trigrams of the word
“who” are #-w-h, w-h-o, h-o-# after adding the

Family Guy cast actor xy

Family Guy cast actor xy

Meg Griffin

Family Guy xy

Meg Griffinargmin

s3

s6

s7

Figure 7: Extending an inferential chain with con-
straints and aggregation functions.

word boundary symbol #. Then, it uses a convo-
lutional layer to project the letter-trigram vectors
of words within a context window of 3 words to
a local contextual feature vector (ft → ht), fol-
lowed by a max pooling layer that extracts the
most salient local features to form a fixed-length
global feature vector (v). The global feature vector
is then fed to feed-forward neural network layers
to output the final non-linear semantic features (y),
as the vector representation of either the pattern or
the inferential chain.

Training the model needs positive pairs, such as
a pattern like “who first voiced meg on <e>” and
an inferential chain like cast-actor. These
pairs can be extracted from the full semantic
parses when provided in the training data. If the
correct semantic parses are latent and only the
pairs of questions and answers are available, such
as the case in the WEBQUESTIONS dataset, we
can still hypothesize possible inferential chains by
traversing the paths in the knowledge base that
connect the topic entity and the answer. Sec. 4.1
will illustrate this data generation process in detail.

Our model has two advantages over the embed-
ding approach (Bordes et al., 2014a). First, the
word hashing layer helps control the dimensional-
ity of the input space and can easily scale to large
vocabulary. The letter-trigrams also capture some
sub-word semantics (e.g., words with minor ty-
pos have almost identical letter-trigram vectors),
which makes it especially suitable for questions
from real-world users, such as those issued to a
search engine. Second, it uses a deeper archi-
tecture with convolution and max-pooling layers,
which has more representation power.
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3.3 Augmenting Constraints & Aggregations

A graph with just the inferential chain forms the
simplest legitimate query graph and can be exe-
cuted against the knowledge base K to retrieve
the answers; namely, all the entities that x can
be grounded to. For instance, the graph in s3 in
Fig. 7 will retrieve all the actors who have been on
FamilyGuy. Although this set of entities obvi-
ously contains the correct answer to the question
(assuming the topic entity FamilyGuy is correct),
it also includes incorrect entities that do not sat-
isfy additional constraints implicitly or explicitly
mentioned in the question.

To further restrict the set of answer entities, the
graph with only the core inferential chain can be
expanded by two types of actions: Ac and Aa. Ac
is the set of possible ways to attach an entity to a
variable node, where the edge denotes one of the
valid predicates that can link the variable to the
entity. For instance, in Fig. 7, s6 is created by
attaching MegGriffin to y with the predicate
character. This is equivalent to the last con-
junctive term in the corresponding λ-expression:
λx.∃y.cast(FamilyGuy, y) ∧ actor(y, x) ∧
character(y,MegGriffin). Sometimes, the
constraints are described over the entire answer
set through the aggregation function, such as the
word “first” in our example question qex. This is
handled similarly by actions Aa, which attach an
aggregation node on a variable node. For exam-
ple, the arg min node of s7 in Fig. 7 chooses the
grounding with the smallest from attribute of y.

The full possible constraint set can be derived
by first issuing the core inferential chain as a query
to the knowledge base to find the bindings of vari-
ables y’s and x, and then enumerating all neigh-
boring nodes of these entities. This, however,
often results in an unnecessarily large constraint
pool. In this work, we employ simple rules to re-
tain only the nodes that have some possibility to be
legitimate constraints. For instance, a constraint
node can be an entity that also appears in the ques-
tion (detected by our entity linking component), or
an aggregation constraint can only be added if cer-
tain keywords like “first” or “latest” occur in the
question. The complete set of these rules can be
found in Appendix B.

3.4 Learning the reward function

Given a state s, the reward function γ(s) basically
judges whether the query graph represented by s

is the correct semantic parse of the input ques-
tion q. We use a log-linear model to learn the re-
ward function. Below we describe the features and
the learning process.

3.4.1 Features
The features we designed essentially match spe-
cific portions of the graph to the question, and gen-
erally correspond to the staged actions described
previously, including:

Topic Entity The score returned by the entity
linking system is directly used as a feature.

Core Inferential Chain We use similarity
scores of different CNN models described in
Sec. 3.2.1 to measure the quality of the core infer-
ential chain. PatChain compares the pattern (re-
placing the topic entity with an entity symbol) and
the predicate sequence. QuesEP concatenates the
canonical name of the topic entity and the predi-
cate sequence, and compares it with the question.
This feature conceptually tries to verify the entity
linking suggestion. These two CNN models are
learned using pairs of the question and the infer-
ential chain of the parse in the training data. In
addition to the in-domain similarity features, we
also train a ClueWeb model using the Freebase
annotation of ClueWeb corpora (Gabrilovich et al.,
2013). For two entities in a sentence that can be
linked by one or two predicates, we pair the sen-
tences and predicates to form a parallel corpus to
train the CNN model.

Constraints & Aggregations When a con-
straint node is present in the graph, we use some
simple features to check whether there are words
in the question that can be associated with the con-
straint entity or property. Examples of such fea-
tures include whether a mention in the question
can be linked to this entity, and the percentage of
the words in the name of the constraint entity ap-
pear in the question. Similarly, we check the ex-
istence of some keywords in a pre-compiled list,
such as “first”, “current” or “latest” as features for
aggregation nodes such as arg min. The complete
list of these simple word matching features can
also be found in Appendix B.

Overall The number of the answer entities re-
trieved when issuing the query to the knowledge
base and the number of nodes in the query graph
are both included as features.
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q =  Who first voiced Meg on Family Guy? 

(1) EntityLinkingScore(FamilyGuy,  Family Guy ) = 0.9
(2) PatChain( who first voiced meg on <e> , cast-actor) = 0.7
(3) QuesEP(q,  family guy cast-actor ) = 0.6
(4) ClueWeb( who first voiced meg on <e> , cast-actor) = 0.2
(5) ConstraintEntityWord( Meg Griffin , q) = 0.5
(6) ConstraintEntityInQ( Meg Griffin , q) = 1
(7) AggregationKeyword(argmin, q) = 1
(8) NumNodes(s) = 5
(9) NumAns(s) = 1

s

Figure 8: Active features of a query graph s. (1)
is the entity linking score of the topic entity. (2)-
(4) are different model scores of the core chain.
(5) indicates 50% of the words in “Meg Griffin”
appear in the question q. (6) is 1 when the mention
“Meg” in q is correctly linked to MegGriffin
by the entity linking component. (8) is the number
of nodes in s. The knowledge base returns only 1
entity when issuing this query, so (9) is 1.

To illustrate our feature design, Fig. 8 presents
the active features of an example query graph.

3.4.2 Learning

In principle, once the features are extracted, the
model can be trained using any standard off-the-
shelf learning algorithm. Instead of treating it as a
binary classification problem, where only the cor-
rect query graphs are labeled as positive, we view
it as a ranking problem. Suppose we have several
candidate query graphs for each question4. Let ga
and gb be the query graphs described in states sa
and sb for the same question q, and the entity sets
Aa and Ab be those retrieved by executing ga and
gb, respectively. Suppose that A is the labeled an-
swers to q. We first compute the precision, recall
and F1 score of Aa and Ab, compared with the
gold answer setA. We then rank sa and sb by their
F1 scores5. The intuition behind is that even if a
query is not completely correct, it is still preferred
than some other totally incorrect queries. In this
work, we use a one-layer neural network model
based on lambda-rank (Burges, 2010) for training
the ranker.

4We will discuss how to create these candidate query
graphs from question/answer pairs in Sec. 4.1.

5We use F1 partially because it is the evaluation metric
used in the experiments.

4 Experiments

We first introduce the dataset and evaluation met-
ric, followed by the main experimental results and
some analysis.

4.1 Data & evaluation metric
We use the WEBQUESTIONS dataset (Berant
et al., 2013), which consists of 5,810 ques-
tion/answer pairs. These questions were collected
using Google Suggest API and the answers were
obtained from Freebase with the help of Amazon
MTurk. The questions are split into training and
testing sets, which contain 3,778 questions (65%)
and 2,032 questions (35%), respectively. This
dataset has several unique properties that make it
appealing and was used in several recent papers
on semantic parsing and question answering. For
instance, although the questions are not directly
sampled from search query logs, the selection pro-
cess was still biased to commonly asked questions
on a search engine. The distribution of this ques-
tion set is thus closer to the “real” information
need of search users than that of a small number
of human editors. The system performance is ba-
sically measured by the ratio of questions that are
answered correctly. Because there can be more
than one answer to a question, precision, recall
and F1 are computed based on the system output
for each individual question. The average F1 score
is reported as the main evaluation metric6.

Because this dataset contains only question and
answer pairs, we use essentially the same search
procedure to simulate the semantic parses for
training the CNN models and the overall reward
function. Candidate topic entities are first gener-
ated using the same entity linking system for each
question in the training data. Paths on the Free-
base knowledge graph that connect a candidate
entity to at least one answer entity are identified
as the core inferential chains7. If an inferential-
chain query returns more entities than the correct
answers, we explore adding constraint and aggre-
gation nodes, until the entities retrieved by the
query graph are identical to the labeled answers, or
the F1 score cannot be increased further. Negative
examples are sampled from of the incorrect can-
didate graphs generated during the search process.

6We used the official evaluation script from http://
www-nlp.stanford.edu/software/sempre/.

7We restrict the path length to 2. In principle, parses of
shorter chains can be used to train the initial reward function,
for exploring longer paths using the same search procedure.
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Method Prec. Rec. F1

(Berant et al., 2013) 48.0 41.3 35.7
(Bordes et al., 2014b) - - 29.7

(Yao and Van Durme, 2014) - - 33.0
(Berant and Liang, 2014) 40.5 46.6 39.9

(Bao et al., 2014) - - 37.5
(Bordes et al., 2014a) - - 39.2

(Yang et al., 2014) - - 41.3
(Wang et al., 2014) - - 45.3

Our approach – STAGG 52.8 60.7 52.5

Table 1: The results of our approach compared to
existing work. The numbers of other systems are
either from the original papers or derived from the
evaluation script, when the output is available.

In the end, we produce 17,277 query graphs with
none-zero F1 scores from the training set questions
and about 1.7M completely incorrect ones.

For training the CNN models to identify the
core inferential chain (Sec. 3.2.1), we only
use 4,058 chain-only query graphs that achieve
F1 = 0.5 to form the parallel question and pred-
icate sequence pairs. The hyper-parameters in
CNN, such as the learning rate and the numbers
of hidden nodes at the convolutional and semantic
layers were chosen via cross-validation. We re-
served 684 pairs of patterns and inference-chains
from the whole training examples as the held-out
set, and the rest as the initial training set. The
optimal hyper-parameters were determined by the
performance of models trained on the initial train-
ing set when applied to the held-out data. We
then fixed the hyper-parameters and retrained the
CNN models using the whole training set. The
performance of CNN is insensitive to the hyper-
parameters as long as they are in a reasonable
range (e.g., 1000± 200 nodes in the convolutional
layer, 300 ± 100 nodes in the semantic layer, and
learning rate 0.05 ∼ 0.005) and the training pro-
cess often converges after ∼ 800 epochs.

When training the reward function, we created
up to 4,000 examples for each question that con-
tain all the positive query graphs and randomly se-
lected negative examples. The model is trained as
a ranker, where example query graphs are ranked
by their F1 scores.

4.2 Results
Tab. 1 shows the results of our system, STAGG
(Staged query graph generation), compared to ex-
isting work8. As can be seen from the table, our

8We do not include results of (Reddy et al., 2014) because
they used only a subset of 570 test questions, which are not

Method #Entities # Covered Ques. # Labeled Ent.
Freebase API 19,485 3,734 (98.8%) 3,069 (81.2%)

Ours 9,147 3,770 (99.8%) 3,318 (87.8%)

Table 2: Statistics of entity linking results on train-
ing set questions. Both methods cover roughly the
same number of questions, but Freebase API sug-
gests twice the number of entities output by our
entity linking system and covers fewer topic enti-
ties labeled in the original data.

system outperforms the previous state-of-the-art
method by a large margin – 7.2% absolute gain.

Given the staged design of our approach, it is
thus interesting to examine the contributions of
each component. Because topic entity linking is
the very first stage, the quality of the entities found
in the questions, both in precision and recall, af-
fects the final results significantly. To get some
insight about how our topic entity linking com-
ponent performs, we also experimented with ap-
plying Freebase Search API to suggest entities for
possible mentions in a question. As can be ob-
served in Tab. 2, to cover most of the training
questions, we only need half of the number of
suggestions when using our entity linking compo-
nent, compared to Freebase API. Moreover, they
also cover more entities that were selected as the
topic entities in the original dataset. Starting from
those 9,147 entities output by our component, an-
swers of 3,453 questions (91.4%) can be found in
their neighboring nodes. When replacing our en-
tity linking component with the results from Free-
base API, we also observed a significant perfor-
mance degradation. The overall system perfor-
mance drops from 52.5% to 48.4% in F1 (Prec =
49.8%, Rec = 55.7%), which is 4.1 points lower.

Next we test the system performance when the
query graph has just the core inferential chain.
Tab. 3 summarizes the results. When only the
PatChain CNN model is used, the performance
is already very strong, outperforming all existing
work. Adding the other CNN models boosts the
performance further, reaching 51.8% and is only
slightly lower than the full system performance.
This may be due to two reasons. First, the ques-
tions from search engine users are often short and
a large portion of them simply ask about properties
of an entity. Examining the query graphs gener-
ated for training set questions, we found that 1,888

directly comparable to results from other work. On these 570
questions, our system achieves 67.0% in F1.
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Method Prec. Rec. F1

PatChain 48.8 59.3 49.6
+QuesEP 50.7 60.6 50.9
+ClueWeb 51.3 62.6 51.8

Table 3: The system results when only the
inferential-chain query graphs are generated. We
started with the PatChain CNN model and then
added QuesEP and ClueWeb sequentially. See
Sec. 3.4 for the description of these models.

(50.0%) can be answered exactly (i.e., F1 = 1) us-
ing a chain-only query graph. Second, even if the
correct parse requires more constraints, the less
constrained graph still gets a partial score, as its
results cover the correct answers.

4.3 Error Analysis

Although our approach substantially outperforms
existing methods, the room for improvement
seems big. After all, the accuracy for the intended
application, question answering, is still low and
only slightly above 50%. We randomly sampled
100 questions that our system did not generate
the completely correct query graphs, and catego-
rized the errors. About one third of errors are in
fact due to label issues and are not real mistakes.
This includes label error (2%), incomplete labels
(17%, e.g., only one song is labeled as the an-
swer to “What songs did Bob Dylan write?”) and
acceptable answers (15%, e.g., “Time in China”
vs. “UTC+8”). 8% of the errors are due to incor-
rect entity linking; however, sometimes the men-
tion is inherently ambiguous (e.g., AFL in “Who
founded the AFL?” could mean either “American
Football League” or “American Federation of La-
bor”). 35% of the errors are because of the incor-
rect inferential chains; 23% are due to incorrect or
missing constraints.

5 Related Work and Discussion

Several semantic parsing methods use a domain-
independent meaning representation derived from
the combinatory categorial grammar (CCG) parses
(e.g., (Cai and Yates, 2013; Kwiatkowski et al.,
2013; Reddy et al., 2014)). In contrast, our query
graph design matches closely the graph knowl-
edge base. Although not fully demonstrated in
this paper, the query graph can in fact be fairly ex-
pressive. For instance, negations can be handled
by adding tags to the constraint nodes indicating
that certain conditions cannot be satisfied. Our

graph generation method is inspired by (Yao and
Van Durme, 2014; Bao et al., 2014). Unlike tra-
ditional semantic parsing approaches, it uses the
knowledge base to help prune the search space
when forming the parse. Similar ideas have also
been explored in (Poon, 2013).

Empirically, our results suggest that it is cru-
cial to identify the core inferential chain, which
matches the relationship between the topic en-
tity in the question and the answer. Our CNN
models can be analogous to the embedding ap-
proaches (Bordes et al., 2014a; Yang et al., 2014),
but are more sophisticated. By allowing param-
eter sharing among different question-pattern and
KB predicate pairs, the matching score of a rare
or even unseen pair in the training data can still be
predicted precisely. This is due to the fact that the
prediction is based on the shared model parame-
ters (i.e., projection matrices) that are estimated
using all training pairs.

6 Conclusion

In this paper, we present a semantic parsing frame-
work for question answering using a knowledge
base. We define a query graph as the meaning rep-
resentation that can be directly mapped to a logical
form. Semantic parsing is reduced to query graph
generation, formulated as a staged search prob-
lem. With the help of an advanced entity linking
system and a deep convolutional neural network
model that matches questions and predicate se-
quences, our system outperforms previous meth-
ods substantially on the WEBQUESTIONS dataset.

In the future, we would like to extend our query
graph to represent more complicated questions,
and explore more features and models for match-
ing constraints and aggregation functions. Apply-
ing other structured-output prediction methods to
graph generation will also be investigated.
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Abstract

How do we build a semantic parser in a
new domain starting with zero training ex-
amples? We introduce a new methodol-
ogy for this setting: First, we use a simple
grammar to generate logical forms paired
with canonical utterances. The logical
forms are meant to cover the desired set
of compositional operators, and the canon-
ical utterances are meant to capture the
meaning of the logical forms (although
clumsily). We then use crowdsourcing to
paraphrase these canonical utterances into
natural utterances. The resulting data is
used to train the semantic parser. We fur-
ther study the role of compositionality in
the resulting paraphrases. Finally, we test
our methodology on seven domains and
show that we can build an adequate se-
mantic parser in just a few hours.

1 Introduction

By mapping natural language utterances to exe-
cutable logical forms, semantic parsers have been
useful for a variety of applications requiring pre-
cise language understanding (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005; Liang et
al., 2011; Berant et al., 2013; Kwiatkowski et al.,
2013; Artzi and Zettlemoyer, 2013; Kushman and
Barzilay, 2013). Previous work has focused on
how to train a semantic parser given input utter-
ances, but suppose we wanted to build a seman-
tic parser for a new domain—for example, a natu-
ral language interface into a publications database.
Since no such interface exists, we do not even have
a naturally occurring source of input utterances
that we can annotate. So where do we start?

In this paper, we advocate a functionality-
driven process for rapidly building a semantic

∗ Both authors equally contributed to the paper.

Domain

Seed lexicon

article → TypeNP[article]

publication date→ RelNP[publicationDate]

cites → VP/NP[cites]

...

Logical forms and canonical utterances

article that has the largest publication date

argmax(type.article, publicationDate)

person that is author of the most number of article

argmax(type.person,R(λx.count(type.article u author.x)))

...

Paraphrases

what is the newest published article?

who has published the most articles?

...

Semantic parser

(1) by builder (∼30 minutes)

(2) via domain-general grammar

(3) via crowdsourcing (∼5 hours)

(4) by training a paraphrasing model

Figure 1: Functionality-driven process for build-
ing semantic parsers. The two red boxes are the
domain-specific parts provided by the builder of
the semantic parser, and the other two are gener-
ated by the framework.

parser in a new domain. At a high-level, we
seek to minimize the amount of work needed
for a new domain by factoring out the domain-
general aspects (done by our framework) from
the domain-specific ones (done by the builder
of the semantic parser). We assume that the
builder already has the desired functionality of
the semantic parser in mind—e.g., the publica-
tions database is set up and the schema is fixed.
Figure 1 depicts the functionality-driven process:
First, the builder writes a seed lexicon specifying
a canonical phrase (“publication date”) for
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each predicate (publicationDate). Second,
our framework uses a domain-general grammar,
along with the seed lexicon and the database, to
automatically generate a few hundred canonical
utterances paired with their logical forms (e.g.,
“article that has the largest publication date” and
arg max(type.article, publicationDate)).
These utterances need not be the most elegant,
but they should retain the semantics of the logical
forms. Third, the builder leverages crowdsourcing
to paraphrase each canonical utterance into a
few natural utterances (e.g., “what is the newest
published article?”). Finally, our framework uses
this data to train a semantic parser.

Practical advantages. There are two main ad-
vantages of our approach: completeness and ease
of supervision. Traditionally, training data is
collected in a best-effort manner, which can re-
sult in an incomplete coverage of functionality.
For example, the WebQuestions dataset (Berant
et al., 2013) contains no questions with numeric
answers, so any semantic parser trained on that
dataset would lack that functionality. These bi-
ases are not codified, which results in an idiosyn-
cratic and mysterious user experience, a major
drawback of natural language interfaces (Rangel
et al., 2014). In contrast, our compact grammar
precisely specifies the logical functionality. We
enforce completeness by generating canonical ut-
terances that exercise every grammar rule.

In terms of supervision, state-of-the-art seman-
tic parsers are trained from question-answer pairs
(Kwiatkowski et al., 2013; Berant and Liang,
2014). Although this is a marked improvement in
cost and scalability compared to annotated logical
forms, it still requires non-trivial effort: the an-
notator must (i) understand the question and (ii)
figure out the answer, which becomes even harder
with compositional utterances. In contrast, our
main source of supervision is paraphrases, which
only requires (i), not (ii). Such data is thus cheaper
and faster to obtain.

Linguistic reflections. The centerpiece of our
framework is a domain-general grammar that con-
nects logical forms with canonical utterances.
This connection warrants further scrutiny, as the
structural mismatch between logic and language
is the chief source of difficulty in semantic pars-
ing (Liang et al., 2011; Kwiatkowski et al., 2013;
Berant and Liang, 2014).

There are two important questions here. First, is
it possible to design a simple grammar that simul-
taneously generates both logical forms and canon-
ical utterances so that the utterances are under-
standable by a human? In Section 3, we show how
to choose appropriate canonical utterances to max-
imize alignment with the logical forms.

Second, our grammar can generate an infinite
number of canonical utterances. How many do
we need for adequate coverage? Certainly, single
relations is insufficient: just knowing that “pub-
lication date of X” paraphrases to “when X was
published” would offer insufficient information to
generalize to “articles that came after X” mapping
to “article whose publication date is larger than
publication date of X”. We call this phenomena
sublexical compositionality—when a short lexical
unit (“came after”) maps onto a multi-predicate
logical form. Our hypothesis is that the sublexi-
cal compositional units are small, so we only need
to crowdsource a small number of canonical utter-
ances to learn about most of the language variabil-
ity in the given domain (Section 4).

We applied our functionality-driven process to
seven domains, which were chosen to explore par-
ticular types of phenomena, such as spatial lan-
guage, temporal language, and high-arity rela-
tions. This resulted in seven new semantic parsing
datasets, totaling 12.6K examples. Our approach,
which was not tuned on any one domain, was able
to obtain an average accuracy of 59% over all do-
mains. On the day of this paper submission, we
created an eighth domain and trained a semantic
parser overnight.

2 Approach Overview

In our functionality-driven process (Figure 1),
there are two parties: the builder, who provides
domain-specific information, and the framework,
which provides domain-general information. We
assume that the builder has a fixed database w,
represented as a set of triples (e1, p, e2), where e1
and e2 are entities (e.g., article1, 2015) and p is
a property (e.g., publicationDate). The database
w can be queried using lambda DCS logical forms,
described further in Section 2.1.

The builder supplies a seed lexicon L, which
contains for each database property p (e.g.,
publicationDate) a lexical entry of the form
〈t→ s[p]〉, where t is a natural language phrase
(e.g., “publication date”) and s is a syntactic cat-
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egory (e.g., RELNP). In addition, L contains
two typical entities for each semantic type in the
database (e.g., 〈alice→ NP[alice]〉 for the type
person). The purpose of L is to simply connect
each predicate with some representation in natural
language.

The framework supplies a grammar G, which
specifies the modes of composition, both on log-
ical forms and canonical utterances. Formally, G
is a set of rules of the form 〈α1 . . . αn → s[z]〉,
where α1 . . . αn is a sequence of tokens or cate-
gories, s is a syntactic category and z is the log-
ical form constructed. For example, one rule in
G is 〈RELNP[r] of NP[x]→ NP[R(r).x]〉, which
constructs z by reversing the binary predicate
r and joining it with a the unary predicate x.
We use the rules G ∪ L to generate a set of
(z, c) pairs, where z is a logical form (e.g.,
R(publicationDate).article1), and c is the
corresponding canonical utterance (e.g., “publica-
tion date of article 1”). The set of (z, c) is denoted
by GEN(G ∪ L). See Section 3 for details.

Next, the builder (backed by crowdsourcing)
paraphrases each canonical utterance c output
above into a set of natural utterances P(c) (e.g.,
“when was article 1 published?”). This defines a
set of training examples D = {(x, c, z)}, for each
(z, c) ∈ GEN(G ∪ L) and x ∈ P(c). The crowd-
sourcing setup is detailed in Section 5.

Finally, the framework trains a semantic parser
on D. Our semantic parser is a log-linear distribu-
tion pθ(z, c | x,w) over logical forms and canon-
ical utterances specified by the grammar G. Note
that the grammar G will in general not parse x, so
the semantic parsing model will be based on para-
phrasing, in the spirit of Berant and Liang (2014).

To summarize, (1) the builder produces a seed
lexicon L; (2) the framework produces logical
forms and canonical utterances GEN(G ∪ L) =
{(z, c)}; (3) the builder (via crowdsourcing) uses
P(·) to produce a dataset D = {(x, c, z)}; and (4)
the framework uses D to train a semantic parser
pθ(z, c | x,w).

2.1 Lambda DCS

Our logical forms are represented in lambda DCS,
a logical language where composition operates on
sets rather than truth values. Here we give a brief
description; see Liang (2013) for details.

Every logical form z in this paper is either a
unary (denoting a set of entities) or a binary (de-

noting a set of entity-pairs). In the base case, each
entity e (e.g., 2015) is a unary denoting the single-
ton set: JeKw = {e}; and each property p (e.g.,
publicationDate) is a binary denoting all entity-
pairs (e1, e2) that satisfy the property p. Unaries
and binaries can be composed: Given a binary b
and unary u, the join b.u denotes all entities e1 for
which there exists an e2 ∈ JuKw with (e1, e2) ∈JbKw. For example, publicationDate.2015 de-
note entities published in 2015.

The intersection u1 u u2, union u1 t u2, com-
plement ¬u denote the corresponding set op-
erations on the denotations. We let R(b) de-
note the reversal of b: (e1, e2) ∈ JbKw iff
(e2, e1) ∈ JR(b)Kw. This allows us to define
R(publicationDate).article1 as the publica-
tion date of article 1. We also include aggregation
operations (count(u), sum(u) and average(u, b)),
and superlatives (argmax(u, b)).

Finally, we can construct binaries using lambda
abstraction: λx.u denotes a set of (e1, e2) where
e1 ∈ Ju[x/e2]Kw and u[x/e2] is the logical form
where free occurrences of x are replaced with e2.
For example, R(λx.count(R(cites).x)) denotes
the set of entities (e1, e2), where e2 is the number
of entities that e1 cites.

3 Generation and canonical
compositionality

Our functionality-driven process hinges on having
a domain-general grammar that can connect logi-
cal forms with canonical utterances composition-
ally. The motivation is that while it is hard to write
a grammar that parses all utterances, it is possible
to write one that generates one canonical utterance
for each logical form. To make this explicit:
Assumption 1 (Canonical compositionality)
Using a small grammar, all logical forms ex-
pressible in natural language can be realized
compositionally based on the logical form.

Grammar. We target database querying appli-
cations, where the parser needs to handle superla-
tives, comparatives, negation, and coordination.
We define a simple grammar that captures these
forms of compositionality using canonical utter-
ances in a domain-general way. Figure 2 illustrates
a derivation produced by the grammar.

The seed lexicon specified by the builder con-
tains canonical utterances for types, entities, and
properties. All types (e.g., person) have the syn-
tactic category TYPENP, and all entities (e.g.,
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NP[type.article u publicationDate.1950]

NP[type.article]

TypeNP[article]

article

whose RelNP[publicationDate]

publication date

is EntityNP[1950]

1950

Figure 2: Deriving a logical form z (red) and a
canonical utterance c (green) from the grammar
G. Each node contains a syntactic category and
a logical form, which is generated by applying a
rule. Nodes with only leaves as children are pro-
duced using the seed lexicon; all other nodes are
produced by rules in the domain-general grammar.

alice) are ENTITYNP’s. Unary predicates are
realized as verb phrases VP (e.g., “has a private
bath”). The builder can choose to represent bina-
ries as either relational noun phrases (RELNP) or
generalized transitive verbs (VP/NP). RELNP’s
are usually used to describe functional proper-
ties (e.g., “publication date”), especially numer-
ical properties. VP/NP’s include transitive verbs
(“cites”) but also longer phrases with the same
syntactic interface (“is the president of”). Table
1 shows the seed lexicon for the SOCIAL domain.

From the seed lexicon, the domain-general
grammar (Table 2) constructs noun phrases (NP),
verbs phrases (VP), and complementizer phrase
(CP), all of which denote unary logical forms.
Broadly speaking, the rules (R1)–(R4), (C1)–(C4)
take a binary and a noun phrase, and compose
them (optionally via comparatives, counting, and
negation) to produce a complementizer phrase CP
representing a unary (e.g., “that cites article 1”
or “that cites more than three article”). (G3)
combines these CP’s with an NP (e.g., “article”).
In addition, (S0)–(S4) handle superlatives (we in-
clude argmin in addition to argmax), which take
an NP and return the extremum-attaining subset of
its denotation. Finally, we support transformations
such as join (T1) and disjunction (T4), as well as
aggregation (A1)–(A2).

Rendering utterances for multi-arity predicates
was a major challenge. The predicate in-
stances are typically reified in a graph database,
akin to a neo-Davidsonian treatment of events:
There is an abstract entity with binary predi-
cates relating it to its arguments. For exam-
ple, in the SOCIAL domain, Alice’s education
can be represented in the database as five triples:

birthdate → RELNP[birthdate]
person|university|field → TYPENP[person| · · · ]

company|job title → TYPENP[company| · · · ]
student|university|field of study → RELNP[student| · · · ]

employee|employer|job title → RELNP[employee| · · · ]
start date|end date → RELNP[startDate| · · · ]

is friends with → VP/NP[friends| · · · ]

Table 1: The seed lexicon for the SOCIAL do-
main, which specifies for each predicate (e.g.,
birthdate) a phrase (e.g., “birthdate”) that real-
izes that predicate and its syntactic category (e.g.,
RELNP).

(e17, student, alice), (e17, university, ucla),
(e17, fieldOfStudy, music),
(e17, startDate, 2005), (e17, endDate, 2009).

All five properties here are represented as
RELNP’s, with the first one designated as the sub-
ject (RELNP0). We support two ways of querying
multi-arity relations: “student whose university is
ucla” (T2) and “university of student Alice whose
start date is 2005” (T3).

Generating directly from the grammar in Ta-
ble 2 would result in many uninterpretable canon-
ical utterances. Thus, we perform type checking
on the logical forms to rule out “article that cites
2004”, and limit the amount of recursion, which
keeps the canonical utterances understandable.

Still, the utterances generated by our grammar
are not perfectly grammatical; we do not use de-
terminers and make all nouns singular. Nonethe-
less, AMT workers found most canonical utter-
ances understandable (see Table 3 and Section 5
for details on crowdsourcing). One tip for the
builder is to keep the RELNP’s and VP/NP’s as
context-independent as possible; e.g., using “pub-
lication date” instead of “date”. In cases where
more context is required, we use parenthetical re-
marks (e.g., “number of assists (over a season)”
→ RELNP[...]) to pack more context into the
confines of the part-of-speech.

Limitations. While our domain-general gram-
mar covers most of the common logical forms
in a database querying application, there are sev-
eral phenomena which are out of scope, notably
nested quantification (e.g., “show me each au-
thor’s most cited work”) and anaphora (e.g., “au-
thor who cites herself at least twice”). Handling
these would require a more radical change to the
grammar, but is still within scope.
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[glue]
(G1) ENTITYNP[x] → NP[x]
(G2) TYPENP[x] → NP[type.x]
(G3) NP[x] CP[f ] (and CP[g])* → NP[x u f u g]

[simple]
(R0) that VP[x] → CP[x]
(R1) whose RELNP[r] CMP[c] NP[y] → CP[r.c.y]

is|is not|is smaller than|is larger than|is at least|is at most → CMP[= | 6= | < | > | ≤ | ≥]
(R2) that (not)? VP/NP[r] NP[y] → CP[(¬)r.y]
(R3) that is (not)? RELNP[r] of NP[y] → CP[(¬)R(r).y]
(R4) that NP[y] (not)? VP/NP[r] → CP[(¬)(R(r).y)]

[counting]
(C1) that has CNT[c] RELNP[r] → CP[R(λx.count(R(r).x)).c]
(C2) that VP/NP[r] CNT[c] NP[y] → CP[R(λx.count(y uR(r).x)).c]
(C3) that is RELNP[r] of CNT[c] NP[y] → CP[R(λx.count(y u r.x)).c]
(C4) that CNT[c] NP[y] VP/NP[r] → CP[R(λx.count(y u r.x)).c]

(less than|more than) NUM[n] → CNT[(< .| > .)n]
[superlatives]

(S0) NP[x] that has the largest RELNP[r] → NP[arg max(x, r)]
(S1) NP[x] that has the most number of RELNP[r] → NP[arg max(x,R(λy.count(R(r).y)))]
(S2) NP[x] that VP/NP[r] the most number of NP[y] → NP[arg max(x,R(λy.count(R(r).y)))]
(S3) NP[x] that is RELNP[r] of the most number of NP[y] → NP[arg max(x,R(λz.count(y u r.z)))]
(S4) NP[x] that the most number of NP[y] VP/NP[r] → NP[arg max(x,R(λz.count(y u r.z)))]

[transformation]
(T1) RELNP[r] of NP[y] → NP[R(r).y]
(T2) RELNP0[h]CP[f ] (and CP[g])* → NP[R(h).(f u g)]
(T3) RELNP[r] of RELNP0[h] NP[x] CP[f ] (and CP[g])* → NP[R(r).(h.x u f u g)]
(T4) NP[x] or NP[y] → NP[x t y]

[aggregation]
(A1) number of NP[x] → NP[count(x)]
(A2) total|average RELNP[r] of NP[x] → NP[sum|average(x, r)]

Table 2: The domain-general grammar which is combined with the seed lexicon to generate logical forms
and canonical utterances that cover the supported logical functionality.

4 Paraphrasing and bounded
non-compositionality

While the canonical utterance c is generated
compositionally along with the logical form z,
natural paraphrases x ∈ P(c) generally devi-
ate from this compositional structure. For ex-
ample, the canonical utterance “NP[number of
NP[article CP[whose publication date is larger
than NP[publication date of article 1]]]]” might
get paraphrased to “How many articles were pub-
lished after article 1?”. Here, “published after”
non-compositionally straddles the inner NP, intu-
itively responsible for both instances of “publica-
tion date”. But how non-compositional can para-
phrases be? Our framework rests on the assump-
tion that the answer is “not very”:

Assumption 2 (Bounded non-compositionality)
Natural utterances for expressing complex logical
forms are compositional with respect to fragments
of bounded size.

In the above example, note that while “published
after” is non-compositional with respect to the
grammar, the rewriting of “number of” to “how
many” is compositional. The upshot of Assump-

tion 2 is that we only need to ask for paraphrases
of canonical utterances generated by the grammar
up to some small depth to learn about all the non-
compositional uses of language, and still be able
generalize (compositionally) beyond that.

We now explore the nature of the possible para-
phrases. Broadly speaking, most paraphrases in-
volve some sort of compression, where the clunky
but faithful canonical utterance is smoothed out
into graceful prose.

Alternations of single rules. The most basic
paraphrase happens at the single phrase level with
synonyms (“block” to “brick”), which preserve
the part-of-speech. However, many of our prop-
erties are specified using relational noun phrases,
which are more naturally realized using preposi-
tions (“meeting whose attendee is alice ⇒ meet-
ing with alice”) or verbs (“author of article 1⇒
who wrote article 1”). If the RELNP is com-
plex, then the argument can become embedded:
“player whose number of points is 15 ⇒ player
who scored 15 points”. Superlative and compara-
tive constructions reveal other RELNP-dependent
words: “article that has the largest publication
date ⇒ newest article”. When the value of the
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relation has enough context, then the relation is
elided completely: “housing unit whose housing
type is apartment⇒ apartment”.

Multi-arity predicates are compressed into a
single frame: “university of student alice whose
field of study is music” becomes “At which uni-
versity did Alice study music?”, where the se-
mantic roles of the verb “study” carry the bur-
den of expressing the multiple relations: student,
university, and fieldOfStudy. With a different
combination of arguments, the natural verb would
change: “Which university did Alice attend?”

Sublexical compositionality. The most interest-
ing paraphrases occur across multiple rules, a phe-
nomenon which we called sublexical composition-
ality. The idea is that common, multi-part con-
cepts are compressed to single words or simpler
constructions. The simplest compression is a lex-
ical one: “parent of alice whose gender is female
⇒ mother of alice”. Compression often occurs
when we have the same predicate chained twice
in a join: “person that is author of paper whose
author is X⇒ co-author of X” or “person whose
birthdate is birthdate of X ⇒ person born on the
same day as X”. When two CP’s combined via
coordination have some similarity, then the co-
ordination can be pushed down (“meeting whose
start time is 3pm and whose end time is 5pm ⇒
meetings between 3pm and 5pm”) and sometimes
even generalized (“that allows cats and that al-
lows dogs⇒ that allows pets”). Sometimes, com-
pression happens due to metonymy, where people
stand in for their papers: “author of article that ar-
ticle whose author is X cites⇒ who does X cite”.

5 Crowdsourcing

We tackled seven domains covering various lin-
guistic phenomena. Table 3 lists the domains, their
principal phenomena, statistics about their predi-
cates and dataset, and an example from the dataset.

We use Amazon Mechanical Turk (AMT) to
paraphrase the canonical utterances generated by
the domain-general grammar. In each AMT task,
a worker is presented with four canonical utter-
ances and is asked to reformulate them in natu-
ral language or state that they are incomprehensi-
ble. Each canonical utterance was presented to 10
workers. Over all domains, we collected 18,032
responses. The average time for paraphrasing one
utterance was 28 seconds. Paraphrases that share
the same canonical utterance are collapsed, while

identical paraphrases that have distinct canonical
utterances are deleted. This produced a total of
12,602 examples over all domains.

To estimate the level of noise in the data, we
manually judged the correctness of 20 examples in
each domain, and found that 17% of the utterances
were inaccurate. There are two main reasons: lex-
ical ambiguity on our part (“player that has the
least number of team ⇒ player with the lowest
jersey number”), and failure on the worker’s part
(“restaurant whose star rating is 3 stars ⇒ hotel
which has a 3 star rating”).

6 Model and Learning

Our semantic parsing model defines a distribu-
tion over logical forms given by the domain-
general grammar G and additional rules trig-
gered by the input utterance x. Specifically,
given an utterance x, we detect numbers, dates,
and perform string matching with database en-
tities to recognize named entities. This results
in a set of rules T(x). For example, if x
is “article published in 2015 that cites article
1”, then T(x) contains 〈2015→ NP[2015]〉 and
〈article 1→ NP[article1]〉. Let Lx be the rules
in the seed lexicon L where the entity rules (e.g.,
〈alice→ NP[alice]〉) are replaced by T(x).

Our semantic parsing model defines a log-
linear distribution over candidate pairs (z, c) ∈
GEN(G ∪ Lx):

pθ(z, c | x,w) ∝ exp(φ(c, z, x, w)>θ), (1)

where φ(z, c, x, w) ∈ Rd is a feature vector and
θ ∈ Rd is a parameter vector.

To generate candidate logical forms, we use a
simple beam search: For each search state, which
includes the syntactic category s (e.g., NP) and
the depth of the logical form, we generate at most
K = 20 candidates by applying the rules in Ta-
ble 2. In practice, the lexical rules T(x) are ap-
plied first, and composition is performed, but not
constrained to the utterance. For example, the ut-
terance “article” would generate the logical form
count(type.article). Instead, soft paraphras-
ing features are used to guide the search. This
rather unorthodox approach to semantic parsing
can be seen as a generalization of Berant and
Liang (2014) and is explained in more detail in
Pasupat and Liang (2015).

Training. We train our model by maximiz-
ing the regularized log-likelihood O(θ) =
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Domain # pred. # ex. Phenomena Example
CALENDAR 22 837 temporal language x: “Show me meetings after the weekly standup day”

c: “meeting whose date is at least date of weekly standup”
z: type.meeting u date. > R(date).weeklyStandup

BLOCKS 19 1995 spatial language x: “Select the brick that is to the furthest left.”
c: “block that the most number of block is right of”
z: argmax(type.block,R(λx.count(R(right).x)))

HOUSING 24 941 measurement units x: “Housing that is 800 square feet or bigger?”
c: “housing unit whose size is at least 800 square feet”
z: type.housingUnit u area. > .800

RESTAURANTS 32 1657 long unary relations x: “What restaurant can you eat lunch outside at?”
c: “restaurant that has outdoor seating and that serves lunch”
z: type.restaurant u hasOutdoorSeating u serveslunch

PUBLICATIONS 15 801 sublexical compositionality x: “Who has co-authored articles with Efron?”
c: “person that is author of article whose author is efron”
z: type.person uR(author).(type.article u author.efron)

SOCIAL 45 4419 multi-arity relations x: “When did alice start attending brown university?”
c: “start date of student alice whose university is brown university”
z: R(date).(student.Alice u university.Brown)

BASKETBALL 24 1952 parentheticals x: “How many fouls were played by Kobe Bryant in 2004?”
c: “number of fouls (over a season) of player kobe bryant whose season is 2004”
z: count(R(fouls).(player.KobeBryant u season.2004)

Table 3: We experimented on seven domains, covering a variety of phenomena. For each domain, we
show the number of predicates, number of examples, and a (c, z) generated by our framework along with
a paraphrased utterance x.

Category Description
Basic #words and bigram matches in (x, c)

#words and bigram PPDB matches in (x, c)
#unmatched words in x
#unmatched words in c
size of denotation of z, (|JzKw|)
pos(x0:0) conjoined with type(JzKw)
#nodes in tree generating z

Lexical ∀(i, j) ∈ A. (xi:i, cj:j)
∀(i, j) ∈ A. (xi:i, cj:j+1)
∀(i, j) ∈ A. (xi:i, cj−1:j)
∀(i, j), (i+ 1, j + 1) ∈ A. (xi:i+1, cj:j+1)
all unaligned words in x and c
(xi:j , ci′:j′) if in phrase table

Table 4: Features for the paraphrasing model.
pos(xi:i) is the POS tag; type(JzKw) is a coarse se-
mantic type for the denotation (an entity or a num-
ber). A is a maximum weight alignment between
x and c.

∑
(x,c,z)∈D log pθ(z, c | x,w) − λ‖θ‖1. To opti-

mize, we use AdaGrad (Duchi et al., 2010).

Features Table 4 describes the features. Our
basic features mainly match words and bigrams
in x and c, if they share a lemma or are aligned
in the PPDB resource (Ganitkevitch et al., 2013).
We count the number of exact matches, PPDB
matches, and unmatched words.

To obtain lexical features, we run the Berkeley
Aligner (Liang et al., 2006) on the training set and
compute conditional probabilities of aligning one
word type to another. Based on these probabilities
we compute a maximum weight alignment A be-

tween words in x and c. We define features overA
(see Table 4). We also use the word alignments to
construct a phrase table by applying the consistent
phrase pair heuristic (Och and Ney, 2004). We de-
fine an indicator feature for every phrase pair of
x and c that appear in the phrase table. Examples
from the PUBLICATIONS domain include fewest–
least number and by–whose author is. Note that
we do not build a hard lexicon but only use A
and the phrase table to define features, allowing
the model to learn useful paraphrases during train-
ing. Finally, we define standard features on logical
forms and denotations (Berant et al., 2013).

7 Experimental Evaluation

We evaluated our functionality-driven process on
the seven domains described in Section 5 and one
new domain we describe in Section 7.3. For each
domain, we held out a random 20% of the exam-
ples as the test set, and performed development on
the remaining 80%, further splitting it to a train-
ing and development set (80%/20%). We created a
database for each domain by randomly generating
facts using entities and properties in the domain
(with type-checking). We evaluated using accu-
racy, which is the fraction of examples that yield
the correct denotation.

7.1 Domain-specific linguistic variability
Our functionality-driven process is predicated on
the fact that each domain exhibits domain-specific
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Method CALENDAR BLOCKS HOUSING RESTAURANTS PUBLICATIONS RECIPES SOCIAL BASKETBALL Avg.
FULL 74.4 41.9 54.0 75.9 59.0 70.8 48.2 46.3 58.8
NOLEX 25.0 35.3 51.9 64.6 50.6 32.3 15.3 19.4 36.8
NOPPDB 73.2 41.4 54.5 73.8 56.5 68.1 43.6 44.5 56.9
BASELINE 17.3 27.7 45.9 61.3 46.7 26.3 9.7 15.6 31.3

Table 5: Test set results on all domains and baselines.

phenomena. To corroborate this, we compare our
full system to NOLEX, a baseline that omits all
lexical features (Table 4), but uses PPDB as a
domain-general paraphrasing component. We per-
form the complementary experiment and compare
to NOPPDB, a baseline that omits PPDB match
features. We also run BASELINE, where we omit
both lexical and PPDB features.

Table 5 presents the results of this experiment.
Overall, our framework obtains an average accu-
racy of 59% across all eight domains. The per-
formance of NOLEX is dramatically lower than
FULL, indicating that it is important to learn
domain-specific paraphrases using lexical fea-
tures. The accuracy of NOPPDB is only slightly
lower than FULL, showing that most of the re-
quired paraphrases can be learned during training.
As expected, removing both lexical and PPDB fea-
tures results in poor performance (BASELINE).

Analysis. We performed error analysis on 10 er-
rors in each domain. Almost 70% of the errors
are due to problems in the paraphrasing model,
where the canonical utterance has extra material,
is missing some content, or results in an incorrect
paraphrase. For example, “restaurants that have
waiters and you can sit outside” is paraphrased to
“restaurant that has waiter service and that takes
reservations”. Another 12.5% result from reorder-
ing issues, e.g, we paraphrase “What venue has
fewer than two articles” to “article that has less
than two venue”. Inaccurate paraphrases provided
by AMT workers account for the rest of the errors.

7.2 Bounded non-compositionality
We hypothesized that we need to obtain para-
phrases of canonical utterances corresponding to
logical forms of only small depth. We ran the
following experiment in the CALENDAR domain
to test this claim. First, we define by NP0, NP1,
and NP2 the set of utterances generated by an NP
that has exactly zero, one, and two NPs embed-
ded in it. We define the training scenario 0→ 1,
where we train on examples from NP0 and test
on examples from NP1; 0 ∪ 1→ 1, 0 ∪ 1→ 2,
and 0 ∪ 1 ∪ 2→ 2 are defined analogously. Our

Scenario Acc. Scenario Acc.
0→ 1 22.9 0 ∪ 1→ 2 28.1
0 ∪ 1→ 1 85.8 0 ∪ 1 ∪ 2→ 2 47.5

Table 6: Test set results in the CALENDAR domain
on bounded non-compositionality.

hypothesis is that generalization on 0 ∪ 1→ 2
should be better than for 0→ 1, since NP1 ut-
terances have non-compositional paraphrases, but
training on NP0 does not expose them.

The results in Table 6 verify this hypothesis.
The accuracy of 0→ 1 is almost 65% lower than
0 ∪ 1→ 1. On the other hand, the accuracy of
0 ∪ 1→ 2 is only 19% lower than 0 ∪ 1 ∪ 2→ 2.

7.3 An overnight experiment

To verify the title of this paper, we attempted
to create a semantic parser for a new domain
(RECIPES) exactly 24 hours before the submission
deadline. Starting at midnight, we created a seed
lexicon in less than 30 minutes. Then we gener-
ated canonical utterances and allowed AMT work-
ers to provide paraphrases overnight. In the morn-
ing, we trained our parser and obtained an accu-
racy of 70.8% on the test set.

7.4 Testing on independent data

Geo880. To test how our parser generalizes to
utterances independent of our framework, we cre-
ated a semantic parser for the domain of US ge-
ography, and tested on the standard 280 test ex-
amples from GEO880 (Zelle and Mooney, 1996).
We did not use the standard 600 training examples.
Our parser obtained 56.4% accuracy, which is sub-
stantially lower than state-of-the-art (∼ 90%).

We performed error analysis on 100 random
sentences from the development set where accu-
racy was 60%. We found that the parser learns
from the training data to prefer shorter para-
phrases, which accounts for 30% of the errors. In
most of these cases, the correct logical form is
ranked at the top-3 results (accuracy for the top-
3 derivations is 73%). GEO880 contains highly
compositional utterances, and in 25% of the errors
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the correct derivation tree exceeds the maximum
depth used for our parser. Another 17.5% of the
errors are caused by problems in the paraphrasing
model. For example, in the utterance “what is the
size of california”, the model learns that “size”
corresponds to “population” rather than “area”.
Errors related to reordering and the syntactic struc-
ture of the input utterance account for 7.5% of the
errors. For example, the utterance “what is the
area of the largest state” is paraphrased to “state
that has the largest area”.

Calendar. In Section 7.1, we evaluated on ut-
terances obtained by paraphrasing canonical utter-
ances from the grammar. To examine the cover-
age of our parser on independently-produced ut-
terances, we asked AMT workers to freely come
up with queries. We collected 186 such queries; 5
were spam and discarded. We replaced all entities
(people, dates, etc.) with entities from our seed
lexicon to avoid focusing on entity detection.

We were able to annotate 52% of the utterances
with logical forms from our grammar. We could
not annotate 20% of the utterances due to relative
time references, such as “What time is my next
meeting?”. 14% of the utterances were not cov-
ered due to binary predicates not in the grammar
(“What is the agenda of the meeting?”) or missing
entities (“When is Dan’s birthday?”). Another 2%
required unsupported calculations (“How much
free time do I have tomorrow?”), and the rest are
out of scope for other reasons (“When does my
Verizon data plan start over?”).

We evaluated our trained semantic parser on the
95 utterances annotated with logical forms. Our
parser obtained an accuracy of 46.3% and oracle
accuracy of 84.2%, which measures how often the
correct denotation is on the final beam. The large
gap shows that there is considerable room for im-
provement in the paraphrasing model.

8 Related work and discussion

Much of current excitement around semantic pars-
ing emphasizes large knowledge bases such as
Freebase (Cai and Yates, 2013; Kwiatkowski et
al., 2013; Berant et al., 2013). However, despite
the apparent scale, the actual question answering
datasets (Free917 and WebQuestions) are limited
in compositionality. Moreover, specialized do-
mains with specialized jargon will always exist,
e.g., in regular expressions (Kushman and Barzi-
lay, 2013) or grounding to perception (Matuszek

et al., 2012; Tellex et al., 2011; Krishnamurthy
and Kollar, 2013). Therefore, we believe build-
ing a targeted domain-specific semantic parser for
a new website or device is a very practical goal.

Recent work has made significant strides in
reducing supervision from logical forms (Zettle-
moyer and Collins, 2005; Wong and Mooney,
2007) to denotations (Clarke et al., 2010; Liang et
al., 2011) and to weaker forms (Artzi and Zettle-
moyer, 2011; Reddy et al., 2014). All of these
works presuppose having input utterances, which
do not exist in a new domain. Our methodol-
ogy overcomes this hurdle by exploiting a very
lightweight form of annotation: paraphrasing.

Paraphrasing has been applied to single-
property question answering (Fader et al., 2013)
and semantic parsing (Berant and Liang, 2014).
We not only use paraphrasing in the semantic
parser, but also for data collection.

Table 2 might evoke rule-based systems (Woods
et al., 1972; Warren and Pereira, 1982) or con-
trolled natural languages (Schwitter, 2010). How-
ever, there is an important distinction: the gram-
mar need only connect a logical form to one
canonical utterance; it is not used directly for pars-
ing. This relaxation allows the grammar to be
much simpler. Our philosophy is to use the simple
domain-general grammar to carry the torch just to
the point of being understandable by a human, and
let the human perform the remaining correction to
produce a natural utterance.

In summary, our contributions are two-fold: a
new functionality-driven process and an explo-
ration of some of its linguistic implications. We
believe that our methodology is a promising way
to build semantic parsers, and in future work, we
would like to extend it to handle anaphora and
nested quantification.
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Abstract

In this paper, we introduce Long Short-
Term Memory (LSTM) recurrent network
for twitter sentiment prediction. With the
help of gates and constant error carousels
in the memory block structure, the model
could handle interactions between words
through a flexible compositional function.
Experiments on a public noisy labelled
data show that our model outperforms sev-
eral feature-engineering approaches, with
the result comparable to the current best
data-driven technique. According to the
evaluation on a generated negation phrase
test set, the proposed architecture dou-
bles the performance of non-neural model
based on bag-of-word features. Further-
more, words with special functions (such
as negation and transition) are distin-
guished and the dissimilarities of words
with opposite sentiment are magnified. An
interesting case study on negation expres-
sion processing shows a promising poten-
tial of the architecture dealing with com-
plex sentiment phrases.

1 Introduction

Twitter and other similar microblogs are rich re-
sources for opinions on various kinds of products
and events. Detecting sentiment in microblogs is
a challenging task that has attracted increasing re-
search interest in recent years (Hu et al., 2013b;
Volkova et al., 2013).

Go et al. (2009) carried out the pioneer work
of predicting sentiment in tweets using machine
learning technology. They conducted comprehen-
sive experiments on multiple classifiers based on
bag-of-words feature. Such feature is widely used
because it’s simple and surprisingly efficient in
many tasks. However, there are also disadvan-

tages of bag-of-words features represented by one-
hot vectors. Firstly, it bears a data sparsity is-
sue (Saif et al., 2012a). In tweets, irregulari-
ties and 140-character limitation exacerbate the
sparseness. Secondly, losing sequence informa-
tion makes it difficult to figure out the polarity
properly (Pang et al., 2002). A typical case is that
the sentiment word in a negation phrase tends to
express opposite sentiment to that of the context.

Distributed representations of words can ease
the sparseness, but there are limitations to the
unsupervised-learned ones. Words with special
functions in specific tasks are not distinguished.
Such as negation words, which play a special
role in polarity classification, are represented sim-
ilarly with other adverbs. Such similarities will
limit the compositional models’ abilities of de-
scribing a sentiment-specific interaction between
words. Moreover, word vectors trained by co-
occurrence statistics in a small window of con-
text effectively represent the syntactic and seman-
tic similarity. Thus, words like good and bad have
very similar representations (Socher et al., 2011).
It’s problematic for sentiment classifiers.

Sentiment is expressed by phrases rather than
by words (Socher et al., 2013). Seizing such se-
quence information would help to analyze com-
plex sentiment expressions. One possible method
to leverage context is connecting embeddings of
words in a window and compose them to a fix-
length vector (Collobert et al., 2011). However,
window-based methods may have difficulty reach-
ing long-distance words and simply connected
vectors do not always represent the interactions of
context properly.

Theoretically, a recurrent neural network could
process the whole sentence of arbitrary length by
encoding the context cyclically. However, the
length of reachable context is often limited when
using stochastic gradient descent (Bengio et al.,
1994; Pascanu et al., 2013). Besides that, a
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traditional recurrent architecture is not powerful
enough to deal with the complex sentiment expres-
sions. Fixed input limits the network’s ability of
learning task-specific representations and simple
additive combination of hidden activations and in-
put activations has difficulty capturing more com-
plex linguistic phenomena.

In this paper, we introduce the Long Short-
Term Memory (LSTM) recurrent neural network
for twitter sentiment classification by means of
simulating the interactions of words during the
compositional process. Multiplicative operations
between word embeddings through gate structures
provide more flexibility and lead to better com-
positional results compare to the additive ones
in simple recurrent neural network. Experimen-
tally, the proposed architecture outperforms vari-
ous classifiers and feature engineering approaches,
matching the performance of the current best data-
driven approach. Vectors of task-distinctive words
(such as not) are distinguished after tuning and
representations of opposite-polarity words are sep-
arated. Moreover, predicting result on negation
test set shows our model is effective in dealing
with negation phrases (a typical case of sentiment
expressed by sequence). We study the process of
the network handling the negation expressions and
show the promising potential of our model sim-
ulating complex linguistic phenomena with gates
and constant error carousels in the LSTM blocks.

2 Related Work

2.1 Microblogs Sentiment Analysis

There have been a large amount of works on sen-
timent analysis over tweets. Some research makes
use of social network information (Tan et al.,
2011; Calais Guerra et al., 2011). These works re-
veal that social network relations of opinion hold-
ers could bring an influential bias to the textual
models. While some other works utilize the mi-
croblogging features uncommon in the formal lit-
erature, such as hashtags, emoticons (Hu et al.,
2013a; Liu et al., 2012). Speriosu et al. (2011) pro-
pose a unified graph propagation model to lever-
age textual features (such as emoticons) as well as
social information.

Semantic concept or entity based approaches
lead another research direction. Saif et al. (2012a;
2012b) make use of sentiment-topic features and
entities extracted by a third-party service to ease
data sparsity. Aspect-based models are also ex-

ploited to improve the tweet-level classifier (Lek
and Poo, 2013).

2.2 Representation Learning and Deep
Models

Bengio et al. (2003) use distributed representa-
tions for words to fight the curse of dimension-
ality when training a neural probabilistic language
model. Such word vectors ease the syntactic and
semantic sparsity of bag-of-words representations.
Much recent research has explored such represen-
tations (Turian et al., 2010; Huang et al., 2012).

Recent works reveal that modifying word vec-
tors during training could capture polarity infor-
mation for the sentiment words effectively (Socher
et al., 2011; Tang et al., 2014). It would be also
insightful to analyze the embeddings that changed
the most during training. We conduct a compar-
ison between initial and tuned vectors and show
how the tuned vectors of task-distinctive function
words cooperate with the proposed architecture to
capture sequence information.

Distributed word vectors help in various NLP
tasks when using in neural models (Collobert et
al., 2011; Kalchbrenner et al., 2014). Com-
posing these representations to fix-length vectors
that contain phrase or sentence level information
also improves performance of sentiment analy-
sis (Yessenalina and Cardie, 2011). Recursive
neural networks model contextual interaction in
binary trees (Socher et al., 2011; Socher et al.,
2013). Words in the complex utterances are con-
sidered as leaf nodes and composed in a bottom-
up fashion. However, it’s difficult to get a binary
tree structure from the irregular short comments
like tweets. Not requiring structure information
or parser, long short-term memory models encode
the context in a chain and accommodate complex
linguistic phenomena with structure of gates and
constant error carousels.

3 Recurrent Neural Networks for
Sentiment Analysis

Recurrent Neural Networks (RNN) have gained
attention in NLP field since Mikolov et al. (2010)
developed a statistical language model based on
a simple form known as Elman network (El-
man, 1990). Recent works used RNNs to pre-
dict words or characters in a sequence (Chrupała,
2014; Zhang and Lapata, 2014). Treating opin-
ion expression extraction as a sequence labelling
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input

hidden

output

t-1 t t+1

Figure 1: Illustration of simple recurrent neural
network. The input of the hidden layer comes
from both input layer and the hidden layer acti-
vations of previous time step.

problem, Irsoy and Cardie (2014) leverage deep
RNN models and achieve new state-of-the-art re-
sults for fine-grained extraction task. The lastest
work propose a tree-structured LSTM and conduct
a comprehensive study on using LSTM in predict-
ing the semantic relatedness of two sentences and
sentiment classification (Tai et al., 2015).

Fig.1 shows the illustration of a recurrent net-
work. By using self-connected layers, RNNs al-
low information cyclically encoded inside the net-
works. Such structures make it possible to get a
fix-length representation of a whole tweet by tem-
porally composing word vectors.

The recurrent architecture we used in this work
is shown in Fig.2. Each word is mapped to a vec-
tor through a Lookup-Table (LT) layer. The in-
put of the hidden layer comes from both the cur-
rent lookup-table layer activations and the hidden
layer’s activations one step back in time. In this
way, hidden layer encodes the past and current in-
formation. The hidden activations of the last time
step could be considered as the representation of
the whole sentence and used as input to classifica-
tion layer. By storing the word vectors in LT layer,
the model has reading and tuning access to word
representations.

Based on such recurrent architecture, we can
capture sequence information in the context and
identify polarities of the tweets.

3.1 Elman Network With Fixed
Lookup-Table

RNN-FLT: A simple implementation of the recur-
rent sentiment classifier is an Elman network (also
known as simple RNN) with Fixed Lookup-Table
(FLT). In such model, unsupervised pre-trained
word vectors in LT layer are constant during the
whole training process. The hidden layer activa-

h

h

h

h
Y

Figure 2: Illustration of the general recurrent ar-
chitecture unfolded as a deep feedforward net-
work.

tion of position h at time t is:

bt
h = f

(
at

h

)
(1)

at
h =

E∑
i

wihet
i +

H∑
h′

wh′hbt−1
h′ (2)

where et represents the E-length embedding of
the tth word of the sentence, which stored in LT
layer. wih is the weight of connection between in-
put and hidden layer, while wh′h is the weights
of recurrent connection (self-connection of hidden
layer). f represents the sigmoid function. The
binary classification loss function O is computed
via cross entropy (CE) criterion and the network is
trained by stochastic gradient descent using back-
propagation through time (BPTT) (Werbos, 1990).
Here, we introduce the notation:

δt
i =

∂O

∂at
i

(3)

Firstly, the error propagate from output layer to
hidden layer of last time step T . The derivatives
with respect to the hidden activation of position i
at the last time step T are computed as follow:

δT
i = f ′ (aT

i

) ∂O

∂y
vi (4)

where vi represents the weights of hidden-output
connection and the activation of the output layer y
is used to estimate probability of the tweet bearing
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a particular polarity.

y = f

(
H∑
i

bT
i vi

)
(5)

Then the gradients of hidden layer of previous
time steps can be recursively computed as:

δt
h = f ′ (at

h

) H∑
h′

δt+1
h′ whh′ (6)

3.2 Elman Network with Trainable
Lookup-Table

Unsupervised trained word embeddings represent
the syntactic and semantic similarity. However,
in specific tasks, the importance and functions of
different words vary. Negation words have simi-
lar unsupervised trained representations with other
adverbs, but they make distinctive contributions
in sentiment expressions. Besides the function
words, tuning word vectors of sentiment words
into polarity-representable ones turns out to be an
effective way to improve the performance of sen-
timent classifiers. (Maas et al., 2011; Labutov and
Lipson, 2013). Such tuned vectors work together
with the deep models, gaining the ability to de-
scribe complex linguistic phenomena.

RNN-TLT: To this end, we modify the word
vectors in the Trainable Lookup-Table (TLT) via
back propagation to get a better embedding of
words. The gradient of lookup-table layer is:

δt
i = g′

(
at

i

) H∑
h=1

δt
hwih =

H∑
h=1

δt
hwih (7)

where identity function g (x) = x is considered as
the activation function of lookup-table layer.

3.3 Long Short-Term Memory
The simple RNN has the ability to capture con-
text information. However, the length of reach-
able context is often limited. The gradient tends
to vanish or blow up during the back propaga-
tion (Bengio et al., 1994; Pascanu et al., 2013).
Moreover, Elman network simply combines pre-
vious hidden activations with the current inputs
through addictive function. Such combination is
not powerful enough to describe a complex inter-
actions of words.

An effective solution for these problems is
the Long Short-Term Memory (LSTM) architec-
ture (Hochreiter and Schmidhuber, 1997; Gers,

Figure 3: Illustration of LSTM memory block
with one cell. Constant Error Carousel (CEC)
maintains the internal activation (called state) with
a recurrent connection of fixed weight 1.0, which
may be reset by the forget gate. The input and
output gates scale the input and output respec-
tively. All the gates are controlled by the main-
tained state, network input and hidden activation
of previous time step.

2001). Such architecture consists of a set of re-
currently connected subnets, known as memory
blocks. Each block contains one or more self-
connected memory cells and the input, output and
forget gates. Fig.3 gives an illustration of an
LSTM block. Once an error signal arrives Con-
stant Error Carousel (CEC), it remains constant,
neither growing nor decaying unless the forget
gate squashes it. In this way, it solves the vanish-
ing gradient problem and learns more appropriate
parameters during training.

Moreover, based on this structure, the input,
output and stored information can be partial ad-
justed by the gates, which enhances the flexibil-
ity of the model. The activations of hidden layer
rely on the current/previous state, previous hidden
activation and current input. These activations in-
teract to make up the final hidden outputs through
not only additive but also element-wise multiplica-
tive functions. Such structures are more capable to
learn a complex composition of word vectors than
simple RNNs.

These gates are controlled by current input, pre-
vious hidden activation and cell state in CEC unit:

Gt
I = f

(
UIx

t + VIh
t−1 + WIs

t−1
)

(8)
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Gt
F = f

(
UF xt + VF ht−1 + WF st−1

)
(9)

Gt
O = f

(
UOxt + VOht−1 + WOst

)
(10)

where Gt indicates the gate activation at time t,
xt, ht and st is input, hidden activation and state in
CEC unit at time t respectively, while U , V and W
represent the corresponding weight matrices con-
nect them to the gates. Subscript I , F and O in-
dicate input, forget and output respectively. The
CEC state and block output are computed by the
functions with element-wise multiplicative opera-
tion:

st = Gt
F st−1 + Gt

If
(
USxt + VSht−1

)
(11)

at = Gt
Ost (12)

where US indicates connection weight between in-
put and state, while VS represents the weight ma-
trix connecting hidden layer to state.

LSTM-TLT: By replacing the conventional
neural units in RNN-TLT with LSTM blocks,
we can get the LSTM network with Trainable
Lookup-Table. Such model achieves a flexible
compositional structure where the activations in-
teract in a multiplicative function. It provides
the capacity of describing diverse linguistic phe-
nomenon by learning complex compositions of
word embeddings.

4 Experiments

4.1 Data Set

We conduct experiments on the Stanford Twit-
ter Sentiment corpus (STS)1. The noisy-labelled
dataset is collected using emoticons as queries in
Twitter API (Go et al., 2009). 800,000 tweets con-
taining positive emoticons are extracted and la-
belled as positive, while 800,000 negative tweets
are extracted based on negative emoticons. The
manually labelled test set consists of 177 negative
and 182 positive tweets.

4.2 Experimental Settings

Recurrent Neural Network: We implement
the recurrent architecture with trainable lookup-
table layer by modifying RNNLIB (Graves, 2010)
toolkit.
Early Stopping: From the noisy labelled data,
we randomly selected 20,000 negative and 20,000

1http://twittersentiment.appspot.com/

positive tweets as validation set for early stopping.
The rest 1,560,000 tweets are used as training set.
Parameter Setting: Tuned on the validation set,
the size of the hidden layer is set to 60.
Word Embeddings: We run word2vec on the
training set of 1.56M tweets (without labels) to get
domain-specific representations and use them as
initial input of the model. Limited to the input for-
mat of the toolkit, we learned 25-dimensional (rel-
atively small) vectors. Skip-gram architecture and
hierarchical softmax algorithm are chosen during
training.

4.3 Comparison with Data Driven
Approaches

Classifier Accuracy(%)
SVM 81.6
MNB 82.7
MAXENT 83.0
MAX-TDNN 78.8
NBoW 80.9
DCNN 87.4
RAE 77.6
RNN-FLT 80.2
RNN-TLT 86.4
LSTM-TLT 87.2

Table 1: Accuracies of different classifiers.

Naive Bayes, Maximum Entropy and SVM are
widely used classifiers. Go et al. (2009) presented
the results of three non-neural models using uni-
gram and bigram features.

Dynamic Convolutional Neural Network
(DCNN) (Kalchbrenner et al., 2014) is a general-
ization of MAX-TDNN (Collobert et al., 2011).
It has a clear hierarchy and is able to capture
long-range semantic relations. While the Neural
Bag-of-Words (NBoW) takes the summation of
word vectors as the input of a classification layer.
Kalchbrenner et al. (2014) reported performances
of the above three neural classifiers.

Recursive Autoencoder (RAE) has proven to be
an effective model to compose words vectors in
sentiment classification tasks (Socher et al., 2011).
We run RAE with randomly initialized word em-
beddings. We do not compare with RNTN (Socher
et al., 2013) for lack of phrase-level sentiment la-
bels and accurate parsing results.

Table 1 shows the accuracies of different clas-
sifiers. Notably, RNN-TLT and LSTM-TLT out-
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perform the three non-neural classifiers. Trained
on the considerable data, these classifiers pro-
vide strong baselines. However, bag-of-words rep-
resentations are not powerful enough. Sparsity
and losing sequence information hurt the perfor-
mance of classifiers. Neural models overcome
these problems by using distributed representa-
tions and temporally encoding the contextual in-
teraction.

We notice a considerable increase in the perfor-
mance of the RNN-TLT with respect to the NBoW,
whose embeddings are also tuned during super-
vised training. It suggests that recurrent models
could generate better tweet-level representations
for the task by composing the word embeddings
in a temporal manner and capturing the sequential
information of the context.

Convolutional neural networks have outstand-
ing abilities of feature extraction, while LSTM-
TLT achieves a comparable performance. It sug-
gests that LSTM model is effective in learning
sentence-level representations with a flexible com-
positional structure.

RAE provides more general representations of
phrases by learning to reconstruct the word vec-
tors. Recurrent models outperform RAE indi-
cates that task-specific composing and representa-
tion learning with less syntactic information lead
to a better result.

Comparing RNN-FLT with RNN-TLT, we can
easily figure out that the model with trainable
lookup-table achieves better performance. This
is due to the fact that tuned embeddings capture
the sentiment information of text by distinguish-
ing words with opposite sentiment polarities and
providing more flexibility for composing. LSTM-
TLT does not outperform RNN-TLT significantly.
And the situations are almost the same on short-
sentence (less than 25 words) and long-sentence
(not less than 25 words) test set. Such results in-
dicate that the ability of LSTM getting access to
longer-distance context is not the determinant of
improvement, while the capacity of LSTM han-
dling complex expressions plays a more important
role. Such capacity will be further discussed in
subsection 4.7.

Since the training set is large enough, we have
not observed strong overfitting during the training
process. Therefore, no regularization technology
is employed in the experiments.

4.4 Comparison with Feature Engineering
Approaches

Method Craft feature Accuracy(%)
Speriosu et
al. (2011)

emoticon 84.7
hashtag

Saif et
al. (2012a)

sentiment-topic 86.3
semantic 84.1

Lek and
Poo (2013)

aspect-based 88.3

This work 87.2

Table 2: Comparison with different feature engi-
neering methods.

Table 2 shows the comparison with different
feature engineering methods. In Speriosu et al.
(2011)’s work, sentiment labels propagated in a
graph constructed on the basis of contextual re-
lations (e.g. word presence in a tweet) as well
as social relations. Saif et al. (2012a) eased the
data sparsity by adding sentiment-topic features
that extracted using traditional lexicon. While Lek
and Poo (2013) extracted tuple of [aspect, word,
sentiment] with hand-crafted templates. With the
help of opinion lexicon and POS tagger especially
designed for twitter data, their approach achieved
a state-of-the-art result.

Even though these methods rely on lexicons and
extracted entities, our data-driven model outper-
forms most of them, except the aspect-based one
that introduced twitter-specific resources. This
is due to the fact that traditional lexicons, even
emoticons added, are not able to cover the diver-
sification of twitter sentiment expressions, while
LSTM learns appropriate representations of senti-
ment information through compositional manner.

4.5 Experiments on Manually Labelled Data
Different from STS dataset deciding the polar-
ity based on emoticons, the benchmark dataset
in SemEval 2013 (Nakov et al., 2013) is labelled
by human annotators. In this work we focus on
the binary polarity classification and abandon the
neutral tweets. There are 4099/735/1742 avail-
able tweets in the training/dev/test set respectively.
Since the training set is relatively small, we don’t
apply fine tuning on word vectors. Namely we
use fixed lookup-table for both RNN and LSTM.
300-dimensional vectors are learned on the 1.56M
tweets of STS dataset using word2vec. Other set-
tings stay the same as previous experiments.
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Method Accuracy(%)
SVM 74.5
RAE 75.4
RNN-FLT 83.0
LSTM-FLT 84.0

Table 3: Accuracies of different methods on Se-
mEval 2013

Table 3 shows our work compared to SVM
and Recursive Autoencoder. From the result, we
can see that the recurrent models outperforms the
baselines by exploiting more context information
of word interactions.

4.6 Representation Learning

Recent works reveal that modifying word vec-
tors during training could capture polarity infor-
mation for the sentiment words effectively (Socher
et al., 2011; Tang et al., 2014). However, it would
be also helpful to analyse the embeddings that
changed the most.

Function words: We choose 1000 most fre-
quent words. For each word, we compute the dis-
tance between unsupervised vector and tuned vec-
tor. 20 words that change most are shown in Fig.4.

It’s noteworthy that there are five negation
words (not, no, n’t, never and Not) in the notably-
change group. The representations of negation
words are quite similar with other adverbs in un-
supervised learned embeddings, while the pro-
posed model distinguishes them. This indicate that
our polarity-supervised models identify negation
words as distinctive symbols in sentiment classifi-
cation task, while unsupervised learned vectors do
not contain such information.

Besides the negation words and sentiment
words, there are also other prepositions, pronouns
and conjunctions change dramatically (e.g. and
and but). Such function words also play a special
role in sentiment expressions (Socher et al., 2013)
and the model in this paper distinguishes them.
However, the contributions of these words to the
task are not that explainable as negation words (at
least without sentiment strength information).

To further explain how the tuned vectors work
together with the network and describe interac-
tions between words, we study the process of the
model classifying negation phrases in the follow-
ing subsection.

Sentiment words: In order to study the em-

0 0.1 0.2 0.3 0.4 0.5

I
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no

bad
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finally

never

Not

but

me

good

Figure 4: Word change scale to [0,1]. Distances
are computed by reversing cosine similarity.

bedding change of sentiment words, we choose
the most frequent sentiment words in our train-
ing data, 20 positive and 20 negative, and ob-
serve the dissimilarity of the vectors in a two-
dimensional space. An alternative least-square
scaling is implemented based on Euclidean dis-
tance between word vectors. Figure 5 shows
sentiment-specific tuning reduces the overlap of
opposite polarities. Polarities of words are identi-
fied based on a widely-used sentiment lexicon (Hu
and Liu, 2004).

To explicitly evaluate it, we selected embed-
dings of 2000 most frequent sentiment words
(1000 each polarity) and compute the centers of
both classes. If an embedding is closer to the op-
posite polarity center, we consider it as an over-
lap. Experimentally, the proportion of overlap of
unsupervised learned vectors is 19.55%, while the
one of tuned vectors is 11.4%. Namely the over-
lap ratio is reduced by 41.7%. Experimentally,
such polarity separating relies on tuning through
lookup-table layer rather than LSTM structure.
With the decrease of overlap of polarities, senti-
ment of word turns more distinguishable, which is
helpful for polarity prediction.

4.7 Case Study: Negation

Negation phrases are typical cases where senti-
ment is expressed by sequence rather than words.
To evaluate the ability of the model dealing with
such cases, we select most frequent 1000 negative
and 1000 positive words in the training data and
generate the corresponding negation phrases (such
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Figure 5: Distance of word vectors shown in two-
dimensional space. The above figure shows the
distribution of unsupervised learning vectors and
the below figure indicates the tuned one. The solid
and hollow points represent the positive and nega-
tive words respectively.

as not good).

Classifier Accuracy(%)
MNB+unigram+bigram 32.98
RNN-TLT 52.00
LSTM-TLT 64.85

Table 4: Accuracy on generated negation phrases
test set.

Statistical result shows that only 37.6% of the
negation phrases appeared in the training text. It
sets a theoretical upper bound to the classifiers
based on the unigram and bigram features. Ex-
perimental result shown in Table 4 indicates that
LSTM model effectively handles the sequential
expressions of negation. By composing word vec-
tors, recurrent models ease the sparsity of bag-of-
word features and achieve a significant improve
than MNB using unigram and bigram features.
LSTM outperform RNN by 12.85%, such result
suggests the element-wise multiplicative composi-
tional function of LSTM provides more flexibility
to simulate interactions between word vectors. A
clear process of LSTM handling negation phrases
is observed, which is described in the rest of the
subsection, while the one of RNN is not that obvi-
ous.

As mentioned in 4.6, the task-distinctive func-

hyperplane 

Figure 6: Hidden activations of negation phrases.
<s> represent the beginning of sentences. not bad
and good lead to positive outputs, while not good
and bad result in negative values. The dotted line
indicates the classification hyperplane. The solid
arrows represent the hidden vector changes when
the network take the word good as input, while the
dotted arrows indicate the changes when the word
bad is input. The sentiment words are input in two
situations (as initial input or after negation word),
while the changes of hidden vectors of same word
are opposite in the two situations.

tion words are distinguished. It would be insight-
ful to show how it works together with the LSTM
structure.

We train the network on STS dataset and test it
on few words and phrases (good, bad, not good
and not bad). For the convenience of analysis the
activation within the network, we set the size of
hidden layer to 2. Such setting reduces the perfor-
mance by about 7% on the public test set, but the
trained model still work effectively. Fig.6 shows
the activations of LSTM hidden layers. Both sen-
timent words and negation phrases are classified
into correct categories. Furthermore, when senti-
ment words like good (i) input as the first word
of sentence and (ii) input after negation word, it
cause opposite change in hidden layer. These be-
haviours simulate the change of sentiment in the
negation expressions.

As mentioned in 3.3, gates’ activations are con-
trolled by current input, state in CEC unit and out-
put of hidden layer of previous time step. They
are many possible ways for the model to simulat-
ing the sentiment change. In the experiment, the
observed situation is shown in Fig.7:
Negation word contains both polarities. The
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Figure 7: Observed process of LSTM block han-
dling negation phrase not good. Some less impor-
tant connections are omitted in this figure.

positive-axle and negative-axle are almost orthog-
onal. Negation word has large components on
both axles.
not make input gate close. Experiments show
recurrent activations make the input gate close,
namely previous word not squashes the input (both
current and recurrent input) to a very small value.
Choose a polarity to forget. The combination
of the recurrent input not and current input good
make the CEC unit forget the positive informa-
tion, namely they make forget gate reduce state’s
component on positive-axle while leaving a large
projection on negative-axle. A significant dissim-
ilarity of forget gate activations between positive
and negative words is observed in the experiment,
when they are input after not.

In this way, the temporally-input phrase not
good shows a negative polarity. Correspondingly,
phrase not bad turns positive after reducing the
negative components of the negation word. Such
case shows the process of the gates and CEC unit
cooperating in the LSTM structure. Together with
tuned vectors, the architecture has a promising po-
tential of capture sequence information by simu-
lating complex interactions between words.

5 Conclusion

In this paper we have explored to capture twit-
ter sentiment expressed by interactions of words.
The contributions of this paper can be summarized
as follows: (i) We have described long short-term
memory based model to compose word represen-
tations through a flexible compositional function.
Tested on a public dataset, the proposed architec-

ture achieves result comparable to the current best
data-driven model. The experiment on negation
test set shows the ability of the model capturing
sequential information. (ii) Beyond tuning vectors
of sentiment words, we put forward a perspective
of distinguishing task-distinctive function words
only relying on the label of the whole sequence.
(iii) We conduct an interesting case study on the
process of task-distinctive word vectors working
together with deep model, which is usually con-
sidered as a black-box in other neural networks,
indicating the promising potential of the architec-
ture simulating complex linguistic phenomena.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa.

1351



2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Re-
search, 12:2493–2537.

Jeffrey L Elman. 1990. Finding structure in time.
Cognitive science, 14(2):179–211.

Felix Gers. 2001. Long Short-Term Memory in Recur-
rent Neural Networks. Ph.D. thesis, Ph. D. thesis,
Ecole Polytechnique Federale de Lausanne.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, pages 1–12.

Alex Graves. 2010. Rnnlib: A recurrent neural
network library for sequence learning problems.
http://sourceforge.net/projects/
rnnl.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’04, pages
168–177, New York, NY, USA. ACM.

Xia Hu, Jiliang Tang, Huiji Gao, and Huan Liu.
2013a. Unsupervised sentiment analysis with emo-
tional signals. In Proceedings of the 22nd interna-
tional conference on World Wide Web, pages 607–
618. International World Wide Web Conferences
Steering Committee.

Xia Hu, Lei Tang, Jiliang Tang, and Huan Liu. 2013b.
Exploiting social relations for sentiment analysis in
microblogging. In Proceedings of the sixth ACM in-
ternational conference on Web search and data min-
ing, pages 537–546. ACM.

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguis-
tics: Long Papers-Volume 1, pages 873–882. Asso-
ciation for Computational Linguistics.

Ozan Irsoy and Claire Cardie. 2014. Opinion mining
with deep recurrent neural networks. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
720–728.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics, June.

Igor Labutov and Hod Lipson. 2013. Re-embedding
words. In Proceedings of the 51th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 489–493. Association for Computational
Linguistics.

Hsiang Hui Lek and Danny CC Poo. 2013. Aspect-
based twitter sentiment classification. In Tools with
Artificial Intelligence (ICTAI), 2013 IEEE 25th In-
ternational Conference on, pages 366–373. IEEE.

Kun-Lin Liu, Wu-Jun Li, and Minyi Guo. 2012.
Emoticon smoothed language models for twitter
sentiment analysis. In AAAI.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1, pages 142–150.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
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Abstract

The goal of this research is to build a
model to predict stock price movement us-
ing sentiments on social media. A new
feature which captures topics and their
sentiments simultaneously is introduced in
the prediction model. In addition, a new
topic model TSLDA is proposed to obtain
this feature. Our method outperformed
a model using only historical prices by
about 6.07% in accuracy. Furthermore,
when comparing to other sentiment anal-
ysis methods, the accuracy of our method
was also better than LDA and JST based
methods by 6.43% and 6.07%. The results
show that incorporation of the sentiment
information from social media can help to
improve the stock prediction.

1 Introduction

Stock price forecasting is very important in the
planning of business activity. However, building
an accurate stock prediction model is still a chal-
lenging problem. In addition to historical prices,
the current stock market is affected by the mood
of society. The overall social mood with respect
to a given company might be one of the important
variables which affect the stock price of that com-
pany. Nowadays, the emergence of online social
networks makes large amounts of mood data avail-
able. Therefore, incorporating information from
social media with the historical prices can improve
the predictive ability of the models.

The goal of our research is to develop a model to
predict a stock price movement using information
from social media (Message Board). In our pro-
posed method, the model predicts the movement
of the stock value at t using features derived from
information at t − 1 and t − 2, where t stands for
a transaction date. It will be trained by supervised

machine learning. Apart from the mood informa-
tion, the stock prices are affected by many factors
such as microeconomic and macroeconomic fac-
tors. However, this research only focuses on how
the mood information from social media can be
used to predict the stock price movement. That
is, the mood of topics in social media is extracted
by sentiment analysis. Then, the topics and their
sentiments are integrated into the model to pre-
dict the stocks. To achieve this goal, discover-
ing the topics and sentiments in a large amount
of social media is important to get opinions of
investors as well as events of companies. How-
ever, sentiment analysis on social media is diffi-
cult. The text is usually short, contains many mis-
spellings, uncommon grammar constructions and
so on. In addition, the literature shows conflict-
ing results in sentiment analysis for stock market
prediction. Some researchers report that the senti-
ments from social media have no predictive capa-
bilities (Antweiler and Frank, 2004; Tumarkin and
Whitelaw, 2001), while other researchers have re-
ported either weak or strong predictive capabilities
(Bollen et al., 2011). Therefore, how to use opin-
ions in social media for stock price predictions is
still an open problem.

Our contributions are summarized as follows:

1. We propose a new feature “topic-sentiment”
for the stock market prediction model.

2. We propose a new topic model, Topic Sen-
timent Latent Dirichlet Allocation (TSLDA),
which can capture the topic and sentiment si-
multaneously.

3. Large scale evaluation. Most of the previous
researches are limited on predicting for one
stock (Bollen et al., 2011; Qian and Rasheed,
2007; Si et al., 2013), and the number of
instances (transaction dates) in a test set is
rather low such as 14 or 15 instances (Bollen
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et al., 2011; Vu et al., 2012). With only a few
instances in the test set, the conclusion might
be insufficient. This is the first research that
shows good prediction results on evaluation
of many stocks using a test set consisting of
many transaction dates.

The rest of the paper is organized as follows.
Section 2 introduces some previous approaches on
sentiment analysis for stock prediction. Section 3
explains our model for sentiment analysis by si-
multaneously inferring the topic and sentiment in
the text. Section 4 describes two kinds of datasets
required for stock prediction. Section 5 describes
our prediction models and also proposes a novel
feature based on the topics and sentiments. Sec-
tion 6 assesses the results of the experiments. Fi-
nally, Section 7 concludes our research.

2 Related Work

Stock market prediction is one of the most at-
tracted topics in academic as well as real life busi-
ness. Many researches have tried to address the
question whether the stock market can be pre-
dicted. Some of the researches were based on
the random walk theory and the Efficient Market
Hypothesis (EMH). According to the EMH (Fama
et al., 1969; Fama, 1991), the current stock mar-
ket fully reflects all available information. Hence,
price changes are merely due to new information
or news. Because news in nature happens ran-
domly and is unknowable in the present, stock
prices should follow a random walk pattern and
the best bet for the next price is the current price.
Therefore, they are not predictable with more than
about 50% accuracy (Walczak, 2001). On the
other hand, various researches specify that the
stock market prices do not follow a random walk,
and can be predicted in some degree (Bollen et al.,
2011; Qian and Rasheed, 2007; Vu et al., 2012).
Degrees of accuracy at 56% hit rate in the pre-
dictions are often reported as satisfying results for
stock predictions (Schumaker and Chen, 2009b; Si
et al., 2013; Tsibouris and Zeidenberg, 1995).

Besides the efficient market hypothesis and the
random walk theories, there are two distinct trad-
ing philosophies for stock market prediction: fun-
damental analysis and technical analysis. The fun-
damental analysis studies the company’s financial
conditions, operations, macroeconomic indicators
to predict the stock price. On the other hand, the
technical analysis depends on historical and time-

series prices. Price moves in trends, and history
tends to repeat itself. Some researches have tried
to use only historical prices to predict the stock
price (Zuo and Kita, 2012a; Zuo and Kita, 2012b).
To discover the pattern in the data, they used
Bayesian network (Zuo and Kita, 2012a; Zuo and
Kita, 2012b), time-series method such as Auto Re-
gressive, Moving Average, Auto Regressive Mov-
ing Average model (Zuo and Kita, 2012a) and so
on.

2.1 Extracting Opinions from Text

Sentiment analysis has been found to play a sig-
nificant role in many applications such as prod-
uct and restaurant reviews (Liu and Zhang, 2012;
Pang and Lee, 2008). There are some researches
trying to apply sentiment analysis on information
sources to improve the stock prediction model.
There are two main such sources. In the past, the
main source was the news (Schumaker and Chen,
2009a; Schumaker and Chen, 2009b), and in re-
cent years, social media sources. A simple ap-
proach is combining the sentiments in the textual
content with the historical prices through the lin-
ear regression model.

Most of the previous work primarily used the
bag-of-words as text representation that are incor-
porated into the prediction model. Schumaker and
Chen tried to use different textual representations
such as bag-of-words, noun phrases and named
entities for financial news (Schumaker and Chen,
2009b). However, the textual representations are
just the words or named entity tags, not exploit-
ing the mood information so much. A novel tree
representation based on semantic frame parsers is
proposed (Xie et al., 2013). By using stock prices
from Yahoo Finance, they annotated all the news
in a transaction date with going up or down cate-
gories. However, the weakness of this assumption
is that all the news in one day will have the same
category. In addition, this is a task of text classifi-
cation, not stock prediction.

Naive Bayes was used to classify messages
from message boards into three classes: buy, hold
and sell (Antweiler and Frank, 2004). They were
integrated into the regression model. However,
they concluded that their model does not success-
fully predict stock returns.

A method to measure collective hope and fear
on each day and analyze the correlation between
these indices and the stock market indicators was
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proposed (Zhang et al., 2011). They used the
mood words to tag each tweet as fear, worry, hope
and so on. They concluded that the ratio of the
emotional tweets significantly negatively corre-
lated with Down Jones, NASDAQ and S&P 500,
but positively with VIX. However, they did not use
their model to predict the stock price values.

Two mood tracking tools, OpinionFinder and
Google Profile of Mood States, were used to an-
alyze the text content of daily Twitter (Bollen et
al., 2011). The former measures the positive and
negative mood. The latter measures the mood in
terms of six dimensions (Calm, Alert, Sure, Vital,
Kind, and Happy). They used the Self Organizing
Fuzzy Neural Network model to predict DJIA val-
ues. The results showed 86.7% direction accuracy
(up or down) and 1.79% Mean Absolute Percent-
age Error. Although they achieved the high accu-
racy, there were only 15 transaction dates (from
December 1 to 19, 2008) in their test set. With
such a short period, it might not be sufficient to
conclude the effectiveness of their method.

A keyword-based algorithm was proposed to
identify the sentiment of tweets as positive, neu-
tral and negative for stock prediction (Vu et al.,
2012). Their model achieved around 75% accu-
racy. However, their test period was short, from
8th to 26th in September 2012, containing only 14
transaction dates.

Continuous Dirichlet Process Mixture (cDPM)
model was used to learn the daily topic set of Twit-
ter messages to predict the stock market (Si et al.,
2013). A sentiment time series was built based
on these topics. However, the time period of their
whole dataset is rather short, only three months.

Most of the researches tried to extract only the
opinions or sentiments. However, one important
missing thing is that opinions or sentiments are ex-
pressed on topics or aspects of companies. There-
fore, understanding on which topics of a given
stock people are expressing their opinion is very
important. Although the models for inferring the
topics and sentiments simultaneously have already
proposed as discussed in Subsection 2.2, to the
best of our knowledge, such models have never
applied for stock market prediction.

2.2 Aspect based Sentiment Analysis

Some researches tried to identify the sentiment ex-
pressed toward an aspect in a sentence rather than
a whole sentence or document. The simple ap-

proach is to define a sentiment score of a given as-
pect by the weighted sum of opinion scores of all
words in the sentence, where the weight is defined
by the distance from the aspect (Liu and Zhang,
2012; Pang and Lee, 2008). This method is further
improved by identifying the aspect-opinion rela-
tions using tree kernel method (Nguyen and Shi-
rai, 2015).

Other researches trying to extract both the topic
and sentiment for some domains such as on-
line product, restaurant and movie review dataset.
ASUM is a model for extracting both the aspect
and sentiment for online product review dataset
(Jo and Oh, 2011). Joint sentiment/topic model
(JST) is another model to detect the sentiment and
topic simultaneously, which was applied for movie
review dataset (Lin and He, 2009). These models
assume that each word is generated from a joint
topic and sentiment distribution. It means that
these models do not distinguish the topic word and
opinion word distributions.

Besides the general opinion words, topic mod-
els considering aspect-specific opinion words
were also proposed. MaxEnt-LDA hybrid model
can jointly discover both aspects and aspect-
specific opinion words on a restaurant review
dataset (Zhao et al., 2010), while FACTS,
CFACTS, FACTS-R, and CFACTS-R model were
proposed for sentiment analysis on a product re-
view data (Lakkaraju et al., 2011). However, one
of the weaknesses of these methods is that there is
only one opinion word distribution corresponding
to one topic (aspect). It makes difficult to know
which sentiment (e.g. positive or negative) is ex-
pressed by the opinion words on that topic.

To overcome this drawback, we propose a new
topic model called Topic Sentiment Latent Dirich-
let Allocation (TSLDA), which estimates differ-
ent opinion word distributions for individual sen-
timent categories for each topic. To the best of our
knowledge, such a model has not been proposed.
TSLDA is suitable for not only sentiment analy-
sis for stock prediction but also general sentiment
analysis of the document, sentence and aspect.

3 TSLDA: Topic Sentiment Latent
Dirichlet Allocation

The proposed model TSLDA infers the topics and
their sentiments simultaneously. It is an extended
model of Latent Dirichlet Allocation (LDA) (Blei
et al., 2003). We assume that one sentence ex-
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Figure 1: Graphical Model Representation of
TSLDA

presses only one topic and one opinion on that
topic. The topics are usually nouns, whereas the
opinion words are adjectives or adverbs. The
words in the document are classified into three cat-
egories, the topic word (category c = 1), opinion
word (c = 2) and others (c = 0). Then, we sup-
pose the different opinion words are used for the
different topics. Depending on the topic, an opin-
ion word may express different sentiment mean-
ing. For example, the opinion word “low” in “low
cost” and “low salary” have opposite polarity. In
our model, different topics, which are also repre-
sented by word distributions, will have different
opinion word distributions. Finally, to capture the
sentiment meanings such as positive, negative or
neutral of the opinion words for each topic, we
distinguish opinion word distributions for differ-
ent sentiment meanings.

Figure 1 shows the graphical model representa-
tion of TSLDA. Observed and hidden variables are
indicated by shaded and clear circles, respectively.
Table 1 shows the notations in Figure 1. The gen-
eration process in TSLDA is as follows:

1. Choose a distribution of background words
Φb ∼ Dirichlet(α)

2. For each topic k:

• Choose a distribution of topic words
Φt
k ∼ Dirichlet(α)

• For each sentiment s of topic k:
– Choose a distribution of sentiment

words Φo
k,s ∼ Dirichlet(λ)

Table 1: Notations in TSLDA
Notation Definition
α, β, γ, λ Dirichlet prior vectors
K # of topics
S # of sentiments
Φb distribution over background words
Φt distribution over topic words
Φo distribution over sentiment words
D # of documents
Md # of sentences in document d
Nd,m # of words in sentence m

in document d
θtd topic distribution for document d
θod sentiment distribution for document d
ztd,m topic assignment for sentence m

in document d
zod,m sentiment assignment

for sentence m in document d
wd,m,n nth word in sentence m

in document d
cd,m,n nth word’s category (background,

topic or sentiment) in sentence m
in document d

3. For each document d:

• Choose a topic distribution
θtd ∼ Dirichlet(β)
• Choose a sentiment distribution
θod ∼ Dirichlet(γ)
• For each sentence m:

– Choose a topic assignment
ztd,m ∼Multinomial(θtd)

– Choose a sentiment assignment
zod,m ∼Multinomial(θod)

– For each word in the sentence:
∗ Choose a wordwd,m,n as in Equa-

tion (1).

wd,m,n ∼


Multinomial(Φb) if cd,m,n = 0
Multinomial(Φt

zt
d,m

) if cd,m,n = 1

Multinomial(Φo
zt
d,m,z

o
d,m

) if cd,m,n = 2

(1)

We will define some notations for explanation
of our method. W k,s

d,m,v,c is the number of times the
word v with the category c appears in the sentence
m in the document d, where m discusses the topic
k and the sentiment s. Let Zk,sd be the number of
times the document d has the topic k and the sen-
timent s. If any of these dimensions is not limited
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to a specific value, we used an asterisk ∗ to denote
it. For example, W k,s

∗,∗,v,c is the number of appear-
ance of combination (v, c, k, s) in any sentences
in any documents. Similarly, Zk,∗d is the number
of times the document d has the topic k with any
sentiments.

A bold-font variable denotes the list of the vari-
ables. For instance, zt and w denote all of topic
assignments and words in all documents, respec-
tively.
−(d,m) stands for exclusion of the value in

the sentence m in the document d. For example,
zt−(d,m) denotes all of topic assignment variables

zt but ztd,m. Za,∗−(d,m)
d denotes the value of Za,∗d

not counting times at the sentence m in the docu-
ment d.

We used square brackets for specifying the
value at the index of a vector or distribution. For
instance, α[v] denotes the value of α at index v.

Collapsed Gibbs Sampling was implemented
for inference in TSLDA. It will sequentially sam-
ple hidden variables ztd,m and zod,m from the dis-
tribution over these variables given the current
values of all other hidden and observed vari-
ables. In other words, in order to perform Col-
lapsed Gibbs Sampling, conditional probability
P (ztd,m = a, zod,m = b|zt−(d,m), z

o
−(d,m),w, c)

is calculated by marginalizing out random vari-
ables Φb, Φt, Φo, θt and θo. Because of the
limit of spaces, we only show the final formula
of this conditional probability as in Equation (2).
Let Vd,m be a set of words in the sentencem in the
document d. V is a set of all of the words in all
documents.

P (ztd,m = a, zod,m = b|zt−(d,m), z
o
−(d,m),w, c, )

∝ (Za,∗−(d,m)
d + β[a])(Z∗,b−(d,m)

d + γ[b])

×

Vd,m∏
v=1

W ∗,∗
d,m,v,1∏
j=1

(W a,∗−(d,m)
∗,∗,v,1 + α[v] + j − 1)

W ∗,∗
d,m,∗,1∏
j=1

(
V∑
v=1

W
a,∗−(d,m)
∗,∗,v,1 + α[v] + j − 1)

×

Vd,m∏
v=1

W ∗,∗
d,m,v,2∏
j=1

(W a,b−(d,m)
∗,∗,v,2 + λ[v] + j − 1)

W ∗,∗
d,m,∗,2∏
j=1

(
V∑
v=1

W
a,b−(d,m)
∗,∗,v,2 + λ[v] + j − 1)

(2)

Multinomial parameters: Finally, samples ob-
tained from Collapsed Gibbs Sampling can be

used to approximate the multinomial parameter
sets. The distributions of topics and sentiments in
the document d are estimated as in Equation (3).

θtd[a] =
Za,∗d + β[a]
K∑
k=1

Zk,∗d + β[k]
; θod[b] =

Z∗,b
d + γ[b]

S∑
s=1

Z∗,s
d + γ[s]

(3)

The background word distribution, topic word
distribution of the topic k and sentiment word dis-
tribution of the sentiment s for k are estimated in
Equation (4), (5) and (6), respectively.

Φb[r] =
W ∗,∗

∗,∗,r,0 + α[r]
V∑
v=1

W ∗,∗
∗,∗,v,0 + α[v]

(4)

Φt
k[r] =

W k,∗
∗,∗,v,1 + α[r]

V∑
v=1

W k,∗
∗,∗,v,1 + α[v]

(5)

Φo
k,s[r] =

W k,s
∗,∗,v,2 + λ[r]

V∑
v=1

W k,s
∗,∗,v,2 + λ[v]

(6)

4 Dataset

Two datasets are used for the development of our
stock prediction model. One is the historical price
dataset, and the other is the message board dataset.

4.1 Historical Price Dataset
Historical prices are extracted from Yahoo Fi-
nance for 5 stocks. The list of the stock quotes
and company names is shown in Table 2. For
each transaction date, there are open, high, low,
close and adjusted close prices. The adjusted close
prices are the close prices which are adjusted for
dividends and splits. They are often used for stock
market prediction as in other researches (Rechen-
thin et al., 2013). Therefore, we chose it as the
stock price value for each transaction date.

4.2 Message Board Dataset
To get the mood information of the stocks, we col-
lected 5 message boards of the 5 stocks from Ya-
hoo Finance Message Board for a period of one
year (from July 23, 2012 to July 19, 2013). On the
message boards, users usually discuss company
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Table 2: Statistics of Our Dataset
Stocks Company Names #Documents
XOM Exxon Mobil Corporation 11027
DELL Dell Inc. 10339
EBAY eBay Inc. 7168

IBM
International Business

5008
Machines Corporation

KO The Coca-Cola Company 2024

news, prediction about stock going up or down,
facts, comments (usually negative) about specific
company executives or company events. The stock
market is not opened at the weekend and holiday.
To assign the messages to the transaction dates, the
messages which were posted from 4 pm of the pre-
vious transaction date to 4 pm of the current trans-
action date will belong to the current transaction.
We choose 4 pm because it is the time of closing
transaction. There are 249 transaction dates in the
one year period in our dataset.

5 Stock Prediction Models with
Sentiment Analysis

This paper focuses on prediction of not the stock
price but movement of it. That is, our goal is to
develop a model that predicts if the stock price
goes up or down. Support Vector Machine (SVM)
has long been recognized as being able to effi-
ciently handle high dimensional data and has been
shown to perform well on many tasks such as text
classification (Joachims, 1998; Nguyen and Shi-
rai, 2013). Therefore, we chose SVM with the lin-
ear kernel as the prediction model. Furthermore,
features derived by sentiment analysis on the mes-
sage board are incorporated in it. To assess the ef-
fectiveness of sentiment analysis, four sets of fea-
tures are designed. The first one uses only the his-
torical prices. The other sets include topic and sen-
timent features obtained by different methods. All
the feature values are scaled into [−1, 1] value. Ta-
ble 3 summarizes our features used in the model to
predict the price movement at the transaction date
t. The details of each feature will be explained in
the next subsections.

5.1 Price Only
In this method, only historical prices are used to
predict the stock movement. The purpose of this
method is to investigate whether there are patterns
of the price movement in the history of the stock.
In addition, it is a baseline for evaluation of the

Table 3: Features of the Prediction Model
Method Features
Price Only pricet−1, pricet−2

LDA-based Method pricet−1, pricet−2,
ldai,t, ldai,t−1

JST-based Method pricet−1, pricet−2,
jsti,j,t, jsti,j,t−1

TSLDA-based Method pricet−1, pricet−2,
tsldai,j,t, tsldai,j,t−1

effectiveness of the sentiment features. Features
used for training SVM are pricet−1 and pricet−2

which are the price movements (up, down) at the
transaction dates t− 1, t− 2, respectively.

5.2 LDA-based Method

In this model, we consider each message as a mix-
ture of hidden topics. LDA is a generative prob-
abilistic model of a corpus 1. The basic idea is
that documents are represented as random mix-
tures over latent topics, where each topic is charac-
terized by a distribution over words. Hidden topics
of LDA are incorporated into the prediction model
as follows. First, stop words are removed from
the messages, and all the words are lemmatized by
Stanford CoreNLP (Manning et al., 2014). Topics
are inferred by Gibbs Sampling with 1000 itera-
tions. Next, the probability of each topic for each
message is calculated. For each transaction date t,
the probability of each topic is defined as the aver-
age of the probabilities of the topic in all messages
posted on that transaction date.

Features used for training SVM are pricet−1,
pricet−2, ldai,t and ldai,t−1. ldai,t and ldai,t−1

are the probabilities of the topic i (i ∈
{1, · · · ,K}) for the transaction dates t and t − 1.
The number of the topics K is empirically deter-
mined as explained in Subsection 6.1.

5.3 JST-based Method

When people post the message on social media to
express their opinion for a given stock, they tend
to talk their opinions for a given topic or aspect
such as profit and dividend. They would think
that the future price of the stock goes up or down
by seeing pairs of topic-sentiment written by oth-
ers. Following the above intuition, we propose a
new feature topic-sentiment for the stock predic-

1We used the LDA implementation from the Mallet li-
brary.

1359



Figure 2: Graphical Model Representation of JST

Table 4: Notations in JST
Notation Definition
α, β, γ Dirichlet prior vectors
ϕ distribution over words
T # of topics
S # of sentiments
θ message and sentiment specific topic

distribution
z topic
w word in the message d
l sentiment label
π message specific sentiment distribution
Nd # of words in the message d
D # of messages

tion model. Two methods are used to extract the
pairs of topic-sentiment from the message board.
One is a latent topic based model called JST (Lin
and He, 2009). The other is TSLDA discussed in
Section 3. This subsection introduces the method
using the former.

We consider each message as a mixture of hid-
den topics and sentiments. JST model is used to
extract topics and sentiments simultaneously. Fig-
ure 2 shows the graphical model representation of
JST. Notations in Figure 2 are shown in Table 4. In
LDA model, there is only one document specific
topic distribution. In contrast, each document in
JST is associated with multiple sentiment labels.
Each sentiment label is associated with a docu-
ment specific topic distribution. A word in the
document is drawn from a distribution over words
defined by the topic and sentiment label.

After removal of stop words and lemmatiza-
tion, JST model is trained by Gibbs Sampling with
1000 iterations. We chose 3 as the number of
sentiments which might represent negative, neu-

tral and positive. The number of the topics K
is empirically determined as explained in Subsec-
tion 6.1. Next, the joint probability of each pair
of topic and sentiment is calculated for each mes-
sage. For each transaction date t, the joint proba-
bility of each topic-sentiment pair is defined as the
average of the joint probabilities in the messages
on that transaction date. Then we integrate these
probabilities into the prediction model.

Features used for training SVM are pricet−1,
pricet−2, jsti,j,t and jsti,j,t−1. jsti,j,t and
jsti,j,t−1 are the joint probabilities of the sen-
timent i (i ∈ {1, 2, 3}) and topic j (j ∈
{1, · · · ,K}) for the transaction dates t and t− 1.

5.4 TSLDA-based Method

We use our TSLDA model to capture the topics
and sentiments simultaneously. First, a rule-based
algorithm is applied to identify the category of
each word in the documents. Consecutive nouns
are considered as topic words. If a word is not a
noun and in a list of opinion words in SentiWord-
Net (Baccianella et al., 2010), it is considered as
an opinion word. The rest of words are classified
as background words.

After lemmatization, TSLDA model is trained
by Collapsed Gibbs Sampling with 1000 itera-
tions. We chose 3 as the number of sentiments
which might represent for negative, neutral and
positive. K (number of topics) is determined as
explained in Subsection 6.1. The topic and its sen-
timent in each sentence are gotten from the topic
assignment and sentiment assignment in TSLDA.
If there is a sentence expressing the sentiment j
on the topic i, we represent the tuple (i, j) = 1,
and 0 otherwise. The proportion of (i, j) over all
sentences are calculated for each message. For
each transaction date, a weight of the tuple (i, j)
is defined as the average of the proportions over
all messages. Then we integrated the weights of
the topics and their sentiments into the prediction
model.

Features used for training SVM are pricet−1,
pricet−2, tsldai,j,t and tsldai,j,t−1. tsldai,j,t and
tsldai,j,t−1 are the weights of the topic i (i ∈
{1, · · · ,K}) with the sentiment j (j ∈ {1, 2, 3})
for the transaction dates t and t− 1.
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Table 5: Accuracies of Stock Movement Predic-
tion

Stocks Price Only LDA JST TSLDA
XOM 0.5000 0.4464 0.5179 0.5357
DELL 0.5893 0.5357 0.5000 0.5536
EBAY 0.6071 0.6071 0.5000 0.6429

IBM 0.4107 0.3929 0.5357 0.5536
KO 0.4107 0.5179 0.4643 0.5357

Average 0.5036 0.5000 0.5036 0.5643

6 Evaluation

6.1 Experiment Setup

We divided the dataset described in Section 4 into
three parts: training set from July 23, 2012 to
March 31, 2013, development set from April 01,
2013 to April 30, 2013, and test set from May
01, 2013 to July 19, 2013. The label of ‘up’
and ‘down’ is assigned to each transaction date by
comparing the price of the current and previous
dates.

To optimize the number of topics K for each
stock, we run the models with four values of K:
10, 20, 50 and 100. The best K is chosen for each
stock on the development set, and the systems with
the chosen K is evaluated on the test data. The
performance of the prediction is measured by ac-
curacy.

For the hyperparameters of LDA, JST and
TSLDA, we simply selected symmetric Dirich-
let prior vectors, that is all possible distributions
are likely equal. We used the default values of
these hyperparameters for LDA and JST. Con-
cretely speaking, α = 0.5, β = 0.01 in LDA and
α = 50

#topics , β = 0.01, γ = 0.3 were used in JST.
For TSLDA, we set α = 0.1, λ = 0.1, β = 0.01
and γ = 0.01.

6.2 Results

The result of each stock is shown in Table 5. In
addition, the average of 5 stocks for each model is
revealed in the last row of this table for easy com-
parison. Our model TSLDA-based method out-
performed the other methods on the average of the
stocks. Table 6 shows the number of true posi-
tive (TP), true negative (TN), false positive (FP)
and false negative (FN) of models for the stocks.
For easy comparison, the summation for these five
stocks are calculated in the last row.

To assess the effectiveness of integrating mood
information, we compare our TSLDA-based

Table 6: TP, TN, FP, FN of Stock Movement Pre-
diction

Stocks Metrics Price Only LDA JST TSLDA

XOM

TP 14 13 15 18
TN 14 12 14 12
FP 8 10 8 10
FN 20 21 19 16

DELL

TP 17 13 5 13
TN 16 17 23 18
FP 17 16 10 15
FN 6 10 18 10

EBAY

TP 17 18 20 20
TN 17 16 8 16
FP 9 10 18 10
FN 13 12 10 10

IBM

TP 15 15 7 31
TN 8 7 23 0
FP 17 18 2 25
FN 16 16 24 0

KO

TP 12 14 16 10
TN 11 15 10 20
FP 17 13 18 8
FN 16 14 12 18

Sum

TP 75 73 63 92
TN 66 67 78 66
FP 68 67 56 68
FN 71 73 83 54

method with Price Only method. The results
showed that the model using mood information
outperformed the model without mood by 3.57%,
3.58%, 14.29% and 12.5% accuracy for XOM,
EBAY, IBM and KO stock, respectively. On the
other hand, the performance on DELL stock was
not improved. It means that the use of the mood
does not always make the performance better. The
mood from social media could lead to a wrong pre-
diction because of wrong prediction of message
writers, fault information and so on. However,
TSLDA was better than Price Only method on av-
erage of these stocks. In addition, TSLDA can re-
duce the number of FN, especially for IBM, al-
though FP was not changed in the sum of 5 stocks.
Thus, we can conclude that integrating the mood
information from social media can help to predict
stock price movement more precisely.

Next, let us compare the models for inferring la-
tent topics only (LDA) and topics and sentiments
(JST and TSLDA) in the stock movement predic-
tion. The accuracy of JST-based method was bet-
ter than LDA for two stocks (XOM and IBM),
worse for three stocks and comparable in the aver-
age of five stocks. While, TSLDA-based method
outperformed LDA and JST by 2 to 17% in the
accuracy for five stocks. TSLDA was also better
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Table 7: Top Words in Topics of TSLDA
Topic1 Topic2 Topic3 Topic4 Topic5 Topic6

ko split drink customer company country
ceo stock coke budget competitor tax

company share water campaign buy governor
report price produce promotion sell obama

earning dividend product growth hold rommey
analyst year health sale problem mitt
share date juice volumn soda president
news market make come product bill

downgrade time p.o.s revenue people christian

than LDA and JST on average as shown in Table
5. The improvement of the accuracy was derived
by increase of TP and decrease of FN. These re-
sults indicate that (1) our idea to use both latent
topics and sentiments as the features is effective,
(2) TSLDA is more appropriate model than JST in
stock movement prediction.

Table 7 shows examples of highly associated
words of some topics for stock KO (Coca-Cola
Company) in TSLDA. For example, ‘split’, ‘stock’
and ‘share’ are words highly associated with the
hidden topic 2, and ‘drink’, ‘coke’ and ‘water’ are
highly associated with the topic 3. The first five
hidden topics in Table 7 may represent the man-
agement, stock market trading, product, customer
care service, competitors of the company, while
the last one indicates macroeconomic factors. Ta-
ble 8 shows examples of highly associated words
of three sentiments of the hidden topic 1 and 2. For
the hidden topic 1, ‘growth’, ‘strong’, ‘solid’ etc.
are the words highly associated with the hidden
sentiment 3 (which may corresponds to positive
class), while ‘old’, ‘tired’, ‘unreal’ etc. with the
hidden sentiment 1 (may be negative). In general,
however, it is rather difficult to interpret the mean-
ing of the hidden sentiment because the sentiments
have many dimensions such as happy, anger, sad,
vital and so on. We also found that the words
with high probabilities in the background distribu-
tion were the stop words, punctuations, function
words, messy characters written in social media,
e.g. ‘.’, ‘the’, ‘and’, ‘you’, ‘$’, ‘for’ and ‘?’.

Table 9 shows top words in some joint senti-
ment topic distributions of JST model for stock
KO. For example, ‘yahoo’, ‘ko’ and ‘finance’ are
highly associated with the distribution defined by
hidden sentiment 1 and hidden topic 1. However,
it is rather difficult to guess which sentiment or
topic in this joint distribution actually means.

Table 8: Top Words in Sentiments of Topics of
TSLDA

Topic1 Topic2
S1 S2 S3 S1 S2 S3
old value grow down straight good

tired even strong tough warm long
unreal difference solid troll informative more
much list gain breakthrough interesting high

obviously together full ex later still
much serve continue sugary responsible right
not americans growth ep yeah sure

helpful operation value richly used same
here get quarter major though many

Table 9: Top Words in Distributions Defined by
Sentiments and Topics of JST

S1 S2 S3
Topic1 Topic2 Topic1 Topic2 Topic1 Topic2
yahoo juice ko new spam split

ko minute buy american board share
finance maid get country post date
chart orange sell obama ignore stock
free apple go top idiot record
fire drink make fall get price

website fruit money health read august
aone edit much government another receive

download punch next place report get

7 Conclusion

This paper presents the method to infer the top-
ics and their sentiments on the documents and use
them for prediction of the stock movement. The
results of the experiments show the effectiveness
of our proposed TSLDA-based method. Although
56% accuracy of our method is not so high, it can
be satisfying results as regarded in the previous pa-
pers. Another advantage of the paper is the eval-
uation by the large scale experiment (five stocks,
three month transaction dates in the test set).

The drawback of TSLDA is that we have to
specify the number of topics and sentiment be-
forehand. To overcome it, TSLDA should be ex-
tended as a non-parametric topic model estimating
the number of topics inherent in the data. This will
be done in our future work.
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Abstract

Recursive neural network is one of the
most successful deep learning models
for natural language processing due to
the compositional nature of text. The
model recursively composes the vector
of a parent phrase from those of child
words or phrases, with a key compo-
nent named composition function. Al-
though a variety of composition func-
tions have been proposed, the syntactic
information has not been fully encoded
in the composition process. We pro-
pose two models, Tag Guided RNN (TG-
RNN for short) which chooses a compo-
sition function according to the part-of-
speech tag of a phrase, and Tag Embedded
RNN/RNTN (TE-RNN/RNTN for short)
which learns tag embeddings and then
combines tag and word embeddings to-
gether. In the fine-grained sentiment
classification, experiment results show
the proposed models obtain remarkable
improvement: TG-RNN/TE-RNN obtain
remarkable improvement over baselines,
TE-RNTN obtains the second best result
among all the top performing models, and
all the proposed models have much less
parameters/complexity than their counter-
parts.

1 Introduction

Among a variety of deep learning models for nat-
ural language processing, Recursive Neural Net-
work (RNN) may be one of the most popular mod-
els. Thanks to the compositional nature of natu-
ral text, recursive neural network utilizes the re-
cursive structure of the input such as a phrase or
sentence, and has shown to be very effective for
many natural language processing tasks including

semantic relationship classification (Socher et al.,
2012), syntactic parsing (Socher et al., 2013a),
sentiment analysis (Socher et al., 2013b), and ma-
chine translation (Li et al., 2013).

The key component of RNN and its variants is
the composition function: how to compose the
vector representation for a longer text from the
vector of its child words or phrases. For instance,
as shown in Figure 2, the vector of ‘is very inter-
esting’ can be composed from the vector of the left
node ‘is’ and that of the right node ‘very interest-
ing’. It’s worth to mention again, the composition
process is conducted with the syntactic structure
of the text, making RNN more interpretable than
other deep learning models.

so#max	
  

so#max	
  

so#max	
  

so#max	
  

so#max	
  

... 

g	
  

g	
  

very interesting 

is  
very interesting 

is very interesting  

Figure 1: The example process of vector composi-
tion in RNN. The vector of node ‘very interesting’
is composed from the vectors of node ‘very’ and
node ‘interesting’. Similarly, the node ‘is very in-
teresting’ is composed from the phrase node ‘very
interesting’ and the word node ‘is’ .

There are various attempts to design the com-
position function in RNN (or related models). In
RNN (Socher et al., 2011), a global matrix is used
to linearly combine the elements of vectors. In
RNTN (Socher et al., 2013b), a global tensor is
used to compute the tensor products of dimen-
sions to favor the association between different el-
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ements of the vectors. Sometimes it is challeng-
ing to find a single function to model the compo-
sition process. As an alternative, multiple com-
position functions can be used. For instance, in
MV-RNN (Socher et al., 2012), different matrices
is designed for different words though the model
is suffered from too much parameters. In AdaMC
RNN/RNTN (Dong et al., 2014), a fixed number
of composition functions is linearly combined and
the weight for each function is adaptively learned.

In spite of the success of RNN and its variants,
the syntactic knowledge of the text is not yet fully
employed in these models. Two ideas are moti-
vated by the example shown in Figure 2: First,
the composition function for the noun phrase ‘the
movie/NP’ should be different from that for the
adjective phrase ‘very interesting/ADJP’ since the
two phrases are quite syntactically different. More
specifically to sentiment analysis, a noun phrase is
much less likely to express sentiment than an ad-
jective phrase. There are two notable works men-
tioned here: (Socher et al., 2013a) presented to
combine the parsing and composition processes,
but the purpose is for parsing; (Hermann and
Blunsom, 2013) designed composition functions
according to the combinatory rules and categories
in CCG grammar, however, only marginal im-
provement against Naive Bayes was reported. Our
proposed model, tag guided RNN (TG-RNN), is
designed to use the syntactic tag of the parent
phrase to guide the composition process from the
child nodes. As an example, we design a function
for composing noun phrase (NP) and another one
for adjective phrase (ADJP). This simple strategy
obtains remarkable improvements against strong
baselines.

is	
  /	
  VBZ	
  

very	
  /	
  RB	
  

very	
  interes/ng	
  /	
  ADJP	
  

interes/ng	
  /	
  JJ	
  

is	
  very	
  interes/ng	
  /	
  VP	
  

the	
  /	
  DT	
  

the	
  movie	
  /	
  NP	
  

movie	
  /	
  NN	
  

the	
  movie	
  is	
  very	
  interes/ng	
  /	
  S	
  

Figure 2: The parse tree for sentence ‘The movie
is very interesting’ built by Stanford Parser.

Second, when composing the adjective phrase
‘very interesting/ADJP’ from the left node
‘very/RB’ and the right node ‘interesting/JJ’, the
right node is obviously more important than the
left one. Furthermore, the right node ‘interest-

ing/JJ’ apparently contributes more to sentiment
expression. To address this issue, we propose
Tag embedded RNN/RNTN (TE-RNN/RNTN), to
learn an embedding vector for each word/phrase
tag, and concatenate the tag vector with the
word/phrase vector as input to the composition
function. For instance, we have tag vectors for
DT,NN,RB,JJ,ADJP,NP, etc. and the tag vectors
are then used in composing the parent’s vector.
The proposed TE-RNTN obtain the second best re-
sult among all the top performing models but with
much less parameters and complexity. To the best
of our knowledge, this is the first time that tag em-
bedding is proposed.

To summarize, the contributions of our work are
as follows:

• We propose tag-guided composition func-
tions in recursive neural network, TG-RNN.
Tag-guided RNN allocates a composition
function for a phrase according to the part-
of-speech tag of the phrase.

• We propose to learn embedding vectors for
part-of-speech tags of words/phrases, and
integrate the tag embeddings in RNN and
RNTN respectively. The two models, TE-
RNN and TE-RNTN, can leverage the syn-
tactic information of child nodes when gen-
erating the vector of parent nodes.

• The proposed models are efficient and effec-
tive. The scale of the parameters is well con-
trolled. Experimental results on the Stanford
Sentiment Treebank corpus show the effec-
tiveness of the models. TE-RNTN obtains
the second best result among all publicly re-
ported approaches, but with much less pa-
rameters and complexity.

The rest of the paper is structured as follows: in
Section 2, we survey related work. In Section 3,
we introduce the traditional recursive neural net-
work as background. We present our ideas in Sec-
tion 4. The experiments are introduced in Section
5. We summarize the work in Section 6.

2 Related Work

Different kinds of representations are used in
sentiment analysis. Traditionally, the bag-of-
words representations are used for sentiment anal-
ysis (Pang and Lee, 2008). To exploit the rela-
tionship between words, word co-occurrence (Tur-
ney et al., 2010) and syntactic contexts (Padó
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and Lapata, 2007) are considered. In order to
distinguish antonyms with similar contexts, neu-
ral word vectors (Bengio et al., 2003) are pro-
posed and can be learnt in an unsupervised man-
ner. Word2vec (Mikolov et al., 2013a) introduces
a simpler network structure making computation
more efficiently and makes billions of samples
feasible for training.

Semantic composition deals with representing
a longer text from its shorter components, which
is extensively studied recently. In many previ-
ous works, a phrase vector is usually obtained by
average (Landauer and Dumais, 1997), addition,
element-wise multiplication (Mitchell and Lap-
ata, 2008) or tensor product (Smolensky, 1990) of
word vectors. In addition to using vector repre-
sentations, matrices can also be used to represent
phrases and the composition process can be done
through matrix multiplication (Rudolph and Gies-
brecht, 2010; Yessenalina and Cardie, 2011).

Recursive neural models utilize the recursive
structure (usually a parse tree) of a phrase or sen-
tence for semantic composition. In Recursive
Neural Network (Socher et al., 2011), the tree
with the least reconstruction error is built and the
vectors for interior nodes is composed by a global
matrix. Matrix-Vector Recursive Neural Network
(MV-RNN) (Socher et al., 2012) assigns matri-
ces for every words so that it could capture the
relationship between two children. In Recursive
Neural Tensor Networks (RNTN) (Socher et al.,
2013b), the composition process is performed on
a parse tree in which every node is annotated
with fine-grained sentiment labels, and a global
tensor is used for composition. Adaptive Multi-
Compositionality (Dong et al., 2014) uses multiple
weighted composition matrices instead of sharing
a single matrix.

The employment of syntactic information in
RNN is still in its infant. In (Socher et al., 2013a),
the part-of-speech tag of child nodes is considered
in combining the processes of both composition
and parsing. The main purpose is for better pars-
ing by employing RNN, but it is not designed for
sentiment analysis. In (Hermann and Blunsom,
2013), the authors designed composition functions
according to the combinatory rules and categories
in CCG grammar. However, only marginal im-
provement against Naive Bayes was reported. Un-
like (Hermann and Blunsom, 2013), our TG-RNN
obtains remarkable improvements against strong

baselines, and we are the first to propose tag em-
bedded RNTN which obtains the second best re-
sult among all reported approaches.

3 Background: Recursive Neural Models

In recursive neural models, the vector of a longer
text (e.g., sentence) is composed from those of its
shorter components (e.g., words or phrases). To
compose a sentence vector through word/phrase
vectors, a binary parse tree has to be built with
a parser. The leaf nodes represent words and in-
terior nodes represent phrases. Vectors of interior
nodes are computed recursively by composition of
child nodes’ vectors. Specially, the root vector is
regarded as the sentence representation. The com-
position process is shown in Figure 1.

More formally, vector vi ∈ Rd for node i is
calculated via:

vi = f(g(vl
i, v

r
i )) (1)

where vl
i and vr

i are child vectors, g is a compo-
sition function, and f is a nonlinearity function,
usually tanh. Different recursive neural models
mainly differ in composition function. For exam-
ple, the composition function for RNN is as below:

g(vl
i, v

r
i ) = W

[
vl
i

vr
i

]
+ b (2)

where W ∈ Rd×2d is a composition matrix and b
is a bias vector. And the composition function for
RNTN is as follows:

g(vl
i, v

r
i ) =

[
vl
i

vr
i

]
T [1:d]

[
vl
i

vr
i

]
+ W

[
vl
i

vr
i

]
+ b (3)

where W and b are defined in the previous model
and T [1:d] ∈ R2d×2d×d is the tensor that defines
multiple bilinear forms.

The vectors are used as feature inputs to a soft-
max classifier. The posterior probability over class
labels on a node vector vi is given by

yi = softmax(Wsvi + bs). (4)

The parameters in these models include the
word table L, a composition matrix W in RNN,
and W and T [1:d] in RNTN, and the classification
matrix Ws for the softmax classifier.
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4 Incorporating Syntactic Knowledge
into Recursive Neural Model

The central idea of the paper is inspired by the fact
that words/phrases of different part-of-speech tags
play different roles in semantic composition. As
discussed in the introduction, a noun phrase (e.g.,
a movie/NP) may be composed different from a
verb phrase (e.g., love movie/VP). Furthermore,
when composing the phrase a movie/NP, the two
child words, a/DT and movie/NN, may play dif-
ferent roles in the composition process. Unfor-
tunately, the previous RNN models neglect such
syntactic information, though the models do em-
ploy the parsing structure of a sentence.

We have two approaches to improve the compo-
sition process by leveraging tags on parent nodes
and child nodes. One approach is to use different
composition matrices for parent nodes with differ-
ent tags so that the composition process could be
guided by phrase type, for example, the matrix for
‘NP’ is different from that for ‘VP’ . The other ap-
proach is to introduce ‘tag embedding’ for words
and phrases, for example, to learn tag vectors for
‘NP, VP, ADJP’, etc., and then integrate the tag
vectors with the word/phrase vectors during the
composition process.

4.1 Tag Guided RNN (TG-RNN)

We propose Tag Guided RNN (TG-RNN) to re-
spect the tag of a parent phrase during the com-
position process. The model chooses a composi-
tion function according to the part-of-speech tag
of a phrase. For example, ‘the movie’ has tag NP,
‘very interesting’ has tag ADJP, the two phrases
have different composition matrices.

More formally, we design composition func-
tions g with a factor of the phrase tag of a parent
node. The composition function becomes

g(ti, vl
i, v

r
i ) = gti(v

l
i, v

r
i ) = Wti

[
vl
i

vr
i

]
+ bti (5)

where ti is the phrase tag for node i, Wti and bti

are the parameters of function gti , as defined in
Equation 2. In other words, phrase nodes with
various tags have their own composition functions
such as gNP , gV P , and so on. There are to-
tally k composition function in this model where
k is the number of phrase tags. When composing
child vectors, a function is chosen from the func-
tion pool according to the tag of the parent node.

The process is depicted in Figure 3. We term this
model Tag guided RNN, TG-RNN for short.

so#max	
  

so#max	
  

so#max	
  

so#max	
  

so#max	
  

... 

 	
  

very / RB interesting / JJ 

is / VBZ 
very interesting / ADJP  

is very interesting / VP  

gNP	
   gADJP	
   gVP	
  

gNP	
   gADJP	
   gVP	
  

... 

... 

Figure 3: The vector of phrase ‘very interesting’
is composed with highlighted gADJP and ‘is very
interesting’ with gV P .

But some tags have few occurrences in the cor-
pus. It is hard and meaningless to train compo-
sition functions for those infrequent tags. So we
simply choose top k frequent tags and train k com-
position functions. A common composition func-
tion is shared across phrases with all infrequent
tags. The value of k depends on the size of the
training set and the occurrences of each tag. Spe-
cially, when k = 0, the model is the same as the
traditional RNN.

4.2 Tag Embedded RNN and RNTN
(TE-RNN/RNTN)

In this section, we propose tag embedded RNN
(TE-RNN) and tag embedded RNTN (TE-RNTN)
to respect the part-of-speech tags of child nodes
during composition. As mentioned above, tags of
parent nodes have impact on composition. How-
ever, some phrases with the same tag should be
composed in different ways. For example, ‘is in-
teresting’ and ‘like swimming’ have the same tag
VP. But it is not reasonable to compose the two
phrases using the previous model because the part-
of-speech tags of their children are quite different.
If we use different composition functions for chil-
dren with different tags like TG-RNN, the number
of tag pairs will amount to as many as k×k, which
makes the models infeasible due to too many pa-
rameters.

In order to capture the compositional effects of
the tags of child nodes, an embedding et ∈ Rde is
created for every tag t, where de is the dimension
of tag vector. The tag vector and phrase vector are
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concatenated during composition as illustrated in
Figure 4.

Formally, the phrase vector is composed by the
function

g(vl
i, etli

, vr
i , etri

) = W


vl
i

etli

vr
i

etri

 + b (6)

where tli and tri are tags of the left and the right
nodes respectively, etli

and etri
are tag vectors, and

W ∈ Rd×(2de+2d) is the composition matrix. We
term this model Tag embedded RNN, TE-RNN for
short.

so#max	
  

so#max	
  

... 

very / RB interesting / JJ 

is / VBZ 
very interesting / ADJP  

is very interesting / VP  

g	
  

g	
  

so#max	
  

so#max	
  

so#max	
  

Figure 4: RNN with tag embedding. There is a tag
embedding table, storing vectors for RB, JJ, and
ADJP, etc. Then we compose the phrase vector
’very interesting’ from the vectors for ’very’ and
’interesting’, and the tag vectors for RB and JJ.

Similarly, this idea can be applied to Recursive
Neural Tensor Network (Socher et al., 2013b). In
RNTN, the tag vector and the phrase vector can
be interweaved together through a tensor. More
specifically, the phrase vectors and tag vectors are
multiplied by the composed tensor. The composi-
tion function changes to the following:

g(vl
i, etli

, vr
i , etri

)

=


vl
i

etli

vr
i

etri

 T [1:d]


vl
i

etli

vr
i

etri

 + W


vl
i

etli

vr
i

etri

 + b
(7)

where the variables are similar to those defined in
equation 3 and equation 7. We term this model
Tag embedded RNTN, TE-RNTN for short.

The phrase vectors and tag vectors are used as
input to a softmax classifier, giving the posterior
probability over labels via

yi = softmax(Ws

[
vi

eti

]
+ bs) (8)

4.3 Model Training
Let yi be the target distribution for node i, ŷi be
the predicted sentiment distribution. Our goal is to
minimize the cross-entropy error between yi and
ŷi for all nodes. The loss function is defined as
follows:

E(θ) = −
∑

i

∑
j

yj
i log ŷi

j + λ||θ||2 (9)

where j is the label index, λ is a L2-regularization
term, and θ is the parameter set.

Similar to RNN, the parameters for our mod-
els include word vector table L, the composition
matrix W , and the sentiment classification matrix
Ws. Besides, our models have some additional pa-
rameters, as discussed below:

TG-RNN: There are k composition matrices for
top k frequent tags. They are defined as Wt ∈
Rk×d×2d. The original composition matrix W is
for all infrequent tags. As a result, the parameter
set of TG-RNN is θ = (L,W,Wt, Ws).

TE-RNN: The parameters include the tag em-
bedding table E, which contains all the em-
beddings for part-of-speech tags for words and
phrases. And the size of matrix W ∈ Rd×(2d+2de)

and the softmax classifier Ws ∈ RN×(de+d). The
parameter set of TE-RNN is θ = (L, E, W,Ws).

TE-RNTN: This model has one more tensor
T ∈ R(2d+2de)×(2d+2de)×d than TE-RNN. The pa-
rameter set of TE-RNTN is θ = (L,E, W, T,Ws)

5 Experiment

5.1 Dataset and Experiment Setting
We evaluate our models on Stanford Sentiment
Treebank which contains fully labeled parse trees.
It is built upon 10,662 reviews and each sentence
has sentiment labels on each node in the parse
tree. The sentiment label set is {0,1,2,3,4}, where
the numbers mean very negative, negative, neu-
tral, positive, and very positive, respectively. We
use standard split (train: 8,544 dev: 1,101, test:
2,210) on the corpus in our experiments. In addi-
tion, we add the part-of-speech tag for each leaf
node and phrase-type tag for each interior node
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using the latest version of Stanford Parser. Be-
cause the newer parser generated trees different
from those provided in the datasets, 74/11/11 re-
views in train/dev/test datasets are ignored. Af-
ter removing the broken reviews, our dataset con-
tains 10566 reviews (train: 8,470, dev: 1,090, test:
2,199).

The word vectors were pre-trained on an unla-
beled corpus (about 100,000 movie reviews) by
word2vec (Mikolov et al., 2013b) as initial val-
ues and the other vectors is initialized by sampling
from a uniform distribution U(−ϵ, ϵ) where ϵ is
0.01 in our experiments. The dimension of word
vectors is 25 for RNN models and 20 for RNTN
models. Tanh is chosen as the nonlinearity func-
tion. And after computing the output of node i
with vi = f(g(vl

i, v
r
i )), we set vi = vi

||vi|| so that
the resulting vector has a limited norm. Back-
propagation algorithm (Rumelhart et al., 1986)
is used to compute gradients and we use mini-
batch SGD with momentum as the optimization
method, implemented with Theano (Bastien et al.,
2012). We trained all our models using stochas-
tic gradient descent with a batch size of 30 exam-
ples, momentum of 0.9, L2-regularization weight
of 0.0001 and a constant learning rate of 0.005.

5.2 System Comparison

We compare our models with several methods
which are evaluated on the Sentiment Treebank
corpus. The baseline results are reported in (Dong
et al., 2014) and (Kim, 2014).

We make comparison to the following base-
lines:

• SVM. A SVM model with bag-of-words rep-
resentation (Pang and Lee, 2008).

• MNB/bi-MNB. Multinomial Naive Bayes
and its bigram variant, adopted from (Wang
and Manning, 2012).

• RNN. The first Recursive Neural Network
model proposed by (Socher et al., 2011).

• MV-RNN. Matrix Vector Recursive Neural
Network (Socher et al., 2012) represents
each word and phrase with a vector and a ma-
trix. As reported, this model suffers from too
many parameters.

• RNTN. Recursive Neural Tenser Net-
work (Socher et al., 2013b) employs a tensor

Method Fine-grained Pos./Neg.
SVM 40.7 79.4
MNB 41.0 81.8

bi-MNB 41.9 83.1
RNN 43.2 82.4

MV-RNN 44.4 82.9
RNTN 45.7 85.4

AdaMC-RNN 45.8 87.1
AdaMC-RNTN 46.7 88.5

DRNN 49.8 87.7
TG-RNN (ours) 47.0 86.3
TE-RNN (ours) 48.0 86.8

TE-RNTN (ours) 48.9 87.7
CNN 48.0 88.1

DCNN 48.5 86.8
Para-Vec 48.7 87.8

Table 1: Classification accuray. Fine-grained
stands for 5-class prediction and Pos./Neg. means
binary prediction which ignores all neutral in-
stances. All the accuracy is at the sentence level
(root).

for composition function which could model
the meaning of longer phrases and capture
negation rules.

• AdaMC. Adaptive Multi-Compositionality
for RNN and RNTN (Dong et al., 2014)
trains more than one composition functions
and adaptively learns the weight for each
function.

• DCNN/CNN. Dynamic Convolutional Neu-
ral Network (Kalchbrenner et al., 2014) and a
simple Convolutional Neural Network (Kim,
2014), though these models are of different
genres to RNN, we include them here for fair
comparison since they are among top per-
forming approaches on this task.

• Para-Vec. A word2vec variant (Le and
Mikolov, 2014) that encodes paragraph in-
formation into word embedding learning. A
simple but very competitive model.

• DRNN. Deep Recursive Neural Network (Ir-
soy and Cardie, 2014) stacks multiple recur-
sive layers.

The comparative results are shown in Ta-
ble 1. As illustrated, TG-RNN outperforms
RNN, RNTN, MV-RNN, AdMC-RNN/RNTN.
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Compared with RNN, the fine-grained accuracy
and binary accuracy of TG-RNN is improved by
3.8% and 3.9% respectively. When compared with
AdaMC-RNN, the accuracy of our method rises by
1.2% on the fine-grained prediction. The results
show that the syntactic knowledge does facilitate
phrase vector composition in this task.

As for TE-RNN/RNTN, the fine-grained accu-
racy of TE-RNN is boosted by 4.8% compared
with RNN and the accuracy of TE-RNTN by 3.2%
compared with RNTN. TE-RNTN also beat the
AdaMC-RNTN by 2.2% on the fine-grained clas-
sification task. TE-RNN is comparable to CNN
and DCNN, another line of models for this task.
TE-RNTN is better than CNN, DCNN, and Para-
Vec, which are the top performing approaches on
this task. TE-RNTN is worse than DRNN, but
the complexity of DRNN is much higher than TE-
RNTN, which will be discussed in the next sec-
tion. Furthermore, TE-RNN is also better than
TG-RNN. This implies that learning the tag em-
beddings for child nodes is more effective than
simply using the tags of parent phrases in com-
position.

Note that the fine-grained accuracy is more
convincible and reliable to compare different ap-
proaches due to the two facts: First, for the bi-
nary classification task, some approaches train an-
other binary classifier for positive/negative clas-
sification while other approaches, like ours, di-
rectly use the fine-grained classifier for this pur-
pose. Second, how the neutral instances are pro-
cessed is quite tricky and the details are not re-
ported in the literature. In our work, we sim-
ply remove neural instances from the test data be-
fore the evaluation. Let the 5-dimension vector
y be the probabilities for each sentiment label in
a test instance. The prediction will be positive if
arg maxi,i ̸=2 yi is greater than 2, otherwise nega-
tive, where i ∈ {0, 1, 2, 3, 4} means very negative,
negative, neutral, positive, very positive, respec-
tively.

5.3 Complexity Analysis

To gain deeper understanding of the models pre-
sented in Table 1, we discuss here about the pa-
rameter scale of the RNN/RNTN models since
the prediction power of neural network models is
highly correlated with the number of parameters.

The analysis is presented in Table 2 (the opti-
mal values are adopted from the cited papers). The

parameters for the word table have the same size
n × d across all recursive neural models, where n
is the number of words and d is the dimension of
word vector. Therefore, we ignore this part but fo-
cus on the parameters of composition functions,
termed model size. Our models, TG-RNN/TE-
RNN, have much less parameters than RNTN and
AdMC-RNN/RNTN, but have much better perfor-
mance. Although TE-RNTN is worse than DRNN,
however, the parameters of DRNN are almost 9
times of ours. This indicates that DRNN is much
more complex, which requires much more data
and time to train. As a matter of a fact, our TE-
RNTN only takes 20 epochs for training which is
10 times less than DRNN.

Method model size # of parameters
RNN 2d2 1.8K

RNTN 4d3 108K
AdaMC-RNN 2d2 × c 18.7K

AdaMC-RNTN 4d3 × c 202K
DRNN d× h× l

+2h2 × l 451K

TG-RNN (ours) 2d2 × (k + 1) 8.8K
TE-RNN (ours) 2(d + de)× d 1.7K

TE-RNTN (ours) 4(d + de)2 × d 54K

Table 2: The model size. d is the dimension
of word/phrase vectors (the optimal value is 30
for RNN & RNTN, 25 for AdaMC-RNN, 15 for
AdaMC-RNTN, 300 for DRNN). For AdaMC, c
is the number of composition functions (15 is the
optimal setting). For DRNN, l and h is the number
of layers and the width for each layer (the optimal
values l = 4, h = 174). For our methods, k is the
number of unshared composition matrices and de

the dimension of tag embedding, for the optimal
setting refer to Section 5.4.

5.4 Parameter Analysis
We have two key parameters to tune in our pro-
posed models. For TG-RNN, the number of com-
position functions k is an important parameter,
which corresponds to the number of distinct POS
tags of phrases.

Let’s start from the corpus analysis. As shown
in Table 3, the corpus contains 215,154 phrases
but the distribution of phrase tags is extremely im-
balanced. For example, the phrase tag ‘NP’ ap-
pears 60,239 times while ‘NAC’ appears only 10
times. Hence, it is impossible to learn a composi-
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Phrase tag Frequency Phrase tag Frequency
NP 60,239 ADVP 1,140
S 33,138 PRN 976

VP 26,956 FARG 792
PP 14,979 UCP 362

ADJP 7,912 SSINV 266
SBAR 5,308 others 1,102

Table 3: The distribution of phrase-type tags in the
training data. The top 6 frequency tags cover more
than 95% phrases.

tion function for the infrequent phrase tags.
Each of the top k frequent phrase tags corre-

sponds to a unique composition function, while all
the other phrase tags share a same function. We
compare different k for TG-RNN. The accuracy is
shown in Figure 5. Our model obtains the best per-
formance when k is 6, which is accordant with the
statistics in Table 3.
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Figure 5: The accuracy for TG-RNN with differ-
ent k.

For TE-RNN/RNTN, the key parameter to tune
is the dimension of tag vectors. In the corpus, we
have 70 types of tags for leaf nodes (words) and in-
terior nodes (phrases). Infrequent tags whose fre-
quency is less than 1,000 are ignored. There are
30 tags left and we learn an embedding for each
of these frequent tags. We varies the dimension of
the embedding de from 0 to 30.

Figure 6 shows the accuracy for TE-RNN and
TE-RNTN with different dimensions of de. Our
model obtains the best performance when de is
8 for TE-RNN and 6 for TE-RNTN. The re-
sults show that too small dimensions may not be
sufficient to encode the syntactic information of
tags and too large dimensions damage the perfor-

mance.
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Figure 6: The accuracy for TE-RNN and TE-
RNTN with different dimensions of de.

5.5 Tag Vectors Analysis

In order to prove tag vectors obtained from tag
embedded models are meaningful, we inspect the
similarity between vectors of tags. For each tag
vector, we find the nearest neighbors based on Eu-
clidean distance, summarized in Table 4.

Tag Most Similar Tags

JJ (Adjective)
ADJP

(Adjective Phrase)

VP (Verb Phrase)
VBD (past tense)

VBN (past participle)
. (Dot) : (Colon)

Table 4: Top 1 or 2 nearest neighboring tags with
definition in brackets.

Adjectives and verbs are of significant impor-
tance in sentiment analysis. Although ‘JJ’ and
‘ADJP’ are word and phrase tag respectively, they
have similar tag vectors, because of playing the
same role of Adjective in sentences. ‘VP’, ‘VBD’
and ‘VBN’ with similar representations all repre-
sent verbs. What is more interesting is that the
nearest neighbor of dot is colon, probably because
both of them are punctuation marks. Note that tag
classification is none of our training objectives and
surprisingly the vectors of similiar tags are clus-
tered together, which can provides additional in-
formation during sentence composition.

6 Conclusion

In this paper, we present two ways to leverage syn-
tactic knowledge in Recursive Neural Networks.
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The first way is to use different composition func-
tions for phrases with different tags so that the
composition processing is guided by phrase types
(TG-RNN). The second way is to learn tag em-
beddings and combine tag and word embeddings
during composition (TE-RNN/RNTN). The pro-
posed models are not only effective (w.r.t com-
peting performance) but also efficient (w.r.t well-
controlled parameter scale). Experiment results
show that our models are among the top perform-
ing approaches up to date, but with much less pa-
rameters and complexity.
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Édouard Grave
Columbia University

edouard.grave@gmail.com

Noémie Elhadad
Columbia University

noemie.elhadad@columbia.edu

Abstract

In this paper, we introduce a new method
for the problem of unsupervised depen-
dency parsing. Most current approaches
are based on generative models. Learning
the parameters of such models relies on
solving a non-convex optimization prob-
lem, thus making them sensitive to initial-
ization. We propose a new convex formu-
lation to the task of dependency grammar
induction. Our approach is discriminative,
allowing the use of different kinds of fea-
tures. We describe an efficient optimiza-
tion algorithm to learn the parameters of
our model, based on the Frank-Wolfe algo-
rithm. Our method can easily be general-
ized to other unsupervised learning prob-
lems. We evaluate our approach on ten
languages belonging to four different fam-
ilies, showing that our method is competi-
tive with other state-of-the-art methods.

1 Introduction

Grammar induction is an important problem in
computational linguistics. Despite having recently
received a lot of attention, it is still considered to
be an unsolved problem. In this work, we are inter-
ested in unsupervised dependency parsing. More
precisely, our goal is to induce directed depen-
dency trees, which capture binary syntactic rela-
tions between the words of a sentence. Since our
method is unsupervised, it does not have access
to such syntactic structure and only take as in-
put a corpus of words and their associated parts
of speech.

Most recent approaches to unsupervised depen-
dency parsing are based on probabilistic genera-
tive models, such as the dependency model with
valence introduced by Klein and Manning (2004).
Learning the parameters of such models is often

All languages have their own grammar

Figure 1: An example of dependency tree.

done by maximizing the log-likelihood of unla-
beled data, leading to a non-convex optimization
problem. Thus, the performance of those methods
rely heavily on the initialization, and practitioners
have to find good heuristics to initialize their mod-
els.

In this paper, we describe a different approach
to the problem of dependency grammar induction,
inspired by discriminative clustering. We pro-
pose to use a feature-rich discriminative parser,
and to learn the parameters of this parser us-
ing a convex quadratic objective function. In
particular, this approach also allows us to in-
duce non-projective dependency structures. Fol-
lowing the work of Naseem et al. (2010), we
use language-independent rules between pairs of
parts-of-speech to guide our parser. More pre-
cisely, we make the following contributions:

• Our method is based on a feature-rich dis-
criminative parser (section 3);

• Learning the parameters of our parser is
achieved using a convex objective, and is thus
not sensitive to initialization (section 4);

• Our method can produce non-projective de-
pendency structures (section 3.2.2);

• We propose an efficient algorithm to opti-
mize the objective, based on the Frank-Wolfe
method (section 5);

• We evaluate our approach on the universal
treebanks dataset, showing that it is competi-
tive with the state-of-the-art (section 6).
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2 Related work

A lot of research has been carried out in the last
decade on dependency grammar induction. We
review the dependency model with valence, on
which most unsupervised dependency parsers are
based, before presenting different extensions and
learning algorithms. Finally, we review discrimi-
native clustering, on which our method is based.

DMV. The dependency model with valence
(DMV), introduced by Klein and Manning (2004),
was the first method to outperform the baseline
consisting in attaching each token to the next one.
The DMV is a generative probabilistic model of
the dependency tree and parts-of-speech of a sen-
tence. It generates the root first, and then recur-
sively generates the tokens down the tree. The
probability of generating a new dependent for a
given token depends on the direction (left or right)
and whether a dependent was already generated in
that direction. Then, the part-of-speech of the new
dependent is generated according to a multinomial
distribution conditioned on the direction and the
head’s POS.

Extensions. Several extensions of the depen-
dency model with valence have been proposed.
Headden III et al. (2009) proposed the lexicalized
extended valence grammar (EVG), in which the
probability of generating a POS also depends on
the valence information. They rely on smooth-
ing to tackle the increased number of parame-
ters. Mareček and Žabokrtskỳ (2012) described
an approach using a n-gram reducibility measure,
which capture which words can be deleted from
a sentence without making it syntactically incor-
rect. Cohen and Smith (2009) introduced a prior,
based on the shared logistic normal distribution.
This prior allowed to tie the grammar parameters
corresponding to different POS belonging to the
same coarse groups, such as all the POS corre-
sponding to verbs. Berg-Kirkpatrick and Klein
(2010) proposed to tie the parameters of grammars
for different languages using a prior based on a
phylogenetic tree. Naseem et al. (2010) proposed
a set of rules between parts-of-speech, encoding
syntactic universals, such as the fact that adjec-
tives are often dependents of nouns. They used
posterior regularization (Ganchev et al., 2010) to
impose that a certain amount of the infered depen-
dencies verifies one of these rules. Also using pos-
terior regularization, Gillenwater et al. (2011) im-

posed a sparsity bias on the infered dependencies,
enforcing a small number of unique dependency
types. Finally, Blunsom and Cohn (2010) refor-
mulated dependency grammar induction using tree
substitution grammars, while Bisk and Hocken-
maier (2013) proposed to use combinatory cate-
gorial grammars.

Learning. Different algorithms have been pro-
posed to improve the learning of the parameters
of the dependency model with valence. Smith
and Eisner (2005) proposed to use constrastive es-
timation to learn the parameters of a log-linear
parametrization of the DMV, while Spitkovsky et
al. (2010b) showed that using Viterbi EM instead
of classic EM leads to higher accuracy. Observing
that learning from shorter sentences is easier (be-
cause less ambiguous), Spitkovsky et al. (2010a)
presented different techniques to learn grammar
from increasingly longer sentences. Gimpel and
Smith (2012) introduced a model inspired by the
IBM1 translation model for grammar induction,
resulting in a concave log-likelihood function.
They show that initializing the DMV with the
output of their model leads to improved depen-
dency accuracies. Hsu et al. (2012) and Parikh
et al. (2014) introduced spectral methods for un-
supervised dependency and constituency parsing.
Finally, Spitkovsky et al. (2013) introduced dif-
ferent heuristics for avoiding local minima while
Gormley and Eisner (2013) proposed a method to
find the global optimum of non-convex problems,
based on branch-and-bound.

Discriminative clustering. Our unsupervised
parser is inspired by discriminative clustering, in-
troduced by Xu et al. (2004). Given a set of points,
the objective of discriminative clustering is to as-
sign labels to these points that can be easily pre-
dicted using a discriminative classifier. Xu et al.
(2004) introduced a formulation using the hinge
loss, Bach and Harchaoui (2007) proposed to use
the squared loss instead, while Joulin et al. (2010)
proposed a formulation based on the logistic loss.
Recently, a formulation based on discriminative
clustering was proposed for the problem of distant
supervision for relation extraction (Grave, 2014)
and for the problem of finding the names of char-
acters in TV series based on the corresponding
scripts (Ramanathan et al., 2014). Closest to our
approach, extensions of discriminative clustering
were used to align sequences of labels or text with
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videos (Bojanowski et al., 2014; Bojanowski et al.,
2015) or to co-localize objects in videos (Joulin et
al., 2014).

3 Model

In this section, we describe the parsing model used
in our approach and briefly review the correspond-
ing decoding algorithms. Following McDonald et
al. (2005b), we propose to cast the problem of de-
pendency parsing as a maximum weight spanning
tree problem in directed graphs.

3.1 Edge-based factorization

Let us start by setting up some notations. An
input sentence of length n is represented by an
n−uplet x = (x1, ..., xn). The dependency tree
corresponding to that sentence is represented by a
n × (n + 1) binary matrix y, such that yij = 1 if
and only if the head of the token i is the token j
(and thus, the integer n + 1 represents the root of
the tree).

In this paper, we follow a common approach
by factoring the score of dependency tree as the
sum of the scores of the edges forming that
tree. We assume that each pair of tokens (i, j)
is represented by a high-dimensional feature vec-
tor f(x, i, j) ∈ Rd. Then, the score sij of the
edge (i, j) is obtained using the linear model

sij = w>f(x, i, j),

where w ∈ Rd is a parameter vector. Thus the
score s corresponding to the tree y is equal to

s =
∑

(i,j) s.t. yij=1

sij

=
∑

(i,j) s.t. yij=1

w>f(x, i, j).

Assuming that the parameter vector w is known,
parsing a sentence reduces to finding the tree with
the highest score, which is the maximum weight
spanning tree.

3.2 Maximum spanning trees

Different sets of spanning trees have been consid-
ered in the setting of supervised dependency pars-
ing. We briefly review those sets, and describe
the corresponding algorithms to compute the max-
imum weight spanning tree over those sets.

3.2.1 Projective dependency trees
First, we consider the set of projective spanning
trees. A dependency tree is said to be projective if
the dependencies do not cross when drawn above
the words in linear order. Similarly, this means
that word and all its descendants form a contigu-
ous substring of the sentence. Projective depen-
dency trees are thus strongly related to context free
grammars, and it is possible to obtain the maxi-
mum weight spanning projective tree using a mod-
ified version of the CKY algorithm (Cocke and
Schwartz, 1970; Kasami, 1965; Younger, 1967).
The complexity of this algorithm is O(n5). This
led Eisner (1996) to propose an algorithm for pro-
jective parsing which has a complexity of O(n3).
Similarly to CKY, the Eisner algorithm is based
on dynamic programming, parsing a sentence in
a bottom-up fashion. Finally, it should be noted
that the dependency model with valence, on which
most approaches to dependency grammar induc-
tion are based, produces projective dependency
trees.

3.2.2 Non-projective dependency trees
Second, we consider the set of non-projective
spanning trees. Indeed, many languages, such
as Czech or Dutch, have a significant number of
non-projective edges. In the context of supervised
dependency parsing, McDonald et al. (2005b)
shown that using non-projective trees improves
the accuracy of dependency parsers for those lan-
guages. The maximum weight spanning tree in
a directed graph can be computed using the Chu-
Liu/Edmonds algorithm (Chu and Liu, 1965; Ed-
monds, 1967), which has a complexity of O(n3).
Later, Tarjan (1977) proposed an improved ver-
sion of this algorithm for dense graphs, whose
complexity is O(n2), the same as for undirected
graphs using Prim’s algorithm. Thus a second ad-
vantage of using non-projective dependency trees
is the fact that it leads to more efficient parsers.

4 Learning the parameter vector

In this section, we describe the loss function we
use to learn the parameter vector w from unla-
beled sentences.

4.1 Problem formulation
From now on, y is a vector representing the de-
pendency trees corresponding to the whole corpus.
Thus, each index i corresponds to a potential de-
pendency between two words of a given sentence.
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He gave a seminar yesterday about unsupervised dependency parsing

Figure 2: Example of a non-projective dependency tree in english.

Like before, yi = 1 if and only if there is a de-
pendency between those two words, and yi = 0
otherwise. The set of dependencies that form valid
trees is denoted by the set T .

Inspired by the discriminative clustering frame-
work introduced by Xu et al. (2004), our goal is
to jointly find the dependencies represented by the
vector y and the parameter vector w which mini-
mize the regularized empirical risk

min
y∈T

min
w

1
n

n∑
i=1

`(yi,w>xi) + λΩ(w), (1)

where ` is a loss function and Ω is a regularizer.
The intuition is that we want to find the depen-
dency trees y that can be easily predicted by a dis-
criminative parser, whose parameters are w.

Following Bach and Harchaoui (2007), we pro-
pose to use the squared loss ` defined by

`(y, ŷ) =
1
2

(y − ŷ)2

and to use the `2-norm as a regularizer. In that
case, we obtain the objective function:

min
y∈T

min
w

1
2n
‖y −Xw‖22 +

λ

2
‖w‖22. (2)

One of the main advantages of using the squared
loss is the fact that the corresponding objective
function is jointly convex in y and w. Indeed,
the objective is the composition of an affine map-
ping, defined by (y,w) 7→ y −Xw, with a con-
vex function, defined by u 7→ u>u. Thus, the
objective function is convex (see section 3.2.2 of
Boyd and Vandenberghe (2004)). The problem (2)
is thus non-convex only because of the combinato-
rial constraints on the binary vector y, namely that
y should represents valid trees.

4.2 Convex relaxation
The set T of vectors representing valid depen-
dency trees is a finite set of binary vectors. We
can thus take the convex hull of those points and
denote it by Y:

Y = conv(T ).

VERB 7→ VERB NOUN 7→ NOUN

VERB 7→ NOUN NOUN 7→ ADJ

VERB 7→ PRON NOUN 7→ DET

VERB 7→ ADV NOUN 7→ NUM

VERB 7→ ADP NOUN 7→ CONJ

ADJ 7→ ADV ADP 7→ NOUN

Table 1: Set of universal rules used in our parser.

By definition, this set is a convex polytope. We
then propose to replace the combinatorial con-
straints on the vector y by the fact that y should
be in the convex polytope Y . We thus obtain a
convex quadratic program, with linear constraints,
as follows:

min
y∈Y

min
w

1
2n
‖y −Xw‖22 +

λ

2
‖w‖22. (3)

We will describe how to compute the optimal so-
lution of this problem in section 5.

4.3 Rounding

Given a continuous solution yc ∈ Y of the relaxed
problem, it is possible to obtain a solution of the
integer problem by finding the tree yd ∈ T which
is closest to yc, by solving the problem

min
yd∈T

‖yd − yc‖22.

The solution of the previous problem can easily
be formulated is a minimum weight spanning tree
problem. Indeed, by developping the previous
expression, and using the fact that for all trees
yd ∈ T , y>d yd = n, where n is the number of
tokens, the previous problem is equivalent to:

min
yd∈T

−y>d yc,

whose solution is obtained using the minimum
weight spanning tree algorithm. It should be noted
that the rounding solution is not necessarily the
optimal solution of the integer problem.
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Figure 3: Illustration of a Frank-Wolfe step.

4.4 Prior on y

We now describe how to guide our unsuper-
vised parser, by using universal rules. Following
Naseem et al. (2010), we want a certain percent-
age of the infered dependencies to satisfy one of
the twelve universal syntactic rules, listed in Ta-
ble 1. Let S be the set of indices corresponding
to word pairs that satisfy one of these rules. Then,
imposing that a certain percentage c of dependen-
cies satisfy one of those rules can be obtained by
imposing the constraint:

1
n

∑
i∈S

yi ≥ c.

This linear constraint is equivalent to u>y ≥ c,
where the vector u is defined by

ui =
{

1/n if i ∈ S,
0 otherwise.

Using Lagrangian duality, we can obtain the fol-
lowing equivalent penalized problem:

min
y∈Y

min
w

1
2n
‖y−Xw‖22 +

λ

2
‖w‖22−µ u>y. (4)

The penalized and constrained problems are
equivalent, since for every c, there exists a µ such
that the two problems have the same optimum.
From an optimization point of view, it is easier to
deal with the penalized problem and we will thus
use it in the next section.

5 Optimization

One could use a general purpose quadratic solver
to compute the solution of the previous convex
problem. However, this might be inefficient since

Algorithm 1: Frank-Wolfe algorithm

for t ∈ {1, ..., T} do
Compute the gradient:
gt = ∇f(zt)
Solve the linear program:
st = min

s∈D
s>gt

Take the Frank-Wolfe step:
zt+1 = γtst + (1− γt)zt

end

it does not use the structure of the polytope and,
in particular, the fact that one can easily minimize
a linear function over the tree polytope using the
minimum weight spanning tree algorithm. Instead
we propose to use the Frank-Wolfe algorithm, that
we now describe.

5.1 Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank and Wolfe,
1956; Jaggi, 2013) is used to minimize a convex
differentiable function f over a convex bounded
set D. It is an iterative first-order optimization
method. At each iteration t, the convex function f
is approximated by a linear function defined by its
gradient at the current point zt. Then it finds the
point st that minimizes that linear function, over
the convex set D:

st = min
s
s>∇f(zt) s.t. s ∈ D.

The point zt+1 is then defined as the weighted av-
erage between the solution st and the current point
zt: zt+1 = γt st + (1−γt) zt,where γt is the step
size (such as 2/(t + 2)). Compared to the gradi-
ent descent algorithm, the Frank-Wolfe alogrithm
does not take a step in the direction of the gradi-
ent, but in the direction of the point that minimizes
the linear approximation of the function f over the
convex setD (see Fig 3). In particular, this ensures
that the points zt always stay inside the convex set,
and there is thus no need for a projection step.

To summarize, in order to use the Frank-Wolfe
algorithm, we need to compute the gradient of the
objective function and to minimize a linear func-
tion over our convex set. This is particularly ap-
propriate to our problem, since we can easily min-
imize a linear function over the tree polytopes (us-
ing the minimum weight spanning tree algorithm),
while projecting on those polytopes is more ex-
pensive.
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Algorithm 2: Optimization algorithm for our
method.
for t ∈ {1, ..., T} do

Compute the optimal w:

wt = argmin
w

1
2n
‖yt −Xw‖22 +

λ

2
‖w‖22

Compute the gradient w.r.t. y:

gt =
1
n

(yt −Xwt)− µ u

Solve the linear program:
st = min

s∈Y
s>gt

Take the Frank-Wolfe step:
yt+1 = γtst + (1− γt)yt

end

5.2 Application to our problem

We now describe how to use the Frank-Wolfe al-
gorithm to optimize our objective function with re-
spect to y. First, let us introduce the functions f
and h defined by

f(w,y) =
1

2n
‖y −Xw‖22 +

λ

2
‖w‖22 − µ u>y,

h(y) = min
w

f(w,y).

The original problem is equivalent to

min
y∈Y

min
w

f(w,y) = min
y∈Y

h(y).

We will use the Frank-Wolfe algorithm to optimize
the function h.

Minimizing w.r.t w. First, we need to minimize
the function f with respect to w, in order to com-
pute the function h (and its gradient). One must
note that this is an unconstrained quadratic pro-
gram, whose solution can be obtained in closed
form by solving the linear system:(

X>X + λI
)
w = X>y.

However, in case of a very large feature space, this
system might be prohibitively expensive to solve
exactly. We instead propose to approximately
compute the optimal w using stochastic gradient
descent.

Computing the gradient of h. Then, the gradi-
ent of the function h at the point y is equal to

∇h(y) = ∇yf(w∗,y),

POSi × d
POSj × d
POSi × POSj × d
POSi × POSi−1 × POSj × d
POSi × POSi+1 × POSj × d
POSi × POSj × POSj−1 × d
POSi × POSj × POSj+1 × d

Table 2: Features used in our parser to describe the
dependency between tokens i and j, where i is the
head, j the dependent and d = i− j.

where w∗ is equal to

w∗ = argmin
w

f(w,y).

Thus, in order to compute the gradient of h with
respect to y, we start by computing the corre-
sponding optimal value of w. Then, the gradient
with respect to y is equal to

∇h(y) =
1
n

(y −Xw∗)− µ u.

Minimizing a linear function over Y . We fi-
naly need to compute the optimal solution of the
following linear problem

min
s∈Y
∇h(y)>s.

The optimal value of a linear function over a
bounded convex polytope is always attained on at
least one vertex of that polytope. By definition of
our polytope, those vertices correspond to span-
ning trees. Thus, computing an optimal solution
of this problem is obtained by finding a minimum
weight spanning tree.

Discussion. Similarly to the Expectation-
Maximization algorithm, our optimization
method is a two-steps iterative algorithm. In
the first step, the optimal parameter vector w is
estimated based on the previous dependency trees,
while the second step consist in re-estimating the
(relaxed) dependency trees.

6 Experiments

In this section, we report the results of the experi-
ments we have performed to evaluate our approach
to grammar induction.
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DMV PR USR OUR

DE 42.6 58.4 53.4 60.2
EN 22.4 57.5 66.2 62.3
ES 31.8 57.3 71.5 68.8
FR 56.0 66.2 54.1 72.3
ID 44.9 21.4 50.3 69.7
IT 33.3 40.4 46.5 64.3
JA 48.0 58.9 58.2 57.5
KO 35.3 50.7 48.8 59.0
PT-BR 49.6 40.7 46.4 68.3
SV 38.9 61.2 64.3 66.2

AVG 40.2 51.3 56.0 64.8

Table 3: Directed dependency accuracy, on
the universal treebanks with universal parts-of-
speech, on sentences of length 10 or less. PR refers
to posterior regularization, USR to universal rules.

6.1 Features

The features used in our unsupervised parser are
based on the parts-of-speech of the head and the
dependent of the corresponding dependency, and
are given in Table 2. Following McDonald et al.
(2005a), we also include features capturing the
context of the head or the dependent. These fea-
tures are trigrams and are formed by the parts-
of-speech of the two tokens of the dependency
and one of the word appearing before/after the
head/dependent. Finally, all the features are con-
joined with the signed distance between the two
words of the dependency.

6.2 Dataset

We use the universal treebanks, version 2.0, intro-
duced by McDonald et al. (2013). This dataset
contains dependency trees for ten languages be-
longing to five different families: Spanish, French,
Italian, Portuguese (Romanic family), English,
German, Swedish (Germanic family), Korean,
Japanese and Indonesian. The tokens of those
treebanks are tagged using the universal part-of-
speech tagset (Petrov et al., 2012). We focus on
inducing dependency grammars using universal
parts-of-speech, and will thus report results where
all methods use (gold) universal POS.

6.3 Comparison with baselines

We will compare our approach to three other un-
supervised parsers. Our first baseline is the DMV
model, introduced by Klein and Manning (2004).

DMV PR USR OUR

7 min 1 h 15 h 2 min

Table 4: Computational times required to learn a
grammar on the English treebank.

Our second baseline is the extended valence gram-
mar model, with posterior sparsity constraints, as
described by Gillenwater et al. (2011). Finally,
our last baseline is the model with universal rules
introduced by Naseem et al. (2010). It should
be noted that these two baselines obtain perfor-
mances that are near state-of-the-art. All methods
are trained and tested on sentences of length 10 or
less, after stripping punctuation.

Parameter selection. All the parameters were
chosen using the English development set. Our
method has two parameters, determined as:
λ = 0.001 and µ = 0.1. We used T = 200
iterations in all the experiments.

Discussion. We report the results in Table 3.
First, we observe that our method performs bet-
ter than the three baselines on seven out of ten
languages. Overall, our approach outperforms the
three baselines, with an absolute improvement of
13 points over the extended valence grammar with
posterior sparsity and 8 points over the model with
universal syntactic rules. We also note that the
inter-language variance is lower for our method
than the baselines (std of 4.6 for our method v.s.
8.3 for USR and 12.7 for PR). For the sake of
completeness, we also compared those methods
using the fine grained POS available in the univer-
sal treebanks. Overall, our method obtains an ac-
curacy of 68.4, while USR and PR achieve accura-
cies of 67.3 and 58.5 respectively. Finally, we re-
port computational times in Table 4, showing that
our approach is much faster than the baselines.

6.4 Non-projective grammar induction
In this section, we investigate non-projective
grammar induction. With our approach, we only
have to replace the Eisner algorithm by Chu-
Liu/Edmonds. We report results in Table 5. First,
we observe that the non-projective results are
slightly worse than projective one. This is not re-
ally surprising since the amount of non-projective
gold dependencies is very small on the considered
data. Moreover, non-projective trees are much
more ambiguous than projective ones, leading to

1381



PROJECTIVE NON-PROJECTIVE

DE 60.2 57.2
EN 62.3 60.5
ES 68.8 66.5
FR 72.3 69.2
ID 69.7 68.4
IT 64.3 63.1
JA 57.5 59.3
KO 59.0 60.0
PT-BR 68.3 67.7
SV 66.2 65.4

AVG 64.8 63.7

Table 5: Comparison between projective and non-
projective unsupervised dependency parsing using
our method.

a harder problem. We still believe those results
are interesting because the difference is small (less
than 1.5 points), while non-projective parsing is
computationaly more efficient.

6.5 Evaluation on longer sentences

We also evaluate our method on longer sentences
(while still training on sentences of length 10 or
less). Directed dependency accuracies are re-
ported in Figure 4. On all sentences, our method
achieve an overall accuracy of 55.8.

6.6 Feature ablation study

In this section, we study the importance of the
different features used in our parser. We report
directed accuracies when different groups of fea-
tures are removed, one at a time, in Table 6. First,
we remove the distance information from the fea-
tures (line DISTANCE). We observe that the per-
formance of our parser is greatly affected by this
ablation, especially for long sentences. Then, we
remove the context features (line CONTEXT) and
the unigram features (line UNIGRAM) from our
model. We observe that the performance decreases
slightly due to this ablations, but the differences
are small.

7 Discussion

In this paper, we introduced a new framework for
the task of unsupervised dependency parsing. Our
method is a based on a feature-rich discrimina-
tive model, whose parameters are learned using a
convex objective function. We demonstrated on

|w| ≤ 10 |w| ≤ ∞
DISTANCE 61.8 48.7
CONTEXT 64.2 55.1
UNIGRAM 64.0 55.3

ALL FEATURES 64.8 55.8

Table 6: Feature ablation study.

the universal treebanks that our approach leads to
competitive results, while being computationaly
very efficient. We now describe some directions
we would like to explore as future work.

Richer feature set. In our experiments, we fo-
cused on assessing the usefulness of our con-
vex, discriminative approach, and thus considered
only relatively simple features based on parts-of-
speech. Inspired by supervised dependency pars-
ing, we would like to explore the use of other fea-
tures such as Brown clusters (Brown et al., 1992)
or distributed word representations (Mikolov et
al., 2013), in order to lexicalize our parser.

Higher-order parsing. So far, our model is
lacking the notion of valency, that has proven very
useful for grammar induction. In future work,
we would thus like to replace our edge-based fac-
torization by a higher-order one, in order to cap-
ture siblings (and grandchilds) interactions. We
would then have to use a higher-order parser, such
as the ones described by McDonald and Pereira
(2006) and Koo and Collins (2010). Another po-
tential approach would be to use the linear pro-
gramming relaxed inference, described by Martins
et al. (2009).

Transfer learning. In this paper, we used uni-
versal syntactic rules, as described by Naseem et
al. (2010) to guide our parser. We would like to
explore the use of weak supervision, such as the
one considered in transfer learning (Hwa et al.,
2005). For example, projected dependencies from
a resource-rich language could be used as con-
straints in our framework.

Code. The code for our method is distributed on
the first author webpage.
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Figure 4: Directed dependency accuracies on longer sentences for our approach.
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Abstract

Syntactic annotation is a hard task, but it
can be made easier by allowing annotators
flexibility to leave aspects of a sentence
underspecified. Unfortunately, partial an-
notations are not typically directly usable
for training parsers. We describe a method
for imputing missing dependencies from
sentences that have been partially anno-
tated using the Graph Fragment Language,
such that a standard dependency parser
can then be trained on all annotations. We
show that this strategy improves perfor-
mance over not using partial annotations
for English, Chinese, Portuguese and Kin-
yarwanda, and that performance competi-
tive with state-of-the-art unsupervised and
weakly-supervised parsers can be reached
with just a few hours of annotation.

1 Introduction

Linguistically annotated data is produced for
many purposes in many contexts. It typically
requires considerable effort, particularly for lan-
guage documentation efforts in which tooling,
data, and expertise in the language are scarce.
The challenge presented by this scarcity is com-
pounded when doing deeper analysis, such as syn-
tactic structure, which typically requires greater
expertise and existing tooling. In such scenar-
ios, unsupervised approaches are a tempting strat-
egy. While the performance of unsupervised
dependency parsing has improved greatly since
Klein and Manning’s (2004) Dependency Model
with Valence (DMV), state-of-the-art unsuper-
vised parsers still perform well below supervised
approaches (Martins et al., 2010; Spitkovsky et al.,
2012; Blunsom and Cohn, 2010). Additionally,
they typically require large amounts of raw data.
While this is not a problem for some languages,

many of the world’s languages do not have a clean,
digitized corpus available.1 For instance, the ap-
proach of Naseem et al. (2010) is unsupervised in
the sense that it requires no dependency annota-
tions, but it still makes use of the raw version of
the full Penn Treebank. The approach of Mare-
cek et al. (2013) requires extra unlabeled texts to
estimate parameters.

Another strategy is to exploit small amounts of
supervision or knowledge. Naseem et al. (2010)
use a set of universal dependency rules and obtain
substantial gains over unsupervised methods in
many languages. Spitkovsky et al. (2010b; 2011)
use web mark-up and punctuation as additional an-
notations. Alternatively, one could try to obtain
actual dependency annotations cheaply. We use
the Graph Fragment Language (GFL), which was
created with the goal of making annotations eas-
ier for experts and possible for novices (Schneider
et al., 2013; Mordowanec et al., 2014). GFL sup-
ports partial annotations, so annotators can omit
obvious dependencies or skip difficult construc-
tions. The ability to focus on portions of a sen-
tence frees the annotator to target constituents and
dependencies that maximize information that will
be most useful for machine-learned parsers. For
example, Hwa (1999) found higher-level sentence
constituents to be more informative for learning
parsers than lower-level ones.

To support this style of annotation while getting
the benefit from partial annotations, we develop a
two-stage parser learning strategy. The first stage
completes the partial GFL annotations by adapting
a Gibbs tree sampler (Johnson et al., 2007; Sun et
al., 2014). The GFL annotations constrain the tree
sampling space by using both dependencies and
the constituent boundaries they express. The sys-
tem performs missing dependency arc imputation
using Gibbs sampling – we refer to this approach

1In fact, standardized writing systems have yet to be
adopted for some languages.
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as the Gibbs Parse Completer2 (GPC). The sec-
ond stage uses the full dependencies output by the
GPC to train Turbo Parser (Martins et al., 2010),
and evaluation is done with this trained model on
unseen sentences. In simulation experiments for
English, Chinese and Portuguese, we show that
the method gracefully degrades when applied to
training corpora with increasing percentages of the
gold training dependencies removed. We also do
actual GFL annotations for those languages plus
Kinyarwanda, and show that using the GPC to fill
in the missing dependencies after two hours of
annotation enables Turbo Parser to obtain 2-6%
better absolute performance than when it has to
throw incomplete annotations out. Furthermore,
the gains are even greater with less annotation time
and it never hurts to use the GPC—so an annota-
tion project can pursue a partial annotation strat-
egy without undermining the utility of the work
for parser training.

This strategy has the further benefit of needing
only a small number of sentences—in our case,
under 100 sentences annotated in a 2-4 hour win-
dow. Furthermore, it relies on no outside tools or
corpora other than a part-of-speech tagger; a re-
source that can be built with two hours of annota-
tion time (Garrette and Baldridge, 2013).

2 Data

Data sources We use four languages from three
language families in an effort to both verify the
cross-linguistic applicability of our approach, ac-
counting for variations in linguistic properties, as
well as to attempt to realistically simulate a real-
world, low-resource environment. Our data comes
from English (ENG), Chinese (CHI), Portuguese
(POR), and Kinyarwanda (KIN).

For ENG we use the Penn Treebank (Marcus
et al., 1993), converted into dependencies by the
standard process. Section 23 was used as a test
set, and a random sample of sentences from sec-
tions 02-21 were selected for annotation with GFL
as described below and subsequently used as the
minimal training set. For CHI we use the Chi-
nese Treebank (CTB5) (Xue et al., 2005), also
converted to dependencies. The testing set con-
sisted of files 1-40/900-931, and the sentences pre-
sented for GFL annotation were randomly sam-
pled from files 81-899. The POR data is from

2The software, instructions, and data are available at
http://www.github.com/jmielens/gpc-acl-2015

Figure 1: GFL example for Mr. Conlon was ex-
ecutive vice president and director of the equity
division.

the CoNLL-X Shared Task on Multilingual De-
pendency Parsing and is derived from the Bosque
portion of the Floresta sintá(c)tica corpus (Afonso
et al., 2002), using the standard provided splits for
training and testing. The KIN data is a corpus con-
sisting of transcripts of testimonies by survivors
of the Rwandan genocide, provided by the Kigali
Genocide Memorial Center – this data is described
by Garrette and Baldridge (2013).

GFL annotation We use a small number of sen-
tences annotated using the Graph Fragment Lan-
guage (GFL), a simple ASCII markup language
for dependency grammar (Schneider et al., 2013).
Unlike traditional syntactic annotation strategies
requiring trained annotators and great effort, rapid
GFL annotations can be collected from annotators
who have minimal training. Kong et al. (2014)
demonstrate the feasibility of training a depen-
dency parser based on a GFL-annotated corpus of
English tweets.

An example of GFL is shown in Figure 1: (a) is
the GFL markup itself and (b) is a graphical repre-
sentation of the dependencies it encodes. Figure 1
specifies several dependencies: of is a dependent
of director, executive vice president and director
are conjuncts and and is the coordinator. However,
the complete internal structure of the phrase the
equity division remains unspecified, other than di-
vision being marked as the head (via an asterisk).3

Finally, Mr. Conlon in square brackets indicates it
is a multiword expression.

3The graphical representation shows both of these as FE
nodes, for fudge expression, indicating they are grouped to-
gether but otherwise underspecified.
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CFG Rule EVG distribution Description
S → YH P (root = H) The head of the sentence is H
YH → LHRH - Split-head representation
LH → HL P (STOP |dir = L, head = H, val = 0) H has no left children
LH → L1

H P (CONT |dir = L, head = H, val = 0) H has at least one left child
L′H → HL P (STOP |dir = L, head = H, val = 1) H has no more left children
L′H → L1

H P (CONT |dir = L, head = H, val = 1) H has other left children
L1
H → YAL

′
H P (ArgA|dir = L, head = H, val = 1) A is a left child of H

Table 1: The CFG-DMV grammar schema from Klein and Manning (2004). Note that in these rules
H and A are parts-of-speech. For brevity, we omit the portion of the grammar that handles the right-
hand arguments since they are symmetric to the left. Valency (val) can take the value 1 (we have made
attachments in the direction (dir) d) or 0 (not).

CHI ENG KIN POR
Sentences Annotated 24 34 69 63
Tokens Annotated 820 798 988 1067
Fully Specified Sentences 4 15 31 20

Table 2: Two Hour GFL Annotation Statistics

Kong et al. (2014) stipulate that the GFL an-
notations in their corpus must be fully-specified.
They are thus unable to take advantage of such un-
derspecified sentences, and we address that limita-
tion in this paper. From the GFL annotations we
can extract and deduce dependency arcs and con-
straints (see Section 3.2 for full details) in order to
guide the Gibbs sampling process.

Time-bounded annotation As described in
Section 1, a primary goal of this work was to con-
sider the time in which a useful number of depen-
dency tree annotations might be collected, such
as might be required during the initial phase of a
language documentation project or corpus build.
To this end our annotators were operating under a
strict two hour time limit. We also collected two
further hours for English.

The annotators were instructed to annotate as
many sentences as possible in the two hours, and
that they should liberally use underspecification,
especially for particularly difficult sequences in a
given sentence. This was done to facilitate the
availability of partial annotations for experimenta-
tion. All of the annotators had some previous ex-
perience providing GFL annotations, so no train-
ing period was needed. Annotation was done in
30-minute blocks, to provide short breaks for the
annotators and so that learning curves could be
generated. Each language was annotated by a
single annotator. The ENG and CHI annotators
were native speakers of their annotation language,
while the POR and KIN annotators were non-native

though proficient speakers.
The annotators achieved rates of 400-500 to-

kens/hr, whereas we find rates of 150-200 to-
kens/hr more typical when annotators are asked to
fully specify. Requiring full specification also in-
troduces more errors in cases of annotator uncer-
tainty.

Table 2 shows the size of the GFL corpora that
were created. Typically, over 50% of the sentences
were not fully specified—the partial annotations
provided in these are useless to Turbo Parser un-
less the missing dependencies are imputed.

3 Gibbs Parse Completer (GPC)

3.1 Gibbs sampler for CFG-DMV Model

CFG-DMV model The GPC is based on the
DMV model, a generative model for the unsu-
pervised learning of dependency structures (Klein
and Manning, 2004). We denote the input cor-
pus as ω = (ω1, · · · ,ωN ), where each ωs is a
sentence consisting of words and in a sentence ω,
word ωi has an corresponding part-of-speech tag
τi. We denote the set of all words as Vω and the
set of all parts-of-speech as Vτ . We use the part-
of-speech sequence as our terminal strings, result-
ing in an unlexicalized grammar. Dependencies
can be formulated as split head bilexical context
free grammars (CFGs) (Eisner and Satta, 1999)
and these bilexical CFGs require that each termi-
nal τi in sentence ω is represented in a split form
by two terminals, with labels marking the left and
right heads (τi,L, τi,R). Henceforth, we denote
w = w0,n as our terminals in the split-form of
sentence ω (e.g., the terminals for the dog walks
areDTL DTR NNL NNR VL VR). Table 1 shows
the grammar rules for the DMV model, from Klein
and Manning (2004).
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Require: A is parent node of binary rule; wi,k is a valid
span of terminals and i+ 1 < k
function TREESAMPLER(A, i, k)

for i < j < k and pair of child nodes ofA:B,C do
P (j, B,C) = θw

A→BCc(i,j)c(j,k)·pB,i,j ·pC,j,k

pA,i,k

end forSample j∗, B∗, C∗ from multinomial distri-
bution for (j, B,C) with probabilities calculated above

return j∗, B∗, C∗
end function

Algorithm 1: Sampling split position and rule to
expand parent node.

Gibbs sampler The split-head representation
encodes dependencies as a CFG. This enables the
use of a Gibbs sampler algorithm for estimating
PCFGs (Johnson et al., 2007; Sun et al., 2014),
and it is straightforward to incorporate constraints
from partial annotations into this sampler. To do
this, we modified the tree-sampling step to incor-
porate constraints derived from GFL annotations
and thereby impute the missing dependencies.

Given a string w = (w1, · · ·wn), we define
a span of w as wi,k = (wi+1, · · · , wk), so that
w = w0,n. As introduced in Pereira and Schabes
(1992), a bracketing B ofw is a finite set of spans
onw satisfying the requirement that no two spans
in a bracketing may overlap unless one span con-
tains the other. For each sentence w = w0,n we
define the auxiliary function for each span wi,j ,
0 ≤ i < j ≤ n:

c(i, j) =

{
1 if span wi,j is valid for B;
0 otherwise.

Here one span is valid for B if it doesn’t cross
any brackets. Section 3.2 describes how to de-
rive bracketing information from GFL annotations
and how to determine if a span wi,j is valid or not.
Note that for parsing a corpus without any annota-
tions and constraints, c(i, j) = 1 for any span, and
the algorithm is equivalent to the Gibbs sampler in
Sun et al. (2014).

There are two parts to the tree-sampling. The
first constructs an inside table as in the Inside-
Outside algorithm for PCFGs and the second se-
lects the tree by recursively sampling productions
from top to bottom. Consider a sentence w, with
sub-spans wi,k = (wi+1, · · · , wk). Given θw

(modified rule probabilities θ given constraints of
sentence w, see Section 3.2), we construct the in-
side table with entries pA,i,k for each nonterminal
and each span wi,k: 0 ≤ i < k ≤ n. We introduce

Require: Arcs is the set of all directed arcs extracted from
annotation for sentence w
function RULEPROB-SENT(w, θ, Arcs)

θw = θ
for each directed arc wi < wj do

if i < j then
for nonterminal A 6= Lτj do

θwA→β = 0 if β contains Yτi

end for
else

for nonterminal A 6= Rτj do
θwA→β = 0 if β contains Yτi

end for
end if

end for
return θw

end function

Algorithm 2: Modifying Rule Probabilities for w
to ensure parse tree contains all directed arcs.

c(i, j) into the calculation of inside probabilities:

pA,i,k = c(i, k)·∑
A→BC∈R

∑
i<j<k

θwA→BC · pB,i,j · pC,j,k (1)

Here, pA,i,k = PGA(wi,k | θw) is the probability
that terminals i through k were produced by the
non-terminal A, A → BC ∈ R are possible rules
to expand A. The inside table is computed recur-
sively using Equation 1.

The resulting inside probabilities are then used
to generate trees from the distribution of all valid
trees of the sentence. The tree is generated
from top to bottom recursively with the function
TreeSampler defined in Algorithm 1, which in-
troduces c(i, j) into the sampling function from
Sun et al. (2014).

3.2 Constraints derived from GFL

We exploit one dependency constraint and two
constituency constraints from partial GFL anno-
tations.

Dependency rule Directed arcs are indicated
with angle brackets pointing from the dependent
to its head, e.g. black > cat. Once we have a di-
rected arc annotation, say ωi > ωj , if i < j, which
means word j has a left child, we must have rule
L1
τj → YτiL

′
τj in our parse tree (similarly if i > j,

we have R1
τj → R′τjYτi in our parse tree), where

τi, τj are parts-of-speech for ωi and ωj . We en-
force this by modifying the rule probabilities for
sample sentencew to ensure that any sampled tree
contains all specified arcs.
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Figure 2: Generating brackets for known head

Figure 3: Generating half brackets

Brackets GFL allows annotators to group words
with parenthesis, which provides an explicit indi-
cator of constituent brackets. Even when the inter-
nal structure is left underspecified (e.g. (the eq-
uity division*) in Figure 1 (a), the head is usu-
ally marked with *, and we can use this to infer
sub-constituents. Given such a set of parentheses
and the words inside them, we generate brackets
over the split-head representations of their parts-
of-speech, based on possible positions of the head.
Figure 2 shows how to generate brackets for three
situations: the head is the leftmost word, right-
most word, or is in a medial position. For exam-
ple, the first annotation indicates that under is the
head of under the agreement, and the rest of words
are right descendants of under. This leads to the
bracketing shown over the split-heads.

Half brackets We can also derive one-sided half
brackets from dependency arcs by assuming that
dependencies are projective. For example, in Fig-
ure 3, the annotation a > dog specifies that dog
has a left child a, so we know that there is a right
bracket before the right-head of dog. Thus, we can
detect invalid spans using the half brackets; if a
span starts after a and ends after dog, this span is
invalid because it would result in crossing brack-
ets. This half bracketing is a unique advantage
provided by the split-head representation. The de-
tails of this algorithm are shown in Algorithm 3.

Require: Arcs is the set of all directed arcs extracted for
sentence, wa,b is a span to detect
function DETECTINVALIDSPAN(a, b, Arcs)

for each directed arc ωi < ωj do
if i < j then

if a < 2i− 1 < b < 2j then
c(a, b) = 0

end if
else

if 2j − 2 < a < 2i− 1 < b then
c(i, j) = 0

end if
end if

end for
return c(a, b)

end function

Algorithm 3: Detect whether one span is invalid
given all directed arcs.

Figure 4: Process of generating brackets and de-
tecting invalid spans.

We use both half bracket and full bracket infor-
mation, B, to determine whether a span is valid.
We set c(i, j) = 0 for all spans over w detected
by Algorithm 3 and violating B. Then, in the sam-
pling scheme, we’ll only sample parse trees that
satisfy these underlying constraints.

Figure 4 shows the resulting blocked out spans
in the chart based on both types of brackets for
the given partial annotation, which is Step 1 of the
process. The black dog is a constituent with dog
marked as its head, so we generate a full bracket
over the terminal string in Step 2. Also, barks has
a right child loudly; this generates a half bracket
before VR. In Step 3, the chart in Figure 4 repre-
sents all spans over terminal symbols. The cells in
black are invalid spans based on the full bracket,
and the hatched cells are invalid spans based on
the half bracket.

4 Results

Experiments There are two points of variation
to consider in empirical evaluations of our ap-
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Figure 5: English oracle and degradation results

proach. The first is the effectiveness of the GPC
in imputing missing dependencies and the second
is the effectiveness of the GFL annotations them-
selves. Of particular note with respect to the latter
is the reasonable likelihood of divergence between
the annotator and the corpus used for evaluation—
for example, how coordination is handled and
whether subordinate verbs are dependents or heads
of auxiliary verbs. To this end, we perform simu-
lation experiments that remove increasing portions
of gold dependencies from a training corpus to un-
derstand imputation performance and annotation
experiments to evaluate the entire pipeline in a re-
alistically constrained annotation effort.

In that regard, one thing to consider are the part-
of-speech tags used by the unlexicalized GPC.
These do not come for free, so rather than ask
annotators to provide them, the raw sentences to
be annotated were tagged automatically. For En-
glish and Kinyarwanda, we used taggers trained
with resources built in under two hours (Garrette
and Baldridge, 2013), so these results are actually
constrained to the GFL annotation time plus two
hours. Such taggers were not available for Chinese
or Portuguese, so the Stanford tagger (Toutanova
et al., 2003) was used instead.

After imputing missing dependencies, the GPC
outputs fully sentences that are used to train Tur-
boParser (Martins et al., 2010). In all cases,
we compare to a right-branching baseline (RB).
Although comparing to a random baseline is
more typical of imputation experiments, a right-
branching baseline provides a stronger initial com-
parison. For the GFL annotation experiments, we
use two additional baselines. The first is simply
to use the sentences with full annotations and drop
any incomplete ones (GFL-DROP). The second is

Language ENG CHI POR

RB 25.0 11.6 27.0
GFL-GPC-25 58.7 33.5 60.2
GFL-GPC-50 75.0 46.1 71.4
GFL-GPC-75 77.8 50.1 73.7

Full 81.6 56.2 78.1

Table 3: Results with simulated partial annota-
tions, GFL-GPC-X indicates X percent of depen-
dencies were retained.

to make any partial annotations usable by assum-
ing a right-branching completion (GFL-RBC).

Simulated partial annotations Figure 5 shows
the learning curve with respect to number of an-
notated tokens when retaining 100%, 75%, 50%
and 25% of gold-standard training dependencies
and using the GPC to impute the removed ones.
With both 75% and 50% retained, performance
degrades gracefully. It is substantially lower for
25%, but the curve is steeper than the others, indi-
cating it is on track to catch up. Nonetheless, one
recommendation from these results is that it prob-
ably makes sense to start with a small number of
fully annotated sentences and then start mixing in
partially annotated ones.

Table 3 shows the attachment scores obtained
for English, Chinese, and Portuguese with varying
proportions of dependencies removed for the GPC
to impute.4 English and Portuguese hold up well
with 75% and 50% retained, while Chinese drops
more precipitously, and 25% leads to substantial
reductions in performance for all.

Note that these simulations indicate that, given
an equivalent number of total annotated arcs, using
the GPC is more beneficial than requiring annota-
tors to fully specify annotations. Imputing fifty
percent of the dependency arcs from sentences
containing 1000 tokens is typically more effective
by a few points than using the full gold-standard
arcs from sentences containing 500 tokens. Ac-
tually, this simulation is too generous to complete
annotations in that it leaves out consideration of
the time and effort required to obtain those 100%
full gold-standard arcs: it is often a small part of a
sentence that consumes the most effort when full
annotation is required. Additionally, these simula-
tion experiments randomly removed dependencies
while humans tend to annotate higher-level con-

4These are based on the same sentences used in the next
section’s GFL annotation experiments for each language.

1390



Eval Length < 10 < 20 all
GFL-DROP (4hr) 54.5 55.0 52.6
GFL-GPC (4hr) 60.1 61.8 55.1

Blunsom and Cohn, 2010 67.7 – 55.7
Naseem et al., 2010 71.9 50.4 –

Table 4: English results compared to previous un-
supervised and weakly-supervised methods.

stituents and leave internal structure (e.g. of noun
phrases) underspecified. Given Hwa’s (1999) find-
ings, we expect non-random partial annotations to
better serve as a basis for imputation.

GFL annotations We conducted three sets of
experiments with GFL annotations, evaluating on
sentences of all lengths, less than 10 words, and
less than 20 words. This was done to determine
the types of sentences that our method works best
on and to compare to previous work that evaluates
on sentences of different lengths.

Table 4 shows how our results on ENG com-
pare to others. Blunsom and Cohn (2010) rep-
resent state-of-the-art unsupervised results for all
lengths, while Naseem et al. (2010) was chosen as
a previous weakly-supervised approach. GFL-GPC

achieves similar results on the ‘all lengths’ crite-
rion as Blunsom and Cohn and substantially out-
performs Naseem et al. on sentences less than 20
words. Our poor performance on short sentences
is slightly surprising, and may result from an un-
even length distribution in the sentences selected
for annotation—we have only 3 training sentences
less than 10 words—as discussed by Spitkovsky et
al. (2010a). To correct this problem, both long and
short sentences should be included to construct a
more representative sample for annotation.

We did not expect GFL-RBC to perform so sim-
ilarly to RB. It is possible that the relatively large
number of under-specified sentences led to the
right-branching quality of GFL-RBC dominating,
rather than the more informative GFL annotations.

The results of the ENG annotation session can
be seen in Figure 6a. GFL-GPC is quite strong even
at thirty minutes, with only seven sentences anno-
tated. GFL-DROP picks up substantially at the end;
this may be in part explained by the fact that the
last block contained many short sentences, which
provide greater marginal benefit to GFL-DROP than
to GFL-GPC.

The learning curves for the other languages can
be seen in Figures 6b-6d, with a summary avail-
able in Table 5. Like ENG, CHI and POR both

Language KIN CHI POR
RB 52.6 11.6 27.0

GFL-DROP (2hr) 64.4 36.7 59.8
GFL-GPC (2hr) 64.5 38.8 65.0

Table 5: Non-English results summary

show clear wins for the GPC strategy. Of particu-
lar note is that the CHI annotations contained many
fewer fully-completed sentences (4) than the ENG

annotations (15). This somewhat addresses the
question raised by the 25% retention simulation
experiments—the GPC method improves results
over dropping partial annotations. The POR results
show a consistent strong win for GPC throughout.

The KIN results in Figure 6c exhibit a pattern
unlike the other languages; specifically, the KIN

data has a very high right-branching baseline (RB

in figures) and responds nearly identically for all
of the more informed methods. Upon investi-
gation, this appears to be an artifact of the data
used in KIN evaluation plus domain adaptation is-
sues. The gold data consists of transcribed natural
speech, whereas the training data consists of sen-
tences extracted from the Kinyarwanda Wikipedia.

All of the learning curves display a large ini-
tial jump after the first round of annotations. This
is encouraging for approaches that use annotated
sentences: just a small number of examples pro-
vide tremendous benefit, regardless of the strategy
employed.

Error analysis The primary errors seen on an
analysis of the GPC-completed sentences varies
somewhat between languages. The ENG data con-
tains many short sentences, consisting often of a
few words and a punctuation mark. Part of the
GFL convention is that the annotator is free to an-
notate punctuation as part of the sentence or in-
stead view it as extra-linguistic and drop the punc-
tuation from the annotation. Often the punctuation
in the ENG data went unannotated, with the result
being that the final parse model is not particularly
good at handling these types of sentences when
encountered in the test set.

Specific constructions like coordination and
possession also suffer a similar issue in that an-
notators (and corpora) varied slightly on how they
were handled. Thus, some languages like CHI

contained many of a particular type of error due
to mismatches in the conventions of the annota-
tor and corpus. Issues like this could have been
avoided by a longer training period prior to anno-
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(a) English (b) Chinese

(c) Kinyarwanda (d) Portuguese

Figure 6: GPC results by annotation time for eval sentences of all lengths.

tation, although were this a real annotation project,
there would be no existing corpus to compare to at
first. This brings up a more basic question of eval-
uation - one of usability versus representational
norm matching. It is likely that the GFL anno-
tations (and thus the models trained on them) di-
verge from the gold standard in what amount to
annotation conventions rather than substantive lin-
guistic divergences. To evaluate more fully or
fairly, we would need test sets produced by the
same set of annotators or an external, task-based
evaluation that uses the dependencies as in input.

5 Conclusions

We have described a modeling strategy that takes
advantage of a Gibbs sampling algorithm for CFG
parsing plus constraints obtained from partial an-
notations to build dependency parsers. This strat-
egy’s performance improves on that of a parser

built only on the available complete annotations.
In doing so, our approach supports annotation ef-
forts that use GFL to obtain guidance from non-
expert human annotators and allow any annotator
to put in less effort than they would to do complete
annotations.

We find that a remarkably small amount of
supervised data can rival existing unsupervised
methods. While unsupervised methods have been
considered an attractive option for low-resource
parsing, they typically rely on large quantities of
clean, raw sentences. Our method uses less than
one hundred sentences, so in a truly low-resource
scenario, it has the potential to require much less
total effort. For instance, a single native speaker
could easily both generate and annotate the sen-
tences required for our method in a few hours,
while the many thousands of raw sentences needed
for state-of-the-art unsupervised methods could
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take much longer to assemble if there is no ex-
isting corpus. This also means our method would
be useful for getting in-domain training data for
domain adaptation for parsers.

Finally, our method has the ability to encode
both universal grammar and test-language gram-
mar as a prior. This would be done by replacing
the uniform prior used in this paper with a prior
favoring those grammar rules during the updating-
rule-probabilities phase of the GPC, and would es-
sentially have the effect of weighting those gram-
mar rules.
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Abstract

Work in grammar induction should help
shed light on the amount of syntactic struc-
ture that is discoverable from raw word
or tag sequences. But since most cur-
rent grammar induction algorithms pro-
duce unlabeled dependencies, it is diffi-
cult to analyze what types of constructions
these algorithms can or cannot capture,
and, therefore, to identify where additional
supervision may be necessary. This pa-
per provides an in-depth analysis of the
errors made by unsupervised CCG parsers
by evaluating them against the labeled de-
pendencies in CCGbank, hinting at new
research directions necessary for progress
in grammar induction.

1 Introduction

Grammar induction aims to develop algorithms
that can automatically discover the latent syntactic
structure of language from raw or part-of-speech
tagged text. While such algorithms would have
the greatest utility for low-resource languages for
which no treebank is available to train supervised
parsers, most work in this area has focused on
languages where existing treebanks can be used
to measure and compare the performance of the
resultant parsers. Despite significant progress in
the last decade (Klein and Manning, 2004; Head-
den III et al., 2009; Blunsom and Cohn, 2010;
Spitkovsky et al., 2013; Mareček and Straka,
2013), there has been little analysis performed on
the types of errors these induction systems make,
and our understanding of what kinds of construc-
tions these parsers can or cannot recover is still
rather limited. One likely reason for this lack of
analysis is the fact that most of the work in this do-
main has focused on parsers that return unlabeled
dependencies, which cannot easily be assigned a
linguistic interpretation.

This paper shows that approaches that are
based on categorial grammar (Steedman, 2000)
are amenable to more stringent evaluation metrics,
which enable detailed analyses of the construc-
tions they capture, while the commonly used
unlabeled directed attachment scores hide linguis-
tically important errors. Any categorial grammar
based system, whether deriving its grammar
from seed knowledge distinguishing nouns and
verbs (Bisk and Hockenmaier, 2013), from a
lexicon constructed from a simple questionnaire
for linguists (Boonkwan and Steedman, 2011), or
from sections of a treebank (Garrette et al., 2015),
will attach linguistically expressive categories
to individual words, and can therefore produce
labeled dependencies. We provide a simple proof
of concept for how these labeled dependencies
can be used to isolate problem areas in CCG
induction algorithms. We illustrate how they
make the linguistic assumptions and mistakes of
the model transparent, and are easily comparable
to a treebank where available. They also allow us
to identify linguistic phenomena that require addi-
tional supervision or training signal to master. Our
analysis will be based on extensions of our earlier
system (Bisk and Hockenmaier, 2013), since it
requires less supervision than the CCG-based
approaches of Boonkwan and Steedman (2011)
or Garrette et al. (2015). Our aim in presenting
this analysis is to initiate a broader conversation
and classification of the impact of various types of
supervision provided to these approaches. We will
see that most of the constructions that our system
cannot capture, even when they are included in
the model’s search space, involve precisely the
kinds of non-local dependencies that elude even
supervised dependency parsers (since they require
dependency graphs, instead of trees), and that
have motivated the use of categorial grammar-
based approaches for supervised parsing.
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First, we provide a brief introduction to CCG.
Next, we define a labeled evaluation metric that al-
lows us to compare the labeled dependencies pro-
duced by Bisk and Hockenmaier (2013)’s unsu-
pervised parser with those in CCGbank (Hock-
enmaier and Steedman, 2007). Third, we ex-
tend their induction algorithm to allow it to induce
more complex categories, and refine their proba-
bility model to handle punctuation and lexicaliza-
tion, which we show to be necessary when han-
dling the larger grammars induced by our vari-
ant of their algorithm. While we also perform a
traditional dependency evaluation for comparison
to the non-CCG based literature, we focus on our
CCG-based labeled evaluation metrics to perform
a comparative analysis of Bisk and Hockenmaier
(2013)’s parser and our extensions.

2 Combinatory Categorial Grammar

CCG categories CCG (Steedman, 2000) is a
lexicalized grammar formalism which associates
each word with a set of lexical categories that fully
specify its syntactic behavior. Lexical categories
indicate the expected number, type and relative lo-
cation of arguments a word should take, or what
constituents it may modify. Even without explicit
evaluation against a treebank, the CCG lexicon
that an unsupervised parser produces provides an
easily interpretable snapshot of the assumptions
the model has made about a language (Bisk and
Hockenmaier, 2013). The set of CCG categories is
defined recursively over a small set of atomic cat-
egories (e.g. S,N,NP,PP). Complex categories
take the form X\Y or X/Y and represent functions
which create a result of category X when com-
bined with an argument Y. The slash indicates
whether the argument precedes (\) or follows (/)
the functor (descriptions of CCG commonly use
the vertical slash | to range over both / and \).
Modifiers are categories of the form X|X, and may
take arguments of their own.

CCG rules CCG rules are defined schematically
as function application (>,<), unary (>B1, <B1)
and generalized composition (>Bn, <Bn), type-
raising (>T, <T) and conjunction:

X/Y Y ⇒> X
X/Y Y|Z ⇒>B1 X|Z
X/Y Y|Z1|...|Zn ⇒>Bn X|Z1|...|Zn

X ⇒>T T/(T\X)
Y X\Y ⇒< X
Y|Z X\Y ⇒<B1 X|Z
Y|Z1|...|Zn X\Y ⇒<Bn X|Z1|...|Zn

X ⇒<T T\(T/X)

CCG derivations In the following derivation,
forward application is used in line 1) as both the
verb and the preposition take their NP arguments.
In line 2), the prepositional phrase modifies the
verb via backwards composition. Finally, in line
3), the derivation completes by producing a sen-
tence (S) via backwards application:

I saw her from afar

N (S\N1)/N2 N (S\S1)/N2 N
> >

1) S\N1 S\S1
<B

2) S\N1
<

3) S

CCG dependencies CCG has two standard
evaluation metrics. Supertagging accuracy sim-
ply computes how often a model chooses the cor-
rect lexical category for a given word. The cor-
rect category is a prerequisite for recovering the
correct labeled dependency. By tracing through
which word fills which argument of which cate-
gory, a set of dependency arcs, labeled by lexical
category and slot, can be extracted:

lexical head of a lexical category ci is the corre-
sponding word wi. In general, the lexical head of
a derived category is determined by the (primary)
functor, so that the lexical head of a category X
or X|Z1|...|Zn that resulted from combining X|Y
and Y or Y|Z1|...|Zn is identical to the lexical head
of X. However, when a modifier X|X with lexical
head m is combined with an X|... whose lexical
head is w, the lexical head of the resultant X|...
is w, not m.2 Otherwise, from would become the
lexical head of the S\N saw her from afar, and the
sentence You know I saw her from afar would have
a dependency between know and from, rather than
between know and saw.

In general, word wj is a dependent of word wi

if the k-th argument of the lexical category ci of
word wi is instantiated with the lexical category
of word wj . In the above derivation:

i j ci k wi wj

1 0 (S\N1)/N2 1 saw I
1 2 (S\N1)/N2 2 saw her
1 3 (S\S1)/N2 1 from saw
4 3 (S\S1)/N2 2 from afar

I saw her from afar

(S\S)/N2

(S\S)/N1

(S\N)/N2
(S\N)/N1

The use of categories as dependency labels
makes CCG labels more fine-grained than a stan-
dard dependency grammar. For example, the sub-
ject role of intransitive, transitive and ditransitive
verbs are all SUB in dependency treebanks but
take at least three different labels in CCGbank.

i j wj Label

2 1 I SUB
0 2 saw ROOT
2 3 her OBJ
2 4 from VMOD
4 5 afar PMOD

I saw her from afar

PMOD
VMOD

OBJ
SUB

ROOT

An additional complexity in CCGbank are cer-
tain types of lexical categories (e.g. for relative
pronouns or control verbs) which mediate non-
local dependencies via a co-indexation mecha-
nism. Identifying such non-local dependencies,
e.g. to distinguish between subject and object con-
trol (I promise her to come vs. I persuade her
to come), is most likely beyond the scope of any
purely syntactic grammar induction system but
will begin to emerge in a semi-supervised system.

2That is, the argument X and result X of a modifier X|X
are not two distinct instances of the same category, but unify.

Spurious ambiguity and normal-form parsing
Composition and type-raising introduce an expo-
nential number of derivations that are semantically
equivalent, i.e. yield the same set of dependen-
cies. In supervised CCG parsers (Hockenmaier
and Steedman, 2002; Clark and Curran, 2007),
this spurious ambiguity is largely eliminated be-
cause the derivations in CCGbank are in a normal
form that uses composition and type-raising only
when necessary, although it can be further allevi-
ated via the use of a normal-form parsing algo-
rithm (Eisner, 1996; Hockenmaier and Bisk, 2010)
that minimizes the use of composition (and type-
raising). We will show below that this spurious
ambiguity is particularly deleterious for unsuper-
vised CCG parsers that do not impose any normal-
form constraints.

3 Unsupervised CCG parsing

We now review the unsupervised CCG parser of
Bisk and Hockenmaier (2012b; 2013), which is
trained over parse forests obtained from a CCG
lexicon that was induced from POS-tagged text.

Unsupervised CCG induction The induction
algorithm needs to identify the set of lexical
categories and to learn the mapping between
words and lexical categories, e.g.:

N:{he, girl, lunch,...} N/N:{good, the, eating, ...}
S\N:{sleeps, ate, eating,...} (S\N)/N:{sees, ate, ...}
S\S:{quickly, today...} S/S:{Today,...}

Bisk and Hockenmaier (2012b) define an algo-
rithm that automatically induces a CCG lexicon
from part-of-speech tagged text in an iterative pro-
cess. This process starts with a small amount of
seed knowledge that defines which atomic cate-
gories (S, N and conj) can be assigned to which
part-of-speech tags (nominal POS tags may have
the category N, while verbs may have the cate-
gory S). Based on the assumption that, under mild
restrictions, words can either subcategorize for or
modify the words they are adjacent to, this process
produces lexical categories of increasing complex-
ity. Immediate neighbors of words with categories
S or N may act as modifiers with categories S|S
or N|N. The second round of induction can also
introduce modifiers (X|X)|(X|X) of existing mod-
ifiers X|X. In the first iteration, words with cate-
gory S can take adjacent N arguments. In the sec-
ond round, modifiers and words with category S|N
that are adjacent to words with the category N or

In this example, I fills the first argument of saw.
This is represented by an edge from saw to I, la-
beled as a transitive verb ((S\N)/N). This proce-
dure is followed for every argument of every pred-
icate, leading to a labeled directed graph.

Evaluation metrics for supervised CCG parsers
(Clark et al., 2002) measure labeled f-score (LF1)
precision of these dependencies (requiring the
functor, argument, lexical category of the func-
tor and slot of the argument to all match). A
second, looser, evaluation is often also performed
which measures unlabeled, undirected depen-
dency scores (UF1).

Non-local dependencies and complex argu-
ments One advantage of CCG is its ability to
recover the non-local dependencies involved in
control, raising, or wh-extraction. Since these
constructions introduce additional dependencies,
CCG parsers return dependency graphs (DAGs),
not trees. To obtain these additional dependen-
cies, relative pronouns and control verbs require
lexical categories that take complex arguments of
the form S\NP or S/NP, and a mechanism for co-
indexation of the NP inside this argument with an-
other NP argument (e.g. (NP\NPi)/(S|NPi) for
relative pronouns). These co-indexed subjects can
be seen in Figure 1.
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I
N

promise
(S\N)/(S\N)

to
(S\N)/(S\N)

pay
(S\N)/N

you
N

John
N

,
,

who
(N\N)/(S\N)

ran
(S\N)/N

home
N

,
,

ate
(S\N)/N

dinner
N

(I, promise) (I, pay) (John, ran) (John, ate)

Table 6: Unlabeled predicate argument structures for two sentences, both of whom result in DAGs, not
trees, as the subject is shared by multiple verbs.

Additional Category p(cat | tag)

((N\N)/(S\N))/N .93 WP$
N/(S/N) .14 WP
N/(S\N) .08 WP
((N\N)/S)\((N\N)/N) .07 WDT
((S\S)\(S\S))\N .04 RBR
S/(S\N) .04 WP
S/(S/N) .02 WP

Table 8: Common categories that the algorithm
cannot induce, and their corpus probability (given
their most frequent tag in Sec. 02-21)

Model Supervision LF1 UF1

B1 POS tags 34.5 60.6
B3

P&L + Punc & Words 37.1 64.9
BC

1 + Complex Args 34.9 63.6

Table 9: Overall performance of the final systems
discussed in this paper (Section 23)

dicate missing information which only becomes
available later in the discourse.

7 Final Overall Model Performance

Finally, we evaluate these models again on the
standard Section 23 against our simplified labelset
and on undirected unlabeled arcs.

8 CoNLL vs CCGbank dependencies

Finally, we examine whether the performance
on standard unlabeled dependencies correlates
with performance on CCGbank dependencies (Ta-
ble 10)2. This also allows us to compare our
systems directly to an unsupervised dependency
parser (Naseem et al., 2010), who report directed
attachment (unlabeled dependency) scores of a
dependency-based HDP model that incorporates
either “universal” knowledge (e.g. that adjectives
may modify nouns) or “English-specific” knowl-
edge (e.g. that adjectives tend to precede nouns)
in the form of soft constraints. Their universal
knowledge is akin to, but more explicit and de-

2BH13 use hyperparameter schemes and report 64.2@20.

CCGbank 02-21 WSJ2-21 DA
Model LF1 UF1 @10 @20 @1
Naseem (Universal) 71.9 50.4
Naseem (English) 73.8 66.1

B1 33.8 60.3 70.7 63.1 58.4
B3
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BC
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Table 10: Performance on CCGbank and CoNLL-
style dependencies (Sections 02-21) for a compar-
ison with Naseem et al. (2010).

tailed than the information given to the induction
algorithm (see Bisk and Hockenmaier (2013) for a
discussion). They evaluate on their training data,
i.e. sentences of up to length 20 (without punctu-
ation marks) of Sections 02-21 of the Penn Tree-
bank3.

We see that performance increases on CCG-
bank translate to similar gains on the CoNLL de-
pendencies on long sentences. We should note
that we expect this discrepancy to grow as sys-
tems capture more fine-grained distinction. In this
vein, we computed directed attachment recall be-
tween CCGbank dependencies and Yamada and
Matusumoto’s head finding rules and found only
a 72.5% overlap. Many of the discrepancies ap-
pear to be related to verb chains and analysis of
the many DAG structures previously discussed. A
full analsyis of the distinctions is beyond the scope
of this paper but there is an interesting emperical
question for future work as to whether annotation
standards make learning even more burdensome.

9 Conclusions

In this paper, we have touched upon many linguis-
tic phenomena that are common in language and
we feel are currently out of scope for grammar in-
duction systems. We focused our analysis on En-
glish for simplicity but many of the same types
of problems exist in other languages and can be
easily identified as stemming from the same lack

3With Yamada and Matsumoto’s (2003) head rules
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N/(S/N) .14 WP
N/(S\N) .08 WP
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S/(S/N) .02 WP

Table 8: Common categories that the algorithm
cannot induce, and their corpus probability (given
their most frequent tag in Sec. 02-21)
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Figure 1: Unlabeled predicate-argument dependency graphs for two sentences with co-indexed subjects.

Errors exposed by labeled evaluation We now
illustrate how the lexical categories and labeled
dependencies produced by CCG parsers expose
linguistic mistakes. First, we consider a wildly in-
correct analysis of the first example sentence, in
which the subject is treated as an adverb, and the
PP as an NP object of the verb:

I saw her from afar

S/S (S/N1)/N2 N N/N1 N
> >

S/N1 N
>

S
>

S

None of the labeled directed CCG dependencies
are correct. But under the more lenient unlabeled
directed evaluation of Garrette et al. (2015), and
the even more lenient unlabeled undirected metric
of Clark et al. (2002), two (or three) of the four
dependencies would be deemed correct:

Incorrect parse Correct parse

nsubj dobj

prep

S/S

(S/N)/N

(S/N)/N N/N (S\N)/N

(S\S)/N

(S\S)/N(S\N)/N

pobj

I saw her from afar I saw her from afar

I saw her from afar I saw her from afar

nsubj dobj

prep

S/S

(S/N)/N

(S/N)/N N/N (S\N)/N

(S\S)/N

(S\S)/N(S\N)/N

pobj

I saw her from afar I saw her from afar

I saw her from afar I saw her from afar

When we translate the CCG analysis to an unla-
beled dependency tree (and hence flip the direction
of modifier dependencies and add a root edge), a
similar picture emerges, and three out of five at-
tachments are deemed correct:

Incorrect parse Correct parse

nsubj dobj

prep

S/S

(S/N)/N

(S/N)/N N/N (S\N)/N
(S\S)/N

(S\S)/N(S\N)/N

pobj

I saw her from afar I saw her from afar

I saw her from afar I saw her from afar

nsubj dobj

prep

S/S

(S/N)/N

(S/N)/N N/N (S\N)/N
(S\S)/N

(S\S)/N(S\N)/N

pobj

I saw her from afar I saw her from afar

I saw her from afar I saw her from afar

We now turn to a subtle distinction that corre-
sponds to a systematic mistake made by all mod-
els we evaluate. The categories of noun-modifying
prepositions (at) and possessive markers (’) differ
only in the directionality of their slashes:

X/Y Y )> X
X/Y Y|Z )>B1 X|Z
X/Y Y|Z1|...|Zn )>Bn X|Z1|...|Zn

Y X\Y )< X
Y|Z X\Y )<B1 X|Z
Y|Z1|...|Zn X\Y )<Bn X|Z1|...|Zn

A full explanation of the calculus can be found
in (Steedman, 2000) including discussion of a
type-raising and a ternary rule for conjunction. We
assume no type-changing in this work.

2.1 Dependencies
By tracing through which word fills which argu-
ment of a category a set of dependency arcs, la-
beled by lexical category and slot, can be extracted
and are used for evaluation:

lexical head of a lexical category ci is the corre-
sponding word wi. In general, the lexical head of
a derived category is determined by the (primary)
functor, so that the lexical head of a category X
or X|Z1|...|Zn that resulted from combining X|Y
and Y or Y|Z1|...|Zn is identical to the lexical head
of X. However, when a modifier X|X with lexical
head m is combined with an X|... whose lexical
head is w, the lexical head of the resultant X|...
is w, not m.2 Otherwise, from would become the
lexical head of the S\N saw her from afar, and the
sentence You know I saw her from afar would have
a dependency between know and from, rather than
between know and saw.

In general, word wj is a dependent of word wi

if the k-th argument of the lexical category ci of
word wi is instantiated with the lexical category
of word wj . In the above derivation:

i j ci k wi wj

1 0 (S\N1)/N2 1 saw I
1 2 (S\N1)/N2 2 saw her
1 3 (S\S1)/N2 1 from saw
4 3 (S\S1)/N2 2 from afar

I saw her from afar

(S\S)/N2

(S\S)/N1

(S\N)/N2
(S\N)/N1

The use of categories as dependency labels
makes CCG labels more fine-grained than a stan-
dard dependency grammar. For example, the sub-
ject role of intransitive, transitive and ditransitive
verbs are all SUB in dependency treebanks but
take at least three different labels in CCGbank.

i j wj Label

2 1 I SUB
0 2 saw ROOT
2 3 her OBJ
2 4 from VMOD
4 5 afar PMOD

I saw her from afar

PMOD
VMOD

OBJ
SUB

ROOT

An additional complexity in CCGbank are cer-
tain types of lexical categories (e.g. for relative
pronouns or control verbs) which mediate non-
local dependencies via a co-indexation mecha-
nism. Identifying such non-local dependencies,
e.g. to distinguish between subject and object con-
trol (I promise her to come vs. I persuade her
to come), is most likely beyond the scope of any
purely syntactic grammar induction system but
will begin to emerge in a semi-supervised system.

2That is, the argument X and result X of a modifier X|X
are not two distinct instances of the same category, but unify.

Spurious ambiguity and normal-form parsing
Composition and type-raising introduce an expo-
nential number of derivations that are semantically
equivalent, i.e. yield the same set of dependen-
cies. In supervised CCG parsers (Hockenmaier
and Steedman, 2002; Clark and Curran, 2007),
this spurious ambiguity is largely eliminated be-
cause the derivations in CCGbank are in a normal
form that uses composition and type-raising only
when necessary, although it can be further allevi-
ated via the use of a normal-form parsing algo-
rithm (Eisner, 1996; Hockenmaier and Bisk, 2010)
that minimizes the use of composition (and type-
raising). We will show below that this spurious
ambiguity is particularly deleterious for unsuper-
vised CCG parsers that do not impose any normal-
form constraints.

3 Unsupervised CCG parsing

We now review the unsupervised CCG parser of
Bisk and Hockenmaier (2012b; 2013), which is
trained over parse forests obtained from a CCG
lexicon that was induced from POS-tagged text.

Unsupervised CCG induction The induction
algorithm needs to identify the set of lexical
categories and to learn the mapping between
words and lexical categories, e.g.:

N:{he, girl, lunch,...} N/N:{good, the, eating, ...}
S\N:{sleeps, ate, eating,...} (S\N)/N:{sees, ate, ...}
S\S:{quickly, today...} S/S:{Today,...}

Bisk and Hockenmaier (2012b) define an algo-
rithm that automatically induces a CCG lexicon
from part-of-speech tagged text in an iterative pro-
cess. This process starts with a small amount of
seed knowledge that defines which atomic cate-
gories (S, N and conj) can be assigned to which
part-of-speech tags (nominal POS tags may have
the category N, while verbs may have the cate-
gory S). Based on the assumption that, under mild
restrictions, words can either subcategorize for or
modify the words they are adjacent to, this process
produces lexical categories of increasing complex-
ity. Immediate neighbors of words with categories
S or N may act as modifiers with categories S|S
or N|N. The second round of induction can also
introduce modifiers (X|X)|(X|X) of existing mod-
ifiers X|X. In the first iteration, words with cate-
gory S can take adjacent N arguments. In the sec-
ond round, modifiers and words with category S|N
that are adjacent to words with the category N or

These dependencies are the complete predicate ar-
gument structure of the sentence and supervised
evaluation is performed by computing a parser’s
precision and recall on matching the head, depen-
dant, category and slot of each arc. A second
looser evaluation is often also performed which
simply checks that the undirected and unlabeled
arcs match. An example of this difference that’s
particularly relevant to the discussion in this paper
is the headedness of prepositional phrases versus
posessives.

Prepositional Phrase

The
N/N

woman
N

at
(N\N)/N

the
N/N

company
N

laughed
S\N

(N\N)/N2
(N\N)/N1

S\N1

Possessive

The
N/N

woman
N

’s
(N/N)\N

IT
N/N

company
N

grew
S\N

(N/N)\N1
(N/N)\N2 S\N1

The undirected edges for the inital noun phrase
are identical, but the heads differ. In CCG, we as-
sume that categories of the form X|X where X is
atomic are modifiers. In this way, the first sentence
turns the prepositional phrase (at the company)
into a modifier of the woman. In contrast, in the
posessive sentence woman ’s modifies the com-
pany. Because, the arcs are so similar, the undi-
rected unlabeled score for confusing these analy-
ses is 80% correct but the labeled score would be
20%. This example demonstrates how the head-
edness of the resultant syntactic analysis requires
semantic knowledge about people and companies,

as getting the wrong head leads to the company
laughing or other semantically nonsensical analy-
ses.

2.2 Using Labels to Diagnose Errors

Finally, we quickly provide an incorrect analysis
of the first example sentence as a simple exercise
in using labels to diagnose mistakes:

I saw her from afar

S/S (S/N1)/N2 N N/N1 N
> >

S/N1 N
>

S
>

S

In this example, the verb analysis is trying to an-
alyze the language as VOS instead of SVO. Once
familiar with reading CCG categories the model’s
output and mistake can be easily diagnosed. A
model producing this analysis is not learning the
correct word order of the language, nor the correct
role for prepositions by taking afar as a subject.
This type of mistake is obvious to a speaker of the
language even without a treebank for evaluation.
In this way we believe label prediction eases the
analysis burden when diagnosing a system’s out-
put.

3 A Simplified Labeled Evaluation

In languages with treebanks, labeled evaluation
can make this style of analysis even simpler.
Fortunately, approaches using CCG can produce
labeled output but unfortunately there are mis-
matches between the basic set of categories and
those used in treebanks. We will focus on the En-
glish CCGbank but these details apply with only
minor changes to German and Chinese as well.

3.1 Simplification

Because the lexical categories guide parsing, the
set used in supervised parsing is extremely large
and augmented with features. These features are
not strictly part of the CCG calculus but mark
properties of the underlying words, for example
indicating if a verb is declarative or infinitival or if
a noun phrase contains a number. These features
are written as brackets modifying the atomic sym-
bols: (S[dcl]\NP, N/N[num], ... ). Prior work on
supervised parsing with CCG found that many of
these features can be recovered with proper mod-
eling of latent state splitting (Fowler and Penn,
2010). In our proposed simplification we re-
move these languge specific features. Secondly,

X/Y Y )> X
X/Y Y|Z )>B1 X|Z
X/Y Y|Z1|...|Zn )>Bn X|Z1|...|Zn

Y X\Y )< X
Y|Z X\Y )<B1 X|Z
Y|Z1|...|Zn X\Y )<Bn X|Z1|...|Zn

A full explanation of the calculus can be found
in (Steedman, 2000) including discussion of a
type-raising and a ternary rule for conjunction. We
assume no type-changing in this work.

2.1 Dependencies
By tracing through which word fills which argu-
ment of a category a set of dependency arcs, la-
beled by lexical category and slot, can be extracted
and are used for evaluation:

lexical head of a lexical category ci is the corre-
sponding word wi. In general, the lexical head of
a derived category is determined by the (primary)
functor, so that the lexical head of a category X
or X|Z1|...|Zn that resulted from combining X|Y
and Y or Y|Z1|...|Zn is identical to the lexical head
of X. However, when a modifier X|X with lexical
head m is combined with an X|... whose lexical
head is w, the lexical head of the resultant X|...
is w, not m.2 Otherwise, from would become the
lexical head of the S\N saw her from afar, and the
sentence You know I saw her from afar would have
a dependency between know and from, rather than
between know and saw.

In general, word wj is a dependent of word wi

if the k-th argument of the lexical category ci of
word wi is instantiated with the lexical category
of word wj . In the above derivation:

i j ci k wi wj

1 0 (S\N1)/N2 1 saw I
1 2 (S\N1)/N2 2 saw her
1 3 (S\S1)/N2 1 from saw
4 3 (S\S1)/N2 2 from afar

I saw her from afar
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The use of categories as dependency labels
makes CCG labels more fine-grained than a stan-
dard dependency grammar. For example, the sub-
ject role of intransitive, transitive and ditransitive
verbs are all SUB in dependency treebanks but
take at least three different labels in CCGbank.

i j wj Label

2 1 I SUB
0 2 saw ROOT
2 3 her OBJ
2 4 from VMOD
4 5 afar PMOD

I saw her from afar

PMOD
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An additional complexity in CCGbank are cer-
tain types of lexical categories (e.g. for relative
pronouns or control verbs) which mediate non-
local dependencies via a co-indexation mecha-
nism. Identifying such non-local dependencies,
e.g. to distinguish between subject and object con-
trol (I promise her to come vs. I persuade her
to come), is most likely beyond the scope of any
purely syntactic grammar induction system but
will begin to emerge in a semi-supervised system.

2That is, the argument X and result X of a modifier X|X
are not two distinct instances of the same category, but unify.

Spurious ambiguity and normal-form parsing
Composition and type-raising introduce an expo-
nential number of derivations that are semantically
equivalent, i.e. yield the same set of dependen-
cies. In supervised CCG parsers (Hockenmaier
and Steedman, 2002; Clark and Curran, 2007),
this spurious ambiguity is largely eliminated be-
cause the derivations in CCGbank are in a normal
form that uses composition and type-raising only
when necessary, although it can be further allevi-
ated via the use of a normal-form parsing algo-
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that minimizes the use of composition (and type-
raising). We will show below that this spurious
ambiguity is particularly deleterious for unsuper-
vised CCG parsers that do not impose any normal-
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3 Unsupervised CCG parsing

We now review the unsupervised CCG parser of
Bisk and Hockenmaier (2012b; 2013), which is
trained over parse forests obtained from a CCG
lexicon that was induced from POS-tagged text.

Unsupervised CCG induction The induction
algorithm needs to identify the set of lexical
categories and to learn the mapping between
words and lexical categories, e.g.:

N:{he, girl, lunch,...} N/N:{good, the, eating, ...}
S\N:{sleeps, ate, eating,...} (S\N)/N:{sees, ate, ...}
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Bisk and Hockenmaier (2012b) define an algo-
rithm that automatically induces a CCG lexicon
from part-of-speech tagged text in an iterative pro-
cess. This process starts with a small amount of
seed knowledge that defines which atomic cate-
gories (S, N and conj) can be assigned to which
part-of-speech tags (nominal POS tags may have
the category N, while verbs may have the cate-
gory S). Based on the assumption that, under mild
restrictions, words can either subcategorize for or
modify the words they are adjacent to, this process
produces lexical categories of increasing complex-
ity. Immediate neighbors of words with categories
S or N may act as modifiers with categories S|S
or N|N. The second round of induction can also
introduce modifiers (X|X)|(X|X) of existing mod-
ifiers X|X. In the first iteration, words with cate-
gory S can take adjacent N arguments. In the sec-
ond round, modifiers and words with category S|N
that are adjacent to words with the category N or

These dependencies are the complete predicate ar-
gument structure of the sentence and supervised
evaluation is performed by computing a parser’s
precision and recall on matching the head, depen-
dant, category and slot of each arc. A second
looser evaluation is often also performed which
simply checks that the undirected and unlabeled
arcs match. An example of this difference that’s
particularly relevant to the discussion in this paper
is the headedness of prepositional phrases versus
posessives.
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IT
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The undirected edges for the inital noun phrase
are identical, but the heads differ. In CCG, we as-
sume that categories of the form X|X where X is
atomic are modifiers. In this way, the first sentence
turns the prepositional phrase (at the company)
into a modifier of the woman. In contrast, in the
posessive sentence woman ’s modifies the com-
pany. Because, the arcs are so similar, the undi-
rected unlabeled score for confusing these analy-
ses is 80% correct but the labeled score would be
20%. This example demonstrates how the head-
edness of the resultant syntactic analysis requires
semantic knowledge about people and companies,

as getting the wrong head leads to the company
laughing or other semantically nonsensical analy-
ses.

2.2 Using Labels to Diagnose Errors

Finally, we quickly provide an incorrect analysis
of the first example sentence as a simple exercise
in using labels to diagnose mistakes:

I saw her from afar

S/S (S/N1)/N2 N N/N1 N
> >

S/N1 N
>

S
>

S

In this example, the verb analysis is trying to an-
alyze the language as VOS instead of SVO. Once
familiar with reading CCG categories the model’s
output and mistake can be easily diagnosed. A
model producing this analysis is not learning the
correct word order of the language, nor the correct
role for prepositions by taking afar as a subject.
This type of mistake is obvious to a speaker of the
language even without a treebank for evaluation.
In this way we believe label prediction eases the
analysis burden when diagnosing a system’s out-
put.

3 A Simplified Labeled Evaluation

In languages with treebanks, labeled evaluation
can make this style of analysis even simpler.
Fortunately, approaches using CCG can produce
labeled output but unfortunately there are mis-
matches between the basic set of categories and
those used in treebanks. We will focus on the En-
glish CCGbank but these details apply with only
minor changes to German and Chinese as well.

3.1 Simplification

Because the lexical categories guide parsing, the
set used in supervised parsing is extremely large
and augmented with features. These features are
not strictly part of the CCG calculus but mark
properties of the underlying words, for example
indicating if a verb is declarative or infinitival or if
a noun phrase contains a number. These features
are written as brackets modifying the atomic sym-
bols: (S[dcl]\NP, N/N[num], ... ). Prior work on
supervised parsing with CCG found that many of
these features can be recovered with proper mod-
eling of latent state splitting (Fowler and Penn,
2010). In our proposed simplification we re-
move these languge specific features. Secondly,

The unlabeled dependencies inside the noun
phrases are identical, but the heads differ. The
first sentence turns the prepositional phrase (at the
company) into a modifier of woman. In contrast,
in the possessive case, woman ’s modifies com-
pany. According to an unlabeled (directed) score,
confusing these analyses would be 80% correct,
whereas LF1 would only be 20%. But without a
semantic bias for companies growing and women
laughing, there is no signal for the learner.

3 Labeled Evaluation for CCG Induction

We have just seen that labeled evaluation can ex-
pose many linguistically important mistakes. In
order to enable a fair and informative comparison
of unsupervised CCG parsers against the lexical
categories and labeled dependencies in CCGbank,
we define a simplification of CCGbank’s lexical
categories that does not alter the number or direc-
tion of dependencies, but makes the categories and
dependency labels directly comparable to those
produced by an unsupervised parser. We also
do not alter the derivations themselves, although
these may contain type-changing rules (which al-
low e.g. participial verb phrases S[ng]\NP to be
used as NP modifiers NP\NP) that are beyond the
scope of our induction algorithm.

Although the CCG derivations and dependen-
cies that CCG-based parsers return should in prin-
ciple be amenable to a quantitative labeled evalu-
ation when a gold-standard CCG corpus is avail-
able, there may be minor systematic differences
between the sets of categories assumed by the in-
duced parser and those in the treebank. In par-
ticular, the lexical categories in the English CCG-
bank are augmented with morphosyntactic fea-
tures that indicate e.g. whether sentences are
declarative (S[dcl]), or verb phrases are infiniti-
val (S[to]\NP). Prior work on supervised parsing
with CCG found that many of these features can
be recovered with proper modeling of latent state
splitting (Fowler and Penn, 2010). Since we wish
to evaluate a system that does not aim to induce
such features, we remove them. We also remove
the distinction between noun phrases (NP) and
nouns (N), which is predicated on knowledge of
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Our simplification of CCGbank’s lexical categories
Congress has n’t lifted the ceiling

Original NP (S[dcl]\NP)/(S[pt]\NP) (S\NP)\(S\NP) (S[pt]\NP)/NP NP[nb]/N N
Simplified N (S\N)/(S\N) S\S (S\N)/N N/N N

Figure 2: We remove morphosyntactic features, simplify verb phrase modifiers, and change NP to N.

CCGbank w/out Feats Simplified

All 1640 458 444
Lexical 1286 393 384

Table 1: Category types in CCGbank 02-21

determiners and other structural elements of a lan-
guage. Finally, CCGbank distinguishes between
sentential modifiers (which have categories of the
form S|S, without features) and verb phrase mod-
ifiers ((S\NP)|(S\NP), again without features).
But since the NP argument slot of a VP mod-
ifier is never filled, we can maintain the same
number of gold standard dependencies by remov-
ing this distinction and changing all VP modifiers
to be of the form S|S. However, categories of
the form (S[·]\NPi)/(S[·]\NPi), which are used
e.g. for modals and auxiliaries, are changed to
(S\Ni)/(S\Ni), allowing us to maintain the de-
pendency on the subject. With these three simplifi-
cations we eliminate much of the detailed knowl-
edge required to construct the precise CCGbank-
style categories, and dramatically reduce the set of
categories without losing expressive power. One
distinction that we do not conflate, even though
it is currently beyond the scope of the induc-
tion algorithm, is the distinction between PP argu-
ments (requiring prepositions to have the category
PP/NP) and adjuncts (requiring prepositions to be
(NP\NP)/NP or ((S\NP)\(S\NP))/NP).

This simplification is consistent with the most
basic components of CCG and can therefore be
easily used for the evaluation and analysis of any
weakly or fully supervised CCG system, not just
that of Bisk and Hockenmaier (2012). An example
simplification is present in Figure 2, and the reduc-
tion in the set of categories can be seen in Table 1.
Similar simplifications should also be possible for
CCGbanks in other languages.

4 Our approach

There are two parts to our approach: 1) induc-
ing a CCG grammar from seed knowledge and 2)
learning a probability model over parses. The in-
duction algorithm (Bisk and Hockenmaier, 2012)

uses the seed knowledge that nouns can take the
CCG category N, that verbs can take the category
S and may take N arguments, and that any word
may modify a constituent it is adjacent to, to iter-
atively induce a CCG lexicon to parse the train-
ing data. In Bisk and Hockenmaier (2013), we
introduced a model that is based on Hierarchical
Dirichlet Processes (Teh et al., 2006). This HDP-
CCG model gave state-of-the-art performance on a
number languages, and qualitative analysis of the
resultant lexicons indicated that the system was
learning the word order and many of the correct
attachments of the tested languages. But this sys-
tem also had a number of shortcomings: the in-
duction algorithm was restricted to a small frag-
ment of CCG, the model emitted only POS tags
rather than words, and punctuation was ignored.
Here, we use our previous HDP-CCG system as a
baseline, and introduce three novel extensions that
attempt to address these concerns.

5 Experimental Setup

For our experiments we will follow the standard
practice in supervised parsing of using WSJ Sec-
tions 02-21 for training, Section 22 for develop-
ment and error analysis, and a final evaluation of
the best models on Section 23. Because the in-
duced lexicons are overly general, the memory
footprint grows rapidly as the complexity of the
grammar increases. For this reason, we only train
on sentences that contain up to 20 words (as well
as an arbitrary number of punctuation marks). All
analyses and evaluation are performed with sen-
tences of all lengths unless otherwise indicated.
Finally, Bisk and Hockenmaier (2013) followed
Liang et al. (2007) in setting the values of the hy-
perparameters α to powers (eg. the square) of the
number of observed outcomes in the distribution.
But when the output consists of words rather than
POS tags, the concentration parameter α=V 2 is
too large to allow the model to learn. For this rea-
son, experiments will be reported with all hyper-
parameters set to a constant of 2500.1

1We tested three values (1000, 2500, 5000) and found that
the basic model at 2500 performed closest to the previously
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Base + Lexicalization + Punctuation + Punc & Lex + Allow (X|X)|X
Only Atomic Arguments B1 34.2 35.2 36.3 36.9 36.8

(S, N) B3 34.4 35.1 33.8 38.9 38.8

Allow Complex Arguments B1 33.0 34.9 33.2 35.7 35.8
(S, N, S|N) B3 29.4 29.5 31.2 31.2 31.2

Table 2: The impact of our changes to Bisk and Hockenmaier’s (2013) model (henceforth: B1, top left)
on CCGbank dependencies (LF1, Section 22, all sentences). The best overall model (B3

P&L) uses B3,
punctuation and lexicalization. The best model with complex arguments (BC

1 ) uses only B1.

6 Extending the HDP-CCG system

We now examine how extending the HDP-CCG
baseline model to capture lexicalization and punc-
tuation, and how increasing the complexity of the
induced grammars affect performance (Table 2).

6.1 Modeling Lexicalization
In keeping with most work in grammar induction
from part-of-speech tagged text, Bisk and Hocken-
maier’s (2013) HDP-CCG treats POS tags t rather
than words w as the terminals it generates based
on their lexical categories c. The advantage of this
approach is that tag-based emissions p(t|c) are a
lot less sparse than word-based emissions p(w|c).
It is therefore beneficial to first train a model that
emits tags rather than words (Carroll and Rooth,
1998), and then to use this simpler model to ini-
tialize a lexicalized model that generates words in-
stead of tags. To perform the switch we simply es-
timate counts for the parse forests using the unlex-
icalized model during the E-Step and then apply
those counts to the lexicalized model during the
M-Step. Inside-Outside then continues as before.
Many words, like prepositions, differ systemati-
cally in their preferred syntactic role from that of
their part-of-speech tags. This change benefits all
settings of the model (Column 2 of Table 2).

6.2 Modeling Punctuation
Spitkovsky et al. (2011) performed a detailed anal-
ysis of punctuation for dependency-based gram-
mar induction, and proposed a number of con-
straints that aimed to capture the different ways
in which dependencies might cross constituent
boundaries implied by punctuation marks.

A constituency-based formalism like CCG al-
lows us instead to define a very simple, but effec-
tive Dirichlet Process (DP) based Markov gram-

reported dependency evaluation comparison with the work of
Naseem et al. (2010). We fixed this hyperparameter setting
for experimental simplicity but a more rigorous grid search
might find better parameters for the complex models.

mar that emits punctuation marks at the maximal
projections of constituents. We note that CCG
derivations are binary branching, and that virtually
every instance of a binary rule in a normal-form
derivation combines a head X or X|Y with an ar-
gument Y or modifier X|X. Without reducing the
set of strings generated by the grammar, we can
therefore assume that punctuation marks can only
be attached to the argument Y or the adjunct X|X:

Y
, ,

X/Y

X

Y

X\X
, ,

X

X

X\X

To model this, for each maximal projection (i.e.
whenever we generate a non-head child) with cate-
gory C, we first decide whether punctuation marks
should be emitted (M = {true, false}) to the left
or right side (Dir) of C. Since there may be mul-
tiple adjacent punctuation marks (... .”), we treat
this as a Markov process in which the history vari-
able captures whether previous punctuation marks
have been generated or not. Finally, we generate
an actual punctuation mark wm:

p(M | Dir ,Hist ,C) ∼ DP (α, p(M | dir))
p(M | Dir) ∼ DP (α, p(M))
p(wm | Dir ,Hist ,C) ∼ DP (α, p(wm | dir , hist))
p(wm | Dir ,Hist) ∼ DP (α, p(wm))

We treat # and $ symbols as ordinary lexi-
cal items for which CCG categories will be in-
duced by the regular induction algorithm, but treat
all other punctuation marks, including quotes and
brackets. Commas and semicolons (,, ;) can
act both as punctuation marks generated by this
Markov grammar, and as conjunctions with lexical
category conj. This model leads to further perfor-
mance gains (Columns 3 and 4 of Table 2).

6.3 Increasing Grammatical Complexity

The existing grammar induction scheme is very
simplistic. It assumes that adjacent words either
modify one another or can be taken as arguments.
Left unconstrained this space of grammatical cat-
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Model Supertagging LF1 UF1

B1 59.2 34.5 60.6
BC

1 59.9 34.9 63.6
BP&L

3 62.3 37.1 64.9

Table 3: Test set performance of the final systems
discussed in this paper (Section 23)

egories introduced grows very rapidly, introduc-
ing a tremendous number of incorrect categories
(analyzed later in Table 9). For this reason Bisk
and Hockenmaier (2013) applied the HDP-CCG
model to a context-free fragment of CCG, limit-
ing the arity of lexical categories (number of ar-
guments they can take) to two and the arity of
composition (how many arguments can be passed
through composition) to one. We know the space
of grammatical constructions is larger than this, so
we will allow the model to induce categories with
three arguments and use generalized composition
(B3). Bisk and Hockenmaier (2013) allow lexical
categories to only take atomic arguments, but, as
explained above, non-local dependencies require
complex arguments of the form S|N. We therefore
allow lexical categories to take up to one complex
argument of the form S|N. Atomic lexical cate-
gories are not allowed to take complex arguments,
eliminating S|(S|N) and N|(S|N). Increasing the
search space (Rows 3 and 4 of Table 2) shows cor-
responding decreases in performance.

Finally, Bisk and Hockenmaier (2013) elim-
inated the possessive-preposition ambiguity ex-
plained above by disallowing categories of the
form (X\X)/X and (X/X)\X to be used simulta-
neously. Removing this restriction does not harm
performance (Column 5 of Table 2).

6.4 Summary and test set performance

Table 2 shows the performance of 20 different
model settings on Section 22 under the simpli-
fied labeled CCG-based dependency evaluation
proposed above, starting with Bisk and Hocken-
maier’s (2013) original model (henceforth: B1,
top left). We see that modeling punctuation and
lexicalization both increase performance. We
also show that allowing categories of the form
(X\X)/X and (X/X)\X on top of the lexicalized
models with punctuation does not lead to a notice-
able decrease in performance. We also see that an
increase in grammatical and lexical complexity is
only beneficial for the grammars that allow only
atomic arguments, and only if both lexicalization

CCGbank 02-21 WSJ2-21 DA
Model LF1 UF1 @10 @20 @∞
Naseem (Universal) 71.9 50.4
Naseem (English) 73.8 66.1

B1 33.8 60.3 70.7 63.1 58.4
BC

1 34.4 62.0 70.5 65.4 61.9
BP&L

3 38.3 66.2 71.3 65.9 62.3

Table 4: Performance on CCGbank and CoNLL-
style dependencies (Sections 02-21) for a compar-
ison with Naseem et al. (2010).

and punctuation are modeled. Allowing complex
arguments is generally not beneficial, and perfor-
mance drops further if the grammatical complex-
ity is increased to B3. Our further analysis will
focus on the three bolded models, B1, BC

1 (the
best model with complex arguments) and BP&L

3

(the best overall model), whose supertag accuracy,
labeled (LF1) and unlabeled undirected CCG de-
pendency recovery on Section 23 are shown in Ta-
ble 3. We see that BC

1 and BP&L
3 both outperform

B1 on all metrics, although the unlabeled met-
ric (UF1) perhaps misleadingly suggests that BC

1
leads to a greater improvement than the supertag-
ging and LF1 metrics indicate.

6.5 CCGbank vs. dependency trees

Finally, to compare our models directly to a com-
parable unsupervised dependency parser (Naseem
et al., 2010), we evaluate them against the un-
labeled dependencies produced by Yamada and
Matsumoto’s (2003) head rules for Sections 02-
21 of the Penn Treebank (Table 4)2. Naseem et al.
(2010) only report performance on sentences of up
to length 20 (without punctuation marks). Their
approach incorporates prior linguistic knowledge
either in the form of “universal” constraints (e.g.
that adjectives may modify nouns) or “English-
specific” constraints (e.g. that adjectives tend to
modify and precede nouns). These universal con-
straints are akin to, but more explicit and detailed
than the information given to the induction algo-
rithm (see Bisk and Hockenmaier (2013) for a dis-
cussion). Comparing these numbers to labeled
and unlabeled CCG dependencies on the same cor-
pus (all sentences, hence, @∞), we see that per-
formance increases on CCGbank do not translate
to similar gains on these unlabeled dependencies.
While we have done our best to convert the predi-
cate argument structure of CCG into dependencies

2BH13 use hyperparameter schemes and report 64.2@20.
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Correct B1 BP&L
3 BC

1

Category LR Used instead (%) LR Used instead (%) LR Used instead (%)

N 82.6 N/N 7.5 74.5 N/N 8.3 77.4 N/N 9.8
N/N 78.5 (S\S)\(S\S) 9.8 71.9 (S\S)\(S\S) 8.7 80.6 N 7.7
S\N 17.3 S\S 43.5 22.1 S\S 27.6 18.3 S\S 39.5
S\S 38.1 N 24.3 34.9 N 16.0 39.4 N 22.7
S/S 37.8 N\N 20.8 41.1 N/N 16.3 57.2 (S\S)/S 13.8
(N\N)/N 64.3 (S\S)/N 20.8 60.5 (S\S)/N 13.8 53.1 (S\S)/N 23.8
(S\N)/N 25.6 S/N 27.0 26.0 (S/N)/N 23.5 29.4 S/N 22.3
(S\S)/N 51.0 (N\N)/N 23.1 48.0 (N\N)/N 18.2 62.6 N/N 10.1
(S\N)/S 60.7 S\N 12.1 55.7 S\N 12.4 57.9 S\N 11.0
(S\S)/S 38.0 (N\N)/N 35.2 50.8 S/S 14.4 61.5 N 7.5

Table 5: Detailed supertagging analysis: Recall scores of B1, BC
1 , and B3

P&L on the most common
recoverable (simplified) lexical categories in Section 22 along with the most commonly produced error.

Category Example usage Used instead by BC
1 (%)

(N/N)\N The woman ’s company ... (N\N)/N 89.9 N/N 3.7 N 2.9
(S/S)/N Before Monday, ... S/S 69.9 N/N 14.8 (N\N)/N 8.2
(N/N)/(N/N) The very tall man ... N/N 38.0 (S\S)\(S\S) 33.9 (S\S)/N 10.1
(N\N)/(S\N) John, who ran home, ... (S\S)/(S/N) 26.5 N\N 23.3 S/S 14.9
(S\N)/(S\N) I promise to pay ... S\N 32.6 (S\S)/(S/N) 21.5 (S\N)/(S/N) 12.4
((S\N)/N)/N I gave her a gift. (S\N)/N 34.6 (S/N)/N 34.6 N/N 7.7
((S\N)/(S\N))/N I persuaded her to pay ... (S\N)/N 24.8 (S/N)/N 22.0 N/N 11.0

Table 6: Categories that are in the search space of the induction algorithm, but do not occur in any Viterbi
parse, and what BC

1 uses instead.

there are many constructions which have vastly
different analysis, making a proper conversion too
difficult for the scope of this paper.3

7 Error analysis

Supertagging error analysis We first consider
the lexical categories that are induced by the mod-
els. Table 5 shows the accuracy with which they
recover the most common gold lexical categories,
together with the category that they most often
produced instead. We see that the simplest model
(B1) performs best on N, and perhaps over gen-
erates (N\N)/N (noun-modifying prepositions),
while the overall best model (BP&L

3 ) outperforms
both other models only on intransitive verbs.

The most interesting component of our analysis
is the long tail of constructions that must be cap-
tured in order to produce semantically appropriate
representations. We can inspect the confusion ma-
trix of the lexical categories that the model fails to
use to obtain insight into how its predictions dis-
agree with the ground truth, and why these con-
structions may require special attention. Table 6
shows the most common CCGbank categories that

3The overlap (F-score of unlabeled undirected attachment
scores) between CCGbank dependencies and those obtained
via Matsumoto’s head finding rules is only 81.9%.

were in the search space of some of the more com-
plex models (e.g. BC

3 ), but were never used by any
of the parsers in a Viterbi parse. These include
possessives, relative pronouns, modals/auxiliaries,
control verbs and ditransitives. We show the cat-
egories that the BC

1 model uses instead. The gold
categories shown correspond to the bold words in
Table 6. While the reason many of these cases
are difficult is intuitive (e.g. very modifying tall
instead of man), a more difficult type of error
than previously discussed is that of recovering
non-local dependencies. The recovery of non-
local dependencies is beyond the scope of both
standard dependency-based approaches and Bisk
and Hockenmaier (2013)’s original induction al-
gorithm. But the parser does not learn to use lexi-
cal categories with complex arguments correctly
even when the algorithm is extended, to induce
them. For example, BC

1 prefers to treat auxiliaries
or equi verbs like promise as intransitives rather
than as an auxiliary that shares its subject with
pay. The surface string supports this decision, as
it can be parsed without having to capture the non-
local dependencies (top row) present in the correct
(bottom row) analysis:

I promise to pay you
N S\N (S\S)/S S/N N
N (S\N)/(S\N) (S\N)/(S\N) (S\N)/N N
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1st Argument 2nd Argument

B1 BC
1 BP&L

3 B1 BC
1 BP&L

3

N/N 68.4 69.7 71.6
S\N 12.2 24.9 14.6
S\S 17.0 16.2 18.7
S/S 24.0 27.1 33.8
(N\N)/N 49.7 54.4 51.2 41.0 46.2 42.4
(S\N)/N 26.6 32.9 34.4 30.6 33.2 33.8
(S\S)/N 21.6 19.2 24.7 24.0 24.9 29.3
(S\N)/S 23.9 50.3 32.5 25.2 59.1 35.0
(S\S)/S 6.1 22.7 14.1 9.5 34.6 19.5

Table 7: LF1 scores of B1, BC
1 and B3

P&L on the
most common dependency types in Section 22.

We also see that this model uses seemingly non-
English verb categories of the form (S/N)/N, both
for ditransitives, and object control verbs, perhaps
because the possibly spurious /N argument could
be swallowed by other categories that take argu-
ments of the form S/N, like the (incorrect) treat-
ment of subject relative pronouns. One possible
lesson we can extract from this is that practical
approaches for building parsers for new languages
might need to focus on injecting semantic infor-
mation that is outside the scope of the learner.

Dependency error analysis Table 7 shows the
labeled recall of the most common dependencies.
We see that both new models typically outper-
form the baseline, although they yield different
improvements on different dependency types. BC

1
is better at recovering the subjects of intransitive
verbs (S\N) and verbs that take sentential com-
plements ((S\N)/S), while B3 is better for simple
adjuncts (N/N, S/S, S\S) and transitive verbs.

Wh-words and the long tail To dig slightly
deeper into the set of missing constructions, we
tried to identify the most common categories that
are beyond the search space of the current induc-
tion algorithm. We first computed the set of cat-
egories used by each part of speech tag in CCG-
bank, and thresholded the lexicon at 95% token
coverage for each tag. Removing the categories
that contain PP and those that can be induced by
the algorithm in its most general setting, we are
left with the categories shown in Table 8. The tags
that are missing categories are predominantly wh-
words required for wh-questions, relative clauses
or free relative clauses. Some of these categories
violate the assumptions made by the induction al-
gorithm: question words return a sentence (S) but
are not themselves verbs. Free relative pronouns
return a noun, but take arguments. However, this is

Additional Category p(cat | tag)

((N\N)/(S\N))/N .93 WP$
N/(S/N) .14 WP
N/(S\N) .08 WP
((N\N)/S)\((N\N)/N) .07 WDT
((S\S)\(S\S))\N .04 RBR
S/(S\N) .04 WP
S/(S/N) .02 WP

Table 8: Common categories that the algorithm
cannot induce

Size, ambiguity, coverage and precision
of the induced lexicons

Arguments: Atomic Complex
# Lexical Arity: 2 3 2 3

# Lexical Categories 37 53 61 133
Avg. #Cats / Tag 26.4 29.5 42.3 56.3
Token-based Coverage 84.3 84.4 89.8 90.2
Type-based Coverage 20.3 21.6 27.0 32.4
Type-based Precision 81.1 60.4 65.6 36.1

Table 9: Size, ambiguity, coverage and precision
(evaluated on Section 22) of the induced lexicons.

a surprisingly small set of special function words
and therefore perhaps a strategic place for super-
vision. Questions in particular pose an interesting
learning question – how does one learn that these
constructions indicate missing information which
only becomes available later in the discourse?

Grammatical complexity and size of the search
space As lexical categories are a good proxy for
the set of constructions the grammar will enter-
tain, we can measure the size and ambiguity of the
search space as a function of the number of lexical
category types it induces as compared to the per-
centage that are actually valid categories for the
language. In Table 9, we compare the lexicons in-
duced by variants of the induction algorithm by
their token-based coverage (the percent of tokens
in Sections 22 for which the induced tag lexicon
contains the correct category), type-based cover-
age (the percent of category types that the induced
lexicon contains), as well as type-based precision
(the percent of induced category types that occur
in Section 22). This analysis is independent of the
learned models, as their probabilities are not taken
into account. We see that as the number of lex-
ical categories induced (subject to the constraints
of Bisk and Hockenmaier (2012)) increases, the
percent that are valid English categories decreases
rapidly (type-based precision falls from 81.1% to
36.1%). Despite this, and despite a high token
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coverage of up to 90%, we still miss almost 70%
of the required category types. This helps explain
why performance degrades so much for BC

3 , the
arity three lexicon with complex arguments.

8 Dealing with Non-Local Dependencies

While the methodology used here is restricted to
CCG based algorithms, we believe the lessons to
be very general. The aforementioned construc-
tions involve optional arguments, non-local de-
pendencies, and multiple potential heads. Even
though CCG is theoretically expressive enough to
handle these constructions, they present the un-
supervised learner with additional ambiguity that
will pose difficulties independently of the under-
lying grammatical representation.

For example, although our approach learns that
subject NPs are taken as arguments by verbs, the
task of deciding which verb to attach the subject
to is frequently ambiguous. This most commonly
occurs in verb chains, and is compounded in the
presence of subject-modifying relative clauses (in
CCGbank, both constructions are in fact treated
as several verbs sharing a single subject). To
illustrate this, we ran the BC

1 and B3
P&L systems on

the following three sentences:

1. The woman won an award
2. The woman has won an award
3. The woman being promoted has won an award

The single-verb sentence is correctly parsed by
both models, but they flounder as distractors are
added. Both treat has as an intransitive verb, won
as an adverb and an as a preposition:

The woman won an award
B3

P&L/BC
1 : N/N N (S\N)/N N/N N

The woman has won an award
B3

P&L/BC
1 : N/N N S\N S\S (S\S)/N N

To accommodate the presence of two additional
verbs, both models analyze being as a noun modi-
fier that takes promoted as an argument. BC

1 (cor-
rectly) stipulates a non-local dependency involv-
ing promoted, but treats it (arguably incorrectly)
as a case of object extraction:

... being promoted has won an award
B3

P&L
(N\N)/S S S\N S\S (S\S)/N N

BC
1 (N\N)/(S/N) S/N S\N S\S (S\S)/N N

Discovering these, and many of the other sys-
tematic errors describe here, may be less obvi-
ous when analyzing unlabeled dependency trees.
But we would expect similar difficulties for any
unsupervised approach when sentence complexity
grows without a specific bias for a given analysis.

9 Conclusions

In this paper, we have introduced labeled evalu-
ation metrics for unsupervised CCG parsers, and
have shown that these expose many common syn-
tactic phenomena that are currently out of scope
for any unsupervised grammar induction systems.
While we do not wish claim that CCGbank’s anal-
yses are free of arbitrary decisions, we hope to
have demonstrated that these labeled metrics en-
able linguistically informed error analyses, and
hence allow us to at least in part address the ques-
tion of where and why the performance of these
approaches might plateau. We focused our analy-
sis on English for simplicity, but many of the same
types of problems exist in other languages and can
be easily identified as stemming from the same
lack of supervision. For example, in Japanese
we would expect problems with post-positions, in
German with verb clusters, in Chinese with mea-
sure words, or in Arabic with morphology and
variable word order.

We believe that one way to overcome the is-
sues we have identified is to incorporate a seman-
tic signal. Lexical semantics, if sparsity can be
avoided, might suffice; otherwise learning with
grounding or an extrinsic task could be used to
bias the choice of predicates, their arity and in turn
the function words that connect them. Alterna-
tively, a simpler solution might be to follow the
lead of Boonkwan and Steedman (2011) or Gar-
rette et al. (2015) where gold categories are as-
signed by a linguist or treebank to tags and words.
It is possible that more limited syntactic supervi-
sion might be sufficient if focused on the semanti-
cally ambiguous cases we have isolated.

More generally, we hope to initiate a conver-
sation about grammar induction which includes a
discussion of how these non-trivial constructions
can be discovered, learned, and modeled. Relat-
edly, in future extensions to semi-supervised or
projection based approaches, these types of con-
structions are probably the most useful to get right
despite comprising the tail, as analyses without
them may not be semantically appropriate. In
summary, we hope to begin to pull back the veil
on the types of information that a truly unsuper-
vised system, if one should ever exist, would need
to learn, and we pose a challenge to the commu-
nity to find ways that a learner might discover this
knowledge without hand-engineering it.
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Abstract

Mention pair models that predict whether
or not two mentions are coreferent have
historically been very effective for coref-
erence resolution, but do not make use
of entity-level information. However, we
show that the scores produced by such
models can be aggregated to define pow-
erful entity-level features between clusters
of mentions. Using these features, we
train an entity-centric coreference system
that learns an effective policy for building
up coreference chains incrementally. The
mention pair scores are also used to prune
the search space the system works in, al-
lowing for efficient training with an exact
loss function. We evaluate our system on
the English portion of the 2012 CoNLL
Shared Task dataset and show that it im-
proves over the current state of the art.

1 Introduction

Coreference resolution, the task of identifying
mentions in a text that refer to the same real world
entity, is an important aspect of text understanding
and has numerous applications. Many approaches
to coreference resolution learn a scoring function
defined over mention pairs to guide the corefer-
ence decisions (Soon et al., 2001; Ng and Cardie,
2002; Bengtson and Roth, 2008). However, such
systems do not make use of entity-level informa-
tion, i.e., features between clusters of mentions in-
stead of pairs.

Using entity-level information is valuable be-
cause it allows early coreference decisions to in-
form later ones. For example, finding that Clin-
ton and she corefer makes it more likely that Clin-
ton corefers with Hillary Clinton than Bill Clin-
ton due to gender agreement constraints. Such in-
formation has been incorporated successfully into

entity-centric coreference systems that build up
coreference clusters incrementally, using the in-
formation from the partially completed corefer-
ence chains produced so far to guide later deci-
sions (Raghunathan et al., 2010; Stoyanov and
Eisner, 2012; Ma et al., 2014).

However, defining useful features between clus-
ters of mentions and learning an effective policy
for incrementally building up clusters can be chal-
lenging, and many recent state-of-the-art systems
work entirely or almost entirely over pairs of men-
tions (Fernandes et al., 2012; Durrett and Klein,
2013; Chang et al., 2013). In this paper we in-
troduce a novel coreference system that combines
the advantages of mention pair and entity-centric
systems with model stacking. We first propose
two mention pair models designed to capture dif-
ferent linguistic phenomena in coreference resolu-
tion. We then describe how the probabilities pro-
duced by these models can be used to generate
expressive features between clusters of mentions.
Using these features, we train an entity-centric in-
cremental coreference system.

The entity-centric system builds up coreference
chains with agglomerative clustering: each men-
tion starts in its own cluster and then pairs of clus-
ters are merged each step. We train an agent to
determine whether it is desirable to merge a par-
ticular pair of clusters using an imitation learning
algorithm based on DAgger (Ross et al., 2011).
Previous incremental coreference systems heuris-
tically define which actions are beneficial for the
agent to perform, but we instead propose a way
of assigning exact costs to actions based on coref-
erence evaluation metrics, adding a concept of
the severity of a mistake. Furthermore, rather
than considering all pairs of clusters as candidate
merges, we use the scores of the pairwise mod-
els to reduce the search space, first by providing
an ordering over which merges are considered and
secondly by discarding merges that are not likely
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to be good. This greatly reduces the time it takes
to run the agent, making learning computationally
feasible.

Imitation learning is challenging because it is
a non-i.i.d. learning problem; the distribution of
states seen by the agent depends on the agent’s pa-
rameters. Model stacking offers a way of decom-
posing the learning problem by training pairwise
models with many parameters in a straightforward
supervised learning setting and using their outputs
for training a much simpler model in the more
difficult imitation learning setting. Furthermore,
mention pair scores can produce powerful features
for training the agent because the scores indicate
which mention pairs between the clusters in ques-
tion are relevant; high scoring and low scoring
pairs can indicate when a merge should be forced
or disallowed while other mention pairs may pro-
vide little useful information.

We run experiments on the English portion of
the 2012 CoNLL Shared Task dataset. The entity-
centric clustering algorithm greatly outperforms
commonly used heuristic methods for coordinat-
ing pairwise scores to produce a coreference par-
tition. We also show that combining the scores
of different pairwise models designed to capture
different aspects coreference results in significant
gains in accuracy. Our final system gets a com-
bined score of 63.02 on the dataset, substantially
outperforming other state of the art systems.

2 Mention Pair Models

Mention pair models predict whether or not a
given pair of mentions belong in the same coref-
erence cluster. We incorporate two different men-
tion pair models into our system. However, other
pairwise models could easily be added; one advan-
tage of our model stacking approach is that it can
combine different simple classifiers in a modular
way.

Our two models are designed to capture dif-
ferent aspects of coreference. The first one is
built to predict coreference for all of the candi-
date antecedents of a mention. This makes it use-
ful for providing scores when the current mention
has clear coreference links to many previous men-
tions. For example President Clinton might be
linked to the president, Bill Clinton, and Mr. Pres-
ident.

However, mentions often only have one clear
antecedent. This is especially common in pronom-

inal anaphora resolution, such as in the sentence
Bill arrived, but nobody saw him. The pronoun
him is directly referring back to a previous part of
the discourse, not some entity that other mentions
may also refer to. However, there still might be
coreference links between him and previous men-
tions in the text because of transitivity: any other
mention about Bill would be coreferent with him.
For such mentions, there may be very little ev-
idence in the discourse to suggest a coreference
link, so attempting to train a model to predict these
will bear little fruit. With this as motivation, we
also train a model to predict only one correct an-
tecedent of the current mention.

We found a classification model to be well
suited for the first task and and a ranking model to
be well suited for the second one. These two mod-
els differ only in the training criteria used. Both
models use a logistic classifier to assign a proba-
bility to a mention m and candidate antecedent a
representing the likelihood that the two mentions
are coreferent. The candidate antecedent a may
take on the value NA indicating that m has no an-
tecedent. The probability of coreference takes the
standard logistic form:

pθ(a,m) = (1 + eθ
T f(a,m))−1

where f(a,m) is a vector of feature functions on
a and m and θ are the feature weights we wish
to learn. Let M denote the set of all mentions
in the training set, T (m) denote the set of true an-
tecedents of a mentionm (i.e., mentions that occur
before m in the text that are coreferent with m or
{NA} if m has no antecedent), and F(m) denote
the set of false antecedents of m. We want to find
a parameter vector θ that assigns high probabili-
ties to the candidate antecedents in T (m) and low
probabilities to the ones in F(m).

2.1 Classification Model
For the classification model, we consider each pair
of mentions independently with the goal of pre-
dicting coreference correctly for as many of them
as possible. The model is trained by minimiz-
ing negative conditional log likelihood augmented
with L1 regularization:

Lc(θc) = −
∑
m∈M

( ∑
t∈T (m)

log pθc(t,m)

+
∑

f∈F(m)

log(1− pθc(f,m))
)

+ λ||θc||1
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By summing over all candidate antecedents, the
objective encourages the model to produce good
probabilities for all of them.

2.2 Ranking Model

For the ranking model, candidate antecedents for a
mention are considered simultaneously and com-
pete with each other to be matched with the cur-
rent mention. This makes the model well suited
to the task of finding a single best antecedent for
a mention. A natural learning objective for such
a model would be a max-margin training crite-
ria that encourages separation between the highest
scoring true antecedent and highest scoring false
antecedent of the current mention. However, we
found such models to be poor at producing scores
useful for a downstream clustering model because
a max-margin objective encourages scores for true
antecedents to be high only relative to other can-
didate antecedents. It is much more beneficial
to have mention pair scores that are comparable
across different mentions as well as different can-
didate antecedents. For this reason, we instead
train the model with an objective that maximizes
the conditional log likelihood of the highest scor-
ing true and false antecedents under the logistic
model:

Lr(θr) = −
∑
m∈M

(
max
t∈T (m)

log pθr(t,m)

+ min
f∈F(m)

log(1− pθr(f,m))
)

+ λ||θr||1

For both models, we set λ = 0.001 and opti-
mize their objectives using AdaGrad (Duchi et al.,
2011).

2.3 Features

Our mention pair models use a variety of common
features for mention pair classification (for more
details see (Bengtson and Roth, 2008; Stoyanov et
al., 2010; Lee et al., 2011; Recasens et al., 2013)).
These include

• Distance features, e.g., the distance between
the two mentions in sentences or number of
mentions.

• Syntactic features, e.g., number of embed-
ded NPs under a mention, POS tags of the
first, last, and head word.

• Semantic features, e.g., named entity type,
speaker identification.

• Rule-based features, e.g., exact and partial
string matching.

• Lexical Features, e.g., the first, last, and
head word of the current mention.

We also employ a feature conjunction scheme sim-
ilar to the one described by Durrett and Klein
(2013).

3 Entity-Centric Coreference Model

Mention pair scores alone are not enough to pro-
duce a final set of coreference clusters because
they do not enforce transitivity: if the pair of men-
tions (a, b) and the pair of mentions (b, c) are
deemed coreferent by the model, there is no guar-
antee that the model will also classify (a, c) as
coreferent. Thus a second step is needed to co-
ordinate the scores to produce a final coreference
partition. A widely used approach for this is best-
first clustering (Ng and Cardie, 2002). For each
mention, the best-first algorithm assigns the most
probable preceding mention classified as corefer-
ent with it as the antecedent.

The primary weakness of this approach is that it
only relies on local information to make decisions,
so it cannot consolidate information at the entity
level. As a result, coreference chains produced by
such algorithms can exhibit low coherency. For
example, a cluster may consist of [Hillary Clin-
ton, Clinton, he] because the coreference decision
between Hillary Clinton and Clinton is made in-
dependently of the one between Clinton and he.

To tackle this problem, we build an entity-
centric model that operates between pairs of clus-
ters instead of pairs of mentions, guided by scores
produced by the pairwise models. It builds up
clusters of mentions believed to refer to the same
entity as it goes, relying on the partially formed
clusters produced so far to make decisions. For
example, the system could reject linking [Hillary
Clinton] with [Clinton, he] because of the low
score between the pair (Hillary Clinton, he).

Our entity-centric “agent” builds up coreference
chains with agglomerative clustering. It begins
in a start state where each mention is in a sepa-
rate single-element cluster. At each step, it ob-
serves the current state s, which consists of all par-
tially formed coreference clusters produced so far,
and selects some action a which merges two exist-
ing clusters. The action will result in a new state
with new candidate actions and the process is re-
peated. The model is entity-centric in that it builds
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up clusters of mentions representing entities and
merges clusters if it predicts they are representing
the same one.

3.1 Test-time Inference
The agent assigns a score to each action a using a
linear model with feature function fe and weight
vector θe: sθe(a) = θTe fe(a). A particular setting
of θe defines a policy π that determines which ac-
tion a = π(s) the agent will take in state s. This
policy is to greedily take highest scoring candidate
action available from the current state.

Rather than using all possible cluster merges as
the candidate set of actions the agent selects from,
we use the scores produced by mention pair mod-
els to reduce the search space. First, we order all
mention pairs in the document in descending or-
der according to their pairwise scores. This causes
clustering to occur in an easy-first fashion, where
harder decisions are delayed until more informa-
tion is available. Secondly, we discard all men-
tion pairs that score below a threshold t under
the assumption that the clusters containing these
pairs are unlikely to be coreferent. In our experi-
ments we were able able set t so that over 95% of
pairs were removed with no decrease in accuracy.
Lastly, we iterate through this list of pairs in or-
der. For each pair, we make a binary decision on
whether or not the clusters containing these pairs
should be merged. This formulates the agent’s task
so it only has two actions to chose from instead of
a number of actions proportional to the number of
clusters squared. Algorithm 1 shows the full test-
time procedure.

3.2 Learning
Imitation Learning with DAgger
We face a sequential prediction problem where fu-
ture observations (visited states) depend on previ-
ous actions. This is challenging because it violates
the common i.i.d. assumptions made in statistical
learning. Imitation learning, where expert demon-
strations of good behavior are used to teach the
agent, has proven very useful in practice for this
sort of problem (Argall et al., 2009). We use imita-
tion learning to set the parameters θe of our agent
by training it to classify whether a particular action
is the one an expert policy would take in the cur-
rent state. In particular, we use θe as parameters
for a binary logistic classifier that predicts which
action (merge or do not merge) matches the expert
policy.

Algorithm 1 Inference method: agglomerative
clustering

Input: Set of mentions in document M, pair-
wise classifier with parameters θc, agent with
parameters θe, cutoff threshold t
Output: Clustering C

Initialize list of mention pairs P → []
for each pair (mi,mj) ∈M2 with i < j do

if pθc(mi,mj) > t then
P .append((mi,mj))

end if
end for
Sort P in descending order according to pθc

Initialize C → initial clustering with each men-
tion inM in its own cluster
for (mi,mj) ∈ P do

if C[mi] 6= C[mj ]
and sθe(C[mi], C[mj ]) > 0 then

DoMerge(C[mi], C[mj ], C)
end if

end for

We found the DAgger (Ross et al., 2011) imita-
tion learning method (see Algorithm 2) to be effec-
tive for this task. DAgger is an iterative algorithm
that aggregates a datasetD consisting of states and
the actions performed by the expert policy in those
states. At each iteration, it first samples a trajec-
tory of states visited by the current policy by run-
ning the policy to completion from the start state.
It then labels those states with the best action ac-
cording to the expert policy, adds those labeled ex-
amples to the dataset, and then trains a new clas-
sifier over the dataset to get a new policy. When
producing a trajectory to train on, the expert pol-
icy is stochastically mixed with the current policy;
with probability βi the expert’s action is chosen in-
stead of the current policy’s. We set β so it decays
exponentially as the iteration number increases.

By sampling trajectories under the current
policy, DAgger exposes the system to states at
train time similar to the ones it will face at test
time. In contrast, training the agent on the gold
labels alone would unrealistically teach it to make
decisions under the assumption that all previous
decisions were correct, potentially causing it to
over-rely on information from past actions. This is
especially problematic in coreference, where the
error rate is quite high. Even when using DAgger,
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this problem could exist to a lesser degree if the
model heavily overfits to the training data. How-
ever, the agent has a small number of parameters
thanks to our model stacking approach, reducing
the risk of this happening.

Algorithm 2 Learning method: DAgger
Input: initial policy π̂1, expert policy π∗

Output: final policy π̂N

Initialize D ← ∅
for i = 1 to N do

Let πi = βiπ
∗ + (1− βi)π̂i

Sample a trajectory under the current policy
using πi

Get dataset Di = (s, π∗(s)) of states visited
by πi and actions given by the expert

Aggregate datasets: D ← D ∪Di
Train classifier π̂i+1 on D

end for

Assigning Costs to Actions
A key aspect of incrementally building corefer-
ence clusters is that some local decisions are much
more important than others. For example, a merge
between two large clusters influences the score far
more than a merge between two small ones. Ad-
ditionally, getting early decisions correct is crucial
because later actions are dependent on early ones,
causing errors to compound if mistakes are made
early. To capture this, we take an approach in-
spired by the SEARN learning algorithm (Daumé
et al., 2009) and add costs to the actions in the
aggregated dataset. We then train the agent to do
cost-sensitive classification. Using these costs, we
simply define the expert policy as the policy that
takes the action with the lowest cost at each step.

We want our costs to represent how a partic-
ular local decision will affect the final score of
the coreference system. Unfortunately, standard
coreference evaluation metrics do not decompose
over cluster merges. Instead, we compute the loss
of an action by “rolling out” the current policy to
completion. More concretely, let m be a function
(such as a coreference evaluation metric) that as-
signs scores to states; we are interested in reach-
ing a final state for which m is high. Suppose we
are assigning costs to the set of actions A(s) that
can be taken from some state s. For each action
a ∈ A(s), we apply that action to s to get a new
state s′, run the current policy π̂i from s′ to com-

pletion, and then compute the value of m on the
resulting final state. This gives exactly the final
score the system would get if it made the action a
from state s and then continued under the current
policy. Let fm(s, a) denote this value for a par-
ticular metric, state, and action. We assign each
action the regret r associated with taking that ac-
tion under the current policy as a cost:

r(s, a) = max
a′∈A(s)

fm(s, a′)− fm(s, a)

The “rolling out” procedure means we naively
have to visit O(t2) states each iteration instead of
t, where t is the length of a trajectory. However,
the highly constrained action space described in
section 3.1 combined with the use of memoization
allows the algorithm to still run efficiently.

Improving Runtime with Memoization
During training, the agent will see many of the
same states and actions multiple times. We can ex-
ploit this with memoization, significantly improv-
ing the algorithm’s runtime. In particular, we store
the following values:

• Given a state s and action a, the value of the
cost function, r(s, a).

• Given an action a, the score the model as-
signs that action, sθe(a).

• Given an action a, the result of the feature
function on that action, fe(a).

The first two values depend on the current model,
so the saved values must be cleared between iter-
ations of training. In experiments on the develop-
ment set of the CoNLL 2012 corpus, these tables
had 76%, 94%, and 93% hit rates respectively af-
ter 50 passes over the dataset.

3.3 Features
Our agent uses features that are derived from the
scores produced by the two mention pair mod-
els. Although these scores only operate on men-
tion pairs, they are combined to capture cluster-
level interactions by being aggregated in differ-
ent ways over pairs of mentions from the clus-
ters. Mention pair scores can produce powerful
features for training the agent because they show
which mention pairs between the clusters in ques-
tion are relevant, and often a small subset of the
mention pairs provide far more information than
the rest. For example, a strong negative pairwise
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Figure 1: Examples of features generated for a candidate cluster merge. Weights on edges are the
probabilities of coreference produced by a mention pair model.

link like Hillary Clinton and he should disallow
a merge, while other mention pairs, such as two
instances of the pronoun she far apart in the text,
might provide very little information. Using the
mention pair models for probabilities, we compute
the following features over all pairs of mentions
between the clusters (i.e., each mention is in a dif-
ferent cluster).

• The minimum and maximum probability of
coreference.

• The average probability and average log
probability of coreference.

• The average probability and log proba-
bility of coreference for a particular pair
of grammatical types of mentions (either
pronoun or non-pronoun). For exam-
ple, Avg-Prob non-pronoun pronoun
gives the average probability of coreference
when the candidate antecedent is not a pro-
noun and the candidate anaphor is a pronoun.

Note that the averaged features have a natural
probabilistic interpretation; the average probabil-
ity corresponds to the expected number of coref-
erence links between the involved mention pairs
while the average log probability corresponds to
the probability that all mention pairs will have a
coreference link. All of these features are com-
puted twice: once with the classification model
and once with the ranking model.

We also compute the following features based
on other aspects of the current state:

• Whether a preceding mention pair in the
list of mention pairs has the same candidate
anaphor as the current one.

• The index of the current mention pair in the
list divided by the size of the list, i.e., what
percentage of the list have we seen so far.

• The number of mentions in the current docu-
ment.

• The probability of the first-occurring men-
tion in the second-occurring cluster not be-
ing anaphoric (i.e., pθc(NA,m)). This pre-
vents producing clusters that, for example,
start with a pronoun.

Lastly, we take one feature conjunction with
a boolean representing whether both clusters are
size 1. In total, there are only 56 features af-
ter the feature conjunction. However, these fea-
tures provide strong signal because they are di-
rectly related to the probabilities of mentions be-
ing coreferent. In contrast, the pairwise models
use thousands of features (after feature conjunc-
tions), including lexical features that are extremely
sparse. The pairwise models can easily exploit
this much bigger feature set because they oper-
ate in a classic supervised learning setting. The
entity-centric model, on the other hand, learns in
a much more challenging non-i.i.d. setting. Model
stacking avoids the difficulty of directly training
the entity-centric model with a large set of weak
features by decomposing the task into first learn-
ing to produce good pairwise scores and then us-
ing those scores to generate a manageable set of
strong features.

3.4 Training Details

Because the entity-centric agent relies on the out-
put of pairwise classifiers, they should not be
trained on the same data. Therefore we split the
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training set into two sections and use one for train-
ing the pairwise models and the other for training
the agent. When evaluating on the development
set, we use 80% of the documents in the training
set to train the mention pair models and the rest
to train the entity-centric model. When evaluating
on the test set we use the whole training set for
the mention pair models and the development set
for the entity-centric model. We also tried using
cross-validation instead of a single split, but found
this did not improve performance, which we be-
lieve to be because this trains the agent with dif-
ferent pairwise models than the ones used at test
time.

For our initial policy π̂1, we set the parame-
ters of the agent so it operates with simple best-
first clustering (initializing all feature weights to
0 except for the maximum-score, anaphor-seen,
and bias features). For m, the performance met-
ric determining the action costs, we use a linear
combination of the B3 (Bagga and Baldwin, 1998)
and MUC (Vilain et al., 1995) metrics, which are
both commonly used for evaluating coreference
systems. The other metric used in our evaluation,
Entity-based CEAFE (CEAFφ4) (Luo, 2005), was
not used because it is expensive to compute. We
found weighting B3 three times as much as MUC
to be effective on the development set.

4 Experiments and Results

Experimental Setup
We apply our model to the English portion of
the CoNLL 2012 Shared Task data (Pradhan et
al., 2012), which is derived from the OntoNotes
corpus (Hovy et al., 2006). The data is split into
a training set of 2802 documents, development
set of 343 documents, and a test set of 345
documents. We use the provided preprocessing
for parse trees, named entity tags, etc. The models
are evaluated using three of the most popular
metrics for coreference resolution: MUC, B3, and
Entity-based CEAFE (CEAFφ4). We also include
the average F1 score (CoNLL F1) of these three
metrics, as is commonly done in CoNLL Shared
Tasks. We used the most recent version of the
CoNLL scorer (version 8.01), which implements
the original definitions of these metrics.

Mention Detection
Our experiments were run using system-produced
predicted mentions. We used the rule-based

MUC B3 CEAFφ4 Avg.
Classification, B.F. 72.00 60.01 55.63 62.55

Ranking, B.F. 71.91 60.63 56.38 62.97
Classification, E.C. 72.34 61.46 57.16 63.65

Ranking, E.C. 72.37 61.34 57.13 63.61
Both, E.C. 72.52 62.02 57.69 64.08

Table 1: Metric scores on the development set
for the classification and ranking pairwise mod-
els when using best-first clustering (B.F.) or the
entity-centric model (E.C.).

mention detection algorithm from Raghunathan
et al. (2010), which first extracts pronouns and
maximal NP projections as candidate mentions
and then filters this set with rules that remove
spurious mentions such as numeric entities or
pleonastic it pronouns.

Comparison of Models
We compare the effectiveness of the entity-centric
model with the commonly used best-first cluster-
ing approach, which assigns mentions the high-
est scoring previous mention as the antecedent.
Unlike the entity-centric model, the best-first ap-
proach only relies on local information to make
decisions. We also compare the effectiveness of
the ranking and classification pairwise models.
Table 1 shows the results of these models on the
development set.

The entity-centric model outperforms best-
first clustering for both mention pair models,
demonstrating the utility of a learned, incremental
clustering algorithm. The improvement is much
greater for the classification pairwise model, caus-
ing it to outperform the ranking model with the
entity-centric clustering algorithm even though
it performs significantly worse than the ranking
model with best-first clustering. This suggests
that although the ranking model is better at finding
a single correct antecedent for a mention, the
classification model is more useful for producing
cluster-level features. Incorporating probabilities
from both pairwise models further improved
scores over using either model alone, indicating
that the mention pair classifiers were successful
in learning scoring functions useful in different
circumstances.

Incorporating other Entity-Level Features
Although the entity-centric model has so far only
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MUC B3 CEAFφ4 Avg.
Scores Only 72.52 62.02 57.69 64.08
+Agreement 72.59 61.98 57.58 64.05

Table 2: Metric scores on the development set for
the entity-centric model with and without the ad-
dition of entity-level agreement features.

used features derived from the scores produced
by mention pair models, other entity-level features
could easily be added. We experiment with this by
adding four cluster-level agreement features based
on gender, number, animacy, and named entity
type. Each of these features can take on three val-
ues: “same” (e.g., both clusters have gender value
feminine), “compatible” (e.g., one cluster has gen-
der value feminine while the other has value un-
known), or “incompatible” (one cluster has gender
value feminine while the other has value mascu-
line). The cluster-level value for a particular fea-
ture is the most common value among mentions in
that cluster (e.g., if a cluster has 2 masculine men-
tions, 1 feminine mention, and 1 unknown men-
tion) the value is considered masculine. Table 2
shows the results.

Adding the additional features had no substan-
tial impact on scores, suggesting that features de-
rived from pairwise scores are sufficient for cap-
turing this kind of entity-level information. A
disagreement between clusters necessarily means
there will be disagreements between some of the
involved mentions, so features like the average and
minimum probability between mention pairs will
have lower values when a disagreement is present.

Final System Performance
In Table 3 we compare the results of our system
with the following state-of-the-art approaches: the
JOINT and INDEP models of the Berkeley sys-
tem (Durrett and Klein, 2014) (the JOINT model
jointly does NER and entity linking along with
coreference); the Prune-and-Score system (Ma et
al., 2014); the HOTCoref system (Björkelund and
Kuhn, 2014); the CPL3M sytem (Chang et al.,
2013); and Fernandes et al. We use the full entity-
centric clustering algorithm drawing upon scores
from both pairwise models. We do not make use
of agreement features, as these did not increase ac-
curacy and complicate the system. Our final model
substantially outperforms the other systems on the
CoNLL F1 score. The largest improvement is in

the B3 metric, which is unsurprising because the
entity-centric model primarily optimizes for this
during training. However, our model also achieves
the highest CEAFφ4 F1 and second highest MUC
F1 scores among the other systems.

5 Related Work

Both mention pair (Soon et al., 2001; Ng and
Cardie, 2002; Bengtson and Roth, 2008; Stoyanov
et al., 2010; Björkelund and Farkas, 2012) and
mention ranking models (Denis and Baldridge,
2007b; Rahman and Ng, 2009) have been widely
used for coreference resolution, and there have
been many proposed ways of post-processing the
pairwise scores to make predictions. Despite
their simplicity, closest-first clustering (Soon et
al., 2001) and best-first clustering (Ng and Cardie,
2002) are arguably the most widely used of these
approaches. Other work uses global inference
with integer linear programming to enforce tran-
sitivity (Denis and Baldridge, 2007a; Finkel and
Manning, 2008), graph partitioning algorithms
(McCallum and Wellner, 2005; Nicolae and Nico-
lae, 2006), the Dempster-Shafer rule (Kehler,
1997; Bean and Riloff, 2004), or correlational
clustering (McCallum and Wellner, 2003; Finley
and Joachims, 2005). In contrast to these methods,
our entity-centric model directly learns how to use
pairwise scores to produce a coreference partition
that scores highly according to an evaluation met-
ric, and can use the outputs of more than one men-
tion pair model.

Recently, coreference models using latent an-
tecedents have gained in popularity and achieved
state-of-the-art results (Fernandes et al., 2012;
Durrett and Klein, 2013; Chang et al., 2013;
Björkelund and Kuhn, 2014). These learn a scor-
ing function over mention pairs, but are trained to
maximize a global objective function instead of
pairwise accuracy. Unlike in our system, these
methods typically consider one pair of mentions
at a time during inference.

Several works have explored using non-local
entity-level features in mention-entity models that
assign a single mention to a (partially completed)
cluster (Luo et al., 2004; Yang et al., 2008; Rah-
man and Ng, 2011). Our system, however, builds
clusters incrementally through merge operations,
and so can operate in an easy-first fashion. Raghu-
nathan et al. (2010) take this approach with a
rule-based system that runs in multiple passes
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MUC B3 CEAFφ4 CoNLL
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Avg. F1

Fernandes et al. 75.91 65.83 70.51 65.19 51.55 57.58 57.28 50.82 53.86 60.65
Chang et al. - - 69.48 - - 57.44 - - 53.07 60.00

Björkelund & Kuhn 74.3 67.46 70.72 62.71 54.96 58.58 59.4 52.27 55.61 61.63
Ma et al. 81.03 66.16 72.84 66.90 51.10 57.94 68.75 44.34 53.91 61.56

Durrett & Klein (INDEP.) 72.27 69.30 70.75 60.92 55.73 58.21 55.33 54.14 54.73 61.23
Durrett & Klein (JOINT) 72.61 69.91 71.24 61.18 56.43 58.71 56.17 54.23 55.18 61.71

This work 76.12 69.38 72.59 65.64 56.01 60.44 59.44 52.98 56.02 63.02

Table 3: Comparison of this work with other state-of-the-art approaches on the test set.

and Stoyanov and Eisner (2012) train a classi-
fier to do this with a structured perceptron algo-
rithm. Entity-level information has also been suc-
cessfully incorporated in coreference systems us-
ing joint inference (McCallum and Wellner, 2003;
Culotta et al., 2006; Poon and Domingos, 2008;
Haghighi and Klein, 2010), but these approaches
do not directly learn parameters tuned so the sys-
tem runs effectively at test time, while our imita-
tion learning approach does.

Imitation learning has been employed to train
coreference resolvers on trajectories of decisions
similar to those that would be seen at test-time by
Daumé et al. (2005) and Ma et al. (2014). Other
works use structured perceptron models for the
same purpose (Stoyanov and Eisner, 2012; Fer-
nandes et al., 2012; Björkelund and Kuhn, 2014).
These systems all heuristically determine which
actions are desirable for the system to perform.
In contrast, our approach directly computes a cost
for actions based on coreference evaluation met-
rics. This means our system directly learns which
actions lead to good clusterings instead of which
look good locally according to a heuristic. Fur-
thermore, the costs provide our system a measure
of the severity of a mistake, which we argue is very
beneficial for the coreference task.

Our model stacking approach further distin-
guishes this work by providing a new way of defin-
ing cluster-level features. The majority of useful
features for coreference systems operate on pairs
of mentions (in one of our experiments we show
the addition of classic entity-level features does
not improve our system), but incremental corefer-
ence systems must make decisions involving many
mention pairs. Other incremental coreference sys-
tems either incorporate features from a single pair
(Stoyanov and Eisner, 2012) or average features
across all pairs in the involved clusters (Ma et

al., 2014). Our system instead combines informa-
tion from the involved mention pairs in a variety
of ways with with higher order features produced
from the scores of mention pair models.

6 Conclusion

We introduced a new approach to coreference res-
olution that trains an entity-centric system using
the scores produced by mention pair models as
features. The brunt of task-specific learning oc-
curs within the mention pair models, which are
trained in a straightforward supervised manner.
Guided by the pairwise scores, our entity-centric
agent then learns an effective procedure for build-
ing up coreference clusters incrementally, using
previous decisions to inform later ones. The agent
benefits from using multiple mention pair mod-
els designed to capture different aspects of coref-
erence. Experiments show that the agent, which
learns how to coordinate mention pair scores, out-
performs the commonly used best-first method.
We evaluate our final system on the English por-
tion of the CoNLL 2012 Shared Task and report a
significant improvement over the current state of
the art.
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Abstract

We introduce a simple, non-linear
mention-ranking model for coreference
resolution that attempts to learn distinct
feature representations for anaphoricity
detection and antecedent ranking, which
we encourage by pre-training on a pair
of corresponding subtasks. Although we
use only simple, unconjoined features, the
model is able to learn useful representa-
tions, and we report the best overall score
on the CoNLL 2012 English test set to
date.

1 Introduction

One of the major challenges associated with re-
solving coreference is that in typical documents
the number of mentions (syntactic units capable
of referring or being referred to) that are non-
anaphoric – that is, that are not coreferent with
any previous mention – far exceeds the number
of mentions that are anaphoric (Kummerfeld and
Klein, 2013; Durrett and Klein, 2013).

This preponderance of non-anaphoric mentions
makes coreference resolution challenging, partly
because many basic coreference features, such as
those looking at head, number, or gender match
fail to distinguish between truly coreferent pairs
and the large number of matching but nonethe-
less non-coreferent pairs. Indeed, several au-
thors have noted that it is difficult to obtain good
performance on the coreference task using sim-
ple features (Lee et al., 2011; Fernandes et al.,
2012; Durrett and Klein, 2013; Kummerfeld and
Klein, 2013; Björkelund and Kuhn, 2014) and, as
a result, state-of-the-art systems tend to use lin-
ear models with complicated feature conjunction
schemes in order to capture more fine-grained in-
teractions. While this approach has shown suc-
cess, it is not obvious which additional feature

conjunctions will lead to improved performance,
which is problematic as systems attempt to scale
with new data and features.

In this work, we propose a data-driven
model for coreference that does not require pre-
specifying any feature relationships. Inspired by
recent work in learning representations for nat-
ural language tasks (Collobert et al., 2011), we
explore neural network models which take only
raw, unconjoined features as input, and attempt to
learn intermediate representations automatically.
In particular, the model we describe attempts to
create independent feature representations useful
for both detecting the anaphoricity of a mention
(that is, whether or not a mention is anaphoric) and
ranking the potential antecedents of an anaphoric
mention. Adequately capturing anaphoricity in-
formation has long been thought to be an impor-
tant aspect of the coreference task (see Ng (2004)
and Section 7), since a strong non-anaphoric sig-
nal might, for instance, discourage the erroneous
prediction of an antecedent for a non-anaphoric
mention even in the presence of a misleading head
match.

We furthermore attempt to encourage the learn-
ing of the desired feature representations by pre-
training the model’s weights on two correspond-
ing subtasks, namely, anaphoricity detection and
antecedent ranking of known anaphoric mentions.

Overall our best model has an absolute gain of
almost 2 points in CoNLL score over a similar
but linear mention-ranking model on the CoNLL
2012 English test set (Pradhan et al., 2012), and
of over 1.5 points over the state-of-the-art coref-
erence system. Moreover, unlike current state-of-
the-art systems, our model does only local infer-
ence, and is therefore significantly simpler.

1.1 Problem Setting

We consider here the mention-ranking (or
“mention-synchronous”) approach to coreference
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resolution (Denis and Baldridge, 2008; Bengtson
and Roth, 2008; Rahman and Ng, 2009), which
has been adopted by several recent coreference
systems (Durrett and Klein, 2013; Chang et al.,
2013). Such systems aim to identify whether a
mention is coreferent with an antecedent mention,
or whether it is instead non-anaphoric (the first
mention in the document referring to a particular
entity). This is accomplished by assigning a score
to the mention’s potential antecedents as well as
to the possibility that it is non-anaphoric, and
then predicting the greatest scoring option. We
furthermore assume the more realistic “system
mention” setting, where it is not known a priori
which mentions in a document participate in
coreference clusters, and so (all) mentions must
be automatically extracted, typically with the aid
of automatically detected parse trees.

Formally, we denote the set of automatically de-
tected mentions in a document by X . For a men-
tion x∈X , let A(x) denote the set of mentions
appearing before x; we refer to this set as x’s po-
tential antecedents. Additionally let the symbol
ε denote the empty antecedent, to which we will
view x as referring when x is non-anaphoric.1 De-
noting the set A(x) ∪ {ε} by Y(x), a mention-
ranking model defines a scoring function s(x, y) :
X × Y → R, and predicts the antecedent of x to
be y∗ = arg maxy∈Y(x) s(x, y).

It is common to be quite liberal when extracting
mentions, taking, essentially, every noun phrase or
pronoun to be a candidate mention, so as not to
prematurely discard those that might be coreferent
(Lee et al., 2011; Fernandes et al., 2012; Chang
et al., 2012; Durrett and Klein, 2013). For in-
stance, the Berkeley Coreference System (herein
BCS) (Durrett and Klein, 2013), which we use
for mention extraction in our experiments, recov-
ers approximately 96.4% of the truly anaphoric
mentions in the CoNLL 2012 training set, with
an almost 3.5:1 ratio of non-anaphoric mentions
to anaphoric mentions among the extracted men-
tions.

2 Mention Ranking Models

The structural simplicity of the mention-ranking
framework puts much of the burden on the scor-
ing function s(x, y). We begin by consider-
ing mention-ranking systems using linear scoring

1We make this stipulation for modeling convenience; it is
not intended to reflect any linguistic fact.

functions. In the next section, we will extend these
models to operate over learned non-linear repre-
sentations.

Linear mention-ranking models generally uti-
lize the following scoring function

slin(x, y) , wTφ(x, y) ,

where φ :X ×Y→Rd is a pairwise feature func-
tion defined on a mention and a potential an-
tecedent, and w is a learned parameter vector.

To add additional flexibility to the model, lin-
ear mention ranking models may duplicate indi-
vidual features in φ, with one version being used
when predicting an antecedent for x, and another
when predicting that x is non-anaphoric (Durrett
and Klein, 2013). Such a scheme effectively gives
rise to the following piecewise scoring function

slin+(x, y) ,
{
uT
[
φa(x)
φp(x,y)

]
if y 6= ε

vTφa(x) if y = ε ,

where φa : X → Rda is a feature function defined
on a mention and its context, φp : X × Y → Rdp

is a pairwise feature function defined on a mention
and a potential antecedent, and parameters u and
v replacew. Above, we have made an explicit dis-
tinction between pairwise features (φp) and those
strictly on x and its context (φa), and moreover as-
sumed that our features need not examine potential
antecedents when predicting y= ε.

We refer to the basic, unconjoined features used
for φa and φp as raw features. Figure 2 shows
two versions of these features, a base set BASIC

and an extended set BASIC+. The BASIC set are
the raw features used in BCS, and BASIC+ in-
cludes additional raw features used in other recent
coreference sytems. For instance, BASIC+ addi-
tionally includes features suggested by Recasens
et al. (2013) to be useful for anaphoricity, such
as the number of a mention, its named entity sta-
tus, and its animacy, as well as number and gen-
der information. We additionally include bilexi-
cal head features, which are used in many well-
performing systems (for instance, that of Fernan-
des et al. (2012)).

2.1 Problems with Raw Features
Many authors have observed that, taken individu-
ally, raw features tend to not be particularly pre-
dictive for the coreference task. We examine
this phenomenon empirically in Figure 1. These
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Figure 1: Two histograms illustrating the predictive ability
of raw (unconjoined) features per feature occurrence: (top)
mention-context features from φa as independent predictors
of anaphoricity (y 6= ε), and (bottom) antecedent-mention
features from φp as independent predictors of coreferent
mentions. Very few raw features are strong indicators of ei-
ther anaphoricity or an antecedent match. Data taken from
the CoNLL development set.

graphs show that the vast majority of individual
features do not give a strong positive signal either
of anaphoricity or for an antecedent match.

To address this issue, state-of-the-art mention-
ranking systems often rely on manual or otherwise
induced conjunction schemes to capture specific
feature interactions. Durrett and Klein (2013),
for instance, conjoin all raw features in φa with
the type of the mention x, and all raw features in
φp with the types of the current mention and an-
tecedent. For these purposes, the type of a mention
is either “nominal”, “proper”, or a canonicaliza-
tion of the pronoun if it is a pronominal mention.
Fernandes et al. (2012) and Björkelund and Kuhn
(2014) use an automatic but complicated scheme
to induce conjunctions by first extracting feature
templates from a separately trained decision tree,
and then doing greedy forward selection among
the templates. These conjunctions add some non-
linearity to the scoring function while still main-
taining a tractable, though large, feature set.

3 Learning Features for Ranking

As an alternative to the aforementioned feature
conjunction schemes, we consider learning feature
representations in order to better capture relevant
aspects of the task. Representation learning af-
fords the model more flexibility in exploiting fea-
ture interactions, although it can make the under-
lying training problem more difficult.

Mention Features (φa)
Feature Value Set

Mention Head V
Mention First Word V
Mention Last Word V
Word Preceding Mention V
Word Following Mention V
# Words in Mention {1, 2, . . .}
Mention Synt. Ancestry see BCS (2013)
Mention Type T

+ Mention Governor V
+ Mention Sentence Index {1, 2, . . .}
+ Mention Entity Type NER tags
+ Mention Number {sing.,plur.,unk}
+ Mention Animacy {an.,inan.,unk}
+ Mention Gender {m,f,neut.,unk}
+ Mention Person {1,2,3,unk}

Pairwise Features (φp)
Feature Value Set

BASIC features on Mention see above
BASIC features on Antecedent see above
Mentions between Ment., Ante. {0. . . 10}
Sentences between Ment., Ante. {0. . . 10}
i-within-i {T,F}
Same Speaker {T,F}
Document Type {Conv.,Art.}
Ante., Ment. String Match {T,F}
Ante. contains Ment. {T,F}
Ment. contains Ante. {T,F}
Ante. contains Ment. Head {T,F}
Mention contains Ante. Head {T,F}
Ante., Ment. Head Match {T,F}
Ante., Ment. Synt. Ancestries see above

+ BASIC+ features on Ment. see above
+ BASIC+ features on Ante. see above
+ Ante., Ment. Numbers see above
+ Ante., Ment. Genders see above
+ Ante., Ment. Persons see above
+ Ante., Ment., Entity Types see above
+ Ante., Ment. Heads see above
+ Ante., Ment. Types see above

Figure 2: Features used for φa(x) and φp(x, y). The ’+’
indicates a feature is in BASIC+ feature set. V denotes the
training vocabulary, and T denotes the set of mention types,
viz., {nominal,proper} ∪ {canonical pronouns}, as defined
in BCS. Conv. and Art. abbreviate conversation and article
(resp.). Lexicalized features occurring fewer than 20 times
in the training set back off to part-of-speech; bilexical heads
occurring fewer than 10 times back off to an indicator feature.
Animacy information is taken from a list and rules used in the
Stanford Coreference system (Lee et al., 2013).

3.1 Model

We use a neural network to define our model as
an extension to the mention-ranking model intro-
duced in Section 2. We consider in particular the
scoring function:

s(x, y) ,
{
uTg(

[
ha(x)
hp(x,y)

]
) + u0 if y 6= ε

vTha(x) + v0 if y = ε ,
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where ha and hp are feature representations, non-
linear functions of the features φa and φp (respec-
tively), and g is a function of these representa-
tions. In particular, we define

ha(x) , tanh(W aφa(x) + ba)

hp(x, y) , tanh(W pφp(x, y) + bp) ,

and we take g to either be the identity func-
tion, in which case the above model is analo-
gous to slin+ but defined over non-linear fea-
ture representations, or to be an additional hidden
layer: g(

[
ha(x)
hp(x,y)

]
) = tanh(W

[
ha(x)
hp(x,y)

]
+ b).

For ease of exposition, we will refer to these two
settings of g as g1 and g2 (respectively) in what
follows. As we will see below, both settings lead
to comparable performance, but to a different error
distribution.

In either case, by defining the functions ha and
hp, we allow the model to learn representations
of the input features φa and φp. The benefit of
the added non-linearities is that, in theory, it is no
longer necessary to explicitly specify feature con-
junctions, since the model may learn them auto-
matically if necessary. Accordingly, for this model
we use only φa and φp consisting of the raw fea-
tures in Figure 2 without conjunctions. Any inter-
action between these features must be learned by
the feature representations hp and ha.

3.2 Training

We can directly train our model using back-
propagation. To specify the training problem, we
first define notation for the training objective.

Define the set C(x) to contain just the mentions
in A(x) that are coreferent with x. We then define

C′(x) =

{
C(x) if x is anaphoric
{ε} otherwise .

Finally, let y`n = arg maxy∈C′(xn) s(xn, y) be the
highest scoring correct antecedent of xn, which
may be ε. (Thus, following recent work (Yu and
Joachims, 2009; Fernandes et al., 2012; Chang et
al., 2013; Durrett and Klein, 2013), we view each
mention as having a “latent antecedent”.2) We
train to minimize the regularized, slack-rescaled,

2Note that this renders the objectives of even models with
a linear scoring function non-convex.

latent-variable loss3 given by:

L(θ) =

N∑
n=1

max
ŷ∈Y(xn)

∆(xn, ŷ)(1 + s(xn, ŷ)−s(xn, y`n))

+ λ||θ||1,
where ∆ is a mistake-specific cost function,
which is 0 when ŷ ∈C′(xn). Above, we
use θ to refer to the full set of parameters
{W ,u,v,W a,W p, ba, bp}.

For experiments, we define ∆ to take on differ-
ent costs for the three kinds of mistakes possible
in a coreference task, as follows:

∆(x, ŷ) =

{
α1 if ŷ 6= ε ∧ ε ∈ C′(x)

α2 if ŷ = ε ∧ ε 6∈ C′(x)

α3 if ŷ 6= ε ∧ ŷ 6∈ C′(x) .

The αi determine the trade-off between these mis-
takes (and thus precision and recall). Adopting the
terminology of BCS, we refer to these mistakes
as “false link” (FL), “false new” (FN), and “wrong
link” (WL), respectively.

4 Representations from Subtasks

While we could train our full model directly, it is
known to be difficult to train high performing non-
convex neural-network models from a random ini-
tialization (Erhan et al., 2010). In order to over-
come the problems associated with training from
this setting, and to learn feature representations
useful for the full coreference task, we pretrain
subparts of the model on the subtasks targeting
the desired feature representations. We then train
the entire model on the full coreference task (from
the pre-trained initializations). As we will see,
the pre-training scheme outlined below helps the
model achieve improved performance.

The proposed pre-training scheme involves
learning the parameters associated with ha and hp

using two natural subtasks: anaphoricity detection
and antecedent ranking. In particular, we (1) train
ha on the task of predicting whether a particular
mention is anaphoric or not, and (2) train hp on
the task of predicting the antecedent of mentions
known to be anaphoric.

4.1 Anaphoricity Detection
For the first subtask we attempt to predict whether
a mention is anaphoric or not based only on its

3Previous work divides between log-loss and margin loss.
We use the latter because gradient updates (within backprop)
for the non-probabilistic objectives only involve terms relat-
ing to ŷ and y`

n, and are therefore faster.
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Feat. (Conj.) Model Anaphoric Ante
P R F1 Acc.

BASIC (N) Lin. 74.15 74.20 74.18 69.10
BASIC (Y) Lin. 73.98 75.04 74.51 79.76
BASIC (N) NN 75.30 75.36 75.33 81.65

BASIC+ (N) Lin. 74.14 74.71 74.43 74.02
BASIC+ (Y) Lin. 74.24 75.39 74.81 80.44
BASIC+ (N) NN 75.84 76.02 75.93 82.86

Table 1: Performance of the two subtasks on the CoNLL 2012
development set by feature set and model type. “Conj.” indi-
cates whether conjunctions are used. The linear anaphoric
system is an SVM (LibLinear implementation (Fan et al.,
2008)), and the linear antecedent system is a linear model
with the margin-based objective.

local context.4 Anaphoricity detection in vari-
ous forms has been used as an initial step in sev-
eral coreference systems (Ng and Cardie, 2002;
Bengtson and Roth, 2008; Rahman and Ng, 2009;
Björkelund and Farkas, 2012), and the related
question of whether a mention can be determined
to be a singleton or not has been explored recently
by Recasens et al. (2013), Ma et al. (2014), and
others.5

Formally, let tn ∈ {−1, 1} indicate whether ε ∈
C′(xn) or not (respectively). That is, tn = 1 if and
only if xn is anaphoric. Define the subtask scoring
function sa : X → R as

sa(x) , va
Tha(x) + ν0 ,

where the vector va and the bias ν0 are specific to
this subtask and are discarded after pre-training.

We train this model to minimize the following
slack-rescaled objective

La(θa) =
N∑
n=1

∆a(tn)[1− tn sa(xn)]+ + λ||θa||1,

where ∆a is a class-specific cost used to help en-
courage anaphoric decisions given the imbalanced
data set, and θa = {va,W a, ba} are the parame-
ters of the subtask.

4.2 Antecedent Ranking
For the second subtask, antecedent ranking, we
predict the antecedent for mentions known a pri-
ori to be anaphoric. This subtask is inspired by

4While performance on this subtask can in fact be im-
proved further by looking at previous mentions, features
learned in this way led to inferior performance on the full
task.

5Note that singleton detection is slightly different from
anaphoricity detection, since a mention can be non-anaphoric
but not a singleton if it is the first mention in a cluster.

Figure 3: Visualization of the representation matrix W p.
A subset of the raw features were manually grouped into
five classes indicating: full lexical match [F], head match
[H], mention/sentence distance [D] (near versus far), gen-
der/number match [G], and type [P] (pronoun versus other).
The heat map illustrates 10-columns of W p as a weighted
combination of these classes, roughly illustrating the com-
bination of raw features required for this dimension of the
representation.

the “gold mention” version of the coreference task.
Systems designed for this task are forced to handle
many fewer non-anaphoric mentions and can often
successfully utilize richer feature representations.

The setup for this task is similar to the full
coreference problem, except that we discard any
mention xn such that ε ∈ C′(xn). Thus, we define
the pairwise scoring function sp : X × Y → R as

sp(x, y) , up
Thp(x, y) + υ0 .

As before, up and υ0 are discarded after train-
ing for this subtask, but we keep the rest of the
parameters. For training, we use an analogous
latent-variable loss function to that used for the
full coreference task, except we replace C′ with
C, and the cost ∆(x, ŷ) is always 1 (when it is
nonzero).

4.3 Subtask Performance
As a preliminary experiment, we train models for
these two subtasks using both the BASIC and BA-
SIC+ raw features. Table 1 shows the results. For
the first subtask, experiments look at the preci-
sion, recall, and F1 score of predicting anaphoric
mentions on the CoNLL 2012 development set.
As a baseline we use an L1-regularized SVM
implemented using LibLinear (Fan et al., 2008),
both using raw features and using features con-
joined according to the BCS scheme. For the sec-
ond subtask, experiments look at the accuracy of
the model in predicting the correct antecedent on
known anaphoric mentions. As a baseline we use
a linear mention ranking model, with and without
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conjunctions, trained using the same margin-based
loss.

In both subtasks, the neural network model
performs quite well, significantly better than the
unconjoined baselines and better than the model
trained with manually conjoined features. We pro-
vide a visual representation of the antecedent rank-
ing features learned in Figure 3. While the im-
proved subtask performance does not imply better
performance on the full coreference task, it shows
that model can learn useful feature representations
with only raw input features.

5 Coreference Experiments

Our experiments examine performance as com-
pared with other coreference systems, as well as
the effect of features, pre-training, and model ar-
chitecture. We also perform a qualitative compar-
ison of our model with the analogous linear model
on some challenging non-anaphoric cases.

5.1 Methods

All experiments use the CoNLL 2012 English
dataset (Pradhan et al., 2012), which is based on
the OntoNotes corpus (Hovy et al., 2006). The
data set contains 3,493 documents consisting of
1.6 million words. We use the standard experi-
mental split with the training set containing 2,802
documents and 156K annotated mentions, the de-
velopment set containing 343 documents and 19K
annotated mentions, and the test set containing
348 documents and 20K annotated mentions. For
all experiments, we use BCS (Durrett and Klein,
2013) to extract system mentions and to compute
some of the features.

For training, we minimize the loss described
above using the composite mirror descent Ada-
Grad update (Duchi et al., 2011) with docu-
ment sized mini-batches.6 We tuned the Ada-
Grad learning rate and regularization parameters
using a grid search over possible learning rates
η ∈{0.001, 0.002, 0.01, 0.02, 0.1, 0.2} and over
regularization parameters λ∈{10−6, . . . , 10−1}.
For the full coreference task, we use a differ-
ent learning rate for the pre-trained weights and
for the second-layer weights, using η1 = 0.1 and
η2 = 0.001, respectively, and λ= 10−6. When ini-
tializing weight-matrices that were not pre-trained

6In preliminary experiments we also used Nesterov’s ac-
celerated gradient (Nesterov, 1983), but found AdaGrad to
perform better.

we used the sparse initialization technique pro-
posed by Sutskever et al. (2013). For all experi-
ments we use the cost-weights α = 〈0.5, 1.2, 1〉
in defining ∆.

For the anaphoricity representations the ma-
trix dimensions used are W a ∈R128×da , and for
the pairwise representations the matrix dimensions
used are W p ∈R700×dp . In the g2 model, the
outer matrix dimensions are W ∈R128×(dp+da).
With the BASIC+ features, dp and da come out
to be slightly less than 106 and 104, respectively,
with bilexical head features accounting for the vast
majority of dp.7 We tuned all hyper-parameters (as
well as those of baseline systems) on the develop-
ment set.

We use the CoNLL 2012 scoring script v8.018

(Pradhan et al., 2014; Luo et al., 2014), which
scores based on 3 metrics, including MUC (Vilain
et al., 1995), CEAFe (Luo, 2005), and B3 (Bagga
and Baldwin, 1998), as well as the CoNLL score,
which is the arithmetic mean of the 3 metrics.

Code implementing our models is available
at https://github.com/swiseman/nn_
coref. The system trains in time comparable to
that of linear systems, mainly because we use only
raw features and sparse margin-based gradient up-
dates.

5.2 Results

Our main results are shown in Table 2. This table
compares the performance of our system with the
performance reported by several other state-of-the
art systems on the CoNLL 2012 English corefer-
ence test set. Our full models achieve the best F1

score across two of the three metrics and have the
best aggregate (CoNLL) score, with an improve-
ment of over 1.5 points over the best reported re-
sult, and of almost 2 points over the best mention-
ranking system. Our F1 improvements on all three
metrics are significant (p < 0.05 under the boot-
strap resample test (Koehn, 2004)) as compared
with both Björkelund and Kuhn (2014), and Dur-
rett and Klein (2014), the two most recent, state-
of-the-art systems.

Since our full models use some additional raw
features (although an order of magnitude fewer
total features than the comparable conjunction-

7Note that the BCS conjunction scheme, for instance, ap-
plied to our raw features gives a dp and da that are over an
order of magnitude larger.

8http://conll.github.io/
reference-coreference-scorers/
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System MUC B3 CEAFe

P R F1 P R F1 P R F1 CoNLL

BCS (2013) 74.89 67.17 70.82 64.26 53.09 58.14 58.12 52.67 55.27 61.41
Prune&Score (2014) 81.03 66.16 72.84 66.90 51.10 57.94 68.75 44.34 53.91 61.56
B&K (2014) 74.30 67.46 70.72 62.71 54.96 58.58 59.40 52.27 55.61 61.63
D&K (2014) 72.73 69.98 71.33 61.18 56.60 58.80 56.20 54.31 55.24 61.79
This work (g2) 76.96 68.10 72.26 66.90 54.12 59.84 59.02 53.34 56.03 62.71
This work (g1) 76.23 69.31 72.60 66.07 55.83 60.52 59.41 54.88 57.05 63.39

Table 2: Results on CoNLL 2012 English test set. We compare against recent state-of-the-art systems, including (in order)
Durrett and Klein (2013), Ma et al. (2014), Björkelund and Kuhn (2014), and Durrett and Klein (2014) (rescored with the v8.01
scorer). F1 gains are significant (p < 0.05 under the bootstrap resample test (Koehn, 2004)) compared with both B&K and
D&K for all metrics.

Model Features MUC B3 CEAFe CoNLL

Lin.
BASIC

70.44 59.10 55.57 61.71
NN (g2) 71.59 60.56 57.45 63.20
NN (g1) 71.86 60.90 57.90 63.55

Lin.
BASIC+

70.92 60.05 56.39 62.45
NN (g2) 72.68 61.70 58.32 64.23
NN (g1) 72.74 61.77 58.63 64.38

Table 3: F1 performance comparison between state-of-the-art
linear mention-ranking model (Durrett and Klein, 2013) and
our full models on CoNLL 2012 development set for different
feature sets.

based linear model), we are interested in what part
of the improvement in performance comes from
features rather than modeling power. Table 3 com-
pares the full model to BCS, a system effectively
using the slin+ scoring function together with a
manual conjunction scheme, on both BASIC and
BASIC+ features. While our models outperform
BCS in both cases, we see that as we add more
features (as in the BASIC+ set), the performance
gap between our model and the linear system be-
comes even more pronounced.

We may also wonder whether the architecture
represented by our scoring function, where the in-
termediate representations ha and hp are sepa-
rated in the first layer, is necessary for these re-
sults. We accordingly compare with the fully
connected versions of these two models (which
are equivalent to 1 and 2 layer multi-layer per-
ceptrons) using the BASIC+ features in Table 4.9

There, we also evaluate the effect of pre-training
on these models by comparing with the results of
training from a random initialization. We see that
while even randomly initialized models are capa-
ble of excellent performance, pre-training is bene-
ficial, especially for g1.

9We also experimented with bilinear models both with
and without non-linearities; these were also inferior.

Model MUC B3 CEAFe CoNLL

Fully Conn. 1 Layer 71.80 60.93 57.51 63.41
Fully Conn. 2 Layer 71.77 60.84 57.05 63.22
g1 + RI 71.92 61.06 57.59 63.52
g1 + PT 72.74 61.77 58.63 64.38
g2 + RI 72.31 61.79 58.06 64.05
g2 + PT 72.68 61.70 58.32 64.23

Table 4: Comparison of performance (in F1 score) of vari-
ous models on CoNLL 2012 development set using BASIC+
features. “PT” and “RI” refer to pretraining and random ini-
tialization respectively. “Fully Conn.” refers to baseline fully
connected networks. See text for further model descriptions.

6 Discussion

We attempt to gain insight into our model’s er-
rors using using two different error breakdowns.
In Table 5 we show the errors as reported by the
analysis tool of Kummerfeld and Klein (2013). In
Table 6 we show a more fine-grained breakdown
inspired by a similar analysis in Durrett and Klein
(2013). In the latter table, we categorize the er-
rors made by our system on the CoNLL 2012 de-
velopment data in terms of (1) whether or not the
mention has a head match with a previously oc-
curring mention in the document, unless it is a
pronominal mention, which we treat separately,
(2) in terms of the status of the mention in the
gold clustering, namely, singleton, first-in-cluster,
or anaphoric, and (3) in terms of the type of error
made (which, as discussed in Section 3, are one of
FL, FN, and WL).

We note that the two models have slightly dif-
ferent error profiles, with g1 being slightly better
at recall and g2 being slightly better at precision.
Indeed, we see from Table 6 that the two mod-
els make a comparable number of total errors (g1

makes only 17 fewer errors overall). The increased
precision of the g2 model is presumably due to the
second layer around ha and hp in g2 allowing for
antecedent evidence to interact with anaphoricity
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Error Type BCS NN (g1) NN (g2)

Conflated Entities 1603 1434 1371
Extra Mention 0651 0568 0529
Extra Entity 0655 0623 0561

Divided Entity 1989 1837 1835
Missing Mention 1004 0997 1005
Missing Entity 1070 1026 1114

Table 5: Absolute error counts from the coreference analysis
tool of Kummerfeld and Klein (2013). The upper set roughly
corresponds to the precision and the lower to the recall of the
coreference clusters produced by the model.

NN (g1) Singleton 1st in clust. Anaphoric
FL # FL # FN + WL #

HM 817 08.2K 147 0.8K 700 + 318 4.7K
No HM 086 19.8K 041 2.4K 677 + 59 1.0K
Pron. 948 02.6K 257 0.5K 434 + 875 7.3K

NN (g2) Singleton 1st in clust. Anaphoric
FL # FL # FN + WL #

HM 770 08.2K 130 0.8K 803 + 306 4.7K
No HM 073 19.8K 039 2.4K 699 + 52 1.0K
Pron. 896 02.6K 249 0.5K 456 + 869 7.3K

Table 6: Errors made by NN (g1) (top) and NN (g2) (bottom)
on CoNLL 2012 English development data. Rows correspond
to (1) mentions with a (previous) head match (HM), that is,
mentions x such thatA(x) contains another mention with the
same head word, (2) with no previous head match (no HM),
and (3) to pronominal mentions, respectively. The 3 column
groups correspond to singleton, first-in-cluster, and anaphoric
mentions (resp.), as determined by the gold clustering, with
the number and type of errors on the left and the total number
of mentions in the category (#) on the right.

evidence in a more complicated way. Ultimately,
however, coreference systems operating over sys-
tem mentions are already biased toward precision,
and so the increased precision of g2 is not as help-
ful as the increased recall of g1 in the final CoNLL
score.

In further analysis we found that many of the
correct predictions made by the g2 model not
made by g1 and the linear model involve predict-
ing non-anaphoric even in the presence of highly
misleading antecedent features like head-match.
Figure 4 shows some examples of mentions with
previous head matches that the linear system pre-
dicted as anaphoric and that our system correctly
identifies as non-anaphoric.

We illustrate how the features in Figure 2 might
be useful in such cases by considering the first
example in Figure 4. There, a comma follows
”the Nika TV company” in the text (and is picked
up by the “word following” feature), perhaps in-
dicating an appositive, which makes anaphoric-
ity unlikely. The model can also learn that the

Non-Anaphoric (x) Spurious Antecedent (y)

the Nika TV company an independent company
Lexus sales GM ’s domestic car sales
The storage area the harbor area
the Budapest location Radio Free Europe ’s new location
the synagogue the synagogue too or something
the equity market The junk market
their silver coin one silver coin
the international school The Hong Kong elementary school
the 1970s the early 1970s
the 2003 season the 2001 season

Figure 4: Example mentions x that were correctly marked
non-anaphoric by g2, but incorrectly marked anaphoric with
y as an antecedent by the BASIC+ linear model. These ex-
amples highlight the difficult case where there is a spurious
head-match between non-coreferent pairs. See text for fur-
ther details.

”company-company” head match is often mislead-
ing, and, in general, distance features may also
rule out head matches. Note that while these fea-
tures on their own may be more or less correlated
with a mention being non-anaphoric, the model
learns to combine them in a predictive way.

6.1 Further Improving Coreference Systems

Table 6 also gives a sense of where coreference
systems such as ours need to improve. It is
first important to note that the case of resolving
an anaphoric mention that has no previous head
matches (e.g., identifying that “the team” and “the
New York Giants” are coreferent), which is of-
ten taken to be one of the major challenges fac-
ing coreference systems because it presumably
requires semantic information, is not the largest
source of errors. In fact, we see from Table 6
(second row, third column in both sub-tables) that
while these cases do indeed account for a substan-
tial percentage of errors, we make hundreds more
errors predicting singleton pronominal mentions
to be anaphoric (in the case of g1) and on incor-
rectly linking anaphoric pronominal mentions (in
the case of g2). Further analysis indicates that
these errors are almost entirely related to incor-
rectly linking pleonastic pronouns, such as “it” or
“you,” and that moreover the incorrectly predicted
antecedent for these pleonastic pronouns is almost
always (another instance of) the same pronoun.

That these pleonastic cases are so problematic
is interesting when considered against the back-
drop of the inference strategies typically employed
by coreference systems, which we briefly men-
tion here but discuss more fully in the next sec-
tion. Currently, coreference systems divide be-
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tween those using “local” models, which choose
antecedents for potentially anaphoric mentions in-
dependently of each other, and “non-local” mod-
els, which make predictions that take into ac-
count predictions made for previous mentions, and
perhaps even attempt to jointly predict all men-
tions in a document. While our model is en-
tirely local, other recent high performing sys-
tems, such as that of Björkelund and Kuhn (2014),
are not. One might suspect, then, that “non-
local” inference might allow us to capture the fact
that, for instance, a cluster of coreferent mentions
should generally not consist solely of pronouns,
and thereby avoid predicting (identical) pronomi-
nal antecedents for pleonastic pronouns.

As it turns out, however, almost 30% of the
anaphoric pronominal mentions in the CoNLL de-
velopment data participate in pronoun-only clus-
ters (primarily in the context of broadcast or tele-
phone conversations), which suggests that such a
“non-local” rule may not be particularly useful,
though further experiments are required. It is also
worth noting that a suitably modified loss function
may also be able to prevent excessive pronoun-
pronoun linking, even in a local model.

7 Related Work

There is a voluminous literature on machine learn-
ing approaches to coreference resolution, effec-
tively beginning with Soon et al. (2001). The re-
cent introduction of the CoNLL datasets (Pradhan
et al., 2012) has spurred research that takes ad-
vantage of more fine-grained features and richer
models (Björkelund and Farkas, 2012; Chang et
al., 2012; Durrett and Klein, 2013; Chang et al.,
2013; Björkelund and Kuhn, 2014; Ma et al.,
2014). Of these approaches, our model is related
to the mention-ranking approaches (Bengtson and
Roth, 2008; Denis and Baldridge, 2008; Rahman
and Ng, 2009; Durrett and Klein, 2013; Chang
et al., 2013), as opposed to those that focus on
non-local, structured prediction (McCallum and
Wellner, 2003; Culotta et al., 2006; Haghighi and
Klein, 2010; Fernandes et al., 2012; Stoyanov and
Eisner, 2012; Björkelund and Farkas, 2012; Wick
et al., 2012; Björkelund and Kuhn, 2014; Durrett
and Klein, 2014).

In motivation, our work is most similar to that of
Ng (2004), who notes that anaphoricity informa-
tion is useful within the broader coreference task,
and who accordingly attempts to “globally” opti-

mize performance based on this information, as
well as that of Denis et al. (2007), who do joint
decoding of anaphoricity and coreference predic-
tions using ILP. Both of these works are taken to
contrast with the more popular approach of do-
ing an initial non-anaphoric pruning step (Ng and
Cardie, 2002; Rahman and Ng, 2009; Recasens et
al., 2013; Lee et al., 2013). In contrast, we jointly
learn non-linear functions of anaphoricity and an-
tecedent features, rather than tune a threshold,
or jointly decode based on independently trained
classifiers (as in Denis et al. (2007)). In a simi-
lar vein, several authors have also proposed using
the output of an anaphoricity classifier as a feature
in a downstream coreference system (Ng, 2004;
Bengtson and Roth, 2008). In our framework we
(re)learn features jointly with the full task, after
a pre-training scheme that targets anaphoricity as
well antecedent representations.

There has also been some work on automat-
ically inducing feature conjunctions for use in
coreference systems (Fernandes et al., 2012; Las-
salle and Denis, 2013), though the approach we
present here is somewhat simpler, and unlike that
of Lassalle and Denis (2013) is designed for use
on system rather than gold mentions.

There has been much interest recently in us-
ing neural networks for classic natural language
tasks such as tagging and semantic role labeling
Collobert et al. (2011), sentiment analysis (Socher
et al., 2011; Socher et al., 2012), prepositional
phrase attachment (Belinkov et al., 2014) among
others. These systems often use some form of pre-
training for initialization, often word-embeddings
learned from external tasks. However, there has
been little work of this form for coreference reso-
lution.

8 Conclusion

We have presented a simple, local model ca-
pable of learning feature representations useful
for coreference-related subtasks, and of thereby
achieving state-of-the-art performance. Because
our approach automatically learns intermediate
representations given raw features, directions for
further research might alternately explore includ-
ing additional (perhaps semantic) raw features,
as well as developing loss functions that further
discourage learning representations that allow for
common errors (such as those involving pleonastic
pronouns).
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Abstract

We propose a cross-lingual framework
for learning coreference resolvers for
resource-poor target languages, given a re-
solver in a source language. Our method
uses word-aligned bitext to project infor-
mation from the source to the target. To
handle task-specific costs, we propose a
softmax-margin variant of posterior regu-
larization, and we use it to achieve robust-
ness to projection errors. We show empir-
ically that this strategy outperforms com-
petitive cross-lingual methods, such as
delexicalized transfer with bilingual word
embeddings, bitext direct projection, and
vanilla posterior regularization.

1 Introduction

The goal of coreference resolution is to find the
mentions in text that refer to the same discourse
entity. While early work focused primarily on En-
glish (Soon et al., 2001; Ng and Cardie, 2002),
efforts have been made toward multilingual sys-
tems, this being addressed in recent shared tasks
(Recasens et al., 2010; Pradhan et al., 2012). How-
ever, the lack of annotated data hinders rapid sys-
tem deployment for new languages. Unsupervised
methods (Haghighi and Klein, 2007; Ng, 2008)
and rule-based approaches (Raghunathan et al.,
2010) avoid this data annotation bottleneck, but
they often require complex generative models or
expert linguistic knowledge.

We propose cross-lingual coreference resolu-
tion as a way of transferring information from
a rich-resource language to build coreference re-
solvers for languages with scarcer resources; as a
testbed, we transfer from English to Spanish and
to Brazilian Portuguese. We build upon the recent
successes of cross-lingual learning in NLP, which
proved quite effective in several structured predic-
tion tasks, such as POS tagging (Täckström et al.,

2013), named entity recognition (Wang and Man-
ning, 2014), dependency parsing (McDonald et
al., 2011), semantic role labeling (Titov and Kle-
mentiev, 2012), and fine-grained opinion mining
(Almeida et al., 2015). The potential of these tech-
niques, however, has never been fully exploited
in coreference resolution (despite some existing
work, reviewed in §6, but none resulting in an end-
to-end coreference resolver).

We bridge this gap by proposing a simple
learning-based method with weak supervision,
based on posterior regularization (Ganchev et
al., 2010). We adapt this framework to handle
softmax-margin objective functions (Gimpel and
Smith, 2010), leading to softmax-margin poste-
rior regularization (§4). This step, while fairly
simple, opens the door for incorporating task-
specific cost functions, which are important to
manage the precision/recall trade-offs in corefer-
ence resolution systems. We show that the result-
ing problem involves optimizing the difference of
two cost-augmented log-partition functions, mak-
ing a bridge with supervised systems based on la-
tent coreference trees (Fernandes et al., 2012;
Durrett and Klein, 2013), reviewed in §3. In-
spired by this idea, we consider a simple penal-
ized variant of posterior regularization that tunes
the Lagrange multipliers directly, bypassing the
saddle-point problem of existing EM and alternat-
ing stochastic gradient algorithms (Ganchev et al.,
2010; Liang et al., 2009). Experiments (§5) show
that the proposed method outperforms commonly
used cross-lingual approaches, such as delexical-
ized transfer with bilingual embeddings, direct
projection, and “vanilla” posterior regularization.

2 Architecture and Experimental Setup

Our methodology, outlined as Algorithm 1, is in-
spired by the recent work of Ganchev and Das
(2013) on cross-lingual learning of sequence mod-
els. For simplicity, we call the source and tar-
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Figure 1: Excerpt of a bitext document with automatic coreference annotations (from FAPESP). The English side had its
coreferences resolved by a state-of-the-art system (Durrett and Klein, 2013). The predicted coreference chains {The pulmonary
alveoli, the alveoli, their} and {The pulmonary surfactant} are then projected to the Portuguese side, via word alignments.

Algorithm 1 Cross-Lingual Coreference Resolution via
Softmax-Margin Posterior Regularization

Input: Source coreference system Se, parallel data De and
Df , posterior constraintsQ.

Output: Target coreference system Sf .
1: De↔f ← RUNWORDALIGNER(De,Df )

2: D̂e ← RUNCOREF(Se,De)

3: D̂f ← PROJECTANDFILTERENTITIES(De↔f , D̂e)

4: Sf ← LEARNCOREFWITHSOFTMARGPR(D̂f ,Q)

get languages English (e) and “foreign” (f ), re-
spectively, and we assume the existence of parallel
documents on the two languages (bitext).

The first two steps (lines 1–2) run a word aligner
and label the source side of the parallel data with
a pre-trained English coreference system. After-
wards, the predicted English entities are projected
to the target side of the parallel data (line 3), in-
ducing an automatic (and noisy) training dataset
for the foreign language. Finally, a coreference
system is trained in this dataset with the aid of
softmax-margin posterior regularization (line 4).

We next detail all the datasets and tools involved
in our experimental setup. Table 1 provides a sum-
mary, along with some statistics.

Parallel Data. As parallel data, we use a
sentence-aligned trilingual (English-Portuguese-
Spanish) parallel corpus based on the scien-
tific news Brazilian magazine Revista Pesquisa
FAPESP, collected by Aziz and Specia (2011).1

We preprocessed this dataset as follows. We la-
beled the English side with the Berkeley Corefer-
ence Resolution system v1.0, using the provided
English model (Durrett and Klein, 2013). Then,
we computed word alignments using the Berke-
ley aligner (Liang et al., 2006), intersected them
and filtered out all the alignments whose confi-

1We found that other commonly used parallel data (such
as Europarl or the UN corpus) have a predominance of direct
speech that is not suitable for our newswire test domain, so
we decided not to use these data.

Dataset # Doc. # Sent. # Tok.
EN OntoNotes (train) 2,374 48,762 1,007,359
EN OntoNotes (dev) 303 6,894 136,257
EN OntoNotes (test) 322 8,262 152,728
ES FAPESP (aligned) 2,704 142,633 3,840,936
ES AnCora (train) 875 8,999 295,276
ES AnCora (dev) 140 1,417 46,167
ES AnCora (test) 168 1,704 53,042
PT FAPESP (aligned) 2,823 166,719 4,538,147
PT Summ-It (train) 30 469 11,771
PT Summ-It (dev) 7 111 2,983
PT Summ-It (test) 13 257 6,491

Table 1: Corpus statistics. EN, ES, and PT denote English,
Spanish, and Portuguese, respectively.

dence is below 0.95. After this, we projected En-
glish mentions to the target side using the maxi-
mal span heuristic of Yarowsky et al. (2001). We
filtered out documents where more than 15% of
the mentions were not aligned. At this point, we
obtained an automatically annotated corpus D̂f
in the target language. Figure 1 shows a small
excerpt where all mentions were correctly pro-
jected. In practice, not all documents are so well
behaved: in the English-Portuguese parallel data,
only 200,175 out of the original 271,122 mentions
(about 73.8%) were conserved after the projection
step. In Spanish, this number drops to 69.9%.

Monolingual Data. We also use monolingual
data for validation and comparison with super-
vised systems. The Berkeley Coreference Reso-
lution system is trained in the English OntoNotes
dataset used in the CoNLL 2011 shared task; this
dataset is also used to train delexicalized models.

For Spanish, we use the AnCora dataset (Re-
casens and Martı́, 2010) provided in the SemEval
2010 coreference task, which we preprocessed as
follows. We split all MWEs into individual tokens
(for consistency with the other corpora). We also
removed the extra gap tokens associated with zero-
anaphoric relations, and the anaphoric annotations
associated with relative pronouns (e.g., in “[una
central de ciclo combinado [que]1 debe empezar
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a funcionar en mayo del 2002]1” we removed the
nested mention [que]1), since these are not anno-
tated in the English dataset.

For Portuguese, we used the Summ-It 3.0 cor-
pus (Collovini et al., 2007), which contains 50
documents annotated with coreferences, from the
science section of the Folha de São Paulo newspa-
per. This dataset is much smaller than OntoNotes
and AnCora, as shown in Table 1. We split the
data into train, development, and test partitions.

For both Spanish and Portuguese, we obtained
automatic POS tags and dependency parses by us-
ing TurboParser (Martins et al., 2013).

3 Coreference Resolution

3.1 Problem Definition and Prior Work

In coreference resolution, we are given a set of
mentions M := {m1, . . . ,mM}, and the goal
is to cluster them into discourse entities, E :=
{e1, . . . , eE}, where each ej ⊆ M and ej 6= ∅.
The set E must form a partition ofM, i.e., we must
have

⋃E
j=1 ej =M, and ei ∩ ej = ∅ for i 6= j.

A variety of approaches have been proposed
to this problem, including entity-centric models
(Haghighi and Klein, 2010; Rahman and Ng,
2011; Durrett et al., 2013), pairwise models
(Bengtson and Roth, 2008; Versley et al., 2008),
greedy rule-based methods (Raghunathan et al.,
2010), and mention-ranking decoders (Denis and
Baldridge, 2008; Durrett and Klein, 2013). We
chose to base our coreference resolvers on this last
class of methods, which permit efficient decoding
by shifting from entity clusters to latent corefer-
ence trees. In particular, the inclusion of lexical-
ized features by Durrett and Klein (2013) yields
nearly state-of-the-art performance with surface
information only. Given that our goal is to pro-
totype resolvers for resource-poor languages, this
model is a good fit—we next describe it in detail.

3.2 Latent Coreference Tree Models

Let x be a document containing M mentions,
sorted from left to right. We associate to the mth
mention a random variable ym ∈ {0, 1, . . . ,m−1}
to denote its antecedent, where the value ym = 0
means that m is a singleton or starts a new coref-
erence chain. We denote by Y(x) the set of coref-
erence trees that can be formed by linking men-
tions to their antecedents; we represent each tree
as a vector y := 〈y1, . . . , yM 〉. Note that each
tree y induces a unique clustering E , but that this

map is many-to-one, i.e., different trees may corre-
spond to the same set of entity clusters. We denote
by Y(E) the set of trees that are consistent with a
given clustering E .

We model the probability distribution p(y|x) as
an arc-factored log-linear model:

pw(y|x) ∝ exp
(∑M

m=1w
>f(x,m, ym)

)
, (1)

wherew is a weight vector, and each f(x,m, ym)
is a local feature vector that depends on the
document x, the mention m, and its candi-
date antecedent ym. This model permits a
cheap computation of the most likely tree ŷ :=
arg maxy∈Y(x) pw(y|x): simply compute the best
antecedent independently for each mention, and
collect them to form a tree. An analogous pro-
cedure can be employed to compute the posterior
marginals pw(ym|x) for every mention m.

Gold coreference tree annotations are rarely
available; datasets usually consist of documents
annotated with entity clusters, {〈x(n), E(n)〉}Nn=1.
Durrett and Klein (2013) proposed to learn the
probabilistic model in Eq. 1 by maximizing condi-
tional log-likelihood, treating the coreference trees
as latent variables. They also found advantageous
to incorporate a cost function `(y,Y(E)), measur-
ing the extent to which a prediction y differs from
the ones that are consistent with the gold entity set
E .2 Putting these pieces together, we arrive at the
following loss function to be minimized:

L(w) = −∑N
n=1 log

(∑
y∈Y(E(n)) p

′
w(y|x(n))

)
,

(2)
where p′w is the cost-augmented distribution:

p′w(y|x) ∝ pw(y|x)e`(y,Y(E)). (3)

The loss function in Eq. 2 can be seen as a prob-
abilistic analogous of the hinge loss of support
vector machines, and a model trained this way
is called a softmax-margin CRF (Gimpel and
Smith, 2010). Note that L(w) is non-convex, cor-
responding to the difference of two log-partition
functions (both convex on w),

L(w) =
∑N

n=1

(
logZ ′(w, x(n))− log Ẑ(w, x(n))

)
;

(4)
above we denoted

Z ′(w, x) =
∑

y∈Y(x) e
w>f(x,y)+`(y,Y(E)) (5)

Ẑ(w, x) =
∑

y∈Y(E) e
w>f(x,y), (6)

2A precise definition of this cost is provided in §4.3.
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where f(x, y) :=
∑M

m=1 f(x,m, ym).3 Evaluat-
ing the gradient of the loss in Eq. 4 requires com-
puting marginals for the candidate antecedents of
each mention, which can be done in a mention-
synchronous fashion. This enables a simple
stochastic gradient descent algorithm, which was
the procedure taken by Durrett and Klein (2013).

Another way of regarding this framework, ex-
pressed through the marginalization in Eq. 2, is to
“pretend” that the outputs we care about are the
actual coreference trees, but that the datasets are
only “weakly labeled” with the entity clusters. We
build on this point of view in §4.1.

4 Cross-Lingual Coreference Resolution

We now adapt the framework above to learn coref-
erence resolvers in a cross-lingual manner.

4.1 Softmax-Margin Posterior Regularization

In the weakly supervised case, the training data
may only be partially labeled or contain annota-
tion errors. For taking advantage of these data, we
need a procedure that handles uncertainty about
the missing data, and is robust to mislabelings. We
describe next an approach based on posterior reg-
ularization (PR) that fulfills these requirements.

For ease of explanation, we introduce corpus-
level counterparts for the variables in §3.2. We
use bold capital letters X := {x(1), . . . , x(N)} and
Y := {y(1), . . . , y(N)} to denote the documents
and candidate coreference trees in our corpus. We
denote by pw(Y|X) :=

∏N
n=1 pw(y|x(n)) the

conditional distribution of trees over the corpus,
induced by a model w, and similarly for the cost-
augmented distribution p′w(Y|X).

In PR, we define a vector g(X,Y) of corpus-
level constraint features, and a vector b of upper
bounds for those features. We consider the family
of distributions over Y (call itQ) that satisfy these
constraints in a posteriori expectation,

Q := {q | Eq[g(X,Y)] ≤ b}. (7)

To make the analysis simpler, we assume that 0 ≤
b ≤ 1, and that for every j, minY gj(X,Y) = 0
and maxY gj(X,Y) = 1, where the min/max
above are over all possible coreference trees Y
that can be build from the documents X in the cor-

3Note that the scope of the sum is different in Eqs. 5 and 6:
Z′(w, x) sums over all coreference trees, while Ẑ(w, x)
sums only over those consistent with the gold clusters.

pus.4 Under this assumption, the two extreme val-
ues of the upper bounds have a precise meaning: if
bj = 0, the jth feature becomes a hard constraint,
(i.e., any feasible distribution inQwill vanish out-
side {Y | gj(X,Y) = 0}), while bj = 1 turns it
into a vacuous feature.

We also make the usual assumption that the
constraint features decompose over documents,
g(X,Y) :=

∑N
n=1 g(x

(n), y(n)); if this were not
the case, decoding would be much harder, as the
documents would be coupled.

In vanilla PR (Ganchev et al., 2010), one seeks
the model w minimizing the Kullback-Leibler di-
vergence between the set Q and the distribution
pw. Here, we go one step farther to consider the
cost-augmented distribution in Eq. 3. That is, we
minimize KL(Q||p′w) := minq∈QKL(q‖p′w).
The next proposition shows that this expression
also corresponds to a difference of two log-
partition functions, as in Eq. 4.

Proposition 1. The (regularized) minimization of
the cost-augmented KL divergence is equivalent to
the following saddle-point problem:

minw KL(Q‖p′w) + γ
2‖w‖2 = (8)

minw maxu≥0 F (w,u)− b>u+ γ
2‖w‖2,

where F (w,u) :=∑N
n=1

(
logZ ′(w, x(n))− logZ ′u(w, x(n))

)
,
(9)

with Z ′(w, x) as in Eq. 5, and

Z ′u(w, x) :=
∑

y∈Y(x)

ew
>f(x,y)+`(y,Y(E))−u>g(x,y).

(10)

Proof. See Appendix A.

In sum, what Proposition 1 shows is that we
can easily extend the vanilla PR framework of
Ganchev et al. (2010) to incorporate a task-specific
cost: by Lagrange duality, the resulting optimiza-
tion problem still amounts to finding a saddle
point of an objective function (Eq. 8), which in-
volves the difference of two log-partition func-
tions (Eq. 9). The difference is that these par-
tition functions now incorporate the cost term
`(y,Y(E)). If this cost term has a factorization
compatible with the features and the constraints,
this comes at no additional computational burden.

4We can always reduce the problem to this case by scaling
and adding a constant to the constraint feature vectors.
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4.2 Penalized Variant

In their discriminative PR formulation for learning
sequence models, Ganchev and Das (2013) opti-
mize an objective similar to Eq. 8 by alternating
stochastic gradient updates with respect to w and
u. In their procedure, b was chosen a priori via
linear regression (see their Figure 2).

Here, we propose a different strategy, based on
Proposition 1 and a simple observation: while the
constraint values b have a more intuitive meaning
than the Lagrange multipliers u (since they may
correspond, e.g., to proportions of events observed
in the data), choosing these upper bounds is often
no easier than tuning u. In this case, a preferable
strategy is to specify u directly—this leaves this
variable fixed in Eq. 8, and allows us to get rid of
b. The resulting problem becomes

minw F (w,u) + γ
2‖w‖2, (11)

which is a penalized variant of PR and no longer a
saddle point problem. This variant requires tuning
the Lagrange multipliers uj in the range [0,+∞],
for every constraint. The two extreme cases of
bj = 0 and bj = 1 correspond respectively to
uj = +∞ and uj = 0.5 Note that this grid search
is only appealing for a small number of posterior
constraints at corpus-level (since document-level
constraints would require tuning separate coeffi-
cients for each document).

The practical advantages of the penalized vari-
ant over the saddle-point formulation are illus-
trated in Figure 2, which compares the perfor-
mance of stochastic gradient algorithms for the
two formulations (there, η2 = 1− b2).

An interesting aspect of this penalized formula-
tion is its resemblance to latent variable models.
Indeed, the objective of Eq. 11 is also a differ-
ence of log-partition functions, as the latent-tree
supervised case (cf. Eq. 4). The noticeable differ-
ence is that now both partition functions include
extra cost terms, either task-specific (`(y,Y(E))
in Z ′) or with soft constraints (u>g(x, y) in Z ′u).
In particular, if we set a single constrained feature
g1(x, y) := I(`(y,Y(E)) 6= 0) with weight u1 →
+∞, all non-zero-cost summands in Z ′u(w, x)

5This follows from Lagrange duality. If bj = 1, the
constraint is vacuous and by complementary slackness we
must have uj = 0. If bj = 0, this becomes a hard con-
straint, so for the nth document, any coreference tree y for
which gj(x

(n), y) 6= 0 must have probability zero—this cor-
responds to setting uj → +∞ in Eq. 10.

Figure 2: Comparison of saddle-point and penalized PR for
Spanish, using the setup in §5.5. Left: variation of the mul-
tiplier u2 over gradient iterations, with strong oscillations in
initial epochs and somewhat slow convergence. Right: im-
pact in the averaged F1 scores (on the dev-set). Contrast with
the more “stable” scores achieved by the penalized method.

vanish and we get Z ′u(w, x) = Ẑ(w, x), recov-
ering the supervised case (see Eq. 6).

Intuitively, this formulation pushes probability
mass toward structures that respect the constraints
in Eq. 7, while moving away from those that have a
large task-specific cost. A similar idea, but applied
to the generative case, underlies the framework of
constrastive estimation (Smith and Eisner, 2005).

4.3 Cost Function
Denote by Em the entire coreference chain of the
mth mention (so E =

⋃
m∈M{Em}), and by

Msing := {m ∈M | Em = {m}} the set of men-
tions that are projected as singleton in the data (we
call this gold-singleton mentions).

We design a task-specific cost `(ŷ,Y(E)) as
in Durrett and Klein (2013) to balance three
kinds of mistakes: (i) false anaphora (ŷm 6=
0 while m ∈ Msing); (ii) false new (ŷm =
0 while m /∈ Msing); and (iii) wrong link
(ŷm 6= 0 but Em 6= Eŷm

). Letting IFA(ŷm, E),
IFN(ŷm, E), and IWL(ŷm, E) be indicators for
these events, we define a weighted Hamming cost
function: `(ŷ,Y(E)) :=

∑M
m=1(αFAIFA(ŷm, E)+

αFNIFN(ŷm, E) + αWLIWL(ŷm, E)). We set
αFA = 0.0, αFN = 3.0, and αWL = 1.0.6 Since
this cost decomposes as a sum over mentions, the
computation of cost-augmented marginals (neces-
sary to evaluate the gradient of Eq. 11) can still be
done with mention-ranking decoders.

4.4 Constraint Features
Finally, we describe the constraint features (Eq. 7)
used in our softmax-margin PR formulation.

Constraint #1: Clusters should not split. Let
|M| − |E| be the number of anaphoric mentions

6The only difference with respect to Durrett and Klein
(2013) is that they set αFA = 0.1. We set this coefficient
to zero so that all configurations licensed by the constraint
features (to be made precise in §4.4) will have zero cost.
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in the projected data. We push these mentions to
preserve their anaphoricity (ym 6= 0) and to have
their antecedent in the projected coreference chain
(Em = Eym). To do so, we force the fraction of
mentions satisfying these properties to be at least
η1. This can be enforced via a constraint feature

g1(X,Y) := (12)

−∑N
n=1

∑M(n)

m=1 I(y(n)
m 6= 0 ∧ E(n)

m = E(n)
ym ),

and an upper bound b1 := −η1
∑N

n=1(|M(n)| −
|E(n)|). (These quantities are summed by a con-
stant and rescaled to meet the assumption in §4.1.)
In our experiments, we set η1 = 1.0, turning this
into a hard constraint. This is equivalent to setting
u1 = +∞ in the penalized formulation.

Constraint #2: Most projected singletons
should become non-anaphoric. We define a
soft constraint so that a large fraction of the gold-
singleton mentions m ∈ Msing satisfy ym = 0.
This can be done via a constraint feature

g2(X,Y) := (13)

−∑N
n=1

∑M(n)

m=1 I(y(n)
m = 0 ∧ E(n)

m = {m}),

and an upper bound b2 := −η2
∑N

n=1 |M(n)
sing|. In

our experiments, we varied η2 in the range [0, 1],
either directly or via the dual variable u2, as de-
scribed in §4.1. The extreme case η2 = 0 corre-
sponds to a vacuous constraint, while for η2 = 1
this becomes a hard constraint which, combined
with the previous constraint, recovers bitext direct
projection (see §5.3). The intermediate case makes
this a soft constraint which allows some single-
tons to be attached to existing entities (therefore
introducing some robustness to non-aligned men-
tions), but penalizes the number of reattachments.

5 Experiments

We now present experiments using the setup in
§2. We compare our coreference resolvers trained
with softmax-margin PR (§5.5) with three other
weakly-supervised baselines: delexicalized trans-
fer with cross-lingual embeddings (§5.2), bitext
projection (§5.3), and vanilla PR (§5.4). We also
run fully supervised systems (§5.1), to obtain up-
per bounds for the level of performance we expect
to achieve with the weakly-supervised systems.

An important step in coreference resolution sys-
tems is mention prediction. For English, mention
spans were predicted from the noun phrases given

by the Berkeley parser (Petrov and Klein, 2007),
the same procedure as Durrett and Klein (2013).
For Spanish and Portuguese, this prediction relied
on the output of the dependency parser, using a
simple heuristic: besides pronouns, each maximal
span formed by contiguous descendants of a noun
becomes a candidate mention. This heuristic is
quite effective, as shown by Attardi et al. (2010).

5.1 Supervised Systems

Table 2 shows the performance of supervised sys-
tems for English, Spanish and Portuguese. All op-
timize Eq. 4 appended with an extra regularization
term γ

2‖w‖2, by running 20 epochs of stochastic
gradient descent (SGD; we set γ = 1.0 and se-
lected the best epoch using the dev-set). All lexi-
calized systems use the same features as the SUR-
FACE model of Durrett and Klein (2013), plus fea-
tures for gender and number.7 We collected a list
of pronouns for all languages along with their gen-
der, number, and person information. For English,
we trained on the WSJ portion of the OntoNotes
dataset, and for Spanish and Portuguese we trained
on the monolingual datasets described in §2.

We observe that the Spanish system obtains av-
eraged F1 scores around 44%, a few points below
the English figures.8 In Portuguese, these scores
are significantly lower (in the 37–39% range),
which is explained by the fact that the training
dataset is much smaller (cf. Table 1).

For English, we also report the performance of
delexicalized systems, i.e., systems where all the
lexical features were removed. The second row
of Table 2 shows a drop of 2–2.5 points with re-
spect to the lexicalized system. For the third and
fourth rows, the lexical features were replaced
by bilingual word embeddings (either English-
Spanish or English-Portuguese; a detailed descrip-
tion of these embeddings will be provided in §5.2).
Here the drop is small, and for English-Spanish it
looks on par with the lexicalized system.

7For English, the gender and number of nominal and
proper mentions were obtained from the statistics collected
by Bergsma and Lin (2006). For Spanish and Portuguese we
used a simple heuristic for nominal mentions, based on the
determiner preceding the noun (when there is one).

8We point out that the supervised Spanish system we
present here is strong enough to outperform all participating
systems in the SemEval 2010’s closed regular track. When
trained on the original Spanish SemEval data (with zero- and
relative pronoun anaphoras) and evaluated in the provided
scorer, it achieves 53.0% averaged F1 in the test partition; for
comparison, TALN-1 (Attardi et al., 2010), the best system at
the shared task, achieved 49.6% averaged F1.
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Dev Test
MUC B3 CEAFe Avg. MUC B3 CEAFe Avg.

EN lexicalized 58.35 50.75 52.08 53.73 59.07 49.25 48.78 52.37
EN delexicalized, no embed. 56.59 48.81 49.95 51.78 55.96 46.94 46.19 49.70
EN delexicalized, emb. EN-ES 57.55 49.83 51.21 52.86 59.00 49.25 49.00 52.42
EN delexicalized, emb. EN-PT 57.91 49.67 51.01 52.86 58.03 48.16 48.33 51.51
ES lexicalized 48.24 40.97 43.59 44.27 47.03 40.68 44.09 43.93
PT lexicalized 35.60 34.47 42.56 37.54 41.61 36.91 40.96 39.83

Table 2: Results for the supervised systems. We show also the performance of delexicalized English systems, with and without
cross-lingual embeddings. Shown are MUC (Vilain et al., 1995), B3 (Bagga and Baldwin, 1998), and CEAFe (Luo, 2005), as
well their averaged F1 scores, all computed using the reference implementation of the CoNLL scorer (Pradhan et al., 2014).

Dev Test
MUC B3 CEAFe Avg. MUC B3 CEAFe Avg.

ES simple baseline 25.73 24.73 27.89 26.12 26.06 26.12 29.87 27.35
ES baseline #1 (delex. transfer) 33.04 27.47 32.71 31.07 34.35 28.69 34.42 32.49
ES baseline #2 (bitext dir. proj.) 39.42 30.04 38.25 35.90 37.21 29.72 35.97 34.30
ES baseline #3 (vanilla PR) 41.29 33.68 38.56 37.84 39.34 32.95 38.23 36.84
ES softmax-margin PR 42.34 35.53 39.95 39.27 41.22 35.30 39.94 38.82
PT simple baseline 26.04 26.67 33.19 28.63 22.72 23.91 27.35 24.66
PT baseline #1 (delex. transfer) 22.51 23.27 33.27 26.35 31.11 27.36 32.78 30.42
PT baseline #2 (bitext dir. proj.) 30.43 27.37 36.47 31.42 31.93 27.97 35.40 31.77
PT baseline #3 (vanilla PR) 30.97 27.82 35.14 31.31 38.39 33.34 38.73 36.82
PT softmax-margin PR 33.43 31.00 38.82 34.42 38.18 34.05 39.47 37.23

Table 3: Results for all the cross-lingual systems. Bold indicates the overall highest scores. As a lower bound, we show a simple
deterministic baseline that, for pronominal mentions, selects the closest non-pronominal antecedent, and, for non-pronominal
mentions, selects the closest non-pronominal mention that is a superstring of the current mention.

5.2 Baseline #1: Delexicalized Transfer With
Cross-Lingual Embeddings

We now turn to the cross-lingual systems. Delex-
icalized transfer is a popular strategy in NLP (Ze-
man and Resnik, 2008; McDonald et al., 2011),
recently strengthened with cross-lingual word rep-
resentations (Täckström et al., 2012). The proce-
dure works as follows: a delexicalized model for
the source language is trained by eliminating all
the language-specific features (such as lexical fea-
tures); then, this model is used directly in the tar-
get language. We report here the performance of
this baseline on coreference resolution for Span-
ish and Portuguese, using the delexicalized models
trained on the English data as mentioned in §5.1.

To achieve a unified feature representation, we
mapped all language-specific POS tags to univer-
sal tags (Petrov et al., 2012). All lexical features
were replaced either by cross-lingual word em-
beddings (for words that are not pronouns); or by
a universal representation containing the gender,
number, and person information of the pronoun.
To obtain the cross-lingual word embeddings, we
ran the method described by Hermann and Blun-
som (2014) for the English-Spanish and English-
Portuguese pairs, using the parallel sentences in
§2. When used as features, these 128-dimensional
continuous representations were scaled by a factor
of 0.5 (selected on the dev-set), using the proce-

dure of Turian et al. (2010).
The second and seventh rows in Table 3 show

the performance of this baseline, which is rather
disappointing. For Spanish, we observe a large
drop in performance when going from supervised
training to delexicalized transfer (about 11–13%
in averaged F1). For Portuguese, where the super-
vised system is not so accurate, the difference is
less sharp (about 9–11%). These drops are mainly
due to the fact that this method does not take into
account the intricacies of each language—e.g.,
possessive forms have different agreement rules in
English and in Romance languages;9 those, on the
other hand, have clitic pronouns that are absent in
English. Feature weights that promote certain En-
glish agreement relations may then harm perfor-
mance more than they help.

5.3 Baseline #2: Bitext Direct Projection

Another popular strategy for cross-lingual learn-
ing is bitext direct projection, which consists in
projecting annotations through parallel data in
the source and target languages (Yarowsky et al.,
2001; Hwa et al., 2005). This is essentially the
same as Algorithm 1, except that line 4 is replaced
by simple supervised learning, via a minimization

9For example, in Figure 1, their agrees in number with
the possessor (the alveoli), but the corresponding sua agrees
in number and gender with the thing possessed (função).
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of the loss function in Eq. 4 with `2-regularization.
This procedure has the disadvantage of being very
sensitive to annotation errors, as we shall see. For
Portuguese, this baseline is a near-reproduction of
Souza and Orăsan (2011)’s work, discussed in §6.

The third and eighth rows in Table 3 show
that this baseline is stronger than the delexicalized
baseline, but still 6–8 points away from the super-
vised systems. This gap is due to a mix of two
factors: prediction errors in the English side of
the bitext, and missing alignments. Indeed, when
automatic alignments are used, false negatives for
coreferent pairs of mentions are common, due to
words that have not been aligned with sufficiently
high confidence. The direct projection method is
not robust to these annotation errors.

5.4 Baseline #3: Vanilla PR
Our last baseline is a vanilla PR approach; this
is an adaptation of the procedure carried out by
Ganchev and Das (2013) to our coreference reso-
lution problem. The motivation is to increase the
robustness of bitext projection to annotation er-
rors, which we do by applying the soft constraints
in §4.4. We seek a saddle-point of the PR objec-
tive by running 20 epochs of SGD, alternating w-
updates andu-updates. The best results in the dev-
set were obtained with η1 = 1.0 and η2 = 0.9.

By looking at the fourth and ninth rows of Ta-
ble 3, we observe that vanilla PR manages to re-
duce the gap to supervised systems, obtaining con-
sistent gains over the bitext projection baseline
(with the exception of the Portuguese dev-set).
This confirms the ability of PR methods to handle
annotation mistakes in a robust manner.

5.5 Our Proposal: Softmax-Margin PR
Finally, the fifth and last rows in Table 3 show the
performance of our systems trained with softmax-
margin PR, as described in §4.1. We optimized the
loss function in Eq. 11 with γ = 1.0 by running 20
epochs of SGD, setting u1 = +∞ and u2 = 1.0
(cf. §4.4)—the last value was tuned in the dev-set.
As shown in Figure 2, this penalized variant was
more effective than the saddle point formulation.

From Table 3, we observe that softmax-margin
PR consistently beats all the baselines, narrow-
ing the gap with respect to supervised systems to
about 5 points for Spanish, and 2–3 points for Por-
tuguese. Gains over the vanilla PR procedure (the
strongest baseline) lie in the range 0.5–3%. These
gains come from the ability of softmax-margin PR

to handle task-specific cost functions, enabling a
better management of precision/recall tradeoffs.

5.6 Error Analysis

We carried out some error analysis, focused on
the Spanish development dataset, to better under-
stand where the improvements of softmax-margin
PR come from. The main conclusions carry out to
the Portuguese case, with a few exceptions, mostly
due to different human annotation criteria.

Table 4 shows the precision and recall scores
for mention prediction and the different corefer-
ence evaluation metrics. Note that all systems pre-
dict the same candidate mentions; however a final
post-processing discards all mentions that ended
up in singleton entities, for compliance with the
official scorer. Therefore, the mention prediction
score reflects how well a system does in predicting
if a mention is anaphoric or not. The first thing to
note is that the PR methods, due to their ability
to create new links during training (via constraint
#2) tend to predict fewer singletons than the direct
projection method. Indeed, we observe that soft
max-margin PR achieves 47.1% mention predic-
tion recall, which is more than 5% above the di-
rect projection method, and 10% above the delex-
icalized transfer method. Note also that, while
the vanilla PR method achieves higher recall than
the two other baselines, it is still almost 5% be-
low the system trained with soft-max margin PR.
This is because vanilla PR does not benefit from
the cost function in §4.3—such cost is able to pe-
nalize false non-anaphoric mentions and encour-
age larger clusters, allowing softmax-margin PR
to achieve a better precision-recall trade-off. From
Table 4, we can see that this improvement in men-
tion recall consistently translates into higher recall
for the MUC, B3 and CEAFe coreference metrics.

Further analysis revealed that a major source of
error for the delexicalized baseline is its inabil-
ity to handle pronominal mentions robustly across
languages—as hinted in footnote 9. In practice,
we found the delexicalized systems to be quite
conservative with possessive pronouns: for the
Spanish dataset, where the vast majority of pos-
sessive pronouns are anaphoric, the delexicalized
model incorrectly predicts 53.3% of these pro-
nouns as non-anaphoric. The direct projection
model is slightly less conservative, missing 30.1%
of the possessives (arguably due to its inability to
recover missing links in the projected data, dur-
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Mention MUC B3 CEAFe

delex. 37.1 / 62.2 25.6 / 46.5 19.6 / 45.7 27.9 / 39.5
dir. proj. 41.7 / 77.5 29.3 / 60.4 19.2 / 69.5 31.8 / 47.9

vanilla PR 42.2 / 78.0 30.9 / 62.3 23.2 / 61.7 31.9 / 48.8
our PR 47.1 / 74.1 33.7 / 57.1 26.0 / 56.1 34.9 / 46.7

Table 4: Recall/precision scores for mention prediction,
MUC, B3 and CEAFe, all computed in the Spanish dev set.

ing training). By comparison, the vanilla and soft-
max margin PR models only miss 4.9% and 3.4%
of the possessives, respectively. In Portuguese,
where many possessives are not annotated in the
gold data, we observe a similar but much less pro-
nounced trend.

6 Related Work

While multilingual coreference resolution has
been the subject of recent SemEval and CoNLL
shared tasks, no submitted system attempted
cross-lingual training. As shown by Recasens and
Hovy (2010), language-specific issues pose a chal-
lenge, due to phenomena as pronoun dropping and
grammatical gender that are absent in English but
exist in other languages. We have discussed some
of these issues in the scope of the present work.

Harabagiu and Maiorano (2000) and Postolache
et al. (2006) projected English corpora to Roma-
nian to bootstrap human annotation, either manu-
ally or via automatic alignments. Rahman and Ng
(2012) applied translation-based projection at test
time (but require an external translation service).
Hardmeier et al. (2013) addressed the related task
of cross-lingual pronoun prediction. While all
these approaches help alleviate the corpus annota-
tion bottleneck, none resulted in a full coreference
resolver, which our work accomplished.

The work most related with ours is Souza and
Orăsan (2011), who also used parallel data to
transfer an English coreference resolver to Por-
tuguese, but could not beat a simple baseline that
clusters together mentions with the same head.
Their approach is similar to our bitext direct pro-
jection baseline, except that they used Reconcile
(Stoyanov et al., 2010) instead of the Berkeley
Coreference System, and a smaller version of the
FAPESP corpus. We have shown that our softmax-
margin PR procedure is superior to this approach.

Discriminative PR has been proposed by
Ganchev et al. (2010). The same idea underlies
the generalized expectation criterion (Mann and
McCallum, 2010; Wang and Manning, 2014). An
SGD algorithm for solving the resulting saddle

point problem has been proposed by Liang et al.
(2009), and used by Ganchev and Das (2013) for
cross-lingual learning of sequence models. We ex-
tended this framework in two aspects: by incorpo-
rating a task-specific cost in the objective function,
and by formulating a penalized variant of PR.

7 Conclusions

We presented a framework for cross-lingual trans-
fer of coreference resolvers. Our method uses
word-aligned bitext to project information from
the source to the target language. Robust-
ness to projection errors was achieved via a
PR framework, which we generalized to handle
task-specific costs, yielding softmax-margin PR.
We also proposed a penalized formulation that
is effective for a small number of corpus-based
constraints. Empirical gains were shown over
three popular cross-lingual methods: delexicalized
transfer, bitext direct projection, and vanilla PR.
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A Proof of Proposition 1
Let us fix w and see how to evaluate KL(Q||p′w) =
minq∈QKL(q‖p′w). We have:

KL(q‖p′w) = −H(q)−∑
Y q(Y) log p′w(Y|X)

= −H(q) +
∑

n logZ′(w, x(n))−∑
Y q(Y)(w>f(X,Y) + `(Y)),

where `(Y) :=
∑N

n=1 `(y,Y(E(n))) and f(X,Y) :=∑N
n=1 f(x(n), y(n)). Introducing Lagrange multipliers u for

the posterior constraints, we get the Lagrangian function:

L(q,u) = −H(q) +
∑

n logZ′(w, x(n))− b>u

−∑
Y q(Y)(w>f(X,Y)+`(Y)−u>g(X,Y)).

By standard variational arguments (namely, Fenchel duality
between the the log-partition function and the negative en-
tropy; see e.g. Martins et al. (2010)), we have that the optimal
q∗ that minimizes the Lagrangian is

q∗(Y) =
ew
>f(X,Y)+̀ (Y)−u>g(X,Y)∏N

n=1 Z
′
u(w, x(n))

.

Plugging this in the Lagrangian yields Eq. 8.
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Abstract

We introduce the Hierarchical Ideal Point
Topic Model, which provides a rich picture
of policy issues, framing, and voting behav-
ior using a joint model of votes, bill text,
and the language that legislators use when
debating bills. We use this model to look at
the relationship between Tea Party Repub-
licans and “establishment” Republicans in
the U.S. House of Representatives during
the 112th Congress.

1 Capturing Political Polarization
Ideal-point models are one of the most widely

used tools in contemporary political science re-
search (Poole and Rosenthal, 2007). These models
estimate political preferences for legislators, known
as their ideal points, from binary data such as leg-
islative votes. Popular formulations analyze legis-
lators’ votes and place them on a one-dimensional
scale, most often interpreted as an ideological spec-
trum from liberal to conservative.

Moving beyond a single dimension is attractive,
however, since people may lean differently based
on policy issues; for example, the conservative
movement in the U.S. includes fiscal conservatives
who are relatively liberal on social issues, and vice
versa. In multi-dimensional ideal point models,
therefore, the ideal point of each legislator is no
longer characterized by a single number, but by a
multi-dimensional vector. With that move comes a
new challenge, though: the additional dimensions
are often difficult to interpret. To mitigate this
problem, recent research has introduced methods
that estimate multi-dimensional ideal points using
both voting data and the texts of the bills being
voted on, e.g., using topic models and associating
each dimension of the ideal point space with a topic.
The words most strongly associated with the topic
can sometimes provide a readable description of its
corresponding dimension.

In this paper, we develop this idea further by
introducing HIPTM, the Hierarchical Ideal Point
Topic Model, to estimate multi-dimensional ideal
points for legislators in the U.S. Congress. HIPTM

differs from previous models in three ways. First,
HIPTM uses not only votes and associated bill text,
but also the language of the legislators themselves;
this allows predictions of ideal points from politi-
cians’ writing alone. Second, HIPTM improves
the interpretability of ideal-point dimensions by
incorporating data from the Congressional Bills
Project (Adler and Wilkerson, 2015), in which bills
are labeled with major topics from the Policy Agen-
das Project Topic Codebook.1 And third, HIPTM

discovers a hierarchy of topics, allowing us to ana-
lyze both agenda issues and issue-specific frames
that legislators use on the congressional floor, fol-
lowing Nguyen et al. (2013) in modeling framing
as second-level agenda setting (McCombs, 2005).

Using this new model, we focus on Republican
legislators during the 112th U.S. Congress, from
January 2011 until January 2013. This is a par-
ticularly interesting session of Congress for politi-
cal scientists, because of the rise of the Tea Party,
a decentralized political movement with populist,
libertarian, and conservative elements. Although
united with “establishment” Republicans against
Democrats in the 2010 midterm elections, lead-
ing to massive Democratic defeats, the Tea Party
was—and still is—wrestling with establishment
Republicans for control of the Republican party.

The Tea Party is a new and complex phe-
nomenon for political scientists; as Carmines and
D’Amico (2015) observe: “Conventional views of
ideology as a single-dimensional, left-right spec-
trum experience great difficulty in understanding
or explaining the Tea Party.” Our model identifies
legislators who have low (or high) levels of “Tea
Partiness” but are (or are not) members of the Tea
Party Caucus, and providing insights into the na-

1http://www.policyagendas.org/
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ture of polarization within the Republican party.
HIPTM also makes it possible to investigate a num-
ber of questions of interest to political scientists.
For example, are there Republicans who identify
themselves as members of the Tea Party, but whose
votes and language betray a lack of enthusiasm for
Tea Party issues? How well can we predict from
someone’s language alone whether they are likely
to associate themselves with the Tea Party? Our
computational modeling approach to “Tea Parti-
ness”, distinct from self-declared Tea Party Caucus
membership, may have particular value in under-
standing Republican party politics going forward
because, despite the continued influence of the Tea
Party, the official Tea Party Caucus in the House
of Representatives is largely inactive and its future
uncertain (Fuller, 2015).

2 Polarization across Dimensions
Ideal point models describe probabilistic rela-

tionships between observed responses (votes) on
a set of items (bills) by a set of responders (legis-
lators) who are characterized by continuous latent
traits (Fox, 2010). A popular formulation posits an
ideal point ua for each lawmaker a, a polarity xb,
and popularity yb for each bill b, all being values
in (−∞,+∞) (Martin and Quinn, 2002; Bafumi
et al., 2005; Gerrish and Blei, 2011). Lawmaker a
votes “Yes” on bill b with probability

p(va,b = Yes |ua, xb, yb) = Φ(uaxb + yb) (1)

where Φ(α) = exp(α)/(1 + exp(α)) is the logis-
tic (or inverse-logit) function.2 Intuitively, most
lawmakers vote “Yes” on bills with high popularity
yb and “No” on bills with low yb. When a bill’s
popularity is lower, the outcome of the vote va,b
depends more on the interaction between the law-
maker’s ideal point ua and the bill’s polarity xb.

Multi-dimensional ideal point models replace
scalars ua and xb with K-dimensional vectors ua
and xb (Heckman and Jr., 1997; Jackman, 2001;
Clinton et al., 2004). Unfortunately, as Lauderdale
and Clark (2014) observe, the binary data used for
these models are “insufficiently informative to sup-
port analyses beyond one or two dimensions”, and
the additional dimensions are difficult to interpret.
To address this lack of interpretability, recent work
has proposed multi-dimensional ideal point models
to jointly capture both binary votes and the associ-

2A probit function is also often used where Φ(α) is instead
the cumulative distribution function of a Gaussian distribu-
tion (Martin and Quinn, 2002).

ated text (Gerrish and Blei, 2012; Gu et al., 2014;
Lauderdale and Clark, 2014; Sim et al., 2015).

3 Hierarchical Ideal Point Topic Model
Bringing topic models (Blei and Lafferty, 2009)

into ideal-point modeling provides an interpretable,
text-based foundation for political scientists to un-
derstand why the models make the predictions they
do. However, both the topic—what is discussed—
and the framing—how it is discussed—also reveal
political preferences. We therefore introduce frame-
specific ideal points, using a hierarchy of topics to
model issues and their issue-specific frames. Al-
though the definition of “frame” is itself a moving
target in political science (Entman, 1993), we adopt
the theoretically motivated but pragmatic approach
of Nguyen et al. (2013): just as agenda-issues map
naturally to topics in probabilistic topic models
(e.g., Grimmer (2010)), the frames as second-level
agenda-setting (McCombs, 2005) map to second-
level topics in a hierarchical topic model.

Our model’s inputs are votes {va,b}, each the
response of legislator a ∈ [1, A] to bill b ∈ [1, B].
Two types of text supplement the votes: floor
speeches (documents) {wd} from legislator ad, and
the text w′b of bill b. While congressional debates
are typically about one piece of legislation, we
make no assumptions about the mapping between
wd and w′b. In principle this allows wd to be any
text by legislator ad (e.g., not just floor speeches
about this bill, but blogs, social media, press re-
leases) and—unlike Gerrish and Blei (2011)—this
permits us to make predictions about individuals
even without vote data for them. Figure 1 shows
the plate notation diagram of HIPTM, which has the
following generative process:

1. For each issue k ∈ [1,K]

(a) Draw k’s associated topic φk ∼ Dir(β, φ?
k)

(b) Draw issue-specific distribution over frames
ψk ∼ GEM(λ0)

(c) For each frame j ∈ [1,∞) (specific to issue k)
i. Draw j’s associated topic φk,j ∼ Dir(β, φk)

ii. Draw j’s regression weight ηk,j ∼ N (0, γ)

2. For each document d ∈ [1, D] by legislator ad

(a) Draw topic (i.e., issue) distribution θd ∼ Dir(α)
(b) For each issue k ∈ [1,K], draw frame distribu-

tion ψd,k ∼ DP(λ, ψk)
(c) For each token n ∈ [1, Nd]

i. Draw an issue zd,n ∼ Mult(θd)
ii. Draw a frame td,n ∼ Mult(ψd,zd,n)

iii. Draw word wd,n ∼ Mult(φzd,n,td,n)

3. For each legislator a ∈ [1, A] on each issue k ∈ [1,K]

(a) Draw issue-specific ideal point ua,k ∼
N (
∑Jk

j=1 ψ̂a,k,jηk,j , ρ) weighting ηk,j by how
much the legislator talks about that frame
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Figure 1: Plate notation diagram of HIPTM.

Agriculture: food; agriculture; loan; farm; crop; dairy;
rural; conserve; commodity; eligible; farmer; margin; milk;
contract; nutrition; livestock; plant
Health: drug; medicine; coverage; disease; public health;
hospital; social security; health insurrance; patient; appli-
cation; treatment; payment; physician; nurse; clinic
Labor, Employment, and Immigration: employment;
immigration; labor; paragraph; eligible; status; compen-
sation; application; wage; homeland security; unemploy-
ment; board; violation; file; perform; mine

Table 1: Examples of informed priors φ?
k for issues.

4. For each bill b ∈ [1, B]

(a) Draw polarity xb ∼ N (0, σ)
(b) Draw popularity yb ∼ N (0, σ)
(c) Draw topic (i.e., issue) proportions ϑb ∼ Dir(α)
(d) For each token m ∈ [1,Mb] in the text of bill b

i. Draw an issue z′b,m ∼ Mult(ϑb)
ii. Draw a word type w′b,m ∼ Mult(φz′

b,m
)

5. For each vote va,b of legislator a on bill b

(a) p(va,b |ua, xb, yb, ϑ̂b) = Φ
(
xb

∑
k ϑ̂b,kua,k + yb

)
Topic Hierarchy. With the goal of analyzing
agendas and frames in mind, our topic hierarchy
has two levels: (1) issue nodes and (2) frame nodes.
(Look ahead to Figure 6 for an illustration.) More
specifically, there are K issue nodes, each with a
topic φk drawn from a Dirichlet distribution with
concentration parameter β and a prior mean vector
φ?k, i.e., φk ∼ Dir(β, φ?k). In this hierarchical struc-
ture, first-level nodes map to agenda issues, which
we treat as non-polarized, and second-level nodes
map to issue-specific frames, which we assume
polarize on the issue-specific dimension.3

To improve topic interpretability, issue nodes
have an informed prior from the Congressional
Bills Project {φ?k} (Table 1).4 The frame topic φk,j

3Nguyen et al. (2013) allow first-level nodes to polarize
but find first-level nodes are typically neutral.

4The Congressional Bills Project provides a large collec-
tion of labeled congressional bill text. We compute {φ?

k} as

at each frame node is a Dirichlet draw centered at
the corresponding (parent) issue node. While the
number of issues is fixed a priori, the number of
second-level frames is unbounded. We also asso-
ciate each second-level frame node with an ideal
point ηk,j ∼ N (0, γ). This resembles how su-
pervised topic models (Blei and McAuliffe, 2007;
Nguyen et al., 2015) discover polarized topics’ as-
sociated response variables.

Generating Text from Legislators. One of our
model’s goal is to study how legislators frame pol-
icy agenda issues. To achieve that, we analyze
congressional speeches (documents) {wd}, each
of which is delivered by a legislator ad. To gen-
erate each token wd,n of a speech d, legislator ad
will (1) first choose an issue zd,n ∈ [1,K] from a
document-specific multinomial θd, then (2) choose
a frame td,n from the set of infinitely many possi-
ble frames of the given issue zd,n using the frame
proportion ψd,k drawn from a Dirichlet process,
and finally (3) choose a word type from the cho-
sen frame’s topic φzd,n,td,n

. In other words, our
model generates speeches using a mixture of K
HDPs (Teh et al., 2006).5

Generating Bill Text. The bill text provides in-
formation about the policy agenda issues that each
bill addresses. We use LDA to model the bill text
{w′b}. Each bill b is a mixture ϑb over K is-
sues, which is drawn from a symmetric Dirich-
let prior, i.e., ϑb ∼ Dir(α). Each token w′b,m
in bill b is generated by first choosing a topic
z′b,m ∼ Mult(ϑb), and then choosing a word type
w′b,m ∼ Mult(φz′b,m

), as in LDA.

Generating Roll Call Votes. Following recent
work on multi-dimensional ideal points (Laud-
erdale and Clark, 2014; Sim et al., 2015), we define
the probability of legislator a voting “Yes” on bill
b as p(va,b = Yes |ua, xb, yb, ϑ̂b) =

Φ

(
xb

K∑
k=1

ϑ̂b,kua,k + yb

)
(2)

where ϑ̂b is the empirical distribution of bill b over
the K issues and is defined as ϑ̂b,k = Mb,k

Mb,· . Here,
Mb,k is the number of times in which tokens in b

the empirical word distribution from all bills labeled with k.
K = 19, corresponding to 19 major topic headings in the
Policy Agendas Project Topic Codebook.

5If we abandoned the labeled data from the Congressional
Bills Project to obtain the prior means φ?

k, it would be rela-
tively straightforward to extend to a fully nonparametric model
with unbounded K (Ahmed et al., 2013; Paisley et al., 2014).
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are assigned to issue k and Mb,· is the marginal
count, i.e., the number of tokens in bill b.

The ideal point of legislator a specifically on is-
sue k is ua,k and comes from a normal distribution

N (ψ̂Ta,kηk, ρ) ≡ N
 Jk∑
j=1

ψ̂a,k,jηk,j , ρ

 (3)

where Jk is the number of frames for topic k, which
is unbounded. The mean of the Normal distribution
is a linear combination of the ideal points {ηk,j} of
all issue k’s frames, weighted by how much time
legislator a spends on each frame when talking
about issue k, i.e., ψa,k,j = Na,k,j

Na,k,· . Here, Na,k,j

is the number of tokens authored by a that are
assigned to frame j of issue k, and Na,k,· is the
marginal count. When Na,k,· = 0, which means
that legislator a does not talk about issue k, we
back off to an uninformed zero mean.

Equation 3 resembles how supervised topic mod-
els (SLDA) link topics with a response, in that the
response—the issue-specific ideal point ua,k—is
latent. It is similar to how Gerrish and Blei (2011)
use the bill text to regress on the bill’s latent polar-
ity xb and popularity yb. In this paper, we only use
text from congressional speeches for regression, as
these can capture how legislators frame specific top-
ics. Incorporating the bill text into the regression is
an interesting direction for future work.

4 Inference
Given observed data of (1) votes {va,b} by A

legislators on B bills, (2) speeches {wd} from leg-
islators, and (3) bill text {w′b}, we estimate the
latent variables using stochastic EM. In each itera-
tion, we perform the following steps: (1) sampling
issue assignments {z′b,m} for bill text tokens, (2)
sampling the issue assignments {zd,n} and frame
assignments {td,n} for speech tokens, (3) sampling
the topics at first-level issue nodes {φk}, (4) sam-
pling the distribution over frames {ψk} for all is-
sues, (5) optimizing frames’ regression parameters
{ηk,j} using L-BFGS (Liu and Nocedal, 1989), and
(6) updating legislators’ ideal points {ua,k} and
bills’ polarity {xb} and popularity {yb} using gra-
dient ascent.

Sampling Issue Assignments for Bill Tokens
The probability of assigning a token w′b,m in the
bill text to an issue k is

p(z′b,m = k | rest) ∝ M−b,mb,k + α

M−b,mb,· +Kα
· φ̂k,w′b,m

(4)

where Mb,k denotes the number of tokens in bill
text b assigned to issue k. The current estimated
probability of word type v given issue k is φ̂k,v
(Equation 7). Marginal counts are denoted by · and
the superscript −b,m excludes the assignment for
token w′b,m from the corresponding count.

Sampling Frame Assignments in Speeches To
sample the assignments for tokens in the speeches,
we first sample an issue using

p(zd,n = k | rest) ∝ N−d,nd,k + α

N−d,nd,· +Kα
· φ̂k,wd,n

(5)

where Nd,k similarly denotes the number of times
that tokens in d are assigned to issue k. Given the
sampled issue k, we sample the frame as
p(td,n = j | zd,n = k, ad = a, rest) ∝
N (ua,k;µa,k,j , ρ) ·

(
N−d,n

d,k,j

N−d,n
d,k,j +λ

+ λ·ψ̂k,j

N−d,n
d,k,j +λ

)
,

N (ua,k;µa,k,jnew , ρ) · λ

N−d,n
d,k,j +λ

· ψ̂k,jnew ,

(6)
where µa,k,j = (

∑Jk
j′=1 ηk,j′N

−d,n
d,k,j′ + ηk,j)/Nd,k,·

for an existing frame j, and for a newly
created frame jnew, we have µa,k,jnew =
(
∑Jk

j′=1 ηk,j′N
−d,n
d,k,j′+ηk,jnew)/Nd,k,·, where ηk,jnew

is drawn from the Gaussian prior N (0, γ). Here,
the estimated global probability of choosing a
frame j of issue k is ψ̂k,j .

Sampling Issue Topics In the generative process
of HIPTM, the topic φk of issue k (1) generates
tokens in the bill text and (2) provides the Dirichlet
priors of the issue’s frames. Rather than collapsing
multinomials and factorizing (Hu and Boyd-Graber,
2012), we follow Ahmed et al. (2013) and sample

φ̂k ∼ Dir(mk + ñk + βφ?k) (7)

wheremk ≡ (Mk,1,Mk,2, · · · ,Mk,V ) is the token
count vector from the bill text assigned to each
issue. The vector ñk ≡ (Ñk,1, Ñk,2, · · · , Ñk,V )
denotes the token counts propagated from words
assigned to topics that are associated with frames of
issue k, approximated using minimal or maximal
path assumptions (Cowans, 2006; Wallach, 2008).

Sampling Frame Proportions Following the di-
rect assignment method described in Teh et al.
(2006), we sample the global frame proportion as
ψ̂k ≡ (ψ̂k,1, ψ̂k,2, · · · , ψ̂k,jnew)

∼ Dir(N̂·,k,1, N̂·,k,2, · · · , N̂·,k,Jk
, λ0) (8)

where N̂·,k,j =
∑D

d=1 N̂d,k,j and N̂d,k,j can be
sampled effectively using the Antoniak distribu-
tion (Antoniak, 1974).
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Optimizing Frame Regression Parameters
We update the regression parameters ηk of frames
under issue k using L-BFGS (Liu and Nocedal,
1989) to optimize L(ηk)

− 1
2ρ

A∑
a=1

(ua,k − ηTk ψ̂a,k)−
1

2γ

Jk∑
j=1

η2
k,j (9)

Updating Ideal Points, Polarity and Popularity
We update the multi-dimensional ideal point ua of
each legislator a and the polarity xb and popularity
yb of each bill b by optimizing the log likelihood
using gradient ascent.

5 Data Collection
What makes a Tea Partier? To address that ques-

tion, we use key votes identified by Freedom Works
as the most important votes on issues of economic
freedom. Led by former House Majority Leader
Dick Armey (R-TX), Freedom Works is a con-
servative non-profit organization which promotes
“Lower Taxes, Less Government, More Freedom”.6

Karpowitz et al. (2011) report that Freedom Works
endorsements are more effective than other Tea
Party organizations at getting out votes for Repub-
lican candidates in the 2010 midterms.

For the 112th Congress, Freedom Works selected
60 key votes, 40 in 2011 and 20 in 2012. We are
interested in ideal points with respect to the Tea
Party movement, i.e., on the anti-pro Tea Party
dimension: whether a legislator agrees with Free-
dom Works on a bill. More specifically, we assign
va,b to be 1 if legislator a agrees with Freedom
Works on bill b, and 0 otherwise. In addition to
the votes, we obtained the bill text with labels from
the Congressional Bills Project7 and the congres-
sional speeches from GovTrack.8 In total, we have
240 Republicans, 60 who self-identify with the Tea
Party Caucus, and 13,856 votes.

6 Predicting Tea Party Membership
To quantitatively evaluate the effectiveness of

HIPTM in capturing “Tea Partiness”, we predict Tea
Party Caucus membership of legislators given their
votes and text. This examines (1) how effective
the baseline features extracted from the votes and
text are in predicting the Caucus membership, and
(2) how much prediction improves using features
extracted from HIPTM. For baselines, we consider

6http://congress.freedomworks.org/
7http://congressionalbills.org/
8https://www.govtrack.us/data/us/112/
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Figure 2: Tea Party Caucus membership prediction results
over five folds using AUC-ROC (higher is better, random base-
line achieves 0.5). The features extracted from our model are
estimated using both the votes and the text.

simple feature sets where each legislator is repre-
sented by their speeches as either (1) a TF-IDF
vector (Salton, 1968), (2) a normalized TF-IDF
vector, or (3) a binary vector containing their votes.

Our dataset for binary prediction comprises a set
of 60 Republican representatives who self-identify
as Tea Party Caucus members and 180 who do
not. These are divided using 5-fold cross-validation
with stratified sampling, which preserves the ratio
of the two classes in both the training and test sets.
We report performance using AUC-ROC (Lusted,
1971) using SVMlight (Joachims, 1999).9 After pre-
processing, our vocabulary contains 5,349 unique
word types.

Membership from Votes and Text. First, given
the votes and text of all the legislators, we run
HIPTM for 1,000 iterations with a burn-in period of
500 iterations. After burning in, we keep the sam-
pled state of the model after every fifty iterations.
The feature values are obtained by averaging over
the ten stored models as suggested in Nguyen et al.
(2014). Each legislator a is represented by a vector
concatenating:

• K-dimensional ideal point vector estimated
from both votes and text ua,k
• K-dimensional vector, estimating the ideal
point using only text ηTk ψ̂a,k
• B probabilities estimating a’s votes on B bills
Φ(xb

∑K
k=1 ϑ̂b,kua,k + yb)

Figure 2 shows AUC-ROC results for our feature
sets. VOTE-based features clearly outperform text-
based features like TF and TF-IDF. Combining
VOTE with either TF or TF-IDF does not improve
the prediction performance much (i.e., VOTE-TF
and VOTE-TF-IDF). Features extracted from our

9We use the default settings of SVMlight, except that we
set the cost-factor equal to the ratio between the number of
negative examples (i.e., number of non-Tea Party Caucus
members) and the number of positive examples (i.e., number
of Tea Party Caucus members).
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Figure 3: Tea Party Caucus membership prediction results
over five folds using AUC-ROC (higher is better, random base-
line achieves 0.5). The features extracted from our model for
unseen legislators are estimated using their text only.

model, HIPTM, also outperform TF and TF-IDF
significantly, but only slightly better than VOTE.
However, HIPTM and VOTE together significantly
outperform VOTE alone.

Membership Prediction from Text Only. The
results in Figure 2 require both votes and legisla-
tors’ language. This is limiting, since it permits
predictions of “Tea Partiness” only for people with
an established congressional voting record. A po-
tentially more interesting and practical task is pre-
diction based on language alone.

Thus, we first run our inference algorithm on
the training data, which includes both votes and
text. After training, using multiple models, we
sample the issue and frame assignments for each
token of the text authored by test lawmakers.
Since the votes are not available, HIPTM’s ex-
tracted features here only consist of (1) the K-
dimensional vector ηTk ψ̂a,k estimating legislators’
ideal point using text alone, and (2) the B proba-
bilities Φ(xb

∑K
k=1 ϑ̂b,kua,k + yb) estimating the

votes.
Figure 3 compares this approach with the two

baselines capable of using text alone, TF and TF-
IDF. Since HIPTM can no longer access the votes
in the test data, its performance drops significantly
compared with VOTE. However, it still quite
strongly outperforms the two text-based baselines,
showing that jointly modeling the voting behavior
improves the text-based elements of the model.

7 How the Tea Party Votes
In this section, we examine legislators’ ideal

points. We first expose Tea Party-specific ideal
points by examining one-dimensional ideal points
and then move on to the issue-specific ideal points
that HIPTM enables.

7.1 One-dimensional Ideal Points
First, as a baseline, we estimate the one-

dimensional ideal points of the legislators in our

−1 0 1
Ideal Point

Tea Party Caucus Member Non−member

Figure 4: Box plots of the one-dimensional Tea Party ideal
points, estimated as a baseline in Section 7.1, for members and
non-members of the Tea Party Caucus among Republican Rep-
resentatives in the 112th U.S. House. The median of members’
ideal points is significantly higher than that of non-members’.

dataset.10 Figure 4 shows the box plots of esti-
mated Tea Party ideal points for both members and
non-members.11 The Tea Party ideal points cor-
relate with DW-NOMINATE (ρ = 0.91), and the
median ideal point of Tea Party Caucus members
is higher than non-members. This confirms that
Tea Partiers are more conservative than other Re-
publicans (Williamson et al., 2011; Karpowitz et
al., 2011; Gervais and Morris, 2012; Gervais and
Morris, 2014).

Divergences involving these ideal points help
demonstrate the face validity of our approach. For
example, the model gives Jeff Flake (R-AZ) the sec-
ond highest ideal point; he only disagrees with Free-
dom Works position on one of 60 Freedom Works
key votes, but he is not a member of the Tea Party
Caucus. Another example is Justin Amash (R-MI),
who founded and is the Chairman of the Liberty
Caucus. Its members are conservative and liber-
tarian Republicans, and Amash has agreed with
Freedom Works on every single key vote selected
by Freedom Works since 2011.

Conversely, some self-identified Tea Partiers of-
ten disagree with Freedom Works and thus have
relatively low ideal points. For example, Rodney
Alexander (R-LA) only agrees with Freedom Works
48% of the time, and was a Democrat before 2004.
Alexander and Ander Crenshaw (R-FL, 50% agree-
ment) are categorized as “Green Tea” by Gervais
and Morris (2014), i.e. Republican legislators who
are “associated with the Tea Party on their own
initiative” but lack support from Tea Party organi-
zations.

10We use gradient ascent to optimize the likelihood of votes
whose probabilities are defined in Equation 1. We also put a
Gaussian priorN (0, σ) on ua, xb, and yb.

11Estimated ideal point signs might be flipped, as uaxb =
(−ua)(−xb), which makes no difference in Equation 1. To
ensure that higher ideal points are “pro-Tea Party”, we first
sort the legislators according to the fraction of votes for which
they agree with Freedom Works and initialize the ideal points
of the top and bottom five legislators with +3σ and -3σ, where
σ is the variance of ua’s Gaussian prior.
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Figure 5: Box plots of ideal points dimensions, each corresponding to a major topic in the Policy Agendas Topics Codebook
estimated by our model. On most issues the ideal point distributions over the two Republican groups (member vs. non-member
of the Tea Party Caucus) overlap. The most polarized issues are Government Operations and Macroeconomics, which align well
with the agenda of the Tea Party movement supporting small government and lower taxes.

7.2 Multi-dimensional Ideal Points
While it is interesting to compare holistic mea-

sures of Tea Partiness, it doesn’t reveal how leg-
islators conform or deviate from what defines a
mainstream Tea Partier. In this section, HIPTM

reveals how issue-specific ideal points of the two
groups of Republican representatives differ.

Figure 5 shows estimated ideal points for each
policy agenda issue, sorted by the difference be-
tween the median of the two groups’ ideal points.
On most issues, the ideal point distributions of the
two Republican groups are nigh identical.

On several issues, though, the ideal point distri-
butions of the two groups of legislators diverge.
In the remainder of this section, we consider
the Government Operation, Macroeconomics, and
Transportation topics, and look at why HIPTM esti-
mates these issues as the most polarized.

Government operations Tea Partiers differ
from their Republican colleagues on reducing gov-
ernment spending on the Economic Development
Administration, the Energy Efficiency and Renew-
able Energy Program and Fossil Fuel Research and
Development. More specifically, for example, on
the key vote to eliminate the Energy Efficiency and
Renewable Energy Program, nearly 80% (41 out
of 53) of Tea Partiers vote “Yea” (with Freedom
Works) but only 43% of non-Tea Partiers agree.

Macroeconomics Our model estimates
Macroeconomics policies as being the sec-
ond most polarizing topic for House Republicans,
which is consistent with the emphasis that the Tea
Party places on issues like a balanced budget and
reduced federal spending. Indeed, we see that
Tea Party Republicans have distinct preferences
on these types of issues as compared to more

mainstream Republican legislators. An illustration
of this polarization can be seen in the intra-party
fight over the budget. Roll call vote 275 in 2011
and roll call vote 149 in 2012 both would have
replaced Paul Ryan’s budget (the “establishment”
Republican budget) with the Republican Study
Committee’s (RSC) “Back to Basics” budget that
would cut spending more aggressively and balance
the budget in a decade. In 2011, non-Tea Party
Republicans were evenly split in their budget
preferences, but three quarters of the Tea Party
Caucus supported it, which illustrates the differ-
ence between the two factions of the Republican
party. Similarly, in 2012, more than 80% of Tea
Partiers voted for the the RSC budget, but fewer
than half of non-Tea Party Republicans did. Other
polarizing votes in the Macroeconomics topic
include votes to raise the debt ceiling and to avert
the “fiscal cliff”. In these cases, support for these
votes was 25 percentage points higher among Tea
Partiers than non-Tea Party Republicans, which
again illustrates their distinct policy preferences.

Transportation Transportation is the third most
polarized issue estimated by our model, with two
key votes focusing on federal spending on trans-
portation that illustrate some polarization, but also
some shared preferences among Republicans. Con-
sistent with the Tea Party’s emphasis on reducing
government spending, Tea Party Republicans voted
differently from their non-Tea Party colleagues on
these issues. The first key vote, roll call vote 378 in
2012, caps highway spending at the amount taken
in by the gas tax. More than half of Tea Party Cau-
cus members (32 out of 55) voted in favor, while
non-members voted against it by a greater than 2:1
margin (122 of 172). Conversely, the second key
vote (roll call vote 451 in 2012) authorizes fed-

1444



Macroeconomics
balanc_budget, borrow, debt_ceil, cap, cut_spend, nation_debt, 
grandchildren, rais_tax, entitl, white_hous, debt_limit, prosper

Frame M1
white_hous, shut, 

continu_resolut, mess, 
hous_republican, novemb, 

govern_shutdown, 
senat_reid, harri_reid, 

vision, shutdown, liber, arriv, 
republican_parti, blame

Frame M2
balanc_budget, debt_ceil, 
cap, cut_spend, debt_limit, 

spend_cut, fiscal_hous, 
grandchildren, guarante, 
default, august, obama, 

deficit_spend, rein, 
feder_budget

Frame M3
borrow, nation_debt, 

rais_tax, entitl, prosper, 
chart, grandchildren, 

spend_monei, size, gdp, 
tax_increas, cent, 

govern_spend, social_secur

-.57 -.24
.56

Health
obamacar, patient, doctor, physician, afford_care, hospit, insur, replac, mandat, 
exchang, health_insur, coverag, medicaid, patient_protect, board

Frame H1
afford_care, exchang, 
patient_protect, 
human_servic, public_health, 
slush_fund, ppaca, 
mandatori, mandatori_spend, 
governor, hospit, 
health_center, flexibl, 
teach_health, unlimit

Frame H2
patient, doctor, physician, 
hospit, medicaid, board, 
georgia, save_medicar, 
nurs, tennesse, page, 
bureaucrat, 
advisori_board, medicin, 
independ_payment

Frame H3
obamacar, replac, mandat, 
insur, health_insur, coverag, 
social_secur, premium, 
repeal_obamacar, entitl, 
govern_takeov, purchas, 
unconstitut, preexist_condit, 
employ

-.13 .04
.56

Establishment Tea Party

Figure 6: Framing of Macroeconomics (top) and Health (bot-
tom) among House Republicans, 2011-2012. Higher ideal
point values are associated with the Tea Party.

eral highway spending at a level that far exceeds
its revenue from the gas tax, which was opposed
by Freedom Works. This measure was broadly
popular with Republicans regardless of Tea Party
affiliation and a majority of both Tea Partiers and
non-Tea Partiers opposed it.

8 How the Tea Party Talks
Looking at HIPTM’s induced topic hierarchy, us-

ing labeled data to create informative priors pro-
duces highly interpretable topics at the agenda-
issue level; e.g., see the first-level nodes in Figure 6,
which capture key issue-level debates. For exam-
ple, one major event during the 112th Congress was
the 2011 debt-ceiling crisis, which dominates dis-
cussions in Macroeconomics. Similarly, Defense
is dominated by withdrawing U.S. troops from Iraq.

Turning to framing, recall that second-level
nodes of the hierarchy capture issue-specific frames
of parent issues, each one associated with a frame-
specific ideal point. To analyze intra-Republican
polarization, we first compute, for each issue k, the
span of ideal points the frames associated with k,
i.e., the difference between the maximum and the
minimum ideal points for frames under that issue.12

We then consider several issues with a large span,
i.e. whose frames are highly polarized.

Macroeconomics. The HIPTM subtree for
Macroeconomics, in Figure 6 (top), foregrounds

12The frame proportions Dirichlet process ψk creates many
frames with one or two observations (Miller and Harrison,
2013). We ignore those with posterior probability ψk,j < 0.1.

Republican polarization related to budget issues.
The most Tea Party oriented frame node, M3,
focuses on criticizing government overspending,
a recurring Tea Party theme.13 In contrast,
Frame M1, least oriented toward the Tea Party,
focuses on the downsides of a government
shutdown, highlighting establishment Republican
concerns about being held responsible for the
political and economic consequences.

Health. Healthcare was a central issue during
the 112th Congress, particularly the Affordable
Care Act (Obamacare). Although all Republicans
voted to repeal Obamacare, Figure 6 (bottom) high-
lights intra-party differences in framing the issue.
Frame H1 leans strongest toward the establishment
Republican end of the spectrum, and frames op-
position in terms of the implementation of health
care exchanges and the mandatory costs of the pro-
gram. In contrast, H3 captures the more strident
Tea Party framing of Obamacare as an unconstitu-
tional government takeover. More neutral from
an intra-party perspective, Frame H2 emphasizes
Medicare, Medicaid, and the role of health care
professionals within these systems.14

Labor, Employment and Immigration. The
discussion of this issue illustrates how HIPTM some-
times captures frames that are distinct from Tea
Partiness, per se. For example, it discovered a
strongly Tea Party oriented frame that focused on
“union, south carolina, nlrb, boeing”. On inspec-
tion, this frame reflects a controversy in which the
National Labor Relations Board accused airline
manufacturer Boeing of violating Federal labor law
by transferring production to a non-union facility
in South Carolina “for discriminatory reasons”,15

and surfaces mainly in speeches by four legislators
from South Carolina, three of whom are from the
Tea Party Caucus. This second-level topic illus-
trates a limitation of HIPTM; it does not formally
distinguish frames from other kinds of subtopics.
We observe that modeling polarization on other
kinds of sub-issues is nonetheless valuable: here
it highlights a geographic locus of conflict involv-

13E.g., Scott Garrett (R-NJ): “We will not compromise on
our principles; our principles of defending the Constitution
and defending Americans and making sure that our posterity
does not have this excessive debt on it.”

14This does not mean that discussions using this frame
lacked combative or partisan elements. For example, Glenn
Thompson (R-PA) argues that “on the Democratic side, they’re
just willing to pull the plug and let [Medicare] die”.

15http://www.nlrb.gov/news-outreach/fact-sheets/fact-
sheet-archives/boeing-complaint-fact-sheet
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Table 2: Examples of agenda issues classified by polarization
of ideal points and issue frames within the Republican party.

ing South Carolina, where many representatives
are Tea Party Caucus members. This may provide
insight into how geography shapes Tea Party mem-
bership (Gervais and Morris, 2012).

9 Latent and Visible Disagreement

Our analyses suggest a novel framework for un-
derstanding the political and policymaking impli-
cations of the Tea Party in the 112th Congress, il-
lustrated in Table 2. Each issue can be character-
ized by two features: (1) the degree to which ideal
points among Republican legislators are polarized,
and (2) the degree to which the frames used are po-
larized. From these two assessments, we can orga-
nize all policy issues into four categories that have
meaningful implications for congressional politics
and policy outcomes. At upper left we will find
issues where HIPTM indicates low intra-party po-
larization between Tea Party and non-Tea Party,
and all Republicans tend to frame the issue in sim-
ilar ways; e.g., Civil Rights, Minority Issues, and
Civil Liberties. In such cases, we expect cooper-
ation among Republicans regardless of Tea Party
status, therefore a greater likelihood of bill pas-
sage in a majority-Republican House. In stark con-
trast, issues at lower right involve polarized ideal
points and polarized framing, e.g., the budget cri-
sis, where many establishment Republicans balked
at a government shutdown but hard-line Tea Party
legislators did not. These issues pose the greatest
challenge to Republican party leaders.

Between these extremes are the issues in which
either Republicans’ ideal points or their policy
frames are polarized. Our model suggests that on
issues at upper right, with similar framing, the Tea
Party and establishment Republicans will appear
to be in sync, and therefore it may seem to voters
that legislative progress is likely, but the under-
lying issue polarization will make it hard to find
policy common ground, potentially increasing pub-
lic frustration. Last, at lower left are issues where

Republicans generally share similar ideal points
and vote similarly, but frame the issue in distinct
ways, e.g., Obamacare. Here legislative success
may come despite the appearance that Republican
factions are talking past each other, because the
distribution of their ideal points on the policy is
actually quite similar. Put differently, Republicans
share policy goals on issues in this quadrant even
if they frame those preferences differently, and this
underlying agreement on the ideal point may al-
low Republicans to reach consensus even when the
political rhetoric suggests otherwise.

10 Conclusion

We introduce HIPTM, which integrates hierarchi-
cal topic modeling with multi-dimensional ideal
points to jointly model voting behavior, the text
content of bills, and the language used by legisla-
tors. HIPTM is more effective than previous meth-
ods on the task of predicting membership in the
Tea Party Caucus. This improvement is especially
consequential as the formal organization of the Tea
Party Caucus is now defunct in the House, yet Tea
Party legislators remain both numerous and influen-
tial in Congress. In addition, unlike previous ideal-
point methods, HIPTM makes it possible to make
predictions for members of Congress who have not
yet established a voting record. More intriguingly,
this also suggests the possibility of assessing the
“Tea Partiness” of candidates (or, anyone else, e.g.,
media outlets) based on language.

It is political conventional wisdom that the in-
flux of Tea Party legislators in the 112th Congress
complicated the task of governance and policymak-
ing for Republican leaders. By looking at issue-
level ideal points and issue-specific framing using
our model, we begin to address the complexity
of this relationship, finding the model successful
both in establishing face validity and in suggesting
novel insights into the dynamics of a Republican
Congress. In future work, we plan to pursue the
new framework suggested by our analyses, inves-
tigating the interaction of issue polarization and
framing-based polarization. With the help of these
new tools, we aim to both understand and predict
substantive policy areas in which the Tea Party is
likely to be most successful working with the Re-
publican party, and, conversely, to flag ahead of
time policy areas in which we can expect to see
legislative gridlock and grandstanding.
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Abstract

Many existing knowledge bases (KBs), in-
cluding Freebase, Yago, and NELL, rely
on a fixed ontology, given as an input
to the system, which defines the data to
be cataloged in the KB, i.e., a hierar-
chy of categories and relations between
them. The system then extracts facts that
match the predefined ontology. We pro-
pose an unsupervised model that jointly
learns a latent ontological structure of an
input corpus, and identifies facts from the
corpus that match the learned structure.
Our approach combines mixed member-
ship stochastic block models and topic
models to infer a structure by jointly mod-
eling text, a latent concept hierarchy, and
latent semantic relationships among the
entities mentioned in the text. As a case
study, we apply the model to a corpus
of Web documents from the software do-
main, and evaluate the accuracy of the var-
ious components of the learned ontology.

1 Introduction

Knowledge base (KB) construction methods can
be broadly categorized along several dimensions.
One dimension is ontology-guided construction,
where the list of categories and relations that de-
fine the schema of the KB are explicit, versus open
IE methods, where they are not. Another dimen-
sion is the type of relations and types included in
the KB: some KBs, like WordNet, are hierarchi-
cal, in that they contain mainly concept types, su-
pertypes and instances, while other KBs contain
many types of relationships between concepts. Hi-
erarchical knowledge can be learned by methods
including distributional clustering (Pereira et al.,
1993), as well as Hearst patterns (Hearst, 1992)
and similar techniques (Snow et al., 2006). Re-
verb (Fader et al., 2011) and TextRunner (Yates

et al., 2007) are open methods for learning multi-
relation KBs. Finally, NELL (Carlson et al., 2010;
Mitchell et al., 2015), FreeBase (Google, 2011)
and Yago (Suchanek et al., 2007; Hoffart et al.,
2013) are ontology-guided methods for extracting
KBs containing both hierarchies and relations.

One advantage of ontology-guided methods is
that the extracted knowledge is easier to reason
with. An advantage of open IE methods is that
ontologies may be incomplete, and are expensive
to construct for a new domain. Ontology design
involves assembling a set of categories, organized
in a meaningful hierarchical structure, often pro-
viding seeds, i.e., representative examples for each
category, and finally, defining inter-category rela-
tions. This process is often done manually (Carl-
son et al., 2010) leading to a rigid set of categories.
Redesigning a new ontology for a specialized do-
main represents an additional challenge as it re-
quires extensive knowledge of the domain.

In this paper, we propose an unsupervised
model that learns a latent hierarchical structure
of categories from an input corpus, learns latent
semantic relations between categories, and also
identifies facts from the corpus that match the
learned structure. In other words, the model learns
both the schema for a KB, and a set of facts that
are related to that schema, thus combining the
processes of KB population and ontology con-
struction. The intent is to build systems that ex-
tract facts which can be interpreted relative to a
meaningful ontology without requiring the effort
of manual ontology construction.

The input to the learning method is a cor-
pus of documents, plus two sets of resources ex-
tracted from the same corpus: a set of hypernym-
hyponym pairs (e.g., “animal”, “horse”) extracted
using Hearst patterns, and a set of subject-verb-
object triples (e.g., “horse”, “eats”, “hay”) ex-
tracted from parsed sentences. These resources
are analogous to the output of open IE systems for
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hierarchies and relations, and as we demonstrate,
our method can be used to highlight domain-
specific data from open IE repositories.

Our approach combines mixed membership
stochastic block models and topic models to in-
fer a structure by jointly modeling text docu-
ments, and links that indicate hierarchy and rela-
tion among the entities mentioned in the text. Joint
modeling allows information on topics of nouns
(referred to as instances) and verbs (referred to
as relations) to be shared between text documents
and an ontological structure, resulting in a set of
compelling topics. This model offers a complete
solution for KB construction based on an input
corpus, and we therefore name it KB-LDA.

We additionally propose a method for recover-
ing meaningful names for concepts in the learned
hierarchy. These are equivalent to category names
in other KBs, however, following our method we
extract from the data a set of potential alterna-
tive concepts describing each category, including
probabilities for their strength of association.

To show the effectiveness of our method, we ap-
ply the model to a dataset of Web based documents
from the software domain, and learn a software
KB. This is an example of a specialized domain in
which, to our knowledge, no broad-coverage on-
tology exists. We evaluate the model on the in-
duced categories, relations, and facts, and we com-
pare the proposed categories with an independent
set of human-provided labels for documents. Fi-
nally, we use KB-LDA to retrieve domain-specific
relations from an open IE resource. We provide
the learned software KB as supplemental material.

2 KB-LDA

Modeling latent sets of entities from observed in-
teractions among them is a well researched task,
often encountered in social network analysis for
the purpose of identifying specialized communi-
ties in the network. Mixed Membership Stochas-
tic Blockmodels (Airoldi et al., 2009; Parkkinen
et al., 2009) model entities as graph nodes with
pairwise relations drawn from latent blocks with
mixed membership. A related approach is taken
by topic models such as LDA (Latent Dirichlet
Allocation; (Blei et al., 2003)), which model doc-
uments as generated by a mixture of latent topics,
and words in the documents as generated by topic-
specific word distributions. The KB-LDA model
combines the two approaches. It models links be-

πO – multinomial over ontology topic pairs, with Dirichlet
prior αO

πR – multinomial over relation topic tuples, with Dirichlet
prior αR

θd – topic multinomial for document d, with Dirichlet
prior αD

σk – multinomial over instances for topic k, with Dirichlet
prior γI

δk′ – multinomial over relations for topic k′, with Dirichlet
prior γR

CIi = 〈Ci, Ii〉 – i-th ontological assignment pair
SVOj = 〈Sj , Oj , Vj〉 – j-th relation assignment tuple
zCI
i = 〈zCi , zIi〉 – topic pair chosen for example 〈Ci, Ii〉
zSV O
j = 〈zSj , zOj , zVj 〉 – topic tuple chosen for example
〈Sj , Oj , Vj〉

zD
E1
, zD

E2
– topic chosen for instance entityE1, or relation

entity E2, respectively, in a document
nI

z,i – number of times instance i is observed under topic
z (in either zD , zCI or zSV O)

nR
z,r – number of times relation r is observed under topic
z (in either zD or zSV O)

nO
〈zc,zi〉 – count of ontological pairs assigned the topic

pair 〈zc, zi〉 (in zCI )
nR

〈zs,zo,zv〉 – count of relation tuples assigned the topic
tuple 〈zs, zo, zv〉 (in zSV O)

Table 1: KB-LDA notation.

tween tuples of two or three entities using stochas-
tic block models, and these are additionally influ-
enced by latent topic assignments of the entities in
a document corpus.

In the KB-LDA model, shown as a plate dia-
gram in Figure 1 with notation in Table 1, informa-
tion is shared between three components, through
common latent topics over noun and verb entities.
The Ontology component (upper right) models
hierarchical links between Concept-Instance (CI)
entity pairs. The Relations component (left) mod-
els links between Subject-Verb-Object (SVO) en-
tity triples, where the subject and object are nouns
and the verb represents a relation between them.
Finally, the Documents component (lower left) is
a link-LDA model (Erosheva et al., 2004) of text
documents containing a combination of noun and
verb entity types. In this formulation, distribu-
tions over noun and verb entities that are related
according to hierarchical or relational constraints,
are linked with a text model via shared parameters.

In more detail, the Documents component pro-
vides the context in which noun and verb entities
are being used in text. It is modeled as an exten-
sion of LDA, viewing documents as sets of “bags
of words”, where in this case, each bag contains
either noun or verb entities. Each entity type has a
topic-wise multinomial distribution over the set of
entities in the vocabulary of that type.
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Figure 1: Plate Diagram of KB-LDA.

The Ontology component is a generative model
representing hierarchal links between pairs of
nouns. The examples for this component are ex-
tracted using a small collection of Hearst patterns
indicating concept-instance or concept-concept
links, including, ’X such as Y’, and ’X including
Y’. For example, the sentence “websites such as
StackOverflow” indicates that Stackoverflow is a
type of website, leading to the extracted noun pair
〈websites, StackOverflow〉. We refer to the exam-
ples extracted using these hierarchical patterns as
concept-instance pairs, and to the individual enti-
ties as instances.

The pairs have an underlying block structure
derived from a sparse block model (Parkkinen et
al., 2009). They are generated by topic specific
instance distributions conditioned on topic pair
edges, which are defined by the multinomial πO
over the Cartesian product of the noun topic set
with itself. The individual instances, therefore,
have a mixed membership in topics. Note that
we allow for a concept and instance to be drawn
from different noun topics, defined by σ. For ex-
ample, we may learn a topic highlighting concept
tokens like ’websites’, ’platforms’, ’applications’.
Another topic can highlight instances shared by
these concepts, such as, ’stackoverflow’, ’google’,
and ’facebook’. Finally, the observation that the
former topic frequently contains concepts of in-
stances from the latter topic, is encoded in the
multinomial distribution πO. From this we infer
that the former topic should be placed higher in
the induced hierarchy.

Similarly, the Relations component represents
relational links between a noun subject, a verb and
a noun object. The examples for this component

Let K be the number of target latent topics.
1. Generate topics: For topic k∈1, . . . ,K, sample:
• σk∼Dirichlet(γI), the per-topic instance distribution
• δk∼Dirichlet(γR), the per-topic relation distribution

2. Generate ontology: Sample πO∼Dirichlet(αO), the
instance topic pair distribution.
• For each concept-instance pair CIi, i∈1, . . . , NO:

– Sample topic pair zCIi ∼Multinomial(πO)
– Sample instances Ci∼Multinomial(σzCi

), Ii∼
Multinomial(σzIi

), then CIi= 〈Ci, Ii〉
3. Generate relations: Sample πR∼Dirichlet(αR), the
relation topic tuple distribution.
• For each tuple SVOj , j∈1, . . . , NR:

– Sample topic tuple zSV Oj ∼Multinomial(πR)
– Sample instances, Sj∼Multinomial(σzSj

), Oj∼
Multinomial(σzOj

), and sample a relation Vj∼
Multinomial(δzVj

)
4. Generate documents: For document d∈1, . . . , D:
• Sample θd∼Dirichlet(αD), the topic mixing distri-

bution for document d.
• For every noun entity (El1) and verb entity (El2), l1∈

1, . . . , Nd,I , l2∈1, . . . , Nd,R:
– Sample topics zEl1

, zEl2
∼Multinomial(θd)

– Sample entities El1∼Multinomial(σzEl1
) and

El2∼Multinomial(δzEl2
)

Table 2: KB-LDA generative process.

are extracted from SVO patterns found in the doc-
ument corpus, following Talukdar et al. (2012).
An extracted example looks like: 〈websites, ex-
ecute, javascript〉. Subject and object topics are
drawn from the noun topics (σ), while the verb
topics is drawn from the verb topics, defined by
δ. The multinomial πR encodes the interaction of
noun and verb topics based on the extracted rela-
tional links, and it is defined over the Cartesian
product of the noun topic set with itself and with

1451



the verb topic set.
The generative process of KB-LDA is de-

scribed in Table 2. Given the hyperparameters
(αO, αR, αD, γI , γR), the joint distribution over
CI pairs, SVO tuples, documents, topics and topic
assignments is given by

p(πO, πR, σ, δ,CI, zCI ,SVO, zSV O,θ,E, zD|
αO, αR, αD, γI , γR) =
K∏
k=1

Dir(σk|γI)×
K∏
k′=1

Dir(δk′ |γR)× (1)

Dir(πO|αO)
NO∏
i=1

π
〈zCi

,zIi
〉

O σCi
zCi
σIizIi
×

Dir(πR|αR)
NR∏
j=1

π
〈zSj

,zOj
,zVj

〉
R σ

Sj
zSj
σ
Oj
zOj

δ
Vj
zVj
×

ND∏
d=1

Dir(θd|αD)
Nd,I∏
l1=1

θ
zD
El1
d σEl1

zD
El1

Nd,R∏
l2=1

θ
zD
El2
d δEl2

zD
El2

2.1 Inference in KB-LDA
Exact inference is intractable in the KB-LDA
model. We use a collapsed Gibbs sampler (Grif-
fiths and Steyvers, 2004) to perform approximate
inference in order to query the topic distributions
and assignments. It samples a latent topic pair for
a CI pair in the corpus conditioned on the assign-
ments to all other CI pairs, SVO tuples, and docu-
ment entities, using the following expression, after
collapsing πO:

p̂(zCIi |CIi, zCI¬i , z
SV O, zD,CI¬i, αO, γI) (2)

∝
(
nO¬i
zCI
i

+ αO

)
×

(nI¬izCi
,Ci

+ γI)(nI¬izIi
,Ii

+ γI)

(
∑
C

nI¬izCi
,C + TIγI)(

∑
I

nI¬izIi
,I + TIγI)

where counts of observations from the training set
are noted by n (see Table 1), and TI is the number
of instance entities (size of noun vocabulary).

We similarly sample topics for each SVO tuple
conditioned on the assignments to all other tuples,
CI pairs and document entities, using the follow-
ing expression, after collapsing πR:

p̂(zSV O
j |SVOj , z

SV O
¬j , zCI , zD, SVO¬j , αR, γI , γR) (3)

∝
(
nR¬j

zSV O
j

+ αR

)
×

(nI¬j
zSj

,Sj
+ γI)(n

I¬j
zOj

,Oj
+ γI)(n

R¬j
zVj

,Vj
+ γR)

(
∑
I

nI¬j
zSi

,I +TIγI)(
∑
I

nI¬j
zOi

,I +TIγI)(
∑
V

nR¬j
zVj

,V +TRγR)

We sample a latent topic for an entity mention
in a document from the text corpus conditioned
on the assignments to all other entity mentions af-
ter collapsing θd. The following expression shows
topic sampling for a noun entity in a document:

p̂(zEl1
|E,CI,SVO, zD, zCI , zSV O, αD, γI) (4)

∝ (n¬l1d,z + αD)
nI¬l1zEl1

,El1
+ γI∑

E′l1
nI¬l1
zEl1

,E′l1
+ TIγI

The per-topic multinomial parameters and topic
distributions of CI pairs, SVO tuples and docu-
ments can be recovered with MLE estimates using
their observation counts:

σ̂Ik =
nIk,I + γI∑

I′ n
I
k,I′ + TIγI

, δ̂Rk =
nRk,R + γR∑

R′ n
R
k,R′ + TRγR

θ̂zd =
nz,d + αD∑
z′ nz′,d +KαD

π̂
〈zC ,zI〉
O =

nO〈zC ,zI〉 + αO∑
z′C ,z

′
I

nO〈z′C ,z′I〉 +K2 · αO

π̂
〈zS ,zO,zV 〉
R =

nR〈zS ,zO,zV 〉 + αR∑
z′S ,z

′
O,z

′
V

nR〈z′S ,z′O,z′V 〉 +K3 · αR

Using the KB-LDA model we can describe the
latent topic hierarchy underlying the input cor-
pus. We consider the multinomial of the Ontology
component, πO, as an adjacency matrix describ-
ing a network where the nodes are instance topics
and edges indicate a hypernym-to-hyponym rela-
tion. By extracting the maximum spanning tree
over this adjacency matrix, we recover a hierarchy
over the input data. We recover relations among
instance topics by extracting from the Relations
multinomial, πR, the set of most probable tuples
of a 〈subject topic, verb topic, object topic〉.

Our model is implemented using a fast, parallel
approximation of collapsed Gibbs sampling, fol-
lowing Newman et al. (2009). In each sampling
iteration, topics are sampled locally on a subset of
the training examples. At the end of each iteration,
data from worker threads is joined and model pa-
rameters are updated with complete information.
In the next iteration, thread-local sampling starts
with complete topic assignment information from
the previous iteration. In each thread, the process
can be viewed as a reordering of the input exam-
ples, where the examples sampled in that thread
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are viewed first. It has been shown that parallel ap-
proaches considerably speed up iterative inference
methods such as collapsed Gibbs sampling, result-
ing in test data log probabilities indistinguishable
from those obtained using serial methods (Porte-
ous et al., 2008; Newman et al., 2009). A paral-
lel approach is especially important when training
the KB-LDA model due to the large dimensions
of the multinomials of the Ontology and Relations
components (K2 andK3, respectively for a model
with K topics). We train KB-LDA over 2000 iter-
ations, more than what has traditionally been used
for collapsed Gibbs samplers.

2.2 Data-driven discovery of topic concepts
The KB-LDA model described above clusters
noun entities into sets of instance topics, and re-
covers a latent hierarchical structure among these
topics. Each instance topic can be described by a
multinomial distribution of the underlying nouns.
It is often more intuitive, however, to refer to a
topic containing a set of high probability nouns by
a name, or category, just as traditional ontologies
describe hierarchies over categories.

Our model is trained over nouns that originate
from concept-instance example pairs (used to train
the Ontology component). We describe a method
for selecting a category name for a topic, based on
concepts that best represent high probability nouns
of the topic in the concept-instance examples.

We calculate the probability that a concept noun
c describes the set of instances I that have been
assigned the topic z using

p(c, z|I) ∝ p(I|c, z) ∗ p(c, z) (5)

= p(I|c, z) ∗ p(z|c) ∗ p(c)
Let rep(c, z) =

∑
i:Ci=c

nIz,Ii describe how well
concept c represents topic z according to the as-
signments of instances with concept c to the topic.
Then,

p(z|c) =
rep(c, z)∑
z′ rep(c, z′)

(6)

The concept prior, p(c), is based on the relative
weight of instances with concept c in the concept-
instance example set, and is an indicator of the
generality of a concept:

p(c) =

∑
i:Ci=c

wc,Ii∑
c′
∑

i:Ci=c′ wc′,Ii
(7)

where wC,I is the number of occurrences of
concept-instance pair 〈C, I〉 in the corpus.

Finally, p(I|c, z) measures how specific are the
topic instances to the concept c,

p(I|c, z) =

∑
i:Ii∈I,Ci=c

wc,Ii∑
i:Ci=c

wc,Ii

/
Z (8)

where I is the set of training instances assigned
with topic z, and Z is a normalizer over all con-
cepts and topics.

Following this method we extract concepts that
have a high probability p(c, z|I) with respect to a
topic z. These can be thought of as equivalent to
the single, fixed, category name provided by tra-
ditional KB ontologies; however, here we extract
from the data a set of potential alternative noun
phrases describing each topic, including a proba-
bility for the strength of this association.

3 Experimental Evaluation

We evaluate the KB-LDA model on a corpus
of 5.5M documents from the software domain;
thereby we are using the model to construct a soft-
ware domain knowledge base. Our evaluation ex-
plores the following questions:
• Can KB-LDA learn categories, relations, a

hierarchy and topic concepts with high pre-
cision?
• How well do KB-LDA topics correspond

with human-provided document labels?
• Is KB-LDA useful in extracting facts from

existing open IE resources?

3.1 Data
We use data from the Q&A website StackOver-
flow1 where users ask and answer technical ques-
tions about software development, tools, algo-
rithms, etc’. We extracted 562K concept-instance
example pairs from the data, and kept the 17K ex-
amples appearing at least twice. Noun phrases
in these examples make up our Instance Dictio-
nary. Out of 6.8M SVO examples found in the
data we keep 37K in which the subject and ob-
ject are in the Instance Dictionary, and the exam-
ple appears at least twice in the corpus. The verbs
in these SVOs make up our Relation Dictionary.
Finally, we consider as documents the 5.5M ques-
tions from StackOverflow with all their answers.

3.2 Evaluating the learned KB precision
In this section we evaluate the direct output of a
model trained with 50 topics: the extracted in-

1Data source: https://archive.org/details/stackexchange
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Figure 2: Average Match (top) and Group (bot-
tom) precision of top tokens of 50 topics learned
with KB-LDA, according to expert (dark blue) and
non-expert (light blue, stripes) labeling.

stance topics, topic hierarchy, relations among
topics and extracted topic concepts. In each of
the experiments below, we extract facts based on
one of the learned components and evaluate each
fact based on annotations from human judges: two
experts and three non-expert users, collected us-
ing Mechanical Turk, that were pre-tested on a
basic familiarity with concepts from the software
domain, such as programming languages, version
control systems, and databases.

3.2.1 Precision of Instance Topics

We measure the coherence of instance topics us-
ing an approach called word intrusion (Chang et
al., 2009). We extract the top 30 instance tokens
of a topic ranked by the instance topic multinomial
σ. We present to workers tokens 1-5,6-10,. . . ,26-
30, where each 5 tokens are randomly ordered and
augmented with an extra token that is ranked low
for the topic, (the intruder). We ask workers to
select all tokens that do not belong in the group
(and at least one). We define the topic Match Pre-
cision as the fraction of questions for which the
reviewer identified the correct intruder (out of 6
questions per topic), and the topic Group Precision
as the fraction of correct tokens (those not selected
as not belonging in the group). Thus Match Pre-
cision measures how well labelers understand the
topic, and Group Precision measures what fraction
of words appeared relevant to the topic.

Figure 2 shows the average Match and Group
precision over the top tokens of all 50 topics

learned with the model, as evaluated by expert and
non-expert workers. Both groups find the intruder
token in over 75% of questions. In the more subtle
task of validating each topic token (Group preci-
sion) we see a greater variance among the two la-
beler groups. This highlights the difficulty of eval-
uating domain specific facts with non-expert users.
Table 3 displays the top 20 instance topics learned
with KB-LDA, ranked by expert Group precision.

3.2.2 Precision of Topic Concepts
We assess the precision of the top 5 concept names
proposed for instance topics, following the method
presented in Section 2.2. Top concepts for a sub-
set of topics are shown in Table 3. For each topic,
we present to the user a hypernym-hyponym pat-
tern of the topic based on the top concepts and top
instances of the topic. As an example, if the top 5
instances of a topic are ie, firefox, chrome, buttons,
safari and the top 5 concepts for this topic are web
browsers, web browser, browser, ie, chrome, the
pattern presented to workers is
• [ie, firefox, chrome, buttons, safari] is a [web browsers,

web browser, browser, ie, chrome]

Workers were asked to match at least 3 instances
to a proposed concept name. In addition, the same
assessment was applied for each topic using ran-
domly sampled concepts. We present in Table 4
the number and precision of patterns based on ex-
tracted concepts (Concepts) and random concepts
(Random), that were labeled by 1, 2 or 3 workers,
as well as the average results among experts. We
achieve nearly 90% precision according to expert
labeling, however we do not observe large agree-
ment among non-expert labelers.

3.2.3 Precision of Relations
To assess the precision of the relations learned in
the KB-LDA model, we extract the top 100 rela-
tions learned according to their probability in the
relation multinomial πR. Relation patterns were
presented to workers as sets of the top subject-
verb-object tokens of the respective topics in the
relation. An example relation is
• Subject words: [user, users, people, customer, client]

• Verb words: [clicks, selects, submits, click, hits]

• Object words: [function, method, class, object, query]

and workers are asked to state whether the pat-
tern indicates a valid relation or not, by check-
ing whether a reasonable number of combinations
of subject-verb-object triples extracted from each
of the relation groups can produce valid relations.
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Top 2 Topic Concepts Top 10 Topic Tokens

table, key table, query, database, sql, column, data, tables, mysql, index, columns
properties, css image, code, images, problem, point, color, data, size, screen, points

credentials, user information name, images, id, number, text, password, address, strings, files, string
page, content page, html, code, file, image, javascript, browser, http, jquery, js

orm tools, orm tool tomcat, hibernate, server, boost, apache, spring, mongodb, framework, nhibernate, png
clients, apps app, application, http, android, device, phone, code, api, iphone, google

applications, systems devices, systems, applications, services, platforms, tools, sites, apps, system, service
systems, platforms google, windows, linux, facebook, git, ant, database, gmail, android, so

limits, limit memory, time, thread, code, threads, process, file, program, data, object
data, table query, table, data, list, example, number, results, search, database, rows
type, value code, function, value, type, pointer, array, memory, compiler, example, string

table, request data, information, types, properties, details, fields, values, content, resources, attributes
dependencies, jar file libraries, library, framework, frameworks, formats, format, database, databases, tools, server

type, object value, focus, place, property, method, reference, interface, effect, pointer, data
kinds, code languages, language, features, objects, functions, methods, code, operations, structures, types

element, elements button, form, link, item, file, mouse, image, value, option, row
javascript libraries, javascript framework jquery, mysql, http, json, xml, library, html, sqlite, asp, php

process, operating system server, client, connection, data, http, socket, message, request, port, service
folder, files file, files, directory, folder, path, code, name, resources, project, folders
value, array array, list, value, values, number, string, code, elements, loop, object

Table 3: Top 20 instance topics learned with KB-LDA. For each topic we show the top 2 concepts
recovered for the topic, and top 10 tokens. In italics are words marked as out-of-topic by expert labelers.

Workers Concepts Relations Subsumptions

KB-LDA (p) Random (p) KB-LDA (p) Random (p) KB-LDA (p) Random (p)

1 48 (0.96) 6 (0.12) 90 (0.9) 69 (0.69) 31 (0.63) 28 (0.57)
2 42 (0.84) 0 (0.0) 63 (0.63) 22 (0.22) 16 (0.33) 9 (0.18)
3 26 (0.52) 0 (0.0) 15 (0.15) 4 (0.05) 3 (0.06) 4 (0.08)

Experts 44 (0.88) 0 (0.0) 70 (0.7) 13 (0.13) 25 (0.51) 4 (0.08)

Table 4: Precision of topic concepts, relations, and subsumptions. For items extracted from the model
(KB-LDA), and randomly (Random), we show the number of items marked as correct, and precision in
parentheses (p), as labeled by 1, 2, or 3 non-expert workers, and the average precision by experts.

We present in Table 4 the number and precision of
patterns based on the top 100 relations (Relations)
and 100 random relations (Random), that were la-
beled by 1, 2 or 3 workers, and the average results
among experts. We achieve 80% precision accord-
ing to experts, and only 18% on random relations.
We observe similar agreement among expert and
non-expert workers as in the concept evaluation
experiment, however we note that random rela-
tions prove more confusing for non-experts and
more of them are (falsely) labeled as correct.

3.2.4 Precision of Hierarchy

We assess the precision of subsumption relations
making up the ontology hierarchy. These are ex-
tracted using the maximum spanning tree over the
graph represented by the Ontology component, πO
(see Section 2.1 for details), resulting in 49 sub-
sumption relations. We compare their quality to

that of 49 randomly sampled subsumption rela-
tions. Subsumptions are presented to the worker
using is a patterns, similar to the ones described
above for concept evaluation, however in this case,
the concept tokens are the top tokens of the hyper-
nym topic. An example subsumption relation is

• [java, python, javascript, lists, ruby] is a [languages,

language, features, objects, functions]

The results shown in Table 4 indicate a low pre-
cision among the extracted subsumption relations.
This might be explained by the fact that at the final
training iteration (2K) of the model, the perplexity
of the Ontology component was still improving,
while the perplexity of the other model compo-
nents seemed closer to convergence. It is possible
that the low precision observed here indicates that
more training iterations are needed to achieve an
accurate ontology using KB-LDA.

1455



Topic string, character, characters, text, line
Tags regex, string, python, php, ruby

Topic element, div, css, elements, http
Tags css, html, jquery, html5, javascript

Topic table, query, database, sql, column
Tags sql, mysql, database, performance, php

Topic jquery, mysql, http, json, xml
Tags jquery, json, javascript, ruby, string

Table 5: Top tags associated with sample topics.

3.3 Overlap of KB-LDA topics with
human-provided labels

We evaluated how well topics from KB-LDA cor-
respond to document labels provided by humans,
over a randomly sampled set of 40K documents
from our corpus. In StackOverflow, questions
(which we consider as documents) can be labeled
with predefined tags. Here, we estimate the over-
lap with the most frequently used tags. First, for
topic k, we aggregate tags from documents where
k = argmaxk′ θk

′
d , where θd is the document topic

distribution. Table 5 shows examples of the top
tags associated with sample topics, indicating a
good correlation between top topic words and the
underlying concepts.

Next, for each tested document d ∈ D, let Wd

be the top 30 words of the most probable topic in
θd, and Td the set of human provided document
tags. We consider the following metrics:

Docs-Overlap =

∑D
d 1{∃t∈Td:t∈Wd}

|D|

measures the ratio of documents for which at least
one tag overlaps with a top topic word. The aver-
age ratio of overlapping tags per document is

Tag-Overlap =
1
|D|

D∑
d

|t : t ∈ Td ∧ t ∈Wd|
|Td|

As a baseline, we measure similar overlap metrics
using the 30 most frequent instance tokens in the
document corpus. The results in Table 6 indicate
an overlap of nearly half of the 20, 50, 100, and
500 most frequent tags with top topic tokens – sig-
nificantly higher than the overlap with frequent to-
ken. Our evaluation is based on the subset of tags
found in the instance dictionary of KB-LDA.

Top Found in KB-LDA Frequent Tokens
Tags Dictionary Docs Tag Docs Tag

20 14 0.45 0.42 0.21 0.16
50 36 0.48 0.42 0.20 0.14

100 72 0.45 0.38 0.20 0.13
500 322 0.44 0.33 0.18 0.10

Table 6: Docs and Tag overlap of human-provided
tags with KB-LDA topics, and frequent tokens.

Top 10 ranked triples: 〈server, not found, error〉,
〈user, can access, file〉, 〈method, not found, error〉,
〈user, can change, password〉, 〈page, not found, error〉,
〈user, can upload, videos〉, 〈compiler, will generate,
error〉, 〈users, can upload, files〉, 〈users, can upload,
files〉, 〈object, not found, error〉
Bottom 10 ranked triples: 〈france, will visit,
germany〉, 〈utilities, may include, heat〉, 〈iran, has had,
russia〉, 〈russia, can stop, germany〉, 〈macs, do not
support, windows media player〉, 〈cell phones, do not
make, phone calls〉, 〈houses, have made, equipment〉,
〈guests, will find, restaurants〉, 〈guests, can request,
bbq〉, 〈inspectors, do not make, appointments〉

Table 7: Top and bottom ReVerb software triples
ranked with KB-LDA.

3.4 Extracting facts from an open IE
resource

We use KB-LDA to extract domain specific triples
from an existing open IE KB, the 15M relations
extracted using ReVerb (Fader et al., 2011) from
ClueWeb09. By extracting the relations in which
the subject, verb and object noun phrases are in-
cluded in the KB-LDA dictionary, we are left with
under 5K triples, indicating the low coverage of
software related triples using open domain extrac-
tion, in comparison with the 37K triples extracted
from StackOverflow and given as an input to KB-
LDA.

Due to word polysemy, many of the 5K
extracted triples are themselves not specific
to the domain. This suggests a hybrid ap-
proach in which KB-LDA is used to rank
open IE triples for relevance to a domain. We
ranked the 5K open triples by the probability
of the triple given a trained KB-LDA model:
p(s, v, o) =

∑K
ks

∑K
kv

∑K
ko
π
〈ks,kv ,ko〉
R σsks

σoko
δvkv

.
Table 7 shows the top and bottom 10 triples
according to this ranking, which suggests that
the triples ranked higher by KB-LDA are more
relevant to the software domain.

We compare the ranking based on KB-LDA to
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Figure 3: Precision-recall curves of rankers of
open IE triples by software relevance, based on
KB-LDA probabilities (blue), and ReVerb confi-
dence (red). A star is pointing the highest F1.

a ranking using a confidence score for the triple
as assigned by ReVerb. We manually labeled 500
of the triples according to their relevance to the
software domain, and measured the precision and
recall of the two rankings at any cutoff thresh-
old. Figure 3 shows precision-recall curves for
the two rankings, demonstrating that the ranking
using probabilities based on KB-LDA leads to a
more accurate detection of domain-relevant triples
(with AUC of 0.67 for KB-LDA versus 0.57 for
ReVerb).

4 Related Work

KB-LDA is an extension to LDA and link-LDA
(Blei et al., 2003; Erosheva et al., 2004), model-
ing documents as a mixed membership over en-
tity types with additional annotated metadata, such
as links (Nallapati et al., 2008; Chang and Blei,
2009). It is a generalization of Block-LDA (Bal-
asubramanyan and Cohen, 2011), however, KB-
LDA models two link components, and the input
links have a meaningful semantic correspondence
to a KB structure (hierarchical and relational). In
a related approach, Dalvi et al. (2012) cluster web
table concepts to non-probabilistically create hier-
archies with assigned concept names.

Our work is related to latent tensor representa-
tion of KBs, aimed at enhancing the ontological
structure of existing KBs with relational data in the
form of tensor structures. Nickel et al. (2012) fac-
torized the ontology of Yago 2 for relational learn-
ing. A related approach was using Neural Tensor
Networks to extract new facts from an existing KB
(Chen et al., 2013; Socher et al., 2013). In con-

trast, in KB-LDA, relational data is learned jointly
with the model through the Relations component.

Statistical language models have recently been
adapted for modeling software code and text
documents. Most tasks focused on enhancing
the software development workflow with code
and comment completion (Hindle et al., 2012;
Movshovitz-Attias and Cohen, 2013), learning
coding conventions (Allamanis et al., 2014), and
extracting actionable tasks from software doc-
umentation (Treude et al., 2014). In related
work, specific semantic relations, coordinate re-
lations, have been extracted for a restricted class
of software entities, ones that refer to Java classes
(Movshovitz-Attias and Cohen, 2015). KB-LDA
extends previous work by reasoning over a large
variety of semantic relations among general soft-
ware entities, as found in a document corpus.

5 Conclusions

We presented a model that jointly learns a latent
ontological structure of a corpus augmented by re-
lations, and identifies facts matching the learned
structure. The quality of the produced structure
was demonstrated through a series of real-world
evaluations employing human judges, which mea-
sured the semantic coherence of instance topics,
relations, topic concepts, and hierarchy. We fur-
ther validated the semantic meaning of topic con-
cepts, by their correspondence to an independent
source of human-provided document tags. The ex-
perimental evaluation validates the usefulness of
the proposed model for corpus exploration.

The results highlight the benefits of generaliz-
ing pattern-based facts (hypernym-hyponym pairs
and subject-verb-object tuples), using text docu-
ments in a topic model framework. This modular
approach offers opportunities to further improve
an induced KB structure by posing additional con-
straints on corpus entities in the form of additional
components to the model.
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Abstract

Most existing topic models make the bag-
of-words assumption that words are gener-
ated independently, and so ignore poten-
tially useful information about word or-
der. Previous attempts to use collocations
(short sequences of adjacent words) in
topic models have either relied on a pipe-
line approach, restricted attention to bi-
grams, or resulted in models whose infer-
ence does not scale to large corpora. This
paper studies how to simultaneously learn
both collocations and their topic assign-
ments. We present an efficient reformula-
tion of the Adaptor Grammar-based topi-
cal collocation model (AG-colloc) (John-
son, 2010), and develop a point-wise sam-
pling algorithm for posterior inference in
this new formulation. We further improve
the efficiency of the sampling algorithm
by exploiting sparsity and parallelising in-
ference. Experimental results derived in
text classification, information retrieval
and human evaluation tasks across a range
of datasets show that this reformulation
scales to hundreds of thousands of docu-
ments while maintaining the good perfor-
mance of the AG-colloc model.

1 Introduction

Probabilistic topic models like Latent Dirichlet
Allocation (LDA) (Blei et al., 2003) are com-
monly used to study the meaning of text by iden-
tifying a set of latent topics from a collection of
documents and assigning each word in these doc-
uments to one of the latent topics. A document is
modelled as a mixture of latent topics, and each
topic is a distribution over a finite vocabulary of
words. It is common for topic models to treat
documents as bags-of-words, ignoring any inter-

nal structure. While this simplifies posterior infer-
ence, it also ignores the information encoded in,
for example, syntactic relationships (Boyd-Graber
and Blei, 2009), word order (Wallach, 2006) and
the topic structure of documents (Du et al., 2013).
Here we are interested in topic models that capture
dependencies between adjacent words in a topic
dependent way. For example, the phrase “white
house” can be interpreted compositionally in a
real-estate context, but not in a political context.

Several extensions of LDA have been proposed
that assign topics not only to individual words but
also to multi-word phrases, which we call topical
collocations. However, as we will discuss in sec-
tion 2, most of those extensions either rely on a
pre-processing step to identify potential colloca-
tions (e.g., bigrams and trigrams) or limit attention
to bigram dependencies. We want a model that can
jointly learn collocations of arbitrary length and
their corresponding topic assignments from a large
collection of documents. The AG-colloc model
(Johnson, 2010) does exactly this. However, be-
cause the model is formulated within the Adaptor
Grammar framework (Johnson et al., 2007), the
time complexity of its inference algorithm is cu-
bic in the length of each text fragment, and so it is
not feasible to apply the AG-colloc model to large
collections of text documents.

In this paper we show how to reformulate
the AG-colloc model so it is no longer relies
on a general Adaptor Grammar inference proce-
dure. The new formulation facilitates more ef-
ficient inference by extending ideas developed
for Bayesian word segmentation (Goldwater et
al., 2009). We adapt a point-wise sampling algo-
rithm from Bayesian word segmentation, which
has also been used in Du et al. (2013), to simul-
taneously sample collocation boundaries and col-
location topic assignments. This algorithm retains
the good performance of the AG-colloc model in
document classification and information retrieval

1460



tasks. By exploiting the sparse structure of both
collocation and topic distributions, using tech-
niques inspired by Yao et al. (2009), our new in-
ference algorithm produces a remarkable speedup
in running time and allows our reformulation to
scale to a large number of documents. This algo-
rithm can also be easily parallelised to take advan-
tage of multiple cores by combining the ideas of
the distributed LDA model (Newman et al., 2009).
Thus, the contribution of this paper is three-fold:
1) a novel reformulation of the AG-colloc model,
2) an easily parallelisable and fast point-wise sam-
pling algorithm exploiting sparsity and 3) system-
atic experiments with both qualitative and quanti-
tative analysis.

The structure of the paper is as follows. In Sec-
tion 2 we briefly discuss prior work on learning
topical collocations. We then present our reformu-
lation of the AG-colloc model in Section 3. Sec-
tion 4 derives a point-wise Gibbs sampler for the
model and shows how this sampler can take advan-
tage of sparsity and be parallelised across multiple
cores. Experimental results are reported in Section
5. Section 6 concludes this paper and discusses fu-
ture work.

2 Related Work

There are two main approaches to incorporat-
ing topical collocations in LDA: 1) pipeline ap-
proaches that use a pre-processing step prior to
LDA, and 2) extensions to LDA, which modify the
generative process. In this section we discuss prior
work that falls into these two categories and their
limitations.

Pipeline Approaches (Lau et al., 2013), denoted
here by PA, involve two steps. The first step iden-
tifies a set of bigrams that are potentially rele-
vant collocations from documents by using sim-
ple heuristics for learning collocations, e.g., the
Student’s t-test method of Banerjee and Peder-
sen (2003). For each identified bigram “w1 w2”,
a new pseudo word “w1 w2” is added to the vo-
cabulary and the documents are re-tokenised to
treat every instance of this bigram as a new to-
ken. LDA is then applied directly to the mod-
ified corpus without any changes to the model.
While Lau et al. demonstrated that this two-step
approach improves performance on a document
classification task, it is limited in two ways. First,
it can identify only collocations of a fixed length
(i.e., bigrams). Second, the pre-processing step

that identifies collocation candidates has no access
to contextual cues (e.g. the topic of the context in
which a bigram occurs),

A variety of extensions to the LDA model have
been proposed to address this second shortcom-
ing. Most extensions add some ability to capture
word-to-word dependencies directly into the un-
derlying generative process. For example, Wal-
lach (2006) incorporates a hierarchical Dirichlet
language model (MacKay and Peto, 1995), en-
abling her model to automatically cluster function
words together. The model proposed by Griffiths
et al. (2004) combines a hidden Markov model
with LDA, using the former to model syntax and
the latter to model semantics.

The LDA collocation model (LDACOL) (Grif-
fiths et al., 2007) infers both the per-topic word
distribution in the standard LDA model and, for
each word in the vocabulary, a distribution over the
words that follow it. The generative process of the
LDACOL model allows words in a document to be
generated in two ways. A word is generated either
by drawing it directly from a per-topic word distri-
bution corresponding to its topic as in LDA, or by
drawing it from the word distribution associated
with its preceding word w. The two alternatives
are controlled by a set of Bernoulli random vari-
ables associated with individual words. Sequences
of words generated from their predecessors consti-
tute topical collocations.

Wang et al. (2007) extended the LDACOL
model to generate the second word of a colloca-
tion from a distribution that conditions on not only
the first word but also the first word’s topic assign-
ment, proposing the topical N-gram (TNG) model.
In other words, whereas LDACOL only adds a dis-
tribution for every word-type to LDA, TNG adds
a distribution for every possible word-topic pair.
Wang et al. found that this modification allowed
TNG to outperform LDACOL on a standard in-
formation retrieval task. However, both LDACOL
and TNG do not require words within a sequence
to share the same topic, which can result in seman-
tically incoherent collocations.

Subsquent models have sought to encourage
topically coherent collocations, including Phrase-
Discovering LDA (Lindsey et al., 2012), the time-
based topical n-gram model (Jameel and Lam,
2013a) and the n-gram Hierarchical Dirichlet Pro-
cess (HDP) model (Jameel and Lam, 2013b).
Phrase-Discovering LDA is a non-parametric ex-
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tension of TNG inspired by Bayesian N-gram
models Teh (2006) that incorporate a Pitman-Yor
Process prior. The n-gram HDP is a nonparametric
extension of LDA-colloc, putting an HDP prior on
the per-document topic distribution. Both of these
non-parametric extensions use the Chinese Fran-
chise representation for posterior inference.

Our work here is based on the AG-colloc model
proposed by Johnson (2010). He showed how
Adaptor Grammars can generalise LDA to learn
topical collocations of unbounded length while
jointly identifying the topics that occur in each
document. Unfortunately, because the Adaptor
Grammar inference algorithm uses Probabilistic
Context-Free Grammar (PCFG) parsing as a sub-
routine, the time complexity of inference is cu-
bic in the length of individual text fragments. In
order to improve the efficiency of the AG-colloc
model, we re-express it using ideas from Bayesian
word segmentation models. This allows us to de-
velop an efficient inference algorithm for the AG-
colloc model that scales to large corpora. Finally,
we evaluate our model in terms of classification,
information retrieval, and topic intrusion detection
tasks; to our knowledge, we are the first to evalu-
ate topical collocation models along all the three
dimensions.

3 Topical Collocation Model

In this section we present our reformulation of the
AG-colloc model, which we call the Topical Col-
location Model (TCM) to emphasise that we are
not using a grammar-based formulation. We start
with the Unigram word segmentation model and
Adaptor Grammar model of topical collocations,
and then present our reformulation.

Goldwater et al. (2009) introduced a Bayesian
model for word segmentation known as the Uni-
gram model. This model is based on the Dirichet
Process (DP) and assumes the following genera-
tive process for a sequence of words.

G ∼ DP (α0, P0), wi | G ∼ G

Here, P0 is some distribution over the countably
infinite set of all possible word forms (which are
in turn sequences of a finite number of charac-
ters), and G is a draw from a Dirichlet Process.
Inference is usually performed under a collapsed
model in which G is integrated out, giving rise
to a Chinese Restaurant Process (CRP) represen-
tation. The CRP is defined by the following pre-

dictive probability of wi given w1:i−1:

p(wi = l|w1:i−1) =
nl

i− 1 + α0
+

α0P0(l)
i− 1 + α0

,

where nl is the number of times word form l ap-
pears in the first n− 1 words.

During inference, the words are not known, and
the model observes only a sequence of charac-
ters. Goldwater et al. (2009) derived a linear time
Gibbs sampler that samples from the posterior dis-
tribution over possible segmentations of a given
corpus according to the model. Their key insight
is that sampling can be performed over a vector
of Boolean boundary indicator variables – not in-
cluded in the original description of the model –
that indicates which adjacent characters are sepa-
rated by a word boundary. We will show how this
idea can be generalised to yield an inference algo-
rithm for the AG-colloc model.

Adaptor Grammars (Johnson et al., 2007) are
a generalisation of PCFGs. In a PCFG, a non-
terminal A is expanded by selecting a rule A→ β
with probability P (β|A), where β is a sequence of
terminal and non-terminal node labels. Because
the rules are selected independently, PCFGs in-
troduce strong conditional independence assump-
tions. In an Adaptor Grammar, some of the non-
terminal labels are adapted. These nodes can be
expanded either by selecting a rule, as in PCFGs,
or by retrieving an entire subtree from a Dirichlet
Process cache specific to that node’s non-terminal
label,1 breaking the conditional independence as-
sumptions and capturing longer-range statistical
relationships.

The AG-colloc model can be concisely ex-
pressed using context free grammar rule schemata,
where adapted non-terminals are underlined:

Top→ Docm
Docm →−m | Docm Topici
Topici →Word+

Here m ranges over the documents, i ranges over
topics, “|” separates possible expansions, and “+”
means “one or more”. As in LDA, each document
is defined as a mixture of K topics with the mix-
ture probabilities corresponding to the probabili-

1Strictly speaking, Adaptor Grammars are defined using
the Pitman-Yor process. In this paper we restrict ourselves to
considering the Dirichlet Process which is a special case of
the PYP where the discount parameter is set to 0. For more
details, refer to Johnson et al. (2007) and Johnson (2010).
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ties of the different expansions of Docm. How-
ever, the topic distributions are modelled using
an adapted non-terminal Topici. This means that
there is an infinite number of rules expanding
Topici, one for every possible sequence over the
finite vocabulary of words. Topici non-terminals
cache sequences of words, just as G caches se-
quences of characters in the Unigram model.

The base distribution of the AG-colloc model is
a geometric distribution over sequences of a finite
vocabulary of words: P0(c = (w1, . . . , wM )) =
p#(1−p#)M−1

∏M
j=1 Pw(wj),where Pw(·) is the

uniform distribution over the finite set of words.
This is the same base distribution used by Gold-
water et al. (2009), except characters have been
replaced by words. p# is the probability of seeing
the end of a collocation, and so controls the length
of collocations. With this, we can re-express the
AG-colloc model as a slight modification of the
Unigram model:
1. For each topic k, 1 ≤ k ≤ K, φk ∼ DP(α0, P0)

2. For each document d, 1 ≤ d ≤ D
(a) Draw a topic distribution θd|α ∼ DirichletK(α)

(b) For each collocation cd,n in document d, 1 ≤ n ≤
Nd

i. Draw a topic assignment:
zd,n | θd ∼ Discrete(θd)

ii. Draw a collocation:
cd,n | zd,n,φ1, . . . ,φK ∼ φzd,n

where the length of a collocation cd,n is greater
than or equal to 1, i.e., |cd,n| ≥ 1. Unlike previous
models, the TCM associates each topic with a Un-
igram model over topical collocations. Therefore,
the TCM learns different vocabularies for different
topics.2

4 Posterior Inference

We develop an efficient point-wise sampling al-
gorithm that can jointly sample collocations and
their topics. The observed data consists of a se-
quence of word tokens which are grouped into D
documents. We sample from the posterior distri-
bution over segmentations of documents into col-
locations, and assignments of topics to colloca-
tions. Let each document d be a sequence of Nd

words wd,1, . . . , wd,Nd
. We introduce a set of aux-

iliary random variables bd,1, . . . , bd,Nd
. The value

2In the TCM, the vocabulary differs from topic to topic.
Given a sequence of adjacent words, it is hard to tell if it is a
collocation without knowing the topic of its context. There-
fore, the Pointwise Mutual Information (PMI) (Newman et
al., 2010) and its variant (Lau et al., 2014) are not applicable
to our TCM in evaluation.

of bd,j indicates whether there is a collocation
boundary between wd,j and wd,j+1, and, if there
is, the topic of the collocation to the left of the
boundary. If there is no boundary then bd,j = 0.
Otherwise, there is a collocation to the left of the
boundary consisting of the words wd,l+1, . . . , wd,j
where l = max {i | 1 ≤ i ≤ j − 1 ∧ bd,i 6= 0},
and bd,j = k (1 ≤ k ≤ K) is the topic of the col-
location. Note that bd,Nd

must not be 0 as the end
of a document is always a collocation boundary.

For example, consider the document consisting
of the words “the white house.” We use the K+1-
valued variables b1, b2 (after ‘the’ and ‘white’) and
the K-valued variable b3 (after ‘house’) to de-
scribe every possible segmentation of this docu-
ment into topical collocations.3 If there areK top-
ics andN words, there are (K+1)N−1K possible
topical segmentations. To illustrate, see how each
of the following triples (b1, b2, b3) encodes a dif-
ferent analysis of “the white house” into bracketed
collocations and subscripted topic numbers:
• (0, 0, 1) : (the white house)1
• (1, 0, 2) : (the)1 (white house)2
• (2, 1, 1) : (the)2 (white)1 (house)1
The next section elaborates the Gibbs sampler over
these K+1 boundary variables.

4.1 A Point-wise Gibbs Sampler for the TCM

We consider a collapsed version of the TCM in
which the document-specific topic mixtures θ1:D

and theK non-parametric topic distributionsφ1:K

are integrated out. We introduce the sampling
equations using a concrete example, considering
again the toy document, “the white house.”

Let the sampler start in state b1 = b2 = 0, b3 =
z0, 1 ≤ z0 ≤ K. This corresponds to the analysis

(the0 white0 housez0︸ ︷︷ ︸
c0

) .

This analysis consists of a single collocation c0
which spans the entire document and is assigned
to topic z0. For simplicity, we will not show how
to model document boundaries.

If we resample b1, we have to consider two dif-
ferent hypotheses, i.e., putting or not putting a col-
location boundary at b1. The analysis correspond-
ing to not putting a boundary is the one we just

3A similar strategy of using K-valued rather than
boolean boundary variables in Gibbs sampling was used in
Börschinger et al. (2013) and Du et al. (2014).
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saw. Putting a boundary corresponds to a new seg-
mentation,

(thez1)︸ ︷︷ ︸
c1

(white0 housez2︸ ︷︷ ︸
c2

) .

We need to consider the K possible topics for c1,
for each of which we calculate the probability as
follows. If b1 = 0 (i.e., there is no collocation
boundary after “the”) we have

p(z0, c0|µ) = p(z0|α)p(c0|α0, P0, z0) , (1)

where µ = {α, α0, P0}. p(c0|α0, P0, z0) is the
probability of generating collocation c0 from topic
z0 with a CRP, i.e.,

p(c0|α0, P0, z0) =
n−c0z0 + α0P0(c0)
N−c0z0 + α0

, (2)

where n−c0z0 is the number of times that colloca-
tion c0 was assigned to topic z0 and N−c0z0 is the
total number of collocations assigned to z0. Both
counts exclude the parts of the analysis that are af-
fected by the boundary c0. As in LDA,

p(z0 = k|α) =
n̂−c0k + α∑K

k=1 n̂
−c0
k +Kα

, (3)

where n̂−c0k is the total number of collocations as-
signed to topic k in a document, again excluding
the count for the parts of the document that are af-
fected by the current boundary. For the hypothesis
that b1 = z1 (with 1 ≤ z1 ≤ K), the full condi-
tional to generate two adjacent collocations is

p(z1, z2, c1, c2|µ) ∝ (4)

p(z1|α)p(c1|α0, P0, z1)
p(z2|α, z1)p(c2|α0, P0, c1, z1, z2) ,

where p(z1|α) and p(c1|α0, P0, z1) can be com-
puted with Eqs (3) and (2), respectively. The re-
maining probabilities are computed as

p(z2 = k|α, z1) =

n̂−c1,c2k + α+ Iz2=z1∑K
k=1 n̂

−c1,c2
k +Kα+ 1

, (5)

p(c2|α0, P0, c1, z1, z2) =

n−c1,c2z2 + Iz1=z2Ic1=c2 + α0P0(c2)
α0 +N−c1,c2z2 + Iz1=z2

(6)

where Ix=y is an indicator function that is equal
to 1 if x = y and 0 otherwise, n−c1,c2z2 is the

number of collocations c2 assigned to topic z2,
andN−c1,c2z2 is the total number of collocations as-
signed to topic z2. Both counts exclude the current
c2, and also exclude c1 if z1 = z2 and c1 = c2. Our
sampler does random sweeps over all the bound-
ary positions, and calculates the joint probability
of the corresponding collocations and their topic
assignment using Eqs (1) and (4) at each position.

4.2 Parallelised Sparse Sampling Algorithm

The word distributions and topic distributions in
LDA are typically sparse, and Yao et al. (2009)
proposed a ‘sparseLDA’ Gibbs sampler that takes
advantage of this sparsity to substantially reduce
running time. These two distributions are even
sparser for the TCM than LDA, because collo-
cations are less frequent than unigrams. Here we
show how to modify our sampler to take advan-
tage of sparsity. Sampling boundaries according
the two probabilities shown Eqs (1) and (4) re-
quires the generation of a random number x from
a uniform distribution, U(0,P), where

P = p(z0, c0) +
K∑

z1=1

p(z1, c1)p(z2, c2|c1, z1) . (7)

Here the first term corresponds to the case that
there is no collocation boundary, and the summa-
tion corresponds to the case that there is a collo-
cation boundary. Thus, if x is less than P (z0, c0),
there will be no boundary. Otherwise, we need to
sample z1 according to Eq (4).

The sampling algorithm requires calculation of
Eq (7), even though the probability mass may be
concentrated on just a few topics. We have ob-
served in our experiments that the denominators of
Eqs (5) and (6) are often quite large and the indica-
tor functions usually turn out to be zero, so we ap-
proximate the two equations by removing the in-
dicator functions. This approximation not only fa-
cilitates the computation of Eq (7), but also means
that p(z2, c2|c1, z1) no longer depends on z1 and
c1. Thus, Eq (7) can be approximated as

P ≈ p(z0, c0) + p(z2, c2)
K∑

z1=1

p(z1, c1) . (8)

Now that p(z0, c0) and p(z2, c2) are both out of the
summation; they can be pre-computed and cached.

To reduce the computational complexity of the
summation term in Eq (8), we use the “buckets”

1464



method (Yao et al., 2009). We divide the summa-
tion term in p(z1, c1) into three parts as follows,
each of which corresponds to a bucket:

p(z1 = k, c1)

=
n̂−c1,c2k + α∑K

k=1 n̂
−c1,c2
k +Kα

n−c1,c2k + α0P0(c1)

N−c1,c2k + α0

∝ α0P0(c1)α
N−c1,c2k + α0

+
n̂−c1,c2k α0P0(c1)

N−c1,c2k + α0

+
(n̂−c1,c2k + α)n−c1,c2k

N−c1,c2k + α0

(9)

Then, the summation in Eq (8) is proportional to
the sum of the following three equations:

s =
K∑
k=1

α0P0(c1)α
N−c1,c2k + α0

(10)

r =
K∑
k=1

n̂−c1,c2k α0P0(c1)

N−c1,c2k + α0

(11)

q =
K∑
k=1

(n̂−c1,c2k + α)n−c1,c2k

N−c1,c2k + α0

(12)

We can now use the sampling techniques used
in the sparse-LDA model to sample z1. Firstly,
sample U ∼ U(0, s + r + q). If U < s we
have hit bucket s. In this case, we need to com-
pute the probability for each possible topic. If
s < x < (s + r) we have hit the second bucket
r. In this case, we compute probabilities only for
topics such that n̂−c1,c2k 6= 0. If x > (s + r) we
have hit bucket q, which is the “topic collection”
bucket, and we need only consider topics such that
n−c1,c2k 6= 0. Although we use an approximation
in computing the full conditionals, experimental
results have shown that our TCM is as accurate as
the original AG-colloc model, see Section 5.

Our sparse sampling algorithm can be easily
parallelised with the same multi-threading strat-
egy used by Newman et al. (2009) in their dis-
tributed LDA (AD-LDA). In AD-LDA, documents
are distributed evenly across P processors, each of
which also has a copy of the word-topic count ma-
trix. Gibbs updates are performed simultaneously
on each of the P processors. At the end of each
Gibbs iteration, the P copies of the word-topic
count matrices are collected and summed into the
global word-topic count matrix.

In the TCM, collocations in each topic are gen-
erated from a CRP. Hence, distributing the word-
topic count matrix in AD-LDA now corresponds

to distributing a set of Chinese restaurants in the
parallelised TCM. The challenge is how to merge
the Chinese Restaurant copies from the P proces-
sors into a single global restaurant for each topic,
similar to the merging problem in Du et al. (2013).
However, Eqs (2) and (6) show that the statistics
that need to be collected are the number of col-
locations generated for each topic. The number
of tables in a restaurant does not matter.4 There-
fore, we can adapt the summation technique used
in AD-LDA.

We further observed that if P is large, using a
single processor to perform the summation oper-
ation could result in a large overhead. The sum-
mation step could be even costlier in TCM than
in LDA, since the number of distinct collocations
is much larger than the number of distinct words.
Thus we also parallelise the summation step using
all the processors that are free in this step.

5 Experimental Results

In this section we evaluate the effectiveness
and efficiency of our Topical Collocation Model
(TCM) on different tasks, i.e., a document clas-
sification task, an information retrieval task and a
topic intrusion detection task. All the empirical re-
sults show that our TCM performs as well as the
AG-colloc model and outperforms other colloca-
tion models (i.e., LDACOL (Griffiths et al., 2007),
TNG (Wang et al., 2007), PA (Lau et al., 2013)).
The TCM also runs much faster than the other
models. We also compared the TCM with the Mal-
let implementation of AD-LDA (Newman et al.,
2009), denoted by Mallet-LDA, for completeness.
Following Griffiths et al. (2007), we used punc-
tuation and Mallet’s stop words to split the docu-
ments into subsequences of word tokens, then re-
moved those punctuation and stop words from the
input. All experiments were run on a cluster with
80 Xeon E7-4850 processors (2.0GHz) and 96 GB
memory.

5.1 Classification Evaluation

In the classification task, we used three datasets:
the movie review dataset (Pang and Lee, 2012)
(MReviews), the 20 Newsgroups dataset, and the
Reuters-21578 dataset. The movie review dataset
includes 1,000 positive and 1,000 negative re-
views. The 20 Newsgroups dataset is organised

4The number of tables is used only when sampling the
concentration parameters, α0, see Blunsom et al. (2009).
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Task Classification IR
Dataset MReview SJMN-2k
Mallet-LDA 71.30 18.85
LDACOL 71.75 19.03
TNG 71.40 19.06
PA 72.74 19.16
AG-colloc 73.15 19.37
Non-sparse TCM 73.14 19.30
Sparse TCM 73.13 19.31

Table 1: Comparison of all models in the classi-
fication task (accuracy in %) and the information
retrieval task (MAP scores in %) on small corpora.
Bold face indicates scores not significantly differ-
ent from the best score (in italics) according to a
Wilcoxon signed rank test (p < 0.05).

Mallet-LDA PA TCM
Politics 89.1 89.2 89.2
Comp 86.3 87.4 87.9

Sci 92.0 93.2 93.4
Sports 91.6 91.7 92.6

Reuter-21578 97.3 97.5 97.6

Table 2: Classification accuracy (%) on larger
datasets. Bold face indicates scores not signifi-
cantly different from the best score (in italics) ac-
cording to a Wilcoxon signed rank test (p < 0.05).

into 20 different categories according to different
topics. We further partitioned the 20 newsgroups
dataset into four subsets, denoted by Comp, Sci,
Sport, and Politics. They have 4, 891, 3, 952,
1, 993, and 2, 625 documents respectively. We ap-
plied document classification to each subset. The
Reuters-21578 dataset has 21,578 Reuters news
articles which are split into 10 categories.

The classification evaluation was carried out as
follows. First, we ran each model on each dataset
to derive point estimates of documents’ topic dis-
tributions (θ), which were used as the only fea-
tures in classification. We then randomly selected
from each dataset 80% documents for training
and 20% for testing. A Support Vector Machine
(SVM) with a linear-kernel was used. We ran all
models for 10,000 iterations with 50 topics on the
movie review dataset and 100 on the other two.
We set α = 1/K and β = 0.02 for Mallet-LDA,
LDACOL, TNG and PA. We used the reported set-
tings in Johnson (2010) for the AG-colloc model.
For the TCM, we used α = 1/K. The concentra-

Mallet-LDA PA TCM
SJMN 20.7 20.9 21.2

AP 24.0 24.5 24.8

Table 3: Mean average Precision (MAP in %)
scores in the information retrieval task. Scores in
bold and italics are the significantly best MAP
scores according to a Wilcoxon signed rank test
(p < 0.05).

tion parameter α0 was initially set to 100 and re-
sampled using approximated table counts (Blun-
som et al., 2009).

Since efficient inference is unavailable for
LDACOL, TNG and AG-colloc, making it imprac-
tical to evaluate them on the large corpora, we
compared our TCM with them only on the MRe-
views dataset. The first column of Table 1 shows
the classification accuracy of those models. All the
collocation models outperform Mallet-LDA. The
AG-colloc model yields the highest classification
accuracy, and our TCM with/without sparsity per-
forms as well as the AG-colloc model according to
the Wilcoxon signed rank test. The Pipeline Ap-
proach (PA) is always better than LDACOL and
TNG. Therefore, in the following experiments we
will focus on the comparison among our TCM,
Mallet-LDA and PA.

Table 2 shows the classification accuracy of
those three models on the larger datasets, i.e., the
20 Newsgroups dataset, and the Reuters-21578
dataset. The TCM outperforms both Mallet-LDA
and PA on 3 out of 5 datasets, and performs
equally well as PA on the Politics and Reuter-
21578 datasets according to a Wilcoxon signed
rank test (p < 0.05).

5.2 Information Retrieval Evaluation

For the information retrieval task, we used the
method presented by Wei and Croft (2006) and
Wang et al. (2007) to calculate the probability of
a query given a document. We used the San Jose
Mercury News (SJMN) dataset and the AP News
dataset from TREC. The former has 90,257 docu-
ments, the latter has 242,918 documents. Queries
51-150 were used. We ran all the models for
10,000 iteration with 100 topics. The other param-
eter settings were the same as those used in Sec-
tion 5.1. Queries were tokenised using unigrams
for Mallet-LDA and collocations for all colloca-
tion models.
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Models p(w|t) p(t|w)
Mallet-LDA 71.9 73.2
PA 72.8 76.7
TCM 73.2 79.7

Table 4: The model precision (%) derived from the
intrusion detection experiments.

On a small subset of the SJMN data, which
contains 2,000 documents (SJMN-2k), we find
again that TCM and AG-colloc perform equally
well and outperform all other models (LDACOL,
TNG, PA), as shown in the second column of Ta-
ble 1. We further compare the TCM, Mallet-LDA
and PA on the full SJMN dataset and the AP news
dataset, as these models can run on large scale. Ta-
ble 3 shows the mean average precision (MAP)
scores. The TCM significantly outperforms both
Mallet-LDA and the PA approach, and yields the
highest MAP score.

5.3 Topic Coherence Evaluation

We ran a set of topic intrusion detection experi-
ments (Chang et al., 2009) that provide a human
evaluation of the coherence of the topics learnt by
Mallet-LDA, PA and TCM on the SJMN dataset.
This set of experiments was use to measure how
well the inferred topics match human concepts.
Each subject recruited from Amazon Mechanical
Turk was presented with a randomly ordered list
of 10 tokens (either words or collocations). The
task of the subject was to identify the token which
is semantically different from the others.

To generate the 10-token lists, we experimented
with two different methods for selecting tokens
(either words or collocations) most strongly asso-
ciated with a topic t. The standard method chooses
the tokens w that maximise p(w|t). This method
is biased toward high frequency tokens, since
low-frequency tokens are unlikely to have a large
p(w|t). We also tried choosing words and colloca-
tionsw that maximise p(t|w). This method findsw
that are unlikely to appear in any other topic except
t, and is biased towards low frequency w. We re-
duce this low-frequency bias by using a smoothed
estimate for p(t|w) with a Dirichlet pseudo-count
α = 5.

An intruder token was randomly selected from
a set of tokens that had low probability in the cur-
rent topic but high probability in some other topic.
We then randomly selected one of the 10 tokens

Dataset MReview SJMN-2k
#Topic 100 800 100 800
AG-colloc 84.9 1305 37.5 692
Non-sparse TCM 13.8 233 6.6 85.7
Sparse TCM 0.28 0.35 0.14 0.2

Table 5: The average running time (in seconds)
per iteration.

Figure 1: Plot of speedup in running time for the
Mallet-LDA and our TCM.

to be replaced by the intruder token. We expect
collocations to be more useful in lists that are con-
structed using p(t|w) than lists constructed using
p(w|t). This is because p(w|t) can be dominated
by the frequency of w, but individual collocations
are rare.

The performance was measured by model pre-
cision (Chang et al., 2009), which measures the
fraction of subjects that agreed with the model.
Table 4 shows that our TCM outperforms both PA
and Mallet-LDA under both ways of constructing
the intrusion lists. As expected, the collocation
models PA and TCM perform better with lists con-
structed according to p(t|w) than lists constructed
according to p(w|t).

5.4 Efficiency of the TCM

In this section we study the efficiency of our TCM
model in terms of running time. We first compare
the efficiency of our TCM model with and without
sparsity with the AG-colloc model on the MRe-
view dataset and the SJMN-2k dataset. Table 5
shows the average running time per iteration for
the two models. We used 100 and 800 topics. The
TCM algorithm that does not exploit sparsity in
sampling runs about 6 times faster than the AG-
colloc model. Our sparse sampler runs even faster,
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and takes less than a second per iteration. There-
fore, Tables 1 and 5 jointly show that our refor-
mulation runs an order of magnitude faster than
AG-colloc without losing performance, thereby
making the AG-colloc model inference feasible at
large scales.

We further studied the scalability of our sam-
pling algorithm after parallelisation on the SJMN
dataset and the AP news dataset. We fixed the
number of topics to 100, and varied the number of
processors from 1 to 24 for the SJMN dataset and
from 1 to 80 for the AP dataset. The plots in Fig-
ure 1 show that our parallelised sampler achieved
a remarkable speedup. We have also observed that
there is a point at which using additional proces-
sors actually slows running time. This is com-
mon in parallel algorithms when communication
and synchronisation take more time than the time
saved by parallelisation. This slowdown occurs
in the highly-optimized Mallet implementation of
LDA with fewer cores than it does in our imple-
mentation. The speedup achieved by our TCM
also shows the benefit of parallelising the summa-
tion step mentioned in Section 4.2.

6 Conclusion

In this paper we showed how to represent the
AG-colloc model without using Adaptor Gram-
mars, and how to adapt Gibbs sampling tech-
niques from Bayesian word segmentation to per-
form posterior inference under the new represen-
tation. We further accelerated the sampling algo-
rithm by taking advantage of the sparsity in the
collocation count matrix. Experimental results de-
rived in different tasks showed that 1) our new
representation performs as well as the AG-colloc
model and outperforms the other collocation mod-
els, 2) our point-wise sampling algorithm scales
well to large corpora. There are several ways in
which our model can be extended. For example,
our algorithm could be further sped up by using
the sampling techniques presented by Smola and
Narayanamurthy (2010), Li et al. (2014) and Bun-
tine and Mishra (2014). One can also consider us-
ing a hybrid of MCMC and variational inference
as in Ke et al. (2014).
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Abstract

Two important aspects of semantic pars-
ing for question answering are the breadth
of the knowledge source and the depth of
logical compositionality. While existing
work trades off one aspect for another, this
paper simultaneously makes progress on
both fronts through a new task: answering
complex questions on semi-structured ta-
bles using question-answer pairs as super-
vision. The central challenge arises from
two compounding factors: the broader do-
main results in an open-ended set of re-
lations, and the deeper compositionality
results in a combinatorial explosion in
the space of logical forms. We propose
a logical-form driven parsing algorithm
guided by strong typing constraints and
show that it obtains significant improve-
ments over natural baselines. For evalua-
tion, we created a new dataset of 22,033
complex questions on Wikipedia tables,
which is made publicly available.

1 Introduction

In semantic parsing for question answering, nat-
ural language questions are converted into logi-
cal forms, which can be executed on a knowl-
edge source to obtain answer denotations. Early
semantic parsing systems were trained to answer
highly compositional questions, but the knowl-
edge sources were limited to small closed-domain
databases (Zelle and Mooney, 1996; Wong and
Mooney, 2007; Zettlemoyer and Collins, 2007;
Kwiatkowski et al., 2011). More recent work
sacrifices compositionality in favor of using more
open-ended knowledge bases such as Freebase
(Cai and Yates, 2013; Berant et al., 2013; Fader
et al., 2014; Reddy et al., 2014). However, even
these broader knowledge sources still define a

Year City Country Nations
1896 Athens Greece 14
1900 Paris France 24
1904 St. Louis USA 12
. . . . . . . . . . . .
2004 Athens Greece 201
2008 Beijing China 204
2012 London UK 204

x1: “Greece held its last Summer Olympics in which year?”
y1: {2004}
x2: “In which city’s the first time with at least 20 nations?”
y2: {Paris}
x3: “Which years have the most participating countries?”
y3: {2008, 2012}
x4: “How many events were in Athens, Greece?”
y4: {2}
x5: “How many more participants were there in 1900 than

in the first year?”
y5: {10}

Figure 1: Our task is to answer a highly composi-
tional question from an HTML table. We learn
a semantic parser from question-table-answer
triples {(xi, ti, yi)}.

rigid schema over entities and relation types, thus
restricting the scope of answerable questions.

To simultaneously increase both the breadth of
the knowledge source and the depth of logical
compositionality, we propose a new task (with an
associated dataset): answering a question using an
HTML table as the knowledge source. Figure 1
shows several question-answer pairs and an ac-
companying table, which are typical of those in
our dataset. Note that the questions are logically
quite complex, involving a variety of operations
such as comparison (x2), superlatives (x3), aggre-
gation (x4), and arithmetic (x5).

The HTML tables are semi-structured and not
normalized. For example, a cell might contain
multiple parts (e.g., “Beijing, China” or “200
km”). Additionally, we mandate that the train-
ing and test tables are disjoint, so at test time,
we will see relations (column headers; e.g., “Na-
tions”) and entities (table cells; e.g., “St. Louis”)
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that were not observed during training. This is in
contrast to knowledge bases like Freebase, which
have a global fixed relation schema with normal-
ized entities and relations.

Our task setting produces two main challenges.
Firstly, the increased breadth in the knowledge
source requires us to generate logical forms from
novel tables with previously unseen relations and
entities. We therefore cannot follow the typical
semantic parsing strategy of constructing or learn-
ing a lexicon that maps phrases to relations ahead
of time. Secondly, the increased depth in com-
positionality and additional logical operations ex-
acerbate the exponential growth of the number of
possible logical forms.

We trained a semantic parser for this task from
question-answer pairs based on the framework il-
lustrated in Figure 2. First, relations and entities
from the semi-structured HTML table are encoded
in a graph. Then, the system parses the question
into candidate logical forms with a high-coverage
grammar, reranks the candidates with a log-linear
model, and then executes the highest-scoring logi-
cal form to produce the answer denotation. We use
beam search with pruning strategies based on type
and denotation constraints to control the combina-
torial explosion.

To evaluate the system, we created a new
dataset, WIKITABLEQUESTIONS, consisting of
2,108 HTML tables from Wikipedia and 22,033
question-answer pairs. When tested on unseen ta-
bles, the system achieves an accuracy of 37.1%,
which is significantly higher than the information
retrieval baseline of 12.7% and a simple semantic
parsing baseline of 24.3%.

2 Task

Our task is as follows: given a table t and a ques-
tion x about the table, output a list of values y
that answers the question according to the table.
Example inputs and outputs are shown in Fig-
ure 1. The system has access to a training set
D = {(xi, ti, yi)}Ni=1 of questions, tables, and an-
swers, but the tables in test data do not appear dur-
ing training.

The only restriction on the question x is that a
person must be able to answer it using just the ta-
ble t. Other than that, the question can be of any
type, ranging from a simple table lookup question
to a more complicated one that involves various
logical operations.

t

(1) Conversion

x (2) Parsing w

Zx

(3) Ranking

z (4) Execution y

xxx xxxx xxxxx xxxxx

xxxx

xxxx

xxxx

...

xxxx

xxxx

xxxx

xxxxxx

xxxxx

xxxxxx

...

xxxxxx

xxxxxxx

xxxxxx

xxxxxx

xxxxxx

xxx

...

xxxxxx

xxxxx

xxx

xx

xx

xx

...

xxx

xxx

xxx

Greece held the last

Summer Olympics in

which year?

λ[Year . . . ].argmax(. . . Greece, Index) {2004}

Figure 2: The prediction framework: (1) the table
t is deterministically converted into a knowledge
graph w as shown in Figure 3; (2) with informa-
tion from w, the question x is parsed into candi-
date logical forms in Zx; (3) the highest-scoring
candidate z ∈ Zx is chosen; and (4) z is executed
on w, yielding the answer y.

Dataset. We created a new dataset, WIK-
ITABLEQUESTIONS, of question-answer pairs on
HTML tables as follows. We randomly selected
data tables from Wikipedia with at least 8 rows and
5 columns. We then created two Amazon Mechan-
ical Turk tasks. The first task asks workers to write
trivia questions about the table. For each question,
we put one of the 36 generic prompts such as “The
question should require calculation” or “contains
the word ‘first’ or its synonym” to encourage more
complex utterances. Next, we submit the result-
ing questions to the second task where the work-
ers answer each question based on the given table.
We only keep the answers that are agreed upon by
at least two workers. After this filtering, approxi-
mately 69% of the questions remains.

The final dataset contains 22,033 examples on
2,108 tables. We set aside 20% of the tables and
their associated questions as the test set and de-
velop on the remaining examples. Simple pre-
processing was done on the tables: We omit all
non-textual contents of the tables, and if there is a
merged cell spanning many rows or columns, we
unmerge it and duplicate its content into each un-
merged cell. Section 7.2 analyzes various aspects
of the dataset and compares it to other datasets.

3 Approach

We now describe our semantic parsing framework
for answering a given question and for training the
model with question-answer pairs.
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Prediction. Given a table t and a question x,
we predict an answer y using the framework il-
lustrated in Figure 2. We first convert the table
t into a knowledge graph w (“world”) which en-
codes different relations in the table (Section 4).
Next, we generate a set of candidate logical forms
Zx by parsing the question x using the informa-
tion from w (Section 6.1). Each generated logical
form z ∈ Zx is a graph query that can be exe-
cuted on the knowledge graph w to get a denota-
tion JzKw. We extract a feature vector φ(x,w, z)
for each z ∈ Zx (Section 6.2) and define a log-
linear distribution over the candidates:

pθ(z | x,w) ∝ exp{θ>φ(x,w, z)}, (1)

where θ is the parameter vector. Finally, we
choose the logical form z with the highest model
probability and execute it on w to get the answer
denotation y = JzKw.

Training. Given training examples D =
{(xi, ti, yi)}Ni=1, we seek a parameter vector θ
that maximizes the regularized log-likelihood of
the correct denotation yi marginalized over logi-
cal forms z. Formally, we maximize the objective
function

J(θ) =
1
N

N∑
i=1

log pθ(yi | xi, wi)− λ ‖θ‖1 , (2)

where wi is deterministically generated from ti,
and

pθ(y | x,w) =
∑

z∈Zx;y=JzKw

pθ(z | x,w). (3)

We optimize θ using AdaGrad (Duchi et al.,
2010), running 3 passes over the data. We use L1

regularization with λ = 3 × 10−5 obtained from
cross-validation.

The following sections explain individual sys-
tem components in more detail.

4 Knowledge graph

Inspired by the graph representation of knowledge
bases, we preprocess the table t by deterministi-
cally converting it into a knowledge graph w as
illustrated in Figure 3. In the most basic form, ta-
ble rows become row nodes, strings in table cells
become entity nodes,1 and table columns become
directed edges from the row nodes to the entity

1Two occurrences of the same string constitute one node.

· · ·

0 1896 Athens Greece

· · ·

1 1900 Paris France

...

1900.0 1900-XX-XX

Next

Next

Index

Index

Year City Country

Year City Country

Number Date

Figure 3: Part of the knowledge graph correspond-
ing to the table in Figure 1. Circular nodes are row
nodes. We augment the graph with different en-
tity normalization nodes such as Number and Date
(red) and additional row node relations Next and
Index (blue).

nodes of that column. The column headers are
used as edge labels for these row-entity relations.

The knowledge graph representation is conve-
nient for three reasons. First, we can encode dif-
ferent forms of entity normalization in the graph.
Some entity strings (e.g., “1900”) can be inter-
preted as a number, a date, or a proper name de-
pending on the context, while some other strings
(e.g., “200 km”) have multiple parts. Instead of
committing to one normalization scheme, we in-
troduce edges corresponding to different normal-
ization methods from the entity nodes. For exam-
ple, the node 1900 will have an edge called Date
to another node 1900-XX-XX of type date. Apart
from type checking, these normalization nodes
also aid learning by providing signals on the ap-
propriate answer type. For instance, we can define
a feature that associates the phrase “how many”
with a logical form that says “traverse a row-entity
edge, then a Number edge” instead of just “traverse
a row-entity edge.”

The second benefit of the graph representation
is its ability to handle various logical phenomena
via graph augmentation. For example, to answer
questions of the form “What is the next . . . ?” or
“Who came before . . . ?”, we augment each row
node with an edge labeled Next pointing to the
next row node, after which the questions can be
answered by traversing the Next edge. In this
work, we choose to add two special edges on each
row node: the Next edge mentioned above and
an Index edge pointing to the row index number
(0, 1, 2, . . . ).

Finally, with a graph representation, we can
query it directly using a logical formalism for
knowledge graphs, which we turn to next.

1472



Name Example
Join City.Athens

(row nodes with a City edge to Athens)
Union City.(Athens t Beijing)
Intersection City.Athens u Year.Number.<.1990
Reverse R[Year].City.Athens
(entities where a row in City.Athens has a Year edge to)

Aggregation count(City.Athens)
(the number of rows with city Athens)

Superlative argmax(City.Athens, Index)
(the last row with city Athens)

Arithmetic sub(204, 201) (= 204− 201)
Lambda λx[Year.Date.x]

(a binary: composition of two relations)

Table 1: The lambda DCS operations we use.

5 Logical forms

As our language for logical forms, we use
lambda dependency-based compositional seman-
tics (Liang, 2013), or lambda DCS, which we
briefly describe here. Each lambda DCS logical
form is either a unary (denoting a list of values) or
a binary (denoting a list of pairs). The most basic
unaries are singletons (e.g., China represents an
entity node, and 30 represents a single number),
while the most basic binaries are relations (e.g.,
City maps rows to city entities, Next maps rows
to rows, and >= maps numbers to numbers). Log-
ical forms can be combined into larger ones via
various operations listed in Table 1. Each opera-
tion produces a unary except lambda abstraction:
λx[f(x)] is a binary mapping x to f(x).

6 Parsing and ranking

Given the knowledge graph w, we now describe
how to parse the utterance x into a set of candidate
logical forms Zx

6.1 Parsing algorithm

We propose a new floating parser which is more
flexible than a standard chart parser. Both parsers
recursively build up derivations and corresponding
logical forms by repeatedly applying deduction
rules, but the floating parser allows logical form
predicates to be generated independently from the
utterance.

Chart parser. We briefly review the CKY al-
gorithm for chart parsing to introduce notation.
Given an utterance with tokens x1, . . . , xn, the
CKY algorithm applies deduction rules of the fol-

Rule Semantics Example
Anchored to the utterance

TokenSpan→ Entity match(z1) Greece
(match(s) = entity with name s) anchored to “Greece”

TokenSpan→ Atomic val(z1) 2012-07-XX
(val(s) = interpreted value) anchored to “July 2012”

Unanchored (floating)
∅ → Relation r Country

(r = row-entity relation)
∅ → Relation λx[r.p.x] λx[Year.Date.x]

(p = normalization relation)
∅ → Records Type.Row (list of all rows)
∅ → RecordFn Index (row← row index)

Table 2: Base deduction rules. Entities and atomic
values (e.g., numbers, dates) are anchored to to-
ken spans, while other predicates are kept floating.
(a← b represents a binary mapping b to a.)

lowing two kinds:

(TokenSpan, i, j)[s]→ (c, i, j)[f(s)], (4)

(c1, i, k)[z1] + (c2, k + 1, j)[z2] (5)

→ (c, i, j)[f(z1, z2)].

The first rule is a lexical rule that matches an utter-
ance token span xi · · ·xj (e.g., s = “New York”)
and produces a logical form (e.g., f(s) =
NewYorkCity) with category c (e.g., Entity).
The second rule takes two adjacent spans giv-
ing rise to logical forms z1 and z2 and builds a
new logical form f(z1, z2). Algorithmically, CKY
stores derivations of category c covering the span
xi · · ·xj in a cell (c, i, j). CKY fills in the cells of
increasing span lengths, and the logical forms in
the top cell (ROOT, 1, n) are returned.

Floating parser. Chart parsing uses lexical
rules (4) to generate relevant logical predicates,
but in our setting of semantic parsing on tables,
we do not have the luxury of starting with or
inducing a full-fledged lexicon. Moreover, there
is a mismatch between words in the utterance
and predicates in the logical form. For in-
stance, consider the question “Greece held its
last Summer Olympics in which year?” on the
table in Figure 1 and the correct logical form
R[λx[Year.Date.x]].argmax(Country.Greece, Index).
While the entity Greece can be anchored to the
token “Greece”, some logical predicates (e.g.,
Country) cannot be clearly anchored to a token
span. We could potentially learn to anchor the
logical form Country.Greece to “Greece”, but if
the relation Country is not seen during training,
such a mapping is impossible to learn from the
training data. Similarly, some prominent tokens
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Rule Semantics Example
Join + Aggregate

Entity or Atomic→ Values z1 China
Atomic→ Values c.z1 >=.30 (at least 30)

(c ∈ {<, >, <=, >=})
Relation + Values→ Records z1.z2 Country.China (events (rows) where the country is China)

Relation + Records→ Values R[z1].z2 R[Year].Country.China (years of events in China)
Records→ Records Next.z1 Next.Country.China (. . . before China)
Records→ Records R[Next].z1 R[Next].Country.China (. . . after China)

Values→ Atomic a(z1) count(Country.China) (How often did China . . . )
(a ∈ {count, max, min, sum, avg})

Values→ ROOT z1
Superlative

Relation→ RecordFn z1 λx[Nations.Number.x] (row← value in Nations column)
Records + RecordFn→ Records s(z1, z2) argmax(Type.Row, λx[Nations.Number.x])

(s ∈ {argmax, argmin}) (events with the most participating nations)
argmin(City.Athens, Index) (first event in Athens)

Relation→ ValueFn R[λx[a(z1.x)]] R[λx[count(City.x)]] (city← num. of rows with that city)
Relation + Relation→ ValueFn λx[R[z1].z2.x] λx[R[City].Nations.Number.x]

(city← value in Nations column)
Values + ValueFn→ Values s(z1, z2) argmax(. . . ,R[λx[count(City.x)]]) (most frequent city)

Other operations
ValueFn + Values + Values→ Values o(R[z1].z2, R[z1].z3) sub(R[Number].R[Nations].City.London, . . . )

(o ∈ {add, sub, mul, div}) (How many more participants were in London than . . . )
Entity + Entity→ Values z1 t z2 China t France (China or France)

Records + Records→ Records z1 u z2 City.Beijing u Country.China (. . . in Beijing, China)

Table 3: Compositional deduction rules. Each rule c1, . . . , ck → c takes logical forms z1, . . . , zk con-
structed over categories c1, . . . , ck, respectively, and produces a logical form based on the semantics.

(e.g., “Olympics”) are irrelevant and have no
predicates anchored to them.

Therefore, instead of anchoring each predicate
in the logical form to tokens in the utterance via
lexical rules, we propose parsing more freely. We
replace the anchored cells (c, i, j) with floating
cells (c, s) of category c and logical form size s.
Then we apply rules of the following three kinds:

(TokenSpan, i, j)[s]→ (c, 1)[f(s)], (6)

∅ → (c, 1)[f()], (7)

(c1, s1)[z1] + (c2, s2)[z2] (8)

→ (c, s1 + s2 + 1)[f(z1, z2)].

Note that rules (6) are similar to (4) in chart
parsing except that the floating cell (c, 1) only
keeps track of the category and its size 1, not
the span (i, j). Rules (7) allow us to construct
predicates out of thin air. For example, we can
construct a logical form representing a table rela-
tion Country in cell (Relation, 1) using the rule
∅ → Relation [Country] independent of the ut-
terance. Rules (8) perform composition, where
the induction is on the size s of the logical form
rather than the span length. The algorithm stops
when the specified maximum size is reached, after
which the logical forms in cells (ROOT, s) for any
s are included in Zx. Figure 4 shows an example
derivation generated by our floating parser.

(Values, 8)

R[λx[Year.Date.x]].argmax(Country.Greece, Index)

(Relation, 1)

λx[Year.Date.x]

(Records, 6)

argmax(Country.Greece, Index)

(Records, 4)

Country.Greece

(Relation, 1)

Country

(Values, 2)

Greece

(Entity , 1)

Greece

(TokenSpan, 1, 1)

“Greece”

(RecordFn, 1)

Index

Figure 4: A derivation for the utterance “Greece
held its last Summer Olympics in which year?”
Only Greece is anchored to a phrase “Greece”;
Year and other predicates are floating.

The floating parser is very flexible: it can skip
tokens and combine logical forms in any order.
This flexibility might seem too unconstrained, but
we can use strong typing constraints to prevent
nonsensical derivations from being constructed.

Tables 2 and 3 show the full set of deduction
rules we use. We assume that all named entities
will explicitly appear in the question x, so we an-
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“Greece held its last Summer Olympics in which year?”
z = R[λx[Year.Number.x]].argmax(Type.Row, Index)

y = {2012} (type: NUM, column: YEAR)

Feature Name Note
(“last”, predicate = argmax) lex
phrase = predicate unlex (∵ “year” = Year)
missing entity unlex (∵ missing Greece)
denotation type = NUM
denotation column = YEAR
(“which year”, type = NUM) lex
phrase = column unlex (∵ “year” = YEAR)
(Q = “which”, type = NUM) lex
(H = “year”, type = NUM) lex
H = column unlex (∵ “year” = YEAR)

Table 4: Example features that fire for the (incor-
rect) logical form z. All features are binary. (lex =
lexicalized)

chor all entity predicates (e.g., Greece) to token
spans (e.g., “Greece”). We also anchor all numer-
ical values (numbers, dates, percentages, etc.) de-
tected by an NER system. In contrast, relations
(e.g., Country) and operations (e.g., argmax) are
kept floating since we want to learn how they
are expressed in language. Connections between
phrases in x and the generated relations and op-
erations in z are established in the ranking model
through features.

6.2 Features

We define features φ(x,w, z) for our log-linear
model to capture the relationship between the
question x and the candidate z. Table 4 shows
some example features from each feature type.
Most features are of the form (f(x), g(z)) or
(f(x), h(y)) where y = JzKw is the denotation,
and f , g, and h extract some information (e.g.,
identity, POS tags) from x, z, or y, respectively.

phrase-predicate: Conjunctions between n-
grams f(x) from x and predicates g(z) from z.
We use both lexicalized features, where all possi-
ble pairs (f(x), g(z)) form distinct features, and
binary unlexicalized features indicating whether
f(x) and g(z) have a string match.

missing-predicate: Indicators on whether there
are entities or relations mentioned in x but not in
z. These features are unlexicalized.

denotation: Size and type of the denotation
y = JxKw. The type can be either a primitive type
(e.g., NUM, DATE, ENTITY) or the name of the
column containing the entity in y (e.g., CITY).

phrase-denotation: Conjunctions between n-
grams from x and the types of y. Similar to the
phrase-predicate features, we use both lexicalized

and unlexicalized features.
headword-denotation: Conjunctions between

the question word Q (e.g., what, who, how many)
or the headword H (the first noun after the ques-
tion word) with the types of y.

6.3 Generation and pruning

Due to their recursive nature, the rules allow us
to generate highly compositional logical forms.
However, the compositionality comes at the cost
of generating exponentially many logical forms,
most of which are redundant (e.g., logical forms
with an argmax operation on a set of size 1). We
employ several methods to deal with this combi-
natorial explosion:

Beam search. We compute the model proba-
bility of each partial logical form based on avail-
able features (i.e., features that do not depend on
the final denotation) and keep only the K = 200
highest-scoring logical forms in each cell.

Pruning. We prune partial logical forms that
lead to invalid or redundant final logical forms.
For example, we eliminate any logical form that
does not type check (e.g., Beijing t Greece),
executes to an empty list (e.g., Year.Number.24),
includes an aggregate or superlative on a singleton
set (e.g., argmax(Year.Number.2012, Index)), or
joins two relations that are the reverses of each
other (e.g., R[City].City.Beijing).

7 Experiments

7.1 Main evaluation

We evaluate the system on the development sets
(three random 80:20 splits of the training data) and
the test data. In both settings, the tables we test on
do not appear during training.

Evaluation metrics. Our main metric is accu-
racy, which is the number of examples (x, t, y)
on which the system outputs the correct answer y.
We also report the oracle score, which counts the
number of examples where at least one generated
candidate z ∈ Zx executes to y.

Baselines. We compare the system to two base-
lines. The first baseline (IR), which simulates in-
formation retrieval, selects an answer y among the
entities in the table using a log-linear model over
entities (table cells) rather than logical forms. The
features are conjunctions between phrases in x and
properties of the answers y, which cover all fea-
tures in our main system that do not involve the
logical form. As an upper bound of this baseline,
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dev test
acc ora acc ora

IR baseline 13.4 69.1 12.7 70.6
WQ baseline 23.6 34.4 24.3 35.6
Our system 37.0 76.7 37.1 76.6

Table 5: Accuracy (acc) and oracle scores (ora)
on the development sets (3 random splits of the
training data) and the test data.

acc ora
Our system 37.0 76.7

(a) Rule Ablation
join only 10.6 15.7
join + count (= WQ baseline) 23.6 34.4
join + count + superlative 30.7 68.6
all − {u,t} 34.8 75.1

(b) Feature Ablation
all − features involving predicate 11.8 74.5

all − phrase-predicate 16.9 74.5
all − lex phrase-predicate 17.6 75.9
all − unlex phrase-predicate 34.3 76.7

all − missing-predicate 35.9 76.7
all − features involving denotation 33.5 76.8

all − denotation 34.3 76.6
all − phrase-denotation 35.7 76.8
all − headword-denotation 36.0 76.7

(c) Anchor operations to trigger words 37.1 59.4

Table 6: Average accuracy and oracle scores on
development data in various system settings.

69.1% of the development examples have the an-
swer appearing as an entity in the table.

In the second baseline (WQ), we only allow de-
duction rules that produce join and count logical
forms. This rule subset has the same logical cov-
erage as Berant and Liang (2014), which is de-
signed to handle the WEBQUESTIONS (Berant et
al., 2013) and FREE917 (Cai and Yates, 2013)
datasets.

Results. Table 5 shows the results compared
to the baselines. Our system gets an accuracy
of 37.1% on the test data, which is significantly
higher than both baselines, while the oracle is
76.6%. The next subsections analyze the system
components in more detail.

7.2 Dataset statistics

In this section, we analyze the breadth and depth
of the WIKITABLEQUESTIONS dataset, and how
the system handles them.

Number of relations. With 3,929 unique col-
umn headers (relations) among 13,396 columns,
the tables in the WIKITABLEQUESTIONS dataset
contain many more relations than closed-domain
datasets such as Geoquery (Zelle and Mooney,

Operation Amount
join (table lookup) 13.5%
+ join with Next + 5.5%
+ aggregate (count, sum, max, . . . ) + 15.0%
+ superlative (argmax, argmin) + 24.5%
+ arithmetic, u, t + 20.5%
+ other phenomena + 21.0%

Table 7: The logical operations required to answer
the questions in 200 random examples.

1996) and ATIS (Price, 1990). Additionally, the
logical forms that execute to the correct denota-
tions refer to a total of 2,056 unique column head-
ers, which is greater than the number of relations
in the FREE917 dataset (635 Freebase relations).

Knowledge coverage. We sampled 50 exam-
ples from the dataset and tried to answer them
manually using Freebase. Even though Free-
base contains some information extracted from
Wikipedia, we can answer only 20% of the ques-
tions, indicating that WIKITABLEQUESTIONS

contains a broad set of facts beyond Freebase.
Logical operation coverage. The dataset cov-

ers a wide range of question types and logical
operations. Table 6(a) shows the drop in oracle
scores when different subsets of rules are used to
generate candidates logical forms. The join only
subset corresponds to simple table lookup, while
join + count is the WQ baseline for Freebase ques-
tion answering on the WEBQUESTIONS dataset.
Finally, join + count + superlative roughly corre-
sponds to the coverage of the Geoquery dataset.

To better understand the distribution of log-
ical operations in the WIKITABLEQUESTIONS

dataset, we manually classified 200 examples
based on the types of operations required to an-
swer the question. The statistics in Table 7 shows
that while a few questions only require simple
operations such as table lookup, the majority of
the questions demands more advanced operations.
Additionally, 21% of the examples cannot be an-
swered using any logical form generated from the
current deduction rules; these examples are dis-
cussed in Section 7.4.

Compositionality. From each example, we
compute the logical form size (number of rules
applied) of the highest-scoring candidate that exe-
cutes to the correct denotation. The histogram in
Figure 5 shows that a significant number of logical
forms are non-trivial.

Beam size and pruning. Figure 6 shows the
results with and without pruning on various beam
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Figure 6: Accuracy (solid red) and oracle (dashed
blue) scores with different beam sizes.

sizes. Apart from saving time, pruning also pre-
vents bad logical forms from clogging up the beam
which hurts both oracle and accuracy metrics.

7.3 Features

Effect of features. Table 6(b) shows the accu-
racy when some feature types are ablated. The
most influential features are lexicalized phrase-
predicate features, which capture the relationship
between phrases and logical operations (e.g., relat-
ing “last” to argmax) as well as between phrases
and relations (e.g., relating “before” to < or Next,
and relating “who” to the relation Name).

Anchoring with trigger words. In our parsing
algorithm, relations and logical operations are not
anchored to the utterance. We consider an alter-
native approach where logical operations are an-
chored to “trigger” phrases, which are hand-coded
based on co-occurrence statistics (e.g., we trigger
a count logical form with how, many, and total).

Table 6(c) shows that the trigger words do not
significantly impact the accuracy, suggesting that
the original system is already able to learn the re-
lationship between phrases and operations even
without a manual lexicon. As an aside, the huge
drop in oracle is because fewer “semantically in-
correct” logical forms are generated; we discuss
this phenomenon in the next subsection.

7.4 Semantically correct logical forms

In our setting, we face a new challenge that arises
from learning with denotations: with deeper com-
positionality, a larger number of nonsensical log-
ical forms can execute to the correct denotation.

For example, if the target answer is a small num-
ber (say, 2), it is possible to count the number of
rows with some random properties and arrive at
the correct answer. However, as the system en-
counters more examples, it can potentially learn to
disfavor them by recognizing the characteristics of
semantically correct logical forms.

Generating semantically correct logical
forms. The system can learn the features of
semantically correct logical forms only if it can
generate them in the first place. To see how well
the system can generate correct logical forms,
looking at the oracle score is insufficient since
bad logical forms can execute to the correct
denotations. Instead, we randomly chose 200 ex-
amples and manually annotated them with logical
forms to see if a trained system can produce the
annotated logical form as a candidate.

Out of 200 examples, we find that 79% can
be manually annotated. The remaining ones in-
clude artifacts such as unhandled question types
(e.g., yes-no questions, or questions with phrases
“same” or “consecutive”), table cells that require
advanced normalization methods (e.g., cells with
comma-separated lists), and incorrect annotations.

The system generates the annotated logical
form among the candidates in 53.5% of the ex-
amples. The missing examples are mostly caused
by anchoring errors due to lexical mismatch (e.g.,
“Italian”→ Italy, or “no zip code”→ an empty
cell in the zip code column) or the need to generate
complex logical forms from a single phrase (e.g.,
“May 2010”→ >=.2010-05-01u<=.2010-05-31).

7.5 Error analysis

The errors on the development data can be divided
into four groups. The first two groups are unhan-
dled question types (21%) and the failure to an-
chor entities (25%) as described in Section 7.4.
The third group is normalization and type errors
(29%): although we handle some forms of en-
tity normalization, we observe many unhandled
string formats such as times (e.g., 3:45.79) and
city-country pairs (e.g., Beijing, China), as well as
complex calculation such as computing time peri-
ods (e.g., 12pm–1am→ 1 hour). Finally, we have
ranking errors (25%) which mostly occur when the
utterance phrase and the relation are obliquely re-
lated (e.g., “airplane” and Model).
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8 Discussion

Our work simultaneously increases the breadth of
knowledge source and the depth of compositional-
ity in semantic parsing. This section explores the
connections in both aspects to related work.

Logical coverage. Different semantic parsing
systems are designed to handle different sets of
logical operations and degrees of compositional-
ity. For example, form-filling systems (Wang et
al., 2011) usually cover a smaller scope of opera-
tions and compositionality, while early statistical
semantic parsers for question answering (Wong
and Mooney, 2007; Zettlemoyer and Collins,
2007) and high-accuracy natural language inter-
faces for databases (Androutsopoulos et al., 1995;
Popescu et al., 2003) target more compositional
utterances with a wide range of logical opera-
tions. This work aims to increase the logical
coverage even further. For example, compared
to the Geoquery dataset, the WIKITABLEQUES-
TIONS dataset includes a move diverse set of log-
ical operations, and while it does not have ex-
tremely compositional questions like in Geoquery
(e.g., “What states border states that border states
that border Florida?”), our dataset contains fairly
compositional questions on average.

To parse a compositional utterance, many works
rely on a lexicon that translates phrases to enti-
ties, relations, and logical operations. A lexicon
can be automatically generated (Unger and Cimi-
ano, 2011; Unger et al., 2012), learned from data
(Zettlemoyer and Collins, 2007; Kwiatkowski et
al., 2011), or extracted from external sources (Cai
and Yates, 2013; Berant et al., 2013), but requires
some techniques to generalize to unseen data. Our
work takes a different approach similar to the log-
ical form growing algorithm in Berant and Liang
(2014) by not anchoring relations and operations
to the utterance.

Knowledge domain. Recent works on seman-
tic parsing for question answering operate on more
open and diverse data domains. In particular,
large-scale knowledge bases have gained popular-
ity in the semantic parsing community (Cai and
Yates, 2013; Berant et al., 2013; Fader et al.,
2014). The increasing number of relations and en-
tities motivates new resources and techniques for
improving the accuracy, including the use of ontol-
ogy matching models (Kwiatkowski et al., 2013),
paraphrase models (Fader et al., 2013; Berant and
Liang, 2014), and unlabeled sentences (Krishna-

murthy and Kollar, 2013; Reddy et al., 2014).
Our work leverages open-ended data from the

Web through semi-structured tables. There have
been several studies on analyzing or inferring the
table schemas (Cafarella et al., 2008; Venetis et al.,
2011; Syed et al., 2010; Limaye et al., 2010) and
answering search queries by joining tables on sim-
ilar columns (Cafarella et al., 2008; Gonzalez et
al., 2010; Pimplikar and Sarawagi, 2012). While
the latter is similar to question answering, the
queries tend to be keyword lists instead of natural
language sentences. In parallel, open information
extraction (Wu and Weld, 2010; Masaum et al.,
2012) and knowledge base population (Ji and Gr-
ishman, 2011) extract information from web pages
and compile them into structured data. The result-
ing knowledge base is systematically organized,
but as a trade-off, some knowledge is inevitably
lost during extraction and the information is forced
to conform to a specific schema. To avoid these is-
sues, we choose to work on HTML tables directly.

In future work, we wish to draw informa-
tion from other semi-structured formats such as
colon-delimited pairs (Wong et al., 2009), bulleted
lists (Gupta and Sarawagi, 2009), and top-k lists
(Zhang et al., 2013). Pasupat and Liang (2014)
used a framework similar to ours to extract entities
from web pages, where the “logical forms” were
XPath expressions. A natural direction is to com-
bine the logical compositionality of this work with
the even broader knowledge source of general web
pages.
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Abstract

A key problem in semantic parsing with
graph-based semantic representations is
graph parsing, i.e. computing all pos-
sible analyses of a given graph accord-
ing to a grammar. This problem arises
in training synchronous string-to-graph
grammars, and when generating strings
from them. We present two algorithms for
graph parsing (bottom-up and top-down)
with s-graph grammars. On the related
problem of graph parsing with hyperedge
replacement grammars, our implementa-
tions outperform the best previous system
by several orders of magnitude.

1 Introduction

The recent years have seen an increased interest
in semantic parsing, the problem of deriving a se-
mantic representation for natural-language expres-
sions with data-driven methods. With the recent
availability of graph-based meaning banks (Ba-
narescu et al., 2013; Oepen et al., 2014), much
work has focused on computing graph-based se-
mantic representations from strings (Jones et al.,
2012; Flanigan et al., 2014; Martins and Almeida,
2014).

One major approach to graph-based semantic
parsing is to learn an explicit synchronous gram-
mar which relates strings with graphs. One can
then apply methods from statistical parsing to
parse the string and read off the graph. Chiang et
al. (2013) and Quernheim and Knight (2012) rep-
resent this mapping of a (latent) syntactic struc-
ture to a graph with a grammar formalism called
hyperedge replacement grammar (HRG; (Drewes
et al., 1997)). As an alternative to HRG, Koller
(2015) introduced s-graph grammars and showed
that they support linguistically reasonable gram-
mars for graph-based semantics construction.

One problem that is only partially understood
in the context of semantic parsing with explicit
grammars is graph parsing, i.e. the computation
of the possible analyses the grammar assigns to
an input graph (as opposed to string). This prob-
lem arises whenever one tries to generate a string
from a graph (e.g., on the generation side of an MT
system), but also in the context of extracting and
training a synchronous grammar, e.g. in EM train-
ing. The state of the art is defined by the bottom-
up graph parsing algorithm for HRG by Chiang et
al. (2013), implemented in the Bolinas tool (An-
dreas et al., 2013).

We present two graph parsing algorithms (top-
down and bottom-up) for s-graph grammars. S-
graph grammars are equivalent to HRGs, but em-
ploy a more fine-grained perspective on graph-
combining operations. This simplifies the parsing
algorithms, and facilitates reasoning about them.
Our bottom-up algorithm is similar to Chiang et
al.’s, and derives the same asymptotic number of
rule instances. The top-down algorithm is novel,
and achieves the same asymptotic runtime as the
bottom-up algorithm by reasoning about the bi-
connected components of the graph. Our eval-
uation on the “Little Prince” graph-bank shows
that our implementations of both algorithms out-
perform Bolinas by several orders of magnitude.
Furthermore, the top-down algorithm can be more
memory-efficient in practice.

2 Related work

The AMR-Bank (Banarescu et al., 2013) annotates
sentences with abstract meaning representations
(AMRs), like the one shown in Fig. 1(a). These
are graphs that represent the predicate-argument
structure of a sentence; notably, phenomena such
as control are represented by reentrancies in the
graph. Another major graph-bank is the SemEval-
2014 shared task on semantic dependency parsing
dataset (Oepen et al., 2014).
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Figure 1: AMR (a) for ‘The boy wants to sleep’, and s-graphs. We call (b) SGwant and (c) SGsleep.

The primary grammar formalism currently in
use for synchronous graph grammars is hyper-
edge replacement grammar (HRG) (Drewes et al.,
1997), which we sketch in Section 4.3. An alterna-
tive is offered by Koller (2015), who introduced s-
graph grammars and showed that they lend them-
selves to manually written grammars for semantic
construction. In this paper, we show the equiv-
alence of HRG and s-graph grammars and work
out graph parsing for s-graph grammars.

The first polynomial graph parsing algorithm
for HRGs on graphs with limited connectivity was
presented by Lautemann (1988). Lautemann’s
original algorithm is a top-down parser, which is
presented at a rather abstract level that does not
directly support implementation or detailed com-
plexity analysis. We extend Lautemann’s work
by showing how new parse items can be repre-
sented and constructed efficiently. Finally, Chiang
et al. (2013) presented a bottom-up graph parser
for HRGs, in which the representation and con-
struction of items was worked out for the first time.
It produces O((n · 3d)k+1) instances of the rules
in a parsing schema, where n is the number of
nodes of the graph, d is the maximum degree of
any node, and k is a quantity called the tree-width
of the grammar.

3 An algebra of graphs

We start by introducing the exact type of graphs
that our grammars and parsers manipulate, and by
developing some theory.

Throughout this paper, we define a graph G =
(V,E) as a directed graph with edge labels from
some label alphabet L. The graph consists of a
finite set V of nodes and a finite setE ⊆ V ×V ×L
of edges e = (u, v, l), where u and v are the nodes
connected by e, and l ∈ L is the edge label. We
say that e is incident to both u and v, and call the
number of edges incident to a node its degree. We
write u e↔ v if either e = (u, v, l) or e = (v, u, l)
for some l; we drop the e if the identity of the edge
is irrelevant. Edges with u = v are called loops;
we use them here to encode node labels. Given a

graph G, we write n = |V |, m = |E|, and d for
the maximum degree of any node in V .

If f : A  B and g : A  B are partial func-
tions, we let the partial function f ∪ g be defined
if for all a ∈ A with both f(a) and g(a) defined,
we have f(a) = g(a). We then let (f ∪ g)(a) be
f(a) if f(a) is defined; g(a) if g(a) is defined; and
undefined otherwise.

3.1 The HR algebra of graphs with sources

Our grammars describe how to build graphs from
smaller pieces. They do this by accessing nodes
(called source nodes) which are assigned “public
names”. We define an s-graph (Courcelle and En-
gelfriet, 2012) as a pair SG = (G,φ) of a graph
G and a source assignment, i.e. a partial, injective
function φ : S  V that maps some source names
from a finite set S to the nodes of G. We call the
nodes in φ(S) the source nodes or sources of SG;
all other nodes are internal nodes. If φ is defined
on the source name σ, we call φ(σ) the σ-source
of SG. Throughout, we let s = |S|.

Examples of s-graphs are given in Fig. 1. We
use numbers as node names and lowercase strings
for edge names (except in the concrete graphs of
Fig. 1, where the edges are marked with edge la-
bels instead). Source nodes are drawn in black,
with source names drawn on the inside. Fig. 1(b)
shows an s-graph SGwant with three nodes and
four edges. The three nodes are marked as the R-,
S-, and O-source, respectively. Likewise, the s-
graph SGsleep in (c) has two nodes (one of which
is an R-source and the other an S-source) and two
edges.

We can now apply operations to these graphs.
First, we can rename the R-source of (c) to an O-
source. The result, denoted SGd = SGsleep[R →
O], is shown in (d). Next, we can merge SGd
with SGwant. This copies the edges and nodes
of SGd and SGwant into a new s-graph; but cru-
cially, for every source name σ the two s-graphs
have in common, the σ-sources of the graphs are
fused into a single node (and become a σ-source of
the result). We write || for the merge operation;
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thus we obtain SGe = SGd || SGwant, shown
in (e). Finally, we can forget source names. The
graph SGf = fS(fO(SGe)), in which we forgot S
and O, is shown in (f). We refer to Courcelle and
Engelfriet (2012) for technical details.1

We can take the set of all s-graphs, together with
these operations, as an algebra of s-graphs. In ad-
dition to the binary merge operation and the unary
operations for forget and rename, we fix some fi-
nite set of atomic s-graphs and take them as con-
stants of the algebra which evaluate to themselves.
Following Courcelle and Engelfriet, we call this
algebra the HR algebra. We can evaluate any term
τ consisting of these operation symbols into an s-
graph JτK as usual. For instance, the following
term encodes the merge, forget, and rename oper-
ations from the example above, and evaluates to
the s-graph in Fig. 1(f).

(1) fS(fO(SGwant || SGsleep[R→ O]))

The set of s-graphs that can be represented as
the value JτK of some term τ over the HR alge-
bra depends on the source set S and on the con-
stants. For simplicity, we assume here that we
have a constant for each s-graph consisting of a
single labeled edge (or loop), and that the values
of all other constants can be expressed by combin-
ing these using merge, rename, and forget.

3.2 S-components

A central question in graph parsing is how some
s-graph that is a subgraph of a larger s-graph SG
(a sub-s-graph) can be represented as the merge
of two smaller sub-s-graphs of SG. In general,
SG1 || SG2 is defined for any two s-graphs SG1

and SG2. However, if we see SG1 and SG2 as
subgraphs of SG, SG1 || SG2 may no longer be
a subgraph of SG. For instance, we cannot merge
the s-graphs (b) and (c) in Fig. 2 as part of the
graph (a): The startpoints of the edges a and d are
both A-sources and would thus become the same
node (unlike in (a)), and furthermore the edge d
would have to be duplicated. In graph parsing, we
already know the identity of all nodes and edges
in sub-s-graphs (as nodes and edges in SG), and
must thus pay attention that merge operations do
not accidentally fuse or duplicate them. In partic-

1 Note that the rename operation of Courcelle and En-
gelfriet (2012) allows for swapping source assignments and
making multiple renames in one step. We simplify the pre-
sentation here, but all of our techniques extend easily.
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Figure 2: (a) An s-graph with (b,c) some sub-s-
graphs, (d) its BCCs, and (e) its block-cutpoint
graph.

ular, two sub-s-graphs cannot be merged if they
have edges in common.

We call a sub-s-graph SG1 of SG extensible if
there is another sub-s-graph SG2 of SG such that
SG1 || SG2 contains the same edges as SG. An
example of a sub-s-graph that is not extensible is
the sub-s-graph (b) of the s-graph in (a) in Fig. 2.
Because sources can only be renamed or forgotten
by the algebra operations, but never introduced,
we can never attach the missing edge a: this can
only happen when 1 and 2 are sources. As a gen-
eral rule, a sub-s-graph can only be extensible if
it contains all edges that are adjacent to all of its
internal nodes in SG. Obviously, a graph parser
need only concern itself with sub-s-graphs that are
extensible.

We can further clarify the structure of extensible
sub-s-graphs by looking at the s-components of a
graph. Let U ⊆ V be some set of nodes. This
set splits the edges of G into equivalence classes
that are separated by U . We say that two edges
e, f ∈ E are equivalent with respect toU , e ∼U f ,

if there is a sequence v1
e↔ v2 ↔ . . . vk−1

f↔ vk
with v2, . . . , vk−1 /∈ U , i.e. if we can reach f
from an endpoint of ewithout visiting a node in U .
We call the equivalence classes of E with respect
to ∼U the s-components of G and denote the s-
component that contains an edge e with [e]. In
Fig. 2(a), the edges a and f are equivalent with
respect to U = {4, 5}, but a and h are not. The s-
components are [a] = {a, b, c, d, e, f}, [g] = {g},
and [h] = {h}.

It can be shown that for any s-graph SG =
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(G,φ), a sub-s-graph SH with source nodes U
is extensible iff its edge set is the union of a set
of s-components of G with respect to U . We let
an s-component representation C = (C, φ) in the
s-graph SG = (G,φ′) consist of a source assign-
ment φ : S  V and a set C of s-components of
G with respect to the set VSC = φ(S) ⊆ V of
source nodes of φ. Then we can represent every
extensible sub-s-graph SH = (H,φ) of SG by
the s-component representation C = (C, φ) where
C is the set of s-components of which SH con-
sists. Conversely, we write T (C) for the unique
extensible sub-s-graph of SG represented by the
s-component representation C.

The utility of s-component representations de-
rives from the fact that merge can be evaluated on
these representations alone, as follows.

Lemma 1. Let C = (C, φ), C1 = (C1, φ1), C2 =
(C2, φ2) be s-component representations in the s-
graph SG. Then T (C) = T (C1) || T (C2) iff C =
C1]C2 (i.e., disjoint union) and φ1∪φ2 is defined,
injective, and equal to φ.

3.3 Boundary representations

If there is no C such that all conditions of Lemma 1
are satisfied, then T (C1) || T (C2) is not defined.
In order to check this efficiently in the bottom-up
parser, it will be useful to represent s-components
explicitly via their boundary.

Consider an s-component representation C =
(C, φ) in SG and let E be the set of all edges that
are adjacent to a source node in VSC and contained
in an s-component in C. Then we let the bound-
ary representation (BR) β of C in the s-graph SG
be the pair β = (E, φ). That is, β represents the
s-components through the in-boundary edges, i.e.
those edges inside the s-components (and thus the
sub-s-graph) which are adjacent to a source. The
BR β specifies C uniquely if the base graph SG
is connected, so we write T (β) for T (C) and VSβ
for VSC .

In Fig. 2(a), the bold sub-s-graph is represented
by β = 〈{d, e, f, g}, {A:4,B:5}〉, indicating that
it contains the A-source 4 and the B-source 5; and
further, that the edge set of the sub-s-graph is [d]∪
[e] ∪ [f ] ∪ [g] = {a, b, c, d, e, f, g}. The edge h
(which is also incident to 5) is not specified, and
therefore not in the sub-s-graph.

The following lemma can be shown about com-
puting merge on boundary representations. Intu-
itively, the conditions (b) and (c) guarantee that

the component sets are disjoint; the lemma then
follows from Lemma 1.

Lemma 2. Let SG be an s-graph, and let β1 =
(E1, φ1), β2 = (E2, φ2) be two boundary repre-
sentations in SG. Then T (β1) || T (β2) is defined
within SG iff the following conditions hold:

(a) φ1 ∪ φ2 is defined and injective;

(b) the two BRs have no in-boundary edges in
common, i.e. E1 ∩ E2 = ∅;

(c) for every source node v of β1, the last edge
on the path in SG from v to the closest source
node of β2 is not an in-boundary edge of β2,
and vice versa.

Furthermore, if these conditions hold, we have
T (β1 || β2) = T (β1) || T (β2), where we define
β1 || β2 = (E1 ∪ E2, φ1 ∪ φ2).

4 S-graph grammars

We are now ready to define s-graph grammars,
which describe languages of s-graphs. We also
introduce graph parsing and relate s-graph gram-
mars to HRGs.

4.1 Grammars for languages of s-graphs
We use interpreted regular tree grammars (IRTGs;
Koller and Kuhlmann (2011)) to describe lan-
guages of s-graphs. IRTGs are a very general
mechanism for describing languages over and re-
lations between arbitrary algebras. They sepa-
rate conceptually the generation of a grammatical
derivation from its interpretation as a string, tree,
graph, or some other object.

Consider, as an example, the tiny grammar in
Fig. 3; see Koller (2015) for linguistically mean-
ingful grammars. The left column consists of a
regular tree grammar G (RTG; see e.g. Comon et
al. (2008)) with two rules. This RTG describes a
regular language L(G) of derivation trees (in gen-
eral, it may be infinite). In the example, we can
derive S ⇒ r1(VP) ⇒ r1(r2), therefore we have
t = r1(r2) ∈ L(G).

We then use a tree homomorphism h to rewrite
the derivation trees into terms over an algebra; in
this case the HR algebra. In the example, the val-
ues h(r1) and h(r2) are specified in the second col-
umn of Fig. 3. We compute h(t) by substituting
the variable x1 in h(r1) with h(r2). The term h(t)
is thus the one shown in (1). It evaluates to the
s-graph SGf in Fig. 1(f).
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Rule of RTG G homomorphism h

S→ r1(VP) fS(fO(SGwant || x1[R→ O]))
VP→ r2 SGsleep

Figure 3: An example s-graph grammar.

In general, the IRTG G = (G, h,A) generates
the language L(G) = {Jh(t)K | t ∈ L(G)}, whereJ·K is evaluation in the algebra A. Thus, in the
example, we have L(G) = {SGf}.

In this paper, we focus on IRTGs that describe
languages L(G) ⊆ A of objects in an algebra;
specifically, of s-graphs in the HR algebra. How-
ever, IRTGs extend naturally to a synchronous
grammar formalism by adding more homomor-
phisms and algebras. For instance, the grammars
in Koller (2015) map each derivation tree simulta-
neously to a string and an s-graph, and therefore
describe a binary relation between strings and s-
graphs. We call IRTGs where at least one algebra
is the HR algebra, s-graph grammars.

4.2 Parsing with s-graph grammars

In this paper, we are concerned with the pars-
ing problem of s-graph grammars. In the context
of IRTGs, parsing means that we are looking for
those derivation trees t that are (a) grammatically
correct, i.e. t ∈ L(G), and (b) match some given
input object a, i.e. h(t) evaluates to a in the al-
gebra. Because the set P of such derivation trees
may be large or infinite, we aim to compute an
RTG Ga such that L(Ga) = P . This RTG plays
the role of a parse chart, which represents the pos-
sible derivation trees compactly.

In order to compute Ga, we need to solve two
problems. First, we need to determine all the pos-
sible ways in which a can be represented by terms
τ over the algebra A. This is familiar from string
parsing, where a CKY parse chart spells out all
the ways in which larger substrings can be decom-
posed into smaller parts by concatenation. Sec-
ond, we need to identify all those derivation trees
t ∈ L(G) that map to such a decomposition τ ,
i.e. for which h(t) evaluates to a. In string pars-
ing, this corresponds to retaining only such de-
compositions into substrings that are justified by
the grammar rules.

While any parsing algorithm must address both
of these issues, they are usually conflated, in that
parse items combine information about the de-
composition of a (such as a string span) with infor-
mation about grammaticality (such as nonterminal

symbols). In IRTG parsing, we take a different,
more generic approach. We assume that the set
D of all decompositions τ , i.e. of all terms τ that
evaluate to a in the algebra, can be represented
as the language D = L(Da) of a decomposition
grammar Da. Da is an RTG over the signature of
the algebra. Crucially, Da only depends on the al-
gebra and a itself, and not on G or h, because D
contains all terms that evaluate to a and not just
those that are licensed by the grammar. However,
we can compute Ga fromDa efficiently by exploit-
ing the closure of regular tree languages under in-
tersection and inverse homomorphism; see Koller
and Kuhlmann (2011) for details.

In practice, this means that whenever we want
to apply IRTGs to a new algebra (as, in this pa-
per, to the HR algebra), we can obtain a parsing
algorithm by specifying how to compute decom-
position grammars over this algebra. This is the
topic of Section 5.

4.3 Relationship to HRG

We close our exposition of s-graph grammars by
relating them to HRGs. It is known that the graph
languages that can be described with s-graph
grammars are the same as the HRG languages
(Courcelle and Engelfriet, 2012, Prop. 4.27). Here
we establish a more precise equivalence result, so
we can compare our asymptotic runtimes directly
to those of HRG parsers.

An HRG rule, such as the one shown in Fig. 4,
rewrites a nonterminal symbol into a graph. The
example rule constructs a graph for the nontermi-
nal S by combining the graph Gr in the middle
(with nodes 1, 2, 3 and edges e, f ) with graphsGX
and GY that are recursively derived from the non-
terminals X and Y . The combination happens by
merging the external nodes of GX and GY with
nodes of Gr: the squiggly lines indicate that the
external node I of GX should be 1, and the ex-
ternal node II should be 2. Similarly the external
nodes of GY are unified with 1 and 3. Finally, the
external nodes I and II of the HRG rule for S itself,
shaded gray, are 1 and 3.

The fundamental idea of the HRG-to-IRTG
translation is to encode external nodes as sources,
and to use rename and merge to unify the nodes of
the different graphs. In the example, we might say
that the external nodes of GX and GY are repre-
sented using the source names I and II, and extend
Gr to an s-graph by saying that the nodes 1, 2, and
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3 are its I-source, III-source, and II-source respec-
tively. This results in the expression

(2) fIII(〈I〉 e→ 〈III〉 || x1[II→ III]

|| 〈I〉 f→ 〈II〉 || x2)

where we write “〈I〉 e→ 〈III〉” for the s-graph con-
sisting of the edge e, with node 1 as I-source and
2 as III-source.

However, this requires the use of three source
names (I, II, and III). The following encoding of
the rule uses the sources more economically:

(3) fII(〈I〉 e→ 〈II〉 || x1) || 〈I〉 f→ 〈II〉 || x2

This term uses only two source names. It forgets
II as soon as we are finished with the node 2, and
frees the name up for reuse for 3. The complete
encoding of the HRG rule consists of the RTG rule
S→ r(X,Y) with h(r) = (3).

In the general case, one can “read off” possible
term encodings of a HRG rule from its tree decom-
positions; see Chiang et al. (2013) or Def. 2.80 of
Courcelle and Engelfriet (2012) for details. A tree
decomposition is a tree, each of whose nodes π is
labeled with a subset Vπ of the nodes in the HRG
rule. We can construct a term encoding from a tree
decomposition bottom-up. Leaves map to vari-
ables or constants; binary nodes introduce merge
operations; and we use rename and forget oper-
ations to ensure that the subterm for the node π
evaluates to an s-graph in which exactly the nodes
in Vπ are source nodes.2 In the example, we obtain
(3) from the tree decomposition in Fig. 4 like this.

The tree-width k of an HRG rule is measured
by finding the tree decomposition of the rule for
which the node sets have the lowest maximum size
s and setting k = s− 1. It is a crucial measure be-
cause Chiang et al.’s parsing algorithm is exponen-
tial in k. The translation we just sketched uses s
source names. Thus we see that a HRG with rules
of tree-width ≤ k can be encoded into an s-graph
grammar with k + 1 source names. (The converse
is also true.)

5 Graph parsing with s-graph grammars

Now we show how to compute decomposition
grammars for the s-graph algebra. As we ex-
plained in Section 4.2, we can then obtain a com-
plete parser for s-graph grammars through generic
methods.

2This uses the swap operations mentioned in Footnote 1.
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Figure 4: An HRG rule (left) with one of its tree
decompositions (right).

Given an s-graph SG, the language of the de-
composition grammar DSG is the set of all terms
over the HR algebra that evaluate to SG. For ex-
ample, the decomposition grammar for the graph
SG in Fig. 1(a) contains – among many others –
the following two rules:

(4) SG→ fR(SGf )
(5) SGe → || (SGb, SGd),

where SGf , SGe, SGb, and SGd are the graphs
from Fig. 1 (see Section 3.1). In other words,DSG

keeps track of sub-s-graphs in the nonterminals,
and the rules spell out how “larger” sub-s-graphs
can be constructed from “smaller” sub-s-graphs
using the operations of the HR algebra. The al-
gorithms below represent sub-s-graphs compactly
using s-component and boundary representations.

Because the decomposition grammars in the s-
graph algebra can be very large (see Section 6),
we will not usually compute the entire decompo-
sition grammar explicitly. Instead, it is sufficient
to maintain a lazy representation of DSG, which
allows us to answer queries to the decomposition
grammar efficiently. During parsing, such queries
will be generated by the generic part of the pars-
ing algorithm. Specifically, we will show how to
answer the following types of query:

• Top-down: given an s-component represen-
tation C of some s-graph and an algebra
operation o, enumerate all the rules C →
o(C1, . . . , Ck) inDSG. This asks how a larger
sub-s-graph can be derived from other sub-s-
graphs using the operation o. In the example
above, a query for SG and fR(·) should yield,
among others, the rule in (4).

• Bottom-up: given boundary representations
β1, . . . , βk and an algebra operation o, enu-
merate all the rules β → o(β1, . . . , βk) in
DSG. This asks how smaller sub-s-graphs
can be combined into a bigger one using the
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forget rename merge
bottom-up O(d+ s) O(s) O(ds)
top-down O(ds) O(s) O(ds)

I = # rules O(ns2ds) O(ns2ds) O(ns3ds)

Table 1: Amortized per-rule runtimes T for the
different rule types.

operation o. In the example above, a merge
query for SGb and SGd should yield the rule
in (5). Unlike in the top-down case, every
bottom-up query returns at most one rule.

The runtime of the complete parsing algorithm
is bounded by the number I of different queries
to DSG that we receive, multiplied by the per-
rule runtime T that we need to answer each query.
The factor I is analogous to the number of rule
instances in schema-based parsing (Shieber et al.,
1995). The factor T is often ignored in the anal-
ysis of parsing algorithms, because in parsing
schemata for strings, we typically have T = O(1).
This need not be the case for graph parsers. In the
HRG parsing schema of Chiang et al. (2013), we
have I = O(nk+13d(k+1)), where k is the tree-
width of the HRG. In addition, each of their rule
instances takes time T = O(d(k + 1)) to actually
calculate the new item.

Below, we show how we can efficiently answer
both bottom-up and top-down queries toDSG. Ev-
ery s-graph grammar has an equivalent normal
form where every constant describes an s-graph
with a single edge. Assuming that the grammar
is in this normal form, queries of the form β → g
(resp. C → g), where g is a constant of the HR-
algebra, are trivial and we will not consider them
further. Table 1 summarizes our results.

5.1 Bottom-up decomposition

Forget and rename. Given a boundary repre-
sentation β′ = (E′, φ′), answering the bottom-up
forget query β → fA(β′) amounts to verifying that
all edges incident to φ′(A) are in-boundary in β′,
since otherwise the result would not be extensible.
This takes time O(d). We then let β = (E, φ),
where φ is like φ′ but undefined on A, and E is the
set of edges in E′ that are still incident to a source
in φ. Computing β thus takes time O(d+ s).

The rename operation works similarly, but since
the edge set remains unmodified, the per-rule run-
time is O(s).

A BR is fully determined by specifying the node
and in-boundary edges for each source name, so

there are at most O
((
n2d
)s) different BRs. Since

the result of a forget or rename rule is determined
by the child β′, this is an upper bound for the num-
ber I of rule instances of forget or rename.

Merge. Now consider the bottom-up merge
query for the boundary representations β1 and β2.
As we saw in Section 3.3, T (β1) || T (β2) is not
always defined. But if it is, we can answer the
query with the rule (β1 || β2)→ || (β1, β2), with
β1 || β2 defined as in Section 3.3. Computing this
BR takes time O(ds).

We can check whether T (β1) || T (β2) is de-
fined by going through the conditions of Lemma 2.
The only nontrivial condition is (c). In order to
check it efficiently, we precompute a data struc-
ture which contains, for any two nodes u, v ∈ V ,
the length k of the shortest undirected path u =
v1 ↔ . . .

e↔ vk = v and the last edge e on this
path. This can be done in time O(n3) using the
Floyd-Warshall algorithm. Checking (c) for every
source pair then takes time O(s2) per rule, but be-
cause sources that are common to both β1 and β2

automatically satisfy (c) due to (a), one can show
that the total runtime of checking (c) for all merge
rules of DSG is O(ns3dss).

Observe finally that there are I = O(ns3ds)
instances of the merge rule, because each of the
O(ds) edges that are incident to a source node can
be either in β1, in β2, or in neither. Therefore
the runtime for checking (c) amortizes to O(s) per
rule. The Floyd-Warshall step amortizes to O(1)
per rule for s ≥ 3; for s ≤ 2 the node table can
be computed in amortized O(1) using more spe-
cialized algorithms. This yields a total amortized
per-rule runtime T for bottom-up merge ofO(ds).

5.2 Top-down decomposition

For the top-down queries, we specify sub-s-graphs
in terms of their s-component representations. The
number I of instances of each rule type is the same
as in the bottom-up case because of the one-to-
one correspondence of s-component and bound-
ary representations. We focus on merge and forget
queries; rename is as above.

Merge. Given an s-component representation
C = (C, φ), a top-down merge query asks us to
enumerate the rules C → || (C1, C2) such that
T (C1) || T (C2) = T (C). By Lemma 1, we
can do this by using every distribution of the s-
components in C over C1 and C2 and restricting φ
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accordingly. This brings the per-rule time of top-
down merge to O(ds), the maximum number of
s-components in C.

Block-cutpoint graphs. The challenging query
to answer top-down is forget. We will first de-
scribe the problem and introduce a data structure
that supports efficient top-down forget queries.

Consider top-down forget queries on
the sub-s-graph SG1 drawn in bold in
Fig. 2(a); its s-component representation is
〈{[a], [g]}, {A:4,B:5}〉. A top-down forget might
promote the node 3 to a C-source, yielding a
sub-s-graph SG2 (that is, fC(SG2) is the orig-
inal s-graph SG1). In SG2, a, e, and f are
no longer equivalent; its s-component repre-
sentation is 〈{[a], [e], [f ], [g]}, {A:4,B:5,C:3}〉.
Thus promoting 3 to a source splits the original
s-component into smaller parts.

By contrast, the same top-down forget might
also promote the node 1 to a C-source, yield-
ing a sub-s-graph SG3; fC(SG3) is also SG1.
However, all edges in [a] are still equiva-
lent in SG3; its s-component representation is
〈{[a], [g]}, {A:4,B:5,C:1}〉.

An algorithm for top-down forget must be able
to determine whether promotion of a node splits
an s-component or not. To do this, let G be the in-
put graph. We create an undirected auxiliary graph
GU from G and a set U of (source) nodes. GU

contains all nodes in V \U , and for each edge e
that is incident to a node u ∈ U , it contains a node
(u, e). Furthermore, GU contains undirected ver-
sions of all edges inG; if an edge e ∈ E is incident
to a node u ∈ U , it becomes incident to (u, e) in
GU instead. The auxiliary graph G{4,5} for our
example graph is shown in Fig. 2(d).

Two edges are connected in GU if and only if
they are equivalent with respect to U in G. There-
fore, promotion of u splits s-components iff u is a
cutpoint in GU , i.e. a node whose removal discon-
nects the graph. Cutpoints can be characterized
as those nodes that belong to multiple biconnected
components (BCCs) of GU , i.e. the maximal sub-
graphs such that any node can be removed without
disconnecting a graph segment. In Fig. 2(d), the
BCCs are indicated by the dotted boxes. Observe
that 3 is a cutpoint and 1 is not.

For any given U , we can represent the structure
of the BCCs of GU in its block-cutpoint graph.
This is a bipartite graph whose nodes are the cut-
points and BCCs of GU , and a BCC is connected

to all of its cutpoints; see Fig. 2(e) for the block-
cutpoint graph of the example. Block-cutpoint
graphs are always forests, with the individual trees
representing the s-components of G. Promoting
a cutpoint u splits the s-component into smaller
parts, each corresponding to an incident edge of u.
We annotate each edge with that part.

Forget. We can now answer a top-down forget
query C → fA(C′) efficiently from the block-
cutpoint graph for the sources of C = (C, φ). We
iterate over all components c ∈ C, and then over
all internal nodes u of c. If u is not a cutpoint,
we simply let C′ = (C ′, φ′) by making u an A-
source and letting C ′ = C. Otherwise, we also
remove c from C and add the new s-components
on the edges adjacent to u in the block-cutpoint
graph. The query returns rules for all C′ that can
be constructed like this.

The per-rule runtime of top-down forget is
O(ds), the time needed to compute C ′ in the cut-
point case. We furthermore precompute the block-
cutpoint graphs for the input graph with respect to
all sets U ⊆ V of nodes with |U | ≤ s − 1. For
each U , we can compute the block-cutpoint graph
and annotate its edges in time O(nd2s). Thus the
total time for the precomputation is O(ns · d2s),
which amortizes to O(1) per rule.

6 Evaluation

We evaluate the performance of our algorithms on
the “Little Prince” AMR-Bank version 1.4, avail-
able from amr.isi.edu. This graph-bank con-
sists of 1562 sentences manually annotated with
AMRs. We implemented our algorithms in Java
as part of the Alto parser for IRTGs (Alto Devel-
opers, 2015), and compared them to the Bolinas
HRG parser (Andreas et al., 2013). We measured
runtimes using Java 8 (for Alto) and Pypy 2.5.0
(for Bolinas) on an Intel Xeon E7-8857 CPU at 3
GHz, after warming up the JIT compilers.

As there are no freely available grammars for
this dataset, we created our own for the evalua-
tion, using Bayesian grammar induction roughly
along the lines of Cohn et al. (2010). We pro-
vide the grammars as supplementary material.
Around 64% of the AMRs in the graph-bank have
treewidth 1 and can thus be parsed using s = 2
source names. 98% have treewidth 1 or 2, corre-
sponding to s = 3 source names. All experiments
evaluated parser times on the same AMRs from
which the grammar was sampled.
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Top-down versus bottom-up. Fig. 5 compares
the performance of the top-down and the bottom-
up algorithm, on a grammar with three source
names sampled from all 1261 graphs with up to
10 nodes. Each point in the figure is the geometric
mean of runtimes for all graphs with a given num-
ber of nodes; note the log-scale. We aborted the
top-down parser after its runtimes grew too large.

We observe that the bottom-up algorithm out-
performs the top-down algorithm, and yields prac-
tical runtimes even for nontrivial graphs. One pos-
sible explanation for the difference is that the top-
down algorithm spends more time analyzing un-
grammatical s-graphs, particularly subgraphs that
are not connected.

Comparison to Bolinas. We also compare our
implementations to Bolinas. Because Bolinas is
much slower than Alto, we restrict ourselves to
two source names (= treewidth 1) and sampled the
grammar from 30 randomly chosen AMRs each of
size 2 to 8, plus the 21 AMRs of size one.

Fig. 6 shows the runtimes. Our parsers are
generally much faster than in Fig. 5, due to the
decreased number of sources and grammar size.
They are also both much faster than Bolinas. Mea-
suring the total time for parsing all 231 AMRs,
our bottom-up algorithm outperforms Bolinas by a
factor of 6722. The top-down algorithm is slower,
but still outperforms Bolinas by a factor of 340.

Further analysis. In practice, memory use can
be a serious issue. For example, the decomposi-
tion grammar for s=3 for AMR #194 in the corpus
has over 300 million rules. However, many uses
of decomposition grammars, such as sampling for
grammar induction, can be phrased purely in terms
of top-down queries. The top-down algorithm can
answer these without computing the entire gram-
mar, alleviating the memory problem.

Finally, we analyzed the asymptotic runtimes in
Table 1 in terms of the maximum number d · s of
in-boundary edges. However, the top-down parser
does not manipulate individual edges, but entire
s-components. The maximum number Ds of s-
components into which a set of s sources can split
a graph is called the s-separability of G by Laute-
mann (1990). We can analyze the runtime of the
top-down parser more carefully as O(ns3Dsds);
as the dotted line in Fig. 5 shows, this predicts
the runtime well. Interestingly, Ds is much lower
in practice than its theoretical maximum. In the
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Figure 6: Runtimes of our parsers and Bolinas
with s = 2.

“Little Prince” AMR-Bank, the mean ofD3 is 6.0,
whereas the mean of 3 · d is 12.7. Thus exploit-
ing the s-component structure of the graph can im-
prove parsing times.

7 Conclusion

We presented two new graph parsing algorithms
for s-graph grammars. These were framed in
terms of top-down and bottom-up queries to a de-
composition grammar for the HR algebra. Our
implementations outperform Bolinas, the previ-
ously best system, by several orders of magnitude.
We have made them available as part of the Alto
parser.

A challenge for grammar-based semantic pars-
ing is grammar induction from data. We will ex-
plore this problem in future work. Furthermore,
we will investigate methods for speeding up graph
parsing further, e.g. with different heuristics.
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Abstract

Current distributed representations of
words show little resemblance to theo-
ries of lexical semantics. The former
are dense and uninterpretable, the lat-
ter largely based on familiar, discrete
classes (e.g., supersenses) and relations
(e.g., synonymy and hypernymy). We pro-
pose methods that transform word vec-
tors into sparse (and optionally binary)
vectors. The resulting representations are
more similar to the interpretable features
typically used in NLP, though they are dis-
covered automatically from raw corpora.
Because the vectors are highly sparse, they
are computationally easy to work with.
Most importantly, we find that they out-
perform the original vectors on benchmark
tasks.

1 Introduction

Distributed representations of words have been
shown to benefit NLP tasks like parsing (Lazari-
dou et al., 2013; Bansal et al., 2014), named en-
tity recognition (Guo et al., 2014), and sentiment
analysis (Socher et al., 2013). The attraction of
word vectors is that they can be derived directly
from raw, unannotated corpora. Intrinsic evalua-
tions on various tasks are guiding methods toward
discovery of a representation that captures many
facts about lexical semantics (Turney, 2001; Tur-
ney and Pantel, 2010).

Yet word vectors do not look anything like the
representations described in most lexical seman-
tic theories, which focus on identifying classes of
words (Levin, 1993; Baker et al., 1998; Schuler,
2005) and relationships among word meanings
(Miller, 1995). Though expensive to construct,
conceptualizing word meanings symbolically is
important for theoretical understanding and also

when we incorporate lexical semantics into com-
putational models where interpretability is de-
sired. On the surface, discrete theories seem in-
commensurate with the distributed approach, a
problem now receiving much attention in compu-
tational linguistics (Lewis and Steedman, 2013;
Kiela and Clark, 2013; Vecchi et al., 2013; Grefen-
stette, 2013; Lewis and Steedman, 2014; Paperno
et al., 2014).

Our contribution to this discussion is a new,
principled sparse coding method that transforms
any distributed representation of words into sparse
vectors, which can then be transformed into binary
vectors (§2). Unlike recent approaches of incorpo-
rating semantics in distributional word vectors (Yu
and Dredze, 2014; Xu et al., 2014; Faruqui et al.,
2015), the method does not rely on any external
information source. The transformation results in
longer, sparser vectors, sometimes called an “over-
complete” representation (Olshausen and Field,
1997). Sparse, overcomplete representations have
been motivated in other domains as a way to in-
crease separability and interpretability, with each
instance (here, a word) having a small number
of active dimensions (Olshausen and Field, 1997;
Lewicki and Sejnowski, 2000), and to increase
stability in the presence of noise (Donoho et al.,
2006).

Our work builds on recent explorations of spar-
sity as a useful form of inductive bias in NLP and
machine learning more broadly (Kazama and Tsu-
jii, 2003; Goodman, 2004; Friedman et al., 2008;
Glorot et al., 2011; Yogatama and Smith, 2014,
inter alia). Introducing sparsity in word vector di-
mensions has been shown to improve dimension
interpretability (Murphy et al., 2012; Fyshe et al.,
2014) and usability of word vectors as features in
downstream tasks (Guo et al., 2014). The word
vectors we produce are more than 90% sparse; we
also consider binarizing transformations that bring
them closer to the categories and relations of lex-

1491



ical semantic theories. Using a number of state-
of-the-art word vectors as input, we find consis-
tent benefits of our method on a suite of standard
benchmark evaluation tasks (§3). We also evalu-
ate our word vectors in a word intrusion experi-
ment with humans (Chang et al., 2009) and find
that our sparse vectors are more interpretable than
the original vectors (§4).

We anticipate that sparse, binary vectors can
play an important role as features in statistical
NLP models, which still rely predominantly on
discrete, sparse features whose interpretability en-
ables error analysis and continued development.
We have made an implementation of our method
publicly available.1

2 Sparse Overcomplete Word Vectors

We consider methods for transforming dense word
vectors to sparse, binary overcomplete word vec-
tors. Fig. 1 shows two approaches. The one on the
top, method A, converts dense vectors to sparse
overcomplete vectors (§2.1). The one beneath,
method B, converts dense vectors to sparse and bi-
nary overcomplete vectors (§2.2 and §2.4).

Let V be the vocabulary size. In the following,
X ∈ RL×V is the matrix constructed by stack-
ing V non-sparse “input” word vectors of length
L (produced by an arbitrary word vector estima-
tor). We will refer to these as initializing vectors.
A ∈ RK×V contains V sparse overcomplete word
vectors of length K. “Overcomplete” representa-
tion learning implies that K > L.

2.1 Sparse Coding
In sparse coding (Lee et al., 2006), the goal is to
represent each input vector xi as a sparse linear
combination of basis vectors, ai. Our experiments
consider four initializing methods for these vec-
tors, discussed in Appendix A. Given X, we seek
to solve

arg min
D,A

‖X−DA‖22 + λΩ(A) + τ‖D‖22, (1)

where D ∈ RL×K is the dictionary of basis vec-
tors. λ is a regularization hyperparameter, and Ω is
the regularizer. Here, we use the squared loss for
the reconstruction error, but other loss functions
could also be used (Lee et al., 2009). To obtain
sparse word representations we will impose an `1

1https://github.com/mfaruqui/
sparse-coding

penalty on A. Eq. 1 can be broken down into loss
for each word vector which can be optimized sep-
arately in parallel (§2.3):

arg min
D,A

V∑
i=1

‖xi−Dai‖22 +λ‖ai‖1 +τ‖D‖22 (2)

where mi denotes the ith column vector of matrix
M. Note that this problem is not convex. We refer
to this approach as method A.

2.2 Sparse Nonnegative Vectors
Nonnegativity in the feature space has often been
shown to correspond to interpretability (Lee and
Seung, 1999; Cichocki et al., 2009; Murphy et al.,
2012; Fyshe et al., 2014; Fyshe et al., 2015). To
obtain nonnegative sparse word vectors, we use a
variation of the nonnegative sparse coding method
(Hoyer, 2002). Nonnegative sparse coding further
constrains the problem in Eq. 2 so that D and ai
are nonnegative. Here, we apply this constraint
only to the representation vectors {ai}. Thus, the
new objective for nonnegative sparse vectors be-
comes:

arg min
D∈RL×K

≥0 ,A∈RK×V
≥0

V∑
i=1

‖xi−Dai‖22+λ‖ai‖1+τ‖D‖22
(3)

This problem will play a role in our second ap-
proach, method B, to which we will return shortly.
This nonnegativity constraint can be easily incor-
porated during optimization, as explained next.

2.3 Optimization
We use online adaptive gradient descent (Ada-
Grad; Duchi et al., 2010) for solving the optimiza-
tion problems in Eqs. 2–3 by updating A and D.
In order to speed up training we use asynchronous
updates to the parameters of the model in parallel
for every word vector (Duchi et al., 2012; Heigold
et al., 2014).

However, directly applying stochastic subgradi-
ent descent to an `1-regularized objective fails to
produce sparse solutions in bounded time, which
has motivated several specialized algorithms that
target such objectives. We use the AdaGrad vari-
ant of one such learning algorithm, the regular-
ized dual averaging algorithm (Xiao, 2009), which
keeps track of the online average gradient at time
t: ḡt = 1

t

∑t
t′=1 gt′ Here, the subgradients do not

include terms for the regularizer; they are deriva-
tives of the unregularized objective (λ = 0, τ = 0)
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are converted to sparse non-negative vectors (center) of lengthK which are then projected into the binary
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with respect to ai. We define

γ = −sign(ḡt,i,j)
ηt√
Gt,i,j

(|ḡt,i,j | − λ),

where Gt,i,j =
∑t

t′=1 g
2
t′,i,j . Now, using the av-

erage gradient, the `1-regularized objective is op-
timized as follows:

at+1,i,j =

{
0, if |ḡt,i,j | ≤ λ
γ, otherwise

(4)

where, at+1,i,j is the jth element of sparse vector
ai at the tth update and ḡt,i,j is the correspond-
ing average gradient. For obtaining nonnegative
sparse vectors we take projection of the updated ai
onto RK

≥0 by choosing the closest point in RK
≥0 ac-

cording to Euclidean distance (which corresponds
to zeroing out the negative elements):

at+1,i,j =


0, if |ḡt,i,j | ≤ λ
0, if γ < 0
γ, otherwise

(5)

2.4 Binarizing Transformation
Our aim with method B is to obtain word rep-
resentations that can emulate the binary-feature

X L λ τ K % Sparse
Glove 300 1.0 10−5 3000 91
SG 300 0.5 10−5 3000 92
GC 50 1.0 10−5 500 98
Multi 48 0.1 10−5 960 93

Table 1: Hyperparameters for learning sparse
overcomplete vectors tuned on the WS-353 task.
Tasks are explained in §B. The four initial vector
representations X are explained in §A.

hot, fresh, fish, 1/2, wine, salt
series, tv, appearances, episodes
1975, 1976, 1968, 1970, 1977, 1969
dress, shirt, ivory, shirts, pants
upscale, affluent, catering, clientele

Table 2: Highest frequency words in randomly
picked word clusters of binary sparse overcom-
plete Glove vectors.

space designed for various NLP tasks. We could
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state this as an optimization problem:

arg min
D∈RL×K

B∈{0,1}K×V

V∑
i=1

‖xi −Dbi‖22 + λ‖bi‖11 + τ‖D‖22

(6)
where B denotes the binary (and also sparse) rep-
resentation. This is an mixed integer bilinear pro-
gram, which is NP-hard (Al-Khayyal and Falk,
1983). Unfortunately, the number of variables in
the problem is ≈ KV which reaches 100 million
when V = 100, 000 and K = 1, 000, which is
intractable to solve using standard techniques.

A more tractable relaxation to this hard prob-
lem is to first constrain the continuous represen-
tation A to be nonnegative (i.e, ai ∈ RK

≥0; §2.2).
Then, in order to avoid an expensive computation,
we take the nonnegative word vectors obtained us-
ing Eq. 3 and project nonzero values to 1, preserv-
ing the 0 values. Table 2 shows a random set of
word clusters obtained by (i) applying our method
to Glove initial vectors and (ii) applying k-means
clustering (k = 100). In §3 we will find that these
vectors perform well quantitatively.

2.5 Hyperparameter Tuning
Methods A and B have three hyperparameters: the
`1-regularization penalty λ, the `2-regularization
penalty τ , and the length of the overcomplete word
vector representationK. We perform a grid search
on λ ∈ {0.1, 0.5, 1.0} and K ∈ {10L, 20L}, se-
lecting values that maximizes performance on one
“development” word similarity task (WS-353, dis-
cussed in §B) while achieving at least 90% sparsity
in overcomplete vectors. τ was tuned on one col-
lection of initializing vectors (Glove, discussed in
§A) so that the vectors in D are near unit norm.
The four vector representations and their corre-
sponding hyperparameters selected by this proce-
dure are summarized in Table 1. There hyperpa-
rameters were chosen for method A and retained
for method B.

3 Experiments

Using methods A and B, we constructed sparse
overcomplete vector representations A, starting
from four initial vector representations X; these
are explained in Appendix A. We used one bench-
mark evaluation (WS-353) to tune hyperparame-
ters, resulting in the settings shown in Table 1;
seven other tasks were used to evaluate the quality
of the sparse overcomplete representations. The

first of these is a word similarity task, where the
score is correlation with human judgments, and
the others are classification accuracies of an `2-
regularized logistic regression model trained using
the word vectors. These tasks are described in de-
tail in Appendix B.

3.1 Effects of Transforming Vectors

First, we quantify the effects of our transforma-
tions by comparing their output to the initial (X)
vectors. Table 3 shows consistent improvements
of sparsifying vectors (method A). The exceptions
are on the SimLex task, where our sparse vectors
are worse than the skip-gram initializer and on par
with the multilingual initializer. Sparsification is
beneficial across all of the text classification tasks,
for all initial vector representations. On average
across all vector types and all tasks, sparse over-
complete vectors outperform their corresponding
initializers by 4.2 points.2

Binarized vectors (from method B) are also usu-
ally better than the initial vectors (also shown in
Table 3), and tend to outperform the sparsified
variants, except when initializing with Glove. On
average across all vector types and all tasks, bina-
rized overcomplete vectors outperform their cor-
responding initializers by 4.8 points and the con-
tinuous, sparse intermediate vectors by 0.6 points.

From here on, we explore more deeply the
sparse overcomplete vectors from method A (de-
noted by A), leaving binarization and method B
aside.

3.2 Effect of Vector Length

How does the length of the overcomplete vector
(K) affect performance? We focus here on the
Glove vectors, where L = 300, and report av-
erage performance across all tasks. We consider
K = αL where α ∈ {2, 3, 5, 10, 15, 20}. Figure 2
plots the average performance across tasks against
α. The earlier selection of K = 3, 000 (α = 10)
gives the best result; gains are monotonic in α to
that point and then begin to diminish.

3.3 Alternative Transformations

We consider two alternative transformations. The
first preserves the original vector length but

2We report correlation on a 100 point scale, so that the
average which includes accuracuies and correlation is equally
representatitve of both.
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Vectors
SimLex Senti. TREC Sports Comp. Relig. NP

Average
Corr. Acc. Acc. Acc. Acc. Acc. Acc.

Glove
X 36.9 77.7 76.2 95.9 79.7 86.7 77.9 76.2
A 38.9 81.4 81.5 96.3 87.0 88.8 82.3 79.4
B 39.7 81.0 81.2 95.7 84.6 87.4 81.6 78.7

SG
X 43.6 81.5 77.8 97.1 80.2 85.9 80.1 78.0
A 41.7 82.7 81.2 98.2 84.5 86.5 81.6 79.4
B 42.8 81.6 81.6 95.2 86.5 88.0 82.9 79.8

GC
X 9.7 68.3 64.6 75.1 60.5 76.0 79.4 61.9
A 12.0 73.3 77.6 77.0 68.3 81.0 81.2 67.2
B 18.7 73.6 79.2 79.7 70.5 79.6 79.4 68.6

Multi
X 28.7 75.5 63.8 83.6 64.3 81.8 79.2 68.1
A 28.1 78.6 79.2 93.9 78.2 84.5 81.1 74.8
B 28.7 77.6 82.0 94.7 81.4 85.6 81.9 75.9

Table 3: Performance comparison of transformed vectors to initial vectors X. We show sparse over-
complete representations A and also binarized representations B. Initial vectors are discussed in §A and
tasks in §B.

Figure 2: Average performace across all tasks
for sparse overcomplete vectors (A) produced by
Glove initial vectors, as a function of the ratio of
K to L.

achieves a binary, sparse vector (B) by applying:

bi,j =
{

1 if xi,j > 0
0 otherwise

(7)

The second transformation was proposed by
Guo et al. (2014). Here, the original vector length
is also preserved, but sparsity is achieved through:

ai,j =


1 if xi,j ≥M+

−1 if xi,j ≤M−
0 otherwise

(8)

where M+ (M−) is the mean of positive-valued
(negative-valued) elements of X. These vectors
are, obviously, not binary.

We find that on average, across initializing vec-
tors and across all tasks that our sparse overcom-
plete (A) vectors lead to better performance than
either of the alternative transformations.

4 Interpretability

Our hypothesis is that the dimensions of sparse
overcomplete vectors are more interpretable than
those of dense word vectors. Following Murphy
et al. (2012), we use a word intrusion experiment
(Chang et al., 2009) to corroborate this hypothesis.
In addition, we conduct qualitative analysis of in-
terpretability, focusing on individual dimensions.

4.1 Word Intrusion

Word intrusion experiments seek to quantify the
extent to which dimensions of a learned word rep-
resentation are coherent to humans. In one in-
stance of the experiment, a human judge is pre-
sented with five words in random order and asked
to select the “intruder.” The words are selected by
the experimenter by choosing one dimension j of
the learned representation, then ranking the words
on that dimension alone. The dimensions are cho-
sen in decreasing order of the variance of their
values across the vocabulary. Four of the words
are the top-ranked words according to j, and the
“true” intruder is a word from the bottom half of
the list, chosen to be a word that appears in the top
10% of some other dimension. An example of an
instance is:

naval, industrial, technological, marine, identity
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X: Glove SG GC Multi Average
X 76.2 78.0 61.9 68.1 71.0
Eq. 7 75.7 75.8 60.5 64.1 69.0
Eq. 8 (Guo et al., 2014) 75.8 76.9 60.5 66.2 69.8
A 79.4 79.4 67.2 74.8 75.2

Table 4: Average performance across all tasks and vector models using different transformations.

Vectors A1 A2 A3 Avg. IAA κ

X 61 53 56 57 70 0.40
A 71 70 72 71 77 0.45

Table 5: Accuracy of three human annotators on
the word intrusion task, along with the average
inter-annotator agreement (Artstein and Poesio,
2008) and Fleiss’ κ (Davies and Fleiss, 1982).

(The last word is the intruder.)
We formed instances from initializing vectors

and from our sparse overcomplete vectors (A).
Each of these two combines the four different ini-
tializers X. We selected the 25 dimensions d in
each case. Each of the 100 instances per condition
(initial vs. sparse overcomplete) was given to three
judges.

Results in Table 5 confirm that the sparse over-
complete vectors are more interpretable than the
dense vectors. The inter-annotator agreement on
the sparse vectors increases substantially, from
57% to 71%, and the Fleiss’ κ increases from
“fair” to “moderate” agreement (Landis and Koch,
1977).

4.2 Qualitative Evaluation of Interpretability

If a vector dimension is interpretable, the top-
ranking words for that dimension should display
semantic or syntactic groupings. To verify this
qualitatively, we select five dimensions with the
highest variance of values in initial and sparsi-
fied GC vectors. We compare top-ranked words in
the dimensions extracted from the two representa-
tions. The words are listed in Table 6, a dimension
per row. Subjectively, we find the semantic group-
ings better in the sparse vectors than in the initial
vectors.

Figure 3 visualizes the sparsified GC vectors for
six words. The dimensions are sorted by the aver-
age value across the three “animal” vectors. The
animal-related words use many of the same di-
mensions (102 common active dimensions out of
500 total); in constrast, the three city names use

X

combat, guard, honor, bow, trim, naval
’ll, could, faced, lacking, seriously, scored
see, n’t, recommended, depending, part
due, positive, equal, focus, respect, better
sergeant, comments, critics, she, videos

A

fracture, breathing, wound, tissue, relief
relationships, connections, identity, relations
files, bills, titles, collections, poems, songs
naval, industrial, technological, marine
stadium, belt, championship, toll, ride, coach

Table 6: Top-ranked words per dimension for ini-
tial and sparsified GC representations. Each line
shows words from a different dimension.

mostly distinct vectors.

5 Related Work

To the best of our knowledge, there has been no
prior work on obtaining overcomplete word vec-
tor representations that are sparse and categorical.
However, overcomplete features have been widely
used in image processing, computer vision (Ol-
shausen and Field, 1997; Lewicki and Sejnowski,
2000) and signal processing (Donoho et al., 2006).
Nonnegative matrix factorization is often used for
interpretable coding of information (Lee and Se-
ung, 1999; Liu et al., 2003; Cichocki et al., 2009).

Sparsity constraints are in general useful in NLP
problems (Kazama and Tsujii, 2003; Friedman
et al., 2008; Goodman, 2004), like POS tagging
(Ganchev et al., 2009), dependency parsing (Mar-
tins et al., 2011), text classification (Yogatama and
Smith, 2014), and representation learning (Ben-
gio et al., 2013). Including sparsity constraints
in Bayesian models of lexical semantics like LDA
in the form of sparse Dirichlet priors has been
shown to be useful for downstream tasks like POS-
tagging (Toutanova and Johnson, 2007), and im-
proving interpretation (Paul and Dredze, 2012;
Zhu and Xing, 2012).
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Figure 3: Visualization of sparsified GC vectors. Negative values are red, positive values are blue, zeroes
are white.

6 Conclusion

We have presented a method that converts word
vectors obtained using any state-of-the-art word
vector model into sparse and optionally binary
word vectors. These transformed vectors appear to
come closer to features used in NLP tasks and out-
perform the original vectors from which they are
derived on a suite of semantics and syntactic eval-
uation benchmarks. We also find that the sparse
vectors are more interpretable than the dense vec-
tors by humans according to a word intrusion de-
tection test.
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A Initial Vector Representations (X)

Our experiments consider four publicly available
collections of pre-trained word vectors. They vary
in the amount of data used and the estimation
method.

Glove. Global vectors for word representations
(Pennington et al., 2014) are trained on aggregated
global word-word co-occurrence statistics from a
corpus. These vectors were trained on 6 billion
words from Wikipedia and English Gigaword and
are of length 300.3

3http://www-nlp.stanford.edu/projects/
glove/

Skip-Gram (SG). The word2vec tool (Mikolov
et al., 2013) is fast and widely-used. In this model,
each word’s Huffman code is used as an input to
a log-linear classifier with a continuous projection
layer and words within a given context window are
predicted. These vectors were trained on 100 bil-
lion words of Google news data and are of length
300.4

Global Context (GC). These vectors are
learned using a recursive neural network that
incorporates both local and global (document-
level) context features (Huang et al., 2012). These
vectors were trained on the first 1 billion words of
English Wikipedia and are of length 50.5

Multilingual (Multi). Faruqui and Dyer (2014)
learned vectors by first performing SVD on text
in different languages, then applying canonical
correlation analysis on pairs of vectors for words
that align in parallel corpora. These vectors were
trained on WMT-2011 news corpus containing
360 million words and are of length 48.6

B Evaluation Benchmarks

Our comparisons of word vector quality consider
five benchmark tasks. We now describe the differ-
ent evaluation benchmarks for word vectors.

Word Similarity. We evaluate our word repre-
sentations on two word similarity tasks. The first
is the WS-353 dataset (Finkelstein et al., 2001),
which contains 353 pairs of English words that
have been assigned similarity ratings by humans.
This dataset is used to tune sparse vector learning
hyperparameters (§2.5), while the remaining of the
tasks discussed in this section are completely held
out.

4https://code.google.com/p/word2vec
5http://nlp.stanford.edu/˜socherr/

ACL2012_wordVectorsTextFile.zip
6http://cs.cmu.edu/˜mfaruqui/soft.html
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A more recent dataset, SimLex-999 (Hill et al.,
2014), has been constructed to specifically focus
on similarity (rather than relatedness). It con-
tains a balanced set of noun, verb, and adjective
pairs. We calculate cosine similarity between the
vectors of two words forming a test item and re-
port Spearman’s rank correlation coefficient (My-
ers and Well, 1995) between the rankings pro-
duced by our model against the human rankings.

Sentiment Analysis (Senti). Socher et al.
(2013) created a treebank of sentences anno-
tated with fine-grained sentiment labels on phrases
and sentences from movie review excerpts. The
coarse-grained treebank of positive and negative
classes has been split into training, development,
and test datasets containing 6,920, 872, and 1,821
sentences, respectively. We use average of the
word vectors of a given sentence as feature for
classification. The classifier is tuned on the
dev. set and accuracy is reported on the test set.

Question Classification (TREC). As an aid to
question answering, a question may be classi-
fied as belonging to one of many question types.
The TREC questions dataset involves six differ-
ent question types, e.g., whether the question is
about a location, about a person, or about some nu-
meric information (Li and Roth, 2002). The train-
ing dataset consists of 5,452 labeled questions, and
the test dataset consists of 500 questions. An av-
erage of the word vectors of the input question is
used as features and accuracy is reported on the
test set.

20 Newsgroup Dataset. We consider three bi-
nary categorization tasks from the 20 News-
groups dataset.7 Each task involves categoriz-
ing a document according to two related cate-
gories with training/dev./test split in accordance
with Yogatama and Smith (2014): (1) Sports:
baseball vs. hockey (958/239/796) (2) Comp.:
IBM vs. Mac (929/239/777) (3) Religion: atheism
vs. christian (870/209/717). We use average of the
word vectors of a given sentence as features. The
classifier is tuned on the dev. set and accuracy is
reported on the test set.

NP bracketing (NP). Lazaridou et al. (2013)
constructed a dataset from the Penn Treebank
(Marcus et al., 1993) of noun phrases (NP) of

7http://qwone.com/˜jason/20Newsgroups

length three words, where the first can be an ad-
jective or a noun and the other two are nouns. The
task is to predict the correct bracketing in the parse
tree for a given noun phrase. For example, local
(phone company) and (blood pressure) medicine
exhibit right and left bracketing, respectively. We
append the word vectors of the three words in the
NP in order and use them as features for binary
classification. The dataset contains 2,227 noun
phrases split into 10 folds. The classifier is tuned
on the first fold and cross-validation accuracy is
reported on the remaining nine folds.
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Abstract

In this paper, we propose a general frame-
work to incorporate semantic knowledge
into the popular data-driven learning pro-
cess of word embeddings to improve the
quality of them. Under this framework,
we represent semantic knowledge as many
ordinal ranking inequalities and formu-
late the learning of semantic word embed-
dings (SWE) as a constrained optimiza-
tion problem, where the data-derived ob-
jective function is optimized subject to all
ordinal knowledge inequality constraints
extracted from available knowledge re-
sources such as Thesaurus and Word-
Net. We have demonstrated that this con-
strained optimization problem can be ef-
ficiently solved by the stochastic gradient
descent (SGD) algorithm, even for a large
number of inequality constraints. Experi-
mental results on four standard NLP tasks,
including word similarity measure, sen-
tence completion, name entity recogni-
tion, and the TOEFL synonym selection,
have all demonstrated that the quality of
learned word vectors can be significantly
improved after semantic knowledge is in-
corporated as inequality constraints during
the learning process of word embeddings.

1 Introduction

Distributed word representation (i.e., word embed-
ding) is a technique that represents words as con-
tinuous vectors, which is an important research
topic in natural language processing (NLP) (Hin-
ton et al., 1986; Turney et al., 2010). In re-
cent years, it has been widely used in various
NLP tasks, including neural language model (Ben-
gio et al., 2003; Schwenk, 2007), sequence la-
belling tasks (Collobert and Weston, 2008; Col-
lobert et al., 2011), machine translation (Devlin et

al., 2014; Sutskever et al., 2014), and antonym se-
lection (Chen et al., 2015). Typically, word vectors
are learned based on the distributional hypothesis
(Harris, 1954; Miller and Charles, 1991), which
assumes that words with a similar context tend
to have a similar meaning. Under this hypothe-
sis, various models, such as the skip-gram model
(Mikolov et al., 2013a; Mikolov et al., 2013b;
Levy and Goldberg, 2014) and GloVe model (Pen-
nington et al., 2014), have been proposed to lever-
age the context of each word in large corpora to
learn word embeddings. These methods can ef-
ficiently estimate the co-occurrence statistics to
model contextual distributions from very large text
corpora and they have been demonstrated to be
quite effective in a number of NLP tasks. How-
ever, they still suffer from some major limitations.
In particular, these corpus-based methods usu-
ally fail to capture the precise meanings for many
words. For example, some semantically related
but dissimilar words may have similar contexts,
such as synonyms and antonyms. As a result, these
corpus-based methods may lead to some antony-
mous word vectors being located much closer in
the learned embedding space than many synony-
mous words. Moreover, as word representations
are mainly learned based on the co-occurrence in-
formation, the learned word embeddings do not
capture the accurate relationship between two se-
mantically similar words if either one appears less
frequently in the corpus.

To address these issues, some recent work has
been proposed to incorporate prior lexical knowl-
edge (WordNet, PPDB, etc.) or knowledge graph
(Freebase, etc.) into word representations. Such
knowledge enhanced word embedding methods
have achieved considerable improvements on var-
ious natural language processing tasks, like (Yu
and Dredze, 2014; Bian et al., 2014; Xu et al.,
2014). These methods attempt to increase the se-
mantic similarities between words belonging to
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one semantic category or to explicitly model the
semantic relationships between different words.
For example, Yu and Dredze (2014) have proposed
a new learning objective function to enhance
word embeddings by combining neural models
and a prior knowledge measure from semantic re-
sources. Bian et. al (2014) have recently proposed
to leverage morphological, syntactic, and semantic
knowledge to improve the learning of word em-
beddings. Besides, a novel framework has been
proposed in (Xu et al., 2014) to take advantage of
both relational and categorical knowledge to learn
high-quality word representations, where two reg-
ularization functions are used to model the re-
lational and categorical knowledge respectively.
More recently, a retrofitting technique has been in-
troduced in (Faruqui et al., 2014) to improve se-
mantic vectors by leveraging lexicon-derived rela-
tional information in a post-processing stage.

In this paper, we propose a new and flexible
method to incorporate semantic knowledge into
the corpus-based learning of word embeddings.
In our approach, we propose to represent seman-
tic knowledge as many word ordinal ranking in-
equalities. Furthermore, these inequalities are cast
as semantic constraints in the optimization pro-
cess to learn semantically sensible word embed-
dings. The proposed method has several advan-
tages. Firstly, many different types of seman-
tic knowledge can all be represented as a num-
ber of such ranking inequalities, such as synonym-
antonym, hyponym-hypernym and etc. Secondly,
these inequalities can be easily extracted from
many existing knowledge resources, such as The-
saurus, WordNet (Miller, 1995) and knowledge
graphs. Moreover, the ranking inequalities can
also be manually generated by human annotation
because ranking orders is much easier for human
annotators than assigning specific scores. Next,
we present a flexible learning framework to learn
distributed word representation based on the ordi-
nal semantic knowledge. By solving a constrained
optimization problem using the efficient stochas-
tic gradient descent algorithm, we can obtain se-
mantic word embedding enhanced by the ordinal
knowledge constraints. Experiments on four pop-
ular natural language processing tasks, including
word similarity, sentence completion, name en-
tity recognition and synonym selection, have all
demonstrated that the proposed method can learn
good semantically sensible word embeddings.

2 Representing Knowledge By Ranking

Many types of lexical semantic knowledge can be
quantitatively represented by a large number of
ranking inequalities such as:

similarity(wi, wj) > similarity(wi, wk) (1)

where wi, wj and wk denote any three words in
vocabulary. For example, eq.(1) holds if wj is a
synonym of wi and wk is an antonym of wi. In
general, the similarity between a word and its syn-
onymous word should be larger than the similar-
ity between the word and its antonymous word.
Moreover, a particular word should be more sim-
ilar to the words belonging to the same semantic
category as this word than other words belonging
to a different category. Besides, eq.(1) holds if wi
and wj have shorter distance in a semantic hierar-
chy than wi and wk do in the same hierarchy (Lea-
cock and Chodorow, 1998; Jurafsky and Martin,
2000).

Equivalently, each of the above similarity in-
equalities may be represented as the following
constraint in the embedding space:

sim(w(1)
i ,w(1)

j ) > sim(w(1)
i ,w(1)

k ) (2)

where w(1)
i , w(1)

j and w(1)
k denote the embedding

vectors of the words, wi, wj and wk.
In this paper, we use the following three rules to

gather the ordinal semantic knowledge from avail-
able lexical knowledge resources, such as The-
saurus and WordNet.

• Synonym Antonym Rule: Similarities be-
tween a word and its synonymous words
are always larger than similarities be-
tween the word and its antonymous words.
For example, the similarity between fool-
ish and stupid is expected to be bigger
than the similarity between foolish and
clever, i.e., similarity(foolish, stupid) >
similarity(foolish, clever).

• Semantic Category Rule: Similarities of
words that belong to the same semantic cat-
egory would be larger than similarities of
words that belong to different categories.
This rule refers to the idea of Fisher lin-
ear discriminant algorithm in (Fisher, 1936).
A semantic category may be defined as a
synset in WordNet, a hypernym in a se-
mantic hierarchy, or an entity category in
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Figure 1: An example of hyponym and hypernym.

knowledge graphs. Figure 1 shows a sim-
ple example of the relationship between hy-
ponyms and hypernyms. From there, it is
reasonable to assume the following similar-
ity inequality: similarity(Mallet,Plessor) >
similarity(Mallet,Hacksaw).

• Semantic Hierarchy Rule: Similarities be-
tween words that have shorter distances in
a semantic hierarchy should be larger than
similarities of words that have longer dis-
tances. In this work, the semantic hi-
erarchy refers to the hypernym and hy-
ponym structure in WordNet. From Fig-
ure 1, this rule may suggest several inequal-
ities like: similarity(Mallet,Hammer) >
similarity(Mallet,Tool).

In addition, we may generate many such se-
mantically ranking similarity inequalities by hu-
man annotation through crowdsourcing.

3 Semantic Word Embedding

In this section, we first briefly review the conven-
tional skip-gram model (Mikolov et al., 2013b).
Next, we study how to incorporate the ordinal sim-
ilarity inequalities to learn semantic word embed-
dings.

3.1 The skip-gram model

The skip-gram model is a recently proposed learn-
ing framework (Mikolov et al., 2013b; Mikolov et
al., 2013a) to learn continuous word vectors from
text corpora based on the aforementioned distribu-
tional hypothesis, where each word in vocabulary
(size of V ) is mapped to a continuous embedding
space by looking up an embedding matrix W(1).
And W(1) is learned by maximizing the predic-
tion probability, calculated by another prediction
matrix W(2), of its neighbouring words within a
context window.

Given a sequence of training data, denoted as
w1, w2, w3, ..., wT with T words, the skip-gram

model aims to maximize the following objective
function:

Q =
1
T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt) (3)

where c is the size of context windows, wt de-
notes the input central word andwt+j for its neigh-
bouring word. The skip-gram model computes
the above conditional probability p(wt+j |wt) us-
ing the following softmax function:

p(wt+j |wt) =
exp(w(2)

t+j ·w(1)
t )∑V

k=1 exp(w(2)
k ·w(1)

t )
(4)

where w(1)
t and w(2)

k denotes row vectors in ma-
trices W(1) and W(2), corresponding to word wt
and wk respectively.

The training process of the skip-gram model
can be formulated as an optimization problem to
maximize the above objective function Q. As in
(Mikolov et al., 2013b), this optimization problem
is solved by the stochastic gradient descent (SGD)
method and the learned embedding matrix W(1)

is used as the word embeddings for all words in
vocabulary.

3.2 Semantic Word Embedding (SWE) as
Constrained Optimization

Here we consider how to combine the ordinal
knowledge representation in section 2 and the
skip-gram model in 3.1 to learn semantic word
embeddings (SWE).

As shown in section 2, each ranking inequal-
ity involves a triplet, (i, j, k), of three words,
{wi, wj , wk}. Assume the ordinal knowledge is
represented by a large number of such inequalities,
denoted as the inequality set S. For ∀(i, j, k) ∈ S,
we have:

similarity(wi, wj) > similarity(wi, wk)

⇔ sim(w(1)
i ,w(1)

j ) > sim(w(1)
i ,w(1)

k ).

For notational simplicity, we denote sij =
sim(w(1)

i ,w(1)
j ) hereafter.

Next, we propose to use the following con-
strained optimization problem to learn semantic
word embeddings (SWE):

{W(1),W(2)} = arg max
W(1),W(2)

Q(W(1),W(2))

(5)
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Figure 2: The proposed semantic word embedding (SWE) learning framework (The left part denotes the
state-of-the-art skip-gram model; The right part represents the semantic constraints).

subject to

sij > sik ∀(i, j, k) ∈ S. (6)

In this work, we formulate the above con-
strained optimization problem into an uncon-
strained one by casting all the constraints as a
penalty term in the objective function. The penalty
term can be expressed as follows:

D =
∑

(i,j,k)∈S
f(i, j, k) (7)

where the function f(·) is a normalization func-
tion. It can be a sigmoid function like f(i, j, k) =
σ(sik − sij) with σ(x) = 1/(1 + exp(−x)). Al-
ternatively, it may be a hinge loss function like
f(i, j, k) = h(sik−sij) where h(x) = max(δ0, x)
with δ0 denoting a parameter to control the de-
cision margin. In this work, we adopt to use
the hinge function to compute the penalty term in
eq.(7) and δ0 is set to be 0 for all experiments.

Finally, the proposed semantic word embed-
ding (SWE) model aims to maximize the follow-
ing combined objective function:

Q′ = Q− β · D (8)

where β is a control parameter to balance the con-
tribution of the penalty term in the optimization
process. It balances between the semantic infor-
mation estimated from the corpus based on the
distributional hypothesis and the semantic knowl-
edge encoded in the ordinal ranking inequalities.
In Rocktäschel et al. (2014), a similar approach
was proposed to capture knowledge constraint as
extra terms in the objective function for optimiza-
tion.

In Figure 2, we show a diagram for the the over-
all SWE learning framework to incorporate se-
mantic knowledge into the basic skip-gram word

embeddings. Comparing with the previous work
in (Xu et al., 2014) and (Faruqui et al., 2014),
the proposed SWE framework is more general in
terms of encoding the semantic knowledge for
learning word embeddings. It is straightforward
to show that the work in (Xu et al., 2014; Zweig,
2014; Faruqui et al., 2014) can be viewed as some
special cases under our SWE learning framework.

3.3 Optimization algorithm for SWE
In this work, the proposed semantic word em-
beddings (SWE) are learned using the standard
mini-batch stochastic gradient descent (SGD) al-
gorithm. Furthermore, we adopt to use the cosine
distance of the embedding vectors to compute the
similarity between two words in the penalty term.

In the following, we show how to compute the
derivatives of the penalty term for the SWE learn-
ing.

∂D
∂w(1)

t

=
∑

(i,j,k)∈S

∂f (sik − sij)
∂w(1)

t

=
∑

(i,j,k)∈S
f ′ ·
(
δik(t)

∂sik

∂w(1)
t

− δij(t) ∂sij
∂w(1)

t

)
(9)

where δik(t) and δij(t) are computed as

δik(t) =

{
1 t = i or t = k

0 otherwise
(10)

and for the hinge loss function f(x), we have

f ′ =

{
1 (sik − sij) > δ0

0 (sik − sij) ≤ δ0
(11)

and the derivatives of the cosine similarity mea-

sure, sij =
w

(1)
i ·w(1)

j

|w(1)
i ||w(1)

j |
, with respect to a word vec-
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tor, i.e., ∂sik

∂w
(1)
i

, which can be derived as follows:

∂sij

∂w(1)
i

= −sijw
(1)
i

|w(1)
i |2

+
w(1)
j

|w(1)
i ||w(1)

j |
. (12)

The learning rate used for the SWE learning
is the same as that for the skip-gram model. In
each mini-batch of SGD, we sample terms in the
same way as the skip-gram model. As for the con-
straints, we do not sample them but use all inequal-
ities relevant to any words in a minibatch to update
the model for the minibatch. Finally, by jointly op-
timizing the two terms in the combined objective
function, we may learn a new set of word vectors
encoding with ordinal semantic knowledge.

4 Experiments

In this section, we report all experiments con-
ducted to evaluate the effectiveness of the pro-
posed semantic word embeddings (SWE). Here
we compare the performance of the proposed
SWE model with the conventional skip-gram
baseline model on four popular natural language
processing tasks, including word similarity mea-
sure, sentence completion, name entity recogni-
tion, and synonym selection. In the following,
we first describe the experimental setup, training
corpora, semantic knowledge databases. Next,
we report the experimental results on these four
NLP tasks. Note that the SWE training codes
and scripts are made publicly available at http:
//home.ustc.edu.cn/˜quanliu/.

4.1 Experimental setup

4.1.1 Training corpora
In this work, we use the popular Wikipedia cor-
pus as our training data to learn word embeddings
for experiments on the word similarity task and
the TOEFL synonym selection task. Particularly,
we utilize two Wikipedia corpora with different
sizes. The first corpus with a smaller size is a
data set including the first one billion characters
from Wikipedia1, named as Wiki-Small in our ex-
periments. The second corpus with a relatively
large size is the latest Wikipedia dump2, named
as Wiki-Large in our experiments. Both Wikipedia
corpora have been pre-processed by removing all

1http://mattmahoney.net/dc/enwik9.zip
2http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-

pages-articles.xml.bz2

the HTML meta-data and hyper-links and replac-
ing the digit numbers with English words using the
perl script from the Matt Mahoney’s page3. After
text normalization, the Wiki-Small corpus contains
totally 130 million words, for which we create a
lexicon of 225,909 distinct words appearing more
than 5 times in the corpus. Similarly, the Wiki-
Large corpus contains about 5 billion words, for
which we create a lexicon of 228,069 words ap-
pearing more than 200 times.

For the other two tasks, sentence completion
and name entity recognition, we use the same
training corpora from the previous state-of-the-art
work for fair comparisons. The training corpus for
the sentence completion is the Holmes text (Zweig
and Burges, 2011; Mikolov et al., 2013a). The
training corpus for the name entity recognition
task is the Reuters English newswire from RCV1
(Turian et al., 2010; Lewis et al., 2004). Refer
to section 4.4 and section 4.5 for detailed descrip-
tions respectively.

4.1.2 Semantic constraint collections
In this work, we use WordNet as the resource to
collect ordinal semantic knowledge. WordNet is a
large semantic lexicon database of English words
(Miller, 1995), where nouns, verbs, adjectives and
adverbs are grouped into sets of cognitive syn-
onyms (usually called synsets). Each synset usu-
ally expresses a distinct semantic concept. All
synsets in WordNet are interlinked by means of
conceptual-semantic and/or lexical relations such
as synonyms and antonyms, hypernyms and hy-
ponyms.

In our experiments, we use the version
WordNet-3.1 for creating the corresponding se-
mantic constraints. In detail, we follow the fol-
lowing process to extract semantic similarity in-
equalities from WordNet and Thesaurus:

1. Based on the Synonym Antonym Rule de-
scribed in section 2, for each word in vo-
cabulary, find its synset and use the syn-
onym and antonym relations to find all re-
lated synonymous and antonymous synsets.
Note that the antonymous synset is selected
as long as there exists an antonymous rela-
tion between any word in this synset and any
word in an synonymous synset. After find-
ing the synonymous and antonymous synsets

3http://mattmahoney.net/dc/textdata.html
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of the current word, the similarity inequali-
ties could be generated according to the rank-
ing rule. After processing all words, we
have collected about 30,000 inequalities re-
lated to the synonym and antonym relations.
Furthermore, we extract additional 320,000
inequalities from an old English dictionary
(Fernald, 1896). In total, we have about
345,000 inequalities related to the synonym
and antonym relations. This set of inequali-
ties is denoted as Synon-Anton constraints in
our experiments.

2. Based on the Semantic Category Rule and Se-
mantic Hierarchy Rule, we extract another in-
equality set consisting of 75,000 inequalities
from WordNet. We defined this collection as
Hyper-Hypon constraints in our experiments.

In the following experiments, we just use all of
these collected inequality constraints as is without
further manually checking or cleaning-up. They
may contain a very small percentage of errors or
conflicts (due to multiple senses of a word).

4.1.3 Training parameter setting
Here we describe the control parameters used to
learn the baseline skip-gram model and the pro-
posed SWE model. In our experiments, we use the
open-source word2vec toolkit4 to train the base-
line skip-gram model, where the context window
size is set to be 5. The initial learning rate is set
as 0.025 and the learning rate is decreased lin-
early during the SGD model training process. We
use the popular negative sampling technique to
speed up model training and set the negative sam-
ple number as 5.

To train the proposed SWE model, we use the
same configuration as the skip-gram model to
maximize Q′. For the penalty term in eq. (7), we
set δ0 = 0 for the hinge loss function. The seman-
tic similarity between words is computed by the
cosine distance. The combination coefficient β in
eq. (8) is usually set to be a number between 0.001
and 0.3 in our experiments.

In the following four NLP tasks, the dimension-
ality of embedding vectors is different since we
try to use the same settings from the state-of-the-
art work for the comparison purpose. In the Word
Similarity task and the TOEFL Synonym Selec-
tion task, we followed the state of the art work

4https://code.google.com/p/word2vec.
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in (Xu et al., 2014), to set word embeddings to
300-dimension. Similarly, we refer to Bian et al.
(2014) to set the dimensionality of word vectors to
600 for the Sentence Completion task. And we set
the dimensionality of word vectors to 50 for the
NER task according to (Turian et al., 2010; Pen-
nington et al., 2014).

4.2 Semantic inequality satisfied rates

Here we first examine the inequality satisfied rates
of various word embeddings. The inequality sat-
isfied rate is defined as how many percentage of
semantic inequalities are satisfied based on the un-
derlying word embedding vectors. In Figure 3,
we show a typical curve of the inequality satis-
fied rates as a function of β used in model train-
ing. This figure is plotted based on the Wiki-Small
corpus. Two semantic constraint sets Synon-Anton
and Hyper-Hypon created in section 4.1.2 are em-
ployed to learn semantic word embeddings.

In the framework of the proposed semantic
word embedding method, we just need to tune
one more parameter β, comparing with the skip-
gram model. It shows that the baseline skip-gram
(β = 0) can only satisfy about 50-60% of inequal-
ities in the training set. As we choose a proper
value for β, we may significantly improve the in-
equality satisfied rate, up to 85-95%. Although
we can get higher inequality satisfying rate on the
training set by increasing beta continuously, how-
ever, we do not suggest to use a big beta value
because it would make the model overfitting. The
major reason for this is that the constraints only
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cover a subset of words in vocabulary. Increasing
the rate too much may screw up the entire word
embeddings due to the sparsity of the constraints.

Meanwhile, we have found that the proposed
SGD method is very efficient to handle a large
number of inequalities in model training. When
we use the total 345,000 inequalities, the SWE
training is comparable with the baseline skip-gram
model in terms of training speed. In the following,
we continue to examine the SWE model on four
popular natural language processing tasks, includ-
ing word similarity, sentence completion, name
entity recognition and the TOEFL synonym selec-
tion.

4.3 Task 1: Word Similarity Task

4.3.1 Task description

Measuring word similarity is a traditional NLP
task (Rubenstein and Goodenough, 1965). Here
we compare several word embedding models on
a popular word similarity task, namely WordSim-
353 (Finkelstein et al., 2001), which contains 353
English word pairs along with human-assigned
similarity scores, which measure the relatedness
of each word pair on a scale from 0 (totally unre-
lated words) to 10 (very much related or identical
words). The final similarity score for each pair is
the average across 13 to 16 human judges. When
evaluating word embeddings on this task, we mea-
sure the performance by calculating the Spearman
rank correlation between the human judgments
and the similarity scores computed based on the
learned word embeddings.

4.3.2 Experimental results

Here we compare the proposed SWE model with
the baseline skip-gram model on the WordSim-
353 task. Both word embedding models are
trained using the Wikipedia corpora. We set the di-
mension of word embedding vectors to be 300. In
Table 1, we have shown all the Spearman rank cor-
relation results. The baseline results on this task
include PPMI (Levy and Goldberg, 2014), GloVe
(Pennington et al., 2014), and ESA-Wikipedia
(Gabrilovich and Markovitch, 2007).

From the results in Table 1, we can see that the
proposed SWE model can achieve consistent im-
provements over the baseline skip-gram model, no
matter which training corpus is used. These re-
sults have demonstrated that, by incorporating se-
mantic ordinal knowledge into the word vectors,

Word Embeddings Result

Others
SPPMI 0.6870
GloVe (6 billion) 0.6580
GloVe (42 billion) 0.7590
ESA-Wikipedia 0.7500
Skip-gram 0.6326

Wiki-Small SWE + Synon-Anton 0.6584
(0.13 billion) SWE + Hyper-Hypon 0.6407

SWE + Both 0.6442
Skip-gram 0.7085

Wiki-Large SWE + Synon-Anton 0.7274
(5 billion) SWE + Hyper-Hypon 0.7213

SWE + Both 0.7236

Table 1: Spearman results on the WordSim-353
Task.

the proposed semantic word embedding frame-
work can capture much better semantics for many
words. The SWE model using the Wiki-Large
corpus has achieved the state-of-the-art perfor-
mance on this task, significantly outperforming
other popular word embedding methods, such as
skip-gram and GloVe. Moreover, we also find that
the Synon-Anton constraint set is more relevant
than Hyper-Hypon for the word similarity task.

4.4 Task 2: Sentence Completion Task

4.4.1 Task description
The Microsoft sentence completion challenge has
recently been introduced as a standard benchmark
task for language modeling and other NLP tech-
niques (Zweig and Burges, 2011). This task con-
sists of 1040 sentences, each of which misses one
word. The goal is to select a word that is the
most coherent with the rest of the sentence, from
a list of five candidates. Many NLP techniques
have already been reported on this task, includ-
ing N-gram model and LSA-based model pro-
posed in (Zweig and Burges, 2011), log-bilinear
model (Mnih and Teh, 2012), recurrent neural
networks (RNN) (Mikolov, 2012), the skip-gram
model (Mikolov et al., 2013a), a combination of
the skip-gram and RNN model, and a knowledge
enhanced word embedding model proposed by
Bian et. al. (2014). The performance of all these
techniques is listed in Table 2 for comparison.

In this work, we follow the the same proce-
dure as in (Mikolov et al., 2013a) to examine the
performance of our proposed semantic word em-
beddings (SWE) on this task. We first train 600-
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dimension word embeddings based on a training
corpus of 50M words provided by (Zweig and
Burges, 2011), with and without using the col-
lected ordinal knowledge. Then, for each sen-
tence in the test set, we use the learned word em-
beddings to compute a sentence score for predict-
ing all surrounding words based on each candidate
word in the list. Finally, we use the computed sen-
tence prediction scores to choose the most likely
word from the given list to answer the question.

System Acc

Others

N-gram model 39.0
LSA-based model 49.0
Log-bilinear model 54.8
RNN 55.4
Skip-gram 48.0
Skip-gram + RNN 58.9

Bian et al.

Skip-gram 41.2
+ Syntactic knowledge 41.9
+ Semantic knowledge 45.2
+ Both knowledge 44.2

1 Iteration

Skip-gram 44.1
SWE + Synon-Anton 47.9
SWE + Hyper-Hypon 47.5
SWE + Both 48.3

5 Iterations

Skip-gram 51.5
SWE + Synon-Anton 55.7
SWE + Hyper-Hypon 55.4
SWE + Both 56.2

Table 2: Results on Sentence Completion Task.

4.4.2 Experimental results
In Table 2, we have shown the sentence comple-
tion accuracy on this task for various word em-
bedding models. We can see that the proposed
SWE model has achieved considerable improve-
ments over the baseline skip-gram model. Once
again, this suggests that the semantic knowledge
represented by the ordinal inequalities can signif-
icantly improve the quality of the word embed-
dings. Besides, the SWE model significantly out-
performs the recent work in (Bian et al., 2014),
which considers syntactics and semantics of the
sentence contexts.

4.5 Task 3: Name Entity Recognition
4.5.1 Task description
To further investigate the performance of seman-
tic word embeddings, we have further conducted

some experiments on the standard CoNLL03
name entity recognition (NER) task. The
CoNLL03 NER dataset is drawn from the Reuters
newswire. The training set contains 204K words
(14K sentences, 946 documents), the test set
contains 46K words (3.5K sentences, 231 doc-
uments), and the development set contains 51K
words (3.3K sentences, 216 documents). We have
listed the state-of-the-art performance in Table 3
for this task (Turian et al., 2010).

To make a fair comparison, we have used the
exactly same experimental configurations as in
(Turian et al., 2010), including the used training
algorithm, the baseline discrete features and so on.
Like the C&W model, we use the same training
text resource to learn word vectors, which contains
one year of Reuters English newswire from RCV1,
from August 1996 to August 1997, having about
810,000 news stories (Lewis et al., 2004). Mean-
while, the dimension of word embeddings is set to
50 for all experiments on this task.

4.5.2 Experimental results
In our experiments, we compare the proposed
SWE model with the baseline skip-gram model for
name entity recognition, measured by the standard
F1 scores. We present the final NER F1 scores
on the CoNLL03 NER task in Table 3. The nota-
tion “Gaz” stands for gazetteers that are added into
the NER system as an auxiliary feature. For the
SWE model, we experiment two configurations by
adding gazetteers or not (denoted by “IsGaz” and
“NoGaz” respectively).

System Dev Test MUC7

Others
C&W 92.3 87.9 75.7
C&W + Gaz 93.0 88.9 81.4

NoGaz
Skip-gram 92.6 88.3 76.7
+ Synon-Anton 92.5 88.4 77.2
+ Hyper-Hypon 92.6 88.6 77.7
+ Both 92.6 88.4 77.5

IsGaz
Skip-gram 93.3 89.5 80.0
+ Synon-Anton 93.1 89.6 80.7
+ Hyper-Hypon 93.1 89.7 80.7
+ Both 93.0 89.5 80.8

Table 3: F1 scores on the CoNLL03 NER task.

From the results shown in Table 3, we could find
the proposed semantic word embedding (SWE)
model can consistently achieve 0.8% (or more) ab-
solute improvements on the MUC7 task no mat-
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ter whether the gazetteers features are used or not.
The proposed SWE model can also obtain 0.3%
improvement in the CoNLL03 test set when no
gazetteers is added into the NER system. How-
ever, no significant improvement is observed in
this test set for the proposed SWE model after we
add the gazetteers feature.

4.6 Task 4: TOEFL Synonym Selection

4.6.1 Task description
The goal of a synonym selection task is to se-
lect, from a list of candidate words, the semanti-
cally closest word for each given target word. The
dataset we use for this task is the standard TOEFL
dataset (Landauer and Dumais, 1997), which con-
tains 80 questions. Each question consists of a tar-
get word along with 4 candidate lexical substitutes
for selection.

The evaluation criterion on this task is the
synonym selection accuracy which indicates how
many synonyms are correctly selected for all 80
questions. Similar to the configurations on the
word similarity task, all the experiments on this
task are conducted on the English Wikipedia cor-
pora. In our experiments, we set all the vector di-
mensions to 300.

4.6.2 Experimental Results

Corpus Model Accuracy (%)

Wiki-Small
Skip-gram 61.25
+ Synon-Anton 70.00
+ Hyper-Hypon 66.25
+ Both 71.25

Wiki-Large
Skip-gram 83.75
+ Synon-Anton 87.50
+ Hyper-Hypon 85.00
+ Both 88.75

Table 4: The TOEFL synonym selection task.

In Table 4, we have shown the experimen-
tal results for different word embedding models,
learned from different Wikipedia corpora: Wiki-
Small or Wiki-Large. We compare the proposed
SWE with the baseline skip-gram model. From
the experimental results in Table 4, we can see that
the proposed SWE model can achieve consistent
improvements over the baseline skip-gram model
on the TOEFL synonym selection task, about 5-
8% improvements on the selection accuracy. We
find the similar performance differences between

the SWE model trained with the Synon-Anton and
Hyper-Hypon constraint set. The main reason
would be that the synonym selection task is mainly
related to lexical level similarity and less relevant
to the hypernym-hyponym relations.

5 Conclusions and Future Work

Word embedding models with good semantic rep-
resentations are quite invaluable to many natu-
ral language processing tasks. However, the cur-
rent data-driven methods that learn word vectors
from corpora based on the distributional hypoth-
esis tend to suffer from some major limitations.
In this paper, we propose a general and flexible
framework to incorporate various types of seman-
tic knowledge into the popular data-driven learn-
ing procedure for word embeddings. Our main
contributions are to represent semantic knowledge
as a number of ordinal similarity inequalities as
well as to formulate the entire learning process as
a constrained optimization problem. Meanwhile,
the optimization problem could be solved by effi-
cient stochastic gradient descend algorithm. Ex-
perimental results on four popular NLP tasks have
all demonstrated that the propose semantic word
embedding framework can significantly improve
the quality of word representations.

As for the future work, we would incorpo-
rate more types of knowledge, such as knowledge
graphs and FrameNet, into the learning process
for more powerful word representations. We also
expect that some common sense related semantic
knowledge may be generated as ordinal inequality
constraints by human annotators for learning se-
mantic word embeddings. At the end, we plan to
apply the SWE word embedding models for more
natural language processing tasks.
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Abstract

We add an interpretable semantics to
the paraphrase database (PPDB). To date,
the relationship between phrase pairs
in the database has been weakly de-
fined as approximately equivalent. We
show that these pairs represent a vari-
ety of relations, including directed entail-
ment (little girl/girl) and exclusion (no-
body/someone). We automatically assign
semantic entailment relations to entries in
PPDB using features derived from past
work on discovering inference rules from
text and semantic taxonomy induction. We
demonstrate that our model assigns these
relations with high accuracy. In a down-
stream RTE task, our labels rival relations
from WordNet and improve the coverage
of a proof-based RTE system by 17%.

1 Motivation

A basic precursor to language understanding is the
ability to recognize when two expressions mean
the same thing. Different expressions of the same
information is the central problem addressed by
paraphrasing and the closely related task of rec-
ognizing textual entailment (RTE). In RTE, a sys-
tem is given two pieces of text, often called the
text (T) and the hypothesis (H), and asked to de-
termine whether T entails H, T contradicts H, or
T and H are unrelatable (Figure 1). In contrast,
data-driving paraphrasing typically sidesteps de-
veloping a clear definition of “meaning the same
thing” and instead “assume[s] paraphrasing is a
coherent notion and concentrate[s] on devices that
can produce paraphrases” (Barzilay, 2003). Re-
cent work on paraphrase extraction has resulted
in enormous paraphrase collections (Lin and Pan-
tel, 2001; Dolan et al., 2004; Ganitkevitch et
al., 2013), but the usefulness of these collections

Riots in Denmark were sparked by 12 editorial
cartoons that were offensive to Muhammad.

12 ⌘ Twelve
editorial cartoons A illustrations

offensive A insulting
Muhammad ⌘ the prophet

sparked A caused
riots A unrest

in Denmark | in Jordan

Twelve illustrations insulting the prophet
caused unrest in Jordan.

Figure 1: An example sentence pair for the RTE task. In order
for a system to conclude that the premise (top) does not entail
the hypothesis (bottom), it should recognize that sparked im-
plies caused but that in Denmark precludes in Jordan. These
phrase-level entailment relationships are modeled by natural
logic.

is limited by the fast-and-loose treatment of the
meaning of paraphrases. One concrete defini-
tion that is sometimes used for paraphrases re-
quires that they be bidirectionally entailing (An-
droutsopoulos and Malakasiotis, 2010). That is,
in terms of RTE, it is assumed that if P is a para-
phrase of Q, then P entails Q and Q entails P. In
reality, paraphrases are often more nuanced (Bha-
gat and Hovy, 2013), and the entries in most para-
phrase resources certainly do not match this def-
inition. For instance, Lin and Pantel (2001) ex-
tracted 12 million “inference rules” from mono-
lingual text by exploiting shared dependency con-
texts. Their method learns paraphrases that are
truly meaning equivalent, but it just as readily
learns contradictory pairs such as hX rises, X fallsi.
Ganitkevitch et al. (2013) extract over 150 mil-
lion paraphrase rules by pivoting through foreign
translations. This bilingual method often learns
hypernym/hyponym pairs, e.g. due to variation
in the discourse structure of translations (Callison-
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Equivalent Entailment Exclusion Other relation Unrelated
look at/watch little girl/girl close/open swim/water girl/play
a person/someone kuwait/country minimal/significant husband/marry to found/party
clean/cleanse tower/building boy/young girl oil/oil price profit/year
away/out the cia/agency nobody/someone country/patriotic man/talk
distant/remote sneaker/footwear blue/green drive/vehicle car/family
the phone/the telephone heroin/drug france/germany family/home holiday/series
last autumn/last fall doe/deer least three/least two basketball/court green/tennis
illegal entry/smuggling typhoon/storm child/mother playing/toy sunday/tour
approve/to ratify seriously injure/injure in front/on the side islamic/jihad city/south
alliance of/coalition between sunglasses/glasses oppose/support delay/time back/view

Table 1: Examples of different types of entailment relations appearing in PPDB.

Burch, 2007), and unrelated pairs, e.g. due to mis-
alignments or polysemy in the foreign language.

The unclear semantics severely limits the ap-
plicability of paraphrase resources to natural lan-
guage understanding (NLU) tasks. Some efforts
have been made to identify directionality of para-
phrases (Bhagat et al., 2007; Kotlerman et al.,
2010), but tasks like RTE require even richer se-
mantic information. For example, in the T/H pair
shown in Figure 1, a system needs information
not only about equivalent words (12/twelve) and
asymmetric entailments (riots/unrest), but also se-
mantic exclusion (Denmark/Jordan). Such lexical
entailment relations are captured by natural logic,
a formalism which views natural language itself
as a meaning representation, eschewing external
representations such as First Order Logic (FOL).
This is a great fit for automatically extracted para-
phrases, since the phrase pairs themselves can be
used as the semantic representation with minimal
additional annotation. But as is, paraphrase re-
sources lack such annotation.

As a result, NLU systems rely on manually built
resources like WordNet, which are limited in cov-
erage and often lead to incorrect inferences (Ka-
plan and Schubert, 2001). In fact, in the most
recent RTE challenge, over half of the submitted
systems used WordNet (Pontiki et al., 2014). Even
the NatLog system (MacCartney and Manning,
2007), which popularized natural logic for RTE,
relied on WordNet and did not solve the problem
of assigning natural logic relations at scale.

The main contributions of this paper are:

• We add a concrete, interpretable semantics
to the Paraphrase Database (PPDB) (Ganitke-
vitch et al., 2013), the largest paraphrase re-
source currently available. We give each en-
try in the database a label describing the en-
tailment relationship between the phrases.

• We develop a statistical model to predict

these relations. The enormous size of PPDB–
over 77 million phrase pairs!– makes it im-
possible to perform this task manually. Our
wide range of monolingual and bilingual fea-
tures results in high intrinsic accuracy.

• We demonstrate improvements to a proof-
based RTE system, showing that our auto-
matic labels increase the number of proofs
that it is able to find by 17%, while maintain-
ing the same accuracy as when using gold-
standard, manual labels.

2 Related Work

Lexical entailment resources Approaches to
paraphrase identification have exploited signal
from distributional contexts (Lin and Pantel, 2001;
Szpektor et al., 2004), comparable corpora (Dolan
et al., 2004; Xu et al., 2014), and graph structures
(Berant et al., 2011; Brockett et al., 2013). These
approaches are scalable, but they often assume that
all relations are equivalence relations (Madnani
and Dorr, 2010). Several efforts have attempted
to build or augment lexical ontologies automati-
cally, to discover other types of lexical relations
like hypernyms. Most of these approaches rely on
lexico-syntactic patterns. Hearst (1992) searched
for hand-written patterns (e.g. “an X is a Y”) in a
large corpus in order to learn taxonomic relations
between nouns. Snow et al. (2006) used depen-
dency parses to automatically learn such patterns,
which they used to augment WordNet with new
hypernym relations. Similar monolingual signals
have been used to learn fine-grained relationships
between verbs, such as enablement and happens-
before (Chklovski and Pantel, 2004; Hashimoto et
al., 2009).

Recognizing Textual Entailment The shared
RTE tasks (Dagan et al., 2006) have been a spring-
board for research in natural language inference,
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Figure 2: Distribution of entailment relations in different sizes of PPDB. Distributions are estimated from our manual annota-
tions of randomly sampled pairs. PPDB-XXXL contains over 77MM paraphrase pairs (where the majority type is independent),
compared to only 700K in PPDB-S (where the majority type is equivalent).

using data motivated by the applications to infor-
mation retrieval, information extraction, summa-
rization, machine translation evaluation, and more
recently, question answering (Giampiccolo et al.,
2007) and essay grading (Clark et al., 2013). RTE
systems vary considerably in their choice of rep-
resentation and inference procedure. In the most
recent shared task on RTE, some systems used
deep logical representations of text, allowing them
to invoke theorem provers (Bjerva et al., 2014)
or Markov Logic Networks (Beltagy et al., 2014)
to perform the inference, while others used shal-
lower representations, relying on machine learn-
ing to perform inference (Lai and Hockenmaier,
2014; Zhao et al., 2014). Systems based on natural
logic (MacCartney and Manning, 2007) use natu-
ral language as a representation, but still perform
inference using a structured algebra rather than a
statistical model. Regardless of the inference pro-
cedure, improvements to external lexical resources
can improve RTE systems across the board (Clark
et al., 2007).

3 The Paraphrase Database (PPDB)

PPDB is currently the largest available collection
of paraphrases. Compared to other paraphrase
resources such as the DIRT database (12 mil-
lion rules) (Lin and Pantel, 2001) and the MSR
paraphrase phrase table (13 million) (Dolan et
al., 2004), PPDB contains over 150 million para-
phrase rules covering three paraphrase types– lex-
ical (single word), phrasal (multiword), and syn-
tactic restructuring rules. We focus on lexical and
phrasal paraphrases, of which there are over 77
million rules. Of these, a large fraction are true

paraphrases– either equivalent (distant/remote) or
asymmetric entailment (girl/little girl)– but many
are not. PPDB contains some pairs which are
related by semantic exclusion (nobody/someone),
some of which are related by something other than
entailment (swim/water), and some which are sim-
ply unrelated (car/family). Table 1 gives examples
of pairs in PPDB falling into each of these cate-
gories.

PPDB is released in six sizes (S, M, L, XL,
XXL and XXXL), which fall roughly on a con-
tinuum from highest precision and lowest recall to
lowest average precision and highest recall. Fig-
ure 2 shows how the distribution of entailment re-
lations differs across the sizes of PPDB.1 Our goal
is to make these relations explicit, by providing
annotations for each phrase pair. Because of the
enormous scale of PPDB, this annotation must be
done automatically.

4 Selection of Paraphrases

In this paper we focus on paraphrases pairs from
PPDB that occur in RTE data. We use the recent
SICK dataset from in the 2014 SemEval RTE chal-
lenge (Marelli et al., 2014) for our experiments.
The data consists of 10K sentences split roughly
evenly into training and testing sets. The sen-
tence pairs are labeled using a 3-way entailment
classification: ENTAILMENT, (29%) CONTRADIC-
TION (15%), or NEUTRAL (56%). We consider
all phrase pairs from PPDB hp1, p2i up to three
words in length such that there is some T/H sen-
tence pair in which p1 appears in T and p2 appears

1These distributions were estimated based on a random
sample of pairs drawn from each size of PPDB, annotated on
MTurk as described in Section 5
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Lexical We use the lemmas, POS tags, and phrase lengths of p1 and p2, the substrings shared by p1 and p2,
and the Levenstein, Jaccard, and Hamming distances between p1 and p2.

Distributional Given a dependency context vectors for p1 and p2, we compute the number of shared contexts, and
the Jaccard, Cosine, Lin1998, Weeds2004, Clarke2009, and Szpektor2008 similarities between the
vectors.

Paraphrase We include 33 paraphrase features distributed with PPDB, which include the paraphrase probabilities
as computed in Bannard and Callison-Burch (2005). We refer the reader to Ganitkevitch and Callison-
Burch (2014) for a complete description of all of the features included with PPDB.

Translation We include the number of foreign language “pivots” (translations) shared by p1 and p2 for each of 24
languages used in the construction of PPDB, as a fraction of the total number of translations observed
for each of p1 and p2.

Path We include a sparse vector of all lexico-syntactic patterns (paths through a dependency parse) which
are observed between p1 and p2 in the Annotated Gigaword corpus (Napoles et al., 2012).

WordNet We include binary features indicating whether WordNet classifies p1 and p2 according to any of the
following relations: synonym, hypernym, hyponym, antonym, holonym, meronym, cause, entailment,
derivationally-related, similar-to, also-see, or attribute.

Figure 3: Summary of features extracted for each phrase pair hp1, p2i. Full descriptions of the features used are given in the
supplementary material.

in H. Roughly 55% of the word types and 5% of
the phrase (bigram and trigram) types in the SICK
data appear in PPDB. This gives us a list of 9,600
pairs, half from the training sentences, which we
use for development in Section 6, and half from
the test sentences, which we use for evaluation in
Section 7.

The SICK data has a relatively small vocabu-
lary, with 86% of words types and <1% of the
phrase types covered by WordNet. Still, over half
of the words in SICK which are covered by PPDB
do not appear in WordNet. In general, PPDB cov-
ers a much larger vocabulary (1.6MM words) than
does WordNet (155K words), and we expect the
potential benefit of using PPDB in addition to or
in place of WordNet to be larger on datasets with
richer vocabularies.

5 Entailment Relations

We use the relations from Bill MacCartney’s
thesis on natural language inference as the basis
for our categorization of relations (MacCartney,
2009). He outlines 7 basic entailment relation-
ships:2

Equivalence (P⌘Q): 8x[P(x)$ Q(x)]
Forward Entailment (P@Q): 8x[P(x)! Q(x)]
Reverse Entailment (PAQ): 8x[Q(x)! P(x)]
Negation (PˆQ): 8x [P(x)$ ¬ Q(x)]
Alternation (P|Q): 8x ¬[P(x) ^ Q(x)]
Cover (P^Q): 8x[P(x) _ Q(x)]
Independence (P#Q): All other cases.

2To further clarify the definitions here: “negation” is XOR
(exclusive disjunction), “alternation” is NAND, and “cover”
is OR (inclusive disjunction)

These relations are based on the theory of natu-
ral logic, meaning they are defined between pairs
of natural language expressions rather than requir-
ing an external formal representation. This makes
them an ideal fit for the phrase pairs in in PPDB
and similar automatically-constructed paraphrase
resources.

Nat. This MTurk descriptionLog. work
⌘ ⌘ X is the same as Y
@ @ X is more specific than/is a type of Y
A A X is more general than/encompasses Y
ˆ ¬ X is the opposite of Y
| X is mutually exclusive with Y

#
⇠ X is related in some other way to Y
# X is not related to Y

Table 2: Column 1 gives the semantics of each label under
MacCartney’s Natural Logic. Column 2 gives the notation
we use throughout the remainder of this paper. Column 3
gives the description that was shown to Turkers.

Annotation We use Amazon Mechanical Turk
(MTurk) to collect labels for our phrase pairs. We
asked workers to choose between the options show
in Table 2, which represent a modified version
of MacCartney’s relations. We replace negation
(ˆ) with the weaker notion of “opposites,” effec-
tively merging it with the alternation (|) relation;
we split the independent (#) class into two cases:
truly independent phrases and phrases which are
related by something other than entailment (which
we denote ⇠). We omit the cover (^) relation en-
tirely, as its practicality is not obvious. We show
each pair to 5 workers, taking the majority label as
truth. Each HIT consisted of two control questions
taken from WordNet. Workers achieved good ac-
curacies on our controls (82% overall) and moder-
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Cosine Similarity Monolingual (symmetric) Monolingual (asymmetric) Bilingual
A shades/the shade ¬ large/small A boy/little boy ⌘ dad/father
A yard/backyard ⌘ few/several A man/two men A some kid/child
# each other/man ¬ different/same A child/three children ⌘ a lot of/many
A picture/drawing ¬ other/same ⌘ is playing/play ⌘ female/woman
⇠ practice/target ¬ put/take A side/both sides ⌘ male/man

Table 3: Top scoring pairs (x/y) according to various similarity measures, along with their manually classified entailment
labels. Column 1 is cosine similarity based on dependency contexts. Column 2 is based on Lin (1998), column 3 on Weeds
(2004), and column 4 is a novel feature. Precise definitions of each metric are given in the supplementary material.

ate levels of agreement (Fleiss’s  = 0.56) (Landis
and Koch, 1977). For a fuller discussion of the
annotation, refer to the supplementary material.

6 Automatic Classification

We aim to build a classifier to automatically assign
entailment types to entries in the PPDB, and to
demonstrate that it performs well both intrinsically
and extrinsically. We fix the direction of the@ and
A relations to create a single class and train a lo-
gistic regression classifier to distinguish between
the 5 classes {#,⌘,A,¬,⇠}. We compute vari-
ety of basic lexical features and WordNet features
(summarized in Figure 3). We categorize the re-
maining features into two broad groups: monolin-
gual features, which are based on observed usage
in the Annotated Gigaword corpus (Napoles et al.,
2012), and bilingual features, which are based on
translation probabilities observed in bilingual par-
allel corpora. Full descriptions of all the features
used are provided in the supplementary material.

6.1 Monolingual features

Path features Snow et al. (2004) used lexico-
syntactic patterns to mine taxonomic relations
(hypernyms and hyponyms) between noun pairs.
They were able to verify the earlier work of Hearst
(1992) which found that certain patterns, e.g. X
and other Y, are strong indicators of hypernymy.
Using similar path features, we learn new patterns
to differentiate between more subtle relations. For
example, we learn the pattern separate X from Y is
highly indicative of the ¬ relation. We learn that
the pattern X including Y suggests A more than it
suggests ⌘ whereas the pattern X known as Y sug-
gests ⌘ more than A. Table 4 gives examples of
some of the paths most indicative of the ¬ relation.

Distributional features Lin and Pantel (2001)
attempted to mine inference rules from text by
finding paths in a dependency tree which connect
the same nouns. The intuition is that good para-
phrases should tend to modify and be modified by

in X and in Y in foods and in beverages
separate X from Y separate the old from the young
to X and/or to Y to the left or to the right
from X to Y from 7 a.m. to 10 p.m.
more/less X than Y more harm than good

Table 4: Top paths associated with the ¬ class.

the same words. Given context vectors, Lin and
Pantel (2001) used a symmetric similarity met-
ric (Lin, 1998) to find candidate paraphrases. We
build dependency context vectors for each word
in our data and compute both symmetric as well
as more recently proposed asymmetric similarity
measures (Weeds et al., 2004; Szpektor and Da-
gan, 2008; Clarke, 2009), which are potentially
better suited for identifying A paraphrases. Ta-
ble 3 gives a comparison of the pairs which are
considered “most similar” according to several of
these metrics.

6.2 Bilingual features

We explore a variety of bilingual features, which
we expect to provide complimentary signal to the
monolingual features. Each pair in PPDB is asso-
ciated with several paraphrase probabilities, which
are based on the probabilities of aligning each
word to the foreign “pivot” phrase (a foreign trans-
lation shared by the two phrases), computed as
described in Bannard and Callison-Burch (2005).
We also compute the total number of shared for-
eign translations for each phrase pair. Table 3
shows the highest ranked pairs by this bilingual
similarity score, in comparison to several of the
monolingual scores.

6.3 Analysis

Table 5 shows an ablation analysis. The bilingual
features are especially important for distinguish-
ing the⌘ class, and the path and WordNet features
are important for the ¬ class. The lexical features
show strong performance across the board; this is
often because they capture negation words (e.g.
no) and substring features (little boy @ boy).
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Table 1

mono Predicted label  
(using monolingual features)

Predicted label  
(using bilingual features)

Predicted label  
(using all features)

ind syn hyp exl oth ≣ ⊐ ¬ # ~ ≣ ⊐ ¬ # ~ ≣ ⊐ ¬ # ~
syn 1 3 1 0 0 4 ≣ 58% 20% 4% 15% 3% 62% 21% 5% 4% 8% 83% 10% 0% 2% 4%

hyp 2 3 7 0 1 13 ⊐ 20% 51% 3% 18% 7% 27% 5% 7% 7% 54% 6% 76% 2% 7% 8%

exl 1 1 1 1 0 4 ¬ 26% 14% 37% 17% 6% 6% 14% 30% 36% 14% 2% 8% 73% 13% 3%

ind 14 2 2 0 1 20 # 8% 13% 2% 71% 6% 1% 7% 6% 78% 8% 1% 4% 2% 88% 6%

oth 3 1 2 0 2 10 ~ 15% 21% 5% 36% 23% 8% 19% 9% 30% 35% 5% 10% 3% 18% 64%

     

bi      

ind syn hyp exl oth

syn 0 3 1 0 0 4

hyp 2 7 1 2 13 24

exl 1 0 1 1 1 4

ind 15 0 1 1 2 20

oth 3 1 2 1 3 10

both      

ind syn hyp exl oth

syn 9 368 46 1 19 443

hyp 97 83 1004 29 108 1321

exl 49 9 29 275 13 375

ind 1730 15 82 35 114 1976

oth 169 48 97 33 609 956

Tr
ue

 la
be

l

Figure 4: Confusion matrices for classifier trained using only monolingual features (distributional and path) versus bilingual
features (paraphrase and translation). True labels are shown along rows, predicted along columns. The matrix is normalized
along rows, so that the predictions for each (true) class sum to 100%. The confusion matrices reflect classifier’s performance
on held-out phrase pairs from the SICK test set.

� F1 when excluding
All Lex. Dist. Path Para. Tran. WN

# 79 -2.0 -0.2 -1.2 -1.7 -0.2 -0.1
⌘ 57 -3.5 +0.2 -0.7 -2.4 -3.7 +0.5
A 68 -4.6 -0.3 -0.8 -0.8 -0.7 -1.6
¬ 49 -4.0 -0.8 -2.9 +0.3 -0.0 -2.2
⇠ 51 -4.9 -0.5 -0.7 -1.2 -0.9 -0.3

Table 5: F1 measure (⇥100) achieved by entailment classifier
using 10-fold cross validation on the training data.

Table 3 shines some light onto the differences
between monolingual and bilingual similarities.
While the monolingual asymmetric metrics are
good for identifying A pairs, the symmetric met-
rics consistently identify ¬ pairs; none of the
monolingual scores we explored were effective
in making the subtle distinction between ⌘ pairs
and the other types of paraphrase. In contrast,
the bilingual similarity metric is fairly precise
for identifying ⌘ pairs, but provides less infor-
mation for distinguishing between types of non-
equivalent paraphrase. These differences are fur-
ther exhibited in the confusion matrices shown in
Figure 4; when the classifier is trained using only
monolingual features, it misclassifies 26% of ¬
pairs as ⌘, whereas the bilingual features make
this error only 6% of the time. On the other hand,
the bilingual features completely fail to predict the
A class, calling over 80% of such pairs ⌘ or ⇠.

7 Evaluation

7.1 Intrinsic Evaluation

We test the performance of our classifier intrinsi-
cally, through its ability to reproduce the human
labels for the phrase pairs from the SICK test sen-
tences. Table 7 shows the precision and recall
achieved by the classifier for each of our 5 en-

tailment classes. The classifier is able to achieve
an overall 79% accuracy, reaching >70% preci-
sion while maintaining good levels of recall on all
classes.

True Pred. N Example misclassifications
⇠ # 169 boy/little, an empy/the air
# ⇠ 114 little/toy, color/hair
A ⇠ 108 drink/juice, ocean/surf
A # 97 in front of/the face of, vehicle/horse
A ⌘ 83 cat/kitten, pavement/sidewalk
⌘ A 46 big/grand, a girl/a young lady
A ¬ 29 kid/teenager, no small/a large
¬ A 29 old man/young man, a car/a window
# ⌘ 15 a person/one, a crowd/a large
⌘ # 9 he is/man is, photo/still
⌘ ¬ 1 girl is/she is

Table 6: Example misclassifications from some of the most
frequent and most interesting error categories.

Figure 4 shows the classifier’s confusion ma-
trix and Table 6 shows some examples of common
and interesting error cases. The majority of errors
(26%) come from confusing the ⇠ class with the
# class. This mistake is not too concerning from
an RTE perspective since ⇠ can be treated as a
special case of # (Section 5). There are very few
cases in which the classifier makes extreme errors,
e.g. confusing ⌘ with ¬ or with #; some interest-
ing examples of such errors arise when the phrases
contain pronouns (e.g. girl ⌘ she) or when the
relation uses a highly infrequent word sense (e.g.
photo ⌘ still).

7.2 The Nutcracker RTE System
To further test our classifier, we evaluate the use-
fulness of the automatic entailment predictions in
a downstream RTE task. We run our experiments
using Nutcracker, a state-of-the-art RTE system
based on formal semantics (Bjerva et al., 2014).
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Figure 5: ENTAILMENT Figure 6: CONTRADICTION Figure 7: NEUTRAL

Figure 8: F1 measures achieved by Nutcracker on SICK test data when using various KBs. Baselines are in gray, this work
in blue, human references in gold. PPDB-XL refers to a run in which every pair which appears in PPDB is assumed to be
equivalent. PPDB-H refers to a run in which manual labels were used to generate axioms. PPDB+ refers to runs in which
the automatic classifications were used to generate axioms. In some cases, better proof coverage causes NC to find incorrect
proofs, illustrated by the decreased performance on CONTRADICTION when using PPDB-H. For example, using PPDB-H, NC
finds an inconsistency for the pair Someone is not playing piano./A person is playing a keyboard. Using the PPDB+, in which
piano/keyboard is falsely classified as #, NC fails to find a proof and so correctly guesses NEUTRAL.

Freq. Precision Recall F score
# 39% 84.22 87.55 85.85
⌘ 8% 70.36 83.07 76.19
A 26% 79.81 76.00 77.85
¬ 7% 73.73 73.33 73.53
⇠ 19% 70.57 63.70 66.96

Table 7: F1 measure (⇥100) achieved by entailment classifier
on the held out phrase pairs from the sentences in SICK test.

In the SemEval 2014 RTE challenge, this system
performed in the top 5 out of the more than 20 par-
ticipating systems (Marelli et al., 2014).

Given a text/hypothesis (T/H) pair, Nutcracker
(NC) uses the Boxer parser (Bos, 2008) to produce
a formal semantic representation of both T and H,
which it translates into standard first-order logic.
The logical formulae are passed to an off-the-shelf
theorem prover, which searches for a logical en-
tailment, and to a model builder, which attempts to
find a logical contradiction. By default, when the
system fails to find a proof for either entailment or
inconsistency, it predicts the most frequent class
(in our case, NEUTRAL). Therefore, NC relies
heavily on lexical entailment resources in order
to improve the recall of the theorem prover and
model builder.

Baselines The most frequent class baseline is
achieved by labeling every sentence pair as NEU-
TRAL, and results in an accuracy of 56%. A
stronger baseline is obtained by running NC alone,
without any external axioms; in this case, words
are only equivalent if they are lemma-identical.

As an additional baseline, we generate a “basic”

Acc. # Proofs Coverage
MFC 56.4 0 0%
NC alone 74.3 878 17.8%
+ WN 77.5 1,051 21.3%
+ PPDB-XL 77.5 1,091 22.1%
+ PPDB+ 78.0 1,197 24.3%
+ WN, PPDB+ 78.4 1,230 25.0%
+ WN, PPDB-H 78.6 1,232 25.0%

Table 8: Nutcracker’s overall system accuracy and proof cov-
erage when using different sources of axioms. Coverage is
measured as the percent of sentence pairs for which NC’s
theorem prover or model builder is able to find a complete
logical proof of either entailment or contradiction. When NC
fails to find either type of proof, it guesses the most frequent
class, NEUTRAL. NC alone uses no axioms. PPDB+ refers
to the axioms generated automatically using the classifier de-
scribed in this paper. PPDB-H refers axioms generated using
the human labels on which the classifier was trained.

PPDB-XL3 knowledge base (KB), which consists
exclusively of axioms expressing synonym rela-
tionships. I.e. for every pair of phrases hp1, p2i in
PPDB-XL, the PPDB-XL KB contains the equiv-
alence axiom syn(p1, p2). We also generate the
WordNet (WN) KB, which is the default used by
NC. This KB consists of axioms for all synonyms,
antonyms, and hypernyms in WN, which generate
syn, isnota, and isa axioms, respectively.

PPDB+ We convert our classifier’s predictions
into a set of axioms for NC. When our classifier
predicts⌘we generate an syn axiom, when it pre-
dicts A we generate an isa axiom, and when it
predicts ¬ we generate an isnota axiom. # and
⇠ do not generate any axioms. To handle the di-
rectionality of the A relation, we run the classifier

3We generated basic KBs for all six sizes of PPDB, but
XL performed best.
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True PPDB+ WN Text/Hypothesis pair
ENTAIL. ENTAIL. NEUTRAL A bride in a white dress is running/A girl in a white dress is running.
ENTAIL. NEUTRAL ENTAIL. A lemur is biting a person’s finger./An animal is biting a person’s finger.
CONTRA. CONTRA. NEUTRAL Someone is playing a piano./There is no one playing a piano.
CONTRA. NEUTRAL CONTRA. There is no man pouring oil into a pan./A man is pouring oil into a skillet.

Table 9: Examples of T/H pairs for which the system’s prediction differed when using PPDB+ vs. WN.

over every pair in both directions, and we choose
whichever direction and relation receives the high-
est confidence score to be the final prediction. We
refer to this set of automatically-predicted axioms
as PPDB+.

To calibrate our improvements, we also gener-
ate a KB using the human labels collected from
MTurk, which we refer to as PPDB-Human or
PPDB-H.

Results Table 8 reports NC’s overall prediction
accuracy and the number of proofs found when us-
ing each of the described KBs. Figure 8 shows the
performance in terms of the precision and recall
achieved for each of the three entailment classes:
ENTAILMENT, CONTRADICTION, and NEUTRAL.
Table 9 provides some examples of T/H pairs on
which predictions differed using the PPDB+ com-
pared to the WN KB, and Figure 9 shows some
illustrative misclassifications.

Our automatic labels result in a 4% improve-
ment in accuracy over the baseline of using NC
alone (Figure 8), and a 15 point improvement in F1
measure for the entailment class (Table 8). By all
performance measures, PPDB+ also outperforms
WordNet as a source of axioms for NC. More-
over, adding PPDB+ to WordNet gives a 17% rel-
ative increase in the number of proofs found com-
pared to using WordNet alone (Table 8). These
additional proofs lead NC to make a greater num-
ber of correct predictions for the “right reasons”
(i.e. finding a proof/contradiction) rather than by
lucky guessing (recall NC guesses the most fre-
quent class when it cannot find a proof).

For comparison, we run the same experiments
using a KB of oracle human labels in place of
the predicted labels in PPDB+. Using PPDB+,
NC comes very close to the performance achieved
when using PPDB-Human, demonstrating that
the automatically generated PPDB+ provides as
much utility to the end-to-end system as does a
gold-standard resource.

8 Data Release

Upon publication, we are releasing a new PPDB
fully annotated with semantic relations. We are
also releasing the set of 14K manually labeled
phrase pairs occurring in RTE data, and our soft-
ware for extracting features and running the clas-
sifier, so that researchers can apply our model to
their own paraphrase collections. This will consti-
tute the largest lexical entailment resources avail-
able, while also offering new fine-grained anno-
tation necessary for challenging NLU tasks. An
evaluation of the predicted relations appearing in
the entire Paraphrase Database (not just those oc-
curring in RTE data) is given in the supplementary
material.

9 Conclusion

We argue that a significant failing of recent work
on data-driven paraphrasing is the weak definition
of paraphrases as being more-or-less equivalent.
In this paper, we show how a clear concept of se-
mantics can be applied to large-scale paraphrase
resources. In particular, the entailment relations
given by natural logic are a great fit for paraphrase
resources, since natural logic operates on pairs of
natural language expressions (like the entries in
PPDB). By classifying paraphrase entries with en-
tailment relations, we provide them with an inter-
pretable semantics. Our classifier uses extensive
feature sets to scale natural logic to the enormous
number of phrase pairs in PPDB. We rigorously
evaluate our model, demonstrating high accuracy
on an intrinsic task. On an extrinsic RTE task, our
model’s predictions allow an RTE system to find
17% more proofs and achieve a higher overall ac-
curacy than when using WordNet’s manual rela-
tions. Our new release of PPDB, annotated with
semantic entailments, will dramatically improve
PPDB’s utility for NLU tasks.

Acknowledgements This research was sup-
ported by the Allen Institute for Artificial Intel-
ligence (AI2), the Human Language Technology
Center of Excellence (HLTCOE), and by gifts
from the Alfred P. Sloan Foundation, Google, and

1519



# ⌘ A ¬ ⇠
38% 8% 26% 7% 18%

#
1730 9 97 49 169

40% (clear,very) (cover,front) (hand,male) (drive,park) (child,park)
(exhibit,hold) (photo,still) (man,police) (female,man) (crowded,many)
(walk,woman) (woman who,woman with) (mountain,side) (flag,ship) (note,write)

⌘ 15 368 83 9 48

10% (a big,very) (a small,the little) (a gun,a weapon) (another man,one man) (a child,kid in)
(a lot,long) (away,out) (a weapon,gun) (bike,biking) (and hold,and take)

(face a,front of) (block,slab) (legs,leg) (young girl,young woman) (his arms,his hands)

A 82 46 1004 29 97

24% (device,guy) (a call,phone call) (camera,webcam) (a car,a window) (a lady,girl)
(something,talk) (a group,bunch of) (kid,other child) (a female,a man) (field,playing)

(the man,the phone) (another man,man) (kid,the daughter) (arms,his hands) (girl,the lady)

¬ 35 1 29 275 33

7% (a ball,a man) (girl is,she is) (a boy,a teenager) (cat,dog) (dog,owner)
(a boy,little) (a kid,daughter) (morning,night) (ground,water)

(number,woman) (kid,little girl) (type,write) (hat,vest)

⇠ 114 19 108 13 609

17% (leg,soccer) (chef,cook) (cut,saw) (a boat,sail) (ice,rink)
(perform,run) (fight,match) (face,hair) (dress,suit) (snow,snowy)
(sail,water) (race,ride) (the kid,the little) (light,the dark) (study by,study the)

Figure 9: Confusion matrix for classifier (with all features) on SICK test set. True labels and their distribution are shown along
the columns, predicted along the rows.

Facebook. This material is based in part on re-
search sponsored by the NSF under grant IIS-
1249516 and DARPA under agreement number
FA8750-13-2-0017 (the DEFT program). The
U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes.
The views and conclusions contained in this pub-
lication are those of the authors and should not be
interpreted as representing official policies or en-
dorsements of DARPA or the U.S. Government.

The authors would like to thank Peter Clark,
Bill MacCartney, Patrick Pantel and the anony-
mous reviews for their thoughtful suggestions.

References
Ion Androutsopoulos and Prodromos Malakasiotis.

2010. A survey of paraphrasing and textual entail-
ment methods. Journal of Artificial Intelligence Re-
search, 38.

Colin Bannard and Chris Callison-Burch. 2005. Para-
phrasing with bilingual parallel corpora. In Pro-
ceedings of the 43rd Annual Meeting on Association
for Computational Linguistics, pages 597–604.

Regina Barzilay. 2003. Information fusion for multi-
document summarization: paraphrasing and gener-
ation. Ph.D. thesis, Columbia University.

Islam Beltagy, Stephen Roller, Gemma Boleda, Ka-
trin Erk, and Raymond J Mooney. 2014. UTexas:
Natural language semantics using distributional se-
mantics and probabilistic logic. SemEval 2014, page
796.

Jonathan Berant, Ido Dagan, and Jacob Goldberger.
2011. Global learning of typed entailment rules.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human

Language Technologies - Volume 1, HLT ’11, pages
610–619.

Rahul Bhagat and Eduard Hovy. 2013. What is a para-
phrase? Computational Linguistics, 39.

Rahul Bhagat, Patrick Pantel, Eduard H Hovy, and
Marina Rey. 2007. Ledir: An unsupervised algo-
rithm for learning directionality of inference rules.
In EMNLP-CoNLL, pages 161–170. Citeseer.

Johannes Bjerva, Johan Bos, Rob van der Goot, and
Malvina Nissim. 2014. The meaning factory: For-
mal semantics for recognizing textual entailment
and determining semantic similarity. SemEval 2014,
page 642.

Johan Bos. 2008. Wide-coverage semantic analy-
sis with boxer. In Johan Bos and Rodolfo Del-
monte, editors, Semantics in Text Processing. STEP
2008 Conference Proceedings, Research in Compu-
tational Semantics, pages 277–286. College Publi-
cations.

Christopher John Brockett, Stanley Kok, and Dengy-
ong Zhou. 2013. Locating paraphrases through uti-
lization of a multipartite graph, July 9. US Patent
8,484,016.

Chris Callison-Burch. 2007. Paraphrasing and Trans-
lation. Ph.D. thesis, University of Edinburgh, Edin-
burgh, Scotland.

Timothy Chklovski and Patrick Pantel. 2004. VerbO-
cean: Mining the web for fine-grained semantic verb
relations. In EMNLP, volume 2004, pages 33–40.

Peter Clark, William R. Murray, John Thompson, Phil
Harrison, Jerry Hobbs, and Christiane Fellbaum.
2007. On the role of lexical and world knowledge
in rte3. In Proceedings of the ACL-PASCAL Work-
shop on Textual Entailment and Paraphrasing, RTE
’07, pages 54–59.

1520



Peter Clark, Myroslava O Dzikovska, Rodney D
Nielsen, Chris Brew, Claudia Leacock, Danilo Gi-
ampiccolo, Luisa Bentivogli, Ido Dagan, and Hoa T
Dang. 2013. Semeval-2013 task 7: The joint stu-
dent response analysis and 8th recognizing textual
entailment challenge.

Daoud Clarke. 2009. Context-theoretic semantics for
natural language: an overview. In Proceedings of
the Workshop on Geometrical Models of Natural
Language Semantics, pages 112–119.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment
challenge. In Machine Learning Challenges. Eval-
uating Predictive Uncertainty, Visual Object Classi-
fication, and Recognising Tectual Entailment, pages
177–190. Springer.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004.
Unsupervised construction of large paraphrase cor-
pora: Exploiting massively parallel news sources. In
Proceedings of the 20th international conference on
Computational Linguistics, page 350.

Juri Ganitkevitch and Chris Callison-Burch. 2014. The
multilingual paraphrase database. In The 9th edition
of the Language Resources and Evaluation Confer-
ence, Reykjavik, Iceland, May. European Language
Resources Association.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. In Proceedings of NAACL-HLT, pages
758–764, Atlanta, Georgia, June. Association for
Computational Linguistics.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third PASCAL recog-
nizing textual entailment challenge. In Proceedings
of the ACL-PASCAL workshop on textual entailment
and paraphrasing, pages 1–9.

Chikara Hashimoto, Kentaro Torisawa, Kow Kuroda,
Stijn De Saeger, Masaki Murata, and Jun’ichi
Kazama. 2009. Large-scale verb entailment acqui-
sition from the web. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing: Volume 3-Volume 3, pages 1172–
1181. Association for Computational Linguistics.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
the 14th Conference on Computational Linguistics -
Volume 2, COLING ’92, pages 539–545.

Aaron N Kaplan and Lenhart K Schubert. 2001.
Measuring and improving the quality of world
knowledge extracted from wordnet. University of
Rochester, Rochester, NY.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-Geffet. 2010. Directional distribu-
tional similarity for lexical inference. Natural Lan-
guage Engineering, 16(4):359–389.

Alice Lai and Julia Hockenmaier. 2014. Illinois-LH: A
denotational and distributional approach to seman-
tics. SemEval 2014, page 329.

J Richard Landis and Gary G Koch. 1977. The mea-
surement of observer agreement for categorical data.
biometrics, pages 159–174.

Dekang Lin and Patrick Pantel. 2001. DIRT – Dis-
covery of Inference Rules from Text. In Proceed-
ings of the seventh ACM SIGKDD international con-
ference on Knowledge discovery and data mining,
pages 323–328. ACM.

Dekang Lin. 1998. Automatic retrieval and clustering
of similar words. In Proceedings of the 17th inter-
national conference on Computational linguistics-
Volume 2, pages 768–774.

Bill MacCartney and Christopher D. Manning. 2007.
Natural logic for textual inference. In Proceedings
of the ACL-PASCAL Workshop on Textual Entail-
ment and Paraphrasing, RTE ’07, pages 193–200.

Bill MacCartney. 2009. Natural language inference.
Ph.D. thesis, Citeseer.

Nitin Madnani and Bonnie J. Dorr. 2010. Generating
phrasal and sentential paraphrases: A survey of data-
driven methods. Computational Linguistics, 36.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zam-
parelli. 2014. Semeval-2014 task 1: Evaluation of
compositional distributional semantic models on full
sentences through semantic relatedness and textual
entailment. SemEval-2014.

Courtney Napoles, Matthew Gormley, and Benjamin
Van Durme. 2012. Annotated gigaword. In Pro-
ceedings of the Joint Workshop on Automatic Knowl-
edge Base Construction and Web-scale Knowledge
Extraction, pages 95–100.

Maria Pontiki, Haris Papageorgiou, Dimitrios Galanis,
Ion Androutsopoulos, John Pavlopoulos, and Suresh
Manandhar. 2014. Semeval-2014 task 4: Aspect
based sentiment analysis. Proceedings of SemEval,
Dublin, Ireland.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2004.
Learning syntactic patterns for automatic hypernym
discovery. In NIPS, volume 17, pages 1297–1304.

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. 2006.
Semantic taxonomy induction from heterogenous
evidence. In Proceedings of the 21st International
Conference on Computational Linguistics and the
44th Annual Meeting of the Association for Compu-
tational Linguistics, ACL-44, pages 801–808.

Idan Szpektor and Ido Dagan. 2008. Learning en-
tailment rules for unary templates. In Proceedings
of the 22Nd International Conference on Computa-
tional Linguistics - Volume 1, COLING ’08, pages
849–856.

1521



Idan Szpektor, Hristo Tanev, Dr Dagan, Bonaventura
Coppola, et al. 2004. Scaling web-based acquisition
of entailment relations.

Julie Weeds, David Weir, and Diana McCarthy. 2004.
Characterising measures of lexical distributional
similarity. In Proceedings of the 20th International
Conference on Computational Linguistics, COLING
’04.

Wei Xu, Alan Ritter, Chris Callison-Burch, William B.
Dolan, and Yangfeng Ji. 2014. Extracting lexically
divergent paraphrases from Twitter. Transactions of
the Association for Computational Linguistics, 2.

Jiang Zhao, Tian Tian Zhu, and Man Lan. 2014. Ecnu:
One stone two birds: Ensemble of heterogenous
measures for semantic relatedness and textual entail-
ment. SemEval 2014, page 271.

1522



Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 1523–1533,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Parsing as Reduction
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Abstract

We reduce phrase-based parsing to depen-
dency parsing. Our reduction is grounded
on a new intermediate representation,
“head-ordered dependency trees,” shown
to be isomorphic to constituent trees. By
encoding order information in the depen-
dency labels, we show that any off-the-
shelf, trainable dependency parser can be
used to produce constituents. When this
parser is non-projective, we can perform
discontinuous parsing in a very natural
manner. Despite the simplicity of our ap-
proach, experiments show that the result-
ing parsers are on par with strong base-
lines, such as the Berkeley parser for En-
glish and the best non-reranking system
in the SPMRL-2014 shared task. Results
are particularly striking for discontinuous
parsing of German, where we surpass the
current state of the art by a wide margin.

1 Introduction

Constituent parsing is a central problem in
NLP—one at which statistical models trained on
treebanks have excelled (Charniak, 1996; Klein
and Manning, 2003; Petrov and Klein, 2007).
However, most existing parsers are slow, since
they need to deal with a heavy grammar con-
stant. Dependency parsers are generally faster, but
less informative, since they do not produce con-
stituents, which are often required by downstream
applications (Johansson and Nugues, 2008; Wu et
al., 2009; Berg-Kirkpatrick et al., 2011; Elming et
al., 2013). How to get the best of both worlds?

Coarse-to-fine decoding (Charniak and John-
son, 2005) and shift-reduce parsing (Sagae and
Lavie, 2005; Zhu et al., 2013) were a step forward

∗This research was carried out during an internship at
Priberam Labs.

to accelerate constituent parsing, but typical run-
times still lag those of dependency parsers. This
is only made worse if discontinuous constituents
are allowed—such discontinuities are convenient
to represent wh-movement, scrambling, extrapo-
sition, and other linguistic phenomena common in
free word order languages. While non-projective
dependency parsers, which are able to model such
phenomena, have been widely developed in the
last decade (Nivre et al., 2007; McDonald et al.,
2006; Martins et al., 2013), discontinuous con-
stituent parsing is still taking its first steps (Maier
and Søgaard, 2008; Kallmeyer and Maier, 2013).

In this paper, we show that an off-the-shelf,
trainable, dependency parser is enough to build
a highly-competitive constituent parser. This (sur-
prising) result is based on a reduction1 of con-
stituent to dependency parsing, followed by a sim-
ple post-processing procedure to recover unaries.
Unlike other constituent parsers, ours does not
require estimating a grammar, nor binarizing the
treebank. Moreover, when the dependency parser
is non-projective, our method can perform discon-
tinuous constituent parsing in a very natural way.

Key to our approach is the notion of head-
ordered dependency trees (shown in Figure 1):
by endowing dependency trees with this additional
layer of structure, we show that they become iso-
morphic to constituent trees. We encode this struc-
ture as part of the dependency labels, enabling
a dependency-to-constituent conversion. A re-
lated conversion was attempted by Hall and Nivre
(2008) to parse German, but their complex encod-
ing scheme blows up the number of arc labels, af-
fecting the final parser’s quality. By contrast, our
light encoding achieves a 10-fold decrease in the
label alphabet, leading to more accurate parsing.

While simple, our reduction-based parsers are
on par with the Berkeley parser for English (Petrov

1The title of this paper is inspired by the seminal paper of
Pereira and Warren (1983) “Parsing as Deduction.”
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and Klein, 2007), and with the best single system
in the recent SPMRL shared task (Seddah et al.,
2014), for eight morphologically rich languages.
For discontinuous parsing, we surpass the current
state of the art by a wide margin on two German
datasets (TIGER and NEGRA), while achieving fast
parsing speeds. We provide a free distribution of
our parsers along with this paper, as part of the
TurboParser toolkit.2

2 Background

We start by reviewing constituent and dependency
representations, and setting up the notation. Fol-
lowing Kong and Smith (2014), we use c-/d- pre-
fixes for convenience (e.g., we write c-parser for
constituent parser and d-tree for dependency tree).

2.1 Constituent Trees

Constituent-based representations are commonly
seen as derivations according to a context-free
grammar (CFG). Here, we focus on properties
of the c-trees, rather than of the grammars used
to generate them. We consider a broad scenario
that permits c-trees with discontinuities, such as
the ones derived with linear context-free rewrit-
ing systems (LCFRS; Vijay-Shanker et al. (1987)).
We also assume that the c-trees are lexicalized.

Formally, let w1w2 . . . wL be a sentence, where
wi denotes the word in the ith position. A c-
tree is a rooted tree whose leaves are the words
{wi}Li=1, and whose internal nodes (constituents)
are represented as a tuple 〈Z, h, I〉, where Z
is a non-terminal symbol, h ∈ {1, . . . , L} in-
dicates the lexical head, and I ⊆ {1, . . . , L}
is the node’s yield. Each word’s parent is a
pre-terminal unary node of the form 〈pi, i, {i}〉,
where pi denotes the word’s part-of-speech (POS)
tag. The yields and lexical heads are defined so
that for every constituent 〈Z, h, I〉 with children
{〈Xk,mk,Jk〉}Kk=1, (i) we have I =

⋃K
k=1 Jk;

and (ii) there is a unique k such that h = mk. This
kth node (called the head-child node) is commonly
chosen applying a handwritten set of head rules
(Collins, 1999; Yamada and Matsumoto, 2003).

A c-tree is continuous if all nodes 〈Z, h, I〉
have a contiguous yield I, and discontinuous oth-
erwise. Trees derived by a CFG are always con-
tinuous; those derived by a LCFRS may have dis-
continuities, the yield of a node being a union of
spans, possibly with gaps in the middle. Figure 1

2http://www.ark.cs.cmu.edu/TurboParser

shows an example of a continuous and a discontin-
uous c-tree. Discontinuous c-trees have crossing
branches, if the leaves are drawn in left-to-right
surface order. An internal node which is not a pre-
terminal is called a proper node. A node is called
unary if it has exactly one child. A c-tree with-
out unary proper nodes is called unaryless. If all
proper nodes have exactly two children then it is
called a binary c-tree. Continuous binary trees
may be regarded as having been generated by a
CFG in Chomsky normal form.

Prior work. There has been a long string of
work in statistical c-parsing, shifting from sim-
ple models (Charniak, 1996) to more sophisticated
ones using structural annotation (Johnson, 1998;
Klein and Manning, 2003), latent grammars (Mat-
suzaki et al., 2005; Petrov and Klein, 2007), and
lexicalization (Eisner, 1996; Collins, 1999). An
orthogonal line of work uses ensemble or rerank-
ing strategies to further improve accuracy (Char-
niak and Johnson, 2005; Huang, 2008; Björkelund
et al., 2014). Discontinuous c-parsing is con-
sidered a much harder problem, involving mildly
context-sensitive formalisms such as LCFRS or
range concatenation grammars, with treebank-
derived c-parsers exhibiting near-exponential run-
time (Kallmeyer and Maier, 2013, Figure 27).
To speed up decoding, prior work has consid-
ered restrictons, such as bounding the fan-out
(Maier et al., 2012) and requiring well-nestedness
(Kuhlmann and Nivre, 2006; Gómez-Rodrı́guez et
al., 2010). Other approaches eliminate the dis-
continuities via tree transformations (Boyd, 2007;
Kübler et al., 2008), sometimes as a pruning step
in a coarse-to-fine parsing approach (van Cranen-
burgh and Bod, 2013). However, reported run-
times are still superior to 10 seconds per sentence,
which is not practical. Recently, Versley (2014a)
proposed an easy-first approach that leads to con-
siderable speed-ups, but is less accurate. In this
paper, we design fast discontinuous c-parsers that
outperform all the ones above by a wide margin,
with similar runtimes as Versley (2014a).

2.2 Dependency Trees

In this paper, we use d-parsers as a black box to
parse constituents. Given a sentence w1 . . . wL,
a d-tree is a directed tree spanning all the words
in the sentence.3 Each arc in this tree is a tuple

3We assume throughout that dependency trees have a sin-
gle root among {w1, . . . , wL}. Therefore, there is no need to
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Figure 1: Top: a continuous (left) and a discontinuous (right) c-tree, taken from English PTB §22 and German NEGRA,
respectively. Head-child nodes are in bold. Bottom: corresponding head-ordered d-trees. The indices #1, #2, etc. denote the
order of attachment events for each head. Note that the English unary nodes ADVP and ADJP are dropped in the conversion.
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Figure 2: Three different c-structures for the VP “really needs
caution.” All are consistent with the d-structure at the top left.

〈h,m, `〉, expressing a typed dependency relation
` between the head word wh and the modifier wm.

A d-tree is projective if for every arc 〈h,m, `〉
there is a directed path from h to all words that lie
between h and m in the surface string (Kahane et
al., 1998). Projective d-trees can be obtained from
continuous c-trees by reading off the lexical heads
and dropping the internal nodes (Gaifman, 1965).
However, this relation is many-to-one: as shown
in Figure 2, several c-trees may project onto the
same d-tree, differing on their flatness and on left
or right-branching decisions. In the next section,
we introduce the concept of head-ordered d-trees
and express one-to-one mappings between these
two representations.

Prior work. There has been a considerable
amount of work developing rich-feature d-parsers.
While projective d-parsers can use dynamic pro-
gramming (Eisner and Satta, 1999; Koo and

consider an extra root symbol, as often done in the literature.

Collins, 2010), non-projective d-parsers typically
rely on approximate decoders, since the underly-
ing problem is NP-hard beyond arc-factored mod-
els (McDonald and Satta, 2007). An alternative
are transition-based d-parsers (Nivre et al., 2006;
Zhang and Nivre, 2011), which achieve observed
linear time. Since d-parsing algorithms do not
have a grammar constant, typical implementations
are significantly faster than c-parsers (Rush and
Petrov, 2012; Martins et al., 2013). The key con-
tribution of this paper is to reduce c-parsing to d-
parsing, allowing to bring these runtimes closer.

3 Head-Ordered Dependency Trees

We next endow d-trees with another layer of struc-
ture, namely order information. In this frame-
work, not all modifiers of a head are “born equal.”
Instead, their attachment to the head occurs as
a sequence of “events,” which reflect the head’s
preference for attaching some modifiers before
others. As we will see, this additional structure
will undo the ambiguity expressed in Figure 2.

3.1 Strictly Ordered Dependency Trees

Let us start with the simpler case where the attach-
ment order is strict. For each head word h with
modifiers Mh = {m1, . . . ,mK}, we endow Mh

with a strict order relation ≺h, so we can or-
ganize all the modifiers of h as a chain, mi1 ≺h
mi2 ≺h . . . ≺h miK . We regard this chain as
reflecting the order by which words are attached
(i.e., if mi ≺h mj this means that “mi is attached
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Figure 3: Transformation of a strictly-ordered d-tree into a
binary c-tree. Each node is split into a linked list forming a
spine, to which modifiers are attached in order.

Figure 4: Two discontinuous constructions caused by a non-
nested order (top) and a non-projective d-tree (bottom). In
both cases node A has a non-contiguous yield.

to h before mj”). We represent this graphically
by decorating d-arcs with indices (#1,#2, . . .) to
denote the order of events, as we do in Figure 1.

A d-tree endowed with a strict order for each
head is called a strictly ordered d-tree. We es-
tablish below a correspondence between strictly
ordered d-trees and binary c-trees. Before doing
so, we need a few more definitions about c-trees.
For each word position h ∈ {1, . . . , L}, we define
ψ(h) as the node higher in the c-tree whose lexi-
cal head is h. We call the path from ψ(h) down to
the pre-terminal ph the spine of h. We may regard
a c-tree as a set of L spines, one per word, which
attach to each other to form a tree (Carreras et al.,
2008). We then have the following

Proposition 1. Binary c-trees and strictly-ordered
d-trees are isomorphic, i.e., there is a one-to-one
correspondence between the two sets, where the
number of symbols is preserved.

Proof. We use the construction in Figure 3. A for-
mal proof is given as supplementary material.

3.2 Weakly Ordered Dependency Trees
Next, we relax the strict order assumption, restrict-
ing the modifier sets Mh = {m1, . . . ,mK} to be
only weakly ordered. This means that we can par-
tition the K modifiers into J equivalence classes,
Mh =

⋃J
j=1 M̄

j
h, and define a strict order ≺h on

the quotient set: M̄1
h ≺h . . . ≺h M̄J

h . Intuitively,
there is still a sequence of events (1 to J), but now
at each event j it may happen that multiple mod-
ifiers (the ones in the equivalence set M̄ j

h) are si-

Algorithm 1 Conversion from c-tree to d-tree

Input: c-tree C.
Output: head-ordered d-tree D.
1: Nodes := GETPOSTORDERTRAVERSAL(C).
2: Set j(h) := 1 for every h = 1, . . . , L.
3: for v := 〈Z, h, I〉 ∈ Nodes do
4: for every u := 〈X,m,J 〉 which is a child of v do
5: if m 6= h then
6: Add toD an arc 〈h,m,Z〉, and put it in M̄ j(h)

h .
7: end if
8: end for
9: Set j(h) := j(h) + 1.

10: end for

multaneously attached to h. A weakly ordered
d-tree is a d-tree endowed with a weak order for
each head and such that any pairm,m′ in the same
equivalence class (written m ≡h m′) receive the
same dependency label `.

We now show that Proposition 1 can be gener-
alized to weakly ordered d-trees.

Proposition 2. Unaryless c-trees and weakly-
ordered d-trees are isomorphic.

Proof. This is a simple extension of Proposition 1.
The construction is the same as in Figure 3, but
now we can collapse some of the nodes in the
linked list, originating multiple modifiers attach-
ing to the same position of the spine—this is only
possible for sibling arcs with the same index and
arc label. Note, however, that if we start with a
c-tree with unary nodes and apply the inverse pro-
cedure to obtain a d-tree, the unary nodes will be
lost, since they do not involve attachment of mod-
ifiers. In a chain of unary nodes, only the last node
is recovered in the inverse transformation.

We emphasize that Propositions 1–2 hold with-
out blowing up the number of symbols. That is,
the dependency label alphabet is exactly the same
as the set of phrasal symbols in the constituent
representations. Algorithms 1–2 convert back and
forth between the two formalisms, performing the
construction of Figure 3. Both algorithms run in
linear time with respect to the size of the sentence.

3.3 Continuous and Projective Trees

What about the more restricted class of projective
d-trees? Can we find an equivalence relation with
continuous c-trees? In this section, we give a pre-
cise answer to this question. It turns out that we
need an additional property, illustrated in Figure 4.

We say that ≺h has the nesting property iff
closer words in the same direction are always at-
tached first, i.e., iff h < mi < mj or h > mi >
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Algorithm 2 Conversion from d-tree to c-tree

Input: head-ordered d-tree D.
Output: c-tree C.
1: Nodes := GETPOSTORDERTRAVERSAL(D).
2: for h ∈ Nodes do
3: Create v := 〈ph, h, {h}〉 and set ψ(h) := v.
4: Sort Mh(D), yielding M̄1

h ≺h M̄
2
h ≺h . . . ≺h M̄

J
h .

5: for j = 1, . . . , J do
6: Let Z be the label in {〈h,m,Z〉 | m ∈ M̄ j

h}.
7: Obtain c-nodes ψ(h) = 〈X,h, I〉 and ψ(m) =

〈Ym,m,Jm〉 for all m ∈ M̄ j
h.

8: Add c-node v := 〈Z, h, I ∪⋃
m∈M̄

j
h
Jm〉 to C.

9: Set ψ(h) and {ψ(m) |m ∈ M̄ j
h} as children of v.

10: Set ψ(h) := v.
11: end for
12: end for

mj implies that either mi ≡h mj or mi ≺h mj .
A weakly-ordered d-tree which is projective and
whose orders ≺h have the nesting property for ev-
ery h is called a nested-weakly ordered projec-
tive d-tree. We then have the following result.
Proposition 3. Continuous unaryless c-trees and
nested-weakly ordered projective d-trees are iso-
morphic.

Proof. See the supplementary material.

Together, Propositions 1–3 have as corollary
that nested-strictly ordered projective d-trees are
in a one-to-one correspondence with binary con-
tinuous c-trees. The intuition is simple: if ≺h has
the nesting property, then, at each point in time, all
one needs to decide about the next event is whether
to attach the closest available modifier on the left
or on the right. This corresponds to choosing
between left-branching or right-branching in a c-
tree. While this is potentially interesting for most
continuous c-parsers, which work with binarized
c-trees when running the CKY algorithm, our c-
parsers (to be described in §4) do not require any
binarization since they work with weakly-ordered
d-trees, using Proposition 2.

4 Reduction-Based Constituent Parsers

We now invoke the equivalence results established
in §3 to build c-parsers when only a trainable d-
parser is available. Given a c-treebank provided as
input, our procedure is outlined as follows:

1. Convert the c-treebank to dependencies (Algo-
rithm 1).

2. Train a labeled d-parser on this treebank.

3. For each test sentence, run the labeled d-parser
and convert the predicted d-tree into a c-tree
without unary nodes (Algorithm 2).

4. Do post-processing to recover unaries.

The next subsections describe each of these steps
in detail. Along the way, we illustrate with exper-
iments using the English Penn Treebank (Marcus
et al., 1993), which we lexicalized by applying the
head rules of Collins (1999).4

4.1 Dependency Encoding

The first step is to convert the c-treebank to head-
ordered dependencies, which we do using Algo-
rithm 1. If the original treebank has discontinu-
ous c-trees, we end up with non-projective d-trees
or with violations of the nested property, as estab-
lished in Proposition 3. We handle this gracefully
by training a non-projective d-parser in the sub-
sequent stage (see §4.2). Note also that this con-
version drops the unary nodes (a consequence of
Proposition 2). These nodes will be recovered in
the last stage, as described in §4.4.

Since in this paper we are assuming that only
an off-the-shelf d-parser is available, we need to
convert head-ordered d-trees to plain d-trees. We
do so by encoding the order information in the de-
pendency labels. We tried two different strategies.
The first one, direct encoding, just appends suf-
fixes #1, #2, etc., as in Figure 1. A disadvantage is
that the number of labels grows unbounded with
the treebank size, as we may encounter complex
substructures where the event sequences are long.
The second strategy is a delta-encoding scheme
where, rather than writing the absolute indices in
the dependency label, we write the differences be-
tween consecutive ones.5 We used this strategy
for the continuous treebanks only, whose d-trees
are guaranteed to satisfy the nested property.

For comparison, we also implemented a repli-
cation of the encoding proposed by Hall and Nivre
(2008), which we call H&N-encoding. This strat-
egy concatenates all the c-nodes’ symbols in the
modifier’s spine with the attachment position in
the head’s spine (e.g., in Figure 3, if the modi-
fier m2 has a spine with nodes X1, X2, X3, the
generated d-label would be X1|X2|X3#2; our direct
encoding scheme generates Z2#2 instead). Since
their strategy encodes the entire spines into com-

4We train on §02–21, use §22 for validation, and test on
§23. We predict automatic POS tags with TurboTagger (Mar-
tins et al., 2013), with 10-fold jackknifing on the training set.

5For example, if #1,#3,#4 and #2,#3,#3,#5 are
respectively the sequence of indices from the head to the left
and to the right, we encode these sequences as #1,#2,#1
and #2,#1,#0,#2 (using 3 distinct indices instead of 5).
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plex arc labels, many such labels will be gener-
ated, leading to slower runtimes and poorer gener-
alization, as we will see.

For the training portion of the English PTB,
which has 27 non-terminal symbols, the direct en-
coding strategy yields 75 labels, while delta en-
coding yields 69 labels (2.6 indices per symbol).
By contrast, the H&N-encoding procedure yields
731 labels, more than 10 times as many. We later
show (in Tables 1–2) that delta-encoding leads to a
slightly higher c-parsing accuracy than direct en-
coding, and that both strategies are considerably
more accurate than H&N-encoding.

4.2 Training the Labeled Dependency Parser

The next step is to train a labeled d-parser on the
converted treebank. If we are doing continuous c-
parsing, we train a projective d-parser; otherwise
we train a non-projective one.

In our experiments, we found it advantageous to
perform labeled d-parsing in two stages, as done
by McDonald et al. (2006): first, train an unla-
beled d-parser; then, train a dependency labeler.6

Table 1 compares this approach against a one-
shot strategy, experimenting with various off-the-
shelf d-parsers: MaltParser (Nivre et al., 2007),
MSTParser (McDonald et al., 2005), ZPar (Zhang
and Nivre, 2011), and TurboParser (Martins et
al., 2013), all with the default settings. For Tur-
boParser, we used basic, standard and full models.

Our separate d-labeler receives as input a back-
bone d-structure and predicts a label for each arc.
For each head h, we predict the modifiers’ labels
using a simple sequence model, with features of
the form φ(h,m, `) and φ(h,m,m′, `, `′), where
m and m′ are two consecutive modifiers (possi-
bly on opposite sides of the head) and ` and `′ are
their labels. We use the same arc label features
φ(h,m, `) as TurboParser. For φ(h,m,m′, `, `′),
we use the POS triplet 〈ph, pm, pm′〉, plus unilex-
ical features where each of the three POS is re-
placed by the word form. Both features are con-
joined with the label pair ` and `′. Decoding un-
der this model can be done by running the Viterbi
algorithm independently for each head. The run-
time is almost negligible compared with the time
to parse: it took 2.1 seconds to process PTB §22,

6The reason why a two-stage approach is preferable is
that one-shot d-parsers, for efficiency reasons, use label fea-
tures parsimoniously. However, for our reduction approach,
d-labels are crucial and strongly interdependent, since they
jointly encode the c-structure.

Dependency Parser UAS LAS F1 # toks/s.
MaltParser 90.93 88.95 86.87 5,392
MSTParser 92.17 89.86 87.93 363
ZPar 92.93 91.28 89.50 1,022
TP-Basic 92.13 90.23 87.63 2,585
TP-Standard 93.55 91.58 90.41 1,658
TP-Full 93.70 91.70 90.53 959
TP-Full + Lab., H&N enc. 93.80 87.86 89.39 871
TP-Full + Lab, direct enc. 93.80 91.99 90.89 912
TP-Full + Lab., delta enc. 93.80 92.00 90.94 912

Table 1: Results on English PTB §22 achieved by various d-
parsers and encoding strategies. For dependencies, we report
unlabeled/labeled attachment scores (UAS/LAS), excluding
punctuation. For constituents, we show F1-scores (without
punctuation and root nodes), as provided by EVALB (Black
et al., 1992). We report total parsing speeds in tokens per sec-
ond (including time spent on pruning, decoding, and feature
evaluation), measured on a Intel Xeon processor @2.30GHz.

direct enc. delta enc.

# labels F1 # labels F1

Basque 26 85.04 17 85.17
French 61 79.93 56 80.05
German 66 83.44 59 83.39
Hebrew 62 83.26 43 83.29
Hungarian 24 86.54 15 86.67
Korean 44 79.79 16 79.97
Polish 47 92.39 34 92.64
Swedish 29 77.02 25 77.19

Table 2: Impact of direct and delta encodings on the dev sets
of the SPMRL14 shared task. Reported are the number of
labels and the F1-scores yielded by each encoding technique.

a fraction of about 5% of the total runtime.

4.3 Decoding into Unaryless Constituents

After training the labeled d-parser, we can run it
on the test data. Then, we need to convert the pre-
dicted d-tree into a c-tree without unaries.

To accomplish this step, we first need to recover,
for each head h, the weak order of its modifiers
Mh. We do this by looking at the predicted depen-
dency labels, extracting the event indices j, and
using them to build and sort the equivalent classes
{M̄ j

h}Jj=1. If two modifiers have the same index
j, we force them to have consistent labels (by al-
ways choosing the label of the modifier which is
the closest to the head). For continuous c-parsing,
we also decrease the index j of the modifier closer
to the head as much as necessary to make sure that
the nesting property holds. In PTB §22, these cor-
rections were necessary only for 0.6% of the to-
kens. Having done this, we use Algorithm 2 to
obtain a predicted c-tree without unary nodes.
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4.4 Recovery of Unary Nodes
The last stage is to recover the unary nodes. Given
a unaryless c-tree as input, we predict unaries by
running independent classifiers at each node in the
tree (a simple unstructured task). Each class is
either NULL (in which case no unary node is ap-
pended to the current node) or a concatenation of
unary node labels (e.g., S->ADJP for a node JJ).
We obtained 64 classes by processing the training
sections of the PTB, the fraction of unary nodes
being about 11% of the total number of nodes. To
reduce complexity, for each node symbol we only
consider classes that have been observed with that
symbol in the training data. In PTB §22, this yields
an average of 9.9 candidates per node occurrence.

The classifiers are trained on the original c-
treebank, stripping off unary nodes and trained to
recover those nodes. We used the following fea-
tures (conjoined with the class and with a flag in-
dicating if the node is a pre-terminal):

• The production rules above and beneath the
node (e.g., S->NP VP and NP->DT NN);

• The node’s label, alone and conjoined with the
parent’s label or the left/right sibling’s label;

• The leftmost and rightmost word/lemma/POS
tag/morpho-syntactic tags in the node’s yield;

• If the left/right node is a pre-terminal, the
word/lemma/morpho-syntactic tags beneath.

This is a relatively easy task: when gold unaryless
c-trees are provided as input, we obtain an EVALB
F1-score of 99.43%. This large figure is due to the
small amount of unary nodes, making this mod-
ule have less impact on the final parser than the
d-parser. Being a lightweight unstructured task,
this step took only 0.7 seconds to run on PTB §22,
a tiny fraction (less than 2%) of the total runtime.

Table 1 shows the accuracies obtained with the
d-parser followed by the unary predictor. Since
two-stage TP-Full with delta-encoding is the best
strategy, we use this configuration in the sequel.
To further explore the impact of delta encoding,
we report in Table 2 the scores obtained by direct
and delta encodings on eight other treebanks (see
§5.2 for details on these datasets). With the ex-
ception of German, in all cases the delta encoding
yielded better EVALB F1-scores with fewer labels.

5 Experiments

To evaluate the performance of our reduction-
based parsers, we conduct experiments in a variety

Parser LR LP F1 #Toks/s.
Charniak (2000) 89.5 89.9 89.5 –
Klein and Manning (2003) 85.3 86.5 85.9 143
Petrov and Klein (2007) 90.0 90.3 90.1 169
Carreras et al. (2008) 90.7 91.4 91.1 –
Zhu et al. (2013) 90.3 90.6 90.4 1,290
Stanford Shift-Reduce (2014) 89.1 89.1 89.1 655
Hall et al. (2014) 88.4 88.8 88.6 12
This work 89.9 90.4 90.2 957
Charniak and Johnson (2005)∗ 91.2 91.8 91.5 84
Socher et al. (2013)∗ 89.1 89.7 89.4 70
Zhu et al. (2013)∗ 91.1 91.5 91.3 –

Table 3: Results on the English PTB §23. All systems report-
ing runtimes were run on the same machine. Marked as ∗ are
reranking and semi-supervised c-parsers.

of treebanks, both continuous and discontinuous.

5.1 Results on the English PTB

Table 3 shows the accuracies and speeds achieved
by our system on the English PTB §23, in compar-
ison to state-of-the-art c-parsers. We can see that
our simple reduction-based c-parser surpasses the
three Stanford parsers (Klein and Manning, 2003;
Socher et al., 2013, and Stanford Shift-Reduce),
and is on par with the Berkeley parser (Petrov and
Klein, 2007), while being more than 5 times faster.

The best supervised competitor is the recent
shift-reduce parser of Zhu et al. (2013), which
achieves similar, but slightly better, accuracy and
speed. Our technique has the advantage of being
flexible: since the time for d-parsing is the domi-
nating factor (see §4.4), plugging a faster d-parser
automatically yields a faster c-parser. While
reranking and semi-supervised systems achieve
higher accuracies, this aspect is orthogonal, since
the same techniques can be applied to our parser.

5.2 Results on the SPMRL Datasets

We experimented with datasets for eight lan-
guages, from the SPMRL14 shared task (Seddah
et al., 2014). We used the official training, de-
velopment and test sets with the provided pre-
dicted POS tags. For French and German, we
used the lexicalization rules detailed in Dybro-
Johansen (2004) and Rehbein (2009), respectively.
For Basque, Hungarian and Korean, we always
took the rightmost modifier as head-child node.
For Hebrew and Polish we used the leftmost mod-
ifier instead. For Swedish we induced head rules
from the provided dependency treebank, as de-
scribed in Versley (2014b). These choices were
based on dev-set experiments.

Table 4 shows the results. For all languages ex-
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cept French, our system outperforms the Berke-
ley parser (Petrov and Klein, 2007), with or with-
out prescribed POS tags. Our average F1-scores
are superior to the best non-reranking system par-
ticipating in the shared task (Crabbé and Seddah,
2014) and to the c-parser of Hall et al. (2014),
achieving the best results for 4 out of 8 languages.

5.3 Results on the Discontinuous Treebanks

Finally, we experimented on two widely-used dis-
continuous German treebanks: TIGER (Brants et
al., 2002) and NEGRA (Skut et al., 1997). For
the former, we used two different splits: TIGER-
SPMRL, provided in the SPMRL14 shared task;
and TIGER-H&N, used by Hall and Nivre (2008).
For NEGRA, we used the standard splits. In these
experiments, we skipped the unary recovery stage,
since very few unary nodes exist in the data.7 We
ran TurboTagger to predict POS tags for TIGER-
H&N and NEGRA, while in TIGER-SPMRL we used
the predicted POS tags provided in the shared task.
All treebanks were lexicalized using the head-rule
sets of Rehbein (2009). For comparison to related
work, sentence length cut-offs of 30, 40 and 70
were applied during the evaluation.

Table 5 shows the results. We observe that
our approach outperforms all the competitors con-
siderably, achieving state-of-the-art accuracies for
both datasets. The best competitor, van Cranen-
burgh and Bod (2013), is more than 3 points be-
hind, both in TIGER-H&N and in NEGRA. Our
reduction-based parsers are also much faster: van
Cranenburgh and Bod (2013) report 3 hours to
parse NEGRA with L ≤ 40. Our system parses
all NEGRA sentences (regardless of length) in 27.1
seconds in a single core, which corresponds to a
rate of 618 tokens per second. This approaches the
speed of the easy-first system of Versley (2014a),
who reports runtimes in the range 670–920 tokens
per second, but is much less accurate.

6 Related Work

Conversions between constituents and dependen-
cies have been considered by De Marneffe et al.
(2006) in one direction, and by Collins et al.
(1999) and Xia and Palmer (2001) in the other, to-
ward multi-representational treebanks (Xia et al.,
2008). This prior work aimed at linguistically
sound conversions, involving grammar-specific

7NEGRA has no unaries; for the TIGER-SPMRL and H&N
dev-sets, the fraction of unaries is 1.45% and 1.01%.

TIGER-SPMRL L ≤ 70 all
V14b, gold 76.46 / 41.05 76.11 / 40.94
Ours, gold 80.98 / 43.44 80.62 / 43.32
V14b, pred 73.90 / 37.00 – / –
Ours, pred 77.72 / 38.75 77.32 / 38.64

TIGER-H&N L ≤ 40 all
HN08, gold 79.93 / 37.78 – / –
V14a, gold 74.23 / 37.32 – / –
Ours, gold 85.53 / 51.21 84.22 / 49.63

HN08, pred 75.33 / 32.63 – / –
CB13, pred 78.8– / 40.8– – / –
Ours, pred 82.57 / 45.93 81.12 / 44.48

NEGRA L ≤ 30 L ≤ 40 all
M12, gold 74.5– / – – / – – / –
C12, gold – / – 72.33 / 33.16 71.08 / 32.10

KM13, gold 75.75 / – – / – – / –
CB13, gold – / – 76.8– / 40.5– – / –
Ours, gold 82.56 / 52.13 81.08 / 48.04 80.52 / 46.70
CB13, pred – / – 74.8– / 38.7– – / –
Ours, pred 79.63 / 48.43 77.93 / 44.83 76.95 / 43.50

Table 5: F1 / exact match scores on TIGER and NEGRA test
sets, with gold and predicted POS tags. These scores are com-
puted by the DISCO-DOP evaluator ignoring root nodes and,
for TIGER-H&N and NEGRA, punctuation tokens. The base-
lines are published results by Hall and Nivre 2008 (HN08),
Maier et al. 2012 (M12), van Cranenburgh 2012 (C12),
Kallmeyer and Maier 2013 (KM13), van Cranenburgh and
Bod 2013 (CB13), and Versley 2014a, 2014b (V14a, V14b).

transformation rules to handle the kind of ambigu-
ities expressed in Figure 2. Our work differs in that
we are not concerned about the linguistic plausi-
bility of our conversions, but only with the formal
aspects that underlie the two representations.

The work most related to ours is Hall and Nivre
(2008), who also convert dependencies to con-
stituents to prototype a c-parser for German. Their
encoding strategy is compared to ours in §4.1: they
encode the entire spines into the dependency la-
bels, which become rather complex and numer-
ous. A similar strategy has been used by Vers-
ley (2014a) for discontinuous c-parsing. Both are
largely outperformed by our system, as shown in
§5.3. The crucial difference is that we encode only
the top node’s label and its position in the spine—
besides being a much lighter representation, ours
has an interpretation as a weak ordering, leading to
the isomorphisms expressed in Propositions 1–3.

Joint constituent and dependency parsing have
been tackled by Carreras et al. (2008) and Rush
et al. (2010), but the resulting parsers, while ac-
curate, are more expensive than a single c-parser.
Very recently, Kong et al. (2015) proposed a much
cheaper pipeline in which d-parsing is performed
first, followed by a c-parser constrained to be con-
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Parser Basque French German Hebrew Hungar. Korean Polish Swedish Avg.
Berkeley 70.50 80.38 78.30 86.96 81.62 71.42 79.23 79.19 78.45
Berkeley Tagged 74.74 79.76 78.28 85.42 85.22 78.56 86.75 80.64 81.17
Hall et al. (2014) 83.39 79.70 78.43 87.18 88.25 80.18 90.66 82.00 83.72
Crabbé and Seddah (2014) 85.35 79.68 77.15 86.19 87.51 79.35 91.60 82.72 83.69
This work 85.90 78.75 78.66 88.97 88.16 79.28 91.20 82.80 84.22
Björkelund et al. (2014) 88.24 82.53 81.66 89.80 91.72 83.81 90.50 85.50 86.72

Table 4: F1-scores on eight treebanks of the SPMRL14 shared task, computed with the provided EVALB SPMRL tool, which
takes into account all tokens except root nodes. Berkeley Tagged is a version of Petrov and Klein (2007) using the predicted POS
tags provided by the organizers. Crabbé and Seddah (2014) is the best non-reranking system in the shared task, and Björkelund
et al. (2014) the ensemble and reranking-based system which won the official task. We report their published scores.

sistent with the predicted d-structure. Our work
differs in which we do not need to run a c-parser
in the second stage—instead, the d-parser already
stores constituent information in the arc labels,
and the only necessary post-processing is to re-
cover unary nodes. Another advantage of our
method is that it can be readily used for discon-
tinuous parsing, while their constrained CKY al-
gorithm can only produce continuous parses.

7 Conclusion

We proposed a reduction technique that allows
to implement a c-parser when only a d-parser is
given. The technique is applicable to any d-parser,
regardless of its nature or kind. This reduction was
accomplished by endowing d-trees with a weak or-
der relation, and showing that the resulting class of
head-ordered d-trees is isomorphic to constituent
trees. We showed empirically that the our re-
duction leads to highly-competitive c-parsers for
English and for eight morphologically rich lan-
guages; and that it outperforms the current state
of the art in discontinuous parsing of German.
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Rodrı́guez, and Andreas van Cranenburgh for
valuable feedback and help in preparing data
and running software code. This research has
been partially funded by the Spanish Ministry
of Economy and Competitiveness and FEDER
(project TIN2010-18552-C03-01), Ministry of
Education (FPU Grant Program) and Xunta de
Galicia (projects R2014/029 and R2014/034).
A. M. was supported by the EU/FEDER pro-
gramme, QREN/POR Lisboa (Portugal), under
the Intelligo project (contract 2012/24803), and

by the FCT grants UID/EEA/50008/2013 and
PTDC/EEI-SII/2312/2012.

References
Taylor Berg-Kirkpatrick, Dan Gillick, and Dan Klein.

2011. Jointly learning to extract and compress. In
Proc. of Annual Meeting of the Association for Com-
putational Linguistics.
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Abstract

We present a constituent shift-reduce
parser with a structured perceptron that
finds the optimal parse in a practical run-
time. The key ideas are new feature tem-
plates that facilitate state merging of dy-
namic programming and A* search. Our
system achieves 91.1 F1 on a standard
English experiment, a level which cannot
be reached by other beam-based systems
even with large beam sizes.1

1 Introduction

A parsing system comprises two components: a
scoring model for a tree and a search algorithm.
In shift-reduce parsing, the focus of most previ-
ous studies has been the former, typically by en-
riching feature templates, while the search quality
has often been taken less seriously. For example,
the current state-of-the-art parsers for constituency
(Zhu et al., 2013; Wang and Xue, 2014) and de-
pendency (Bohnet et al., 2013) both employ beam
search with a constant beam size, which may suf-
fer from severe search errors. This is contrary to
ordinary PCFG parsing which, while it often uses
some approximations, has nearly optimal quality
(Petrov and Klein, 2007).

In this paper, we instead investigate the question
of whether we can obtain a practical shift-reduce
parser with state-of-the-art accuracy by focusing
on optimal search quality like PCFG parsing. We
base our system on best-first search for shift-
reduce parsing formulated in Zhao et al. (2013),
but it differs from their approach in two points.
First, we focus on constituent parsing while they
use dependency grammar. Second, and more cru-
cially, they use a locally trained MaxEnt model,
which is simple but not strong, while we explore

1The open source software of our system is available at
https://github.com/mynlp/optsr.

a structured perceptron, the current state-of-the-art
in shift-reduce parsing (Zhu et al., 2013).

As we will see, this model change makes search
quite hard, which motivates us to invent new fea-
ture templates as well as to improve the search
algorithm. In existing parsers, features are com-
monly exploited from the parsing history, such
as the top k elements on the stack. However,
such features are expensive in terms of search ef-
ficiency. Instead of relying on features primarily
from the stack, our features mostly come from the
span of the top few nodes, an idea inspired by the
recent empirical success in CRF parsing (Hall et
al., 2014). We show that these span features also
fit quite well in the shift-reduce system and lead
to state-of-the-art accuracy. We further improve
search with new A* heuristics that make optimal
search for shift-reduce parsers with a structured
perceptron tractable for the first time.

The primary contribution of this paper is to
demonstrate the effectiveness and the practicality
of optimal search for shift-reduce parsing, espe-
cially when combined with appropriate features
and efficient search. In English Penn Treebank ex-
periments, our parser achieves an F1 score of 91.1
on test set at a speed of 13.6 sentences per second.
This score is in excess of that of a beam-based sys-
tem with larger beam size and same speed.

2 Background and Related Work

2.1 Shift-Reduce Constituent Parsing

We first introduce the shift-reduce algorithm for
constituent structures. For space reasons, our ex-
position is rather informal; See Zhang and Clark
(2009) for details. A shift-reduce parser parses a
sentence through transitions between states, each
of which consists of two data structures of a stack
and a queue. The stack preserves intermediate
parse results, while the queue saves unprocessed
tokens. At each step, a parser selects an action,
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which changes the current state into the new one.
For example, SHIFT pops the front word from the
queue and pushes it onto the stack, while RE-
DUCE(X) combines the top two elements on the
stack into their parent.2 For example, if the top
two elements on the stack are DT and NN, RE-
DUCE(NP) combines these by applying the CFG
rule NP→ DT NN.

Unary Action The actions above are essentially
the same as those in shift-reduce dependency pars-
ing (Nivre, 2008), but a special action for con-
stituent parsing UNARY(X) complicates the sys-
tem and search. For example, if the top element
on the stack is NN, UNARY(NP) changes it to NP
by applying the rule NP→ NN. In particular, this
causes inconsistency in the numbers of actions be-
tween derivations (Zhu et al., 2013), which makes
it hard to apply the existing best first search for de-
pendency grammar to our system. We revisit this
problem in Section 3.1.

Model The model of a shift-reduce parser gives
a score to each derivation, i.e., an action sequence
a = (a1, · · · , a|a|), in which each ai is a shift or
reduce action. Let p = (p1, · · · , p|a|) be the se-
quence of states, where pi is the state after apply-
ing ai to pi−1. p0 is the initial state for input sen-
tence w. Then, the score for a derivation Φ(a) is
calculated as the total score of every action:

Φ(a) =
∑

1≤i≤|a|
φ(ai, pi−1). (1)

There are two well-known models, in which the
crucial difference is in training criteria. The Max-
Ent model is trained locally to select the correct
action at each step. It assigns a probability for each
action ai as

P (ai|pi−1) ∝ exp(θᵀf(ai, pi−1)), (2)

where θ and f(a, p) are weight and feature vec-
tors, respectively. Note that the probability of an
action sequence a under this model is the product
of local probabilities, though we can cast the total
score in summation form (1) by using the log of
(2) as a local score φ(ai, pi−1).

The structured perceptron is instead trained
globally to select the correct action sequence given
an input sentence. It does not use probability and

2Many existing constituent parsers use two kinds of re-
duce actions for selecting the direction of its head child while
we do not distinguish these two. In our English experiments,
we found no ambiguity for head selection in our binarized
grammar (See Section 4).

the local score is just φ(ai, pi−1) = θᵀf(ai, pi−1).
In practice, this global model is much stronger
than the local MaxEnt model. However, train-
ing this model without any approximation is hard,
and the common practice is to rely on well-known
heuristics such as an early update with beam
search (Collins and Roark, 2004). We are not
aware of any previous study that succeeded in
training a structured perceptron for parsing with-
out approximation. We will show how this be-
comes possible in Section 3.

2.2 Previous Best-First Shift-Reduce Parsing

The basic idea behind best-first search (BFS) for
shift-reduce parsing is assuming each parser state
as a node on a graph and then searching for the
minimal cost path from a start state (node) to the
final state. This is the idea of Sagae and Lavie
(2006), and it was later refined by Zhao et al.
(2013). BFS gives a priority to each state, and a
state with the highest priority (lowest cost) is al-
ways processed first. BFS guarantees that the first
found goal is the best (optimality) if the superior-
ity condition is satisfied: a state never has a lower
cost than the costs of its previous states.

Though the found parse is guaranteed to be op-
timal, in practice, current BFS-based systems are
not stronger than other systems with approximate
search (Zhu et al., 2013; Wang and Xue, 2014)
since all existing systems are based on the MaxEnt
model. With this model, the speriority can easily
be accomplished by using the negative log of (2),
which is always positive and becomes smaller with
higher probability. We focus instead on the struc-
tured perceptron, but achieving superiority with
this model is not trivial. We resolve this problem
in Section 3.1.

In addition to the mathematical convenience,
the MaxEnt model itself helps search. Sagae and
Lavie ascribe the empirical success of their BFS to
the sparseness of the distribution over subsequent
actions in the MaxEnt model. In other words,
BFS is very efficient when only a few actions have
dominant probabilities in each step, and the Max-
Ent model facilitates this with its exponential oper-
ation (2). Unfortunately, this is not the case in our
global structured perceptron because the score of
each action is just the sum of the feature weights.
Resolving this search difficulty is the central prob-
lem of this paper; we illustrate this problem in Sec-
tion 4 and resolve it in Section 5.
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2.3 Hypergraph Search of Zhao et al. (2013)
The worst time complexity of BFS in Sagae and
Lavie (2006) is exponential. For dependency pars-
ing, Zhao et al. (2013) reduce it to polynomial by
converting the search graph into a hypergraph by
using the state merging technique of Huang and
Sagae (2010). This hypergraph search is the basis
of our parser, so we will briefly review it here.

The algorithm is closely related to agenda-
based best-first parsing algorithms for PCFGs
(Klein and Manning, 2001; Pauls and Klein,
2009). As in those algorithms, it maintains two
data structures: a chart C that preserves processed
states as well as a priority queue (agenda) Q. The
difference is in the basic items processed in C and
Q. In PCFG parsing, they are spans. Each span
abstracts many derivations on that span and the
chart maps a span to the best (lowest cost) deriva-
tion found so far. In shift-reduce parsing, the basic
items are not spans but states, i.e., partial represen-
tations of the stack.3 We denote p = 〈i, j, sd...s0〉
where si is the i-th top subtree on the stack and s0
spans i to j. We extract features from sd...s0. Note
that d is constant and a state usually does not con-
tain full information about a derivation. In fact, it
only keeps atomic features, the minimal informa-
tion on the stack necessary to recover the full fea-
tures and packs many derivations. The chart maps
a state to the current best derivation. For example,
if we extract features only from the root symbol of
s0, each state looks the same as a span of PCFGs.

Differently from the original shift-reduce algo-
rithm, during this search, reduce actions are de-
fined between two states p and q. The basic oper-
ation of the algorithm is to pop the best (top) state
p from the queue, push it into the chart, and then
enqueue every state that can be obtained by a re-
duce action between p and other states in the chart
or a shift action from p. The left states L(p) and
right statesR(p) are important concepts. L(p) is a
set of states in the chart, with which p can reduce
from the right side. Formally,

L(〈i, j, sd...s0〉) =
{〈h, i, s′d...s′0〉|∀k ∈ [1, d], fk(s′k−1) = fk(sk)},

where fk(·) returns atomic features on the k-th top
node. See Figure 4 for how they look like in con-
stituent parsing. R(p) is defined similarly; p can

3Although Zhao et al. (2013) explained that the items in
Q are derivations (not states), we can implement Q as a set
of states by keeping backpointers in a starndard way.

reduce q ∈ R(p) from the left side. When p is
popped, it searches for every L(p) andR(p) in the
chart and tries to expand the current derivation.

The priority for each state is a pair (c, v). c is
the prefix cost that is the total cost to reach that
state, while v is the inside cost, a cost to build the
top node s0. The top state in the queue has the
lowest prefix cost, or the lowest inside cost if the
two prefix costs are the same.

3 Best-First Shift-Reduce Constituent
Parsing with Structured Perceptron

This section describes our basic parsing system,
i.e., shift-reduce constituent parsing with BFS and
the structured perceptron. We have to solve two
problems. The first is how to achieve BFS with
the structured perceptron, and the second is how
to apply that BFS to constituent parsing. Interest-
ingly, the solution to the first problem makes the
second problem relatively trivial.

3.1 Superiority of Structured Perceptron
We must design each priority of a state to sat-
isfy the superiority condition. φ(ai, pi−1) =
θᵀf(ai, pi−1) is the usual local score employed in
structured perceptrons (Huang and Sagae, 2010)
but we cannot use it as a local cost for two rea-
sons. First, in our system, the best parse should
have the lowest cost; it is opposite in the ordinary
setting (Collins, 2002). We can resolve this con-
flict by changing the direction of structured per-
ceptron training so that the best parse has the low-
est score.4 Second, each φ(ai, pi−1) can take a
negative value but the cost should always be pos-
itive. This is in contrast to the MaxEnt model in
which the negative log probability is always pos-
itive. Our strategy is to add a constant offset δ to
every local cost. If δ is large enough so that ev-
ery score is positive, the superiority condition is
satisfied.5

Unary Merging Though this technique solves
the problem with the structured perceptron for a
simpler shift-reduce system, say for dependency
grammar, the existence of unary actions, as men-
tioned in Section 2.1, requires additional effort in
order to apply it to constituent parsing. In particu-
lar, constituent parsing takes different numbers of

4This is easily accomplished by inverting all signs of the
update equations.

5To find this value, we train our system using beam search
with several beam sizes, choosing the maximum value of the
action score during training.
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SH

state p:
〈 , j, sd...s0〉 : (c, )

〈j, j + 1, sd−1...s0|tj(wj)〉 : (c+ csh(p), csh(p))
j < n

SHU(X)

state p:
〈 , j, sd...s0〉 : (c, )

〈j, j + 1, sd−1...s0|X(tj(wj))〉 : (c+ cshu(X)(p), cshu(X)(p))
j < n

RE(X)

state q:
〈k, i, s′d...s′0〉 : (c′, v′)

state p:
〈i, j, sd...s0〉 : (c, v)

〈k, j, s′d...s′1|X(s′0, s0)〉 : (c′ + v + cre(X)(p), v′ + v + cre(X)(p))
q ∈ L(p)

REU(Y, X)

state q:
〈k, i, s′d...s′0〉 : (c′, v′)

state p:
〈i, j, sd...s0〉 : (c, v)

〈k, j, s′d...s′1|Y(X(s′0, s0))〉 : (c′ + v + creu(Y, X)(p), v′ + v + creu(Y, X)(p))
q ∈ L(p)

Figure 1: The deductive system of our best-first shift-reduce constituent parsing explaining how the
prefix cost and inside cost are calculated. FIN is omitted. | on the stack means an append operation and
a(b) means a subtree a → b. tj is the POS tag of j-th token while wj is the surface form. ca(p) is the
cost for an action a of which features are extracted from p. Each ca(p) implicitly includes an offset δ.

actions for each derivation, which means that the
scores of two final states may contain different off-
set values. The existing modification to alleviate
this inconsistency (Zhu et al., 2013) cannot be ap-
plied here because it is designed for beam search.

We instead develop a new transition system, in
which the number of actions to reach the final state
is always 2n (n is the length of sentence). The
basic idea is merging a unary action into each shift
or reduce action. Our system uses five actions:
• SH: original shift action;

• SHU(X): shift a node, then immediately ap-
ply a unary rule to that node;

• RE(X): original reduce action;

• REU(Y, X): do reduce to X first, then imme-
diately apply an unary rule Y→ X to it;

• FIN: finish the process.

Though the system cannot perform consecutive
unary actions, in practice it can generate any unary
chains as long as those in the training corpus by
collapsing a chain into one rule. We preprocess
the corpus in this way along with binarization (See
Section 4).

Note that this system is quite similar to the tran-
sition system for dependency parsing. The only
changes are that we have several varieties of shift
and reduce actions. This modification also makes
it easy to apply an algorithm developed for de-
pendency parsing to constituent parsing, such as
dynamic programming with beam search (Huang
and Sagae, 2010), which has not been applied into
constituent parsing until quite recently (Mi and
Huang, 2015) (See Section 7).

Algorithm 1 BFS for Constituent Parsing; Only
differences from Zhao et al. (2013)

1: procedure SHIFT(x,Q)
2: TRYADD(sh(x), Q)
3: for y ∈ shu(x) do
4: TRYADD(y,Q)
5: procedure REDUCE(A,B,Q)
6: for (x, y) ∈ A×B do
7: for z ∈ re(x, y) ∪ reu(x, y) do
8: TRYADD(z,Q)

3.2 BFS with Dynamic Programming

Now applying BFS of Zhao et al. (2013) for de-
pendency parsing into constituent parsing is not
hard. Figure 1 shows the deductive system of dy-
namic programming, which is much similar to that
in dependency parsing. One important change is
that we include a cost for a shift (SH or SHU) ac-
tion in the prefix cost in a shift step, not a reduce
step as in Zhao et al. (2013), since it is unknown
whether the top node s0 of a state p is instantiated
with SH or SHU. This modification keeps the cor-
rectness of the algorithm and has been employed
in another system (Kuhlmann et al., 2011).

The algorithm is also slightly changed. We
show only the difference from Zhao et al. (2013)
(Algorithm 1) in Algorithm 1. shu(x) is a func-
tion which returns the set of states that can be ar-
rived at by possible SHU rules applied to the state
x. re(x, y) and reu(x, y) are similar, and they re-
turn the set of states arrived at through one of RE

or REU actions. As a speed up, we can apply a lazy
expansion technique (we do so in our experiment).
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Model F1 Speed (Sent./s.)
SP (reduced features) 88.9 0.8
ME (reduced features) 85.1 4.8
ME (full features) 86.3 2.5

Table 1: Results of BFS systems with dynamic
programming for the Penn Treebank development
set with different models and features. SP = the
structured perceptron; ME = the MaxEnt.

Another difference is in training. The previ-
ous best-first shift-reduce parsers are all trained
in the same way as a parser with greedy search
since the model is local MaxEnt. In our case, we
can use structured perceptron training with exact
search (Collins, 2002); that is, at each iteration for
each sentence, we find the current argmin deriva-
tion with BFS, then update the parameters if it dif-
fers from the gold derivation. Note that at the be-
ginning of training, BFS is inefficient due to the
initial flat parameters. We use a heuristic to speed
up this process: For a few iterations (five, in our
case), we train the model with beam search and an
early update (Collins and Roark, 2004). We find
that this approximation does not affect the perfor-
mance, while it greatly reduces the training time.

4 Evaluation of Best-First Shift-Reduce
Constituent Parsing

This section evaluates the empirical performance
of our best-first constituent parser that we built in
the previous section. As mentioned in Section 2.2,
the previous empirical success of best-first shift-
reduce parsers might be due to the sparsity prop-
erty of the MaxEnt model, which may not hold
true in the structured perceptron. We investigate
the validity of this assumption by comparing two
systems, a locally trained MaxEnt model and a
globally trained structured perceptron.

Setting We follow the standard practice and
train each model on section 2-21 of the WSJ Penn
Treebank (Marcus et al., 1993), which is binarized
using the algorithm in Zhang and Clark (2009)
with the head rule of Collins (1999). We report
the F1 scores for the development set of section
22. The Stanford POS tagger is used for part-of-
speech tagging.6 We used the EVALB program
to evaluate parsing performance.7 Every exper-
iment reported here was performed on hardware

6http://nlp.stanford.edu/software/tagger.shtml
7http://nlp.cs.nyu.edu/evalb
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Figure 2: Comparison of the average number of
the processed states of the structured perceptron
with those of the MaxEnt model.

equipped with an Intel Corei5 2.5GHz processor
and 16GB of RAM.

Feature We borrow the feature templates from
Sagae and Lavie (2006). However, we found the
full feature templates make training and decoding
of the structured perceptron much slower, and in-
stead developed simplified templates by removing
some, e.g., that access to the child information on
the second top node on the stack.8

Result Table 1 summarizes the results that indi-
cate our assumption is true. The structured per-
ceptron has the best score even though we restrict
the features. However, its parsing speed is much
slower than that of the local MaxEnt model. To see
the difference in search behaviors between the two
models, Figure 2 plots the number of processed
(popped) states during search.

Discussion This result may seem somewhat de-
pressing. We have devised a new method that en-
ables optimal search for the structured perceptron,
but it cannot handle even modestly large feature
templates. As we will see below, the time com-
plexity of the system depends on the used fea-
tures. We have tried features from Sagae and Lavie
(2006), but their features are no longer state-of-
the-art. For example, Zhu et al. (2013) report
higher scores by using beam search with much
richer feature templates, though, as we have exam-
ined, it seems implausible to apply such features
to our system. In the following, we find a practi-
cal solution for improving both parse accuracy and
search efficiency in our system. We will see that
our new features not only make BFS tractable, but
also lead to comparable or even superior accuracy
relative to the current mainstream features. When

8The other features that we removed are features 9–14 de-
fined in Figure 1 of Sagae and Lavie (2006).
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2

Figure 3: A snippet of the hypergraph for the sys-
tem that simulates a simple PCFG. p is the popped
state, which is being expanded with a state of its
left states L(p) using a reduce rule.

it is combined with A* search, the speed reaches a
practical level.

5 Improving Optimal Search Efficiency

5.1 Span Features
The worst time complexity of hypergraph search
for shift-reduce parsing can be analyzed with the
deduction rule of the reduce step. Figure 3 shows
an example. In this case, the time complexity
is O(n3 · |G| · |N |) since there are three indices
(i, j, k) and four nonterminals (A,B,C,D), on
which three comprise a rule. The extra factor |N |
compared with ordinary CKY parsing comes from
the restriction that we extract features only from
one state (Huang and Sagae, 2010).

Complexity increases when we add new atomic
features to each state. For example, if we lexical-
ize this model by adding features that depend on
the head indices of s0 and/or s1, it increases to
O(n6 · |G| · |N |) since we have to maintain three
head indices of A, B, and C. This is why Sagae and
Lavie’s features are too expensive for our system;
they rely on head indices of s0, s1, s2, s3, the left
and right children of s0 and s1, and so on, lead-
ing prohibitively huge complexity. Historically
speaking, the success of shift-reduce approach in
constituent parsing has been led by its success in
dependency parsing (Nivre, 2008), in which the
head is the primary element, and we suspect this is
the reason why the current constituent shift-reduce
parsers mainly rely on deeper stack elements and
their heads.

The features we propose here are extracted from
fundamentally different parts from these recent
trends. Figure 4 explains how we extract atomic
features from a state and Table 2 shows the full list
of feature templates. Our system is unlexicalized;

3

...  a  subsidiary  of  ITT  Corp    .
4 5 6 7 8 9

NNP   .NNP
NPIN

PP

10

NP
DT NN

Figure 4: Atomic features of our system largely
come from the span of a constituency. For each
span (s0 and s1), we extract the surface form and
POS tag of the preceding word (bw, bt), the first
word (fw, ft), the last word (lw, lt), and the subse-
quent word (aw, at). shape is the same as that in
Hall et al. (2014). Bold symbols are additional in-
formation from the system of Figure 3. The time
complexity is O(n4 · |G|3 · |N |).

q0.w ◦ q0.t q1.w ◦ q1.t q2.w ◦ q2.t q3.w ◦ q3.t
s0.c ◦ s0.ft s0.c ◦ s0.fw s0.c ◦ s0.lt s0.c ◦ s0.lw
s0.c ◦ s0.at s0.c ◦ s0.aw s0.c ◦ s0.ft ◦ s0.lt s0.c ◦ s0.ft ◦ s0.lw
s0.c ◦ s0.fw ◦ s0.lt s0.c ◦ s0.fw ◦ s0.lw s0.c ◦ s0.len s0.c ◦ s0.shape
s0.rule s0.shape ◦ s0.rule

s1.c ◦ s1.ft s1.c ◦ s1.fw s1.c ◦ s1.lt s1.c ◦ s1.lw
s1.c ◦ s1.bt s1.c ◦ s1.bw s1.c ◦ s1.ft ◦ s1.lt s1.c ◦ s1.ft ◦ s1.lw
s1.c ◦ s1.fw ◦ s1.lt s1.c ◦ s1.fw ◦ s1.lw s1.c ◦ s1.len s1.c ◦ s1.shape
s1.rule s1.shape ◦ s1.rule

s1.lw ◦ s0.fw s0.ft ◦ s1.lw s1.lt ◦ s0.fw s1.lt ◦ s0.ft
s1.c ◦ s0.fw s0.c ◦ s1.fw s1.c ◦ s0.lw s0.c ◦ s1.lw
s0.fw ◦ q0.w s0.lw ◦ q0.w q0.t ◦ s0.fw q0.t ◦ s0.lw
s0.c ◦ q0.w s0.c ◦ q0.t s1.fw ◦ q0.w s1.lw ◦ q0.w
q0.t ◦ s1.fw q0.t ◦ s1.lw s1.c ◦ q0.w s1.c ◦ q0.t
q0.w ◦ q1.w q0.t ◦ q1.w q0.w ◦ q1.t q0.t ◦ q1.t
s0.c ◦ s1.c ◦ q0.t s0.c ◦ s1.c ◦ q0.w s1.c ◦ q0.t ◦ s0.fw s1.c ◦ q0.t ◦ s0.lw
s0.c ◦ q0.t ◦ s1.fw s0.c ◦ q0.t ◦ s1.fw

Table 2: All feature templates in our span model.
See Figure 4 for a description of each element. qi
is the i-th top token on the queue.

i.e., it does not use any head indices. This feature
design is largely inspired by the recent empirical
success of span features in CRF parsing (Hall et
al., 2014). Their main finding is that the surface in-
formation on a subtree, such as the first or the last
word of a span, has essentially the same amount
of information as its head. For our system, such
span features are much cheaper, so we expect they
would facilitate our dynamic programming with-
out sacrificing accuracy.

We customize their features for fitting in the
shift-reduce framework. Unlike the usual setting
of PCFG parsing, shift-reduce parsers receive a
POS-tagged sentence as input, so we use both the
POS tag and surface form for each word on the
span. One difficult part is using features with an
applied rule. We include this feature by memoriz-
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ing the previously applied rule for each span (sub-
tree). This is a bit costly, because it means we
have to preserve labels of the left and right chil-
dren for each node, which lead to an additional
|G|2 factor of complexity. However, we will see
that this problem can be alleviated by our heuris-
tic cost functions in A* search described below.

5.2 A* Search
We now explain our A* search, another key tech-
nique for speeding up our search. To our knowl-
edge, this is the first work to successfully apply A*
search to shift-reduce parsing.

A* parsing (Klein and Manning, 2003a) mod-
ifies the calculation of priority σ(pi) for state pi.
In BFS, it is basically the prefix cost, the sum of
every local cost (Section 3.1), which we denote as
βpi :

βpi =
∑

1≤j≤i
(φ(aj , pj−1) + δ).

In A* parsing, σ(pi) = βpi + h(pi) where h(pi)
is a heuristic cost. βpi corresponds to the Viterbi
inside cost of PCFG parsing (Klein and Manning,
2003a) while h(pi) is the Viterbi outside cost, an
approximation of the cost for the future best path
(action sequence) from pi.
h(pi) must be a lower bound of the true Viterbi

outside cost. In PCFG parsing, this is often
achieved with a technique called projection. Let
G∗ be a projected, or relaxed, grammar of the orig-
inal G; then, a rule weight in the relaxed gram-
mar wr∗ will become wr∗ = minr∈G:π(r)=r∗ wr,
where π(r) is a projection function which returns
the set of rules that correspond to r in G∗.

In feature-based shift-reduce parsing, a rule
weight corresponds to the sum of feature weights
for an action a, that is, φ(a, pi) = θᵀf(a, pi).
We calculate h(pi) with a relaxed feature function
φ∗(a, pi), which always returns a lower bound:

φ∗(a, pi) = θ∗ᵀf(a, ci) ≤ θᵀf(a, pi) = φ(a, pi).

Note that we only have to modify the weight vec-
tor. If a relaxed weight satisfies θ∗(k) ≤ θ(k) for
all k, that projection is correct.

Our A* parsing is essentially hierarchical A*
parsing (Pauls and Klein, 2009), and we calculate
a heuristic cost h(p) on the fly using another chart
for the relaxed space when a new state p is pushed
into the priority queue. Below we introduce two
different projection methods, which are orthogo-
nal and later combined hierarchically.

a ◦ s1.c ◦ s1.ft θ θGP θLF

SH ◦ VP ◦ NN 10.53 -5.82 -5.82
SH ◦ SBAR ◦ NN 1.98 -5.82 -5.82
SH ◦ NP ◦ NN -5.82 -5.82 -5.82

· · ·
SH ◦ VP ◦ DT 3.25 1.12 -5.82
SH ◦ SBAR ◦ DT 1.12 1.12 -5.82
SH ◦ NP ◦ DT 1.98 1.12 -5.82

· · ·

Table 3: Example of our feature projection. θGP is
a weight vector with the GP, which collapses every
c. θLF is with the LF, which collapses all elements
in Table 4.

s1.c s1.ft s1.fw s1.bt s1.bw
s1.len s1.shape s1.rule s0.rule

Table 4: List of feature elements ignored in the LF.

Grammar Projection (GP) Our first projection
borrows the idea from the filter projection of Klein
and Manning (2003a), in which the grammar sym-
bols (nonterminals) are collapsed into a single la-
bel X. Our projection, however, does not collapse
all the labels into X; instead, we utilize constituent
labels in level 2 from Charniak et al. (2006), in
which labels that tend to be head, such as S or VP
are collapsed into HP and others are collapsed into
MP. θG in Table 3 is an example of how feature
weights are relaxed with this projection. Here we
show each feature as a tuple including action name
(a). Let πGP be a feature projection function: e.g.,

((a ◦ s1.c ◦ s1.ft) = (SH ◦ VP ◦ NN))
7→πGP ((a ◦ s1.c ◦ s1.ft) = (SH ◦ HP ◦ NN)).

Formally, for k-th feature, the weight θGP(k) is
determined by minimizing over the features col-
lapsed by πGP:

θGP(k) = min
1≤k′≤K:πGP(gk′ )=gk

θ(k′),

where gk is the value of the k-th feature.

Less-Feature Projection (LF) The basic idea of
our second projection is to ignore some of the
atomic features in a feature template so that we
can reduce the time complexity for computing the
heuristics. We apply this technique to the feature
elements in Table 4. We can do so by not filling in
the actual value in each feature template: e.g.,

((a ◦ s1.c ◦ s1.ft) = (SH ◦ VP ◦ NN))
7→πLF ((a ◦ s1.c ◦ s1.ft) = (SH ◦ s1.c ◦ s1.ft)).
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Figure 5: Comparison of parsing times between
different A* heuristics.

The elements in Table 4 are selected so that all
bold elements in Figure 4 would be eliminated;
the complexity is O(n3 · |G| · |N |). In practice,
this is still expensive. However, we note that the
effects of these two heuristics are complementary:
The LF reduces complexity to a cubic time bound,
while the GP greatly reduces the size of grammar
|G|; We combine these two ideas below.

Hierarchical Projection (HP) The basic idea of
this combined projection is to use the heuristics
given by the GP to lead search of the LF. This
is similar to the hierarchical A* for PCFGs with
multilevel symbol refinements (Pauls and Klein,
2009). The difference is that their hierarchy is on
the grammar symbols while our projection targets
are features. When a state p is created, its heuris-
tic score h(p) is calculated with the LF, which re-
quires search for the outside cost in the space of
the LF, but its worst time complexity is cubic. The
GP is used to guide this search. For each state pLF

in the space of the LF, the GP calculates the heuris-
tic score. We will see that this combination works
quite well in practice in the next section.

6 Experiment

We build our final system by combining the ideas
in Section 5 and the system in Section 3. We
also build beam-based systems with or without dy-
namic programming (DP) and with the ordinary or
the new span features. All systems are trained with
the structured perceptron. We use the early update
for training beam-based systems.

Effect of A* heuristics Figure 5 shows the ef-
fects of A* heuristics. In terms of search quality,
the LF is better; it prunes 92.5% of states com-
pared to naive BFS, while the GP prunes 75%.
However, the LF takes more time to calculate
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Figure 6: Comparison of parsing times between
A* and beam search (with DP).

Feaure Z&C feature set Span (this work)
DP X X

F1 F1 Sent./s. F1 F1 Sent./s.
b=16 89.1 90.1 34.6 88.6 89.9 31.9
b=32 89.6 89.9 20.0 89.3 90.2 17.0
b=64 89.7 90.2 10.6 89.6 90.2 9.1
A* - - - - 90.7 13.6
BFS - - - - 90.7 1.1

Table 5: Results for the Penn Treebank develop-
ment set. Z&C = feature set of Zhang and Clark
(2009). The speeds of non-DP and DP are the
same, so we omit them from the comparison.

heuristics than the GP. The HP combines the ad-
vantages of both, achieving the best result.

Accuracy and Speed The F1 scores for the de-
velopment set are summarized in Table 5. We can
see that the systems with our new feature (span)
perform surprisingly well, at a competitive level
with the more expensive features of Zhang and
Clark (2009) (Z&C). This is particularly true with
DP; it sometimes outperforms Z&C, probably be-
cause our simple features facilitate state merging
of DP, which expands search space. However, our
main result that the system with optimal search
gets a much higher score (90.7 F1) than beam-
based systems with a larger beam size (90.2 F1)
indicates that ordinary beam-based systems suffer
from severe search errors even with the help of DP.
Though our naive BFS is slow (1.12 sent./s.), A*
search considerably improves parsing speed (13.6
sent./s.), and is faster than the beam-based system
with a beam size of 64 (Figure 6).

Unary Merging We have not mentioned the ef-
fect of our unary merging (Section 3), but the re-
sult indicates it has almost the same effect as the
previously proposed padding method (Zhu et al.,

1541



Shift-reduce (closed) LR LP F1 Sent./s.
Sagae (2005)† 86.0 86.1 86.0 3.7
Sagae (2006)† 88.1 87.8 87.9 2.2
Zhu (2013) (Z&C) 90.2 90.7 90.4 93.4
Span (b=64, DP) 90.2 90.6 90.4 8.4
Span (A*) 90.9 91.2 91.1 13.6
Other (closed)
Berkeley (2007) 90.1 90.3 90.2 6.1
Stanford (2013) (RNN) 90.3 90.7 90.5 3.3
Hall (2014) (CRF) 89.0 89.5 89.3 0.7
External/Reranking
Charniak (2005) 91.2 91.8 91.5 2.1
McClosky (2006) 92.2 92.6 92.4 1.2
Zhu (2013) +semi 91.1 91.5 91.3 47.6

Table 6: The final results for section 23 of the
Penn Treebank. The systems with † are re-
ported by authors running on different hardware.
We divide baseline state-of-the-art systems into
three categories: shift-reduce systems (Sagae and
Lavie, 2005; Sagae and Lavie, 2006; Zhu et
al., 2013), other chart-based systems (Petrov and
Klein, 2007; Socher et al., 2013), and the systems
with external semi supervised features or rerank-
ing (Charniak and Johnson, 2005; McClosky et al.,
2006; Zhu et al., 2013).

2013). The score with the non-DP beam size = 16
and Z&C (89.1 F1) is the same as that reported in
their paper (the features are the same).

Final Experiment Table 6 compares our pars-
ing system with those of previous studies. When
we look at closed settings, where no external re-
source other than the training Penn Treebank is
used, our system outperforms all other systems
including the Berkeley parser (Petrov and Klein,
2007) and the Stanford parser (Socher et al., 2013)
in terms of F1. The parsing systems with exter-
nal features or reranking outperform our system.
However, it should be noted that our system could
also be improved by external features. For exam-
ple, the feature of type-level distributional sim-
ilarity, such as Brown clustering (Brown et al.,
1992), can be incorporated with our system with-
out changing the theoretical runtime.

7 Related Work and Discussion

Though the framework is shift-reduce, we can
notice that our system is strikingly similar to
the CKY-based discriminative parser (Hall et al.,
2014) because our features basically come from
two nodes on the stack and their spans. From this

viewpoint, it is interesting to see that our system
outperforms theirs by a large margin (Figure 6).
Identifying the source of this performance change
is beyond the scope of this paper, but we believe
this is an important question for future parsing
research. For example, it is interesting to see
whether there is any structural advantage for shift-
reduce over CKY by comparing two systems with
exactly the same feature set.

As shown in Section 4, the previous optimal
parser on shift-reduce (Sagae and Lavie, 2006)
was not so strong because of the locality of the
model. Other optimal parsing systems are often
based on relatively simple PCFGs, such as unlex-
icalized grammar (Klein and Manning, 2003b) or
factored lexicalized grammar (Klein and Manning,
2003c) in which A* heuristics from the unlexical-
ized grammar guide search. However, those sys-
tems are not state-of-the-art probably due to the
limited context captured with a simple PCFG. A
recent trend has thus been extending the context
of each rule (Petrov and Klein, 2007; Socher et al.,
2013), but the resulting complex grammars make
exact search intractable. In our system, the main
source of information comes from spans as in CRF
parsing. This is cheap yet strong, and leads to a
fast and accurate parsing system with optimality.

Concurrently with this work, Mi and Huang
(2015) have developed another dynamic program-
ming for constituent shift-reduce parsing by keep-
ing the step size for a sentence to 4n − 2, instead
of 2n, with an un-unary (stay) action. Their final
score is 90.8 F1 on WSJ. Though they only experi-
ment with beam-search, it is possible to build BFS
with their transition system as well.

8 Conclusions

To date, all practical shift-reduce parsers have re-
lied on approximate search, which suffers from
search errors but also allows to utilize unlimited
features. The main result of this paper is to show
another possibility of shift-reduce by proceeding
in an opposite direction: By selecting features and
improving search efficiency, a shift-reduce parser
with provable search optimality is able to find very
high quality parses in a practical runtime.
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Abstract

This paper is concerned with building
CCG-grounded, semantics-oriented deep
dependency structures with a data-driven,
factorization model. Three types of fac-
torization together with different higher-
order features are designed to capture
different syntacto-semantic properties of
functor-argument dependencies. Integrat-
ing heterogeneous factorizations results
in intractability in decoding. We pro-
pose a principled method to obtain opti-
mal graphs based on dual decomposition.
Our parser obtains an unlabeled f-score of
93.23 on the CCGBank data, resulting in
an error reduction of 6.5% over the best
published result. which yields a signifi-
cant improvement over the best published
result in the literature. Our implementa-
tion is available at http://www.icst.
pku.edu.cn/lcwm/grass.

1 Introduction

Combinatory Categorial Grammar (CCG; Steed-
man, 2000) is a linguistically expressive gram-
mar formalism which has a transparent yet el-
egant interface between syntax and semantics.
By assigning each lexical category a dependency
interpretation, we can derive typed dependency
structures from CCG derivations (Clark et al.,
2002), providing a useful approximation to the
underlying meaning representations. To date,
CCG parsers are among the most competitive sys-
tems for generating such deep bi-lexical depen-
dencies that appropriately encode a wide range
of local and non-local syntacto-semantic infor-
mation (Clark and Curran, 2007a; Bender et al.,
2011). Such semantic-oriented dependency struc-
tures have been shown very helpful for NLP ap-

∗Email correspondence.

plications e.g. Question Answering (Reddy et al.,
2014).

Traditionally, CCG graphs are generated as a
by-product by grammar-guided parsers (Clark and
Curran, 2007b; Fowler and Penn, 2010). The main
challenge is that a deep-grammar-guided model
usually can only produce limited coverage and
corresponding parsing algorithms is of relatively
high complexity. Robustness and efficiency, thus,
are two major problems for handling practical
tasks. To increase the applicability of such parsers,
lexical or syntactic pruning has been shown nec-
essary (Clark and Curran, 2004; Matsuzaki et al.,
2007; Sagae et al., 2007; Zhang and Clark, 2011).

In the past decade, the techniques for data-
driven dependency parsing has made a great
progress (McDonald et al., 2005a,b; Nivre et al.,
2004; Torres Martins et al., 2009; Koo et al.,
2010). The major advantage of the data-driven
architecture is complementary to the grammar-
driven one. On one hand, data-driven approaches
make essential uses of machine learning from lin-
guistic annotations and are flexible to produce
analysis for arbitrary sentences. On the other
hand, without hard constraints, parsing algorithms
for spanning specific types of graphs, e.g. projec-
tive (Eisner, 1996) and 1-endpoint-crossing trees
(Pitler et al., 2013), can be of low complexity.

This paper proposes a new data-driven depen-
dency parser that efficiently produces globally op-
timal CCG dependency graphs according to a dis-
criminative, factorization model. The design of
the factorization is motivated by three essential
properties of the CCG dependencies. First, all ar-
guments associated with the same predicate are
highly correlated due to the nature that they ap-
proximates type-logical semantics. Second, all
predicates govern the same argument exhibit the
hybrid syntactic/semantic, i.e. head-complement-
adjunct, relationships. Finally, the CCG depen-
dency graphs are not but look very much like
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trees, which have many good computational prop-
erties. Simultaneously modeling the three prop-
erties yields intrinsically heterogeneous factoriza-
tions over the same graph, and hence results in in-
tractability in decoding. Inspired by (Koo et al.,
2010; Rush et al., 2010), we employ dual decom-
position to perform principled decoding. Though
not always, we can obtain the optimal solution
most of time. The time complexity of our parser
is O(n3) when various 1st- and 2nd-order features
are incorporated.

We conduct experiments on English CCGBank
(Hockenmaier and Steedman, 2007). Though
our parser does not use any grammar informa-
tion, including both lexical categories and syntac-
tic derivations, it produces very accurate CCG de-
pendency graphs with respect to both token and
complete matching. Our parser obtains an unla-
beled f-score of 93.23, resulting in, perhaps sur-
prisingly, an error reduction of up to 6.5% over
the best published performance reported in (Auli
and Lopez, 2011). Our work indicates that high-
quality data-driven parsers can be built for produc-
ing more general dependency graphs, rather than
trees. Nevertheless, empirical evaluation indicates
that explicitly or implicitly using tree-structured
information plays an essential role. The result also
suggests that a wider range of complicated linguis-
tic phenomena beyond surface syntax can be well
modeled even without explicitly using grammars.
Our algorithm is also applicable to other graph-
structured representations, e.g. HPSG predicate-
argument analysis (Miyao et al., 2004).

2 Related Work

Hockenmaier and Steedman (2007) developed lin-
guistic resources, namely CCGBank, from the
Penn Treebank (PTB; Marcus et al., 1993). In
CCGBank, PTB phrase-structure trees have been
transformed into normal-form CCG derivations,
and deep bi-lexical dependency graphs that encode
functor-argument strcutures have been extracted
from these derivations using coindexation infor-
mation. The typed dependency analysis provides
a useful approximation to the underlying meaning
representations, and has been shown very help-
ful for NLP applications e.g. Question Answering
(Reddy et al., 2014).

Traditionally, CCG graphs are generated as a
by-product by deep parsers with a core gram-
mar (Clark et al., 2002; Clark and Curran, 2007b;

Fowler and Penn, 2010). On the other hand, mod-
eling these dependencies within a CCG parser has
been shown very effective to improve the pars-
ing accuracy (Clark and Curran, 2007b; Xu et al.,
2014). Besides CCG, similar deep dependency
structures can be also extracted from parsers under
other deep grammar formalisms, e.g. LFG (King
et al., 2003) and HPSG (Miyao et al., 2004).

In recent years, data-driven dependency pars-
ing has been well studied and widely applied to
many NLP tasks. Research on data-driven ap-
proach to producing dependency graphs that are
not limited to tree or forest structures has also been
initialized. Sagae and Tsujii (2008) introduced
a transition-based parser that is able to handle
projective directed dependency graphs for HPSG-
style predicate-argument analysis. McDonald and
Pereira (2006) presented a graph-based parser that
can generate graphs in which a word may depend
on multiple heads, and evaluated it on the Danish
Treebank. Encouraged by their work, we study
factorization models as well as principled decod-
ing for CCG-grounded, graph-structured represen-
tations.

Dual decomposition, and more generally La-
grangian relaxation, is a classical method for solv-
ing combinatorial optimization problems. It has
been successfully applied to several NLP tasks,
including parsing (Koo et al., 2010; Rush et al.,
2010) and machine translation (Rush and Collins,
2011). To provide principled decoding for our fac-
torization parser, we employ the dual decomposi-
tion technique. Our work directly follows (Koo
et al., 2010). The two basic factorizations are
similar to the model introduced in (Martins and
Almeida, 2014). Lluı́s et al. (2013) introduced
a dual decomposition based joint model for joint
syntactic and semantic parsing. They are con-
cerned with shallow semantic representation, i.e.
Semantic Role Labeling, whose graphs are sparse.
Different from their concern on integrating syntac-
tic parsing and semantic role labeling under 1st-
order factorization, we are interested in designing
higher-order factorization models for more dense
and general linguistic graphs.

3 Graph Factorization

3.1 Background Notations

Consider a sentence s = 〈w,p〉 with words w =
w1w2 · · ·wn and POS-tags p = p1p2 · · · pn. First
we add one more virtual word w0 = #Wroot#
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changes would exempt ... executives from
(S\NP)/(S\NP) ((S\NP)/PP)NP

arg1
arg2

arg1

arg3
arg2

Figure 1: Examples to illustrate the predicate-
centric view.

with POS-tag p0 = #Proot# which is convention-
ally considered as the root node of trees or graphs
on the sentence. Then we denote the index set
of all possible dependencies as I = {(i, j)|i ∈
{0, · · · , n}, j ∈ {1, · · · , n}, i 6= j}. A depen-
dency parse then can be represented as a vector

y = {y(i, j) : (i, j) ∈ I},

where y(i, j) = 1 if a dependency with predicate i
and argument j is in the graph, 0 otherwise. Note
that y is not a matrix but a long vector though we
use two indexes to index it. In this paper, we only
consider the unlabeled parsing task. Nevertheless,
it is quite straightforward to extend our models to
labeled parsing. Let Y denote the set of all possi-
ble y. Given a function f : Y → R that assigns
scores to parse graphs, the optimal parse is

y∗ = arg max
y∈Y

f(y).

Following recent advances in discriminative de-
pendency parsing, we build disambiguation mod-
els based on global linear models, as in (McDon-
ald et al., 2005a). In this framework, we score a
dependency graph using a linear model:

fθ(y) = θ>Φ(s,y),

where Φ(s,y) produces a d-dimensional vector
representation of the event that a CCG graph y is
assigned to sentence s. In order to perform the
decoding efficiently, we assume that the depen-
dency graphs can be factored into smaller pieces.
The main goal of this paper is to design ap-
propriate factorization models, namely different
types of fθ’s, to reflect essential properties of the
semantics-oriented CCG dependency graphs.

3.2 Predicate-Centric Factorization

The very fundamental view of the CCG de-
pendency graphs is based on their lexicalized,
predicate-centric nature. Every word is assigned

a lexical category, which directly encodes its sub-
categorization information. Due to the type-
transparency nature of the formalism, this lexi-
cal category provides sufficient information for
not only syntactic derivation but also semantic
composition. It is important to capture functor-
argument relations by putting all arguments of
one particular predicate together. Figure 1 gives
an example. The predicate “exempt” is of type
“((S\NP)/PP)/NP,” indicating that it takes three
semantic dependents. This part of information is
very similar to Semantic Role Labeling (SRL),
whose goal is to find semantic roles for ver-
bal predicates as well as their normalization.
However, functor-argument analysis grounded in
CCG is approximation of underlying logic forms
and thus provides bi-lexical relations for almost all
words. For instance, the second word in focus—
“would”—captures structural information to orga-
nize other predicates yet entities.

In order to perform maximization efficiently
in this view, we treat each predicate separately.
Given a vector yp, we define

ypiy = {y(i, j) : j ∈ {1, · · · , n}, j 6= i}

and assume that f(yp) takes the form

fp(yp) =
n∑
i=0

fpi (ypiy)

To capture the relationships of all arguments to
one particular predicate as a whole, we employ a
Markov model. Let a1, · · · , am be the sequence of
the arguments of the word wi under ypiy. To keep
the arguments in order, we constrain 1 ≤ aj1 <
aj2 ≤ n if j1 < j2. In a k-th order predicate-
centric model, we define

fpi (ypiy) =
m+k−1∑
j=1

θ>p Φp(aj−(k−1), ..., aj , i,w,p)

where aj (j ≤ 0 or j ≥ m + 1) are treated as
specific initial or end state.

Higher-order rather than arc-factored features
can be conveniently extracted from adjacent argu-
ments. This is similar to the sibling factorization
defined by a number of syntactic tree parsers, e.g.
(McDonald and Pereira, 2006), (Koo and Collins,
2010) and (Ma and Zhao, 2012).
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In an Oct. 19 review of ...
(S/S)/N NP/N N/N N/N N (NP\NP)/NP

arg2
arg1

arg1
arg1

arg1

Figure 2: An example to illustrate the argument-
centric view.

3.3 Argument-Centric Factorization
The syntactic principle for tree annotation treats
the dependency relations between two words as
syntactic projection. In another word, the head de-
termines the syntactic category of the whole struc-
ture. The (type-logical) semantic principle deter-
mines a dependency according the types of the two
words. The two kinds of dependency are coherent
but not necessarily the same. In particular, an ad-
junct is a syntactic dependent but usually a seman-
tic predicate of its syntactic head. Figure 2 gives
an example to illustrate the idea. The argument
in focus is “review” that is the complement of the
preposition “in.” The direction of this semantic de-
pendency is the same to its corresponding syntac-
tic dependency. Other predicates that semantically
govern “review” are actually its modifiers, so the
direction of these semantic dependencies are the
opposite of their syntactic counterparts. It is im-
portant to capture head-complement-adjunct rela-
tions by putting all predicates of one particular ar-
gument together.

Similar to the predicate-centric model, we treat
the graph fragment involved by each argument as
independent, and capture the relationships among
all predicates that governs the same argument us-
ing a Markov model. In the definition of predicate-
centric model, if we exchange predicates and ar-
guments, then we get our argument-centric model.
Formally, we define

yayj = {y(i, j) : i ∈ {0, · · · , n}, j 6= i}.

Let p1, · · · , pm be the sequence of the predicates
(in linear word order) that semantically governs
the word j under yayj . A k-th order argument-
centric model scores the dependency graph as

fa(y) =
n∑
j=1

faj (yayj)

=
n∑
j=1

m+k−1∑
i=1

θ>a Φa(pi−(k−1), ..., pi, j,w,p)

Similarly, we define the initial and end states for
pi (i < 0 or i ≥ m+ 1).

3.4 Tree Approximation Model

Tree structures exhibit many computationally-
good properties, and have been widely applied to
model linguistic, especially syntactic, structures.
Tree-structured representation is an essential pre-
requisite for both the parsing algorithms and the
machine learning methods in state-of-the-art syn-
tactic dependency parsers. The CCG dependency
graphs are not but look very much like trees. We
thus argue that a tree-centric model can on one
hand capture some topologically essential charac-
teristics and on the other hand benefit from mature
tree parsing techniques.

To this end, we propose tree approximation to
obtain CCG sub-graphs under the factorization us-
ing tree parsing algorithms. In particular, we
introduce an algorithm to associate every graph
with a projective dependency tree, which we call
weighted conversion. The tree reflects partial in-
formation about the corresponding graph. In this
algorithm, we assign heuristic weights to all pos-
sible edges, and then find the tree with maxi-
mum weights. The key idea behind is to find a
tree frame of a given graph. Given an arbitrary
CCG graph, the conversion is perhaps imperfect in
the sense that information about a small portion of
edges is “lost.” As a result, our tree approximation
model can only generate partial graphs. Neverthe-
less, we will show (in Section 3.5 and 4.2) that
such a model can be combined with predicate- and
argument-centric factorization models in an ele-
gant way.

3.4.1 Weighted Conversion

We assign weights to all the possible edges, i.e. all
pairs of words, and then determine which edges
to be kept by finding the maximum spanning tree.
More formally, given a graph y = {y(i, j)}, each
possible edge (i, j) is assigned a heuristic weight
ω(i, j). The maximum spanning tree t = {t(i, j)}
contains the maximum sum of values of edges:

tmax = arg max
t

∑
(i,j)

t(i, j)ω(i, j)

We separate the ω(i, j) into three parts
(ω(i, j) = A(i, j) + B(i, j) + C(i, j)) that are
defined as below.
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• A(i, j) = a · max{y(i, j), y(j, i)}: a is the
weight for the existing edges on graph ignor-
ing direction.

• B(i, j) = b · y(i, j): b is the weight for the
forward edges on the graph.

• C(i, j) = n−|i− j|: This term estimates the
importance of an edge where n is the length
of the given sentence. For dependency pars-
ing, we consider edges with short distance to
be more important because those edges can
be predicted more accurately in future pars-
ing process.

• a � b � n or a > bn > n2: The converted
tree should contain arcs in original graph as
many as possible, and the direction of the arcs
should not be changed if possible. The rela-
tionship of a, b, and c guarantees this.

After all edges are weighted, we can use max-
imum spanning tree (MST) algorithms to get the
converted tree. To get the projective tree, we
choose Eisner’s algorithm. However, the obtained
tree must be labeled in order to encode the origi-
nal graph. Here we introduce a label vector l =
{l(i, j)}. For each (i, j) ∈ I, we assign a label
l(i, j) to edge (i, j) as follows.

Case y(i, j) = 1: label “X”;

Case y(i, j) = 0 ∧ y(j, i) = 1: label “X∼R”;

Case y(i, j) = 0 ∧ y(j, i) = 0: label “None”.

We can convert the labeled tree back to graph and
obtain yt. Tough some edges are lost during the
conversion, a lot more are kept. In fact, according
to our evaluation, 92.74% of edges in the training
set are retained after conversion.

3.4.2 Factorizing Trees
We use the tree parsing model proposed in
(Bohnet, 2010) to score the converted trees. The
model factorizes a tree into 1st-order and 2nd-
order factors. When decoding, the model searches
for a tree with the best score. The score defined
for graphs as well as trees is

f t(yt) = gt(t, l) = θ>t Φt(s, t, l)
= θ1>

t Φ1
t (s, t, l) + θ2>

t Φ2
t (s, t, l)

=
( ∑

(i,j)∈I
t(i, j)θ1>

t Φ1
t (l(i, j),w,p)

)
+θ2>

t Φ2
t (s, t, l),

where Φ1
t is the 1st-order features and Φ2

t is the
2nd-order features.

3.5 Parsing as Optimization

Motivated by linguistic properties of the
semantics-oriented CCG dependencies, we
have designed three single factorization models
from heterogeneous views. Our single models
exhibit different predictive strengths considering
that they are designed to capture different prop-
erties separately. Integrating them can generate
better graphs, but is provably hard. To this end,
we formulate the parsing problem as the following
constrained optimization problem.

maximize fp(yp) + fa(ya) + f t(yt)
subject to yp(i, j) = ya(i, j),

yp(i, j) ≥ yt(i, j),
ya(i, j) ≥ yt(i, j) for all (i, j)

The equality constraint says that the graph given
by the predicate- and the argument-centric model
must be identical, while the inequality constraints
say that the frame of graph given by the tree ap-
proximation model must be a subgraph of what is
given by the first two models.

4 Decoding

4.1 Easiness and Hardness of Decoding

The three factorization models are all solvable in
polynomial time. The predicate-centric model and
the argument-centric model can be decoded us-
ing dynamic programming. We provide the de-
tailed description of such an algorithm in our sup-
plementary note. The decoding method for k-th
(k ≥ 2) order model costs time of O(nk+1) where
n is the length of the sentence. The tree approxi-
mation model can re-use existing dependency tree
parsing algorithms.

Unfortunately, the exact joint decoding of 2nd-
order predicate- and argument-centric models is
already NP-hard, not to mention other model com-
binations. The following gives a brief proof for
the problem of combining the 2nd-order predicate-
and argument-centric models.

Proof. Formally, we want to find a graph y which
maximizes F (y) = fp(y)+fa(y). We can design
the feature function Φa and the parameter θa, such
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that for all 1 ≤ i1 ≤ i2 ≤ n,
θ>a Φa(0, i1, j,w,p) = 0
θ>a Φa(i1, n+ 1, j,w,p) = 0
θ>a Φa(i1, i2, j,w,p) = −∞
θ>a Φa(0, n+ 1, j,w,p) = −∞

where n is the length of the sentence. Note that
those 4 equations make the nodes except the root
node in the optimal graph each have exactly one
incoming edge. So the problem of finding a tree
t maximizing fp(t) is reduced to this problem.
Moreover, the NP-hard problem 3DM can be re-
duced to the problem of finding a tree t maxi-
mizing fp(t) (see McDonald and Pereira (2006)),
leading to the NP-hardness of both of the prob-
lems.

4.2 Decoding via Dual Decomposition
To solve the joint decoding problem, optimization
techniques based on decomposition with coupling
variables are applicable. In this paper, we propose
to solve it via dual decomposition. The experiment
results show that though not always, we can obtain
the optimal solution most of time. To simplify the
description, we only consider the 2nd-order case
for all three models.

4.2.1 Lagrangian Relaxation
Notice that yp(i, j) ≥ yt(i, j) can be written as

yp(i, j) =
{

1, if yt(i, j) = 1;
arbitrary, if yt(i, j) = 0.

So the constraint can be written asApyp+Aaya+
Atyt = 0, where

Ap =

 I
Dyt

0

Aa =

 −I0
Dyt

At =

 0
−Dyt

−Dyt


I is the identity matrix and Dyt is a diagonal ma-
trix whose main diagonal is the vector yt.

The Lagrangian of the optimization problem is

L(yp,ya,yt;u) = fp(yp) + fa(ya) + f t(yt)
+u>(Apyp +Aaya +Atyt),

where u is the Lagrangian multiplier.
Omitting the constraints, the dual objective is

L(u) = max
yp,ya,yt

L(yp,ya,yt;u)

= max
yp

(fp(yp) + u>Apyp)

+ max
ya

(fa(ya) + u>Aaya)

+ max
yt

(f t(yt) + u>Atyt)

Let L∗ be the maximized value of L(yp,ya,yt;u)
subjected to the constraints, then L∗ =
minu L(u), according to the duality principle.

4.2.2 Decoding Algorithm
There are two challenges in solving the dual prob-
lem. One challenge is to find the minimum value
of the dual objective. For this, we can use subgra-
dient method, as is demonstrated in Algorithm 1.
The other is the evaluation of L(u). For this, we
decompose the dual objective into three optimiza-
tion problems. Let Bp = u>Ap, Ba = u>Aa,
Bt = u>At, and

Ctl (i, j) =
{
Bt(i, j), if l(i, j) = X;
Bt(j, i), if l(i, j) = X ∼ R;

we can just redefine

fpi (yiy) =
m+1∑
j=1

(
θ>p Φp(aj−1, aj , i,w,p)

+Bp(i, j)
)

faj (yyj) =
m+1∑
i=1

(
θ>a Φa(pi−1, pi, j,w,p)

+Ba(i, j)
)

f t(y) =
( ∑

(i,j)∈I
t(i, j)

(
θ1>
t Φ1

t (l(i, j),w,p)

+Ctl (i, j)
))

+ θ2>
t Φ2

t (s, t, l),

and decode according to the new scores. In fact,
this equals to attach some new weights to 1st-order
factors, without changing the decoding algorithms
for the subproblems. This nice property also al-
lows using higher-order models for subproblems.

Algorithm 1: Joint decoding algorithm

Initialization: set u(0) to 0
for k = 1 to K do

yp(k) ← arg maxy f
p(y) + u(k)A

py

ya(k) ← arg maxy f
a(y) + u(k)A

ay

yt(k) ← arg maxy f
t(y) + u(k)A

ty

if Apyp(k) +Aaya(k) +Atyt(k) = 0 then
return ya

u(k) ← u(k−1)

−αk(Apyp(k) +Aaya(k) +Atyt(k))

Algorithm 1 is our decoding algorithm. In ev-
ery iteration, we first compute the optimal y’s of
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the three subproblems. If the y’s satisfies the con-
straints, then we’ve find the optimal solution for
the original problem. If not, we update the La-
grangian multiplier u, towards the negative sub-
gradient. We initialized u to be a zero vector,
and use αk to be the step length of each iteration.
When we decode the subproblems, the Dyc in Ap

and Aa is derived from the yc obtained in the cur-
rent iteration.

We can also assign weights to different factor-
ization models. If we choose to do so, the La-
grangian becomes

L(yp,ya,yc;u) = wpfp(yp) + wafa(ya)
+wcf t(yt) + u>(Apyp +Aaya +Atyt).

And the decoding of subproblems in our algorithm
becomes

yp(k) ← arg max
y

fp(y) +
1
wp
u(k)A

py;

ya(k) ← arg max
y

fa(y) +
1
wa

u(k)A
ay;

yt(k) ← arg max
y

f t(y) +
1
wc
u(k)A

ty.

The algorithm we give here is the joint decod-
ing for all the three models. We can also decode
using any two of them, and it is trivial to adapt the
algorithm to the decoding.

4.3 Pruning
In order to improve the efficiency of the algorithm,
we also do some pruning. One idea is that, in
predicate-centric model, different type of predi-
cates has different number of arguments. For ex-
ample, the predicates POS-tagged “DT” each has
only one argument in most cases. Therefore, we
assign each POS-tag a max number of arguments.
When decoding, we search at most those number
of arguments instead of all the words in the sen-
tence. This pruning method can also be applied
to the argument-centric model. The other idea is
that, some pairs of types never form a predicate-
argument relation. So we can skip extracting fea-
ture of those POS-tag pairs, just take −∞ to be
their scores.

5 Evaluation and Analysis

5.1 Experimental Setup
CCGbank is a translation of the Penn Treebank
into a corpus of CCG derivations (Hockenmaier

Devel. Test
HMM Tagger 96.74% 97.23%
Transition-based Parser 93.48% 93.09%
Graph-based Parser 93.47% 93.19%

Table 1: The accuracy of the POS tagger and the
UAS of the syntax tree parsers.

and Steedman, 2007). CCGbank pairs syntac-
tic derivations with sets of word-word dependen-
cies which approximate the underlying functor-
argument structure. Our experiments were per-
formed using CCGBank which was split into three
subsets for training (Sections 02-21), development
testing (Section 00) and the final test (Section 23).
We also use the syntactic dependency trees pro-
vided by the CCGBank to obtain necessary in-
formation for graph parsing. However, different
from experiments in the CCG parsing literature, we
use no grammar information. Neither lexical cate-
gories nor CCG derivations are utilized.

All experiments were performed using automat-
ically assigned POS-tags that are generated by a
symbol-refined generative HMM tagger1 (Huang
et al., 2010), and automatically parsed dependency
trees that are generated by our in-house implemen-
tation of the transition-based model presented in
(Zhang and Nivre, 2011) as well as a 2nd-order
graph-based parser2 (Bohnet, 2010). The accu-
racy of these preprocessors is shown in Table 1.
We ran 5-fold jack-knifing on the gold-standard
training data to obtain imperfect dependency trees,
splitting off 4 of 5 sentences for training and the
other 1/5 for testing, 5 times. For each split, we
re-trained the tree parsers on the training portion
and applied the resulting model to the test portion.

Previous research on dependency parsing shows
that structured perceptron (Collins, 2002) is one of
the strongest discriminative learning algorithms.
To estimate θ’s of different models, we utilize the
averaged perceptron algorithm. We implement our
own the predicate- and argument-centric models.
To perform tree parsing, we re-use the open-source
implementation provided by the mate-tool. See
the source code attached for details. We set it-
eration 5 to train predicate- and argument-centric
models and 10 for the tree approximation model.
To perform dual decomposition, we set the maxi-
mum iteration 200.

1www.code.google.com/p/
umd-featured-parser/

2www.code.google.com/p/mate-tools/

1551



Tree Model UP UR UF UEM

No

PC 91.85 87.26 89.50 18.77
AC 91.94 87.06 89.43 16.47
TA 92.85 86.39 89.51 14.48

PC+AC 93.84 88.18 90.93 23.05
PC+TA 91.80 91.69 91.74 27.29
AC+TA 90.19 92.88 91.52 25.51

PC+AC+TA 93.01 92.08 92.54 32.83

Gr

PC 94.01 90.76 92.36 30.16
AC 94.14 90.44 92.25 27.71
TA 93.07 86.59 89.71 15.16

PC+AC 94.66 91.09 92.84 33.19
PC+TA 92.98 92.68 92.83 35.02
AC+TA 92.47 93.13 92.80 33.93

PC+AC+TA 93.66 92.73 93.19 37.64

Tr

PC 93.93 90.85 92.37 30.21
AC 93.94 90.66 92.27 28.23
TA 93.19 86.68 89.82 14.79

PC+AC 94.58 91.14 92.83 31.94
PC+TA 92.93 92.71 92.82 35.34
AC+TA 92.33 93.16 92.74 33.61

PC+AC+TA 93.50 92.73 93.11 37.69

Table 2: Parsing performance on the development
data. The column “Tree” denotes the parsers that
give dependency tree of development set: no tree
(No), transition-based (Tr) or graph-based (Gr).
“PC,” “AC” and “TA” in the second column de-
notes the predicate-centric, the argument-centric
and the tree approximation models, respectively.

5.2 Effectiveness of Data-driven Models

Table 2 summarizes parsing performance on de-
velopment set with different configurations. We
report unlabeled precision (UP), recall (UR), f-
score (UF) as well as complete match (UEM). It
can be clearly seen that the data-driven models
obtains high-quality graphs with respect to token
match. Even without any syntactic information
(see the top block associated with “No Tree”), our
parser with all three factorization models obtains
an f-score of 92.5. when assisted by a syntac-
tic parser, this figure goes up to over 93.1. If the
predicate- or argument-centric model is applied by
itself, either one can achieve a competitive accu-
racy, especially when syntactic features are uti-
lized.

5.3 Effectiveness of Multiple Factorization

We use dual decomposition to perform joint de-
coding. First we combine the predicate-centric
model and the argument-centric model. Compared
to each single model, an error reduction of about
7% on f-score (UF) on average is achieved. Fur-
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Figure 3: The exact decoding rate.

thermore, we ensemble all the three models. If no
syntactic features are extracted, the “TA” model
brings in a remarkable further absolute gain of
1.02 with respect to token match. If syntactic
features are used, the “PC” and “AC” models al-
ready achieves relatively good performance, and
the “TA” model does not contribute much consid-
ering token match. The join of the tree approxi-
mation model lowers the precision, it increases the
recall further, resulting in a modest improvement
of the f-score. Nonetheless, the “TA” model still
significantly improve the complete match metric.
It is noticeable that in all setting, the “TA” model
result in very significant boost in complete match.

The dual decomposition does not guarantee to
find an exact solution (in a limited number of it-
erations) in theory but usually works very well in
practice. We calculate the percentage of finding
exact decoding below k iterations, and the result is
show in Figure 3. The transition-based tree parser
is utilized here. We can see that for most sen-
tences, dual decomposition practically gives the
exact solutions.

5.4 Importance of Tree Structures
Our factorization parser (with best experimental
setting) does not utilize a grammar but do use
syntactic information in the dependency formal-
ism. In particular, the parser extracts the so-called
path features from dependency trees. The syntac-
tic trees is very importance to our parser, which
provide a critical set of features for the predicate-
centric and the argument-centric models. With-
out the syntactic trees, their performances de-
crease significantly. We try two different parsers
to obtain the syntax tree parses. One is of the
transition-based architecture, and the other graph-
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Tree Model UP UR UF UEM
No PC+AC+TA 93.03 92.03 92.53 32.61
Gr PC+AC+TA 93.71 92.72 93.21 38.14
Tr PC+AC+TA 93.63 92.83 93.23 37.47
Auli and Lopez 93.08 92.44 92.76 -

Xu et al. 93.15 91.06 92.09 37.56

Table 3: Comparing the state-of-art with our mod-
els on test set.

based. The architecture of the syntactic tree parser
does not affect the results much. The two tree
parsers give identical attachment scores, and lead
to similar graph parsing accuracy. This result is
somehow non-obvious given that the combination
of a graph-based and transition-based parser usu-
ally gives significantly better parsing performance
(Nivre and McDonald, 2008; Torres Martins et al.,
2008).

Although the target representation of our parser
is general graphs rather trees, implicitly or explic-
itly using tree-structured information plays an es-
sential role. Syntactic features are able to im-
prove the f-score achieved by the “PC+AC” model
from 90.9 to 92.8, while the “TA” model can bring
in an absolute gain of 1.6. Note that the “TA”
model does not utilize any syntactic tree infor-
mation. The converted trees are automatically in-
duced from the CCG graphs. Even when syntactic
trees are available, the automatically induced trees
can still significantly improve the complete match
with respect to the whole sentence.

5.5 Comparison to the State-of-the-art

We compare our results with the best published
CCG parsing performance obtained by the models
presented in (Auli and Lopez, 2011) and (Xu et al.,
2014)3. Auli and Lopez (2011) reported best nu-
meric performance. The performance is evaluated
on sentences that can be parsed by their model.
Xu et al. (2014) reported the best published results
for sentences with full coverage. All results on the
test set is shown in Table 3. Even without any syn-
tactic features, our parser achieves accuracies that
are superior to Xu et al.’s parser and comparable
to Auli and Lopez’s system. When unlabeled syn-
tactic trees are provided, our parser outperform the
state-of-the-art.

3The unlabeled parsing results are not reported in the orig-
inal paper. The figures presented in are provided by Wenduan
Xu.

6 Conclusion

In this paper, we have presented a factoriza-
tion parser for building CCG-grounded depen-
dency graphs. It achieves substantial improvement
over the state-of-the-art. Perhaps surprisingly, our
data-driven, grammar-free parser yields a supe-
rior accuracy to all CCG parsers in the literature.
Our work indicates that high-quality data-driven
parsers can be built for producing more general
dependency graphs, rather than trees. Our method
is also applicable to other deep dependency struc-
tures, e.g. HPSG predicate-argument analysis
(Miyao et al., 2004), as well as other graph-
structured semantic representations, e.g. Abstract
Meaning Representations (Banarescu et al., 2013).
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Abstract

Because of their superior ability to pre-
serve sequence information over time,
Long Short-Term Memory (LSTM) net-
works, a type of recurrent neural net-
work with a more complex computational
unit, have obtained strong results on a va-
riety of sequence modeling tasks. The
only underlying LSTM structure that has
been explored so far is a linear chain.
However, natural language exhibits syn-
tactic properties that would naturally com-
bine words to phrases. We introduce the
Tree-LSTM, a generalization of LSTMs to
tree-structured network topologies. Tree-
LSTMs outperform all existing systems
and strong LSTM baselines on two tasks:
predicting the semantic relatedness of two
sentences (SemEval 2014, Task 1) and
sentiment classification (Stanford Senti-
ment Treebank).

1 Introduction

Most models for distributed representations of
phrases and sentences—that is, models where real-
valued vectors are used to represent meaning—fall
into one of three classes: bag-of-words models,
sequence models, and tree-structured models. In
bag-of-words models, phrase and sentence repre-
sentations are independent of word order; for ex-
ample, they can be generated by averaging con-
stituent word representations (Landauer and Du-
mais, 1997; Foltz et al., 1998). In contrast, se-
quence models construct sentence representations
as an order-sensitive function of the sequence of
tokens (Elman, 1990; Mikolov, 2012). Lastly,
tree-structured models compose each phrase and
sentence representation from its constituent sub-
phrases according to a given syntactic structure
over the sentence (Goller and Kuchler, 1996;
Socher et al., 2011).

x1 x2 x3 x4

y1 y2 y3 y4

x1

x2

x4 x5 x6

y1

y2 y3

y4 y6

Figure 1: Top: A chain-structured LSTM net-
work. Bottom: A tree-structured LSTM network
with arbitrary branching factor.

Order-insensitive models are insufficient to
fully capture the semantics of natural language
due to their inability to account for differences in
meaning as a result of differences in word order
or syntactic structure (e.g., “cats climb trees” vs.
“trees climb cats”). We therefore turn to order-
sensitive sequential or tree-structured models. In
particular, tree-structured models are a linguisti-
cally attractive option due to their relation to syn-
tactic interpretations of sentence structure. A nat-
ural question, then, is the following: to what ex-
tent (if at all) can we do better with tree-structured
models as opposed to sequential models for sen-
tence representation? In this paper, we work to-
wards addressing this question by directly com-
paring a type of sequential model that has recently
been used to achieve state-of-the-art results in sev-
eral NLP tasks against its tree-structured general-
ization.

Due to their capability for processing arbitrary-
length sequences, recurrent neural networks
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(RNNs) are a natural choice for sequence model-
ing tasks. Recently, RNNs with Long Short-Term
Memory (LSTM) units (Hochreiter and Schmid-
huber, 1997) have re-emerged as a popular archi-
tecture due to their representational power and ef-
fectiveness at capturing long-term dependencies.
LSTM networks, which we review in Sec. 2, have
been successfully applied to a variety of sequence
modeling and prediction tasks, notably machine
translation (Bahdanau et al., 2015; Sutskever et al.,
2014), speech recognition (Graves et al., 2013),
image caption generation (Vinyals et al., 2014),
and program execution (Zaremba and Sutskever,
2014).

In this paper, we introduce a generalization of
the standard LSTM architecture to tree-structured
network topologies and show its superiority for
representing sentence meaning over a sequential
LSTM. While the standard LSTM composes its
hidden state from the input at the current time
step and the hidden state of the LSTM unit in the
previous time step, the tree-structured LSTM, or
Tree-LSTM, composes its state from an input vec-
tor and the hidden states of arbitrarily many child
units. The standard LSTM can then be considered
a special case of the Tree-LSTM where each inter-
nal node has exactly one child.

In our evaluations, we demonstrate the empiri-
cal strength of Tree-LSTMs as models for repre-
senting sentences. We evaluate the Tree-LSTM
architecture on two tasks: semantic relatedness
prediction on sentence pairs and sentiment clas-
sification of sentences drawn from movie reviews.
Our experiments show that Tree-LSTMs outper-
form existing systems and sequential LSTM base-
lines on both tasks. Implementations of our mod-
els and experiments are available at https://
github.com/stanfordnlp/treelstm.

2 Long Short-Term Memory Networks

2.1 Overview

Recurrent neural networks (RNNs) are able to pro-
cess input sequences of arbitrary length via the re-
cursive application of a transition function on a
hidden state vector ht. At each time step t, the
hidden state ht is a function of the input vector xt
that the network receives at time t and its previous
hidden state ht−1. For example, the input vector xt
could be a vector representation of the t-th word in
body of text (Elman, 1990; Mikolov, 2012). The
hidden state ht ∈ Rd can be interpreted as a d-

dimensional distributed representation of the se-
quence of tokens observed up to time t.

Commonly, the RNN transition function is an
affine transformation followed by a pointwise non-
linearity such as the hyperbolic tangent function:

ht = tanh (Wxt + Uht−1 + b) .

Unfortunately, a problem with RNNs with transi-
tion functions of this form is that during training,
components of the gradient vector can grow or de-
cay exponentially over long sequences (Hochre-
iter, 1998; Bengio et al., 1994). This problem with
exploding or vanishing gradients makes it difficult
for the RNN model to learn long-distance correla-
tions in a sequence.

The LSTM architecture (Hochreiter and
Schmidhuber, 1997) addresses this problem of
learning long-term dependencies by introducing a
memory cell that is able to preserve state over long
periods of time. While numerous LSTM variants
have been described, here we describe the version
used by Zaremba and Sutskever (2014).

We define the LSTM unit at each time step t to
be a collection of vectors in Rd: an input gate it, a
forget gate ft, an output gate ot, a memory cell ct
and a hidden state ht. The entries of the gating
vectors it, ft and ot are in [0, 1]. We refer to d as
the memory dimension of the LSTM.

The LSTM transition equations are the follow-
ing:

it = σ
(
W (i)xt + U (i)ht−1 + b(i)

)
, (1)

ft = σ
(
W (f)xt + U (f)ht−1 + b(f)

)
,

ot = σ
(
W (o)xt + U (o)ht−1 + b(o)

)
,

ut = tanh
(
W (u)xt + U (u)ht−1 + b(u)

)
,

ct = it � ut + ft � ct−1,

ht = ot � tanh(ct),

where xt is the input at the current time step, σ de-
notes the logistic sigmoid function and � denotes
elementwise multiplication. Intuitively, the for-
get gate controls the extent to which the previous
memory cell is forgotten, the input gate controls
how much each unit is updated, and the output gate
controls the exposure of the internal memory state.
The hidden state vector in an LSTM unit is there-
fore a gated, partial view of the state of the unit’s
internal memory cell. Since the value of the gating
variables vary for each vector element, the model

1557



can learn to represent information over multiple
time scales.

2.2 Variants

Two commonly-used variants of the basic LSTM
architecture are the Bidirectional LSTM and the
Multilayer LSTM (also known as the stacked or
deep LSTM).

Bidirectional LSTM. A Bidirectional LSTM
(Graves et al., 2013) consists of two LSTMs that
are run in parallel: one on the input sequence and
the other on the reverse of the input sequence. At
each time step, the hidden state of the Bidirec-
tional LSTM is the concatenation of the forward
and backward hidden states. This setup allows the
hidden state to capture both past and future infor-
mation.

Multilayer LSTM. In Multilayer LSTM archi-
tectures, the hidden state of an LSTM unit in layer
` is used as input to the LSTM unit in layer `+1 in
the same time step (Graves et al., 2013; Sutskever
et al., 2014; Zaremba and Sutskever, 2014). Here,
the idea is to let the higher layers capture longer-
term dependencies of the input sequence.

These two variants can be combined as a Multi-
layer Bidirectional LSTM (Graves et al., 2013).

3 Tree-Structured LSTMs

A limitation of the LSTM architectures described
in the previous section is that they only allow for
strictly sequential information propagation. Here,
we propose two natural extensions to the basic
LSTM architecture: the Child-Sum Tree-LSTM
and the N-ary Tree-LSTM. Both variants allow for
richer network topologies where each LSTM unit
is able to incorporate information from multiple
child units.

As in standard LSTM units, each Tree-LSTM
unit (indexed by j) contains input and output
gates ij and oj , a memory cell cj and hidden
state hj . The difference between the standard
LSTM unit and Tree-LSTM units is that gating
vectors and memory cell updates are dependent
on the states of possibly many child units. Ad-
ditionally, instead of a single forget gate, the Tree-
LSTM unit contains one forget gate fjk for each
child k. This allows the Tree-LSTM unit to se-
lectively incorporate information from each child.
For example, a Tree-LSTM model can learn to em-
phasize semantic heads in a semantic relatedness

h1c1u1x1

c3

c2

h3

h2

f2

f3

i1 o1

Figure 2: Composing the memory cell c1 and hid-
den state h1 of a Tree-LSTM unit with two chil-
dren (subscripts 2 and 3). Labeled edges cor-
respond to gating by the indicated gating vector,
with dependencies omitted for compactness.

task, or it can learn to preserve the representation
of sentiment-rich children for sentiment classifica-
tion.

As with the standard LSTM, each Tree-LSTM
unit takes an input vector xj . In our applications,
each xj is a vector representation of a word in a
sentence. The input word at each node depends
on the tree structure used for the network. For in-
stance, in a Tree-LSTM over a dependency tree,
each node in the tree takes the vector correspond-
ing to the head word as input, whereas in a Tree-
LSTM over a constituency tree, the leaf nodes take
the corresponding word vectors as input.

3.1 Child-Sum Tree-LSTMs
Given a tree, let C(j) denote the set of children
of node j. The Child-Sum Tree-LSTM transition
equations are the following:

h̃j =
∑

k∈C(j)

hk, (2)

ij = σ
(
W (i)xj + U (i)h̃j + b(i)

)
, (3)

fjk = σ
(
W (f)xj + U (f)hk + b(f)

)
, (4)

oj = σ
(
W (o)xj + U (o)h̃j + b(o)

)
, (5)

uj = tanh
(
W (u)xj + U (u)h̃j + b(u)

)
, (6)

cj = ij � uj +
∑

k∈C(j)

fjk � ck, (7)

hj = oj � tanh(cj), (8)

where in Eq. 4, k ∈ C(j).
Intuitively, we can interpret each parameter ma-

trix in these equations as encoding correlations be-
tween the component vectors of the Tree-LSTM
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unit, the input xj , and the hidden states hk of the
unit’s children. For example, in a dependency tree
application, the model can learn parameters W (i)

such that the components of the input gate ij have
values close to 1 (i.e., “open”) when a semanti-
cally important content word (such as a verb) is
given as input, and values close to 0 (i.e., “closed”)
when the input is a relatively unimportant word
(such as a determiner).

Dependency Tree-LSTMs. Since the Child-
Sum Tree-LSTM unit conditions its components
on the sum of child hidden states hk, it is well-
suited for trees with high branching factor or
whose children are unordered. For example, it is a
good choice for dependency trees, where the num-
ber of dependents of a head can be highly variable.
We refer to a Child-Sum Tree-LSTM applied to a
dependency tree as a Dependency Tree-LSTM.

3.2 N -ary Tree-LSTMs
The N -ary Tree-LSTM can be used on tree struc-
tures where the branching factor is at most N and
where children are ordered, i.e., they can be in-
dexed from 1 to N . For any node j, write the hid-
den state and memory cell of its kth child as hjk
and cjk respectively. The N -ary Tree-LSTM tran-
sition equations are the following:

ij = σ

(
W (i)xj +

N∑
`=1

U
(i)
` hj` + b(i)

)
, (9)

fjk = σ

(
W (f)xj +

N∑
`=1

U
(f)
k` hj` + b(f)

)
,

(10)

oj = σ

(
W (o)xj +

N∑
`=1

U
(o)
` hj` + b(o)

)
, (11)

uj = tanh

(
W (u)xj +

N∑
`=1

U
(u)
` hj` + b(u)

)
,

(12)

cj = ij � uj +
N∑
`=1

fj` � cj`, (13)

hj = oj � tanh(cj), (14)

where in Eq. 10, k = 1, 2, . . . , N . Note that
when the tree is simply a chain, both Eqs. 2–8
and Eqs. 9–14 reduce to the standard LSTM tran-
sitions, Eqs. 1.

The introduction of separate parameter matri-
ces for each child k allows the N -ary Tree-LSTM

model to learn more fine-grained conditioning on
the states of a unit’s children than the Child-
Sum Tree-LSTM. Consider, for example, a con-
stituency tree application where the left child of a
node corresponds to a noun phrase, and the right
child to a verb phrase. Suppose that in this case
it is advantageous to emphasize the verb phrase
in the representation. Then the U (f)

k` parameters
can be trained such that the components of fj1 are
close to 0 (i.e., “forget”), while the components of
fj2 are close to 1 (i.e., “preserve”).

Forget gate parameterization. In Eq. 10, we
define a parameterization of the kth child’s for-
get gate fjk that contains “off-diagonal” param-
eter matrices U (f)

k` , k 6= `. This parameteriza-
tion allows for more flexible control of informa-
tion propagation from child to parent. For exam-
ple, this allows the left hidden state in a binary tree
to have either an excitatory or inhibitory effect on
the forget gate of the right child. However, for
large values of N , these additional parameters are
impractical and may be tied or fixed to zero.

Constituency Tree-LSTMs. We can naturally
apply Binary Tree-LSTM units to binarized con-
stituency trees since left and right child nodes are
distinguished. We refer to this application of Bi-
nary Tree-LSTMs as a Constituency Tree-LSTM.
Note that in Constituency Tree-LSTMs, a node j
receives an input vector xj only if it is a leaf node.

In the remainder of this paper, we focus on
the special cases of Dependency Tree-LSTMs and
Constituency Tree-LSTMs. These architectures
are in fact closely related; since we consider only
binarized constituency trees, the parameterizations
of the two models are very similar. The key dif-
ference is in the application of the compositional
parameters: dependent vs. head for Dependency
Tree-LSTMs, and left child vs. right child for Con-
stituency Tree-LSTMs.

4 Models

We now describe two specific models that apply
the Tree-LSTM architectures described in the pre-
vious section.

4.1 Tree-LSTM Classification

In this setting, we wish to predict labels ŷ from a
discrete set of classes Y for some subset of nodes
in a tree. For example, the label for a node in a
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parse tree could correspond to some property of
the phrase spanned by that node.

At each node j, we use a softmax classifier to
predict the label ŷj given the inputs {x}j observed
at nodes in the subtree rooted at j. The classifier
takes the hidden state hj at the node as input:

p̂θ(y | {x}j) = softmax
(
W (s)hj + b(s)

)
,

ŷj = arg max
y
p̂θ (y | {x}j) .

The cost function is the negative log-likelihood
of the true class labels y(k) at each labeled node:

J(θ) = − 1
m

m∑
k=1

log p̂θ
(
y(k)

∣∣∣ {x}(k))+
λ

2
‖θ‖22,

where m is the number of labeled nodes in the
training set, the superscript k indicates the kth la-
beled node, and λ is an L2 regularization hyperpa-
rameter.

4.2 Semantic Relatedness of Sentence Pairs
Given a sentence pair, we wish to predict a
real-valued similarity score in some range [1,K],
where K > 1 is an integer. The sequence
{1, 2, . . . ,K} is some ordinal scale of similarity,
where higher scores indicate greater degrees of
similarity, and we allow real-valued scores to ac-
count for ground-truth ratings that are an average
over the evaluations of several human annotators.

We first produce sentence representations hL
and hR for each sentence in the pair using a
Tree-LSTM model over each sentence’s parse tree.
Given these sentence representations, we predict
the similarity score ŷ using a neural network that
considers both the distance and angle between the
pair (hL, hR):

h× = hL � hR, (15)

h+ = |hL − hR|,
hs = σ

(
W (×)h× +W (+)h+ + b(h)

)
,

p̂θ = softmax
(
W (p)hs + b(p)

)
,

ŷ = rT p̂θ,

where rT = [1 2 . . . K] and the absolute value
function is applied elementwise. The use of both
distance measures h× and h+ is empirically mo-
tivated: we find that the combination outperforms
the use of either measure alone. The multiplicative
measure h× can be interpreted as an elementwise

comparison of the signs of the input representa-
tions.

We want the expected rating under the predicted
distribution p̂θ given model parameters θ to be
close to the gold rating y ∈ [1,K]: ŷ = rT p̂θ ≈ y.
We therefore define a sparse target distribution1 p
that satisfies y = rT p:

pi =


y − byc, i = byc+ 1
byc − y + 1, i = byc
0 otherwise

for 1 ≤ i ≤ K. The cost function is the regular-
ized KL-divergence between p and p̂θ:

J(θ) =
1
m

m∑
k=1

KL
(
p(k)

∥∥∥ p̂(k)
θ

)
+
λ

2
‖θ‖22,

where m is the number of training pairs and the
superscript k indicates the kth sentence pair.

5 Experiments

We evaluate our Tree-LSTM architectures on two
tasks: (1) sentiment classification of sentences
sampled from movie reviews and (2) predicting
the semantic relatedness of sentence pairs.

In comparing our Tree-LSTMs against sequen-
tial LSTMs, we control for the number of LSTM
parameters by varying the dimensionality of the
hidden states2. Details for each model variant are
summarized in Table 1.

5.1 Sentiment Classification

In this task, we predict the sentiment of sen-
tences sampled from movie reviews. We use
the Stanford Sentiment Treebank (Socher et al.,
2013). There are two subtasks: binary classifica-
tion of sentences, and fine-grained classification
over five classes: very negative, negative, neu-
tral, positive, and very positive. We use the stan-
dard train/dev/test splits of 6920/872/1821 for the
binary classification subtask and 8544/1101/2210
for the fine-grained classification subtask (there
are fewer examples for the binary subtask since

1In the subsequent experiments, we found that optimizing
this objective yielded better performance than a mean squared
error objective.

2For our Bidirectional LSTMs, the parameters of the for-
ward and backward transition functions are shared. In our
experiments, this achieved superior performance to Bidirec-
tional LSTMs with untied weights and the same number of
parameters (and therefore smaller hidden vector dimension-
ality).
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Relatedness Sentiment

LSTM Variant d |θ| d |θ|
Standard 150 203,400 168 315,840

Bidirectional 150 203,400 168 315,840
2-layer 108 203,472 120 318,720

Bidirectional 2-layer 108 203,472 120 318,720
Constituency Tree 142 205,190 150 316,800
Dependency Tree 150 203,400 168 315,840

Table 1: Memory dimensions d and composition
function parameter counts |θ| for each LSTM vari-
ant that we evaluate.

neutral sentences are excluded). Standard bina-
rized constituency parse trees are provided for
each sentence in the dataset, and each node in
these trees is annotated with a sentiment label.

For the sequential LSTM baselines, we predict
the sentiment of a phrase using the representation
given by the final LSTM hidden state. The sequen-
tial LSTM models are trained on the spans corre-
sponding to labeled nodes in the training set.

We use the classification model described in
Sec. 4.1 with both Dependency Tree-LSTMs
(Sec. 3.1) and Constituency Tree-LSTMs
(Sec. 3.2). The Constituency Tree-LSTMs are
structured according to the provided parse trees.
For the Dependency Tree-LSTMs, we produce
dependency parses3 of each sentence; each node
in a tree is given a sentiment label if its span
matches a labeled span in the training set.

5.2 Semantic Relatedness
For a given pair of sentences, the semantic relat-
edness task is to predict a human-generated rating
of the similarity of the two sentences in meaning.

We use the Sentences Involving Composi-
tional Knowledge (SICK) dataset (Marelli et al.,
2014), consisting of 9927 sentence pairs in a
4500/500/4927 train/dev/test split. The sentences
are derived from existing image and video descrip-
tion datasets. Each sentence pair is annotated with
a relatedness score y ∈ [1, 5], with 1 indicating
that the two sentences are completely unrelated,
and 5 indicating that the two sentences are very
related. Each label is the average of 10 ratings as-
signed by different human annotators.

Here, we use the similarity model described in
Sec. 4.2. For the similarity prediction network
(Eqs. 15) we use a hidden layer of size 50. We

3Dependency parses produced by the Stanford Neural
Network Dependency Parser (Chen and Manning, 2014).

Method Fine-grained Binary

RAE (Socher et al., 2013) 43.2 82.4
MV-RNN (Socher et al., 2013) 44.4 82.9
RNTN (Socher et al., 2013) 45.7 85.4
DCNN (Blunsom et al., 2014) 48.5 86.8
Paragraph-Vec (Le and Mikolov, 2014) 48.7 87.8
CNN-non-static (Kim, 2014) 48.0 87.2
CNN-multichannel (Kim, 2014) 47.4 88.1
DRNN (Irsoy and Cardie, 2014) 49.8 86.6

LSTM 46.4 (1.1) 84.9 (0.6)
Bidirectional LSTM 49.1 (1.0) 87.5 (0.5)
2-layer LSTM 46.0 (1.3) 86.3 (0.6)
2-layer Bidirectional LSTM 48.5 (1.0) 87.2 (1.0)

Dependency Tree-LSTM 48.4 (0.4) 85.7 (0.4)
Constituency Tree-LSTM

– randomly initialized vectors 43.9 (0.6) 82.0 (0.5)
– Glove vectors, fixed 49.7 (0.4) 87.5 (0.8)
– Glove vectors, tuned 51.0 (0.5) 88.0 (0.3)

Table 2: Test set accuracies on the Stanford Sen-
timent Treebank. For our experiments, we report
mean accuracies over 5 runs (standard deviations
in parentheses). Fine-grained: 5-class sentiment
classification. Binary: positive/negative senti-
ment classification.

produce binarized constituency parses4 and depen-
dency parses of the sentences in the dataset for our
Constituency Tree-LSTM and Dependency Tree-
LSTM models.

5.3 Hyperparameters and Training Details

The hyperparameters for our models were tuned
on the development set for each task.

We initialized our word representations using
publicly available 300-dimensional Glove vec-
tors5 (Pennington et al., 2014). For the sentiment
classification task, word representations were up-
dated during training with a learning rate of 0.1.
For the semantic relatedness task, word represen-
tations were held fixed as we did not observe any
significant improvement when the representations
were tuned.

Our models were trained using AdaGrad (Duchi
et al., 2011) with a learning rate of 0.05 and a
minibatch size of 25. The model parameters were
regularized with a per-minibatch L2 regularization
strength of 10−4. The sentiment classifier was
additionally regularized using dropout (Srivastava
et al., 2014) with a dropout rate of 0.5. We did not
observe performance gains using dropout on the
semantic relatedness task.

4Constituency parses produced by the Stanford PCFG
Parser (Klein and Manning, 2003).

5Trained on 840 billion tokens of Common Crawl data,
http://nlp.stanford.edu/projects/glove/.
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Method Pearson’s r Spearman’s ρ MSE

Illinois-LH (Lai and Hockenmaier, 2014) 0.7993 0.7538 0.3692
UNAL-NLP (Jimenez et al., 2014) 0.8070 0.7489 0.3550
Meaning Factory (Bjerva et al., 2014) 0.8268 0.7721 0.3224
ECNU (Zhao et al., 2014) 0.8414 – –

Mean vectors 0.7577 (0.0013) 0.6738 (0.0027) 0.4557 (0.0090)
DT-RNN (Socher et al., 2014) 0.7923 (0.0070) 0.7319 (0.0071) 0.3822 (0.0137)
SDT-RNN (Socher et al., 2014) 0.7900 (0.0042) 0.7304 (0.0076) 0.3848 (0.0074)

LSTM 0.8528 (0.0031) 0.7911 (0.0059) 0.2831 (0.0092)
Bidirectional LSTM 0.8567 (0.0028) 0.7966 (0.0053) 0.2736 (0.0063)
2-layer LSTM 0.8515 (0.0066) 0.7896 (0.0088) 0.2838 (0.0150)
2-layer Bidirectional LSTM 0.8558 (0.0014) 0.7965 (0.0018) 0.2762 (0.0020)

Constituency Tree-LSTM 0.8582 (0.0038) 0.7966 (0.0053) 0.2734 (0.0108)
Dependency Tree-LSTM 0.8676 (0.0030) 0.8083 (0.0042) 0.2532 (0.0052)

Table 3: Test set results on the SICK semantic relatedness subtask. For our experiments, we report mean
scores over 5 runs (standard deviations in parentheses). Results are grouped as follows: (1) SemEval
2014 submissions; (2) Our own baselines; (3) Sequential LSTMs; (4) Tree-structured LSTMs.

6 Results

6.1 Sentiment Classification

Our results are summarized in Table 2. The Con-
stituency Tree-LSTM outperforms existing sys-
tems on the fine-grained classification subtask and
achieves accuracy comparable to the state-of-the-
art on the binary subtask. In particular, we find that
it outperforms the Dependency Tree-LSTM. This
performance gap is at least partially attributable to
the fact that the Dependency Tree-LSTM is trained
on less data: about 150K labeled nodes vs. 319K
for the Constituency Tree-LSTM. This difference
is due to (1) the dependency representations con-
taining fewer nodes than the corresponding con-
stituency representations, and (2) the inability to
match about 9% of the dependency nodes to a cor-
responding span in the training data.

We found that updating the word representa-
tions during training (“fine-tuning” the word em-
bedding) yields a significant boost in performance
on the fine-grained classification subtask and gives
a minor gain on the binary classification subtask
(this finding is consistent with previous work on
this task by Kim (2014)). These gains are to be
expected since the Glove vectors used to initial-
ize our word representations were not originally
trained to capture sentiment.

6.2 Semantic Relatedness

Our results are summarized in Table 3. Following
Marelli et al. (2014), we use Pearson’s r, Spear-
man’s ρ and mean squared error (MSE) as evalua-

tion metrics. The first two metrics are measures of
correlation against human evaluations of semantic
relatedness.

We compare our models against a number of
non-LSTM baselines. The mean vector baseline
computes sentence representations as a mean of
the representations of the constituent words. The
DT-RNN and SDT-RNN models (Socher et al.,
2014) both compose vector representations for the
nodes in a dependency tree as a sum over affine-
transformed child vectors, followed by a nonlin-
earity. The SDT-RNN is an extension of the DT-
RNN that uses a separate transformation for each
dependency relation. For each of our baselines,
including the LSTM models, we use the similarity
model described in Sec. 4.2.

We also compare against four of the top-
performing systems6 submitted to the SemEval
2014 semantic relatedness shared task: ECNU
(Zhao et al., 2014), The Meaning Factory (Bjerva
et al., 2014), UNAL-NLP (Jimenez et al., 2014),
and Illinois-LH (Lai and Hockenmaier, 2014).
These systems are heavily feature engineered,
generally using a combination of surface form
overlap features and lexical distance features de-
rived from WordNet or the Paraphrase Database
(Ganitkevitch et al., 2013).

Our LSTM models outperform all these sys-

6We list the strongest results we were able to find for this
task; in some cases, these results are stronger than the official
performance by the team on the shared task. For example,
the listed result by Zhao et al. (2014) is stronger than their
submitted system’s Pearson correlation score of 0.8280.

1562



0 5 10 15 20 25 30 35 40 45

sentence length

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70
ac

cu
ra

cy

DT-LSTM
CT-LSTM
LSTM
Bi-LSTM

Figure 3: Fine-grained sentiment classification ac-
curacy vs. sentence length. For each `, we plot
accuracy for the test set sentences with length in
the window [` − 2, ` + 2]. Examples in the tail
of the length distribution are batched in the final
window (` = 45).

tems without any additional feature engineering,
with the best results achieved by the Dependency
Tree-LSTM. Recall that in this task, both Tree-
LSTM models only receive supervision at the root
of the tree, in contrast to the sentiment classifi-
cation task where supervision was also provided
at the intermediate nodes. We conjecture that in
this setting, the Dependency Tree-LSTM benefits
from its more compact structure relative to the
Constituency Tree-LSTM, in the sense that paths
from input word vectors to the root of the tree
are shorter on aggregate for the Dependency Tree-
LSTM.

7 Discussion and Qualitative Analysis

7.1 Modeling Semantic Relatedness

In Table 4, we list nearest-neighbor sentences re-
trieved from a 1000-sentence sample of the SICK
test set. We compare the neighbors ranked by the
Dependency Tree-LSTM model against a baseline
ranking by cosine similarity of the mean word vec-
tors for each sentence.

The Dependency Tree-LSTM model exhibits
several desirable properties. Note that in the de-
pendency parse of the second query sentence, the
word “ocean” is the second-furthest word from the
root (“waving”), with a depth of 4. Regardless, the
retrieved sentences are all semantically related to
the word “ocean”, which indicates that the Tree-
LSTM is able to both preserve and emphasize in-
formation from relatively distant nodes. Addi-
tionally, the Tree-LSTM model shows greater ro-

4 6 8 10 12 14 16 18 20

mean sentence length
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Figure 4: Pearson correlations r between pre-
dicted similarities and gold ratings vs. sentence
length. For each `, we plot r for the pairs with
mean length in the window [`−2, `+2]. Examples
in the tail of the length distribution are batched in
the final window (` = 18.5).

bustness to differences in sentence length. Given
the query “two men are playing guitar”, the Tree-
LSTM associates the phrase “playing guitar” with
the longer, related phrase “dancing and singing in
front of a crowd” (note as well that there is zero
token overlap between the two phrases).

7.2 Effect of Sentence Length
One hypothesis to explain the empirical strength
of Tree-LSTMs is that tree structures help miti-
gate the problem of preserving state over long se-
quences of words. If this were true, we would ex-
pect to see the greatest improvement over sequen-
tial LSTMs on longer sentences. In Figs. 3 and 4,
we show the relationship between sentence length
and performance as measured by the relevant task-
specific metric. Each data point is a mean score
over 5 runs, and error bars have been omitted for
clarity.

We observe that while the Dependency Tree-
LSTM does significantly outperform its sequen-
tial counterparts on the relatedness task for
longer sentences of length 13 to 15 (Fig. 4), it
also achieves consistently strong performance on
shorter sentences. This suggests that unlike se-
quential LSTMs, Tree-LSTMs are able to encode
semantically-useful structural information in the
sentence representations that they compose.

8 Related Work

Distributed representations of words (Rumelhart
et al., 1988; Collobert et al., 2011; Turian et al.,
2010; Huang et al., 2012; Mikolov et al., 2013;
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Ranking by mean word vector cosine similarity Score

a woman is slicing potatoes
a woman is cutting potatoes 0.96
a woman is slicing herbs 0.92
a woman is slicing tofu 0.92

a boy is waving at some young runners from the ocean
a man and a boy are standing at the bottom of some stairs , 0.92

which are outdoors
a group of children in uniforms is standing at a gate and 0.90

one is kissing the mother
a group of children in uniforms is standing at a gate and 0.90

there is no one kissing the mother

two men are playing guitar
some men are playing rugby 0.88
two men are talking 0.87

two dogs are playing with each other 0.87

Ranking by Dependency Tree-LSTM model Score

a woman is slicing potatoes
a woman is cutting potatoes 4.82
potatoes are being sliced by a woman 4.70
tofu is being sliced by a woman 4.39

a boy is waving at some young runners from the ocean
a group of men is playing with a ball on the beach 3.79

a young boy wearing a red swimsuit is jumping out of a 3.37
blue kiddies pool

the man is tossing a kid into the swimming pool that is 3.19
near the ocean

two men are playing guitar
the man is singing and playing the guitar 4.08
the man is opening the guitar for donations and plays 4.01

with the case
two men are dancing and singing in front of a crowd 4.00

Table 4: Most similar sentences from a 1000-sentence sample drawn from the SICK test set. The Tree-
LSTM model is able to pick up on more subtle relationships, such as that between “beach” and “ocean”
in the second example.

Pennington et al., 2014) have found wide appli-
cability in a variety of NLP tasks. Following
this success, there has been substantial interest in
the area of learning distributed phrase and sen-
tence representations (Mitchell and Lapata, 2010;
Yessenalina and Cardie, 2011; Grefenstette et al.,
2013; Mikolov et al., 2013), as well as distributed
representations of longer bodies of text such as
paragraphs and documents (Srivastava et al., 2013;
Le and Mikolov, 2014).

Our approach builds on recursive neural net-
works (Goller and Kuchler, 1996; Socher et al.,
2011), which we abbreviate as Tree-RNNs in or-
der to avoid confusion with recurrent neural net-
works. Under the Tree-RNN framework, the vec-
tor representation associated with each node of
a tree is composed as a function of the vectors
corresponding to the children of the node. The
choice of composition function gives rise to nu-
merous variants of this basic framework. Tree-
RNNs have been used to parse images of natu-
ral scenes (Socher et al., 2011), compose phrase
representations from word vectors (Socher et al.,
2012), and classify the sentiment polarity of sen-
tences (Socher et al., 2013).

9 Conclusion

In this paper, we introduced a generalization of
LSTMs to tree-structured network topologies. The
Tree-LSTM architecture can be applied to trees
with arbitrary branching factor. We demonstrated
the effectiveness of the Tree-LSTM by applying
the architecture in two tasks: semantic relatedness

and sentiment classification, outperforming exist-
ing systems on both. Controlling for model di-
mensionality, we demonstrated that Tree-LSTM
models are able to outperform their sequential
counterparts. Our results suggest further lines of
work in characterizing the role of structure in pro-
ducing distributed representations of sentences.
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Abstract

We propose a convolutional neural net-
work, named genCNN, for word se-
quence prediction. Different from
previous work on neural network-
based language modeling and genera-
tion (e.g., RNN or LSTM), we choose
not to greedily summarize the history
of words as a fixed length vector. In-
stead, we use a convolutional neural
network to predict the next word with
the history of words of variable length.
Also different from the existing feed-
forward networks for language mod-
eling, our model can effectively fuse
the local correlation and global cor-
relation in the word sequence, with
a convolution-gating strategy specifi-
cally designed for the task. We argue
that our model can give adequate rep-
resentation of the history, and there-
fore can naturally exploit both the short
and long range dependencies. Our
model is fast, easy to train, and read-
ily parallelized. Our extensive exper-
iments on text generation and n-best
re-ranking in machine translation show
that genCNN outperforms the state-of-
the-arts with big margins.

1 Introduction

Both language modeling (Wu and Khudanpur,
2003; Mikolov et al., 2010; Bengio et al.,
2003) and text generation (Axelrod et al., 2011)
boil down to modeling the conditional proba-
bility of a word given the proceeding words.
Previously, it is mostly done through purely
memory-based approaches, such as n-grams,
which cannot deal with long sequences and has

to use some heuristics (called smoothing) for
rare ones. Another family of methods are based
on distributed representations of words, which
is usually tied with a neural-network (NN) ar-
chitecture for estimating the conditional prob-
abilities of words.

Two categories of neural networks have been
used for language modeling: 1) recurrent neu-
ral networks (RNN), and 2) feedfoward net-
work (FFN):

• The RNN-based models, including its
variants like LSTM, enjoy more popu-
larity, mainly due to their flexible struc-
tures for processing word sequences of ar-
bitrary lengths, and their recent empiri-
cal success(Sutskever et al., 2014; Graves,
2013). We however argue that RNNs,
with their power built on the recursive use
of a relatively simple computation units,
are forced to make greedy summarization
of the history and consequently not effi-
cient on modeling word sequences, which
clearly have a bottom-up structures.

• The FFN-based models, on the other
hand, avoid this difficulty by feeding di-
rectly on the history. However, the FFNs
are built on fully-connected networks,
rendering them inefficient on capturing
local structures of languages. Moreover
their “rigid” architectures make it futile to
handle the great variety of patterns in long
range correlations of words.

We propose a novel convolutional architec-
ture, named genCNN, as a model that can ef-
ficiently combine local and long range struc-
tures of language for the purpose of modeling
conditional probabilities. genCNN can be di-
rectly used in generating a word sequence (i.e.,
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αCNNβCNNβCNN…

“sandwich”?  

/     /   I was starving after this long meeting, so I rushed to wal-mart to buy ahistory:  

prediction:  

Figure 1: The overall diagram of a genCNN. Here “/” stands for a zero padding. In this example,
each CNN component covers 6 words, while in practice the coverage is 30-40 words.

text generation) or evaluating the likelihood of
word sequences (i.e., language modeling). We
also show the empirical superiority of genCNN
on both tasks over traditional n-grams and its
RNN or FFN counterparts.

Notations: We will use V to denote the vo-
cabulary, et (∈ {1, · · · , |V|}) to denote the tth

word in a sequence e1:t
def= [e1, · · · , et], and

e(n)
t if the sequence is further indexed by n.

2 Overview

As shown in Figure 1, genCNN is overall re-
cursive, consisting of CNN-based processing
units of two types:

• αCNN as the “front-end”, dealing with
the history that is closest to the prediction;

• βCNNs (which can repeat), in charge of
more “ancient” history.

Together, genCNN takes history e1:t of arbi-
trary length to predict the next word et+1 with
probability

p(et+1 |e1:t; Θ̄), (1)

based on a representation φ(e1:t; Θ̄) produced
by the CNN, and a |V|-class soft-max:

p(et+1|e1:t; Θ̄) ∝ eµ>et+1
φ(e1:t)+bet+1 . (2)

genCNN is devised (tailored) fully for mod-
eling the sequential structure in natural lan-
guage, notably different from conventional
CNN (Lawrence et al., 1997; Hu et al., 2014)
in 1) its specifically designed weights-sharing
strategy (in αCNN), 2) its gating design, and
3) certainly its recursive architectures. Also
distinct from RNN, genCNN gains most of

its processing power from the heavy-duty pro-
cessing units (i.e.,αCNN and βCNNs), which
follow a bottom-up information flow and yet
can adequately capture the temporal structure
in word sequence with its convolutional-gating
architecture.

3 genCNN: Architecture

We start with discussing the convolutional ar-
chitecture of αCNN as a stand-alone sentence
model, and then proceed to the recursive struc-
ture. After that we give a comparative analysis
on the mechanism of genCNN.
αCNN, just like a normal CNN, has fixed

architecture with predefined maximum words
(denoted as Lα). History shorter than Lα will
filled with zero paddings, and history longer
than that will be folded to feed to βCNN after
it, as will be elaborated in Section 3.3. Similar
to most other CNNs, αCNN alternates between
convolution layers and pooling layers, and fi-
nally a fully connected layer to reach the repre-
sentation before soft-max, as illustrated by Fig-
ure 2. Unlike the toyish example in Figure 2, in
practice we use a larger and deeper αCNN with
Lα = 30 or 40, and two or three convolution
layers (see Section 4.1). Different from con-
ventional CNN, genCNN has 1) weight shar-
ing strategy for convolution, and 2)“external”
gating networks to replace the normal pooling
mechanism, both of which are specifically de-
signed for word sequence prediction.

3.1 αCNN: Convolution

Different from conventional CNN, the weights
of convolution units in αCNN is only partially
shared. More specifically, in the convolution
units there are two types feature-maps: TIME-
FLOW and the TIME-ARROW, illustrated re-
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probability of next word

what did you have for/               /               /

“dinner” 
“breakfast” 
“us” 
“the”

… 

A 3-layer αCNN

Time-Flow         Time-Arrow           Gating                  

Figure 2: Illustration of a 3-layer αCNN.
Here the shadowed nodes stand for the TIME-
ARROW feature-maps and the unfilled nodes
for the TIME-FLOW.

spectively with the unfilled nodes and filled
nodes in Figure 2. The parameters for TIME-
FLOW are shared among different convolution
units, while for TIME-ARROW the parame-
ters are location-dependent. Intuitively, TIME-
FLOW acts more like a conventional CNN (e.g.,
that in (Hu et al., 2014)), aiming to understand
the overall temporal structure in the word se-
quences; TIME-ARROW, on the other hand,
works more like a traditional NN-based lan-
guage model (Vaswani et al., 2013; Bengio et
al., 2003): with its location-dependent param-
eters, it focuses on capturing the direction of
time and prediction task.

For sentence input x = {x1, · · · ,xT }, the
feature-map of type-f on Layer-` is
if f ∈ TIME-FLOW:

z
(`,f)
i (x) = σ(w(`,f)

TF ẑ(`−1)
i + b

(`,f)
TF ), (3)

if f ∈ TIME-ARROW:

z
(`,f)
i (x) = σ(w(`,f,i)

TA ẑ(`−1)
i + b

(`,f,i)
TA ), (4)

where

• z(`,f)
i (x) gives the output of feature-map

of type-f for location i in Layer-`;

• σ(·) is the activation function, e.g., Sig-
moid or Relu (Dahl et al., 2013)

• w(`,f)
TF denotes the location-independent

parameters for f ∈TIME-FLOW on Layer-
`, while w(`,f,i)

TA stands for that for f ∈
TIME-ARROW and location i on Layer-`;

• ẑ(`−1)
i denotes the segment of Layer-`−1

for the convolution at location i , while

ẑ(0)
i

def= [x>i , x>i+1, · · · , x>i+k1−1]>

concatenates the vectors for k1 words
from sentence input x.

3.2 Gating Network

Previous CNNs, including those for NLP
tasks (Hu et al., 2014; Kalchbrenner et al.,
2014), take a straightforward convolution-
pooling strategy, in which the “fusion” deci-
sions (e.g., selecting the largest one in max-
pooling) are based on the values of feature-
maps. This is essentially a soft template match-
ing, which works for tasks like classification,
but undesired for maintaining the composition
functionality of convolution. In this paper, we
propose to use separate gating networks to re-
lease the scoring duty from the convolution,
and let it focus on composition. Similar idea
has been proposed by (Socher et al., 2011) for
recursive neural networks on parsing, but never
been combined with a convolutional structure.

…

Layer-

Layer-

Layer-gating 

Figure 3: Illustration for gating network.

Suppose we have convolution feature-maps
on Layer-` and gating (with window size =
2) on Layer-`+1. For the jth gating win-
dow (2j−1, 2j), we merge ẑ(`−1)

2j−1 and ẑ(`−1)
2j as

the input (denoted as z̄(`)
j ) for gating network,

as illustrated in Figure 3. We use a separate
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gate for each feature-map, but follow a differ-
ent parametrization strategy for TIME-FLOW

and TIME-ARROW. With window size = 2, the
gating is binary, we use a logistic regressor to
determine the weights of two candidates. For
f ∈ TIME-ARROW, with location-dependent
w(`,f,j)

gate , the normalized weight for left side is

g
(`+1,f)
j = 1/(1 + e−w

(`,f,j)
gate z̄

(`)
j ),

while for For f∈TIME-FLOW, the parameters
for the corresponding gating network, denoted
as w(`,f)

gate , are shared. The gated feature map is
then a weighted sum to feature-maps from the
two windows:

z
(`+1,f)
j = g

(`+1,f)
j z

(`,f)
2j−1 + (1− g(`+1,f)

j )z
(`,f)
2j . (5)

We find that this gating strategy works signifi-
cantly better than pooling directly over feature-
maps, and slightly better than a hard gate ver-
sion of Equation 5

3.3 Recursive Architecture
As suggested early on in Section 2 and Fig-
ure 1, we use extra CNNs with conventional
weight-sharing, named βCNN, to summarize
the history out of scope of αCNN. More specif-
ically, the output of βCNN (with the same di-
mension of word-embedding) is put before the
first word as the input to the αCNN, as il-
lustrated in Figure 4. Different from αCNN,
βCNN is designed just to summarize the his-
tory, with weight shared across its convolution
units. In a sense, βCNN has only TIME-FLOW

feature-maps. All βCNN are identical and re-
cursively aligned, enabling genCNN to handle
sentences with arbitrary length. We put a spe-
cial switch after each βCNN to turn it off (re-
placing a pading vector shown as “/” in Fig-
ure 4 ) when there is no history assigned to it.
As the result, when the history is shorter than
Lα, the recursive structure reduces to αCNN.

In practice, 90+% sentences can be mod-
eled by αCNN with Lα = 40 and 99+% sen-
tences can be contained with one extra βCNN.
Our experiment shows that this recursive strat-
egy yields better estimate of conditional den-
sity than neglecting the out-of-scope history
(Section 6.1.2). In practice, we found that a
larger (greater Lα) and deeper αCNN works

αCNN

e5       e6 e7 e8       e7       e8 e9

…

βCNN 

“/ ”            

/ / / e1       e2       e3 e4

prediction for e10

Figure 4: genCNN with recursive structure.

better than small αCNN and more recursion,
which is consistent with our intuition that the
convolutional architecture is better suited for
modeling the sequence.

3.4 Analysis

3.4.1 TIME-FLOW vs. TIME-ARROW

Both conceptually and systemically, genCNN
gives two interweaved treatments of word his-
tory. With the globally-shared parameters in
the convolution units, TIME-FLOW summa-
rizes what has been said. The hierarchi-
cal convolution+gating architecture in TIME-
FLOW enables it to model the composition in
language, yielding representation of segments
at different intermediate layers. TIME-FLOW

is aware of the sequential direction, inherited
from the space-awareness of CNN, but it is not
sensitive enough about the prediction task, due
to the uniform weights in the convolution.

On the other hand, TIME-ARROW, living
in location-dependent parameters of convolu-
tion units, acts like an arrow pin-pointing the
prediction task. TIME-ARROW has predictive
power all by itself, but it concentrates on cap-
turing the direction of time and consequently
short on modelling the long-range dependency.

TIME-FLOW and TIME-ARROW have to
work together for optimal performance in pre-
dicting what is going to be said. This intuition
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has been empirically verified, as our experi-
ments have demonstrated that TIME-FLOW or
TIME-ARROW alone perform inferiorly. One
can imagine, through the layer-by-layer convo-
lution and gating, the TIME-ARROW gradually
picks the most relevant part from the represen-
tation of TIME-FLOW for the prediction task,
even if that part is long distance ahead.

3.4.2 genCNN vs. RNN-LM
Different from RNNs, which recursively ap-
plies a relatively simple processing units,
genCNN gains its ability on sequence mod-
eling mostly from its flexible and power-
ful bottom-up and convolution architecture.
genCNN takes the “uncompressed” history,
therefore avoids

• the difficulty in finding the representation
for history, e.g., those end in the middle of
a chunk (e.g.,“the cat sat on the”),

• the damping effort in RNN when the
history-summarizing hidden state is up-
dated at each time stamp, which renders
the long-range memory rather difficult,

both of which can only be partially ameliorated
with complicated design of gates (Hochreiter
and Schmidhuber, 1997) and or more heavy
processing units (essentially a fully connected
DNN) (Sutskever et al., 2014).

4 genCNN: Training

The parameters of a genCNN Θ̄ consists of
the parameters for CNN Θnn, word-embedding
Θembed, and the parameters for soft-max
Θsoftmax. All the parameters are jointly
learned by maximizing the likelihood of ob-
served sentences. Formally the log-likelihood
of sentence Sn ( def= [e(n)

1 , e(n)
2 , · · · , e(n)

Tn
]) is

log p(Sn; Θ̄) =
Tn∑
t=1

log p(e(n)
t |e(n)

1:t−1; Θ̄),

which can be trivially split into Tn training in-
stances during the optimization, in contrast to
the training of RNN that requires unfolding
through time due to the temporal-dependency
of the hidden states.

4.1 Implementation Details

Architectures: In all of our experiments
(Section 5 and 6) we set the maximum words
for αCNN to be 30 and that for βCNN to be 20.
αCNN have two convolution layers (both con-
taining TIME-FLOW and TIME-ARROW con-
volution) and two gating layers, followed by
a fully connected layer (400 dimension) and
then a soft-max layer. The numbers of feature-
maps for TIME-FLOW are respectively 150
(1st convolution layer) and 100 (2nd convolu-
tion layer), while TIME-ARROW has the same
feature-maps. βCNN is relatively simple, with
two convolution layer containing only TIME-
FLOW with 150 feature-maps, two gating lay-
ers and a fully connected layer. We use ReLU
as the activation function for convolution lay-
ers and switch to Sigmoid for fully connected
layers. We use word embedding with dimen-
sion 100.

Soft-max: Calculating a full soft-max is ex-
pensive since it has to enumerate all the words
in vocabulary (in our case 40K words) in the
denominator. Here we take a simple hierarchi-
cal approximation of it, following (Bahdanau
et al., 2014). Basically we group the words
into 200 clusters (indexed by cm), and factor-
ize (in an approximate sense) the conditional
probability of a word p(et|e1:t−1; Θ̄) into the
probability of its cluster and the probability of
et given its cluster

p(cm|e1:t−1; Θ̄) p(et|cm; Θsoftmax).

We found that this simple heuristic can speed-
up the optimization by 5 times with only slight
loss of accuracy.

Optimization: We use stochastic gradient
descent with mini-batch (size 500) for opti-
mization, aided further by AdaGrad (Duchi
et al., 2011). For initialization, we use
Word2Vec (Mikolov et al., 2013) for the start-
ing state of the word-embeddings (trained on
the same dataset as the main task), and set
all the other parameters by randomly sampling
from uniform distribution in [−0.1, 0.1]. The
optimization is done mainly on a Tesla K40
GPU, which takes about 2 days for the train-
ing on a dataset containing 1M sentences.
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5 Experiments: Sentence Generation

In this experiment, we randomly generate sen-
tences by recurrently sampling

e?t+1 ∼ p(et+1|e1:t; Θ̄),

and put the newly generated word into history,
until EOS (end-of-sentence) is generated. We
consider generating two types of sentences: 1)
the plain sentences, and 2) sentences with de-
pendency parsing, which will be covered re-
spectively in Section 5.1 and 5.2.

5.1 Natural Sentences

We train genCNN on Wiki data with 112M
words for one week, with some representative
examples randomly generated given in Table 1
(upper and middle blocks). We try two settings,
by letting genCNN generate a sentence 1)from
the very beginning (middle block), or 2) start-
ing with a few words given by human (upper
block). It is fairly clear that most of the time
genCNN can generate sentences that are syn-
tactically grammatical and semantically mean-
ingful. More specifically, most of the sentences
can be aligned to a parse tree with reasonable
structure. It is also worth noting that quotation
marks (‘‘ and ’’) are always generated in pairs
and in the correct order, even across a relatively
long distance, as exemplified by the first gener-
ated sentence in the upper block.

5.2 Sentences with Dependency Tags

For training, we first parse(Klein and Man-
ning, 2002) the English sentences and feed se-
quences with dependency tags as follows

( I ? like ( red ? apple ) )

to genCNN in training, where 1) each paired
parentheses contain a subtree, and 2) the sym-
bol “?” indicates that the word next to it is
the dependency head in the corresponding sub-
tree. Some representative examples gener-
ated by genCNN are given in Table 1 (bottom
block). As it suggests, genCNN is fairly ac-
curate on respecting the rules of parentheses,
and probably more remarkably, it can get the
dependency tree head right most of the time.

6 Experiments: Language Modeling

We evaluate our model as a language model in
terms of both perplexity (Brown et al., 1992)
and its efficacy in re-ranking the n-best can-
didates from state-of-the-art models in statisti-
cal machine translation, with comparison to the
following competitor language models.

Competitor Models we compare genCNN
to the following competitor models

• 5-gram: We use SRI Language Modeling
Toolkit (Stolcke and others, 2002) to train
a 5-gram language model with modified
Kneser-Ney smoothing;

• FFN-LM: The neural language model
based on feedfoward network (Vaswani et
al., 2013). We vary the input window-size
from 5 to 20, while the performance stops
increasing after window size 20;

• RNN: we use the implementation1 of
RNN-based language model with hidden
size 600;

• LSTM: we adopt the code in Ground-
hog2, but vary the hyper-parameters,
including the depth and word-embedding
dimension, for best performance.
LSTM (Hochreiter and Schmidhuber,
1997) is widely considered to be the
state-of-the-art for sequence modeling.

6.1 Perplexity
We test the performance of genCNN on PENN

TREEBANK and FBIS, two public datasets
with different sizes.

6.1.1 On PENN TREEBANK

Although a relatively small dataset 3, PENN

TREEBANK is widely used as a language mod-
elling benchmark (Graves, 2013; Mikolov et
al., 2010). It has 930, 000 words in train-
ing set, 74, 000 words in validation set, and
82, 000 words in test set. We use exactly the
same settings as in (Mikolov et al., 2010),
with a 10, 000-words vocabulary (all out-of-
vocabulary words are replaced with unknown)

1http://rnnlm.org/
2https://github.com/lisa-groundhog/GroundHog
3http://www.fit.vutbr.cz/∼imikolov/rnnlm/simple-

examples.tgz
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‘‘ we are in the building of china ’s social development and the businessmen

audience , ’’ he said .

clinton was born in DDDD , and was educated at the university of edinburgh.

bush ’s first album , ‘‘ the man ’’ , was released on DD november DDDD .

it is one of the first section of the act in which one is covered in real

place that recorded in norway .

this objective is brought to us the welfare of our country

russian president putin delivered a speech to the sponsored by the 15th asia

pacific economic cooperation ( apec ) meeting in an historical arena on oct .

light and snow came in kuwait and became operational , but was rarely

placed in houston .

johnson became a drama company in the DDDDs , a television broadcasting

company owned by the broadcasting program .

( ( the two ? sides ) ? should ( ? assume ( a strong ? target ) ) ) . )

( it ? is time ( ? in ( every ? country ) ? signed ( the ? speech ) ) . )

( ( initial ? investigations ) ? showed ( ? that ( spot ? could ( ? be (

further ? improved significantly ) ) . )

( ( a ? book ( to ? northern ( the 21 st ? century ) ) ) . )

Table 1: Examples of sentences generated by genCNN. In the upper block (row 1-4) the underline
words are given by the human; In the middle block (row 5-8), all the sentences are generated
without any hint. The bottom block (row 9-12) shows the sentences with dependency tag generated
by genCNN trained with parsed examples.

and end-of-sentence token (EOS) at the end of
each sentence. In addition to the conventional
testing strategy where the models are kept un-
changed during testing, Mikolov et al. (2010)
proposes to also update the parameters in an
online fashion when seeing test sentences. This
new way of testing, named “dynamic evalua-
tion”, is also adopted by Graves (2013).

From Table 2 genCNN manages to give per-
plexity superior in both metrics, with about 25
point reduction over the widely used 5-gram,
and over 10 point reduction from LSTM, the
state-of-the-art and the second-best performer.

6.1.2 On FBIS
The FBIS corpus (LDC2003E14) is relatively
large, with 22.5K sentences and 8.6M English
words. The validation set is NIST MT06 and
test set is NIST MT08. For training the neural
network, we limit the vocabulary to the most
frequent 40,000 words, covering ∼ 99.4% of
the corpus. Similar to the first experiment,
all out-of-vocabulary words are replaced with
unknown and the EOS token is counted in the
sequence loss.

From Table 3 (upper block), genCNN

Model Perplexity Dynamic
5-gram, KN5 141.2 –
FFNN-LM 140.2 –
RNN 124.7 123.2
LSTM 126 117
genCNN 116.4 106.3

Table 2: PENN TREEBANK results, where the
3rd column are the perplexity in dynamic eval-
uation, while the numbers for RNN and LSTM
are taken as reported in the paper cited above.
The numbers in boldface indicate that the re-
sult is significantly better than all competitors
in the same setting.

clearly wins again in the comparison to com-
petitors, with over 25 point margin over LSTM
(in its optimal setting), the second best per-
former. Interestingly genCNN outperforms its
variants also quite significantly (bottom block):
1) with only TIME-ARROW (same number
of feature-maps), the performance deteriorates
considerably for losing the ability of capturing
long range correlation reliably; 2) with only
TIME-TIME the performance gets even worse,
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Model Perplexity
5-gram, KN5 278.6
FFN-LM(5-gram) 248.3
FFN-LM(20-gram) 228.2
RNN 223.4
LSTM 206.9
genCNN 181.2
TIME-ARROW only 192
TIME-FLOW only 203
αCNN only 184.4

Table 3: FBIS results. The upper block
(row 1-6) compares genCNN and the competi-
tor models, and the bottom block (row 7-9)
compares different variants of genCNN.

for partially losing the sensitivity to the predic-
tion task. It is quite remarkable that, although
αCNN (with Lα = 30) can achieve good re-
sults, the recursive structure in full genCNN
can further decrease the perplexity by over
3 points, indicating that genCNN can benefit
from modeling the dependency over range as
long as 30 words.

6.2 Re-ranking for Machine Translation

In this experiment, we re-rank the 1000-best
English translation candidates for Chinese sen-
tences generated by statistical machine transla-
tion (SMT) system, and compare it with other
language models in the same setting.

SMT setup The baseline hierarchical phrase-
based SMT system ( Chines→ English) was
built using Moses, a widely accepted state-
of-the-art, with default settings. The bilin-
gual training data is from NIST MT2012 con-
strained track, with reduced size of 1.1M sen-
tence pairs using selection strategy in (Axel-
rod et al., 2011). The baseline use conven-
tional 5-gram language model (LM), estimated
with modified Kneser-Ney smoothing (Chen
and Goodman, 1996) on the English side of the
329M-word Xinhua portion of English Giga-
word(LDC2011T07). We also try FFN-LM, as
a much stronger language model in decoding.
The weights of all the features are tuned via
MERT (Och and Ney, 2002) on NIST MT05,
and tested on NIST MT06 and MT08. Case-

Models MT06 MT08 Ave.
Baseline 38.63 31.11 34.87
RNN rerank 39.03 31.50 35.26
LSTM rerank 39.20 31.90 35.55
FFN-LM rerank 38.93 31.41 35.14
genCNN rerank 39.90 32.50 36.20
Base+FFN-LM 39.08 31.60 35.34
genCNN rerank 40.4 32.85 36.63

Table 4: The results for re-ranking the 1000-
best of Moses. Note that the two bottom rows
are on a baseline with enhanced LM.

insensitive NIST BLEU4 is used in evaluation.
Re-ranking with genCNN significantly im-

proves the quality of the final translation. In-
deed, it can increase the BLEU score by over
1.33 point over Moses baseline on average.
This boosting force barely slacks up on trans-
lation with a enhanced language model in de-
coding: genCNN re-ranker still achieves 1.29
point improvement on top of Moses with FFN-
LM, which is 1.76 point over the Moses (de-
fault setting). To see the significance of this
improvement, the state-of-the-art Neural Net-
work Joint Model (Devlin et al., 2014) usually
brings less than one point increase on this task.

7 Related Work

In addition to the long thread of work on neu-
ral network based language model (Auli et al.,
2013; Mikolov et al., 2010; Graves, 2013; Ben-
gio et al., 2003; Vaswani et al., 2013), our work
is also related to the effort on modeling long
range dependency in word sequence predic-
tion(Wu and Khudanpur, 2003). Different from
those work on hand-crafting features for incor-
porating long range dependency, our model can
elegantly assimilate relevant information in an
unified way, in both long and short range, with
the bottom-up information flow and convolu-
tional architecture.

CNN has been widely used in computer
vision and speech (Lawrence et al., 1997;
Krizhevsky et al., 2012; LeCun and Bengio,
1995; Abdel-Hamid et al., 2012), and lately
in sentence representation(Kalchbrenner and

4ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-
v11b.pl
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Blunsom, 2013), matching(Hu et al., 2014) and
classification(Kalchbrenner et al., 2014). To
our best knowledge, it is the first time this is
used in word sequence prediction. Model-wise
the previous work that is closest to genCNN is
the convolution model for predicting moves in
the Go game (Maddison et al., 2014), which,
when applied recurrently, essentially gener-
ates a sequence. Different from the conven-
tional CNN taken in (Maddison et al., 2014),
genCNN has architectures designed for mod-
eling the composition in natural language and
the temporal structure of word sequence.

8 Conclusion

We propose a convolutional architecture for
natural language generation and modeling. Our
extensive experiments on sentence generation,
perplexity, and n-best re-ranking for machine
translation show that our model can signifi-
cantly improve upon state-of-the-arts.
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Abstract

We propose Neural Responding Ma-
chine (NRM), a neural network-based re-
sponse generator for Short-Text Conver-
sation. NRM takes the general encoder-
decoder framework: it formalizes the gen-
eration of response as a decoding process
based on the latent representation of the in-
put text, while both encoding and decod-
ing are realized with recurrent neural net-
works (RNN). The NRM is trained with
a large amount of one-round conversation
data collected from a microblogging ser-
vice. Empirical study shows that NRM
can generate grammatically correct and
content-wise appropriate responses to over
75% of the input text, outperforming state-
of-the-arts in the same setting, including
retrieval-based and SMT-based models.

1 Introduction

Natural language conversation is one of the
most challenging artificial intelligence problems,
which involves language understanding, reason-
ing, and the utilization of common sense knowl-
edge. Previous works in this direction mainly fo-
cus on either rule-based or learning-based meth-
ods (Williams and Young, 2007; Schatzmann et
al., 2006; Misu et al., 2012; Litman et al., 2000).
These types of methods often rely on manual effort
in designing rules or automatic training of model
with a particular learning algorithm and a small
amount of data, which makes it difficult to develop
an extensible open domain conversation system.

Recently due to the explosive growth of mi-
croblogging services such as Twitter1 and Weibo2,
the amount of conversation data available on the
web has tremendously increased. This makes a

1https://twitter.com/.
2http://www.weibo.com/.

data-driven approach to attack the conversation
problem (Ji et al., 2014; Ritter et al., 2011) pos-
sible. Instead of multiple rounds of conversation,
the task at hand, referred to as Short-Text Conver-
sation (STC), only considers one round of conver-
sation, in which each round is formed by two short
texts, with the former being an input (referred to as
post) from a user and the latter a response given by
the computer. The research on STC may shed light
on understanding the complicated mechanism of
natural language conversation.

Previous methods for STC fall into two cat-
egories, 1) the retrieval-based method (Ji et al.,
2014), and 2) the statistical machine translation
(SMT) based method (Sordoni et al., 2015; Rit-
ter et al., 2011). The basic idea of retrieval-
based method is to pick a suitable response by
ranking the candidate responses with a linear or
non-linear combination of various matching fea-
tures (e.g. number of shared words). The main
drawbacks of the retrieval-based method are the
following
• the responses are pre-existing and hard to cus-

tomize for the particular text or requirement
from the task, e.g., style or attitude.

• the use of matching features alone is usu-
ally not sufficient for distinguishing posi-
tive responses from negative ones, even after
time consuming feature engineering. (e.g., a
penalty due to mismatched named entities is
difficult to incorporate into the model)

The SMT-based method, on the other hand, is
generative. Basically it treats the response genera-
tion as a translation problem, in which the model is
trained on a parallel corpus of post-response pairs.
Despite its generative nature, the method is intrin-
sically unsuitable for response generation, because
the responses are not semantically equivalent to
the posts as in translation. Actually one post can
receive responses with completely different con-
tent, as manifested through the example in the fol-
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lowing figure:

Post Having my fish sandwich right now
UserA For god’s sake, it is 11 in the morning
UserB Enhhhh... sounds yummy
UserC which restaurant exactly?

Empirical studies also showed that SMT-based
methods often yield responses with grammatical
errors and in rigid forms, due to the unnecessary
alignment between the “source” post and the “tar-
get” response (Ritter et al., 2011). This rigid-
ity is still a serious problem in the recent work
of (Sordoni et al., 2015), despite its use of neu-
ral network-based generative model as features in
decoding.

1.1 Overview
In this paper, we take a probabilistic model to ad-
dress the response generation problem, and pro-
pose employing a neural encoder-decoder for this
task, named Neural Responding Machine (NRM).
The neural encoder-decoder model, as illustrated
in Figure 1, first summarizes the post as a vector
representation, then feeds this representation to a
decoder to generate responses. We further gener-
alize this scheme to allow the post representation
to dynamically change during the generation pro-
cess, following the idea in (Bahdanau et al., 2014)
originally proposed for neural-network-based ma-
chine translation with automatic alignment.

Encoder 

Having my fish sandwich right now 

For god's sake, it is 11 in the morning 

Decoder 

Enhhhh... sounds yummy which restaurant exactly? 

vector 

Figure 1: The diagram of encoder-decoder frame-
work for automatic response generation.

NRM essentially estimates the likelihood of a
response given a post. Clearly the estimated prob-
ability should be complex enough to represent all
the suitable responses. Similar framework has
been used for machine translation with a remark-
able success (Kalchbrenner and Blunsom, 2013;
Auli et al., 2013; Sutskever et al., 2014; Bah-
danau et al., 2014). Note that in machine trans-

lation, the task is to estimate the probability of a
target language sentence conditioned on the source
language sentence with the same meaning, which
is much easier than the task of STC which we
are considering here. In this paper, we demon-
strate that NRM, when equipped with a reasonable
amount of data, can yield a satisfying estimator of
responses (hence response generator) for STC, de-
spite the difficulty of the task.

Our main contributions are two-folds: 1) we
propose to use an encoder-decoder-based neu-
ral network to generate a response in STC; 2)
we have empirically verified that the proposed
method, when trained with a reasonable amount of
data, can yield performance better than traditional
retrieval-based and translation-based methods.

1.2 RoadMap

In the remainder of this paper, we start with in-
troducing the dataset for STC in Section 2. Then
we elaborate on the model of NRM in Section 3,
followed by the details on training in Section 4.
After that, we report the experimental results in
Section 5. In Section 6 we conclude the paper.

2 The Dataset for STC

Our models are trained on a corpus of roughly 4.4
million pairs of conversations from Weibo 3.

2.1 Conversations on Sina Weibo

Weibo is a popular Twitter-like microblogging ser-
vice in China, on which a user can post short mes-
sages (referred to as post in the reminder of this
paper) visible to the public or a group of users fol-
lowing her/him. Other users make comment on a
published post, which will be referred to as a re-
sponse. Just like Twitter, Weibo also has the length
limit of 140 Chinese characters on both posts and
responses, making the post-response pair an ideal
surrogate for short-text conversation.

2.2 Dataset Description

To construct this million scale dataset, we first
crawl hundreds of millions of post-response pairs,
and then clean the raw data in a similar way as
suggested in (Wang et al., 2013), including 1) re-
moving trivial responses like “wow”, 2) filtering
out potential advertisements, and 3) removing the
responses after first 30 ones for topic consistency.
Table 1 shows some statistics of the dataset used

3http://www.noahlab.com.hk/topics/ShortTextConversation
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Training
#posts 219,905
#responses 4,308,211
#pairs 4,435,959

Test Data #test posts 110

Labeled Dataset
(retrieval-based)

#posts 225
#responses 6,017
#labeled pairs 6,017

Fine Tuning
(SMT-based)

#posts 2,925
#responses 3,000
#pairs 3,000

Table 1: Some statistics of the dataset. Labeled
Dataset and Fine Tuning are used by retrieval-
based method for learning to rank and SMT-based
method for fine tuning, respectively.

in this work. It can be seen that each post have 20
different responses on average. In addition to the
semantic gap between post and its responses, this
is another key difference to a general parallel data
set used for traditional translation.

3 Neural Responding Machines for STC

The basic idea of NRM is to build a hidden rep-
resentation of a post, and then generate the re-
sponse based on it, as shown in Figure 2. In
the particular illustration, the encoder converts
the input sequence x = (x1, · · · , xT ) into a set
of high-dimensional hidden representations h =
(h1, · · · , hT ), which, along with the attention sig-
nal at time t (denoted as αt), are fed to the context-
generator to build the context input to decoder at
time t (denoted as ct). Then ct is linearly trans-
formed by a matrix L (as part of the decoder) into
a stimulus of generating RNN to produce the t-th
word of response (denoted as yt).

In neural translation system, L converts the rep-
resentation in source language to that of target lan-
guage. In NRM, L plays a more difficult role: it
needs to transform the representation of post (or
some part of it) to the rich representation of many
plausible responses. It is a bit surprising that this
can be achieved to a reasonable level with a linear
transformation in the “space of representation”, as
validated in Section 5.3, where we show that one
post can actually invoke many different responses
from NRM.

The role of attention signal is to determine
which part of the hidden representation h should
be emphasized during the generation process. It
should be noted that αt could be fixed over time or

Encoder 

Context Generator 

Decoder 

Attention Signal 

Figure 2: The general framework and dataflow of
the encoder-decoder-based NRM.

changes dynamically during the generation of re-
sponse sequence y. In the dynamic settings, αt

can be function of historically generated subse-
quence (y1, · · · , yt−1), input sequence x or their
latent representations, more details will be shown
later in Section 3.2.

We use Recurrent Neural Network (RNN) for
both encoder and decoder, for its natural ability
to summarize and generate word sequence of ar-
bitrary lengths (Mikolov et al., 2010; Sutskever et
al., 2014; Cho et al., 2014).

 

 

 

Figure 3: The graphical model of RNN decoder.
The dashed lines denote the variables related to the
function g(·), and the solid lines denote the vari-
ables related to the function f(·).

3.1 The Computation in Decoder

Figure 3 gives the graphical model of the de-
coder, which is essentially a standard RNN lan-
guage model except conditioned on the context in-
put c. The generation probability of the t-th word
is calculated by

p(yt|yt−1, · · · , y1,x) = g(yt−1, st, ct),
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where yt is a one-hot word representation, g(·) is
a softmax activation function, and st is the hidden
state of decoder at time t calculated by

st = f(yt−1, st−1, ct),

and f(·) is a non-linear activation function and
the transformation L is often assigned as pa-
rameters of f(·). Here f(·) can be a logistic
function, the sophisticated long short-term mem-
ory (LSTM) unit (Hochreiter and Schmidhuber,
1997), or the recently proposed gated recurrent
unit (GRU) (Chung et al., 2014; Cho et al., 2014).
Compared to “ungated” logistic function, LSTM
and GRU are specially designed for its long term
memory: it can store information over extended
time steps without too much decay. We use GRU
in this work, since it performs comparably to
LSTM on squence modeling (Chung et al., 2014;
Greff et al., 2015), but has less parameters and eas-
ier to train.

We adopt the notation of GRU from (Bahdanau
et al., 2014), the hidden state st at time t is a linear
combination of its previous hidden state st−1 and
a new candidate state ŝt:

st = (1 − zt) ◦ st−1 + zt ◦ ŝt,

where ◦ is point-wise multiplication, zt is the up-
date gate calculated by

zt = σ (Wze(yt−1) + Uzst−1 + Lzct) , (1)

and ŝt is calculated by

ŝt=tanh (We(yt−1) + U(rt ◦ st−1) + Lct) , (2)

where the reset gate rt is calculated by

rt = σ (Wre(yt−1) + Urst−1 + Lrct) . (3)

In Equation (1)-(2), and (3), e(yt−1) is word em-
bedding of the word yt−1, L = {L,Lz, Lr} spec-
ifies the transformations to convert a hidden rep-
resentation from encoder to that of decoder. In
the STC task, L should have the ability to trans-
form one post (or its segments) to multiple differ-
ent words of appropriate responses.

3.2 The Computation in Encoder

We consider three types of encoding schemes,
namely 1) the global scheme, 2) the local scheme,
and the hybrid scheme which combines 1) and 2).

Global Scheme: Figure 4 shows the graphical
model of the RNN-encoder and related context
generator for a global encoding scheme. The
hidden state at time t is calculated by ht =
f(xt, ht−1) (i.e. still GRU unit), and with a trivial
context generation operation, we essentially use
the final hidden state hT as the global represen-
tation of the sentence. The same strategy has been
taken in (Cho et al., 2014) and (Sutskever et al.,
2014) for building the intermediate representation
for machine translation. This scheme however has
its drawbacks: a vectorial summarization of the
entire post is often hard to obtain and may lose im-
portant details for response generation, especially
when the dimension of the hidden state is not big
enough4. In the reminder of this paper, a NRM
with this global encoding scheme is referred to as
NRM-glo.

 

Context Generator 

Figure 4: The graphical model of the encoder in
NRM-glo, where the last hidden state is used as
the context vector ct = hT .

Local Scheme: Recently, Bahdanau et al.
(2014) and Graves (2013) introduced an attention
mechanism that allows the decoder to dynamically
select and linearly combine different parts of the
input sequence ct =

∑T
j=1 αtjhj , where weight-

ing factors αtj determine which part should be se-
lected to generate the new word yt, which in turn
is a function of hidden states αtj = q(hj , st−1),
as pictorially shown in Figure 5. Basically, the at-
tention mechanism αtj models the alignment be-
tween the inputs around position j and the output
at position t, so it can be viewed as a local match-
ing model. This local scheme is devised in (Bah-
danau et al., 2014) for automatic alignment be-

4Sutskever et al. (2014) has to use 4, 000 dimension for
satisfying performance on machine translation, while (Cho et
al., 2014) with a smaller dimension perform poorly on trans-
lating an entire sentence.
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tween the source sentence and the partial target
sentence in machine translation. This scheme en-
joys the advantage of adaptively focusing on some
important words of the input text according to the
generated words of response. A NRM with this
local encoding scheme is referred to as NRM-loc.

 

 

 

 

 

 

 

 

Attention Signal 

Context Generator 

Figure 5: The graphical model of the encoder in
NRM-loc, where the weighted sum of hidden sates
is used as the context vector ct =

∑T
j=1 αtjhj .

3.3 Extensions: Local and Global Model
In the task of STC, NRM-glo has the summariza-
tion of the entire post, while NRM-loc can adap-
tively select the important words in post for vari-
ous suitable responses. Since post-response pairs
in STC are not strictly parallel and a word in differ-
ent context can have different meanings, we con-
jecture that the global representation in NRM-glo
may provide useful context for extracting the local
context, therefore complementary to the scheme
in NRM-loc. It is therefore a natural extension
to combine the two models by concatenating their
encoded hidden states to form an extended hid-
den representation for each time stamp, as illus-
trated in Figure 6. We can see the summarization
hg

T is incorporated into ct and αtj to provide a
global context for local matching. With this hy-
brid method, we hope both the local and global in-
formation can be introduced into the generation of
response. The model with this context generation
mechanism is denoted as NRM-hyb.

It should be noticed that the context generator
in NRM-hyb will evoke different encoding mecha-
nisms in the global encoder and the local encoder,
although they will be combined later in forming
a unified representation. More specifically, the
last hidden state of NRM-glo plays a role differ-
ent from that of the last state of NRM-loc, since
it has the responsibility to encode the entire input

sentence. This role of NRM-glo, however, tends
to be not adequately emphasized in training the
hybrid encoder when the parameters of the two
encoding RNNs are learned jointly from scratch.
For this we use the following trick: we first ini-
tialize NRM-hyb with the parameters of NRM-loc
and NRM-glo trained separately, then fine tune the
parameters in encoder along with training the pa-
rameters of decoder.

global  encoder 

local  encoder 

 

Attention Signal 

C
o

n
te

x
t G

e
n

e
ra

to
r 

 

Figure 6: The graphical model for the encoder
in NRM-hyb, while context generator function is
ct =

∑T
j=1 αtj [hl

j ; h
g
T ], here [hl

j ; h
g
T ] denotes the

concatenation of vectors hl
j and hg

T

To learn the parameters of the model, we max-
imize the likelihood of observing the original re-
sponse conditioned on the post in the training set.
For a new post, NRMs generate their responses by
using a left-to-right beam search with beam size =
10.

4 Experiments

We evaluate three different settings of NRM de-
scribed in Section 3, namely NRM-glo, NRM-
loc, and NRM-hyb, and compare them to retrieval-
based and SMT-based methods.

4.1 Implementation Details
We use Stanford Chinese word segmenter 5 to split
the posts and responses into sequences of words.
Although both posts and responses are written in
the same language, the distributions on words for
the two are different: the number of unique words
in post text is 125,237, and that of response text is
679,958. We therefore construct two separate vo-
cabularies for posts and responses by using 40,000
most frequent words on each side, covering 97.8%

5http://nlp.stanford.edu/software/segmenter.shtml
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usage of words for post and 96.2% for response
respectively. All the remaining words are replaced
by a special token “UNK”. The dimensions of the
hidden states of encoder and decoder are both
1,000. Model parameters are initialized by ran-
domly sampling from a uniform distribution be-
tween -0.1 and 0.1. All our models were trained on
a NVIDIA Tesla K40 GPU using stochastic gra-
dient descent (SGD) algorithm with mini-batch.
The training stage of each model took about two
weeks.

4.2 Competitor Models

Retrieval-based: with retrieval-based models,
for any given post p∗, the response r∗ is retrieved
from a big post-response pairs (p, r) repository.
Such models rely on three key components: a big
repository, sets of feature functions Φi(p∗, (p, r)),
and a machine learning model to combine these
features. In this work, the whole 4.4 million
Weibo pairs are used as the repository, 14 fea-
tures, ranging from simple cosine similarity to
some deep matching models (Ji et al., 2014) are
used to determine the suitability of a post to a
given post p∗ through the following linear model

score(p∗, (p, r)) =
∑

i

ωiΦi(p∗, (p, r)). (4)

Following the ranking strategy in (Ji et al., 2014),
we pick 225 posts and about 30 retrieved re-
sponses for each of them given by a baseline re-
triever6 from the 4.4M repository, and manually
label them to obtain labeled 6,017 post-response
pairs. We use ranking SVM model (Joachims,
2006) for the parameters ωi based on the labeled
dataset. In comparison to NRM, only the top one
response is considered in the evaluation process.

SMT-based: In SMT-based models, the post-
response pairs are directly used as parallel data
for training a translation model. We use the most
widely used open-source phrase-based translation
model-Moses (Koehn et al., 2007). Another par-
allel data consisting of 3000 post-response pairs is
used to tune the system. In (Ritter et al., 2011),
the authors used a modified SMT model to obtain
the “Response” of Twitter “Stimulus”. The main
modification is in replacing the standard GIZA++
word alignment model (Och and Ney, 2003) with a
new phrase-pair selection method, in which all the

6we use the default similarity function of Lucene 7

possible phrase-pairs in the training data are con-
sidered and their associated probabilities are es-
timated by the Fisher’s Exact Test, which yields
performance slightly better than default setting8.
Compared to retrieval-based methods, the gener-
ated responses by SMT-based methods often have
fluency or even grammatical problems. In this
work, we choose the Moses with default settings
as our SMT model.

5 Results and Analysis

Automatic evaluation of response generation is
still an open problem. The widely accepted evalu-
ation methods in translation (e.g. BLEU score (Pa-
pineni et al., 2002)) do not apply, since the range
of the suitable responses is so large that it is prac-
tically impossible to give reference with adequate
coverage. It is also not reasonable to evaluate with
Perplexity, a generally used measurement in statis-
tical language modeling, because the naturalness
of response and the relatedness to the post can not
be well evaluated. We therefore resort to human
judgement, similar to that taken in (Ritter et al.,
2011) but with an important difference.

5.1 Evaluation Methods
We adopt human annotation to compare the per-
formance of different models. Five labelers with
at least three-year experience of Sina Weibo are in-
vited to do human evaluation. Responses obtained
from the five evaluated models are pooled and ran-
domly permuted for each labeler. The labelers are
instructed to imagine that they were the authors
of the original posts and judge whether a response
(generated or retrieved) is appropriate and natural
to a input post. Three levels are assigned to a re-
sponse with scores from 0 to 2:
• Suitable (+2): the response is evidently an ap-

propriate and natural response to the post;

• Neutral (+1): the response can be a suitable
response in a specific scenario;

• Unsuitable (0): it is hard or impossible to find
a scenario where response is suitable.

To make the annotation task operable, the suit-
ability of generated responses is judged from the
following five criteria:
(a) Grammar and Fluency: Responses should

be natural language and free of any fluency or
grammatical errors;

8Reported results showed that the new model outper-
formed the baseline SMT model 57.7% of the time.
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Post 
...  

There are always 8 players at the Italian restricted area. Unbelievable! 
Related Criterion Labels

Response1
 

I am a big fan of the Italy team, waiting for the football game to start 
Logic Consistency Unsuitable

Response2 
 

Italian food is absolutely delicious. 
Semantic Relevance Unsuitable

Response3
! 

Unbelievable! 
Generality Neutral 

Response4 
0 0  

Ha!Ha!Ha! it is still 0:0, no goal so far. 
Scenario Dependence Neutral

Response5
 

This is exactly the Italian defending style football game. 
Suitable

Figure 7: An example post and its five candidate responses with human annotation. The content of the
post implies that the football match is already started, while the author of Response1 is still waiting for
the match to start. Response2 talks about the food of Italy. Response3 is a widely used response, but it
is suitable to this post. Response4 states that the current score is still 0:0, it is a suitable response only in
this specific scenario.

Models Mean Score Suitable (+2) Neutral (+1) Unsuitable (0) Agreement
NRM-glo 0.969 34.0% 28.9% 37.1% 0.397
NRM-loc 1.065 36.0% 34.5% 29.5% 0.247
NRM-hyb 1.156 39.3% 37.1% 23.6% 0.309
Rtr.-based 0.984 29.8% 38.7% 31.5% 0.346
SMT-based 0.313 5.6 % 20.0% 74.4% 0.448

Table 2: The results of evaluated methods. Mean score is the average value of annotated scores over all
annotations. (Rtr.-based means the retrieval-based method)

ID Post NRM-glo NRM-loc NRM-hyb Rtr.-based 

1 
High fever attacks me Rest more to boost 

your immune system. 

Go to see a doctor Get well soon and stay 

healthy! 

2 I gain one more year. 

Grateful to my group, so 

happy  

Happy birthday! Will 

stand by you forever!  

Happy birthday! Wish 

you always stay young 

and pretty!  

Getting old now. Time 

has no mercy. 

I just gain only one 

more year. 

3 First day of being a 

vegetarian.  Hold on, 

CuiDuoLa

I come to offer my 

support. Keep it up!  

Hold on, keep it up. I have been being a 

vegetarian everyday  

Hold on! 

4 
We should go out with 

some cute guys to enjoy 

a great outing in such a 

nice weather. 

Where is it? It is so 

beautiful!

Such a nice sunny day! 

I am in a great mood. 

It is indeed a very nice 

weather.  

WenShan

to get some 

inspiration. Ha! Ha! 

Figure 8: Some responses generated by different models (originally in Chinese with their literal English
translation), where the words in boldfaces are entity names.
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(b) Logic Consistency: Responses should be log-
ically consistent with the test post;

(c) Semantic Relevance: Responses should be
semantically relevant to the test post;

(d) Scenario Dependence: Responses can de-
pend on a specific scenario but should not con-
tradict the first three criteria;

(e) Generality: Responses can be general but
should not contradict the first three criteria;

If any of the first three criteria (a), (b), and (c)
is contradicted, the generated response should be
labeled as “Unsuitable”. The responses that are
general or suitable to post in a specific scenario
should be labeled as “Neutral”. Figure 7 shows
an example of the labeling results of a post and its
responses. The first two responses are labeled as
“Unsuitable” because of the logic consistency and
semantic relevance errors. Response4 depends on
the scenario (i.e., the current score is 0:0), and is
therefore annotated as “Neutral”.

Model A Model B Average
rankings p value

NRM-loc NRM-glo (1.463, 1.537) 2.01%
NRM-hyb NRM-glo (1.434, 1.566) 0.01%
NRM-hyb NRM-loc (1.465, 1.535) 3.09%
Rtr.-based NRM-glo (1.512, 1.488) 48.1%
Rtr.-based NRM-loc (1.533, 1.467) 6.20%
Rtr.-based NRM-hyb (1.552, 1.448) 0.32%
SMT NRM-hyb (1.785, 1.215) 0.00 %
SMT Rtr.-based (1.738, 1.262) 0.00 %

Table 3: p-values and average rankings of Fried-
man test for pairwise model comparison. (Rtr.-
based means the retrieval-based method)

5.2 Results

Our test set consists of 110 posts that do not ap-
pear in the training set, with length between 6 to
22 Chinese words and 12.5 words on average. The
experimental results based on human annotation
are summarized in Table 2, consisting of the ra-
tio of three categories and the agreement among
the five labelers for each model. The agreement is
evaluated by Fleiss’ kappa (Fleiss, 1971), as a sta-
tistical measure of inter-rater consistency. Except
the SMT-based model, the value of agreement is
in a range from 0.2 to 0.4 for all the other mod-
els, which should be interpreted as “Fair agree-
ment”. The SMT-based model has a relatively

higher kappa value 0.448, which is larger than 0.4
and considered as “Moderate agreement”, since
the responses generated by the SMT often have the
fluency and grammatical errors, making it easy to
reach an agreement on such unsuitable cases.

From Table 2, we can see the SMT method per-
forms significantly worse than the retrieval-based
and NRM models and 74.4% of the generated re-
sponses were labeled as unsuitable mainly due to
fluency and relevance errors. This observation
confirms with our intuition that the STC dataset,
with one post potentially corresponding to many
responses, can not be simply taken as parallel cor-
pus in a SMT model. Surprisingly, more than 60%
of responses generated by all the three NRM are
labeled as “Suitable” or “Neutral”, which means
that most generated responses are fluent and se-
mantically relevant to post. Among all the NRM
variants

• NRM-loc outperforms NRM-glo, suggesting
that a dynamically generated context might
be more effective than a “static” fixed-length
vector for the entire post, which is consistent
with the observation made in (Bahdanau et al.,
2014) for machine translation;

• NRM-hyp outperforms NRM-loc and NRM-
glo, suggesting that a global representation of
post is complementary to dynamically gener-
ated local context.

The retrieval-based model has the similar mean
score as NRM-glo, and its ratio on neutral cases
outperforms all the other methods. This is be-
cause 1) the responses retrieved by retrieval-based
method are actually written by human, so they
do not suffer from grammatical and fluency prob-
lems, and 2) the combination of various feature
functions potentially makes sure the picked re-
sponses are semantically relevant to test posts.
However the picked responses are not customized
for new test posts, so the ratio of suitable cases is
lower than the three neural generation models.

To test statistical significance, we use the
Friedman test (Howell, 2010), which is a non-
parametric test on the differences of several re-
lated samples, based on ranking. Table 3 shows
the average rankings over all annotations and the
corresponding p-values for comparisons between
different pairs of methods. The comparison be-
tween retrieval-based and NRM-glo is not signif-
icant and their difference in ranking is tiny. This
indicates that the retrieval-based method is com-
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parable to the NRM-glo method. The NRM-hyb
outperforms all the other methods, and the differ-
ence is statistically significant (p < 0.05). The
difference between NRM-loc and retrieval-based
method is marginal (p = 0.062). SMT is signif-
icantly worse than retrieval-based and NRM-hyb
methods.

5.3 Case Study

Figure 8 shows some example responses gener-
ated by our NRMs (only the one with biggest
likelihood is given) and the comparable retrieval-
based model. It is intriguing to notice that three
NRM variants give suitable but quite distinct re-
sponses, with different perspectives and choices
of words. This, as we conjecture, is caused by
both the architecture variations among models as
well as the variations from random effects like
the initialization of parameters. Another interest-
ing observation is on the fourth example, where
the retrieval-based method returns a response with
the mismatched entity name “WenShan”, which
is actually a quite common problem for retrieval-
based model, where the inconsistency details (e.g.,
dates, named entities), which often render the re-
sponse unsuitable, cannot be adequately consid-
ered in the matching function employed in retriev-
ing the responses. In contrast, we observe that
NRMs tend to make general response and barely
generate those details.

Post 
 

First day of being a vegetarian.  Hold on, CuiDuoLa

R1
 

Hold on, Keep up your vegetarian diet. 

R2 Would you like to be healthy? Would you like to live 

long? If so, follow me on Weibo. 

R3
 

This is the so-called vegetarian diet ? 

R4

 

Eat up so that you will have enough energy to go for 

a diet! 

R5

 

Health is the essence for winning your future battles.  

No rush!  

Figure 9: Multiple responses generated by the
NRM-hyb.

We also use the NRM-hyb as an example to in-
vestigate the ability of NRM to generate multi-
ple responses. Figure 9 lists 5 responses to the

same post, which are gotten with beam search with
beam size = 500, among which we keep only the
best one (biggest likelihood) for each first word.
It can be seen that the responses are fluent, rele-
vant to the post, and still vastly different from each
other, validating our initial conjecture that NRM,
when fueled with large and rich training corpus,
could work as a generator that can cover a lot of
modes in its density estimation.

It is worth mentioning that automatic evaluation
metrics, such as BLEU (Papineni et al., 2002) as
adopted by machine translation and recently SMT-
based responding models (Sordoni et al., 2015), do
not work very well on this task, especially when
the reference responses are few. Our results show
that the average BLEU values are less than 2 for
all models discussed in this paper, including SMT-
based ones, on instances with single reference.
Probably more importantly, the ranking given by
the BLEU value diverges greatly from the human
judgment of response quality.

6 Conclusions and Future Work

In this paper, we explored using encoder-decoder-
based neural network system, with coined name
Neural Responding Machine, to generate re-
sponses to a post. Empirical studies confirm that
the newly proposed NRMs, especially the hybrid
encoding scheme, can outperform state-of-the-art
retrieval-based and SMT-based methods. Our pre-
liminary study also shows that NRM can generate
multiple responses with great variety to a given
post. In future work, we would consider adding
the intention (or sentiment) of users as an external
signal of decoder to generate responses with spe-
cific goals.
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Abstract

We propose an abstraction-based multi-
document summarization framework that
can construct new sentences by exploring
more fine-grained syntactic units than sen-
tences, namely, noun/verb phrases. Dif-
ferent from existing abstraction-based ap-
proaches, our method first constructs a
pool of concepts and facts represented by
phrases from the input documents. Then
new sentences are generated by selecting
and merging informative phrases to max-
imize the salience of phrases and mean-
while satisfy the sentence construction
constraints. We employ integer linear op-
timization for conducting phrase selection
and merging simultaneously in order to
achieve the global optimal solution for a
summary. Experimental results on the
benchmark data set TAC 2011 show that
our framework outperforms the state-of-
the-art models under automated pyramid
evaluation metric, and achieves reasonably
well results on manual linguistic quality
evaluation.

1 Introduction

Existing multi-document summarization (MDS)
methods fall in three categories: extraction-based,
compression-based and abstraction-based. Most

∗ The work described in this paper is substan-
tially supported by grants from the Research and De-
velopment Grant of Huawei Technologies Co. Ltd
(YB2013090068/TH138232) and the Research Grant Coun-
cil of the Hong Kong Special Administrative Region, China
(Project Codes: 413510 and 14203414).
The work was done when Weiwei Guo was in Columbia Uni-
versity

summarization systems adopt the extraction-
based approach which selects some original sen-
tences from the source documents to create a short
summary (Erkan and Radev, 2004; Wan et al.,
2007). However, the restriction that the whole sen-
tence should be selected potentially yields some
overlapping information in the summary. To this
end, some researchers apply compression on the
selected sentences by deleting words or phrases
(Knight and Marcu, 2000; Lin, 2003; Zajic et
al., 2006; Harabagiu and Lacatusu, 2010; Li
et al., 2015), which is the compression-based
method. Yet, these compressive summarization
models cannot merge facts from different source
sentences, because all the words in a summary
sentence are solely from one source sentence.

In fact, previous investigations show that
human-written summaries are more abstractive,
which can be regarded as a result of sentence ag-
gregation and fusion (Cheung and Penn, 2013;
Jing and McKeown, 2000). Some works, albeit
less popular, have studied abstraction-based ap-
proach that can construct a sentence whose frag-
ments come from different source sentences. One
important work developed by Barzilay and McK-
eown (2005) employed sentence fusion, followed
by (Filippova and Strube, 2008; Filippova, 2010).
These works first conduct clustering on sentences
to compute the salience of topical themes. Then,
sentence fusion is applied within each cluster of
related sentences to generate a new sentence con-
taining common information units of the sen-
tences. The abstractive-based approaches gather
information across sentence boundary, and hence
have the potential to cover more content in a more
concise manner.

In this paper, we propose an abstractive MDS
framework that can construct new sentences by
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Figure 1: The constituency tree of a sentence from a news document.

exploring more fine-grained syntactic units than
sentences, namely, noun/verb phrases (NPs/VPs).
This idea is based on two observations. First, the
major constituent phrases loosely correspond to
the concepts and facts. After reading a set of doc-
uments describing the same topic or event, a per-
son digests these documents as key concepts and
facts in his/her mind, such as “an armed man”
and “walked into an Amish school” from Figure
1. Second, a summary writer re-organizes the key
concepts and facts to form new sentences for the
summary. Accordingly, our proposed framework
has two major components corresponding to the
above observations. The first component creates a
pool of concepts and facts represented by NPs and
VPs from the input documents. A salience score
is computed for each phrase by exploiting redun-
dancy of the document content in a global man-
ner. The second component constructs new sen-
tences by selecting and merging phrases based on
their salience scores, and ensures the validity of
new sentences using a integer linear optimization
model.

The contribution of this paper is two folds. (1)
We extract NPs/VPs from constituency trees to
represent key concepts/facts, and merge them to
construct new sentences, which allows more sum-
mary content units (SCUs) (Nenkova and Passon-
neau, 2004) to be included in a sentence by break-
ing the original sentence boundaries. (2) The de-
signed optimization framework for addressing the
problem is unique and effective. Our optimiza-
tion algorithm simultaneously selects and merges
a set of phrases that maximize the number of cov-

ered SCUs in a summary. Meanwhile, since the
basic unit is phrases, we design compatibility re-
lations among NPs and VPs, as well as other op-
timization constraints, to ensure that the gener-
ated sentences contain correct facts. Compared
with the sentence fusion approaches that compute
salience scores of sentence clusters, our proposed
framework explores a more fine-grained textual
unit (i.e., phrases), and maximizes the salience of
selected phrases in a global manner.

2 Description of Our Framework

We first introduce how to extract NPs and VPs
from constituency trees, and subsequently calcu-
late salience scores for them. Then we formulate
the sentence generation task as an optimization
problem, and design constraints. In the end, we
perform several post-processing steps to improve
the order and the readability of the generated sen-
tences.

2.1 Phrase Salience Calculation

The first component decomposes the sentences in
documents into a set of noun phrases (NPs) de-
rived from the subject parts of a constituency tree
and a set of verb-object phrases (VPs), represent-
ing potential key concepts and key facts, respec-
tively. These phrases will serve as the basic ele-
ments for sentence generation.

We employ Stanford parser (Klein and Man-
ning, 2003) to obtain a constituency tree for each
input sentence. After that, we extract NPs and VPs
from the tree as follows: (1) The NPs and VPs that
are the direct children of the sentence node (repre-
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sented by the S node) are extracted. (2) VPs (NPs)
in a path on which all the nodes are VPs (NPs)
are also recursively extracted and regarded as hav-
ing the same parent node S. Recursive operation
in the second step will only be carried out in two
levels since the phrases in the lower levels may
not be able to convey a complete fact. Take the
tree in Figure 1 as an example, the corresponding
sentence is decomposed into phrases “An armed
man”, “walked into an Amish school, sent the boys
outside and tied up and shot the girls, killing three
of them”, “walked into an Amish school”, “sent
the boys outside”, and “tied up and shot the girls,
killing three of them”. 1 Because of the recursive
operation, the extracted phrases may have over-
laps. Later, we will show how to avoid such over-
lapping in phrase selection.

A salience score is calculated for each phrase to
indicate its importance. Different types of salience
can be incorporated in our framework, such as
position-based method (Yih et al., 2007), statis-
tical feature based method (Woodsend and Lap-
ata, 2012), concept-based method (Li et al., 2011),
etc. One key characteristic of our approach is
that the considered basic units are phrases instead
of sentences. Such finer granularity leaves more
room for better global salience score by poten-
tially covering more distinct facts. In our imple-
mentation, we adopt a concept-based weight in-
corporating the position information. The con-
cept set is designated to be the union set of un-
igrams, bigrams, and named entities in the docu-
ments. We remove stopwords and perform lemma-
tization before extracting unigrams and bigrams.
The position-based term frequency is used in the
concept weighting scheme. When counting the
frequency, each occurrence of a concept in an in-
put document is weighted with the paragraph po-
sition. The weight larger than 1 is given to the
concept occurrences in the first few paragraphs.
Specifically, the weight of the first paragraph is
B and the weight decreases as the position of the
paragraph increases from the beginning of the doc-

1We only consider the recursive operation for a VP with
more than one parallel sub-VPs, such as the highest VP in
Figure 1. The sub-VPs following modal, link or auxiliary
verbs are not extracted as individual VPs. In addition, we
also extract the clauses functioning as subjects of sentences
as NPs, such as “that clause”. Note that we also mention such
clauses as “noun phrase” although their syntactic labels could
be “SBAR” or “S”.

ument. The weighting function is:

H(p) =
{

ρp ∗B if p < −(logB/ log ρ)
1 otherwise

,

(1)
where p is the position of the paragraph starting
from 0, from beginning of the document, and ρ is
a positive constant and smaller than 1. Then, the
salience of a phrase is calculated as the summed
weights of its concepts.

2.2 New Sentence Construction Model
The construction of new sentences is formulated
as an optimization problem which is able to si-
multaneously generate a group of sentences. Each
new sentence is composed of one NP and at least
one VP, where the NP and VPs may come from
different source sentences. In the process of new
sentence generation, the compatibility relation be-
tween NP and VP and a variety of summarization
requirements are jointly considered.

2.2.1 Compatibility Relation
Compatibility relation is designed to indicate
whether an NP and a VP can be used to form a
new sentence. For example, the NP “Police” from
another sentence should not be the subject of the
VP “sent the boys outside” extracted from Figure
1. We use some heuristics to find compatibility,
and then expand the compatibility relation to more
phrases by extracting coreference.

To find coreference NPs (different mentions for
the same entity), we first conduct coreference res-
olution for each document with Stanford corefer-
ence resolution package (Lee et al., 2013). We
adopt those resolution rules that are able to achieve
high quality and address our need for summariza-
tion. In particular, Sieve 1, 2, 3, 4, 5, 9, and 10
in the package are used. A set of clusters are ob-
tained and each cluster contains the mentions that
refer to the same entity in a document. The clus-
ters from different documents in the same topic
are merged by matching the named entities. After
merging, the mentions that are not NPs extracted
in the phrase extraction step are removed in each
cluster. Two NPs in the same cluster are deter-
mined as alternative of each other.

To find alternative VPs, Jaccard Index is em-
ployed as the similarity measure. Specifically,
each VP is represented as a set of its concepts and
the index value is calculated for each pair of VPs.
If the value is larger than a threshold, the two VPs
are determined as alternative of each other.
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We then define an indicator matrix Γ|N||V|, in
which Γ[i, j] = 1 if an NP Ni and a VP Vj come
from the same node S in the constituency tree, oth-
erwise, Γ[i, j] = 0. Let Ñi and Ṽi represent the al-
ternative phrases of Ni and Vi as described above.
The compatibility matrix Γ̃|N||V| is defined as fol-
lows:

Γ̃[p, q] =


1 if Np ∈ Ñi ∧ Γ[i, q] = 1
1 if Vq ∈ Ṽj ∧ Γ[p, j] = 1
1 if Γ[p, q] = 1
0 otherwise

(2)

where Γ̃[p, q] = 1 means Np and Vq are compat-
ible/permitted for constructing a new sentence. Γ̃
is the final compatibility matrix that we use in the
optimization. The first case of Equation 2 implies
that if Np and Ni are coreferent, Np can replace
Ni and serve as the subject of Ni’s VP (i.e., Vq).
The second case implies that if Vq is very similar
to Vj , Vq can be concatenated to Vj’s NP (i.e.,Np).

2.2.2 Phrase-based Content Optimization
The overall objective function of our optimization
formulation to select NPs and VPs is defined as:

max{
∑
i

αiS
N
i −

∑
i<j

αij(SNi + SNj )RNij

+
∑
i

βiS
V
i −

∑
i<j

βij(SVi + SVj )RVij},

(3)

where αi and βi are selection indicators for the
NP Ni and the VP Vi, respectively. SNi and SVi
are the salience scores of Ni and Vi. αij and βij
are co-occurrence indicators of pairs (Ni, Nj) and
(Vi, Vj). RNij and RVij are the similarity of pairs
(Ni, Nj) and (Vi, Vj). IfNi andNj are coreferent,
RNij = 1. Otherwise, the similarity is calculated
with the above Jaccard Index based method. The
notations are summarized in Table 1.

Specifically, we maximize the salience score of
the selected NPs and VPs as indicated by the first
and the third terms in Equation 3, and penalize the
selection of similar NP pairs and similar VP pairs
as indicated by the second and the fourth terms.
Meanwhile, the phrase selection is governed by a
set of constraints so that the selected phrases can
generate valid sentences. The constraints will be
explained in details in Section 2.2.3.

One characteristic of our objective function is
that NPs and VPs are treated differently, i.e., there

Notation Description
Ni, Vi Noun phrase i and verb phrase i
αi, βi Selection indicators of Ni and Vi

αij , βij Co-occurrence indicators of pairs (Ni, Nj) and
(Vi, Vj)

SN
i , SV

i Salience scores of Ni and Vi

RN
ij , RV

ij Similarity of pair (Ni, Nj) and pair (Vi, Vj)
Γ|N||V| Γ[i, j] = 1 if Ni and Vj are from the same sen-

tence
Ñi, Ṽi The alternative phrases of Ni and Vi

Γ̃|N||V| Γ̃[i, j] = 1 means Ni and Vj are compatible for
being used to construct a new sentence

γ̃ij Sentence generation indicator for Ni and Vj if
Γ̃[i, j] = 1

Table 1: Notations.

are different selection/penalty terms for NP and
VP. Such design enables us to avoid the false
penalty between an NP and a VP. For example, the
algorithm produces two sentences: the first sen-
tence is “the gunman shot ...” with an NP “the
gunman”, and the other sentence has a VP “con-
firmed the gunman died”. Obviously, we should
not penalize the redundancy between them, be-
cause mentioning the gunman is necessary in both
sentences.

2.2.3 Sentence Generation Constraints
To summarize the related sentences in the docu-
ments, human writers usually merge the important
facts in different VPs about the same entity into a
single sentence, and omit the trivial facts. Also,
the same entity is likely to be described by coref-
erent NPs. Therefore, in our approach, only one
NP is selected and employed as the subject of the
newly generated sentence, which is then concate-
nated with the merged facts (i.e., VPs). If the com-
patibility entry Γ̃[i, j] for Ni and Vj is 1, we de-
fine a sentence generation indicator γ̃ij to indicate
whether both Ni and Vj are selected to construct a
new sentence in the summary.

We design the following groups of constraints
to realize our aim of phrase selection and new
sentence construction. The objective function and
constraints are linear, therefore the problem can
be solved by existing Integer Linear Programming
(ILP) solvers such as simplex algorithm (Dantzig
and Thapa, 1997).
NP validity. To maintain the consistency be-
tween the selection indicator α and the compati-
bility entry Γ̃ for NP Ni, we introduce two con-
straints as follows:

∀i, j, αi ≥ γ̃ij ; ∀i,
∑
j

γ̃ij ≥ αi. (4)

1590



These two constraints work together to ensure the
valid assignment of α according to the compatibil-
ity entry Γ̃.
VP legality. Similarly, the following require-
ment guarantees the consistency between the se-
lection indicator β and the compatibility entry Γ̃
for selected VP Vi:

∀j,
∑
i

γ̃ij = βj . (5)

The above two constraints jointly ensure that the
selected NPs and VPs are able to form new sum-
mary sentences according to the values of sentence
generation indicators.
Not i-within-i. Two phrases in the same
path of a constituency tree cannot be chosen at the
same time:

if ∃Vk  Vj , then βk + βj ≤ 1,
if ∃Nk  Nj , then αk + αj ≤ 1.

(6)

For example, “walked into an Amish school, sent
the boys outside and tied up and shot the girls,
killing three of them” and “walked into an Amish
school” cannot be both incorporated in the sum-
mary, because of the obvious redundancy.
Phrase co-occurrence. These constraints
control the co-occurrence relation of NPs or VPs.
For NPs, we introduce three constraints:

αij − αi ≤ 0, (7)

αij − αj ≤ 0, (8)

αi + αj − αij ≤ 1. (9)

Constraints 7 to 9 ensure a valid solution of NP
selection. The first two constraints state that if the
units Ni and Nj co-occur in the summary (i.e.,
αij = 1), then we have to include them individ-
ually (i.e., αi = 1 and αj = 1). The third con-
straint is the inverse of the first two. Similarly, the
constraints for VPs are as follows:

βij − βi ≤ 0, (10)

βij − βj ≤ 0, (11)

βi + βj − βij ≤ 1. (12)

Sentence number. In abstractive summariza-
tion, we do not prefer to generate many short sen-
tences. This is controlled by:∑

i

αi ≤ K, (13)

where K is the maximum number of sentences.

Short sentence avoidance. We do not
select the VPs from very short sentences because a
short sentence normally cannot convey a complete
key fact (Woodsend and Lapata, 2012).

if l(S) < M,Vi ∈ S, then βi = 0, (14)

where M is the threshold of the sentence length.
Pronoun avoidance. We exclude the NPs
that are pronouns from being selected as the sub-
ject of the new sentences. As previously observed
(Woodsend and Lapata, 2012), pronouns are nor-
mally not used by human summary writers. It is
because the summary is short and the narration
relation of sentences is relatively simple so that
pronouns are not needed. Moreover, in automatic
summary, pronouns will cause ambiguity in the
summary, especially when the sentence order is
automatically determined. Therefore, we model
the constraint as:

if Ni is pronoun, then αi = 0. (15)

Length constraint. The overall length of
the selected NPs and VPs is no larger than a limit
L:∑

i

{l(Ni) ∗ αi}+
∑
j

{l(Vj) ∗ βj} ≤ L, (16)

where l() is the word-based length of a phrase.

2.3 Postprocessing
Recall that we require that one NP and at least
one VP compose a sentence. Thus, we form a
raw sentence with a selected NP as the subject
followed by the corresponding selected VPs that
are indicated by sentence generation indicator γ̃ij
having the value 1. The VPs in a summary sen-
tence are ordered according to their natural order
if they come from the same document. Otherwise,
they are ordered according to the timestamps of
the corresponding documents. After that, if the to-
tal length is smaller than L, we add conjunctions
such as “and” and “then” to concatenate the VPs
for improving the readability of the newly gener-
ated sentences. The pseudo-timestamp of a sen-
tence is defined as the earliest timestamp of its
VPs and the sentences are ordered based on their
pseudo-timestamps.

2.4 Relation to Existing MDS Approaches
Many existing extraction-based and compression-
based MDS approaches could be regarded as spe-
cial cases under our framework: (1) To simulate
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extraction-based summarization, we just need to
constrain that the highest NP and the highest VP
from the same sentence are selected simultane-
ously. In addition, no NPs and VPs in lower lev-
els can be selected. Thus, the output only con-
tains the original sentences of the source docu-
ments. (2) To simulate compression-based sum-
marization, we can adapt our framework to con-
duct sentence selection and sentence compression
in a joint manner. Specifically, we only need to re-
strict that the NP and VPs of a summary sentence
must come from the same original sentence.

3 Experiments

3.1 Experimental Setup

The data set of traditional summarization task in
Text Analysis Conference (TAC) 2011 is used to
evaluate the performance of our approach. This
data set is the latest one and it contains 44 topics.
Each topic falls into one of 5 predefined event cat-
egories and contains 10 related news documents.
There are four writers to write model summaries
for each topic.

The data set of traditional summarization task in
TAC 2010 is employed as the development/tuning
data set. This data set contains 46 topics from the
same predefined categories. Each topic also has
10 documents and 4 model summaries.

Based on the tuning set, the key parameters of
our model are set as follows. The constants B and
ρ in the weighting function are set to 6 and 0.5
repectively. The similarity threshold in obtaining
the alternative VPs is 0.75. We did not observe sig-
nificant difference between cosine similarity and
Jaccard Index.

We mainly evaluate the system by pyramid eval-
uation. To gain a comprehensive understanding,
we also evaluate by ROUGE evaluation and man-
ual linguistic quality evaluation.

3.2 Results with Pyramid Evaluation

The pyramid evaluation metric (Nenkova and Pas-
sonneau, 2004) involves semantic matching of
summary content units (SCUs) so as to recognize
alternate realizations of the same meaning. Differ-
ent weights are assigned to SCUs based on their
frequency in model summaries. A weighted inven-
tory of SCUs named a pyramid is created, which
constitutes a resource for investigating alternate
realizations of the same meaning. Such property
makes pyramid method more suitable to evalu-

Auto-pyr Auto-pyr Rank in
System (Th: .6) (Th: .65) TAC 2011

Our 0.905 0.793 NA
22 0.878 0.775 1
43 0.875 0.756 2
17 0.860 0.741 3

Table 2: Comparison with the top 3 systems in
TAC 2011.

ate summaries. Another widely used evaluation
metric is ROUGE (Lin and Hovy, 2003) and it
evaluates summaries from word overlapping per-
spective. Because of the strict string matching, it
ignores the semantic content units and performs
better when larger sets of model summaries are
available. In contrast to ROUGE, pyramid scor-
ing is robust with as few as four model summaries
(Nenkova and Passonneau, 2004). Therefore, in
recent summarization evaluation workshops such
as TAC, the pyramid is used as the major metric.

Since manual pyramid evaluation is time-
consuming, and the exact evaluation scores are
not reproducible especially when the assessors for
our results are different from those of TAC, we
employ the automated version of pyramid pro-
posed in (Passonneau et al., 2013). The automated
pyramid scoring procedure relies on distributional
semantics to assign SCUs to a target summary.
Specifically, all n-grams within sentence bounds
are extracted, and converted into 100 dimension
latent topical vectors via a weighted matrix fac-
torization model (Guo and Diab, 2012). Simi-
larly, the contributors and the label of an SCU
are transformed into 100 dimensional vector rep-
resentations. An SCU is assigned to a summary
if there exists an n-gram such that the similarity
score between the SCU low dimensional vector
and the n-gram low dimensional vector exceeds
a threshold. Passonneau et al. (2013) showed
that the distributional similarity based method pro-
duces automated scores that correlate well with
manual pyramid scores, yielding more accurate
pyramid scores than string matching based auto-
mated methods (Harnly et al., 2005). In this pa-
per, we adopt the same setting as in (Passonneau
et al., 2013): a 100 dimension matrix factorization
model is learned on a domain independent corpus,
which is drawn from sense definitions of WordNet
and Wiktionary2, and Brown corpus. We exper-

2http://en.wiktionary.org/
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ROUGE-2 ROUGE-SU4
System P R F1 P R F1

Our 0.117 0.117 0.117 0.148 0.147 0.148
22 0.112 0.114 0.113 0.147 0.150 0.148
43 0.132 0.135 0.134 0.162 0.166 0.164
17 0.128 0.131 0.129 0.157 0.160 0.159

Table 3: Performance under ROUGE metric.

iment with 2 threshold values, i.e., 0.6 and 0.65,
similar to those used in (Passonneau et al., 2013).

The top three systems in TAC 2011 evaluated
with manual pyramid score were System 22 (Li et
al., 2011), 43, and 17 (Ng et al., 2011). Table 2
shows the comparison with them under the auto-
mated pyramid evaluation. Our method achieves
the best results in both thresholds, which means
that our method is able to find more semantic con-
tent units (SCUs) than the state-of-the-art system
in TAC 2011. In addition, paired t-test (with p <
0.01) comparing our model with the best system
in TAC 2011, i.e., System 22, shows that the per-
formance of our model is significantly better. It is
worth noting that the three systems used additional
external linguistic resources: System 22 used a
Wikipedia corpus for providing domain knowl-
edge, System 17 and 43 defined some category-
specific features. Without any domain adaption,
our framework can still achieve encouraging per-
formance.

We calculate Pearson’s correlation to measure
how well the automatic pyramid approximates the
manual pyramid scores for 50 system submissions
in TAC 2011. The values are 0.91 and 0.93 for
thresholds 0.6 and 0.65 respectively. It demon-
strates that the automated pyramid is reliable to
differentiate the performance of different methods.

3.3 Results with ROUGE Evaluation

As mentioned above, we favor the pyramid evalua-
tion over the ROUGE score because it can measure
the summary quality beyond simply string match-
ing. Here, we also provide ROUGE score for our
reference. ROUGE-1.5.5 package3 is employed
with the same parameters as in TAC. The results
are summarized in Table 3. Our performance is
slightly better than System 22, and it is not as good
as System 43 and 17. The reason is that System 43
and 17 used category-specific features and trained
the feature weights with the category information

3http://www.berouge.com/Pages/default.aspx

in TAC 2010 data. These features help them se-
lect better category-specific content for the sum-
mary. However, the usability of such features de-
pends on the availability of predefined categories
in the summarization task, as well as the avail-
ability of training data with the same predefined
categories for estimating feature weights. There-
fore, the adaptability of these methods is limited to
some extent. In contrast, our framework does not
define any category-specific feature and only uses
TAC 2010 data to tune the parameters for general
summarization purpose.

3.4 Linguistic Quality Evaluation

The linguistic quality of summaries is evaluated
using the five linguistic quality questions on gram-
maticality (Q1), non-redundancy (Q2), referential
clarity (Q3), focus (Q4), and coherence (Q5) in
Document Understanding Conferences (DUC). A
Likert scale with five levels is employed with 5 be-
ing very good with 1 being very poor. A summary
was blindly evaluated by three assessors on each
question. System 22 performed better than Sys-
tem 43 and 17 in TAC 2011 on the evaluation of
readability, which is an aggregation of the above
questions. Considering the intensive labor force of
manual assessment, we only conduct comparison
with System 22.

The results are given in Table 4. On average,
the two systems perform very closely. System 22
is an extraction-based method that picks the orig-
inal sentences, hence it achieves higher score in
Q1 grammaticality, while our approach has some
new sentences with grammar mistakes, which is a
common problem for abstractive methods and de-
serves more future research effort. For Q4 focus,
our score is higher than System 22, which reveals
that our summary sentences are relatively more co-
hesive. The score of Q3 referential clarity shows
that the referential relation is basically clear in our
summaries, even when new sentences are automat-
ically generated. In general, ignoring the gram-
maticality scores, our system still performs better
than System 22. Specifically, the average scores
of our system and System 22 on the last four ques-
tions are 3.37 and 3.33 respectively.

4 Qualitative Results

4.1 Analysis of Summary Sentence Type

There are three types of sentences in the sum-
maries generated by our framework, namely, new
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System Q1 Q2 Q3 Q4 Q5 AVG
Our 3.67 3.50 3.90 3.23 2.83 3.43
22 4.13 3.50 3.97 2.97 2.87 3.49

Table 4: Evaluation of linguistic quality.

sentences, compressed sentences, and original
sentences. A new sentence is constructed by merg-
ing the phrases from different original sentences.
A compressed sentence is generated by deleting
phrases from an original sentence. An original
sentence in the summary is directly extracted from
the input documents.

The percentage of different types of sentences
in our summaries is calculated. About 33% of the
summary sentences are newly constructed. This
demonstrates that our framework has good capa-
bility of merging phrases from the original sen-
tences so as to convey more information in com-
pacted summaries. In addition, about 44% of the
summary sentences are generated by compression.
It shows a unique characteristic of our framework:
sentence construction and sentence compression
are conducted in a unified model.

4.2 Case Study

Table 5 shows the summary of the first topic,
i.e., “Amish Shooting”, by our framework.
The summary sentence ID and the sentence
type are given in the form of “[summary
sentence ID: sentence type]”. Each
selected phrase and the original sentence ID
where the phrase originated are given in the
form of “{selected phrase (original
sentence ID)}”. There are three compressed
sentences with IDs 1, 2, and 4, one new sentence
with ID 3, and two original sentences with IDs 5
and 6.

The new sentence is constructed from the fol-
lowing original sentences in which the extracted
NPs and VPs are indicated with colored parenthe-
ses:

(84): On Monday morning, (NP Charles Carl
Roberts IV) (VP (VP entered the West Nickel
Mines Amish School in Lancaster County) and
(VP shot 10 girls), (VP killing five)).
(85): (NPRoberts) (VP killed himself as police
stormed the building).
(150): (NP Roberts) (VP left what they de-
scribed as rambling notes for his family).

[1:C] {An armed man (25)} {walked into
an Amish school (25)} {tied up and shot the
girls, killing three of them. (25)} [2:C]
{A man who laid siege to a one-room Amish
schoolhouse (64)} {told his wife shortly be-
fore opening fire that he had molested two young
girls who were his relatives decades ago (64)}
{was tormented by dreams of molesting again.
(64)} [3:N] {Charles Carl Roberts IV (84)}
{killed himself as police stormed the building
(85)} {left what they described as rambling
notes for his family. (150)} [4:C] {The gun-
man (145)} {was not Amish (145)} {had not
attended the school. (145)} [5:O] {The shoot-
ings (148)} {occurred about 10:45 a.m.(148)}
[6:O] {Police (149)} {could offer no explana-
tion for the killings. (149)}
Table 5: The summary of “Amish Shooting” topic.

The NPs of these sentences are coreferent so that
some of their VPs are merged and concatenated
with one NP, i.e., “Charles Carl Roberts IV”.

The summary sentences with IDs 1, 2, and 4
are compressions from the following original sen-
tences respectively:

(25): (NPAn armed man) (VP(VPwalked into
an Amish school), (VP sent the boys outside)
and (VP tied up and shot the girls, killing three
of them)), (NP authorities) (VP said).
(64): (NP(NP A man)who laid siege to a
one-room Amish schoolhouse),(VP killing five
girls),(VP(VP told his wife shortly before open-
ing fire that he had molested two young girls who
were his relatives decades ago)and(VP was tor-
mented by “dreams of molesting again”)),(NP
authorities)(VP said Tue).
(145): According to media reports, (NP the
gunman) (VP(VP was not Amish) and (VP had
not attended the school)).

Some uncritical information is excluded from
the summary sentences, such as “sent the boys
outside”, “authorities said”, etc. In addition, the
VP “killing five girls” of the original sentence
with ID 64 is also excluded since it has significant
redundancy with the summary sentence with ID 1.

5 Related Work

Existing multi-document summarization (MDS)
works can be classified into three categories:
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extraction-based approaches, compression-based
approaches, and abstraction-based approaches.

Extraction-based approaches are the most stud-
ied of the three. Early studies mainly followed a
greedy strategy in sentence selection (Çelikyilmaz
and Hakkani-Tür, 2011; Goldstein et al., 2000;
Wan et al., 2007). Each sentence in the docu-
ments is firstly assigned a salience score. Then,
sentence selection is performed by greedily select-
ing the sentence with the largest salience score
among the remaining ones. The redundancy is
controlled during the selection by penalizing the
remaining ones according to their similarity with
the selected sentences. An obvious drawback of
such greedy strategy is that it is easily trapped
in local optima. Later, unified models are pro-
posed to conduct sentence selection and redun-
dancy control simultaneously (McDonald, 2007;
Filatova and Hatzivassiloglou, 2004; Yih et al.,
2007; Gillick et al., 2007; Lin and Bilmes, 2010;
Lin and Bilmes, 2012; Sipos et al., 2012). How-
ever, extraction-based approaches are unable to
evaluate the salience and control the redundancy
on the granularity finer than sentences. Thus, the
selected sentences may still contain unimportant
or redundant phrases.

Compression-based approaches have been in-
vestigated to alleviate the above limitation. As
a natural extension of the extractive method, the
early works adopted a two-step approach (Lin,
2003; Zajic et al., 2006; Gillick and Favre, 2009).
The first step selects the sentences, and the second
step removes the unimportant or redundant units
from the sentences. Recently, integrated models
have been proposed that jointly conduct sentence
extraction and compression (Martins and Smith,
2009; Woodsend and Lapata, 2010; Almeida and
Martins, 2013; Berg-Kirkpatrick et al., 2011; Li et
al., 2015). Note that our model also jointly con-
ducts phrase selection and phrase merging (new
sentence generation). Nonetheless, compressive
methods are unable to merge the related facts from
different sentences.

On the other hand, abstraction-based ap-
proaches can generate new sentences based on the
facts from different source sentences. In addition
to the previously mentioned sentence fusion work,
new directions have been explored. Researchers
developed an information extraction based ap-
proach that extracts information items (Genest and
Lapalme, 2011) or abstraction schemes (Genest

and Lapalme, 2012) as components for generat-
ing sentences. Summary revision was also inves-
tigated to improve the quality of automatic sum-
mary by rewriting the noun phrases or people ref-
erences in the summaries (Nenkova, 2008; Sid-
dharthan et al., 2011). Sentence generation with
word graph was applied for summarizing customer
opinions and chat conversations (Ganesan et al.,
2010; Mehdad et al., 2014).

Recently, the factors of information certainty
and timeline in MDS task were explored (Ng et
al., 2014; Wan and Zhang, 2014; Yan et al., 2011).
Researchers also explored some variants of the
typical MDS setting, such as query-chain focused
summarization that combines aspects of update
summarization and query-focused summarization
(Baumel et al., 2014), and hierarchical summa-
rization that scales up MDS to summarize a large
set of documents (Christensen et al., 2014). A
data-driven method for mining sentence structures
on large news archive was proposed and utilized
to summarize unseen news events (Pighin et al.,
2014). Moreover, some works (Liu et al., 2012;
Kågebäck et al., 2014; Denil et al., 2014; Cao
et al., 2015) utilized deep learning techniques to
tackle some summarization tasks.

6 Conclusions and Future Work

We propose an abstractive MDS framework that
constructs new sentences by exploring more fine-
grained syntactic units, namely, noun phrases and
verb phrases. The designed optimization frame-
work operates on the summary level so that more
complementary semantic content units can be in-
corporated. The phrase selection and merging is
done simultaneously to achieve global optimal.
Meanwhile, the constructed sentences should sat-
isfy the constraints related to summarization re-
quirements such as NP/VP compatibility. Exper-
imental results on TAC 2011 summarization data
set show that our framework outperforms the top
systems in TAC 2011 under the pyramid metric.
For future work, one aspect is to enhance the
grammar quality of the generated new sentences
and compressed sentences. Another aspect is to
improve time efficiency of our framework, and its
major bottleneck is the time consuming ILP opti-
mzation.
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André F. T. Martins and Noah A. Smith. 2009. Sum-
marization with a joint model for sentence extrac-
tion and compression. In Workshop on ILP for NLP,
pages 1–9.

Ryan McDonald. 2007. A study of global inference
algorithms in multi-document summarization. In
ECIR, pages 557–564.

Yashar Mehdad, Giuseppe Carenini, and Raymond T.
Ng. 2014. Abstractive summarization of spoken
and written conversations based on phrasal queries.
In ACL, pages 1220–1230.

Ani Nenkova and Rebecca J. Passonneau. 2004.
Evaluating content selection in summarization: The
pyramid method. In HLT-NAACL, pages 145–152.

Ani Nenkova. 2008. Entity-driven rewrite for multi-
document summarization. In Third International
Joint Conference on Natural Language Processing,
IJCNLP, pages 118–125.

Jun-Ping Ng, Praveen Bysani, Ziheng Lin, Min yen
Kan, and Chew lim Tan. 2011. Swing: Exploit-
ing category-specific information for guided sum-
marization. In Proceedings of TAC.

Jun-Ping Ng, Yan Chen, Min-Yen Kan, and Zhoujun
Li. 2014. Exploiting timelines to enhance multi-
document summarization. In ACL, pages 923–933.

Rebecca J. Passonneau, Emily Chen, Weiwei Guo, and
Dolores Perin. 2013. Automated pyramid scoring

of summaries using distributional semantics. In ACL
(2), pages 143–147.

Daniele Pighin, Marco Cornolti, Enrique Alfonseca,
and Katja Filippova. 2014. Modelling events
through memory-based, open-ie patterns for abstrac-
tive summarization. In ACL, pages 892–901.

Advaith Siddharthan, Ani Nenkova, and Kathleen
McKeown. 2011. Information status distinctions
and referring expressions: An empirical study of ref-
erences to people in news summaries. Comput. Lin-
guist., 37(4):811–842.

Ruben Sipos, Pannaga Shivaswamy, and Thorsten
Joachims. 2012. Large-margin learning of submod-
ular summarization models. In EACL, pages 224–
233.

Xiaojun Wan and Jianmin Zhang. 2014. Ctsum: Ex-
tracting more certain summaries for news articles.
In SIGIR, pages 787–796.

Xiaojun Wan, Jianwu Yang, and Jianguo Xiao.
2007. Manifold-ranking based topic-focused multi-
document summarization. In IJCAI, pages 2903–
2908.

Kristian Woodsend and Mirella Lapata. 2010. Auto-
matic generation of story highlights. In ACL, pages
565–574.

Kristian Woodsend and Mirella Lapata. 2012. Mul-
tiple aspect summarization using integer linear pro-
gramming. In EMNLP-CoNLL, pages 233–243.

Rui Yan, Xiaojun Wan, Jahna Otterbacher, Liang Kong,
Xiaoming Li, and Yan Zhang. 2011. Evolution-
ary timeline summarization: A balanced optimiza-
tion framework via iterative substitution. In SIGIR,
pages 745–754.

Wen-tau Yih, Joshua Goodman, Lucy Vanderwende,
and Hisami Suzuki. 2007. Multi-document summa-
rization by maximizing informative content-words.
In IJCAI, pages 1776–1782.

David M. Zajic, Bonnie J. Dorr, Jimmy Lin, and
Richard Schwartz. 2006. Sentence compression
as a component of a multi-document summarization
system. In DUC at NLT/NAACL 2006.

1597



Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 1598–1607,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Joint Graphical Models for Date Selection in Timeline Summarization

Giang Tran
L3S Research Center

Leibniz-University Hannover
gtran@l3s.de

Eelco Herder
L3S Research Center

Leibniz-University Hannover
herder@l3s.de

Katja Markert
L3S Research Center

Leibniz-University Hannover
and School of Computing

University of Leeds
markert@l3s.de

Abstract

Automatic timeline summarization (TLS)
generates precise, dated overviews over
(often prolonged) events, such as wars or
economic crises. One subtask of TLS se-
lects the most important dates for an event
within a certain time frame. Date selec-
tion has up to now been handled via su-
pervised machine learning approaches that
estimate the importance of each date sepa-
rately, using features such as the frequency
of date mentions in news corpora. This ap-
proach neglects interactions between dif-
ferent dates that occur due to connections
between subevents. We therefore suggest
a joint graphical model for date selection.
Even unsupervised versions of this model
perform as well as supervised state-of-the-
art approaches. With parameter tuning on
training data, it outperforms prior super-
vised models by a considerable margin.

1 Introduction

Major events (such as the Egypt revolution starting
in 2011) often last over a long period of time and
have impact for a considerable time afterwards. In
order to find out what happened when during such
an event, time-related queries to search engines are
often insufficient as traditional IR does not handle
time-related queries well (Foley and Allan, 2015).
To provide readers with comprehensive overviews
of long events, many news outlets employ time-
line summaries: a timeline summary is a list of
selected dates with a few sentences describing the
most important events on each date. An example
can be seen in Table 1. Timelines allow the reader
to gain a quick overview over a complex event and
to answer questions such as: How and when did
the event start? What were the main consequences
of the initial events? What happened to the main

protagonists in the event? In addition, timelines
are frequent means in education (such as history
teaching) so that their generation is relevant for
education as well as journalism.

(a1) 2011-01-25
Egyptians hold nationwide demonstrations against the au-
thoritarian rule of Hosni Mubarak, who has led the country
for nearly three decades.
(a2) 2011-01-26
A large security force moves into Cairo’s Tahrir Square
(a3) 2011-01-28
Protesters burn down the ruling party’s headquarters, and
the military is deployed.
(a4) 2011-02-11
Mubarak steps down and turns power over to the military.
(a5) 2011-03-19
In the first post Mubarak vote, Egyptians cast ballots on
constitutional amendments . . . , including scheduling the
first parliamentary and presidential elections
(a8) 2012-04-20
The presidential campaign officially begins.
(a10) 2012-06-24
Election officials declare Morsi the winner
(a26) 2013-07-03
Egypt’s military chief says Morsi has been replaced by Adly
Mansour, the chief justice of constitutional court.

Table 1: A timeline about the Egypt revolution published by
the Associated Press (AP). We leave out intermediate dates
due to space constraints. The whole timeline includes 30
dates between 2011-01-25 and 2013-07-07.

Though convenient for the reader, the manual
creation of a timeline can take a long time even
for experts. For example, the creator of the start-
up Timeline says that it initially took a multi-
person team a full work day to create a single
timeline.1 Therefore, automatic timeline summa-
rization (TLS) has emerged as an NLP task in the
past few years (Tran et al., 2013a; Kessler et al.,
2012; Nguyen et al., 2014; Yan et al., 2011b; Yan
et al., 2011a; Wang et al., 2012; Tran et al., 2013b;
Tran et al., 2015). TLS has been divided into two
subtasks: (i) ranking the dates between beginning

1http://www.niemanlab.org/2015/02/
timeline-is-providing-historical-
context-to-the-news-but-is-there-a-
business-model-to-support-it/.
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and end of the timeline in order of importance, to
achieve date selection and (ii) generating a good
daily summary for each of the selected dates. In
this paper, we tackle the first task. Date selection
is challenging, as normally only a small set of the
available dates is chosen for inclusion in the time-
line (see Table 1). Date selection may be partially
subjective: different journalists might include dif-
ferent dates.2

Existing approaches to date selection (Kessler
et al., 2012; Tran et al., 2013a) use supervised ma-
chine learning, where each date receives a score
for ranking the dates. Features used (such as fre-
quency of date mention) are extracted from a cor-
pus of event-related newspaper articles. Though
the features are well-explored, the models score
each date independently of other dates.

In contrast, we argue that interaction between
dates should be taken into account. Timeline
summaries tend to include “substories” in which
the majority of selected dates are part of a chain
of events that share major actors or demonstrate
cause-effect. Table 1 shows at least two such
chains: the (a1-4-5) chain of protests leading to
Mubarak’s resignation and the necessity of new
elections, as well as the similar (a8-10-26) chain
on Mursi. These chains can also be observed in the
corresponding news articles. For example, some
background articles on Mubarak’s step-down will
likely explain the reasons behind it. However, ex-
tracting such causal information can be difficult,
as demonstrated by the still low results for dis-
course relation extraction (Lin et al., 2014; Braud
and Denis, 2014). Instead, we use date reference
graphs, which model which date refers to which
other date. In our example, articles published on
Mubarak’s resignation date might refer to the date
when the protest started. Although weaker than
direct causal links, these links are easy to extract
and we will show that they are very useful. In ad-
dition, references from important dates (such as
Mubarak’s resignation date) should be weighted
higher than other references. This is akin to IR
models such as PageRank, which weigh links from
popular pages higher than links from less popular
pages.

The main contributions of this work are: (i)
we leverage interaction between dates via date ref-
erence graphs as a basis for date selection in TLS

2Note that the date selection task uses dates as proxies for
important events on that date.

(ii) we provide a novel random walk model on this
graph that incorporates both topical importance of
referring sentences as well as frequency and tem-
poral distance of references. We propose both un-
supervised as well as supervised versions of this
model.

We show that the proposed date selection
approach outperforms previous approaches with
evaluations on four real-life, long-term news
events. We also discuss variations in timeline con-
struction over different events, as well as by dif-
ferent journalists.

2 Related Work

Timeline summarization is a special case of multi-
document summarization (MDS). As TLS orga-
nizes events by date, timelines can be generated
by MDS systems (such as (Radev et al., 2004b;
Radev et al., 2004a; McKeown et al., 2003; Erkan
and Radev, 2004; Metzler and Kanungo, 2008;
Hong and Nenkova, 2014) by applying their sum-
marization techniques on news articles for every
individual date to create corresponding daily sum-
maries. However, manually written timelines nor-
mally only include a small number of dates; in
addition, the temporal component imposes con-
straints on sentence selection for timeline sum-
marization, such as the preference for little over-
lap between sentences selected for different dates
(Yan et al., 2011b).

Many studies specific to timeline summariza-
tion, such as (Swan and Allan, 2000; Allan et al.,
2001; Chieu and Lee, 2004; Yan et al., 2011b;
Tran et al., 2015), focus on the extraction of salient
sentences or headlines for generating the textual
content of timelines. They assume either that the
dates are given in advance or they use simple mea-
sures such as burstiness (Chieu and Lee, 2004;
Yan et al., 2011b) for date selection, where bursti-
ness relies on the number of date mentions.

Prior approaches dedicated specifically to date
selection are Tran et al. (2013a) and Kessler et
al. (2012).3 They use supervised machine learn-
ing methods that score dates independently of
each other. Features are extracted from a cor-
pus of event-related newspaper articles, including
frequency-based features (such as how often the
date is referred to in the corpus), temporal distance
features (such as how long into the future a date

3Kessler et al. (2012) is also used in Nguyen et al. (2014)’s
system.
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keeps being referred to) and topical features (such
as whether the date mention is associated with the
most significant keywords of the event). We, how-
ever, score dates jointly, making use of interac-
tions between dates in a graphical model. This
improves substantially over prior approaches. We
also propose unsupervised variations that perform
competitively to prior supervised models.

3 Problem Definition and Approach

Similar to Kessler et al. (2012) and Tran et al.
(2013a), we use the day as the timeline time unit
(so, for example, we exclude hourly timelines).

3.1 Problem Definition

Given a main event and a time window [t1, t2]
within the event duration, our task is to select the
top k dates (d1, d2, ..., dk) ∈ [t1, t2], when the
most important (sub)events occurred. Therefore,
timelines of variable length can be constructed.
Like (Kessler et al., 2012; Tran et al., 2013a), we
also assume that we have a corpus C, consisting
of news articles about the main event. This corpus
gives evidence about the dates in [t1, t2].

3.2 Proposed Approach

We build a date reference graph, which is a fully
directed graph G = (V, E), where V is the set of
dates mentioned in any text in corpus C, including
publication dates. The edges E = {e(di, dj)} in-
dicate that at least one text published on di refers
to the date dj .

We represent each such link as
a multi-value tuple e(di, dj) =
(Mij , freq(di, dj), Itemporal(di, dj), Itopical(di, dj))
to integrate different measures of date importance.
The first value, Mij = 1

N expresses the prior
stochastic transitional probability between 2
dates where N = |V|. The others express the
strength of the connection between di and dj
modelled by the following aspects: frequency
(freq), temporal influence (Itemporal) and topical
influence (Itopical). We also suggest different
combinations of these parameters.

Then we introduce a random walk model that
uses these perspectives to rank the collection of
dates.
Frequency of References. When a date dj is re-
ferred to from either a past or future news article
(published on di), it is likely involved in the events
that are reported in that article. An example pub-

lished on Mubarak’s resignation date and referring
back to the protest start can be seen below:
(1) On January 25, an uprising of Egyptians erupted calling

for Mubaraks resignation as president. Protests contin-
ued to grow . . . (CBS Detroit, 2011-02-11)

We hypothesize that the more frequent such
references are, the stronger this involvement is.
Hence, we compute freq(di, dj) as the number
of references to dj from news articles published
on di. While prior work (Kessler et al., 2012)
uses aggregate frequency of references to dj over
the whole corpus as a feature, they do not handle
the interaction between dates and can therefore not
score dates jointly.
Topical Influence. In Example 1 above, the ref-
erence sentence mentions only major actors in the
Egypt crisis (Mubarak, Egyptians) as well as only
major subevents (uprising, protests). This makes
for a link between 2011-02-11 (publication date)
and 2011-01-25 (referred date) that is relevant to
the main event and emphasises the importance of
the referred date. In contrast, Example 2 also talks
about less salient entities in context of the Egypt
revolution and makes for a less topical link be-
tween 2011-02-02 (publication date) and 2011-01-
25 (referred date).
(2) Mr Ghonim is Google’s head of marketing for Mid-

dle East and North Africa and was in Egypt when the
protests started on Jan 25 (DailyMail, 2011-02-02).

We quantify the topical influence between dates
as follows: Let Si→j = {sij} be the set of sen-
tences that are published in di and refer to dj . We
are interested in how relevant this connection is to
the overall news event, looking at the content in
Si→j . To do so, we represent the overall content
of the news collection by a set of keywords Q =
{q1, q2, ..., qn}, which are computed via TextRank
(Mihalcea and Tarau, 2004).4 We compute a rel-
evance score for each sentence sij in Si→j by the
famous Okapi BM25 function (Robertson et al.,
1994), which ranks a sentence more topical if it
contains more as well as more of the most salient
collection keywords Q.5 We compute topical in-
fluence (Itopical) as either the maximum value or
the sum value of the relevance scores of all sij .

Imax topical(di, dj) = max
sij∈Si→j

BM25(sij , Q) (3)

Ifreq∗topical(di, dj) =
∑

sij∈Si→j

BM25(sij , Q) (4)

4We set n=20 in practice.
5We use the standard BM25 parameter settings k1 = 1.2

and b = 0.75
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Intuitively, Ifreq∗topical(di, dj) is proportional
to the size of Si→j as well as to the relevance
scores of its sentences whereas Imax topical(di, dj)
does not consider reference frequency at all.

When dj is not mentioned by any articles pub-
lished on di, the value of the topical influence is
equal to zero.
Temporal Influence. The longer ago an event
happened the more likely it is to have been for-
gotten. Only very important events are referred to
over long time frames. We therefore hypothesise
that a date dj is more influential (for another date
di) if di mentions dj and the temporal distance
between the two dates is high. Overall, dj gath-
ers importance with several long-term references.
Ex. 5 showcases an example:
(5) Military generals took over power from Mubarak when

he stepped down on February 11 last year. (Daily Mail,
2012-01-25).

We define the temporal influence of an existing
edge Itemporal(di, dj) as either the absolute value
of temporal distance between the two dates or by
the product of the temporal distance with the num-
ber of references freq(di, dj). In the second com-
putation, the temporal influence between two dates
increases when di references dj more than once.

I|temporal|(di, dj) = ∆t = |di − dj | (6)

Ifreq∗temporal(di, dj) = freq(di, dj) · |di − dj | (7)

When dj is not mentioned by any articles pub-
lished on di, the temporal influence is set as zero.

Random Walk Model for Date Ranking. A
random walk on a given graph is a Markov pro-
cess, where each node represents a state and a
walk transiting from one state to another state is
based on a transition probability matrix. One well-
known random walk algorithm is PageRank (Page
et al., 1999), which models web surfer behavior to
determine the importance of web pages with the
following formula:

xt(j) = α
∑

i∈L−j

Mijxt−1(i) + (1− α)vj , (8)

where Mij is the stochastic transition probability
from page pi to pj , xt(j) is the importance score
of page pj at step t, α is a damping factor that
controls how often the walker jumps to an arbi-
trary node, vj is the initial probabilistic impor-
tance score (generally set to 1/N , where N is the
number of nodes in the graph), and L−i is the set
of incoming links of page pi. When t is iterated

enough, the importance score vector reaches a sta-
tionary distribution that can be used for ranking
pages.

The traditional PageRank process in Eq. 8 cap-
tures only the observed linking characteristics of
nodes but ignores other sources of information
which can be indicators for their importance.

We extend the model by introducing an
influence-based random walk model (IRW) that
allows the random walker to take into account
multiple sources of information and perform vot-
ing more effectively. The random walk process we
propose can be defined by the following formula:

xt(j) = α
∑

i∈L−j

I(i, j) ·Mij · xt−1(i) + (1− α)vj (9)

where I(i, j) is the normalized influence factor
that indicates how influential the edge di → dj is
in the global context of the event. The normaliza-
tion is done by scaling the range of value from [0,
1]. M is the stochastic transitional matrix. In our
case, I(i, j) can be just the value of freq(di, dj),
Itopical(di, dj) , Itemporal(di, dj) alone or a lin-
ear combination of them. Note that, (I · M ) in
most case is not stochastic and must not be trans-
formed into a stochastic transitional matrix, as the
transformation will collapse the global context of
I. IRW is different to PageRank on weighted
graph, weighted or personalized PageRank and
their variations e.g, (Xing and Ghorbani, 2004;
Haveliwala, 2002), among others. In particu-
lar, weighted PageRank integrates influence scores
into the stochastic transitional matrix. Thus, the
random walker contributes the voting impact of a
node X to its neighbor with an influence score nor-
malized by the sum of scores on all outgoing con-
nections. That process leverages how good this
connection is in the sub-graph (G*) which consists
of X and its outgoing neighbors. In contrast, our
proposed model uses the non-normalized value of
the influence score to leverage how good this con-
nection is on the entire graph instead of G*. To
give an example, if date X1 mentions only X2 with
a raw temporal distance score of 20 and X3 men-
tions only X4 with a score of 100, then in weighted
Page Rank both would be normalized to a weight
one, losing the information that X4 is mentioned
after a much longer time period than X2. The pro-
cess for combination in our model is defined as the
following:
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xt(j) = αω
∑

i∈L−j

W1(i, j) ·Mij · xt−1(i)

+ α(1− ω)
∑

i∈L−j

W2(i, j) ·Mij · xt−1(i)

+ (1− α)vj

(10)

where W1(i, j) = Itopical(di,dj)
maxuv Itopical(du,dv) is

the normalized value for topical influence, and
W2(i, j) = Itemporal(di,dj)

maxuv Itemporal(du,dv) is the normalized

value for temporal influence.6

Here, the hyper-parameter 0 ≤ ω ≤ 1 controls
the proportion of the topical influence from di to
dj . When ω = 0, no topical influence is taken
into account. No temporal influence is considered
when ω = 1. Intuitively, at every step, the random
walker can follow the outgoing nodes and either
carry topical influence (the first part) or temporal
influence (the second part) to contribute to the rank
of the outgoing nodes. Otherwise, it teleports to an
arbitrary node with probability (1− α).

Convergence Property. Starting from Eq. 10,
we now show that the IRW model converges to a
stationary distribution.

Let Λ and Λ′ be the matrix with elements
W1(i, j) and W2(ij) respectively, with any edge
(di, dj), I be the n × n identity matrix, and v be
the transpose of 1 × n uniform stochastic vector.
M denotes the transitional matrix for G.

Proposition 1. (I−α(wMTΛ + (1−ω)MTΛ′))
is invertible for all M,Λ,Λ′, α, ω.
Proof. Let P = wMT Λ + (1−ω)MT Λ′, we need to prove
that I−αP is invertible. Equivalently, we prove its transpose
I − αPT is invertible, which can be proved by showing that
(I− αPT )y = 0 only has the trivial solution y = 0.

(I− αP
T

)y = 0

y = αP
T
y

yi = α
∑

j

Pjiyj

= α
∑

j

((ωW1(i, j) + (1− ω)W2(i, j))Mijyj).

(11)

Let u = arg maxj yj . When i == u, Eq. 11 infers,

yu ≤ α
∑

j

((ωW1(u, j) + (1− ω)W2(u, j))Mujyu).

yu ≤ αyu

∑
j

((ωW1(u, j) + (1− ω)W2(u, j))Muj

yu(1− αFu) ≤ 0.

(12)

where Fu =
∑

j((ωW1(u, j) + (1 − ω)W2(u, j))Muj .
Clearly, Fu ≤ 1 because W1(u, j) ≤ 1 and W2(u, j) ≤ 1

6In the case of linear combinations we incorporate fre-
quency into topical or temporal influence as described above.

and
∑

j Muj = 1. Since α < 1 and Fu ≤ 1, (1−αFu) > 0.
Therefore yu ≤ 0. Similarly, let v = arg minj yj we have
that yv ≥ 0. As yv ≤ yu, this implies yu = yv = 0 to satisfy
all inequalities. Consequently, yi = 0 for all i, or y = 0.
Thus, I − αPT invertible. Equivalently,(I − α(ωMT Λ +
(1− ω)MT Λ′)) is invertible.

Proposition 2. The iteration in Eq. 9 converges to
(1− α)(I− α(ωMTΛ + (1− ω)MTΛ′))−1v.
Proof. We can re-write Eq. 9 in matrix form:

xt = αPxt−1 + (1− α)v

= (αP)
t
x0 + (1− α)(

t∑
i=1

(αP)
i−1

)v
(13)

We will show that lim
t→∞

xt = (1− α)(I − αP)−1v.

∑
i

(αP )
t
ij =

∑
i

∑
k

(αP )ik(αP )
t−1
kj

=
∑

k

(αP )
t−1
kj

∑
i

(αP )ik

=
∑

k

(αP )
t−1
kj α(Fk)

≤
∑

k

(αP )
t−1
kj α

≤ (α)
t

(14)

Here,Fk =
∑

i((ωW1(k, i)+(1−ω)W2(k, i))Mki ≤ 1
(proof similarly to Proposition 1

Because α < 1, this column sum converges to zero when
t → ∞. We then derive lim

t→∞
(αP)tx0 = 0. When t→∞,

given Proposition 1 and Neumann series, Eq. 13 becomes:

xt = (αP)tx0 + (1− α)(I − αP)−1v

hence, lim
t→∞

xt = (1−α)(I−αP)−1v. Convergence proved.

4 Experiments

4.1 Ground Truth and Data Preprocessing
Kessler et al. (2012) use 91 timelines from AFP
as ground truth along with the AFP news corpus
for feature extraction. However, their dataset is
not publically available. In addition, although they
consider a wide spread of events, each event is
only represented by a single timeline from a sin-
gle source, making that method somewhat vul-
nerable to journalism bias (as discussed by them-
selves in their paper). The data collected by us
previously (Tran et al., 2013a) is publically avail-
able at http://l3s.de/˜gtran/timeline/ and
has since been extended by us (Tran et al., 2015).
Similar to Kessler et al. (2012), it contains ground
truth timelines as well as a corpus of news articles
covering each event. The dataset is suitable for our
purpose because of the following reasons: (1) it is
a heterogeneous dataset which contains news arti-
cles and expert timeline summaries from different
news agencies. Thus, it is more likely to avoid
the issue of bias. Also, each event is represented
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by more than one timeline; (2) it covers long-term
stories that have been happening since 2011, mak-
ing the date selection problem non trivial for any
system.

Timelines. The groundtruth contains 21 time-
lines for 4 main events (Egypt Revolution, Libya
War, Syria War, Yemen Crisis), created by profes-
sional journalists. Table 2 shows statistics about
the timelines. Only a small number of all pos-
sible dates in a time range is included in at least
one timeline (for example, only 122 dates among
a possible 918 dates for the Egypt Revolution).

News Corpus. The news articles have been col-
lected from 24 well-known news outlets by query-
ing Google with the event name together with
the outlets’ sitename and time range specification.
The crawl time range starts from the first of the
month of the earliest event in any timeline (for ex-
ample, 2011-01-01 for the Egypt revolution) and
ends at crawl date. The top-ranked 300 news ar-
ticles from each news site were collected, if still
available. The article creation date is parsed from
the answers returned by Google. The corpus con-
tains 15,534 news articles. Its statistics are sum-
marised in Table 3. The overlap between time-
line date ranges and news corpus date ranges is
only partial: on the one hand, the corpora have
many articles published after the timelines end; on
the other hand, sometimes the corpus has no ar-
ticles published near the beginning of the time-
line (Syria War). The distribution of document
frequency leans towards the end date of the news
collection. The reason could be that most search
engines rank recent documents higher than those
published longer ago.

Story Time Range #News
Egypt 2011/01/11 - 2013/11/10 3869
Libya 2011/02/16 - 2013/07/18 3994
Syria 2011/11/17 - 2013/07/26 4071
Yemen 2011/01/15 - 2013/07/25 3600
Table 3: Overview of the news corpus

Preprocessing. Accurate date extraction includ-
ing both implicit (like last Friday) and explicit
(like 11 Feb ) temporal expressions is vital to
our approach as well as for competitor systems.
We use the Heideltime state-of-the art toolkit
(Strötgen and Gertz, 2010) for this task.

4.2 Experimental settings
As can be seen from Table 2, different timelines
for the same event can contain varying dates, due

to different ranges timelines might cover but also
due to selection preferences by individual writers.
Therefore, we consider the union of all timelines
for an event. The set of input dates for ranking are
all dates from the start t1 and end t2 of the union
of timelines.7 We call that input time range T Re,
depending on main event e.
We consider two evaluation settings:

relaxed setting: A date from T Re selected by
an algorithm is counted as correct if it is included
in the union of timelines, therefore in at least one
individual timeline.

strict setting: A date from T Re selected by an
algorithm is counted as correct if it is included in
at least two individual timelines.
The first setting is the one used in previous work
such as (Kessler et al., 2012; Tran et al., 2013a).
It is also the only one that can be used if only one
timeline per event is considered as in Kessler et
al. (2012). We therefore include it for compari-
son purposes. However, we think it is better to
consider several timelines as it allows us to con-
sider agreement between timeline writers. If more
than one writer agrees on a date being important
we have more evidence that a system should find
that date. Finding dates that only a single writer
includes is less important and could even be due
to bias or system overfitting. Therefore, our sec-
ond setting is preferable as it emphasizes highly
important dates selected by multiple journalists.

Each system selects the top k dates during the
input time range. We evaluate the systems by
Mean Average Precision at k (MAP@k) for k =
5, 10, 15, 20 over all four events.

4.3 Systems.

Baseline. We use three unsupervised baselines.
The baseline Document Frequency ranks dates ac-
cording to the number of news articles published
on that date. Our assumption is that on a date
where one or more important events happened,
there would be a spread of information over dif-
ferent news agencies in the world. Therefore, this
date has more news articles published. This base-
line is related to the burstiness date selection used
by Yan et al. (2011b).

The baseline MaxLength ranks dates by the
maximum article length of all articles published on
that date. Our hypothesis is that important events

7Prior work also uses start and end date of timelines for
delimiting input (Kessler et al., 2012; Tran et al., 2013a).
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Story #TL #atLeastOnce #atLeastTwice avgL maxL minL Time Range #dates
Egypt 4 122 18 36 57 24 2011/01/01 - 2013/07/07 918
Libya 7 118 56 34 62 22 2011/02/14 - 2011/11/22 281
Syria 5 106 17 60 26 13 2011/03/15 - 2013/07/06 844
Yemen 5 81 26 24 42 10 2011/01/22 - 2012/02/27 401

Number of timelines (#TL), number of dates occurring in at least one timeline (#atLeastOnce), number of dates that appear
in at least 2 timelines, average (avgL), max (maxL) and min (minL) length of timelines; the Time Range of the union of
timelines and all potential dates (#dates) within the time range.

Table 2: Overview of groundtruth timelines

often receive more attention from writers, leading
to longer articles.

Date Frequency ranks a date d by the total num-
ber of sentences referring to d that are not pub-
lished on d. This is a simple measure of d’s influ-
ence without joint scoring of dates or integration
of temporal distance or topic.

Competitors. We reimplement Kessler et al.
(2012)’s model. It first detects all sentences with
date references and filters out certain types of sen-
tences according to linguistic features (such as
presence of modality as this can put the factual-
ity of the event into question). Then, the impor-
tance score of a date is determined by the prod-
uct of the Lucene score of referring sentences and
an ML-predicted score that takes into account date
reference frequencies, temporal distance of date
references and topical importance of referring sen-
tences. To use the same setting as for our systems,
we use the list of keywords extracted by TextRank
(Mihalcea and Tarau, 2004) to formulate a topic
query for the Lucene index.

We reimplement Tran et al. (2013a) who use a
supervised ML approach based on a more detailed
consideration of date reference frequencies.

Both Kessler et al. (2012) and Tran et al.
(2013a) are retrained and tested via 4-fold cross-
validation on events. In addition, we noted that
the two supervised systems could profit from the
fact that for certain dates in T Re no published
news articles exist in the news collection and that
they are therefore a priori unlikely to be relevant.
We therefore also run those systems with a stricter
input time range, which intersects T Re with the
dates that are the publication date of at least one
article in the news collection. We indicate these
systems as Kessler et al. (2012) (Pub) and Tran et
al. (2013a) (Pub).

Our Approach. Our system builds graphs with
all dates referenced in the news corpus for an event
as nodes. We select the top k highest ranked nodes
that also fall within T Re. We measure the perfor-
mance with different strategies for the Influence
factor I. We use the following five unsupervised
strategies, where we just set the damping factor α

to 0.85 as suggested by Page et al. (1999).8

IRWfreq only uses the frequency aspect. This
corresponds to a joint modelling version of the
Date Frequency baseline.
IRWmax topical uses topical influence, disre-

garding frequency aspect in its computation.
IRWfreq∗topical uses topical influence, incor-

porating the frequency aspect in its computation.
IRW|temporal| uses temporal influence, disre-

garding the frequency aspect.
IRWfreq∗temporal uses temporal influence in-

corporating the frequency aspect.
Furthermore, we are interested in combining

topical and temporal influence (with or without
frequency aspects). Here, our model is parame-
terized by ω which controls the impact of topi-
cal influence vs. temporal influence. This param-
eter is tuned on the training set via 4-fold cross-
validation and, therefore, the next two models
have a small element of supervision.
IRWmax topical+freq∗temporal combines topical

and temporal influence, integrating the frequency
aspect into temporal influence.
IRWfreq∗topical+|temporal| combines topical

and temporal influence, integrating the frequency
aspect into topical influence.

4.4 Analysis of date reference graphs

Table 4 shows an analysis of the four date refer-
ence graphs. In this Table, #sent provides the total
number of sentences from all news articles while
#hasRef shows the number of sentences that re-
fer to a date (around 15%), suggesting a sustain-
able part of data can be helpful for the interaction-
based approach. The number of nodes shows the
unique dates that are involved in a date reference
link. The number of edges is equivalent to the
number of date reference links (di, dj) that in-
dicate that there exist sentences published on di
but referring to dj . toStrict and toRelaxed is the

8We could make these models supervised by tuning the
damping factor via cross-validation. However, we found it
encouraging that we were able to achieve competitive results
without tuning — similar to links between web pages in the
traditional PageRank algorithm, links between dates seem to
embody strong relations, making the same damping factor
suitable.
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#sent #hasRef(%) #nodes #Edges toStrict reachStrict toRelaxed reachRelaxed
Egypt 143,096 26,428 (18.5) 939 2784 15.55% 100.00% 35.99% 89.34%
Libya 140,753 22,166 (15.7) 971 1797 33.78% 98.21% 56.98% 99.15%
Syria 162,305 26,992 (16.6) 812 1555 7.14% 88.24% 31.00% 73.58%
Yemen 140,156 21,606 (15.4) 1106 1608 18.28% 100.00% 37.00% 100.00%

Table 4: Interaction-based analysis on experimental news collections

proportion of the edges that link to groundtruth
dates in the strict setting and relaxed setting.
Those edges cover almost all the groundtruth dates
(i.e, reachStrict and reachRelaxed), i.e almost all
groundtruth dates are indeed referenced at least
once in our corpus.

4.5 Results

Table 5 shows the average performance of differ-
ent systems over our four events. Several general
observations stand out. First, we notice that the
scores wrt. relaxed setting of all systems are higher
than those wrt. strict setting. That is expected, as
in relaxed setting, a selected date has a higher like-
lihood to be one of the milestones in the timeline
of at least one expert. Second, simple baselines
such as Document Frequency and MaxLength per-
form reasonably well in the relaxed-setting. That
confirms our assumptions that important dates of-
ten possess more published news articles and are
likely to have at least one article of substantial
length. However, these baselines are not enough
to distinguish highly important dates (which are
selected by more than one journalist) as shown by
their performance in the strict setting (around 0.3
MAP@k only).

Using Date Frequency leads to a substan-
tial performance improvement in the strict set-
ting comapred to the publication-based baselines.
Therefore, highly important dates are more likely
to be kept mentioning in the future and that sup-
ports our research direction to better leverage date
interaction for ranking date importance. This
is further confirmed by the performance of the
IRWfreq system which is the joint modelling ver-
sion of the DateFrequency baseline and outper-
foms the baseline without inclusion of any further
information such as topical salience. It can even
compete with prior supervised competitors when
their input time range is not modified.

Our supervised competitors (Kessler et al.,
2012; Tran et al., 2013a) perform overall well and
both profit from modifying their input time range
as suggested in the Pub versions. However, the un-
supervised versions of our system IRWmax topical

and IRWfreq∗topical perform very comparably to

the supervised competitors in the strict and relaxed
setting, respectively.

The last two lines of Table 5 show the re-
sults of our proposed method when using a lin-
ear combination of the different influence fac-
tors, and the hyperparameter ω having been tuned
on the training set. IRWmax topical+freq∗temporal
shows the result of our system with ω = 0.2 and
IRWfreq∗topical+|temporal| with ω = 0.1 These
systems outperform the state-of-the-art systems
clearly in the strict setting and for most measures
in the relaxed setting.

Stability. We also investigated the stability of
the performance of different systems by look-
ing into their results on each event. Table 6
presents the performance of our best system
IRWmax topical+freq∗temporal and its best super-
vised competitors Tran et al. (2013a) (Pub) and
Kessler et al. (2012) (Pub). All systems perform
worse on the Syria story although our dropoff is
less than the one of prior systems.

We speculate that the competitor systems are
more sensitive to the amount of available pub-
lished content on a target date than ours. In partic-
ular, Tran et al. (2013a) use the frequency of pub-
lished dates and sentences as one of their features,
and Kessler et al. (2012) rely on the returned re-
sults from Lucene index which tends towards sub-
stories from the publication periods. Different to
others, the time range for the Syria news collection
does not include the time range for the Syria time-
lines fully or almost fully (see Tables 2 and 3). We
therefore are not as dependent on an exact match
between timeline dates and news collection dates
and can use news articles from later dates more
effectively.

5 Conclusion and Future Work

This paper addresses the problem of date selec-
tion for timeline summarization. Our approach
leverages the interactions between dates via a joint
model based on a date reference graph, improving
on individual scoring of dates.

We capture the interactions between dates from
the number of cross-references between dates, and
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System strict setting relaxed-setting
MAP@5 MAP@10 MAP@15 MAP@20 MAP@5 MAP@10 MAP@15 MAP@20

Document Frequency 0.312 0.303 0.299 0.299 0.509 0.550 0.564 0.560
MaxLength 0.349 0.335 0.311 0.287 0.647 0.594 0.566 0.533
Date Frequency 0.555 0.498 0.457 0.427 0.597 0.626 0.625 0.613
(Kessler et al., 2012) 0.567 0.546 0.519 0.491 0.790 0.740 0.723 0.704
(Kessler et al., 2012) (Pub) 0.701 0.620 0.571 0.524 0.912 0.807 0.759 0.731
(Tran et al., 2013a) 0.668 0.565 0.522 0.488 0.740 0.717 0.700 0.673
(Tran et al., 2013a) (Pub) 0.710 0.601 0.551 0.506 0.792 0.771 0.746 0.716
IRWfreq 0.646 0.535 0.471 0.431 0.861 0.770 0.711 0.687
IRWmax topical 0.763 0.647 0.564 0.510 0.887 0.794 0.724 0.685
IRWfreq∗topical 0.737 0.576 0.498 0.448 0.945 0.836 0.762 0.709
IRW|temporal| 0.724 0.587 0.522 0.484 0.699 0.597 0.570 0.564
IRWfreq∗temporal 0.724 0.588 0.527 0.486 0.712 0.622 0.581 0.559
IRWmax topical+freq∗temporal 0.879 0.760 0.658 0.587 0.897 0.842 0.775 0.730
IRWfreq∗topical+|temporal| 0.818 0.677 0.596 0.536 0.928 0.866 0.801 0.745

Table 5: Average MAP@k scores of different systems on 4 news collections

Egypt Libya Syria Yemen
IRWmax topical+freq∗temporal

MAP@5 0.960 1.000 0.713 0.843
MAP@10 0.738 0.969 0.598 0.735
MAP@15 0.600 0.854 0.503 0.676
MAP@20 0.520 0.776 0.433 0.619

Kessler et al. (2012) (Pub)
MAP@5 0.703 0.843 0.257 1.000
MAP@10 0.566 0.759 0.203 0.952
MAP@15 0.507 0.697 0.187 0.894
MAP@20 0.450 0.659 0.171 0.816

Tran et al. (2013a) (Pub)
MAP@5 0.960 0.910 0.257 0.713
MAP@10 0.803 0.836 0.224 0.541
MAP@15 0.665 0.799 0.227 0.514
MAP@20 0.569 0.758 0.212 0.484

Table 6: Stability of our systems vs. competitors

their temporal and topical influences. We present a
novel random walk model that incorporates these
perspectives into connectivity-based computation.
Experimental results on four news events that span
a long time period show that the proposed models
outperform state-of-the art approaches. Even un-
supervised versions of the model perform on a par
with previous supervised methods. We also draw
attention to the necessity to take personal bias into
account, which leads to differences between man-
ually created timelines for the same event — we
encourage future work to always consider several
timelines per event in the way that other NLP work
uses several annotators to create ground truth.

In future work, we will consider a wider range
of events and event types. This will also lead
to considering timelines where the day as unit of
granularity might not be appropriate or where the
unit of granularity might be varying across the
timeline. We will also explore in depth the effect
of size and type of news corpus on resulting time-
lines, research further into the issue of human dis-
agreement in timeline creation and explore human
evaluation of timeline summarization.
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Abstract

During crises such as natural disasters or
other human tragedies, information needs
of both civilians and responders often re-
quire urgent, specialized treatment. Moni-
toring and summarizing a text stream dur-
ing such an event remains a difficult prob-
lem. We present a system for update sum-
marization which predicts the salience of
sentences with respect to an event and
then uses these predictions to directly bias
a clustering algorithm for sentence se-
lection, increasing the quality of the up-
dates. We use novel, disaster-specific
features for salience prediction, including
geo-locations and language models repre-
senting the language of disaster. Our eval-
uation on a standard set of retrospective
events using ROUGE shows that salience
prediction provides a significant improve-
ment over other approaches.

1 Introduction

During crises, information is critical for first re-
sponders, crisis management organizations, and
those caught in the event. When the event is sig-
nificant, as in the case of Hurricane Sandy, the
amount of content produced by traditional news
outlets, government agencies, relief organizations,
and social media can vastly overwhelm those try-
ing to monitor the situation. Crisis informatics
(Palen et al., 2010) is dedicated to finding methods
for sharing the right information in a timely fash-
ion during such an event. Research in this field has
focused on human-in-the-loop approaches rang-
ing from on the ground information gathering to
crowdsourced reporting and disaster management
(Starbird and Palen, 2013).

Multi-document summarization has the poten-
tial to assist the crisis informatics community. Au-
tomatic summarization could deliver relevant and

salient information at regular intervals, even when
human volunteers are unable to. Perhaps more im-
portantly it could help filter out unnecessary and
irrelevant detail when the volume of incoming in-
formation is large. While methods for identifying,
tracking, and summarizing events from text based
input have been explored extensively (Allan et al.,
1998; Filatova and Hatzivassiloglou, 2004; Wang
et al., 2011), these experiments were not devel-
oped to handle streaming data from a heteroge-
neous environment at web scale. These methods
also rely heavily on redundancy which is subop-
timal for time sensitive domains where there is a
high cost in delaying information.

In this paper, we present an update summariza-
tion system to track events across time. Our sys-
tem predicts sentence salience in the context of a
large-scale event, such as a disaster, and integrates
these predictions into a clustering based multi-
document summarization system. We demonstrate
that combining salience with clustering produces
more relevant summaries compared to baselines
using clustering or relevance alone. Our experi-
ments suggest that this is because our system is
better able to adapt to dynamic changes in input
volume that adversely affect methods that use re-
dundancy as a proxy for salience.

In addition to the tight integration between clus-
tering and salience prediction, our approach also
exploits knowledge about the event to determine
salience. Thus, salience represents both how typi-
cal a sentence is of the event type (e.g., industrial
accident, hurricane, riot) and whether it specifies
information about this particular event. Our fea-
ture representation includes a set of language mod-
els, one for each event type, to measure the typi-
cality of the sentence with regard to the current
event, the distance of mentioned locations from
the center of the event, and the change in word
frequencies over the time of the event. While we
evaluate these features in the domain of disasters,
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this approach is generally applicable to many up-
date summarization tasks.

Our approach achieves a statistically significant
improvement in ROUGE scores compared to mul-
tiple baselines. Additionally, we introduce novel
methods for estimating the average information
gain each update provides and how completely the
update summary covers the event it is tracking; our
system’s updates contain more relevant informa-
tion on average than the competing baselines.

The remainder of the paper is organized as fol-
lows. We begin with a review of related work
in the information retrieval and multi-document
summarization literature. Section 3 outlines the
details of our salience and summarization models.
Next we describe our data (Section 4) and experi-
ments (Section 5). Finally, we discuss our results
(Section 6) and conclude the paper.

2 Related Work

A principal concern in extractive multi-document
summarization is the selection of salient sentences
for inclusion in summary output (Nenkova and
McKeown, 2012). Existing approaches generally
fall into one of three categories, each with specific
trade-offs with respect to update summarization.

First, centrality-focused approaches (including
graph (Erkan and Radev, 2004), cluster (Hatzivas-
siloglou et al., 2001), and centroid (Radev et al.,
2004) methods) are very natural for retrospective
analysis in the sense that they let the data “speak
for itself.” These methods equate salience with
centrality, either to the input or some other ag-
gregate object (i.e. a cluster center or input cen-
troid). However, they rely chiefly on redundancy.
When applied to an unfolding event, there may not
exist enough redundant content at the event onset
for these methods to exploit. Once the event onset
has passed, however, the redundancy reduction of
these methods is quite beneficial.

The second category, predictive approaches, in-
cludes ranking and classification based methods.
Sentences have been ranked by the average word
probability, average TF*IDF score, and the num-
ber of topically related words (topic-signatures in
the summarization literature) (Nenkova and Van-
derwende, 2005; Hovy and Lin, 1998; Lin and
Hovy, 2000). The first two statistics are easily
computable from the input sentences, while the
third only requires an additional, generic back-
ground corpus. In classification based methods,

model features are usually derived from human
generated summaries, and are non-lexical in na-
ture (e.g., sentence starting position, number of
topic-signatures, number of unique words). Sem-
inal work in this area has employed naı̈ve Bayes
and logistic regression classifiers to identify sen-
tences for summary inclusion (Kupiec et al., 1995;
Conroy et al., 2001). While these methods are
less dependent on redundancy, the expressiveness
of their features is limited. Our model expands
on these basic features to account for geographic,
temporal, and language model features.

The last category includes probabilistic
(Haghighi and Vanderwende, 2009), information
theoretic, and set cover (Lin and Bilmes, 2011)
approaches. While these methods are focused on
producing diverse summaries, they are difficult to
adapt to the streaming setting, where we do not
necessarily have a fixed summary length and the
corpus to be summarized contains many irrelevant
sentences, i.e. there are large portions of the
corpora that we specifically want to avoid.

Several researchers have recognized the impor-
tance of summarization during natural disasters.
(Guo et al., 2013) developed a system for detect-
ing novel, relevant, and comprehensive sentences
immediately after a natural disaster. (Wang and
Li, 2010) present a clustering-based approach to
efficiently detect important updates during natural
disasters. The algorithm works by hierarchically
clustering sentences online, allowing the system to
output a more expressive narrative structure than
(Guo et al., 2013). Our system attempts to unify
these system’s approaches (predictive ranking and
clustering respectively).

3 Method

Our update summarization system takes as input
a) a short query defining the event to be tracked
(e.g. ‘Hurricane Sandy’), b) an event category
defining the type of event to be tracked (e.g. ‘hur-
ricane’), c) a stream of time-stamped documents
presented in temporal order, and d) an evaluation
time period of interest. While processing docu-
ments throughout the time period of interest, the
system outputs sentences from these documents
likely to be useful to the query issuer. We refer
to these selected sentences as updates.

In order to measure the usefulness of a sys-
tem’s updates, we consider the degree to which
the system output reflects the different aspects of
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– hurricane force wind warnings are in effect
from Rhode Island Sound to Chincoteague
Bay
– over 5000 commercial airline flights sched-
uled for October 28 and October 29 were
cancelled

Figure 1: Example nuggets from Hurricane Sandy.

an event. Events are often composed of a vari-
ety of sub-events. For example, the Hurricane
Sandy event includes sub-events related to the
storm making landfall, the ensuing flooding, the
many transportation issues, among many others.
An ideal system would update the user about each
of these sub-events as they occur. We refer to
these sub-events as the nuggets associated with an
event. A nugget is defined as a fine-grained atomic
sub-event associated with an event. We present
2 example nuggets associated with the Hurricane
Sandy event in Figure 1. Each event has anywhere
from 50 to several hundred nuggets in total in our
gold dataset. We describe how these nuggets are
found in Section 4.

Throughout our treatment of our algorithm, the
salience of an update captures the degree to which
it reflects an event’s unobserved nuggets. Assum-
ing that we have a text representation for each of
our nuggets, the salience of an update u with re-
spect to a set of nuggets N is defined as,

salience(u) = maxn∈N sim(u, n) (1)

where sim(·) is the semantic similarity such as the
cosine similarity of latent vectors associated with
the update and nugget text (Guo and Diab, 2012).

3.1 Update Summarization
Our system architecture follows a simple pipeline
design where each stage provides an additional
level of processing or filtering of the input sen-
tences. We begin with an empty update summary
U . At each hour we receive a new batch of sen-
tences bt from the stream of event relevant docu-
ments and perform the following actions:

1. predict the salience of sentences in bt (Sec-
tion 3.2),

2. select a set of exemplar sentences in bt by
combining clustering with salience predic-
tions (Section 3.3),

3. add the most novel and salient exemplars to
U (Section 3.4).

The resultant list of updates U is our summary of
the event.

3.2 Salience Prediction
3.2.1 Features
We want our model to be predictive of sen-
tence salience across different event instances
so we avoid event-specific lexical features. In-
stead, we extract features such as language model
scores, geographic relevance, and temporal rele-
vance from each sentence.

Basic Features We employ several basic fea-
tures that have been used previously in supervised
models to rank sentence salience (Kupiec et al.,
1995; Conroy et al., 2001). These include sen-
tence length, the number of capitalized words nor-
malized by sentence length, document position,
and number of named entities. The data stream
comprises text extracted from raw html docu-
ments; these features help to downweight sen-
tences that are not content (e.g. web page titles,
links to other content) or more heavily weight im-
portant sentences (e.g., that appear in prominent
positions such as paragraph initial or article ini-
tial).

Query Features Query features measure the
relationship between the sentence and the event
query and type. These include the number of
query words present in the sentence in addition to
the number of event type synonyms, hypernyms,
and hyponyms using WordNet (Miller, 1995). For
example, for event type earthquake, we match sen-
tence terms “quake”, “temblor”, “seism”, and “af-
tershock”.

Language Model Features Language models
allow us to measure the likelihood of producing
a sentence from a particular source. We consider
two types of language model features. The first
model is estimated from a corpus of generic news
articles (we used the 1995-2010 Associated Press
section of the Gigaword corpus (Graff and Cieri,
2003)). This model is intended to assess the gen-
eral writing quality (grammaticality, word usage)
of an input sentence and helps our model to select
sentences written in the newswire style.

The second model is estimated from text spe-
cific to our event types. For each event type
we create a corpus of related documents using
pages and subcategories listed under a related
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Storm Earthquake Meteor Impact
Accident Riot Protest
Hostages Shooting Bombing

Figure 2: TREC TS event types.

Wikipedia category. For example, the language
model for event type ‘earthquake’ is estimated
from Wikipedia pages under the category Cate-
gory:Earthquakes. Fig. 2 lists the event types
found in our dataset. These models are intended
to detect sentences similar to those appearing in
summaries of other events in the same category
(e.g. most earthquake summaries are likely to in-
clude higher probability for ngrams including the
token ‘magnitude’). While we focus our system on
the language of news and disaster, we emphasize
that the use of language modeling can be an effec-
tive feature for multi-document summarization for
other domains that have related text corpora.

We use the SRILM toolkit (Stolcke and others,
2002) to implement a 5-gram Kneser-Ney model
for both the background language model and the
event specific language models. For each sentence
we use the average token log probability under
each model as a feature.

Geographic Relevance Features The disasters
in our corpus are all phenomena that affect some
part of the world. Where possible, we would like
to capture a sentence’s proximity to the event, i.e.
when a sentence references a location, it should be
close to the area of the disaster.

There are two challenges to using geographic
features. First, we do not know where the event is,
and second, most sentences do not contain refer-
ences to a location. We address the first issue by
extracting all locations from documents relevant to
the event at the current hour and looking up their
latitude and longitude using a publicly available
geo-location service. Since the documents that are
at least somewhat relevant to the event, we assume
in aggregate the locations should give us a rough
area of interest. The locations are clustered and
we treat the resulting cluster centers as the event
locations for the current time.

The second issue arises from the fact that the
majority of sentences in our data do not contain
explicit references to locations, i.e. a sequence of
tokens tagged as location named entities. Our in-
tuition is that geographic relevance is important in
the disaster domain, and we would like to take ad-

vantage of the sentences that do have location in-
formation present. To make up for this imbalance,
we instead compute an overall location for the
document and derive geographic features based on
the document’s proximity to the event in question.
These features are assigned to all sentences in the
document.

Our method of computing document-level ge-
ographic relevance features is as follows. Using
the locations in each document, we compute the
median distance to the nearest event location. Be-
cause document position is a good indicator of im-
portance we also compute the distance of the first
mentioned location to the nearest event location.
All sentences in the document take as features
these two distance calculations. Because some
events can move, we also compute these distances
to event locations from the previous hour.

Temporal Relevance Features As we track
events over time, it is likely that the coverage of
the event may die down, only to spike back up
when there is a breaking development. Identify-
ing terms that are “bursty,” i.e. suddenly peaking
in usage, can help to locate novel sentences that
are part of the most recent reportage and have yet
to fall into the background.

We compute the IDF for each hour in our data
stream. For each sentence, the average TF*IDF
for the current hour t is taken as a feature. Addi-
tionally, we use the difference in average TF*IDF
from time t to t − i for i = {1, . . . , 24} to mea-
sure how the TF*IDF scores for the sentence have
changed over the last 24 hours, i.e. we keep the
sentence term frequencies fixed and compute the
difference in IDF. Large changes in IDF value in-
dicate the sentence contains bursty terms. We also
use the time (in hours) since the event started as a
feature.

3.2.2 Model
Given our feature representation of the input sen-
tences, we need only target salience values for
model learning. For each event in our training
data, we sample a set of sentences and each sen-
tence’s salience is computed according to Equa-
tion 1. This results in a training set of sen-
tences, their feature representations, and their tar-
get salience values to predict.

We opt to use a Gaussian process (GP) re-
gression model (Rasmussen and Williams, 2006)
with a Radial Basis Function (RBF) kernel for the
salience prediction task. Our features fall naturally
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into five groups and we use a separate RBF kernel
for each, using the sum of each feature group RBF
kernel as the final input to the GP model.

3.3 Exemplar Selection
Once we have predicted the salience for a batch
of sentences, we must now select a set of update
candidates, i.e. sentences that are both salient and
representative of the current batch. To accomplish
this, we combine the output of our salience pre-
diction model with the affinity propagation algo-
rithm. Affinity propagation (AP) is a clustering
algorithm that identifies a subset of data points as
exemplars and forms clusters by assigning the re-
maining points to one of the exemplars (Frey and
Dueck, 2007). AP attempts to maximize the net
similarity objective

S =
n∑

i:i 6=ei

sim(i, ei) +
n∑

i:i=ei

salience(ei)

where ei is the exemplar of the i-th data point, and
functions sim and salience express the pairwise
similarity of data points and our predicted apri-
ori preference of a data point to be an exemplar
respectively. AP differs from other k-centers algo-
rithms in that it simultaneously considers all data
points as exemplars, making it less prone to find-
ing local optima as a result of poor initialization.
Furthermore, the second term in S incorporates
the individual importance of data points as candi-
date exemplars; most other clustering algorithms
only make use of the first term, i.e. the pairwise
similarities between data points.

AP has several useful properties and interpre-
tations. Chiefly, the number of clusters k is not
a model hyper-parameter. Given that our task re-
quires clustering many batches of streaming data,
searching for an optimal k would be computation-
ally prohibitive. With AP, k is determined by the
similarities and preferences of the data. Generally
lower preferences will result in fewer clusters.

Recall that salience(s) is a prediction of the
semantic similarity of s to information about the
event be summarized, i.e. the set of event nuggets.
Intuitively, when maximizing objective function
S, AP must balance between best representing the
input data and representing the most salient in-
put. Additionally, when the level of input is high
but the salience predictions are low, the preference
term will guide AP toward a solution with fewer
clusters; vice-versa when input is very salient on

average but the volume of input is low. The adap-
tive nature of our model differentiates our method
from most other update summarization systems.

3.4 Update Selection

The exemplar sentences from the exemplar selec-
tion stage are the most salient and representative of
the input for the current hour. However, we need
to reconcile these sentences with updates from the
previous hour to ensure that the most salient and
least redundant updates are selected. To ensure
that only the most salient updates are selected we
apply a minimum salience threshold; after exem-
plar sentences have been identified, any exemplars
whose salience is less than λsal are removed from
consideration.

Next, to prevent adding updates that are redun-
dant with previous output updates, we filter out ex-
emplars that are too similar to previous updates.
The exemplars are examined sequentially in order
of decreasing salience and a similarity threshold is
applied, where the exemplar is ignored if its max-
imum semantic similarity to any previous updates
in the summary is greater than λsim.

Exemplars that pass these thresholds are se-
lected as updates and added to the summary.

4 Data

For the document stream, we use the news portion
of the 2014 TREC KBA Stream Corpus (Frank et
al., 2012). The documents from this corpus come
from hourly crawls of the web covering October
2011 through February 2013.

Our experiments also make use of the TREC
Temporal Summarization (TS) Track data from
2013 and 2014 (Aslam et al., 2013). This data in-
cludes 25 events and event metadata (e.g., a user
search query for the event, the event type, and
event evaluation time frame). All events occurred
during the time span of the TREC KBA Stream
Corpus. For each event we create a stream of rel-
evant documents by selecting only documents that
contain the complete set of query words.

Along with the metadata, NIST assessors con-
structed a set of ground truth nuggets for each
event. Nuggets are brief and important text snip-
pets that represent sub-events that should be con-
veyed by an ideal update summary. In order to ac-
complish this, for each event, assessors were pro-
vided with the revision history of the Wikipedia
page associated with the event. For example, the
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revision history for the Wikipedia page for ‘Hurri-
cane Sandy’ will contain text additions including
those related to individual nuggets. The assess-
ment task involves reviewing the Wikipedia revi-
sions in the evaluation time frame and marking
the text additions capturing a new, unique nugget.
More detail on this process can be found in the
track description (Aslam et al., 2013).

5 Experiments

We evaluate our system on two metrics: ROUGE
(Lin, 2004), an automatic summarization method
and an evaluation of system expected gain and
comprehensiveness—metrics adapted from the
TREC TS track (Aslam et al., 2013).

5.1 Training and Testing

Of the 25 events in the TREC TS data, 24 are
covered by the news portion of the TREC KBA
Stream Corpus. From these 24, we set aside
three events to use as a development set. All
system salience and similarity threshold parame-
ters are tuned on the development set to maximize
ROUGE-2 F1 scores.

We train a salience model for each event us-
ing 1000 sentences randomly sampled from the
event’s document stream.

We perform a leave-one-out evaluation of each
event. At test time, we predict a sentence’s
salience using the average predictions of the 23
other models.

5.2 ROUGE Evaluation

ROUGE measures the ngram overlap between
a model summary and an automatically gener-
ated system summary. Model summaries for
each event were constructed by concatenating the
event’s nuggets. Generally, ROUGE evaluation
assumes both model and system summaries are of
a bounded length. Since our systems are summa-
rizing events over a span of two weeks time, the
total length of our system output is much longer
than the model. To address this, for each sys-
tem/event pair, we sample with replacement 1000
random summaries of length less than or equal to
the model summary (truncating the last sentence
when neccessary). The final ROUGE scores for
the system are the average scores from these 1000
samples.

Because we are interested in system perfor-
mance over time, we also evaluate systems at 12

hour intervals using the same regime as above.
The model summaries in this case are retrospec-
tive, and this evaluation reveals how quickly sys-
tems can cover information in the model.

5.3 Expected Gain and Comprehensiveness
NIST developed metrics for evaluating update
summarization systems as part of the TREC TS
track. We present results on two of these metrics,
the expected gain and comprehensiveness.

Expected Gain We treat the event’s nuggets as
unique units of information. When a system adds
an update to its summary, it is potentially adding
some of this nugget information. It would be in-
structive to know how much unique and novel in-
formation each update is adding on average to the
summary. To that end, we define

E[Gain] =
|Sn|
|S|

where S is the set of system updates, Sn is the set
of nuggets contained in S, and | · | is the number
of elements in the set. To compute the set Sn we
match each system update to 0 or more nuggets,
where an update matches a nugget if their seman-
tic similarity is above a threshold. Sn results from
the unique set of nuggets matched. Because an
update can map to more than one nugget, it is pos-
sible to receive an expected gain greater than 1.
An expected gain of 1 would indicate that every
sentence was both relevant and contained a unique
piece of information.

Comprehensiveness Additionally, we can use
the nuggets to measure the completeness of an up-
date summary. We define

Comprehensiveness =
|Sn|
|N |

where N is the set of event nuggets. A compre-
hensiveness of 1 indicates that the summary has
covered all nugget information for the event; the
maximum attainable comprehensiveness is 1.

Update-nugget matches are computed automat-
ically; a match exists if the semantic similarity of
the update/nugget pair is above a threshold. De-
termining an optimal threshold to count matches
is difficult so we evaluate at threshold values rang-
ing from .5 to 1, where values closer to 1 are
more conservative estimates of performance. A
manual inspection of matches suggests that se-
mantic similarity values around .7 produce reason-
able matches. The average semantic similarity of
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manual matches performed by NIST assessors was
much lower at approximately .25, increasing our
confidence in the automatic matches in the .5–1
range.

5.4 Model Comparisons
We refer to our complete model as
AP+SALIENCE. We compare this model
against several variants and baselines intended to
measure the contribution of different components.
All thresholds for all runs are tuned on the
development set.

Affinity Propagation only (AP) The purpose
of this model is to directly measure the effect of
integrating salience and clustering by providing a
baseline that uses the identical clustering compo-
nent, but without the salience information. In this
model, input sentences are apriori equally likely
to be exemplars; the salience values are uniformly
set as the median value of the input similarity
scores, as is commonly used in the AP literature
(Frey and Dueck, 2007). After clustering a sen-
tence batch, the exemplars are examined in order
of increasing time since event start and selected
as updates if their maximum similarity to the pre-
vious updates is less than λsim, as in the novelty
filtering stage of AP+SALIENCE.

Hierarchichal Agglomerative Clustering
(HAC) We provide another clustering baseline,
single-linkage hierarchichal agglomerative clus-
tering. We include this baseline to show that
AP+SALIENCE is not just an improvement over
AP but centrality driven methods in general.
HAC was chosen over other clustering ap-
proaches because the number of clusters is not an
explicit hyper-parameter. To produce flat clusters
from the hierarchical clustering, we flatten the
HAC dendrogram using the cophenetic distance
criteria, i.e. observations in each flat cluster have
no greater a cophenetic distance than a threshold.
Cluster centers are determined to be the sentence
with highest cosine similariy to the flat cluster
mean. Cluster centers are examined in time order
and are added to the summary if their similarity to
previous updates is below a similarity threshold
λsim as is done in the AP model.

Rank by Salience (RS) We also isolate the im-
pact of our salience model in order to demonstrate
that the fusion of clustering and salience predic-
tion improves over predicting salience alone. In
this model we predict the salience of sentences as
in step 1 for AP+SALIENCE. We omit the cluster-

ing phase (step 2). Updates are selected identically
to step 3 of AP+SALIENCE, proceeding in order
of decreasing salience, selecting updates that are
above a salience threshold λsal and below a simi-
larity threshold λsim with respect to the previously
selected updates.

6 Results

6.1 ROUGE

ROUGE-1
System Recall Prec. F1

AP+SALIENCE 0.282 0.344 0.306
AP 0.245 0.285 0.263
RS 0.230 0.271 0.247
HAC 0.169 0.230 0.186

ROUGE-2
System Recall Prec. F1

AP+SALIENCE 0.045 0.056 0.049
AP 0.033 0.038 0.035
RS 0.031 0.037 0.034
HAC 0.017 0.024 0.019

Table 1: System ROUGE performance.

Table 1 shows our results for system output
samples against the full summary of nuggets us-
ing ROUGE. This improvement is statistically sig-
nificant for all ngram precision, recall, and F-
measures at the α = .01 level using the Wilcoxon
signed-rank test.

AP+SALIENCE maintains its performance
above the baselines over time as well. Fig-
ure 3 shows the ROUGE-1 scores over time.
We show the difference in unigram precision
(bigram precision is not shown but it follows
similar curve). Within the initial days of the
event, AP+SALIENCE is able to take the lead
over the over systems in ngram precision. The
AP+SALIENCE model is better able to find salient
updates earlier on; for the disaster domain, this is
an especially important quality of the model.

Moreover, the AP+SALIENCE’s recall is not di-
minished by the high precision and remains com-
petitive with AP. Over time AP+SALIENCE’s re-
call also begins to pull away, while the other mod-
els start to suffer from topic drift.

6.2 Expected Gain and Comprehensiveness
Figure 4 shows the expected gain across a range
of similarity thresholds, where thresholds closer
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Figure 3: System ROUGE-1 performance over
time.

to 1 are more conservative estimates. The ranking
of the systems remains constant across the sweep
with AP+SALIENCE beating all baseline systems.
Predicting salience in general is helpful for keep-
ing a summary on topic as the RS approach out
performs the clustering only approaches on ex-
pected gain.

When looking at the comprehensiveness of the
summaries AP outperforms AP+SALIENCE. The
compromise encoded in the AP+SALIENCE ob-
jective function, between being representative and
being salient, is seen clearly here where the per-
formance of the AP+SALIENCE methods is lower
bounded by the salience focused RS system and
upper bounded by the clustering only AP system.
Overall, AP+SALIENCE achieves the best balance
of these two metrics.

6.3 Feature Ablation

Table 2 shows the results of our feature ablation
tests. Removing the language models yields a
statistically significant drop in both ngram recall
and F-measure. Interestingly, removing the ba-
sic features leads to an increase in both unigram
and bigram precision; in the bigram case this is
enough to cause a statistically significant increase
in F-measure over the full model. In other words,
the generic features actually lead to an inferior
model when we can incorporate more appropri-
ate domain specific features. The result mirrors
Sparck Jones’ claim that generic approaches to

0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

F
-m

ea
su
re

0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

E
x
p
ec
te
d
G
ai
n

0.5 0.6 0.7 0.8 0.9 1.0

Similarity Threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
o
m
p
.

AP+Salience

AP

HAC

RS

Figure 4: Expected Gain and Comprehensiveness
performance.

summarization cannot produce a useful summary
(Sparck-Jones, 1998).

Removing the language model and geographic
relevance features leads to a statistically signifi-
cant drop in ROUGE-1 F1 scores. Unfortunately,
this is not the case for the temporal relevance
features. We surmise that these features are too
strongly correlated with each other, i.e. the differ-
ences in TF*IDF between hours are definitely not
i.i.d. variables.

7 Conclusion

In this paper, we have presented an update sum-
marization system for the disaster domain, and
demonstrated improved system performance by
integrating sentence salience with clustering.

We also have shown that features specifically
targeted to the domain of disaster yield better sum-
maries. We developed novel features that capture
the language typical of different event types and
that identify sentences specific to the particular
disaster based on location.

In the future we would like to explore the appli-
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2012 Pakistan Garment Factory Fires
• The fire broke out when people in the building were trying to start their generator after the electricity went out.

• Pakistani television showed pictures of what appeared to be a three-story building with flames leaping from the top-floor
windows and smoke billowing into the night sky.

• The people went to the back side of the building but there was no access, so we had to made forceful entries and rescue
the people, said Numan Noor, a firefighter on the scene.

• “We have recovered 63 bodies, including three found when we reached the basement of the building,” Karachi fire chief
Ehtesham Salim told AFP on Wednesday.

2012 Romanian Protests

• Clashes between riot police and demonstrators have also erupted in the Romanian capital Bucharest for a third day in a
row.

• BOC urged Romanians to understand that tough austerity measures are needed to avoid a default.

• More than 1,000 protesters rallied in Bucharest’s main university square, blocking traffic.

• Bucharest : a Romanian medical official says 59 people suffered injuries as days of protests against the government and
austerity measures turned violent.

Figure 5: AP+SALIENCE summary excerpts.

ROUGE-1
System Recall Prec. F1

Full System 0.282 0.344 0.306
No Basic 0.263 0.380† 0.294
No LM 0.223† 0.361 0.254†

No Time 0.297† 0.367†† 0.322†

No Geo 0.232†† 0.381 0.265†

No Query 0.251 0.377 0.280

ROUGE-2
System Recall Prec. F1

Full System 0.045 0.056 0.049
No Basic 0.046 0.068†† 0.051†

No LM 0.033† 0.056 0.038†

No Time 0.052†† 0.064†† 0.056††

No Geo 0.037† 0.065 0.042
No Query 0.043 0.068† 0.048

Table 2: Feature ablation ROUGE performance.
† indicates statistically significant difference from
full model at the α = .05 level. †† indicates sta-
tistically significant difference from full model at
the α = .01 level.

cation of the AP+SALIENCE model and features
to a wider class of events.
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Günes Erkan and Dragomir R Radev. 2004.
Lexrank: Graph-based lexical centrality as salience
in text summarization. J. Artif. Intell. Res.(JAIR),
22(1):457–479.

Elena Filatova and Vasileios Hatzivassiloglou. 2004.
Event-based extractive summarization. In ACL
Workshop on Summarization, Barcelona, Spain.

John R Frank, Max Kleiman-Weiner, Daniel A
Roberts, Feng Niu, Ce Zhang, Christopher Ré, and
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Abstract

In this paper we present the task of un-
supervised prediction of speakers’ accept-
ability judgements. We use a test set
generated from the British National Cor-
pus (BNC) containing both grammatical
sentences and sentences containing a va-
riety of syntactic infelicities introduced
by round trip machine translation. This
set was annotated for acceptability judge-
ments through crowd sourcing. We trained
a variety of unsupervised language mod-
els on the original BNC, and tested them
to see the extent to which they could pre-
dict mean speakers’ judgements on the test
set. To map probability to acceptability,
we experimented with several normalisa-
tion functions to neutralise the effects of
sentence length and word frequencies. We
found encouraging results with the unsu-
pervised models predicting acceptability
across two different datasets. Our method-
ology is highly portable to other domains
and languages, and the approach has po-
tential implications for the representation
and the acquisition of linguistic knowl-
edge.

1 Introduction

Language modelling involves predicting the prob-
ability of a sentence. Given a trained model, we
can infer the quantitative likelihood that a sentence
occurs. Acceptability, on the other hand, indicates
the extent to which a sentence is permissible or ac-
ceptable to native speakers of the language. While
acceptability is affected by frequency and exhibits
gradience (Keller, 2001; Sprouse, 2007; Lau et al.,

2014), there is limited research on the relationship
between acceptability and probability. In this pa-
per, we consider the the task of unsupervised pre-
diction of acceptability.

Speakers have robust intuitions about accept-
ability, and acceptability has been consistently
rated on various scales (Sprouse and Almeida,
2012). The acceptability of a sentence appears to
be relatively unaffected by its length (within cer-
tain bounds), or the frequency of its words, prop-
erties that we have confirmed experimentally. By
contrast sentence probability does depend on these
factors. To filter the effects of sentence length and
word frequency, we devise normalising functions
to map the probability of a sentence (inferred by
our unsupervised language models) to an accept-
ability score.

Keller (2001) and Lau et al. (2014) present ev-
idence that acceptability exhibits gradience. Ac-
cordingly, we treat acceptability as a continuous
variable here. We train a variety of unsuper-
vised models for the acceptability prediction task,
and we assess the performance of these models
by measuring the correlation between their nor-
malised acceptability scores and the mean crowd-
sourced acceptability judgements on a set of test
sentences.

There are a number of NLP tasks to which our
work can be fruitfully applied. It can be used
to evaluate the fluency of the output for machine
translation and other language generation systems.
It could also contribute to automatic essay scoring,
and to second language tutorial systems.

There are several reasons to favour unsuper-
vised models. From an engineering perspective,
unsupervised models offer greater portability to
other domains and languages. Our methodology
takes only unannotated text as input. Extending
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our methodology to other domains/languages is
therefore straightforward, as it requires only a raw
training corpus in that domain/language.

Our work may also have significant implica-
tions for the cognitive foundations of the repre-
sentation and acquisition of linguistic knowledge.
The unannotated training corpora of our language
models are impoverished input in comparison to
the data available to humans language learners,
who learn from a variety of data sources (vi-
sual and auditory cues, interaction with adults and
peers in a non-linguistic environment, etc). If an
unsupervised language model can reliably predict
human acceptability judgements, then it provides
a benchmark of what humans could, in principle,
achieve with the same learning algorithm.

Success in this task raises interesting questions
about the nature of grammatical knowledge. If ac-
ceptability judgments can be accurately modeled
through these techniques, then it seems unneces-
sary to posit an underlying binary model of syn-
tax which enumerates all and only the set of well-
formed sentences. Instead it is reasonable to sug-
gest that humans represent linguistic knowledge
as a probabilistic, rather than as a binary system.
Probability distributions provide a natural expla-
nation of the gradience that characterises accept-
ability judgements. Gradience is intrinsic to prob-
ability distributions, and to the acceptability scores
that we derive from these distributions.

While our results raise important questions con-
cerning the nature of syntactic representation and
of language acquisition, we leave them open for
further research. We refrain from making strong
claims on cognitive issues here. Clearly addi-
tional psychological evidence is required to moti-
vate substantive conclusions on these issues, even
if our results suggest them.

Our focus in this paper is on the task of predict-
ing speakers’ acceptability judgements through
unsupervised language models. We take this to be
a problem in natural language processing, whose
solution has useful applications in language tech-
nology. All models described in this paper are im-
plemented in an open source toolkit.1

We describe our dataset in Section 2, which
consists of crowd sourced acceptability judg-
ments applied to sentences with errors introduced
through round trip machine translation. We de-

1This toolkit can be accessed at https://github.
com/jhlau/acceptability_prediction.

scribe the models and their results in Section 3. In
Section 4 we present results with a different cor-
pus based on English Wikipedia. The new dataset
shows that our observations generalise to another
domain. We compare our methodology to a super-
vised system in the acceptability prediction task in
Section 5. We look more closely at the influence
of sentence length and lexical frequency in Sec-
tion 6, and we show that the normalising functions
succeed in neutralising these effects. Finally, we
discuss the implications of our results, and draw
conclusions from them in Section 7 and Section 8.

2 Dataset and Methodology

For our experiments, we require a collection of
sentences that exhibit varying degrees of gram-
matical well-formedness. We use the dataset that
we discuss in Lau et al. (2014). We translated
British National Corpus (BNC Consortium, 2007)
English sentences to four other languages – Nor-
wegian, Spanish, Japanese and Chinese – and then
back to English using Google Translate. To collect
human judgements of acceptability for the sen-
tences, we used Amazon Mechanical Turk. A total
of 2,500 sentences were annotated.

Three modes of presentation were used for rat-
ing a sentence: (1) binary with two options (un-
natural vs. natural); (2) four options (extremely
unnatural, somewhat unnatural, somewhat natural
and extremely natural); and (3) a sliding scale with
two extremes (extremely unnatural and extremely
natural). To aggregate the ratings over multiple
speakers for each sentence, we computed the arith-
metic mean. As there is a high correlation of mean
ratings among different modes of presentation, we
take the judgements for the four-option mode of
presentation as the gold-standard for our experi-
ments.

To predict the ratings of the 2,500 test sen-
tences, we trained several probabilistic models on
the BNC, and then used the trained models to infer
the probabilities of the test sentences. Models are
trained on the written portion of the BNC, which
has approximately 100 million words (henceforth
referred to as BNC-100M).2 We used only the
words, and no forms of annotation information in
the BNC, as input to training.

We first experiment with simple lexicalN -gram
models, and then move to Bayesian and neural

2We removed sentences with less than 8 words, as well as
the 2,500 test sentences, from the training data.
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network models, increasing the complexity of the
models to better capture word dependencies.

To translate probability into acceptability
scores, we compute several acceptability mea-
sures extracted from the model parameters. The
acceptability measures are variants of the sen-
tence’s log probability, devised to normalise sen-
tence length and low frequency words. These
measures are summarised in Table 1. For each
measure (including LogProb as a baseline) we
compute its Pearson correlation coefficient with
the gold standard sentence mean rating to evalu-
ate its effectiveness in predicting acceptability.

We tokenised the training data (BNC-100M) and
the test sentences using OpenNLP, and we con-
verted all words to lower case. To address out of
vocabulary (OOV) words that are seen in the test
sentences but not in the training data, we adopt
the Berkeley Parser approach, where we replace
low frequency or OOV words using the UNK sig-
nature. We capture additional surface characteris-
tics of the original word by attaching features at
the end of the signature (e.g. the OOV word 1949
would be replaced by the signature UNK-NUM).3

3 Unsupervised Models

3.1 Lexical N -gram Model
Lexical N -gram models were variously explored
in tasks related to acceptability estimation (Heil-
man et al., 2014; Clark et al., 2013; Pauls and
Klein, 2012). We use an N -gram model with
Kneser-Ney interpolation (Goodman, 2001), and
we train bigram, trigram, and 4-gram models on
BNC-100M. The trained models are then used to
compute the acceptability measures of the test sen-
tences.

The results are detailed in Table 2 (columns:
“2-gram”, “3-gram” and “4-gram”).4 In general
across all models, the Norm LP (Div) and SLOR
measures consistently produce the best correla-
tions.

We see a significant improvement when the con-
text window is increased from 2-gram to 3-gram,
but not so from 3-gram to 4-gram (2-gram best:
0.34; 3-gram best: 0.42; 4-gram best: 0.42). This
result implies that increasing the context window

3Low frequency words are defined as words occurring less
than 4 times in the BNC training data. A total of 15 features
are used for the UNK signature.

4We do not present model perplexity values in the results,
as we did not find any correlation between perplexity and task
performance.

Acc. Measure Equation

LogProb logPm(ξ)

Mean LP
logPm(ξ)
|ξ|

Norm LP (Div) − logPm(ξ)
logPu(ξ)

Norm LP (Sub) logPm(ξ)− logPu(ξ)

SLOR
logPm(ξ)− logPu(ξ)

|ξ|

Table 1: Acceptability measures for predicting the
acceptability of a sentence. Notations: SLOR is
the syntactic log-odds ratio, introduced by Pauls
and Klein (2012); ξ is the sentence (|ξ| is the sen-
tence length); Pm(ξ) is the probability of the sen-
tence given by the model; Pu(ξ) is the unigram
probability of the sentence. Note that the negative
sign in Norm LP (Div) is given to reverse the sign
change introduced by the division of log unigram
probabilities.

of the lexical N -gram model does not correspond
to a better representation of grammatical structure
(insofar as the size of the dataset is fixed), and a
more sophisticated model is necessary.

3.2 Bayesian HMM

Seeing that local context is insufficient for pre-
dicting acceptability, we explore various Bayesian
models that incorporate richer latent structures.
We chose a Bayesian implementation because its
“rich gets richer” dynamics tends to work well for
languages (Goldwater and Griffiths, 2007; Gold-
water et al., 2009; Newman et al., 2012; Lau et al.,
2012).

Lexical N -grams model the generation of a
word based on its preceding words. We introduce
a layer of latent variables on top of the words,
which can be interpreted as the word classes,
and we model the transitions between the latent
variables and observed words using Markov pro-
cesses. In this model we first generate a (latent)
word class based on its preceding word classes,
and we then generate the word based on its word
class. Figure 1(b) illustrates the structure of
a second order Hidden Markov model (HMM).
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wi−2 wi−1 wi wi+1

(a) Lexical 3-gram

si−2 si−1 si si+1

wi−2 wi−1 wi wi+1

(b) Bayesian HMM (2nd Order)

ti−2 ti−1 ti ti+1

si−2 si−1 si si+1

wi−2 wi−1 wi wi+1

(c) Two-Tier BHMM

Figure 1: A comparison of word structures for 3-gram, BHMM and Two-Tier BHMM. w = observed
words; s = tier-1 latent states (“word classes”); t = tier-2 latent states (“phrase classes”).

For comparison, the structure of a lexical 3-gram
model is given in Figure 1(a).

Goldwater and Griffiths (2007) propose a
Bayesian approach for learning the HMM struc-
ture. The authors found that their Bayesian
HMM (BHMM) significantly outperforms a
HMM trained with Maximum Likelihood Estima-
tion in unsupervised part-of-speech tagging. We
adopt the methodology of Goldwater and Griffiths
(2007), and train a 2nd order BHMM for our task,
using collapsed Gibbs sampling for inference.
BHMM has two sets of multinomials: the state
transition multinomials and the word emission
multinomials. To generalise the state transition
probabilities for start probabilities, we use dummy
words/states for empty preceding words/states.

BHMM has 3 parameters: (1) S, the number of
latent states; (2) γ, the Dirichlet hyper-parameter
for the state transition multinomials; and (3) δ,
the Dirichlet hyper-parameter for the word emis-
sion multinomials. We assume symmetric Dirich-
let priors for the hyper-parameters, and optimise
the 3 parameters based on test perplexity using a
greedy search approach, i.e. we optimise locally
for one parameter at each stage, while keeping the
default or previously optimised values for other
parameters.5 For the optimisation step models are
trained using 10% of the full BNC (BNC-10M) for
2,000 iterations.6

Using the optimised parameters, we train
BHMM on BNC-100M for 10,000 iterations. For
test inference, we run the Gibbs sampler using
the trained model for 5,000 iterations, and take 50
samples from the final 500 iterations (with a lag
of 10 iterations). In each of the samples, we com-
pute the test probabilities and acceptability mea-

5When optimising for a parameter, we experimented with
4–6 values of various orders of magnitudes.

6The optimised parameters are: S = 100, γ = 1.0 and
δ = 0.01.

sures using the MAP estimated states.7 The final
probabilities are computed as a harmonic mean of
probabilities over the 50 samples.

We summarise the correlation results in Table 2
(column: “BHMM”). Compared to the N -gram
models, we see an improvement in the correlation,
indicating that the introduction of a layer of (la-
tent) word classes produces a better structure for
modelling acceptability.

3.3 LDAHMM and LDA
To better understand the role of semantics in
acceptability, we experimented with LDAHMM
(Griffiths et al., 2004), a model that combines syn-
tactic and semantic dependencies between words.

The generative method of LDAHMM to gener-
ate a word in a document is to first decide whether
to generate a syntactic state or a semantic state for
the word. For the former, follow the HMM process
to generate a state, and generate the word based
on the chosen state. For the latter, follow the LDA
(Blei et al., 2003) process to generate a topic based
on the document’s topic mixture, and generate the
word based on the chosen topic.

We use a second order HMM for the HMM part
and Collapsed Gibbs sampling for performing in-
ference. LDAHMM has 4 sets of multinomials:
the HMM multinomials (state transition and word
emission) and the LDA multinomials (document-
topic and topic-word).

LDAHMM has 6 parameters to optimise: (1)
K the number of topics; (2) S the number
of syntactic states (semantic state has only 1
state, designated as state 0); (3) α, the Dirichlet
hyper-parameter for document-topic multinomi-
als; (4) β, the Dirichlet hyper-parameter for topic-
word multinomials; (5) γ, the Dirichlet hyper-

7As computing full probabilities gave little difference in
the final outcome, we adopted the computationally more effi-
cient MAP approach.
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Measure 2-gram 3-gram 4-gram BHMM LDA LDAHMM 2T Chunker RNNLM PCFG*
LogProb 0.24 0.30 0.32 0.25 0.09 0.21 0.26 0.32 0.32 0.21
Mean LP 0.26 0.35 0.37 0.26 0.14 0.19 0.31 0.42 0.39 0.18

Norm LP (Div) 0.33 0.42 0.42 0.44 0.05 0.33 0.50 0.43 0.53 0.26
Norm LP (Sub) 0.12 0.20 0.23 0.33 0.01 0.19 0.46 0.14 0.31 0.22

SLOR 0.34 0.41 0.41 0.45 0.03 0.33 0.50 0.42 0.53 0.25

Table 2: Pearson’s r of acceptability measure and mean sentence rating for all experimented models in BNC. Boldface

indicates the best performing measure. Note that PCFG is a supervised model unlike the others.

parameter for state transition multinomials; and
(6) δ, the Dirichlet hyper-parameter for word
emission multinomials. We follow the same ap-
proach as with BHMM for optimising, training,
and testing the model.8 Note that as LDAHMM
operates with documents, the training data is par-
titioned into documents, and each test sentence is
treated as a document.

The results are summarised in Table 2 (column:
“LDAHMM”). The result shows that LDAHMM
underperforms in comparison to BHMM, indicat-
ing that the incorporation of LDA did not improve
the model. To understand the impact of LDA
alone, we repeat the experiments using LDA and
find that it performs very poorly. Results are sum-
marised in Table 2 (column: LDA). We suspect
that the low performance of LDA and LDAHMM
is due to the small context window of the test doc-
uments. The LDA part is unable to generate any
meaningful topic mixtures, as there is insufficient
context.

3.4 Two-Tier BHMM

BHMM uses (latent) word classes to drive word
generation. Exploring a richer structure, we intro-
duce another layer of latent variables on top of the
word classes. This second layer can be interpreted
as phrase classes. The idea behind this model is
to use these phrase classes to drive word class and
word generation. An illustration of its word struc-
ture is given in Figure 1(c).

We use collapsed Gibbs sampling for perform-
ing inference. We sample the tier-1 state s and tier-
2 state t separately, and the sampling equations are
given as follows:

8The final optimised parameters are: K = 100, S = 80,
α = 0.1, β = 0.0001, γ = 0.1, and δ = 0.01.

P (ti|t−i, s,w, α, γ, δ) ∝ #(ti−1, si−1, ti) + α

#(ti−1, si−1) + Tα
×

#(ti, si−1, si) + γ

#(ti, si−1) + Sγ
× #(ti, si, ti+1) + α

#(ti, si) + Tα
;

P (si|s−i, t,w, α, γ, δ) ∝ #(ti, si−1, si) + γ

#(ti, si−1) + Sγ
×

#(ti, si, ti+1) + α

#(ti, si) + Tα
× #(ti+1, si, si+1) + γ

#(ti+1, si) + Sγ
×

#(si, wi) + δ

#(si) +Wδ

where si, ti are the tier-1 and tier-2 state indices;
s, t, w are the assignments for all tier-1 states,
tier-2 states and words, respectively (subscript −i
means the current assignment is excluded); α, γ
and δ are the Dirichlet hyper-parameters; S =
number of tier-1 states; T = number of tier-2
states;W = vocabulary size; and #(x, [y], [z]) are
the multinomial counts.

We follow the same process for optimising,
training, and testing the model, and we summarise
the results in Table 2 (column: “2T”).9 We see an
improved correlation relative to BHMM (BHMM
best: 0.45, Two-Tier BHMM best: 0.50). In fact
it has the best performance of all models thus far.
This is encouraging, as it implies that the introduc-
tion of the phrase layer produces a more optimal
structure for representing acceptability.

3.5 Bayesian Chunker

Goldwater et al. (2009) propose a Bayesian ap-
proach to segment words in speech streams. New-
man et al. (2012) extend the approach to segment
phrases – i.e. multiword units – in sentences, and
they apply it to the task of index term identification
and keyphrase extraction.

The core machinery of the methodology is
driven by the Dirichlet Process, where segments
(words in Goldwater et al. (2009) or phrases in
Newman et al. (2012)) are retrieved from a cache,

9The optimised parameters: S = 100, T = 60, α = 1.0,
γ = 1.0, δ = 0.01.
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or newly generated. Using Gibbs sampling for in-
ference, the sampler considers one boundary point
at a time, and computes the probability of two hy-
potheses: H0, for not generating a boundary; and
H1, for generating a boundary.

Borrowing the notation of Newman et al.
(2012), given p# is the probability of generating a
segment boundary, at the boundary point between
words wx and wy, the probability of the hypothe-
ses is computed as follows:

P (H0|H−) =
n(wxy) + αP0(wxy)

n+ α
;

P (H1|H−) =
n(wx) + αP0(wx)

n+ α
× n(wy) + αP0(wy)

n+ 1 + α

where H− is all of the structure shared by both
hypotheses; wxy is a multiword unit consisting of
wx and wy; n is the number of multiword tokens;
α is the concentration parameter of the Dirichlet
process; n(w) is the count of multiword w; and
P0(w) is the probability of generating a novel w.
i.e. P0(wxy) = p#(1− p#)P (wx)P (wy).

We extend their methodology to segment word
classes to do unsupervised chunking, motivated
by the idea that a well-formed sentence contains
predictable patterns of word class chunks. We
extend the sampling process to incorporate tran-
sitions between chunks. Given the word classes
“cwcxcycz”, at the boundary point between word
class cx and cy, the hypothesis H0 to not gener-
ate a boundary (therefore producing a single chunk
cxy), and the hypothesis H1 to generate a bound-
ary (therefore producing two chunks cx and cy),
are computed as follows:

P (H0|H−) =
#(cw, cxy) + β

(
n(cxy)+αP0(cxy)

n+α

)
#(cw) +mβ

×

#(cxy, cz) + β
(
n(cz)+αP0(cz)

n+α

)
#(cxy) +mβ

;

P (H1|H−) =
#(cw, cx) + β

(
n(cx)+αP0(cx)

n+α

)
#(cw) +mβ

×

#(cx, cy) + β
(
n(cy)+αP0(cy)

n+α

)
#(cx) +mβ

×

#(cy, cz) + β
(
n(cz)+αP0(cz)

n+α

)
#(cy) +mβ

where m = number of chunk types; n = num-
ber of chunk tokens; β is the Dirichlet hyper-
parameter for the chunk transition multinomials;
and #(x, [y]) is the count for the chunk transition
multinomials.

As the model takes word classes as input, we
use the word classes induced by two-tier BHMM.
We follow the same process for optimising, train-
ing and testing the model.10 The results are sum-
marised in Table 2 (column: “Chunker”). The
model produces a moderate correlation, perform-
ing on par with the lexical 4-gram model.

3.6 Recurrent Neural Network Language
Model

In recent years, we have seen a resurgence in the
use of neural networks for deep machine learn-
ing and NLP. Rather than designing structures or
handcrafting features that seem intuitive for a task,
deep learning introduces an entirely general ar-
chitecture for machine learning. It has yielded
some impressive results for NLP tasks: automatic
speech recognition, parsing, part of speech tag-
ging, and named entity recognition, to name a few
(Seide et al., 2011; Mikolov et al., 2011a; Col-
lobert et al., 2011; Chen and Manning, 2014).

We experiment with a recurrent neural net-
work language model (RNNLM: (Elman, 1998;
Mikolov, 2012)) for our task. We choose this
model because it has an internal state that keeps
track of previously observed sequences, which is
well suited for natural language problems. To
train the model, we use stochastic gradient descent
combined with back propagation through time.
RNNLM is optimised to reduce the error in pre-
dicting the following word, based on the current
word and its history (represented in a compressed
dimension in the size of the hidden layer). Full
details of RNNLM can be found in the original
papers (Mikolov et al., 2011b; Mikolov, 2012).11

We experimented with some of the parameters
of RNNLM using BNC-10M and found that most
parameters have an intuitive setting. Its perfor-
mance largely depends on the number of neurons
in the hidden layer. Mikolov (2012) introduced a
variant of RNNLM that does joint learning with
a Maximum Entropy model which learns direct
connections of N -gram features. We found that
although there are advantages to using the ME
model, the benefits disappear as we increase the
number of neurons in the hidden layer. We saw
optimal performance at 600 neurons, without us-
ing the ME model. All our results are based

10The optimised parameters are: α = 0.1, β = 0.001,
p# = 0.5.

11We use Mikolov’s implementation of RNNLM for our
experiment: http://rnnlm.org/.
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Measure 2-gram 3-gram 4-gram BHMM LDAHMM 2T Chunker RNNLM
LogProb 0.31 0.36 0.38 0.32 0.33 0.35 0.42 0.44
Mean LP 0.28 0.36 0.37 0.28 0.28 0.35 0.45 0.46

Norm LP (Div) 0.34 0.41 0.41 0.44 0.42 0.49 0.43 0.55
Norm LP (Sub) 0.11 0.20 0.22 0.32 0.32 0.44 0.14 0.33

SLOR 0.35 0.41 0.41 0.46 0.44 0.50 0.41 0.57

Table 3: Pearson’s r of acceptability measure and mean sentence rating for all experimented models in ENWIKI. Boldface

indicates the best performing measure.

on the original RNNLM with 600 neurons in the
hidden layer, trained on BNC-100M (Table 2 col-
umn: “RNNLM”).12 We see that RNNLM per-
forms very well. It outperforms the other models,
achieving a correlation of 0.53.

3.7 PCFG Parser (Supervised)

Although we are interested in unsupervised mod-
els, for purposes of comparison we experimented
with a constituent PCFG parser for our task.
We use the Stanford Parser (Klein and Man-
ning, 2003a; Klein and Manning, 2003b), and
tested both the unlexicalised and lexicalised PCFG
parser with the supplied model. To compute the
log probability of test sentences, we experimented
with both top-1 and top-1K best parses.

We found that the unlexicalised variant gives
better performance, but we saw little difference
between using the top-1 and the top-1K best parses
for computing log probability. In Table 2 (col-
umn: “PCFG”), we report results for the unlexi-
calised variant based on the top-1 best parse. The
supervised PCFG parser performs poorly. This is
not surprising, given that the parser is trained on
a different domain.13 Moreover, the log probabil-
ity scores are not true probabilities, but arbitrary
values used for ranking the parse trees.

4 English Wikipedia

For the BNC domain we saw that SLOR and Norm
LP (Div) give the best acceptability measures,
and that BHMM, two-tier BHMM and RNNLM
are the best performing models. These findings
are limited to a particular dataset. To better un-
derstand if these observations generalise to an-
other domain, we developed an English Wikipedia
dataset (ENWIKI), following the same process de-
scribed in Lau et al. (2014) to generate test sen-

12Other parameter values of RNNLM: number of classes
= 550; bptt = 4; bptt-block = 100.

13The Stanford English model is trained on the parse tree
hand annotated WSJ (section 1–21), Genia, and a few other
datasets.

tences through round-trip machine translation ,and
to collect annotations via Mechanical Turk.14 As
before, we follow the same procedures described
in Section 3 to optimise, train, and test all models
(excluding LDA and PCFG). The Pearson corre-
lations with mean AMT annotations are presented
in Table 3.

We identify similar trends in ENWIKI: Norm LP
(Div) and SLOR are the best acceptability mea-
sures, and we see improvements when we use
a richer structure in the language model (two-
tier BHMM>BHMM>N -grams). Interestingly,
LDAHMM performs much better in this domain
(possibly due to increased coherence in the docu-
ment structure of ENWIKI). RNNLM has the best
performance of all models, surpassing two-tier
BHMM by a substantial margin. Overall, the cor-
relation values are very similar across the two do-
mains, indicating that the models and the accept-
ability measures are robust.

5 Comparison with a Supervised System

Although not a focus of this paper, supervised
learning can further improve the correlation per-
formance of our models. The acceptability mea-
sures can be combined in a supervised context. We
experimented with this approach in a support vec-
tor regression model (with an RBF kernel). We
achieved a correlation performance of 0.64 in BNC

and of 0.69 in ENWIKI.15

Heilman et al. (2014) propose a system for pre-
dicting acceptability. They built a dataset con-
sisting of sentences from essays written by non-
native speakers for an ESL test. Acceptability
ratings were judged by the authors, and through
crowdsourcing (henceforth we refer to this anno-
tated data set as the GUG data set). They applied

14Both the BNC and the English Wikipedia datasets are
available at http://www.dcs.kcl.ac.uk/staff/
lappin/smog/?page=research.

15We use only the unsupervised models, excluding the su-
pervised PCFG parser. The models are trained and tested us-
ing 10-fold cross validation.
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a 4-category ordinal scale for rating the sentences.
To predict sentence acceptability, they employ a
linear regression model that draws features from
spelling errors, anN -gram model, precision gram-
mar parsers, and the Stanford PCFG parser.

To better understand the performance of our
system compared to other acceptability prediction
systems, we evaluated our methodology against
that of Heilman et al. (2014) on the GUG dataset.
We preprocessed the GUG dataset minimally. We
removed 15 short sentences that have less than 5
words, lowercased all words, and tokenised the
sentences using OpenNLP. This yields 2255 sen-
tences for the training and development subset,
and 749 sentences for the test set. Using the out-
put – i.e. the acceptability measures – of our un-
supervised models (trained on BNC) as features,
we trained an SVR model using GUG training and
development subsets to predict acceptability rat-
ings on GUG test sentences. We applied the de-
fault SVR parameters, and so it was not necessary
to use the development subset separately to opti-
mise the parameters. For evaluation we computed
the correlation of the predicted ratings and mean
human ratings.

We present a comparison of results in Table 4.
We first tested the unsupervised models, with the
best correlation of 0.472 produced by the lexical
4-gram model using the Norm LP (Div) measure.
Combining the models in SVR, we achieve a cor-
relation of 0.603.

Heilman et al. (2014) note that spelling is one
of the important features in their regression model,
as the dataset often contains spelling mistakes. We
borrowed this feature, computed as the proportion
of misspelled words, and incorporated into our
model. It produced a significant improvement in
the correlation (0.636), a performance almost on
par with that of Heilman et al. (2014).16

Our results demonstrate the robustness and
portability of our system in a new domain. Our
SVR model requires significantly less supervision
than that of Heilman et al. (2014), which relies on
precision and constituent parsers. Moreover, our
methodology provides a completely unsupervised
alternative that requires only raw text for training.

16We use PyEnchant for spellcheck: http:
//pythonhosted.org/pyenchant/. Note that
we also tried adding the spelling feature to our original
BNC derived dataset, but it yielded no improvement in the
correlation. This is not surprising, given that it contains few
spelling errors.

System Pearson’s r
Heilman et al. (2014) 0.644
Unsupervised Best 0.472
SVR: All Models 0.603
SVR: All Models+Spell 0.636

Table 4: A comparison of results of our system and Heil-

man et al. (2014) on GUG.

6 Influence of Sentence Length and
Lexical Frequency

Our primary motivation in doing this research has
been to use acceptability predictions to explore
whether acceptability can be represented through
probability information. Unlike probability, ac-
ceptability is generally not influenced by sentence
length or low frequency words.

The acceptability measures we apply normalise
sentence length and word frequency. To evaluate
their effectiveness, we computed two correlations
in the BNC domain: (1) acceptability measure vs.
sentence length (Table 5); and (2) acceptability
measure vs. sentence minimum word frequency
(Table 6).17

For comparison we additionally computed the
correlation of these factors with human ratings.
The correlations are: +0.13 with sentence length;
and +0.07 with minimum word frequency. These
observations confirm the view that acceptability is
not affected by these two factors.

Table 5 shows that although LogProb yields a
strong negative correlation with sentence length,
Mean LP, Norm LP (Div) and SLOR all produce
low correlations. The only exception is Norm LP
(Sub), which still has a significant correlation with
sentence length.

In Table 6 we see some degree of correlation in
LogProb with the minimum word frequency, but it
is relatively small. In general, SLOR is the scoring
function that most effectively normalises word fre-
quency, producing low correlation for most mod-
els. Norm LP (Div) also does very well, for all
models except N -grams.

7 Discussion

In principle, the upper bound of the correlation be-
tween our models’ predicted acceptability values
and mean human ratings is 1.0. But no individual
human annotator will match mean judgements per-
fectly. It is more plausible to measure our models’

17We use BNC-100M for computing word frequency.
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Measure 2-gram 3-gram 4-gram BHMM LDAHMM 2T Chunker RNNLM
LogProb −0.89 −0.80 −0.84 −0.85 −0.86 −0.86 −0.83 −0.86
Mean LP −0.16 −0.08 −0.18 +0.03 +0.05 −0.02 −0.01 +0.08

Norm LP (Div) −0.15 −0.07 −0.17 +0.10 +0.15 ±0.00 ±0.00 +0.14
Norm LP (Sub) +0.69 +0.63 +0.54 +0.46 +0.54 +0.11 +0.70 +0.62

SLOR −0.07 +0.04 −0.03 +0.12 +0.17 +0.01 ±0.00 +0.17

Table 5: Pearson’s r of acceptability measure and sentence length for all models in BNC. For comparison the correlation

with human ratings is +0.13.

Measure 2-gram 3-gram 4-gram BHMM LDAHMM 2T Chunker RNNLM
LogProb +0.27 +0.27 +0.27 +0.27 +0.27 +0.27 +0.19 +0.28
Mean LP +0.30 +0.28 +0.27 +0.29 +0.28 +0.29 +0.08 +0.26

Norm LP (Div) +0.24 +0.23 +0.21 +0.11 +0.06 +0.12 +0.06 +0.11
Norm LP (Sub) −0.04 −0.03 −0.03 −0.03 −0.09 +0.05 −0.13 −0.08

SLOR +0.16 +0.14 +0.12 +0.06 ±0.00 +0.10 +0.04 +0.03

Table 6: Pearson’s r of acceptability measure and sentence minimum word frequency for all models in BNC. The correlation

with the human ratings is +0.07.

rate of success against an estimated level of indi-
vidual human performance. We do this by mim-
icking an arbitrary speaker, and testing the corre-
lation of this construct’s judgements with the mean
scores of the annotators.

We simulate such an individual human judge by
randomly selecting a single annotator rating for
each sentence, and computing the Pearson corre-
lation between these judgements and the mean rat-
ings for the rest of the annotators (one vs the rest)
in our test sets. We ran this experiment 50 times
for each test set to reduce sample variation, pro-
ducing a mean correlation of 0.67 for BNC and
0.74 for ENWIKI. For comparison, the best unsu-
pervised model (RNNLM) achieves a correlation
of 0.53 in BNC and 0.57 in ENWIKI (Section 3).
The supervised model (SVR) produces a correla-
tion of 0.64 in BNC and 0.69 in ENWIKI (Section 5).
Although there is still room for improvement for
the unsupervised methodology, it is encouraging
to note that the supervised variant predicts accept-
ability at a level that approaches estimated human
performance.

To test the robustness of our methodology
across languages, we are currently developing
datasets in other languages, based on Wikipedia.
Our preliminary results show similar performance
to that which we report here for ENWIKI, suggesting
that these results hold across languages.

8 Conclusion

We developed a methodology for using unsuper-
vised language models to predict human accept-
ability judgements. We experimented with a va-

riety of unsupervised models. To map proba-
bility to acceptability we proposed a set of ac-
ceptability measures to normalise sentence length
and lexical frequency. We achieved encourag-
ing results across two datasets constructed through
round trip machine translation, and the methodol-
ogy is highly portable to other domains and lan-
guages. This research has potential implications
for our understanding of human language acquisi-
tion and the way in which linguistic knowledge is
represented.

Acknowledgements

The research reported here was done as part of the Statisticsal

Models of Grammar (SMOG) project at King’s College Lon-

don (www.dcs.kcl.ac.uk/staff/lappin/smog/),

funded by grant ES/J022969/1 from the Economic and So-

cial Research Council of the UK.

We are grateful to Douglas Saddy and Garry Smith at the

Centre for Integrative Neuroscience and Neurodynamics at

the University of Reading for generously giving us access to

their computing cluster, and for much helpful technical sup-

port. We thank J. David Lappin for invaluable assistance in

organising our AMT HITS. We presented part of the work

discussed here to CL/NLP, cognitive science, and machine

learning colloquia at Chalmers University of Technology,

University of Gothenburg, University of Sheffield, University

of Edinburgh, The Weizmann Institute of Science, University

of Toronto, MIT, and the ILLC at the University of Amster-

dam. We very much appreciate the comments and criticisms

that we received from these audiences, which have guided us

in our research.

1626



References
D. Blei, A. Ng, and M. Jordan. 2003. Latent Dirichlet

allocation. Journal of Machine Learning Research,
3:993–1022.

BNC Consortium. 2007. The British National Corpus,
version 3 (BNC XML Edition). Distributed by Ox-
ford University Computing Services on behalf of the
BNC Consortium.

D. Chen and C. Manning. 2014. A fast and accu-
rate dependency parser using neural networks. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2014), pages 740–750, Doha, Qatar.

Alexander Clark, Gianluca Giorgolo, and Shalom Lap-
pin. 2013. Statistical representation of grammat-
icality judgements: The limits of n-gram models.
In Proceedings of the ACL Workshop on Cognitive
Modelling and Computational Linguistics, Sofia,
Bulgaria.

R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. 2011. Natural lan-
guage processing (almost) from scratch. Journal of
Machine Learning Research, 12:2493–2537.

J. Elman. 1998. Generalization, simple recurrent net-
works, and the emergence of structure. In M. Gerns-
bacher and S. Derry, editors, Proceedings of the 20th
Annual Conference of the Cognitive Science Society.
Lawrence Erlbaum Associates, Mahway, NJ.

Sharon Goldwater and Tom Griffiths. 2007. A fully
Bayesian approach to unsupervised part-of-speech
tagging. In Proceedings of the 45th Annual Meet-
ing of the Association for Computational Linguistics
(ACL 2007), pages 744–751, Prague, Czech Repub-
lic.

S. Goldwater, T. Griffiths, and M. Johnson. 2009. A
Bayesian framework for word segmentation: Ex-
ploring the effects of context. Cognition, 112:21–
54.

J.T. Goodman. 2001. A bit of progress in lan-
guage modeling. Computer Speech & Language,
15(4):403–434.

Thomas L. Griffiths, Mark Steyvers, David M. Blei,
and Joshua B. Tenenbaum. 2004. Integrating top-
ics and syntax. In Advances in Neural Information
Processing Systems 17, pages 537–544. Vancouver,
Canada.

Michael Heilman, Aoife Cahill, Nitin Madnani,
Melissa Lopez, Matthew Mulholland, and Joel
Tetreault. 2014. Predicting grammaticality on an
ordinal scale. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2014), Volume 2: Short Papers, pages
174–180, Baltimore, Maryland.

Frank Keller. 2001. Gradience in Grammar: Exper-
imental and Computational Aspects of Degrees of
Grammaticality. Ph.D. thesis, The University of Ed-
inburgh.

D. Klein and C. Manning. 2003a. Accurate unlex-
icalized parsing. In Proceedings of the 41st An-
nual Meeting of the Association for Computational
Linguistics (ACL 2003), pages 423–430, Sapporo,
Japan.

D. Klein and C. Manning. 2003b. Fast exact inference
with a factored model for natural language parsing.
In Advances in Neural Information Processing Sys-
tems 15 (NIPS-03), pages 3–10, Whistler, Canada.

J.H. Lau, P. Cook, D. McCarthy, D. Newman, and
T. Baldwin. 2012. Word sense induction for novel
sense detection. In Proceedings of the 13th Con-
ference of the EACL (EACL 2012), pages 591–601,
Avignon, France.

J.H. Lau, A. Clark, and S. Lappin. 2014. Measuring
gradience in speakers’ grammaticality judgements.
In Proceedings of the 36th Annual Conference of the
Cognitive Science Society, pages 821–826, Quebec
City, Canada.

T. Mikolov, A. Deoras, S. Kombrink, L. Burget, and
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Abstract

Framing is a sophisticated form of dis-
course in which the speaker tries to in-
duce a cognitive bias through consis-
tent linkage between a topic and a spe-
cific context (frame). We build on po-
litical science and communication theory
and use probabilistic topic models com-
bined with time series regression analy-
sis (autoregressive distributed-lag models)
to gain insights about the language dy-
namics in the political processes. Pro-
cessing four years of public statements is-
sued by members of the U.S. Congress,
our results provide a glimpse into the com-
plex dynamic processes of framing, atten-
tion shifts and agenda setting, commonly
known as ‘spin’. We further provide new
evidence for the divergence in party disci-
pline in U.S. politics.

1 Introduction

Language is one of the main tools used by politi-
cians to promote their agenda, gain popularity, win
elections and drive societal change (Luntz, 2007).
The growing availability of online archives of po-
litical data such as public statements, bill pro-
posals, floor speeches, interviews or social me-
dia streams allows computational analysis of many
aspects of the political process. The analysis
performed can increase transparency, facilitate a
better educated constituency and improve under-
standing of the political process.

In this paper we propose a framework for au-
tomatic analysis of a large collection of political
texts. Specifically, we demonstrate how the use
of Bayesian methods and time series analysis cap-
tures the different ways in which political parties
control the political discourse. We show that topic
ownership and framing strategies can be inferred

using topic models. Moreover, we demonstrate
how the models learned are used to construct time
series of expressed agendas. These time series are
fitted using autoregressive distributive-lag models
in order to learn the partisan temporal relations be-
tween topics and expressed agendas.

This framework could also be applied in other
domains such as ideology divergence in online
forums of radical groups or for measuring the
changes in public sentiment toward commercial
brands.
Contribution (i) To the best of our knowledge
this is the first work to analyze framing strategies
on large scale in an unsupervised manner1. (ii)
we combine topic models with regression analy-
sis in recovering longitudinal trends. (iii) We fur-
ther provide evidence for the dynamics of framing
campaigns, commonly known as ‘political spin2’.
Finally, (iv) we show how this framework can shed
new light on the broad scholarship on the diver-
gence of party discipline.

2 Related Work

2.1 Political Communication Theory

Some of the theoretical constructs employed by
Political Science scholars to describe features of
the political communication mechanism include:
topic ownership, framing, and agenda setting. Un-
derstanding these theoretical concepts is necessary
in laying the ground for our computational ap-
proach. This subsection provides the key defini-
tions and a brief survey of the relevant literature.

Topic/Issue Ownership We say that a candi-
date, a representative or a party owns a topic if this
topic, set of ideas or the competence in handling
specific issues are strongly associated with her/the

1We do use some meta data such as the speaker’s party
and its timestamp for the time series analysis.

2‘Political spin’ may also refer to fact twisting and factual
distractions promoted using various media outlets. We do not
refer to these types of spin in this work.
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party (Petrocik, 1991; Petrocik, 1996; Damore,
2004). For example, environmental issues are tra-
ditionally associated with specific parties and not
others (e.g. in U.S. politics, environmental issues
are mostly associated with the Democratic party
(Dunlap et al., 2001)).

Framing Framing is the psychological schema
we use in order to organize and process our ex-
periences. Politicians can use different contextual
frames when referring to a specific topic, giving
the public very different views on the topic at hand
(Goffman, 1974; Gamson, 1989; Entman, 1993;
Chong and Druckman, 2007). A notable example
is the divisive partisan rhetoric used by U.S. politi-
cians when referring to the legality of abortion.
Democratic and Republican positions, framed as
’pro choice’ and ’pro life’, respectively, spin the
abortion discourse as an issue of values of individ-
ual freedom (pro-choice) or validating the sanctity
of life (pro-life). Similarly, Republicans refer to
the inheritance tax by the overwhelmingly nega-
tive coinage ‘death tax’, while Democrats use ‘es-
tate tax’.

Framing strategies, however, go beyond the use
of fixed phrases such as ‘death tax’ and ‘pro-
choice’. The Affordable Care Act (ACA) and
the debate over raising the minimum wage can be
framed as an issue of social justice or in the con-
text of the economic burden it incurs on tax payers
and by potential job loss.

Agenda Setting and shifting Agenda setting is
achieved by framing and by increased or decreased
attention (attention shifts) in order to set or change
the political, media or public agenda (McCombs
and Shaw, 1972; Scheufele and Tewksbury, 2007).
Some examples of agenda setting campaigns are
the repeated comments about the importance of
child vaccination, highlighting the need for equal
pay in the 2015 State of the Union Presidential Ad-
dress, or, more broadly, repeatedly addressing the
need for affordable healthcare.

2.2 Computational Analysis of Political Data

The availability of archives and streams of polit-
ical data is driving a growing number of compu-
tational works that address a wide array of Polit-
ical Science questions. Methods vary from sim-
ple word matching to more sophisticated Bayesian
models and deep learning techniques.

Slant in news articles has been modeled by
(Gentzkow and Shapiro, 2010) and (Lee, 2013),

comparing word tokens and n-grams to prede-
fined lists extracted from labeled data. Hidden
Markov Models are used by (Sim et al., 2013) in
order to measure ideological proportions in polit-
ical speech, and (Iyyer et al., 2014) use recursive
neural networks for a similar task.

Topic models have been used to detect connec-
tions between contributions and political agendas
as expressed in microblogging platforms (Yano et
al., 2013) and for reconstructing voting patterns
based on the language in congressional bills (Ger-
rish and Blei, 2012). The flow of policy ideas has
been modeled via measuring text reuse in different
versions of bill proposals (Wilkerson et al., 2013).

Nguyen et al. (2013) use supervised hierarchi-
cal topic regression to improve prediction of polit-
ical affiliation and sentiment.

Expressed agendas in press releases issued by
U.S. Senators have been modeled by Grimmer us-
ing author topic models (Grimmer, 2010). It is
important to point to some key differences be-
tween our work and Grimmer’s work. While the
model used by Grimmer allows attribution of a
single topic per document, we are interested in a
mixed membership model as we hypothesize pos-
sible correspondence between topics and frames.
Moreover, while we are interested in partisan dy-
namics, Grimmer is interested in the expressed
agendas of individuals thus focusing on an au-
thorship model. Finally, unlike Grimmer, we also
introduce autoregressive distributed-lag models in
order to capture temporal dynamics between top-
ics and parties as reflected in the data.

Another line of work can be found in the more
traditional Political Science scholarship. The suc-
cess of framing strategies is studied by the analysis
of real time reactions to political debates (Boyd-
stun et al., 2014). Autoregressive models are used
for analyzing adjustment of issue positions with
respect to news items during the Dutch national
election campaign of 2006 (Kleinnijenhuis and de
Nooy, 2013). This approach is based on manual
annotation of data.

Logistic regression on manually coded cam-
paign advertisements is used in order to learn the
dynamics of issue ownership by individual candi-
dates (Damore, 2004).

While some of the works above address related
research questions (agenda setting, topic own-
ership) or use similar computational approaches
(topic models, regression models), our work is the
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Figure 1: Examples of a public statement released on March 10, 2010 by Republican minority leader – Congressman John
Boehner (now speaker of the U.S. House of Representatives). The highlighted sequences illustrate the different topics/frames
used - health care (green), economy/budget (yellow) and corruption (orange).

first to offer a complete framework for automatic
detection of topic ownership and attention shifting
on a large scale. Additionally, our partisan analy-
sis provides a model for longitudinal partisan com-
munication strategies without the need for encod-
ing of external events and specific campaigns.

3 Data

A brief overview of the U.S. Congress The
American political system is a bicameral legisla-
ture composed of the Senate (100 senators, two
from each state) and the House of Representatives
(435 voting members plus 6 non-voting represen-
tatives, number depends on the population of each
state). Election is held every two years, in which
one third of the Senators and all members of the
House face reelection. Members are typically af-
filiated with either the Democratic Party or the Re-
publican Party. Congressional election and Presi-
dential election coincide every four years.

The Corpus We use a corpus of public state-
ments released by members of Congress in both
the Senate and The House of Representatives, col-
lected by Project Vote Smart3. An example of a
public statement is presented in Figure 1.

In this work we use all individual statements
and press releases in a span of four years (2010-
2013), a total of 134000 statements made by
641 representatives. This time span encompasses
two Congressional elections (November 2010 and
2012). Table 1 gives the number of Demo-
cratic and Republican representatives in the three
Congress terms (111-113) covered in our data.

3http://votesmart.org/

Chamber Party Congress Term
111th 112th 113th

Senate DEM 57 51 53
REP 41 47 45

House DEM 257 193 199
REP 178 242 234

Table 1: Majority shifts in the House in the 111-113 Congress
terms. Independent representatives are omitted.

Figure 2: Monthly average number of statements by party.

While the administration was Democratic during
all four years of our data, notice the Democratic
loss of majority in the 112th Congress. We focus
on the years 2010-2013 since Project Vote Smart
has better coverage of the political discourse after
2009.

It is interesting to note that while the total num-
ber of statements per month reflects the change
of majority in the November 2010 and 2012 elec-
tions (Table 1 and Figure 2), accounting for the
number of seats per party it appears that the av-
erage Democrat is consistently more ‘productive’
with µ = 6.24 , σ2 = 2.1 (Dem) and µ = 5.5 ,
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σ2 = 1.5 (Rep) statements per month. We hence
report all results after normalization by the num-
ber of seats each party posses at each timestamp.

4 Computational Framework

In order to automatically discover the correlated
dynamics of attention shifts, we take a layered ap-
proach, consisting of the stages described below.

4.1 Topic Inference
In the first stage, we use topic models in order
to learn topic distribution over words and identify
the set of topics addressed in the corpus. Topic
Modeling describes a general algorithmic frame-
work for unsupervised discovery of a set of top-
ics expressed in a collection of documents. The
framework is based on the assumption that doc-
uments are generated by mixtures of k topics. It
is therefore assumed that documents are gener-
ated by the following process: for each word in
a document, we choose a topic from a given topic
distribution, then choose a word from the distri-
bution over words that the chosen topic specifies.
Latent Dirichlet Allocation (LDA), the framework
employed here, assumes that the distribution over
topics has a Dirichlet prior. In practice, we as-
sume a Dirichlet prior on topics and use varia-
tional Bayes (VB) optimization to infer topic dis-
tributions over words (Blei et al., 2003). In order
to considerably improve efficiency, we use an on-
line variational Bayes inference algorithm, shown
to perform similarly to batch LDA (Hoffman et
al., 2010). It is important to note that our goals
and assumptions about the data do not lend them-
selvse to the use of dynamic or correlated topic
models (Blei and Lafferty, 2006a; Blei and Laf-
ferty, 2006b)4.

4.2 Topic Assignment and Unification
The distribution of ranked topics over documents
presents a “long tailed” distribution in which a few
topics achieve a significant coverage of a docu-
ment. This is a result of the mixed membership
“generative” approach and the bag-of-words as-
sumption. In a more realistic setting the number of
topics per document is restricted. We wish to re-
strict the number of topics per document while still
conforming to the mixture model assumption. We

4We are interested in the change of the proportions of top-
ics over time and not in the change of the word distribution
within topics and we don’t assume inherent correlation of
topics.

therefore reassign topics to each document (state-
ment) d in the following manner:

1. Assign a topic to each word based on distri-
bution of topics over words infferred in the
previous stage.

2. Find a set T ′ of k′ topics (k′ < k) that cover
q% of the document in a greedy way. The
topic assingment for document d will then be
d→ T ′.

4.3 Data Slicing
We slice the data according to four parameters:
topic (or topical cluster), time, party and document
(statement). These slicing parameters allow us the
flexibility required to thoroughly analyze the data.
In the time parameter, we have four settings: no
slicing (all data is treated as if it were produced
simultaneously), monthly slicing, weekly slicing
and daily slicing, each gives different granularity
of ownership patterns.

4.4 Autoregressive-Distributed-Lag Models
A linear function b + wTX = b +

∑
j w

T
j X

j is
a simple yet robust method for testing dependency
between X and Y . Ordinary least square regres-
sion finds the coefficients that minimize the mean
square error of Y = b+

∑
j w

T
j X

j given (X,Y ).
In our case (X,Y ) are time series. We argue that
a lagged dependency between two time series sug-
gests a framing or attention shifting campaign.

Regression analysis of time series assumes in-
dependence between error terms. This key statis-
tical property is often violated in real world data
as yt often depends on yt−1 thus the time series
residuals tend to correlate. The consequences of
violating the independence of errors are threefold:
i) Statistical tests of significance are uninforma-
tive and cannot be used to prove dependency be-
tween the model parameters, ii) The coefficients
learned lose accuracy, and iii) error terms are cor-
related, and hence contain information that is lost
in analysis instead of used to leverage the predic-
tion power of the model. The importance of con-
trolling for autoregressive properties and for sea-
sonality effects was recently demonstrated in the
error analysis of the Google Flu Trends algorithm
(Lazer et al., 2014).

In order to control for error dependency we add
the auto regressing component γTY n to the ordi-
nary regression, as shown in Equation 1:

yt = α+ βTXm + γT Y n + εt (1)
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Cluster Topic ID Top Words

Health
30 health care law will obamacare insurance repeal affordable americans costs new re-

form people president healthcare act coverage mandate american obama

51 medicare seniors program social medicaid benefits fraud payments security programs
cost services costs billion payment beneficiaries waste year savings million

Energy
38 project pipeline president obama keystone jobs climate energy xl construction state

change permit administration approval oil will canada environmental create

69 oil alaska gulf coast spill drilling offshore bp murkowski begich markey resources
noaa said industry moratorium mexico gas administration sen

Security
34 day nation country today americans us american war world people america lives will

honor families years men many th attacks

89 nuclear united iran international israel foreign president states security weapons peo-
ple world syria nations sanctions regime must government peace

Economy
68 budget spending debt president cuts fiscal government deficit will plan trillion obama

house congress year federal cut economy washington billion

88 jobs small businesses business job economy economic create will new growth work
american america help creation act manufacturing can sector

Table 2: Top twenty words in selected topics in four topical clusters.

where, βTXm indicates the distributed-lag terms:

βTXm =
m∑
i=0

βixt−i (2)

and γTY n indicates the autoregressive component
described by:

γTY n =
n∑
j=1

γjyt−j (3)

for some n 6 t (notice that i ranges from 0 while
j ranges from 1).

In order to control for seasonality (such as holi-
days and recess’) we add a set of categorical vari-
ables indicating the weekday and the week-in-year
of a statement, so the autoregressive model is:

yt = α+ βTXm + γTY n +
∑
l

W T
l I

l(t) + εt (4)

Where l ∈ {day, week} thus I l(t) is the identity
matrix with the dimension of the seasonal granu-
larity, in our case Iday = I7×7 for each day of
the week and Iweek = I52×52 for the week of the
year. I li,i = 1 iff t timestamp falls in the i-th day-
of-week/week-in-year.

Finally, in practice it is usually sufficient re-
strict the autoregressive term to one parameter
with j = 1 (accounting to the y value at the pre-
vious time stamp), this is consistent with the 24
hours news cycle reported by (Leskovec et al.,
2009) among others. Since our goal is to find
correlated attention shifts we can substitute the
summation distributed-lag term by a single lagged
term. Thus, we aim to minimize the MSE in the
following model:

yt = α+ βxt′ + γynt−1 +
∑
l

W T
l I

l(t) + εt (5)

Where t′ = t−i and i ∈ {0, 1, 2, ..., 28} indicating
no lag, one day lag, 2 days lag, a week’s lag, etc.

5 Results

5.1 Topical Ownership and Framing
5.1.1 Inferred Topics
As an input for the topic modeling module (stage 1
of the system) we use a lexicon of the 10000 most
frequent words in the corpus. We use k = 100
as the number of topics. Experiments with k ∈
{30, 50, 500, 1000} produced topics that were ei-
ther too general or too incoherent. Once the topic-
word distributions were inferred, topics were val-
idated by two annotators examining the top 50
words for each topic. Annotators used hierarchi-
cal labels – an energy related topic ti could be an-
notated energy / clean-tech, while another topic tj
could be annotated energy / economy / keystone-
xl. Annotations were consolidated to unify the
coding5. After consolidation annotators agreed on
all topic annotations. Some examples of topics
labels are ‘health’, ‘energy’, ‘economy’, ‘boiler-
plate’, ‘political process’, ‘local’ and a few ‘ran-
dom’ topics.

After topic assignment as described in Section
4.2 each document is associated with only 2–6 top-
ics. In this work we focus on the 14 most salient
(concise, general and frequent) topics in the cor-
pus. These 14 topics fall under four topical clus-
ters - Health, Energy, Army/Security and Econ-
omy/Budget. Table 2 contains examples of top
words and labels for some of the topics from four
topical clusters.

5For example, if topic ti was labeled energy, cleantech by
one annotator and energy, green by the other, the annotators
would agree to use either cleantech or green consistently.
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(a) (b)

Figure 3: Seasonality effect: average number of statements issued per day of week (a) and per week in year (b).

(a) All statements (b) Republican statements (c) Democrat statements

Figure 4: Normalized Pointwise Mutual Information (PMI) of topic cooccurrence of 14 topics of four topical clusters Health
(30, 51, 80), Energy (38, 69,71), securtity (34, 74, 89) and Budget & Economy (68, 23, 8, 88, 52)

Cluster Topic DEM REP DEM REP
30 1679 4622

Health 51 746 233 3169 5386
80 898 437
38 128 255

Energy 69 1102 948 4042 3415
71 2859 2119
34 6239 5121

Security 74 3875 3071 12393 11140
89 3807 4138
68 12260 19916
23 5221 3742

Economy 8 6981 2456 31604 31706
88 12845 11139
52 3479 1154

Table 3: Total number of statements by party in four topical
clusters. DEM indicates the Democrat party, REP indicates
the Republican party.

5.1.2 Partisan Topic Ownership
Table 3 shows the partisan ownership by provid-
ing the number of statements issued by each party
on each topic and for topical clusters. It also il-
lustrates that different topical granularities portray
different ownership patterns. For example, while
it seems like the health cluster is owned by the
Republican party (Table 3, cluster level), a closer
look at specific topics in the cluster reveals a more
complex picture – the Republicans actually own
only topic 30, which turns to be the most dominant
topic in the cluster. Similarly, while the statement

Cluster Topic DEM REP DEM* REP*
30 46 154 2 79

Health 51 151 22 34 1
80 157 27 37 2
38 47 43 2 6

Energy 69 114 56 18 5
71 144 52 43 5
34 141 63 52 9

Security 74 144 46 34 8
89 80 113 10 22
68 32 174 7 127
23 151 49 60 9

Economy 8 205 2 165 0
88 137 68 63 17
52 190 12 123 0

Table 4: Number of weeks each party “owned” a topic by
issuing more statements (DEM, REP) and number of weeks
the party owned the topic with statistical significance p <
0.05 (DEM*, REP*).

counts in the Economy cluster are quite balanced
(31604 vs. 31706), the counts of the individual
topics in the cluster are polarized. Remember that
these topical classes were all inferred by the LDA
in an unsupervised way. These partisan ownership
patterns were also confirmed by domain experts.

Longevity is a crucial factor in topic ownership.
A weekly ownership of a topic is achieved by a
party Q if it issued more statements on the topic
than party R in that particular week. We compute
the significance of the ownership assuming a null
hypothesis that statements are issued by the parties
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by two Bernoulli processes with the same param-
eters. Table 4 provides the number of weeks each
party owned each topic and the number of weeks
it had a significant ownership (p < 0.05)6.

Topic 30 illustrates the different perspectives.
The total statement count (see Table 3) reveals
a clear ownership by the Republican party, is-
suing 73% of the statements. While turning to
weekly ownership (Table 4) we get similar num-
ber (Republicans control 77% of the weeks); as-
suming only significance ownership, Republicans
significantly own the discourse for 79 weeks while
Democrats have significant ownership in only 2
weeks which means the Republicans own 97% of
the significantly owned weeks.

5.1.3 Topic Cooccurrence
Topic cooccurrence could approximate the way
topics are framed. A heatmap of within state-
ment topic cooccurrence based on Pointwise Mu-
tual Information (PMI) (Church and Hanks, 1990)
is presented in Figure 4. The topical clusters are
characterized by blocks along the diagonal. The
blocks structure is to be expected due to the inher-
ent topical similarity within clusters. It is inter-
esting to see the inter-cluster differences in PMI
between the two parties. At the cluster level, Re-
publicans tend to use the Budget & Economy top-
ics with topics in all other topical clusters, evident
by the stronger colors in the five bottom (left) rows
(columns) in 4b comparing to 4c.

A notable example is the way Republicans
frame the controversial Keystone XL project (En-
ergy, topic 38) with the impact on the job market
and small businesses (Budget & Economy, topic
88), a topic traditionally owned by Democrats (see
top topical words in Table 2 and topic ownership
at Table 4).

5.2 Partisan Discipline

Party discipline is of great interest for political sci-
entists (Crook and Hibbing, 1985; Bowler et al.,
1999; Krehbiel, 2000; McCarty, 2001) . Typically,
party discipline is examined by analysis of roll call
votes on bills. Discipline, however can be also
measured by adherence to party lines in talking
points and agenda setting campaigns. Discipline,
therefore, can be captured by conformity of lan-

6The numbers do not necessarily add up to 208 (the num-
ber of weeks in four years) due to weeks with no significant
ownership , e.g. the parties issued a similar number of state-
ments (usually zero) on that topic.

Figure 5: Average number of n-grams owned by each party
on all topics (top), in Republican owned topics (middle) and
in Democrat owned topics (bottom).

guage in public statements. While it is “common
knowledge” among political scientists that Repub-
licans are more adherent to “talking points” – to
the best of our knowledge there are no large scale
studies that support (or refute) that.

In the absence of official lists of “talking
points”, repeated use of similar phrases (n-grams)
can provide an indication for the level of party dis-
cipline. In each topic, we looked at all n-grams
(n ∈ {2, ..., 14}) that were used by more than five
members of the Congress. For example, the tri-
gram “the American people” (topic 38) appears in
81 statements made by 54 members of congress,
only two of them were Democrats. Similarly, the
tri-gram “social security benefits” (topic 51) ap-
pears in 123 statements, issued by 89 members,
71 of which were Democrats. Examining “own-
ership” of n-grams (per n-gram, per topic) reveals
that that Republicans do tend to stick to talking
points more than Democrats do.

Figure 5 provides the average number of n-
grams owned by each party over all topics (top),
over Republican owned topics (middle) and over
Democratic owned topics (bottom). While on av-
erage Democrats own more n-grams than Repub-
licans (Figure 5, top), the difference is marginal
and is attributed to the fact that Democrats own
more topics than the Republicans (10 vs. 4, see Ta-
ble 3). Comparison between n-gram ownership in
Democratic owned topics and Republican owned
topics (Figure 5, middle and bottom) shows that
while each party owns more n-grams in the top-
ics it owns, Republicans present stronger owner-
ship over the n-grams in their owned topics than
Democrats in their respective owned topics. More-
over, Republicans present relative discipline even
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in Democratic owned topics.
Manually looking at some sampled n-grams it

appears that mid-length n-grams are shared “talk-
ing points” and longer n-grams are full citations
from bill proposals and committee reports. These
findings are in line with textual sharing semantics
(Lin et al., 2015).

5.3 Time Series Analysis

To this end we create two time series for each
topic c ∈ T : SCD

c – daily normalized counts for
Democrats and SCR

c – daily normalized counts for
Republicans. Normalization of counts is needed in
order to account for the bias introduced by the dif-
ference in the number of seats each party holds and
the changes in that number in the different terms
as apparent from Table 1.

Our data exhibit two strong seasonality effects:
a weekly cycle with the lowest point on the week-
end and peaking on Thursday (Figure 3a), and a
yearly cycle with low points at the weeks of 4th of
July, Thanksgiving, August recess and Christmas
(Figure 3b). These seasonality effects are captured
by the added terms in Equation 4.

After time series are constructed we apply first-
difference detrending (Enders, 2008) in order to
transform the time series to stationary series and
avoid trend-incurred correlations.

We fit autoregressive-distributed-lag models for
all pairs in {X = Sc,l, Y = Sc′}, where c, c′ ∈ T
(topics), l ∈ {0, 1, 2, 3, ..., 7, 14, ..., 28}.

In this setting we fit 5153 pairs of time series
of which 718 pairs had a significant coefficient for
X (p < 0.05). Artificial significance due to abun-
dance of fitted models was accounted to by apply-
ing the strict Bonferroni correction (Dunn, 1961)
on the significance level. The correction resulted
in 103 significant correlations, most of them with
lag of up to 3 days. Table 5 gives the number of in-
tra/inter significant correlation for lags l ∈ 0, 1, 2.

One example for such correlation is the Repub-
licans “responding” to Democratic topic 88 with
with topic 8 (intra-cluster) in one and two days lag.
We interpret this as a different spin on the budget
issue. Another example is the Democratic party
corresponds to Republican topic 30 with topic 88
(inter-cluster) on the same day (no lag). We in-
terpret this as a way to place the Acordable Care
Act in a specific economic frame. We note that
while the lagged correlated time series do not im-
ply a responsive pattern, a significance of lagged

Cluster Dependent
Significant

Correlations
l = 0 l = 1 l = 2

Intra-cluster DEM 28 1 1
REP 26 4 5

Inter-cluster DEM 15 2 0
REP 17 0 0

Table 5: Number of statistically significant (p < .05, Bonfer-
roni corrected) daily lagged correlations between cross-party
time series.

correlation may suggest such a pattern. We pro-
vide some evidence in the qualitative analysis in
the next section.

5.4 Discussion and Qualitative Analysis
Inter and intra-cluster correlations can be inter-
preted as manifestations of different types of fram-
ing strategies and campaigns for attention shifts. A
detailed analysis of the interplay between the dif-
ferent frames is beyond the scope of this paper and
is left for political scientists.

The majority of the significant correlations were
found with no lag. It is important to note that these
correlations are found significant even after ac-
counting to autoregressive patterns. Zero-lag cor-
relations could be interpreted in a number of ways.
Two probable interpretations are (i) daily time se-
ries are too crude to model lag patterns, and (ii)
the parties respond to some external event at the
same time. While we cannot address (i) due to
sparseness and noise7, we can sample statements
and examine them manually. Manual examina-
tion reveals a strong responsive pattern in peak-
ing trends. One typical example is the Republican
spike in topic 30 on March 10. The statement at
Figure 1 is very illustrative as it explicitly refers
to a statement by President Obama. Explicit ref-
erences to statements made by the other side are
found more frequently in Republican statements
and reveal a clear responsive pattern that also sug-
gest a strong party discipline, in line with the re-
sults in Section 5.2. This small scale qualitative
analysis complements the quantitative results re-
ported in Section 5.3 and provide evidence for a
responsive pattern even in zero lag series.

6 Conclusion

We presented a statistical framework for the anal-
ysis of framing strategies and agenda setting cam-
paigns in the political sphere. Combining topic
models and time series analysis, we modeled topic

7The exact timestamp is sometimes missing, set to mid-
night or affected by external factors.
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ownership and party discipline and analyzed re-
sponsive patterns in an unsupervised way and with
no prior knowledge of the political system. Our
work draws from political science theory, validat-
ing some theoretical constructs and shedding new
light on others. The proposed framework and the
results could be further used and interpreted by po-
litical scientists and communication scholars.
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Abstract

We propose a language production model
that uses dynamic discourse information
to account for speakers’ choices of refer-
ring expressions. Our model extends pre-
vious rational speech act models (Frank
and Goodman, 2012) to more naturally dis-
tributed linguistic data, instead of assuming
a controlled experimental setting. Simula-
tions show a close match between speakers’
utterances and model predictions, indicat-
ing that speakers’ behavior can be modeled
in a principled way by considering the prob-
abilities of referents in the discourse and
the information conveyed by each word.

1 Introduction

Discourse information plays an important role in
various aspects of linguistic processing, such as
predictions about upcoming words (Nieuwland and
Van Berkum, 2006) and scalar implicature process-
ing (Breheny et al., 2006). The relationship be-
tween discourse information and speakers’ choices
of referring expression is one of the most studied
problems. Speakers’ choices of referring expres-
sions have long been thought to depend on the
salience of entities in the discourse (Givón, 1983).
For example, speakers normally do not choose a
pronoun to refer to a new entity in the discourse,
but are more likely to use pronouns for referents
that have been referred to earlier in the discourse.
A number of grammatical, semantic, and distribu-
tional factors related to salience have been found to

influence choices of referring expressions (Arnold,
2008). While the relationship between discourse
salience and speakers’ choices of referring expres-
sions is well known, there is not yet a formal ac-
count of why this relationship exists.

In recent years, a number of formal models have
been proposed to capture inferences between speak-
ers and listeners in the context of Gricean prag-
matics (Grice, 1975; Frank and Goodman, 2012).
These models take a game theoretic approach in
which speakers optimize productions to convey in-
formation for listeners, and listeners infer meaning
based on speakers’ likely productions. These mod-
els have been argued to account for human commu-
nication (Jager, 2007; Frank and Goodman, 2012;
Bergen et al., 2012a; Smith et al., 2013), and stud-
ies report that they robustly predict various linguis-
tic phenomena in experimental settings (Goodman
and Stuhlmüller, 2013; Degen et al., 2013; Kao et
al., 2014; Nordmeyer and Frank, 2014). However,
these models have not yet been applied to language
produced outside of the laboratory, nor have they
incorporated measures of discourse salience that
can be computed over corpora.

In this paper, we propose a probabilistic model
to explain speakers’ choices of referring expres-
sions based on discourse salience. Our model ex-
tends the rational speech act model from Frank
and Goodman (2012) to incorporate updates to lis-
teners’ beliefs as discourse proceeds. The model
predicts that a speaker’s choice of referring expres-
sions should depend directly on the amount of in-
formation that each word carries in the discourse.
Simulations probe the contribution of each model
component and show that the model can predict
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speakers’ pronominalization in a corpus. These
results suggest that this model formalizes underly-
ing principles that account for speakers’ choices of
referring expressions.

The paper is organized as follows. Section 2
reviews relevant studies on choices of referring ex-
pressions. Section 3 describes the details of our
model. Section 4 describes the data, preprocessing
and annotation procedure. Section 5 presents simu-
lation results. Section 6 summarizes this study and
discusses implications and future directions.

2 Relevant Work

2.1 Discourse salience

Speakers’ choices of referring expressions have
long been an object of study. Pronominalization
has been examined particularly often in both theo-
retical and experimental studies. Discourse theories
predict that speakers use pronouns when they think
that a referent is salient in the discourse (Givón,
1983; Ariel, 1990; Gundel et al., 1993; Grosz et
al., 1995), where salience of the referent is influ-
enced by various factors such as grammatical posi-
tion (Brennan, 1995), recency (Chafe, 1994), top-
icality (Arnold, 1998), competitors (Fukumura et
al., 2011), visual salience (Vogels et al., 2013b),
and so on.

Discourse theories have characterized the link
between referring expressions and discourse
salience by stipulating constructs such as a scale
of topicality (Givón, 1983), accessibility hierarchy
(Ariel, 1990), or implicational hierarchy (Gundel et
al., 1993). All of these assume fixed form-salience
correspondences in that a certain referring expres-
sion encodes a certain degree of salience. However,
it is not clear how this form-salience mapping holds
nor why it should be.

There is also a rich body of research that points
to the importance of production cost (Rohde et al.,
2012; Bergen et al., 2012b; Degen et al., 2013)
and listener models (Bard et al., 2004; Van der
Wege, 2009; Galati and Brennan, 2010; Fukumura
and van Gompel, 2012) in language production.
These studies suggest that only considering dis-
course salience of the referent may not precisely
capture speakers’ choices of referring expressions,
and it is necessary to examine discourse salience in
relation to these other factors.

2.2 Formal models

Computational models relevant to speakers’
choices of referring expressions have been pro-
posed, but there is a gap between questions that
previous models have addressed and the questions
that we have raised above.

Grüning and Kibrik (2005) and Khudyakova et
al. (2011) examine the significance of various fac-
tors that might influence choices of referring ex-
pressions by using machine learning models such
as neural networks, logistic regression and decision
trees. Although these models qualitatively show
some significant factors, they are data-driven rather
than being explanatory, and have not focused on
why and how these factors result in the observed
referring choices.

Formal models that go beyond identifying super-
ficial factors focus on only pronouns rather than
accounting for speakers’ word choices per se. For
example, Kehler et al. (2008) formalize a relation-
ship between pronoun comprehension and produc-
tion using Bayes’ rule to account for comprehen-
der’s semantic bias in experimental data. Rij et al.
(2013) use ACT-R (Anderson, 2007) to examine
the effects of working memory load in pronoun
interpretation. These models show how certain fac-
tors influence pronoun production/interpretation,
but it is not clear how these models would predict
speakers’ choices of referring expressions.

Relevant formal models in computational lin-
guistics include Centering theory (Grosz et al.,
1995; Poesio et al., 2004) and Referring Expres-
sion Generation (Krahmer and Van Deemter, 2012).
These models propose deterministic constraints
governing when pronouns are preferred in local dis-
course, but it is not clear how these would account
for speakers’ choices of referring expressions, nor
it is clear why there should be such deterministic
constraints.

2.3 Uniform Information Density

One potential formal explanation for the relation
between discourse salience and speakers’ choices
of referring expressions is the Uniform Informa-
tion Density hypothesis (UID) (Levy and Jaeger,
2007; Tily and Piantadosi, 2009; Jaeger, 2010).
UID states that speakers prefer to smooth the in-
formation density distribution of their utterances
over time to achieve optimal communication. This
theory predicts that speakers should use pronouns
instead of longer forms (e.g., the president) when a
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referent is predictable in the context, whereas they
should use longer forms for unpredictable referents
that carry more information (Jaeger, 2010).

Tily and Piantadosi (2009) empirically exam-
ined the relationship between predictability of a
referent and choice of referring expressions. They
found that predictability is a significant predictor
of writers’ choices of referring expressions, in that
pronouns are used when a referent is predictable.

While these results appear to support UID, there
are several inconsistencies with previous UID ac-
counts. Information content of words has been
estimated using an n-gram language model (Levy
and Jaeger, 2007), a verb’s subcategorization fre-
quency (Jaeger, 2010), and so on, whereas here
the information content is that of referents with
respect to discourse salience. In addition, selecting
between a pronoun and a more specified referring
expression involves deciding how much informa-
tion to convey, whereas previous applications of
UID (Levy and Jaeger, 2007) have been concerned
with deciding between different ways of expressing
the same information content. We show in the next
section that we can derive predictions about refer-
ring expressions directly from a model of language
production.

2.4 Summary

Previous linguistic studies have focused on identi-
fying factors that might influence choices of refer-
ring expressions. However, it is not clear from this
previous work how and why these factors result
in the observed patterns of referring expressions.
Where formal models relevant to this topic do exist,
they have not been built to explain why there is a
relation between discourse salience and speakers’
choices of referring expressions. Even UID, which
relates predictability to word length, is not set up
to account for the choice between words that vary
in their information content.

In the next section, we propose a speaker model
that formalizes the relation between discourse
salience and speakers’ choices of referring expres-
sions, considering production cost and speakers’
inference about listeners in a principled and ex-
planatory way.

3 Speaker model

3.1 Rational speaker-listener model

We adopt the rational speaker-listener model from
Frank and Goodman (2012) and extend this model

to predict speakers’ choices of referring expres-
sions using discourse information.

The main idea of Frank and Goodman’s model
is that a rational pragmatic listener uses Bayesian
inference to infer the speaker’s intended referent
rs given the word w, their vocabulary (e.g., ‘blue’,
‘circle’), and shared context that consists of a set
of objects O (e.g., visual access to object referents)
as in (1), assuming that a speaker has chosen the
word informatively.

P (rs|w,O) =
PS(w|rs, O)P (rs)

Σr′∈OP (w|r′, O)P (r′)
(1)

While our work does not make use of this pragmatic
listener, it does build on the speaker model assumed
by the pragmatic listener. This speaker model (the
likelihood term in the listener model) is defined
using an exponentiated utility function as in (2).

PS(w|rs, O) ∝ eαU(w;rs,O) (2)

The utility U(w; rs, O) is defined as I(w; rs, O)−
D(w), where I(w; rs, O) represents informative-
ness of word w (quantified as surprisal) and D(w)
represents its speech cost. If a listener interprets
word w literally and cost D(w) is constant, the ex-
ponentiated utility function can be reduced to (3)
where |w| denotes the number of referents that the
word w can be used to refer to.

PS(w|rs, O) ∝ 1
|w| (3)

Thus, the speaker model chooses a word based on
its specificity. We show in the next section that
this corresponds to a speaker who is optimizing
informativeness for a listener with uniform beliefs
about what will be referred to in the discourse. The
assumption of uniform discourse salience works
well in a simple language game where there are
a limited number of referents that have roughly
equal salience, but we show that a model that lacks
a sophisticated notion of discourse falls short in
more realistic settings.

3.2 Incorporating discourse salience
To extend Frank and Goodman’s model to a natu-
ral linguistic situation, we assume that the speaker
estimates the listener’s interpretation of a word (or
referring expression)w based on discourse informa-
tion. We extend the speaker model from (3) by as-
suming that a speaker S choosesw to optimize a lis-
tener’s belief in speaker’s intended referent r rela-
tive to the speaker’s own speech cost Cw. This cost
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is another factor in the speaker model, roughly cor-
responding to utterance complexity such as word
length.1

PS(w|r) ∝ PL(r|w) · 1
Cw

(4)

The term PL(r|w) in (4) represents informative-
ness of word w: the speaker chooses w that most
helps a listener L to infer referent r. The term Cw
in (4) is a cost function: the speaker chooses w that
is least costly to speak.

The speaker’s listener model, PL(r|w), infers
referent r that is referred to by word w according
to Bayes’ rule as in (5).

PL(r|w) =
P (w|r)P (r)

Σr′P (w|r′)P (r′)
(5)

The first term in the numerator, P (w|r), is a word
probability: the listener in the speaker’s mind
guesses how likely the speaker would be to usew to
refer to r. The second term in the numerator, P (r),
is the discourse salience (or predictability) of refer-
ent r. The denominator Σr′P (w|r′)P (r′) is a sum
of potential referents r′ that could be referred to by
word w. The terms in this sum are non-zero only
for referents that are compatible with the meaning
of the word. If there are many potential referents
that could be referred to by word w, that word
would be more ambiguous thus less informative.
The whole of the right side in Equation (5) repre-
sents the speaker’s assumption about the listener:
given word w the listener would infer referent r
that is salient in a discourse and less ambiguously
referred to by word w.

If P (r) is uniform over referents and P (w|r) is
constant across words and referents, this listener
model reduces to 1

|w| . Thus, Frank and Goodman
(2012)’s speaker model in (3) is a special case of
our speaker model in (4) that assumes uniform
discourse salience and constant cost.

Our model predicts that the speaker’s probability
of choosing a word for a given referent should
depend on its cost relative to its information content.
To see this, we combine (4) and (5), yielding

PS(w|r) ∝ P (w|r)P (r)∑
r′ P (w|r′)P (r′)

· 1
Cw

(6)

Because the speaker is deciding what word to use
for an intended referent, and the term P (r) denotes

1Our speaker model corresponds to Frank and Goodman’s
exponentiated utility function (2), with α equal to one and
with their cost D(w) being the log of our cost Cw.

the probability of this referent, P (r) is constant in
the speaker model and does not affect the relative
probability of a speaker producing different words.
We further assume for simplicity that P (w|r) is
constant across words and referents. This means
that all referents have about the same number of
words that can be used to refer to them, and that
all words for a given referent are equally probable
for a naive listener. In this scenario, the speaker’s
probability of choosing a word is

PS(w|r) ∝ 1∑
r′ P (r′)

· 1
Cw

(7)

where the sum denotes the total discourse probabil-
ity of the referents referred to by that word.

The information content of an event is defined
as the negative log probability of that event. In this
scenario, the information conveyed by a word is the
logarithm of the first term in (7), − log

∑
r′ P (r′).

This means that in deciding which word to use,
the highest cost a speaker should be willing to pay
for a word should depend directly on that word’s
information content.

This relationship between cost and information
content allows us to derive the prediction tested by
Tily and Piantadosi (2009) that the use of referring
expressions should depend on the predictability
of a referent. For referents that are highly pre-
dictable from the discourse, different referring ex-
pressions (e.g., pronouns and proper names) will
have roughly equal information content, and speak-
ers should choose the referring expression that has
the lowest cost. In contrast, for less predictable ref-
erents, proper names will carry substantially more
information than pronouns, leading speakers to pay
a higher cost for the proper names. These are the
same predictions that have been discussed in the
context of UID, but here the predictions are derived
from a principled model of speakers who are try-
ing to provide information to listeners. The extent
to which our model can also capture other cases
that have been put forward as evidence for the UID
hypothesis remains a question for future research.

3.3 Predicting behavior from corpora
The model described in Section 3.2 is fully general,
applying to arbitrary word choices, discourse prob-
abilities, and cost fuctions. As an initial step, our
simulations focus on the choice between pronouns
and proper names. Our work tests the speaker
model from (4) directly, asking whether it can pre-
dict the referring expressions from corpora of writ-
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ten and spoken language. Implementing the model
requires computing word probabilities P (w|r), dis-
course salience P (r), and word costs Cw.

We simplify the word probability P (w|r) in the
speaker’s listener model as in (8):

P (w|r) =
1
V

(8)

where the count V is the number of words that can
refer to referent r. We assume that V is constant
across all referents. Our reasoning is as follows.
There could be many ways to refer to a single entity.
For example, to refer to entity Barack Obama, we
could say ‘he’, ‘The U.S. president’, ‘Barack’, and
so on. We assume that there are the same number
of referring expressions for each entity and that
each referring expression is equally probable under
the listener’s likelihood model.

In our simulations, we assume that a speaker is
choosing between a proper name and a pronoun.
For example, we assume that an entity Barack
Obama has one and only one proper name ‘Barack
Obama’, and this entity is unambiguously associ-
ated with male and singular. Although we use an
example with two possible referring expressions,
as long as P (w|r) is constant across all referents
and words, it does not make a difference to the
computation in (5) how many competing words we
assume for each referent.

To estimate the salience of a referent, P (r), our
framework employs factors such as referent fre-
quency or recency. Although there are other impor-
tant factors such as topicality of the referent (Orita
et al., 2014) that are not incorporated in our sim-
ulations, this model sets up a framework to test
the role and interaction of various potential factors
suggested in the discourse literature.

Salience of the referent is computed differently
depending on its information status: old or new.
The following illustrates the speaker’s assumptions
about the listener’s discourse model:

For each referent r ∈ [1, Rd]:

1. If r = old, choose r in proportion to Nr (the
number of times referent r has been referred
to in the preceding discourse).

2. Otherwise, r = new with probability propor-
tional to α (a hyperparameter that controls
how likely the speaker is to refer to a new
referent).

3. If r = new, sample that new referent r from
the base distribution over entities with proba-
bility 1

U· (count U· denotes a total number of
unseen entities that is estimated from a named
entity list (Bergsma and Lin, 2006)).

The above discourse model is frequency-based.
We can replace the termNr for the old referent with
f(di,j) = e−di,j/a that captures recency, where the
recency function f(di,j) decays exponentially with
the distance between the current referent ri and the
same referent rj that has previously been referred
to. This framework for frequency and recency of
new and old referents exactly corresponds to pri-
ors in the Chinese Restaurant Process (Teh et al.,
2006) and the distance-dependent Chinese Restau-
rant Process (Blei and Frazier, 2011).

The denominator in (5) represents the sum of
potential referents that could be referred to by word
w. We assume that a pronoun can refer to a large
number of unseen referents if gender and number
match, but a proper name cannot. For example, ‘he’
could refer to all singular and male referents, but
‘Barack Obama’ can only refer to Barack Obama.
This assumption is reflected as a probability of
unseen referents for the pronoun as illustrated in
(10) below.

In our simulations, the speaker’s cost function
Cw is estimated based on word length as in (9). We
assume that longer words are costly to produce.

Cw = length(w) (9)

Suppose that the speaker is considering using
‘he’ to refer to Barack Obama, which has been
referred to NO times in the preceding discourse,
and there is another singular and male entity, Joe
Biden, in the preceding discourse that has been
referred to NB times. In this situation, the model
computes the probability that the speaker uses ‘he’
to refer to Barack Obama as follows:

PS(‘he’|Obama)
∝ PL(Obama|‘he’) · 1

C‘he’

= P (‘he’|Obama)P (Obama)
Σr′P (‘he’|r′)P (r′) · 1

C‘he’

=
1
V
·NO

( 1
V
·NO)+( 1

V
·NB)+( 1

V
·α·Using&masc

U· )
· 1
C‘he’

(10)

where count Using&masc in the denominator of the
last line denotes the number of unseen singular &
male entities that could be referred to by ‘he’. We
estimate this number for each type of pronoun we
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evaluate (singular-female, singular-male, singular-
neuter, and plural) based on the named entity list
in Bergsma and Lin (2006). The term ( 1

V · α ·
Using&masc

U· ) is the sum of probabilities of unseen
referents that could be referred to by the pronoun
‘he’. The unseen referents can be interpreted as a
penalty for the inexplicitness of pronouns. In the
case of proper names, the denominator is always
the same as the numerator, under the assumption
that each entity has one unique proper name.

4 Data

4.1 Corpora

Our model was run on both adult-directed speech
and child-directed speech. We chose to use the
SemEval-2010 Task 1 subset of OntoNotes (Re-
casens et al., 2011), a corpus of news text, as our
corpus of adult-directed speech. The Gleason et al.
(1984) subset of CHILDES (MacWhinney, 2000)
was chosen as our corpus of child-directed speech.

The model requires coreference chains, agree-
ment information, grammatical position, and part
of speech. These were extracted from each corpus,
either manually or automatically. The coreference
chains let us easily count how many times/how
recently each referent is mentioned in the dis-
course, which is necessary for computing discourse
salience. The agreement information (gender and
number of each referent) is required so that the
model can identify all possible competing refer-
ents for pronouns. For instance, Barack Obama
will be ruled out as a possible competitor for the
pronoun she. The grammatical position that each
proper name occupies2 determines the form of the
alternative pronoun that could be used there. For
example, the difference between he and him is the
grammatical position that each can appear in. The
part of speech is used to identify the form of the
referring expression (pronouns and proper names),
which is what our model aims to predict.3

OntoNotes includes information about corefer-
ence chains, part of speech, and grammatical de-
pendencies. Gleason CHILDES has parsed part of
speech and grammatical dependencies (Sagae et
al., 2010), but it does not have coreference chains.

2Dependency tags used were ‘SUBJ’, ‘OBJ’, and ‘PMOD’
in OntoNotes and ‘SBJ’ and ‘OBJ’ in CHILDES.

3The part of speech used to extract the target NPs were
‘PRP’ (pronoun), ‘NNP’ (proper name), and ‘NNPS’ (plu-
ral proper name) from OntoNotes and ‘pro’ (pronoun) and
‘n:prop’ (proper name) from CHILDES.

Neither corpus has agreement information. The fol-
lowing section describes manual annotations that
we have done for this study. Due to time constraints,
we annotated only a part of the CHILDES Gleason
corpus, 9 out of 70 scripts.

4.2 Annotation

4.2.1 Mention annotation

We considered only maximally spanning noun
phrases as mentions, ignoring nested NPs and
nested coreference chains. For the sentence “Both
Al Gore and George W. Bush have different ideas
on how to spend that extra money” from OntoNotes,
the extracted NPs are Both Al Gore and George W.
Bush and different ideas about how to spend that
extra money.

These maximally spanning NPs were automati-
cally extracted from the OntoNotes data, but were
manually annotated for the CHILDES data using
brat (Stenetorp et al., 2012) by two annotators.4

4.2.2 Agreement annotation

Many mentions (46,246 out of 56,575 mentions in
OntoNotes and 10,141 out of 10,530 mentions in
CHILDES Gleason) were automatically annotated
using agreement information from the named entity
list in Bergsma and Lin (2006), leaving 10,329
to be manually annotated from OntoNotes (about
18%) and 389 from CHILDES (about 4%).5

The guidelines we followed for this manual
agreement annotation were largely based on pro-
noun replacement tests. NPs that referred to a sin-
gle man and could be replaced with he or him were
labeled ‘male singular’, NPs that could be replaced
by it, such as the comment, were labeled ‘neuter
singular’, and so on. NPs that could not be replaced
with a pronoun, such as about 30 years earnings
for the average peasant, who makes $145 a year,
were excluded from the analysis.

4.2.3 Coreference annotation

We used the provided coreference chains for the
OntoNotes data, but for the CHILDES data, it was
necessary to do this manually using brat. The guide-
lines we followed for determining whether men-
tions coreferred came from the OntoNotes corefer-

4Interannotator agreement for the CHILDES mention an-
notation was: precision 0.97, recall 0.98, F-score 0.97 (for
two scripts).

5Interannotator agreement for the manual annotation of
agreement information was 97% (for 500 mentions).
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ence guidelines (BBN Technologies, 2007).6

5 Experiments

Our experiments are designed to quantify the contri-
butions of the various components of the complete
model described in Section 3.2 that incorporates
discourse salience, cost, and unseen referents. We
contrast the complete model with three impover-
ished models that lack precisely one of these com-
ponents. The comparison model without discourse
uses a uniform discourse salience distribution. The
model without cost uses constant speech cost. The
model without good estimates of unseen referents
always assigns probability 1

V · α · 1
C· to unseen

referents in the denominator of (5), regardless of
whether the word is a proper name or pronoun. In
other words, this model does not have good esti-
mates of unseen referents like the complete model
does.

We use the adult- and child-directed corpora to
examine to what extent each model captures speak-
ers’ referring expressions. We selected pronouns
and proper names in each corpus according to sev-
eral criteria. First, the referring expression had
to be in a coreference chain that had at least one
proper name, in order to facilitate computing the
cost of the proper name alternative. Second, pro-
nouns were only included if they were third person
pronouns in subject or object position, and index-
icals and reflexives were excluded. Finally, for
the CHILDES corpus, children’s utterances were
excluded.

After filtering pronouns and proper names ac-
cording to these criteria, 553 pronouns and 1,332
proper names (total 1,885 items) in the OntoNotes
corpus, and 165 pronouns and 149 proper names
(total 314 items) in the CHILDES Gleason corpus
remained for use in the analysis.

Each model chooses referring expressions given
information extracted from each corpus as de-
scribed in Section 4.1. For evaluation, we com-
puted accuracies (total, pronoun, and proper name)
and model log likelihood (summing logPS(w|r)
for the words in the corpus) for each model.

5.1 Results

Table 1 summarizes the results of each model with
the OntoNotes and CHILDES datasets. The new

6Interannotator agreement for CHILDES coreference an-
notation was computed using B3 (Bagga and Baldwin, 1998):
precision: 0.99, recall: 1.00 (for one script).

referent hyperparameter α and the decay parameter
for discourse recency salience were fixed at 0.1 and
3.0, respectively.7

5.1.1 News
Overall, the recency salience measure provides a
better fit than the frequency salience measure with
respect to accuracies, suggesting that recency bet-
ter captures speakers’ representations of discourse
salience that influence choices of referring expres-
sions. On the other hand, the models with fre-
quency discourse salience have higher model log
likelihood than the models with recency do. This
is because of the peakiness of the recency models.
Model log likelihood computed over pronouns and
proper names (complete model) were -1022.33 and
-222.76, respectively, with recency, and -491.81 and
-467.06 with frequency. The recency model tends
to return a higher probability for a proper name
than the frequency model does. Some pronouns
receive a very low probability for this reason, and
this lowers the model log likelihood.

The model without discourse and the model with-
out cost consistently failed to predict pronouns
(these models predicted all proper names). This
happens because in the model without discourse,
the information content of pronouns is extremely
low due to the large number of consistent unseen
referents. In the model without cost, pronouns are
disfavored because they always convey less infor-
mation than proper names. The log likelihoods of
these models were also below that of the complete
model. These results show that pronominalization
depends on subtle interaction between discourse
salience and speech cost. Neither of them is suf-
ficient to explain the distribution of pronouns and
nouns on its own.

The total accuracy of the model without good
estimates of unseen referents was the worst among
the four models, but this model did predict pro-
nouns to some extent. Because the number of
proper names is larger than the number of pronouns
in this dataset, the difference in total accuracies be-
tween the model without good estimates of unseen
referents and the models without discourse or cost
reflects this asymmetry. Comparison between the
complete model and the model without good esti-
mates of unseen referents also suggests that having
knowledge of unseen referents helps correctly pre-

7We chose the best parameter values based on multiple
runs, but results were qualitatively consistent across a range
of parameter values.
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Corpus Model Discourse Total accuracy Pronoun accuracy Proper name accuracy Log-lhood

OntoNotes

complete recency 80.27% 59.49% 88.89% -1245.09
frequency 73.10% 62.74% 77.40% -958.87

-discourse NA 70.66% 0.00% 100.00% -6904.77
-cost recency 70.66% 0.00% 100.00% -1537.71

frequency 70.66% 0.00% 100.00% -1017.38
-unseen recency 64.14% 68.17% 62.46% -1567.51

frequency 56.98% 76.67% 48.80% -1351.58

CHILDES

complete recency 49.68% 11.52% 91.95% -968.64
frequency 46.18% 10.30% 85.91% -360.28

-discourse NA 47.45% 0.00% 100.00% -2159.22
-cost recency 47.45% 0.00% 100.00% -1055.54

frequency 47.45% 0.00% 100.00% -392.72
-unseen recency 50.31% 13.94% 90.60% -961.54

frequency 48.41% 21.21% 78.52% -332.73

Table 1: Accuracies and model log-likelihood

dict the use of proper names in the first mention of
a referent.

5.1.2 Child-directed speech
Unlike the adult-directed news text, neither recency
nor frequency discourse salience provides a good
fit to the data. The low accuracies of pronouns and
the high accuracies of proper names in all models
indicate that the models are more likely to predict
proper names than pronouns. There are several
possible reasons for this. First, the CHILDES tran-
scripts involve long conversations in a natural set-
tings. Compared to the news, interlocutors are not
focusing on a specific topic, but rather they often
switch topics (e.g., a child interrupts her parents’
conversation about her father’s coworker to talk
about her eggs). This topic switching makes it dif-
ficult for the model to estimate discourse salience
using simple frequency or recency measures. Sec-
ond, interlocutors are a family and they share a
good deal of common knowledge/background (e.g.,
a mother said she as the first mention of her child’s
friend’s mother). The current model is not able
to incorporate this kind of background knowledge.
Third, many referents are visually available. The
current model is not able to use visual salience. In
general, these problems arise due to our impover-
ished estimates of salience, and we would expect a
more sophisticated discourse model that accurately
measured salience to show better performance.

5.2 Summary

Experiments with the adult-directed news corpus
show a close match between speakers’ utterances
and model predictions. On the other hand, exper-
iments with child-directed speech show that the
models were more likely to predict proper names

where pronouns were used, suggesting that the esti-
mates of discourse salience using simple measures
were not sufficient to capture a conversation.

6 Discussion

This paper proposes a language production model
that extends the rational speech act model from
Frank and Goodman (2012) to incorporate updates
to listeners’ beliefs as discourse proceeds. We show
that the predictions suggested from UID in this do-
main can be derived from our speaker model, pro-
viding an explanation from first principles for the
relation between discourse salience and speakers’
choices of referring expressions. Experiments with
an adult-directed news corpus show a close match
between speakers’ utterances and model predic-
tions, and experiments with child-directed speech
show a qualitatively similar pattern. This suggests
that speakers’ behavior can be modeled in a princi-
pled way by considering the probabilities of refer-
ents in the discourse and the information conveyed
by each word.

A controversial issue in language production is
to what extent speakers consider a listener’s dis-
course model (Fukumura and van Gompel, 2012).
By incorporating an explicit model of listeners, our
model provides a way to explore this question. For
example, the speaker’s listener model PL(r|w) in
(4) might differ between contexts and could also be
extended to sum over possible listener identity q in
mixed contexts, as in (11).

PL(r|w) = ΣqP (r|w, q)P (q) (11)

This provides a way to probe speakers’ sensitiv-
ity to differences in listener characteristics across
situations.
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Although the simulations in this paper employed
simple measures for discourse salience (referent
frequency and recency), the discourse models used
by speakers are likely to be more complex. Stud-
ies show that semantic information that cannot be
captured with these simple measures, such as topi-
cality (Orita et al., 2014) and animacy (Vogels et
al., 2013a), affects speakers’ choices of referring
expressions. Future work will test to what extent
this latent discourse information could affect the
model predictions.

Our model predicts a tight coupling between the
probability of a referent being mentioned, p(r),
and the choice of referring expression. However,
these two quantities appear to be dissociated in
some cases. For example, Fukumura and Van Gom-
pel (2010) show that semantic bias (as a measure
of predictability) affects what to refer to (i.e., the
referent), but not how to refer (i.e., the referring
expression), while grammatical position does af-
fect how you refer. One way of dissociating the
probability of mention from the choice of referring
expression in our model would be through the likeli-
hood term, the word probability p(w|r). While we
have assumed this word probability to be constant
across words and referents, Kehler et al. (2008) use
grammatical position to define this probability and
show that their model captures experimental data.
Syntactic constraints (such as Binding principles)
also influence form choices, and this kind of knowl-
edge may also be reflected in the word probability.
Examining the role of the word probability p(w|r)
more closely would allow us to further explore
these issues.

Despite these limitations, our model provides
a principled explanation for speakers’ choices of
referring expressions. In future work we hope to
look at a broader range of referring expressions,
such as null pronouns and definite descriptions,
and to explore the extent to which our model can
be applied to other linguistic phenomena that rely
on discourse information.

Acknowledgments

We thank the UMD probabilistic modeling reading
group for helpful comments and discussion.

References
John R Anderson. 2007. How can the human mind

occur in the physical universe? Oxford University
Press.

Mira Ariel. 1990. Accessing noun-phrase antecedents.
Routledge.

Jennifer Arnold. 1998. Reference form and discourse
patterns. Ph.D. thesis, Stanford University Stanford,
CA.

Jennifer Arnold. 2008. Reference produc-
tion: Production-internal and addressee-oriented
processes. Language and cognitive processes,
23(4):495–527.

Amit Bagga and Breck Baldwin. 1998. Algorithms
for scoring coreference chains. In The first interna-
tional conference on language resources and evalua-
tion workshop on linguistics coreference, volume 1,
pages 563–566.

Ellen Gurman Bard, Matthew P Aylett, J Trueswell,
and M Tanenhaus. 2004. Referential form, word du-
ration, and modeling the listener in spoken dialogue.
Approaches to studying world-situated language use:
Bridging the language-as-product and language-as-
action traditions, pages 173–191.

BBN Technologies. 2007. OntoNotes English co-
reference guidelines version 7.0.

Leon Bergen, Noah Goodman, and Roger Levy. 2012a.
That’s what she (could have) said: How alternative
utterances affect language use. In Proceedings of
the 34th Annual Conference of the Cognitive Science
Society.

Leon Bergen, Noah D Goodman, and Roger Levy.
2012b. That’s what she (could have) said: How
alternative utterances affect language use. In Pro-
ceedings of the thirty-fourth annual conference of
the cognitive science society.

Shane Bergsma and Dekang Lin. 2006. Bootstrapping
path-based pronoun resolution. In Proceedings of
the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 33–40,
Sydney, Australia, July. Association for Computa-
tional Linguistics.

David M Blei and Peter I Frazier. 2011. Distance de-
pendent Chinese restaurant processes. The Journal
of Machine Learning Research, 12:2461–2488.

Richard Breheny, Napoleon Katsos, and John Williams.
2006. Are generalised scalar implicatures generated
by default? an on-line investigation into the role of
context in generating pragmatic inferences. Cogni-
tion, 100(3):434–463.

Susan E Brennan. 1995. Centering attention in
discourse. Language and Cognitive Processes,
10(2):137–167.

Wallace Chafe. 1994. Discourse, consciousness, and
time. Discourse, 2(1).

1647



Judith Degen, Michael Franke, and Gerhard Jäger.
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Abstract

Interpersonal relations are fickle, with
close friendships often dissolving into en-
mity. In this work, we explore linguis-
tic cues that presage such transitions by
studying dyadic interactions in an on-
line strategy game where players form al-
liances and break those alliances through
betrayal. We characterize friendships that
are unlikely to last and examine temporal
patterns that foretell betrayal.

We reveal that subtle signs of imminent
betrayal are encoded in the conversational
patterns of the dyad, even if the victim
is not aware of the relationship’s fate.
In particular, we find that lasting friend-
ships exhibit a form of balance that man-
ifests itself through language. In contrast,
sudden changes in the balance of certain
conversational attributes—such as positive
sentiment, politeness, or focus on future
planning—signal impending betrayal.

1 Introduction

A major focus in computational social science has
been the study of interpersonal relations through
data. However, social interactions are compli-
cated, and we rarely have access all of the data that
define the relationship between friends or enemies.
As an alternative, thought experiments like the
prisoner’s dilemma (Axelrod and Dion, 1988) are
used to explain behavior. Two prisoners—denied
communication—must decide whether to cooper-
ate with each other or defect. Such simple and
elegant tools initially helped understand many real
world scenarios from pricing products (Rosenthal,
1981) to athletes doping (Buechel et al., 2013).
Despite its power, the prisoner’s dilemma remains
woefully unrealistic. Cooperation and betrayal do
not happen in a cell cut off from the rest of the

world. Instead, real interactions are mediated by
communication: promises are made, then broken,
and met with recriminations.

To study the complex social phenomenon of be-
trayal, we turn to data and observe the players of
Diplomacy (Sharp, 1978), a war-themed strategy
game where friendships and betrayals are orches-
trated primarily through language. Diplomacy,
like the prisoner’s dilemma, is a repeated game
where players choose to either cooperate or betray
other players. Diplomacy is so engaging that it
is played around the world, not only casually as a
board game but also over the Internet and in formal
settings such as world championships.1 Players
converse throughout the game and victory hinges
on enlisting others’ support through persuasive-
ness and cunning duplicity. To illustrate the social
relations that carry out throughout the game, con-
sider the following exchange between two Diplo-
macy allies:

Germany: Can I suggest you move your armies
east and then I will support you? Then next year
you move [there] and dismantle Turkey. I will
deal with England and France, you take out Italy.

Austria: Sounds like a perfect plan! Happy to
follow through. And—thank you Bruder!

Austria is very polite and positive in its reply,
and appreciates Germany’s support and generos-
ity. They have been good allies for the better part
of the game. However, immediately after this ex-
change, Austria suddenly invades German terri-
tory. The intention to do so was so well concealed
that Germany did not see the betrayal coming; oth-
erwise it would have taken advantage first. Indeed,
if we follow their conversation after the attack, we
find Germany surprised:

Germany: Not really sure what to say, except that
I regret you did what you did.

1A recent episode of This American Life describes the
Diplomacy game in a competitive offline setting: http://
www.thisamericanlife.org/radio-archives/
episode/531/got-your-back?act=1
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Such scenarios suggest an important research
challenge: is the forthcoming betrayal signaled
by linguistic cues appearing in the (ostensibly
friendly) conversation between the betrayer and
the eventual victim? A positive answer would sug-
gest not only that the betrayer unknowingly re-
veals their future treachery, but also that the even-
tual victim fails to notice these signals. Captur-
ing these signals computationally would therefore
mean outperforming the human players.

In this work, we provide a framework for ana-
lyzing a dyad’s evolving communication patterns
and provide evidence of subtle but consistent con-
versational patterns that foretell the unilateral dis-
solution of a friendship. In particular, imminent
betrayal is signaled by sudden changes in the bal-
ance of conversational attributes such as positive
sentiment, politeness, and structured discourse.
Furthermore, we show that by exploiting these
cues in a prediction setting we can anticipate im-
minent betrayal better than the human players.

After briefly describing the game (Section 2),
we focus on how the structure of the game pro-
vides convenient, reliable indicators of whether
pairs of participants are friends or foes (Section 3).
Given these labels, we explore linguistic features
that are predictive of whether friendships will end
in betrayal (Section 4) and, if so, when the betrayal
will happen (Section 5).

While our focus is on a single popular game,
we choose methods that generalize to other do-
mains, revealing dynamics present in other social
interactions (Section 6). We discuss how automat-
ically predicting stable relationships and betrayal
can more broadly help advance the study of trust
and relationships using computational linguistics.

2 Communication and Conflict in
Diplomacy

A game of Diplomacy begins in 1901 with play-
ers casting themselves as the European powers at
the eve of the first world war: England, Germany,
France, Russia, Austria, Italy, and the Ottoman
Empire. The goal of the game (like other war
games such as Risk or Axis & Allies) is to cap-
ture all of the territories on the game board (Fig-
ure 1). The games are divided into years start-
ing from 1901 and each year is divided into two
seasons—Spring and Fall. Each season consists
of two alternating phases: diplomacy—the players
communicate to form strategies—and orders—the

Figure 1: The full Diplomacy board representing Europe
circa 1914. The seven nations struggle to control the map.

players submit their moves for the season. Seasons
are therefore the main unit of game time.

2.1 Movement, Orders, and Battles

On the board, each player can operate a unit for
each city they control. During each turn, these
pieces have the option of moving to an adjacent
territory. What makes Diplomacy unique is that
all players submit their written (or electronic) or-
ders; these orders are executed simultaneously;
and there is no randomness (e.g., dice). Thus, the
outcome of the game depends only on the commu-
nication, cooperation, and movements of players.

When two units end their turn in the same terri-
tory, it implies a battle. Who wins the battle is de-
cided purely based on numerical superiority (ties
go to defenders). Instead of moving, a unit can
support another unit; large armies can be created
through intricate networks of support. The side
with the largest army wins the battle.

The process of supporting a unit is thus critical
for both a successful offensive move and a suc-
cessful defense. Often, a lone player lacks the
units to provide enough support to his attacks and
thus needs the help of others.2 Because these or-
ders (both movement and support) are machine
readable, we have a clear indication of when play-
ers are working together (supporting each other) or
working against each other (attacking each other);
we will use this to define relationships between

2 While support can come from a player’s own units, allies
often combine resources. For example, if an English army
in Belgium is attacking a Germany Army in Ruhr, a French
army in Burgundy could strengthen that attack. This is ac-
complished by the French player submitting a move explicitly
stating “I support England’s attack from Belgium to Ruhr”.
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players (Section 3). However, coordinating these
actions between players requires cooperation and
diplomacy.

2.2 Communication

In the diplomacy phase of the game, players talk to
each other. These conversations are either public
or—more typically—one-on-one. Conversations
include greetings, extra-game discussions (e.g.,
“did you see Game of Thrones?”), low-level tac-
tics (“if you attack Armenia, I’ll support you”),
and high-level strategy (“we need to control Cen-
tral Europe”). The content of these messages
forms the object of our study.

Because of the centrality of language to Diplo-
macy, we can learn the rhetorical and social de-
vices players use to build and break trust. Because
this language is embedded in every game, it has
convenient properties: similar situations are re-
peated, the goals are clear, and machine-readable
orders confirm which players are enemies and
which are friends. In the next section, we explore
the Diplomacy data.

2.3 Preprocessing

We use games from two popular online platforms
for playing Diplomacy.3 The average season of an
online Diplomacy game lasts nine days. We re-
move non-standard games caused by differences
between the two platforms, as well as games that
are still in progress. Moreover, in each game, we
filter out setup messages, regulatory messages to
and from the administrator of the game and mes-
sages declaring the state of the game, keeping only
messages between the players. This leaves 249
games with 145.000 total messages.

The dataset confirms that communication is an
essential part of Diplomacy: half of the games
have over 515 messages exchanged between the
players, while the top quartile has over 750 mes-
sages per game. Also, non-trivial messages (with
at least one sentence) tend to be complex: over
half of them have at least five sentences, and the
top quartile consists of messages with eight or
more sentences.

3 Relationships and Their Stability

In this section, we explore how interactions within
the game of Diplomacy define the relationships

3Anonymized transcripts and more information available
at http://vene.ro/betrayal/

Event Time What happened
F1 4 B supports V’s army in Vienna
F2 3 V supports B’s attack from Warsaw to Silesia
F3 3 B again supports V in Vienna
F4 1 V supports B’s move from Venice to Tyrolia
H5 0 B attacks V in Vienna
H6 -1 V retaliates, attacking B in Warsaw

4 3 2 1                  0 (betrayal)
Game season

Betrayer

Victim
F1 F3

F2 F4

H5

H6

Figure 2: A friendship between Player B (eventual betrayer)
and Player V (eventual victim) unravels. For the first four
events, the players exchange Friendly acts (in green). Even-
tually B’s unilateral hostile act betrays V’s trust, leading to
hostility (in red). The dissolution takes place at the time of
the first hostile act (t = 0) and we index game seasons going
back from the betrayal, such that lower indices mean betrayal
is nearer.

between players. While such dyadic relationships
can be undefined (e.g., England and Turkey are in
opposite corners of the map), specific interactions
between players indicate whether they are friendly
or hostile to each other.

Friendships and hostilities. Alliances are a natu-
ral part of the game of Diplomacy. While the best
outcome for a player is a solo victory against all
other players, this is rare and difficult to achieve
without any cooperation and assistance. Instead,
the game’s structure encourages players to form
long-term alliances. Allies often settle for (less
prestigious) team victories, but these coalitions
can also crumble as players seek a (more presti-
gious) solo victory for themselves. This game dy-
namic naturally leads to the formation of friendly
and hostile dyads, which are relatively easy to
identify through post-hoc analysis of the game, as
explained next.

Acts of friendship. Diplomacy provides a support
option for players to help each other: this game
mechanism (discussed in Section 2) provides un-
equivocal evidence of friendship. When two play-
ers engage in a series of such friendly acts, we will
say that the two are in a relation of friendship.

Acts of hostility. Unlike support, hostile actions
are not explicitly marked in Diplomacy. We con-
sider two players to be hostile if they get involved
in any unambiguous belligerent action, such as in-
vading one another’s territory, or if one supports
an enemy of the other.4

4 In Diplomacy all game actions are simultaneous, and
this can lead to ambiguous interpretation of the nature of a
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Betrayal. As in real life, friendships can be
broken unilaterally: an individual can betray his
friend by engaging in a hostile act towards her.
Figure 2 shows two players who started out as
friends (green) but became hostile (red) after a be-
trayal. Importantly, until the last act of friendship
(game season t = 1), the victim is unaware that
she will be betrayed (otherwise she would not have
engaged in an act of friendship) and the betrayer
has no interest in signaling his planned duplicity
to his partner.

This setting poses the following research chal-
lenge: are there linguistic cues that appear during
the friendly conversations and portend the upcom-
ing betrayal? A positive answer would have two
implications: the betrayer unknowingly hints at
his future treachery, and the victim could have no-
ticed it, but did not. We will explore this question
in the following sections.

Relationship stability. Before venturing into the
linguistic analysis of betrayals, we briefly ex-
plore the dynamics underlying these state transi-
tions. We find that, as in real life, friendships
are much more likely to collapse into hostilities
than the reverse: in Diplomacy, the probability
of a friendship to dissolve into enmity is about
five times greater than that of hostile players be-
coming friends. The history of the relationship
also matters. A friendship built on the founda-
tion of many cooperative acts is more likely to en-
dure than friendship with a short history, and long-
lasting conflict is less likely to become a friend-
ship. In numbers, the probability that a two season
long friendship ends is 35%, while for pairs who
have helped each other for ten or more seasons, the
probability of betrayal is only 23%. Similarly, the
probability that a two season long conflict resolves
is 7%, while players at war for over ten seasons
have only a 5% chance to make up. These num-
bers aren’t particularly shocking—the idea that the
passage of time has an effect on the strength of a
relationship is intuitive. For the purposes of this
study, we control for such effects in order to cap-
ture purely linguistic hints of betrayal.

Starting from the relationship definitions dis-
cussed in this section, in what follows we show
how subtle linguistic patterns of in-game player

pair’s interactions. Our definition of hostility intentionally
discards such ambiguous evidence. For instance, if two play-
ers attempt to move into the same unoccupied territory, this
is not necessarily aggressive: allies sometimes use this tactic
(“bouncing”) to ensure that a territory remains unoccupied.

conversations can reveal whether or not a friend-
ship will turn hostile or not.

4 Language Foretelling Betrayal

In this section, we examine whether the conver-
sations between two Diplomacy allies contain lin-
guistic cues foretelling if their friendship will last
or end in betrayal. We expect these cues to be sub-
tle, since we only consider messages exchanged
when the two individuals are being ostensibly
friendly; when at least one of them—the eventual
victim—is unaware of the relationship’s fate.

4.1 What Constitutes a Betrayal

To find betrayals, we must first find friendships.
Building on the discussion from Section 3, we
consider a friendship to be stable if it is ongo-
ing, established, and reciprocal. Thus, we focus
on relationships that contain at least two consecu-
tive and reciprocated acts of friendships that span
at last at least three seasons in game time. We also
check that no more than five seasons pass between
two acts of friendships, as friendships can fade.

Betrayals are established and reciprocal friend-
ships that end with at least two hostile acts. The
person initiating the first of these hostile acts is
the betrayer, while the other person is the victim.5

For each betrayal instance, we find the most
similar stable friendship that was never dissolved
by betrayal. Using a greedy heuristic, we se-
lect friendships that match the betrayals on two
statistics: the length of the friendship and num-
ber of seasons since the start of the game. Af-
ter this matching process, we find no significant
difference in either of the two variables (Mann-
Whitney p > 0.3). Matching betrayals with last-
ing friendships in this fashion removes historical
and relationship-type effects such as those dis-
cussed in Section 3, and focuses the comparison
on the variable of interest: whether a given stable
friendship will end in a betrayal or not.

4.2 Linguistic Harbingers of Betrayal

Now we switch to exploring linguistic features
that correlate with future betrayal in the controlled
setting described above. We start from the intu-
ition that a stable relationship should be balanced
(Jung et al., 2012): friends will help each other

5 In rare cases, the betrayal can be mutual (i.e., both play-
ers start attacking each other in the same season). In such
cases, we consider both betrayals.
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Figure 3: Friendships that will end in betrayal are imbalanced. The eventual betrayer is more positive, more polite, but plans
less than the victim. The white bars correspond to matched lasting friendships, where the roles of potential betrayer and victim
are arbitrarily assigned; in these cases, the imbalances disappear. Error bars mark bootstrapped standard errors (Efron, 1979).

while enemies will fight each other. A precarious
friendship might feel one-sided, while a conflict
may turn to friendship through a magnanimous
olive branch. Therefore, we focus our attention on
linguistic features that have the potential to signal
an imbalance in the communication patterns of the
dyad.

To ensure that we are studying conversational
patterns that occur only when the two individuals
in the dyad are ostensibly being friends, we only
extract features from the messages exchanged be-
fore the last act of friendship, that is, before the
season labeled 1 in Figure 2. Considering the na-
ture of this setting, we can only hope for subtle
linguistic cues: if there were salient linguistic sig-
nals, then the victim would notice and preempt the
betrayal. Instead, they are taken by surprise; the
following is a typical reaction of a player after hav-
ing been betrayed by a friend:

Well that move was sour. I’m guessing France
put you up to it, citing my large growth. This was
a pity, as I was willing to give you the lion’s share
of centers in the west. [...] If you voiced your
concerns I would have supported you in most of
the western centers. Unfortunately now you have
jumped out of the pan into the fire.

Sentiment. Changes in the sentiment expressed in
conversation can reflect emotional responses, so-
cial affect, as well as the status of the relationship
as a whole (Gottman and Levenson, 2000; Wang
and Cardie, 2014). We quantify the proportion of
exchanged sentences that transmit positive, neutral
and negative sentiment using the Stanford Senti-
ment Analyzer (Socher et al., 2013).6 Example
sentences with these features, as well as all other
features we consider, can be found in Table 1.

6We collapse the few examples classified as extreme posi-
tive and extreme negative examples into positive and negative,
respectively.

We find that an imbalance in the amount of pos-
itive sentiment expressed by the two individuals is
a subtle sign that the relation will end in betrayal
(Figure 3a, left; one-sample t-test on the imbal-
ance, p = 0.008). When looking closer at who is
the source of this imbalance (Figure 3a, right), we
find that that it is the eventual betrayer that uses
significantly more positive sentiment than the con-
trol counterpart in the matched friendship (two-
sample t-test, p = 0.001). This is somewhat sur-
prising, and we speculate that this is the betrayer
overcompensating for his forthcoming actions.

Argumentation and Discourse. Structured dis-
course and well-made arguments are essential in
persuasion (Cialdini, 2000; Anand et al., 2011).
To capture discourse complexity, we measure the
average number of explicit discourse connectors
per sentence (Prasad et al., 2008).7 These markers
belong to four coarse classes: comparison, contin-
gency, expansive, and temporal. To capture plan-
ning, we group temporal markers that refer to the
future (e.g.,“next”, “thereafter”) in a separate cat-
egory. To quantify the level of argumentation, we
calculate average number of claim and premise
markers per sentence, as identified by Stab and
Gurevych (2014). We also measure the number of
request sentences in each message, as identified by
the heuristics in the Stanford Politeness classifier
(Danescu-Niculescu-Mizil et al., 2013).

The structure of the discourse offers clues to
whether the friendship will last. For example, Fig-
ure 3b shows that in friendships doomed to end in
betrayal, the victim uses planning discourse mark-
ers significantly more often than the betrayer (one-
sample t-test on the imbalance, p = 0.03), who is

7We remove the connectors that appear in over 20% of the
messages (and, for, but, if, as, or, and so).
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Feature Example sentence from the data

Positive sentiment I will still be thrilled if it turns out you win this war.
Negative sentiment It’s not a great outcome, but still an OK one.
Neutral sentiment Do you concur with my assumption?

Claim But I believe that E/F have discarded him and so I think he might bite.
Premise I put Italy out because I wanted to work with you.

Comparison We can trade centers as much as we like after that.
Contingency He did not, thus we are indeed in fine shape to continue as planned.
Expansion Would you rather see WAR-UKR, or GAL-UKR?
Temporal I think he can still be effective to help me take TUN while you take ROM.
Planning HOL should fall next year, and then MUN and KIE shortly thereafter.
Number of requests

Politeness I wonder if you shouldn’t try to support Italy into MAR ... What do you think?

Subjectivity I’m just curious what you think.

Talkativeness

Table 1: Summary of the linguistic cues we consider.

likely to be aware that the cooperation has no fu-
ture. (More argumentation and discourse features
will be discussed in the following sections.)

Politeness. Pragmatic information can also be in-
formative of the relation between two individu-
als; for example Danescu-Niculescu-Mizil et al.
(2013) show that differences in levels of polite-
ness can echo differences in status and power. We
measure the politeness of each message using the
Stanford Politeness classifier and find that friend-
ships that end in betrayal show a slight imbalance
between the level of politeness used by the two
individuals (one-sample t-test on the imbalance,
p = 0.09) and that in those cases the future vic-
tim is the one that is less polite.

Subjectivity. We explored phrases expressing
opinion, accusation, suspicion, and speculation
taken from an automatically collected lexicon
(Riloff and Wiebe, 2003), but did not find sig-
nificant differences between betrayals and control
friendships.

Talkativeness. Another conversational aspect is
the amount of communication flowing between the
players, in each direction. To quantify this, we
simply use the number of messages sent, the av-
erage number of sentences per message, and the
average number of words per sentence. Abnor-
mal communication patterns can indicate a rela-
tionship breakdown. For example, friendships that
dissolve are characterized by an imbalance in the
number of messages exchanged between the two
players (one-sample t-test, p < 0.001).

These results show that there are indeed subtle
linguistic imbalance signals that are indicative of

an forthcoming betrayal, even in a setting in which
the victim is not aware of the impending betrayal.

4.3 Predictive Power
To test whether these linguistic cues have any pre-
dictive power and to explore how they interact, we
turn to a binary classification setting in which we
try to detect whether a player V will be betrayed
by a player B. (We will call player V the poten-
tial victim and player B the potential betrayer.)
Expert humans—the actual victims—performed
poorly on this task and were not able to tell that
they will be betrayed: by virtue of how the dataset
is constructed, the performance of the human play-
ers is at chance level.

We use the same balanced dataset of matched
betrayals and lasting friendships as before and
consider as classification instances all the seasons
coming from each of the two classes (663 betrayal
seasons and 712 from lasting friendships). As fea-
tures, we use the cues described above and sum-
marized in Table 1, differentiated by source: V
or B. We use logistic regression after univariate
feature selection. The best setting for the model
parameters8 is selected via 5-fold cross valida-
tion, ensuring that instances from the same game
are never found in both train and validation folds.
The resulting model achieves a cross-validation
accuracy of 57% and a Matthews correlation co-
efficient of 0.14, significantly above chance (52%
accuracy and 0 Matthews correlation coefficient),
with 95% bootstrapped confidence. This indicates

8 We optimize the number of features selected, the scor-
ing function used (ANOVA or χ2), whether to automatically
reweigh the classes, the regularizer (`1 or `2), and the value
of the regularization parameter C between 10−12 and 1012.
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From Positive feature From Negative feature

B Positive sentiment B Expansion
B Sentences B Comparison

B Contingency
B No. Words
B Planning
B Negative sentiment

Table 2: Selected features for recognizing upcoming be-
trayal, in decreasing order of the absolute value of their co-
efficients. The From column indicates whether the message
containing the feature was sent by the potential Betrayer or
the potential Victim. (In this case, only betrayer features were
selected.) Positive features indicate that a friendship is more
likely to end in betrayal.

that, unlike the actual players, the classifier is able
to exploit subtle linguistic signals that surface in
the conversation.9

The selected features and their coefficients are
reported in Table 2. On top of the observations
we previously made, the feature ranking reveals
that writing more sentences per message is more
common when one will betray. Discourse features
also prove relevant: more complex discourse in-
dicates a lower likelihood of the player betraying
(e.g., Figure 3b).

Overall, the selected linguistic features capture
a consistent signal that characterizes people’s lan-
guage when they are about to betray: they tend to
plan less than their victims, use less structure in
their communication, and are overly positive.

5 Sudden yet Inevitable Betrayal

The results from Section 4 suggest that language
cues can be subtle signs of future relationship dis-
ruption. Even though people are aware that most
relationships eventually end, one would still prefer
to reap their benefits as long as possible. In Diplo-
macy, despite the common knowledge that every-
one prefers to win alone, players still take chances
on long-lasting alliances. This leads to an alter-
nate research question: assuming that a relation-
ship will be disrupted, how soon can one expect
to be betrayed? This is still just as challenging for
the expert human players, as they were not able to
anticipate and thereby avoid betrayal.

Next we investigate if the variation of the
linguistic cues over time can predict imminent
change in the relationship. We consider only the

9Since our focus is on understanding linguistic aspects
of betrayal, rather than on achieving the best possible per-
formance on this particular Diplomacy task, we do not use
game-specific information, such as the players’ position on
the map, or any information not accessible to both players.

subset of betrayals used in Section 4, and label
each individual game season with its distance from
the end of the friendship (as in Figure 2). We pre-
vent short alliances of circumstance from distort-
ing the features close to betrayal by keeping only
friendships lasting at least four seasons.

We consider the same cues described in Ta-
ble 1, and train a classifier to discriminate between
the season preceding the last friendly interaction
and all the older seasons. This learning task is
imbalanced, with only 14% of the seasons being
immediately before the betrayal. Thus, we op-
timize F1 score and also measure the Matthews
correlation coefficient, which takes a value of 0
for uninformative predictions (random or major-
ity). The best model achieves an F1 score of 0.31
and a Matthews correlation coefficient of 0.17,
significantly better than chance with 95% boot-
strapped confidence. This shows that we can cap-
ture signs of imminent betrayal, something that
even the skilled human players have failed to do.
Furthermore, 39% of the predicted false positives
are within two seasons of the last friendly act. This
suggests that sometimes the warning signs can ap-
pear slightly earlier.

The selected features, displayed in Table 3, re-
flect some of the effects identified in Section 4,
such as the importance of positive sentiment and
planning discourse markers. Betrayers have a ten-
dency to use more positive sentiment during the
last moment of purported friendliness (Figure 4a).
Also, expressing more opinions through claims is
a sign that one will not betray right away. Three of
the discourse features (comparison, contingency
and expansion) are selected as imbalance features
(they have near-opposite coefficients for the be-
trayer and for the victim), indicating that as be-
trayal approaches, victims are less eloquent than
betrayers. Interestingly, some predictive signals
come only from the victim: a partner using in-
creasingly more planning words is at higher risk
of being betrayed (Figure 4b). This could be ex-
plained by the pressure that making plans for the
future can put on a relationship. A similar reason-
ing applies for making many requests.

We also find that a decrease in a partner’s polite-
ness presages their imminent betrayal. The change
in politeness over time (Figure 4c) reveals a rever-
sal in the politeness imbalance of the pair. This
explains why politeness is not a good enough fea-
ture in detecting long-term betrayal. The behav-
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4 and up 3 2 1 betrayal
Seasons leading up to betrayal
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(a) Positive sentiment
(percentage of sentences)
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(b) Planning discourse markers
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(c) Politeness
(avg. message score)

Figure 4: Changes in balance can mark imminent betrayal. As the breakdown approaches, the betrayer becomes more positive
but less polite, and the victim tends to make more requests and become more polite. Error bars mark bootstrapped standard
errors (Efron, 1979).

From Positive feature From Negative feature

V Comparison B Claims
V Positive sentiment B Politeness
V Contingency B Contingency
V Planning B Subjectivity
V Requests B Expansion
V Expansion B No. Sentences

B Comparison

Table 3: Selected features for recognizing imminent be-
trayal, in decreasing order of the absolute value of their co-
efficients. The From column indicates whether the message
containing the feature comes from the potential Betrayer or
the potential Victim. Positive features indicate that an ex-
change is more likely to be followed by immediate betrayal.

ior could have two intuitive explanations. On one
hand, if the betrayer has planned the act in ad-
vance, politeness can be a strategy for deception.
On the other hand, if the betrayer receives impo-
lite requests, the value of the relationship can de-
crease, hastening a betrayal. We observe a simi-
lar dynamic for the average number of sentences
per message sent by the betrayer; the feature is
selected in both prediction tasks, but with oppo-
site signs: more complex messages suggest that
betrayal will happen, but not right away.

Studying language change as betrayal draws
nearer uncovers effects that cannot be seen when
looking at an entire friendship on average. For
example, while excessively positive and polite
partners are potential betrayers, people who have
themselves suddenly become more polite are
likely to become victims soon.

6 Relevance Beyond the Game

While discovering betrayal in one online game
is a fun and novel task, our work connects with

broader research in computational social science.
In this section we describe how our work tackles
issues that previous research on alliances, negoti-
ation, and relationships have faced.

Cooperation and relationship building are an es-
sential part of many activities: completing a group
project, opening a business, or forging a new rela-
tionship. Each of these has been the subject of ex-
tensive research to understand what makes for ef-
fective relationships. Jung et al. (2012) show that
a balanced working relationship is more likely to
lead to better performance on tasks like pair pro-
gramming. Imai and Gelfand (2010) show that
understanding cultural norms improves negotia-
tions. While these data are elicited in the lab, our
“found” data are inexpensive because Diplomacy
games are fun and inherently anonymized.

Romance is a popular and more real-world phe-
nomenon that helps us understand how relation-
ships form and dissolve. The research that tells
us how language shapes early dating (Ranganath
et al., 2009) and whether an existing relationship
will continue (Slatcher and Pennebaker, 2006;
Gottman and Levenson, 2000; Ireland et al., 2011)
is formed from an incomplete sample of a course
of a relationship. In contrast, a game of Diplomacy
is shorter than almost any marriage and we have
a complete account of all interactions throughout
the entire relationship. Furthermore, this work fo-
cuses on the unilateral and asymmetric act of be-
trayal, rather than on the question of whether a re-
lation will last.

Playing Diplomacy online is less tangible than a
romantic relationship, but understanding trust and
deception in online interactions (Riegelsberger et
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al., 2003; Newman et al., 2003; Hancock et al.,
2007; Ott et al., 2011; Feng et al., 2012) is partic-
ularly important because the Internet marketplace
is a growing driver of economic growth (Boyd,
2003). Diplomacy offers a setting in which decep-
tion occurs spontaneously in the context of com-
plex relationships.

7 Conclusions

Despite people’s best effort to hide it, the inten-
tion to betray can leak through the language one
uses. Detecting it is not a task that we expect to
be solvable with high accuracy, as that would en-
tail a reliable “recipe” for avoiding betrayal in re-
lationships; in this unrealistic scenario, betrayals
would be unlikely to exist. While the effects we
find are subtle, they bring new insights into the re-
lation between linguistic balance and stability in
relationships.

Although we use one game to develop our
methodology, the framework developed here can
be extended to be applied to a wide range of social
interaction. Social dynamics in collaborative set-
tings can bear striking similarities to those present
in war games. For example, in Wikipedia “edit
wars”—where attacks correspond to edit reverts—
are common on issues relating to politics, religion,
history and nationality, among others (Kittur et al.,
2007). As in Diplomacy, Wikipedia editors form
alliances, argue and negotiate about possible com-
promises. A challenge for future work is to find re-
liable linguistic cues that generalize well between
such settings.
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Abstract

The development and proliferation of so-
cial media services has led to the emer-
gence of new approaches for surveying the
population and addressing social issues.
One popular application of social media
data is health surveillance, e.g., predicting
the outbreak of an epidemic by recogniz-
ing diseases and symptoms from text mes-
sages posted on social media platforms. In
this paper, we propose a novel task that
is crucial and generic from the viewpoint
of health surveillance: estimating a sub-
ject (carrier) of a disease or symptom men-
tioned in a Japanese tweet. By designing
an annotation guideline for labeling the
subject of a disease/symptom in a tweet,
we perform annotations on an existing cor-
pus for public surveillance. In addition,
we present a supervised approach for pre-
dicting the subject of a disease/symptom.
The results of our experiments demon-
strate the impact of subject identification
on the effective detection of an episode of
a disease/symptom. Moreover, the results
suggest that our task is independent of the
type of disease/symptom.

1 Introduction

Social media services, including Twitter and Face-
book, provide opportunities for individuals to
share their experiences, thoughts, and opinions.
The wide use of social media services has led
to the emergence of new approaches for survey-
ing the population and addressing social issues.
One popular application of social media data is
flu surveillance, i.e., predicting the outbreak of in-
fluenza epidemics by detecting mentions of flu in-
fections on social media platforms (Culotta, 2010;
Lampos and Cristianini, 2010; Aramaki et al.,

2011; Paul and Dredze, 2011; Signorini et al.,
2011; Collier, 2012; Dredze et al., 2013; Gesualdo
et al., 2013; Stoové and Pedrana, 2014).

Previous studies mainly relied on shallow tex-
tual clues in Twitter posts in order to predict the
number of flu infections, e.g., the number of oc-
currences of specific keywords (such as “flu” or
“influenza”) on Twitter. However, such a simple
approach can lead to incorrect predictions. Bro-
niatowski et al. (2013) argued that media atten-
tion increases chatter, i.e., the number of tweets
that mention the flu without the poster being ac-
tually infected. Examples include, “I don’t wish
the flu on anyone” and “A Harry Potter actor hos-
pitalised after severe flu-like syndromes.” Lazer
et al. (2014) reported large errors in Google Flu
Trends (Carneiro and Mylonakis, 2009) on the ba-
sis of a comparison with the proportion of doctor
visits for influenza-like illnesses.

Lamb et al. (2013) aimed to improve the ac-
curacy of detecting mentions of flu infections.
Their method trains a binary classifier to distin-
guish tweets reporting flu infections from those
expressing concern or awareness about the flu,
e.g., “Starting to get worried about swine flu.” Ac-
cordingly, they reported encouraging results (e.g.,
better correlations with CDC trends), but their ap-
proach requires supervision data and a lexicon
(word class features) specially designed for the flu.
Moreover, even though this method is a reason-
able choice for improving the accuracy, it is not
readily applicable to other types of diseases (e.g.,
dengue fever) and symptoms (e.g., runny nose),
which are also important for public health (Velardi
et al., 2014).

In this paper, we propose a more generalized
task setting for public surveillance. In other
words, our objective is to estimate the subject
(carrier) of a disease or symptom mentioned in a
Japanese tweet. More specifically, we are inter-
ested in determining who has a disease/symptom
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(if any) in order to examine whether the poster suf-
fers from the disease or symptom. For example,
given the sentence “I caught a cold,” we would
predict that the first person (“I,” i.e., the poster)
is the subject (carrier) of the cold. On the other
hand, we can ignore the sentence, “The TV pre-
senter caught a cold” only if we predict that the
subject of the cold is the third person, who is at a
different location from the poster.

Although the task setting is simple and intuitive,
we identify several key challenges in this study.

1. Novel task setting. The task of identifying
the subject of a disease/symptom is similar
to predicate-argument structure (PAS) anal-
ysis for nominal predicates (Meyers et al.,
2004; Sasano et al., 2004; Komachi et al.,
2007; Gerber and Chai, 2010). However,
these studies do not treat diseases (e.g., “in-
fluenza”) and symptoms (e.g., “headache”) as
nominal predicates. To the best of our knowl-
edge, this task has not been explored in natu-
ral language processing (NLP) thus far.

2. Identifying whether the subject has a dis-
ease/symptom. Besides the work on PAS
analysis for nominal predicates, the most rel-
evant work is PAS analysis for verb predi-
cates. However, our task is not as simple as
predicting the subject of the verb governing
a disease/symptom-related noun. For exam-
ple, the subject of the verb “beat” is the first
person “I” in the sentence “I beat the flu,” but
this does not imply that the poster has the flu.
At the same time, we can use a variety of
expressions for indicating an infection, e.g.,
“I’m still sick!! This flu is just incredible...,”
“I can feel the flu bug in me,” and “I tested
positive for the flu.”

3. Omitted subjects. We often come across
tweets with omitted subjects, e.g., “Down
with the flu feel” and “Thanks the flu for
striking in hard this week” even in English
tweets. Because the first person is omitted
frequently, it is important to predict omitted
subjects from the viewpoint of the applica-
tion (public surveillance).

In this paper, we present an approach for iden-
tifying the subjects of various types of diseases
and symptoms. The contributions of this paper are
three-fold.

1. In order to explore a novel and general task
setting, we design an annotation guideline for
labeling a subject of a disease/symptom in a
tweet, and we deliver annotations in an exist-
ing corpus for public surveillance. Further,
we propose a method for predicting the sub-
ject of a disease/symptom by using the anno-
tated corpus.

2. The experimental results show that the task
of identifying subjects is independent of the
type of diseases/symptom. We verify the
possibility of transferring supervision data to
different targets of diseases and symptoms.
In other words, we verify that it is possi-
ble to utilize the supervision data for a par-
ticular disease/symptom to improve the ac-
curacy of predicting subjects of another dis-
ease/symptom.

3. In addition, the experimental results demon-
strate the impact of identifying subjects on
improving the accuracy of the downstream
application (identification of an episode of a
disease/symptom).

The remainder of this paper is organized as fol-
lows. Section 2 describes the corpus used in this
study as well as our annotation work for identify-
ing subjects of diseases and symptoms. Section
3.1 presents our method for predicting subjects on
the basis of the annotated corpus. Sections 3.2
and 3.3 report the performance of the proposed
method. Section 3.4 describes the contributions
of this study toward identifying episodes of dis-
eases and symptoms. Section 4 reviews some re-
lated studies. Finally, Section 5 summarizes our
findings and concludes the paper with a brief dis-
cussion on the scope for future work.

2 Corpus

2.1 Target corpus

We used a Japanese corpus for public surveil-
lance of diseases and symptoms (Aramaki et al.,
2011). The corpus targets seven types of dis-
eases and symptoms: cold, cough, headache, chill,
runny nose, fever, and sore throat. Tweets con-
taining keywords for each disease/symptom were
collected using the Twitter Search API: for exam-
ple, tweets about sore throat were collected using
the query “(sore OR pain) AND throat”. Further,
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Figure 1: Examples of annotations of subject labels.

Subject label Definition Example
FIRSTPERSON The subject of the disease/symptom is the poster

of the tweet.
I wish I have fever or some-
thing so that I don’t have to
go to school.

NEARBYPERSON The subject of the disease/symptom is a person
whom the poster can directly see or hear.

my sister continues to have
a high fever...

FARAWAYPERSON The subject of the disease/symptom is a person
who is at a different location from the poster.

@***** does sour stuff
give you a headache?

NONHUMAN The subject of the disease/symptom is not a per-
son. Alternatively, the sentence does not describe
a disease/symptom but a phenomenon or event re-
lated to the disease/symptom.

My room is so chill. But I
like it.

NONE The subject of the disease/symptom does not ex-
ist. Alternatively, the sentence does not mention
an occurrence of a disease/symptom.

I hate buyin cold medicine
cuz I never know which
one to buy

Table 1: Definitions of subject labels and example tweets.

the corpus consists of 1,000 tweets for each dis-
ease/symptom besides cold, and 5,000 tweets for
cold. The corpus was collected through whole
years 2007-2008. This period was not in the
A/H1N1 flu pandemic season.

An instance in this corpus consists of a tweet
text (in Japanese) and a binary label (episode la-
bel, hereafter) indicating whether someone near
the poster has the target disease/symptom1. A pos-
itive episode indicates an occurrence of the dis-
ease/symptom. In this study, we disregarded in-
stances of sore throat in the experiments because
most such instances were positive episodes2.

1This label is positive if someone mentioned in the tweet
is in the same prefecture as the poster. This is because the cor-
pus was designed to survey the spread of a disease/symptom
in every prefecture.

2In Japanese tweets, sore throat or throat pain mostly de-
scribes the health condition of the poster.

2.2 Annotating subjects

In this study, we annotated the subjects of diseases
and symptoms in the corpus described in Section
2.1. Specifically, we annotated the subjects in 500
tweets for each disease/symptom (except for sore
throat). Thus, our corpus includes a total of 3,000
tweets in which the subjects of diseases and symp-
toms are annotated.

Figure 1 shows examples of annotations in
this study. Episode labels, tweet texts, and dis-
ease/symptom keywords were annotated by Ara-
maki et al. (2011) in the corpus.

We annotated the subject labels of the dis-
eases/symptoms in each tweet and identified those
who had the target disease/symptom. The sub-
ject labels indicate those who have the correspond-
ing disease/symptom; they are described in detail
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Label FIRSTPERSON NEARBYPERSON FARAWAYPERSON NONHUMAN NONE Total
# tweets 2,153 129 201 40 401 2,924
# explicit subjects 70 (3.3%) 112 (86.8%) 175 (87.1%) 38 (95.0%) 0 (0.0%) 395
# positive episodes 1,833 99 2 0 16 1,950
# negative episodes 320 30 199 40 385 974
Positive ratio 85.1% 76.7% 1.0% 0.0% 4.0% 66.7%

Table 2: Associations between subject labels and positive/negative episodes of diseases and symptoms.

herein.

In addition to the subject labels, we annotated
the text span that indicates a subject. However, the
subjects of diseases/symptoms are often omitted in
tweet texts. Example 3 in Figure 1 shows a case
in which the subject is omitted. The information
as to whether the subject is omitted is useful for
analyzing the difficulty in predicting the subject
of a disease/symptom.

Table 1 lists the definitions of the subject la-
bels with tweeted examples. Because it is impor-
tant to distinguish the primary information (infor-
mation that is observed and experienced by the
poster) from the secondary information (informa-
tion that is broadcasted by the media) for the ap-
plication of public surveillance, we introduced five
labels: FIRSTPERSON, NEARBYPERSON, FAR-
AWAYPERSON, NONHUMAN, and NONE.

FIRSTPERSON is assigned when the subject of
the disease/symptom is the poster of the tweet.
When annotating this label, we ignore the modal-
ity or factuality of the event of acquiring the dis-
ease/symptom. For example, the example tweet
corresponding to FIRSTPERSON in Table 1 does
not state that the poster has a fever but only that
the poster has a desire to have a fever. Although
such tweets may be inappropriate for identifying
a disease/symptom, this study focuses on identify-
ing the possessive relation between a subject and
a disease/symptom. The concept underlying this
decision is to divide the task of public surveillance
into several sub-tasks that are sufficiently general-
ized for use in other NLP applications. Therefore,
the task of analyzing the modality lies beyond of
scope of this study (Kitagawa et al., ). We apply
the same criterion to the labels NEARBYPERSON,
FARAWAYPERSON, and NONHUMAN.

NEARBYPERSON is assigned when the subject
of the disease/symptom is a person whom the
poster can directly see or hear. In the original cor-
pus (Aramaki et al., 2011), a tweet is labeled as
positive if the person having a disease/symptom is
in the same prefecture as the poster. However, it is

extremely difficult for annotators to judge from a
tweet whether the person mentioned in the tweet
is in the same prefecture as the poster. Never-
theless, we would like to determine from a tweet
whether the poster can directly see or hear a pa-
tient. For these reasons, we introduced the label
NEARBYPERSON in this study.

FARAWAYPERSON applies to all cases in which
the subject is a human, but not classified as FIRST-
PERSON or NEARBYPERSON. This category fre-
quently includes tweeted replies, as in the case of
the example corresponding to FARAWAYPERSON

in Table 1. We assign FARAWAYPERSON to such
sentences because we are unsure whether the sub-
ject of the symptom is a person whom the poster
can physically see or hear.

NONHUMAN applies to cases in which the sub-
ject is not a human but an object or a concept. For
example, a sentence with the phrase “My room is
so chill” is annotated with this label.

NONE indicates that the sentence does not men-
tion a target disease or symptom even though it
includes a keyword for the disease/symptom.

In order to investigate the inter-annotator agree-
ment, we sampled 100 tweets of cold at random,
and examined the Cohen’s κ statistic by two an-
notators. The κ statistic is 0.83, indicating a high
level agreement (Carletta, 1996).

Table 2 reports the distribution of subject la-
bels in the corpus annotated in this study. When
the subject of a disease/symptom is FIRSTPER-
SON, only 3.3% of the tweets have explicit tex-
tual clues for the first person3. In other words,
when the subject of a disease/symptom is FIRST-
PERSON, we rarely find textual clues in tweets. In
contrast, there is a greater likelihood of finding ex-
plicit clues for NEARBYPERSON, FARAWAYPER-
SON, and NONHUMAN subjects.

Table 2 also lists the probability of positive
episodes given a subject label, i.e., the posi-
tive ratio. The likelihood of a positive episode

3This ratio may appear to be extremely low, but it is very
common to omit first person pronouns in Japanese sentences.
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is extremely high when the subject label of a
disease/symptom is FIRSTPERSON (85.1%) or
NEARBYPERSON (76.7%). In contrast, FAR-
AWAYPERSON, NONHUMAN, and NONE sub-
jects represent negative episodes (less than 5.0%).
These facts suggest that identifying subject labels
can improve the accuracy of predicting patient la-
bels for diseases and symptoms.

3 Experiment

3.1 Subject classifier

We built a classifier to predict a subject label for
a disease/symptom mentioned in a sentence by us-
ing the corpus described in the previous section.
In our experiment, we merged training instances
having the label NONHUMAN with those having
the label NONE because the number of NONHU-
MAN instances was small and we did not need to
distinguish the label NONHUMAN from the label
NONE in the final episode detection task. Thus,
the classifier was trained to choose a subject la-
bel from among FIRSTPERSON, NEARBYPER-
SON, FARAWAYPERSON, and NONE. We dis-
carded instances in which multiple diseases or
symptoms are mentioned in a tweet as well as
those in which multiple subjects are associated
with a disease/symptom in a tweet. In addition,
we removed text spans corresponding to retweets,
replies, and URLs; the existence of these spans
was retained for firing features. We trained an L2-
regularized logistic regression model using Clas-
sias 1.14. The following features were used.

Bag-of-Words (BoW). Nine words included be-
fore and after a disease/symptom keyword. We
split a Japanese sentence into a sequence of words
using a Japanese morphological analyzer, MeCab
(ver.0.98) with IPADic (ver.2.7.0)5.

Disease/symptom word (Keyword). The sur-
face form of the disease/symptom keyword (e.g.
“cold” and “headache”).

2,3-gram. Character-based bigrams and tri-
grams before and after the disease/symptom key-
word within a window of six letters.

URL. A boolean feature indicating whether the
tweet includes a URL.

4http://www.chokkan.org/software/
classias/

5http://taku910.github.io/mecab/

Feature Micro F1 Macro F1
BoW (baseline) 77.2 42.2
BoW + Keyword 81.9 53.6
BoW + 2,3-gram 79.1 46.1
BoW + URL 77.3 42.7
BoW + RT & reply 80.0 47.1
BoW + NearWord 77.6 46.8
BoW + FarWord 77.3 42.7
BoW + Title word 77.1 42.7
BoW + Tweet length 77.4 43.3
BoW + Is-head 77.6 43.5
All features 84.0 61.8

Table 3: Performance of the subject classifier.

RT & reply. Boolean features indicating
whether the tweet is a reply or a retweet.

Word list for NEARBYPERSON (NearWord).
A boolean feature indicating whether the tweet
contains a word that is included in the lexicon for
NEARBYPERSON. We manually collected words
that may refer to a person who is near the poster,
e.g., “girlfriend,” “sister,” and “staff.” The Near-
Word list includes 97 words.

Word list for FARAWAYPERSON (FarWord).
A boolean feature indicating whether the tweet
contains a word that is included in the lexicon for
FARAWAYPERSON. Similarly to the NearWord
list, we manually collected 50 words (e.g., “in-
fant”) for compiling this list.

Title word. A boolean feature indicating
whether the tweet contains a title word accom-
panied by a proper noun. The list of title words
includes expressions such as “さん” and “くん”
(roughly corresponding to “Ms” and “Mr”) that
describe the title of a person.

Tweet length. Three types of boolean features
that fire when the tweet has less than 11 words, 11
to 30 words, and more than 30 words, respectively.

Is-head. A boolean feature indicating whether
the word following a disease/symptom keyword
is a noun. In Japanese, when the word follow-
ing a disease/symptom keyword is a noun, the dis-
ease/symptom keyword is unlikely to be the head
of the noun phrase.
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Correct/predicted label FIRSTPERSON NEARBY. FARAWAY. NONE Total
FIRSTPERSON 2,084 (−15) 6 (+1) 25 (+21) 38 (−7) 2,153
NEARBYPERSON 80 (−20) 41 (+29) 4 (−5) 4 (−4) 129
FARAWAYPERSON 88 (−49) 8 (+2) 89 (+46) 16 (+1) 201
NONE 174 (−158) 2 (+1) 10 (+4) 255 (+153) 441
Total predictions 2,426 (−237) 57 (+33) 128 (+66) 313 (+137) 2,924

Table 4: Confusion matrix between predicted and correct subject labels.

3.2 Evaluation of the subject classifier

Table 3 reports the performance of the subject
classifier measured via five-fold cross validation.
We used 3,000 tweets corresponding to six types
of diseases and symptoms for this experiment. The
Bag-of-Words (BoW) feature achieved micro and
macro F1 scores of 77.2 and 42.2, respectively.
When all the features were used, the performance
was boosted, i.e., micro and macro F1 scores of
84.0 and 61.8 were achieved. Features such as dis-
ease/symptom keywords, retweet & reply, and the
lexicon for NEARBYPERSON were particularly ef-
fective in improving the performance.

The surface form of the disease/symptom key-
word was found to be the most effective feature
in this task, the reasons for which are discussed in
Section 3.3.

A retweet or reply tweet provides evidence
that the poster has interacted with another person.
Such meta-linguistic features may facilitate se-
mantic and discourse analysis in web texts. How-
ever, this feature is mainly limited to tweets.

The lexicon for NEARBYPERSON provided an
improvement of 4.6 points in terms of the macro
F1 score. This is because (i) around 90% of
the subjects for NEARBYPERSON were explicitly
stated in the tweets and (ii) the vocabulary of peo-
ple near the poster was limited.

Table 4 shows the confusion matrix between the
correct labels and the predicted labels. The diag-
onal elements (in bold face) represent the number
of correct predictions. The figures in parentheses
denote the number of instances for which the base-
line feature set made incorrect predictions, but the
full feature set made correct predictions. For ex-
ample, the classifier predicted NEARBYPERSON

subjects 48 times; 34 out of 48 predictions were
correct. The full feature set increased the number
of correct predictions by 22.

From the diagonal elements (in bold face), we
can confirm that the number of correct predictions
increased significantly from the baseline case, ex-

cept for FIRSTPERSON. One of the reasons for
the improved accuracy of NONE prediction is the
imbalanced label ratio of each disease/symptom.
NONE accounts for 14% of the entire corpus, but
only 5% of the runny nose corpus. On the other
hand, NONE accounts for more than 30% of the
chill corpus. The disease/symptom keyword fea-
ture adjusts the ratio of the subject labels for
each disease/symptom, and the accuracy of sub-
ject identification is improved.

As compared to the baseline case, the number of
FIRSTPERSON cases that were predicted as FAR-
AWAYPERSON increased. Such errors may be at-
tributed to the reply feature. According to our
annotation scheme, FARAWAYPERSON contains
many reply tweets. Because the reply & retweet
features make the second-largest contribution in
our experiment, the subject classifier tends to out-
put FARAWAYPERSON if the tweet is a reply.

Table 5 summarizes the subject classification re-
sults comparing the case in which the subject of
a disease/symptom exists in the tweet with that
in which the subject does not exist. The pre-
diction of FIRSTPERSON is not affected by the
presence of the subject because FIRSTPERSON

subjects are often omitted (especially in Japanese
tweets). The prediction of NEARBYPERSON and
FARAWAYPERSON is difficult if the subject is not
stated explicitly. In contrast, it is easy to correctly
predict NONE even though the subject is not ex-
pressed explicitly. This is because it is not easy to
capture a variety of human-related subjects using
Bag-of-Words, N-gram, or other simple features
used in this experiment.

3.3 Dependency on diseases/symptoms

The experiments described in Section 3.2 use
training instances for all types of diseases and
symptoms. However, each disease/symptom may
have a set of special expressions for describing
the state of an episode. For example, even though
“catch a cold” is a common expression, we cannot
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Subject FIRSTPERSON NEARBYPERSON FARAWAYPERSON NONE

# Explicit 66/69 (95.7%) 40/112 (35.7%) 79/174 (45.4%) 1/26 (3.8%)
# Omitted 2,018/2,084 (96.8%) 1/17 (5.9%) 10/27 (37.0%) 254/415 (61.2%)
# Total 2,084/2,153 (96.8%) 41/129 (31.8%) 89/201 (44.3%) 255/441 (57.8%)

Table 5: Subject classification results comparing explicit subjects with omitted subjects.

Figure 2: F1 scores for predicting subjects of cold
with different types and sizes of training data.

say “catch a fever” by combining the verb “catch”
and the disease “fever.” The corpus developed in
Section 2.2 can be considered as the supervision
data for weighting linguistic patterns that connect
diseases/symptoms with their subjects. This view-
point raises another question: how strongly does
the subject classifier depend on specific diseases
and symptoms?

In order to answer this question, we compare the
performance of recognizing subjects of cold when
using the training instances for all types of dis-
eases and symptoms with that when using only the
training instances for the target disease/symptom.
Figure 2 shows the macro F1 scores with all train-
ing instances (dotted line) and with only cold
training instances (solid line)6.

In this case, training with cold instances is nat-
urally more efficient than training with other types
of diseases/symptoms. When trained with 400 in-
stances only for cold, the classifier achieved an
F1 score of 45.2. Moreover, we confirmed that
adding training instances for other types of dis-
eases/symptoms improved the F1 score: the max-

6For the solid line, we used 500 instances of “cold” as a
test set, and we plotted the learning curve by increasing the
number of training instances for other diseases/symptoms.
For the dotted line, we fixed 100 instances for a test set, and
we plotted the learning curve by increasing the number of
training instances (100, 200, 300, and 400).

Figure 3: Overall structure of the system.

imum F1 score was 54.6 with 2,900 instances.
These results indicate the possibility of building
a subject classifier that is independent of specific
diseases/symptoms but applicable to a variety of
diseases/symptoms. We observed a similar ten-
dency for other types of diseases/symptoms.

3.4 Contributions to the episode classifier

The ultimate objective of this study is to detect
outbreaks of epidemics by recognizing diseases
and symptoms. In order to demonstrate the contri-
butions of this study, we built an episode classifier
that judges whether the poster or a person close to
the poster suffers from a target disease/symptom.
Figure 3 shows the overall structure of the system.
Given a tweet, the system predicts the subject la-
bel for a disease/symptom, and integrates the pre-
dicted subject label as a feature for the episode
classifier. In addition to the features used in Ara-
maki et al. (2011), we included binary features,
each of which corresponds to a subject label pre-
dicted by the proposed method. We trained an L2-
regularized logistic regression model using Clas-
sias 1.1.

Table 6 summarizes the performance of the
episode classifier with different settings: without
subject labels (baseline), with predicted subject la-
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Setting Cold Cough Headache Chill Runny nose Fever Macro F1
Baseline (BL) 84.4 88.5 90.8 75.9 89.2 78.1 84.5
BL + predicted subjects 85.0 88.3 90.7 81.4 89.4 80.2 85.8
BL + gold-standard subjects 87.7 92.6 93.5 88.5 91.4 88.6 90.4

Table 6: Performance of the episode classifier.

bels , and with gold-standard subject labels. We
measured the F1 scores via five-fold cross vali-
dation7. Further, we confirmed the contribution
of subject label prediction, which achieved an im-
provement of 1.3 points over the baseline method
(85.8 vs. 84.5). When using the gold-standard
subject labels, the episode classifier achieved an
improvement of 5.9 points. These results highlight
the importance of recognizing a subject who has a
disease/symptom using the episode classifier.

Considering the F1 score for each dis-
ease/symptom, we observed the largest improve-
ment for chill. This is because the Japanese word
for “chill” has another meaning a cold air mass.
When the word “chill” stands for a cold air mass
in a tweet, the subject for “chill” is NONE. There-
fore, the episode classifier can disambiguate the
meaning of “chill’ on the basis of the subject la-
bels. Similarly, the subject labels improved the
performance for “fever”.

In contrast, the subject labels did not improve
the performance for headache and runny nose con-
siderably. This is because the subjects for these
symptoms are mostly FIRSTPERSON, as we sel-
dom mention the symptoms of another person in
such cases. In other words, the episode classi-
fier can predict a positive label for these symptoms
without knowing the subjects of these symptoms.

4 Related Work

4.1 Twitter and NLP

NLP researchers have addressed two major direc-
tions for Twitter: adapting existing NLP technolo-
gies to noisy texts and extracting useful knowl-
edge from Twitter. The former includes improving
the accuracy of part-of-speech tagging (Gimpel et
al., 2011) and named entity recognition (Plank et
al., 2014), as well as normalizing ill-formed words
into canonical forms (Han and Baldwin, 2011;
Chrupała, 2014). Even though we did not incor-

7For the “predicted” setting, first, we predicted the subject
labels in a similar manner to five-fold cross validation, and we
used the predicted labels as features for the episode classifier.

porate the findings of these studies, they could be
beneficial to our work in the future.

The latter has led to the development of sev-
eral interesting applications besides health surveil-
lance. These include prediction of future rev-
enue (Asur and Huberman, 2010) and stock mar-
ket trends (Si et al., 2013), mining of public opin-
ion (O’Connor et al., 2010), event extraction and
summarization (Sakaki et al., 2010; Thelwall et
al., 2011; Marchetti-Bowick and Chambers, 2012;
Shen et al., 2013; Li et al., 2014a), user profil-
ing (Bergsma et al., 2013; Han et al., 2013; Li
et al., 2014b; Zhou et al., 2014), disaster man-
agement (Varga et al., 2013), and extraction of
common-sense knowledge (Williams and Katz,
2012). Our work can directly contribute to these
applications, e.g., sentiment analysis, user profil-
ing, event extraction, and disaster management.

4.2 Semantic analysis for nouns

Our work can be considered as a semantic anal-
ysis that identifies an argument (subject) for a
disease/symptom-related noun. NomBank (Mey-
ers et al., 2004) provides annotations of noun ar-
guments in a similar manner to PropBank (Palmer
et al., 2005), which provides annotations of verbs.
In NomBank, nominal predicates and their argu-
ments are identified: for example, ARG0 (typi-
cally, subject or agent) is “customer” and ARG1
(typically, objects, patients, themes) is “issue” for
the nominal predicate “complaints” in the sen-
tence “There have been no customer complaints
about that issue.” Gerber and Chai (2010) im-
proved the coverage of NomBank by handling im-
plicit arguments. Some studies have addressed the
task of identifying implicit and omitted arguments
for nominal predicates in Japanese (Komachi et
al., 2007; Sasano et al., 2008).

Our work shares a similar goal with the above-
mentioned studies, i.e., identifying an implicit
ARG0 for a disease and symptom. However, these
studies do not regard a disease/symptom as a nom-
inal predicate because they consider verb nom-
inalizations as nominal predicates. In addition,
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they use a corpus that consists of newswire text,
the writing style and word usage of which differ
considerably from those of tweets. For these rea-
sons, we proposed a novel task setting for identi-
fying subjects of diseases and symptoms, and we
built an annotated corpus for developing the sub-
ject classifier and analyzing the challenges of this
task.

5 Conclusion

In this paper, we presented a novel approach to
the identification of subjects of various types of
diseases and symptoms. First, we constructed
an annotated corpus based on an existing cor-
pus for public surveillance. Then, we trained
a classifier for predicting the subject of a dis-
ease/symptom. The results of our experiments
showed that the task of identifying the subjects
is independent of the type of disease/symptom.
In addition, the results demonstrated the contribu-
tions of our work toward identifying an episode of
a disease/symptom from a tweet.

In the future, we plan to consider a greater vari-
ety of diseases and symptoms in order to develop
applications for public health, e.g., monitoring the
mental condition of individuals. Thus, we can not
only improve the accuracy of subject identification
but also enhance the generality of this task.
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School of Computer Science
Carnegie Mellon University
Pittsburgh, PA, 15213, USA
cprose@cs.cmu.edu

Abstract

In this paper, we model conversational
roles in terms of distributions of turn level
behaviors, including conversation acts and
stylistic markers, as they occur over the
whole interaction. This work presents a
lightly supervised approach to inducing
role definitions over sets of contributions
within an extended interaction, where the
supervision comes in the form of an out-
come measure from the interaction. The
identified role definitions enable a map-
ping from behavior profiles of each par-
ticipant in an interaction to limited sized
feature vectors that can be used effectively
to predict the teamwork outcome. An em-
pirical evaluation applied to two Massive
Open Online Course (MOOCs) datasets
demonstrates that this approach yields su-
perior performance in learning representa-
tions for predicting the teamwork outcome
over several baselines.

1 Introduction

In language technologies research seeking to
model conversational interactions, modeling ap-
proaches have aimed to identify conversation acts
(Paul, 2012; Wallace et al., 2013; Bhatia et al.,
2014) on a per turn basis, or to identify stances
(Germesin and Wilson, 2009; Mukherjee et al.,
2013; Piergallini et al., 2014; Hasan and Ng, 2014)
that characterize the nature of a speaker’s ori-
entation within an interaction over several turns.
What neither of these two perspectives quite offer
is a notion of a conversational role. And yet,
conversational role is a concept with great utility
in current real world applications where language
technologies may be applied.

Important teamwork is achieved through collab-
oration where discussion is an important medium

for accomplishing work. For example, distributed
work teams are becoming increasingly the norm
in the business world where creating innovative
products in the networked world is a common
practice. This work requires the effective ex-
change of expertise and ideas. Open source
and open collaboration organizations have suc-
cessfully aggregated the efforts of millions of
volunteers to produce complex artifacts such as
GNU/Linux and Wikipedia. Discussion towards
decision making about how to address problems
that arise or how to extend work benefit from
effective conversational interactions. With a grow-
ing interest in social learning in large online
platforms such as Massive Open Online Courses
(MOOCs), students form virtual study groups and
teams to complete a course project, and thus
may need to coordinate and accomplish the work
through discussion. In all such environments,
discussions serve a useful purpose, and thus the
effectiveness of the interaction can be measured in
terms of the quality of the resulting product.

We present a modeling approach that leverages
the concept of latent conversational roles as an
intermediary between observed discussions and a
measure of interaction success. While a stance
identifies speakers in terms of their positioning
with respect to one another, roles associate speak-
ers with rights and responsibilities, associated
with common practices exhibited by performers
of that role within an interaction, towards some
specific interaction outcome. That outcome may
be achieved through strategies characterized in
terms of conversation acts or language with partic-
ular stylistic characteristics. However, individual
acts by themselves lack the power to achieve a
complex outcome. We argue that roles make up
for this decontextualized view of a conversational
contribution by identifying distributions of con-
versation acts and stylistic features as behavior
profiles indicative of conversational roles. These
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profiles have more explanatory power to identify
strategies that lead to successful outcomes.

In the remainder of the paper we first review
related work that lays the foundation for our
approach. Then we describe a series of role
identification models. Experimental results are an-
alyzed quantitatively and qualitatively in Section
4, followed by conclusions and future work.

2 Related Work

The concept of social role has long been used in
social science fields to describe the intersection
of behavioral, symbolic, and structural attributes
that emerge regularly in particular contexts. The-
ory on coordination in groups and organizations
emphasizes role differentiation, division of labor
and formal and informal management (Kittur and
Kraut, 2010). However, identification of roles as
such has not had a corresponding strong emphasis
in the language technologies community, although
there has been work on related notions. For
example, there has been much previous work mod-
eling disagreement and debate framed as stance
classification (Thomas et al., 2006; Walker et al.,
2012). Another similar line of work studies the
identification of personas (Bamman et al., 2013;
Bamman et al., 2014) in the context of a social
network, e.g. celebrity, newbie, lurker, flamer,
troll and ranter, etc, which evolve through user
interaction (Forestier et al., 2012).

What is similar between stances and personas
on the one hand and roles on the other is that the
unit of analysis is the person. On the other hand,
they are distinct in that stances (e.g., liberal) and
personas (e.g., lurker) are not typically defined in
terms of what they are meant to accomplish, al-
though they may be associated with kinds of things
they do. Teamwork roles are defined in terms of
what the role holder is meant to accomplish.

The notion of a natural outcome associated with
a role suggests a modeling approach utilizing the
outcome as light supervision towards identifica-
tion of the latent roles. However, representations
of other notions such as stances or strategies can
similarly be used to predict outcomes. Cadilhac et
al. maps strategies based on verbal contributions
of participants in a win-lose game into a prediction
of exactly which players, if any, trade with each
other (Cadilhac et al., 2013). Hu et al. (Hu et
al., 2009) predict the outcome of featured article
nominations based on user activeness, discussion

consensus and user co-review relations. In other
work, the authors of (Somasundaran and Wiebe,
2009) adopt manually annotated characters and
leaders to predict which participants will achieve
success in online debates. The difference is the
interpretation of the latent constructs. The latent
construct of a role, such as team leader, is defined
in terms of a distribution of characteristics that
describe how that role should ideally be carried
out. However, in the case of stances, the latent
constructs are learned in order to distinguish one
stance from another or in order to predict who
will win. This approach will not necessarily
offer insight into what marks the most staunch
proponents of a stance, but instead distinguish
those proponents of a stance who are persuasive
from those who are not.

Roles need not only be identified with the
substance of the text uttered by role holders.
Previous work discovers roles in social networks
based on the network structure (Hu and Liu,
2012; Zhao et al., 2013). Examples include such
things as mixed membership stochastic block-
models (MMSB) (Airoldi et al., 2008), similar
unsupervised matrix factorization methods (Hu
and Liu, 2012), or semi-supervised role inference
models (Zhao et al., 2013). However, these ap-
proaches do not standardly utilize an outcome as
supervision to guide the clustering.

Many open questions exist about what team
roles and in what balance would make the ideal
group composition (Neuman et al., 1999), and
how those findings interact with other contextual
factors (Senior, 1997; Meredith Belbin, 2011).
Thus, a modeling approach that can be applied
to new contexts in order to identify roles that
are particularly valuable given the context would
potentially have high practical value.

3 Role Identification Models

The context of this work is team based MOOCs
using the NovoEd platform. In this context, we
examine the interaction between team members
as they work together to achieve instructional
goals in their project work. Our modeling goal
is to identify behavior profiles that describe the
emergent roles that team members take up in order
to work towards a successful group grade for their
team project. Identification of effective role based
behavior profiles would enable work towards sup-
porting effective team formation in subsequent
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work. This approach would be similar to prior
work where constraints that describe successful
teams were used to group participants into teams
in which each member’s expertise is modeled so
that an appropriate mixture of expertise can be
achieved in the assignment (Anagnostopoulos et
al., 2010).

In this section, we begin with an introduction of
some basic notations. Then we present an iterative
model, which involves two stages: teamwork qual-
ity prediction and student role matching. Further-
more, we generalize this model to a constrained
version which provides more interpretable role
assignments. In the end, we describe how to
construct student behavior representations from
their teamwork collaboration process.

3.1 Notation

Suppose we have C teams where students col-
laborate to finish a course project together. The
number of students in the j-th team is denoted as
Nj , (1 ≤ j ≤ Nj). There are K roles across C
teams that we want to identify, where 1 ≤ K ≤
Nj , ∀j ∈ [1, C]. That is, the number of roles is
smaller than or equal to the number of students in a
team, which means that each role should have one
student assigned to it, but not every student needs
to be assigned to a role. Each role is associated
with a weight vector Wk ∈ RD to be learned,
1 ≤ k ≤ K and D is the number of dimensions.
Each student i in a team j is associated with a
behavior vector Bj,i ∈ RD. The measurement
of teamwork quality is denoted as Qj for team
j, and Q̂j is the predicted quality. Here, Q̂j is
determined by the inner product of the behavior
vectors of students who are assigned to different
roles and the corresponding weight vectors.

Teamwork Role Identification Our goal is
to find a proper teamwork role assignment that
positively contributes to the collaboration outcome
as much as possible.

3.2 Role Identification

Here we describe our role identification model.
Our role identification process is iterative and
involves two stages. The first stage adjusts the
weight vectors to predict the teamwork qual-
ity, given a fixed role assignment that assumes
students are well matched to roles; the second
stage iterates the possible assignments and finds a
matching to maximize our objective measure. The
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R2

RK

… … 

Weight(i,j) = Wk
T
Bj,pj,k

maximum weighted

matching

candidate edges

Si    i-th student in j-th team

Rk    the k-th role

Weighted Bipartite Graph 

for j-th team

Figure 1: Weighted Bipartite Graph for a Team

two stages run iteratively until both role assign-
ment and teamwork quality prediction converge.

Teamwork Quality Prediction: Given the
identified role assignment, i.e. we know who is
assigned to which roles in a team, the focus is to
accurately predict the teamwork quality under this
role assignment. pj,k refers to the student who
is assigned to role k in team j. We minimize
the following objective function to update the role
weight vector W :

min
W

1
2

C∑
j=1

(Qj−
K∑
k=1

Wk
T ·Bj,pj,k

)+λ·‖W‖2 (1)

Here, λ is the regularization parameter; large λ
leads to higher complexity penalization. To give
the optimal solution to Equation 1, which is a clas-
sical ridge regression task (Hoerl and Kennard,
2000), we can easily compute the optimal solution
by its closed form representation, as shown in the
Algorithm 1.

Matching Members to Roles: Once the weight
vector W is updated, we iterate over all the
possible assignments and find the best role as-
signment, where the goal is to maximize the
predicted teamwork quality since we want our
assignment of students and roles to be associated
with improvement in the quality of teamwork.
The complexity of brute-force enumeration of all
possible role assignments is exponential. To avoid
such an expensive computational cost, we design
a weighted bipartite graph and apply a maximum
weighted matching algorithm (Ravindra et al.,
1993) to find the best matching under the objective
of maximizing

∑C
j=1 Q̂j . Because this objective is

a summation, we can further separate it intoC iso-
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Algorithm 1: Role Identification

1 Heuristicly initialize the role assignment pj,k
2 while assignments have not converged do

// Teamwork Quality Prediction

3 X ← a C × (K ·D) matrix
4 for j = 1 to C do
5 Xj,∗ ← (Bj,pj,1 , Bj,pj,2 , . . . , Bj,pj,K )

// optimal solution to Eq. 1

6 (W1, . . . ,WC)← (XTX + λI)−1XTQ
// Student and Role Matching

// maximize
∑

j Q̂j

7 for j = 1 to C do
8 (pj,∗)← maximum weighted bipartite

matching on Figure 1

lated components forC teams by maximizing each
Q̂j . For each team, a weighted bipartite graph is
created as specified in Figure 1. By applying the
maximum weighted matching algorithm on this
graph, we can obtain the best role assignment for
each team.

The two stage role identification model is
solved in detail in Algorithm 1.

3.3 Role Identification with Constraints

The above role identification model puts no con-
straints on the roles that we want to identify in
teamwork. This might result in more effort to
explain how different roles collaborate to produce
the teamwork success. Therefore, we introduce
a constrained role identification model, which is
able to integrate external constraints on roles. For
example, we can require our extracted role set to
contain a role that makes a positive contribution
to the project success and a role that contributes
relatively negatively, instead of extracting several
generic roles. To address such constraints, in the
stage of teamwork quality prediction, we reformu-
late the Equation 2 as follows:

L =
1
2

C∑
j=1

(Qj −
K∑
k=1

Wk
T ·Bj,pj,k

) + λ‖W‖2

− µ+

∑
k∈S+

D∑
d=1

log(Wkd)

− µ−
∑
k∈S−

D∑
d=1

log(−Wkd)

(2)

Algorithm 2: Identification with Constraints

1 Heuristicly initialize the role assignment pj,k
2 while assignments have not converged do

// Teamwork Quality Prediction

3 X ← a C × (K ·D) matrix
4 for j = 1 to C do
5 Xj ← (Bj,pj,1 , Bj,pj,2 , . . . , Bj,pj,K )

// gradient descent solution to

Eq. 2

6 µ+, µ− ← large enough values
7 while µ+, µ− > ε do
8 while not converge do
9 for k = 1 to K do

10 Wk ←Wk − η · ∂L
∂Wk

11 µ+ ← θ · µ+

12 µ− ← θ · µ−
// Students and Roles Matching

// maximize
∑

j Q̂j

13 for j = 1 to C do
14 (pj,∗)← maximum weighted bipartite

matching on Figure 1

The external constraints are handled by the log
barrier terms (Ahuja et al., 1993). Here, µ+ and
µ− are positive parameters used to penalize the
violation of role constraints. S+ is the set of roles
that we want to assign students who contribute
positively to the group outcome (i.e. above av-
erage level), and S− contains the roles that we
want to capture students who contribute negatively
to the group outcome (i.e. below average level).
The solving of Equation 2 cannot directly apply
the previous ridge regression algorithm, thus we
use the Interior Point Method (Potra and Wright,
2000) to solve it. The detailed procedure is illus-
trated in Algorithm 2, where the θ is a constant to
control the shrinkage and η is the learning rate.

3.4 Behavior Construction

One essential component in our teamwork role
identification models is the student behavior rep-
resentation. To some extent, a proper behav-
ior representation is essential for facilitating the
interpretation of identified roles. We construct
the representation of student behavior from the
following feature types:

Team Member Behaviors: How a team func-
tions can be reflected in their team communication
messages. To understand how students collaborate
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Type Behavior Definition Example Messages
Team Building Invite or accept users Lauren, We would love to have you.

to join the group Jill and I are both ESL specialists in Boston.
Task Initiate a task or assign Housekeeping Task 3 is optional but below are
Management subtask to a team member the questions I summarize and submit for our team.
Collaboration Collaborate with teammates, I figured out how to use the Google Docs.

provide help or feedback Let’s use it to share our lesson plans.

Table 1: Three Different Types of Team Member Behaviors

to contribute to teamwork success, we identified
three main team member behaviors based on mes-
sages sent between team members as shown in
Table 1. These annotations, which came from
prior qualitative work analysing discussion contri-
butions in the same dataset (Wen et al., 2015), are
used to define component behaviors in this work.
We design four variables to characterize the above
collaboration behaviors:

1. Collaboration: the number of Collaboration
messages sent by this team member.

2. Task Management: the number of Task
Management messages sent by this team member.

3. Team Building: the number of Team Building
messages sent by this team member.

4. Other Strategies: the number of messages
that do not belong to the listed behavior categories.

Communication Languages: Teams that work
successfully typically exchange more knowledge
and establish good social relations. To capture
such evidence that is indicated in the language
choice and linguistic styles of each team member,
we design the following features:

5. Personal Pronouns: the proportion of first
person and second person pronouns.

6. Negation: counts of negation words.
7. Question Words: counts of question related

words in the posts, e.g. why, what, question,
problem, how, answer, etc.

8. Discrepancy: number of occurrences of
words, such as should, would, could, etc as defined
in LIWC (Tausczik and Pennebaker, 2010).

9. Social Process: number of words that denote
social processes and suggest human interaction,
e.g. talking, sharing, etc.

10. Cognitive Process: number of occurrences
of words that reflect thinking and reasoning, e.g.
cause, because, thus, etc.

11-14. Polarity: four variables that measure
the portion of Positive, Negative, Neutral, Both
polarity words (Wilson et al., 2005) in the posts.

15-16. Subjectivity: two count variables of oc-
currences of Strong Subjectivity words and Weak
Subjectivity words.

Activities: We also introduce several variables
to measure the activeness level of team members.

17-18. Messages: two variables that measure
the total number of messages sent, and the number
of tokens contained in the messages.

19-20. Videos: the number of videos a student
has watched and total duration of watched videos.

21. Login Times: times that a student logins to
the course.

4 Experiments

In this section, we begin with the dataset descrip-
tion, and then we compare our models with several
competitive baselines by performing 10-fold cross
validation on two MOOCs, followed by a series of
quantitative and qualitative analyses.

4.1 Dataset
Our datasets come from a MOOC provider
NovoEd, and consist of two MOOC courses.
Both courses are teacher professional develop-
ment courses about Constructive Classroom Con-
versations; one is in elementary education and
another is about secondary education. Students
in a NovoEd MOOC have to initiate or join a
team in the beginning of the course. A NovoEd
team homepage consists of blog posts, comments
and other content shared within the group. The
performance measure we use is the final team
project score, which is in the range of 0 to 40.
There are 57 teams (163 students) who survived
until the end in the Elementary education course,
and 77 teams (262 students) who survived for
the Secondary course. The surviving teams are
the ones in which none of the team members
dropped out of the course, and who finished all the
course requirements. For the purpose of varying
teamwork roles K, we only keep the teams with
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at least 3 members. Self-identified team leader are
labeled in the dataset.

4.2 Baselines

We propose several baselines to extract possible
roles and predict the teamwork quality for compar-
ison with our models. Preprocessing is identical
for baselines as for our approach.

Top K Worst/Best: The worst performing stu-
dent is often the bottleneck in a team, while the
success of a team project largely depends on the
outstanding students. Therefore, we use the top K
worst/best performing students as our identifiedK
roles. Their behavior representation are then used
to predict the teamwork quality. The performing
scores are only accessible after the course.

K-Means Clustering: Students who are as-
signed to the same roles tend to have similar
activity profiles. To capture the similarities of
student behavior, we adopt a clustering method to
group students in a team into K clusters, and then
assign students to roles based on their distances
to the centroid of clusters. Prediction is then
performed on the basis of those corresponding
behavior vectors. Here, we use K-Means method
for clustering. That is, each cluster is a latent rep-
resentation of a role and each student is assigned
to its closest cluster (role).

Leader: Leaders play important roles for the
smooth functioning of teams, and thus might
have substantial predictive power of team success.
We input our role identification model with only
the identified leader’s behavior representation and
conduct our role identification algorithm as illus-
trated in Algorithm 1. Each team in our courses
have a predefined leader.

Average: The average representation of all
team members is a good indication of team ability
level and thus teamwork success. Here, we av-
erage all team members’ behavior feature vectors
and use that to predict the teamwork quality.

4.3 Teamwork Quality Prediction Results

The purpose of our role identification is to find
a role assignment that minimizes the prediction
error, thus we measure the performance of our
models using RMSE (Rooted Mean Square Error).
10-fold Cross Validation is employed to test the
overall performance. Table 2 and Table 3 presents
the results of our proposed models and baselines

on our two courses. Our role identification model
shown in Algorithm 1, is denoted as RI. θ is set as
0.9 and we vary the role number K from 1 to 3 in
order to assess the added value of each additional
role over the first one.

4.3.1 Who Matters Most In a Team
If we set the number of roles K as 1, what
will the role identification pick as the most im-
portant person to the teamwork outcome? From
Table 2 and 3, we find that, RI performs better than
Leader, and either TopK Best gives a good RMSE
in one course and Top K Worst gives a good
RMSE in the other course. This indicates that, the
predefined leader is not always functioning well
in facilitating the teamwork, thus we need a more
fair mechanism to select the proper leading role.
Besides, Top K worst has quite good performance
on the Elementary course, which reflects that the
success of a teamwork is to some extent dependent
on the worst performing student in that team. The
best performing student matters for the teamwork
outcome on the Secondary course.

4.3.2 Multi-Role Collaboration
From Table 2 and 3, in the setting of K=3, RI
achieved better results compared to Top K Best,
Top K Worst and K-means methods. One expla-
nation is that our RI model not only considers indi-
vidual student’s behaviors, but also takes into ac-
count the collaboration patterns through all team-
work. Besides, RI achieves better performance
compared to our baselines as K becomes larger.
We also noticed that TopK Best gives a quite good
approximation to the teamwork quality on both
courses. However, such performing scores that
are used to rank students are not accessible until
the course ends, and have high correlation with
team score. Thus an advantage of our RI model
is that it does not make use of that information.
Compared with all other results, our RI has a good
generalization ability, and achieves both a smallest
RMSE of around 10 across both MOOCs.

4.4 Role Assignment Validation

We demonstrate the predicative power of our
identified roles to team success above. In this
part, we interpret the identified roles guided by
different constraints in a team qualitatively, and
show how different roles are distributed in a team,
how each role contributes to teamwork, and how
collaboration happens among the roles.
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Table 2: RMSE Comparison of Different Methods on the Elementary Course
Average Leader K-Means K Worst K Best RI RIC RIC− RIC+

K = 1 13.945 16.957 14.212 13.092 20.464 14.982 N/A N/A N/A
K = 2 N/A N/A 13.160 13.428 15.591 11.581 N/A N/A N/A
K = 3 N/A N/A 12.291 15.460 14.251 9.517 10.486 27.314 10.251

Table 3: RMSE Comparison of Different Methods on the Secondary Course
Average Leader K-Means K Worst K Best RI RIC RIC− RIC+

K = 1 12.571 15.611 12.583 17.899 10.886 13.297 N/A N/A N/A
K = 2 N/A N/A 12.288 19.268 11.245 10.435 N/A N/A N/A
K = 3 N/A N/A 11.218 22.933 14.079 10.143 10.961 24.583 10.427

4.4.1 Constraint Exploration

By incorporating constraints into the role iden-
tification process, we expect to guide the model
using human intuition such that the results will be
more interpretable, although the prediction error
might increase because of the limitation of the
search space. We present three alternative pos-
sible constrained models here. The RIC model
emphasizes picking one best member, one worst
member and another generic member, which is
achieved by putting one role to S+ and one to S−
as defined in Equation 2. RIC+ aims at picking
three best team members who collaborate to make
the best contribution to the team success, achieved
by putting three roles into S+. Similarly, RIC−
rewards poorly performing students to contribute
to teamwork quality, i.e. putting all roles into S−.

Based on results shown in Table 2 and 3, we
found that RIC+ and RIC work similar as RI
even though RI is slightly better. RIC− gives
quite unsatisfying performance which shows that
examining the behavior of a set of poorly per-
forming students is not very helpful in predicting
teamwork success. The comparison of RIC+ and
RIC− can be shown clearly in Figure 2, which
presents the behavior representation of each role
identified by RIC+ and RIC−. Obviously, RIC+

produces positive roles that contribute largely to
the teamwork quality across all feature dimen-
sions; such behaviors are what we want to en-
courage. Those identified roles are diverse and
not symmetrical because each role achieves peaks
at different feature dimensions. On the contrary,
roles identified by RIC− works negatively towards
teamwork quality and they have homogeneous
behavior representation curves. Therefore, our
constrained models can provide much interpreta-

tion, with a little loss of accuracy compared to RI.

4.4.2 Role Assignment Interpretation

Leading Role Validation: As a validation, we
found that one of our identified roles has substan-
tial overlap with team leaders. For instance, in
the Elementary course, around 70% of students
who are assigned to Role 0 are actual leaders for
RIC and RIC+ models. On the Secondary course,
around 86% students who are in the position of
Role 0 are real team leaders. When it comes
to RIC−, such ratio drops to around 2% for all
roles. This validates the ability of our models in
producing role definitions that make sense.

Information Diffusion: Figure 3 compares the
information diffusion among different identified
roles of RI, RIC, RIC+ and RIC−. The darker
the node, the better grade it achieves. The number
associated with each role indicates the average
final grades (scale 0-100) of all students who are
assigned to this role. The edge represents how
many messages sent from one node to another.
The thicker the edge, the more information it con-
veys. From the figure, we found that, RI performs
similarly with RIC and roles in RIC+ have much
higher grades compared to RIC−. One explana-
tion is that RIC actually does not incorporate many
constraints and is less interpretable compared to
RIC+ and RIC−. As shown in (c), RIC+ Role 0
contributes more information to Role 1 with an
average of 5.5 messages and to Role 2 with weight
6.1. Role 1 and Role 2 also have many messages
communicated with others in their team. However,
less communication happens in RIC− roles. This
comparison comes much easier when it comes
to each role’s behaviors on different normalized
feature representations as shown in Figure 2 for
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Figure 2: Beahvior Representation of Each Role on the Secondary Course

Typical Behavior Representative Post

RIC+

Team Building I started a new doc ... Let me know your email if you didn’t get the invite.

Positive Great job team!! Our lesson plan is amazing and I learned so much ...

Collaboration We plan to meet on Monday to figure out exactly how to complete the assignment ...

Task Management Here’s what I propose: 1) to save time, use ... 2) Tara, do you have plans ... 3)

once a lesson plan outline is up, we can each go in and add modifications..

RIC−

Negative I’m confused. I answered all the questions ... and I didn’t see ...

Strong Subjectivity I like the recycling lesson ... feeling so dumb.. really confused by Google Docs...

Negation I’m not able to ... the pictures don’t show up...I don’t understand how to create a link..

Table 4: Representative Posts and Corresponding Behavior Feature Comparison on the Secondary Course

RIC+ and RIC− models. It can be concluded
that by incorporating rewarding and penalizing
constraints, our model works effectively in picking
the behavior profiles we want to encourage and
avoid in a teamwork.

Behavior Comparison: Table 4 presents sev-
eral representative posts and their corresponding
behavior features for our identified roles. Most
features shown in Table 4 correspond to the peak
behaviors associated with roles in Figure 2, which
is consistent with our previous interpretation. For
example, RIC+ picks the well performing student
who adds calmness to the teamwork as indicated
by using positive words and adopting collaborative
strategies. On the contrary, RIC− reflects a less
cooperative teamwork, such as strong subjectivity,
negation and negativity indicated in their posts.

In summary, our role identification models pro-
vide quite interpretable identified roles as dis-
cussed above, as well as accurate prediction of

teamwork quality. More interpretability can be
achieved by incorporating intuitive constraints and
sacrificing a bit of accuracy.

5 Conclusion

In this work, we propose a role identification
model, which iteratively optimizes a team member
role assignment that can predict the teamwork
quality to the utmost extent. Furthermore, we
extend it to a general constrained version that en-
ables humans to incorporate external constraints to
guide the identification of roles. The experimental
results on two MOOCs show that both of our
proposed role identification models can not only
perform accurate predictions of teamwork quality,
but also provide interpretable student role assign-
ment results ranging from leading role validation
to information diffusion.

Even though we have only explored up to 3
roles in this work that would enable us to use most
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Figure 3: Information Diffusion among Roles

of our data, our role identification method is capa-
ble to experiment with a larger range of values of
K, such as in the context of Wikipedia (Ferschke et
al., 2015). Furthermore, our model can be directly
applied to other online collaboration scenarios to
help identify the roles that contribute to collab-
oration, not limited in the context of MOOCs.
In the future, we are interested in relaxing the
assumptions that people can take only one role
and roles are taken up by only one person and
incorporating mixed membership role matching
strategies into our method. Furthermore, nonlinear
relationship between roles and performance as
well as the dependencies between roles should be
explored. Last but not least, we plan to take ad-
vantage of our identified roles to provide guidance
and recommendation to those weakly performing
teams for better collaboration and engagement in
online teamworks.
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David Adamson, and Carolyn P Rosé. 2014. Mod-
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Abstract

Many existing deep learning models for
natural language processing tasks focus on
learning the compositionality of their in-
puts, which requires many expensive com-
putations. We present a simple deep neural
network that competes with and, in some
cases, outperforms such models on sen-
timent analysis and factoid question an-
swering tasks while taking only a fraction
of the training time. While our model is
syntactically-ignorant, we show significant
improvements over previous bag-of-words
models by deepening our network and ap-
plying a novel variant of dropout. More-
over, our model performs better than syn-
tactic models on datasets with high syn-
tactic variance. We show that our model
makes similar errors to syntactically-aware
models, indicating that for the tasks we con-
sider, nonlinearly transforming the input is
more important than tailoring a network to
incorporate word order and syntax.

1 Introduction

Vector space models for natural language process-
ing (NLP) represent words using low dimensional
vectors called embeddings. To apply vector space
models to sentences or documents, one must first
select an appropriate composition function, which
is a mathematical process for combining multiple
words into a single vector.

Composition functions fall into two classes: un-
ordered and syntactic. Unordered functions treat in-
put texts as bags of word embeddings, while syntac-
tic functions take word order and sentence structure
into account. Previously published experimental

results have shown that syntactic functions outper-
form unordered functions on many tasks (Socher
et al., 2013b; Kalchbrenner and Blunsom, 2013).

However, there is a tradeoff: syntactic functions
require more training time than unordered compo-
sition functions and are prohibitively expensive in
the case of huge datasets or limited computing re-
sources. For example, the recursive neural network
(Section 2) computes costly matrix/tensor products
and nonlinearities at every node of a syntactic parse
tree, which limits it to smaller datasets that can be
reliably parsed.

We introduce a deep unordered model that ob-
tains near state-of-the-art accuracies on a variety of
sentence and document-level tasks with just min-
utes of training time on an average laptop computer.
This model, the deep averaging network (DAN),
works in three simple steps:

1. take the vector average of the embeddings
associated with an input sequence of tokens

2. pass that average through one or more feed-
forward layers

3. perform (linear) classification on the final
layer’s representation

The model can be improved by applying a novel
dropout-inspired regularizer: for each training in-
stance, randomly drop some of the tokens’ embed-
dings before computing the average.

We evaluate DANs on sentiment analysis and fac-
toid question answering tasks at both the sentence
and document level in Section 4. Our model’s suc-
cesses demonstrate that for these tasks, the choice
of composition function is not as important as ini-
tializing with pretrained embeddings and using a
deep network. Furthermore, DANs, unlike more
complex composition functions, can be effectively
trained on data that have high syntactic variance. A
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qualitative analysis of the learned layers suggests
that the model works by magnifying tiny but mean-
ingful differences in the vector average through
multiple hidden layers, and a detailed error analy-
sis shows that syntactically-aware models actually
make very similar errors to those of the more naı̈ve
DAN.

2 Unordered vs. Syntactic Composition

Our goal is to marry the speed of unordered func-
tions with the accuracy of syntactic functions.
In this section, we first describe a class of un-
ordered composition functions dubbed “neural bag-
of-words models” (NBOW). We then explore more
complex syntactic functions designed to avoid
many of the pitfalls associated with NBOW mod-
els. Finally, we present the deep averaging network
(DAN), which stacks nonlinear layers over the tradi-
tional NBOW model and achieves performance on
par with or better than that of syntactic functions.

2.1 Neural Bag-of-Words Models
For simplicity, consider text classification: map an
input sequence of tokens X to one of k labels. We
first apply a composition function g to the sequence
of word embeddings vw for w ∈ X . The output of
this composition function is a vector z that serves
as input to a logistic regression function.

In our instantiation of NBOW, g averages word
embeddings1

z = g(w ∈ X) =
1
|X|

∑
w∈X

vw. (1)

Feeding z to a softmax layer induces estimated
probabilities for each output label

ŷ = softmax(Ws · z + b), (2)

where the softmax function is

softmax(q) =
exp q∑k
j=1 exp qj

(3)

Ws is a k × d matrix for a dataset with k output
labels, and b is a bias term.

We train the NBOW model to minimize cross-
entropy error, which for a single training instance
with ground-truth label y is

`(ŷ) =
k∑
p=1

yp log(ŷp). (4)

1Preliminary experiments indicate that averaging outper-
forms the vector sum used in NBOW from Kalchbrenner et al.
(2014).

Before we describe our deep extension of the
NBOW model, we take a quick detour to discuss
syntactic composition functions. Connections to
other representation frameworks are discussed fur-
ther in Section 4.

2.2 Considering Syntax for Composition
Given a sentence like “You’ll be more entertained
getting hit by a bus”, an unordered model like
NBOW might be deceived by the word “entertained”
to return a positive prediction. In contrast, syn-
tactic composition functions rely on the order and
structure of the input to learn how one word or
phrase affects another, sacrificing computational
efficiency in the process. In subsequent sections,
we argue that this complexity is not matched by a
corresponding gain in performance.

Recursive neural networks (RecNNs) are syntac-
tic functions that rely on natural language’s inher-
ent structure to achieve state-of-the-art accuracies
on sentiment analysis tasks (Tai et al., 2015). As in
NBOW, each word type has an associated embed-
ding. However, the composition function g now
depends on a parse tree of the input sequence. The
representation for any internal node in a binary
parse tree is computed as a nonlinear function of
the representations of its children (Figure 1, left).
A more powerful RecNN variant is the recursive
neural tensor network (RecNTN), which modifies
g to include a costly tensor product (Socher et al.,
2013b).

While RecNNs can model complex linguistic
phenomena like negation (Hermann et al., 2013),
they require much more training time than NBOW
models. The nonlinearities and matrix/tensor prod-
ucts at each node of the parse tree are expen-
sive, especially as model dimensionality increases.
RecNNs also require an error signal at every node.
One root softmax is not strong enough for the
model to learn compositional relations and leads
to worse accuracies than standard bag-of-words
models (Li, 2014). Finally, RecNNs require rela-
tively consistent syntax between training and test
data due to their reliance on parse trees and thus
cannot effectively incorporate out-of-domain data,
as we show in our question-answering experiments.
Kim (2014) shows that some of these issues can
be avoided by using a convolutional network in-
stead of a RecNN, but the computational complex-
ity increases even further (see Section 4 for runtime
comparisons).

What contributes most to the power of syntactic
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Figure 1: On the left, a RecNN is given an input sentence for sentiment classification. Softmax layers
are placed above every internal node to avoid vanishing gradient issues. On the right is a two-layer DAN
taking the same input. While the RecNN has to compute a nonlinear representation (purple vectors) for
every node in the parse tree of its input, this DAN only computes two nonlinear layers for every possible
input.

functions: the compositionality or the nonlineari-
ties? Socher et al. (2013b) report that removing the
nonlinearities from their RecNN models drops per-
formance on the Stanford Sentiment Treebank by
over 5% absolute accuracy. Most unordered func-
tions are linear mappings between bag-of-words
features and output labels, so might they suffer
from the same issue? To isolate the effects of syn-
tactic composition from the nonlinear transforma-
tions that are crucial to RecNN performance, we
investigate how well a deep version of the NBOW
model performs on tasks that have recently been
dominated by syntactically-aware models.

3 Deep Averaging Networks

The intuition behind deep feed-forward neural net-
works is that each layer learns a more abstract rep-
resentation of the input than the previous one (Ben-
gio et al., 2013). We can apply this concept to the
NBOW model discussed in Section 2.1 with the ex-
pectation that each layer will increasingly magnify
small but meaningful differences in the word em-
bedding average. To be more concrete, take s1 as
the sentence “I really loved Rosamund Pike’s per-
formance in the movie Gone Girl” and generate s2
and s3 by replacing “loved” with “liked” and then
again by “despised”. The vector averages of these
three sentences are almost identical, but the aver-
ages associated with the synonymous sentences s1
and s2 are slightly more similar to each other than
they are to s3’s average.

Could adding depth to NBOW make small such
distinctions as this one more apparent? In Equa-

tion 1, we compute z, the vector representation for
input text X , by averaging the word vectors vw∈X .
Instead of directly passing this representation to an
output layer, we can further transform z by adding
more layers before applying the softmax. Suppose
we have n layers, z1...n. We compute each layer

zi = g(zi−1) = f(Wi · zi−1 + bi) (5)

and feed the final layer’s representation, zn, to a
softmax layer for prediction (Figure 1, right).

This model, which we call a deep averaging net-
work (DAN), is still unordered, but its depth allows
it to capture subtle variations in the input better
than the standard NBOW model. Furthermore, com-
puting each layer requires just a single matrix multi-
plication, so the complexity scales with the number
of layers rather than the number of nodes in a parse
tree. In practice, we find no significant difference
between the training time of a DAN and that of the
shallow NBOW model.

3.1 Word Dropout Improves Robustness
Dropout regularizes neural networks by randomly
setting hidden and/or input units to zero with some
probability p (Hinton et al., 2012; Srivastava et
al., 2014). Given a neural network with n units,
dropout prevents overfitting by creating an ensem-
ble of 2n different networks that share parameters,
where each network consists of some combination
of dropped and undropped units. Instead of drop-
ping units, a natural extension for the DAN model is
to randomly drop word tokens’ entire word embed-
dings from the vector average. Using this method,
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which we call word dropout, our network theoreti-
cally sees 2|X| different token sequences for each
input X .

We posit a vector r with |X| independent
Bernoulli trials, each of which equals 1 with prob-
ability p. The embedding vw for token w in X is
dropped from the average if rw is 0, which expo-
nentially increases the number of unique examples
the network sees during training. This allows us to
modify Equation 1:

rw ∼ Bernoulli(p) (6)

X̂ = {w|w ∈ X and rw > 0} (7)

z = g(w ∈ X) =

∑
w∈X̂ vw
|X̂| . (8)

Depending on the choice of p, many of the
“dropped” versions of an original training instance
will be very similar to each other, but for shorter
inputs this is less likely. We might drop a very
important token, such as “horrible” in “the crab
rangoon was especially horrible”; however, since
the number of word types that are predictive of the
output labels is low compared to non-predictive
ones (e.g., neutral words in sentiment analysis), we
always see improvements using this technique.

Theoretically, word dropout can also be applied
to other neural network-based approaches. How-
ever, we observe no significant performance differ-
ences in preliminary experiments when applying
word dropout to leaf nodes in RecNNs for senti-
ment analysis (dropped leaf representations are set
to zero vectors), and it slightly hurts performance
on the question answering task.

4 Experiments

We compare DANs to both the shallow NBOW
model as well as more complicated syntactic mod-
els on sentence and document-level sentiment anal-
ysis and factoid question answering tasks. The DAN
architecture we use for each task is almost identi-
cal, differing across tasks only in the type of output
layer and the choice of activation function. Our
results show that DANs outperform other bag-of-
words models and many syntactic models with very
little training time.2 On the question-answering
task, DANs effectively train on out-of-domain data,
while RecNNs struggle to reconcile the syntactic
differences between the training and test data.

2Code at http://github.com/miyyer/dan.

Model RT SST SST IMDB Time
fine bin (s)

DAN-ROOT — 46.9 85.7 — 31
DAN-RAND 77.3 45.4 83.2 88.8 136

DAN 80.3 47.7 86.3 89.4 136

NBOW-RAND 76.2 42.3 81.4 88.9 91
NBOW 79.0 43.6 83.6 89.0 91
BiNB — 41.9 83.1 — —

NBSVM-bi 79.4 — — 91.2 —

RecNN∗ 77.7 43.2 82.4 — —
RecNTN∗ — 45.7 85.4 — —
DRecNN — 49.8 86.6 — 431

TreeLSTM — 50.6 86.9 — —
DCNN∗ — 48.5 86.9 89.4 —
PVEC∗ — 48.7 87.8 92.6 —

CNN-MC 81.1 47.4 88.1 — 2,452
WRRBM∗ — — — 89.2 —

Table 1: DANs achieve comparable sentiment accu-
racies to syntactic functions (bottom third of table)
but require much less training time (measured as
time of a single epoch on the SST fine-grained task).
Asterisked models are initialized either with differ-
ent pretrained embeddings or randomly.

4.1 Sentiment Analysis

Recently, syntactic composition functions have
revolutionized both fine-grained and binary (pos-
itive or negative) sentiment analysis. We conduct
sentence-level sentiment experiments on the Rot-
ten Tomatoes (RT) movie reviews dataset (Pang
and Lee, 2005) and its extension with phrase-level
labels, the Stanford Sentiment Treebank (SST) in-
troduced by Socher et al. (2013b). Our model is
also effective on the document-level IMDB movie
review dataset of Maas et al. (2011).

4.1.1 Neural Baselines
Most neural approaches to sentiment analysis are
variants of either recursive or convolutional net-
works. Our recursive neural network baselines
include standard RecNNs (Socher et al., 2011b),
RecNTNs, the deep recursive network (DRecNN)
proposed by İrsoy and Cardie (2014), and the
TREE-LSTM of (Tai et al., 2015). Convolu-
tional network baselines include the dynamic con-
volutional network (Kalchbrenner et al., 2014,
DCNN) and the convolutional neural network multi-
channel (Kim, 2014, CNN-MC). Our other neu-
ral baselines are the sliding-window based para-
graph vector (Le and Mikolov, 2014, PVEC)3 and

3PVEC is computationally expensive at both training and
test time and requires enough memory to store a vector for
every paragraph in the training data.
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the word-representation restricted Boltzmann ma-
chine (Dahl et al., 2012, WRRBM), which only
works on the document-level IMDB task.4

4.1.2 Non-Neural Baselines
We also compare to non-neural baselines, specif-
ically the bigram naı̈ve Bayes (BINB) and naı̈ve
Bayes support vector machine (NBSVM-BI) mod-
els introduced by Wang and Manning (2012), both
of which are memory-intensive due to huge feature
spaces of size |V |2.

4.1.3 DAN Configurations
In Table 1, we compare a variety of DAN and NBOW
configurations5 to the baselines described above. In
particular, we are interested in not only comparing
DAN accuracies to those of the baselines, but also
how initializing with pretrained embeddings and re-
stricting the model to only root-level labels affects
performance. With this in mind, the NBOW-RAND
and DAN-RAND models are initialized with ran-
dom 300-dimensional word embeddings, while the
other models are initialized with publicly-available
300-d GloVe vectors trained over the Common
Crawl (Pennington et al., 2014). The DAN-ROOT
model only has access to sentence-level labels for
SST experiments, while all other models are trained
on labeled phrases (if they exist) in addition to sen-
tences. We train all NBOW and DAN models using
AdaGrad (Duchi et al., 2011).

We apply DANs to documents by averaging the
embeddings for all of a document’s tokens and
then feeding that average through multiple layers
as before. Since the representations computed by
DANs are always d-dimensional vectors regardless
of the input size, they are efficient with respect to
both memory and computational cost. We find that
the hyperparameters selected on the SST also work
well for the IMDB task.

4.1.4 Dataset Details
We evaluate over both fine-grained and binary
sentence-level classification tasks on the SST, and
just the binary task on RT and IMDB. In the fine-
grained SST setting, each sentence has a label from
zero to five where two is the neutral class. For the
binary task, we ignore all neutral sentences.6

4The WRRBM is trained using a slow Metropolis-Hastings
algorithm.

5Best hyperparameters chosen by cross-validation: three
300-d ReLu layers, word dropout probability p = 0.3, L2
regularization weight of 1e-5 applied to all parameters

6Our fine-grained SST split is {train: 8,544, dev: 1,101,
test: 2,210}, while our binary split is {train: 6,920, dev:872,

4.1.5 Results
The DAN achieves the second best reported result
on the RT dataset, behind only the significantly
slower CNN-MC model. It’s also competitive with
more complex models on the SST and outperforms
the DCNN and WRRBM on the document-level
IMDB task. Interestingly, the DAN achieves good
performance on the SST when trained with only
sentence-level labels, indicating that it does not
suffer from the vanishing error signal problem that
plagues RecNNs. Since acquiring labelled phrases
is often expensive (Sayeed et al., 2012; Iyyer et
al., 2014b), this result is promising for large or
messy datasets where fine-grained annotation is
infeasible.

4.1.6 Timing Experiments
DANs require less time per epoch and—in general—
require fewer epochs than their syntactic coun-
terparts. We compare DAN runtime on the SST

to publicly-available implementations of syntactic
baselines in the last column of Table 1; the reported
times are for a single epoch to control for hyper-
parameter choices such as learning rate, and all
models use 300-d word vectors. Training a DAN
on just sentence-level labels on the SST takes under
five minutes on a single core of a laptop; when
labeled phrases are added as separate training in-
stances, training time jumps to twenty minutes.7

All timing experiments were performed on a single
core of an Intel I7 processor with 8GB of RAM.

4.2 Factoid Question Answering

DANs work well for sentiment analysis, but how
do they do on other NLP tasks? We shift gears
to a paragraph-length factoid question answering
task and find that our model outperforms other
unordered functions as well as a more complex
syntactic RecNN model. More interestingly, we
find that unlike the RecNN, the DAN significantly
benefits from out-of-domain Wikipedia training
data.

Quiz bowl is a trivia competition in which play-
ers are asked four-to-six sentence questions about
entities (e.g., authors, battles, or events). It is an
ideal task to evaluate DANs because there is prior

test:1,821}. Split sizes increase by an order of magnitude
when labeled phrases are added to the training set. For RT,
we do 10-fold CV over a balanced binary dataset of 10,662
sentences. Similarly, for the IMDB experiments we use the
provided balanced binary training set of 25,000 documents.

7We also find that DANs take significantly fewer epochs to
reach convergence than syntactic models.
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Model Pos 1 Pos 2 Full Time(s)

BoW-DT 35.4 57.7 60.2 —
IR 37.5 65.9 71.4 N/A
QANTA 47.1 72.1 73.7 314
DAN 46.4 70.8 71.8 18

IR-WIKI 53.7 76.6 77.5 N/A
QANTA-WIKI 46.5 72.8 73.9 1,648
DAN-WIKI 54.8 75.5 77.1 119

Table 2: The DAN achieves slightly lower accu-
racies than the more complex QANTA in much
less training time, even at early sentence posi-
tions where compositionality plays a bigger role.
When Wikipedia is added to the training set (bot-
tom half of table), the DAN outperforms QANTA
and achieves comparable accuracy to a state-of-the-
art information retrieval baseline, which highlights
a benefit of ignoring word order for this task.
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Figure 2: Randomly dropping out 30% of words
from the vector average is optimal for the quiz bowl
task, yielding a gain in absolute accuracy of almost
3% on the quiz bowl question dataset compared to
the same model trained with no word dropout.

work using both syntactic and unordered models
for quiz bowl question answering. In Boyd-Graber
et al. (2012), naı̈ve Bayes bag-of-words models
(BOW-DT) and sequential language models work
well on easy questions but poorly on harder ones.
A dependency-tree RecNN called QANTA proposed
in Iyyer et al. (2014a) shows substantial improve-
ments, leading to the hypothesis that correctly mod-
eling compositionality is crucial for answering hard
questions.

4.2.1 Dataset and Experimental Setup
To test this, we train a DAN over the history ques-
tions from Iyyer et al. (2014a).8 This dataset is aug-

8The training set contains 14,219 sentences over 3,761
questions. For more detail about data and baseline systems,

mented with 49,581 sentence/page-title pairs from
the Wikipedia articles associated with the answers
in the dataset. For fair comparison with QANTA,
we use a normalized tanh activation function at the
last layer instead of ReLu, and we also change the
output layer from a softmax to the margin rank-
ing loss (Weston et al., 2011) used in QANTA. We
initialize the DAN with the same pretrained 100-
d word embeddings that were used to initialize
QANTA.

We also evaluate the effectiveness of word
dropout on this task in Figure 2. Cross-validation
indicates that p = 0.3 works best for question an-
swering, although the improvement in accuracy is
negligible for sentiment analysis. Finally, continu-
ing the trend observed in the sentiment experiments,
DAN converges much faster than QANTA.

4.2.2 DANs Improve with Noisy Data

Table 2 shows that while DAN is slightly worse
than QANTA when trained only on question-answer
pairs, it improves when trained on additional out-
of-domain Wikipedia data (DAN-WIKI), reaching
performance comparable to that of a state-of-the-art
information retrieval system (IR-WIKI). QANTA,
in contrast, barely improves when Wikipedia data is
added (QANTA-WIKI) possibly due to the syntactic
differences between Wikipedia text and quiz bowl
question text.

The most common syntactic structures in quiz
bowl sentences are imperative constructions such
as “Identify this British author who wrote Wuther-
ing Heights”, which are almost never seen in
Wikipedia. Furthermore, the subject of most quiz
bowl sentences is a pronoun or pronomial mention
referring to the answer, a property that is not true
of Wikipedia sentences (e.g., “Little of Emily’s
work from this period survives, except for poems
spoken by characters.”). Finally, many Wikipedia
sentences do not uniquely identify the title of the
page they come from, such as the following sen-
tence from Emily Brontë’s page: “She does not
seem to have made any friends outside her family.”
While noisy data affect both DAN and QANTA, the
latter is further hampered by the syntactic diver-
gence between quiz bowl questions and Wikipedia,
which may explain the lack of improvement in ac-
curacy.

see Iyyer et al. (2014a).
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While the shallow NBOW model does not show any
meaningful distinctions, we see that as the network
gets deeper, negative sentences are increasingly
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Figure 4: Two to three layers is optimal for the
DAN on the SST binary sentiment analysis task, but
adding any depth at all is an improvement over the
shallow NBOW model.

5 How Do DANs Work?

In this section we first examine how the deep layers
of the DAN amplify tiny differences in the vector av-
erage that are predictive of the output labels. Next,
we compare DANs to DRecNNs on sentences that
contain negations and contrastive conjunctions and
find that both models make similar errors despite
the latter’s increased complexity. Finally, we an-
alyze the predictive ability of unsupervised word
embeddings on a simple sentiment task in an effort
to explain why initialization with these embeddings
improves the DAN.

5.1 Perturbation Analysis
Following the work of İrsoy and Cardie (2014), we
examine our network by measuring the response at
each hidden layer to perturbations in an input sen-
tence. In particular, we use the template the film’s
performances were awesome and replace the fi-
nal word with increasingly negative polarity words
(cool, okay, underwhelming, the worst). For each
perturbed sentence, we observe how much the hid-
den layers differ from those associated with the
original template in 1-norm.

Figure 3 shows that as a DAN gets deeper, the dif-
ferences between negative and positive sentences
become increasingly amplified. While nonexistent
in the shallow NBOW model, these differences are
visible even with just a single hidden layer, thus
explaining why deepening the NBOW improves sen-
timent analysis as shown in Figure 4.

5.2 Handling Negations and “but”: Where
Syntax is Still Needed

While DANs outperform other bag-of-words mod-
els, how can they model linguistic phenomena such
as negation without considering word order? To
evaluate DANs over tougher inputs, we collect 92
sentences, each of which contains at least one nega-
tion and one contrastive conjunction, from the dev
and test sets of the SST.9 Our fine-grained accuracy
is higher on this subset than on the full dataset,
improving almost five percent absolute accuracy
to 53.3%. The DRecNN model of İrsoy and Cardie
(2014) obtains a similar accuracy of 51.1%, con-
trary to our intuition that syntactic functions should
outperform unordered functions on sentences that
clearly require syntax to understand.10

Are these sentences truly difficult to classify? A
close inspection reveals that both the DAN and the
DRecNN have an overwhelming tendency to pre-
dict negative sentiment (60.9% and 55.4% of the
time for the DAN and DRecNN respectively) when
they see a negation compared to positive sentiment
(35.9% for DANs, 34.8% for DRecNNs). If we fur-
ther restrict our subset of sentences to only those
with positive ground truth labels, we find that while
both models struggle, the DRecNN obtains 41.7%
accuracy, outperforming the DAN’s 37.5%.

To understand why a negation or contrastive con-
junction triggers a negative sentiment prediction,

9We search for non-neutral sentences containing not / n’t,
and but. 48 of the sentences are positive while 44 are negative.

10Both models are initialized with pretrained 300-d GloVe
embeddings for fair comparison.

1687



Sentence DAN DRecNN Ground Truth

a lousy movie that’s not merely unwatchable , but also
unlistenable

negative negative negative

if you’re not a prepubescent girl , you’ll be laughing at
britney spears ’ movie-starring debut whenever it does n’t
have you impatiently squinting at your watch

negative negative negative

blessed with immense physical prowess he may well be, but
ahola is simply not an actor

positive neutral negative

who knows what exactly godard is on about in this film , but
his words and images do n’t have to add up to mesmerize
you.

positive positive positive

it’s so good that its relentless , polished wit can withstand
not only inept school productions , but even oliver parker ’s
movie adaptation

negative positive positive

too bad , but thanks to some lovely comedic moments and
several fine performances , it’s not a total loss

negative negative positive

this movie was not good negative negative negative
this movie was good positive positive positive
this movie was bad negative negative negative
the movie was not bad negative negative positive

Table 3: Predictions of DAN and DRecNN models on real (top) and synthetic (bottom) sentences that
contain negations and contrastive conjunctions. In the first column, words colored red individually predict
the negative label when fed to a DAN, while blue words predict positive. The DAN learns that the negators
not and n’t are strong negative predictors, which means it is unable to capture double negation as in the
last real example and the last synthetic example. The DRecNN does slightly better on the synthetic double
negation, predicting a lower negative polarity.

we show six sentences from the negation subset and
four synthetic sentences in Table 3, along with both
models’ predictions. The token-level predictions in
the table (shown as colored boxes) are computed by
passing each token through the DAN as separate test
instances. The tokens not and n’t are strongly pre-
dictive of negative sentiment. While this simplified
“negation” works for many sentences in the datasets
we consider, it prevents the DAN from reasoning
about double negatives, as in “this movie was not
bad”. The DRecNN does slightly better in this case
by predicting a lesser negative polarity than the
DAN; however, we theorize that still more powerful
syntactic composition functions (and more labelled
instances of negation and related phenomena) are
necessary to truly solve this problem.

5.3 Unsupervised Embeddings Capture
Sentiment

Our model consistently converges slower to a worse
solution (dropping 3% in absolute accuracy on
coarse-grained SST) when we randomly initialize
the word embeddings. This does not apply to just

DANs; both convolutional and recursive networks
do the same (Kim, 2014; İrsoy and Cardie, 2014).
Why are initializations with these embeddings so
crucial to obtaining good performance? Is it pos-
sible that unsupervised training algorithms are al-
ready capturing sentiment?

We investigate this theory by conducting a sim-
ple experiment: given a sentiment lexicon contain-
ing both positive and negative words, we train a
logistic regression to discriminate between the asso-
ciated word embeddings (without any fine-tuning).
We use the lexicon created by Hu and Liu (2004),
which consists of 2,006 positive words and 4,783
negative words. We balance and split the dataset
into 3,000 training words and 1,000 test words.
Using 300-dimensional GloVe embeddings pre-
trained over the Common Crawl, we obtain over
95% accuracy on the unseen test set, supporting the
hypothesis that unsupervised pretraining over large
corpora can capture properties such as sentiment.

Intuitively, after the embeddings are fine-tuned
during DAN training, we might expect a decrease
in the norms of stopwords and an increase in the
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norms of sentiment-rich words like “awesome” or
“horrible”. However, we find no significant dif-
ferences between the L2 norms of stopwords and
words in the sentiment lexicon of Hu and Liu
(2004).

6 Related Work

Our DAN model builds on the successes of both
simple vector operations and neural network-based
models for compositionality.

There are a variety of element-wise vector op-
erations that could replace the average used in the
DAN. Mitchell and Lapata (2008) experiment with
many of them to model the compositionality of
short phrases. Later, their work was extended to
take into account the syntactic relation between
words (Erk and Padó, 2008; Baroni and Zampar-
elli, 2010; Kartsaklis and Sadrzadeh, 2013) and
grammars (Coecke et al., 2010; Grefenstette and
Sadrzadeh, 2011). While the average works best for
the tasks that we consider, Banea et al. (2014) find
that simply summing word2vec embeddings out-
performs all other methods on the SemEval 2014
phrase-to-word and sentence-to-phrase similarity
tasks.

Once we compute the embedding average in a
DAN, we feed it to a deep neural network. In con-
trast, most previous work on neural network-based
methods for NLP tasks explicitly model word or-
der. Outside of sentiment analysis, RecNN-based
approaches have been successful for tasks such
as parsing (Socher et al., 2013a), machine trans-
lation (Liu et al., 2014), and paraphrase detec-
tion (Socher et al., 2011a). Convolutional net-
works also model word order in local windows and
have achieved performance comparable to or bet-
ter than that of RecNNs on many tasks (Collobert
and Weston, 2008; Kim, 2014). Meanwhile, feed-
forward architectures like that of the DAN have
been used for language modeling (Bengio et al.,
2003), selectional preference acquisition (Van de
Cruys, 2014), and dependency parsing (Chen and
Manning, 2014).

7 Future Work

In Section 5, we showed that the performance of
our DAN model worsens on sentences that con-
tain lingustic phenomena such as double negation.
One promising future direction is to cascade clas-
sifiers such that syntactic models are used only
when a DAN is not confident in its prediction. We

can also extend the DAN’s success at incorporating
out-of-domain training data to sentiment analysis:
imagine training a DAN on labeled tweets for clas-
sification on newspaper reviews. Another poten-
tially interesting application is to add gated units
to a DAN,as has been done for recurrent and recur-
sive neural networks (Hochreiter and Schmidhuber,
1997; Cho et al., 2014; Sutskever et al., 2014; Tai
et al., 2015), to drop useless words rather than
randomly-selected ones.

8 Conclusion

In this paper, we introduce the deep averaging net-
work, which feeds an unweighted average of word
vectors through multiple hidden layers before clas-
sification. The DAN performs competitively with
more complicated neural networks that explicitly
model semantic and syntactic compositionality. It
is further strengthened by word dropout, a regu-
larizer that reduces input redundancy. DANs ob-
tain close to state-of-the-art accuracy on both sen-
tence and document-level sentiment analysis and
factoid question-answering tasks with much less
training time than competing methods; in fact, all
experiments were performed in a matter of min-
utes on a single laptop core. We find that both
DANs and syntactic functions make similar errors
given syntactically-complex input, which motivates
research into more powerful models of composi-
tionality.
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Abstract

Traditional learning to rank methods learn
ranking models from training data in a
batch and offline learning mode, which
suffers from some critical limitations, e.g.,
poor scalability as the model has to be re-
trained from scratch whenever new train-
ing data arrives. This is clearly non-
scalable for many real applications in
practice where training data often arrives
sequentially and frequently. To overcome
the limitations, this paper presents SO-
LAR — a new framework of Scalable On-
line Learning Algorithms for Ranking, to
tackle the challenge of scalable learning to
rank. Specifically, we propose two novel
SOLAR algorithms and analyze their IR
measure bounds theoretically. We conduct
extensive empirical studies by comparing
our SOLAR algorithms with conventional
learning to rank algorithms on benchmark
testbeds, in which promising results vali-
date the efficacy and scalability of the pro-
posed novel SOLAR algorithms.

1 Introduction

Learning to rank [27, 8, 29, 31, 7] aims to learn
some ranking model from training data using ma-
chine learning methods, which has been actively
studied in information retrieval (IR). Specifically,
consider a document retrieval task, given a query,
a ranking model assigns a relevance score to each
document in a collection of documents, and then
ranks the documents in decreasing order of rele-
vance scores. The goal of learning to rank is to
build a ranking model from training data of a set of
queries by optimizing some IR performance mea-
sures using machine learning techniques. In lit-
erature, various learning to rank techniques have

∗ The corresponding author. This work was done when
the first two authors visited Dr Hoi’s group.

been proposed, ranging from early pointwise ap-
proaches [15, 30, 28], to popular pairwise [26, 18,
3], and recent listwise approaches [5, 38]. Learn-
ing to rank has many applications, including doc-
ument retrieval, collaborative filtering, online ad,
answer ranking for online QA in NLP [33], etc.

Most existing learning to rank techniques fol-
low batch and offline machine learning methodol-
ogy, which typically assumes all training data are
available prior to the learning task and the rank-
ing model is trained by applying some batch learn-
ing method, e.g., neural networks [3] or SVM [4].
Despite being studied extensively, the batch learn-
ing to rank methodology has some critical limi-
tations. One of serious limitations perhaps is its
poor scalability for real-world web applications,
where the ranking model has to be re-trained from
scratch whenever new training data arrives. This
is apparently inefficient and non-scalable since
training data often arrives sequentially and fre-
quently in many real applications [33, 7]. Besides,
batch learning to rank methodology also suffers
from slow adaption to fast-changing environment
of web applications due to the static ranking mod-
els pre-trained from historical batch training data.

To overcome the above limitations, this paper
investigates SOLAR — a new framework of Scal-
able Online Learning Algorithms for Ranking,
which aims to learn a ranking model from a se-
quence of training data in an online learning fash-
ion. Specifically, by following the pairwise learn-
ing to rank framework, we formally formulate the
learning problem, and then present two different
SOLAR algorithms to solve the challenging task
together with the analysis of their theoretical prop-
erties. We conduct an extensive set of experi-
ments by evaluating the performance of the pro-
posed algorithms under different settings by com-
paring them with both online and batch algorithms
on benchmark testbeds in literature.

As a summary, the key contributions of this pa-
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per include: (i) we present a new framework of
Scalable Online Learning Algorithms for Rank-
ing, which tackles the pairwise learning to rank-
ing problem via a scalable online learning ap-
proach; (ii) we present two SOLAR algorithms:
a first-order learning algorithm (SOLAR-I) and a
second-order learning algorithm (SOLAR-II); (iii)
we analyze the theoretical bounds of the proposed
algorithms in terms of standard IR performance
measures; and (iv) finally we examine the efficacy
of the proposed algorithms by an extensive set of
empirical studies on benchmark datasets.

The rest of this paper is organized as follows.
Section 2 reviews related work. Section 3 gives
problem formulations of the proposed framework
and presents our algorithms, followed by theoret-
ical analysis in Section 4. Section 5 presents our
experimental results, and Section 6 concludes this
work and indicates future directions.

2 Related Work

In general, our work is related to two topics in in-
formation retrieval and machine learning: learn-
ing to rank and online learning. Both of them have
been extensively studied in literature. Below we
briefly review important related work in each area.

2.1 Learning to Rank

Most of the existing approaches to learning to rank
can be generally grouped into three major cate-
gories: (i) pointwise approaches, (ii) pairwise ap-
proaches, and (iii) listwise approaches.

The pointwise approaches treat ranking as a
classification or regression problem for predicting
the ranking of individual objects. For example,
[12, 19] formulated ranking as a regression prob-
lem in diverse forms. [30] formulated ranking a
binary classification of relevance on document ob-
jects, and solved it by discriminative models (e.g.,
SVM). In [15], Perceptron [32] ranking (known as
“Prank”) [15] formulated it as online binary clas-
sification. [28] cast ranking as multiple classifica-
tion or multiple ordinal classification tasks.

The pairwise approaches treat the document
pairs as training instances and formulate ranking
as a classification or regression problem from a
collection of pairwise document instances. Ex-
ample of pairwise learning to rank algorithms
include: neural network approaches such as
RankNet [3] and LambdaRank [2], SVM ap-
proaches such as RankSVM [26], boosting ap-

proaches such as RankBoost [18], regression al-
gorithms such as GBRank [43], and probabilistic
ranking algorithms such as FRank [35]. The pair-
wise group is among one of widely and success-
fully applied approaches. Our work generally be-
longs to this group.

The listwise approaches treat a list of docu-
ments for a query as a training instance and at-
tempt to learn a ranking model by optimizing
some loss defined on the predicted list and the
ground-truth list. In general, there are two types
of approaches. The first is to directly optimize
some IR metrics, such as Mean Average Pre-
cision (MAP) and Normalized Discounted Cu-
mulative Gain (NDCG) [25]. Examples include
AdaRank by boosting [39], SVM-MAP by op-
timizing MAP [42], PermuRank [40], and Sof-
tRank [34] based on a smoothed approxima-
tion to NDCG, and NDCG-Boost by optimizing
NDCG [37], etc. The other is to indirectly opti-
mize the IR metrics by defining some listwise loss
function, such as ListNet [5] and ListMLE [38].

Despite being studied actively, most existing
works generally belong to batch learning meth-
ods, except a few online learning studies. For
example, Prank [15] is probably the first online
pointwise learning to ranking algorithm. Unlike
Prank, our work focuses online pairwise learning
to rank technique, which significantly outperforms
Prank as observed in our empirical studies. Be-
sides, our work is also related to another existing
work in [10], but differs considerably in several as-
pects: (i) they assume the similarity function is de-
fined in a bi-linear form which is inappropriate for
document retrieval applications; (ii) their training
data is given in the form of triplet-image instance
(p1, p2, p3), while our training data is given in
a pairwise query-document instance (qt, d1

t , d
2
t );

(iii) they only apply first order online learning al-
gorithms, while we explore both first-order and
second-order online algorithms. Finally, we note
that our work differs from another series of on-
line learning to rank studies [21, 22, 23, 36, 41]
which attempt to explore reinforcement learning
or multi-arm bandit techniques for learning to rank
from implicit/partial feedback, whose formulation
and settings are very different.

2.2 Online Learning

Our work is closely related to studies of online
learning [24], representing a family of efficient
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and scalable machine learning algorithms. In liter-
ature, a variety of online algorithms have been pro-
posed, mainly in two major categories: first-order
algorithms and second-order algorithms. The no-
table examples of first-order online learning meth-
ods include classical Perceptron [32], and Passive-
Aggressive (PA) learning algorithms [13]. Unlike
first-order algorithms, second-order online learn-
ing [6], e.g., Confidence-Weighted (CW) learn-
ing [16], usually assumes the weight vector fol-
lows a Gaussian distribution and attempts to up-
date the mean and covariance for each received
instance. In addition, Adaptive Regularization
of Weights Learning (AROW) [14] was proposed
to improve robustness of CW. More other on-
line learning methods can be found in [24]. In
this work, we apply both first-order and second-
order online learning methods for online learning
to rank.

3 SOLAR — Online Learning to Rank

We now present SOLAR — a framework of Scal-
able Online Learning Algorithms for Ranking,
which applies online learning to build ranking
models from sequential training instances.

3.1 Problem Formulation

Without loss of generality, consider an online
learning to rank problem for document retrieval,
where training data instances arrive sequentially.
Let us denote byQ a query space and denote byD
a document space. Each instance received at time
step t is represented by a triplet (q(i)

t , d
(1)
t , d

(2)
t ),

where q(i)
t ∈ Q denotes the i-th query in the entire

collection of queries Q, d(1)
t ∈ D and d(2)

t ∈ D
denote a pair of documents for prediction of rank-
ing w.r.t. the query q(i)

t . Without loss of clarity,
for the rest of this paper, we simplify the notation
q

(i)
t , d

(1)
t , d

(2)
t as qit, d

1
t , d

2
t , respectively.

We also denote by yt ∈ {+1,−1} the true
ranking order of the pairwise instances at step t
such that if yt = +1, document d1

t is ranked be-
fore d2

t ; otherwise d1
t is ranked after d2

t . We in-
troduce a mapping function φ : Q × D → Rn

that creates a n-dimensional feature vector from
a query-document pair. For example, consider
φ(q, d) ∈ Rn, one way to extract one of the n
features is based on term frequency, which counts
the number of times the query term of q occurs
in document d. We also introduce wt ∈ Rn as

the ranking model to be learned at step t, which is
used to form the target ranking function below:

f(qit, d
1
t , d

2
t ) = w>t φ(qit, d

1
t , d

2
t ) = wt

>(φ(qit, d
1
t )− φ(qit, d

2
t ))

Assume that we have a total of Q queries
{q(i)}Qi=1, each of which is associated with a total
of Di documents and a total of Ti training triplet
instances. In a practical document retrieval task,
the online learning to rank framework operates in
the following procedure:

(i) Given a query q1, an initial model w1 is first
applied to rank the set of documents for the
query, which are then returned to users;

(ii) We then collect user’s feedback (e.g., click-
through data) as the ground truth labels for
the ranking orders of a collection of T1 triplet
training instances;

(iii) We then apply an online learning algorithm to
update the ranking model from the sequence
of T1 triplet training instances;

(iv) We repeat the above by applying the updated
ranking model to process the next query.

For a sequence of T triplet training instances,
the goal of online learning to rank is to optimize
the sequence of ranking models w1, . . . ,wT dur-
ing the entire online learning process. In gen-
eral, the proposed online learning to rank scheme
is evaluated by measuring the online cumulative
MAP [1] or online cumulative NDCG [25]. Let
us denote by NDCGi and MAPi the NDCG and
MAP values for query qi, respectively, which are
defined as follows:

NDCGi =
1

Nn

Di∑
r=1

G(l(πf (r)))D(r) (1)

MAPi =
1

m

∑
s:l(πf (s))=1

∑
j≤s I{l(πf (j))=1}

s
(2)

where I{·} is an indicator function that out-
puts 1 when the statement is true and 0 other-
wise; G(K) = 2K − 1,D(K) = 1

log2(1+K) ,
Nn = maxπ

∑m
r=1G(l(π(r)))D(r), l(r) is the

corresponding labels as K-level ratings, πf denote
a rank list produced by ranking function f , m is
the number of relevant documents. The online cu-
mulative IR measure is defined as the average of
the measure over a sequence of Q queries:

NDCG =
1

Q

Q∑
i=1

NDCGi MAP =
1

Q

Q∑
i=1

MAPi (3)

1694



3.2 First-order SOLAR Algorithm
The key challenge of online learning to rank is
how to optimize the ranking model wt when re-
ceiving a training instance (qit, d

1
t , d

2
t ) and its true

label yt at each time step t. In the following, we
apply the passive-aggressive online learning tech-
nique [13] to solve this challenge. First of all, we
formulate the problem as an optimization:

wt+1 = arg min
w

1

2
‖w −wt‖2 + C`(w; (qit, d

1
t , d

2
t ), yt)

2 (4)

where `(wt) is a hinge loss defined as `(wt) =
max(0, 1− ytwt

>(φ(qit, d
1
t )− φ(qit, d

2
t ))), and C

is a penalty cost parameter.
The above optimization formulation aims to

achieve a trade-off between two concerns: (i) the
updated ranking model should not be deviated too
much from the previous ranking model wt; and (ii)
the updated ranking model should suffer a small
loss on the triplet instance (qit, d

1
t , d

2
t ). Their trade-

off is essentially controlled by the penalty cost pa-
rameter C. Finally, we can derive the following
proposition for the solution to the above.
Proposition 1. This optimization in (4) has the
following closed-form solution:

wt+1 = wt + λtyt(φ(qit, d
1
t )− φ(qit, d

2
t )) (5)

where λt is computed as follows:

λt =
max(0, 1−wt

>yt(φ(qit, d
1
t )− φ(qit, d

2
t )))

‖φ(qit, d
1
t )− φ(qit, d

2
t ))‖2 + 1

2C

(6)

It is not difficult to derive the result in the
above proposition by following the similar idea
of passive aggressive online learning [13]. We
omit the detailed proof here. We can see that if
wt
>yt(φ(qit, d

1
t )− φ(qit, d

2
t )) ≥ 1, then the model

remains unchanged, which means that if the cur-
rent ranking model can correctly rank the order of
d1
t and d2

t w.r.t. query qit at a large margin, we can
keep our model unchanged at this round; other-
wise, we will update the current ranking model by
the above proposition. Figure 1 gives the frame-
work of the proposed online learning to rank al-
gorithms. We denote by the first-order learning to
rank algorithm as “SOLAR-I” for short.

3.3 Second-order SOLAR Algorithm
The previous algorithm only exploits first-order
information of the ranking model wt. Inspired
by recent studies in second-order online learn-
ing [6, 16, 14], we explore second-order algo-
rithms for online learning to rank.

Algorithm 1: SOLAR — Scalable Online Learning to
Rank
1: Initialize w1 = 0, t = 1
2: for i = 1, 2, . . . , Q do
3: receive a query qi and documents for ranking
4: rank the documents by current model wt

5: acquire user’s feedback in triplet instances
6: for j = 1, . . . , Ti do
7: update wt+1 with (qit, d

1
t , d

2
t ) and yt by

Eqn. (5) (SOLAR-I) or by Eqn.(8) (SOLAR-II)
8: t = t + 1
9: end for
10: end for

Figure 1: SOLAR: scalable online learning to rank
Specifically, we cast the online learning to rank-

ing problem into a probabilistic framework, in
which we model feature confidence for a linear
ranking model w with a Gaussian distribution with
mean w ∈ Rd and covariance Σ ∈ Rd×d. The
mean vector w is used as the model of the ranking
function, and the covariance matrix Σ represents
our confidence on the model: the smaller the value
of Σp,p, the more confident the learner has over the
p-th feature wp of the ranking model w.

Following the similar intuition of the above
section, we want to optimize our ranking model
N (w,Σ) by achieving the following trade-off: (i)
to avoid being deviated too much from the previ-
ous model N (wt,Σt); (ii) to ensure that it suffers
a small loss on current triplet instance; and (iii) to
attain a large confidence on the current instance.
Similar to [16], we employ the Kullback-Leibler
divergence to measure the distance between the
current model w to be optimized and the previous
model wt, and the regularization terms include
both the loss suffered at current triplet instance and
the confidence on current triplet instance.

Specifically, we formulate the optimization of
second-order online learning to rank as:
{wt+1,Σt+1} = arg min

w,Σ
DKL(N (w,Σ)||N (wt,Σt))

+
`(w)2 + Ω(Σ)

2γ
(7)

Ω(Σ) = (φ(qit, d
1
t )− φ(qit, d

2
t ))
>Σ(φ(qit, d

1
t )− φ(qit, d

2
t ))

where γ is the trade-off parameter. The follow-
ing proposition gives the closed-form solution.
Proposition 2. This optimization problem in (7)
has the following closed-form solution:

wt+1 = wt + αtΣtyt(φ(qit, d
1
t )− φ(qit, d

2
t )) (8)

Σt+1 = Σt − (1/βt)ΣtAΣt (9)

where A, βt, and αt are computed as follows:

A = (φ(qit, d
1
t )− φ(qit, d

2
t ))(φ(qit, d

1
t )− φ(qit, d

2
t ))
>

βt = (φ(qit, d
1
t )− φ(qit, d

2
t ))
>Σt(φ(qit, d

1
t )− φ(qit, d

2
t )) + γ

αt = max(0, 1− ytwt
>(φ(qit, d

1
t )− φ(qit, d

2
t )))/βt
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The above can be proved by following [14]. We
omit the details. We denote the above algorithm as
“SOLAR-II” for short.

4 Theoretical Analysis

In this section, we theoretically analyze the two
proposed algorithms by proving some online cu-
mulative IR measure bounds for both of them.

In order to prove the IR measure bounds for the
proposed algorithms, we first need to draw the re-
lationships between the cumulative IR measures
and the sum of pairwise squared hinge losses. To
this purpose, we introduce the following Lemma.
Lemma 4.1. For one query qi and its related doc-
uments, the NDCG and MAP is lower bounded by
its sum of pairwise squared hinge loss suffered by
rank model w.

NDCGi ≥ 1− γNDCG

∑
t

`2(w, (qit, d
1
t , d

2
t ))

MAPi ≥ 1− γMAP

∑
t

`2(w, (qit, d
1
t , d

2
t ))

where γNDCG and γMAP are constant specified
by the properties of IR measures: γNDCG =
G(K−1)D(1)

Nn
and γMAP = 1

m , G(K) = 2K −
1,D(K) = 1

log2(1+K) ,
Nn = maxπ

∑m
r=1G(l(π(r)))D(r), l(r) is the

corresponding labels as K-level ratings, π is rank
list, m is the number of relevant documents.

Sketch Proof. Using the essential loss idea
defined in [11], from Theorem 1 of [11] we
could see the essential loss is an upper bound
of measure-based ranking errors; besides, the
essential loss is the lower bound of the sum of
pairwise squared hinge loss, using the properties
of squared hinge loss, which is non-negative, non-
increasing and satisfy `2(0) = 1.

The above lemma indicates that if we could
prove bounds for the online cumulative squared
hinge loss compared to the best ranking model
with all data beforehand, we could obtain the cu-
mulative IR measures bounds. Fortunately there
are strong theoretical loss bounds for the proposed
online learning to ranking algorithms. The follow-
ing shows the theorem of such loss bounds for the
proposed SOLAR algorithms.
Theorem 1. For the SOLAR-I algorithm with Q
queries, for any rank model u, suppose R =
maxi,t ‖φ(qit, d

1
t ) − φ(qit, d

2
t ))‖, the cumulative

squared hinge loss is bounded by
Q∑
i=1

Ti∑
t=1

`2t (wt) ≤ (R2 +
1

2C
)(‖u‖2 + 2C

Q∑
i=1

Ti∑
t=1

`2t (u)) (10)

The proof for Theorem 1 can be found in Ap-
pendix A. By combining the results of Lemma 1
and Theorem 1, we can easily derive the cumula-
tive IR measure bound of the SOLAR-I algorithm.
Theorem 2. For the SOLAR-I algorithm with Q
queries, for any ranking model u, the NDCG and
MAP performances are respectively bounded by

NDCG ≥ 1− γNDCG

Q
(R2 +

1

2C
)(‖u‖2 + 2C

Q∑
i

Ti∑
t=1

`2t (u))

MAP ≥ 1− γMAP

Q
(R2 +

1

2C
)(‖u‖2 + 2C

Q∑
i

Ti∑
t=1

`2t (u))

The analysis of the SOLAR-II algorithm would
be much more complex. Let us denote by
M(M = |M|) the set of example indices
for which the algorithm makes a mistake, and
by U(U = |U|) the set of example indices
for which there is an update but not a mis-
take. Let XA =

∑
(qit,d

1
t ,d

2
t )∈M∪U (φ(qit, d

1
t ) −

φ(qit, d
2
t ))(φ(qit, d

1
t ) − φ(qit, d

2
t ))

T . The theorem
below give the squared hinge loss bound.
Theorem 3. For the SOLAR-II al-
gorithm with Q queries, Let χt =
(φ(qit, d

1
t ) − φ(qit, d

2
t ))

TΣt(φ(qit, d
1
t ) − φ(qit, d

2
t ))

of examples in M∪ U at time t, K and k is the
maximum and minimum value of χt, respectively.
ΣT be the final covariance matrix and uT be the
final mean vector. For any ranking model u, the
squared hinge loss is bounded by

Q∑
i=1

Ti∑
t=1

`2t (wt) ≤ K + γ

k + γ
(a+

Q∑
i=1

Ti∑
t=1

`t(u))

+(K + γ)(log det(Σ−1
T )− a2

γ2uTΣ−1
T u

)

where a =
√
γ‖u‖2 + utXAu

√
log(det(I +

1

γ
XA)) + U

The proof for Theorem 3 can be found in Ap-
pendix B. Now, by combining the Lemma 1 and
Theorem 3, we can derive the cumulative IR mea-
sure bound achieved by the proposed SOLAR-II
algorithm.
Theorem 4. For the SOLAR-II algorithm with Q
queries, for any ranking model u, the NDCG and
MAP performances are respectively bounded by

NDCG ≥ 1− γNDCG(K + γ)

Q(k + γ)
(a+

Q∑
i

Ti∑
t=1

`t(u))− γNDCGb

Q

MAP ≥ 1− γMAP(K + γ)

Q(k + γ)
(a+

Q∑
i

Ti∑
t=1

`t(u))− γMAPb

Q

where b = (K + γ)(log det(Σ−1
T )− a2

γ2uTΣ−1
T u

)

The above theorems show that our online algo-
rithm is no much worse than that of the best rank-
ing model u with all data beforehand.
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5 Experiments

We conduct extensive experiments to evaluate the
efficacy of our algorithms in two major aspects:
(i) to examine the learning efficacy of the pro-
posed SOLAR algorithms for online learning to
rank tasks; (ii) to directly compare the proposed
SOLAR algorithms with the state-of-the-art batch
learning to rank algorithms. Besides, we also
show an application of our algorithms for trans-
fer learning to rank tasks to demonstrate the im-
portance of capturing changing search intention
timely in real web applications. The results are
in the supplemental file due to space limitation.

5.1 Experimental Testbed and Metrics

We adopt the popular benchmark testbed for learn-
ing to rank: LETOR1 [31]. To make a com-
prehensive comparison, we perform experiments
on all the available datasets in LETOR3.0 and
LETOR4.0. The statistics are shown in Table 1.
For performance evaluation metrics, we adopt
the standard IR measures, including ”MAP”,
”NDCG@1”, ”NDCG@5”, and ”NDCG@10”.

Table 1: LETOR datasets used in the experiments.
Dataset #Queries #features avg#Docs/query
OHSUMED 106 45 152.26
MQ2007 1692 46 41.14
MQ2008 784 46 19.40
HP2003 150 64 984.04
HP2004 75 64 992.12
NP2003 75 64 991.04
NP2004 75 64 984.45
TD2003 50 64 981.16
TD2004 50 64 988.61

5.2 Evaluation of Online Rank Performance

This experiment evaluates the online learning per-
formance of the proposed algorithms for online
learning to rank tasks by comparing them with
the existing “Prank” algorithm [15], a Perceptron-
based pointwise online learning to rank algorithm,
and a recently proposed “Committee Perceptron
(Com-P)” algorithm [17], which explores the en-
semble learning for Perceptron. We evaluate the
performance in terms of both online cumulative
NDCG and MAP measures. As it is an online
learning task, the parameter C of SOLAR-I is
fixed to 10−5 and the parameter γ of SOLAR-II
is fixed to 104 for all the datasets, as suggested
by [17], we set the number of experts in “Com-
P” to 20. All experiments were conducted over 10
random permutations of each dataset, and all re-
sults were averaged over the 10 runs.

1
http://research.microsoft.com/en-us/um/beijing/

projects/letor/

Table 2 give the results of NDCG on all the
datasets, where the best results were bolded. Sev-
eral observations can be drawn as follows.

First of all, among all the algorithms, we found
that both SOLAR-I and SOLAR-II achieve sig-
nificantly better performance than Prank, which
proves the efficacy of the proposed pairwise al-
gorithms. Second, we found that Prank (point-
wise) performs extremely poor on several datasets
(HP2003, HP2004, NP2003, NP2004, TD2003,
TD2004). By looking into the details, we found
that it is likely because Prank (pointwise), as a
pointwise algorithm, is highly sensitive to the im-
balance of training data, and the above datasets are
indeed highly imbalanced in which very few doc-
uments are labeled as relevant among about 1000
documents per query. By contrast, the pairwise al-
gorithm performs much better. This observation
further validates the importance of the proposed
pairwise SOLAR algorithms that are insensitive
to imbalance issue. Last, by comparing the two
SOLAR algorithms, we found SOLAR-II outper-
forms SOLAR-I in most cases, validating the effi-
cacy of exploiting second-order information.

5.3 Batch v.s. Online Learning

5.3.1 Comparison of ranking performance
This experiment aims to directly compare the pro-
posed algorithms with the state-of-the-art batch al-
gorithms in a standard learning to rank setting.
We choose four of the most popular and cutting-
edge batch algorithms that cover both pairwise and
listwise approaches, including RankSVM [20],
AdaRank [39], RankBoost [18], and ListNet [5].
For comparison, we follow the standard setting:
each dataset is divided into 3 parts: 60% for train-
ing, 20% for validation to select the best parame-
ters, and 20% for testing. We use the training data
to learn the ranking model by the proposed SO-
LAR algorithms, the validation data to select the
best parameters, and use the test data to evaluate
performance. For SOLAR-I, we choose the best
parameter C from [10−3.5, 10−6.5] via grid search
on the validation set; and similarly for SOLAR-II,
we choose the best parameter γ from [103, 106].
Following [31], we adopt 5 division versions of all
the datasets, and report the average performance.
The results are shown in Table 3, where the best
performances were bolded2. Several observations
can drawn from the results.

2Results of the baseline algorithms are taken from LETOR.
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Table 2: Evaluation of NDCG performance of online learning to rank algorithms.
Algorithm OHSUMED MQ2007 MQ2008

NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10

Prank(Pointwise) 0.2689 0.2253 0.2221 0.2439 0.2748 0.3039 0.2369 0.3352 0.4036
Prank(Pairwise) 0.4456 0.3953 0.3904 0.2777 0.3010 0.3294 0.2834 0.3823 0.4403
Com-P 0.4327 0.3993 0.3934 0.3640 0.3828 0.4135 0.3378 0.4415 0.4885
SOLAR-I 0.5060 0.4479 0.4337 0.3760 0.3973 0.4271 0.3490 0.4584 0.5022
SOLAR-II 0.5352 0.4635 0.4461 0.3897 0.4095 0.4383 0.3594 0.4680 0.5107

Algorithm HP2003 HP2004 NP2003
NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10

Prank(Pointwise) 0.0033 0.0047 0.0050 0.0053 0.0083 0.0088 0.0033 0.0051 0.0075
Prank(Pairwise) 0.5267 0.6491 0.6745 0.5107 0.6438 0.6717 0.4033 0.5926 0.6255
Com-P 0.6487 0.7744 0.7884 0.5640 0.7163 0.7392 0.5227 0.7146 0.7417
SOLAR-I 0.6993 0.7796 0.7917 0.5347 0.7072 0.7335 0.5527 0.7486 0.7792
SOLAR-II 0.7020 0.7959 0.8079 0.5413 0.7146 0.7419 0.5693 0.7621 0.7895

Algorithm NP2004 TD2003 TD2004
NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10

Prank(Pointwise) 0.0080 0.0100 0.0100 0.0040 0.0063 0.0056 0.0040 0.0018 0.0025
Prank(Pairwise) 0.4213 0.6039 0.6290 0.1920 0.1707 0.1737 0.2773 0.2235 0.2071
Com-P 0.4867 0.6989 0.7226 0.3300 0.2717 0.2635 0.3427 0.2988 0.2794
SOLAR-I 0.5613 0.7649 0.7869 0.2160 0.2968 0.2916 0.2533 0.2750 0.2625
SOLAR-II 0.5627 0.7667 0.7858 0.2960 0.3251 0.3245 0.2893 0.2874 0.2806
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Figure 2: Evaluation of MAP performances of Online Learning to Rank algorithms

First of all, we found that no single algorithm
beats all the others on all the datasets. Second,
on all the datasets, we found that the SOLAR
algorithms are generally achieve comparable to
the state-of-the-art batch algorithms. On some
datasets, e.g., ”MQ2008”, ”MQ2007” ”HP2003”,
”TD2003”, the proposed online algorithms can
even achieve best performances in terms of MAP.
This encouraging result proves the efficacy of the
proposed algorithms as an efficient and scalable
online solution to train ranking models. Sec-
ond, among the two proposed online algorithms,
SOLAR-II still outperforms SOLAR-I in most
cases, which again shows the importance of ex-
ploiting second-order information.

5.3.2 Scalability Evaluation
This experiment aims to examine the scalability
of the proposed SOLAR algorithms. We com-
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Figure 3: Scalability Evaluation on “2008MQ”

pare it with RankSVM [20], a widely used and ef-
ficient batch algorithm. For implementation, we
adopt the code from [9] 3, which is known to be
the fastest implementation. Figure 3 illustrates the
scalability evaluation on “2008MQ” dataset. From
the results, we observe that SOLAR is much faster
(e.g., 100+ times faster on this dataset)and signifi-
cantly more scalable than RankSVM.

3
http://olivier.chapelle.cc/primal/
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Table 3: Evaluation of NDCG of Online vs Batch Learning to Rank algorithms.
Algorithm OHSUMED MQ2007 MQ2008

NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10
RankSVM 0.4958 0.4164 0.4140 0.4096 0.4142 0.4438 0.3626 0.4695 0.2279
AdaRank-NDCG 0.5330 0.4673 0.4496 0.3876 0.4102 0.4369 0.3826 0.4821 0.2307
RankBoost 0.4632 0.4494 0.4302 0.4134 0.4183 0.4464 0.3856 0.4666 0.2255
ListNet 0.5326 0.4432 0.4410 0.4002 0.4170 0.4440 0.3754 0.4747 0.2303
SOLAR-I 0.5111 0.4668 0.4497 0.3886 0.4101 0.4361 0.3677 0.4634 0.5086
SOLAR-II 0.5397 0.4690 0.4490 0.4104 0.4149 0.4435 0.3720 0.4771 0.5171

Algorithm HP2003 HP2004 NP2003
NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10

RankSVM 0.6933 0.7954 0.8077 0.5733 0.7512 0.7687 0.5800 0.7823 0.8003
AdaRank-NDCG 0.7133 0.8006 0.8050 0.5867 0.7920 0.8057 0.5600 0.7447 0.7672
RankBoost 0.6667 0.8034 0.8171 0.5067 0.7211 0.7428 0.6000 0.7818 0.8068
ListNet 0.7200 0.8298 0.8372 0.6000 0.7694 0.7845 0.5667 0.7843 0.8018
SOLAR-I 0.7067 0.8036 0.8056 0.5467 0.7325 0.7544 0.5800 0.7664 0.7935
SOLAR-II 0.7000 0.8068 0.8137 0.5733 0.7394 0.7640 0.5667 0.7691 0.7917

Algorithm NP2004 TD2003 TD2004
NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10

RankSVM 0.5067 0.7957 0.8062 0.3200 0.3621 0.3461 0.4133 0.3240 0.3078
AdaRank-NDCG 0.5067 0.7122 0.7384 0.3600 0.2939 0.3036 0.4267 0.3514 0.3163
RankBoost 0.4267 0.6512 0.6914 0.2800 0.3149 0.3122 0.5067 0.3878 0.3504
ListNet 0.5333 0.7965 0.8128 0.4000 0.3393 0.3484 0.3600 0.3325 0.3175
SOLAR-I 0.5733 0.7814 0.7976 0.2600 0.3060 0.3071 0.3600 0.3119 0.3049
SOLAR-II 0.5733 0.7830 0.8013 0.3000 0.3652 0.3462 0.3333 0.3167 0.3056

6 Conclusions and Future Work
This paper presented SOLAR — a new framework
of Scalable Online Learning Algorithms for Rank-
ing. SOLAR overcomes the limitations of tradi-
tional batch learning to rank for real-world on-
line applications. Our empirical results concluded
that SOLAR algorithms share competitive efficacy
as the state-of-the-art batch algorithms, but enjoy
salient properties which are critical to many appli-
cations. Our future work include (i) extending our
techniques to the framework of listwise learning
to rank; (ii) modifying the framework to handle
learning to ranking with ties; and (iii) conducting
more in-depth analysis and comparisons to other
types of online learning to rank algorithms in di-
verse settings, e.g., partial feedback [41, 22].
Appendix Proof of Theorem 1
Proof. Let ∆t = ‖wt− u‖2−‖wt+1− u‖2, then

T∑
t=1

∆t = ‖u‖2 − ‖wT+1 − u‖2 ≤ ‖u‖2

Further, ∆t can be expressed as:

∆t = −2λtyt(wt − u) · (φ(qit, d
1
t )− φ(qit, d

2
t ))

−λt‖φ(qit, d
1
t )− φ(qit, d

2
t ))‖2

≥ λt(2`t(wt)− λt − 2`t(u)).

We thus have

‖u‖2 ≥
T∑

t=1

(2λt`t(wt)− λ2
t‖φ(q

i
t, d

1
t )− φ(q

i
t, d

2
t ))‖2 − 2λt`t(u))

≥
T∑

t=1

(2λt`t(wt)− λ2
t‖φ(q

i
t, d

1
t )− φ(q

i
t, d

2
t ))‖2 − 2λt`t(u)

−(
λt√
2C
−
√

2C`t(u))
2
)

≥
T∑

t=1

(2λt`t(wt)− λ2
t (‖φ(q

i
t, d

1
t )− φ(q

i
t, d

2
t )‖2 +

1

2C
)− 2C`t(u)

2
)

=

T∑
t=1

(
`t(wt)2

‖φ(qi
t, d

1
t )− φ(qi

t, d
2
t ))‖2 + 1

2C

− 2C`t(u)
2
)

Combining the above concludes the theorem.

Appendix B: Proof of Theorem 3

Proof. Using the Cauchy-Schwarz inequality, we

have uTTΣ−1
T uT ≥ (uTΣ−1

T uT )2

uTΣ−1
T u

. Notice that some

inequalities could be easily obtained by extending
the Lemma3, Lemma 4 and Theorem 2 of [14] to
the pairwise setting as follows:

uTΣ−1
T uT ≥

M + U −∑
t∈M∪U `t(u)

γ
,∑

t∈M∪U

χt
r(χt + γ)

≤ log(det(Σ−1
T ))

uTTΣ−1
T uT =

∑
t∈M∪U

χt
r(χt + γ)

+
∑

t∈M∪U

1− `2t (wt)
χt + γ

,

M + U ≤ a+
∑

t∈M∪U
`t(u)

where a =
√
γ‖u‖2 + utXAu

√
log(det(I +

1

γ
XA)) + U.

We thus have∑
t∈M∪U

`2t (wt)

χt + γ
≤

∑
t∈M∪U

χt

r(χt + γ)
+

∑
t∈M∪U

1

χt + γ

− (M + U −∑
t∈M∪U `t(u))2

r2uT Σ−1
T u

≤ log(det(Σ
−1
T )) +

∑
t∈M∪U

1

χt + γ
− a2

r2uT Σ−1
T u

≤ log(det(Σ
−1
T ))− a2

r2uT Σ−1
T u

+
M + U

k + γ

≤ log(det(Σ
−1
T ))− a2

r2uT Σ−1
T u

+
a+

∑
t∈M∪U `t(u)

k + γ

Combining the above, we achieve the final result:

Q∑
i=1

Ti∑
t=1

`2t (wt) ≤ K + γ

k + γ
(a+

Q∑
i=1

Ti∑
t=1

`t(u))

+(K + γ)(log det(Σ−1
T )− a2

γ2uTΣ−1
T u

)
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Text Categorization as a Graph Classification Problem
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Abstract

In this paper, we consider the task of
text categorization as a graph classifica-
tion problem. By representing textual doc-
uments as graph-of-words instead of his-
torical n-gram bag-of-words, we extract
more discriminative features that corre-
spond to long-distance n-grams through
frequent subgraph mining. Moreover, by
capitalizing on the concept of k-core, we
reduce the graph representation to its dens-
est part – its main core – speeding up the
feature extraction step for little to no cost
in prediction performances. Experiments
on four standard text classification datasets
show statistically significant higher accu-
racy and macro-averaged F1-score com-
pared to baseline approaches.

1 Introduction

The task of text categorization finds applications
in a wide variety of domains, from news filter-
ing and document organization to opinion mining
and spam detection. With the ever-growing quan-
tity of information available online nowadays, it
is crucial to provide effective systems capable of
classifying text in a timely fashion. Compared
to other application domains of classification, its
specificity lies in its high number of features, its
sparse feature vectors and its skewed multiclass
scenario. For instance, when dealing with thou-
sands of news articles, it is not uncommon to have
millions of n-gram features, only a few hundreds
actually present in each document and tens of class
labels – some of them with thousands of articles
and some others will only a few hundreds. These
particularities have to be taken into account when
envisaging a different representation for a docu-
ment and in our case when considering the task as
a graph classification problem.

Graphs are powerful data structures that are
used to represent complex information about en-
tities and interaction between them and we think
text makes no exception. Historically, following
the traditional bag-of-words representation, uni-
grams have been considered as the natural features
and later extended to n-grams to capture some
word dependency and word order. However, n-
grams correspond to sequences of words and thus
fail to capture word inversion and subset match-
ing (e. g., “article about news” vs. “news article”).
We believe graphs can help solve these issues like
they did for instance with chemical compounds
where repeating substructure patterns are good in-
dicators of belonging to one particular class, e. g.,
predicting carcinogenicity in molecules (Helma et
al., 2001). Graph classification has received a
lot of attention this past decade and various tech-
niques have been developed to deal with the task
but rarely applied on textual data and at its scale.

In our work, we explored a graph representation
of text, namely graph-of-words, to challenge the
traditional bag-of-words representation and help
better classify textual documents into categories.
We first trained a classifier using frequent sub-
graphs as features for increased effectiveness. We
then reduced each graph-of-words to its main core
before mining the features for increased efficiency.
Finally, we also used this technique to reduce the
total number of n-gram features considered in the
baselines for little to no loss in prediction perfor-
mances.

The rest of the paper is organized as follows.
Section 2 provides a review of the related work.
Section 3 defines the preliminary concepts upon
which our work is built. Section 4 introduces the
proposed approaches. Section 5 describes the ex-
perimental settings and presents the results we ob-
tained on four standard datasets. Finally, Section
6 concludes our paper and mentions future work
directions.
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2 Related work

In this section, we present the related work in text
categorization, graph classification and the com-
bination of the two fields like in our case.

2.1 Text categorization

Text categorization, a.k.a. text classification, cor-
responds to the task of automatically predicting
the class label of a given textual document. We
refer to (Sebastiani, 2002) for an in-depth re-
view of the earliest works in the field and (Ag-
garwal and Zhai, 2012) for a survey of the more
recent works that capitalize on additional meta-
information. We note in particular the seminal
work of Joachims (1998) who was the first to pro-
pose the use of a linear SVM with TF×IDF term
features for the task. This approach is one of the
standard baselines because of its simplicity yet ef-
fectiveness (unsupervised n-gram feature mining
followed by standard supervised learning). An-
other popular approach is the use of Naive Bayes
and its multiple variants (McCallum and Nigam,
1998), in particular for the subtask of spam de-
tection (Androutsopoulos et al., 2000). Finally,
there are a couple of works such as (Hassan et
al., 2007) that used the graph-of-words representa-
tion to propose alternative weights for the n-gram
features but still without considering the task as a
graph classification problem.

2.2 Graph classification

Graph classification corresponds to the task of au-
tomatically predicting the class label of a given
graph. The learning part in itself does not differ
from other supervised learning problems and most
proposed methods deal with the feature extrac-
tion part. They fall into two main categories: ap-
proaches that consider subgraphs as features and
graph kernels.

2.2.1 Subgraphs as features
The main idea is to mine frequent subgraphs and
use them as features for classification, be it with
Adaboost (Kudo et al., 2004) or a linear SVM
(Deshpande et al., 2005). Indeed, most datasets
that were used in the associated experiments cor-
respond to chemical compounds where repeating
substructure patterns are good indicators of be-
longing to one particular class. Some popular
graph pattern mining algorithms are gSpan (Yan
and Han, 2002), FFSM (Huan et al., 2003) and

Gaston (Nijssen and Kok, 2004). The number of
frequent subgraphs can be enormous, especially
for large graph collections, and handling such a
feature set can be very expensive. To overcome
this issue, recent works have proposed to retain
or even only mine the discriminative subgraphs,
i. e. features that contribute to the classification
decision, in particular gBoost (Saigo et al., 2009),
CORK (Thoma et al., 2009) and GAIA (Jin et
al., 2010). However, when experimenting, gBoost
did not converge on our larger datasets while
GAIA and CORK consider subgraphs of node
size at least 2, which exclude unigrams, result-
ing in poorer performances. Moreover, all these
approaches have been developed for binary clas-
sification, which meant mining features as many
times as the number of classes instead of just once
(one-vs-all learning strategy). In this paper, we
tackle the scalability issue differently through an
unsupervised feature selection approach to reduce
the size of the graphs and a fortiori the number of
frequent subgraphs.

2.2.2 Graph kernels
Gärtner et al. (2003) proposed the first kernels be-
tween graphs (as opposed to previous kernels on
graphs, i. e. between nodes) based on either ran-
dom walks or cycles to tackle the problem of clas-
sification between graphs. In parallel, the idea of
marginalized kernels was extended to graphs by
Kashima et al. (2003) and by Mahé et al. (2004).
We refer to (Vishwanathan et al., 2010) for an in-
depth review of the topic and in particular its lim-
itations in terms of number of unique node labels,
which make them unsuitable for our problem as
tested in practice (limited to a few tens of unique
labels compared to hundreds of thousands for us).

2.3 Similar works

The work of Markov et al. (2007) is perhaps the
closest to ours since they also perform subgraph
feature mining on graph-of-words representations
but with non-standard datasets and baselines. The
works of Jiang et al. (2010) and Arora et al. (2010)
are also related but their representations are dif-
ferent and closer to parse and dependency trees
used as base features for text categorization by
Kudo and Matsumoto (2004) and Matsumoto et al.
(2005). Moreover, they do not discuss the choice
of the support value, which controls the total num-
ber of features and can potentially lead to millions
of subgraphs on standard datasets.
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3 Preliminary concepts

In this section, we introduce the preliminary con-
cepts upon which our work is built.

3.1 Graph-of-words

We model a textual document as a graph-of-words,
which corresponds to a graph whose vertices rep-
resent unique terms of the document and whose
edges represent co-occurrences between the terms
within a fixed-size sliding window. The under-
lying assumption is that all the words present in
a document have some undirected relationships
with the others, modulo a window size outside of
which the relationship is not considered. This rep-
resentation was first used in keyword extraction
and summarization (Ohsawa et al., 1998; Mihal-
cea and Tarau, 2004) and more recently in ad hoc
IR (Blanco and Lioma, 2012; Rousseau and Vazir-
giannis, 2013). We refer to (Blanco and Lioma,
2012) for an in-depth review of the graph repre-
sentations of text in NLP.
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As a discipline, computer science spans a range of topics 
from theoretical studies of algorithms and the limits of 
computation to the practical issues of implementing 
computing systems in hardware and software.

hide meFigure 1: Graph-of-words representation of a tex-
tual document – in bold font, its main core.

Figure 1 illustrates the graph-of-words repre-
sentation of a textual document. The vertices cor-
respond to the remaining terms after standard pre-
processing steps have been applied (tokenization,
stop word removal and stemming). The undirected
edges were drawn between terms co-occurring
within a sliding window over the processed text of
size 4, value consistently reported as working well
in the references aforementioned and validated in
our experiments. Edge direction was used by Fil-
ippova (2010) so as to extract valid sentences but

not here in order to capture some word inversion.
Note that for small-enough window sizes

(which is typically the case in practice), we can
consider that two terms linked represent a long-
distance bigram (Bassiou and Kotropoulos, 2010),
if not a bigram. Furthermore, by extending the
denomination, we can consider that a subgraph
of size n is a long-distance n-gram, if not an n-
gram. Indeed, the nodes belonging to a subgraph
do not necessarily appear in a sequence in the doc-
ument like for a n-gram. Moreover, this enables us
to “merge” together n-grams that share the same
terms but maybe not in the same order. In the ex-
periments, by abusing the terminology, we will re-
fer to them as n-grams to adopt a common termi-
nology with the baseline approaches.

3.2 Node/edge labels and subgraph matching
In graph classification, it is common to introduce
a node labeling function µ to map a node id to its
label. For instance, consider the case of chemi-
cal compounds (e. g., the benzene C6H6). Then in
its graph representation (its “structural formula”),
it is crucial to differentiate between the multiple
nodes labeled the same (e. g., C or H). In the case
of graph-of-words, node labels are unique inside
a graph since they represent unique terms of the
document and we can therefore omit these func-
tions since they are injective in our case and we
can substitute node ids for node labels. In partic-
ular, the general problem of subgraph matching,
which defines an isomorphism between a graph
and a subgraph and is NP-complete (Garey and
Johnson, 1990), can be reduced to a polynomial
problem when node labels are unique. In our ex-
periments, we used the standard algorithm VF2
developed by Cordella et al. (2001).

3.3 K-core and main core
Seidman (1983) defined the k-core of a graph as
the maximal connected subgraph whose vertices
are at least of degree k within the subgraph. The
non-empty k-core of largest k is called the main
core and corresponds to the most cohesive set(s)
of vertices. The corresponding value of k may dif-
fer from one graph to another. Batagelj and Za-
veršnik (2003) proposed an algorithm to extract
the main core of an unweighted graph in time lin-
ear in the number of edges, complexity similar
in our case to the other NLP preprocessing steps.
Bold font on Figure 1 indicates that a vertex be-
longs to the main core of the graph.
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4 Graph-of-words classification

In this section, we present our work and the sev-
eral approaches we explored, from unsupervised
feature mining using gSpan to propose more dis-
criminative features than standard n-grams to un-
supervised feature selection using k-core to reduce
the total number of subgraph and n-gram features.

4.1 Unsupervised feature mining using gSpan

We considered the task of text categorization as a
graph classification problem by representing tex-
tual documents as graph-of-words and then ex-
tracting subgraph features to train a graph classi-
fier. Each document is a separate graph-of-words
and the collection of documents thus corresponds
to a set of graphs. Therefore, for larger datasets,
the total number of graphs increases but not the
average graph size (the average number of unique
terms in a text), assuming homogeneous datasets.

Because the total number of unique node la-
bels corresponds to the number of unique terms
in the collection in our case, graph kernels are
not suitable for us as verified in practice using the
MATLAB code made available by Shervashidze
(2009). We therefore only explored the meth-
ods that consider subgraphs as features. Repeat-
ing substructure patterns between graphs are intu-
itively good candidates for classification since, at
least for chemical compounds, shared subparts of
molecules are good indicators of belonging to one
particular class. We assumed it would the same for
text. Indeed, subgraphs of graph-of-words corre-
spond to sets of words co-occurring together, just
not necessarily always as the same sequence like
for n-grams – it can be seen as a relaxed definition
of a n-gram to capture additional variants.

We used gSpan (graph-based Substructure
pattern (Yan and Han, 2002)) as frequent sub-
graph miner like (Jiang et al., 2010; Arora et al.,
2010) mostly because of its fast available C++
implementation from gBoost (Saigo et al., 2009).
Briefly, the key idea behind gSpan is that in-
stead of enumerating all the subgraphs and test-
ing for isomorphism throughout the collection, it
first builds for each graph a lexicographic order
of all the edges using depth-first-search (DFS)
traversal and assigns to it a unique minimum DFS
code. Based on all these DFS codes, a hierarchical
search tree is constructed at the collection-level.
By pre-order traversal of this tree, gSpan discov-
ers all frequent subgraphs with required support.

Consider the set of all subgraphs in the collec-
tion of graphs, which corresponds to the set of all
potential features. Note that there may be overlap-
ping (subgraphs sharing nodes/edges) and redun-
dant (subgraphs included in others) features. Be-
cause its size is exponential in the number of edges
(just like the number of n-grams is exponential in
n), it is common to only retain/mine the most fre-
quent subgraphs (again just like for n-grams with a
minimum document frequency (Fürnkranz, 1998;
Joachims, 1998)). This is controlled via a param-
eter known as the support, which sets the mini-
mum number of graphs in which a given subgraph
has to appear to be considered as a feature, i. e.
the number of subgraph matches in the collection.
Here, since node labels are unique inside a graph,
we do not have to consider multiple occurrences
of the same subgraph in a given graph. The lower
the support, the more features selected/considered
but the more expensive the mining and the training
(not only in time spent for the learning but also for
the feature vector generation).

4.2 Unsupervised support selection

The optimal value for the support can be learned
through cross-validation so as to maximize the
prediction accuracy of the subsequent classifier,
making the whole feature mining process super-
vised. But if we consider that the classifier can
only improve its goodness of fit with more fea-
tures (the sets of features being nested as the sup-
port varies), it is likely that the lowest support will
lead to the best test accuracy; assuming subse-
quent regularization to prevent overfitting. How-
ever, this will come at the cost of an exponential
number of features as observed in practice. In-
deed, as the support decreases, the number of fea-
tures increases slightly up until a point where it
increases exponentially, which makes both the fea-
ture vector generation and the learning expensive,
especially with multiple classes. Moreover, we
observed that the prediction performances did not
benefit that much from using all the possible fea-
tures (support of 1) as opposed to a more manage-
able number of features corresponding to a higher
support. Therefore, we propose to select the sup-
port using the so-called elbow method. This is an
unsupervised empirical method initially developed
for selecting the number of clusters in k-means
(Thorndike, 1953). Figure 3 (upper plots) in Sec-
tion 5 illustrates this process.
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4.3 Considered classifiers
In text categorization, standard baseline classifiers
include k-nearest neighbors (kNN) (Larkey and
Croft, 1996), Naive Bayes (NB) (McCallum and
Nigam, 1998) and linear Support Vector Machines
(SVM) (Joachims, 1998) with the latter perform-
ing the best on n-gram features as verified in our
experiments. Since our subgraph features corre-
spond to “long-distance n-grams”, we used linear
SVMs as our classifiers in all our experiments –
the goal of our work being to explore and propose
better features rather than a different classifier.

4.4 Multiclass scenario
In standard binary graph classification (e. g., pre-
dicting chemical compounds’ carcinogenicity as
either positive or negative (Helma et al., 2001)),
feature mining is performed on the whole graph
collection as we expect the mined features to be
able to discriminate between the two classes (thus
producing a good classifier). However, for the
task of text categorization, there are usually more
than two classes (e. g., 118 categories of news ar-
ticles for the Reuters-21578 dataset) and with a
skewed class distribution (e. g., a lot more news
related to “acquisition” than to “grain”). There-
fore, a single support value might lead to some
classes generating a tremendous number of fea-
tures (e. g., hundreds of thousands of frequent sub-
graphs) and some others only a few (e. g., a few
hundreds subgraphs) resulting in a skewed and
non-discriminative feature set. To include dis-
criminative features for these minority classes, we
would need an extremely low support resulting
in an exponential number of features because of
the majority classes. For these reasons, we de-
cided to mine frequent subgraphs per class using
the same relative support (%) and then aggregat-
ing each feature set into a global one at the cost of
a supervised process (but which still avoids cross-
validated parameter tuning). This was not needed
for the tasks of spam detection and opinion mining
since the corresponding datasets consist of only
two balanced classes.

4.5 Main core mining using gSpan
Since the main drawback of mining frequent sub-
graphs for text categorization rather than chemical
compound classification is the very high number
of possible subgraphs because of the size of the
graphs and the total number of graphs (more than
10x in both cases), we thought of ways to reduce

the graphs’ sizes while retaining as much classifi-
cation information as possible.

The graph-of-words representation is designed
to capture dependency between words, i. e. de-
pendency between features in the context of ma-
chine learning but at the document-level. Ini-
tially, we wanted to capture recurring sets of words
(i. e. take into account word inversion and sub-
set matching) and not just sequences of words like
with n-grams. In terms of subgraphs, this means
words that co-occur with each other and form a
dense subgraph as opposed to a path like for a n-
gram. Therefore, when reducing the graphs, we
need to keep their densest part(s) and that is why
we considered extracting their main cores. Com-
pared to other density-based algorithms, retaining
the main core of a graph has the advantage of be-
ing linear in the number of edges, i. e. in the num-
ber of unique terms in a document in our case (the
number of edges is at most the number of nodes
times the fixed size of the sliding window, a small
constant in practice).

4.6 Unsupervised n-gram feature selection

Similarly to (Hassan et al., 2007) that used graph-
of-words to propose alternative weights for the n-
gram features, we can capitalize on main core re-
tention to still extract binary n-gram features for
classification but considering only the terms be-
longing to the main core of each document. Be-
cause some terms never belong to any main core
of any document, the dimension of the overall fea-
ture space decreases. Additionally, since a docu-
ment is only represented by a subset of its original
terms, the number of non-zero feature values per
document also decreases, which matters for SVM,
even for the linear kernel, when considering the
dual formulation or in the primal with more recent
optimization techniques (Joachims, 2006).

Compared to most existing feature selection
techniques in the field (Yang and Pedersen, 1997),
it is unsupervised and corpus-independent as it
does not rely on any labeled data like IG, MI
or χ2 nor any collection-wide statistics like IDF,
which can be of interest for large-scale text cate-
gorization in order to process documents in paral-
lel, independently of each other. In some sense,
it is similar to what Özgür et al. (2005) proposed
with corpus-based and class-based keyword selec-
tion for text classification except that we use here
document-based keyword selection following the
approach from Rousseau and Vazirgiannis (2015).

1706



5 Experiments

In this section we present the experiments we con-
ducted to validate our approaches.

5.1 Datasets
We used four standard text datasets: two for multi-
class document categorization (WebKB and R8),
one for spam detection (LingSpam) and one for
opinion mining (Amazon) so as to cover all the
main subtasks of text categorization:

• WebKB: 4 most frequent categories among
labeled webpages from various CS depart-
ments – split into 2,803 for training and 1,396
for test (Cardoso-Cachopo, 2007, p. 39–41).

• R8: 8 most frequent categories of Reuters-
21578, a set of labeled news articles from the
1987 Reuters newswire – split into 5,485 for
training and 2,189 for test (Debole and Se-
bastiani, 2005).

• LingSpam: 2,893 emails classified as spam
or legitimate messages – split into 10 sets for
10-fold cross validation (Androutsopoulos et
al., 2000).

• Amazon: 8,000 product reviews over four
different sub-collections (books, DVDs, elec-
tronics and kitchen appliances) classified as
positive or negative – split into 1,600 for
training and 400 for test each (Blitzer et al.,
2007).

5.2 Implementation
We developed our approaches mostly in Python
using the igraph library (Csardi and Nepusz,
2006) for the graph representation and main core
extraction. For unsupervised subgraph feature
mining, we used the C++ implementation of
gSpan from gBoost (Saigo et al., 2009). Finally
for classification and standard n-gram text catego-
rization we used scikit (Pedregosa et al., 2011),
a standard Python machine learning library.

5.3 Evaluation metrics
To evaluate the performance of our proposed ap-
proaches over standard baselines, we computed on
the test set both the micro- and macro-average F1-
score. Because we are dealing with single-label
classification, the micro-average F1-score corre-
sponds to the accuracy and is a measure of the
overall prediction effectiveness (Manning et al.,

Dataset # subgraphs before # subgraphs after reduction
WebKB 30,868 10,113 67 %

R8 39,428 11,373 71 %
LingSpam 54,779 15,514 72 %
Amazon 16,415 8,745 47 %

Dataset # n-grams before # n-grams after reduction
WebKB 1,849,848 735,447 60 %

R8 1,604,280 788,465 51 %
LingSpam 2,733,043 1,016,061 63 %
Amazon 583,457 376,664 35 %

Table 1: Total number of features (n-grams or sub-
graphs) vs. number of features present only in
main cores along with the reduction of the dimen-
sion of the feature space on all four datasets.

2008, p. 281). Conversely, the macro-average F1-
score takes into account the skewed class label dis-
tributions by weighting each class uniformly. The
statistical significance of improvement in accuracy
over the n-gram SVM baseline was assessed us-
ing the micro sign test (p < 0.05) (Yang and Liu,
1999). For the Amazon dataset, we report the av-
erage of each metric over the four sub-collections.

5.4 Results
Table 2 shows the results on the four considered
datasets. The first three rows correspond to the
baselines: unsupervised n-gram feature extrac-
tion and then supervised learning using kNN, NB
(Multinomial but Bernoulli yields similar results)
and linear SVM. The last three rows correspond to
our approaches.

In our first approach, denoted as “gSpan +
SVM”, we mine frequent subgraphs (gSpan) as
features and then train a linear SVM. These fea-
tures correspond to long-distance n-grams. This
leads to the best results in text categorization on
almost all datasets (all if we compare to baseline
methods), in particular on multiclass document
categorization (R8 and WebKB).

In our second approach, denoted as “MC +
gSpan + SVM”, we repeat the same procedure
except that we mine frequent subgraphs (gSpan)
from the main core (MC) of each graph-of-words
and then train an SVM on the resulting features.
Main cores can vary from 1-core to 12-core de-
pending on the graph structure, 5-core and 6-core
being the most frequent (more than 60%). This
yields results similar to the SVM baseline for a
faster mining and training compared to gSpan +
SVM. Table 1 (upper table) shows the reduction
in the dimension of the feature space and we see
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Table 2: Test accuracy and macro-average F1-score on four standard datasets. Bold font marks the best
performance in a column. * indicates statistical significance at p < 0.05 using micro sign test with regards
to the SVM baseline of the same column. MC corresponds to unsupervised feature selection using the
main core of each graph-of-words to extract n-gram and subgraph features. gSpan mining support values
are 1.6% (WebKB), 7% (R8), 4% (LingSpam) and 0.5% (Amazon).

Method
Dataset WebKB R8 LingSpam Amazon

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score
kNN (k=5) 0.679 0.617 0.894 0.705 0.910 0.774 0.512 0.644
NB (Multinomial) 0.866 0.861 0.934 0.839 0.990 0.971 0.768 0.767
linear SVM 0.889 0.871 0.947 0.858 0.991 0.973 0.792 0.790

gSpan + SVM 0.912* 0.882 0.955* 0.864 0.991 0.972 0.798* 0.795
MC + gSpan + SVM 0.901* 0.871 0.949* 0.858 0.990 0.973 0.800* 0.798
MC + SVM 0.872 0.863 0.937 0.849 0.990 0.972 0.786 0.774
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Figure 2: Distribution of non-zero n-gram feature
values before and after unsupervised feature selec-
tion (main core retention) on R8 dataset.

that on average less than 60% of the subgraphs are
kept for little to no cost in prediction effectiveness.

In our final approach, denoted as “MC + SVM”,
we performed unsupervised feature selection by
keeping the terms appearing in the main core (MC)
of each document’s graph-of-words representation
and then extracted standard n-gram features. Ta-
ble 1 (lower table) shows the reduction in the di-
mension of the feature space and we see that on av-
erage less than half the n-grams remain. Figure 2
shows the distribution of non-zero features before
and after the feature selection on the R8 dataset.
Similar changes in distribution can be observed on
the other datasets, from a right-tail Gaussian to a
power law distribution as expected from the main
core retention. Table 2 shows that the main core
retention has little to no cost in accuracy and F1-
score but can reduce drastically the feature space
and the number of non-zero values per document.
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Figure 3: Number of subgraph features/accuracy
in test per support (%) on WebKB (left) and R8
(right) datasets: in black, the selected support
value chosen via the elbow method and in red, the
accuracy in test for the SVM baseline.

5.5 Unsupervised support selection

Figure 3 above illustrates the unsupervised heuris-
tic (elbow method) we used to select the support
value, which corresponds to the minimum number
of graphs in which a subgraph has to appear to be
considered frequent. We noticed that as the sup-
port decreases, the number of features increases
slightly up until a point where it increases expo-
nentially. This support value, highlighted in black
on the figure and chosen before taking into ac-
count the class label, is the value we used in our
experiments and for which we report the results in
Table 1 and 2. The lower plots provide evidence
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Figure 4: Distribution of n-grams (standard and
long-distance ones) among all the features on We-
bKB dataset.

that the elbow method helps selecting in an unsu-
pervised manner a support that leads to the best or
close to the best accuracy.

5.6 Distribution of mined n-grams

In order to gain more insights on why the long-
distance n-grams mined with gSpan result in bet-
ter classification performances than the baseline n-
grams, we computed the distribution of the num-
ber of unigrams, bigrams, etc. up to 6-grams in the
traditional feature set and ours (Figure 4) as well
as in the top 5% features that contribute the most
to the classification decision of the trained SVM
(Figure 5). Again, a long-distance n-gram corre-
sponds to a subgraph of size n in a graph-of-words
and can be seen as a relaxed definition of the tra-
ditional n-gram, one that takes into account word
inversion for instance. To obtain comparable re-
sults, we considered for the baseline n-grams with
a minimum document frequency equal to the sup-
port. Otherwise, by definition, there are at least as
many bigrams as there are unigrams and so forth.

Figure 4 shows that our approaches mine way
more n-grams than unigrams compared to the
baseline. This happens because with graph-of-
words a subgraph of size n corresponds to a set
of n terms while with bag-of-words a n-gram cor-
responds to a sequence of n terms. Note that even
when restricting the subgraphs to the main cores,
there are still more higher order n-grams mined.

Figure 5 shows that the higher order n-grams
still contribute indeed to the classification deci-
sion and in higher proportion than with the base-
line, even when restricting to the main cores. For
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Figure 5: Distribution of n-grams (standard and
long-distance ones) among the top 5% most dis-
criminative features for SVM on WebKB dataset.

instance, on the R8 dataset, {bank, base, rate}
was a discriminative (top 5% SVM features) long-
distance 3-gram for the category “interest” and
occurred in documents in the form of “barclays
bank cut its base lending rate”, “midland bank
matches its base rate” and “base rate of natwest
bank dropped”, pattern that would be hard to cap-
ture with traditional n-gram bag-of-words.

5.7 Timing

With an Intel Core i5-3317U clocking at 2.6GHz
and 8GB of RAM, mining the subgraph features
with gSpan takes on average 30s for the selected
support. It can take several hours with lower sup-
port and goes down to 5s using the main cores.

6 Conclusion

In this paper, we tackled the task of text cate-
gorization by representing documents as graph-
of-words and then considering the problem as a
graph classification one. We were able to extract
more discriminative features that correspond to
long-distance n-grams through frequent subgraph
mining. Experiments on four standard datasets
show statistically significant higher accuracy and
macro-averaged F1-score compared to baselines.

To the best of our knowledge, graph classifi-
cation has never been tested at that scale – thou-
sands of graphs and tens of thousands of unique
node labels – and also in the multiclass scenario.
For these reasons, we could not capitalize on all
standard methods. In particular, we believe new
kernels that support a very high number of unique
node labels could yield even better performances.
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Abstract

We present a novel, count-based approach
to obtaining inter-lingual word represen-
tations based on inverted indexing of
Wikipedia. We present experiments ap-
plying these representations to 17 datasets
in document classification, POS tagging,
dependency parsing, and word alignment.
Our approach has the advantage that it
is simple, computationally efficient and
almost parameter-free, and, more im-
portantly, it enables multi-source cross-
lingual learning. In 14/17 cases, we im-
prove over using state-of-the-art bilingual
embeddings.

1 Introduction

Linguistic resources are hard to come by and un-
evenly distributed across the world’s languages.
Consequently, transferring linguistic resources or
knowledge from one language to another has been
identified as an important research problem. Most
work on cross-lingual transfer has used English
as the source language. There are two reasons
for this; namely, the availability of English re-
sources and the availability of parallel data for
(and translations between) English and most other
languages.

In cross-lingual syntactic parsing, for exam-
ple, two approaches to cross-lingual learning
have been explored, namely annotation projec-
tion and delexicalized transfer. Annotation pro-
jection (Hwa et al., 2005) uses word-alignments
in human translations to project predicted source-
side analyses to the target language, producing a
noisy syntactically annotated resource for the tar-
get language. On the other hand, delexicalized

transfer (Zeman and Resnik, 2008; McDonald et
al., 2011; Søgaard, 2011) simply removes lexi-
cal features from mono-lingual parsing models,
but assumes reliable POS tagging for the target
language. Delexicalized transfer works particu-
larly well when resources from several source lan-
guages are used for training; learning from mul-
tiple other languages prevents over-fitting to the
peculiarities of the source language. Some au-
thors have also combined annotation projection
and delexicalized transfer, e.g., McDonald et al.
(2011). Others have tried to augment delexical-
ized transfer models with bilingual word repre-
sentations (Täckström et al., 2013; Xiao and Guo,
2014).

In cross-lingual POS tagging, mostly annotation
projection has been explored (Fossum and Abney,
2005; Das and Petrov, 2011), since all features in
POS tagging models are typically lexical. How-
ever, using bilingual word representations was re-
cently explored as an alternative to projection-
based approaches (Gouws and Søgaard, 2015).

The major drawback of using bi-lexical repre-
sentations is that it limits us to using a single
source language. Täckström et al. (2013) ob-
tained significant improvements using bilingual
word clusters over a single source delexicalized
transfer model, for example, but even better re-
sults were obtained with delexicalized transfer in
McDonald et al. (2011) by simply using several
source languages.

This paper introduces a simple method for ob-
taining truly inter-lingual word representations in
order to train models with lexical features on sev-
eral source languages at the same time. Briefly
put, we represent words by their occurrence in
clusters of Wikipedia articles linking to the same
concept. Our representations are competitive with
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state-of-the-art neural net word embeddings when
using only a single source language, but also en-
able us to exploit the availability of resources in
multiple languages. This also makes it possible to
explore multi-source transfer for POS tagging. We
evaluate the method across POS tagging and de-
pendency parsing datasets in four languages in the
Google Universal Treebanks v. 1.0 (see §3.2.1),
as well as two document classification datasets
and four word alignment problems using a hand-
aligned text. Finally, we also directly compare our
results to Xiao and Guo (2014) on parsing data for
four languages from CoNLL 2006 and 2007.

Contribution

• We present a novel approach to cross-lingual
word representations with several advantages
over existing methods: (a) It does not require
training neural networks, (b) it does not rely
on the availability of parallel data between
source and target language, and (c) it enables
multi-source transfer with lexical representa-
tions.
• We present an evaluation of our inter-lingual

word representations, based on inverted in-
dexing, across four tasks: document classi-
fication, POS tagging, dependency parsing,
and word alignment, comparing our repre-
sentations to two state-of-the-art neural net
word embeddings. For the 17 datasets, for
which we can make this comparison, our sys-
tem is better than these embedding models
on 14 datasets. The word representations
are made publicly available at https://
bitbucket.org/lowlands/

2 Distributional word representations

Most NLP models rely on lexical features. En-
coding the presence of words leads to high-
dimensional and sparse models. Also, simple bag-
of-words models fail to capture the relatedness of
words. In many tasks, synonymous words should
be treated alike, but their bag-of-words representa-
tions are as different as those of dog and therefore.

Distributional word representations are sup-
posed to capture distributional similarities be-
tween words. Intuitively, we want similar words to
have similar representations. Known approaches
focus on different kinds of similarity, some more
syntactic, some more semantic. The representa-
tions are typically either clusters of distribution-

ally similar words, e.g., Brown et al. (1992), or
vector representations. In this paper, we focus
on vector representations. In vector-based ap-
proaches, similar representations are vectors close
in some multi-dimensional space.

2.1 Count-based and prediction-based
representations

There are, briefly put, two approaches to inducing
vector-based distributional word representations
from large corpora: count-based and prediction-
based approaches (Baroni et al., 2014). Count-
based approaches represent words by their co-
occurrences. Dimensionality reduction is typically
performed on a raw or weighted co-occurrence
matrix using methods such as singular value de-
composition (SVD), a method for maximizing the
variance in a dataset in few dimensions. In our
inverted indexing, we use raw co-occurrence data.

Prediction-based methods use discriminative
learning techniques to learn how to predict words
from their context, or vice versa. They rely on
a neural network architecture, and once the net-
work converges, they use word representations
from a middle layer as their distributional repre-
sentations. Since the network learns to predict
contexts from this representation, words occurring
in the same contexts will get similar representa-
tions. In §2.1.2, we briefly introduce the skip-
gram and CBOW models (Mikolov et al., 2013;
Collobert and Weston, 2008).

Baroni et al. (2014) argue in favor of prediction-
based representations, but provide little explana-
tion why prediction-based representations should
be better. One key finding, however, is that
prediction-based methods tend to be more robust
than count-based methods, and one reason for this
seems to be better regularization.

2.1.1 Monolingual representations
Count-based representations rely on co-
occurrence information in the form of binary
matrices, raw counts, or point-wise mutual in-
formation (PMI). The PMI between two words
is

P (wi;wj) = log
P (wi | wj)
P (wi)

and PMI representations associate a word wi with
a vector of its PMIs with all other words wj . Di-
mensionality reduction is typically performed us-
ing SVD. We will refer to two prediction-based
approaches to learning word vectors, below: the
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KLEMENTIEV CHANDAR INVERTED

es

coche (’car’, NOUN) approximately beyond upgrading car bicycle cars driving car cars
expressed (’expressed’, VERB) 1.61 55.8 month-to-month reiterates reiterating confirming exists defining example
teléfono (’phone’, NOUN) alexandra davison creditor phone telephone e-mail phones phone telecommunication
árbol (’tree’, NOUN) tree market-oriented assassinate tree bread wooden tree trees grows
escribió (’wrote’, VERB) wrote alleges testified wrote paul palace wrote inspired inspiration
amarillo (’yellow’, ADJ) yellow louisiana 1911 crane grabs outfit colors yellow oohs

de

auto (’car’, NOUN) car cars camaro
ausgedrückt (’expressed’, VERB) adjective decimal imperative

fr

voiture (’car’, NOUN) mercedes-benz cars quickest
exprimé (’expressed’, VERB) simultaneously instead possible
téléphone (’phone’, NOUN) phone create allowing
arbre (’tree’, NOUN) tree trees grows
écrit (’wrote’, VERB) published writers books
jaune (’yellow’, ADJ) classification yellow stages

sv

bil (’car’, NOUN) cars car automobiles
uttryckte (’expressed’, VERB) rejected threatening unacceptable
telefon (’phone’, NOUN) telephones telephone share
träd (’tree’, NOUN) trees tree trunks
skrev (’wrote’, VERB) death wrote biography
gul (’yellow’, ADJ) greenish bluish colored

Table 1: Three nearest neighbors in the English training data of six words occurring in the Spanish test
data, in the embeddings used in our experiments. Only 2/6 words were in the German data.

skip-gram model and CBOW. The two models
both rely on three level architectures with input,
output and a middle layer for intermediate tar-
get word representations. The major difference
is that skip-gram uses the target word as input
and the context as output, whereas the CBOW
model does it the other way around. Learning goes
by back-propagation, and random target words
are used as negative examples. Levy and Gold-
berg (2014) show that prediction-based represen-
tations obtained with the skip-gram model can be
related to count-based ones obtained with PMI.
They argue that which is best, varies across tasks.

2.1.2 Bilingual representations
Klementiev et al. (2012) learn distinct embedding
models for the source and target languages, but
while learning to minimize the sum of the two
models’ losses, they jointly learn a regularizing in-
teraction matrix, enforcing word pairs aligned in
parallel text to have similar representations. Note
that Klementiev et al. (2012) rely on word-aligned
parallel text, and thereby on a large-coverage soft
mapping of source words to target words. Other
approaches rely on small coverage dictionaries
with hard 1:1 mappings between words. Klemen-
tiev et al. (2012) do not use skip-gram or CBOW,
but the language model presented in Bengio et
al. (2003).

Chandar et al. (2014) also rely on sentence-
aligned parallel text, but do not make use of word
alignments. They begin with bag-of-words repre-
sentations of source and target sentences. They
then use an auto-encoder architecture. Auto-
encoders for document classification typically try
to reconstruct bag-of-words input vectors at the
output layer, using back-propagation, passing the
representation through a smaller middle layer.
This layer then provides a dimensionality reduc-
tion. Chandar et al. (2014) instead replace the out-
put layer with the target language bag-of-words
reconstruction. In their final set-up, they simul-
taneously minimize the loss of a source-source, a
target-target, a source-target, and a target-source
auto-encoder, which corresponds to training a sin-
gle auto-encoder with randomly chosen instances
from source-target pairs. The bilingual word vec-
tors can now be read off the auto-encoder’s middle
layer.

Xiao and Guo (2014) use a CBOW model and
random target words as negative examples. The
trick they introduce to learn bilingual embeddings,
relies on a bilingual dictionary, in their case ob-
tained from Wiktionary. They only use the unam-
biguous translation pairs for the source and target
languages in question and simply force translation
equivalents to have the same representation. This
corresponds to replacing words from unambigu-
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ous translation pairs with a unique dummy sym-
bol.

Gouws and Søgaard (2015) present a much sim-
pler approach to learning prediction-based bilin-
gual representations. They assume a list of source-
target pivot word pairs that should obtain simi-
lar representations, i.e., translations or words with
similar representations in some knowledge base.
They then present a generative model for con-
structing a mixed language corpus by randomly
selecting sentences from source and target cor-
pora, and randomly replacing pivot words with
their equivalent in the other language. They show
that running the CBOW model on such a mixed
corpus suffices to learn competitive bilingual em-
beddings. Like Xiao and Guo (2014), Gouws and
Søgaard (2015) only use unambiguous translation
pairs.

There has, to the best of our knowledge, been no
previous work on count-based approaches to bilin-
gual representations.

2.2 Inverted indexing

In this paper, we introduce a new count-based
approach, INVERTED, to obtaining cross-lingual
word representations using inverted indexing,
comparing it with bilingual word representations
learned using discriminative techniques. The main
advantage of this approach, apart for its simplic-
ity, is that it provides truly inter-lingual represen-
tations.

Our idea is simple. Wikipedia is a cross-lingual,
crowd-sourced encyclopedia with more than 35
million articles written in different languages. At
the time of writing, Wikipedia contains more than
10,000 articles in 129 languages. 52 languages
had more than 100,000 articles. Several articles
are written on the same topic, but in different lan-
guages, and these articles all link to the same node
in the Wikipedia ontology, the same Wikipedia
concept. If for a set of languages, we identify
the common subset of Wikipedia concepts, we can
thus describe each concept by the set of terms used
in the corresponding articles. Each term set will
include terms from each of the different languages.

We can now present a word by the corre-
sponding row in the inverted indexing of this
concept-to-term set matrix. Instead of repre-
senting a Wikipedia concept by the terms used
across languages to describe it, we describe a
word by the Wikipedia concepts it is used to de-

scribe. Note that because of the cross-lingual
concepts, this vector representation is by defini-
tion cross-lingual. So, for example, if the word
glasses is used in the English Wikipedia article on
Harry Potter, and the English Wikipedia article on
Google, and the word Brille occurs in the corre-
sponding German ones, the two words are likely
to get similar representations.

In our experiments, we use the common sub-
set of available German, English, French, Span-
ish, and Swedish Wikipedia dumps.1 We leave out
words occurring in more than 5000 documents and
perform dimensionality reduction using stochas-
tic, two-pass, rank-reduced SVD - specifically, the
latent semantic indexing implementation in Gen-
sim using default parameters.2

2.3 Baseline embeddings

We use the word embedding models of Klemen-
tiev et al. (2012)3 (KLEMENTIEV), and Chandar
et al. (2014) (CHANDAR) as baselines in the ex-
periments below. We also ran some of our exper-
iments with the embeddings provided by Gouws
and Søgaard (2015), but results were very similar
to Chandar et al. (2014). We compare the near-
est cross-language neighbors in the various rep-
resentations in Table 1. Specifically, we selected
five words from the Spanish test data and searched
for its three nearest neighbors in KLEMENTIEV,
CHANDAR and INVERTED. The nearest neighbors
are presented left to right. We note that CHANDAR

and INVERTED seem to contain less noise. KLE-
MENTIEV is the only model that relies on word-
alignments. Whether the noise originates from
alignments, or just model differences, is unclear
to us.

2.4 Parameters of the word representation
models

For KLEMENTIEV and CHANDAR, we rely on em-
beddings provided by the authors. The only pa-
rameter in inverted indexing is the fixed dimen-
sionality in SVD. Our baseline models use 40 di-
mensions. In document classification, we also
use 40 dimensions, but for POS tagging and de-
pendency parsing, we tune the dimensionality pa-
rameter δ ∈ {40, 80, 160} on Spanish develop-
ment data when possible. For document clas-

1https://sites.google.com/site/rmyeid/
projects/polyglot

2http://radimrehurek.com/gensim/
3http://klementiev.org/data/distrib/
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TRAIN TEST TOKEN COVERAGE
lang data points tokens data points tokens KLEMENTIEV CHANDAR INVERTED

RCV – DOCUMENT CLASSIFICATION

en 10000 – – – 0.314 0.314 0.779
de – – 4998 – 0.132 0.132 0.347

AMAZON – DOCUMENT CLASSIFICATION

en 6000 – – – 0.314 0.314 0.779
de – – 6000 – 0.132 0.132 0.347

GOOGLE UNIVERSAL TREEBANKS – POS TAGGING & DEPENDENCY PARSING

en 39.8k 950k 2.4k 56.7k – – –
de 2.2k 30.4k 1.0k 16.3k 0.886 0.884 0.587
es 3.3k 94k 0.3k 8.3k 0.916 0.916 0.528
fr 3.3k 74.9k 0.3k 6.9k 0.888 0.888 0.540
sv 4.4k 66.6k 1.2k 20.3k n/a n/a 0.679

CONLL 07 – DEPENDENCY PARSING

en 18.6 447k – – – – –
es – – 206 5.7k 0.841 0.841 0.455
de – – 357 5.7k 0.616 0.612 0.294
sv – – 389 5.7k n/a n/a 0.561

EUROPARL – WORD ALIGNMENT

en – – 100 – 0.370 0.370 0.370
es – – 100 – 0.533 0.533 0.533

Table 2: Characteristics of the data sets. Embeddings coverage (token-level) for KLEMENTIEV, CHAN-
DAR and INVERTED on the test sets. We use the common vocabulary on WORD ALIGNMENT.

sification and word alignment, we fix the num-
ber of dimensions to 40. For both our base-
lines and systems, we also tune a scaling fac-
tor σ ∈ {1.0, 0.1, 0.01, 0.001} for POS tagging
and dependency parsing, using the scaling method
from Turian et al. (2010), also used in Gouws and
Søgaard (2015). We do not scale our embeddings
for document classification or word alignment.

3 Experiments

The data set characteristics are found in Table 2.3.

3.1 Document classification
Data Our first document classification task is topic
classification on the cross-lingual multi-domain
sentiment analysis dataset AMAZON in Pretten-
hofer and Stein (2010).4 We represent each docu-
ment by the average of the representations of those
words that we find both in the documents and in
our embeddings. Rather than classifying reviews
by sentiment, we classify by topic, trying to dis-
criminate between book reviews, music reviews
and DVD reviews, as a three-way classification
problem, training on English and testing on Ger-
man. Unlike in the other tasks below, we always

4http://www.webis.de/research/corpora/

use unscaled word representations, since these are
our only features. All word representations have
40 dimensions.

The other document classification task is a four-
way classification problem distinguishing between
four topics in RCV corpus.5 See Klementiev et al.
(2012) for details. We use exactly the same set-up
as for AMAZON.
Baselines We use the default parameters of the im-
plementation of logistic regression in Sklearn as
our baseline.6 The feature representation is the av-
erage embedding of non-stopwords in KLEMEN-
TIEV, resp., CHANDAR. Out-of-vocabulary words
do not affect the feature representation of the doc-
uments.
System For our system, we replace the above neu-
ral net word embeddings with INVERTED repre-
sentations. Again, out-of-vocabulary words do not
affect the feature representation of the documents.

3.2 POS tagging

Data We use the coarse-grained part-of-speech an-
notations in the Google Universal Treebanks v. 1.0

5http://www.ml4nlp.de/code-and-data
6http://scikit-learn.org/stable/
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(McDonald et al., 2013).7 Out of the languages in
this set of treebanks, we focus on five languages
(de, en, es, fr, sv), with English only used as train-
ing data. Those are all treebanks of significant
size, but more importantly, we have baseline em-
beddings for four of these languages, as well as tag
dictionaries (Li et al., 2012) needed for the POS
tagging experiments.
Baselines One baseline method is a type-
constrained structured perceptron with only orto-
graphic features, which are expected to transfer
across languages. The type constraints come from
Wiktionary, a crowd-sourced tag dictionary.8 Type
constraints from Wiktionary were first used by Li
et al. (2012), but note that their set-up is unsu-
pervised learning. Täckström et al. (2013) also
used type constraints in a supervised set-up. Our
learning algorithm is the structured perceptron al-
gorithm originally proposed by Collins (2002). In
our POS tagging experiments, we always do 10
passes over the data. We also present two other
baselines, where we augment the feature repre-
sentation with different embeddings for the target
word, KLEMENTIEV and CHANDAR. With all the
embeddings in POS tagging, we assign a mean
vector to out-of-vocabulary words.
System For our system, we simply augment the
delexicalized POS tagger with the INVERTED dis-
tributional representation of the current word. The
best parameter setting on Spanish development
data was σ = 0.01, δ = 160.

3.3 Dependency parsing

Data We use the same treebanks from the Google
Universal Treebanks v. 1.0 as used in our POS tag-
ging experiments. We again use the Spanish de-
velopment data for parameter tuning. For compat-
ibility with Xiao and Guo (2014), we also present
results on CoNLL 2006 and 2007 treebanks for
languages for which we had baseline and system
word representations (de, es, sv). Our parameter
settings for these experiments were the same as
those tuned on the Spanish development data from
the Google Universal Treebanks v. 1.0.
Baselines The most obvious baseline in our exper-
iments is delexicalized transfer (DELEX) (McDon-
ald et al., 2011; Søgaard, 2011). This baseline sys-
tem simply learns models without lexical features.
We use a modified version of the first-order Mate

7http://code.google.com/p/uni-dep-tb/
8https://code.google.com/p/

wikily-supervised-pos-tagger/

parser (Bohnet, 2010) that also takes continuous-
valued embeddings as input an disregards features
that include lexical items.

For our embeddings baselines, we augment the
feature space by adding embedding vectors for
head h and dependent d. We experimented with
different versions of combining embedding vec-
tors, from firing separate h and d per-dimension
features (Bansal et al., 2014) to combining their
information. We found that combining the em-
beddings of h and d is effective and consistently
use the absolute difference between the embed-
ding vectors, since that worked better than addi-
tion and multiplication on development data.

Delexicalized transfer (DELEX) uses three (3)
iterations over the data in both the single-source
and the multi-source set-up, a parameter set on
the Spanish development data. The remaining pa-
rameters were obtained by averaging over perfor-
mance with different embeddings on the Spanish
development data, obtaining: σ = 0.005, δ =
20, i = 3, and absolute difference for vector com-
bination. With all the embeddings in dependency
parsing, we assign a POS-specific mean vector to
out-of-vocabulary words, i.e., the mean of vectors
for words with the input word’s POS.

System We use the same parameters as those used
for our baseline systems. In the single-source set-
up, we use absolute difference for combining vec-
tors, while addition in the multi-source set-up.

3.4 Word alignment

Data We use the manually word-aligned English-
Spanish Europarl data from Graca et al. (2008).
The dataset contains 100 sentences. The annota-
tors annotated whether word alignments were cer-
tain or possible, and we present results with all
word alignments and with only the certain ones.
See Graca et al. (2008) for details.

Baselines For word alignment, we simply align
every aligned word in the gold data, for which we
have a word embedding, to its (Euclidean) nearest
neighbor in the target sentence. We evaluate this
strategy by its precision (P@1).

System We compare INVERTED with KLEMEN-
TIEV and CHANDAR. To ensure a fair comparison,
we use the subset of words covered by all three
embeddings.
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de es fr sv av-sv

EN→TARGET

EMBEDS
K12 80.20 73.16 47.69 - 67.02
C14 74.85 83.03 48.24 - 68.71

INVERTED SVD 81.18 82.12 49.68 78.72 70.99

MULTI-SOURCE→TARGET

INVERTED SVD 80.10 84.69 49.68 78.72 70.66

Table 4: POS tagging (accuracies), K12: KLEMENTIEV, C14: CHANDAR. Parameters tuned on devel-
opment data: σ = 0.01, δ = 160. Iterations not tuned (i = 10). Averages do not include Swedish, for
comparability.

Dataset KLEMENTIEV CHANDAR INVERTED

AMAZON 0.32 0.36 0.49
RCV 0.75 0.90 0.55

Table 3: Document classification results (F1-
scores)

UAS
de es sv

EN→TARGET

DELEX - 44.78 47.07 56.75
DELEX-XIAO - 46.24 52.05 57.79

EMBEDS
K12 44.77 47.31 -
C14 44.32 47.56

INVERTED - 45.01 47.45 56.15

XIAO - 49.54 55.72 61.88

Table 6: Dependency parsing for CoNLL
2006/2007 datasets. Parameters same as on the
Google Universal Treebanks.

4 Results

4.1 Document classification

Our document classification results in Table 3 are
mixed, but we note that both Klementiev et al.
(2012) and Chandar et al. (2014) developed their
methods using development data from the RCV
corpus. It is therefore not surprising that they
obtain good results on this data. On AMAZON,
INVERTED is superior to both KLEMENTIEV and
CHANDAR.

4.2 POS tagging

In POS tagging, INVERTED leads to signifi-
cant improvements over using KLEMENTIEV and

CHANDAR. See Table 4 for results. Somewhat
surprisingly, we see no general gain from using
multiple source languages. This is very different
from what has been observed in dependency pars-
ing (McDonald et al., 2011), but may be explained
by treebank sizes, language similarity, or the noise
introduced by the word representations.

4.3 Dependency parsing
In dependency parsing, distributional word rep-
resentations do not lead to significant improve-
ments, but while KLEMENTIEV and CHANDAR

hurt performance, the INVERTED representations
lead to small improvements on some languages.
The fact that improvements are primarily seen on
Spanish suggest that our approach is parameter-
sensitive. This is in line with previous ob-
servations that count-based methods are more
parameter-sensitive than prediction-based ones
(Baroni et al., 2014).

For comparability with Xiao and Guo (2014),
we also did experiments with the CoNLL 2006
and CoNLL 2007 datasets for which we had
embeddings (Table 6). Again, we see little effects
from using the word representations, and we also
see that our baseline model is weaker than the one
in Xiao and Guo (2014) (DELEX-XIAO). See §5
for further discussion.

4.4 Word alignment
The word alignment results are presented in Ta-
ble 7. On the certain alignments, we see an ac-
curacy of more than 50% with INVERTED in one
case. KLEMENTIEV and CHANDAR have the ad-
vantage of having been trained on the English-
Spanish Europarl data, but nevertheless we see
consistent improvements with INVERTED over
their off-the-shelf embeddings.
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UAS LAS
de es fr sv de es fr sv

EN→TARGET

DELEX - 56.26 62.11 64.30 66.61 48.24 53.01 54.98 56.93

EMBEDS
K12 56.47 61.92 61.51 - 48.26 52.88 51.76 -
C14 56.19 61.97 62.95 - 48.11 52.97 53.90 -

INVERTED - 56.18 61.71 63.81 66.54 48.82 53.04 54.81 57.18

MULTI-SOURCE→TARGET

DELEX - 56.80 63.21 66.00 67.49 49.32 54.77 56.53 57.86
INVERTED - 56.56 64.03 66.22 67.32 48.82 55.03 56.79 57.70

Table 5: Dependency parsing results on the Universal Treebanks (unlabeled and labeled attachment
scores). Parameters tuned on development data: σ = 0.005, δ = 20, i = 3.

KLEMENTIEV CHANDAR INVERTED

EN-ES (S+P) 0.20 0.24 0.25
ES-EN (S+P) 0.35 0.32 0.41
EN-ES (S) 0.20 0.25 0.25
ES-EN (S) 0.38 0.39 0.53

Table 7: Word alignment results (P@1). S=sure (certain) alignments. P=possible alignments.

5 Related Work

As noted in §1, there has been some work on learn-
ing word representations for cross-lingual parsing
lately. Täckström et al. (2013) presented a bilin-
gual clustering algorithm and used the word clus-
ters to augment a delexicalized transfer baseline.
Bansal et al. (2014), in the context of monolingual
dependency parsing, investigate continuous word
representation for dependency parsing in a mono-
lingual cross-domain setup and compare them to
word clusters. However, to make the embeddings
work, they had to i) bucket real values and perform
hierarchical clustering on them, ending up with
word clusters very similar to those of Täckström
et al. (2013); ii) use syntactic context to estimate
embeddings. In the cross-lingual setting, syntactic
context is not available for the target language, but
doing clustering on top of inverted indexing is an
interesting option we did not explore in this paper.

Xiao and Guo (2014) is, to the best of our
knowledge, the only parser using bilingual em-
beddings for unsupervised cross-lingual parsing.
They evaluate their models on CoNLL 2006 and
CoNLL 2007, and we compare our results to
theirs in §4. They obtain much better relative
improvements on dependency parsing that we do
- comparable to those we observe in document
classification and POS tagging. It is not clear to
us what is the explanation for this improvement.

The approach relies on a bilingual dictionary
as in Klementiev et al. (2012) and Gouws and
Søgaard (2015), but none of these embeddings
led to improvements. Unfortunately, we did not
have the code or embeddings of Xiao and Guo
(2014). One possible explanation is that they use
the embeddings in a very different way in the
parser. They use the MSTParser. Unfortunately,
they do not say exactly how they combine the
embeddings with their baseline feature model.

The idea of using inverted indexing in
Wikipedia for modelling language is not entirely
new either. In cross-lingual information retrieval,
this technique, sometimes referred to as explicit
semantic analysis, has been used to measure
source and target language document relatedness
(Potthast et al., 2008; Sorg and Cimiano, 2008).
Gabrilovich and Markovitch (2009) also use this
technique to model documents, and they evaluate
their method on text categorization and on com-
puting the degree of semantic relatedness between
text fragments. See also Müller and Gurevych
(2009) for an application of explicit semantic anal-
ysis to modelling documents. This line of work
is very different from ours, and to the best of
our knowledge, we are the first to propose to use
inverted indexing of Wikipedia for cross-lingual
word representations.
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6 Conclusions

We presented a simple, scalable approach to ob-
taining cross-lingual word representations that en-
ables multi-source learning. We compared these
representations to two state-of-the-art approaches
to neural net word embeddings across four tasks
and 17 datasets, obtaining better results than both
approaches in 14/17 of these cases.
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Abstract

In this paper, we investigate the problem of
learning a machine translation model that
can simultaneously translate sentences
from one source language to multiple
target languages. Our solution is inspired
by the recently proposed neural machine
translation model which generalizes
machine translation as a sequence
learning problem. We extend the neural
machine translation to a multi-task
learning framework which shares source
language representation and separates
the modeling of different target language
translation. Our framework can be applied
to situations where either large amounts
of parallel data or limited parallel data
is available. Experiments show that
our multi-task learning model is able to
achieve significantly higher translation
quality over individually learned model in
both situations on the data sets publicly
available.

1 Introduction

Translation from one source language to multiple
target languages at the same time is a difficult task
for humans. A person often needs to be familiar
with specific translation rules for different
language pairs. Machine translation systems
suffer from the same problems too. Under the
current classic statistical machine translation
framework, it is hard to share information across
different phrase tables among different language
pairs. Translation quality decreases rapidly when
the size of training corpus for some minority
language pairs becomes smaller. To conquer the
problems described above, we propose a
multi-task learning framework based on a
sequence learning model to conduct machine

translation from one source language to multiple
target languages, inspired by the recently
proposed neural machine translation(NMT)
framework proposed by Bahdanau et al. (2014).
Specifically, we extend the recurrent neural
network based encoder-decoder framework to a
multi-task learning model that shares an encoder
across all language pairs and utilize a different
decoder for each target language.

The neural machine translation approach has
recently achieved promising results in improving
translation quality. Different from conventional
statistical machine translation approaches, neural
machine translation approaches aim at learning
a radically end-to-end neural network model to
optimize translation performance by generalizing
machine translation as a sequence learning
problem. Based on the neural translation
framework, the lexical sparsity problem and the
long-range dependency problem in traditional
statistical machine translation can be alleviated
through neural networks such as long short-
term memory networks which provide great
lexical generalization and long-term sequence
memorization abilities.

The basic assumption of our proposed
framework is that many languages differ lexically
but are closely related on the semantic and/or the
syntactic levels. We explore such correlation
across different target languages and realize it
under a multi-task learning framework. We treat a
separate translation direction as a sub RNN
encode-decoder task in this framework which
shares the same encoder (i.e. the same source
language representation) across different
translation directions, and use a different decoder
for each specific target language. In this way, this
proposed multi-task learning model can make full
use of the source language corpora across
different language pairs. Since the encoder part
shares the same source language representation

1723



across all the translation tasks, it may learn
semantic and structured predictive representations
that can not be learned with only a small amount
of data. Moreover, during training we jointly
model the alignment and the translation process
simultaneously for different language pairs under
the same framework. For example, when we
simultaneously translate from English into
Korean and Japanese, we can jointly learn latent
similar semantic and structure information across
Korea and Japanese because these two languages
share some common language structures.

The contribution of this work is three folds.
First, we propose a unified machine learning
framework to explore the problem of translating
one source language into multiple target
languages. To the best of our knowledge, this
problem has not been studied carefully in the
statistical machine translation field before.
Second, given large-scale training corpora for
different language pairs, we show that our
framework can improve translation quality on
each target language as compared with the neural
translation model trained on a single language
pair. Finally, our framework is able to alleviate
the data scarcity problem, using language pairs
with large-scale parallel training corpora to
improve the translation quality of those with few
parallel training corpus.

The following sections will be organized as
follows: in section 2, related work will be
described, and in section 3, we will describe our
multi-task learning method. Experiments that
demonstrate the effectiveness of our framework
will be described in section 4. Lastly, we will
conclude our work in section 5.

2 Related Work

Statistical machine translation systems often rely
on large-scale parallel and monolingual training
corpora to generate translations of high quality.
Unfortunately, statistical machine translation
system often suffers from data sparsity problem
due to the fact that phrase tables are extracted from
the limited bilingual corpus. Much work has been
done to address the data sparsity problem such
as the pivot language approach (Wu and Wang,
2007; Cohn and Lapata, 2007) and deep learning
techniques (Devlin et al., 2014; Gao et al., 2014;
Sundermeyer et al., 2014; Liu et al., 2014).

On the problem of how to translate one source

language to many target languages within one
model, few work has been done in statistical
machine translation. A related work in SMT is
the pivot language approach for statistical machine
translation which uses a commonly used language
as a ”bridge” to generate source-target translation
for language pair with few training corpus. Pivot
based statistical machine translation is crucial in
machine translation for resource-poor language
pairs, such as Spanish to Chinese. Considering
the problem of translating one source language
to many target languages, pivot based SMT
approaches does work well given a large-scale
source language to pivot language bilingual corpus
and large-scale pivot language to target languages
corpus. However, in reality, language pairs
between English and many other target languages
may not be large enough, and pivot-based SMT
sometimes fails to handle this problem. Our
approach handles one to many target language
translation in a different way that we directly learn
an end to multi-end translation system that does
not need a pivot language based on the idea of
neural machine translation.

Neural Machine translation is a emerging
new field in machine translation, proposed
by several work recently (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Bahdanau
et al., 2014), aiming at end-to-end machine
translation without phrase table extraction and
language model training. Different from
traditional statistical machine translation, neural
machine translation encodes a variable-length
source sentence with a recurrent neural network
into a fixed-length vector representation and
decodes it with another recurrent neural network
from a fixed-length vector into variable-length
target sentence. A typical model is the RNN
encoder-decoder approach proposed by Bahdanau
et al. (2014), which utilizes a bidirectional
recurrent neural network to compress the source
sentence information and fits the conditional
probability of words in target languages with
a recurrent manner. Moreover, soft alignment
parameters are considered in this model. As a
specific example model in this paper, we adopt a
RNN encoder-decoder neural machine translation
model for multi-task learning, though all neural
network based model can be adapted in our
framework.

In the natural language processing field, a

1724



notable work related with multi-task learning
was proposed by Collobert et al. (2011) which
shared common representation for input words
and solve different traditional NLP tasks such as
part-of-Speech tagging, name entity recognition
and semantic role labeling within one framework,
where the convolutional neural network model
was used. Hatori et al. (2012) proposed to
jointly train word segmentation, POS tagging and
dependency parsing, which can also be seen as
a multi-task learning approach. Similar idea has
also been proposed by Li et al. (2014) in Chinese
dependency parsing. Most of multi-task learning
or joint training frameworks can be summarized
as parameter sharing approaches proposed by
Ando and Zhang (2005) where they jointly trained
models and shared center parameters in NLP
tasks. Researchers have also explored similar
approaches (Sennrich et al., 2013; Cui et al., 2013)
in statistical machine translation which are often
refered as domain adaption. Our work explores the
possibility of machine translation under the multi-
task framework by using the recurrent neural
networks. To the best of our knowledge, this is the
first trial of end to end machine translation under
multi-task learning framework.

3 Multi-task Model for Multiple
Language Translation

Our model is a general framework for translating
from one source language to many targets. The
model we build in this section is a recurrent
neural network based encoder-decoder model with
multiple target tasks, and each task is a specific
translation direction. Different tasks share the
same translation encoder across different language
pairs. We will describe model details in this
section.

3.1 Objective Function

Given a pair of training sentence {x,y}, a
standard recurrent neural network based
encoder-decoder machine translation model fits a
parameterized model to maximize the conditional
probability of a target sentence y given a source
sentence x , i.e., argmax p(y|x). We extend this
into multiple languages setting. In particular,
suppose we want to translate from English to
many different languages, for instance,
French(Fr), Dutch(Nl), Spanish(Es). Parallel
training data will be collected before training, i.e.

En-Fr, En-Nl, En-Es parallel sentences. Since the
English representation of the three language pairs
is shared in one encoder, the objective function
we optimize is the summation of several
conditional probability terms conditioned on
representation generated from the same encoder.

L(Θ) = argmax
Θ

(
∑
Tp

(
1
Np

Np∑
i

log p(yi
Tp |xi

Tp ; Θ))

(1)
where Θ = {Θsrc,ΘtrgTp

, Tp = 1, 2, · · · , Tm},
Θsrc is a collection of parameters for source
encoder. And ΘtrgTp

is the parameter set
of the Tpth target language. Np is the size
of parallel training corpus of the pth language
pair. For different target languages, the target
encoder parameters are seperated so we have Tm
decoders to optimize. This parameter sharing
strategy makes different language pairs maintain
the same semantic and structure information of the
source language and learn to translate into target
languages in different decoders.

3.2 Model Details

Suppose we have several language pairs
(xTp ,yTp) where Tp denotes the index of the Tpth
language pair. For a specific language pair, given
a sequence of source sentence input
(xTp

1 , x
Tp

2 , · · · , xTp
n ), the goal is to jointly

maximize the conditional probability for each
generated target word. The probability of
generating the tth target word is estimated as:

p(yTp

t |yTp

1 , · · · , yTp

t−1, x
Tp) = g(yTp

t−1, s
Tp

t , c
Tp

t )
(2)

where the function g is parameterized by a
feedforward neural network with a softmax output
layer. And g can be viewed as a probability
predictor with neural networks. sTp

t is a recurrent
neural network hidden state at time t, which can
be estimated as:

s
Tp

t = f(sTp

t−1, y
Tp

t−1, c
Tp

t ) (3)

the context vector cTp

t depends on a sequence of
annotations (h1, · · · , hLx) to which an encoder
maps the input sentence, where Lx is the
number of tokens in x. Each annotation hi
is a bidirectional recurrent representation with
forward and backward sequence information
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around the ith word.

ct
Tp =

Lx∑
j=1

a
Tp

ij hj (4)

where the weight aTp

tj is a scalar computed by

a
Tp

tj =
exp(eTp

tj )∑L
Tp
x

k=1 exp(e
Tp

tk )
(5)

e
Tp

tj = φ(st−1
Tp ,hj) (6)

a
Tp

tj is a normalized score of etj which is a soft
alignment model measuring how well the input
context around the jth word and the output word
in the tth position match. etj is modeled through a
perceptron-like function:

φ(x,y) = vT tanh(Wx + Uy) (7)

To compute hj, a bidirectional recurrent neural
network is used. In the bidirectional recurrent
neural network, the representation of a forward
sequence and a backward sequence of the input
sentence is estimated and concatenated to be a
single vector. This concatenated vector can be
used to translate multiple languages during the test
time.

hj = [−→hj;
←−
hj]T (8)

From a probabilistic perspective, our model is
able to learn the conditional distribution of several
target languages given the same source corpus.
Thus, the recurrent encoder-decoders are jointly
trained with several conditional probabilities
added together. As for the bidirectional recurrent
neural network module, we adopt the recently
proposed gated recurrent neural network (Cho
et al., 2014). The gated recurrent neural
network is shown to have promising results in
several sequence learning problem such as speech
recognition and machine translation where input
and output sequences are of variable length. It
is also shown that the gated recurrent neural
network has the ability to address the gradient
vanishing problem compared with the traditional
recurrent neural network, and thus the long-range
dependency problem in machine translation can
be handled well. In our multi-task learning
framework, the parameters of the gated recurrent
neural network in the encoder are shared, which is
formulated as follows.

ht = (I− zt)� ht−1 + zt � ĥt (9)

zt = σ(Wzxt + Uzht−1) (10)

ĥt = tanh(Wxt + U(rt � ht−1)) (11)

rt = σ(Wrxt + Urht−1) (12)

Where I is identity vector and � denotes element
wise product between vectors. tanh(x) and σ(x)
are nonlinear transformation functions that can be
applied element-wise on vectors. The recurrent
computation procedure is illustrated in 1, where
xt denotes one-hot vector for the tth word in a
sequence.

Figure 1: Gated recurrent neural network
computation, where rt is a reset gate responsible
for memory unit elimination, and zt can be viewed
as a soft weight between current state information
and history information.

tanh(x) =
ex − e−x
ex + e−x

(13)

σ(x) =
1

1 + e−x
(14)

The overall model is illustrated in Figure 2
where the multi-task learning framework with
four target languages is demonstrated. The
soft alignment parameters Ai for each encoder-
decoder are different and only the bidirectional
recurrent neural network representation is shared.

3.3 Optimization
The optimization approach we use is the
mini-batch stochastic gradient descent approach
(Bottou, 1991). The only difference between our
optimization and the commonly used stochastic
gradient descent is that we learn several mini-
batches within a fixed language pair for several
mini-batch iterations and then move onto the next
language pair. Our optimization procedure is
shown in Figure 3.
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Figure 2: Multi-task learning framework for multiple-target language translation

Figure 3: Optimization for end to multi-end model

3.4 Translation with Beam Search
Although parallel corpora are available for the
encoder and the decoder modeling in the training
phrase, the ground truth is not available during test
time. During test time, translation is produced by
finding the most likely sequence via beam search.

Ŷ = argmax
Y

p(YTp |STp) (15)

Given the target direction we want to translate to,
beam search is performed with the shared encoder
and a specific target decoder where search space
belongs to the decoder Tp. We adopt beam search
algorithm similar as it is used in SMT system
(Koehn, 2004) except that we only utilize scores
produced by each decoder as features. The size
of beam is 10 in our experiments for speedup
consideration. Beam search is ended until the end-
of-sentence eos symbol is generated.

4 Experiments

We conducted two groups of experiments to
show the effectiveness of our framework. The
goal of the first experiment is to show that
multi-task learning helps to improve translation
performance given enough training corpora for all
language pairs. In the second experiment, we
show that for some resource-poor language pairs
with a few parallel training data, their translation
performance could be improved as well.

4.1 Dataset
The Europarl corpus is a multi-lingual corpus
including 21 European languages. Here we only
choose four language pairs for our experiments.
The source language is English for all language
pairs. And the target languages are Spanish
(Es), French (Fr), Portuguese (Pt) and Dutch
(Nl). To demonstrate the validity of our
learning framework, we do some preprocessing
on the training set. For the source language,
we use 30k of the most frequent words for
source language vocabulary which is shared
across different language pairs and 30k most
frequent words for each target language. Out-
of-vocabulary words are denoted as unknown
words, and we maintain different unknown word
labels for different languages. For test sets,
we also restrict all words in the test set to
be from our training vocabulary and mark the
OOV words as the corresponding labels as in
the training data. The size of training corpus in
experiment 1 and 2 is listed in Table 1 where
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Training Data Information
Lang En-Es En-Fr En-Nl En-Pt En-Nl-sub En-Pt-sub
Sent size 1,965,734 2,007,723 1,997,775 1,960,407 300,000 300,000
Src tokens 49,158,635 50,263,003 49,533,217 49,283,373 8,362,323 8,260,690
Trg tokens 51,622,215 52,525,000 50,661,711 54,996,139 8,590,245 8,334,454

Table 1: Size of training corpus for different language pairs

En-Nl-sub and En-Pt-sub are sub-sampled data
set of the full corpus. The full parallel training
corpus is available from the EuroParl corpus,
downloaded from EuroParl public websites1. We
mimic the situation that there are only a small-
scale parallel corpus available for some language
pairs by randomly sub-sampling the training data.
The parallel corpus of English-Portuguese and
English-Dutch are sub-sampled to approximately
15% of the full corpus size. We select two data

Language pair En-Es En-Fr En-Nl En-Pt
Common test 1755 1755 1755 1755
WMT2013 3000 3000 - -

Table 2: Size of test set in EuroParl Common
testset and WMT2013

sets as our test data. One is the EuroParl Common
test set2 in European Parliament Corpus, the other
is WMT 2013 data set3. For WMT 2013, only
En-Fr, En-Es are available and we evaluate the
translation performance only on these two test
sets. Information of test sets is shown in Table 2.

4.2 Training Details
Our model is trained on Graphic Processing Unit
K40. Our implementation is based on the open
source deep learning package Theano (Bastien et
al., 2012) so that we do not need to take care
about gradient computations. During training, we
randomly shuffle our parallel training corpus for
each language pair at each epoch of our learning
process. The optimization algorithm and model
hyper parameters are listed below.

• Initialization of all parameters are from
uniform distribution between -0.01 and 0.01.
• We use stochastic gradient descent with

recently proposed learning rate decay
strategy Ada-Delta (Zeiler, 2012).

1http:www.statmt.orgeuroparl
2http://www.statmt.org/wmt14/test.tgz
3http://matrix.statmt.org/test sets

• Mini batch size in our model is set to 50 so
that the convergence speed is fast.
• We train 1000 mini batches of data in one

language pair before we switch to the next
language pair.
• For word representation dimensionality, we

use 1000 for both source language and target
language.
• The size of hidden layer is set to 1000.

We trained our multi-task model with a multi-
GPU implementation due to the limitation of
Graphic memory. And each target decoder is
trained within one GPU card, and we synchronize
our source encoder every 1000 batches among all
GPU card. Our model costs about 72 hours on full
large parallel corpora training until convergence
and about 24 hours on partial parallel corpora
training. During decoding, our implementation on
GPU costs about 0.5 second per sentence.

4.3 Evaluation

We evaluate the effectiveness of our method with
EuroParl Common testset and WMT 2013 dataset.
BLEU-4 (Papineni et al., 2002) is used as the
evaluation metric. We evaluate BLEU scores on
EuroParl Common test set with multi-task NMT
models and single NMT models to demonstrate
the validity of our multi-task learning framework.
On the WMT 2013 data sets, we compare
performance of separately trained NMT models,
multi-task NMT models and Moses. We use the
EuroParl Common test set as a development set in
both neural machine translation experiments and
Moses experiments. For single NMT models and
multi-task NMT models, we select the best model
with the highest BLEU score in the EuroParl
Common testset and apply it to the WMT 2013
dataset. Note that our experiment settings in NMT
is equivalent with Moses, considering the same
training corpus, development sets and test sets.
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4.4 Experimental Results
We report our results of three experiments to
show the validity of our methods. In the first
experiment, we train multi-task learning model
jointly on all four parallel corpora and compare
BLEU scores with models trained separately on
each parallel corpora. In the second experiment,
we utilize the same training procedures as
Experiment 1, except that we mimic the situation
where some parallel corpora are resource-poor and
maintain only 15% data on two parallel training
corpora. In experiment 3, we test our learned
model from experiment 1 and experiment 2 on
WMT 2013 dataset. Table 3 and 4 show the
case-insensitive BLEU scores on the Europarl
common test data. Models learned from the multi-
task learning framework significantly outperform
the models trained separately. Table 4 shows
that given only 15% of parallel training corpus
of English-Dutch and English-Portuguese, it is
possible to improve translation performance on all
the target languages as well. This result makes
sense because the correlated languages benefit
from each other by sharing the same predictive
structure, e.g. French, Spanish and Portuguese, all
of which are from Latin. We also notice that even
though Dutch is from Germanic languages, it is
also possible to increase translation performance
under our multi-task learning framework which
demonstrates the generalization of our model to
multiple target languages.

Lang-Pair En-Es En-Fr En-Nl En-Pt
Single NMT 26.65 21.22 28.75 20.27
Multi Task 28.03 22.47 29.88 20.75
Delta +1.38 +1.25 +1.13 +0.48

Table 3: Multi-task neural translation v.s. single
model given large-scale corpus in all language
pairs

We tested our selected model on the WMT 2013
dataset. Our results are shown in Table 5 where
Multi-Full is the model with Experiment 1 setting
and the model of Multi-Partial uses the same
setting in Experiment 2. The English-French
and English-Spanish translation performances are
improved significantly compared with models
trained separately on each language pair. Note

Lang-Pair En-Es En-Fr En-Nl* En-Pt*
Single NMT 26.65 21.22 26.59 18.26
Multi Task 28.29 21.89 27.85 19.32
Delta +1.64 +0.67 +1.26 +1.06

Table 4: Multi-task neural translation v.s. single
model with a small-scale training corpus on some
language pairs. * means that the language pair is
sub-sampled.

that this result is not comparable with the result
reported in (Bahdanau et al., 2014) as we use
much less training corpus. We also compare our
trained models with Moses. On the WMT 2013
data set, we utilize parallel corpora for Moses
training without any extra resource such as large-
scale monolingual corpus. From Table 5, it is
shown that neural machine translation models
have comparable BLEU scores with Moses. On
the WMT 2013 test set, multi-task learning model
outperforms both single model and Moses results
significantly.

4.5 Model Analysis and Discussion

We try to make empirical analysis through
learning curves and qualitative results to explain
why multi-task learning framework works well in
multiple-target machine translation problem.

From the learning process, we observed that the
speed of model convergence under multi-task
learning is faster than models trained separately
especially when a model is trained for resource-
poor language pairs. The detailed learning curves
are shown in Figure 4. Here we study the
learning curve for resource-poor language pairs,
i.e. English-Dutch and En-Portuguese, for which
only 15% of the bilingual data is sampled for
training. The BLEU scores are evaluated on the
Europarl common test set. From Figure 4, it
can be seen that in the early stage of training,
given the same amount of training data for each
language pair, the translation performance of
the multi-task learning model is improved more
rapidly. And the multi-task models achieve better
translation quality than separately trained models
within three iterations of training. The reason
of faster and better convergence in performance
is that the encoder parameters are shared across
different language pairs, which can make full use
of all the source language training data across the
language pairs and improve the source language
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Nmt Baseline Nmt Multi-Full Nmt Multi-Partial Moses
En-Fr 23.89 26.02(+2.13) 25.01(+1.12) 23.83
En-Es 23.28 25.31(+2.03) 25.83(+2.55) 23.58

Table 5: Multi-task NMT v.s. single model v.s. moses on the WMT 2013 test set

Figure 4: Faster and Better convergence in Multi-task Learning in multiple language translation

representation.
The sharing of encoder parameters is useful

especially for the resource-poor language pairs.
In the multi-task learning framework, the amount
of the source language is not limited by the
resource-poor language pairs and we are able to
learn better representation for the source language.
Thus the representation of the source language
learned from the multi-task model is more stable,
and can be viewed as a constraint that leverages
translation performance of all language pairs.
Therefore, the overfitting problem and the data
scarcity problem can be alleviated for language
pairs with only a few training data. In Table 6,
we list the three nearest neighbors of some source
words whose similarity is computed by using
the cosine score of the embeddings both in the
multi-task learning framework (from Experiment
two ) and in the single model (the resource-
poor English-Portuguese model). Although the
nearest neighbors of the high-frequent words such
as numbers can be learned both in the multi-task
model and the single model, the overall quality of
the nearest neighbors learned by the resource-poor
single model is much poorer compared with the
multi-task model.

The multi-task learning framework also generates
translations of higher quality. Some examples are
shown in Table 7. The examples are from the

MultiTask Nearest neighbors
provide deliver 0.78, providing 0.74,

give 0.72

crime terrorism 0.66, criminal 0.65,
homelessness 0.65

regress condense 0.74, mutate 0.71,
evolve 0.70

six eight 0.98,seven 0.96, 12 0.94

Single-Resource-Poor Nearest Neighbors
provide though 0.67,extending 0.56,

parliamentarians 0.44

crime care 0.75, remember 0.56, three
0.53

regress committing 0.33, accuracy
0.30, longed-for 0.28

six eight 0.87, three 0.69, thirteen
0.65

Table 6: Source language nearest-neighbor comparison
between the multi-task model and the single model

WMT 2013 test set. The French and Spanish
translations generated by the multi-task learning
model and the single model are shown in the table.

5 Conclusion

In this paper, we investigate the problem of how to
translate one source language into several different
target languages within a unified translation
model. Our proposed solution is based on the
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English Students, meanwhile, say the course is
one of the most interesting around.

Reference-Fr Les étudiants, pour leur part, assurent
que le cours est l’ un des plus
intéressants.

Single-Fr Les étudiants, entre-temps, disent
entendu l’ une des plus intéressantes.

Multi-Fr Les étudiants, en attendant, disent qu’ il
est l’ un des sujets les plus intéressants.

English In addition, they limited the right
of individuals and groups to provide
assistance to voters wishing to register.

Reference-Fr De plus, ils ont limité le droit de
personnes et de groupes de fournir
une assistance aux électeurs désirant s’
inscrire.

Single-Fr En outre, ils limitent le droit des
particuliers et des groupes pour fournir
l’ assistance aux électeurs.

Multi-Fr De plus, ils restreignent le droit des
individus et des groupes à fournir une
assistance aux électeurs qui souhaitent
enregistrer.

Table 7: Translation of different target languages
given the same input in our multi-task model.

recently proposed recurrent neural network based
encoder-decoder framework. We train a unified
neural machine translation model under the multi-
task learning framework where the encoder is
shared across different language pairs and each
target language has a separate decoder. To the
best of our knowledge, the problem of learning
to translate from one source to multiple targets
has seldom been studied. Experiments show that
given large-scale parallel training data, the multi-
task neural machine translation model is able
to learn good predictive structures in translating
multiple targets. Significant improvement can be
observed from our experiments on the data sets
publicly available. Moreover, our framework is
able to address the data scarcity problem of some
resource-poor language pairs by utilizing large-
scale parallel training corpora of other language
pairs to improve the translation quality. Our model
is efficient and gets faster and better convergence
for both resource-rich and resource-poor language
pair under the multi-task learning.

In the future, we would like to extend our
learning framework to more practical setting. For
example, train a multi-task learning model with
the same target language from different domains
to improve multiple domain translation within
one model. The correlation of different target

languages will also be considered in the future
work.
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Abstract

This paper proposes an embedding match-

ing approach to Chinese word segmenta-

tion, which generalizes the traditional se-

quence labeling framework and takes ad-

vantage of distributed representations. The

training and prediction algorithms have

linear-time complexity. Based on the pro-

posed model, a greedy segmenter is de-

veloped and evaluated on benchmark cor-

pora. Experiments show that our greedy

segmenter achieves improved results over

previous neural network-based word seg-

menters, and its performance is competi-

tive with state-of-the-art methods, despite

its simple feature set and the absence of ex-

ternal resources for training.

1 Introduction

Chinese sentences are written as character se-

quences without word delimiters, which makes

word segmentation a prerequisite of Chinese lan-

guage processing. Since Xue (2003), most work

has formulated Chinese word segmentation (CWS)

as sequence labeling (Peng et al., 2004) with char-

acter position tags, which has lent itself to struc-

tured discriminative learning with the benefit of

allowing rich features of segmentation configura-

tions, including (i) context of character/word n-

grams within local windows, (ii) segmentation his-

tory of previous characters, or the combinations of

both. These feature-based models still form the

backbone of most state-of-the art systems.

Nevertheless, many feature weights in such

models are inevitably poorly estimated because the

number of parameters is so large with respect to

the limited amount of training data. This has mo-

tivated the introduction of low-dimensional, real-

valued vectors, known as embeddings, as a tool

to deal with the sparseness of the input. Em-

beddings allow linguistic units appearing in sim-

ilar contexts to share similar vectors. The suc-

cess of embeddings has been observed in many

NLP tasks. For CWS, Zheng et al. (2013) adapted

Collobert et al. (2011) and uses character embed-

dings in local windows as input for a two-layer net-

work. The network predicts individual character

position tags, the transitions of which are learned

separately. Mansur et al. (2013) also developed a

similar architecture, which labels individual char-

acters and uses character bigram embeddings as

additional features to compensate the absence of

sentence-level modeling. Pei et al. (2014) im-

proved upon Zheng et al. (2013) by capturing the

combinations of context and history via a tensor

neural network.

Despite their differences, these CWS ap-

proaches are all sequence labeling models. In such

models, the target character can only influence the

prediction as features. Consider the the segmen-

tation configuration in (1), where the dot appears

before the target character in consideration and the

box (2) represents any character that can occur in

the configuration. In that example, the known his-

tory is that the first two characters中国 ‘China’ are

joined together, which is denoted by the underline.

(1) 中国·2格外 (where 2 ∈ {风,规, ...})

(2) 中国风 格外 ‘China-style especially’

(3) 中国 规格 外 ‘besides Chinese spec.’

For possible target characters, 风 ‘wind’ and 规
‘rule’, the correct segmentation decisions for them

are opposite, as shown in (2) and (3), respectively.

In order to correctly predict both, current models

can set higher weights for target character-specific

features. However, in general, 风 is more likely

to start a new word instead of joining the exist-

ing one as in this example. Given such conflicting

evidence, models can rarely find optimal feature

weights, if they exist at all.

1733



The crux of this conflicting evidence problem

is that similar configurations can suggest opposite

decisions, depending on the target character and

vice versa. Thus it might be useful to treat segmen-

tation decisions for distinct characters separately.

And instead of predicting general segmentation de-

cisions given configurations, it could be beneficial

to model the matching between configurations and

character-specific decisions.

To this end, this paper proposes an embed-

ding matching approach (Section 2) to CWS, in

which embeddings for both input and output are

learned and used as representations to counteract

sparsities. Thanks to embeddings of character-

specific decisions (actions) serving as both input

features and output, our hidden-layer-free archi-

tecture (Section 2.2) is capable of capturing pre-

diction histories in similar ways as the hidden lay-

ers in recurrent neural networks (Mikolov et al.,

2010). We evaluate the effectiveness of the model

via a linear-time greedy segmenter (Section 3) im-

plementation. The segmenter outperforms previ-

ous embedding-based models (Section 4.2) and

achieves state-of-the-art results (Section 4.3) on a

benchmark dataset. The main contributions of this

paper are:

• A novel embedding matching model for Chi-

nese word segmentation.

• Developing a greedy word segmenter, which

is based on the matching model and achieves

competitive results.

• Introducing the idea of character-specific seg-

mentation action embeddings as both feature

and output, which are cornerstones of the

model and the segmenter.

2 Embedding Matching Models for

Chinese Word Segmentation

We propose an embedding based matching model

for CWS, the architecture of which is shown in

Figure 1. The model employs trainable embed-

dings to represent both sides of the matching,

which will be specified shortly, followed by details

of the architecture in Section 2.2.

2.1 Segmentation as Configuration-Action

Matching

Output. The word segmentation output of a char-

acter sequence can be described as a sequence of

character-specific segmentation actions. We use

separation (s) and combination (c) as possible

actions for each character, where a separation ac-

tion starts a new word with the current character,

while a combination action appends the character

to the preceding ones. We model character-action

combinations instead of atomic, character inde-

pendent actions. As a running example, sentence

(4b) is the correct segmentation for (4a), which can

be represented as the sequence (猫 -s,占 -s,领 -c,

了 -s,婴 -s,儿 -c,床 -c) .

(4) a. 猫占领了婴儿床

b. 猫 占领 了 婴儿床

c. ‘The cat occupied the crib’

Input. The input are the segmentation configura-

tions for each character under consideration, which

are described by context and history features. The

context features of captures the characters that are

in the same sentence of the current character and

the history features encode the segmentation ac-

tions of previous characters.

• Context features. These refer to character

unigrams and bigrams that appear in the lo-

cal context window of h characters that cen-

ters at ci, where ci is 领 in example (4) and

h = 5 is used in this paper. The template for

features are shown in Table 1. For our exam-

ple, the uni- and bi-gram features would be:

猫, 占, 领, 了, 婴 and猫占, 占领, 领了, 了
婴, respectively.

• History features. To make inference

tractable, we assume that only previous l
character-specific actions are relevant, where

l = 2 for this study. In our example, 猫 -s

and 战 -s are the history features. Such fea-

tures capture partial information of syntactic

and semantic dependencies between previous

words, which are clues for segmentation that

pure character contexts could not provide. A

dummy character START is used to represent

the absent (left) context characters in the case

of the first l characters in a sentence. And the

predicted action for the START symbol is al-

ways s.

Matching. CWS is now modeled as the match-

ing of the input (segmentation configuration) and

output (two possible character-specific actions) for

each character. Formally, a matching model learns
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Figure 1: The architecture of the embedding matching model for CWS. The model predicts the seg-

mentation for the character领 in sentence (4), which is the second character of word占领 ‘occupy’. Both

feature and output embeddings are trainable parameters of the model.

Group Feature template

unigram ci−2, ci−1, ci, ci+1, ci+2

bigram ci−2ci−1, ci−1ci, cici+1, ci+1ci+2

Table 1: Uni- and bi-gram feature template

the following function:

g ( b1b2...bn, a1a2...an)

=
n∏

j=1

f
(
bj(aj−2, aj−1; cj−h

2
...cj+h

2
), aj

)
(1)

where c1c2...cn is the character sequence, bj

and aj are the segmentation configuration and

action for character cj , respectively. In (1),

bj(aj−2, aj−1; cj−h
2
...cj+h

2
) indicates that the con-

figuration for each character is a function that de-

pends on the actions of the previous l characters

and the characters in the local window of size h.

Why embedding. The above matching model

would suffer from sparsity if these outputs

(character-specific action aj) were directly en-

coded as one-hot vectors, since the matching

model can be seen as a sequence labeling model

with C×L outputs, where L is the number of orig-

inal labels while C is the number of unique char-

acters. For Chinese, C is at the order of 103−104.

The use of embeddings, however, can serve the

matching model well thanks to their low dimen-

sionality.

2.2 The Architecture

The proposed architecture (Figure 1) has three

components, namely look-up table, concatenation

and softmax function for matching. We will go

through each of them in this section.

Look-up table. The mapping between fea-

tures/outputs to their corresponding embeddings

are kept in a look-up table, as in many previous

embedding related work (Bengio et al., 2003; Pei

et al., 2014). Such features are extracted from the

training data. Formally, the embedding for each

distinct feature d is denoted as Embed(d) ∈ RN ,

which is a real valued vector of dimension N .

Each feature is retrieved by its unique index. The

retrieval of the embeddings for the output actions

is similar.

Concatenation. To predict the segmentation for

the target character cj , its feature vectors are con-

catenated into a single vector, the input embed-

ding, i(bj) ∈ RN×K , where K is the number of

features used to describe the configuration bj .

Softmax. The model then computes the dot

product of the input embedding i(bj) and each of
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the two output embeddings, o(aj,1) and o(aj,2),
which represent the two possible segmentation ac-

tions for the target character cj , respectively. The

exponential of the two raw scores are normalized

to obtain probabilistic values ∈ [0, 1].
We call the resulting scores matching probabili-

ties, which denote probabilities that actions match

the given segmentation configuration. In our ex-

ample,领 -c has the probability of 0.7 to be the cor-

rect action, while领 -s is less likely with a lower

probability of 0.3. Formally, the above matching

procedure can be described as a softmax function,

as shown in (2), which is also an individual f term

in (1).

f( bj , aj,k) =
exp (i(bj) · o(aj,k))∑
k′ exp

(
i(bj) · o(aj,k′)

) (2)

In (2), aj,k (1 ≤ k ≤ 2) represent two possible

actions, such as 领 -c and 领 -s for 领 in our ex-

ample. Note that, to ensure the input and output are

of the same dimension, for each character specific

action, the model trains two distinct embeddings,

one ∈ RN as feature and the other ∈ RN×K as

output, where K is the number of features for each

input.

Best word segmentation of sentence. After

plugging (2) into (1) and applying (and then drop-

ping) logarithms for computational convenience,

finding the best segmentation for a sentence be-

comes an optimization problem as shown in (3). In

the formula, Ŷ is the best action sequence found

by the model among all the possible ones, Y =
a1a2...an, where aj is the predicted action for the

character cj (1 ≤ j ≤ n), which is either cj-s or

cj-c, such as领 -s and领 -c.

Ŷ = argmax
Y

n∑
j=1

exp (i(bj) · o(aj))∑
k exp (i(bj) · o(aj,k))

(3)

3 The Greedy Segmenter

Our model depends on the actions predicted for the

previous two characters as history features. Tradi-

tionally, such scenarios call for dynamic program-

ming for exact inference. However, preliminary

experiments showed that, for our model, a Viterbi

search based segmenter, even supported by con-

ditional random field (Lafferty et al., 2001) style

training, yields similar results as the greedy search

based segmenter in this section. Since the greedy

segmenter is much more efficient in training and

testing, the rest of the paper will focus on the pro-

posed greedy segmenter, the details of which will

be described in this section.

3.1 Greedy Search

Initialization. The first character in the sentence

is made to have two left side characters that are

dummy symbols of START, whose predicted ac-

tions are always START-s, i.e. separation.

Iteration. The algorithms predicts the action for

each character cj , one at a time, in a left-to-right,

incremental manner, where 1 ≤ j ≤ n and n is the

sentence length. To do so, it first extracts context

features and history features, the latter of which are

the predicted character-specific actions for the pre-

vious two characters. Then the model matches the

concatenated feature embedding with embeddings

of the two possible character-specific actions, cj-s

and ci-c. The one with higher matching probability

is predicted as segmentation action for the charac-

ter, which is irreversible. After the action for the

last character is predicted, the segmented word se-

quence of the sentence is built from the predicted

actions deterministically.

Hybrid matching. Character-specific embed-

dings are capable of capturing subtle word forma-

tion tendencies of individual characters, but such

representations are incapable of covering match-

ing cases for unknown target characters. An-

other minor issue is that the action embeddings

for certain low frequent characters may not be suf-

ficiently trained. To better deal with these sce-

narios, We also train two embeddings to repre-

sent character-independent segmentation actions,

ALL-s and ALL-c, and use them to average with

or substitute embeddings of infrequent or unknown

characters, which are either insufficiently trained

or nonexistent. Such strategy is called hybrid

matching, which can improve accuracy.

Complexity. Although the total number of ac-

tions is large, the matching for each target charac-

ter only requires the two actions that correspond to

that specific character, such as领 -s and领 -c for

领 in our example. Each prediction is thus similar

to a softmax computation with two outputs, which

costs constant time C. Greedy search ensures that

the total time for predicting a sentence of n char-

acters is n×C, i.e. linear time complexity, with a

minor overhead for mapping actions to segmenta-

tions.
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3.2 Training

The training procedure first predicts the action for

the current character with current parameters, and

then optimizes the log likelihood of correct seg-

mentation actions in the gold segmentations to up-

date parameters. Ideally, the matching probability

for the correct action embedding should be 1 while

that of the incorrect one should be 0. We minimize

the cross-entropy loss function as in (4) for the seg-

mentation prediction of each character cj to pursue

this goal. The loss function is convex, similar to

that of maximum entropy models.

J = −
K∑

k=1

δ (aj,k) log
exp (i · o(aj,k))∑
k′ exp

(
i · o(aj,k′)

) (4)

where aj,k denotes a possible action for cj and i is a

compact notation for i(bj). In (4), δ(aj,k) is an in-

dicator function defined by the following formula,

where âj denotes the correct action.

δ(aj,k) =

{
1, if aj,k = âj

0, otherwise

To counteract over-fitting, we add L2 regulariza-

tion term to the loss function, as follows:

J = J +
K∑

k=1

λ

2

(
||i||2 + ||o(aj,k)||2

)
(5)

The formula in (4) and (5) are similar to that of a

standard softmax regression, except that both in-

put and output embeddings are parameters to be

trained. We perform stochastic gradient descent to

update input and output embeddings in turn, each

time considering the other as constant. We give the

gradient (6) and the update rule (7) for the input

embedding i(bj) (i for short), where ok is a short

notation for o(aj,k). The gradient and update for

output embeddings are similar. The α in (7) is the

learning rate, which we use a linear decay scheme

to gradually shrink it from its initial value to zero.

Note that the update for the input embedding i is

actually performed for the feature embeddings that

form i in the concatenation step.

∂J

∂i
=

∑
k

( f (bj , aj,k)− δ (aj,k)) · ok + λi (6)

i = i− α
∂J

∂i
(7)

Complexity. For each iteration of the training pro-

cess, the time complexity is also linear to the input

character number, as compared with search, only a

few constant time operations of gradient computa-

tion and parameter updates are performed for each

character.

4 Experiments

4.1 Data and Evaluation Metric

In the experiments, we use two widely used and

freely available1 manually word-segmented cor-

pora, namely, PKU and MSR, from the second

SIGHAN international Chinese word segmenta-

tion bakeoff (Emerson, 2005). Table 2 shows the

details of the two dataset. All evaluations in this

paper are conducted with official training/testing

set split using official scoring script.2

PKU MSR

Word types 5.5× 104 8.8× 104

Word tokens 1.1× 106 2.4× 106

Character types 5× 103 5× 103

Character tokens 1.8× 106 4.1× 106

Table 2: Corpus details of PKU and MSR

The segmentation accuracy is evaluated by pre-

cision (P ), recall (R), F-score and Roov, the re-

call for out-of-vocabulary words. Precision is de-

fined as the number of correctly segmented words

divided by the total number of words in the seg-

mentation result. Recall is defined as the number

of correctly segmented words divided by the total

number of words in the gold standard segmenta-

tion. In particular, Roov reflects the model gen-

eralization ability. The metric for overall perfor-

mance, the evenly-weighted F-score is calculated

as in (8):

F =
2× P ×R

P + R
(8)

To comply with CWS evaluation conventions and

make comparisons fair, we distinguish the follow-

ing two settings:

• closed-set : no extra resource other than train-

ing corpora is used.

• open-set : additional lexicon, raw corpora, etc

are used.

1http://www.sighan.org/bakeoff2005/
2http://www.sighan.org/bakeoff2003/score
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We will report the final results of our model3 on

PKU and MSR corpora in comparison with pre-

vious embedding based models (Section 4.2) and

state-of-the-art systems (Section 4.3), before go-

ing into detailed experiments for model analyses

(Section 4.5).

4.2 Comparison with Previous

Embedding-Based Models

Table 3 shows the results of our greedy segmenter

on the PKU and MSR datasets, which are com-

pared with embedding-based segmenters in previ-

ous studies.4 In the table, results for both closed-

set and open-set setting are shown for previous

models. In the open-set evaluations, all three

previous work use pre-training to train character

ngram embeddings from large unsegmented cor-

pora to initialize the embeddings, which will be

later trained with the manually word-segmented

training data. For our model, we report the close-

set results only, as pre-training does not signifi-

cant improve the results in our experiments (Sec-

tion 4.5).

As shown in Table 3, under close-set evaluation,

our model significantly outperform previous em-

bedding based models in all metrics. Compared

with the previous best embedding-based model,

our greedy segmenter has achieved up to 2.2% and

25.8% absolute improvements (MSR) on F-score

and Roov, respectively. Surprisingly, our close-set

results are also comparable to the best open-set re-

sults of previous models. As we will see in (Sec-

tion 4.4), when using same or less character uni-

and bi-gram features, our model still outperforms

previous embedding based models in closed-set

evaluation, which shows the effectiveness of our

matching model.

Significance test. Table 4 shows the 95% con-

fidence intervals (CI) for close-set results of our

model and the best performing previous model (Pei

et al., 2014), which are computed by formula (9),

following (Emerson, 2005).

CI = 2

√
F (1− F )

N
(9)

where F is the F-score value and the N is the word

token count of the testing set, which is 104,372 and

106,873 for PKU and MSR, respectively. We see

3Our implementation: https://zenodo.org/record/17645.
4The results for Zheng et al. (2013) are from the re-

implementation of Pei et al. (2014).

that the confidence intervals of our results do not

overlap with that of (Pei et al., 2014), meaning that

our improvements are statistically significant.

4.3 Comparison with the State-of-the-Art

Systems

Table 5 shows that the results of our greedy seg-

menter are competitive with the state-of-the-art su-

pervised systems (Best05 closed-set, Zhang and

Clark, 2007), although our feature set is much

simpler. More recent state-of-the-art systems rely

on both extensive feature engineering and ex-

tra raw corpora to boost performance, which are

semi-supervised learning. For example, Zhang

et al (2013) developed 8 types of static and dy-

namic features to maximize the co-training system

that used extra corpora of Chinese Gigaword and

Baike, each of which contains more than 1 bil-

lion character tokens. Such systems are not di-

rectly comparable with our supervised model. We

leave the development of semi-supervised learning

methods for our model as future work.

4.4 Features Influence

Table 6 shows the F-scores of our model on

PKU dataset when different features are removed

(‘w/o’) or when only a subset of features are used.

Features complement each other and removing any

group of features leads to a limited drop of F-

score up to 0.7%. Note that features of previ-

ous (two) actions are even more informative than

all unigram features combined, suggesting that

intra- an inter-word dependencies reflected by ac-

tion features are strong evidence for segmentation.

Moreover, using same or less character ngram fea-

tures, our model outperforms previous embedding

based models, which shows the effectiveness of

our matching model.

4.5 Model Analysis

Learning curve. Figure 2 shows that the training

procedure coverages quickly. After the first iter-

ation, the testing F-scores are already 93.5% and

95.7% for PKU and MSR, respectively, which then

gradually reach their maximum within the next 9

iterations before the curve flats out.

Speed. With an unoptimized single-thread

Python implementation running on a laptop with

intel Core-i5 CPU (1.9 GHZ), each iteration of the

training procedure on PKU dataset takes about 5

minutes, or 6,000 characters per second. The pre-
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Models
PKU Corpus MSR Corpus

P R F Roov P R F Roov

Zheng et al.(2013) 92.8 92.0 92.4 63.3 92.9 93.6 93.3 55.7

+ pre-training† 93.5 92.2 92.8 69.0 94.2 93.7 93.9 64.1

Mansur et al. (2013) 93.6 92.8 93.2 57.9 92.3 92.2 92.2 53.7

+ pre-training† 94.0 93.9 94.0 69.5 93.1 93.1 93.1 59.7

Pei et al. (2014) 93.7 93.4 93.5 64.2 94.6 94.2 94.4 61.4

+ pre-training† 94.4 93.6 94.0 69.0 95.2 94.6 94.9 64.8

+ pre-training & bigram† - - 95.2 - - - 97.2 -

This work (closed-set) 95.5 94.6 95.1 76.0 96.6 96.5 96.6 87.2

Table 3: Comparison with previous embedding based models. Numbers in percentage. Results with †
used extra corpora for (pre-)training.

Models
PKU MSR

F CI F CI

Pei et al. 93.5 ±0.15 94.4 ±0.14
This work 95.1 ±0.13 96.6 ±0.11

Table 4: Significance test of closed-set results of

Pei et al (2014) and our model.

Model PKU MSR

Best05 closed-set 95.0 96.4

Zhang et al. (2006) 95.1 97.1

Zhang and Clark (2007) 94.5 97.2

Wang et al. (2012) 94.1 97.2

Sun et al. (2009) 95.2 97.3

Sun et al. (2012) 95.4 97.4

Zhang et al. (2013) † 96.1 97.4

This work 95.1 96.6

Table 5: Comparison with the state-of-the-art sys-

tems. Results with † used extra lexicon/raw cor-

pora for training, i.e. in open-set setting. Best05

refers to the best closed-set results in 2nd SIGHAN

bakeoff.

diction speed is above 13,000 character per second.

Hyper parameters. The hyper parameters used

in the experiments are shown in Table 7. We ini-

tialized hyper parameters with recommendations

in literature before tuning with dev-set experi-

ments, each of which change one parameter by a

magnitude. We fixed the hyper parameter to the

current setting without spending too much time on

tuning, since that is not the main purpose of this

paper.

• Embedding size determines the number of

parameters to be trained, thus should fit the

Feature F-score Feature F-score

All features 95.1 uni-&bi-gram 94.6

w/o action 94.6 only action 93.3

w/o unigram 94.8 only unigram 92.1

w/o bigram 94.4 only bigram 94.2

Table 6: The influence of features. F-score in per-

centage on the PKU corpus.

Figure 2: The learning curve of our model.

training data size to achieve good perfor-

mance. We tried the size of 30 and 100, both

of which performs worse than 50. A possible

tuning is to use different embedding size for

different groups of features instead of setting

N1 = 50 for all features.

• Context window size. A window size of

3-5 characters achieves comparable results.

Zheng et al. (2013) suggested that context

window larger than 5 may lead to inferior re-

sults.

• Initial Learning rate. We found that several

learning rates between 0.04 to 0.15 yielded

very similar results as the one reported here.

The training is not very sensitive to reason-
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able values of initial learning rate. However,

Instead of our simple linear decay of learning

rate, it might be useful to try more sophisti-

cated techniques, such as AdaGrad and expo-

nential decaying (Tsuruoka et al., 2009; Sun

et al., 2013).

• Regularization. Our model suffers a little

from over-fitting, if no regularization is used.

In that case, the F-score on PKU drops from

95.1% to 94.7%.

• Pre-training. We tried pre-training charac-

ter embeddings using word2vec5 with Chi-

nese Gigaword Corpus6 and use them to ini-

tialize the corresponding embeddings in our

model, as previous work did. However, we

were only able to see insignificant F-score

improvements within 0.1% and observed that

the training F-score reached 99.9% much ear-

lier. We hypothesize that pre-training leads to

sub-optimal local maximums for our model.

• Hybrid matching. We tried applying hy-

brid matching (Section 3.1) for target char-

acters which are less frequent than the top

ftop characters, including unseen characters,

which leads to about 0.15% of F-score im-

provements.

Size of feature embed’ N1 = 50
Size of output embed’ N2 = 550
Window size h = 5
Initial learning rate α = 0.1
Regularization λ = 0.001
Hybrid matching ftop = 8%

Table 7: Hyper parameters of our model.

5 Related Work

Word segmentation. Most modern segmenters

followed Xue (2003) to model CWS as sequence

labeling of character position tags, using condi-

tional random fields (Peng et al. 2004), structured

perceptron (Jiang et al., 2008), etc. Some notable

exceptions are (Zhang and Clark, 2007; Zhang et

al., 2012), which exploited rich word-level fea-

tures and (Ma et al., 2012; Ma, 2014; Zhang et

al., 2014), which explicitly model word structures.

Our work generalizes the sequence labeling to a

5https://code.google.com/p/word2vec/
6https://catalog.ldc.upenn.edu/LDC2005T14

more flexible framework of matching, and predicts

actions as in (Zhang and Clark, 2007; Zhang et al.,

2012) instead of position tags to prevent the greedy

search from suffering tag inconsistencies. To bet-

ter utilize resources other than training data, our

model might benefit from techniques used in recent

state-of-the-art systems, such as semi-supervised

learning (Zhao and Kit, 2008; Sun and Xu, 2011;

Zhang et al., 2013; Zeng et al., 2013), joint models

(Li and Zhou, 2012; Qian and Liu, 2012), and par-

tial annotations (Liu et al., 2014; Yang and Vozila,

2014).

Distributed representation and CWS. Dis-

tributed representation are useful for various NLP

tasks, such as POS tagging (Collobert et al., 2011),

machine translation (Devlin et al., 2014) and pars-

ing (Socher et al., 2013). Influenced by Collobert

et al. (2011), Zheng et al. (2013) modeled CWS as

tagging and treated sentence-level tag sequence as

the combination of individual tag predictions and

context-independent tag transition. Mansur et al.

(2013) was inspired by Bengio et al. (2003) and

used character bigram embeddings to compensate

for the absence of sentence level optimization. To

model interactions between tags and characters,

which are absent in these two CWS models, Pei et

al. (2014) introduced the tag embedding and used

a tensor hidden layer in the neural net. In con-

trast, our work uses character-specific action em-

beddings to explicitly capture such interactions. In

addition, our work gains efficiency by avoiding

hidden layers, similar as Mikolov et al. (2013).

Learning to match. Matching heterogeneous

objects has been studied in various contexts before,

and is currently flourishing, thanks to embedding-

based deep (Gao et al., 2014) and convolutional

(Huang et al., 2013; Hu et al., 2014) neural net-

works. This work develops a matching model for

CWS and differs from others in its“shallow”yet

effective architecture.

6 Discussion

Simple architecture. It is possible to adopt stan-

dard feed-forward neural network for our embed-

ding matching model with character-action em-

beddings as both feature and output. Nevertheless,

we designed the proposed architecture to avoid

hidden layers for simplicity, efficiency and easy-

tuning, inspired by word2vec. Our simple archi-

tecture is effective, demonstrated by the improved

results over previous neural-network word seg-
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menters, all of which use feed-forward architecture

with different features and/or layers. It might be

interesting to directly compare the performances

of our model with same features on the current and

feed-forward architectures, which we leave for fu-

ture work.

Greedy and exact search-based models. As

mentioned in Section 3, we implemented and pre-

liminarily experimented with a segmenter that

trains a similar model with exact search via Viterbi

algorithm. On the PKU corpus, its F-score is

0.944, compared with greedy segmenter’s 0.951.

Its training and testing speed are up to 7.8 times

slower than that of the greedy search segmenter.

It is counter-intuitive that the performance of the

exact-search segmenter is no better or even worse

than that of the greedy-search segmenter. We

hypothesize that since the training updates pa-

rameters with regard to search errors, the final

model is “tailored” for the specific search method

used, which makes the model-search combination

of greedy search segmenter not necessarily worse

than that of exact search segmenter. Another way

of looking at it is that search is less important

when the model is accurate. In this case, most

step-wise decisions are correct in the first place,

which requires no correction from the search algo-

rithm. Empirically, Zhang and Clark (2011) also

reported exact-search segmenter performing worse

than beam-search segmenters.

Despite that the greedy segmenter is incapable

of considering future labels, this rarely causes

problems in practice. Our greedy segmenter has

good results, compared with the exact-search seg-

menter above and previous approaches, most of

which utilize exact search. Moreover, the greedy

segmenter has additional advantages of faster

training and prediction.

Sequence labeling and matching. A tradi-

tional sequence labeling model such as CRF has

K (number of labels) target-character-independent

weight vectors, where the target character influ-

ences the prediction via the weights of the features

that contain it. In a way, a matching model can be

seen as a family of “sub-models”, which keeps a

group of weight vectors (the output embeddings)

for each unique target character. Different target

characters activate different sub-models, allowing

opposite predictions for similar input features, as

the target weight vectors used are different.

7 Conclusion and Future Work

In this paper, we have introduced the matching

formulation for Chinese word segmentation and

proposed an embedding matching model to take

advantage of distributed representations. Based

on the model, we have developed a greedy seg-

menter, which outperforms previous embedding-

based methods and is competitive with state-of-

the-art systems. These results suggest that it is

promising to model CWS as configuration-action

matching using distributed representations. In ad-

dition, linear-time training and testing complexity

of our simple architecture is very desirable for in-

dustrial application. To the best of our knowledge,

this is the first greedy segmenter that is competi-

tive with the state-of-the-art discriminative learn-

ing models.

In the future, we plan to investigate methods for

our model to better utilize external resources. We

would like to try using convolutional neural net-

work to automatically encode ngram-like features,

in order to further shrink parameter space. It is also

interesting to study whether extending our model

with deep architectures can benefit CWS. Lastly,

it might be useful to adapt our model to tasks such

as POS tagging and name entity recognition.
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Abstract

Recently, neural network models for natu-
ral language processing tasks have been in-
creasingly focused on for their ability of al-
leviating the burden of manual feature en-
gineering. However, the previous neural
models cannot extract the complicated fea-
ture compositions as the traditional meth-
ods with discrete features. In this paper,
we propose a gated recursive neural net-
work (GRNN) for Chinese word segmen-
tation, which contains reset and update
gates to incorporate the complicated com-
binations of the context characters. Since
GRNN is relative deep, we also use a
supervised layer-wise training method to
avoid the problem of gradient diffusion.
Experiments on the benchmark datasets
show that our model outperforms the pre-
vious neural network models as well as the
state-of-the-art methods.

1 Introduction

Unlike English and other western languages, Chi-
nese do not delimit words by white-space. There-
fore, word segmentation is a preliminary and im-
portant pre-process for Chinese language process-
ing. Most previous systems address this problem
by treating this task as a sequence labeling prob-
lem and have achieved great success. Due to the
nature of supervised learning, the performance of
these models is greatly affected by the design of
features. These features are explicitly represented
by the different combinations of context charac-
ters, which are based on linguistic intuition and sta-
tistical information. However, the number of fea-
tures could be so large that the result models are
too large to use in practice and prone to overfit on
training corpus.

∗Corresponding author.

Rainy

下 雨
Day

天
Ground

地 面
Accumulated water

积 水

M E SB

Figure 1: Illustration of our model for Chinese
word segmentation. The solid nodes indicate the
active neurons, while the hollow ones indicate the
suppressed neurons. Specifically, the links denote
the information flow, where the solid edges de-
note the acceptation of the combinations while the
dashed edges means rejection of that. As shown in
the right figure, we receive a score vector for tag-
ging target character “地” by incorporating all the
combination information.

Recently, neural network models have been in-
creasingly focused on for their ability to minimize
the effort in feature engineering. Collobert et al.
(2011) developed a general neural network archi-
tecture for sequence labeling tasks. Following this
work, many methods (Zheng et al., 2013; Pei et
al., 2014; Qi et al., 2014) applied the neural net-
work to Chinese word segmentation and achieved
a performance that approaches the state-of-the-art
methods.
However, these neural models just concatenate

the embeddings of the context characters, and feed
them into neural network. Since the concatena-
tion operation is relatively simple, it is difficult to
model the complicated features as the traditional
discrete feature based models. Although the com-
plicated interactions of inputs can be modeled by
the deep neural network, the previous neural model
shows that the deep model cannot outperform the
one with a single non-linear model. Therefore, the
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neural model only captures the interactions by the
simple transition matrix and the single non-linear
transformation . These dense features extracted via
these simple interactions are not nearly as good as
the substantial discrete features in the traditional
methods.
In this paper, we propose a gated recursive neu-

ral network (GRNN) to model the complicated
combinations of characters, and apply it to Chi-
nese word segmentation task. Inspired by the suc-
cess of gated recurrent neural network (Chung et
al., 2014), we introduce two kinds of gates to con-
trol the combinations in recursive structure. We
also use the layer-wise training method to avoid
the problem of gradient diffusion, and the dropout
strategy to avoid the overfitting problem.
Figure 1 gives an illustration of how our ap-

proach models the complicated combinations of
the context characters. Given a sentence “雨
(Rainy)天 (Day)地面 (Ground)积水 (Accumu-
lated water)”, the target character is “地”. This
sentence is very complicated because each consec-
utive two characters can be combined as a word.
To predict the label of the target character “地” un-
der the given context, GRNN detects the combina-
tions recursively from the bottom layer to the top.
Then, we receive a score vector of tags by incorpo-
rating all the combination information in network.
The contributions of this paper can be summa-

rized as follows:

• We propose a novel GRNN architecture to
model the complicated combinations of the
context characters. GRNN can select and pre-
serve the useful combinations via reset and
update gates. These combinations play a sim-
ilar role in the feature engineering of the tra-
ditional methods with discrete features.

• We evaluate the performance of Chinese
word segmentation on PKU, MSRA and
CTB6 benchmark datasets which are com-
monly used for evaluation of Chinese word
segmentation. Experiment results show that
our model outperforms other neural network
models, and achieves state-of-the-art perfor-
mance.

2 Neural Model for Chinese Word
Segmentation

Chinese word segmentation task is usually re-
garded as a character-based sequence labeling

Input Window
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Lookup Table

·
·
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Concatenate
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Figure 2: General architecture of neural model for
Chinese word segmentation.

problem. Each character is labeled as one of {B,
M, E, S} to indicate the segmentation. {B, M, E}
represent Begin, Middle, End of a multi-character
segmentation respectively, and S represents a Sin-
gle character segmentation.
The general neural network architecture for Chi-

nese word segmentation task is usually character-
ized by three specialized layers: (1) a character
embedding layer; (2) a series of classical neural
network layers and (3) tag inference layer. A il-
lustration is shown in Figure 2.
The most common tagging approach is based on

a local window. The window approach assumes
that the tag of a character largely depends on its
neighboring characters.
Firstly, we have a character set C of size |C|.

Then each character c ∈ C is mapped into an d-
dimensional embedding space as c ∈ Rd by a
lookup tableM ∈ Rd×|C|.
For each character ci in a given sentence c1:n,

the context characters ci−w1:i+w2 are mapped
to their corresponding character embeddings as
ci−w1:i+w2 , where w1 and w2 are left and right
context lengths respectively. Specifically, the un-
known characters and characters exceeding the
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sentence boundaries are mapped to special sym-
bols, “unknown”, “start” and “end” respectively.
In addition, w1 and w2 satisfy the constraint w1 +
w2 + 1 = w, where w is the window size of the
model. As an illustration in Figure 2, w1, w2 and
w are set to 2, 2 and 5 respectively.
The embeddings of all the context characters are

then concatenated into a single vector ai ∈ RH1 as
input of the neural network, where H1 = w × d is
the size of Layer 1. And ai is then fed into a con-
ventional neural network layer which performs a
linear transformation followed by an element-wise
activation function g, such as tanh.

hi = g(W1ai + b1), (1)

whereW1 ∈ RH2×H1 , b1 ∈ RH2 , hi ∈ RH2 . H2

is the number of hidden units in Layer 2. Here, w,
H1 and H2 are hyper-parameters chosen on devel-
opment set.
Then, a similar linear transformation is per-

formed without non-linear function followed:

f(t|ci−w1:i+w2) = W2hi + b2, (2)

where W2 ∈ R|T |×H2 , b2 ∈ R|T | and T is the
set of 4 possible tags. Each dimension of vector
f(t|ci−w1:i+w2) ∈ R|T | is the score of the corre-
sponding tag.
To model the tag dependency, a transition score

Aij is introduced to measure the probability of
jumping from tag i ∈ T to tag j ∈ T (Collobert et
al., 2011).

3 Gated Recursive Neural Network for
Chinese Word Segmentation

To model the complicated feature combinations,
we propose a novel gated recursive neural network
(GRNN) architecture for Chinese word segmenta-
tion task (see Figure 3).

3.1 Recursive Neural Network
A recursive neural network (RNN) is a kind of
deep neural network created by applying the same
set of weights recursively over a given struc-
ture(such as parsing tree) in topological order (Pol-
lack, 1990; Socher et al., 2013a).
In the simplest case, children nodes are com-

bined into their parent node using a weight matrix
W that is shared across the whole network, fol-
lowed by a non-linear function g(·). Specifically,
if hL and hR are d-dimensional vector representa-
tions of left and right children nodes respectively,
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Figure 3: Architecture of Gated Recursive Neural
Network for Chinese word segmentation.

their parent node hP will be a d-dimensional vec-
tor as well, calculated as:

hP = g

(
W

[
hL

hR

])
, (3)

where W ∈ Rd×2d and g is a non-linear function
as mentioned above.

3.2 Gated Recursive Neural Network
The RNN need a topological structure to model a
sequence, such as a syntactic tree. In this paper, we
use a directed acyclic graph (DAG), as showing in
Figure 3, to model the combinations of the input
characters, in which two consecutive nodes in the
lower layer are combined into a single node in the
upper layer via the operation as Eq. (3).
In fact, the DAG structure can model the com-

binations of characters by continuously mixing the
information from the bottom layer to the top layer.
Each neuron can be regarded as a complicated fea-
ture composition of its governed characters, simi-
lar to the discrete feature basedmodels. The differ-
ence between them is that the neural one automat-
ically learns the complicated combinations while
the conventional one need manually design them.
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When the children nodes combine into their parent
node, the combination information of two children
nodes is also merged and preserved by their parent
node.
Although the mechanism above seem to work

well, it can not sufficiently model the complicated
combination features for its simplicity in practice.
Inspired by the success of the gated recurrent

neural network (Cho et al., 2014b; Chung et al.,
2014), we propose a gated recursive neural net-
work (GRNN) by introducing two kinds of gates,
namely “reset gate” and “update gate”. Specifi-
cally, there are two reset gates, rL and rR, par-
tially reading the information from left child and
right child respectively. And the update gates zN ,
zL and zR decide what to preserve when combin-
ing the children’s information. Intuitively, these
gates seems to decide how to update and exploit
the combination information.
In the case of word segmentation, for each char-

acter ci of a given sentence c1:n, we first repre-
sent each context character cj into its correspond-
ing embedding cj , where i − w1 ≤ j ≤ i + w2

and the definitions of w1 and w2 are as same as
mentioned above.
Then, the embeddings are sent to the first layer

of GRNN as inputs, whose outputs are recursively
applied to upper layers until it outputs a single
fixed-length vector.
The outputs of the different neurons can be re-

garded as the different feature compositions. After
concatenating the outputs of all neurons in the net-
work, we get a new big vector xi. Next, we receive
the tag score vector yi for character cj by a linear
transformation of xi:

yi = Ws × xi + bs, (4)

where bs ∈ R|T |,Ws ∈ R|T |×Q. Q = q × d is di-
mensionality of the concatenated vector xi, where
q is the number of nodes in the network.

3.3 Gated Recursive Unit
GRNNconsists of theminimal structures, gated re-
cursive units, as showing in Figure 4.
By assuming that the window size is w, we will

have recursion layer l ∈ [1, w]. At each recursion
layer l, the activation of the j-th hidden node h(l)

j ∈
Rd is computed as

h(l)
j =

{
zN ⊙ ĥl

j + zL ⊙ hl−1
j−1 + zR ⊙ hl−1

j , l > 1,

cj , l = 1,

(5)

Gate z

Gate rL Gate rR

hj-1
(l-1) hj

(l-1)

hj
^(l)

hj
(l)

Figure 4: Our proposed gated recursive unit.

where zN , zL and zR ∈ Rd are update gates
for new activation ĥl

j , left child node hl−1
j−1 and

right child node hl−1
j respectively, and⊙ indicates

element-wise multiplication.
The update gates can be formalized as:

z =

 zN
zL
zR

 =

 1/Z
1/Z
1/Z

⊙ exp(U

 ĥl
j

hl−1
j−1

hl−1
j

),

(6)
where U ∈ R3d×3d is the coefficient of update
gates, and Z ∈ Rd is the vector of the normal-
ization coefficients,

Zk =
3∑

i=1

[exp(U

 ĥl
j

hl−1
j−1

hl−1
j

)]d×(i−1)+k, (7)

where 1 ≤ k ≤ d.
Intuitively, three update gates are constrained

by:


[zN ]k + [zL]k + [zR]k = 1, 1 ≤ k ≤ d;
[zN ]k ≥ 0, 1 ≤ k ≤ d;
[zL]k ≥ 0, 1 ≤ k ≤ d;
[zR]k ≥ 0, 1 ≤ k ≤ d.

(8)

The new activation ĥl
j is computed as:

ĥl
j = tanh(Wĥ

[
rL ⊙ hl−1

j−1

rR ⊙ hl−1
j

]
), (9)

where Wĥ ∈ Rd×2d, rL ∈ Rd, rR ∈ Rd. rL and
rR are the reset gates for left child node hl−1

j−1 and
right child node hl−1

j respectively, which can be
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formalized as:[
rL
rR

]
= σ(G

[
hl−1

j−1

hl−1
j

]
), (10)

(11)

where G ∈ R2d×2d is the coefficient of two reset
gates and σ indicates the sigmoid function.
Intuiativly, the reset gates control how to select

the output information of the left and right chil-
dren, which results to the current new activation
ĥ.
By the update gates, the activation of a parent

neuron can be regarded as a choice among the the
current new activation ĥ, the left child, and the
right child. This choice allows the overall structure
to change adaptively with respect to the inputs.
This gating mechanism is effective to model the

combinations of the characters.

3.4 Inference
In Chinese word segmentation task, it is usually to
employ the Viterbi algorithm to inference the tag
sequence t1:n for a given input sentence c1:n.
In order to model the tag dependencies, the

previous neural network models (Collobert et al.,
2011; Zheng et al., 2013; Pei et al., 2014) intro-
duce a transition matrix A, and each entry Aij is
the score of the transformation from tag i ∈ T to
tag j ∈ T .
Thus, the sentence-level score can be formu-

lated as follows:

s(c1:n, t1:n, θ) =
n∑

i=1

(
Ati−1ti + fθ(ti|ci−w1:i+w2)

)
,

(12)

where fθ(ti|ci−w1:i+w2) is the score for choosing
tag ti for the i-th character by our proposed GRNN
(Eq. (4)). The parameter set of our model is θ =
(M,Ws,bs,Wĥ,U,G,A).

4 Training

4.1 Layer-wise Training
Deep neural network with multiple hidden layers
is very difficult to train for its problem of gradient
diffusion and risk of overfitting.
Following (Hinton and Salakhutdinov, 2006),

we employ the layer-wise training strategy to avoid
problems of overfitting and gradient vanishing.
The main idea of layer-wise training is to train the

network with adding the layers one by one. Specif-
ically, we first train the neural network with the
first hidden layer only. Then, we train at the net-
work with two hidden layers after training at first
layer is done and so on until we reach the top hid-
den layer. When getting convergency of the net-
work with layers 1 to l , we preserve the current
parameters as initial values of that in training the
network with layers 1 to l + 1.

4.2 Max-Margin Criterion
We use the Max-Margin criterion (Taskar et al.,
2005) to train our model. Intuitively, the Max-
Margin criterion provides an alternative to prob-
abilistic, likelihood based estimation methods by
concentrating directly on the robustness of the de-
cision boundary of a model. We use Y (xi) to de-
note the set of all possible tag sequences for a given
sentence xi and the correct tag sequence for xi is
yi. The parameter set of our model is θ. We first
define a structured margin loss ∆(yi, ŷ) for pre-
dicting a tag sequence ŷ for a given correct tag se-
quence yi:

∆(yi, ŷ) =
n∑
j

η1{yi,j ̸= ŷj}, (13)

where n is the length of sentence xi and η is a dis-
count parameter. The loss is proportional to the
number of characters with an incorrect tag in the
predicted tag sequence. For a given training in-
stance (xi, yi), we search for the tag sequence with
the highest score:

y∗ = argmax
ŷ∈Y (x)

s(xi, ŷ, θ), (14)

where the tag sequence is found and scored by
the proposed model via the function s(·) in Eq.
(12). The object of Max-Margin training is that
the tag sequence with highest score is the correct
one: y∗ = yi and its score will be larger up to a
margin to other possible tag sequences ŷ ∈ Y (xi):

s(x, yi, θ) ≥ s(x, ŷ, θ) + ∆(yi, ŷ). (15)

This leads to the regularized objective function for
m training examples:

J(θ) =
1
m

m∑
i=1

li(θ) +
λ

2
∥θ∥2

2, (16)

li(θ) = max
ŷ∈Y (xi)

(s(xi, ŷ, θ)+∆(yi, ŷ))−s(xi, yi, θ).

(17)
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By minimizing this object, the score of the correct
tag sequence yi is increased and score of the high-
est scoring incorrect tag sequence ŷ is decreased.
The objective function is not differentiable due to
the hinge loss. We use a generalization of gradient
descent called subgradient method (Ratliff et al.,
2007) which computes a gradient-like direction.
Following (Socher et al., 2013a), we minimize

the objective by the diagonal variant of AdaGrad
(Duchi et al., 2011) with minibatchs. The parame-
ter update for the i-th parameter θt,i at time step t
is as follows:

θt,i = θt−1,i − α√∑t
τ=1 g2

τ,i

gt,i, (18)

where α is the initial learning rate and gτ ∈ R|θi|

is the subgradient at time step τ for parameter θi.

5 Experiments

We evaluate our model on two different kinds of
texts: newswire texts and micro-blog texts. For
evaluation, we use the standard Bakeoff scoring
program to calculate precision, recall, F1-score.

5.1 Word Segmentation on Newswire Texts
5.1.1 Datasets
We use three popular datasets, PKU, MSRA and
CTB6, to evaluate our model on newswire texts.
The PKU and MSRA data are provided by the
second International Chinese Word Segmentation
Bakeoff (Emerson, 2005), and CTB6 is from
Chinese TreeBank 6.0 (LDC2007T36) (Xue et
al., 2005), which is a segmented, part-of-speech
tagged, and fully bracketed corpus in the con-
stituency formalism. These datasets are commonly
used by previous state-of-the-art models and neu-
ral network models. In addition, we use the first
90% sentences of the training data as training set
and the rest 10% sentences as development set for
PKU and MSRA datasets, and we divide the train-
ing, development and test sets according to (Yang
and Xue, 2012) for the CTB6 dataset.
All datasets are preprocessed by replacing the

Chinese idioms and the continuous English char-
acters and digits with a unique flag.

5.1.2 Hyper-parameters
We set the hyper-parameters of the model as list
in Table 1 via experiments on development set.
In addition, we set the batch size to 20. And we

Window size k = 5
Character embedding size d = 50

Initial learning rate α = 0.3
Margin loss discount η = 0.2

Regularization λ = 10−4

Dropout rate on input layer p = 20%

Table 1: Hyper-parameter settings.
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Figure 5: Performance of different models with or
without layer-wise training strategy on PKUdevel-
opment set.

find that it is a good balance between model per-
formance and efficiency to set character embed-
ding size d = 50. In fact, the larger embedding
size leads to higher cost of computational resource,
while lower dimensionality of the character em-
bedding seems to underfit according to the experi-
ment results.

Deep neural networks contain multiple non-
linear hidden layers are always hard to train for it
is easy to overfit. Several methods have been used
in neural models to avoid overfitting, such as early
stop and weight regularization. Dropout (Srivas-
tava et al., 2014) is also one of the popular strate-
gies to avoid overfitting when training the deep
neural networks. Hence, we utilize the dropout
strategy in this work. Specifically, dropout is to
temporarily remove the neuron away with a fixed
probability p independently, along with the incom-
ing and outgoing connections of it. As a result,
we find dropout on the input layer with probability
p = 20% is a good tradeoff between model effi-
ciency and performance.
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models without layer-wise with layer-wise
P R F P R F

GRNN (1 layer) 90.7 89.6 90.2 - - -
GRNN (2 layers) 96.0 95.6 95.8 96.0 95.6 95.8
GRNN (3 layers) 95.9 95.4 95.7 96.0 95.7 95.9
GRNN (4 layers) 95.6 95.2 95.4 96.1 95.7 95.9
GRNN (5 layers) 95.3 94.7 95.0 96.1 95.7 95.9

Table 2: Performance of different models with or without layer-wise training strategy on PKU test set.

5.1.3 Layer-wise Training
We first investigate the effects of the layer-wise
training strategy. Since we set the size of context
window to five, there are five recursive layers in
our architecture. And we train the networks with
the different numbers of recursion layers. Due to
the limit of space, we just give the results on PKU
dataset.
Figure 5 gives the convergence speeds of the

five models with different numbers of layers and
the model with layer-wise training strategy on de-
velopment set of PKU dataset. The model with
one layer just use the neurons of the lowest layer
in final linear score function. Since there are no
non-linear layer, its seems to underfit and perform
poorly. The model with two layers just use the
neurons in the lowest two layers, and so on. The
model with five layers use all the neurons in the
network. As we can see, the layer-wise training
strategy lead to the fastest convergence and the
best performance.
Table 2 shows the performances on PKU test

set. The performance of the model with layer-wise
training strategy is always better than that with-
out layer-wise training strategy. With the increase
of the number of layers, the performance also in-
creases and reaches the stable high performance
until getting to the top layer.

5.1.4 Results
We first compare our model with the previous neu-
ral approaches on PKU,MSRA and CTB6 datasets
as showing in Table 3. The character embed-
dings of the models are random initialized. The
performance of word segmentation is significantly
boosted by exploiting the gated recursive archi-
tecture, which can better model the combinations
of the context characters than the previous neural
models.
Previous works have proven it will greatly im-

prove the performance to exploit the pre-trained

character embeddings instead of that with random
initialization. Thus, we pre-train the embeddings
on a huge unlabeled data, the Chinese Wikipedia
corpus, with word2vec toolkit (Mikolov et al.,
2013). By using these obtained character embed-
dings, our model receives better performance and
still outperforms the previous neural models with
pre-trained character embeddings. The detailed re-
sults are shown in Table 4 (1st to 3rd rows).

Inspired by (Pei et al., 2014), we utilize the bi-
gram feature embeddings in our model as well.
The concept of feature embedding is quite similar
to that of character embedding mentioned above.
Specifically, each context feature is represented as
a single vector called feature embedding. In this
paper, we only use the simply bigram feature em-
beddings initialized by the average of two embed-
dings of consecutive characters element-wisely.

Although the model of Pei et al. (2014) greatly
benefits from the bigram feature embeddings, our
model just obtains a small improvement with them.
This difference indicates that our model has well
modeled the combinations of the characters and do
not needmuch help of the feature engineering. The
detailed results are shown in Table 4 (4-th and 6-th
rows).

Table 5 shows the comparisons of our model
with the state-of-the-art systems on F-value. The
model proposed by Zhang and Clark (2007) is
a word-based segmentation method, which ex-
ploit features of complete words, while remains
of the list are all character-based word segmenters,
whose features are mostly extracted from the con-
text characters. Moreover, some systems (such as
Sun and Xu (2011) and Zhang et al. (2013)) also
exploit kinds of extra information such as the un-
labeled data or other knowledge. Although our
model only uses simple bigram features, it outper-
forms the previous state-of-the-art methods which
use more complex features.
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models PKU MSRA CTB6
P R F P R F P R F

(Zheng et al., 2013) 92.8 92.0 92.4 92.9 93.6 93.3 94.0* 93.1* 93.6*
(Pei et al., 2014) 93.7 93.4 93.5 94.6 94.2 94.4 94.4* 93.4* 93.9*

GRNN 96.0 95.7 95.9 96.3 96.1 96.2 95.4 95.2 95.3

Table 3: Performances on PKU,MSRA and CTB6 test sets with random initialized character embeddings.

models PKU MSRA CTB6
P R F P R F P R F

+Pre-train
(Zheng et al., 2013) 93.5 92.2 92.8 94.2 93.7 93.9 93.9* 93.4* 93.7*
(Pei et al., 2014) 94.4 93.6 94.0 95.2 94.6 94.9 94.2* 93.7* 94.0*

GRNN 96.3 95.9 96.1 96.2 96.3 96.2 95.8 95.4 95.6
+bigram
GRNN 96.6 96.2 96.4 97.5 97.3 97.4 95.9 95.7 95.8

+Pre-train+bigram
(Pei et al., 2014) - 95.2 - - 97.2 - - - -

GRNN 96.5 96.3 96.4 97.4 97.8 97.6 95.8 95.7 95.8

Table 4: Performances on PKU, MSRA and CTB6 test sets with pre-trained and bigram character em-
beddings.

models PKU MSRA CTB6
(Tseng et al., 2005) 95.0 96.4 -

(Zhang and Clark, 2007) 95.1 97.2 -
(Sun and Xu, 2011) - - 95.7
(Zhang et al., 2013) 96.1 97.4 -

This work 96.4 97.6 95.8

Table 5: Comparison of GRNN with the state-of-
the-art methods on PKU, MSRA and CTB6 test
sets.

5.2 Word Segmentation on Micro-blog Texts

5.2.1 Dataset
Weuse the NLPCC 2015 dataset1 (Qiu et al., 2015)
to evaluate our model on micro-blog texts. The
NLPCC 2015 data are provided by the shared task
in the 4th CCF Conference on Natural Language
Processing & Chinese Computing (NLPCC 2015):
Chinese Word Segmentation and POS Tagging for
micro-blog Text. Different with the popular used
newswire dataset, the NLPCC 2015 dataset is col-
lected from Sina Weibo2, which consists of the
relatively informal texts from micro-blog with the
various topics, such as finance, sports, entertain-
ment, and so on. The information of the dataset is

1http://nlp.fudan.edu.cn/nlpcc2015/
2http://www.weibo.com/

shown in Table 6.
To train our model, we also use the first 90%

sentences of the training data as training set and
the rest 10% sentences as development set.
Here, we use the default setting of CRF++

toolkit with the feature templates as shown in Ta-
ble 7. The same feature templates are also used for
FNLP.

5.2.2 Results
Since the NLPCC 2015 dataset is a new released
dataset, we compare our model with the two popu-
lar open source toolkits for sequence labeling task:
FNLP3 (Qiu et al., 2013) and CRF++4. Our model
uses pre-trained and bigram character embeddings.
Table 8 shows the comparisons of our model

with the other systems on NLPCC 2015 dataset.

6 Related Work

Chinese word segmentation has been studied with
considerable efforts in the NLP community. The
most popular word segmentation method is based
on sequence labeling (Xue, 2003). Recently, re-
searchers have tended to explore neural network

3https://github.com/xpqiu/fnlp/
4http://taku910.github.io/crfpp/
*The result is from our own implementation of the corre-

sponding method.
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Dataset Sents Words Chars Word Types Char Types OOV Rate
Training 10,000 215,027 347,984 28,208 39,71 -
Test 5,000 106,327 171,652 18,696 3,538 7.25%
Total 15,000 322,410 520,555 35,277 4,243 -

Table 6: Statistical information of NLPCC 2015 dataset.

unigram feature c−2, c−1, c0, c+1, c+2

bigram feature c−1 ◦ c0, c0 ◦ c+1

trigram feature c−2◦c−1◦c0, c−1◦c0◦c+1,
c0 ◦ c+1 ◦ c+2

Table 7: Templates of CRF++ and FNLP.

models P R F
CRF++ 93.3 93.2 93.3
FNLP 94.1 93.9 94.0
This work 94.7 94.8 94.8

Table 8: Performances on NLPCC 2015 dataset.

based approaches (Collobert et al., 2011) to re-
duce efforts of the feature engineering (Zheng et
al., 2013; Qi et al., 2014). However, the features
of all these methods are the concatenation of the
embeddings of the context characters.
Pei et al. (2014) also used neural tensor model

(Socher et al., 2013b) to capture the complicated
interactions between tags and context characters.
But the interactions depend on the number of the
tensor slices, which cannot be too large due to the
model complexity. The experiments also show
that the model of (Pei et al., 2014) greatly bene-
fits from the further bigram feature embeddings,
which shows that their model cannot even handle
the interactions of the consecutive characters. Dif-
ferent with them, our model just has a small im-
provement with the bigram feature embeddings,
which indicates that our approach has well mod-
eled the complicated combinations of the context
characters, and does not need much help of further
feature engineering.
More recently, Cho et al. (2014a) also proposed

a gated recursive convolutional neural network in
machine translation task to solve the problem of
varying lengths of sentences. However, their ap-
proach only models the update gate, which can not
tell whether the information is from the current
state or from sub notes in update stage without re-
set gate. Instead, our approach models two kinds
of gates, reset gate and update gate, by incorporat-

ing which we can better model the combinations
of context characters via selection function of re-
set gate and collection function of update gate.

7 Conclusion

In this paper, we propose a gated recursive neu-
ral network (GRNN) to explicitly model the com-
binations of the characters for Chinese word seg-
mentation task. Each neuron in GRNN can be re-
garded as a different combination of the input char-
acters. Thus, the whole GRNN has an ability to
simulate the design of the sophisticated features in
traditional methods. Experiments show that our
proposed model outperforms the state-of-the-art
methods on three popular benchmark datasets.
Despite Chineseword segmentation being a spe-

cific case, our model can be easily generalized and
applied to other sequence labeling tasks. In future
work, we would like to investigate our proposed
GRNN on other sequence labeling tasks.
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Abstract

Social media content can be used as a
complementary source to the traditional
methods for extracting and studying col-
lective social attributes. This study focuses
on the prediction of the occupational class
for a public user profile. Our analysis is
conducted on a new annotated corpus of
Twitter users, their respective job titles,
posted textual content and platform-related
attributes. We frame our task as classifi-
cation using latent feature representations
such as word clusters and embeddings. The
employed linear and, especially, non-linear
methods can predict a user’s occupational
class with strong accuracy for the coars-
est level of a standard occupation taxon-
omy which includes nine classes. Com-
bined with a qualitative assessment, the
derived results confirm the feasibility of
our approach in inferring a new user at-
tribute that can be embedded in a multitude
of downstream applications.

1 Introduction

The growth of online social networks provides the
opportunity to analyse user text in a broader context
(Tumasjan et al., 2010; Bollen et al., 2011; Lam-
pos and Cristianini, 2012). This includes the social
network (Sadilek et al., 2012), spatio-temporal in-
formation (Lampos and Cristianini, 2010) and per-
sonal attributes (Al Zamal et al., 2012). Previous
research has analysed language differences in user
attributes like location (Cheng et al., 2010), gender
(Burger et al., 2011), impact (Lampos et al., 2014)
and age (Rao et al., 2010), showing that language
use is influenced by them. Therefore, user text al-
lows us to infer these properties. This user profiling
is important not only for sociolinguistic studies, but
also for other applications: recommender systems

to provide targeted advertising, analysts who study
different opinions in each social class or integra-
tion in text regression tasks such as voting intention
(Lampos et al., 2013).

Social status reflected through a person’s occu-
pation is a factor which influences language use
(Bernstein, 1960; Bernstein, 2003; Labov, 2006).
Therefore, our hypothesis is that language use in
social media can be indicative of a user’s occu-
pational class. For example, executives may write
more frequently about business or financial news,
while people in manufacturing positions could re-
fer more to their personal interests and less to job
related activities. Similarly, we expect some cate-
gories of people, like those working in sales and
customer services, to be more social or to use more
informal language.

Focusing on the microblogging platform of Twit-
ter, we explore our hypothesis by studying the
task of predicting a user’s occupational class given
platform-related attributes and generated content,
i.e. tweets. That has direct applicability in a broad
range of areas from sociological studies, which
analyse the behaviour of different occupations, to
recruiting companies that target people for new job
opportunities. For this study, we created a publicly
available data set of users, including their profile
information and historical text content as well as
a label to an occupational class from the “Stan-
dard Occupational Classification” taxonomy (see
Section 2).

We frame our task as classification, aiming to
identify the most likely job class for a given user
based on profile and a variety of textual features:
general word embeddings and clusters (or ‘topics’).
Both linear and non-linear classification methods
are applied with a focus on those that can assist in-
terpretation and offer qualitative insights. We find
that text features, especially word clusters, lead
to good predictive performance. Accuracy for our
best model is well above 50% for 9-way classifi-
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cation, outperforming competitive methods. The
best results are obtained using the Bayesian non-
parametric framework of Gaussian Processes (Ras-
mussen and Williams, 2006), which also accom-
modates feature interpretation via the Automatic
Relevance Determination. This allows us to get in-
sight into differences in language use across job
classes and, finally, assess our original hypothesis
about the thematic divergence across them.

2 Standard Occupational Classification

To enable the user occupation study, we adopt a
standardised job classification taxonomy for map-
ping Twitter users to occupations. The Standard Oc-
cupational Classification (SOC)1 is a UK govern-
ment system developed by the Office of National
Statistics for classifying occupations. Jobs are cate-
gorised hierarchically based on skill requirements
and content. The SOC scheme includes nine major
groups coded with a digit from 1 to 9. Each ma-
jor group is divided into sub-major groups coded
with 2 digits, where the first digit indicates the ma-
jor group. Each sub-major group is further divided
into minor groups coded with 3 digits and finally,
minor groups are divided into unit groups, coded
with 4 digits. The unit groups are the leaves of the
hierarchy and represent specific jobs related to the
group.

Table 1 shows a part of the SOC hierarchy. In to-
tal, there are 9 major groups, 25 sub-major groups,
90 minor groups and 369 unit groups. Although
other hierarchies exist, we use the SOC because
it has been published recently (in 2010), includes
newly introduced jobs, has a balanced hierarchy
and offers a wide variety of job titles that were
crucial in our data set creation.

3 Data

To the best of our knowledge there are no pub-
licly available data sets suitable for the task we
aim to investigate. Thus, we have created a new
one consisting of Twitter users mapped to their oc-
cupation, together with their profile information
and historical tweets. We use the account’s profile
information to capture users with self-disclosed
occupations. The potential self-selection bias is ac-
knowledged, but filtering content via self disclosure

1http://www.ons.gov.uk/ons/
guide-method/classifications/
current-standard-classifications/
soc2010/index.html; accessed on 24/02/2015.

Major Group 1 (C1): Managers, Directors and Senior Officials
Sub-major Group 11: Corporate Managers and Directors

Minor Group 111: Chief Executives and Senior Officials
Unit Group 1115: Chief Executives and Senior Officials
•Job: chief executive, bank manager
Unit Group 1116: Elected Officers and Representatives

Minor Group 112: Production Managers and Directors
Minor Group 113: Functional Managers and Directors
Minor Group 115: Financial Institution Managers and Directors
Minor Group 116: Managers and Directors in Transport and Logistics
Minor Group 117: Senior Officers in Protective Services
Minor Group 118: Health and Social Services Managers and Directors
Minor Group 119: Managers and Directors in Retail and Wholesale

Sub-major Group 12: Other Managers and Proprietors
Major Group (C2): Professional Occupations

•Job: mechanical engineer, pediatrist
Major Group (C3): Associate Professional and Technical Occupations

•Job: system administrator, dispensing optician
Major Group (C4): Administrative and Secretarial Occupations

•Job: legal clerk, company secretary
Major Group (C5): Skilled Trades Occupations

•Job: electrical fitter, tailor
Major Group (C6): Caring, Leisure and Other Service Occupations

•Job: nursery assistant, hairdresser
Major Group (C7): Sales and Customer Service Occupations

•Job: sales assistant, telephonist
Major Group (C8): Process, Plant and Machine Operatives

•Job: factory worker, van driver
Major Group (C9): Elementary Occupations

•Job: shelf stacker, bartender

Table 1: Subset of the SOC classification hierarchy.

is widespread when extracting large-scale data for
user attribute inference (Pennacchiotti and Popescu,
2011; Coppersmith et al., 2014).

Similarly to Hecht et al. (2011), we first assess
the proportion of Twitter accounts with a clear men-
tion to their occupation by annotating the user de-
scription field of a random set of 500 users. There
were chosen from the random 1% sample, having at
least 200 tweets in their history and with a majority
of English tweets. There, we can identify the fol-
lowing categories: no description (12.2%), random
information (22%), user information but not occu-
pation related (45.8%), and job related information
(20%).

To create our data set, we thus use the user de-
scription field to search for self-disclosed job titles
provided by the 4-digit SOC unit groups, since
they contain specific job titles. We queried Twit-
ter’s Search API to retrieve for each job title a max-
imum of 200 accounts which best matched occupa-
tion keywords. Then, we aggregated the accounts
into the 3-digit (minor) categories. To remove po-
tential ambiguity in the retrieved set, we manually
inspected accounts in each minor category and fil-
tered out those that belong to companies, contain
no description or the description provided does not
indicate that the user has a job corresponding to
the minor category. In total, around 50% of the
accounts were removed by manual inspection per-
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formed by the authors. We also removed users in
multiple categories and or users that have tweeted
less than 50 times in their history. Finally, we elim-
inated all 3-digit categories that contained less than
45 user accounts after this filtering. This process
produced a total number of 5,191 users from 55 mi-
nor groups (22 sub-major groups), spread across all
nine major SOC groups. The distribution of users
across these nine groups is: 9.7%, 34.5%, 20.6%,
3.8%, 16.7%, 6.1%, 1.4%, 4.2%, and 3% (follow-
ing the ordering of Table 1). In our data set the
most well represented minor occupational groups
are ‘Functional Managers and Directors’ (184 users
– code 113), ‘Therapy Professionals’ (159 users –
code 222) and ‘Quality and Regulatory Profession-
als’ (158 users – code 246), whereas the least rep-
resented ones are ‘Textile and Garment Trades’ (45
users – code 541), ‘Elementary Security Occupa-
tions’ (46 users – code 924), ‘Elementary Cleaning
Occupations’ (47 users – code 923). The mean num-
ber of users in the minor classes is equal to 94.4
with a standard deviation of 35.6. For these users,
we have collected all their tweets, going as far back
as the latest 3,200, and their profile information.
The final data set consists of 10,796,836 tweets col-
lected around 5 August 2014 and is openly avail-
able.2

A separate Twitter data set is used as a reference
corpus in order to build the feature representations
detailed in Section 4. This data set is an extract
from the Twitter Gardenhose stream (a 10% repre-
sentative sample of the entire Twitter stream) from
2 January to 28 February 2011. Based on this con-
tent, we also build the vocabulary for the text fea-
tures, containing the most frequent 71,555 words.
We tokenise and filter for English using the Trend-
miner preprocessing pipeline (Preoţiuc-Pietro et al.,
2012).

4 Features

In this section, we overview the features used in
the occupational class prediction task. They are
divided into two types: (1) user level features, (2)
textual features.

4.1 User Level Features (UserLevel)

The user level features are based on the general
user information or aggregated statistics about the
tweets. Table 2 introduces the 18 features in this

2http://www.sas.upenn.edu/˜danielpr/
jobs.tar.gz

u1 number of followers
u2 number of friends
u3 number of times listed
u4 follower/friend ratio
u5 proportion of non-duplicate tweets
u6 proportion of retweeted tweets
u7 average no. of retweets/tweet
u8 proportion of retweets done
u9 proportion of hashtags
u10 proportion of tweets with hashtags
u11 proportion of tweets with @-mentions
u12 proportion of @-replies
u13 no. of unique @-mentions in tweets
u14 proportion of tweets with links
u15 no. of favourites the account made
u16 avg. number of tweets/day
u17 total number of tweets
u18 proportion of tweets in English

Table 2: User level attributes for a Twitter user.

category.

4.2 Textual Features

The textual features are derived from the aggre-
gated set of user’s tweets. We use our reference
corpus to represent each user as a distribution over
these features. We ignore the bio field from build-
ing textual features to avoid introducing biases
from our data collection method. While this is a re-
striction, our analysis showed that in less than 20%
of the cases the information in the bio is directly
relevant to the occupation.

4.2.1 SVD Word Embeddings (SVD-E)
We use a more abstract representation of words
than simple unigram counts in order to aid inter-
pretability of our analysis. We compute a word
to word similarity matrix from our reference cor-
pus. Normalised Pointwise Mutual Information
(NPMI) (Bouma, 2009) is used to compute word to
word similarity. NPMI is an information theoretic
measure indicating which words co-occur in the
same context, where the context is represented by
a whole tweet:

NPMI(x, y) = − log P(x, y) · log
P(x, y)

P(x) · P(y)
.

(1)
We then perform singular value decomposition
(SVD) on the word to word similarity matrix and
obtain an embedding of words into a low dimen-
sional space. In our experiments we tried the fol-
lowing dimensionalities: 30, 50, 100 and 200. The
feature representation for each user is obtained
summing over each of the embedding dimensions
across all words.
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4.2.2 NPMI Clusters (SVD-C)

We use the NPMI matrix described in the previous
paragraph to create hard clusters of words. These
clusters can be thought as ‘topics’, i.e. words that
are semantically similar. From a variety of cluster-
ing techniques we choose spectral clustering (Shi
and Malik, 2000; Ng et al., 2002), a hard-clustering
approach which deals well with high-dimensional
and non-convex data (von Luxburg, 2007). Spectral
clustering is based on applying SVD to the graph
Laplacian and aims to perform an optimal graph
partitioning on the NPMI similarity matrix. The
number of clusters needs to be pre-specified. We
use 30, 50, 100 and 200 clusters – numbers were
chosen a priori based on previous work (Lampos
et al., 2014). The feature representation is the stan-
dardised number of words from each cluster.

Although there is a loss of information compared
to the original representation, the clusters are very
useful in the model analysis step. Embeddings are
hard to interpret because each dimension is an ab-
stract notion, while the clusters can be interpreted
by presenting a list of the most frequent or repre-
sentative words. The latter are identified using the
following centrality metric:

Cw =
∑

x∈c NPMI(w, x)
|c| − 1

, (2)

where c denotes the cluster and w the target word.

4.2.3 Neural Embeddings (W2V-E)

Recently, there has been a growing interest in neu-
ral language models, where the words are projected
into a lower dimensional dense vector space via a
hidden layer (Mikolov et al., 2013b). These models
showed they can provide a better representation
of words compared to traditional language models
(Mikolov et al., 2013c) because they capture syntac-
tic information rather than just bag-of-context, han-
dling non-linear transformations. In this low dimen-
sional vector space, words with a small distance are
considered semantically similar. We use the skip-
gram model with negative sampling (Mikolov et al.,
2013a) to learn word embeddings on the Twitter
reference corpus. In that case, the skip-gram model
is factorising a word-context PMI matrix (Levy and
Goldberg, 2014). We use a layer size of 50 and the
Gensim implementation.3

3http://radimrehurek.com/gensim/
models/word2vec.html

4.2.4 Neural Clusters (W2V-C)
Similar to the NPMI cluster, we use the neural
embeddings in order to obtain clusters of related
words, i.e. ‘topics’. We derive a word to word simi-
larity matrix using cosine similarity on the neural
embeddings. We apply spectral clustering on this
matrix to obtain 30, 50, 100 and 200 word clusters.

5 Classification with Gaussian Processes

In this section, we briefly overview Gaussian Pro-
cess (GP) for classification, highlighting our mo-
tivation for using this method. GPs formulate a
Bayesian non-parametric machine learning frame-
work which defines a prior on functions (Ras-
mussen and Williams, 2006). The properties of
the functions are given by a kernel which models
the covariance in the response values as a function
of its inputs. Although GPs form a powerful learn-
ing tool, they have only recently been used in NLP
research (Cohn and Specia, 2013; Preoţiuc-Pietro
and Cohn, 2013) with classification applications
limited to (Polajnar et al., 2011).

Formally, GP methods aim to learn a function
f : Rd → R drawn from a GP prior given the
inputs xxx ∈ Rd:

f(xxx) ∼ GP(m(xxx), k(xxx,xxx′)) , (3)

wherem(·) is the mean function (here 0) and k(·, ·)
is the covariance kernel. Usually, the Squared Ex-
ponential (SE) kernel (a.k.a. RBF or Gaussian) is
used to encourage smooth functions. For the multi-
dimensional pair of inputs (xxx,xxx′), this is:

kard(xxx,xxx′) = σ2 exp

[
d∑
i

−(xi − x′i)2
2l2i

]
, (4)

where li are lengthscale parameters learnt only
using training data by performing gradient as-
cent on the type-II marginal likelihood. Intuitively,
the lengthscale parameter li controls the variation
along the i input dimension, i.e. a low value makes
the output very sensitive to input data, thus mak-
ing that input more useful for the prediction. If the
lengthscales are learnt separately for each input
dimension the kernel is named SE with Automatic
Relevance Determination (ARD) (Neal, 1996).

Binary classification using GPs ‘squashes’ the
real valued latent function f(x) output through a
logistic function: π(xxx) , P(y = 1|xxx) = σ(f(xxx))
in a similar way to logistic regression classification.
The object of the GP inference is the distribution
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of the latent variable corresponding to a test case
x∗:

P(f∗|xxx,yyy, x∗) =
∫

P(f∗|xxx, x∗, f)P(f |xxx,yyy)df ,

(5)
where P(f |xxx,yyy) = P(yyy|f)P(f |xxx)/P(yyy|xxx) is the
posterior over the latent variables. If the likelihood
P(yyy|f) is Gaussian, the combination with a GP
prior P(f |xxx) gives a posterior GP over functions.
In binary classification, the distribution over the
latent f∗ is combined with the logistic function to
produce the prediction:

π̄∗ =
∫
σ(f∗)P(f∗|xxx,yyy, x∗)df∗. (6)

This results in a non-Gaussian likelihood in the
posterior formulation and therefore, exact infer-
ence is infeasible for classification models. Multi-
ple approximations exist that make the computa-
tion tractable (Gibbs and Mackay, 1997; Williams
and Barber, 1998; Neal, 1999). In our experiments
we opt to use the Expectation Propagation (EP)
method (Minka, 2001) which approximates the non-
Gaussian joint posterior with a Gaussian one. EP
offers very good empirical results for many differ-
ent likelihoods, although it has no proof of con-
vergence. The complexity for the inference step is
O(n3). Given that our data set is very large and the
number of features is high, we conduct inference
using the fully independent training conditional
(FITC) approximation (Snelson and Ghahramani,
2006) with 500 random inducing points. We refer
the interested reader to Rasmussen and Williams
(2006) for further information on GP classification.

Although we could use multi-class classification
methods, in order to provide insight, we perform a
separate one-vs-all classification for each class and
then determine a label through the occupational
class that has the highest likelihood.

6 Experiments

This section presents the experimental results for
our task. We first compare the accuracy of our clas-
sification methods on held out data using each fea-
ture set and conduct a standard error analysis. We
then use the interpretability of the ARD length-
scales from the GP classifier to further analyse the
relevant features.

6.1 Predictive Accuracy
We assign users to one of nine possible classes (see
the ‘Major Groups’ on Table 1) using one set of

Feature LR SVM GP
Most frequent class 34.4% 34.4% 34.4%
UserLevel 34.0% 31.5% 34.2%
SVD-E-30 36.3% 35.0% 39.8%
SVD-E-50 36.7% 36.9% 38.6%
SVD-E-100 40.8% 41.9% 40.9%
SVD-E-200 40.0% 43.1% 43.8%
SVD-C-30 36.9% 36.5% 38.2%
SVD-C-50 37.7% 38.3% 40.5%
SVD-C-100 40.4% 42.1% 44.6%
SVD-C-200 44.2% 47.9% 48.2%
W2V-E-50 42.5% 49.0% 48.4%
W2V-C-30 40.0% 46.0% 47.1%
W2V-C-50 42.3% 48.5% 47.9%
W2V-C-100 44.4% 48.7% 51.3%
W2V-C-200 46.9% 51.7% 52.7%

Table 3: 9-way classification accuracy on held-out
data for our 3 methods. Textual features are ob-
tained using SVD or Word2Vec (W2V). E repre-
sents embeddings, C clusters. The final number
denotes the amount of clusters or the size of the
embedding.

features at a time. Experiments combining features
yielded only minor improvements. We apply com-
mon linear and non-linear methods together with
our proposed GP classifier. The linear method is
logistic regression (LR) with Elastic Net regulari-
sation (Freedman, 2009) and the non-linear one is
formulated by a Support Vector Machine (SVM)
with an RBF kernel (Vapnik, 1998). The accuracy
of our classifiers is measured on held-out data. Our
data set is divided into stratified training (80%),
validation (10%) and testing (10%) sets. The val-
idation set was used to learn the LR and SVM
hyperparameters, while the GP did not use this set
at all. We report results using all three methods and
all feature sets in Table 3.

We first observe that user level features (User-
Level; see Section 4.1) are not useful for predicting
the job class. This finding indicates that general so-
cial behaviour or user impact are likely to be spread
evenly across classes. It also highlights the diffi-
culty of the task and motivates the use of deeper
textual features.

The textual features (see Section 4.2) improve
performance as compared to the most frequent class
baseline. We also notice that the embeddings (SVD-
E and W2V-E) have lower performance than the
clusters (SVD-C and W2V-C) in most of the cases.
This is expected, as adding word vectors to rep-
resent a user’s text may overemphasise common
words. The size of the embedding also increases
performance. The W2V features show better ac-
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Rank Topic # Label Topic (most central words; most frequent words) MRR µ(l)

1 116 Arts
archival, stencil, canvas, minimalist, illustration, paintings, abstract, designs,

lettering, steampunk; art, design, print, collection, poster, painting, custom, logo,
printing, drawing

.43 1.35

2 105 Health
chemotherapy, diagnosis, disease, inflammation, diseases, arthritis, symptoms,
patients, mrsa, colitis; risk, cancer, mental, stress, patients, treatment, surgery,

disease, drugs, doctor
.20 2.76

3 153 Beauty Care
exfoliating, cleanser, hydrating, moisturizer, moisturiser, shampoo, lotions,
serum, moisture, clarins; beauty, natural, dry, skin, massage, plastic, spray,

facial, treatments, soap
.19 3.69

4 21 Higher
Education

undergraduate, doctoral, academic, students, curriculum, postgraduate, enrolled,
master’s, admissions, literacy; students, research, board, student, college,

education, library, schools, teaching, teachers
.18 3.21

5 158 Software
Engineering

integrated, data, implementation, integration, enterprise, configuration,
open-source, cisco, proprietary, avaya; service, data, system, services, access,

security, development, software, testing, standard
.17 3.10

7 186 Football
bardsley, etherington, gallas, heitinga, assou-ekotto, lescott, pienaar, warnock,

ridgewell, jenas; van, foster, cole, winger, terry, reckons, youngster, rooney,
fielding, kenny

.16 3.11

8 124 Corporate
consortium, institutional, firm’s, acquisition, enterprises, subsidiary, corp,

telecommunications, infrastructure, partnership; patent, industry, reports, global,
survey, leading, firm, 2015, innovation, financial

.15 2.44

9 96 Cooking parmesan, curried, marinated, zucchini, roasted, coleslaw, salad, tomato, spinach,
lentils; recipe, meat, salad, egg, soup, sauce, beef, served, pork, rice .15 3.00

12 164 Elongated
Words

yaaayy, wooooo, woooo, yayyyyy, yaaaaay, yayayaya, yayy, yaaaaaaay,
wooohooo, yaayyy; wait, till, til, yay, ahhh, hoo, woo, woot, whoop, woohoo .11 3.47

16 176 Politics
religious, colonialism, christianity, judaism, persecution, fascism, marxism,

nationalism, communism, apartheid; human, culture, justice, religion, democracy,
religious, humanity, tradition, ancient, racism

.08 3.09

Table 4: Topics, represented by their most central and most frequent 10 words, sorted by their ARD
lengthscale MRR across the nine GP-based occupation classifiers. µ(l) denotes the average lengthscale
for a topic across these classifiers. Topic labels are manually created.
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Figure 1: Confusion matrix of the prediction results.
Rows represent the actual occupational class (C 1–
9) and columns the predicted class.

curacy than the SVD on the NPMI matrix. This
is consistent with previous work that showed the
efficiency of word2vec and the ability of those em-
beddings to capture non-linear relationships and
syntactic features (Mikolov et al., 2013a; Mikolov
et al., 2013b; Mikolov et al., 2013c).

LR has a lower performance than the non-linear

methods, especially when using clusters as features.
GPs usually outperform SVMs by a small margin.
However, these offer the advantages of not using
the validation set and the interpretability properties
we highlight in the next section. Although we only
draw our focus on major occupational classes, the
data set allows the study of finer granularities of oc-
cupation classes in future work. For example, pre-
diction performance for sub-major groups reaches
33.9% accuracy (15.6% majority class, 22 classes)
and 29.2% accuracy for minor groups (3.4% major-
ity class, 55 classes).

6.2 Error Analysis

To illustrate the errors made by our classifiers, Fig-
ure 1 shows the confusion matrix of the classi-
fication results. First, we observe that class 4 is
many times classified as class 2 or 3. This can be
explained by the fact that classes 2, 3 and 4 con-
tain similar types of occupations, e.g. doctors and
nurses or accountants and assistant accountants.
However, with very few exceptions, we notice that
only adjacent classes get misclassified, suggesting

1759



that our model captures the general user skill level.

6.3 Qualitative Analysis

The word clusters that were built from a reference
corpus and then used as features in the GP classi-
fier, give us the opportunity to extract some qual-
itative derivations from our predictive task. For
the rest of the section we use the best performing
model of this type (W2V-C-200) in order to anal-
yse the results. Our main assumption is that there
might be a divergence of language and topic us-
age across occupational classes following previous
studies in sociology (Bernstein, 1960; Bernstein,
2003). Knowing that the inferred GP lengthscale
hyperparameters are inversely proportional to fea-
ture (i.e. topic) relevance (see Section 5), we can
use them to rank the topic importance and give
answers to our hypothesis.

Table 4 shows 10 of the most informative top-
ics (represented by the top 10 most central and
frequent words) sorted by their ARD lengthscale
Mean Reciprocal Rank (MRR) (Manning et al.,
2008) across the nine classifiers. Evidently, they
cover a broad range of thematic subjects, includ-
ing potentially work specific topics in different do-
mains such as ‘Corporate’ (Topic #124), ‘Software
Engineering’ (#158), ‘Health’ (#105), ‘Higher Ed-
ucation’ (#21) and ‘Arts’ (#116), as well as topics
covering recreational interests such as ‘Football’
(#186), ‘Cooking’ (#96) and ‘Beauty Care’ (#153).

The highest ranked MRR GP lengthscales only
highlight the topics that are the most discrimina-
tive of the particular learning task, i.e. which topic
used alone would have had the best performance.
To examine the difference in topic usage across
occupations, we illustrate how six topics are cov-
ered by the users of each class. Figure 2 shows the
Cumulative Distribution Functions (CDFs) across
the nine different occupational classes for these six
topics. CDFs indicate the fraction of users having
at least a certain topic proportion in their tweets. A
topic is more prevalent in a class, if the CDF line
leans towards the bottom-right corner of the plot.

‘Higher Education’ (#21) is more prevalent in
classes 1 and 2, but is also discriminative for classes
3 and 4 compared to the rest. This is expected be-
cause the vast majority of jobs in these classes
require a university degree (holds for all of the jobs
in classes 2 and 3) or are actually jobs in higher
education. On the other hand, classes 5 to 9 have a
similar behaviour, tweeting less on this topic. We

also observe that words in ‘Corporate’ (#124) are
used more as the skill required for a job gets higher.
This topic is mainly used by people in classes 1
and 2 and with less extent in classes 3 and 4, in-
dicating that people in these occupational classes
are more likely to use social media for discussions
about corporate business.

There is a clear trend of people with more skilled
jobs to talk about ‘Politics’ (#176). Indeed, highly
ranked politicians and political philosophers are
parts of classes 1 and 2 respectively. Neverthe-
less, this pattern expands to the entire spectrum
of the investigated occupational classes, providing
further proof-of-concept for our methodology, un-
der the assumption that the theme of politics is
more attractive to the higher skilled classes rather
than the lower skilled occupations. By examining
‘Arts’ (#116), we see that it clearly separates class
5, which includes artists, from all others. This topic
appears to be relevant to most of the classifica-
tion tasks and it is ranked first according to the
MRR metric. Moreover, we observe that people
with higher skilled jobs and education (classes 1–3)
post more content about arts. Finally, we examine
two topics containing words that can be used in
more informal occasions, i.e. ‘Elongated Words’
(#164) and ‘Beauty Care’ (#153). We observe a
similar pattern in both topics by which users with
lower skilled jobs tweet more often.
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Figure 3: Jensen-Shannon divergence in the topic
distributions between the different occupational
classes (C 1–9).

The main conclusion we draw from Figure 2 is
that there exists a topic divergence between users in
the lower vs. higher skilled occupational classes. To
examine this distinction better, we use the Jensen-
Shannon divergence (JSD) to quantify the differ-
ence between the topic distributions across every
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Figure 2: CDFs for six of the most important topics; the x-axis is on the log-scale for display purposes. A
point on a CDF line indicates the fraction of users (y-axis point) with a topic proportion in their tweets
lower or equal to the corresponding x-axis point. The topic is more prevalent in a class, if the CDF line
leans closer to the bottom-right corner of the plot.

class pair. Figure 3 visualises these differences.
There, we confirm that adjacent classes use simi-
lar topics of discussion. We also notice that JSD
increases as the classes are further apart. Two main
groups of related classes, with a clear separation
from the rest, are identified: classes 1–2 and 6–9.
For the users belonging to these two groups, we
compute their topic usage distribution (for the top
topics listed in Table 4). Then, we assess whether
the topic usage distributions of those super-classes
of occupations have a statistically significant dif-

ference by performing a two-sample Kolmogorov-
Smirnov test. We enumerate the group topic usage
means in Table 5; all differences were indeed sta-
tistically significant (p < 10−5). From this compar-
ison, we conclude that users in the higher skilled
classes have a higher representation in all top topics
but ‘Beauty Care’ and ‘Elongated Words’. Hence,
the original hypothesis about the difference in the
usage of language between upper and lower occu-
pational classes is reconfirmed in this more generic
testing. A very noticeable difference occurs for the
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Topics C 1–2 C 6–9
Arts 4.95 2.79
Health 4.45 2.13
Beauty Care 1.40 2.24
Higher Education 6.04 2.56
Software Engineering 6.31 2.54
Football 0.54 0.52
Corporate 5.15 1.41
Cooking 2.81 2.49
Elongated Words 1.90 3.78
Politics 2.14 1.06

Table 5: Comparison of mean topic usage for
super-sets (classes 1–2 vs. 6–9) of the occupational
classes; all values were multiplied by 103. The dif-
ference between the topic usage distributions was
statistically significant (p < 10−5).

‘Corporate’ topic, whereas ‘Football’ registers the
lowest distance.

7 Related Work

Occupational class prediction has been studied in
the past in the areas of psychology and economics.
French (1959) investigated the relation between var-
ious measures on 232 undergraduate students and
their future occupations. This study concluded that
occupational membership can be predicted from
variables such as the ability of subjects in using
mathematical and verbal symbols, their family eco-
nomic status, body-build and personality compo-
nents. Schmidt and Strauss (1975) also studied the
relationship between job types (five classes) and
certain demographic attributes (gender, race, expe-
rience, education, location). Their analysis identi-
fied biases or discrimination which possibly exist
in different types of jobs. Sociolinguistic and so-
ciology studies deduct that social status is an im-
portant factor in determining the use of language
(Bernstein, 1960; Bernstein, 2003; Labov, 2006).
Differences arise either due to language use or due
to the topics people discuss as parts of various so-
cial domains. However, a large scale investigation
of this hypothesis has never been attempted.

Relevant to our task is a relation extraction ap-
proach proposed by Li et al. (2014) aiming to ex-
tract user profile information on Twitter. They used
a weakly supervised approach to obtain informa-
tion for job, education and spouse. Nonetheless,
the information relevant to the job attribute re-

gards the employer of a user (i.e. the name of a
company) rather than the type of occupation. In
addition, Huang et al. (2014) proposed a method
to classify Sina Weibo users to twelve predefined
occupations using content based and network fea-
tures. However, there exist significant differences
from our task since this inference is based on a dis-
tinct platform, with an ambiguous distribution over
occupations (e.g. more than 25% related to me-
dia), while the occupational classes are not generic
(e.g. media, welfare and electronic are three of the
twelve categories). Most importantly, the applied
model did not allow for a qualitative interpreta-
tion. Filho et al. (2014) inferred the social class of
social media users by combining geolocation infor-
mation derived from Foursquare and Twitter posts.
Recently, Sloan et al. (2015) introduced tools for
the automated extraction of demographic data (age,
occupation and social class) from the profile de-
scriptions of Twitter users using a similar method
to our data set extraction approach. They showed
that it is feasible to build a data set that matches
the real-world UK occupation distribution as given
by the SOC.

8 Conclusions

Our paper presents the first large-scale systematic
study on language use on social media as a factor
for inferring a user’s occupational class. To address
this problem, we have also introduced an exten-
sive labelled data set extracted from Twitter. We
have framed prediction as a classification task and,
to this end, we used the powerful, non-linear GP
framework that combines strong predictive perfor-
mance with feature interpretability. Results show
that we can achieve a good predictive accuracy,
highlighting that the occupation of a user influences
text use. Through a qualitative analysis, we have
shown that the derived topics capture both occupa-
tion specific interests as well as general class-based
behaviours. We acknowledge that the derivations
of this study, similarly to other studies in the field,
are reflecting the Twitter population and may expe-
rience a bias introduced by users self-mentioning
their occupations. However, the magnitude, occupa-
tional diversity and face validity of our conclusions
suggest that the presented approach is useful for
future downstream applications.

1762



Acknowledgements

DP-P acknowledges the support from Templeton
Religion Trust, grant TRT-0048. VL and NA ac-
knowledge the support from EPSRC (UK) project
EP/K031953/1. We thank Mark Stevenson for his
critical comments on early drafts of this paper.

References
Faiyaz Al Zamal, Wendy Liu, and Derek Ruths. 2012.

Homophily and Latent Attribute Inference: Inferring
Latent Attributes of Twitter Users from Neighbors.
In Proc. of 6th International Conference on Weblogs
and Social Media, pages 387–390.

Basil Bernstein. 1960. Language and social class.
British Journal of Sociology, pages 271–276.

Basil Bernstein. 2003. Class, codes and control: Ap-
plied studies towards a sociology of language, vol-
ume 2. Psychology Press.

Johan Bollen, Huina Mao, and Xiaojun Zeng. 2011.
Twitter mood predicts the stock market. Journal of
Computational Science, 2(1):1–8.

Gerlof Bouma. 2009. Normalized (pointwise) mutual
information in collocation extraction. In Biennial
GSCL Conference, pages 31–40.

D. John Burger, John Henderson, George Kim, and
Guido Zarrella. 2011. Discriminating Gender on
Twitter. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
EMNLP, pages 1301–1309.

Zhiyuan Cheng, James Caverlee, and Kyumin Lee.
2010. You are where you tweet: a content-based ap-
proach to geo-locating twitter users. In Proceedings
of the 19th ACM Conference on Information and
Knowledge Management, CIKM, pages 759–768.

Trevor Cohn and Lucia Specia. 2013. Modelling an-
notator bias with multi-task gaussian processes: An
application to machine translation quality estimation.
In 51st Annual Meeting of the Association for Com-
putational Linguistics, ACL, pages 32–42.

Glen Coppersmith, Craig Harman, and Mark Dredze.
2014. Measuring post traumatic stress disorder in
twitter. In International Conference on Weblogs and
Social Media, ICWSM.

Renato Miranda Filho, Guilherme R. Borges, Jus-
sara M. Almeida, and Gisele L. Pappa. 2014. Infer-
ring user social class in online social networks. In
Proceedings of the 8th Workshop on Social Network
Mining and Analysis, SNAKDD’14, pages 10:1–
10:5.

David Freedman. 2009. Statistical models: theory and
practice. Cambridge University Press.

Wendell L French. 1959. Can a man’s occupation
be predicted? Journal of Counseling Psychology,
6(2):95.

Mark Gibbs and David J. C. Mackay. 1997. Variational
gaussian process classifiers. IEEE Transactions on
Neural Networks, 11:1458–1464.

Brent Hecht, Lichan Hong, Bongwon Suh, and Ed H.
Chi. 2011. Tweets from justin bieber’s heart: The
dynamics of the location field in user profiles. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI.

Yanxiang Huang, Lele Yu, Xiang Wang, and Bin Cui.
2014. A multi-source integration framework for
user occupation inference in social media systems.
World Wide Web, pages 1–21.

William Labov. 2006. The Social Stratification of En-
glish in New York City. Cambridge University Press,
second edition.

Vasileios Lampos and Nello Cristianini. 2010. Track-
ing the flu pandemic by monitoring the Social Web.
In Proc. of the 2nd International Workshop on Cog-
nitive Information Processing, pages 411–416.

Vasileios Lampos and Nello Cristianini. 2012. Now-
casting Events from the Social Web with Statistical
Learning. ACM Transactions on Intelligent Systems
and Technology, 3(4):72:1–72:22.

Vasileios Lampos, Daniel Preoţiuc-Pietro, and Trevor
Cohn. 2013. A user-centric model of voting in-
tention from Social Media. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics, ACL, pages 993–1003.

Vasileios Lampos, Nikolaos Aletras, Daniel Preoţiuc-
Pietro, and Trevor Cohn. 2014. Predicting and char-
acterising user impact on Twitter. In Proceedings of
the 14th Conference of the European Chapter of the
Association for Computational Linguistics, EACL,
pages 405–413.

Omer Levy and Yoav Goldberg. 2014. Neural word
embeddings as implicit matrix factorization. In Ad-
vances in Neural Information Processing Systems,
NIPS, pages 2177–2185.

Jiwei Li, Alan Ritter, and Eduard H. Hovy. 2014.
Weakly supervised user profile extraction from twit-
ter. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics, ACL,
pages 165–174.

Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schütze. 2008. Introduction to Information
Retrieval. Cambridge University Press.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. In Proceedings of Workshop
at the International Conference on Learning Repre-
sentations, ICLR.

1763



Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed represen-
tations of words and phrases and their composition-
ality. In Advances in Neural Information Processing
Systems, NIPS, pages 3111–3119.

Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig.
2013c. Linguistic regularities in continuous space
word representations. In Proceedings of the 2010
annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
NAACL, pages 746–751.

Thomas P. Minka. 2001. Expectation propagation for
approximate bayesian inference. In Proceedings of
the 17th Conference in Uncertainty in Artificial In-
telligence, UAI ’01.

Radford M. Neal. 1996. Bayesian Learning for Neural
Networks. Springer-Verlag New York, Inc.

Radford M. Neal. 1999. Regression and classification
using gaussian process priors. Bayesian Statistics 6,
pages 475–501.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss.
2002. On spectral clustering: Analysis and an algo-
rithm. In Advances in Neural Information Process-
ing Systems, NIPS, pages 849–856.

Marco Pennacchiotti and Ana-Maria Popescu. 2011.
A machine learning approach to twitter user classifi-
cation. ICWSM, pages 281–288.

Tamara Polajnar, Simon Rogers, and Mark Girolami.
2011. Protein interaction detection in sentences via
gaussian processes; a preliminary evaluation. Inter-
national Journal of Data Mining and Bioinformatics,
5(1):52–72.

Daniel Preoţiuc-Pietro and Trevor Cohn. 2013. A tem-
poral model of text periodicities using Gaussian Pro-
cesses. EMNLP.

Daniel Preoţiuc-Pietro, Sina Samangooei, Trevor Cohn,
Nicholas Gibbins, and Mahesan Niranjan. 2012.
Trendminer: An architecture for real time analysis
of social media text. In Workshop on Real-Time
Analysis and Mining of Social Streams (RAMSS),
ICWSM.

Delip Rao, David Yarowsky, Abhishek Shreevats, and
Manaswi Gupta. 2010. Classifying Latent User At-
tributes in Twitter. In Proceedings of the 2nd In-
ternational Workshop on Search and Mining User-
generated Contents, SMUC, pages 37–44.

Carl Edward Rasmussen and Christopher K. I.
Williams. 2006. Gaussian Processes for Machine
Learning. The MIT Press.

Adam Sadilek, Henry Kautz, and Vincent Silenzio.
2012. Modeling Spread of Disease from Social In-
teractions. In Proc. of 6th International Conference
on Weblogs and Social Media, pages 322–329.

Peter Schmidt and Robert P Strauss. 1975. The predic-
tion of occupation using multiple logit models. In-
ternational Economic Review, 16(2):471–86.

Jianbo Shi and Jitendra Malik. 2000. Normalized cuts
and image segmentation. Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888–905.

Luke Sloan, Jeffrey Morgan, Pete Burnap, and Matthew
Williams. 2015. Who tweets? Deriving the demo-
graphic characteristics of age, occupation and so-
cial class from twitter user meta-data. PloS one,
10(3):e0115545.

Edward Snelson and Zoubin Ghahramani. 2006.
Sparse gaussian processes using pseudo-inputs. In
Advances in Neural Information Processing Systems,
NIPS, pages 1257–1264.

Andranik Tumasjan, Timm Oliver Sprenger, Philipp G
Sandner, and Isabell M Welpe. 2010. Predicting
Elections with Twitter: What 140 Characters Reveal
about Political Sentiment. In Proc. of 4th Inter-
national Conference on Weblogs and Social Media,
pages 178–185.

Vladimir N Vapnik. 1998. Statistical learning theory.
Wiley, New York.

Ulrike von Luxburg. 2007. A tutorial on spectral clus-
tering. Statistics and computing, 17(4):395–416.

Christopher K.I Williams and David Barber. 1998.
Bayesian classification with gaussian processes.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20 (12):1342–1351.

1764



Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 1765–1773,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Tracking unbounded Topic Streams

Dominik Wurzer
School of Informatics

University of Edinburgh
d.s.wurzer

@sms.ed.ac.uk

Victor Lavrenko
School of Informatics

University of Edinburgh
vlavrenk

@inf.ed.ac.uk

Miles Osborne
Bloomberg

London
mosborne29

@bloomberg.net

Abstract

Tracking topics on social media streams is
non-trivial as the number of topics men-
tioned grows without bound. This com-
plexity is compounded when we want to
track such topics against other fast mov-
ing streams. We go beyond traditional
small scale topic tracking and consider a
stream of topics against another document
stream. We introduce two tracking ap-
proaches which are fully applicable to true
streaming environments. When tracking
4.4 million topics against 52 million doc-
uments in constant time and space, we
demonstrate that counter to expectations,
simple single-pass clustering can outper-
form locality sensitive hashing for nearest
neighbour search on streams.

1 Introduction

The emergence of massive social media streams
has sparked a growing need for systems able to
process them. While previous research (Hassan
et al., 2009; Becker et al., 2009; Petrovic et
al., 2010; Cataldi et al., (2010); Weng et al.,
(2011); Petrovic 2013) has focused on detecting
new topics in unbounded textual streams, less
attention was paid to following (tracking) the
steadily growing set of topics. Standard topic
tracking (Allan, 2002) deals with helping human
analysts follow and monitor ongoing events on
massive data streams. By pairing topics with
relevant documents, topic tracking splits a noisy
stream of documents into sub-streams grouped
by their target topics. This is a crucial task for
financial and security analysts who are interested
in pulling together relevant information from
unstructured and noisy data streams. Other fields
like summarization or topic modeling benefit

from topic tracking as a mean to generate their
data sources.

In todays data streams however, new topics
emerge on a continual basis and we are interested
in following all instead of just a small fraction
of newly detected topics. Since its introduction
(Allan, 2002), standard topic tracking typically
operates on a small scale and against a static
set of predefined target topics. We go beyond
such approaches and deal for the first time with
massive, unbounded topic streams. Examples
of unbounded topic streams include all events
reported by news agencies each day across the
world; popular examples of unbounded document
streams include social media services such as
Twitter. Tracking streams of topics allows re-
search tasks like topic-modeling or summarization
to be applied to millions of topics, a scale that
is several orders of magnitude larger than those
of current publications. We present two massive
scale topic tracking systems capable of tracking
unbounded topic streams. One is based on locality
sensitive hashing (LSH) and the other on clus-
tering. Since we operate on two unbounded data
sources we are subject to the streaming model of
computation (Muthukrishnan, 2005), which re-
quires instant and single-pass decision making in
constant time and space. Contrary to expectations,
we find that nearest neighbour search on a stream
based on clustering performs faster than LSH for
the same level of accuracy. This is surprising as
LSH is widely believed to be the fastest way of
nearest neighbour search. Our experiments reveal
how simple single-pass clustering outperforms
LSH in terms of effectiveness and efficiency. Our
results are general and apply to any setting where
we have massive or infinite numbers of topics,
matched against unboundedly large document
streams.
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Contributions
• For the first time we show how it is possi-

ble to track an unbounded stream of topics
in constant time and space, while maintain-
ing a level of effectiveness that is statistically
indistinguishable from an exact tracking sys-
tem
• We show how single-pass clustering can out-

perform locality sensitive hashing in terms
of effectiveness and efficiency for identifying
nearest neighbours in a stream
• We demonstrate that standard measures of

similarity are sub-optimal when matching
short documents against long documents

2 Related Work

Topic or event tracking was first introduced in the
Topic Detection and Tracking (TDT) program (Al-
lan, 2002). In TDT, topic tracking involves mon-
itoring a stream of news documents with the in-
tent to identify those documents relevant to a small
predefined set of target topics. During the course
of TDT, research focused extensively on the effec-
tiveness of tracking systems, neglecting scale and
efficiency. The three official data sets only range
from 25k to 74k documents with a few hundred
topics (Allan, 2002).
More recently, the rise of publicly available
real-time social media streams triggered new
research on topic detection and tracking, in-
tended to apply the technology to those high
volume document streams. The novel data
streams differ from the TDT data sets in their
volume and level of noise. To provide real-
time applications, traditional methods need to
be overhauled to keep computation feasible.
It became common practice to limit data sets to
cope with the computational effort. Popular strate-
gies involve reducing the number of tracked top-
ics (Lin et al., 2011; Nichols et al., 2012;) as
well as sampling the document stream (Ghosh et
al., 2013). These approaches have proven to be
efficient in cutting down workload but they also
limit an application’s performance. Furthermore,
Sayyadi et al. (2009) discovered and tracked top-
ics in social streams based on keyword graphs.
They applied the sliding window principle to keep
the computation feasible, although their data set
only contained 18k documents. Yang et al. 2012
tracked topics in tweet streams using language
models. To cope with the computational effort

they assume a small set of topics of only a few
dozen, which are defined in advance. Tang et al.
(2011) tracked a single topic on a few thousand
blogs based on semantic graph topic models. Pon
et al. (2007) recommend news by tracking multi-
ple topics for a user but their data sets only span
several thousand documents and a few topics.
Further related work includes the real-time filter-
ing task, introduced as part of TREC’s Microblog
Track in 2012 (Soboroff et al., 2012). Hong et al.
(2013) explore topic tracking in tweet streams in
relation to the TREC real-time filtering task by re-
lying on a sliding window principle, while focus-
ing on the cold start problem.

3 Topic Tracking

3.1 Traditional Approach
Numerous approaches to topic tracking have
emerged, spanning from probabilistic retrieval to
statistical classification frameworks. While there
is no single general approach, we define the tradi-
tional approach to tracking from a high-level per-
spective covering the basic principle of all previ-
ous approaches. We do not make any assump-
tions about the kind of topics, documents or dis-
tance functions used. As defined by TDT (Allan,
2002), we assume, we operate on an unbounded
document stream with the goal of tracking a fixed
set of target topics. Although topics are allowed to
drift conceptually and evolve over time, new top-
ics would always trigger the start of a new tracking
system.

Algorithm 1 Traditional Tracking
INPUT:
TOPIC-SET {t ε T}
DOCUMENT-STREAM {d ε D}
OUTPUT:
relevant topic-document pairs {t, d}

while documents d in stream D do
for all topics t in set T do

similarity = computeSimilarity(d,t)
if similarity > threshold then

emit relevant {t, d}

As seen in Algorithm 1, documents arrive one at
a time, requiring instant decision making through
single pass processing. Each document is com-
pared to all topics representations to identify the
closest topic. The tracking decision is based on the
similarity to the closest topic and usually defined
by a thresholding strategy. Because incoming doc-
uments can be relevant to more than one topic, we
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need to match it against all of them. Due to its sim-
plicity, the traditional tracking approach is highly
efficient when applied to a fairly low number of
topics.

3.2 Shortcomings of the traditional approach

The traditional approach - though low in compu-
tational effort - becomes challenging when scal-
ing up the number of target topics. The compu-
tational effort arises from the number of compar-
isons made (the number of documents times top-
ics). That explains, why researches following the
traditional approach have either lowered the num-
ber of documents or topics. Heuristics and index-
ing methods increase the performance but offer no
solution scalable to true streaming environments
because they only allow for one-side scaling (ei-
ther a large number of documents or topics). In-
creasing either of the two components by a single
document, increases the computational effort by
the magnitude of the other one. For the extreme
case of pushing to an infinite number of topics,
tracking in constant space is a necessity.

4 Tracking at scale

Before directly turning to a full streaming set up
in constant space, we approach tracking a topic
stream on a document stream in unbounded space.
The key to scale up documents and topics, lies
in reducing the number of necessary comparisons.
Throughout the remainder of this paper we repre-
sent documents and topics arriving from a steady
high volume stream by term-weighted vectors in
the vector space.
In order to cut down the search space, we encap-
sulate every topic vector by a hypothetical region
marking its area of proximity. Those regions are
intend to capture documents that are more likely
to be relevant. Ideally, these regions form a hy-
persphere centred around every topic vector with
a radius equal to the maximum distance to rele-
vant documents. The tracking procedure is then
reduced to determining whether an incoming doc-
ument is also enclosed by any of the hyperspheres.

4.1 Approximated Tracking

Our first attempt to reach sub-linear execution
time uses random segmentation of the vector space
using hashing techniques. We frame the track-
ing process as a nearest neighbour search prob-
lem, as defined by Gionis et al. (1999). Docu-

ments arriving from a stream are seen as queries
and the closest topics are the nearest neighbours to
be identified. We explore locality sensitive hash-
ing (LSH), as described by Indyk et al. (1998),
to approach high dimensional nearest neighbour
search for topic tracking in sub-linear time. LSH,
which has been used to speed up NLP applica-
tions (Ravichandran et al., 2005), provides hash
functions that guarantee that similar documents
are more likely to be hashed to the same binary
hash key than distant ones. Hash functions capture
similarities between vectors in high dimensions
and represent them on a low dimensional binary
level. We apply the scheme by Charikar (2002),
which describes the probabilistic bounds for the
cosine similarity between two vectors. Each bit in
a hash key represents a documents position with
respect to a randomly placed hyperplane. Those
planes segment the vector space, forming high di-
mensional polygon shaped buckets. Documents
and topics are placed into a bucket by determin-
ing on which side of each the hyperplanes they are
positioned. We interpret these buckets as regions
of proximity as the collision probability is directly
proportional to the cosine similarity between two
vectors.

Algorithm 2 LSH-based Tracking
INPUT:
TOPIC-STREAM {T}
DOCUMENT-STREAM {D}
OUTPUT:
relevant topic-document pairs {t, d}

while document d in T, D do
if d ε T then

hashKeys = hashLSH (d)
store hashKeys in hashTables

else if d ε D then
candidateSet = lookupHashtables(hashLSH (d))
for all topics t in candidateSet do

if similarity(d,t) > threshold then
emit relevant {t, d}

Algorithm 2 outlines the pseudo code to LSH-
based tracking. Whenever a topic arrives, it is
hashed, placing it into a bucket. To increase col-
lision probability with similar documents, we re-
peat the hashing process with different hash func-
tions, storing a topic and hash-key tuple in a hash
table. On each arrival of a new document the same
hash functions are applied and the key is matched
against the hash tables, yielding a set of candidate
topics. The probabilistic bounds of the hashing
scheme guarantee that topics in the candidate set
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are on average more likely to be similar to the doc-
ument than others.
We then match each topic in the candidate set
against the document to lower the false positive
rate of LSH (Gionis, et al., 1999). The number
of exact comparisons necessary is reduced to the
number of topics in the candidate set.

4.2 Cluster based Tracking
LSH based tracking segments the vector-space
randomly without consideration of the data’s dis-
tribution. In contrast, we now propose a data de-
pendent approach through document clustering.
The main motivation for data dependent space
segmentation is increased effectiveness resulting
from taking the topic distribution within the vec-
tor space into account when forming the regions of
proximity. We construct these regions by group-
ing similar topics to form clusters represented by a
centroid. When tracking a document, it is matched
against the centroids instead of all topics, yield-
ing a set of candidate topics. This allows reducing
the number of comparisons necessary to only the
number of centroids plus the number of topics cap-
tured by the closest cluster.

Algorithm 3 Cluster based Tracking
INPUT:
INITIAL-CLUSTER-SET {c ε C}
TOPIC-STREAM {T}
DOCUMENT-STREAM {D}
threshold for spawning a new cluster {thrspawn}
threshold for adapting an existing cluster {thradapt}
OUTPUT:
relevant topic-document pairs {t, d}

while document d in T, D do
if d ε T then

cmin = argminc{distances(d, c ε C)}
if distance(d,cmin) > thrspawn then

spawnNewCluster(d→ C)
else if distance(d,cmin) < thradapt then

contribute,assign(cmin,d)
else

assign(cmin,d)
else if d ε D then

cmin = argminc{distances(d,c ε C)}
candidateSet = {t ε cmin}
for all topics t in candidateSet do

if similarity(d,t) > threshold then
emit relevant {t, d}

While the literature provides a vast diversity of
clustering methods for textual documents, our
requirements regarding tracking streams of top-
ics naturally reduce the selection to lightweight
single-pass algorithms. Yang et al. (2012) pro-
vided evidence that in extreme settings simple ap-

proaches work well in terms of balancing effec-
tiveness, efficiency and scalability. We identified
ArteCM by Carullo et al. (2008), originally in-
tended to cluster documents for the web, as suit-
able. Algorithm 3 outlines our approach for clus-
ter based tracking. Given an initial set of 4 ran-
dom centroids, we compare each arriving topic to
all centroids. We associate the new topic with the
cluster whenever it is close enough. Particularly
close documents contribute to a cluster, allowing
it to drift towards topic dense regions. If the docu-
ment is distant to all existing clusters, we spawn a
new cluster based on the document.
Documents arriving from the document stream are
exactly matched against all centroids to determine
the k-closest clusters. Topics associated with those
clusters are subsequently exhaustively compared
with the document, yielding topic-document pairs
considered to be relevant. Probing more than one
cluster increases the probability of finding similar
topics. This does not correlate with soft-clustering
methods as multiple probing happens at querying
time while topics are assigned under a hard clus-
tering paradigm.

4.3 Algorithm Comparison

Both the LSH- and the cluster-based tracking al-
gorithm provide two parameters that are conceptu-
ally directly comparable to each other. The num-
ber of bits per hash key and the threshold for
spawning new clusters directly determine the size
of the candidate set by either varying the bucket
size or the cluster radius. The size of the candi-
date set trades a gain in efficiency against a loss
in effectiveness. Fewer topics in the candidate set
heavily reduce the search space for the tracking
process but increase the chance of missing a rele-
vant topic. Bigger sets are more likely to cover rel-
evant topics but require more computational effort
during the exact comparison step. The proposed
algorithms allow continuously adjusting the can-
didate set size between two extremes of having all
topics in a single set and having a separate set for
each topic.
The second parameter both algorithms have in
common, is the number of probes to increase the
probability of identifying similar topics. While
LSH-based tracking offers the number of hash ta-
bles, cluster-based tracking provides the number
of clusters probed. We again encounter a trade-off
between gains in efficiency at the cost of effective-
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ness. Each additionally probed cluster or looked
up table increases the chance of finding relevant
topics as well as the computational effort.

5 Tracking Streams in Constant Space

Operation in constant space is crucial when track-
ing topic streams. We ensure this by placing an
upper limit on the number of concurrently tracked
topics. Whenever the limit is reached, an active
topic is deleted and subsequently not considered
any longer. The strategy for selecting deletion
candidates is heavily application dependant. To
handle topic streams, LSH-based tracking replaces
the entries of an active topic in its hash-tables by
the values of the new topic, whenever the maxi-
mum number of topics is reached. Cluster-based
tracking requires more adaptation because we al-
low clusters to drift conceptually. Whenever the
maximum number of topics is reached, the con-
tribution of the deletion candidate to its cluster is
reverted and it is removed, freeing space for a new
topic.

6 Experiments

We evaluate the three algorithms in terms
of effectiveness and efficiency. Starting out
with tracking a small set of topics using the
traditional approach, we evaluate various sim-
ilarity metrics to ensure high effectiveness.
We then conduct scaling experiments on mas-
sive streams in bounded and unbounded space.

Corpora
Traditional tracking datasets are unsuitable to
approach tracking at scale as they consist of only
a few thousand documents and several hundred
topics (Allan, 2002). We created a new data
set consisting of two streams (document and
topic stream). The document stream consists
of 52 million tweets gathered through Twitter’s
streaming API 1. The tweets are order by their
time-stamps. Since we are advocating a high
volume topic stream, we require millions of
topics. To ensure a high number of topics, we
treat the entire English part (4.4 mio articles) of
Wikipedia2 as a proxy for a collection of topics
and turn it into a stream. Each article is considered
to be an unstructured textual representation of a
topic time-stamped by its latest verified update.

1http://stream.twitter.com
2http://en.wikipedia.org/wiki/Wikipedia database

Relevance Judgements
The topics we picked range from natural disasters,
political and financial events to news about
celebrities, as seen in table 3. We adopted the
search-guided-annotation process used by NIST
(Fiscus et al., 2002) and followed NIST’s TDT
annotation guidelines. According to the definition
of TDT, a document is relevant to a topic if
it speaks about it (Allan, 2002). In total we
identified 14,436 tweets as relevant to one of 30
topics.

total number of topics 4.4 mio
annotated topics 30
total number of documents 52 mio
documents relevant to
one of the 30 annotated topics 14.5k

Table 1: Data set statistics

Baseline
We use an exact tracking system as a baseline.
To speed up runtime, we implement an inverted
index in conjunction with term-at-a-time query
execution. Additionally, we provide a trade off
between effectiveness and efficiency by ran-
domly down sampling the Twitter stream. Note
that this closely resembles previous approaches
to scale topic tracking (Ghosh et al., 2013).

Evaluation Metrics
We evaluate effectiveness by recall and precision
and combine them using F1 scores. Efficiency
is evaluated using two different metrics. We
provide a theoretical upper bound by computing
the number of dot products required for tracking
(Equations 1-4).

DPtraditional = nD ∗ nT (1)

DPLSH−based = (nD+nT )∗(k∗L)+DPcs (2)

DPcluster−based = (nD + nT ) ∗ c+DPcs (3)

DPcs = nD ∗ nC (4)

Variables Definition
nD total number of documents
nT total number of topics
k number of bits per hash
L total number of hash tables
c total number of clusters
nC total number of topics

in all candidate sets

Table 2: Definition of variables for equation 1-4
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Topic-Title Topic description Number of relevant tweets
Amy Winehouse Amy Winehouse dies 3265
Prince William William and Kate arrive in Canada 1021
Floods in Seoul Floods and landslides in North and South Korea 432

Flight 4896 Flight 4896 crashed 11
Bangladesh-India border Bangladesh and India sign a border pact 4

Goran Hadzic War criminal Goran Hadzic got arrested 2

Table 3: Showing 6 example topics plus a short summary of relevant tweets, as well as the number of relevant tweets per topic

They therefore indicate performance without
system- or implementation-dependent distortions.
Equations 2 and 3 represent the cost to identify the
candidate set for the LSH- and cluster-based al-
gorithm plus the cost resulting from exhaustively
comparing the candidate sets with the documents
(Equation 4).
Because we compute the dot products for a worst
case scenario, we also provide the runtime in sec-
onds. All run-times are averaged over 5 runs, mea-
sured on the same idle machine. To ensure fair
comparison, all algorithms are implemented in C
using the same libraries, compiler, compiler opti-
mizations and run as a single process using 4 GB
of memory. Because the runtime of the traditional
approach (∼171 days) exceeds our limits, we esti-
mate it based on extrapolating 50 runs using up to
25,000 topics. Note that this extrapolation favours
the efficiency of the baseline system as it ignores
hardware dependent slowdowns when scaling up
the number of topics.

6.1 Exact tracking

In our first experiment we track 30 annotated
topics on 52 million tweets using the traditional
approach. We compare various similarity mea-
sures (Table 4) and use the best-performing one
in all following experiments. Our data set dif-
fers from the TREC and TDT corpora, which used
news-wire articles. Allan et al. (2000) report
that the cosine similarity constantly performed as
the best distance function for TDT. The use of
Wikipedia and Twitter causes a different set of
similarity measures to perform best. This results
from the imbalance in average document length
between Wikipedia articles (590 terms) and tweets
(11 terms). The term weights in short tweets
(many only containing a single term) are inflated
by the cosine’s length normalization. Those short
tweets are however not uniquely linkable to target
topics and consequently regarded as non-relevant
by annotators, which explains the drop in per-
formance. The similarity function chosen for all

subsequent experiments is a BM25 weighted dot
product, which we found to perform best.

F1 score
tf-idf weighted cosine 0.147
tf-idf weighted dot product 0.149
BM25 weighted cosine 0.208
BM25 weighted dot product 0.217

Table 4: Comparing the effectiveness of similarity mea-
sures when matching 30 Wikipedia articles against 52 million
tweets

6.2 Tracking at scale, using Wikipedia and
Twitter

Previously, we conducted small scale experi-
ments, now we are looking to scale them up,
by tracking 4.4 million Wikipedia articles on 52
million tweets without limiting the number of
topics tracked. The resulting trade-off between
effectiveness and efficiency is shown in Figure
1 and 2. The right-most point corresponds to
exhaustive comparison of every document against
every topic – this results in highest possible ef-
fectiveness (F1 score) and highest computational
cost. All runs use optimal tracking thresholds de-
termined by sweeping them while optimizing on
F1 score as an objective function. We also show
the performance resulting from the traditional
approach when randomly down-sampling the doc-
ument (Twitter) stream, which resembles previous
attempts to scale tracking (Ghosh et al., 2013).
Every point on the LSH-based tracking curve
in Figure 1 and 2 represents a different number
of bits per hash key (varying between 4 and 20)
and tables (ranging from 6 to 200). The points
on the cluster-based tracking curves result from
varying the number of clusters (ranging from 1 to
100,000) and probes. The resulting bucket sizes
span from a few dozen to over a million topics.
As expected, the graphs in Figure 1 closely
resembles those in Figure 2. The two figures also
show that the performance of all three algorithms
is continuously adjustable. Unsurprisingly, LSH-
and cluster-based tracking clearly outperform
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Figure 1: Trade-off between efficiency and dot-products for
LSH- and cluster-based tracking as well as a random down-
sampling approach for traditional tracking

Figure 2: Trade-off between efficiency and runtime for
LSH- and cluster-based tracking as well as a random down-
sampling approach for traditional tracking;

random document sampling for the traditional ap-
proach, based on their more effective search space
reduction strategies. More surprisingly, we also
observe that cluster-based tracking outperforms
tracking based on LSH in terms of efficiency for
F1 scores between 10% and 20%. To understand
why tracking based on clustering is faster than
randomized tracking, we further investigate
their abilities in cutting down the search space.

Figure 3 presents the candidate set size nec-
essary to find a certain ratio of relevant topics.
The graph also illustrates the impact of probing
multiple clusters. When focusing on a recall up
to 60%, LSH-based tracking requires a signif-
icantly larger candidate set size in comparison
with tracking through clustering. For example,
LSH-based tracking needs to examine 30% of all
topics to reach a recall of 50%, while the cluster
based approach only needs to look at 9%. This
effect diminishes for higher recall values. Fur-
thermore, we observe an impressive performance
gain in recall from 20% to 60%, resulting from
additionally probing the k-closest clusters instead

Figure 3: Comparing the candidate set size with the Recall
of LSH- with cluster-based tracking without the exact evalua-
tion phase; The magnitude of the candidate set size represents
the ratio between the number of candidate topics and the total
number of topics;

of just the closest one. While data dependent
segmentation is expected to outperform LSH in
terms of effectiveness, we were surprised by the
magnitude of its impact on efficiency.

The lack in effectiveness of LSH has a direct
negative implication on its efficiency for tracking.
In order to make up for its suboptimal space seg-
mentation, it requires substantially bigger candi-
date sets to reach the same level of recall as the
cluster-based approach. The size of the candi-
date set is critical because we assume a subsequent
exact comparison phase to lower the false posi-
tive rate. The overhead of both algorithms is out-
weighed by the cost of exact comparison for the
candidate set.
Table 5, which compares the performance of the
three algorithms, reveals a drastic reduction in run-
time of up to 80%, at the cost of only a minor
decrease in F1 score. The differences of 6% and
10% percent in F1 score are statistically not sig-
nificant according to a sign test (p<=0.362 and
p<=0.2). Consequently, both algorithms achieve
substantial runtime reduction, while maintaining a
level of effectiveness that is statistically indistin-
guishable from the traditional (exact) approach.

6.3 Tracking Wikipedia on Twitter in
constant space

Tracking a stream of topics in bounded space is
highly application specific due to the deletion pro-
cedure. We know from previous studies (Nichols
et al., 2012) that a topic’s popularity within Twit-
ter fades away over time. We are interested in
keeping currently active topics and delete those
that attract the least number of recent documents.
This set-up has the interesting aspect that the doc-
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Algorithm F1 score Dot Products Runtime (sec)
traditional approach 0.217 2.3 ∗ 1014 1.5 ∗ 107

LSH-based tracking 0.196 (-10%) 1.4 ∗ 1014 (-39%) 8.0 ∗ 106 (-46%)
cluster-based tracking 0.204 (-6%) 3.1 ∗ 1013 (-86%) 2.5 ∗ 106 (-83%)

Table 5: Effectiveness and efficiency of LSH- and cluster-based tracking to the traditional approach

Algorithm Space F1 score dot products runtime (sec)

LSH-based tracking unbounded 0.196 1.4 ∗ 1014 8.0 ∗ 106

bounded 0.173 (-12%) 5.1 ∗ 1011 (-99%) 4.1 ∗ 104 (-99%)

cluster-based tracking unbounded 0.204 3.1 ∗ 1013 2.5 ∗ 106

bounded 0.189 (-7%) 1.8 ∗ 1011 (-99%) 3.3 ∗ 104 (-98%)

Table 6: Effectiveness and efficiency for tracking in bounded and unbounded space

ument stream dictates the lifespan of each topic
in the topic stream. Table 6 contains the results
of cluster- and LSH-based tracking and compares
them to their bounded versions using the same set
up. Note that the hit in performance is solely
defined by the amount of memory provided and
therefore continuously adjustable.
For this particular experiment, we chose an upper
bound of 25k concurrent topics. The table repre-
sents a substantial drop in runtime, following the
reduced search space, at a fairly low expense in
effectiveness. Based on our observations, we hy-
pothesise that significant topics are more likely to
be discussed during random Twitter chatter than
the average Wikipedia topic. It is interesting to
notice that the runtime also indicates a lower over-
head for LSH-based tracking in comparison with
the cluster-based approach. This difference was
hidden in the unbounded tracking experiments but
carries now more weight.

7 Conclusion

We extended traditional topic tracking by demon-
strating that it is possible to track an unbounded
stream of topics in constant space and time. We
also presented two approaches to tracking, based
on LSH and clustering that efficiently scale to a
high number of topics and documents while main-
taining a level of effectiveness that is statistically
indistinguishable from an exact tracking system.
While they trade gains in efficiency against a loss
in effectiveness, we showed that cluster based
tracking does so more efficiently due to more ef-
fective space segmentation, which allows a higher
reduction of the search space. Contrary to com-
mon believes this showed how nearest neighbour
search in data streams based on clustering per-
forms faster than LSH, for the same level of accu-
racy. Furthermore, we showed that standard mea-

sures of similarity (cosine) are sub-optimal when
tracking Wikipedia against Twitter.
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Abstract

We propose a nonparametric Bayesian
model for joint unsupervised word seg-
mentation and part-of-speech tagging
from raw strings. Extending a previous
model for word segmentation, our model
is called a Pitman-Yor Hidden Semi-
Markov Model (PYHSMM) and consid-
ered as a method to build a class n-gram
language model directly from strings,
while integrating character and word level
information. Experimental results on stan-
dard datasets on Japanese, Chinese and
Thai revealed it outperforms previous re-
sults to yield the state-of-the-art accura-
cies. This model will also serve to analyze
a structure of a language whose words are
not identified a priori.

1 Introduction

Morphological analysis is a staple of natural lan-
guage processing for broad languages. Especially
for some East Asian languages such as Japanese,
Chinese or Thai, word boundaries are not explic-
itly written, thus morphological analysis is a cru-
cial first step for further processing. Note that
also in Latin and old English, scripts were orig-
inally written with no word indications (scripta
continua), but people felt no difficulty reading
them. Here, morphological analysis means word
segmentation and part-of-speech (POS) tagging.

For this purpose, supervised methods have of-
ten been employed for training. However, to
train such supervised classifiers, we have to pre-
pare a large amount of training data with cor-
rect annotations, in this case, word segmentation
and POS tags. Creating and maintaining these
data is not only costly but also very difficult, be-
cause generally there are no clear criteria for ei-
ther “correct” segmentation or POS tags. In fact,

since there are different standards for Chinese
word segmentation, widely used SIGHAN Bake-
off dataset (Emerson, 2005) consists of multiple
parts employing different annotation schemes.

Lately, this situation has become increasingly
important because there are strong demands for
processing huge amounts of text in consumer gen-
erated media such as Twitter, Weibo or Facebook
(Figure 1). They contain a plethora of colloquial
expressions and newly coined words, including
sentiment expressions such as emoticons that can-
not be covered by fixed supervised data.

To automatically recognize such linguistic phe-
nomena beyond small “correct” supervised data,
we have to extract linguistic knowledge from the
statistics of strings themselves in an unsupervised
fashion. Needless to say, such methods will also
contribute to analyzing speech transcripts, classic
texts, or even unknown languages. From a scien-
tific point of view, it is worth while to find “words”
and their part-of-speech purely from a collection
of strings without any preconceived assumptions.

To achieve that goal, there have been two kinds
of approaches: heuristic methods and statisti-
cal generative models. Heuristic methods are
based on basic observations such that word bound-
aries will often occur at the place where predic-
tive entropy of characters is large (i.e. the next
character cannot be predicted without assuming

ローラのときに涙かブハァってなりました∩ (́；ヮ；
｀)∩～～
真樹なんてこんな中２くさい事胸張って言えるぞぉ！
今日ね！らんらんとるいとコラボキャスするからお
いで～(*´∀｀)ノシ
どうせ明日の昼ごろしれっと不在表入ってるんだろ
うなぁ。
テレ東はいつものネトウヨホルホル VTR 鑑賞番組
してんのか

Figure 1: Sample of Japanese Twitter text that
is difficult to analyze by ordinary supervised seg-
mentation. It contains a lot of novel words, emoti-
cons, and colloquial expressions.
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the next word). By formulating such ideas as
search or MDL problems of given coding length1,
word boundaries are found in an algorithmic fash-
ion (Zhikov et al., 2010; Magistry and Sagot,
2013). However, such methods have difficulty in-
corporating higher-order statistics beyond simple
heuristics, such as word transitions, word spelling
formation, or word length distribution. Moreover,
they usually depends on tuning parameters like
thresholds that cannot be learned without human
intervention.

In contrast, statistical models are ready to in-
corporate all such phenomena within a consistent
statistical generative model of a string, and often
prove to work better than heuristic methods (Gold-
water et al., 2006; Mochihashi et al., 2009). In
fact, the statistical methods often include the cri-
teria of heuristic methods at least in a conceptual
level, which is noted in (Mochihashi et al., 2009)
and also explained later in this paper. In a statisti-
cal model, each word segmentation w of a string
s is regarded as a hidden stochastic variable, and
the unsupervised learning of word segmentation is
formulated as a maximization of a probability of
w given s:

argmax
w

p(w|s) . (1)

This means that we want the most “natural” seg-
mentation w that have a high probability in a lan-
guage model p(w|s).

Lately, Chen et al. (2014) proposed an interme-
diate model between heuristic and statistical mod-
els as a product of character and word HMMs.
However, these two models do not have informa-
tion shared between the models, which is not the
case with generative models.

So far, these approaches only find word seg-
mentation, leaving part-of-speech information be-
hind. These two problems are not actually in-
dependent but interrelated, because knowing the
part-of-speech of some infrequent or unknown
word will give contextual clues to word segmen-
tation, and vice versa. For example, in Japanese

すもももももも

can be segmented into not onlyすもも/も/もも/も
(plum/too/peach/too), but also intoすもも/もも/
もも (plum/peach/peach), which is ungrammati-
cal. However, we could exclude the latter case

1For example, Zhikov et al. (2010) defined a coding
length using character n-grams plus MDL penalty. Since
this can be interpreted as a crude “likelihood” and a prior,
its essence is similar but driven by a quite simplistic model.

Character HPYLM

Word HPYLM

Figure 2: NPYLM represented in a hierarchical
Chinese restaurant process. Here, a character ∞-
gram HPYLM is embedded in a word n-gram
HPYLM and learned jointly during inference.

if we leverage knowledge that a state sequence
N/P/N/P is much more plausible in Japanese than
N/N/N from the part-of-speech information. Sirts
and Alumäe (2012) treats a similar problem of
POS induction with unsupervised morphological
segmentation, but they know the words in advance
and only consider segmentation within a word.

For this objective, we attempt to maximize the
joint probability of words and tags:

argmax
w,z

p(w, z|s) ∝ p(w, z, s) (2)

From the expression above, this amounts to
building a generative model of a string s with
words w and tags z along with an associated infer-
ence procedure. We solve this problem by extend-
ing previous generative model of word segmenta-
tion. Note that heuristic methods are never able to
model the hidden tags, and only statistical genera-
tive models can accommodate this objective.

This paper is organized as follows. In Sec-
tion 2, we briefly introduce NPYLM (Mochihashi
et al., 2009) on which our extension is based. Sec-
tion 3 extends it to include hidden states to yield a
hidden semi-Markov models (Murphy, 2002), and
we describe its inference procedure in Section 4.
We conduct experiments on some East Asian lan-
guages in Section 5. Section 6 discusses implica-
tions of our model and related work, and Section 7
concludes the paper.

2 Nested Pitman-Yor Language Model

Our joint model of words and states is an
extension of the Nested Pitman-Yor Language
Model (Mochihashi et al., 2009) of a string, which
in turn is an extension of a Bayesian n-gram lan-
guage model called Hierarchical Pitman-Yor Lan-
guage Model (HPYLM) (Teh, 2006).
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HPYLM is a nonparametric Bayesian model of
n-gram distribution based on the Pitman-Yor pro-
cess (Pitman and Yor, 1997) that generates a dis-
crete distribution G as G ∼ PY(G0, d, θ). Here,
d is a discount factor, “parent” distribution G0 is
called a base measure and θ controls how similar
G is to G0 in expectation. In HPYLM, n-gram
distribution Gn = {p(wt|wt−1 · · ·wt−(n−1))} is
assumed to be generated from the Pitman-Yor pro-
cess

Gn ∼ PY(Gn−1, dn, θn) , (3)

where the base measure Gn−1 is an (n−1)-gram
distribution generated recursively in accordance
with (3). Note that there are different Gn for each
n-gram history h = wt−1 · · ·wt−(n−1). When we
reach the unigram G1 and need to use a base mea-
sure G0, i.e. prior probabilities of words, HPYLM
usually uses a uniform distribution over the lexi-
con.

However, in the case of unsupervised word seg-
mentation, every sequence of characters could be
a word, thus the size of the lexicon is unbounded.
Moreover, prior probability of forming a word
should not be uniform over all sequences of char-
acters: for example, English words rarely begin
with ‘gme’ but tend to end with ’-ent’ like in seg-
ment. To model this property, NPYLM assumes
that word prior G0 is generated from character
HPYLM to model a well-formedness of w. In
practice, to avoid dependency on n in the charac-
ter model, we used an ∞-gram VPYLM (Mochi-
hashi and Sumita, 2008) in this research. Finally,
NPYLM gives an n-gram probability of word w
given a history h recursively by integrating out
Gn,

p(w|h) =
c(w|h)−d·thw

θ+c(h)
+

θ+d·th ·
θ+c(h)

p(w|h′) ,

(4)
where h′ is the shorter history of (n−1)-grams.
c(w|h), c(h) =

∑
w c(w|h) are n-gram counts of

w appearing after h, and thw, th · =
∑

w thw are
associated latent variables explained below. In
case the history h is already empty at the unigram,
p(w|h′) = p0(w) is computed from the character
∞-grams for the word w=c1 · · · ck :

p0(w) = p(c1 · · · ck) (5)

=
∏k

i=1 p(ci|ci−1 · · · c1) . (6)

In practice, we further corrected (6) so that a word
length follows a mixture of Poisson distributions.
For details, see (Mochihashi et al., 2009).

When we know word segmentation w of the
data, the probability above can be computed by
adding each n-gram count of w given h to the
model, i.e. increment c(w|h) in accordance with
a hierarchical Chinese restaurant process associ-
ated with HPYLM (Figure 2). When each n-gram
count called a customer is inferred to be actually
generated from (n−1)-grams, we send its proxy
customer for smoothing to the parent restaurant
and increment thw, and this process will recurse.
Notice that if a word w is never seen in w, its
proxy customer is eventually sent to the parent
restaurant of unigrams. In that case2, w is decom-
posed to its character sequence c1 · · · ck and this is
added to the character HPYLM in the same way,
making it a little “clever” about possible word
spellings.
Inference Because we do not know word seg-
mentation w beforehand, we begin with a trivial
segmentation in which every sentence is a single
word3. Then, we iteratively refine it by sampling
a new word segmentation w(s) of a sentence s
in a Markov Chain Monte Carlo (MCMC) frame-
work using a dynamic programming, as is done
with PCFG by (Johnson et al., 2007) shown in Fig-
ure 3 where we omit MH steps for computational
reasons. Further note that every hyperparameter
dn, θn of NPYLM can be sampled from the poste-
rior in a Bayesian fashion, as opposed to heuristic
methods that rely on a development set for tuning.
For details, see Teh (2006).

3 Pitman-Yor Hidden Semi-Markov
Models

NPYLM is a complete generative model of a
string, that is, a hierarchical Bayesian n-gram lan-

Input: a collection of strings S
Add initial segmentation w(s) to Θ
for j = 1 · · · J do

for s in randperm (S) do
Remove customers of w(s) from Θ
Sample w(s) according to p(w|s,Θ)
Add customers of w(s) to Θ

end for
Sample hyperparameters of Θ

end for
Figure 3: MCMC inference of NPYLM Θ.

2To be precise, this occurs whenever thw is incremented
in the unigram restaurant.

3Note that a child first memorizes what his mother says as
a single word and gradually learns the lexicon.
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zt−1 zt zt+1

wt−1 wt wt+1

︸ ︷︷ ︸
Observation s

· · ·

· · ·

· · ·

· · ·

Figure 4: Graphical model of PYHSMM in a bi-
gram case. White nodes are latent variables, and
the shaded node is the observation. We only ob-
serve a string s that is a concatenation of hidden
words w1 · · ·wT .

guage model combining words and characters. It
can also be viewed as a way to build a Bayesian
word n-gram language model directly from a se-
quence of characters, without knowing “words” a
priori.

One possible drawback of it is a lack of part-of-
speech: as described in the introduction, grammat-
ical states will contribute much to word segmenta-
tion. Also, from a computational linguistics point
of view, it is desirable to induce not only words
from strings but also their part-of-speech purely
from the usage statistics (imagine applying it to an
unknown language or colloquial expressions). In
classical terms, it amounts to building a class n-
gram language model where both class and words
are unknown to us. Is this really possible?

Yes, we can say it is possible. The idea is sim-
ple: we augment the latent states to include a hid-
den part-of-speech zt for each word wt, which
is again unknown as displayed in Figure 4. As-
suming wt is generated from zt’-th NPYLM, we
can draw a generative model of a string s as fol-
lows:

z0 =BOS; s=ϵ (an empty string).
for t = 1 · · ·T do

Draw zt ∼ p(zt|zt−1) ,
Draw wt ∼ p(wt|w1 · · ·wt−1, zt) ,
Append wt to s .

end for

Here, z0 = BOS and zT+1 = EOS are distin-
guished states for beginning and end of a sentence,
respectively. For the transition probability of hid-
den states, we put a HPY process prior as (Blun-
som and Cohn, 2011):

p(zt|zt−1) ∼ HPY(d, θ) (7)

with the final base measure being a uniform dis-
tribution over the states. The word boundaries are

!"#!

!!"#$"#
%&'()*+,-.&-)/01-0.2*3'45#

! !! "! #! $! "!

!!!!"! "#! #$! $"!

$%&'()*+,-.(
(((/! 0"#(1+'*2(

(((((((3!

#$"!"#$!!"#!!!"!

4"#!

516*(-!

Figure 5: Graphical representation of sampling
words and POSs. Each cell corresponds to an in-
side probability α[t][k][z]. Note each cell is not
always connected to adjacent cells, because of an
overlap of substrings associated with each cell.

known in (Blunsom and Cohn, 2011), but in our
case it is also learned from data at the same time.
Note that because wt depends on already gener-
ated words w1 · · ·wt−1, our model is considered
as an autoregressive HMM rather than a vanilla
HMM, as shown in Figure 4 (wt−1 → wt depen-
dency).

Since segment models like NPYLM have seg-
ment lengths as hidden states, they are called semi-
Markov models (Murphy, 2002). In contrast, our
model also has hidden part-of-speech, thus we
call it a Pitman-Yor Hidden Semi-Markov model
(PYHSMM).4 Note that this is considered as a
generative counterpart of a discriminative model
known as a hidden semi-Markov CRF (Sarawagi
and Cohen, 2005).

4 Inference

Inference of PYHSMM proceeds in almost the
same way as NPYLM in Figure 3: For each sen-
tence, first remove the customers associated with
the old segmentation similarly to adding them. Af-
ter sampling a new segmentation and states, the
model is updated by adding new customers in ac-
cordance with the new segmentation and hidden
states.

4.1 Sampling words and states

To sample words and states (part-of-speech)
jointly, we first compute inside probabilities for-
ward from BOS to EOS and sample backwards
from EOS according to the Forward filtering-
Backward sampling algorithm (Scott, 2002). This

4Lately, Johnson et al. (2013) proposed a nonparamet-
ric Bayesian hidden semi-Markov models for general state
spaces. However, it depends on a separate distribution for a
state duration, thus is clealy different from ours for a natural
language.
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can be regarded as a “stochastic Viterbi” algorithm
that has the advantage of not being trapped in local
minima, since it is a valid move of a Gibbs sampler
in a Bayesian model.

For a word bigram case for simplicity, inside
variable α[t][k][z] is a probability that a substring
c1 · · · ct of a string s= c1 · · · cN is generated with
its last k characters being a word, generated from
state z as shown in Figure 5. From the definition
of PYHSMM, this can be computed recursively as
follows:

α[t][k][z] =
L∑

j=1

K∑
y=1

p(ct
t−k|ct−k

t−k−j+1, z)

p(z|y)α[t−k][j][y] . (8)

Here, ct
s is a substring cs · · · ct and L (≤ t) is the

maximum length of a word, and K is the number
of hidden states.5

In Figure 5, each cell represents α[t][k][z] and
a single path connecting from EOS to BOS cor-
responds to a word sequence w and its state se-
quence z. Note that each cell is not always con-
nected to adjacent cells (we omit the arrows), be-
cause the length-k substring associated with each
cell already subsumes that of neighborhood cells.

Once w and z are sampled, each wt is added to
zt’-th NPYLM to update its statistics.

4.2 Efficient computation by the Negative
Binomial generalized linear model

Inference algorithm of PYHSMM has a computa-
tional complexity of O(K2L2N), where N is a
length of the string to analyze. To reduce com-
putations it is effective to put a small L of maxi-
mum word length, but it might also ignore occa-
sionally long words. Since these long words are
often predictable from some character level infor-
mation including suffixes or character types, in a

Type Feature
ci Character at time t−i (0≤ i≤1)
ti Character type at time t−i (0≤ i≤4)
cont # of the same character types before t
ch # of times character types changed

within 8 characters before t

Table 1: Features used for the Negative Binomial
generalized linear model for maximum word
length prediction.

5For computational reasons, we do not pursue using a
Dirichlet process to yield an infinite HMM (Van Gael et al.,
2009), but it is straightforward to extend our PYHSMM to
iHMM.

semi-supervised setting we employ a Negative Bi-
nomial generalized linear model (GLM) for set-
ting Lt adaptively for each character position t in
the corpus.

Specifically, we model the word length ℓ by a
Negative Binomial distribution (Cook, 2009):

ℓ ∼ NB(ℓ|r, p) =
Γ(r+ℓ)
Γ(r) ℓ!

pℓ(1− p)r . (9)

This counts the number of failures of Bernoulli
draws with probability (1−p) before r’th success.
For our model, note that Negative Binomial is ob-
tained from a Poisson distribution Po(λ) whose
parameter λ again follows a Gamma distribution
Ga(r, b) and integrated out:

p(ℓ|r, b) =
∫

Po(ℓ|λ)Ga(λ|r, b)dλ (10)

=
Γ(r+ℓ)
Γ(r) ℓ!

(
b

1+b

)ℓ (
1

1+b

)r

. (11)

This construction exactly mirrors the Poisson-
Gamma word length distribution in (Mochihashi
et al., 2009) with sampled λ. Therefore, our Neg-
ative Binomial is basically a continuous analogue
of the word length distribution in NPYLM.6

Since r > 0 and 0≤ p≤ 1, we employ an expo-
nential and sigmoidal linear regression

r = exp(wT
r f), p = σ(wT

p f) (12)

where σ(x) is a sigmoid function and wr,wp are
weight vectors to learn. f is a feature vector com-
puted from the substring c1 · · · ct, including f0≡1
for a bias term. Table 1 shows the features we
used for this Negative Binomial GLM. Since Neg-
ative Binomial GLM is not convex in wr and wp,
we endow a Normal prior N(0, σ2I) for them and
used a random walk MCMC for inference.

Predicting Lt Once the model is obtained, we
can set Lt adaptively as the time where the cu-
mulative probability of ℓ exceeds some threshold
θ (we used θ = 0.99). Table 2 shows the preci-
sion of predicting maximum word length learned
from 10,000 sentences from each set: it measures
whether the correct word boundary in test data is
included in the predicted Lt.

Overall it performs very well with high preci-
sion, and works better for longer words that cannot
be accommodated with a fixed maximum length.

6Because NPYLM employs a mixture of Poisson distri-
butions for each character type of a substring, this correspon-
dence is not exact.
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Lang Dataset Training Test

Ja
Kyoto corpus 37,400 1,000
BCCWJ OC 20,000 1,000

Zh
SIGHAN MSR 86,924 3,985
SIGHAN CITYU 53,019 1,492
SIGHAN PKU 19,056 1,945

Th InterBEST Novel 1,000 1,000

Table 3: Datasets used for evaluation. Abbrevi-
ations: Ja=Japanese, Zh=Chinese, Th=Thai lan-
guage.

Figure 6 shows the distribution of predicted max-
imum lengths for Japanese. Although we used
θ = 0.99, it is rather parsimonious but accurate
that makes the computation faster.

Because this cumulative Negative Binomial
prediction is language independent, we believe it
might be beneficial for other natural language pro-
cessing tasks that require some maximum lengths
within which to process the data.

5 Experiments

To validate our model, we conducted experiments
on several corpora of East Asian languages with
no word boundaries.

Datasets For East Asian languages, we used
standard datasets in Japanese, Chinese and Thai
as shown in Table 3. The Kyoto corpus is a
collection of sentences from Japanese newspaper
(Kurohashi and Nagao, 1998) with both word seg-
mentation and part-of-speech annotations. BC-
CWJ (Balanced Corpus of Contemporary Writ-
ten Japanese) is a balanced corpus of written
Japanese (Maekawa, 2007) from the National
Institute of Japanese Language and Linguistics,
also with both word segmentation and part-of-
speech annotations from slightly different crite-
ria. For experiments on colloquial texts, we used
a random subset of “OC” register from this cor-
pus that is comprised of Yahoo!Japan Answers
from users. For Chinese, experiments are con-

ducted on standard datasets of SIGHAN Bakeoff
2005 (Emerson, 2005); for comparison we used
MSR and PKU datasets for simplified Chinese,
and the CITYU dataset for traditional Chinese.
SIGHAN datasets have word boundaries only, and
we conformed to original training/test splits pro-
vided with the data. InterBEST is a dataset in
Thai used in the InterBEST 2009 word segmen-
tation contest (Kosawat, 2009). For contrastive
purposes, we used a “Novel” subset of it with a
random sampling without replacement for training
and test data. Accuracies are measured in token
F -measures computed as follows:

F =
2PR

P +R
, (13)

P =
# of correct words

# of words in output
, (14)

R =
# of correct words

# of words in gold standard
. (15)

Unsupervised word segmentation In Table 4,
we show the accuracies of unsupervised word seg-
mentation with previous figures. We used bi-
gram PYHSMM and set L = 4 for Chinese, L =
5, 8, 10, 21 for Japanese with different types of
contiguous characters, and L = 6 for Thai. The
number of hidden states are K =10 (Chinese and
Thai), K =20 (Kyoto) and K =30 (BCCWJ).

We can see that our PYHSMM outperforms on
all the datasets. Huang and Zhao (2007) reports
that the maximum possible accuracy in unsuper-
vised Chinese word segmentation is 84.8%, de-
rived through the inconsistency between different
segmentation standards of the SIGHAN dataset.
Our PYHSMM performs nearer to this best possi-
ble accuracy, leveraging both word and character
knowledge in a consistent Bayesian fashion. Fur-
ther note that in Thai, quite high performance is
achieved with a very small data compared to pre-
vious work.
Unsupervised part-of-speech induction As
stated above, Kyoto, BCCWJ and Weibo datasets

Dataset Kyoto BCCWJ MSR CITYU BEST
Precision (All) 99.9 99.9 99.6 99.9 99.0
Precision (≥5) 96.7 98.4 73.6 87.0 91.7
Maximum length 15 48 23 12 21

Table 2: Precision of maximum word length prediction with
a Negative Binomial generalized linear model (in percent).
≥ 5 are figures for word length ≥ 5. Final row is the maxi-
mum length of a word found in each dataset.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

 2  4  6  8  10  12  14  16

F
re

qu
en

cy

L
Figure 6: Distribution of predicted maxi-
mum word lengths on the Kyoto corpus.
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Dataset PYHSMM NPY BE HMM2

Kyoto 71.5 62.1 71.3 NA
BCCWJ 70.5 NA NA NA
MSR 82.9 80.2 78.2 81.7
CITYU 82.6∗ 82.4 78.7 NA
PKU 81.6 NA 80.8 81.1
BEST 82.1 NA 82.1 NA

Table 4: Accuracies of unsupervised word seg-
mentation. BE is a Branching Entropy method of
Zhikov et al. (2010), and HMM2 is a product of
word and character HMMs of Chen et al. (2014).
∗ is the accuracy decoded with L = 3: it becomes
81.7 with L=4 as MSR and PKU.

have part-of-speech annotations as well. For these
data, we also evaluated the precision of part-of-
speech induction on the output of unsupervised
word segmentation above. Note that the precision
is measured only over correct word segmentation
that the system has output. Table 5 shows the
precisions; to the best of our knowledge, there
are no previous work on joint unsupervised learn-
ing of words and tags, thus we only compared
with Bayesian HMM (Goldwater and Griffiths,
2007) on both NPYLM segmentation and gold
segmentation. In this evaluation, we associated
each tag of supervised data with a latent state that
cooccurred most frequently with that tag. We
can see that the precision of joint POS tagging is
better than NPYLM+HMM, and even better than
HMM that is run over the gold segmentation.

For colloquial Chinese, we also conducted an
experiment on the Leiden Weibo Corpus (LWC), a
corpus of Chinese equivalent of Twitter7. We used
random 20,000 sentences from this corpus, and re-
sults are shown in Figure 7. In many cases plausi-
ble words are found, and assigned to syntactically
consistent states. States that are not shown here
are either just not used or consists of a mixture of
different syntactic categories. Guiding our model
to induce more accurate latent states is a common
problem to all unsupervised part-of-speech induc-
tion, but we show some semi-supervised results
next.

Dataset PYHSMM NPY+HMM HMM
Kyoto 57.4 53.8 49.5
BCCWJ 50.2 44.1 44.2
LWC 33.0 30.9 32.9

Table 5: Precision of POS tagging on correctly
segmented words.

7http://lwc.daanvanesch.nl/

Semi-supervised experiments Because our
PYHSMM is a generative model, it is easily
amenable to semi-supervised segmentation and
tagging. We used random 10,000 sentences from
supervised data on Kyoto, BCCWJ, and LWC
datasets along with unsupervised datasets in
Table 3.

Results are shown in Table 6: segmentation ac-
curacies came close to 90% but do not go be-
yond. By inspecting the segmentation and POS
that PYHSMM has output, we found that this is
not necessarily a fault of our model, but it came
from the often inconsistet or incorrect tagging of
the dataset. In many cases PYHSMM found more
“natural” segmentations, but it does not always
conform to the gold annotations. On the other
hand, it often oversegments emotional expressions
(sequence of the same character, for example) and
this is one of the major sources of errors.

Finally, we note that our proposed model for un-
supervised learning is most effective for the lan-
guage which we do not know its syntactic behavior
but only know raw strings as its data. In Figure 8,
we show an excerpt of results to model a Japanese
local dialect (Mikawa-ben around Nagoya district)
collected from a specific Twitter. Even from the
surface appearance of characters, we can see that
similar words are assigned to the same state in-
cluding some emoticons (states 9,29,32), and in
fact we can identify a state of postpositions spe-
cific to that dialect (state 3). Notice that the
words themselves are not trivial before this anal-
ysis. There are also some name of local places
(state 41) and general Japanese postpositions (2)
or nouns (11,18,25,27,31). Because of the spar-
sity promoting prior (7) over the hidden states, ac-
tually used states are sparse and the results can be
considered quite satisfactory.

6 Discussion

The characteristics of NPYLM is a Baysian inte-
gration of character and word level information,
which is related to (Blunsom and Cohn, 2011) and
the adaptor idea of (Goldwater et al., 2011). This

Dataset Seg POS
Kyoto 92.1 87.1
BCCWJ 89.4 83.1
LWC 88.5 86.9

Table 6: Semi-supervised segmentation and POS
tagging accuracies. POS is measured by precision.
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Figure 7: Some interesting words and states induced from Weibo corpus (K = 20). Numbers represent
frequencies that each word is generated from that class. Although not perfect, emphatic (z = 1), end-
of-sentence expressions (z = 3), and locative words (z = 18) are learned from tweets. Distinction is far
more clear in the semi-supervised experiments (not shown here).

z Induced words
2 の、はにがでともを「
3 ぞんかんねのんだにだんりんかんだのん
9 (*ˆˆ*) ！(ˆ-ˆ; (ˆ_ˆ;) (ˆˆ;; ！(ˆˆ;;
10 。 ！ ！！ ？ 」 （≧∇≦） ！！」「
11 楽入ど寒大丈夫会受停電良美味台風が
13 にらわなよねだらじゃんねえぁ
18 今年最近豊川地元誰豊田今度次豊川高校
19 さんんめ食べってよろしくありがとうじゃん
20 これ知人それどこまあみんな東京いや方
24 三河弁このよお何そほい今日またほ
25 他一緒５大変頭春参加指世代地域
26 マジ豊橋カレーコレトキワコーヒープロファン
27 行」方言 &言葉普通夜店」始確認
29 ( ！(; ( ・́ ！！(*｀ ？（ ・́ (*ˆ_ˆ*)
30 気うち店ほうこここっち先生友人いろいろ
31 女子無理決近い安心標準語感動蒲郡試合
32 ( （ *\(ˆ ＼ (ˆ (ˆ ！*\(ˆ ～ (ˆ_ˆ (*ˆ
34 ヤマサマーラオレハイジイメージクッピーラムネ
35 なーそう好きことらんなんらみ意味
36 いいどうまい杏果ぐろめっちゃかわいはよ
41 豊橋名古屋三河西三河名古屋弁名古屋人大阪

Figure 8: Unsupervised analysis of a Japanese lo-
cal dialect by PYHSMM. (K =50)

is different from (and misunderstood in) a joint
model of Chen et al. (2014), where word and char-
acter HMMs are just multiplied. There are no in-
formation shared from the model structure, and
in fact it depends on a BIO-like heuristic tagging
scheme in the character HMM.

In the present paper, we extended it to include
a hidden state for each word. Therefore, it might
be interesting to introduce a hidden state also for
each character. Unlike western languages, there
are many kinds of Chinese characters that work
quite differently, and Japanese uses several distinct
kinds of characters, such as a Chinese character,
Hiragana, Katakana, whose mixture would consti-
tute a single word. Therefore, statistical modeling
of different types of characters is an important re-

search venue for the future.
NPYLM has already applied and extended to

speech recognition (Neubig et al., 2010), statisti-
cal machine translation (Nguyen et al., 2010), or
even robotics (Nakamura et al., 2014). For all
these research area, we believe PYHSMM would
be beneficial for their extension.

7 Conclusion

In this paper, we proposed a Pitman-Yor Hidden
Semi-Markov model for joint unsupervised word
segmentation and part-of-speech tagging on a raw
sequence of characters. It can also be viewed as
a way to build a class n-gram language model di-
rectly on strings, without any “word” information
a priori.

We applied our PYHSMM on several standard
datasets on Japanese, Chinese and Thai, and it out-
performed previous figures to yield the state-of-
the-art results, as well as automatically induced
word categories. It is especially beneficial for col-
loquial text, local languages or speech transcripts,
where not only words themselves are unknown but
their syntactic behavior is a focus of interest.

In order to adapt to human standards given in
supervised data, it is important to conduct a semi-
supervised learning with discriminative classifiers.
Since semi-supervised learning requires genera-
tive models in advance, our proposed Bayesian
generative model will also lay foundations to such
an extension.
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Abstract

In order to effectively utilize multiple
datasets with heterogeneous annotations,
this paper proposes a coupled sequence
labeling model that can directly learn and
infer two heterogeneous annotations
simultaneously, and to facilitate
discussion we use Chinese part-of-
speech (POS) tagging as our case study.
The key idea is to bundle two sets of
POS tags together (e.g. “[NN, n]”), and
build a conditional random field (CRF)
based tagging model in the enlarged
space of bundled tags with the help of
ambiguous labelings. To train our model
on two non-overlapping datasets that each
has only one-side tags, we transform a
one-side tag into a set of bundled tags
by considering all possible mappings at
the missing side and derive an objective
function based on ambiguous labelings.
The key advantage of our coupled model
is to provide us with the flexibility of
1) incorporating joint features on the
bundled tags to implicitly learn the
loose mapping between heterogeneous
annotations, and 2) exploring separate
features on one-side tags to overcome the
data sparseness problem of using only
bundled tags. Experiments on benchmark
datasets show that our coupled model
significantly outperforms the state-of-
the-art baselines on both one-side POS
tagging and annotation conversion tasks.
The codes and newly annotated data are
released for non-commercial usage.1

∗Correspondence author.
1http://hlt.suda.edu.cn/ ˜ zhli

1 Introduction

The scale of available labeled data significantly
affects the performance of statistical data-driven
models. As a widely-used structural classification
problem, sequence labeling is prone to suffer
from the data sparseness issue. However, the
heavy cost of manual annotation typically limits
one labeled resource in both scale and genre.
As a promising research line, semi-supervised
learning for sequence labeling has been exten-
sively studied. Huang et al. (2009) show that
standard self-training can boost the performance
of a simple hidden Markov model (HMM) based
part-of-speech (POS) tagger. Søgaard (2011) ap-
ply tri-training to English POS tagging, boost-
ing accuracy from97.27% to 97.50%. Sun and
Uszkoreit (2012) derive word clusters from large-
scale unlabeled data as extra features for Chi-
nese POS tagging. Recently, the use of natural
annotation has becomes a hot topic in Chinese
word segmentation (Jiang et al., 2013; Liu et
al., 2014; Yang and Vozila, 2014). The idea is
to derive segmentation boundaries from implicit
information encoded in web texts, such as anchor
texts and punctuation marks, and use them as
partially labeled training data in sequence labeling
models.

The existence of multiple annotated resources
opens another door for alleviating data sparse-
ness. For example, Penn Chinese Treebank (CTB)
contains about20 thousand sentences annotated
with word boundaries, POS tags, and syntactic
structures (Xue et al., 2005), which is widely used
for research on Chinese word segmentation and
POS tagging. People’s Daily corpus (PD)2 is a
large-scale corpus annotated with word segments
and POS tags, containing about300 thousand
sentences from the first half of1998 of People’s

2http://icl.pku.edu.cn/icl_groups/
corpustagging.asp
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Figure 1: An example to illustrate the annotation
differences betweenCTB (above) andPD(below),
and how to transform a one-side tag into a set
of bundled tags. “NN” and “n” represent nouns;
“VV ”and “v” represent verbs.

Daily newspaper (see Table 2). The two resources
were independently built for different purposes.
CTB was designed to serve syntactic analysis,
whereasPDwas developed to support information
extraction systems. However, the key challenge
of exploiting the two resources is that they adopt
different sets of POS tags which are impossible to
be precisely converted from one to another based
on heuristic rules. Figure 1 shows two example
sentences fromCTB andPD. Please refer to Table
B.3 in Xia (2000) for detailed comparison of the
two guidelines.

Previous work on exploiting heterogeneous data
(CTB andPD) mainly focuses on indirect guide-
feature based methods. The basic idea is to use
one resource to generate extra guide features on
another resource (Jiang et al., 2009; Sun and
Wan, 2012), which is similar to stacked learning
(Nivre and McDonald, 2008). First,PD is used
as source data to train a source modelTaggerPD.
Then, TaggerPD generates automatic POS tags
on the target dataCTB, called source annota-
tions. Finally, a target modelTaggerCTB-guided
is trained onCTB, using source annotations as
extra guide features. Although the guide-feature
based method is effective in boosting performance
of the target model, we argue that it may have
two potential drawbacks. First, the target model
TaggerCTB-guideddoes not directly usePDas train-
ing data, and therefore fails to make full use of rich
language phenomena inPD. Second, the method
is more complicated in real applications since it
needs to parse a test sentence twice to get the final
results.

This paper proposes a coupled sequence label-

ing model that can directly learn and infer two
heterogeneous annotations simultaneously. We
use Chinese part-of-speech (POS) tagging as our
case study.3 The key idea is to bundle two sets
of POS tags together (e.g. “[NN, n]”), and build
a conditional random field (CRF) based tagging
model in the enlarged space of bundled tags. To
make use of two non-overlapping datasets that
each has only one-side tags, we transform a one-
side tag into a set of bundled tags by considering
all possible mappings at the missing side and
derive an objective function based onambiguous
labelings. During training, the CRF-based cou-
pled model is supervised by such ambiguous label-
ings. The advantages of our coupled model are to
provide us the flexibility of 1) incorporating joint
features on the bundled tags to implicitly learn the
loose mapping between two sets of annotations,
and 2) exploring separate features on one-side tags
to overcome the data sparseness problem of using
bundled tags. In summary, this work makes two
major contributions:

1. We propose a coupled model which can more
effectively make use of multiple resources
with heterogeneous annotations, compared
with both the baseline and guide-feature
based method. Experiments show our
approach can significantly improve POS
tagging accuracy from94.10% to 95.00% on
CTB.

2. We have manually annotatedCTB tags for
1, 000 PDsentences, which is the first dataset
with two-side annotations and can be used
for annotation-conversion evaluation. Exper-
iments on the newly annotated data show
that our coupled model also works effectively
on the annotation conversion task, improving
conversion accuracy from90.59% to 93.90%
(+3.31%).

2 Traditional POS Tagging (TaggerCTB)

Given an input sentence ofn words, denoted by
x = w1...wn, POS tagging aims to find an optimal
tag sequencet = t1...tn, whereti ∈ T (1 ≤ i ≤
n) andT is a predefined tag set. As a log-linear
probabilistic model (Lafferty et al., 2001), CRF

3There are some slight differences in the word segmenta-
tion guidelines betweenCTB andPD, which are ignored in
this work for simplicity.
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01: ti ◦ ti−1 02: ti ◦ wi

03: ti ◦ wi−1 04: ti ◦ wi+1

05: ti ◦ wi ◦ ci−1,−1 06: ti ◦ wi ◦ ci+1,0

07: ti ◦ ci,0 08: ti ◦ ci,−1

09: ti ◦ ci,k, 0 < k < #ci − 1

10: ti ◦ ci,0 ◦ ci,k, 0 < k < #ci − 1

11: ti ◦ ci,−1 ◦ ci,k, 0 < k < #ci − 1

12: if #ci = 1 then ti ◦ wi ◦ ci−1,−1 ◦ ci+1,0

13: if ci,k = ci,k+1 then ti ◦ ci,k ◦ “consecutive”

14: ti ◦ prefix(wi, k), 1 ≤ k ≤ 4, k ≤ #ci

15: ti ◦ suffix(wi, k), 1 ≤ k ≤ 4, k ≤ #ci

Table 1: POS tagging featuresf(x, i, ti−1, ti). ◦
means string concatenation;ci,k denotes thekth

Chinese character ofwi; ci,0 is the first Chinese
character; ci,−1 is the last Chinese character;
#ci is the total number of Chinese characters
contained inwi; prefix/suffix(wi, k) denote thek-
Character prefix/suffix ofwi.

defines the probability of a tag sequence as:

P (t|x; θ) =
exp(Score(x, t; θ))∑
t′ exp(Score(x, t′; θ))

Score(x, t; θ) =
∑

1≤i≤n

θ · f(x, i, ti−1, ti)
(1)

wheref(x, i, ti−1, ti) is the feature vector at the
ith word andθ is the weight vector. We adopt the
state-of-the-art tagging features in Table 1 (Zhang
and Clark, 2008).

3 Coupled POS Tagging (TaggerCTB&PD)

In this section, we introduce our coupled model,
which is able to learn and predict two heteroge-
neous annotations simultaneously. The idea is to
bundle two sets of POS tags together and let the
CRF-based model work in the enlarged tag space.
For example, aCTB tag “NN” and aPD tag “n”
would be bundled into “[NN,n]”. Figure 2 shows
the graphical structure of our model.

Different from the traditional model in Eq. (1),
our coupled model defines the score of a bundled
tag sequence as follows:

Score(x, [ta, tb]; θ) =

∑
1≤i≤n

θ ·

 f(x, i, [tai−1, t
b
i−1], [t

a
i , t

b
i ])

f(x, i, tai−1, t
a
i )

f(x, i, tbi−1, t
b
i )

 (2)

where the first item of the enlarged feature vector
is calledjoint features, which can be obtained by

w1 wi-1 wi wn... ...

Figure 2: Graphical structure of our coupled CRF
model.

instantiating Table 1 by replacingti with bundled
tags[tai , t

b
i ]; the second and third items are called

separate features, which are based on single-side
tags. The advantages of our coupled model over
the traditional model are to provide us with the
flexibility of using both kinds of features, which
significantly contributes to the accuracy improve-
ment as shown in the following experiments.

3.1 Mapping Functions

The key challenge of our idea is that bothCTBand
PD are non-overlapping and each contains only
one-side POS tags. Therefore, the problem is how
to construct training data for our coupled model.
We denote the tag set ofCTB asT a, and that of
PD asT b, and the bundled tag set asT a&b. Since
the full CartetianT a × T b would lead to a very
large number of bundled tags, making the model
very slow, we would like to come up with a much
smallerT a&b ⊆ T a × T b, based on linguistic
insights of the annotation guidelines of the two
datasets.

To obtain a properT a&b, we introduce a map-
ping function between the two sets of tags asm :
T a × T b → {0, 1}, which only allow specific tag
pairs to be bundled together.

m(ta, tb) =

{
1 if the two tags can be bundled

0 otherwise
(3)

where one mapping functionm corresponds to
oneT a&b. When the mapping function becomes
looser, the tag set size|T a&b| becomes larger.

Then, based on the mapping function, we can
map a single-side POS tag into a set of bundled
tags by considering all possible tags at the missing
side, as illustrated in Figure 1. The word “ÑU4”
is tagged as “NN” at theCTB side. Suppose that
the mapping functionm tells that “NN” can be
mapped into three tags at thePD side, i.e., “n”,
“Ng”, and “vn”. Then, we create three bundled
tags for the word, i.e., “[NN, n]”, “[ NN, Ng]”,
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“[ NN, vn]” as its gold-standard references during
training. It is known asambiguous labelingswhen
a training instance has multiple gold-standard la-
bels. Similarly, we can obtain bundled tags for all
other words in sentences ofCTB andPD. After
such transformation, the two datasets are now in
the same tag space.

At the beginning of this work, our intuition is
that the coupled model would achieve the best
performance if we build a tight and linguistical-
ly motivated mapping function. However, our
preliminary experiments show that our intuitive
assumption is actually incorrect. Therefore, we
experiment with the following four mapping func-
tions to manage to figure out the reasons behind
and to better understand our coupled model.

• The tight mapping function produces145
tags, and is constructed by strictly following
linguistic principles and our careful study of
the two guidelines and datasets.

• Therelaxed mapping function results in179
tags, which is an looser version of the tight
mapping function by including extra34 weak
mapping relationships.

• The automatic mapping function generates
346 tags. We use the baselineTaggerCTB to
parsePD, and collect all automatic mapping
relationships.

• The complete mapping function obtains
1, 254 tags (|T a| × |T b| = 33× 38).

3.2 Training Objective with Ambiguous
Labelings

So far, we have formally defined a coupled model
and prepared bothCTB and PD in the same
bundled tag space. The next problem is how to
learn the model parametersθ. Note that after our
transformation, a sentence inCTB or PD have
many tag sequences as gold-standard references
due to the loose mapping function, known as
ambiguous labelings. Here, we derive a training
objective based on ambiguous labelings. For
simplicity, we illustrate the idea based on the
notations of the baseline CRF model in Eq. (1).

Given a sentencex, we denote a set of ambigu-
ous tag sequences asV. Then, the probability of
V is the sum of probabilities of all tag sequences
contained inV:

p(V|x; θ) =
∑
t∈V

p(t|x; θ) (4)

Algorithm 1 SGD training with two labeled
datasets.

1: Input: Two labeled datasets: D(1) =
{(x(1)

i ,V(1)
i }N

i=1, D(2) = {(x(2)
i ,V(2)

i )}M
i=1;

Parameters:I, N ′, M ′, b
2: Output: θ
3: Initialization: θ0 = 0, k = 0;
4: for i = 1 to I do {iterations}
5: Randomly selectN ′ instances fromD(1)

andM ′ instances fromD(2) to compose a
new datasetDi, and shuffle it.

6: TraverseDi, and use a small batchDb
k ⊆

Di at one step.
7: θk+1 = θk + ηk

1
b∇L(Db

k; θk)
8: k = k + 1
9: end for

Suppose the training data isD = {(xi,Vi)}N
i=1.

Then the log likelihood is:

L(D; θ) =
N∑

i=1

log p(Vi|xi; θ) (5)

After derivation, the gradient is:

∂L(D; θ)
∂θ

=
N∑

i=1

(Et∈Vi [f(xi, t)]−Et[f(xi, t)])

(6)
wheref(xi, t) is an aggregated feature vector for
taggingxi ast; Et∈Vi [.] means model expectation
of the features in the constrained space ofVi;
Et[.] is model expectation with no constraint.
This function can be efficiently solved by the
forward-backward algorithm. Please note that the
training objective of a traditional CRF model can
be understood as a special case whereVi contains
one sequence.

3.3 SGD Training with Two Datasets

We adopt stochastic gradient descent (SGD) to
iteratively learnθ for our baseline and coupled
models. However, we have two separate training
data, andCTB may be overwhelmed byPD if
directly merging the two datasets into one, since
PD is 15 times larger thanCTB (see Table 2),
Therefore, we propose a simple corpus-weighting
strategy, as shown in Algorithm 1, whereDb

k is a
subset of training data used inkth step update;b
is the batch size;ηk is a update step. The idea is
to randomly sample instances from each training
data in a certain proportion before each iteration.
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The sampled data is then used for one-iteration
training. Later experiments will investigate the
effect of the weighting proportion. In this work,
we useb = 30, and follow the implementation in
CRFsuite4 to decideηk.

4 Manually Annotating PD Sentences
with CTB Tags

To evaluate different methods on annotation con-
version, we build the first dataset that contains
1, 000 sentences with POS tags on both sides of
CTB andPD. The sentences are randomly sam-
pled fromPD. To save annotation effort, we only
select20% most difficult tokens to manually anno-
tate. The difficulty of a wordwi is measured based
on marginal probabilities produced by the baseline
TaggerCTB. p(ti|x, wi; θ) denotes the marginal
probability of taggingwi asti. The basic assump-
tion is thatwi is more difficult to annotate if its
most likely tag candidate (arg maxt p(t|x, wi; θ))
gets lower marginal probability.

We build a visualized online annotation system
to facilitate manual labeling. The annotation task
is designed in such way that at a time an annotator
is provided with a sentence and one focus word,
and is required to decide theCTB POS tag of the
word. To further simplify annotation, we provide
two or three most likely tag candidates as well,
so that annotators can choose one either among
the candidates or from a full list. We employ8
undergraduate students as our annotators. Anno-
tators are trained on simulated tasks fromCTB
data for several hours, and and start real annotation
once reaching certain accuracy. To guarantee
annotation quality, we adoptmultiple annotation.
Initially, one task is randomly assigned to two
annotators. Later, if the two annotators submit
different results, the system will assign the task
to two more annotators. To aggregate annotation
results, we only retain annotation tasks that the
first two annotators agree (91.0%) or three anno-
tators among four agree (5.6%), and discard other
tasks (3.4%). Finally, we obtain5, 769 words
with bothCTB andPD tags, with each annotator’s
detailed submissions, and could be used as a
non-synthesized dataset for studying aggregating
submissions from non-expert annotators in crowd-
sourcing platforms (Qing et al., 2014). The data is
also fully released for non-commercial usage.

4http://www.chokkan.org/software/
crfsuite/

5 Experiments

In this section, we conduct experiments to verify
the effectiveness of our approach. We adoptCTB
(version 5.1) with the standard data split, and
randomly splitPD into four sets, among which
one set is20% partially annotated withCTB tags.
The data statistics is shown in Table 2. The main
concern of this work is to improve accuracy on
CTB by exploring large-scalePD, sinceCTB is
relatively small, but is widely-used benchmark
data in the research community.

We use the standard token-wise tagging accu-
racy as the evaluation metric. For significance
test, we adopt Dan Bikel’s randomized parsing
evaluation comparator (Noreen, 1989).5.

The baseline CRF is trained on eitherCTB
training data with 33 tags, orPD training data
with 38 tags. The coupled CRF is trained on
both two separate training datasets with bundled
tags (179 tags for the relaxed mapping function).
During evaluation, the coupled CRF is not directly
evaluated on bundled tags, since bundled tags are
unavailable in eitherCTB or PD test data. Instead,
the coupled and baseline CRFs are both evaluated
on one-side tags.

5.1 Model Development

Our coupled model has two major parameters to
be decided. The first parameter is to determine
the mapping function betweenCTB and PD an-
notations, and the second parameter is the relative
weights of the two datasets during training (N ′ vs.
M ′: number of sentences in each dataset used for
training at one iteration).

Effect of mapping functions (described
in Subsection 3.1) is illustrated in Figure 3.
Empirically, we adoptN ′ = 5K vs. M ′ = 20K
to merge the two training datasets at each iteration.
Our intuition is that using this proportion,CTB
should not be overwhelmed byPD, and both
training data can be used up in relatively similar
speed. Specifically, all training data ofCTB can
be consumed in about3 iterations, whereasPD
can be consumed in about14 iterations. We also
present the results of the baseline model trained
using 5K sentences in one iteration for better
comparison.

Contrary to our intuitive assumption, it actually
leads to very bad performance when using the

5http://www.cis.upenn.edu/ ˜ dbikel/
software.html

1787



#sentences #tokens withCTB tags #tokens withPD tags

CTB
train 16,091 437,991 –

dev 803 20,454 –

test 1,910 50,319 –

PD

train 273,883 – 6,488,208

dev 1,000 – 23,427

test 2,500 – 58,301

newly labeled 1,000 5,769 27,942

Table 2: Data statistics. Please kindly note that the1, 000 sentences originally fromPDare only partially
annotated withCTB tags (about20% most ambiguous tokens).
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Figure 3: Accuracy onCTB-dev regarding to
mapping functions.

tight mapping function that is carefully created
based on linguistic insights, which is even inferior
to the baseline model. The relaxed mapping
function outperforms the tight function by large
margin. The automatic function works slightly
better than the relaxed one. The complete function
achieves similar accuracy with the automatic one.
In summary, we can conclude that our coupled
model achieves much better performance when
the mapping function becomes looser. In other
words, this suggests thatour coupled model can
effectively learn the implicit mapping between
heterogeneous annotations, and does not rely on
a carefully designed mapping function.

Since a looser mapping function leads to a
larger number of bundled tags and makes the
model slower, we implement a paralleled training
procedure based on Algorithm 1, and run each
experiment with five threads. However, it still
takes about20 hours for one iteration when using
the complete mapping function; whereas the other
three mapping functions need about6, 2, and1
hours respectively. Therefore, as a compromise,
we adopt the relaxed mapping function in the fol-
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lowing experiments, which achieves slightly lower
accuracy than the complete mapping function, but
is much faster.

Effect of weighting CTB and PD is investi-
gated in Figure 4 and 5. Since the scale ofPD
is much larger thanCTB, we adopt Algorithm 1
to merge the training data in a certain proportion
(N ′ CTB sentences andM ′ PD sentences) at
each iteration. We useN ′ = 5K, and vary
M ′ = 1K/5K/20K/100K. Figure 4 shows the
accuracy curves onCTB development data. We
find that whenM ′ = 100K, our coupled model
achieve very low accuracy, which is even worse
than the baseline model. The reason should be that
the training instances inCTB are overwhelmed by
those inPD whenM ′ is large. In contrast, when
M ′ = 1K, the accuracy is also inferior to the
case ofM ′ = 5K, which indicates thatPD is
not effectively utilized in this setting. Our model
works best whenM ′ = 5K, which is slightly
better than the case ofM ′ = 1K/20K.

Figure 5 shows the accuracy curves onPD
development data. The baseline model is trained
using 100K sentences in one iteration. We find
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Figure 5: Accuracy onPD-dev with different
weighting settings.

that when M ′ = 100K, our coupled model
achieves similar accuracy with the baseline model.
When M ′ becomes smaller, our coupled model
becomes inferior to the baseline model. Particu-
larly, whenM ′ = 1K, the model converges very
slowly. However, from the trend of the curves, we
expect that the accuracy gap between our coupled
model with M ′ = 5K/20K and the baseline
model should be much smaller when reaching
convergence. Based on the above observation,
we adoptN ′ = 5K and M ′ = 5K in the
following experiments.Moreover, we select the
best iteration on the development data, and use the
corresponding model to parse the test data.

5.2 Final Results

Table 3 shows the final results on theCTB test
data. We re-implement the guide-feature based
method of Jiang et al. (2009), referred to as two-
stage CRF. Li et al. (2012) jointly models Chinese
POS tagging and dependency parsing, and report
the best tagging accuracy onCTB. The results
show that our coupled model outperforms the
baseline model by large margin, and also achieves
slightly higher accuracy than the guide-feature
based method.

5.3 Feature Study

We conduct more experiments to measure individ-
ual contribution of each feature set, namely the
joint features based on bundled tags and separate
features based on single-side tags, as defined in
Eq. (2). Table 4 shows the results. We can see that
when only using separate features, our coupled
model achieves only slightly better accuracy than
the baseline model. This is because there is

Accuracy

Baseline CRF 94.10

Two-stage CRF (guide-feature)94.81 (+0.71)†
Coupled CRF 95.00 (+0.90)†‡
Best result (Li et al., 2012) 94.60

Table 3: Final results onCTB test data. †
means the corresponding approach significantly
outperforms the baseline at confidence level of
p < 10−5; whereas ‡ means the accuracy
difference between the two-stage CRF and the
coupled CRF is significant at confidence level of
p < 10−2.

dev test

Baseline CRF 94.28 94.10

Coupled CRF (w/ separate feat)94.36 94.43 (+0.33)

Coupled CRF (w/ joint feat) 92.92 92.90 (-1.20)

Coupled CRF (full) 95.10 95.00 (+0.90)

Table 4: Accuracy onCTB: feature study.

little connection and help between the two sets
annotations. When only using joint features,
our coupled model becomes largely inferior to
the baseline, which is due to the data sparseness
problem for the joint features. However, when
the two sets of features are combined, the coupled
model largely outperforms the baseline model.
These results indicate thatboth joint features and
separate features are indispensable components
and complementary to each other for the success
of our coupled model.

5.4 Results on Annotation Conversion

In this subsection, we evaluate different methods
on the annotation conversion task using our newly
annotated1, 000 sentences. The gold-standard

PD-to-CTB conversion

Baseline CRF 90.59

Two-stage CRF (guide-feature)93.22 (+2.63)†
Coupled CRF 93.90 (+3.31)†‡

Table 5: Conversion accuracy on our annotated
data. † means the corresponding approach sig-
nificantly outperforms the baseline at confidence
level of p < 10−5; whereas‡ means the accuracy
difference between the two-stage CRF and the
coupled CRF is significant at confidence level of
p < 10−2.
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dev test

Baseline CRF 94.28 94.10

Coupled CRF 95.10 95.00 (+0.90)†
Baseline CRF + convertedPD 95.01 94.81 (+0.71)†‡

Table 6: Accuracy onCTB: using convertedPD.
† means the corresponding approach significantly
outperforms the baseline at confidence level of
p < 10−5; whereas ‡ means the accuracy
difference between the coupled CRF and the
baseline CRF with convertedPD is significant at
confidence level ofp < 10−2.

PD-side tags are provided, and the goal is to obtain
theCTB-side tags via annotation conversion. We
evaluate accuracy on the5, 769 words having
manually annotatedCTB-side tags.

Our coupled model can be naturally used for
annotation conversion. The idea is to perform
constrained decoding on the test data, using the
PD-side tags as hard constraints. The guide-
feature based method can also perform annotation
conversion by using the gold-standardPD-side
tags to compose guide features. Table 5 shows
the results. The accuracy is much lower than
those in Table 3, because the5, 769 words used
for evaluation are20% most ambiguous tokens in
the1, 000 test sentence (partial annotation to save
annotation effort). From Table 5, we can see that
our coupled model outperforms both the baseline
and guide-feature based methods by large margin.

5.5 Results of Training with Converted Data

One weakness of our coupled model is the in-
efficiency problem due to the large bundled tag
set. In practice, we usually only need results
following one annotation style. Therefore, we
employ our coupled model to convertPD into the
style of CTB, and train our baseline model with
two training data with homogeneous annotations.
Again, Algorithm 1 is used to merge the two
data with N ′ = 5K and M ′ = 5K. The
results are shown in the bottom row in Table 6.
We can see thatwith the extra converted data,
the baseline model can achieve slightly lower
accuracy with the coupled model and avoid the
inefficiency problem at the meantime.

6 Related Work

This work is partially inspired by Qiu et al. (2013),
who propose a model that performs heterogeneous

Chinese word segmentation and POS tagging and
produces two sets of results followingCTB and
PD styles respectively. Different from our CRF-
based coupled model, their approach adopts a lin-
ear model, which directly combines two separate
sets of features based on single-side tags, without
considering the interacting joint features between
the two annotations. They adopt an approximate
decoding algorithm which tries to find the best
single-side tag sequence with reference to tags
at the other side. In contrast, our approach is a
direct extension of traditional CRF, and is more
theoretically simple from the perspective of mod-
elling. The use of both joint and separate features
is proven to be crucial for the success of our
coupled model. In addition, their work indicates
that their model relies on a hand-crafted loose
mapping between annotations, which is opposite
to our findings. The naming of the “coupled”
CRF is borrowed from the work of Qiu et al.
(2012), which treats the joint task of Chinese word
segmentation and POS tagging as two coupled
sequence labeling problems.

Zhang et al. (2014) propose a shift-reduce de-
pendency parsing model which can simultaneous-
ly learn and produce two heterogeneous parse
trees. However, their approach assumes the ex-
istence of data with annotations at both sides,
which is obtained by converting phrase-structure
trees into dependency trees with different heuristic
rules.

This work is also closely related with multi-
task learning, which aims to jointly learn multiple
related tasks with the benefit of using interac-
tive features under a share representation (Ben-
David and Schuller, 2003; Ando and Zhang, 2005;
Parameswaran and Weinberger, 2010). However,
according to our knowledge, multi-task learning
typically assumes the existence of data with labels
for multiple tasks at the same time, which is
unavailable in our situation.

As one reviewer kindly pointed out that our
model is a factorial CRF (Sutton et al., 2004), in
the sense that the bundled tags can be factorized
two connected latent variables. Initially, factorial
CRFs are designed to jointly model two relat-
ed (and typically hierarchical) sequential labeling
tasks, such as POS tagging and chunking. In this
work, our coupled CRF jointly models two same
tasks which have different annotation schemes.
Moreover, this work provides a natural way to
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learn from incomplete annotations where one sen-
tence only contains one-side labels. The reviewer
also suggests that our objective can be optimized
with the latent variable structured perceptron of
Sun et al. (2009), which we leave as future work.

Learning with ambiguous labelings are previ-
ously explored for classification (Jin and Ghahra-
mani, 2002), sequence labeling (Dredze et al.,
2009), parsing (Riezler et al., 2002; Täckström
et al., 2013; Li et al., 2014a; Li et al., 2014b).
Recently, researchers derive natural annotations
from web data, transform them into ambiguous
labelings to supervise Chinese word segmentation
models (Jiang et al., 2013; Liu et al., 2014; Yang
and Vozila, 2014).

7 Conclusions

This paper proposes an effective coupled
sequence labeling model for exploiting multiple
non-overlapping datasets with heterogeneous
annotations. Please note that our model can also
be naturally trained on datasets with both-side
annotations if such data exists. Experimental
results demonstrate that our model work better
than the baseline and guide-feature based methods
on both one-side POS tagging and annotation
conversion. Specifically, detailed analysis
shows several interesting findings. First, both
the separate features and joint features are
indispensable components for the success of our
coupled model. Second, our coupled model does
not rely on a carefully hand-crafted mapping
function. Our linguistically motivated mapping
function is only used to reduce the size of the
bundled tag set for the sake of efficiency. Finally,
using the extra training data converted with
our coupled model, the baseline tagging model
achieves similar accuracy improvement. In this
way, we can avoid the inefficiency problem of our
coupled model in real application.

For future, our immediate plan is to annotate
more data with bothCTB and PD tags (a few t-
housand sentences), and to investigate our coupled
model with small amount of such annotation as
extra training data. Meanwhile, Algorithm 1 is
empirically effective in merging two training data,
but still needs manual tuning of the weighting
factor on held-out data. Thus, we would like
to find a more principled and theoretically sound
method to merge multiple training data.
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Abstract

We present AutoExtend, a system to learn
embeddings for synsets and lexemes. It is
flexible in that it can take any word embed-
dings as input and does not need an addi-
tional training corpus. The synset/lexeme
embeddings obtained live in the same vec-
tor space as the word embeddings. A
sparse tensor formalization guarantees ef-
ficiency and parallelizability. We use
WordNet as a lexical resource, but Auto-
Extend can be easily applied to other
resources like Freebase. AutoExtend
achieves state-of-the-art performance on
word similarity and word sense disam-
biguation tasks.

1 Introduction

Unsupervised methods for word embeddings (also
called “distributed word representations”) have
become popular in natural language processing
(NLP). These methods only need very large cor-
pora as input to create sparse representations (e.g.,
based on local collocations) and project them into
a lower dimensional dense vector space. Examples
for word embeddings are SENNA (Collobert and
Weston, 2008), the hierarchical log-bilinear model
(Mnih and Hinton, 2009), word2vec (Mikolov et
al., 2013c) and GloVe (Pennington et al., 2014).
However, there are many other resources that are
undoubtedly useful in NLP, including lexical re-
sources like WordNet and Wiktionary and knowl-
edge bases like Wikipedia and Freebase. We will
simply call these resources in the rest of the pa-
per. Our goal is to enrich these valuable resources
with embeddings for those data types that are not
words; e.g., we want to enrich WordNet with em-
beddings for synsets and lexemes. A synset is a set
of synonyms that are interchangeable in some con-
text. A lexeme pairs a particular spelling or pro-

nunciation with a particular meaning, i.e., a lex-
eme is a conjunction of a word and a synset. Our
premise is that many NLP applications will bene-
fit if the non-word data types of resources – e.g.,
synsets in WordNet – are also available as embed-
dings. For example, in machine translation, en-
riching and improving translation dictionaries (cf.
Mikolov et al. (2013b)) would benefit from these
embeddings because they would enable us to cre-
ate an enriched dictionary for word senses. Gen-
erally, our premise is that the arguments for the
utility of embeddings for word forms should carry
over to the utility of embeddings for other data
types like synsets in WordNet.

The insight underlying the method we propose
is that the constraints of a resource can be formal-
ized as constraints on embeddings and then allow
us to extend word embeddings to embeddings of
other data types like synsets. For example, the hy-
ponymy relation in WordNet can be formalized as
such a constraint.

The advantage of our approach is that it de-
couples embedding learning from the extension of
embeddings to non-word data types in a resource.
If somebody comes up with a better way of learn-
ing embeddings, these embeddings become imme-
diately usable for resources. And we do not rely on
any specific properties of embeddings that make
them usable in some resources, but not in others.

An alternative to our approach is to train embed-
dings on annotated text, e.g., to train synset em-
beddings on corpora annotated with synsets. How-
ever, successful embedding learning generally re-
quires very large corpora and sense labeling is too
expensive to produce corpora of such a size.

Another alternative to our approach is to add up
all word embedding vectors related to a particular
node in a resource; e.g., to create the synset vector
of lawsuit in WordNet, we can add the word vec-
tors of the three words that are part of the synset
(lawsuit, suit, case). We will call this approach
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naive and use it as a baseline (Snaive in Table 3).

We will focus on WordNet (Fellbaum, 1998) in
this paper, but our method – based on a formaliza-
tion that exploits the constraints of a resource for
extending embeddings from words to other data
types – is broadly applicable to other resources in-
cluding Wikipedia and Freebase.

A word in WordNet can be viewed as a compo-
sition of several lexemes. Lexemes from different
words together can form a synset. When a synset
is given, it can be decomposed into its lexemes.
And these lexemes then join to form words. These
observations are the basis for the formalization of
the constraints encoded in WordNet that will be
presented in the next section: we view words as
the sum of their lexemes and, analogously, synsets
as the sum of their lexemes.

Another motivation for our formalization stems
from the analogy calculus developed by Mikolov
et al. (2013a), which can be viewed as a group
theory formalization of word relations: we have
a set of elements (our vectors) and an operation
(addition) satisfying the properties of a mathemat-
ical group, in particular, associativity and invert-
ibility. For example, you can take the vector of
king, subtract the vector of man and add the vec-
tor of woman to get a vector near queen. In other
words, you remove the properties of man and add
the properties of woman. We can also see the vec-
tor of king as the sum of the vector of man and the
vector of a gender-neutral ruler. The next thing
to notice is that this does not only work for words
that combine several properties, but also for words
that combine several senses. The vector of suit can
be seen as the sum of a vector representing law-
suit and a vector representing business suit. Auto-
Extend is designed to take word vectors as input
and unravel the word vectors to the vectors of their
lexemes. The lexeme vectors will then give us the
synset vectors.

The main contributions of this paper are: (i)
We present AutoExtend, a flexible method that ex-
tends word embeddings to embeddings of synsets
and lexemes. AutoExtend is completely general in
that it can be used for any set of embeddings and
for any resource that imposes constraints of a cer-
tain type on the relationship between words and
other data types. (ii) We show that AutoExtend
achieves state-of-the-art word similarity and word
sense disambiguation (WSD) performance. (iii)
We publish the AutoExtend code for extending

word embeddings to other data types, the lexeme
and synset embeddings and the software to repli-
cate our WSD evaluation.

This paper is structured as follows. Section 2 in-
troduces the model, first as a general tensor formu-
lation then as a matrix formulation making addi-
tional assumptions. In Section 3, we describe data,
experiments and evaluation. We analyze Auto-
Extend in Section 4 and give a short summary on
how to extend our method to other resources in
Section 5. Section 6 discusses related work.

2 Model

We are looking for a model that extends standard
embeddings for words to embeddings for the other
two data types in WordNet: synsets and lexemes.
We want all three data types – words, lexemes,
synsets – to live in the same embedding space.

The basic premise of our model is: (i) words are
sums of their lexemes and (ii) synsets are sums of
their lexemes. We refer to these two premises as
synset constraints. For example, the embedding
of the word bloom is a sum of the embeddings of
its two lexemes bloom(organ) and bloom(period);
and the embedding of the synset flower-bloom-
blossom(organ) is a sum of the embeddings of
its three lexemes flower(organ), bloom(organ) and
blossom(organ).

The synset constraints can be argued to be the
simplest possible relationship between the three
WordNet data types. They can also be motivated
by the way many embeddings are learned from
corpora – for example, the counts in vector space
models are additive, supporting the view of words
as the sum of their senses. The same assumption
is frequently made; for example, it underlies the
group theory formalization of analogy discussed
in Section 1.

We denote word vectors as w(i) ∈ Rn, synset
vectors as s(j) ∈ Rn, and lexeme vectors as l(i,j) ∈
Rn. l(i,j) is that lexeme of wordw(i) that is a mem-
ber of synset s(j). We set lexeme vectors l(i,j) that
do not exist to zero. For example, the non-existing
lexeme flower(truck) is set to zero. We can then
formalize our premise that the two constraints (i)
and (ii) hold as follows:

w(i) =
∑
j

l(i,j) (1)

s(j) =
∑
i

l(i,j) (2)
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These two equations are underspecified. We there-
fore introduce the matrix E(i,j) ∈ Rn×n:

l(i,j) = E(i,j)w(i) (3)

We make the assumption that the dimensions in
Eq. 3 are independent of each other, i.e., E(i,j)

is a diagonal matrix. Our motivation for this as-
sumption is: (i) This makes the computation tech-
nically feasible by significantly reducing the num-
ber of parameters and by supporting parallelism.
(ii) Treating word embeddings on a per-dimension
basis is a frequent design choice (e.g., Kalchbren-
ner et al. (2014)). Note that we allow E(i,j) < 0
and in general the distribution weights for each di-
mension (diagonal entries of E(i,j)) will be differ-
ent. Our assumption can be interpreted as word
w(i) distributing its embedding activations to its
lexemes on each dimension separately. Therefore,
Eqs. 1-2 can be written as follows:

w(i) =
∑
j

E(i,j)w(i) (4)

s(j) =
∑
i

E(i,j)w(i) (5)

Note that from Eq. 4 it directly follows that:∑
j

E(i,j) = In ∀i (6)

with In being the identity matrix.
Let W be a |W | × n matrix where n is the di-

mensionality of the embedding space, |W | is the
number of words and each row w(i) is a word em-
bedding; and let S be a |S|×nmatrix where |S| is
the number of synsets and each row s(j) is a synset
embedding. W and S can be interpreted as linear
maps and a mapping between them is given by the
rank 4 tensor E ∈ R|S|×n×|W |×n. We can then
write Eq. 5 as a tensor product:

S = E⊗W (7)

while Eq. 6 states, that∑
j

Ei,d1
j,d2

= 1 ∀i, d1, d2 (8)

Additionally, there is no interaction between dif-
ferent dimensions, so Ei,d1

j,d2
= 0 if d1 6= d2. In

other words, we are creating the tensor by stacking
the diagonal matrices E(i,j) over i and j. Another
sparsity arises from the fact that many lexemes do

not exist: Ei,d1
j,d2

= 0 if l(i,j) = 0; i.e., l(i,j) 6= 0
only if word i has a lexeme that is a member of
synset j. To summarize the sparsity:

Ei,d1
j,d2

= 0⇐ d1 6= d2 ∨ l(i,j) = 0 (9)

2.1 Learning
We adopt an autoencoding framework to learn em-
beddings for lexemes and synsets. To this end, we
view the tensor equation S = E ⊗W as the en-
coding part of the autoencoder: the synsets are the
encoding of the words. We define a corresponding
decoding part that decodes the synsets into words
as follows:

s(j) =
∑
i

l
(i,j)

, w(i) =
∑
j

l
(i,j)

(10)

In analogy toE(i,j), we introduce the diagonal ma-
trix D(j,i):

l
(i,j) = D(j,i)s(j) (11)

In this case, it is the synset that distributes itself to
its lexemes. We can then rewrite Eq. 10 to:

s(j) =
∑
i

D(j,i)s(j), w(i) =
∑
j

D(j,i)s(j) (12)

and we also get the equivalent of Eq. 6 for D(j,i):∑
i

D(j,i) = In ∀j (13)

and in tensor notation:

W = D⊗ S (14)

Normalization and sparseness properties for the
decoding part are analogous to the encoding part:∑

i

Dj,d2
i,d1

= 1 ∀j, d1, d2 (15)

Dj,d2
i,d1

= 0⇐ d1 6= d2 ∨ l(i,j) = 0 (16)

We can state the learning objective of the autoen-
coder as follows:

argmin
E,D

‖D⊗E⊗W −W‖ (17)

under the conditions Eq. 8, 9, 15 and 16.
Now we have an autoencoder where input and

output layers are the word embeddings and the
hidden layer represents the synset vectors. A sim-
plified version is shown in Figure 1. The tensors E
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and D have to be learned. They are rank 4 tensors
of size≈1015. However, we already discussed that
they are very sparse, for two reasons: (i) We make
the assumption that there is no interaction between
dimensions. (ii) There are only few interactions
between words and synsets (only when a lexeme
exists). In practice, there are only ≈107 elements
to learn, which is technically feasible.

2.2 Matrix formalization
Based on the assumption that each dimension is
fully independent from other dimensions, a sepa-
rate autoencoder for each dimension can be cre-
ated and trained in parallel. Let W ∈ R|W |×n be
a matrix where each row is a word embedding and
w(d) = W·,d the d-th column of W , i.e., a vector
that holds the d-th dimension of each word vector.
In the same way, s(d) = S·,d holds the d-th di-
mension of each synset vector and E(d) = E·,d·,d ∈
R|S|×|W |. We can write S = E⊗W as:

s(d) = E(d)w(d) ∀d (18)

withE(d)
i,j = 0 if l(i,j) = 0. The decoding equation

W = D⊗ S takes this form:

w(d) = D(d)s(d) ∀d (19)

where D(d) = D·,d·,d ∈ R|W |×|S| and D(d)
j,i = 0 if

l(i,j) = 0. So E and D are symmetric in terms
of non-zero elements. The learning objective be-
comes:

argmin
E(d),D(d)

‖D(d)E(d)w(d) − w(d)‖ ∀d (20)

2.3 Lexeme embeddings
The hidden layer S of the autoencoder gives us
synset embeddings. The lexeme embeddings are
defined when transitioning from W to S, or more
explicitly by:

l(i,j) = E(i,j)w(i) (21)

However, there is also a second lexeme embedding
in AutoExtend when transitioning form S to W :

l
(i,j) = D(j,i)s(j) (22)

Aligning these two representations seems natural,
so we impose the following lexeme constraints:

argmin
E(i,j),D(j,i)

∥∥∥E(i,j)w(i) −D(j,i)s(j)
∥∥∥ ∀i, j (23)

noun verb adj adv
hypernymy 84,505 13,256 0 0
antonymy 2,154 1,093 4,024 712
similarity 0 0 21,434 0
verb group 0 1,744 0 0

Table 1: # of WN relations by part-of-speech

This can also be expressed dimension-wise. The
matrix formulation is given by:

argmin
E(d),D(d)

∥∥∥E(d) diag(w(d))− (D(d) diag(s(d))
)T∥∥∥∀d

(24)
with diag(x) being a square matrix having x
on the main diagonal and vector s(d) defined by
Eq. 18. While we try to align the embeddings,
there are still two different lexeme embeddings. In
all experiments reported in Section 4 we will use
the average of both embeddings and in Section 4
we will analyze the weighting in more detail.

2.4 WN relations
Some WordNet synsets contain only a single word
(lexeme). The autoencoder learns based on the
synset constraints, i.e., lexemes being shared by
different synsets (and also words); thus, it is dif-
ficult to learn good embeddings for single-lexeme
synsets. To remedy this problem, we impose the
constraint that synsets related by WordNet (WN)
relations should have similar embeddings. Table 1
shows relations we used. WN relations are entered
in a new matrixR ∈ Rr×|S|, where r is the number
of WN relation tuples. For each relation tuple, i.e.,
row in R, we set the columns corresponding to the
first and second synset to 1 and −1, respectively.
The values of R are not updated during training.
We use a squared error function and 0 as target
value. This forces the system to find similar val-
ues for related synsets. Formally, the WN relation
constraints are:

argmin
E(d)

‖RE(d)w(d)‖ ∀d (25)

2.5 Implementation
Our training objective is minimization of the sum
of synset constraints (Eq. 20), weighted by α, the
lexeme constraints (Eq. 24), weighted by β, and
the WN relation constraints (Eq. 25), weighted by
1− α− β.

The training objective cannot be solved analyt-
ically because it is subject to constraints Eq. 8,

1796



L/suit (textil) S/suit-of-clothes L/suit (textil)

W/suit

L/suit (law) L/suit (law)

W/suit

W/case L/case S/lawsuit L/case W/case

W/lawsuit L/lawsuit L/lawsuit W/lawsuit

Figure 1: A small subgraph of WordNet. The circles are intended to show four different embedding dimensions. These
dimensions are treated as independent. The synset constraints align the input and the output layer. The lexeme constraints align
the second and fourth layers.

Eq. 9, Eq. 15 and Eq. 16. We therefore use back-
propagation. We do not use regularization since
we found that all learned weights are in [−2, 2].

AutoExtend is implemented in MATLAB. We
run 1000 iterations of gradient descent. On an In-
tel Xeon CPU E7-8857 v2 3.00GHz, one iteration
on one dimension takes less than a minute because
the gradient computation ignores zero entries in
the matrix.

2.6 Column normalization

Our model is based on the premise that a word is
the sum of its lexemes (Eq. 1). From the defini-
tion of E(i,j), we derived that E ∈ R|S|×n×|W |×n
is normalized over the first dimension (Eq. 8). So
E(d) ∈ R|S|×|W | is also normalized over the first
dimension. In other words, E(d) is a column nor-
malized matrix. Another premise of the model is
that a synset is the sum of its lexemes. Therefore,
D(d) is also column normalized. A simple way
to implement this is to start the computation with
column normalized matrices and normalize them
again after each iteration as long as the error func-
tion still decreases. When the error function starts
increasing, we stop normalizing the matrices and
continue with a normal gradient descent. This re-
spects that while E(d) and D(d) should be column
normalized in theory, there are a lot of practical
issues that prevent this, e.g., OOV words.

3 Data, experiments and evaluation

We downloaded 300-dimensional embeddings for
3,000,000 words and phrases trained on Google
News, a corpus of ≈1011 tokens, using word2vec
CBOW (Mikolov et al., 2013c). Many words
in the word2vec vocabulary are not in WordNet,

e.g., inflected forms (cars) and proper nouns (Tony
Blair). Conversely, many WordNet lemmas are
not in the word2vec vocabulary, e.g., 42 (digits
were converted to 0). This results in a number of
empty synsets (see Table 2). Note however that
AutoExtend can produce embeddings for empty
synsets because we use WN relation constraints in
addition to synset and lexeme constraints.

We run AutoExtend on the word2vec vectors.
As we do not know anything about a suitable
weighting for the three different constraints, we
set α = β = 0.33. Our main goal is to produce
compatible embeddings for lexemes and synsets.
Thus, we can compute nearest neighbors across all
three data types as shown in Figure 2.

We evaluate the embeddings on WSD and on
similarity performance. Our results depend di-
rectly on the quality of the underlying word em-
beddings, in our case word2vec embeddings. We
would expect even better evaluation results as
word representation learning methods improve.
Using a new and improved set of underlying em-
beddings is simple: it is a simple switch of the
input file that contains the word embeddings.

3.1 Word Sense Disambiguation
For WSD we use the shared tasks of Senseval-
2 (Kilgarriff, 2001) and Senseval-3 (Mihalcea et
al., 2004) and a system named IMS (Zhong and

WordNet ∩ word2vec
words 147,478 54,570
synsets 117,791 73,844
lexemes 207,272 106,167

Table 2: # of items in WordNet and after intersection with
word2vec vectors
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nearest neighbors of W/suit
S/suit (businessman), L/suit (businessman),
L/accomodate, S/suit (be acceptable), L/suit (be accept-
able), L/lawsuit, W/lawsuit, S/suit (playing card), L/suit
(playing card), S/suit (petition), S/lawsuit, W/countersuit,
W/complaint, W/counterclaim

nearest neighbors of W/lawsuit
L/lawsuit, S/lawsuit, S/countersuit, L/countersuit,
W/countersuit, W/suit, W/counterclaim, S/counterclaim
(n), L/counterclaim (n), S/counterclaim (v),
L/counterclaim (v), W/sue, S/sue (n), L/sue (n)

nearest neighbors of S/suit-of-clothes
L/suit-of-clothes, S/zoot-suit, L/zoot-suit, W/zoot-suit,
S/garment, L/garment, S/dress, S/trousers, L/pinstripe,
L/shirt, W/tuxedo, W/gabardine, W/tux, W/pinstripe

Figure 2: Five nearest word (W/), lexeme (L/) and synset (S/)
neighbors for three items, ordered by cosine

Ng, 2010). Senseval-2 contains 139, Senseval-3
57 different words. They provide 8,611, respec-
tively 8,022 training instances and 4,328, respec-
tively 3,944 test instances. For the system, we
use the same setting as in the original paper. Pre-
processing consists of sentence splitting, tokeniza-
tion, POS tagging and lemmatization; the classi-
fier is a linear SVM. In our experiments (Table 3),
we run IMS with each feature set by itself to as-
sess the relative strengths of feature sets (lines 1–
7) and on feature set combinations to determine
which combination is best for WSD (lines 8, 12–
15).

IMS implements three standard WSD feature
sets: part of speech (POS), surrounding word and
local collocation (lines 1–3).

Letw be an ambiguous word with k senses. The
three feature sets on lines 5–7 are based on the
AutoExtend embeddings s(j), 1 ≤ j ≤ k, of the
synsets of w and the centroid c of the sentence in
which w occurs. The centroid is simply the sum of
all word2vec vectors of the words in the sentence,
excluding stop words.

The S-cosine feature set consists of the k
cosines of centroid and synset vectors:

< cos(c, s(1)), cos(c, s(2)), . . . , cos(c, s(k)) >

The S-product feature set consists of the nk
element-wise products of centroid and synset vec-
tors:

< c1s
(1)
1 , . . . , cns

(1)
n , . . . , c1s

(k)
1 , . . . , cns

(k)
n >

where ci (resp. s(j)i ) is element i of c (resp. s(j)).
The idea is that we let the SVM estimate how im-
portant each dimension is for WSD instead of giv-
ing all equal weight as in S-cosine.

The S-raw feature set simply consists of the
n(k + 1) elements of centroid and synset vectors:

< c1, . . . , cn, s
(1)
1 , . . . , s(1)

n , . . . , s
(k)
1 , . . . , s(k)n >

Our main goal is to determine if AutoExtend
features improve WSD performance when added
to standard WSD features. To make sure that
improvements we get are not solely due to the
power of word2vec, we also investigate a sim-
ple word2vec baseline. For S-product, the Auto-
Extend feature set that performs best in the exper-
iment (cf. lines 6 and 14), we test the alternative
word2vec-based Snaive-product feature set. It has
the same definition as S-product except that we
replace the synset vectors s(j) with naive synset
vectors z(j), defined as the sum of the word2vec
vectors of the words that are members of synset j.

Lines 1–7 in Table 3 show the performance of
each feature set by itself. We see that the synset
feature sets (lines 5–7) have a comparable perfor-
mance to standard feature sets. S-product is the
strongest of them.

Lines 8–16 show the performance of different
feature set combinations. MFS (line 8) is the most
frequent sense baseline. Lines 9&10 are the win-
ners of Senseval. The standard configuration of
IMS (line 11) uses the three feature sets on lines
1–3 (POS, surrounding word, local collocation)
and achieves an accuracy of 65.2% on the English
lexical sample task of Senseval-2 and 72.3% on
Senseval-3.1 Lines 12–16 add one additional fea-
ture set to the IMS system on line 11; e.g., the sys-
tem on line 14 uses POS, surrounding word, local
collocation and S-product feature sets. The system
on line 14 outperforms all previous systems, most
of them significantly. While S-raw performs quite
reasonably as a feature set alone, it hurts the per-
formance when used as an additional feature set.
As this is the feature set that contains the largest
number of features (n(k + 1)), overfitting is the
likely reason. Conversely, S-cosine only adds k
features and therefore may suffer from underfit-
ting.†

We do a grid search (step size .1) for optimal
values of α and β, optimizing the average score of
Senseval-2 and Senseval-3. The best performing
feature set combination is Soptimized-product with

1Zhong and Ng (2010) report accuracies of 65.3% /
72.6% for this configuration.

†In Table 3 and Table 4, results significantly worse than
the best (bold) result in each column are marked † for α =
.05 and ‡ for α = .10 (one-tailed Z-test).
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Senseval-2 Senseval-3

IM
S

fe
at

ur
e

se
ts 1 POS 53.6 58.0†

2 surrounding word 57.6 65.3†

3 local collocation 58.7 64.7†

4 Snaive-product 56.5 62.2†

5 S-cosine 55.5 60.5†

6 S-product 58.3 64.3†

7 S-raw 56.8 63.1†

sy
st

em
co

m
pa

ri
so

n

8 MFS 47.6† 55.2†

9 Rank 1 system 64.2† 72.9†

10 Rank 2 system 63.8† 72.6†

11 IMS 65.2‡ 72.3‡

12 IMS + Snaive-prod. 62.6† 69.4†

13 IMS + S-cosine 65.1‡ 72.4‡

14 IMS + S-product 66.5 73.6†

15 IMS + S-raw 62.1† 66.8†

16 IMS + Soptimized-prod. 66.6 73.6†

Table 3: WSD accuracy for different feature sets and systems.
Best result (excluding line 16) in each column in bold.

α = 0.2 and β = 0.5, with only a small improve-
ment (line 16).

The main result of this experiment is that we
achieve an improvement of more than 1% in WSD
performance when using AutoExtend.

3.2 Synset and lexeme similarity

We use SCWS (Huang et al., 2012) for the similar-
ity evaluation. SCWS provides not only isolated
words and corresponding similarity scores, but
also a context for each word. SCWS is based on
WordNet, but the information as to which synset a
word in context came from is not available. How-
ever, the dataset is the closest we could find for
sense similarity. Synset and lexeme embeddings
are obtained by running AutoExtend. Based on
the results of the WSD task, we set α = 0.2 and
β = 0.5. Lexeme embeddings are the natural
choice for this task as human subjects are provided
with two words and a context for each and then
have to assign a similarity score. But for complete-
ness, we also run experiments for synsets.

For each word, we compute a context vector
c by adding all word vectors of the context, ex-
cluding the test word itself. Following Reisinger
and Mooney (2010), we compute the lexeme (resp.
synset) vector l either as the simple average of
the lexeme (resp. synset) vectors l(ij) (method
AvgSim, no dependence on c in this case) or
as the average of the lexeme (resp. synset) vec-
tors weighted by cosine similarity to c (method
AvgSimC).

Table 4 shows that AutoExtend lexeme embed-
dings (line 7) perform better than previous work,

AvgSim AvgSimC

1 Huang et al. (2012) 62.8† 65.7†

2 Tian et al. (2014) – 65.4†

3 Neelakantan et al. (2014) 67.2† 69.3†

4 Chen et al. (2014) 66.2† 68.9†

5 words (word2vec) 66.6‡ 66.6†

6 synsets 62.6† 63.7†

7 lexemes 68.9† 69.8†

Table 4: Spearman correlation (ρ× 100) on SCWS. Best re-
sult per column in bold.

including (Huang et al., 2012) and (Tian et al.,
2014). Lexeme embeddings perform better than
synset embeddings (lines 7 vs. 6), presumably be-
cause using a representation that is specific to the
actual word being judged is more precise than us-
ing a representation that also includes synonyms.

A simple baseline is to use the underlying
word2vec embeddings directly (line 5). In this
case, there is only one embedding, so there is no
difference between AvgSim and AvgSimC. It is in-
teresting that even if we do not take the context
into account (method AvgSim) the lexeme embed-
dings outperform the original word embeddings.
As AvgSim simply adds up all lexemes of a word,
this is equivalent to the constraint we proposed in
the beginning of the paper (Eq. 1). Thus, replacing
a word’s embedding by the sum of the embeddings
of its senses could generally improve the quality of
embeddings (cf. Huang et al. (2012) for a similar
point). We will leave a deeper evaluation of this
topic for future work.

4 Analysis

We first look at the impact of the parameters α, β
(Section 2.5) that control the weighting of synset
constraints vs lexeme constraints vs WN relation
constraints. We investigate the impact for three
different tasks. WSD-alone: accuracy of IMS
(average of Senseval-2 and Senseval-3) if only S-
product is used as a feature set (line 6 in Table 3).
WSD-additional: accuracy of IMS (average of
Senseval-2 and Senseval-3) if S-product is used
together with the feature sets POS, surrounding
word and local collocation (line 14 in Table 3).
SCWS: Spearman correlation on SCWS (line 7 in
Table 4).

For WSD-alone (Figure 3, center), the best per-
forming weightings (red) all have high weights
for WN relations and are therefore at the top of
triangle. Thus, WN relations are very important
for WSD-alone and adding more weight to the

1799



synset and lexeme constraints does not help. How-
ever, all three constraints are important in WSD-
additional: the red area is in the middle (corre-
sponding to nonzero weights for all three con-
straints) in the left panel of Figure 3. Apparently,
strongly weighted lexeme and synset constraints
enable learning of representations that in their in-
teraction with standard WSD feature sets like lo-
cal collocation increase WSD performance. For
SCWS (right panel), we should not put too much
weight on WN relations as they artificially bring
related, but not similar lexemes together. So the
maximum for this task is located in the lower part
of the triangle.

The main result of this analysis is that Auto-
Extend never achieves its maximum performance
when using only one set of constraints. All three
constraints are important – synset, lexeme and WN
relation constraints – with different weights for
different applications.

We also analyzed the impact of the four differ-
ent WN relations (see Table 1) on performance. In
Table 3 and Table 4, all four WN relations are used
together. We found that any combination of three
relation types performs worse than using all four
together. A comparison of different relations must
be done carefully as they differ in the POS they
affect and in quantity (see Table 1). In general, re-
lation types with more relations outperformed re-
lation types with fewer relations.

Finally, the relative weighting of l(i,j) and l
(i,j)

when computing lexeme embeddings is also a pa-
rameter that can be tuned. We use simple aver-
aging (θ = 0.5) for all experiments reported in
this paper. We found only small changes in per-
formance for 0.2 ≤ θ ≤ 0.8.

5 Resources other than WordNet

AutoExtend is broadly applicable to lexical and
knowledge resources that have certain properties.
While we only run experiments with WordNet in
this paper, we will briefly address other resources.
For Freebase (Bollacker et al., 2008), we could re-
place the synsets with Freebase entities. Each en-
tity has several aliases, e.g. Barack Obama, Presi-
dent Obama, Obama. The role of words in Word-
Net would correspond to these aliases in Freebase.
This will give us the synset constraint, as well as
the lexeme constraint of the system. Relations are
given by Freebase types; e.g., we can add a con-
straint that entity embeddings of the type ”Presi-

dent of the US” should be similar.
To explorer multilingual word embeddings we

require the word embeddings of different lan-
guages to live in the same vector space, which
can easily be achieved by training a transforma-
tion matrix L between two languages using known
translations (Mikolov et al., 2013b). Let X be a
matrix where each row is a word embedding in
language 1 and Y a matrix where each row is a
word embedding in language 2. For each row the
words of X and Y are a translation of each other.
We then want to minimize the following objective:

argmin
L
‖LX − Y ‖ (26)

We can use a gradient descent to solve this but a
matrix inversion will run faster. The matrix L is
given by:

L = (XT ∗X)−1(XT ∗ Y ) (27)

The matrix L can be used to transform unknown
embeddings into the new vector space, which en-
ables us to use a multilingual WordNet like Ba-
belNet (Navigli and Ponzetto, 2010) to compute
synset embeddings. We can add cross-linguistic
relationships to our model, e.g., aligning German
and English synset embeddings of the same con-
cept.

6 Related Work

Rumelhart et al. (1988) introduced distributed
word representations, usually called word embed-
dings today. There has been a resurgence of
work on them recently (e.g., Bengio et al. (2003)
Mnih and Hinton (2007), Collobert et al. (2011),
Mikolov et al. (2013a), Pennington et al. (2014)).
These models produce only a single embedding
for each word. All of them can be used as input
for AutoExtend.

There are several approaches to finding embed-
dings for senses, variously called meaning, sense
and multiple word embeddings. Schütze (1998)
created sense representations by clustering context
representations derived from co-occurrence. The
representation of a sense is simply the centroid of
its cluster. Huang et al. (2012) improved this by
learning single-prototype embeddings before per-
forming word sense discrimination on them. Bor-
des et al. (2011) created similarity measures for
relations in WordNet and Freebase to learn en-
tity embeddings. An energy based model was
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WSD-additional WSD-alone SCWS

WN relations

lexemes synset
s

Figure 3: Performance of different weightings of the three constraints (WN relations:top, lexemes:left, synsets:right) on the
three tasks WSD-additional, WSD-alone and SCWS. “x” indicates the maximum; “o” indicates a local minimum.

proposed by Bordes et al. (2012) to create dis-
ambiguated meaning embeddings and Neelakan-
tan et al. (2014) and Tian et al. (2014) extended
the Skip-gram model (Mikolov et al., 2013a) to
learn multiple word embeddings. While these em-
beddings can correspond to different word senses,
there is no clear mapping between them and a lexi-
cal resource like WordNet. Chen et al. (2014) also
modified word2vec to learn sense embeddings,
each corresponding to a WordNet synset. They
use glosses to initialize sense embedding, which
in turn can be used for WSD. The sense disam-
biguated data can again be used to improve sense
embeddings.

This prior work needs a training step to learn
embeddings. In contrast, we can “AutoExtend”
any set of given word embeddings – without
(re)training them.

There is only little work on taking existing
word embeddings and producing embeddings in
the same space. Labutov and Lipson (2013) tuned
existing word embeddings in supervised training,
not to create new embeddings for senses or enti-
ties, but to get better predictive performance on a
task while not changing the space of embeddings.

Lexical resources have also been used to im-
prove word embeddings. In the Relation Con-
strained Model, Yu and Dredze (2014) use
word2vec to learn embeddings that are optimized
to predict a related word in the resource, with good
evaluation results. Bian et al. (2014) used not
only semantic, but also morphological and syn-
tactic knowledge to compute more effective word
embeddings.

Another interesting approach to create sense
specific word embeddings uses bilingual resources
(Guo et al., 2014). The downside of this approach
is that parallel data is needed.

We used the SCWS dataset for the word similar-
ity task, as it provides a context. Other frequently
used datasets are WordSim-353 (Finkelstein et al.,
2001) or MEN (Bruni et al., 2014).

And while we use cosine to compute similar-
ity between synsets, there are also a lot of simi-
larity measures that only rely on a given resource,
mostly WordNet. These measures are often func-
tions that depend on the provided information like
gloss or the topology like shortest-path. Examples
include (Wu and Palmer, 1994) and (Leacock and
Chodorow, 1998); Blanchard et al. (2005) give a
good overview.

7 Conclusion

We presented AutoExtend, a flexible method to
learn synset and lexeme embeddings from word
embeddings. It is completely general and can be
used for any other set of embeddings and for any
other resource that imposes constraints of a cer-
tain type on the relationship between words and
other data types. Our experimental results show
that AutoExtend achieves state-of-the-art perfor-
mance on word similarity and word sense disam-
biguation. Along with this paper, we will pub-
lish AutoExtend for extending word embeddings
to other data types; the lexeme and synset em-
beddings used in the experiments; and the code
needed to replicate our WSD evaluation2.
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Abstract

Quality estimation evaluation commonly
takes the form of measurement of the error
that exists between predictions and gold
standard labels for a particular test set of
translations. Issues can arise during com-
parison of quality estimation prediction
score distributions and gold label distribu-
tions, however. In this paper, we provide
an analysis of methods of comparison and
identify areas of concern with respect to
widely used measures, such as the ability
to gain by prediction of aggregate statistics
specific to gold label distributions or by
optimally conservative variance in predic-
tion score distributions. As an alternative,
we propose the use of the unit-free Pear-
son correlation, in addition to providing an
appropriate method of significance testing
improvements over a baseline. Compo-
nents of WMT-13 and WMT-14 quality es-
timation shared tasks are replicated to re-
veal substantially increased conclusivity in
system rankings, including identification
of outright winners of tasks.

1 Introduction

Machine Translation (MT) Quality Estimation
(QE) is the automatic prediction of machine trans-
lation quality without the use of reference trans-
lations (Blatz et al., 2004; Specia et al., 2009).
Human assessment of translation quality in theory
provides the most meaningful evaluation of sys-
tems, but human assessors are known to be incon-
sistent and this causes challenges for quality es-
timation evaluation. For instance, there is a gen-
eral lack of consensus both with respect to what

provides the most meaningful gold standard rep-
resentation, as well as best method of compari-
son of gold labels and system predictions. For ex-
ample, in the 2014 Workshop on Statistical Ma-
chine Translation (WMT), which since 2012 has
provided a main venue for evaluation of systems,
sentence-level systems were evaluated with re-
spect to three distinct gold standard representa-
tions and each of those compared to predictions
using four different measures, resulting in a total
of 12 different system rankings, 6 identified as of-
ficial rankings (Bojar et al., 2014).

Although the aim of several methods of evalua-
tion is to provide more insight into performance of
systems, this also produces conflicting results and
raises the question which method of evaluation re-
ally identifies the system(s) or method(s) that best
predicts translation quality. For example, an ex-
treme case in WMT-14 occurred for sentence-level
quality estimation for English-to-Spanish. In each
of the 12 system rankings, many systems were tied
and this resulted in a total of 22 official winning
systems for this language pair. Besides leaving po-
tential users of quality estimation systems at a loss
as to what the best system may be, a large number
of inconclusive evaluation methodologies is also
likely to lead to confusion about which evaluation
methods should be applied in general in QE re-
search, or worse still, researchers simply choos-
ing the methodology that favors their system from
among the many different methodologies.

In this paper, we provide an analysis of each of
the methodologies used in WMT and widely ap-
plied to evaluation of quality estimation systems
in general. Our analysis reveals potential flaws in
existing methods and we subsequently provide de-
tail of a single method that overcomes previous
challenges. To demonstrate, we replicate com-
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ponents of evaluations previously carried out at
WMT-13 and WMT-14 sentence-level quality es-
timation shared tasks. Results reveal substantially
more conclusive system rankings, revealing out-
right winners that had not previously been identi-
fied.

2 Relevant Work

The Workshop on Statistical Machine Transla-
tion (WMT) provides a main venue for evalua-
tion of quality estimation systems, in addition to
the rare and highly-valued effort of provision of
publicly available data sets to facilitate further re-
search. We provide an analysis of current evalu-
ation methodologies applied not only in the most
recent WMT shared task but also widely within
quality estimation research.

2.1 WMT-style Evaluation

WMT-14 quality estimation evaluation at the
sentence-level, Task 1, is comprised of three sub-
tasks. In Task 1.1, human gold labels comprise
three levels of translation quality or “perceived
post-edit effort” (1 = perfect translation; 2 = near
miss translation; 3 = very low quality translation).
A possible downside of the evaluation methodol-
ogy applied in Task 1.1 is firstly that the gold stan-
dard representation may be overly coarse-grained.
Considering the vast range of possible errors oc-
curring in translations, limiting the levels of trans-
lation quality to only three may impact negatively
on systems’ ability to discriminate between trans-
lations of various quality.

More importantly, however, the combination of
such coarse-grained gold labels (1, 2 or 3) and
comparison of gold labels and system predictions
by mean absolute error (MAE) has a counter-
intuitive effect on system rankings, as systems that
produce continuous predictions are at an advan-
tage over those that produce discrete predictions
even though gold labels are also discrete. Figure
1(a) shows discrete gold label distributions for the
scoring variant of Task 1.1 in WMT-14 and Figure
1(b) prediction distributions for an example sys-
tem that was at a disadvantage because it restricted
its predictions to discrete ratings like those of gold
labels, and Figure 1(c) a system that achieves ap-
parent better performance (lower MAE) despite
prediction representations mismatching the dis-
crete nature of gold labels.

Evaluation of the ranking variant of Task 1.1

r

Post-edit Time 0.36
Post-edit Rate 0.69∗∗∗

Table 1: Pearson correlation with HTER scores of
post-edit times (PETs) and post-edit rates (PERs)
for WMT-14 Task 1.2 and Task 1.3 gold labels,
correlation marked with ∗∗∗ is significantly greater
at p < 0.001.

again includes a significant mismatch between
representations used as gold labels, which again
were limited to the ratings 1, 2 or 3, while sys-
tems were required to provide a total-order rank-
ing of test set translations, for example ranks 1-
600 or 1-450, depending on language pair. Evalu-
ation methodologies applied to ranking tasks may
be better facilitated by application of more fine-
grained gold standard labels that more closely rep-
resent total-order rankings of system predictions.

Evaluation methodologies applied in Task 1.3
employ the more fine-grained post-edit times
(PETs) as translation quality gold labels. PETs
potentially provide a good indication of the un-
derlying quality of translations, as a translation
that takes longer to manually correct is thought
to have lower quality. However, we propose what
may correspond more directly to translation qual-
ity is an alteration of this, a post-edit rate (PER),
where PETs are normalized by the number of
words in translations. This takes into account the
fact that, all else being equal, longer translations
simply take a greater amount of time to post-edit
than shorter ones. To investigate to what degree
PERs may correspond better to translation quality
than PETs, we compute correlations of each with
HTER gold labels of translations from Task 1.2.
Table 6 reveals a significantly higher correlation
that exists between PER and HTER compared to
PET and HTER (p < 0.001) , and we conclude
therefore that the PER of a translation provides a
more faithful representation of translation quality
than PET, and convert PETs for both predictions
and gold labels to PERs (in seconds per word) in
our later replication of Task 1.3.

In Task 1.2 of WMT-14, gold standard labels
used to evaluate systems were in the form of hu-
man translation error rates (HTERs) (Snover et
al., 2009). HTER scores provide an effective
representation for evaluation of quality estima-
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Figure 1: WMT-14 English-to-German quality estimation Task 1.1 where mismatched prediction/gold
labels achieves apparent better performance, where (a) gold label distribution; (b) example system disad-
vantaged by its discrete predictions; (c) example system gaining advantage by its continuous predictions.

tion systems, as scores are individually computed
per translation using custom post-edited reference
translations, avoiding the bias that can occur with
metrics that employ generic reference translations.
In our later evaluation, we therefore use HTER
scores in addition to PERs as suitable gold stan-
dard labels.

2.2 Mean Absolute Error

Mean absolute error is likely the most widely ap-
plied comparison measure of quality estimation
system predictions and gold labels, in addition to
being the official measure applied to scoring vari-
ants of tasks in WMT (Bojar et al., 2014). MAE is
the average absolute difference that exists between
a system’s predictions and gold standard labels for
translations, and a system achieving a lower MAE
is considered a better system. Significant issues
arise for evaluation of quality estimation systems
with MAE when comparing distributions for pre-
dictions and gold labels, however. Firstly, a sys-
tem’s MAE can be lowered not only by individ-
ual predictions closer to corresponding gold la-
bels, but also by prediction of aggregate statistics
specific to the distribution of gold labels in the par-
ticular test set used for evaluation. MAE is most
susceptible in this respect when gold labels have
a unimodal distribution with relatively low stan-
dard deviation. For example, Figure 2(a) shows
test set gold label HTER distribution for Task 1.2
in WMT-14 where the bulk of HTERs are located
around one main peak with relatively low variance
in the distribution. Unfortunately with MAE, a
system that correctly predicts the location of the
mode of the test set gold distribution and centers
predictions around it with an optimally conserva-

tive variance can achieve lower MAE and appar-
ent better performance. Figure 2(b) shows a lower
MAE can be achieved by rescaling the original
prediction distribution for an example system to
a distribution with lower variance.

A disadvantage of an ability to gain in perfor-
mance by prediction of such features of a given
test set is that prediction of aggregates is, in gen-
eral, far easier than individual predictions. In ad-
dition, inclusion of confounding test set aggre-
gates such as these in evaluations will likely lead
to both an overestimate of the ability of some sys-
tems to predict the quality of unseen translations
and an underestimate of the accuracy of systems
that courageously attempt to predict the quality of
translations in the tails of gold distributions, and
it follows that systems optimized for MAE can
be expected to perform badly when predicting the
quality of translations in the tails of gold label dis-
tributions (Moreau and Vogel, 2014).

Table 2 shows how MAEs of original predicted
score distributions for all systems participating in
Task 1.2 WMT-14 can be reduced by shifting and
rescaling the prediction score distribution accord-
ing to gold label aggregates. Table 3 shows that
for similar reasons other measures commonly ap-
plied to evaluation of quality estimation systems,
such as root mean squared error (RMSE), that are
also not unit-free, encounter the same problem.

2.3 Significance Testing

In quality estimation, it is common to apply boot-
strap resampling to assess the likelihood that a de-
crease in MAE (an improvement) has occurred by
chance. In contrast to other areas of MT, where
the accuracy of randomized methods of signifi-
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Figure 2: Comparison of example system from
WMT-14 English-to-Spanish Task 1.2 (a) original
prediction distribution and gold labels and (b) the
same when the prediction distribution is rescaled
to half its original standard deviation, showing a
lower MAE can be achieved by reducing the vari-
ance in prediction distributions.

Original Rescaled
MAE MAE

FBK-UPV-UEDIN-wp 0.129 0.125
DCU-rtm-svr 0.134 0.127
USHEFF 0.136 0.133
DCU-rtm-tree 0.140 0.129
DFKI-svr 0.143 0.132
FBK-UPV-UEDIN-nowp 0.144 0.137
SHEFF-lite-sparse 0.150 0.141
Multilizer 0.150 0.135
baseline 0.152 0.149
DFKI-svr-xdata 0.161 0.146
SHEFF-lite 0.182 0.168

Table 2: MAE of WMT-14 Task 1.2 systems for
original HTER prediction distributions and when
distributions are shifted and rescaled to the mean
and half the standard deviation of the gold label
distribution.

Original Rescaled
RMSE RMSE

FBK-UPV-UEDIN-wp 0.167 0.166
DCU-rtm-svr 0.167 0.165
DCU-rtm-tree 0.175 0.169
DFKI-svr 0.177 0.171
USHEFF 0.178 0.178
FBK-UPV-UEDIN-nowp 0.181 0.180
SHEFF-lite-sparse 0.184 0.179
baseline 0.195 0.194
DFKI-svr-xdata 0.195 0.187
Multilizer 0.209 0.181
SHEFF-lite 0.234 0.216

Table 3: RMSE of WMT-14 Task 1.2 systems for
original HTER prediction distributions and when
distributions are shifted and rescaled to the mean
and half the standard deviation of the gold label
distribution.

cance testing such as bootstrap resampling in com-
bination with BLEU and other metrics have been
empirically evaluated (Koehn, 2004; Graham et
al., 2014), to the best of our knowledge no re-
search has been carried out to assess the accuracy
of similar methods specifically for quality estima-
tion evaluation. In addition, since data used for
evaluation of quality estimation systems are not
independent, methods of significance testing dif-
ferences in performance will be inaccurate unless
the dependent nature of the data is taken into ac-
count.

3 Quality Estimation Evaluation by
Pearson Correlation

The Pearson correlation is a measure of the linear
correlation between two variables, and in the case
of quality estimation evaluation this amounts to
the linear correlation between system predictions
and gold labels. Pearson’s r overcomes the out-
lined challenges of previous approaches, such as
mean absolute error, for several reasons. Firstly,
Pearson’s r is a unit-free measure with a key prop-
erty being that the correlation coefficient is invari-
ant to separate changes in location and scale in
either of the two variables. This has the obvious
advantage over MAE that the coefficient cannot
be altered by shifting or rescaling prediction score
distributions according to aggregates specific to
the test set.

To illustrate, Figure 3 depicts a pair of systems
for which the baseline system appears to outper-
form the other when evaluated with MAE, but this
is only due to the conservative variance in its pre-
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Figure 3: WMT-13 Task 1.1 systems showing baseline with better MAE than CMU-ISL-FULL only due
to conservative variance in prediction distribution and despite its weaker correlation with gold labels.

diction score distribution, as can be seen by the
narrow blue spike in Figure 3(b). Figure 3(e)
shows how the prediction distribution of CMU-
ISL-FULL, on the other hand, has higher variance,
and subsequently higher MAE. Figures 3(c) and
3(f) depict what occurs in computation of the Pear-
son correlation where raw prediction and gold la-
bel scores are replaced by standardized scores, i.e.
numbers of standard deviations from the mean of
each distribution, where CMU-ISL-FULL in fact
achieves a significantly higher correlation than the
baseline system at p < 0.001.

An additional advantage of the Pearson corre-
lation is that coefficients do not change depend-
ing on the representation used in the gold standard
in the way they do with MAE, making possible a
comparison of performance across evaluations that
employ different gold label representations. Addi-
tionally, there is no longer a need for training and
test representations to directly correspond to one
another. To demonstrate, in our later evaluation we
include the evaluation of systems trained on both
HTER and PETs for prediction of both HTER
and PERs.

Finally, when evaluated with the Pearson cor-
relation significance tests can be applied without
resorting to randomized methods, in addition to
taking into account the dependent nature of data
used in evaluations.

The fact that the Pearson correlation is invariant
to separate shifts in location and scale of either of
the two variables is nonproblematic for evaluation
of quality estimation systems. Take, for instance,
the possible counter-argument: a pair of systems,
one of which predicts the precise gold distribution,
and another system predicting the gold distribution
+ 1, would unfairly receive the same Pearson cor-
relation coefficient. Firstly, it is just as difficult to
predict the gold distribution + 1, as it is to pre-
dict the gold distribution itself. More importantly,
however, the scenario is extremely unlikely to oc-
cur in practice, it is highly unlikely that a system
would ever accurately predict the gold distribution
+ 1, as opposed to the actual gold distribution un-
less training labels were adjusted in the same man-
ner, or indeed predict the gold distribution shifted
or rescaled by any other constant value. It is im-
portant to understand that invariance of the Pear-
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son correlation to a shift in location or scale means
that the measure is only invariant to a shift in loca-
tion or scale applied to the entire distribution (of
either of the two variables), such as the shift in
location and scale that can be used to boost appar-
ent performance of systems when measures like
MAE and RMSE, that are not unit-free, are em-
ployed. Increasing the distance between system
predictions and gold labels for anything less than
the entire distribution, a more realistic scenario,
or by something other than a constant across the
entire distribution, will result in an appropriately
weaker Pearson correlation.

4 Quality Estimation Significance
Testing

Previous work has shown the suitability of
Williams significance test (Williams, 1959) for
evaluation of automatic MT metrics (Graham and
Baldwin, 2014; Graham et al., 2015), and, for sim-
ilar reasons, Williams test is appropriate for signif-
icance testing differences in performance of com-
peting quality estimation systems which we detail
further below.

Evaluation of a given quality estimation system,
Pnew, by Pearson correlation takes the form of
quantifying the correlation, r(Pnew, G), that ex-
ists between system prediction scores and corre-
sponding gold standard labels, and contrasting this
correlation with the correlation for some baseline
system, r(Pbase, G).

At first it might seem reasonable to perform sig-
nificance testing in the following manner when
an increase in correlation with gold labels is ob-
served: apply a significance test separately to the
correlation of each quality estimation system with
gold labels, with the hope that the new system will
achieve a significant correlation where the base-
line system does not. The reasoning here is flawed
however: the fact that one correlation is signifi-
cantly higher than zero (r(Pnew, G)) and that of
another is not, does not necessarily mean that the
difference between the two correlations is signif-
icant. Instead, a specific test should be applied
to the difference in correlations on the data. For
this same reason, confidence intervals for individ-
ual correlations with gold labels are also not use-
ful.

In psychology, it is often the case that sam-
ples that data are drawn from are independent,
and differences in correlations are computed on

independent data sets. In such cases, the Fisher
r to z transformation is applied to test for sig-
nificant differences in correlations. Data used
for evaluation of quality estimation systems are
not independent, however, and this means that if
r(Pbase, G) and r(Pnew, G) are both > 0, the cor-
relation between both sets of predictions them-
selves, r(Pbase, Pnew), must also be > 0. The
strength of this correlation, directly between pre-
dictions of pairs of quality estimation systems,
should be taken into account using a signifi-
cance test of the difference in correlation between
r(Pbase, G) and r(Pnew, G).

Williams test 1 (Williams, 1959) evaluates the
significance of a difference in dependent correla-
tions (Steiger, 1980). It is formulated as follows
as a test of whether the population correlation be-
tween X1 and X3 equals the population correla-
tion between X2 and X3:

t(n− 3) =
(r13 − r23)

√
(n− 1)(1 + r12)√

2K (n−1)
(n−3) + (r23+r13)2

4 (1− r12)3
,

where rij is the correlation between Xi and Xj , n
is the size of the population, and:

K = 1− r12
2 − r13

2 − r23
2 + 2r12r13r23

As part of this research, we have made avail-
able an open-source implementation of statisti-
cal tests tailored to the assessment of quality es-
timation systems, at https://github.com/
ygraham/mt-qe-eval.

5 Evaluation and Discussion

To demonstrate the use of the Pearson correlation
as an effective mechanism for evaluation of quality
estimation systems, we rerun components of pre-
vious evaluations originally carried out at WMT-
13 and WMT-14.

Table 4 shows Pearson correlations for systems
participating in WMT-13 Task 1.1 where gold la-
bels were in the form of HTER scores. System
rankings diverge considerably from original rank-
ings, notably the top system according to the Pear-
son correlation is tied in fifth place when evaluated
with MAE.

Table 5 shows Pearson correlations of systems
that took part in Task 1.2 of WMT-14, where gold
labels were again in the form of HTER scores,

1Also known as Hotelling-Williams.
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System r MAE

DCU-SYMC-rc 0.595 0.135
SHEFMIN-FS 0.575 0.124
DCU-SYMC-ra 0.572 0.135
CNGL-SVRPLS 0.560 0.133
CMU-ISL-noB 0.516 0.138
CNGL-SVR 0.508 0.138
CMU-ISL-full 0.494 0.152
fbk-uedin-extra 0.483 0.144
LIMSI-ELASTIC 0.475 0.133
SHEFMIN-FS-AL 0.474 0.130
LORIA-INCTRA-CONT 0.474 0.148
fbk-uedin-rsvr 0.464 0.145
LORIA-INCTRA 0.461 0.148
baseline 0.451 0.148
TCD-CNGL-OPEN 0.329 0.148
TCD-CNGL-RESTR 0.291 0.152
UMAC-EBLEU 0.113 0.170

Table 4: Pearson correlation and MAE of system
HTER predictions and gold labels for English-to-
Spanish WMT-13 Task 1.1.

and to demonstrate the ability of evaluation of sys-
tems trained on a representation distinct from that
of gold labels made possible by the unit-free Pear-
son correlation, we also include evaluation of sys-
tems originally trained on PET labels to predict
HTER scores. Since PET systems also produce
predictions in the form of PET, we convert pre-
dictions for all systems to PERs prior to compu-
tation of correlations, as PERs more closely cor-
respond to translation quality. Results reveal that
systems originally trained on PETs in general per-
form worse than HTER trained systems, and this
is not all that surprising considering the training
representation did not correspond well to transla-
tion quality. Again system rankings diverge from
MAE rankings with the second best system ac-
cording to MAE moved to the initial position.

Table 6 shows Pearson correlations for predic-
tions of PER for systems trained on either PETs
or HTER, and predictions for systems trained on
PETs are converted to PER for evaluation. Sys-
tem rankings diverge most for this data set from
the original rankings by MAE, as the system hold-
ing initial position according to MAE moves to po-
sition 13 according to the Pearson correlation.

Many of the differences in correlation between
systems in Tables 4, 5 and 6 are small and instead
of assuming that an increase in correlation of one
system over another corresponds to an improve-
ment in performance, we first apply significance
testing to differences in correlation with gold la-
bels that exist between correlations for each pair

Training QE
Labels System r MAE

HTER DCU-rtm-svr 0.550 0.134
HTER FBK-UPV-UEDIN-wp 0.540 0.129
HTER DCU-rtm-tree 0.518 0.140
HTER DFKI-svr 0.501 0.143
HTER USHEFF 0.432 0.136
HTER SHEFF-lite-sparse 0.428 0.150
HTER FBK-UPV-UEDIN-nowp 0.414 0.144
HTER Multilizer 0.409 0.150
PET DCU-rtm-rr 0.350 −
HTER DFKI-svr-xdata 0.349 0.161
PET FBK-UPV-UEDIN-wp 0.346 −
PET Multilizer-2 0.331 −
PET Multilizer-1 0.328 −
PET DCU-rtm-svr 0.315 −
HTER baseline 0.283 0.152
PET FBK-UPV-UEDIN-nowp 0.279 −
PET USHEFF 0.246 −
PET baseline 0.246 −
PET SHEFF-lite-sparse 0.229 −
PET SHEFF-lite 0.194 −
HTER SHEFF-lite 0.052 0.182

Table 5: Pearson correlation and MAE of system
HTER predictions and gold labels for English-to-
Spanish WMT-14 Task 1.2 and 1.3 systems trained
on either HTER or PET labelled data.

Training QE
Labels System r MAE

HTER FBK-UPV-UEDIN-wp 0.529 −
PET FBK-UPV-UEDIN-wp 0.472 0.972
HTER FBK-UPV-UEDIN-nowp 0.452 −
HTER USHEFF 0.444 −
HTER DCU-rtm-svr 0.444 −
HTER DCU-rtm-tree 0.442 −
HTER SHEFF-lite-sparse 0.441 −
PET DCU-rtm-rr 0.430 0.932
PET FBK-UPV-UEDIN-nowp 0.423 1.012
HTER DFKI-svr 0.412 −
PET USHEFF 0.394 1.358
PET baseline 0.394 1.359
PET DCU-rtm-svr 0.365 0.915
HTER Multilizer 0.361 −
PET SHEFF-lite-sparse 0.337 0.951
PET SHEFF-lite 0.323 0.940
PET Multilizer-1 0.288 0.993
HTER baseline 0.286 −
HTER DFKI-svr-xdata 0.277 −
PET Multilizer-2 0.271 0.972
HTER SHEFF-lite 0.011 −

Table 6: Pearson correlation of system PER pre-
dictions and gold labels for English-to-Spanish
WMT-14 Task 1.2 and 1.3 systems trained on ei-
ther HTER or PET labelled data, mean absolute
error (MAE) provided are in seconds per word.
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Figure 4: Pearson correlation between prediction
scores for all pairs of systems participating in
WMT-14 Task 1.2

of systems.

5.1 Significance Tests

When an increase in correlation with gold labels
is present for a pair of systems, significance tests
provide insight into the likelihood that such an in-
crease has occurred by chance. As described in
detail in Section 4, the Williams test (Williams,
1959), a test also appropriate for MT metrics eval-
uated by the Pearson correlation (Graham and
Baldwin, 2014), is appropriate for testing the sig-
nificance of a difference in dependent correlations
and therefore provides a suitable method of signif-
icance testing for quality estimation systems. Fig-
ure 4 provides an example of the strength of cor-
relations that commonly exist between predictions
of quality estimation systems.

Figure 5 shows significance test outcomes of
the Williams test for systems originally taking part
in WMT-13 Task 1.1, with systems ordered by
strongest to least Pearson correlation with gold la-
bels, where a green cell in (row i, column j) signi-
fies a significant win for row i system over column
j system, where darker shades of green signify
conclusions made with more certainty. Test out-
comes allow identification of significant increases
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Figure 5: HTER prediction significance test out-
comes for all pairs of systems from English-to-
Spanish WMT-13 Task 1.1, colored cells denote a
significant increase in correlation with gold labels
for row i system over column j system.

in correlation with gold labels of one system over
another, and subsequently the systems shown to
outperform others. Test outcomes in Figure 5 re-
veal substantially increased conclusivity in sys-
tem rankings made possible with the application
of the Pearson correlation and Williams test, with
almost an unambiguous total-order ranking of sys-
tems and an outright winner of the task.

Figure 6 shows outcomes of Williams signifi-
cance tests for prediction of HTER and Figure 7
shows outcomes of tests for PER prediction for
WMT-14 English-to-Spanish, again showing sub-
stantially increased conclusivity in system rank-
ings for tasks.

It is important to note that the number of com-
peting systems a system significantly outperforms
should not be used as the criterion for ranking
competing quality estimation systems, since the
power of the Williams test changes depending on
the degree to which predictions of a pair of sys-
tems correlate with each other. A system with pre-
dictions that happen to correlate strongly with pre-
dictions of many other systems would be at an un-
fair advantage, were numbers of significant wins
to be used to rank systems. For this reason, it is
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Figure 6: HTER prediction significance test out-
comes for all pairs of systems from English-to-
Spanish WMT-14 Task 1.2, colored cells denote a
significant increase in correlation with gold labels
for row i system over column j system.
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Figure 7: PER prediction significance test out-
comes for all pairs of systems from English-to-
Spanish WMT-14 Task 1.3, colored cells denote a
significant increase in correlation with gold labels
for row i system over column j system.

best to interpret pairwise system tests in isolation.

6 Conclusion

We have provided a critique of current widely used
methods of evaluation of quality estimation sys-
tems and highlighted potential flaws in existing
methods, with respect to the ability to boost scores
by prediction of aggregate statistics specific to the
particular test set in use or conservative variance in
prediction distributions. We provide an alternate
mechanism, and since the Pearson correlation is a
unit-free measure, it can be applied to evaluation
of quality estimation systems avoiding the previ-
ous vulnerabilities of measures such as MAE and
RMSE. Advantages also outlined are that training
and test representations no longer need to directly
correspond in evaluations as long as labels com-
prise a representation that closely reflects transla-
tion quality. We demonstrated the suitability of the
proposed measures through replication of compo-
nents of WMT-13 and WMT-14 quality estima-
tion shared tasks, revealing substantially increased
conclusivity of system rankings.

Acknowledgements
We wish to thank the anonymous reviewers for their valu-
able comments and WMT organizers for the provision of data
sets. This research is supported by Science Foundation Ire-
land through the CNGL Programme (Grant 12/CE/I2267) in
the ADAPT Centre (www.adaptcentre.ie) at Trinity College
Dublin.

References
J. Blatz, E. Fitzgerald, G. Foster, S. Gandrabur,

C. Goutte, A. Kulesza, A. Sanchis, and N. Ueffing.
2004. Confidence estimation for machine transla-
tion. In Proceedings of the 20th international con-
ference on Computational Linguistics, pages 315–
321. Association for Computational Linguistics.

O. Bojar, C. Buck, C. Federmann, B. Haddow,
P. Koehn, J. Leveling, C. Monz, P. Pecina, M. Post,
H. Saint-Amand, R. Soricut, L. Specia, and A. Tam-
chyna. 2014. Findings of the 2014 Workshop
on Statistical Machine Translation. In Proc. 9th
Wkshp. Statistical Machine Translation, Baltimore,
MA. Association for Computational Linguistics.

Y. Graham and T. Baldwin. 2014. Testing for sig-
nificance of increased correlation with human judg-
ment. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages
172–176, Doha, Qatar. Association for Computa-
tional Linguistics.

Y. Graham, N. Mathur, and T. Baldwin. 2014. Ran-
domized significance tests in machine translation.

1812



In Proceedings of the ACL 2014 Ninth Workshop on
Statistical Machine Translation, pages 266–274. As-
sociation for Computational Linguistics.

Yvette Graham, Nitika Mathur, and Timothy Bald-
win. 2015. Accurate evaluation of segment-level
machine translation metrics. In Proceedings of the
2015 Conference of the North American Chapter of
the Association for Computational Linguistics Hu-
man Language Technologies, Denver, Colorado.

P. Koehn. 2004. Statistical significance tests for ma-
chine translation evaluation. In Proc. of Empiri-
cal Methods in Natural Language Processing, pages
388–395, Barcelona, Spain. Association for Compu-
tational Linguistics.

E. Moreau and C. Vogel. 2014. Limitations of mt
quality estimation supervised systems: The tails pre-
diction problem. In Proceedings of COLING 2014,
the 25th International Conference on Computational
Linguistics, pages 2205–2216.

M. Snover, N. Madnani, B.J. Dorr, and R. Schwartz.
2009. Fluency, adequacy, or hter?: exploring dif-
ferent human judgments with a tunable mt metric.
In Proceedings of the Fourth Workshop on Statisti-
cal Machine Translation, pages 259–268. Associa-
tion for Computational Linguistics.

L. Specia, M. Turchi, N. Cancedda, M. Dymetman, and
N. Cristianini. 2009. Estimating the sentence-level
quality of machine translation systems. In 13th Con-
ference of the European Association for Machine
Translation, pages 28–37.

J.H. Steiger. 1980. Tests for comparing elements
of a correlation matrix. Psychological Bulletin,
87(2):245.

E.J. Williams. 1959. Regression analysis, volume 14.
Wiley New York.

1813





Author Index

Adar, Eytan, 606
Aggarwal, Varun, 1085
Agić, Željko, 1713
Akbik, Alan, 397
Aksoy, Eren Erdal, 676
Alberti, Chris, 323
Aletras, Nikolaos, 1754
Almeida, Mariana S. C., 408
Aloimonos, Yiannis, 676
Amir, Silvio, 1074
Angeli, Gabor, 344, 982
ARAMAKI, Eiji, 1660
Arcan, Mihael, 708
Asher, Nicholas, 281
Astudillo, Ramón, 1074
Attardi, Giuseppe, 846

Bairi, Ramakrishna, 553
Baldridge, Jason, 1385
Ballesteros, Miguel, 334
Banerjee, Siddhartha, 867
Baral, Chitta, 899
Baroni, Marco, 270, 971
Barzilay, Regina, 1253
Basu, Sumit, 889
Beller, Charley, 1512
Bengio, Yoshua, 1
Bentor, Yinon, 177
Benz, Anton, 534
Berant, Jonathan, 1332
Besançon, Romaric, 188
Bhagavatula, Chandra, 774
Bhowmick, Sourav, 645
Bilmes, Jeff, 553
Bing, Lidong, 1587
Bisk, Yonatan, 1395
Bohnet, Bernd, 1713
Bollegala, Danushka, 730
Börschinger, Benjamin, 1460
Bos, Johan, 1512
Boyd-Graber, Jordan, 1438, 1650, 1681
Braune, Fabienne, 815
Bride, Antoine, 281
Bryant, Christopher, 697

Buitelaar, Paul, 708

C. de Souza, José G., 219
Calacci, Dan, 1629
Callison-Burch, Chris, 1512
Camacho-Collados, José, 741
Cao, Zhu, 616
Carreras, Xavier, 126
Chai, Qinghua, 1263
Chang, Angel, 53
Chang, Baobao, 313, 575
Chang, Ming-Wei, 504, 1321
Chao, Jiayuan, 1783
Charniak, Eugene, 1035
Che, Wanxiang, 1234
Chen, Huadong, 825
Chen, Jiajun, 825, 1213
Chen, Long, 430
Chen, Qian, 106
Chen, Qiang, 419
Chen, Wenliang, 1783
Chen, Xiaoping, 106
Chen, Xinchi, 1159, 1744
Chen, Yubo, 167
Chen, Yun-Nung, 483
Chen, Zhigang, 106
Cheng, Xueqi, 136
chiticariu, laura, 397
Cho, Kyunghyun, 1
Choe, Do Kook, 1035, 1223
Choi, Eunsol, 1311
Choi, Jinho D., 387
Ciaramita, Massimiliano, 1460
Clark, Alexander, 1618
Clark, Kevin, 1405
Clavel, Chloé, 1064
Cohen, William, 666
Cohen, William W, 355
Cohen, William W., 1449
Coke, Reed, 441
Collins, Michael, 323, 1282
Curran, James R., 1148

Da San Martino, Giovanni, 1003

1815



Dai, Xin-Yu, 825, 1054
Danescu-Niculescu-Mizil, Cristian, 1650
Daniele, Falavigna, 1095
Danilevsky, Marina, 397
Das, Rajarshi, 795
Datta, Srayan, 606
Daumé III, Hal, 1639, 1681
de Melo, Gerard, 616, 950
de Rijke, Maarten, 564
de Vries, Arjen, 42
Demberg, Vera, 763
Deng, Yuntian, 1292
Deulofeu, José, 1116
Devlin, Jacob, 31
Diaz, Fernando, 1608
Dinu, Georgiana, 270
Dong, Daxiang, 1723
Dong, Li, 260
dos Santos, Cicero, 626
Dou, Qing, 836
Downey, Doug, 774
Dragut, Eduard, 1024
Du, Lan, 1460
Du, Yantao, 1545
Dubey, Kumar, 239
Duh, Kevin, 961
Durrett, Greg, 302
Dušek, Ondřej, 451
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