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Preface: General Chair

Welcome to the ACL-IJCNLP 2009, the first joint conference sponsored by the ACL (Association
for Computational Linguistics) and the AFNLP (Asian Federation of Natural Language Processing).
The idea to have a joint conference for ACL and AFNLP was first discussed at ACL-05 (Ann Arbor,
Michigan) among Martha Palmer (ACL President), Benjamin T sou (AFNLP President), Jun’ichi Tsujii
(AFNLP Vice President) and Keh-Yih Su (AFNLP Conference Coordinating Committee Chair, also the
Secretary General). We are glad that the original idea has come true four years later, and even the
affiliation relationship between these two organizations has been built up now.

In this joint conference, we have tried to mix the spirit from both ACL and AFNLP; and, Singapore,
which itself has a mixture of diversified cultures from eastern and western regions, is certainly a
wonderful place to see how different languages meet each other. We hope you will enjoy this big event
held in this garden city, which is brought to you via the efforts from each member of the conference
organization team.

Among our hard working organizers, I would like to thank the Program Chairs, Jan Wiebe and Jian
Su, who has carefully selected papers from our record high submissions, and the Local Arrangements
Chair, Haizhou Li, who has shown his excellent capability in smoothly organizing various events and
details. My thanks will also go to other chairs for their competent and hard work: The Webmaster,
Minghui Dong; the Demo Chairs, Gary Geunbae Lee and Sabine Schulte im Walde; the Exhibits Chairs,
Timothy Baldwin and Philipp Koehn; the Mentoring Service Chairs, Hwee Tou Ng and Florence Reeder;
the Publication Chairs, Jing-Shin Chang and Regina Barzilay; the Publicity Chairs, Min-Yen Kan and
Andy Way; the Sponsorship Chairs, Hitoshi Isahara and Kim-Teng Lua; the Student Research Workshop
Chairs, Davis Dimalen, Jenny Rose Finkel, and Blaise Thomson; also the Faculty Advisors, Grace Ngai
and Brian Roark; the Tutorial Chairs, Diana McCarthy and Chengqing Zong; the Workshop Chairs,
Jimmy Lin and Yuji Matsumoto; last, the ACL Business Manager, Priscilla Rasmussen, who not only
provides useful advice but also helps to contact more sponsors and get their support.

Besides, I need to express my gratitude to the Conference Coordination Committee for their valuable
advice and support: in which Bonnie Dorr (chair), Steven Bird, Graeme Hirst, Kathleen McCoy, Martha
Palmer, Dragomir Radev, Priscilla Rasmussen, Mark Steedman are from ACL; and Yuji Matsumoto,
Keh-Yih Su, Jun’ichi Tsujii, Benjamin T’sou, Kam-Fai Wong are from AFNLP.

Last, I sincerely thank all the authors, reviewers, presenters, invited speakers, sponsors, exhibitors, local
supporting staff, and all the conference attendants. It is you that make this conference possible. Wish
you all enjoy the program that we provide.

Keh-Yih Su
ACL-IJCNLP 2009 General Chair
August 2009
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Preface: Program Committee Co-Chairs

For the first time, the flagship conferences of the Association for Computational Linguistics (ACL) and
the Asian Federation of Natural Language Processing (AFNLP) — the ACL and IJCNLP — are jointly
organized as a single event. ACL-IJCNLP 2009 covers a broad spectrum of technical areas related
to natural language and computation, representing a rich array of the state of the art. The conference
includes full papers, short papers, demonstrations, a student research workshop, as well as pre- and
post-conference tutorials and workshops.

This year, we again received a record number of submissions: 925 total valid paper submissions, a 24%
increase over ACL-08: HLT. This includes 569 full-paper submissions and 356 short-paper submissions
from more than 40 countries — approximately 51% from 20 countries in Asia Pacific, 27% from Canada,
Cuba and the United States, 22% from 15 countries in Europe, fewer than 1% from Argentina, and
one paper submitted anonymously. We thank all of the authors for submitting papers describing their
recent work. The significant submission increase is a trend extending over multiple years, and shows
how vigorous our field is. We also thank Hwee Tou Ng and Florence Reeder, the Mentoring Service
Co-Chairs, for organizing a 19-mentor team who provided English scientific paper writing support.

20 Area Chairs worked with 489 Program Committee members and 85 additional reviewers to come
up with 2551 reviews, in total, for the final paper selection. 21% of the full-paper submissions were
accepted; all will be presented orally. 26% of the short-paper submissions were accepted; some will be
presented orally and some as poster presentations. While short papers are distinguished from full papers
in the proceedings, there are no distinctions in the proceedings between short papers presented orally and
those presented as posters. We are absolutely indebted to the Area Chairs, Program Committee members,
and additional reviewers for their intensive efforts.

We are delighted to have two keynote speakers: Qiang Yang, who will talk about heterogeneous transfer
learning, and Bonnie Webber, who will address discourse and genre. Best (student) paper awards and
the ACL Lifetime Achievement Award will be announced in the last session of the conference as well.

We thank General Conference Chair Keh Yih Su, the Local Arrangements Committee headed by
Haizhou Li, and the ACL-AFNLP Conference Coordination Committee chaired by Bonnie Dorr, for
their help and advice, as well as last years PC Co-Chairs, Johanna Moore and Simone Teufel, for sharing
their experiences, Jason Eisner for his How to Serve as Program Chair of a Conference website and
corresponding emails, Jing-Shin Chang and Regina Barzilay, the Publication Co-Chairs for putting the
proceedings together, and all the other committee chairs for their work. Our thanks go to our assistant
Chen Bin, who worked tirelessly throughout the entire process, and who made our work with START
much easier. Together, everyone made such a wonderful event possible.

We hope that you enjoy the conference!

Jian Su, Institute for Infocomm Research
Jan Wiebe, University of Pittsburgh
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Invited Talk:

Heterogeneous Transfer Learning with Real-world Applications

Qiang Yang
Hong Kong University of Science and Technology
gyangl@cse.ust.hk

Abstract

In many real-world machine learning and data mining applications, we often face the problem where
the training data are scarce in the feature space of interest, but much data are available in other feature
spaces. Many existing learning techniques cannot make use of these auxiliary data, because these
algorithms are based on the assumption that the training and test data must come from the same
distribution and feature spaces. When this assumption does not hold, we have to seek novel techniques
for ‘transferring’ the knowledge from one feature space to another. In this talk, I will present our
recent works on heterogeneous transfer learning. I will describe how to identify the common parts of
different feature spaces and learn a bridge between them to improve the learning performance in target
task domains. 1 will also present several interesting applications of heterogeneous transfer learning,
such as image clustering and classification, cross-domain classification and collaborative filtering.

Biography

Qiang Yang is a professor in the Department of Computer Science and Engineering, Hong Kong
University of Science and Technology. His research interests are artificial intelligence, including
automated planning, machine learning and data mining. He graduated from Peking University in 1982
with BSc. in Astrophysics, and obtained his MSc. degrees in Astrophysics and Computer Science from
the University of Maryland, College Park in 1985 and 1987, respectively. He obtained his PhD in
Computer Science from the University of Maryland, College Park in 1989. He was an
assistant/associate professor at the University of Waterloo between 1989 and 1995, and a professor
and NSERC Industrial Research Chair at Simon Fraser University in Canada from 1995 to 2001.

Qiang Yang has been active in research on artificial intelligence planning, machine learning and data
mining. His research teams won the 2004 and 2005 ACM KDDCUP international competitions on
data mining. He has been on several editorial boards of international journals, including IEEE
Intelligent Systems, IEEE Transactions on Knowledge and Data Engineering and Web Intelligence.
He has been an organizer for several international conferences in Al and data mining, including being
the conference co-chair for ACM IUI 2010 and ICCBR 2001, program co-chair for PRICAI 2006 and
PAKDD 2007, workshop chair for ACM KDD 2007, AAALI tutorial chair for AAAI 2005 and 2006,
data mining contest chair for [IEEE ICDM 2007 and 2009, and vice chair for ICDM 2006 and CIKM
2009. He is a fellow of IEEE and a member of AAAI and ACM. His home page is at
http://www.cse.ust.hk/~qyang
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Invited Talk:

Discourse - Early Problems, Current Successes, Future Challenges

Bonnie Webber
University of Edinburgh, UK

bonnie.webber@ed.ac.uk

Abstract

I will look back through nearly forty years of computational research on discourse, noting some
problems (such as context-dependence and inference) that were identified early on as a hindrance to
further progress, some admirable successes that we have achieved so far in the development of
algorithms and resources, and some challenges that we may want to (or that we may have to!) take up
in the future, with particular attention to problems of data annotation and genre dependence.

Biography

Bonnie Webber was a researcher at Bolt Beranek and Newman while working on the PhD she
received from Harvard University in 1978. She then taught in the Department of Computer and
Information Science at the University of Pennsylvania for 20 years before joining the School of
Informatics at the University of Edinburgh. Known for research on discourse and on question
answering, she is a Past President of the Association for Computational Linguistics, co-developer
(with Aravind Joshi, Rashmi Prasad, Alan Lee and Eleni Miltsakaki) of the Penn Discourse TreeBank,
and co-editor (with Annie Zaenen and Martha Palmer) of the journal, Linguistic Issues in Language
Technology.
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Heter ogeneous Transfer Learning for Image Clustering via the Social Web
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Abstract

In this paper, we present a new learning
scenario, heterogeneous transfer learn-
ing, which improves learning performance
when the data can be in different feature
spaces and where no correspondence be-
tween data instances in these spaces is pro-
vided. In the past, we have classified Chi-
nese text documents using English train-
ing data under the heterogeneous trans-
fer learning framework. In this paper,
we present image clustering as an exam-
ple to illustrate how unsupervised learning
can be improved by transferring knowl-
edge from auxiliary heterogeneous data
obtained from the social Web. Image
clustering is useful for image sense dis-
ambiguation in query-based image search,
but its quality is often low due to image-
data sparsity problem. We extend PLSA
to help transfer the knowledge from social
Web data, which have mixed feature repre-
sentations. Experiments on image-object
clustering and scene clustering tasks show
that our approach in heterogeneous trans-
fer learning based on the auxiliary data is
indeed effective and promising.

I ntroduction

and Rappoport, 2007; Andreevskaia and Bergler,
2008), multi-task learning (Caruana, 1997; Re-
ichart et al., 2008; Arnold et al., 2008), self-taught
learning (Raina et al., 2007), etc. A commonality
among these methods is that they all require the
training data and test data to be in the same fea-
ture space. In addition, most of them are designed
for supervised learning. However, in practice, we
often face the problem where the labeled data are
scarce in their own feature space, whereas there
may be a large amount of labeled heterogeneous
data in another feature space. In such situations, it
would be desirable to transfer the knowledge from
heterogeneous data to domains where we have rel-
atively little training data available.

To learn from heterogeneous data, researchers
have previously proposed multi-view learning
(Blum and Mitchell, 1998; Nigam and Ghani,
2000) in which each instance has multiple views in
different feature spaces. Different from previous
works, we focus on the problem b&terogeneous
transfer learning which is designed for situation
when the training data are in one feature space
(such as text), and the test data are in another (such
as images), and there may be no correspondence
between instances in these spaces. The type of
heterogeneous data can be very different, as in the
case of text and image. To consider how hetero-
geneous transfer learning relates to other types of
learning, Figure 1 presents an intuitive illustration

Traditional machine learning relies on the avail-of four learning strategies, including traditional
ability of a large amount of data to train a model,machine learning, transfer learning across differ-
which is then applied to test data in the sameent distributions, multi-view learning and hetero-
feature space. However, labeled data are oftegeneous transfer learning. As we can see, an
scarce and expensive to obtain. Various machinanportant distinguishing feature of heterogeneous
learning strategies have been proposed to addresansfer learning, as compared to other types of
this problem, including semi-supervised learninglearning, is that more constraints on the problem
(Zhu, 2007), domain adaptation (Wu and Diet-are relaxed, such that data instances do not need to
terich, 2004; Blitzer et al., 2006; Blitzer et al., correspond anymore. This allows, for example, a
2007; Arnold et al., 2007; Chan and Ng, 2007;collection of Chinese text documents to be classi-
Daume, 2007; Jiang and Zhai, 2007; Reicharfied using another collection of English text as the

1
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training data (c.f. (Ling et al., 2008) and Sectionto solve the data sparsity problem, we show that
2.1). they can still be used to estimate a gdaignt fea-

In this paper, we will give an illustrative exam- _ture represent_atlorwhlch can be used to improve
image clustering.

ple of heterogeneous transfer learning to demon-
strate how the task of image clustering can ben2 Related Works

efit from learning from the heterogeneous social

Web data. A major motivation of our work is 21 Heterogeneous Transfer Learning
Web-based image search, where users submit tex- ~ Bétween Languages

tual queries and browse through the returned resujh this section, we summarize our previous work
pages. One problem is that the user queries are ofn cross-language classification as an example of
ten ambiguous. An ambiguous keyword such aeterogeneous transfer learning. This example
“Apple” might retrieve images of Apple comput- s related to our image clustering problem be-
ers and mobile phones, or images of fruits. Im-cayse they both rely on data from different feature
age clustering is an effective method for improv-spacesl

ing the accessibility of image search result. Loeff - ag the world Wide Web in China grows rapidly.
etal. (2006) addressed the image clustering profy has pecome an increasingly important prob-
lem with a focus on image sense discriminationjem to be able to accurately classify Chinese Web
In their approach, images associated with textughages. However, because the labeled Chinese Web
features are used for clustering, so that the texb,qes are still not sufficient, we often find it diffi-
and images are clustered at the same time. Specifyt to achieve high accuracy by applying tradi-
ically, spectral clustering is applied to the distanc&iona| machine learning algorithms to the Chinese
matrix built from a multimodal feature set associ-\yep pages directly. Would it be possible to make
ated with the images to get a better feature reprane pest use of the relatively abundant labeled En-
sentation. This new representation contains botlyjish web pages for classifying the Chinese Web
image and text information, with which the per- pages?

formance of image clustering is shown to be im- To answer this question, in (Ling et al., 2008),

proved. A problem with this approach is that whenWe developed a novel approach for classifying the

images contained in the Web search results afgeh pages in Chinese using the training docu-
very scarce and when the textual data associaterqen,[S in English. In this subsection, we give a

with the images are very few, clustering on the im-, ;¢ summary of this work. The problem to be
ages and their associated text may not be very ef, e is: we are given a collection of labeled

fective. English documents and a large number of unla-
Different from these previous works, in this pa- beled Chinese documents. The English and Chi-
per, we address the image clustering problem agese texts are not aligned. Our objective is to clas-
a heterogeneous transfer learnimgoblem. We sify the Chinese documents into the same label
aim to leverage heterogeneous auxiliary data, sspace as the English data.
cial annotations, etc. to enhance image cluster- Our key observation is that even though the data
ing performance. We observe that the World Wideuse different text features, they may still share
Web has many annotated images in Web sites suaghany of the same semantic information. What we
as Flickr gt t p: / / www. f 1 i ckr. com), which need to do is to uncover this latent semantic in-
can be used as auxiliary information source forformation by finding out what is common among
our clustering task. In this work, our objective them. We did this in (Ling et al., 2008) by us-
is to cluster a small collection of images that weing the information bottleneck theory (Tishby et
are interested in, where these images are not suéd., 1999). In our work, we first translated the
ficient for traditional clustering algorithms to per- Chinese document into English automatically us-
form well due to data sparsity and the low level ofing some available translation software, such as
image features. We investigate how to utilize theGoogle translate. Then, we encoded the training
readily available socially annotated image data orniext as well as the translated target text together,
the Web to improve image clustering. Althoughin terms of the information theory. We allowed all
these auxiliary data may be irrelevant to the im-the information to be put through a ‘bottleneck’
ages to be clustered and cannot be directly useaind be represented by a limited numbercofie-
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Figure 1: An intuitive illustration of different kinds learning strategies ugilagsification/clustering of
imageappl e andbanana as the example.

words (i.e. labels in the classification problem). a novel learning paradigm, known as translated
Finally, information bottleneck was used to main-learning, to deal with the problem of learning het-
tain most of the common information between theerogeneous data that belong to quite different fea-
two data sources, and discard the remaining irrelture spaces by using a risk minimization frame-
evant information. In this way, we can approxi- work.

mate the ideal situation where similar training and

translated test pages shared in the common part a?e3 Relation to PLSA

encoded into the same codewords, and are thus 38ur work makes use oPLSA. Probabilistic la-
signed the correct labels. In (Ling et al., 2008), Weia ¢ semantic analysi€PLSA) is a widely used
experimentally showed that heterogeneous trangs,qpapilistic model (Hofmann, 1999), and could
fer learning can indeed improve the performancgyg ¢onsidered as a probabilistic implementation of
of cross-language text classification as comparefl;ant semantic analysid SA) (Deerwester et al.,
to directly training learning models (e.g., Naive 1990). An extension t@°LSA was proposed in
Bayes or SVM) and testing on the translated teth(Cohn and Hofmann, 2000), which incorporated
the hyperlink connectivity in th€LSA model by
using a joint probabilistic model for connectivity

In the past, several other works made use of tranNd content.  MoreoveiPLSA has shown a lot
fer learning for cross-feature-space learning. WiPf @pplications ranging from text clustering (Hof-
and Oard (2008) proposed to handle the crosdnann, 2001) to image analysis (Sivic et al., 2005).

language learning problem by translating the dat
into a same language and applyihiN on the
latent topic space for classification. Most learningCompared to many previous works on image clus-
algorithms for dealing with cross-language heterotering, we note that traditional image cluster-
geneous data requireteanslator to convert the ing is generally based on techniques suchikas
data to the same feature space. For those data thaeans (MacQueen, 1967) and hierarchical clus-
are in different feature spaces where no translatering (Kaufman and Rousseeuw, 1990). How-
tor is available, Davis and Domingos (2008) pro-ever, when the data are sparse, traditional clus-
posed a Markov-logic-based transfer learning altering algorithms may have difficulties in obtain-
gorithm, which is calledleep transferfor trans- ing high-quality image clusters. Recently, several
ferring knowledge between biological domainsresearchers have investigated how to leverage the
and Web domains. Dai et al. (2008a) proposeduxiliary information to improve target clustering

2.2 Other Worksin Transfer Learning

%.4 Relation to Clustering



performance, such as supervised clustering (Fin- P(z|v) P(f]2)
ley and Joachims, 2005), semi-supervised cluster- @ @ @

ing (Basu et al., 2004), self-taught clustering (DaiFigure 2: Graphical model representatiorPbiSA

et al., 2008b), etc. model.
3 Image Clustering with Annotated Let Z = {2;}/Z] be the latent variable set in our
Auxiliary Data aPLSA model. In clustering, each latent variable

z; € Z corresponds to a certain cluster.

Our objective is to estimate a clustering func-
tion g : V — Z with the help of the two co-
occurrence matriced and B as defined above.

In this section, we present oannotation-based
probabilistic latent semantic analysialgorithm
(aPLSA), which extends the traditiondPLSA

model by incorporating annotated auxiliary im- )
4 P d y To formally introduce theaPLSA model, we

age data. Intuitively, our algorithraPLSA per- tart f h babilistic latent i |
forms PLSA analysis on the target images, whicfP a1t rom theprobabliistic fatent semantic anal-
sis (PLSA) (Hofmann, 1999) model.PLSA is

are converted to an image instance-to-feature co’ babilistic imol tation datent
occurrence matrix. At the same time, PLSA jg& Probabiiistic iImplementation ent seman-

also applied to the annotated image data from sot-IC a_naIyS|s(|LStA) .(Dete rwlsLstS?; gt al,, 1990). thln
cial Web, which is converted into a text—to—image—Our Image clustering task, ecomposes he

. .. instance-featur - rrence matfixinder th
feature co-occurrence matrix. In order to unify stance-feafure co-occurrence matdixinder the

those two separate PLSA models, these two Stepagssumptlon of conditional independence of image

are done simultaneously with common latent vari-mStanceSV and image features, given the latent

ables used as a bridge linking them. Throughvariablesz'
these common latent variables, which are now P(flv) = ZP(flz)P(Z\v). )
constrained by both target image data and auxil-

lary annotation data, a better clustering result is . _ _
expected for the target data. The graphical model representation BfSA is

shown in Figure 2.
3.1 Probabilistic Latent Semantic Analysis Based on théLSA model, the log-likelihood can
be defined as:

zEZ

Let F = {fi}z| be an image feature space, and
Y = {vi}ml be the image data set. Each image r— Aij lo ‘.
= = = log P(fj[v (2)
v; € V is represented by laag-of-featureq f|f € Zz: z]: > Aiyr (filo:)
vy Nf€E .7:}
Based on the image data Set we can esti- whereAlVI*I7I ¢ RIVIXIZ| is the image instance-
mate an image instance-to-feature co-occurrencieature co-occurrence matrix. The telﬁLZ
g1 Al

matrix Amxlﬂ € R‘V‘Xlﬂ_v where each element jn Equation (2) is a normalization term ensuring
Ay (L <i<|V|andl < j <|F])inthe matrix each image is giving the same weight in the log-
A is the frequency of the featur§ appearing in  |ikelihood.

the instance;. Using EM algorithm (Dempster et al., 1977),
LetW = { -}W be a text feature space. The yhnj imi ikeli

AWigi=1 pace. which locally maximizes the log-likelihood of

annotated image data allow us to obtain the cothe PLSA model (Equation (2)), the probabilities

occurrence information between imageand text  p( f|) and P(z|v) can be estimated. Then, the
featuresw € W. An example of annotated im- Clustering function is derived as

age data is the Flickint t p: / / www. f i ckr.
comn), which is a social Web site containing a large g(v) = argmax P(z|v). (3)
number of annotated images. €2

By extracting image features from the annotatedue to space limitation, we omit the details for the
imagesv, we can estimate a text-to-image fea-PLSA model, which can be found in (Hofmann,
ture co-occurrence matrig"VI*171 ¢ RWIXIFI 1999,
where each elemenB;; (1 < ¢ < |W] and _
1 < j < |F|) in the matrix B is the frequency 32 2@PLSA  Annotation-based PL SA
of the text featurev; and the image featurg oc-  In this section, we consider how to incorporate
curring together in the annotated image data set. a large number of socially annotated images in a



D)

. 2/

w
<

@P z)@

®

Figure 3:
aPLSA model.

text-to-image occurrence matrix.
the aPLSA model degenerates to the traditional
PLSA model.
to thePLSA model.

Now, the objective is to maximize the log-
likelihood £ of theaPLSA model in Equation (5).
Graphical model representation OfThen we apply the EM algorithm (Dempster et
, 1977) to estimate the conditional probabilities

(f\ )s

In this case,

ThereforeaPLSA is an extension

P(z|w) and P(z|v) with respect to each

unified PLSA model for the purpose of utilizing dependence in Figure 3 as follows.

the correlation between text features and image
features. In the auxiliary data, each image has cer-
tain textual tags that are attached by users. The
correlation between text features and image fea-
tures can be formulated as follows.

P(flw) =Y _ P(f|2)

zZEZ

P(z|w). (4)

It is clear that Equations (1) and (4) share a same
term P(f|z). So we design a neRLSA model by
joining the probabilistic model in Equation (1) and
the probabilistic model in Equation (4) into a uni-
fied model, as shown in Figure 3. In Figure 3, the
latent variablesZ depend not only on the corre-
lation between image instanc¥sand image fea-
turesF, but also the correlation between text fea-
tures)V and image featureg. Therefore, the aux-
iliary socially-annotated image data can be used
to help the target image clustering performance by
estimating good set of latent variabl&s

Based on the graphical model representation in
Figure 3, we derive the log-likelihood objective
function, in a similar way as in (Cohn and Hof-
mann, 2000), as follows

c- zAzZ

IOg P(fj ;)

;z Lo Pl |
©)

e E-Step: calculate the posterior probability of

each latent variable given the observation
of image featuresf, image instances and
text featuresw based on the old estimate of

P(f|z), P(zw) andP(z]v):
P(fjlzi)P(zk|v)
(Zk’vmf]) Zk’ P(fjlzi)P(zpr|vi)
(6)
P(f;l2) Pk wy)
P(ziwy, f5) = Sow P(filzi ) P(zrr |wi)
(7)
M-Step: re-estimates conditional probabili-

ties P(zi|v;) and P(zy|w;):

Zlc‘vz Z Z]
P (zk|wr) Z Z

and conditional probability”( f;|z;), which
is a mixture portion of posterior probability
of latent variables

P(fjlzk) O(/\ZZ

1— ZE Blj

Zk|vlafj) (8)

P(z|wy, f;) (9)

P(zi|vi, )

Zk:|wla fj)

(10)

Finally, the clustering function for a certain im-

whereAlVIXI7I ¢ RIVIXIF] is the image instance- agev is

feature co-occurrence matrix, and"xI7l ¢
RWIXIZ] is the text-to-image feature-level co-

g(v) = argmax P(z|v). (11)

zZEZ

occurrence matrix.  Similar to Equation (2), From the above equations, we can derive
ijj;ij, and Zj/%,,-/ in Equation (5) are the nor- ouyr annotation-based probabilistic latent semantic
malization terms to prevent imbalanced cases. analysis 4PLSA) algorithm. As shown in Algo-
Furthermore acts as a trade-off parameter be-rithm 1, aPLSA iteratively performs the E-Step
tween the co-occurrence matricdsand B. In  and the M-Step in order to seek local optimal
the extreme case when= 1, the log-likelihood points based on the objective functignn Equa-

objective function ignores all the biases from thetion (5).




DATA sIZE

Algorithm 1 Annotation-based PLSA Algorithm [ DATA SeT | INVOLVED CLASSES

bil skateboard, airplanes 102, 800
(aPLSA) biz billiards, mars 278, 155
Input: TheV-F co-occurrence matrid and - bi3 cd, greyhound 102, 94
. bi4 electric-guitar, snake 122,112
J co-occurrence matrig. bi5 calculator, dolphin 100, 106
. i o i . bi6 mushroom, teddy-bear 202, 99
Outpu_t. A clusterlr_lg (par'gtlon) functiorg : V — i MTThighway, Wingroom 563785
Z, which maps an image instancec ) to a latent quadl | Caiculator, diamond-ing, dolphini ™y 1 115 106 116
. microscope ’ ’ ’
variablez € Z. -
quad2 bonsai, comet, frog, saddle 122,120, 115, 110
1: Initial Z so that|Z| equals the number clus- | quinti | frog, kayak, bear, jesus-christ, watch ;(1)? 102,101, 87,
i . MIThighway, MITmountain,
terg d.eS|red octl kitchen, MITcoast, PARoffice, MIT- g?g gég 22%3% ‘;?L%
2: Initialize P(Z‘U), P(z\w), P(f\z) randomly. tallbuilding, livingroom, bedroom U P
3: whilethe change of’ in Eq. (5) between two tunel | coin, horse 123, 270
. . . . tune2 socks, spider 111, 106
sequential iterations is greater than a prede=twnes | galaxy, snowmobile 80, 112
; tune4 dice, fern 98, 110
fmed thresholoﬂo tuneb backpack, lightning, mandolin, swan 151, 136, 93,114
4. E-Step: UpdateP(z|v, f) and P(z|w, f)
based on Eq. (6) and (7) respectively. Table 1. The descriptions of all the image clus-

5.  M-Step: Update P(z|v), P(z|w) and tering tasks used in our experiment. Among
P(f|z) based on Eq. (8), (9) and (10) re- these data setdy)i 7 and oct 1 were generated

spectively. from fifteen-scendata set, and the rest were from
6: end while Caltech-256data set.
7: for al vinV do
8:  g(v) « argmaxP(z|v). To empirically investigate the parameterand
9: end for - the convergence of our algorithaiPL SA, we gen-
10: Returng. erated five more date sets as the development sets.

The detailed description of these five development
sets, namely unel tot une5 is listed in Table 1
4 Experiments as well.

In this section, we empirically evaluate taBLSA The auxiliary data were crawled from the Flickr
(http://ww. flickr.conm) web site dur-

algorithm together with some state-of-art base ) : : )
line methods on two widely used image corpora,'ng August 2007. Flickr is an internet community

to demonstrate the effectiveness of our algorithn{'€"e People share photos online and express their

aPLSA opinions as social tags (annotations) attached to
' each image. From Flicker, we collectefl, 959
4.1 Data Sets images andd1,719 related annotations, among

In order to evaluate the effectiveness of our algowh'ch 2,600 vyords_ are d'_Stht' Base_d on the
rithm aPLSA, we conducted experiments on sey-method described in Section 3, we estimated the

eral data sets generated from two image Corpor(,j_(l:,o-occurrence matr.iB between text features and
Caltech-256 (Griffin et al., 2007) and the fiteen-'Mage features. This f:o-occurrgnce maBiwas
scene (Lazebnik et al., 2006). The Caltech-zséjsed by all the clustering tasks in our experiments.
data set has 256 image objective categories, rang- For data preprocessing, we adopted tag-of-

ing from animals to buildings, from plants to au- featuresrepresentation of images (Li and Perona,
tomobiles, etc. The fifteen-scene data set con2005) in our experiments. Interesting points were
tains 15 scenes such at ore andforest. found in the images and described via BE-T
From these two corpora, we randomly generatedescriptors(Lowe, 2004). Then, the interesting
eleven image clustering tasks, including seven 2points were clustered to generate a codebook to
way clustering tasks, two 4-way clustering task,form an image feature space. The size of code-
one 5-way clustering task and one 8-way clusterbook was set t@, 000 in our experiments. Based
ing task. The detailed descriptions for these clusOn the codebook, which serves as the image fea-
tering tasks are given in Table 1. In these tasksiure space, each image can be represented as a cor-
bi 7 andoct 1 were generated from fifteen-scenereésponding feature vector to be used in the next
data set, and the rest were from Caltech-256 dat8{ep.

set. To set our evaluation criterion, we used the



KMeans

PLSA

Data Set separate | combined separate | combined STC aPLSA
bil 0.645:0.064 | 0.548+0.031 ]| 0.544+0.074 | 0.53A0.033 || 0.586+0.139 || 0.482+0.062
bi2 0.68740.003 | 0.662+0.014 || 0.464+0.074 | 0.692£0.001 || 0.5770.016 || 0.455+0.096
bi3 1.294+0.060 | 1.30G£0.015 || 1.085£0.073 [ 1.126+0.036 || 1.103+0.108 |[ 1.029+0.074
bi4 1.22'4-0.080 | 1.164£0.053 || 0.976+0.051 | 1.038+0.068 || 1.024£0.089 || 0.919+0.065
bi5 1.450+0.058 | 1.417:0.045 || 1.426+0.025 | 1.405:0.040 || 1.411£0.043 || 1.377+0.040
hi6 1.969+0.078 | 1.852£0.051 [ 1.514£0.039 [ 1.709+0.028 |[ 1.589+0.121 |[ 1.503+0.030
bi7 0.686+0.006 | 0.683:0.004 || 0.643t0.058 | 0.632£0.037 || 0.6510.012 || 0.624+0.066
quadl ][ 0.591+0.094 | 0.675:0.017 || 0.488t0.071 | 0.662+0.013 [| 0.58G+0.115 || 0.432+0.085
quad2 || 0.648:0.036 | 0.646+0.045 || 0.614+0.062 | 0.626+0.026 || 0.591+0.087 || 0.515+0.098
quintl 0.557A:0.021 | 0.508+0.104 || 0.54A-0.060 | 0.539£0.051 || 0.538+0.100 || 0.5024-0.067

octl 0.659+0.031 | 0.680+0.012 || 0.340+0.147 | 0.691£0.002 || 0.411-0.089 || 0.3064-0.101

[average || 0.947:0.029 | 0.922£0.017 || 0.786E0.009 | 0.878E0.006 || 0.824E0.036 || 0.741:0.018

Table 2: Experimental result in term of entropy for all data sets and di@uaethods.

entropyto measure the quality of our clusteringto a state-of-the-art transfer clustering strategy,

results.

In information theory, entropy (Shan-known asself-taught clusteringSTC) (Dai et al.,

non, 1948) is a measure of the uncertainty as2008b). STC makes use of auxiliary data to esti-

sociated with a random variable.

In our prob-mate a better feature representation to benefit the

lem, entropy serves as a measure of randomnesarget clustering. In these experiments, the anno-

of clustering result. The entropy a@f on a sin-
gle latent variable: is defined to beH (g,z) £

— > cec Plc|z) logy P(c|z), whereC is the class
label set ofV and P(c|z) =
in which ¢(v) is thetrue class label of image.

[{vlg(v)=2/t(v)=c}|

Holg(v)=2}

tated image data were used as auxiliary data in
STC, which does not use the annotation text.

In our experiments, the performance is in the
form of the average entropy and variance of five
repeats by randomly selecting) images from

Lower entropyH (g, Z) indicates less randomness each of the categories. We selected only 50 im-
ages per category, since this paper is focused on

and thus better clustering result.

4.2 Empirical Analysis

clustering sparse data. Table 2 shows the perfor-
mance with respect to all comparison methods on

We now empirically analyze the effectiveness ofeach of the image clustering tasks measured by
our aPLSA algorithm. Because, to our best of the entropy criterion. From the tables, we can see
knowledge, few existing methods addressed théhat our algorithmaPLSA outperforms the base-
problem of image clustering with the help of so-line methods in all the data sets. We believe that is
cial annotation image data, we can only compardecaus@PL SA can effectively utilize the knowl-
our aPLSA with several state-of-the-art cluster- edge from the socially annotated image data. On
ing algorithms that are not directly designed foraverageaPL SA gives rise t@?21.8% of entropy re-
our problem. The first baseline is the well-knownduction and as compared kiveans, 5.7% of en-
KMeans algorithm (MacQueen, 1967). Since our tropy reduction as compared RLSA, and10.1%
algorithm is designed based &b.SA (Hofmann, of entropy reduction as compared$aC.
1999), we also includeBLSA for clustering as a
baseline method in our experiments_. 421 Varying Data Size

For each of the above two baselines, we have
two strategies: (lsepar at ed: the baseline We now show how the data size affeetBLSA,
method was applied on the target image data onlywith two baseline methodsMeans andPLSA as
(2) combi ned: the baseline method was appliedreference. The experiments were conducted on
to cluster the combined data consisting of bothdifferent amounts of target image data, varying
target image data and the annotated image datiom 10 to 80. The corresponding experimental
Clustering results on target image data were userksults in average entropy over all the 11 clustering
for evaluation. Note that, in the combined data, altasks are shown in Figure 4(a). From this figure,
the annotations were thrown away since baselinere observe thaa PLSA always yields a significant
methods evaluated in this paper do not leveragesduction in entropy as compared with two base-
annotation information. line methodKMeans andPLSA, regardless of the

In addition, we compared our algorithmPLSA  size of target image data that we used.
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Figure 4: (a) The entropy curve as a function of different amountst pger category. (b) The entropy
curve as a function of different number of iterations. (c) The entrapyecas a function of different
trade-off parametex.

4.2.2 Parameter Sensitivity ments on two image data sets, using the Flickr data
In aPLSA, there is a trade-off parametgthat af-  as the annotated auxiliary image data, and showed
fects how the algorithm relies on auxiliary data.that ouraPLSA algorithm can greatly outperform
When\ = 0, theaPLSA relies only on annotated several state-of-the-art clustering algorithms.
image dataB. When\ = 1, aPLSA relies only In natural language processing, there are many
on target image datd, in which caseaPLSA de-  future opportunities to apply heterogeneous trans-
generates tBLSA. Smaller) indicates heavier re- fer learning. In (Ling et al., 2008) we have shown
liance on the annotated image data. We have dorfeow to classify the Chinese text using English text
some experiments on the development sets to iras the training data. We may also consider cluster-
vestigate how differend affect the performance ing, topic modeling, question answering, etc., to
of aPLSA. We set the number of images per cate-be done using data in different feature spaces. We
gory to50, and tested the performanceaf’LSA.  can consider data in different modalities, such as
The result in average entropy over all developmenvideo, image and audio, as the training data. Fi-
sets is shown in Figure 4(b). In the experimentsnally, we will explore the theoretical foundations
described in this paper, we sktto 0.2, which is  and limitations of heterogeneous transfer learning
the best point in Figure 4(b). as well.
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4.2.3 Convergence

In our experiments, we tested the convergenc
property of our algorithmaPLSA as well. Fig-
ure 4(c) shows the average entropy curve given

by aPLSA over all development sets. From this References
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Abstract

The vast majority of work on word senses
has relied on predefined sense invento-
ries and an annotation schema where each
word instance is tagged with the best fit-
ting sense. This paper examines the case
for a graded notion of word meaning in
two experiments, one which uses WordNet
senses in a graded fashion, contrasted with
the “winner takes all”’ annotation, and one
which asks annotators to judge the similar-
ity of two usages. We find that the graded
responses correlate with annotations from
previous datasets, but sense assignments
are used in a way that weakens the case for
clear cut sense boundaries. The responses
from both experiments correlate with the
overlap of paraphrases from the English
lexical substitution task which bodes well
for the use of substitutes as a proxy for
word sense. This paper also provides two
novel datasets which can be used for eval-
uating computational systems.

1 Introduction

The vast majority of work on word sense tag-
ging has assumed that predefined word senses
from a dictionary are an adequate proxy for the
task, although of course there are issues with
this enterprise both in terms of cognitive valid-
ity (Hanks, 2000; Kilgarriff, 1997; Kilgarriff,
2006) and adequacy for computational linguis-
tics applications (Kilgarriff, 2006). Furthermore,
given a predefined list of senses, annotation efforts
and computational approaches to word sense dis-
ambiguation (WSD) have usually assumed that one
best fitting sense should be selected for each us-
age. While there is usually some allowance made
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University of Sussex

dianam@sussex.ac.uk
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for multiple senses, this is typically not adopted by
annotators or computational systems.

Research on the psychology of concepts (Mur-
phy, 2002; Hampton, 2007) shows that categories
in the human mind are not simply sets with clear-
cut boundaries: Some items are perceived as
more typical than others (Rosch, 1975; Rosch and
Mervis, 1975), and there are borderline cases on
which people disagree more often, and on whose
categorization they are more likely to change their
minds (Hampton, 1979; McCloskey and Glucks-
berg, 1978). Word meanings are certainly related
to mental concepts (Murphy, 2002). This raises
the question of whether there is any such thing as
the one appropriate sense for a given occurrence.

In this paper we will explore using graded re-
sponses for sense tagging within a novel annota-
tion paradigm. Modeling the annotation frame-
work after psycholinguistic experiments, we do
not train annotators to conform to sense distinc-
tions; rather we assess individual differences by
asking annotators to produce graded ratings in-
stead of making a binary choice. We perform two
annotation studies. In the first one, referred to
as WSsim (Word Sense Similarity), annotators
give graded ratings on the applicability of Word-
Net senses. In the second one, Usim (Usage Sim-
ilarity), annotators rate the similarity of pairs of
occurrences (usages) of a common target word.
Both studies explore whether users make use of
a graded scale or persist in making binary deci-
sions even when there is the option for a graded
response. The first study additionally tests to what
extent the judgments on WordNet senses fall into
clear-cut clusters, while the second study allows
us to explore meaning similarity independently of
any lexicon resource.

Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 1018,
Suntec, Singapore, 2-7 August 2009. ©2009 ACL and AFNLP



2 Related Work

Manual word sense assignment is difficult for
human annotators (Krishnamurthy and Nicholls,
2000). Reported inter-annotator agreement (ITA)
for fine-grained word sense assignment tasks has
ranged between 69% (Kilgarriff and Rosenzweig,
2000) for a lexical sample using the HECTOR dic-
tionary and 78.6.% using WordNet (Landes et al.,
1998) in all-words annotation. The use of more
coarse-grained senses alleviates the problem: In
OntoNotes (Hovy et al., 2006), an ITA of 90% is
used as the criterion for the construction of coarse-
grained sense distinctions. However, intriguingly,
for some high-frequency lemmas such as leave
this ITA threshold is not reached even after mul-
tiple re-partitionings of the semantic space (Chen
and Palmer, 2009). Similarly, the performance
of WSD systems clearly indicates that WSD is not
easy unless one adopts a coarse-grained approach,
and then systems tagging all words at best perform
a few percentage points above the most frequent
sense heuristic (Navigli et al., 2007). Good perfor-
mance on coarse-grained sense distinctions may
be more useful in applications than poor perfor-
mance on fine-grained distinctions (Ide and Wilks,
2006) but we do not know this yet and there is
some evidence to the contrary (Stokoe, 2005).
Rather than focus on the granularity of clus-
ters, the approach we will take in this paper
is to examine the phenomenon of word mean-
ing both with and without recourse to predefined
senses by focusing on the similarity of uses of a
word. Human subjects show excellent agreement
on judging word similarity out of context (Ruben-
stein and Goodenough, 1965; Miller and Charles,
1991), and human judgments have previously been
used successfully to study synonymy and near-
synonymy (Miller and Charles, 1991; Bybee and
Eddington, 2006). We focus on polysemy rather
than synonymy. Our aim will be to use WSsim
to determine to what extent annotations form co-
hesive clusters. In principle, it should be possi-
ble to use existing sense-annotated data to explore
this question: almost all sense annotation efforts
have allowed annotators to assign multiple senses
to a single occurrence, and the distribution of these
sense labels should indicate whether annotators
viewed the senses as disjoint or not. However,
the percentage of markables that received multi-
ple sense labels in existing corpora is small, and it
varies massively between corpora: In the SemCor
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corpus (Landes et al., 1998), only 0.3% of all
markables received multiple sense labels. In the
SENSEVAL-3 English lexical task corpus (Mihal-
cea et al., 2004) (hereafter referred to as SE-3), the
ratio is much higher at 8% of all markables'. This
could mean annotators feel that there is usually a
single applicable sense, or it could point to a bias
towards single-sense assignment in the annotation
guidelines and/or the annotation tool. The W Ssim
experiment that we report in this paper is designed
to eliminate such bias as far as possible and we
conduct it on data taken from SemCor and SE-3 so
that we can compare the annotations. Although we
use WordNet for the annotation, our study is not a
study of WordNet per se. We choose WordNet be-
cause it is sufficiently fine-grained to examine sub-
tle differences in usage, and because traditionally
annotated datasets exist to which we can compare
our results.

Predefined dictionaries and lexical resources are
not the only possibilities for annotating lexical
items with meaning. In cross-lingual settings, the
actual translations of a word can be taken as the
sense labels (Resnik and Yarowsky, 2000). Re-
cently, McCarthy and Navigli (2007) proposed
the English Lexical Substitution task (hereafter
referred to as LEXSUB) under the auspices of
SemEval-2007. It uses paraphrases for words in
context as a way of annotating meaning. The task
was proposed following a background of discus-
sions in the WSD community as to the adequacy
of predefined word senses. The LEXSUB dataset
comprises open class words (nouns, verbs, adjec-
tives and adverbs) with token instances of each
word appearing in the context of one sentence
taken from the English Internet Corpus (Sharoff,
2006). The methodology can only work where
there are paraphrases, so the dataset only contains
words with more than one meaning where at least
two different meanings have near synonyms. For
meanings without obvious substitutes the annota-
tors were allowed to use multiword paraphrases or
words with slightly more general meanings. This
dataset has been used to evaluate automatic sys-
tems which can find substitutes appropriate for the
context. To the best of our knowledge there has
been no study of how the data collected relates to
word sense annotations or judgments of semantic
similarity. In this paper we examine these relation-

I'This is even though both annotation efforts use balanced

corpora, the Brown corpus in the case of SemCor, the British
National Corpus for SE-3.



ships by re-using data from LEXSUB in both new
annotation experiments and testing the results for
correlation.

3 Annotation

We conducted two experiments through an on-
line annotation interface. Three annotators partic-
ipated in each experiment; all were native British
English speakers. The first experiment, W Ssim,
collected annotator judgments about the applica-
bility of dictionary senses using a 5-point rating
scale. The second, Usim, also utilized a 5-point
scale but collected judgments on the similarity in
meaning between two uses of a word. > The scale
was 1 — completely different, 2 — mostly different,
3 — similar, 4 — very similar and 5 — identical. In
Usim, this scale rated the similarity of the two uses
of the common target word; in W Ssim it rated the
similarity between the use of the target word and
the sense description. In both experiments, the an-
notation interface allowed annotators to revisit and
change previously supplied judgments, and a com-
ment box was provided alongside each item.

WSsim. This experiment contained a total of
430 sentences spanning 11 lemmas (nouns, verbs
and adjectives). For 8 of these lemmas, 50 sen-
tences were included, 25 of them randomly sam-
pled from SemCor 3 and 25 randomly sampled
from SE-3.* The remaining 3 lemmas in the ex-
periment each had 10 sentences taken from the
LEXSUB data.

WSsim is a word sense annotation task using
WordNet senses.> Unlike previous word sense an-
notation projects, we asked annotators to provide
judgments on the applicability of every WordNet
sense of the target lemma with the instruction: ©

2Throughout this paper, a target word is assumed to be a
word in a given PoS.

3The SemCor dataset was produced alongside WordNet,
so it can be expected to support the WordNet sense distinc-
tions. The same cannot be said for SE-3.

4Sentence fragments and sentences with 5 or fewer words
were excluded from the sampling. Annotators were given
the sentences, but not the original annotation from these re-
sources.

SWordNet 1.7.1 was used in the annotation of both SE-3
and SemCor; we used the more current WordNet 3.0 after
verifying that the lemmas included in this experiment had the
same senses listed in both versions. Care was taken addition-
ally to ensure that senses were not presented in an order that
reflected their frequency of occurrence.

®The guidelines for both experiments are avail-
able at http://comp.ling.utexas.edu/
people/katrin_erk/graded_sense_and_-usage._
annotation
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Your task is to rate, for each of these descriptions,
how well they reflect the meaning of the boldfaced
word in the sentence.

Applicability judgments were not binary, but were
instead collected using the five-point scale given
above which allowed annotators to indicate not
only whether a given sense applied, but fo what
degree. Each annotator annotated each of the 430
items. By having multiple annotators per item and
a graded, non-binary annotation scheme we al-
low for and measure differences between annota-
tors, rather than training annotators to conform to
a common sense distinction guideline. By asking
annotators to provide ratings for each individual
sense, we strive to eliminate all bias towards either
single-sense or multiple-sense assignment. In tra-
ditional word sense annotation, such bias could be
introduced directly through annotation guidelines
or indirectly, through tools that make it easier to
assign fewer senses. We focus not on finding the
best fitting sense but collect judgments on the ap-
plicability of all senses.

Usim. This experiment used data from LEXSUB.
For more information on LEXSUB, see McCarthy
and Navigli (2007). 34 lemmas (nouns, verbs, ad-
jectives and adverbs) were manually selected, in-
cluding the 3 lemmas also used in W Ssim. We se-
lected lemmas which exhibited a range of mean-
ings and substitutes in the LEXSUB data, with
as few multiword substitutes as possible. Each
lemma is the target in 10 LEXSUB sentences. For
our experiment, we took every possible pairwise
comparison of these 10 sentences for a lemma. We
refer to each such pair of sentences as an SPAIR.
The resulting dataset comprised 45 SPAIRS per
lemma, adding up to 1530 comparisons per anno-
tator overall.

In this annotation experiment, annotators saw
SPAIRs with a common target word and rated the
similarity in meaning between the two uses of the
target word with the instruction:

Your task is to rate, for each pair of sentences, how
similar in meaning the two boldfaced words are on
a five-point scale.

In addition annotators had the ability to respond
with “Cannot Decide”, indicating that they were
unable to make an effective comparison between
the two contexts, for example because the mean-
ing of one usage was unclear. This occurred in
9 paired occurrences during the course of anno-
tation, and these items (paired occurrences) were



excluded from further analysis.

The purpose of Usim was to collect judgments
about degrees of similarity between a word’s
meaning in different contexts. Unlike WSsim,
Usim does not rely upon any dictionary resource
as a basis for the judgments.

4 Analyses

This section reports on analyses on the annotated
data. In all the analyses we use Spearman’s rank
correlation coefficient (p), a nonparametric test,
because the data does not seem to be normally
distributed. We used two-tailed tests in all cases,
rather than assume the direction of the relation-
ship. As noted above, we have three annotators
per task, and each annotator gave judgments for
every sentence (W Ssim) or sentence pair (Usim).
Since the annotators may vary as to how they use
the ordinal scale, we do not use the mean of judg-
ments’ but report all individual correlations. All
analyses were done using the R package.®

4.1 WSsim analysis

In the W Ssim experiment, annotators rated the ap-
plicability of each WordNet 3.0 sense for a given
target word occurrence. Table 1 shows a sample
annotation for the target argument.n. °

Pattern of annotation and annotator agree-
ment. Figure 1 shows how often each of the five
judgments on the scale was used, individually and
summed over all annotators. (The y-axis shows
raw counts of each judgment.) We can see from
this figure that the extreme ratings 1 and 5 are used
more often than the intermediate ones, but annota-
tors make use of the full ordinal scale when judg-
ing the applicability of a sense. Also, the figure
shows that annotator 1 used the extreme negative
rating 1 much less than the other two annotators.
Figure 2 shows the percentage of times each judg-
ment was used on senses of three lemmas, differ-
ent.a, interest.n, and win.v. In WordNet, they have
5, 7, and 4 senses, respectively. The pattern for
win.v resembles the overall distribution of judg-
ments, with peaks at the extreme ratings 1 and 5.
The lemma interest.n has a single peak at rating
1, partly due to the fact that senses 5 (financial

7We have also performed several of our calculations us-
ing the mean judgment, and they also gave highly significant
results in all the cases we tested.

8http://www.r-project.org/

9We use word.PoS to denote a target word (lemma).
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Figure 1: WSsim experiment: number of times
each judgment was used, by annotator and
summed over all annotators. The y-axis shows raw
counts of each judgment.
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Figure 2: W Ssim experiment: percentage of times
each judgment was used for the lemmas differ-
ent.a, interest.n and win.v. Judgment counts were
summed over all three annotators.

involvement) and 6 (interest group) were rarely
judged to apply. For the lemma different.a, all
judgments have been used with approximately the
same frequency.

We measured the level of agreement between
annotators using Spearman’s p between the judg-
ments of every pair of annotators. The pairwise
correlations were p = 0.506, p = 0.466 and p =
0.540, all highly significant with p < 2.2e-16.

Agreement with previous annotation in
SemCor and SE-3. 200 of the items in WSsim
had been previously annotated in SemCor, and
200 in SE-3. This lets us compare the annotation
results across annotation efforts. Table 2 shows
the percentage of items where more than one
sense was assigned in the subset of WSsim from
SemCor (first row), from SE-3 (second row), and



Senses
Sentence 1 2 3 4 5 6 7 | Annotator
This question provoked arguments in America about the 1 4 4 2 1 1 3| Am.1
Norton Anthology of Literature by Women, some of the 4 5 4 2 1 1 4| Amn.2
contents of which were said to have had little value as 1 4 5 1 1 1 1] Ann.3

literature.

Table 1: A sample annotation in the WSsim experiment. The senses are: 1:statement, 2:controversy,
3:debate, 4:literary argument, 5:parameter, 6:variable, 7:line of reasoning

W Ssim judgment
Data Orig. || >3 | >4 |5
WSsim/SemCor || 0.0 80.2 | 57.5 | 283
WSsim/SE-3 24.0 78.0 | 58.3 | 27.1
All WSsim 78.8 | 574 | 277

Table 2: Percentage of items with multiple senses
assigned. Orig: in the original SemCor/SE-3 data.
WSsim judgment: items with judgments at or
above the specified threshold. The percentages for
WSsim are averaged over the three annotators.

all of WSsim (third row). The Orig. column
indicates how many items had multiple labels in
the original annotation (SemCor or SE-3) 10 Note
that no item had more than one sense label in
SemCor. The columns under WSsim judgment
show the percentage of items (averaged over
the three annotators) that had judgments at or
above the specified threshold, starting from rating
3 — similar. Within WSsim, the percentage of
multiple assignments in the three rows is fairly
constant. WSsim avoids the bias to one sense
by deliberately asking for judgments on the
applicability of each sense rather than asking
annotators to find the best one.

To compute the Spearman’s correlation between
the original sense labels and those given in the
WSsim annotation, we converted SemCor and
SE-3 labels to the format used within W Ssim: As-
signed senses were converted to a judgment of 5,
and unassigned senses to a judgment of 1. For the
WSsim/SemCor dataset, the correlation between
original and WSsim annotation was p = 0.234,
p = 0.448, and p = 0.390 for the three anno-
tators, each highly significant with p < 2.2e-16.
For the W Ssim/SE-3 dataset, the correlations were
p =0.346, p =0.449 and p = 0.338, each of them
again highly significant at p < 2.2e-16.

Degree of sense grouping. Next we test to what
extent the sense applicability judgments in the

100verall, 0.3% of tokens in SemCor have multiple labels,
and 8% of tokens in SE-3, so the multiple label assignment in
our sample is not an underestimate.
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p <0.05 p <0.01
H pos neg | pos  neg
Ann.1 || 30.8 114 | 232 5.9
Ann.2 || 222 24.1 | 19.6 19.6
Ann.3 || 12.7 12.0 | 10.0 6.0

Table 3: Percentage of sense pairs that were sig-
nificantly positively (pos) or negatively (neg) cor-
related at p < 0.05 and p < 0.01, shown by anno-
tator.

| j>3 j>4 j=5
Ann. 1 71.9 49.1 8.1
Ann. 2 55.3 24.7 8.1
Ann. 3 42.8 24.0 4.9

Table 4: Percentage of sentences in which at least
two uncorrelated (p > 0.05) or negatively corre-
lated senses have been annotated with judgments
at the specified threshold.

WSsim task could be explained by more coarse-
grained, categorial sense assignments. We first
test how many pairs of senses for a given lemma
show similar patterns in the ratings that they re-
ceive. Table 3 shows the percentage of sense pairs
that were significantly correlated for each anno-
tator.!! Significantly positively correlated senses
can possibly be reduced to more coarse-grained
senses. Would annotators have been able to des-
ignate a single appropriate sense given these more
coarse-grained senses? Call two senses groupable
if they are significantly positively correlated; in or-
der not to overlook correlations that are relatively
weak but existent, we use a cutoff of p = 0.05 for
significant correlation. We tested how often anno-
tators gave ratings of at least similar, i.e. ratings
> 3, to senses that were not groupable. Table 4
shows the percentages of items where at least two
non-groupable senses received ratings at or above
the specified threshold. The table shows that re-
gardless of which annotator we look at, over 40%
of all items had two or more non-groupable senses
receive judgments of at least 3 (similar). There

"' We exclude senses that received a uniform rating of 1 on
all items. This concerned 4 senses for annotator 2 and 6 for
annotator 3.



1) We study the methods and concepts that each writer uses to
defend the cogency of legal, deliberative, or more generally
political prudence against explicit or implicit charges that
practical thinking is merely a knack or form of cleverness.

2) Eleven CIRA members have been convicted of criminal

charges and others are awaiting trial.

Figure 3: An SPAIR for charge.n. Annotator judg-
ments: 2,3,4

were even several items where two or more non-
groupable senses each got a judgment of 5. The
sentence in table 1 is a case where several non-
groupable senses got ratings > 3. This is most
pronounced for Annotator 2, who along with sense
2 (controversy) assigned senses 1 (statement), 7
(line of reasoning), and 3 (debate), none of which
are groupable with sense 2.

4.2 Usim analysis

In this experiment, ratings between 1 and 5 were
given for every pairwise combination of sentences
for each target lemma. An example of an SPAIR
for charge.n is shown in figure 3. In this case the
verdicts from the annotators were 2, 3 and 4.

Pattern of Annotations and Annotator Agree-
ment Figure 4 gives a bar chart of the judgments
for each annotator and summed over annotators.
We can see from this figure that the annotators
use the full ordinal scale when judging the simi-
larity of a word’s usages, rather than sticking to
the extremes. There is variation across words, de-
pending on the relatedness of each word’s usages.
Figure 5 shows the judgments for the words bar.n,
work.v and raw.a. We see that bar.n has predom-
inantly different usages with a peak for category
1, work.v has more similar judgments (category 5)
compared to any other category and raw.a has a
peak in the middle category (3). '> There are other
words, like for example fresh.a, where the spread
is more uniform.

To gauge the level of agreement between anno-
tators, we calculated Spearman’s p between the
judgments of every pair of annotators as in sec-
tion 4.1. The pairwise correlations are all highly
significant (p < 2.2e-16) with Spearman’s p =
0.502, 0.641 and 0.501 giving an average corre-
lation of 0.548. We also perform leave-one-out re-
sampling following Lapata (2006) which gave us
a Spearman’s correlation of 0.630.

12For figure 5 we sum the judgments over annotators.
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Figure 4: Usim experiment: number of times each
judgment was used, by annotator and summed
over all annotators
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Figure 5: Usim experiment: number of times each
judgment was used for bar.n, work.v and raw.a

Comparison with LEXSUB substitutions Next
we look at whether the Usim judgments on sen-
tence pairs (SPAIRS) correlate with LEXSUB sub-
stitutes. To do this we use the overlap of substi-
tutes provided by the five LEXSUB annotators be-
tween two sentences in an SPAIR. In LEXSUB the
annotators had to replace each item (a target word
within the context of a sentence) with a substitute
that fitted the context. Each annotator was permit-
ted to supply up to three substitutes provided that
they all fitted the context equally. There were 10
sentences per lemma. For our analyses we take
every SPAIR for a given lemma and calculate the
overlap (inter) of the substitutes provided by the
annotators for the two usages under scrutiny. Let
s1 and s, be a pair of sentences in an SPAIR and



x1 and x be the multisets of substitutes for the
respective sentences. Let freg(w,x) be the fre-
quency of a substitute w in a multiset x of sub-
stitutes for a given sentence. !> INTER(s1,5;) =

Zw@c] MNxy min(freq(waxl )afr€CI(W7X2))
max(|x1, [x2])

Using this calculation for each SPAIR we can
now compute the correlation between the Usim
judgments for each annotator and the INTER val-
ues, again using Spearman’s. The figures are
shown in the leftmost block of table 5. The av-
erage correlation for the 3 annotators was 0.488
and the p-values were all < 2.2e-16. This shows
a highly significant correlation of the Usim judg-
ments and the overlap of substitutes.

We also compare the W Ssim judgments against
the LEXSUB substitutes, again using the INTER
measure of substitute overlap. For this analysis,
we only use those W Ssim sentences that are origi-
nally from LEXSUB. In W Ssim, the judgments for
a sentence comprise judgments for each WordNet
sense of that sentence. In order to compare against
INTER, we need to transform these sentence-wise
ratings in WSsim to a W Ssim-based judgment of
sentence similarity. To this end, we compute the
Euclidean Distance'* (ED) between two vectors J;
and J; of judgments for two sentences sy, s, for the
same lemma ¢. Each of the n indexes of the vector
represent one of the n different WordNet senses
for £. The value at entry i of the vector J; is the
judgment that the annotator in question (we do not
average over annotators here) provided for sense i
of ¢ for sentence s7.

ED(11.12) =\ im 0-hil?) O

We correlate the Euclidean distances with
INTER. We can only test correlation for the subset
of WSsim that overlaps with the LEXSUB data: the
30 sentences for investigator.n, function.n and or-
der.v, which together give 135 unique SPAIRs. We
refer to this subset as WNU. The results are given
in the third block of table 5. Note that since we are
measuring distance between SPAIRs for WSsim

13The frequency of a substitute in a multiset depends on
the number of LEXSUB annotators that picked the substitute
for this item.

14We use Euclidean Distance rather than a normalizing
measure like Cosine because a sentence where all ratings are
5 should be very different from a sentence where all senses
received a rating of 1.
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Usim All Usim WNU | WSsim WNU
ann. p p ann. p

4 0.383 0.330 1 -0.520

5 0.498 0.635 2 -0.503

6 0.584 0.631 3 -0.463

Table 5: Annotator correlation with LEXSUB sub-
stitute overlap (inter)

whereas INTER is a measure of similarity, the cor-
relation is negative. The results are highly signif-
icant with individual p-values from < 1.067e-10
to < 1.551e-08 and a mean correlation of -0.495.
The results in the first and third block of table 5 are
not directly comparable, as the results in the first
block are for all Usim data and not the subset of
LEXSUB with WSsim annotations. We therefore
repeated the analysis for Usim on the subset of
data in WSsim and provide the correlation in the
middle section of table 5. The mean correlation
for Usim on this subset of the data is 0.532, which
is a stronger relationship compared to W Ssim, al-
though there is more discrepancy between individ-
ual annotators, with the result for annotator 4 giv-
ing a p-value = 9.139e-05 while the other two an-
notators had p-values < 2.2e-16.

The LEXSUB substitute overlaps between dif-
ferent usages correlate well with both Usim and
WSsim judgments, with a slightly stronger rela-
tionship to Usim, perhaps due to the more compli-
cated representation of word meaning in W Ssim
which uses the full set of WordNet senses.

4.3 Correlation between WSsim and Usim

As we showed in section 4.1, WSsim correlates
with previous word sense annotations in SemCor
and SE-3 while allowing the user a more graded
response to sense tagging. As we saw in sec-
tion 4.2, Usim and W Ssim judgments both have a
highly significant correlation with similarity of us-
ages as measured using the overlap of substitutes
from LEXSUB. Here, we look at the correlation
of WSsim and Usim, considering again the sub-
set of data that is common to both experiments.
We again transform W Ssim sense judgments for
individual sentences to distances between SPAIRS
using Euclidean Distance (ED). The Spearman’s
p range between —0.307 and —0.671, and all re-
sults are highly significant with p-values between
0.0003 and < 2.2e-16.  As above, the correla-
tion is negative because ED is a distance measure
between sentences in an SPAIR, whereas the judg-



ments for Usim are similarity judgments. We see
that there is highly significant correlation for every
pairing of annotators from the two experiments.

5 Discussion

Validity of annotation scheme. Annotator rat-
ings show highly significant correlation on both
tasks. This shows that the tasks are well-defined.
In addition, there is a strong correlation between
WSsim and Usim, which indicates that the poten-
tial bias introduced by the use of dictionary senses
in WSsim is not too prominent. However, we note
that WSsim only contained a small portion of 3
lemmas (30 sentences and 135 SPAIRS) in com-
mon with Usim, so more annotation is needed to
be certain of this relationship. Given the differ-
ences between annotator 1 and the other annota-
tors in Fig. 1, it would be interesting to collect
judgments for additional annotators.

Graded judgments of use similarity and sense
applicability. The annotators made use of the
full spectrum of ratings, as shown in Figures 1 and
4. This may be because of a graded perception of
the similarity of uses as well as senses, or because
some uses and senses are very similar. Table 4
shows that for a large number of WSsim items,
multiple senses that were not significantly posi-
tively correlated got high ratings. This seems to
indicate that the ratings we obtained cannot sim-
ply be explained by more coarse-grained senses. It
may hence be reasonable to pursue computational
models of word meaning that are graded, maybe
even models that do not rely on dictionary senses
at all (Erk and Pado, 2008).

Comparison to previous word sense annotation.
Our graded W Ssim annotations do correlate with
traditional “best fitting sense” annotations from
SemCor and SE-3; however, if annotators perceive
similarity between uses and senses as graded, tra-
ditional word sense annotation runs the risk of in-
troducing bias into the annotation.

Comparison to lexical substitutions. There is a
strong correlation between both Usim and W Ssim
and the overlap in paraphrases that annotators gen-
erated for LEXSUB. This is very encouraging, and
especially interesting because LEXSUB annotators
freely generated paraphrases rather than selecting
them from a list.
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6 Conclusions

We have introduced a novel annotation paradigm
for word sense annotation that allows for graded
judgments and for some variation between anno-
tators. We have used this annotation paradigm
in two experiments, WSsim and Usim, that shed
some light on the question of whether differences
between word usages are perceived as categorial
or graded. Both datasets will be made publicly
available. There was a high correlation between
annotator judgments within and across tasks, as
well as with previous word sense annotation and
with paraphrases proposed in the English Lex-
ical Substitution task. Annotators made ample
use of graded judgments in a way that cannot
be explained through more coarse-grained senses.
These results suggest that it may make sense to
evaluate WSD systems on a task of graded rather
than categorial meaning characterization, either
through dictionary senses or similarity between
uses. In that case, it would be useful to have more
extensive datasets with graded annotation, even
though this annotation paradigm is more time con-
suming and thus more expensive than traditional
word sense annotation.

As a next step, we will automatically cluster the
judgments we obtained in the WSsim and Usim
experiments to further explore the degree to which
the annotation gives rise to sense grouping. We
will also use the ratings in both experiments to
evaluate automatically induced models of word
meaning. The SemEval-2007 word sense induc-
tion task (Agirre and Soroa, 2007) already allows
for evaluation of automatic sense induction sys-
tems, but compares output to gold-standard senses
from OntoNotes. We hope that the Usim dataset
will be particularly useful for evaluating methods
which relate usages without necessarily producing
hard clusters. Also, we will extend the current
dataset using more annotators and exploring ad-
ditional lexicon resources.
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Abstract

A number of studies have presented
machine-learning approaches to semantic
role labeling with availability of corpora
such as FrameNet and PropBank. These
corpora define the semantic roles of predi-
cates for each frame independently. Thus,
it is crucial for the machine-learning ap-
proach to generalize semantic roles across
different frames, and to increase the size
of training instances. This paper ex-
plores several criteria for generalizing se-
mantic roles in FrameNet: role hierar-
chy, human-understandable descriptors of
roles, semantic types of filler phrases, and
mappings from FrameNet roles to the-
matic roles of VerbNet. We also pro-
pose feature functions that naturally com-
bine and weight these criteria, based on
the training data. The experimental result
of the role classification shows 19.16%
and 7.42% improvements in error reduc-
tion rate and macro-averaged F1 score, re-
spectively. We also provide in-depth anal-
yses of the proposed criteria.

Introduction

}@is.s.u-tokyo.ac.jp

buy.v PropBank FrameNet
Frame | buy.01 Commercebuy
Roles | ARGO: buyer Buyer

ARG1: thing bought | Goods

ARG2: seller Seller

ARG3: paid Money

ARG4: benefactive | Recipient

Figure 1: A comparison of frames fdy.vde-
fined in PropBank and FrameNet

Moschitti et al., 2007), and information extrac-
tion (Surdeanu et al., 2003).

Inrecent years, with the wide availability of cor-
pora such as PropBank (Palmer et al., 2005) and
FrameNet (Baker et al., 1998), a number of stud-
ies have presented statistical approaches to SRL
(Marquez et al., 2008). Figure 1 shows an exam-
ple of the frame definitions for a vetluyin Prop-
Bank and FrameNet. These corpora define a large
number of frames and define the semantic roles for
each frame independently. This fact is problem-
atic in terms of the performance of the machine-
learning approach, because these definitions pro-
duce many roles that have few training instances.

PropBank defines a frame for each sense of
predicates (e.g.buy.0), and semantic roles are
defined in a frame-specific manner (elmyerand
sellerfor buy.0). In addition, these roles are asso-
ciated with tags such a8sRGO0-5andAM-*, which

Semantic Role Labeling (SRL) is a task of analyz-are commonly used in different frames. Most
ing predicate-argument structures in texts. MoreéSRL studies on PropBank have used these tags
specifically, SRL identifies predicates and theirin order to gather a sufficient amount of training
arguments with appropriate semantic roles. Redata, and to generalize semantic-role classifiers
solving surface divergence of texts (e.g., voiceacross different frames. However, Yi et al. (2007)
of verbs and nominalizations) into unified seman+eported that tag®ARG2-ARG5 were inconsis-

tic representations, SRL has attracted much atent and not that suitable as training instances.
tention from researchers into various NLP appli-Some recent studies have addressed alternative ap-
cations including question answering (Narayanamroaches to generalizing semantic roles across dif-
and Harabagiu, 2004; Shen and Lapata, 2007#grent frames (Gordon and Swanson, 2007; Zapi-
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Figure 2: An example of role groupings using different criteria.

rain et al., 2008). tic role, Baldewein et al. (2004) re-used the train-
FrameNet designs semantic roles as frame spdig instances of other roles that were similar to the
cific, but also defines hierarchical relations of setarget role. As similarity measures, they used the
mantic roles among frames. Figure 2 illustrated=rameNet hierarchy, peripheral roles of FrameNet,
an excerpt of the role hierarchy in FrameNet; thisand clusters constructed by a EM-based method.
figure indicates that thBuyerrole for theCom-  Gordon and Swanson (2007) proposed a general-
mercebuy frame Commerce_buy::Buyer here- ization method for the PropBank roles based on
after) and th&€Commerce_sell::Buyer role are in-  syntactic similarity in frames.
herited from theTransfer::Recipient role. Al- Many previous studies assumed that thematic
though the role hierarchy was expected to generroles bridged semantic roles in different frames.
alize semantic roles, no positive results for roleGildea and Jurafsky (2002) showed that classifica-
classification have been reported (Baldewein et altjon accuracy was improved by manually replac-
2004). Therefore, the generalization of semantiétng FrameNet roles into 18 thematic roles. Shi
roles across different frames has been brought ugnd Mihalcea (2005) and Giuglea and Moschitti
as a critical issue for FrameNet (Gildea and Juraf{2006) employed VerbNet thematic roles as the
sky, 2002; Shi and Mihalcea, 2005; Giuglea andarget of mappings from the roles defined by the
Moschitti, 2006) different semantic corpora. Using the thematic
In this paper, we explore several criteria for gen+oles as alternatives oARG tags, Loper et al.
eralizing semantic roles in FrameNet. In addi-(2007) and Yi et al. (2007) demonstrated that the
tion to the FrameNet hierarchy, we use varioustlassification accuracy of PropBank roles was im-
pieces of information: human-understandable deproved forARG2roles, but that it was diminished
scriptors of roles, semantic types of filler phrasesfor ARG1 Yi et al. (2007) also described that
and mappings from FrameNet roles to the themati@RG2-5were mapped to a variety of thematic
roles of VerbNet. We also propose feature func+oles. Zapirain et al. (2008) evaluated PropBank
tions that naturally combines these criteria in aARG tags and VerbNet thematic roles in a state-of-
machine-learning framework. Using the proposedhe-art SRL system, and concluded that PropBank
method, the experimental result of the role classiARGtags achieved a more robust generalization of
fication shows 19.16% and 7.42% improvementghe roles than did VerbNet thematic roles.
in error reduction rate and macro-averaged F1, re-
spectively. We provide in-depth analyses with re-3 Role Classification

spect to these criteria, and state our conclusions. i i
SRL is a complex task wherein several problems

2 Related Work are intertwined: frame-evoking word identifica-
tion, frame disambiguatior(selecting a correct
Moschitti et al. (2005) first classified roles by us-frame from candidates for the evoking word)le-
ing four coarse-grained classes (Core Roles, Adphrase identificatior(identifying phrases that fill
juncts, Continuation Arguments and Co-referringsemantic roles), anmle classification(assigning
Arguments), and built a classifier for each coarsecorrect roles to the phrases). In this paper, we fo-
grained class to tag PropBaRGtags. Even cus on role classification, in which the role gen-
though the initial classifiers could perform rougheralization is particularly critical to the machine
estimations of semantic roles, this step was nolearning approach.
able to solve the ambiguity problem in PropBank In the role classification task, we are given a
ARG2-5 When training a classifier for a seman-sentence, a frame evoking word, a frame, and
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Figure 4: Examples for each type of role group.

INPUT: role at a node in the hierarchy inherits the char-

frame= Commerce_sell foti ;

candicte. roles={ Seller, Buyer, Goods, Reason, Timme, . . Place} acteristics of the roles of its ancestor nodes. For

sentence= Can't [you] [Sell commerce sl [the factory] [to some other example,Commerce_sell::Seller in Figure 2 in-
company]? herits the property oGiving::Donor.

OUTPUT: For Inheritance Using Perspectiveon, and

sentence= Can't [you gy [SEll Commerce_sall [the factory goaqsl
[to some other company gy ?

Subframerelations, we assume that descendant
roles in these relations have the same or special-
ized properties of their ancestors. Hence, for each
role y;, we define the following two role groups,

Figure 3. An example of input and output of role
classification.

HEM = {yly = y; v yis achild ofy,},

phrases that take semantic roles. We are interHy™ = {yly =y; Vyis a descendant of }.
ested in choosing the correct role from the can-
didate roles for each phrase in the frame. Figure
shows a concrete example of input and output; the
semantic roles for the phrases are chosen from t
candidate rolesSeller, Buyer, Goods, Reason,

... , andPlace.

he hierarchical-relation groups in Figure 4 are
e illustrations offjec.

h For the relation typesinchoativeof and
Sausativeof, we define role groups in the oppo-
site direction of the hierarchy,

L m HP™e = {yly = y; v y is a parent of;},
4 Design of Role Groups pance {yly = vi V y is an ancestor af; }.

We formalize the generalization of semantic rolesthis is pecause lower roles dhchoativeof

as the act of grouping several roles into a,nq caysativeof relations represent more neu-
class. ~We define aole group as a set of ) stances or consequential states; for example,
role labels grouped by a criterion. Flggre 4Ki||ing:;victim is a parent oDeath::Protagonist
shows examples of role groups; a gro@W- i, the Causativeof relation.

ing::Donor (in the hierarchical-relation groups)  ging)ly, the Precedeselation describes the se-
contains the rolesGiving::Donor and Com-  gyence of states and events, but does not spec-
merce_pay::Buyer. The remainder of this section i, he direction of semantic inclusion relations.
describes the grouping criteria in detail. Therefore, we simply trﬁgmd’ H;ifsc, Hpiarent,

: . . nd H2"<¢ for this relation .
4.1 Hierarchical relations among roles and i, for this relation type

FrameNet defines hierarchical relations amondh-2 Human-understandable role descriptor
frames (frame-to-frame relations). Each relationFrameNet defines each role as frame-specific; in

is assigned one of the seven types of directionabther words, the same identifier does not appear
relationshipslfiheritance Using Perspectiveon,  in different frames. However, in FrameNet,
Causativeof, Inchoativeof, Subframe andPre- human experts assign a human-understandable
cede}. Some roles in two related frames are alsmame to each role in a rather systematic man-
connected with role-to-role relations. We assumaner. Some names are shared by the roles in
that this hierarchy is a promising resource for gendifferent frames, whose identifiers are dif-
eralizing the semantic roles; the idea is that thderent. Therefore, we examine the semantic

21



commonality of these names; we construct ar{y|SemLink mapg into the thematic role; }.
equivalence class of the roles sharing the same SemLink currently maps 1,726 FrameNet roles
name. We call these human-understandablito VVerbNet thematic roles, which are 37.61% of
namesrole descriptors In Figure 4, the role- roles appearing at least once in the FrameNet cor-
descriptor groupBuyer collects the roleCom-  pus. This may diminish the effect of thematic-role
merce_pay::Buyer,  Commerce_buy::Buyer, groups than its potential.
andCommerce_sell::Buyer.

This criterion may be effective in collecting 5 Role classification method
similar roles since the descriptors have been annqs
tated by intuition of human experts. As illustrated
in Figure 2, the role descriptors group the seman¥Ve are given a frame-evoking word a frame f
tic roles which are similar to the roles that theand a role phrase detected by a human or some
FrameNet hierarchy connects as sister or parenfutomatic process in a sentencelet Y; be the
child relations. However, role-descriptor groupsset of semantic roles that FrameNet defines as be-
cannot express the relations between the role§g possible role assignments for the frajyeand
as inclusions since they are equivalence classel®tx = {z1,...,z,} be observed features far
For examp|e, the role€ommerce_sell::Buyer from s, e andf. The task of semantic role classifi-
and Commerce_buy::Buyer are included in the cation can be formalized as the problem of choos-
role descriptor groudBuyer in Figure 2; how- ing the most suitable rolg from Y;. Suppose we
ever, it is difficult to mergeGiving::Recipient have a modelP(y|f,x) which yields the condi-
and Commerce_sell::Buyer because theCom-  tional probability of the semantic rolgfor given
merce_sell::Buyer has the extra property that one f andx. Then we can chooggas follows:
gives something of value in exchange and a hu-
man assigns different descriptors to them. We ex- g = argmax P(y|f, x). @)
pect that the most effective weighting of these two yeys
criteria will be determined from the training data.

1 Traditional approach

A traditional way to incorporate role groups
into this formalization is to overwrite each role
y in the training and test data with its role
We consider that the selectional restriction is helpgroup m(y) according to the memberships of
ful in detecting the semantic roles. FrameNet prothe group. For example, semantic rolésm-
vides information concerning the semantic typesmerce_sell::Seller andGiving::Donor can be re-
of role phrases (fillers); phrases that play speplaced by their thematic-role grodfheme::Agent
cific roles in a sentence should fulfill the se-in this approach. We determine the most suitable
mantic constraint from this information.  For role groupé as follows:
instance, FrameNet specifies the constraint that
Self_motion::Area should be filled by phrases ¢= argmax Pp(cf,x). (2
whose semantic type ikocation Since these ce{m(y)lyeYs}
types suggest a coarse-grained categorization of

semantic roles, we construct role groups that con- (Iere, Pm(C\{, x) present:; thel p~r<_)bab|I|ty (.)f the
tain roles whose semantic types are identical. role groupe for f andx. The rolej IS determ_med
uniquely iff a single roley € Y} is associated

4.4 Thematic roles of VerbNet with ¢. Some previous studies have employed this
. _ idea to remedy the data sparseness problem in the
VerbNeft thematic r_oles are 23 frame-mdependen[training data (Gildea and Jurafsky, 2002). How-
semantic categorle_s for arguments of Verbsever, we cannot apply this approach when multi-
such asAgent Patient Theme and Source aige roles inY; are contained in the same class. For

4.3 Semantic type of phrases

Th ri hav n nsis:- .
ese categories have been used as co S xample, we can construct a semantic-type group
tent labels across verbs. We use a parti

. bet E Net rol d Verb t::Stateof_affairsin which Giving::Reason and
mapping between Framemet roles and ver Giving::Means are included, as illustrated in Fig-
Net thematic roles provided by SemLink

Each . tructed  ure 4. If ¢ = St::Stateof_affairs, we cannot dis-
ach group is constructed as a sgf = ambiguate which original role is correct. In ad-
http://verbs.colorado.edu/semlink/ dition, it may be more effective to use various
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groupings of roles together in the model. For in- In this way, we obtainx-group functions for
stance, the model could predict the correct rolgy)| grouping methods, e_ggiheme, g?lerarchy_
Commerce_sell::Seller for the phrase “you” in  The role-group features will receive more training
Figure 3 more confidently, if it could infer its jnstances by collecting instances for fine-grained
thematic-role group asheme::Agenand its par- rgles. Thus, semantic roles with few training in-
ent groupGiving::Donor correctly. Although the  stances are expected to receive additional clues
ensemble of various groupings seems promisingyom other training instances via role-group fea-
we need an additional procedure to prioritize thgres. Another advantage of this approach is that
groupings for the case where the models for mulyne ysefulness of the different role groups is de-
tiple role groupings disagree; for example, itis Un-termined by the training processes in terms of
satisfactory if two models assign the groups-  ejghts of feature functions. Thus, we do not need
ing::ThemeandTheme::Agento the same phrase. tg gssume that we have found the best criterion for
grouping roles; we can allow a training process to

) choose the criterion. We will discuss the contribu-
We thus propose an.other approach thaF INCOTPYons of different groupings in the experiments.
rates group information as feature functions. We

model the conditional probabilit)(y|f,x) by us- 5.3 Comparison with related work

5.2 Role groups as feature functions

ing the maximum entropy framework, Baldewein et al. (2004) suggested an approach
p(ylf, %) = exp(D_; Migi(%,9)) 3) that uses r.ole. d?scriptors ?n.d hierarchigal rclala-
) >oyev; exP(; Aigi(%, 1)) tions as criteria for generalizing semantic roles

in FrameNet. They created a classifier for each
Here,G = {g;} denotes a set af feature func- frame, additionally using training instances for the
tions, andA = {);} denotes a weight vector for role A to train the classifier for the rolB, if the
the feature functions. roles A and B were judged as similar by a crite-
In general, feature functions for the maximumrion. This approach performs similarly to the over-
entropy model are designed as indicator functionsvriting approach, and it may obscure the differ-
for possible pairs ofc; andy. For example, the ences among roles. Therefore, they only re-used
event where the head word ofis “you” (1 = 1)  the descriptors as a similarity measure for the roles
andz plays the rolesCommerce_sell::Sellerina  whosecorenessvasperipheral 2
sentence is expressed by the indicator function,  In contrast, we use all kinds of role descriptors
to construct groups. Since we use the feature func-

role 1 (z1=1A tions for both the original roles and their groups,
g (%) = y = Commerce.sell::Seller) . appropriate units for classification are determined
0 (otherwiseg automatically in the training process.
(4) 6 Exper 4 Di .
We call this kind of feature function aarole. Xperiment and Discussion

In order to incorporate role groups into thewe ysed the training set of the Semeval-2007
model, we also include all feature functions for ghared task (Baker et al., 2007) in order to ascer-
possible pairs of:; and role groups. Equation 5 t5in the contributions of role groups. This dataset
is an example of a feature function for instancesonsists of the corpus of FrameNet release 1.3
where the head word af is “you” andy isinthe  (containing roughly 150,000 annotations), and an
role groupTheme::Agent additional full-text annotation dataset. We ran-
1 (21 =1A domly extracted 10% of the dataset for testing, and

- used the remainder (90%) for training.
theme, ) = € Theme::Agent. (5) ,
92 Y= Y me--Agent. Performance was measured by micro- and
0 (otherwisg macro-averaged F1 (Chang and Zheng, 2008) with
respect to a variety of roles. The micro average bi-

Thus, this feature function fires for the roles wher- .
ases each F1 score by the frequencies of the roles,

ever the head word “you” playdgent(e.g.,Com-

merce_sell::Seller, Commerce_buy::Buyer and 2In FrameNet, each role is assigned one of four different
L ’ s types ofcorenesgcore core-unexpressegeripheral extra-
Giving::Donor). We call this kind of feature func- vp dcore pressegeripheral

- ) thematig It represents the conceptual necessity of the roles
tion anx-groupfunction. in the frame to which it belongs.
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and the average is equal to the classification accu- [ oaure e e o
racy when we calculate it with all of the roles in :g:g ggzgzgg (replace gg;g ;g?g 1613;;
the test set. In contrast, the macro average does hierarchical relation | 90.25 | 72.41 | 11.40
not bias the scores, thus the roles having a small Semarc NP oo | eoor | 1238
number of instances affect the average more than Al 91.10 | 7592 | 19.16

the micro average. _
Table 1. The accuracy and error reduction rate of

6.1 Experimental settings role classification for each type of role group.
We constructed a baseline classifier that uses , _
Feature #instances| Pre. Rec. Micro
only the x-role features. The feature de- baseline <10 | 63.80 | 38.00 | 47.66
sign is similar to that of the previous stud- SN R e N R
ies (Marquez et al., 2008). The characteristics +allgroups | <10 | 72.57 | 5585 | 63.12
. <20 76.30 | 65.41 | 70.43
of x are: frame, frame evoking word, head <50 | 80.86 | 7459 | 77.60

word, content word (Surdeanu et al., 2003),
first/last word, head word of left/right sister,  Table 2: The effect of role groups on the roles with
phrase type, position, voice, syntactic path (di- few instances.

rected/undirected/partial), governing category
(Gildea and Jurafsky, 2002MWordNet super-
sense in the phrasge combination features of
frame evoking word & headword, combination
features oframe evoking word & phrase type,
and combination features wbice & phrase type

plement each other with respect to semantic role
generalization. Baldewein et al. (2004) reported
that hierarchical relations did not perform well for

their method and experimental setting; however,
we found that significant improvements could also
We also usedoS tagsandstem forms as extra be achieved with hierarchical relations. We also

feé\l/t;gismogIg;g(;"’g?;i?;{;i'd Johnson's reranktried a traditional label-replacing approach with
role descriptors (in the third row of Table 1). The
ing parser (Charniak and Johnson, 2005) to an b ( ! W )

| tactic t A it iive for th comparison between the second and third rows in-
alyze syntaclic tfrees. ~As an afternative 1or th€y;oie5 that mixing the original fine-grained roles

traditional named-entity features, we used Word-

. . and the role groups does result in a more accurate
Net supersenses: 41 coarse-grained semantic Cag?éssification

gories of words such as person, plant, state, event, Bv using all tvoes of aroups together. the
time, location. We used Ciaramita and Altun’s Su- y 9 yp group : _g .
: . model reduced 19.16 % of the classification errors
per Sense Tagger (Ciaramita and Altun, 2006) t :
. . _frgm the baseline. Moreover, the macro-averaged
tag the supersenses. The baseline system achlevlg . ;
. : scores clearly showed improvements resulting
89.00% with respect to the micro-averaged F1. . .
. . - from using role groups. In order to determine
Thex-groupfeatures were instantiated similarly .
the reason for the improvements, we measured

to the x-role features; thex-group features com- . .
. . . the precision, recall, and F1-scores with respect

bined the characteristics &fwith the role groups . o
to roles for which the number of training instances

presented in this paper. The total number of fea-
tures generated for al-roles and x-groupswas was at most 10, 20, and 50. In Table 2, we show

74,873,602. The optimal weights of the fea- that the micro-averaged F1 score for roles hav-

tures were obtained by the maximum a postelng 10 instances or less was improved (by 15.46

o (WAP)estmaton. We maximized an.- _or'S)en Sl o were e, T e
regularized log-likelihood of the training set us- 99 groups, by

ing the Limited-memory BFGS (L-BFGS) method brld_glng similar semantic _roles, they gupply _roles
having a small number of instances with the infor-
(Nocedal, 1980).

mation from other roles.

6.2 Effect of role groups

Table 1 shows the micro and macro averages of F?'g Analyses of role descriptors

scores. Each role group type improved the micrdn Table 1, the largest improvement was obtained
average by 0.5 to 1.7 points. The best result waby the use of role descriptors. We analyze the ef-
obtained by using all types of groups together. Thdect of role descriptors in detail in Tables 3 and 4.

result indicates that different kinds of group com-Table 3 shows the micro-averaged F1 scores of all
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Coreness #roles | #instances/#role| #groups | #instances/#group #roles/#group
Core 1902 122.06 655 354.4 2.9
Peripheral 1924 25.24 250 194.3 7.7
Extra-thematic| 763 13.90 171 62.02 4.5

Table 4: The analysis of the numbers of roles, instances, and role-descriptor groups, for each type of
coreness.

Coreness Micro No. | Relation Type Micro

Baseline 89.00 - baseline 89.00

Core 89.51 1 + Inheritance (children) 89.52

Peripheral 90.12 2 + Inheritance (descendants) 89.70

Extra-thematic | 89.09 3 + Using (children) 89.35

All 90.77 4 + Using (descendants) 89.37

5 + Perspective on (children) 89.01

6 + Perspective on (descendants) 89.01

Table 3: The effect of employing role-descriptor 7 | +Subframe (children) 89.04
8 + Subframe (descendants) 89.05

groups of each type of coreness. 9 | + Causative of (parents) 89.03
10 | + Causative of (ancestors) 89.03

11 + Inchoative of (parents) 89.02

. . 12 + Inchoative of (ancestors) 89.02
semantic roles when we use role-descriptor groups 13 | + Precedes (children) 89.01
14 + Precedes (descendants) 89.03

constructed from each type of coreness (8ope- 15 | +Precedes (parents) 89.00
ripheral, and extra-thematic) individually. Tpe- T | et b 10.12.14} 9025

ripheral type generated the largest improvements.

Table 4 shows the number of roles associatedable 5: Comparison of the accuracy with differ-
with each type of coreness (#roles), the number oént types of hierarchical relations.
instances for the original roles (#instances/#role),
the number of groups for each type of coreness ) i .
(#groups), the number of instances for each groug?m'c roles associated Wl.th these types. We ob-
(#instances/#group), and the number of roles pé ined better results by using not only groups for
each group (#rolesl#group). In thgeripheral parent roles, but also'groups for. all ancestqrs. The
type, the role descriptors subdivided 1,924 distincP€St result was obtained by using all relations in
roles into 250 groups, each of which contained 7_-;he hierarchy.
roles on average. Theeripheral type included
semantic roles such gdace time reason dura-
tion. These semantic roles appear in many frameglable 6 reports the precision, recall, and micro-
because they have general meanings that can gweraged F1 scores of semantic roles with respect
shared by different frames. Moreover, the semantO each coreness tyfeln general, semantic roles
tic roles ofperipheraltype originally occurred in of the core coreness were easily identified by all
only a small number (25.24) of training instancesOf the grouping criteria; even the baseline system
on average. Thus, we infer that tiperipheral obtained an F1 score of 91.93. For identifying se-
type generated the largest improvement becaudBantic roles of theeripheraland extra-thematic

semantic roles in this type acquired the greatedyPes of coreness, the simplest solution, the de-
benefit from the generalization. scriptor criterion, outperformed other criteria.

In Table 7, we categorize feature functions
6.4 Hierarchical relations and relation types whose weights are in the top 1000 in terms of

We analyzed the contributions of the FrameNet higreatest absolute value. The behaviors of the role
erarchy for each type of role-to-role relations andd"oups can be distinguished by the following two
for different depths of grouping. Table 5 showsCharacteristics. Groups of role descriptors and se-
the micro-averaged F1 scores obtained from varfantic types have large weight values for the first
ious relation types and depths. Theheritance word and supersense features, which capture the
andUsingrelations resulted in a slightly better ac- characteristics of adjunctive phrases. The original
curacy than the other types. We did not observéoles and hierarchical-relation groups have strong
any real differences among the remaining five re-  4The figures of role descriptors in Tables 4 and 6 differ.

lation types, possibly because there were few sdn Table 4, we measured the performance when we used one
I — or all types of coreness for training. In contrast, in Table 6,

3We includeCore-unexpresseih core, because it has a we used all types of coreness for training, but computed the
property ofcoreinside one frame. performance of semantic roles for each coreness separately.

6.5 Analyses of different grouping criteria
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Feature Type Pre. Rec Micro features ofr class type
baseline c 91.07 | 92.83 | 91.93 or hr i st vn
p 81.05 | 76.03 | 78.46 frame 0 4 0 1 0
e 78.17 | 66.51 | 71.87 evoking word 3 4 7 3 0
+ descriptor group| ¢ 92.50 | 93.41 | 92.95 ew & hw stem 9 34 20 8 0
p 84.32 | 82.72 | 8351 ew & phrase type| 11 7 11 3 1
e 80.91 | 69.59 | 74.82 head word 13 19 8 3 1
+ hierarchical [§ 92.10 | 93.28 | 92.68 hw stem 11 17 8 8 1
relation p 82.23 | 79.84 | 81.01 content word 7 19 12 3 0
class e 7794 | 65.58 | 71.23 cw stem 11 26 13 5 0
+ semantic c 92,23 | 93.31 | 92.77 cw PoS 4 5 14 15 2
type group p 8366 | 81.76 | 82.70 directed path 19 27 24 6 7
e 80.29 | 67.26 | 73.20 undirected path 21 35 17 2 6
+ VN thematic C 9157 | 93.06 | 92.31 partial path 15 | 18 | 16 | 13 | 5
role group ] 80.66 | 76.95 | 78.76 last word 15 18 | 12 3 2
e 7812 | 66.60 | 71.90 first word 11 23 53 26 10
+ all group c 92.66 | 93.61 | 93.13 supersense 7 7 35 25 4
p 84.13 | 82.51 | 83.31 position 4 6 30 9 5
e 80.77 | 6856 | 74.17 others 27 29 33 19 6
total 188 | 298 | 313 | 152 | 50

I??elifs:sThihprri(l:(leSIorT) ang re_l? a”;::?g;gf: t?]f'l'able 7: The analysis of the top 1000 feature func-
W groups.1yp P ._Tions. Each number denotes the number of feature
type of coreness; ¢ denotes core, p denotes perip

) unctions categorized in the corresponding cell.
eral, and e denotes extra-thematic. 9 P 9

Notations for the columns are as follows. ‘or”
original role, ‘hr’: hierarchical relation, ‘rd’: role
associations with lexical and structural characterdescriptor, ‘st': semantic type, and ‘vn’: VerbNet
istics such as the syntactic path, content word, anthematic role.

head word. Table 7 suggests that role-descriptor

groups and semantic-type groups are effective fothe hierarchy.

peripheralor adjunctive roles, and hierarchical re- Since we used the latest release of FrameNet

lation groups are effective faoreroles. in order to use a greater number of hierarchical
role-to-role relations, we could not make a direct
7 Conclusion comparison of performance with that of existing

systems; however we may say that the 89.00% F1
We have described different criteria for genera|‘micro-average of our baseline system is roughly
izing semantic roles in FrameNet. They Were:comparable to the 88.93% value of Bejan and
role hierarchy, human-understandable descriptorﬁathaway (2007) for SemEval-2007 (Baker et al.,
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Abstract

The task of Semantic Role Labeling
(SRL) is often divided into two sub-tasks:
verb argument identification, and argu-
ment classification. Current SRL algo-
rithms show lower results on the identifi-
cation sub-task. Moreover, most SRL al-
gorithms are supervised, relying on large
amounts of manually created data. In
this paper we present an unsupervised al-
gorithm for identifying verb arguments,
where the only type of annotation required
is POS tagging. The algorithm makes use
of a fully unsupervised syntactic parser,
using its output in order to detect clauses
and gather candidate argument colloca-
tion statistics. We evaluate our algorithm
on PropBank10, achieving a precision of
56%, as opposed to 47% of a strong base-
line. We also obtain an 8% increase in
precision for a Spanish corpus. This is
the first paper that tackles unsupervised
verb argument identification without using
manually encoded rules or extensive lexi-
cal or syntactic resources.

Introduction

type of relation that holds between the identi-
fied arguments and their corresponding predicates.
The division into two sub-tasks is justified by
the fact that they are best addressed using differ-
ent feature sets (Pradhan et al., 2005). Perfor-
mance in theARGID stage is a serious bottleneck
for general SRL performance, since only about
81% of the arguments are identified, while about
95% of the identified arguments are labeled cor-
rectly (Marquez et al., 2008).

SRL is a complex task, which is reflected by the
algorithms used to address it. A standard SRL al-
gorithm requires thousands to dozens of thousands
sentences annotated with POS tags, syntactic an-
notation and SRL annotation. Current algorithms
show impressive results but only for languages and
domains where plenty of annotated data is avail-
able, e.g., English newspaper texts (see Section 2).
Results are markedly lower when testing is on a
domain wider than the training one, even in En-
glish (see the WSJ-Brown results in (Pradhan et
al., 2008)).

Only a small number of works that do not re-
quire manually labeled SRL training data have
been done (Swier and Stevenson, 2004; Swier and
Stevenson, 2005; Grenager and Manning, 2006).
These papers have replaced this data with the
VerbNet (Kipper et al., 2000) lexical resource or

Semantic Role Labeling (SRL) is a major NLP a set of manually written rules and supervised
task, providing a shallow sentence-level semantiparsers.

analysis. SRL aims at identifying the relations be-

A potential answer to the SRL training data bot-

tween the predicates (usually, verbs) in the senteneck are unsupervised SRL models that require
tence and their associated arguments.
The SRL task is often viewed as consisting ofoutput can be used either by itself, or as training
two parts: argument identificationRGID) and ar-

gument classification. The former aims at identi-

little to no manual effort for their training. Their

material for modern supervised SRL algorithms.
In this paper we present an algorithm for unsu-

fying the arguments of a given predicate presenpervised argument identification. The only type of
in the sentence, while the latter determines theannotation required by our algorithm is POS tag-
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ging, which needs relatively little manual effort. ied language, using the FrameNet (FN) (Baker et

The algorithm consists of two stages. As pre-al., 1998) and PropBank (PB) (Palmer et al., 2005)
processing, we use a fully unsupervised parser teesources. PB is a corpus well suited for evalu-
parse each sentence. Initially, the set of possiation, since it annotates every non-auxiliary verb
ble arguments for a given verb consists of all then a real corpus (the WSJ sections of the Penn
constituents in the parse tree that do not contaiffreebank). PB is a standard corpus for SRL eval-
that predicate. The first stage of the algorithmuation and was used in the CoNLL SRL shared
attempts to detect the minimal clause in the sentasks of 2004 (Carreras andavjuez, 2004) and
tence that contains the predicate in question. Us2005 (Carreras and dMquez, 2005).

ing this information, it further reduces the possible  Most work on SRL has been supervised, requir-
arguments only to those contained in the minimalng dozens of thousands of SRL annotated train-
clause, and further prunes them according to theifng sentences. In addition, most models assume
position in the parse tree. In the second stage Wghat a syntactic representation of the sentence is
use pointwise mutual information to estimate thegiven, commonly in the form of a parse tree, a de-
collocation strength between the arguments angendency structure or a shallow parse. Obtaining
the predicate, and use it to filter out instances ofhese is quite costly in terms of required human
weakly collocating predicate argument pairs. annotation.

We use two measures to evaluate the perfor- the first work to tackle SRL as an indepen-

mance of our algorithm, precision and F-scoreyent task is (Gildea and Jurafsky, 2002), which
Precision reflects the algorithm’s applicability for presented a supervised model trained and evalu-

creating fraining data to be used by supervise%ted on FrameNet. The CoNLL shared tasks of
SRL models, while the standard SRL F-score Measno4 and 2005 were devoted to SRL. and stud-

sures the model's performance when used by itigq the influence of different syntactic annotations
self. The first stage of our algorithm is shown t0 4,4 qomain changes on SRL resul€omputa-

outperform a strong baseline both in terms of Fyjong inguisticshas recently published a special
score and of precision. The second stage is showdg ;e on the task (Mrquez et al., 2008), which

to increase precision while maintaining a reasonyesents state-of-the-art results and surveys the lat-
able recall. est achievements and challenges in the field.

We evaluated our model on sections 2-21 of .
: . . Most approaches to the task use a multi-level
Propbank. As is customary in unsupervised Pars; Joroach separating the task to > and an
ing work (e.g. (Seginer, 2007)), we bounded sen- PP » SEP 9

; . argument classification sub-tasks. They then use
tence length by 10 (excluding punctuation). Oury o neation su y u

. . - . . the unlabeled argument structure (without the se-
first stage obtained a precision of 52.8%, which is . gume (

. . mantic roles) as training data for th&GID stage
more than 6% improvement over the baseline. Our

second stage improved precision to nearly 56% and the entire data (perhaps with other features)

. : °7 & the classification stage. Better performance
9.3% improvement over the baseline. In addition, . 9 L P
: . . is achieved on the classification, where state-

we carried out experiments on Spanish (on sen- . .
. of-the-art supervised approaches achieve about
tences of length bounded by 15, excluding punctug, ., , . . P
. = . . 81% F-score on the in-domain identification task,
ation), achieving an increase of over 7.5% in pre- .
. : . : of which about 95% are later labeled correctly

cision over the baseline. Our algorithm increase

: . ?M arquez et al., 2008).
F-score as well, showing an 1.8% improvemen _
over the baseline in English and a 2.2% improve- There have been several exceptions to the stan-

ment in Spanish. dard architecture described in the last paragraph.
Section 2 reviews related work. In Section 3 WeOne suggestion poses the problem of SRL as a se-

detail our algorithm. Sections 4 and 5 describe th&@U€ntial tagging of words, training an SVM clas-
experimental setup and resullts. sifier to determine for each word whether it is in-

side, outside or in the beginning of an argument
2 Related Work (Hacioglu and Ward, 2003). Other works have in-

tegrated argument classification and identification
The advance of machine learning based apinto one step (Collobert and Weston, 2007), while
proaches in this field owes to the usage of largethers went further and combined the former two
scale annotated corpora. English is the most studzlong with parsing into a single model (Musillo
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and Merlo, 2006). proach used similarity measures either between

Work on less supervised methods has beeMerbs (Gordon and Swanson, 2007) or between
scarce. Swier and Stevenson (2004) and Swidtouns (Gildea and Jurafsky, 2002) to overcome
and Stevenson (2005) presented the first modégXical sparsity. These measures were estimated
that does not use an SRL annotated corpus. Howtsing statistics gathered from corpora augmenting
ever, they utilize the extensive verb lexicon Verb-the model’s training data, and were then utilized
Net, which lists the possible argument structured0 generalize across similar verbs or similar argu-
allowable for each verb, and supervised syntactments.
tic tools. Using VerbNet along with the output of ~ Attempts to substitute full constituency pars-
a rule-based chunker (in 2004) and a supervisetlg by other sources of syntactic information have
syntactic parser (in 2005), they spot instances ifpeen carried out in the SRL community. Sugges-
the corpus that are very similar to the syntactictions include posing SRL as a sequence labeling
patterns listed in VerbNet. They then use these agroblem (Marquez et al., 2005) or as an edge tag-
seed for a bootstrapping algorithm, which conseging problem in a dependency representation (Ha-
quently identifies the verb arguments in the corpusgioglu, 2004). Punyakanok et al. (2008) provide
and assigns their semantic roles. a detailed comparison between the impact of us-

Another less supervised work is thatNg Shallow vs. full constituency syntactic infor-

of (Grenager and Manning, 2006), which presenténation in an English SRL system. The_ir results
a Bayesian network model for the argumentdea”y demonstrate the advantage of using full an-
structure of a sentence. They use EM to leariOtation.

the model's parameters from unannotated data, The identification of arguments has also been
and use this model to tag a test corpus. Howevefarried out in the context of automatic subcatego-
ARGID was not the task of that work, which dealt fization frame acquisition. Notable examples in-
solely with argument classificationarcip was ~clude (Manning, 1993; Briscoe anO_' Qarroll, 1997;
performed by manually-created rules, requiring gLorhonen, 2002) who all used statistical hypothe-

supervised or manual syntactic annotation of théiS testing to filter a parser’s output for arguments,
corpus to be annotated. with the goal of compiling verb subcategorization

. lexicons. However, these works differ from ours
The three works above are relevant but incom- '

parable to our work, due to the extensive amounf> they attempt to gharactgrige the behqvior .Of a
of supervision (namely, VerbNet and a ruIe-based’erb type, by collecting statistics from various in-

or supervised syntactic system) they used, both iﬁtances of that verb, and not to determine which

detecting the syntactic structure and in detectiné“re ;he eltrgu.nr\]ents of speccllfl.c Vﬁ_rb mstances];
the arguments. The algorithm presented in this paper performs

. . unsupervised clause detection as an intermedi-
Work has been carried out in a few other lan- P

: : : .ate step towards argument identification. Super-
guages besides English. Chinese has been StuO“\Ei‘l‘fed clause detection was also tackled as a sepa-

in (Xue, 2008). Experiments on Catalan and Span- K v in th
NLL 2001 sh k
ish were done in SemEval 2007 @vjuez et al., rate task, notably in the Co 001 shared tas

2007) with t ticioati " At ; (Tjong Kim Sang and Bjean, 2001). Clause in-
) With fwo parficipating systems. €MPIS formation has been applied to accelerating a syn-
to compile corpora for German (Burdchardt et al.

: ; ‘tactic parser (Glaysher and Moldovan, 2006).
2006) and Arabic (Diab et al., 2008) are also un- IcP (Glay Vi )

derwa;_/. The small number of Iangu_ages forwhichs Algorithm

extensive SRL annotated data exists reflects the

considerable human effort required for such enin this section we describe our algorithm. It con-

deavors. sists of two stages, each of which reduces the set
Some SRL works have tried to use unannota‘[e@f argument candidates, which a-priori contains all

data to improve the performance of a base suconsecutive sequences of words that do not con-

pervised model. Methods used include bootstraptain the predicate in question.

ping approaches (Gildea and Jurafsky, 2002; Kate . .

and Mooney, 2007), where large unannotated cors-  Algorithm overview

pora were tagged with SRL annotation, later toAs pre-processing, we use an unsupervised parser

be used to retrain the SRL model. Another apthat generates an unlabeled parse tree for each sen-
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tence (Seginer, 2007). This parser is unique in that :
it is able to induce a bracketing (unlabeled pars- /\
ing) from raw text (without even using POS tags) C L

achieving state-of-the-art results. Since our algo- of s /\
| \

rithm uses millions to tens of millions sentences, the materiais C L
we must use very fast tools. The parser’s high & % T
speed (thousands of words per second) enables us b T T /L\
to process these large amounts of data. den PO
The only type of supervised annotation we ocp sdens
use is POS tagging. We use the taggers MX- sbout %0
POST (Ratnaparkhi, 1996) for English and Tree- L
Tagger (Schmid, 1994) for Spanish, to obtain POS N
tags for our model. N
The first stage of our algorithm uses linguisti- ver L
cally motivated considerations to reduce the set of
possible arguments. It does so by confining the set VBP/L\L

of argument candidates only to those constituents

which obey the following two restrictions. First, Figure 1: An example of an unlabeled POS tagged
they should be contained in the minimal clauseparse tree. The middle tree is ti5&" of ‘reach’
containing the predicate. Second, they should bwith the root as the encoded ancestor. The bot-
k-th degree cousins of the predicate in the parsédm one is theST with its parent as the encoded
tree. We propose a novel algorithm for clause deancestor.

tection and use its output to determine which of

the constituents obey these two restrictions. Statistics gathering. In order to detect which

The second stage of the algorithm uses pointef the verb’s ancestors is the minimal clause, we
wise mutual information to rule out constituentsscore each of the ancestors and select the one that
that appear to be weakly collocating with the pred-maximizes the score. We represent each ancestor
icate in question. Since a predicate greatly reusing its Spinal Tree(ST). The ST of a given
stricts the type of arguments with which it may verb’s ancestor is obtained by replacing all the
appear (this is often referred to as “selectional reconstituents that do not contain the verb by a leaf
strictions”), we expect it to have certain characterhaving a label. This effectively encodes all the
istic arguments with which itis likely to collocate. th degree cousins of the verb (for every. The
leaf labels are either the word’s POS in case the
constituent is a leaf, or the generic label “L” de-
noting a non-leaf. See Figure 1 for an example.
The main idea behind this stage is the observation In this stage we collect statistics of the occur-
that most of the arguments of a predicate are conences ofST's in a large corpus. For eve§I in
tained within the minimal clause that contains thethe corpus, we count the number of times it oc-
predicate. We tested this on our development dateurs in a form we consider to be a clause (positive
— section 24 of the WSJ PTB, where we saw thaexamples), and the number of times it appears in
86% of the arguments that are also constituentsther forms (negative examples).

(in the gold standard parse) were indeed contained Positive examples are divided into two main
in that minimal clause (as defined by the tree latypes. First, when th&T" encodes the root an-
bel types in the gold standard parse that denoteestor (as in the middle tree of Figure 1); second,
a clause, e.g.s, SBAR). Since we are not pro- when the ancestor complies to a clause lexico-
vided with clause annotation (or any label), we at-syntactic pattern. In many languages there is a
tempted to detect them in an unsupervised mannesmall set of lexico-syntactic patterns that mark a
Our algorithm attempts to find sub-trees within theclause, e.g. the English ‘that’, the German ‘dass’
parse tree, whose structure resembles the structuaéad the Spanish ‘que’. The patterns which were
of a full sentence. This approximates the notion ofused in our experiments are shown in Figure 2.

a clause. For each verb instance, we traverse over its an-

3.2 Clause detection stage
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English

TO + VB. The constituent starts with “to” followed by
a verb in infinitive form.

WP. The constituent is preceded by a Wh-pronoun.

If there is only one verb in the sentercer if
clause(STa;) = 0 for everyl < j < m, we
choose the top level constituent by default to be
the minimal clause containing the verb. Other-

That. The constituent is preceded by a “that’ marked wise, the minimal clause is defined to be the yield

by an “IN” POS tag indicating that it is a subordinating ~ Of the selected ancestor.
conjunction.

Argument identification. For each predicate in
the corpus, its argument candidates are now de-
fined to be the constituents contained in the min-
imal clause containing the predicate. However,
these constituents may be (and are) nested within
each other, violating a major restriction on SRL
arguments. Hence we now prune our set, by keep-
ing only the siblings of all of the verb’s ancestors,
as is common in supervised SRL (Xue and Palmer,

Figure 2: The set of lexico-syntactic patterns tha2004).
mark clauses which were used by our model.

Spanish

CQUE. The constituent is preceded by a word with the
POS “CQUE” which denotes the word “que” as a can-
junction.
INT. The constituent is preceded by a word with the
POS “INT” which denotes an interrogative pronoun.

CSUB. The constituent is preceded by a word with one

of the POSs “CSUBF”, “CSUBI” or “CSUBX”, which
denote a subordinating conjunction.

3.3 Using collocations

cestors from top to bottom. For each of them weWWe use the following observation to filter out some
update the following countersentence(ST) for superfluous argument candidates: since the argu-
the root ancestor'ST, pattern;(ST) for the ones Ments of a predicate many times bear a semantic
complying to thei-th lexico-syntactic pattern and connection with that predicate, they consequently
negative(ST) for the other ancestofs tend to collocate with it.
We collect collocation statistics from a large

Clause detection. At test time, when detecting corpus, which we annotate with parse trees and
the minimal clause of a verb instance, we usg Qg tags. We mark arguments using the argu-
the statistics collected in the previous stage. Dement detection algorithm described in the previous
note the ancestors of the verb with, ... A,,.  two sections, and extract all (predicate, argument)
For each of them, we calculai@ause(ST4;)  pairs appearing in the corpus. Recall that for each
and total(STa;). clause(STa;) is the sum  gentence, the arguments are a subset of the con-
of sentence(STAJ) and patterni(STAj) if this  stituents in the parse tree.
ancestor complies to théth pattern (if there  \yg yse two representations of an argument: one
is no such patternclause(STy,) is equal 10 s the POS tag sequence of the terminals contained
sentence(STa;)).  total(STa;) is the sum of iy the argument, the other is its head wbrdhe
clause(STa;) andnegative(STh, ). predicate is represented as the conjunction of its

The selected ancestor is given by: lemma with its POS tag.

Denote the number of times a predicate
appeared with an argumept by n,,. Denote
the total number of (predicate, argument) pairs

An ST whosetotal(ST) is less than a small py N Using these notations, we define the
threshold is not considered a candidate to be therollowing quantities:n, = Sylays Ny = Salay,

minimal clause, since its statistics may be un,(;) — e p(y) = % andp(z,y) = 2. The

reliable. In case of a tie, we choose the low-pointwise mutual information of andy is then
est constituent that obtained the maximal scoregjyen py:

clause(STa )
(1) Amaz = argmacrA; W
J

LIf while traversing the tree, we encounter an ancestor
whose first word is preceded by a coordinating conjunction
(marked by the POS tag “CC”), we refrain from performing  ®In this case, every argument in the sentence must be re-
any additional counter updates. Structures containing coonated to that verb.
dinating conjunctions tend not to obey our lexico-syntactic ~ “Since we do not have syntactic labels, we use an approx-
rules. imate notion. For English we use the Bikel parser default
2\We used 4 per million sentences, derived from develop-head word rules (Bikel, 2004). For Spanish, we use the left-
ment data. most word.
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(2) PMI(z,y) = logpf’x()’c_%) = log(mz% ing the URLs in the Open Directory Project
(dmoz.org). All of the above corpora were parsed
PMT effectively measures the ratio betweenusing Seginer's parser and POS-tagged by MX-
the number of times andy appeared together and POST (Ratnaparkhi, 1996).
the number of times they were expected to appear, For our experiments on Spanish, we used 3.3M
had they been independent. sentences of length at most 15 (excluding punctua-
At test time, when aiiz, y) pair is observed, we tion) extracted from the Spanish Wikipedia. Here
check if PMI(x,y), computed on the large cor- we chose to bound the length by 15 due to the
pus, is lower than a threshotd for either ofz’s  smaller size of the available test corpus. The
representations. If this holds, for at least one repsame data was used both for the first and the sec-
resentation, we prune all instances of thaty) ond stages. Our development and test data were
pair. The parameter may be selected differently taken from the training data released for the Se-
for each of the argument representations. mEval 2007 task on semantic annotation of Span-
In order to avoid using unreliable statistics,ish (Marquez et al., 2007). This data consisted
we apply this for a given pair only if=* >  of 1048 sentences of length up to 15, from which
r, for some parameter. That is, we consider 200 were randomly selected as our development
PMI(z,y) to be reliable, only if the denomina- data and 848 as our test data. The development

tor in equation (2) is sufficiently large. data included 313 verb instances while the test
data included 1279. All corpora were parsed us-
4 Experimental Setup ing the Seginer parser and tagged by the “Tree-

Tagger” (Schmid, 1994).
Corpora. We used the PropBank corpus for de-  gagelines, Since this is the first paper, to our
velopment and for evaluation on English. SeCtiO”knowledge, which addresses the problem of unsu-
24 was used for the development of our modelyeryised argument identification, we do not have
and sections 2 to 21 were used as our test datgny previous results to compare to. We instead

The free parameters of the collocation extractiorbOmpare to a baseline which marks/afih degree
phase were tuned on the development data. Fol;

) k S ~€ousins of the predicate (for evetyas arguments
lowing the unsupervised parsing literature, mul'u-é1

, : this is the second pruning we use in the clause
ple brackets and brackets covering a single Wor¢|ataction stage). We name this baseline the A

are omitted. We exclude punctuation according~q;5ins baseline. We note that a random base-
to the scheme of (Klein, 2005). As is customaryjine would score very poorly since any sequence of
in unsupervised parsing (e.g. (Seginer, 2007)), Wesrminals which does not contain the predicate is

bounded the lengths of the sentences in the coy yogsiple candidate. Therefore, beating this ran-
pus to be at most 10 (excluding punctuation). Thigjom paseline is trivial.

results in 207 sentences in the development data, =, o1 ation. Evaluation is carried out using

contgining a total fofh132 differe_?t verbs ant_j 1;?’standard SRL evaluation softward he algorithm
verb instances (of the non-auxiliary verbs in thejg o\ided with a list of predicates, whose argu-

SRL task, see ‘evaluation’ below) having 403 ar-,o s it needs to annotate. For the task addressed

9“_”?”“5- Thz_tf?St data hss 6087 sentencis'com-this paper, non-consecutive parts of arguments
taining 1008 different verbs and 5130 ver N"are treated as full arguments. A match is consid-

stances (as above) having 12436 arguments. ered each time an argument in the gold standard

Our algorithm requires large amounts of datgyaia matches a marked argument in our model's
to gather argument structure and collocation patbutput. An unmatched argument is an argument

terns.  For the statistics gathering phase of thgich appears in the gold standard data, and fails
clause detection algorithm, we used 4.5M sens, appear in our model's output, and an exces-
tences of the NANC (Graff, 1995) corpus, bound-gjye argument is an argument which appears in

ing their length in the same manner. In orderg,. model's output but does not appear in the gold

to extract collocations, we used 2M senténcegiangard. Precision and recall are defined accord-
from the British National Corpus (Burnard, 2000) ingly. We report an F-score as well (the harmonic
and about 29M sentences from the Dmoz cor

- e ) mean of precision and recall). We do not attempt
pus (Gabrilovich and Markovitch, 2005). Dmoz
is a web corpus obtained by crawling and clean- Shttp:/iwww.Isi.upc.edutsriconll/soft.html#software.
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to identify multi-word verbs, and therefore do not baseline and the clause detection stage) with a

report the model's performance in identifying verbrelatively small recall degradation. In the Spanish

boundaries. experiments its F-score (23.87%) is even a bit
Since our model detects clauses as an intermddgher than that of the clause detection stage

diate product, we provide a separate evaluatio23.34%).

of this task for the English corpus. We show re- The full two—stage algorithm (clause detection

sults on our development data. We use the stan+ collocations) should thus be used when we in-

dard parsing F-score evaluation measure. As #end to use the model’s output as training data for

gold standard in this evaluation, we mark for eachsupervised SRL engines or supervigedsiD al-

of the verbs in our development data the minimalgorithms.

clause containing it. A minimal clause is the low- In our algorithm, the initial set of potential ar-

est ancestor of the verb in the parse tree that haguments consists of constituents in the Seginer

a syntactic label of a clause according to the golgparser’'s parse tree. Consequently the fraction

standard parse of the PTB. A verb is any terminabf arguments that are also constituents (81.87%

marked by one of the POS tags of type verb acfor English and 51.83% for Spanish) poses an

cording to the gold standard POS tags of the PTBupper bound on our algorithm’s recall. Note

that the recall of the AL CousINs baseline is
5 Results 74.27% (45.75%) for English (Spanish). This

score emphasizes the baseline’s strength, and jus-

Our results are shown in Table 1. The left Secuor}ifies the restriction that the arguments should be

presents results on English and the right sectlor]}:_th cousins of the predicate. The difference be-

prcletsenftfhreslults ondStpa?_lsh. tThe tolp “ne_l_“hStS ret'\{veen these bounds for the two languages provides
sults oTthe clause detection stage alone. The nex partial explanation for the corresponding gap in
two lines list results of the full algorithm (clause the algorithm’s performance
detection + collocations) in two different settings .

: ) Figure 3 shows the precision of the collocation
of the collocation stage. The bottom line presents i
h model (on development data) as a function of the
the performance of the lA. Cousinsbaseline.

“ : . o amount of data it was given. We can see that
In the “Collocation Maximum Precision” set-

. _ the algorithm reaches saturation at about 5M sen-
ting the parameters of the collocation stagea(d

v tuned h that ial .tences. It achieves this precision while maintain-
T? Were generaly Lned such that maxima preC"ing a reasonable recall (an average recall of 43.1%
sion is achieved while preserving a minimal recall

level (40% for Enalish. 20% for Spanish on the d after saturation). The parameters of the colloca-
evel (40% for English, o or Spanish onthe €=, , model were separately tuned for each corpus
velopment data). In the “Collocation Maximum F-

; . size, and the graph displays the maximum which
score” the collocation parameters were generall

) ) Yvas obtained for each of the corpus sizes.
tuned such that the maximum possible F-score for ,
To better understand our model’s performance,

the collocation algorithm is achieved. : :
The best | 0 best F ) hi we performed experiments on the English cor-
€ Dest or close 10 DESL F-SCore 1S achieveq o 14 test how well its first stage detects clauses.
when using the clause detection algorithm alon

: : lause detection is used by our algorithm as a step
(59.14% for English, 23.34% for Spanish). NOtetowards argument identification, but it can be of

that for both Englls_h and _Spamsh_ I_:—sc_ore Im'potential benefit for other purposes as well (see
provements are achieved via a precision improveg

. o Section 2). The results are 23.88% recall and 40%
ment that is more S|gn|f|ca_nt than the recall d_egrabrecision. As in thearGID task, a random se-
dation. F-score maximization would be the alm.ofI ction of arguments would have yielded an ex-
a system 'Fhat uses the output of our unsuperwset(?emely poor result.
ARGID by itself.

The “Collocation Maximum  Precision” g conclusion
achieves the best precision level (55.97% for
English, 21.8% for Spanish) but at the expensen this work we presented the first algorithm for ar-
of the largest recall loss. Still, it maintains a gument identification that uses neither supervised
reasonable level of recall. The “Collocation syntactic annotation nor SRL tagged data. We
Maximum F-score” is an example of a model thathave experimented on two languages: English and

provides a precision improvement (over both theSpanish. The straightforward adaptability of un-
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English (Test Data) Spanish (Test Data)
Precision| Recall | F1 Precision| Recall | F1
Clause Detection 52.84 67.14 | 59.14| 18.00 33.19 | 23.34
Collocation Maximum F—score| 54.11 63.53 | 58.44 || 20.22 29.13 | 23.87
Collocation Maximum Precision 55.97 40.02 | 46.67 | 21.80 18.47 | 20.00

ALL Cousinsbaseline | 4671 | 74.27 [ 57.35] 14.16 | 45.75 | 21.62]

Table 1:Precision, Recall and F1 score for the different stages of our alguorigesults are given for English (PTB, sentences
length bounded by 10, left part of the table) and Spanish (SemEval 2p8nish SRL task, right part of the table). The results
of the collocation (second) stage are given in two configurations, CailbmcMaximum F-score and Collocation Maximum
Precision (see text). The upper bounds on Recall, obtained by takinggathants output by our unsupervised parser, are
81.87% for English and 51.83% for Spanish.

and 3.3M sentences for Spanish.

As this is the first work which addressed un-
supervisedARGID, many questions remain to be
explored. Interesting issues to address include as-

Precision

a8y —=— Second Stage| | sessing the utility of the proposed methods when
aaf —bageme |1 supervised parses are given, comparing our model
azp— v v v v to systems with no access to unsupervised parses
° Number of Sentences (Millions) o and conducting evaluation using more relaxed
measures.

Figure 3:The performance of the second stage on English Unsupervised methods for Syntactic tasks have

(squares) vs. corpus size. The precision of the baseline (trian- . .
gles) and of the first stage (circles) is displayed for referencematured substantially in the last few years. '_\IO'
The graph indicates the maximum precision obtained for eactiable examples are (Clark, 2003) for unsupervised

corpus size. The graph reaches saturation at about 5M sep(QS tagging and (Smith and Eisner, 2006) for un-
tences. The average recall of the sampled points from there '

on is 43.1%. Experiments were performed on the EnglishSUp_erVised dependency parsing. Adapting.our al-
development data. gorithm to use the output of these models, either to

reduce the little supervision our algorithm requires

supervised models to different languages is on%POS tagging) or to provide complementary syn-

of their most appealing characteristics. The re-fﬁfljlrce |Vr\1/1:;)rrkmat|on, 's an interesting challenge for
cent availability of unsupervised syntactic parsers '
has offered an opportunity to conduct research on
SRL, without reliance on supervised syntactic anReferences
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Abstract

We describe a semantic role labeling system
that makes primary use of CCG-based fea-
tures. Most previously developed systems
are CFG-based and make extensive use of a
treepath feature, which suffers from data spar-
sity due to its use of explicit tree configura-
tions. CCG affords ways to augment treepath-
based features to overcome these data sparsity
issues. By adding features over CCG word-
word dependencies and lexicalized verbal sub-
categorization frames (“supertags”), we can
obtain an F-score that is substantially better
than a previous CCG-based SRL system and
competitive with the current state of the art. A
manual error analysis reveals that parser errors
account for many of the errors of our system.
This analysis also suggests that simultaneous
incremental parsing and semantic role labeling
may lead to performance gains in both tasks.

Introduction

roles, denoted by the letter M instead of a number. For
example, ArgM-TMP denotes a temporal role, like “to-
day”. By using verb-specific roles, Propbank avoids
specific claims about parallels between the roles of dif-
ferent verbs.

We follow the approach in (Punyakanok et al., 2008)
in framing the SRL problem as a two-stage pipeline:
identification followed by labeling. During identifica-
tion, every word in the sentence is labeled either as
bearing some (as yet undetermined) semantic role or
not . This is done for each verb. Next, during label-
ing, the precise verb-specific roles for each word are
determined. In contrast to the approach in (Punyakanok
et al., 2008), which tags constituents directly, we tag
headwords and then associate them with a constituent,
as in a previous CCG-based approach (Gildea and
Hockenmaier, 2003). Another difference is our choice
of parsers. Brutus uses the CCG parser of (Clark and
Curran, 2007, henceforth the C&C parser), Charniak’s
parser (Charniak, 2001) for additional CFG-based fea-
tures, and MALT parser (Nivre et al., 2007) for de-
pendency features, while (Punyakanok et al., 2008)
use results from an ensemble of parses from Char-

Semantic Role Labeling (SRL) is the process of assignniak’s Parser and a Collins parser (Collins, 2003; Bikel,

ing semantic roles to strings of words in a sentence ac2004). Finally, the system described in (Punyakanok et
cording to their relationship to the semantic predicatesl., 2008) uses a joint inference model to resolve dis-
expressed in the sentence. The task is difficult becausgepancies between multiple automatic parses. We do
the relationship between syntactic relations like “sub-not employ a similar strategy due to the differing no-
ject” and “object” do not always correspond to seman-tions of constituency represented in our parsers (CCG
tic relations like “agent” and “patient”. An effective having a much more fluid notion of constituency and
semantic role labeling system must recognize the difthe MALT parser using a different approach entirely).
ferences between different configurations: For the identification and labeling steps, we train
a maximum entropy classifier (Berger et al., 1996)

(@) rEan:? mag‘l‘aﬁg) ]zpehed [the door,¢: [for over sections 02-21 of a version of the CCGbank cor-
Arg3 Yiargr—rarp. pus (Hockenmaier and Steedman, 2007) that has been

(b) [The door,41 opened. augmented by projecting the Propbank semantic anno-

(c) [The doorls,4; was opened by [a man} 0. tations (Boxwell and White, 2008). We evaluate our

RL system’s argument predictions at the word string

we use Propbank (Palm(_er etal, 200,5)' a Corpus Olgysg| making our results directly comparable for each
newswire text annotated with verb predicate Semam'%rgument labeling

role information that is widely used in the SRL litera- In the following, we briefly introduce the CCG

ture (Marquez et al., 2008). Rather than describe Se@rammatical formalism and motivate its use in SRL

mantic roles in terms of "agent” or "patient’, P_ropbank Sections 2-3). Our main contribution is to demon-
defines semantic roles on a verb-by-verb basis. For ex:

trate that CCG — arguably a more expressive and lin-
ample, the verlopenencodes the @ENERas ArgO0, the 9 Y b
OpPENEEas Argl, and the beneficiary of thee@NING This is guaranteed by our string-to-string mapping from
action as Arg3. Propbank also defines a set of adjunahe original Propbank to the CCGbank.
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guistically appealing syntactic framework than vanilla predicate-argument relationship (figure 3). This fea-
CFGs —is a viable basis for the SRL task. This is supture has been shown (Gildea and Hockenmaier, 2003)
ported by our experimental results, the setup and detail® be an effective substitute for treepath-based features.
of which we give in Sections 4-10. In particular, using But while predicate-argument-based features are very
CCG enables us to map semantic roles directly onteffective, they are still vulnerable both to parser er-
verbal categories, an innovation of our approach thators and to cases where the semantics of a sentence
leads to performance gains (Section 7). We concludélo not correspond directly to syntactic dependencies.
with an error analysis (Section 11), which motivatesTo counteract this, we use both kinds of features with
our discussion of future research for computational sethe expectation that the treepath feature will provide

mantics with CCG (Section 12). low-level detail to compensate for missed, incorrect or
) ] syntactically impossible dependencies.
2 Combinatory Categorial Grammar Another advantage of a CCG-based approach (and

Combinatory Categorial Grammar (Steedman, 2000}€Xicalist approaches in general) is the ability to en-
is a grammatical framework that describes syntacti®©de verb-specific argument mappings. An argument
structure in terms of the combinatory potential of theMapPpPINg IS a link betvvegn the CCG .category apd the
lexical (word-level) items. Rather than using standardSemantic roles that are likely to go with each of its ar-
part-of-speech tags and grammatical rules, CCG er@uments. The projection of argument mappings onto
codes much of the combinatory potential of each wordCCG Verbal categories is explored in (Boxwell and
by assigning a syntactically informative category. ForWh'te'_2008)' We describe this feature in more detalil
example, the verboves has the category (sp)/np, N Section 7.

which could be read “the kind of word that would be 4
a sentence if it could combine with a noun phrase on
the right and a noun phrase on the left". Further, CCGAs in previous approaches to SRL, Brutus uses a two-
has the advantage of a transparent interface between teeage pipeline of maximum entropy classifiers. In ad-
way the words combine and their dependencies withlition, we train an argument mapping classifier (de-
other words. Word-word dependencies in the CCG-scribed in more detail below) whose predictions are
bank are encoded using predicate-argument (PARQ)sed as features for the labeling model. The same
relations. PARG relations are defined by the functorfeatures are extracted for both treebank and automatic
word, the argument word, the category of the functorparses. Automatic parses were generated using the
word and which argument slot of the functor categoryC&C CCG parser (Clark and Curran, 2007) with its
is being filled. For example, in the senterdahn loves  derivation output format converted to resemble that of
Mary (figure 1), there are two slots on the verbal cat-the CCGbank. This involved following the derivational
egory to be filled by NP arguments. The first argu-bracketings of the C&C parser’s output and recon-
ment (the subject) fills slot 1. This can be encodedstructing the backpointers to the lexical heads using an
as <loves,john,(§np)/np,2>, indicating the head of in-house implementation of the basic CCG combina-
the functor, the head of the argument, the functor cattory operations. All classifiers were trained to 500 iter-
egory and the argument slot. The second argumerdtions of L-BFGS training — a quasi-Newton method
(the direct object) fills slot 2. This can be encoded agrom the numerical optimization literature (Liu and No-
<loves,mary,(snp)/np,2>. One of the potential ad- cedal, 1989) — using Zhang Le’s maxent toofkito
vantages to using CCGbank-style PARG relations igrevent overfitting we used Gaussian priors with global
that they uniformly encode both local and long-rangevariances of 1 and 5 for the identifier and labeler, re-
dependencies — e.g., the noun phrése Mary that  spectively?> The Gaussian priors were determined em-
John lovesxpresses the same set of two dependenciegpirically by testing on the development set.

We will show this to be a valuable tool for semantic  Both the identifier and the labeler use the following

Identification and Labeling Models

role prediction. features:

3 Potential Advantages to using CCG (1) Words. Words drawn from a 3 word window
around the target wortiwith each word asso-

There are many potential advantages to using the CCG ciated with a binary indicator feature.

formalism in SRL. One is the uniformity with which
CCG can express equivalence classes of local and long-
range (including unbounded) dependencies. CFG-
based approaches often rely on examining potentially 2Available for download athtt p://homepages.
long sequences of categories {i@epathy between the i nf. ed. ac. uk/ s0450736/ maxent _t ool ki t.
verb and the target word. Because there are a number gim -

3 . . . .
different treepaths that correspond to a single relation _S2ussian priors achieve a smoothing effect (to prevent
overfitting) by penalizing very large feature weights.

(figure 2), this approach can suffer from data Sparsity. e sjze of the window was determined experimentally
CCG, however, can encode all treepath-distinct expressn the development set — we use the same window sizes

sions of a single grammatical relation into a singlethroughout.

(2) Part of Speech Part of Speech tags drawn
from a 3 word window around the target word,
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Robin fixed the car
np (s\np)np np/n  n
np z
>
s\np
S
John loves Mary
np  (s[dcl]\np)/np  np the car that Robin fixed
sldcl]\np np/nn o (np\np)/(s/np)  mp__ (s\np)/np
>
s[dcl] s/(s\np)
_ > —F>B
. . np s/np
Figure 1: This sentence has two depen- np\np

dencies: <loves,mary,(§np)/np,2> and

<loves,john,(§np)/np, >

np

Figure 3: CCG word-word dependencies are passed
up through subordinate clauses, encoding the rela-
tion betweencar and fixed the same in both cases:
(s\np)/np.2— (Gildea and Hockenmaier, 2003)

with each associated with a binary indicator
feature.

(3) CCG Categories CCG categories drawn from
a 3 word window around the target word, with
S each associated with a binary indicator feature.
A - (4) Predicate The lemma of the predicate we are
NP7 VP \\\ tagging. E.gfix is the lemma ofixed
‘ N /\ EN (5) Result Category Detail The grammatical fea-
Robin V NP ture on the category of the predicate (indicat-
\ /\ " ing declarative, passive, progressive, etc). This
fixed Det N can be read off the verb category: declarative
\ \ for eats (s[dcl]\np)/npor progressive forun-
the car ning: s[ng]\np.
NP (6) Before/After. A binary indicator variable indi-
/X . cating whether the target word is before or after
Det .~ N N the verb.
| k/ /\‘JA . (7) Treepath. The sequence of CCG categories
the N RC ., representing the path through the derivation
| TN from the predicate to the target word. For
car Rel S’ \ the relationship betweefixed and car in the
‘ /\ ) first sentence of figure 3, the treepath is
that NP VI;\ (s[dclj\np)/np>s[dcl]\np<np<n, with > and
‘ ‘ ; < |nd|c§t|ng movement up and down the tree,
. , respectively.
Robin V- -
‘ (8) Short Treepath. Similar to the above treepath
fixed feature, except the path stops at the highest
node under the least common subsumer that
) ) ) is headed by the target word (this is tben-
Figure 2: The semantic relation (Argl) between ‘car’ stituentthat the role would be marked on if we
and ‘fixed’ in both phrases is the same, but the identified this terminal as a role-bearing word).
treepaths — traced with arrows above — are differ- Again, for the relationship betwedixed and
ent: (V>VP<NP<N and V>VP>S>RC>N<N, re- car in the first sentence of figure 3, the short
spectively). treepath is (s[dcinp)/np>s[dcl]\np<np.
(9) NP Modified. A binary indicator feature indi-

cating whether the target word is modified by
an NP modifieP.

5This is easily read off of the CCG PARG relationships.
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(10

(11)

Subcategorization A sequence of the cate-
gories that the verb combines with in the CCG
derivation tree. For the first sentence in fig-
ure 3, the correct subcategorization would be
np,np Notice that this is not necessarily a re-
statement of the verbal category — in the second
sentence of figure 3, the correct subcategoriza-

some of the non-modifier semantic roles that a
verb is likely to express. We use this informa-

tion as a feature and not a hard constraint to
allow other features to overrule the recommen-
dation made by the argument mapping classi-
fier. The features used in the argument map-
ping classifier are described in detail in section

tion is s/(s\np),(np\np)/(s[dcl)/np),np 7.
PARG feature. We follow a previous CCG-
based approach (Gildea and Hockenmaierdo CFG based Features

2003) in using a feature to describe the PARG N
relationship between the two words, if one ex- In addition to CCG-based features, features can be

ists. If there is a dependency in the PARG drawn from a traditional CFG-style approach when
structure between the two words, then this feathey are available. Our motivation for this is twofold.

ture is defined as the conjunction of (1) the cat-First, others (Punyakanok et al., 2008, e.g.), have found
egory of the functor, (2) the argument slot that that different parsers have different error patterns, and

is being filled in the functor category, and (3) SO using multiple parsers can yield complementary
an indication as to whether the functerj or ~ Sources of correct information. Second, we noticed
the argument«) is the lexical head. For ex- that, although the CCG-based system performed well

ample, to indicate the relationship betwesam ~ ON head word labeling, performance dropped when

andfixedin both sentences of figure 3, the fea- Projecting these labels to the constituent level (see sec-
ture is ($np)/np.2—. tions 8 and 9 for more). This may have to do with the

fact that CCG is not centered around a constituency-

The labeler uses all of the previous features, plus thgased analysis, as well as with inconsistencies between

following:

(12)

(13)

(14)

(15)

(16)

CCG and Penn Treebank-style bracketings (the latter

Headship A binary indicator feature as to being what was annotated in the original Propbank).
whether the functor or the argument is the lex- Penn Treebank-derived features are used in the iden-
ical head of the dependency between the twdifier, labeler, and argument mapping classifiers. For
words, if one exists. automatic parses, we use Charniak’s parser (Charniak,
, , ) 2001). For gold-standard parses, we remove func-
Predicate apd Before/After. The cpnjuncuon tional tag and trace information from the Penn Tree-
of two earlier features: the predicate Iemmabank parses before we extract features over them, so as
and the Before/After feature. to simulate the conditions of an automatic parse. The
Rel Clause Whether the path from predicate Penn Treebank features are as follows:
to target word passes through a relative clause

(e.g., marked by the wortthat' or any other  (17) CFG Treepath. A sequence of traditional
word with a relativizer category). CFG-style categories representing the path
PP features When the target word is a prepo- from the verb to the target word.

sition, we define binary indicator features for (18) CFG Short Treepath. Analogous to the CCG-
the word, POS, and CCG category of the head based short treepath feature.

of the topmost NP in the prepositional phrase o

headed by a preposition (a.k.a. thexical CFG Subcategorlzatlon. Analogous to the
head of the PP). So, ibnheads the phrasen CCG-based subcategorization feature.

the third Friday’, then we extract features re- (20) CFG Least Common Subsumer The cate-

lating to Friday for the prepositioron. This is
null when the target word is not a preposition.

Argument Mappings. If there is a PARG rela-

tion between the predicate and the target wordg  Dependency Parser Features

the argument mapping is the most likely pre-

dicted role to go with that argument. These Finally, several features can be extracted from a de-
mappings are predicted using a separate classpendency representation of the same sentence. Au-
fier that is trained primarily on lexical informa- tomatic dependency relations were produced by the
tion of the verb, its immediate string-level con- MALT parser. We incorporate MALT into our col-
text, and its observed arguments in the train-lection of parses because it provides detailed informa-
ing data. This feature is null when there is tion on the exact syntactic relations between word pairs
no PARG relation between the predicate and(subject, object, adverb, etc) that is not found in other
the target word. The Argument Mapping fea- automatic parsers. The features used from the depen-
ture can be viewed as a simple prediction aboutlency parses are listed below:

gory of the root of the smallest tree that domi-
nates both the verb and the target word.
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(21) DEP-Exists A binary indicator feature show- the  boy loves a gl
ing whether or not there is a dependency be- np/n n  (s[dcl]\npargo)/npag1  np/n n
tween the target word and the predicate. np — Ar95 np — Argl

>
(22) DEP-Type If there is a dependency between s[dcl]\np
the target word and the predicate, what type of s[dcl]
dependency it is (SUBJ, OBJ, etc).

Figure 4: By looking at the constituents that the verb
7 Argument Mapping Model combines with, we can identify the semantic roles cor-
responding to the arguments marked on the verbal cat-
An innovation in our approach is to use a separate clasegory.
sifier to predict an argument mapping feature. An ar-
gument mapping is a mapping from the syntactic argu-
ments of a verbal category to the semantic arguments(27) Argument Data. The word, POS, and CCG

that should correspond to them (Boxwell and White, category, and treepath of the headwords of each
2008). In order to generate examples of the argument of the verbal arguments (i.e., PARG depen-
mapping for training purposes, it is necessary to em- dents), each encoded as a separate binary in-

ploy the PARG relations for a given sentence to identify dicator feature.

the headwords of each of the verbal arguments. Thatis,(28) Number of arguments The number of argu-
we use the PARG relations to identify the headwords of ments marked on the verb.

each of the constituents that are arguments of the verb(zg)
Next, the appropriate semantic role that corresponds to
that headword (given by Propbank) is identified. This

is done by climbing the CCG derivation tree towards (30)
the root until we find a semantic role corresponding to

the verb in question — i.e., by finding the point where

the constituent headed by the verbal category combineq31) CFG-Sisters The POS categories of the sis-
with the constituent headed by the argument in ques- ters of this predicate in the CFG representation.
tion. These semantic roles are then marked on the €or(32)
responding syntactic argument of the verb.

Words of Arguments. The head words of each
of the verb’s arguments.

Subcategorization The CCG categories that
combine with this verb. This includes syntactic
adjuncts as well as arguments.

DEP-dependencies The individual depen-
dency types of each of the dependencies re-

As an example, consider the sentefite boy loves lating to the verb (SBJ, OBJ, ADV, etc) taken
a girl. (figure 4). By examining the arguments that the from the dependency parse. We also incorpo-
verbal category combines with in the treebank, we can rate a single feature representing the entire set
identify the corresponding semantic role for each argu- of dependency types associated with this verb
ment that is marked on the verbal category. We then use into a single feature, representing the set of de-
these tags to train the Argument Mapping model, which pendencies as a whole.

will predict likely argument mappings for verbal cate-

gories based on their local surroundings and the head- Given these features with gold standard parses, our
words of their arguments, similar to the supertaggingdrgument mapping model can predict entire argument
approaches used to label the informative syntactic cathappings with an accuracy rate of 87.96% on the test
egories of the verbs (Bangalore and Joshi, 1999; Clarkset, and 87.70% on the development set. We found the
2002), except taggmg “one level above” the syntax. features generated by this model to be very useful for

The Argument Mapping Predictor uses the following semantic role prediction, as they enable us to make de-
features: cisions about entire sets of semantic roles associated

with individual lemmas, rather than choosing them in-
(23) Predicate The lemma of the predicate, as be- dependently of each other.
fore.

8 Enabling Cross-System Comparison
(24) Words. Words drawn from a 5 word window 9 y P

around the target word, with each word associ-The Brutus system is designed to label headwords of
ated with a binary indicator feature, as before. semantic roles, rather than entire constituents. How-
ever, because most SRL systems are designed to label
constituents rather than headwords, it is necessary to
project the roles up the derivation to the correct con-
stituent in order to make a meaningful comparison of
the system’s performance. This introduces the poten-
(26) CCG Categories CCG categories drawn from tial for further error, so we report results on the ac-
a 5 word window around the target word, with curacy of headwords as well as the correct string of
each category associated with a binary indica-words. We deterministically move the role to the high-
tor feature, as before. est constituent in the derivation that is headed by the

(25) Parts of Speech Part of Speech tags drawn
from a 5 word window around the target word,
with each tag associated with a binary indicator
feature, as before.
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a man with glasses spoke ‘ P R E

np/n n (np\np)/np P s\np P. et al (treebank)| 86.22%| 87.40% | 86.81%
np np\np Brutus (treebank)| 88.29% | 86.39% | 87.33%

np — speak.Arg0 ) P. et al (automatic) 77.09%| 75.51% | 76.29%

s Brutus (automatic) 76.73% | 70.45% | 73.45%

Figure 5: The role is moved towards the root until theTabIe 2: Accuracy of semantic role prediction using

original node is no longer the head of the marked Con'CCG, CFG, and MALT based features.

stituent.
| P | R | F | P | R | F
G&H (treebank) | 67.5% | 60.0% | 63.5% Headword (treebank)| 88.94% | 86.98% | 87.95%
Brutus (treebank)| 88.18% | 85.00% | 86.56% Boundary (treebank)| 88.29% | 86.39% | 87.33%

G&H (automatic) | 55.7% | 49.5% | 52.4% Headword (automatic) 82.36% | 75.97% | 79.04%
Brutus (automatic) 76.06% | 70.15% | 72.99% Boundary (automatic) 76.33% | 70.59% | 73.35%

Table 3: Accuracy of the system for labeling semantic
roles on both constituent boundaries and headwords.
Headwords are easier to predict than boundaries, re-
flecting CCG's focus on word-word relations rather

originally tagged terminal. In most cases, this corre-than constituency.
sponds to the node immediately dominated by the low-

est common subsuming node of the the target word an1pl d denci . ¢ |
the verb (figure 5). In some cases, the highest conioF dependencies as a more appropriate means of eval-

stituent that is headed by the target word is not immelation, reflecting the focus on headwords from con-

diately dominated by the lowest common subsuming;titue,nt bqund_aries. We argue that, especially in the
node (figure 6). eavily lexicalized CCG framework, headword evalu-

ation is more appropriate, reflecting the emphasis on
headword combinatorics in the CCG formalism.

Table 1: Accuracy of semantic role prediction using
only CCG based features.

9 Results

Using a version of Brutus incorporating only the CCG-10  The Contribution of the New Features
based features described above, we achieve better re- . :
sults than a previous CCG based system (Gildea an wo features which are less frequently used in SRL

. . research play a major role in the Brutus system: The
Hockenmaier, 2003, henceforth G&H). This could be . )
due to a number of factors, including the fact that ourpARG feature (Gildea and Hockenmaier, 2003) and

system employs a diferent CCG parser, uses a morg, 0 T TERPS PRI, PRt o0 08
complete mapping of the Propbank onto the CCGbar]k|barses gas shown in our feayture ablation rgsults in ta-
uses a different machine learning approéeimd has a '

richer feature set. The results for constituent tagginﬁin‘:'M\;\/e iio ?g;nrﬁgoghtriil:Iﬁ;n;kgg%etza érg&;_
accuracy are shown in table 1. ppINg !

. . gause some predicate-argument relation information is
As expected, by incorporating Penn TrGEbank_baseassumed in generating the Argument Mapping feature
features and dependency features, we obtain better re- 9 9 g PPing '

sults than with the CCG-only system. The results for
- | P | R | F

gold standard parses are comparable to the winning
system of the CoNLL 2005 shared task on semantic
role labeling (Punyakanok et al., 2008). Other systems
(Toutanova et al., 2008; Surdeanu et al., 2007; Johans-
son and Nugues, 2008) have also achieved comparable
results — we compare our system to (Punyakanok etable 4: The effects of removing key features from the
al., 2008) due to the similarities in our approaches. Theystem on gold standard parses.
performance of the full system is shown in table 2.

Table 3 shows the ability of the system to predictThe same is true for automatic parses, as shown in ta-
the correct headwords of semantic roles. This is a nedsle 5.
essary condition for correctness of the full constituent,
but not a sufficient one. In parser evaluation, Carroll,11 Error Analysis

Minnen, and Briscoe (Carroll et al., 2003) have argued
Many of the errors made by the Brutus system can be

6G&H use a generative model with a back-off lattice, traced directly to erroneous parses, either in the auto-
whereas we use a maximum entropy classifier. matic or treebank parse. In some cases, PP attachment

+PARG +AM | 88.77% | 86.15% | 87.44%
+PARG -AM | 88.42% | 85.78% | 87.08%
-PARG -AM | 87.92% | 84.65% | 86.26%
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with even brief exposures causing symptoms
(((vp\vp)/vplng])/np  n/n n/n n (s[ng]\np)/np np

>
n s[ng]\np
A >

np — cause.Arg0
(vp\vp)/vp[ng]

>

>

vp\vp

Figure 6: In this casawith is the head ofvith even brief exposureso the role is correctly marked @ven brief
exposuregbased on wsp003.2).

| P | R | F aform of asbestos used to make filters
+PARG +AM | 74.14% | 62.09% | 67.58% np (np\np)/np np np\np
+PARG -AM | 70.02% | 64.68% | 67.25% np\np -
"PARG -AM | 73.90% | 61.15% | 66.93% oAl
np

Table 5: The effects of removing key features from the

system on automatic parses. Figure 8: CCGbank gold-standard parse of a relative
clause attachment. The system correctly identifies
form of asbestoas Argl ofused (wsj_0003.1)

ambiguities cause a role to be marked too high in the

derivation. In the sentendbe company stopped using aform of asbestos used to make filters
asbestos in 195@igure 7), the correct Argl aftopped np  (np\np)/np np—Argl np\np

is using asbestosHowever, becausié 1956 s erro- np

neously modifying the verlisingrather than the verb np\np >
stoppedn the treebank parse, the system trusts the syn- np <

tactic analysis and places Argl stbppedon using as-
bestos in 1956This particular problem is caused by an rigure 9: Automatic parse of the noun phrase in fig-
annotation error in the original Penn Treebank that wagre g. Incorrect relative clause attachment causes the
carried through in the conversion to CCGbank. misidentification ofasbestosis a semantic role bearing
Another common error deals with genitive construc-unit. (wsj.0003.1)
tions. Consider the phrase form of asbestos used
to make filters By CCG combinatorics, the relative
clause could either attach tsbestosor to a form of ~ correct prediction o& group of workersis Argl ofex-
asbestos The gold standard CCG parse attaches th@osedn the automatic parse.
relative clause t@ form of asbestoffigure 8). Prop-
bank agrees with this analysis, assigning Argusé 12  Future Work
to the constituent form of asbestos The automatic . . . .
As described in the error analysis section, a large num-

parser, however, attaches the relative clause low — t . . .
asbestogfigure 9). When the system is given the au- er of errors in the system are attributable to errors in
) the CCG derivation, either in the gold standard or in

tomatically generated parse, it incorrectly assigns the . .
i automatically generated parses. Potential future work
semantic role tasbestosin cases where the parser at-

. : ay focus on developing an improved CCG parser us-
taches the relative clause correctly, the system is muc . g : -
: ; ing the revised (syntactic) adjunct-argument distinc-
more likely to assign the role correctly.

) , . tions (guided by the Propbank annotation) described in
Problems with relative clause attachment to gen't'veS(Boxwell and White, 2008). This resource, together

are not limited to automatic parses — errors in gold+yith the reasonable accuracy ©0%) with which ar-

standard treebank parses cause similar problems wh%ﬁJment mappings can be predicted, suggests the possi-

Treebank parses disagree with Propbank annotator iffjjiy of an integrated, simultaneous syntactic-semantic
tuitions. In the phrase group of workers exposed t0 4 sing process, similar to that of (Musillo and Merlo,

asbestogfigure 10), the gold standard CCG parse at-5ng: Merlo and Musillo, 2008). We expect this would

taches the relative clause workers Propbank, how- i rove the reliability and accuracy of both the syntac-
ever, annotatea group of workersis Argl ofexposed i 4nd semantic analysis components.

rather than following the parse and assigning the role

only to workers The system again follows the parse 13 Acknowledgments

and incorrectly assigns the rolewmrkersinstead ofa

group of workers Interestingly, the C&C parser opts This research was funded by NSF grant [1S-0347799.
for high attachment in this instance, resulting in theWe are deeply indebted to Julia Hockenmaier for the
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the company stopped using asbestos in 1956
np (Gldel\np)/(sTngl\np))  (slogl\op)/np— np— (S\np)\(s\np)
s[ng\np
s[ng]\np — stop.Argl
s[dcl]\np
s[dcl]

Figure 7: An example of how incorrect PP attachment can canggcorrect labeling. Stop.Argl should covesr
ing asbestosather tharusing asbestos in 1958 his sentence is based on v¥)03.3, with the structure simplified
for clarity.

agroup of workers exposed to asbestos
np (np\np)/np np — exposed.Argl np\np
np
>
np\np
np <

Figure 10: Propbank annotategroup of workerss Argl ofexposegdwhile CCGbank attaches the relative clause
low. The system incorrectly labelgorkersas a role bearing unit. (Gold standard —W§03.1)

use of her PARG generation tool. M. Collins. 2003. Head-driven statistical models for
natural language parsingComputational Linguis-
tics, 29(4):589-637.
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Abstract

We address the issue of using heteroge-
neous treebanks for parsing by breaking
it down into two sub-problems, convert-
ing grammar formalisms of the treebanks
to the same one, and parsing on these
homogeneous treebanks. First we pro-
pose to employ an iteratively trained tar-
get grammar parser to perform grammar
formalism conversion, eliminating prede-
fined heuristic rules as required in previ-
ous methods. Then we provide two strate-
gies to refine conversion results, and adopt
a corpus weighting technique for parsing
on homogeneous treebanks. Results on the
Penn Treebank show that our conversion
method achieves 42% error reduction over
the previous best result. Evaluation on
the Penn Chinese Treebank indicates that a
converted dependency treebank helps con-
stituency parsing and the use of unlabeled
data by self-training further increases pars-
ing f-score to 85.2%, resulting in 6% error
reduction over the previous best result.

1 Introduction

The last few decades have seen the emergence of
multiple treebanks annotated with different gram-
mar formalisms, motivated by the diversity of lan-
guages and linguistic theories, which is crucial to
the success of statistical parsing (Abeille et al.,
2000; Brants et al., 1999; Bohmova et al., 2003;
Han et al., 2002; Kurohashi and Nagao, 1998;
Marcus et al., 1993; Moreno et al., 2003; Xue et
al., 2005). Availability of multiple treebanks cre-
ates a scenario where we have a treebank anno-
tated with one grammar formalism, and another
treebank annotated with another grammar formal-
ism that we are interested in. We call the first
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a source treebank, and the second a target tree-
bank. We thus encounter a problem of how to
use these heterogeneous treebanks for target gram-
mar parsing. Here heterogeneous treebanks refer
to two or more treebanks with different grammar
formalisms, e.g., one treebank annotated with de-
pendency structure (DS) and the other annotated
with phrase structure (PS).

It is important to acquire additional labeled data
for the target grammar parsing through exploita-
tion of existing source treebanks since there is of-
ten a shortage of labeled data. However, to our
knowledge, there is no previous study on this is-
sue.

Recently there have been some works on us-
ing multiple treebanks for domain adaptation of
parsers, where these treebanks have the same
grammar formalism (McClosky et al., 2006b;
Roark and Bacchiani, 2003). Other related works
focus on converting one grammar formalism of a
treebank to another and then conducting studies on
the converted treebank (Collins et al., 1999; Forst,
2003; Wang et al., 1994; Watkinson and Manand-
har, 2001). These works were done either on mul-
tiple treebanks with the same grammar formalism
or on only one converted treebank. We see that
their scenarios are different from ours as we work
with multiple heterogeneous treebanks.

For the use of heterogeneous treebanks', we
propose a two-step solution: (1) converting the
grammar formalism of the source treebank to the
target one, (2) refining converted trees and using
them as additional training data to build a target
grammar parser.

For grammar formalism conversion, we choose
the DS to PS direction for the convenience of the
comparison with existing works (Xia and Palmer,
2001; Xia et al., 2008). Specifically, we assume

that the source grammar formalism is dependency

"Here we assume the existence of two treebanks.
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grammar, and the target grammar formalism is
phrase structure grammar.

Previous methods for DS to PS conversion
(Collins et al., 1999; Covington, 1994; Xia and
Palmer, 2001; Xia et al., 2008) often rely on pre-
defined heuristic rules to eliminate converison am-
biguity, e.g., minimal projection for dependents,
lowest attachment position for dependents, and the
selection of conversion rules that add fewer num-
ber of nodes to the converted tree. In addition, the
validity of these heuristic rules often depends on
their target grammars. To eliminate the heuristic
rules as required in previous methods, we propose
to use an existing target grammar parser (trained
on the target treebank) to generate N-best parses
for each sentence in the source treebank as conver-
sion candidates, and then select the parse consis-
tent with the structure of the source tree as the con-
verted tree. Furthermore, we attempt to use con-
verted trees as additional training data to retrain
the parser for better conversion candidates. The
procedure of tree conversion and parser retraining
will be run iteratively until a stopping condition is
satisfied.

Since some converted trees might be imper-
fect from the perspective of the target grammar,
we provide two strategies to refine conversion re-
sults: (1) pruning low-quality trees from the con-
verted treebank, (2) interpolating the scores from
the source grammar and the target grammar to se-
lect better converted trees. Finally we adopt a cor-
pus weighting technique to get an optimal combi-
nation of the converted treebank and the existing
target treebank for parser training.

We have evaluated our conversion algorithm on
a dependency structure treebank (produced from
the Penn Treebank) for comparison with previous
work (Xia et al.,, 2008). We also have investi-
gated our two-step solution on two existing tree-
banks, the Penn Chinese Treebank (CTB) (Xue et
al., 2005) and the Chinese Dependency Treebank
(CDT)? (Liu et al., 2006). Evaluation on WSJ data
demonstrates that it is feasible to use a parser for
grammar formalism conversion and the conversion
benefits from converted trees used for parser re-
training. Our conversion method achieves 93.8%
f-score on dependency trees produced from WSJ
section 22, resulting in 42% error reduction over
the previous best result for DS to PS conversion.
Results on CTB show that score interpolation is

2 Available at http://ir.hit.edu.cn/.
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more effective than instance pruning for the use
of converted treebanks for parsing and converted
CDT helps parsing on CTB. When coupled with
self-training technique, a reranking parser with
CTB and converted CDT as labeled data achieves
85.2% t-score on CTB test set, an absolute 1.0%
improvement (6% error reduction) over the previ-
ous best result for Chinese parsing.

The rest of this paper is organized as follows. In
Section 2, we first describe a parser based method
for DS to PS conversion, and then we discuss pos-
sible strategies to refine conversion results, and
finally we adopt the corpus weighting technique
for parsing on homogeneous treebanks. Section
3 provides experimental results of grammar for-
malism conversion on a dependency treebank pro-
duced from the Penn Treebank. In Section 4, we
evaluate our two-step solution on two existing het-
erogeneous Chinese treebanks. Section 5 reviews
related work and Section 6 concludes this work.

2 Our Two-Step Solution

2.1 Grammar Formalism Conversion

Previous DS to PS conversion methods built a
converted tree by iteratively attaching nodes and
edges to the tree with the help of conversion
rules and heuristic rules, based on current head-
dependent pair from a source dependency tree and
the structure of the built tree (Collins et al., 1999;
Covington, 1994; Xia and Palmer, 2001; Xia et
al., 2008). Some observations can be made on
these methods: (1) for each head-dependent pair,
only one locally optimal conversion was kept dur-
ing tree-building process, at the risk of pruning
globally optimal conversions, (2) heuristic rules
are required to deal with the problem that one
head-dependent pair might have multiple conver-
sion candidates, and these heuristic rules are usu-
ally hand-crafted to reflect the structural prefer-
ence in their target grammars. To overcome these
limitations, we propose to employ a parser to gen-
erate N-best parses as conversion candidates and
then use the structural information of source trees
to select the best parse as a converted tree.

We formulate our conversion method as fol-
lows.

Let Cpg be a source treebank annotated with
DS and Cpg be a target treebank annotated with
PS. Our goal is to convert the grammar formalism
of C'pg to that of Cpg.

We first train a constituency parser on Cpg



Input: Cpg, Cpg, @, and a constituency parser Output: Converted trees CIQ g
1. Initialize:
— Set CIIJDSS ¥ as null, DevScore=0, q=0;
— Split Cpg into training set Cpg ¢rqin and development set Cpg dey;
— Train the parser on Cpgs trqin and denote it by Py_1;
2. Repeat:
— Use P,_ to generate N-best PS parses for each sentence in Cpg, and convert PS to DS for each parse;
— For each sentence in Cpg Do
o t=argmam;Score(z; ), and select the ¢-th parse as a converted tree for this sentence;
—LetC 113) g? " represent these converted trees, and let C.q,=C PS,train U C ]lD) g 4.
— Train the parser on Ct,4;ip, and denote the updated parser by P, ;
— Let DevScorey be the f-score of P on Cpg devs
— If DevScorey > DevScore Then DevScore=DevScoreg, and ng=0£g’q;
— Else break;
— q++;
Untilq¢ > Q

Table 1: Our algorithm for DS to PS conversion.

(90% trees in Cpg as training set C'pg trqin, and  tree that are found in xfts . Here we do not take
other trees as development set Cpg gc,)) and then  dependency tags into consideration for evaluation

let the parser generate N-best parses for each sen-  since they cannot be obtained without more so-
tence in Cpg. phisticated rules.
Let n be the number of sentences (or trees) in To improve the quality of N-best parses, we at-

Cps and n; be the number of N-best parses gen-  tempt to use the converted trees as additional train-
erated by the parser for the i-th (1 < ¢ < n) sen-  ing data to retrain the parser. The procedure of
tence in Cpg. Let x;; be the ¢t-th (1 < ¢t < n;) tree conversion and parser retraining can be run it-
parse for the ¢-th sentence. Let y; be the tree of the  eratively until a termination condition is satisfied.
i-th (1 < 7 < n) sentence in Cpg. Here we use the parser’s f-score on Cpg gey as a
To evaluate the quality of z;; as a conversion  termination criterion. If the update of training data
candidate for y;, we convert x;; to a dependency  hurts the performance on Cpg dey, then we stop
tree (denoted as xi’?ts ) and then use unlabeled de-  the iteration.
pendency f-score to measure the similarity be- Table 1 shows this DS to PS conversion algo-
tween :L'gts and y;. Let Score(z;;) denote the  rithm. () is an upper limit of the number of loops,
unlabeled dependency f-score of CL‘Z%S against ;. and @ > 0.
Then we determine the converted tree for y; by

maximizing Score(x; ) over the N-best parses. 2.2 Target Grammar Parsing
The conversion from PS to DS works as fol-  Through grammar formalism conversion, we have
lows: successfully turned the problem of using hetero-
Step 1. Use a head percolation table to find the  geneous treebanks for parsing into the problem of
head of each constituent in x; ;. parsing on homogeneous treebanks. Before using

Step 2. Make the head of each non-head child  converted source treebank for parsing, we present
depend on the head of the head child for each con-  two strategies to refine conversion results.
stituent. Instance Pruning For some sentences in

Unlabeled dependency f-score is a harmonic  Cpg, the parser might fail to generate high qual-
mean of unlabeled dependency precision and unla- ity N-best parses, resulting in inferior converted
beled dependency recall. Precision measures how  trees. To clean the converted treebank, we can re-
many head-dependent word pairs found in xﬂs move the converted trees with low unlabeled de-
are correct and recall is the percentage of head-  pendency f-scores (defined in Section 2.1) before

dependent word pairs defined in the gold-standard  using the converted treebank for parser training
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Figure 1: A parse tree in CTB for a sentence of

“ 1t F<world> F<every> [E<country> A
R<people> #B<all> f<with> H fi<eyes>
# M<cast> F MW<Hong Kong>” with
“People from all over the world are cast-
ing their eyes on Hong Kong” as its English
translation.

because these trees are “misleading” training in-
stances. The number of removed trees will be de-
termined by cross validation on development set.
Score Interpolation Unlabeled dependency
f-scores used in Section 2.1 measure the quality of
converted trees from the perspective of the source
grammar only. In extreme cases, the top best
parses in the N-best list are good conversion can-
didates but we might select a parse ranked quite
low in the N-best list since there might be con-
flicts of syntactic structure definition between the
source grammar and the target grammar.
Figure 1 shows an example for illustration of
a conflict between the grammar of CDT and
that of CTB. According to Chinese head percola-
tion tables used in the PS to DS conversion tool
“Penn2Malt” 3 and Charniak’s parser*, the head
of VP-2 is the word “#” (a preposition, with
“BA” as its POS tag in CTB), and the head of
IP-OBJ is #: a1 ” . Therefore the word “ #
M ” depends on the word “#2” . But according
to the annotation scheme in CDT (Liu et al., 2006),
the word “J” is a dependent of the word “#t
M ” . The conflicts between the two grammars
may lead to the problem that the selected parses
based on the information of the source grammar
might not be preferred from the perspective of the

3 Available at http://w3.msi.vxu.se/~nivre/.
# Available at http://www.cs.brown.edu/~ec/.
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target grammar.

Therefore we modified the selection metric in
Section 2.1 by interpolating two scores, the prob-
ability of a conversion candidate from the parser
and its unlabeled dependency f-score, shown as
follows:

Szo\re(ati,t) = AX Prob(x;¢)+(1—X) x Score(x;¢). (1)

The intuition behind this equation is that converted
trees should be preferred from the perspective of
both the source grammar and the target grammar.
Here 0 < A < 1. Prob(z;) is a probability pro-
duced by the parser for x; ; (0 < Prob(x;;) < 1).
The value of A will be tuned by cross validation on
development set.

After grammar formalism conversion, the prob-
lem now we face has been limited to how to build
parsing models on multiple homogeneous tree-
bank. A possible solution is to simply concate-
nate the two treebanks as training data. However
this method may lead to a problem that if the size
of Cpg is significantly less than that of converted
Cps, converted C'pg may weaken the effect Cpg
might have. One possible solution is to reduce the
weight of examples from converted Cpg in parser
training. Corpus weighting is exactly such an ap-
proach, with the weight tuned on development set,
that will be used for parsing on homogeneous tree-
banks in this paper.

3 Experiments of Grammar Formalism
Conversion

3.1 Evaluation on WSJ section 22

Xia et al. (2008) used WSIJ section 19 from the
Penn Treebank to extract DS to PS conversion
rules and then produced dependency trees from
WSJ section 22 for evaluation of their DS to PS
conversion algorithm. They showed that their
conversion algorithm outperformed existing meth-
ods on the WSJ data. For comparison with their
work, we conducted experiments in the same set-
ting as theirs: using WSJ section 19 (1844 sen-
tences) as Cpg, producing dependency trees from
WSJ section 22 (1700 sentences) as C'pg>, and
using labeled bracketing f-scores from the tool

“EVALB” on WSJ section 22 for performance
evaluation.

SWe used the tool “Penn2Malt” to produce dependency
structures from the Penn Treebank, which was also used for
PS to DS conversion in our conversion algorithm.



All the sentences
DevScore | LR LP F
Models (%) (%) | (%) | (%)
The best result of
Xia et al. (2008) - 90.7 | 88.1 | 894
Q-0-method 86.8 922 | 92.8 | 92.5
Q-10-method 88.0 934 | 94.1 | 93.8

Table 2: Comparison with the work of Xia et al.

(2008) on WSJ section 22.
All the sentences
DevScore | LR LP F
Models (%) %) | (%) | (%)
Q-0-method 91.0 91.6 | 92.5 | 92.1
Q-10-method 91.6 93.1 | 94.1 | 93.6

Table 3: Results of our algorithm on WSJ section
2~18 and 20~22.

We employed Charniak’s maximum entropy in-
spired parser (Charniak, 2000) to generate N-best
(N=200) parses. Xia et al. (2008) used POS
tag information, dependency structures and depen-
dency tags in test set for conversion. Similarly, we
used POS tag information in the test set to restrict
search space of the parser for generation of better
N-best parses.

We evaluated two variants of our DS to PS con-
version algorithm:

Q-0-method: We set the value of () as O for a
baseline method.

Q-10-method: We set the value of () as 10 to
see whether it is helpful for conversion to retrain
the parser on converted trees.

Table 2 shows the results of our conversion al-
gorithm on WSJ section 22. In the experiment
of Q-10-method, DevScore reached the highest
value of 88.0% when q was 1. Then we used
ng ! as the conversion result. Finally Q-10-
method achieved an f-score of 93.8% on WSJ sec-
tion 22, an absolute 4.4% improvement (42% er-
ror reduction) over the best result of Xia et al.
(2008). Moreover, Q-10-method outperformed Q-
0-method on the same test set. These results indi-
cate that it is feasible to use a parser for DS to PS
conversion and the conversion benefits from the
use of converted trees for parser retraining.

3.2 Evaluation on WSJ section 2~18 and
20~22

In this experiment we evaluated our conversion al-
gorithm on a larger test set, WSJ section 2~18 and
20~22 (totally 39688 sentences). Here we also
used WSJ section 19 as C'pg. Other settings for
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All the sentences

LR | LP F
Training data (%) (%) (%)
1xCTB+CDTT® | 847 | 85.1 | 84.9
2x CTB+CDTFP® | 85.1 | 85.6 | 85.3
5x CTB+CDT"S | 85.0 | 855 | 85.3
10x CTB+CDTF® | 853 | 858 | 85.6
20 x CTB+CDTPS | 85.1 | 85.3 | 85.2
50 x CTB + CDTT? | 849 | 85.3 | 85.1

Table 4: Results of the generative parser on the de-
velopment set, when trained with various weight-
ing of CTB training set and CDT",

this experiment are as same as that in Section 3.1,
except that here we used a larger test set.

Table 3 provides the f-scores of our method with
Q@ equal to 0 or 10 on WSJ section 2~18 and
20~22.

With Q-10-method, DevScore reached the high-
est value of 91.6% when q was 1. Finally Q-
10-method achieved an f-score of 93.6% on WSJ
section 2~18 and 20~22, better than that of Q-0-
method and comparable with that of Q-10-method
in Section 3.1. It confirms our previous finding
that the conversion benefits from the use of con-
verted trees for parser retraining.

4 Experiments of Parsing

We investigated our two-step solution on two ex-
isting treebanks, CDT and CTB, and we used CDT
as the source treebank and CTB as the target tree-
bank.

CDT consists of 60k Chinese sentences, anno-
tated with POS tag information and dependency
structure information (including 28 POS tags, and
24 dependency tags) (Liu et al., 2006). We did not
use POS tag information as inputs to the parser in
our conversion method due to the difficulty of con-
version from CDT POS tags to CTB POS tags.

We used a standard split of CTB for perfor-
mance evaluation, articles 1-270 and 400-1151 as
training set, articles 301-325 as development set,
and articles 271-300 as test set.

We used Charniak’s maximum entropy inspired
parser and their reranker (Charniak and Johnson,
2005) for target grammar parsing, called a gener-
ative parser (GP) and a reranking parser (RP) re-
spectively. We reported ParseVal measures from
the EVALB tool.



All the sentences

LR LP F

Models Training data (%) (%) (%)
GP CTB 799 | 82.2 | 81.0
RP CTB 82.0 | 84.6 | 83.3

GP 10x CTB+CDTF® | 804 | 82.7 | 81.5
RP 10 x CTB+CDTF® | 82.8 | 84.7 | 83.8

Table 5: Results of the generative parser (GP) and
the reranking parser (RP) on the test set, when
trained on only CTB training set or an optimal
combination of CTB training set and CDT">.

4.1 Results of a Baseline Method to Use CDT

We used our conversion algorithm® to convert the
grammar formalism of CDT to that of CTB. Let
CDT?® denote the converted CDT by our method.
The average unlabeled dependency f-score of trees
in CDT?S was 74.4%, and their average index in
200-best list was 48.

We tried the corpus weighting method when
combining CDT?® with CTB training set (abbre-
viated as CTB for simplicity) as training data, by
gradually increasing the weight (including 1, 2, 5,
10, 20, 50) of CTB to optimize parsing perfor-
mance on the development set. Table 4 presents
the results of the generative parser with various
weights of CTB on the development set. Consid-
ering the performance on the development set, we
decided to give CTB a relative weight of 10.

Finally we evaluated two parsing models, the
generative parser and the reranking parser, on the
test set, with results shown in Table 5. When
trained on CTB only, the generative parser and the
reranking parser achieved f-scores of 81.0% and
83.3%. The use of CDT as additional training
data increased f-scores of the two models to 81.5%
and 83.8%.

4.2 Results of Two Strategies for a Better Use
of CDT

4.2.1 Instance Pruning

We used unlabeled dependency f-score of each
converted tree as the criterion to rank trees in
CDT?® and then kept only the top M trees
with high f-scores as training data for pars-
ing, resulting in a corpus CDT]@S . M var-
ied from 100%x|CDTF®| to 10%x|CDT?|
with 10%x|CDT?®| as the interval. |CDT?9|

®The setting for our conversion algorithm in this experi-
ment was as same as that in Section 3.1. In addition, we used
CTB training set as C'ps,train, and CTB development set as
CP S,dev-

All the sentences
IR | LP | F
Models Training data (%) | (%) | (%)

GP CTB +CDT{® | 814 | 82.8 | 82.1
RP CTB+CDTF® | 83.0 | 854 | 84.2

Table 6: Results of the generative parser and the
reranking parser on the test set, when trained on
an optimal combination of CTB training set and
converted CDT.

is the number of trees in CDT??. Then
we tuned the value of M by optimizing the
parser’s performance on the development set with
10xCTB+CDTY? as training data. Finally the op-
timal value of M was 100% x |CDT)|. It indicates
that even removing very few converted trees hurts
the parsing performance. A possible reason is that
most of non-perfect parses can provide useful syn-
tactic structure information for building parsing
models.

4.2.2 Score Interpolation

We used Sg(;"e(xiyty to replace Score(x;;) in
our conversion algorithm and then ran the updated
algorithm on CDT. Let CDTf\D S denote the con-
verted CDT by this updated conversion algorithm.
The values of A (varying from 0.0 to 1.0 with 0.1
as the interval) and the CTB weight (including 1,
2,5, 10, 20, 50) were simultaneously tuned on the
development set®. Finally we decided that the op-
timal value of A was 0.4 and the optimal weight of
CTB was 1, which brought the best performance
on the development set (an f-score of 86.1%). In
comparison with the results in Section 4.1, the
average index of converted trees in 200-best list
increased to 2, and their average unlabeled depen-
dency f-score dropped to 65.4%. It indicates that
structures of converted trees become more consis-
tent with the target grammar, as indicated by the
increase of average index of converted trees, fur-
ther away from the source grammar.

Table 6 provides f-scores of the generative
parser and the reranker on the test set, when
trained on CTB and CDT{®. We see that the
performance of the reranking parser increased to

"Before  calculating S?(;e(xi,t), we  normal-
ized the values of Prob(x;:) for each N-best list
by (1) Prob(z;,+)=Prob(z; )-Min(Prob(z; .)),
(2)Prob(z;,+)=Prob(z;+)/Max(Prob(x; «)), resulting
in that their maximum value was 1 and their minimum value
was 0.

8Due to space constraint, we do not show f-scores of the
parser with different values of A and the CTB weight.



All the sentences

LR LpP F

Models Training data %) | (%) | (%)
Self-trained GP | 10xT+10xD+P | 83.0 | 84.5 | 83.7
Updated RP | CTB+CDTFS | 843 | 86.1 | 85.2
Table 7: Results of the self-trained gen-

erative parser and updated reranking parser
on the test set. 10xT+10xD+P stands for
10><CTB+10><CDT§S+PDC.

84.2% f-score, better than the result of the rerank-
ing parser with CTB and CDT?* as training data
(shown in Table 5). It indicates that the use of
probability information from the parser for tree
conversion helps target grammar parsing.

4.3 Using Unlabeled Data for Parsing

Recent studies on parsing indicate that the use of
unlabeled data by self-training can help parsing
on the WSJ data, even when labeled data is rel-
atively large (McClosky et al., 2006a; Reichart
and Rappoport, 2007). It motivates us to em-
ploy self-training technique for Chinese parsing.
We used the POS tagged People Daily corpus’
(Jan. 1998~Jun. 1998, and Jan. 2000~Dec.
2000) (PDC) as unlabeled data for parsing. First
we removed the sentences with less than 3 words
or more than 40 words from PDC to ease pars-
ing, resulting in 820k sentences. Then we ran the
reranking parser in Section 4.2.2 on PDC and used
the parses on PDC as additional training data for
the generative parser. Here we tried the corpus
weighting technique for an optimal combination
of CTB, CDTf S and parsed PDC, and chose the
relative weight of both CTB and CDTf\D S as 10
by cross validation on the development set. Fi-
nally we retrained the generative parser on CTB,
CDTf S and parsed PDC. Furthermore, we used
this self-trained generative parser as a base parser
to retrain the reranker on CTB and CDTL®.

Table 7 shows the performance of self-trained
generative parser and updated reranker on the test
set, with CTB and CDT}® as labeled data. We see
that the use of unlabeled data by self-training fur-
ther increased the reranking parser’s performance
from 84.2% to 85.2%. Our results on Chinese data
confirm previous findings on English data shown
in (McClosky et al., 2006a; Reichart and Rap-
poport, 2007).

® Available at http://icl.pku.edu.cn/.
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4.4 Comparison with Previous Studies for
Chinese Parsing

Table 8 and 9 present the results of previous stud-
ies on CTB. All the works in Table 8 used CTB
articles 1-270 as labeled data. In Table 9, Petrov
and Klein (2007) trained their model on CTB ar-
ticles 1-270 and 400-1151, and Burkett and Klein
(2008) used the same CTB articles and parse trees
of their English translation (from the English Chi-
nese Translation Treebank) as training data. Com-
paring our result in Table 6 with that of Petrov
and Klein (2007), we see that CDTf  helps pars-
ing on CTB, which brought 0.9% f-score improve-
ment. Moreover, the use of unlabeled data further
boosted the parsing performance to 85.2%, an ab-
solute 1.0% improvement over the previous best
result presented in Burkett and Klein (2008).

5 Related Work

Recently there have been some studies address-
ing how to use treebanks with same grammar for-
malism for domain adaptation of parsers. Roark
and Bachiani (2003) presented count merging and
model interpolation techniques for domain adap-
tation of parsers. They showed that their sys-
tem with count merging achieved a higher perfor-
mance when in-domain data was weighted more
heavily than out-of-domain data. McClosky et al.
(2006b) used self-training and corpus weighting to
adapt their parser trained on WSJ corpus to Brown
corpus. Their results indicated that both unla-
beled in-domain data and labeled out-of-domain
data can help domain adaptation. In comparison
with these works, we conduct our study in a dif-
ferent setting where we work with multiple het-
erogeneous treebanks.

Grammar formalism conversion makes it possi-
ble to reuse existing source treebanks for the study
of target grammar parsing. Wang et al. (1994)
employed a parser to help conversion of a tree-
bank from a simple phrase structure to a more in-
formative phrase structure and then used this con-
verted treebank to train their parser. Collins et al.
(1999) performed statistical constituency parsing
of Czech on a treebank that was converted from
the Prague Dependency Treebank under the guid-
ance of conversion rules and heuristic rules, e.g.,
one level of projection for any category, minimal
projection for any dependents, and fixed position
of attachment. Xia and Palmer (2001) adopted bet-
ter heuristic rules to build converted trees, which



< 40 words All the sentences
LR LP F LR LP F
Models (%) | (B) | () | (P) | (%) | (%)
Bikel & Chiang (2000) | 76.8 | 77.8 | 77.3 - - -
Chiang & Bikel (2002) | 78.8 | 81.1 | 79.9 - - -
Levy & Manning (2003) | 79.2 | 78.4 | 78.8 - - -
Bikel’s thesis (2004) 78.0 | 81.2 | 79.6 - - -
Xiong et. al. (2005) 78.7 | 80.1 | 79.4 - - -
Chen et. al. (2005) 81.0 | 81.7 | 81.2 | 76.3 | 79.2 | 77.7
Wang et. al. (2006) 792 | 81.1 | 80.1 | 76.2 | 78.0 | 77.1

Table 8: Results of previous studies on CTB with CTB articles 1-270 as labeled data.

< 40 words All the sentences

LR LP F LR LP F
Models (%) | (%) | (%) | (P) | (%) | (%)
Petrov & Klein (2007) | 85.7 | 869 | 86.3 | 81.9 | 84.8 | 83.3
Burkett & Klein (2008) - - - - - 84.2

Table 9: Results of previous studies on CTB with more labeled data.

reflected the structural preference in their target
grammar. For acquisition of better conversion
rules, Xia et al. (2008) proposed to automati-
cally extract conversion rules from a target tree-
bank. Moreover, they presented two strategies to
solve the problem that there might be multiple
conversion rules matching the same input depen-
dency tree pattern: (1) choosing the most frequent
rules, (2) preferring rules that add fewer number
of nodes and attach the subtree lower.

In comparison with the works of Wang et al.
(1994) and Collins et al. (1999), we went fur-
ther by combining the converted treebank with the
existing target treebank for parsing. In compar-
ison with previous conversion methods (Collins
et al., 1999; Covington, 1994; Xia and Palmer,
2001; Xia et al., 2008) in which for each head-
dependent pair, only one locally optimal conver-
sion was kept during tree-building process, we
employed a parser to generate globally optimal
syntactic structures, eliminating heuristic rules for
conversion. In addition, we used converted trees to
retrain the parser for better conversion candidates,
while Wang et al. (1994) did not exploit the use of
converted trees for parser retraining.

6 Conclusion

We have proposed a two-step solution to deal with
the issue of using heterogeneous treebanks for
parsing. First we present a parser based method
to convert grammar formalisms of the treebanks to
the same one, without applying predefined heuris-
tic rules, thus turning the original problem into the
problem of parsing on homogeneous treebanks.
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Then we present two strategies, instance pruning
and score interpolation, to refine conversion re-
sults. Finally we adopt the corpus weighting tech-
nique to combine the converted source treebank
with the existing target treebank for parser train-
ing.

The study on the WSJ data shows the benefits of
our parser based approach for grammar formalism
conversion. Moreover, experimental results on the
Penn Chinese Treebank indicate that a converted
dependency treebank helps constituency parsing,
and it is better to exploit probability information
produced by the parser through score interpolation
than to prune low quality trees for the use of the
converted treebank.

Future work includes further investigation of
our conversion method for other pairs of grammar
formalisms, e.g., from the grammar formalism of
the Penn Treebank to more deep linguistic formal-
ism like CCG, HPSG, or LFG.
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Abstract

This paper proposes an approach to en-
hance dependency parsing in a language
by using a translated treebank from an-
other language. A simple statistical ma-
chine translation method, word-by-word
decoding, where not a parallel corpus but
a bilingual lexicon is necessary, is adopted
for the treebank translation. Using an en-
semble method, the key information ex-
tracted from word pairs with dependency
relations in the translated text is effectively
integrated into the parser for the target lan-
guage. The proposed method is evaluated
in English and Chinese treebanks. It is
shown that a translated English treebank
helps a Chinese parser obtain a state-of-
the-art result.

1 Introduction

Although supervised learning methods bring state-
of-the-art outcome for dependency parser infer-
ring (McDonald et al., 2005; Hall et al., 2007), a
large enough data set is often required for specific
parsing accuracy according to this type of meth-
ods. However, to annotate syntactic structure, ei-
ther phrase- or dependency-based, is a costly job.
Until now, the largest treebanks' in various lan-
guages for syntax learning are with around one
million words (or some other similar units). Lim-
ited data stand in the way of further performance
enhancement. This is the case for each individual
language at least. But, this is not the case as we
observe all treebanks in different languages as a
whole. For example, of ten treebanks for CoNLL-
2007 shared task, none includes more than 500K

The study is partially supported by City University of
Hong Kong through the Strategic Research Grant 7002037
and 7002388. The first author is sponsored by a research fel-
lowship from CTL, City University of Hong Kong.

't is a tradition to call an annotated syntactic corpus as
treebank in parsing community.
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tokens, while the sum of tokens from all treebanks
is about two million (Nivre et al., 2007).

As different human languages or treebanks
should share something common, this makes it
possible to let dependency parsing in multiple lan-
guages be beneficial with each other. In this pa-
per, we study how to improve dependency parsing
by using (automatically) translated texts attached
with transformed dependency information. As a
case study, we consider how to enhance a Chinese
dependency parser by using a translated English
treebank. What our method relies on is not the
close relation of the chosen language pair but the
similarity of two treebanks, this is the most differ-
ent from the previous work.

Two main obstacles are supposed to confront in
a cross-language dependency parsing task. The
first is the cost of translation. Machine translation
has been shown one of the most expensive lan-
guage processing tasks, as a great deal of time and
space is required to perform this task. In addition,
a standard statistical machine translation method
based on a parallel corpus will not work effec-
tively if it is not able to find a parallel corpus that
right covers source and target treebanks. How-
ever, dependency parsing focuses on the relations
of word pairs, this allows us to use a dictionary-
based translation without assuming a parallel cor-
pus available, and the training stage of translation
may be ignored and the decoding will be quite fast
in this case. The second difficulty is that the out-
puts of translation are hardly qualified for the pars-
ing purpose. The most challenge in this aspect is
morphological preprocessing. We regard that the
morphological issue should be handled aiming at
the specific language, our solution here is to use
character-level features for a target language like
Chinese.

The rest of the paper is organized as follows.
The next section presents some related existing
work. Section 3 describes the procedure on tree-

Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 55-63,
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bank translation and dependency transformation.
Section 4 describes a dependency parser for Chi-
nese as a baseline. Section 5 describes how a
parser can be strengthened from the translated
treebank. The experimental results are reported in
Section 6. Section 7 looks into a few issues con-
cerning the conditions that the proposed approach
is suitable for. Section 8 concludes the paper.

2 The Related Work

As this work is about exploiting extra resources to
enhance an existing parser, it is related to domain
adaption for parsing that has been draw some in-
terests in recent years. Typical domain adaptation
tasks often assume annotated data in new domain
absent or insufficient and a large scale unlabeled
data available. As unlabeled data are concerned,
semi-supervised or unsupervised methods will be
naturally adopted. In previous works, two basic
types of methods can be identified to enhance an
existing parser from additional resources. The first
is usually focus on exploiting automatic generated
labeled data from the unlabeled data (Steedman
et al., 2003; McClosky et al., 2006; Reichart and
Rappoport, 2007; Sagae and Tsujii, 2007; Chen
et al., 2008), the second is on combining super-
vised and unsupervised methods, and only unla-
beled data are considered (Smith and Eisner, 2006;
Wang and Schuurmans, 2008; Koo et al., 2008).
Our purpose in this study is to obtain a further
performance enhancement by exploiting treebanks
in other languages. This is similar to the above
first type of methods, some assistant data should
be automatically generated for the subsequent pro-
cessing. The differences are what type of data are
concerned with and how they are produced. In our
method, a machine translation method is applied
to tackle golden-standard treebank, while all the
previous works focus on the unlabeled data.
Although cross-language technique has been
used in other natural language processing tasks,
it is basically new for syntactic parsing as few
works were concerned with this issue. The rea-
son is straightforward, syntactic structure is too
complicated to be properly translated and the cost
of translation cannot be afforded in many cases.
However, we empirically find this difficulty may
be dramatically alleviated as dependencies rather
than phrases are used for syntactic structure repre-
sentation. Even the translation outputs are not so
good as the expected, a dependency parser for the

56

target language can effectively make use of them
by only considering the most related information
extracted from the translated text.

The basic idea to support this work is to make
use of the semantic connection between different
languages. In this sense, it is related to the work of
(Merlo et al., 2002) and (Burkett and Klein, 2008).
The former showed that complementary informa-
tion about English verbs can be extracted from
their translations in a second language (Chinese)
and the use of multilingual features improves clas-
sification performance of the English verbs. The
latter iteratively trained a model to maximize the
marginal likelihood of tree pairs, with alignments
treated as latent variables, and then jointly parsing
bilingual sentences in a translation pair. The pro-
posed parser using features from monolingual and
mutual constraints helped its log-linear model to
achieve better performance for both monolingual
parsers and machine translation system. In this
work, cross-language features will be also adopted
as the latter work. However, although it is not es-
sentially different, we only focus on dependency
parsing itself, while the parsing scheme in (Bur-
kett and Klein, 2008) based on a constituent rep-
resentation.

Among of existing works that we are aware of,
we regard that the most similar one to ours is (Ze-
man and Resnik, 2008), who adapted a parser to a
new language that is much poorer in linguistic re-
sources than the source language. However, there
are two main differences between their work and
ours. The first is that they considered a pair of suf-
ficiently related languages, Danish and Swedish,
and made full use of the similar characteristics of
two languages. Here we consider two quite dif-
ferent languages, English and Chinese. As fewer
language properties are concerned, our approach
holds the more possibility to be extended to other
language pairs than theirs. The second is that a
parallel corpus is required for their work and a
strict statistical machine translation procedure was
performed, while our approach holds a merit of
simplicity as only a bilingual lexicon is required.

3 Treebank Translation and Dependency
Transformation

3.1 Data

As a case study, this work will be conducted be-
tween the source language, English, and the tar-
get language, Chinese, namely, we will investigate



how a translated English treebank enhances a Chi-
nese dependency parser.

For English data, the Penn Treebank (PTB) 3
is used. The constituency structures is converted
to dependency trees by using the same rules as
(Yamada and Matsumoto, 2003) and the standard
training/development/test split is used. However,
only training corpus (sections 2-21) is used for
this study. For Chinese data, the Chinese Treebank
(CTB) version 4.0 is used in our experiments. The
same rules for conversion and the same data split
is adopted as (Wang et al., 2007): files 1-270 and
400-931 as training, 271-300 as testing and files
301-325 as development. We use the gold stan-
dard segmentation and part-of-speech (POS) tags
in both treebanks.

As a bilingual lexicon is required for our task
and none of existing lexicons are suitable for trans-
lating PTB, two lexicons, LDC Chinese-English
Translation Lexicon Version 2.0 (LDC2002L27),
and an English to Chinese lexicon in StarDict?,
are conflated, with some necessary manual exten-
sions, to cover 99% words appearing in the PTB
(the most part of the untranslated words are named
entities.). This lexicon includes 123K entries.

3.2 Translation

A word-by-word statistical machine translation
strategy is adopted to translate words attached
with the respective dependency information from
the source language to the target one. In detail, a
word-based decoding is used, which adopts a log-
linear framework as in (Och and Ney, 2002) with
only two features, translation model and language
model,

exp[307; Aihi(c, )]

P(cle) =
(cle) S, exp[>S2, Aiki(c, e)]

Where

hi(c, e) = log(p,(cle))

is the translation model, which is converted from
the bilingual lexicon, and

ha(c, e) = log(py(c))

is the language model, a word trigram model
trained from the CTB. In our experiment, we set
two weights Ay = Ay = 1.

2StarDict is an open source dictionary software, available
at http://stardict.sourceforge.net/.
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The conversion process of the source treebank
is completed by three steps as the following:
1. Bind POS tag and dependency relation of a
word with itself;
2. Translate the PTB text into Chinese word by
word. Since we use a lexicon rather than a parallel
corpus to estimate the translation probabilities, we
simply assign uniform probabilities to all transla-
tion options. Thus the decoding process is actu-
ally only determined by the language model. Sim-
ilar to the “bag translation” experiment in (Brown
et al., 1990), the candidate target sentences made
up by a sequence of the optional target words are
ranked by the trigram language model. The output
sentence will be generated only if it is with maxi-
mum probability as follows,

¢ = argmax{py(c)p~(cle)}
= argmax py(c)

—

A beam search algorithm is used for this process
to find the best path from all the translation op-
tions; As the training stage, especially, the most
time-consuming alignment sub-stage, is skipped,
the translation only includes a decoding procedure
that takes about 4.5 hours for about one million
words of the PTB in a 2.8GHz PC.

3. After the target sentence is generated, the at-
tached POS tags and dependency information of
each English word will also be transferred to each
corresponding Chinese word. As word order is of-
ten changed after translation, the pointer of each
dependency relationship, represented by a serial
number, should be re-calculated.

Although we try to perform an exact word-by-
word translation, this aim cannot be fully reached
in fact, as the following case is frequently encoun-
tered, multiple English words have to be translated
into one Chinese word. To solve this problem,
we use a policy that lets the output Chinese word
only inherits the attached information of the high-
est syntactic head in the original multiple English
words.

4 Dependency Parsing: Baseline

4.1 Learning Model and Features

According to (McDonald and Nivre, 2007), all
data-driven models for dependency parsing that
have been proposed in recent years can be de-
scribed as either graph-based or transition-based.



Table 1: Feature Notations

Notation | Meaning

s The word in the top of stack

s The first word below the top of stack.

S$—1,81... | The first word before(after) the word
in the top of stack.

%, 941,... | The first (second) word in the
unprocessed sequence, etc.

dir Dependent direction

h Head

Im Leftmost child

rm Rightmost child

rn Right nearest child

form word form

pos POS tag of word

cposl coarse POS: the first letter of POS tag of word

cpos2 coarse POS: the first two POS tags of word

Inverb the left nearest verb

chary The first character of a word

chars The first two characters of a word

char_y The last character of a word

char_o The last two characters of a word
’s, i.e., ‘s.dprel’ means dependent label
of character in the top of stack

+ Feature combination, i.e., ‘s.char+i.char’
means both s.char and i.char work as a
feature function.

Although the former will be also used as compari-
son, the latter is chosen as the main parsing frame-
work by this study for the sake of efficiency. In de-
tail, a shift-reduce method is adopted as in (Nivre,
2003), where a classifier is used to make a parsing
decision step by step. In each step, the classifier
checks a word pair, namely, s, the top of a stack
that consists of the processed words, and, i, the
first word in the (input) unprocessed sequence, to
determine if a dependent relation should be estab-
lished between them. Besides two dependency arc
building actions, a shift action and a reduce ac-
tion are also defined to maintain the stack and the
unprocessed sequence. In this work, we adopt a
left-to-right arc-eager parsing model, that means
that the parser scans the input sequence from left
to right and right dependents are attached to their
heads as soon as possible (Hall et al., 2007).

While memory-based and margin-based learn-
ing approaches such as support vector machines
are popularly applied to shift-reduce parsing, we
apply maximum entropy model as the learning
model for efficient training and adopting over-
lapped features as our work in (Zhao and Kit,
2008), especially, those character-level ones for
Chinese parsing. Our implementation of maxi-
mum entropy adopts L-BFGS algorithm for pa-
rameter optimization as usual.
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With notations defined in Table 1, a feature set
as shown in Table 2 is adopted. Here, we explain
some terms in Tables 1 and 2. We used a large
scale feature selection approach as in (Zhao et al.,
2009) to obtain the feature set in Table 2. Some
feature notations in this paper are also borrowed
from that work.

The feature curroot returns the root of a par-
tial parsing tree that includes a specified node.
The feature charseq returns a character sequence
whose members are collected from all identified
children for a specified word.

In Table 2, as for concatenating multiple sub-
strings into a feature string, there are two ways,
seq and bag. The former is to concatenate all sub-
strings without do something special. The latter
will remove all duplicated substrings, sort the rest
and concatenate all at last.

Note that we systemically use a group of
character-level features. Surprisingly, as to our
best knowledge, this is the first report on using this
type of features in Chinese dependency parsing.
Although (McDonald et al., 2005) used the pre-
fix of each word form instead of word form itself
as features, character-level features here for Chi-
nese is essentially different from that. As Chinese
is basically a character-based written language.
Character plays an important role in many means,
most characters can be formed as single-character
words, and Chinese itself is character-order free
rather than word-order free to some extent. In ad-
dition, there is often a close connection between
the meaning of a Chinese word and its first or last
character.

4.2 Parsing using a Beam Search Algorithm

In Table 2, the feature preact,, returns the previous
parsing action type, and the subscript n stands for
the action order before the current action. These
are a group of Markovian features. Without this
type of features, a shift-reduce parser may directly
scan through an input sequence in linear time.
Otherwise, following the work of (Duan et al.,
2007) and (Zhao, 2009), the parsing algorithm is
to search a parsing action sequence with the max-
imal probability.

Sdi = argmax Hp(di’di_ldi_g...),

where Sy, is the object parsing action sequence,
p(d;|d;—1...) is the conditional probability, and d;
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Figure 1: A comparison before and after translation

Table 2: Features for Parsing

in.form,n=0,1
i.form+i1.form

in.chars + in41.chare,n = —1,0
i.char_1 + i1.char_1
in.char_on =10,3

i1.char_s + ia.char_s +is.char_o
i.lnverb.char_o

13.pOS

in-POS + tpt1.pos,n = 0,1
i_2.cposl +1_1.cposl

11.cposl + 12.cposl + i3.cposl

sh.chary

s'.char_s + s}.char_o
5" 5.cpos2

s"1.cpos2 + s}.cpos2
s'.cpos2 + s} .cpos2
s’.children.cpos2.seq
s’.children.dprel.seq

s .subtree.depth
s'.h.form + s’ .rm.cpos1
s’ .Ilm.chars + s’ .chars
s.h.children.dprel.seq

s.im.dprel

s.char_o +11.char_o
s.chary +i.charp,,n = —1,1
S_1.pos + 11.pos

$.p0s + iyn.pos,n = —1,0,1

s : i|linePath. form.bag

s'.form +i.form

s'.chary + in.chars,n = —1,0,1
S.curroot.pos + 1.pos

s.curroot.chars + i.chara
s.children.cpos2.seq + i.children.cpos2.seq
s.children.cpos2.seq + i.children.cpos2.seq
+ 5.cpos2 + i.cpos2

s'.children.dprel.seq + i.children.dprel.seq

preact _1
preact o
preact _o+preact 1
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is i-th parsing action. We use a beam search algo-
rithm to find the object parsing action sequence.

5 Exploiting the Translated Treebank

As we cannot expect too much for a word-by-word
translation, only word pairs with dependency rela-
tion in translated text are extracted as useful and
reliable information. Then some features based
on a query in these word pairs according to the
current parsing state (namely, words in the cur-
rent stack and input) will be derived to enhance
the Chinese parser.

A translation sample can be seen in Figure 1.
Although most words are satisfactorily translated,
to generate effective features, what we still have to
consider at first is the inconsistence between the
translated text and the target text.

In Chinese, word lemma is always its word form
itself, this is a convenient characteristic in com-
putational linguistics and makes lemma features
unnecessary for Chinese parsing at all. However,
Chinese has a special primary processing task, i.e.,
word segmentation. Unfortunately, word defini-
tions for Chinese are not consistent in various lin-
guistical views, for example, seven segmentation
conventions for computational purpose are for-
mally proposed since the first Bakeoft>.

Note that CTB or any other Chinese treebank
has its own word segmentation guideline. Chi-
nese word should be strictly segmented according
to the guideline before POS tags and dependency
relations are annotated. However, as we say the

3Bakeoff is a Chinese processing share task held by
SIGHAN.



English treebank is translated into Chinese word
by word, Chinese words in the translated text are
exactly some entries from the bilingual lexicon,
they are actually irregular phrases, short sentences
or something else rather than words that follows
any existing word segmentation convention. If the
bilingual lexicon is not carefully selected or re-
fined according to the treebank where the Chinese
parser is trained from, then there will be a serious
inconsistence on word segmentation conventions
between the translated and the target treebanks.

As all concerned feature values here are calcu-
lated from the searching result in the translated
word pair list according to the current parsing
state, and a complete and exact match cannot be
always expected, our solution to the above seg-
mentation issue is using a partial matching strat-
egy based on characters that the words include.

Above all, a translated word pair list, L, is ex-
tracted from the translated treebank. Each item in
the list consists of three elements, dependant word
(dp), head word (hd) and the frequency of this pair
in the translated treebank, f.

There are two basic strategies to organize the
features derived from the translated word pair list.
The first is to find the most matching word pair
in the list and extract some properties from it,
such as the matched length, part-of-speech tags
and so on, to generate features. Note that a
matching priority serial should be defined afore-
hand in this case. The second is to check every
matching models between the current parsing state
and the partially matched word pair. In an early
version of our approach, the former was imple-
mented. However, It is proven to be quite inef-
ficient in computation. Thus we adopt the sec-
ond strategy at last. Two matching model fea-
ture functions, ¢(-) and (), are correspondingly
defined as follows. The return value of ¢(-) or
¥(+) is the logarithmic frequency of the matched
item. There are four input parameters required
by the function ¢(-). Two parameters of them
are about which part of the stack(input) words is
chosen, and other two are about which part of
each item in the translated word pair is chosen.
These parameters could be set to full or char, as
shown in Table 1, where n = ..., —2,—-1,1,2,....
For example, a possible feature could be
o(s. full,i.chary,dp. full, hd.chary), it tries to
find a match in L by comparing stack word and
dp word, and the first character of input word
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Table 3: Features based on the translated treebank

_ | ¢(i-.chars, s'. full, dp.chars, hd. full)+i.chars
+s’. form

_ | ¢(i.chars, s.chara,dp.chars, hd.chara)+s.chars
_ | ¢(i.chars,s.full,dp.chars, hd.chars)+s. form
(s'.char_q, hd.char_s, head)+i.pos+s’ .pos
(i.chars, s.full, dp.chars, hd.chara)+s. full
(s'.full,i.chara, dp.full, hd.chars)+s’.pos+i.pos
(i.full, hd.chara, root)+i.pos+s.pos

(i. full, hd.chara, root)+i.pos+s’.pos

_ | W(s.full,dp.full, dependant)+i.pos

_ | pairscore(s’.pos,i.pos)+s’. form+i.form

_ | rootscore(s’.pos)+s’. form+i.form

_ | rootscore(s’.pos)+i.pos

Y
¢
-0
Y
Y

(s
(s

and the first character of hd word. If such
a match item in L is found, then ¢(-) returns
log(f). There are three input parameters required
by the function (-). One parameter is about
which part of the stack(input) words is chosen,
and the other is about which part of each item
in the translated word pair is chosen. The third
is about the matching type that may be set to
dependant, head, or root. For example, the
function v (i.chary, hd. full,root) tries to find a
match in L by comparing the first character of in-
put word and the whole dp word. If such a match
item in L is found, then 1 (-) returns log(f) as hd
occurs as ROOT f times.

As having observed that CTB and PTB share a
similar POS guideline. A POS pair list from PTB
is also extract. Two types of features, rootscore
and pairscore are used to make use of such infor-
mation. Both of them returns the logarithmic value
of the frequency for a given dependent event. The
difference is, rootscore counts for the given POS
tag occurring as ROOT, and pairscore counts for
two POS tag combination occurring for a depen-
dent relationship.

A full adapted feature list that is derived from
the translated word pairs is in Table 3.

6 Evaluation Results

The quality of the parser is measured by the pars-
ing accuracy or the unlabeled attachment score
(UAS), i.e., the percentage of tokens with correct
head. Two types of scores are reported for compar-
ison: “UAS without p” is the UAS score without
all punctuation tokens and “UAS with p” is the one
with all punctuation tokens.

The results with different feature sets are in Ta-
ble 4. As the features preact, are involved, a



beam search algorithm with width 5 is used for
parsing, otherwise, a simple shift-reduce decoding
is used. It is observed that the features derived
from the translated text bring a significant perfor-
mance improvement as high as 1.3%.

Table 4: The results with different feature sets

features | withp  without p
baseline -d 0.846 0.858
+d¢ 0.848 0.860
+T° -d 0.859 0.869
+d 0.861 0.870

“+d: using three Markovian features preact and
beam search decoding.

b4 T: using features derived from the translated text
as in Table 3.

To compare our parser to the state-of-the-art
counterparts, we use the same testing data as
(Wang et al., 2005) did, selecting the sentences
length up to 40. Table 5 shows the results achieved
by other researchers and ours (UAS with p), which
indicates that our parser outperforms any other
ones *. However, our results is only slightly better
than that of (Chen et al., 2008) as only sentences
whose lengths are less than 40 are considered. As
our full result is much better than the latter, this
comparison indicates that our approach improves
the performance for those longer sentences.

Table 5: Comparison against the state-of-the-art

full  upto40
(McDonald and Pereira, 2006)“ - 0.825
(Wang et al., 2007) - 0.866
(Chen et al., 2008) 0.852 0.884
Ours 0.861 0.889

“This results was reported in (Wang et al., 2007).

The experimental results in (McDonald and
Nivre, 2007) show a negative impact on the pars-
ing accuracy from too long dependency relation.
For the proposed method, the improvement rela-
tive to dependency length is shown in Figure 2.
From the figure, it is seen that our method gives
observable better performance when dependency
lengths are larger than 4. Although word order is
changed, the results here show that the useful in-
formation from the translated treebank still help
those long distance dependencies.

“There is a slight exception: using the same data splitting,
(Yu et al., 2008) reported UAS without p as 0.873 versus ours,
0.870.
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Figure 2: Performance vs. dependency length

7 Discussion

If a treebank in the source language can help im-
prove parsing in the target language, then there
must be something common between these two
languages, or more precisely, these two corre-
sponding treebanks. (Zeman and Resnik, 2008)
assumed that the morphology and syntax in the
language pair should be very similar, and that is
so for the language pair that they considered, Dan-
ish and Swedish, two very close north European
languages. Thus it is somewhat surprising that
we show a translated English treebank may help
Chinese parsing, as English and Chinese even be-
long to two different language systems. However,
it will not be so strange if we recognize that PTB
and CTB share very similar guidelines on POS and
syntactics annotation. Since it will be too abstract
in discussing the details of the annotation guide-
lines, we look into the similarities of two treebanks
from the matching degree of two word pair lists.
The reason is that the effectiveness of the proposed
method actually relies on how many word pairs at
every parsing states can find their full or partial
matched partners in the translated word pair list.
Table 6 shows such a statistics on the matching
degree distribution from all training samples for
Chinese parsing. The statistics in the table suggest
that most to-be-check word pairs during parsing
have a full or partial hitting in the translated word
pair list. The latter then obtains an opportunity to
provide a great deal of useful guideline informa-
tion to help determine how the former should be
tackled. Therefore we have cause for attributing
the effectiveness of the proposed method to the
similarity of these two treebanks. From Table 6,



we also find that the partial matching strategy de-
fined in Section 5 plays a very important role in
improving the whole matching degree. Note that
our approach is not too related to the characteris-
tics of two languages. Our discussion here brings
an interesting issue, which difference is more im-
portant in cross language processing, between two
languages themselves or the corresponding anno-
tated corpora? This may be extensively discussed
in the future work.

Table 6: Matching degree distribution

dependant-match | head-match | Percent (%)
None None 9.6
None Partial 16.2

None Full 9.9
Partial None 124
Partial Partial 42.6
Partial Full 73

Full None 3.7

Full Partial 7.0

Full Full 0.2

Note that only a bilingual lexicon is adopted in
our approach. We regard it one of the most mer-
its for our approach. A lexicon is much easier to
be obtained than an annotated corpus. One of the
remained question about this work is if the bilin-
gual lexicon should be very specific for this kind
of tasks. According to our experiences, actually, it
is not so sensitive to choose a highly refined lexi-
con or not. We once found many words, mostly
named entities, were outside the lexicon. Thus
we managed to collect a named entity translation
dictionary to enhance the original one. However,
this extra effort did not receive an observable per-
formance improvement in return. Finally we re-
alize that a lexicon that can guarantee two word
pair lists highly matched is sufficient for this work,
and this requirement may be conveniently satis-
fied only if the lexicon consists of adequate high-
frequent words from the source treebank.

8 Conclusion and Future Work

We propose a method to enhance dependency
parsing in one language by using a translated tree-
bank from another language. A simple statisti-
cal machine translation technique, word-by-word
decoding, where only a bilingual lexicon is nec-
essary, is used to translate the source treebank.
As dependency parsing is concerned with the re-
lations of word pairs, only those word pairs with
dependency relations in the translated treebank are
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chosen to generate some additional features to en-
hance the parser for the target language. The ex-
perimental results in English and Chinese tree-
banks show the proposed method is effective and
helps the Chinese parser in this work achieve a
state-of-the-art result.

Note that our method is evaluated in two tree-
banks with a similar annotation style and it avoids
using too many linguistic properties. Thus the
method is in the hope of being used in other simi-
larly annotated treebanks 3. For an immediate ex-
ample, we may adopt a translated Chinese tree-
bank to improve English parsing. Although there
are still something to do, the remained key work
has been as simple as considering how to deter-
mine the matching strategy for searching the trans-
lated word pair list in English according to the
framework of our method. .
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Abstract

Freer-word-order languages such as Ger-
man exhibit linguistic phenomena that
present unique challenges to traditional
CFG parsing. Such phenomena produce
discontinuous constituents, which are not
naturally modelled by projective phrase
structure trees. In this paper, we exam-
ine topological field parsing, a shallow
form of parsing which identifies the ma-
jor sections of a sentence in relation to
the clausal main verb and the subordinat-
ing heads. We report the results of topo-
logical field parsing of German using the
unlexicalized, latent variable-based Berke-
ley parser (Petrov et al., 2006) Without
any language- or model-dependent adapta-
tion, we achieve state-of-the-art results on
the TiiBa-D/Z corpus, and a modified NE-
GRA corpus that has been automatically
annotated with topological fields (Becker
and Frank, 2002). We also perform a qual-
itative error analysis of the parser output,
and discuss strategies to further improve
the parsing results.

1 Introduction

Freer-word-order languages such as German ex-
hibit linguistic phenomena that present unique
challenges to traditional CFG parsing. Topic focus
ordering and word order constraints that are sen-
sitive to phenomena other than grammatical func-
tion produce discontinuous constituents, which are
not naturally modelled by projective (i.e., with-
out crossing branches) phrase structure trees. In
this paper, we examine topological field parsing, a
shallow form of parsing which identifies the ma-
jor sections of a sentence in relation to the clausal
main verb and subordinating heads, when present.
We report the results of parsing German using

64

Gerald Penn
Department of Computer Science
University of Toronto
Toronto, ON, M5S 3G4, Canada
gpenn@cs.toronto.edu

the unlexicalized, latent variable-based Berkeley
parser (Petrov et al., 2006). Without any language-
or model-dependent adaptation, we achieve state-
of-the-art results on the TiiBa-D/Z corpus (Telljo-
hann et al., 2004), with a F}-measure of 95.15%
using gold POS tags. A further reranking of
the parser output based on a constraint involv-
ing paired punctuation produces a slight additional
performance gain. To facilitate comparison with
previous work, we also conducted experiments on
a modified NEGRA corpus that has been automat-
ically annotated with topological fields (Becker
and Frank, 2002), and found that the Berkeley
parser outperforms the method described in that
work. Finally, we perform a qualitative error anal-
ysis of the parser output on the TiiBa-D/Z corpus,
and discuss strategies to further improve the pars-
ing results.

German syntax and parsing have been studied
using a variety of grammar formalisms. Hocken-
maier (2006) has translated the German TIGER
corpus (Brants et al., 2002) into a CCG-based
treebank to model word order variations in Ger-
man. Foth et al. (2004) consider a version of de-
pendency grammars known as weighted constraint
dependency grammars for parsing German sen-
tences. On the NEGRA corpus (Skut et al., 1998),
they achieve an accuracy of 89.0% on parsing de-
pendency edges. In Callmeier (2000), a platform
for efficient HPSG parsing is developed. This
parser is later extended by Frank et al. (2003)
with a topological field parser for more efficient
parsing of German. The system by Rohrer and
Forst (2006) produces LFG parses using a manu-
ally designed grammar and a stochastic parse dis-
ambiguation process. They test on the TIGER cor-
pus and achieve an Fj-measure of 84.20%. In
Dubey and Keller (2003), PCFG parsing of NE-
GRA is improved by using sister-head dependen-
cies, which outperforms standard head lexicaliza-
tion as well as an unlexicalized model. The best
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Suntec, Singapore, 2-7 August 2009. ©2009 ACL and AFNLP



performing model with gold tags achieve an F}
of 75.60%. Sister-head dependencies are useful in
this case because of the flat structure of NEGRA’s
trees.

In contrast to the deeper approaches to parsing
described above, topological field parsing identi-
fies the major sections of a sentence in relation
to the clausal main verb and subordinating heads,
when present. Like other forms of shallow pars-
ing, topological field parsing is useful as the first
stage to further processing and eventual seman-
tic analysis. As mentioned above, the output of
a topological field parser is used as a guide to
the search space of a HPSG parsing algorithm in
Frank et al. (2003). In Neumann et al. (2000),
topological field parsing is part of a divide-and-
conquer strategy for shallow analysis of German
text with the goal of improving an information ex-
traction system.

Existing work in identifying topological fields
can be divided into chunkers, which identify the
lowest-level non-recursive topological fields, and
parsers, which also identify sentence and clausal
structure.

Veenstra et al. (2002) compare three approaches
to topological field chunking based on finite state
transducers, memory-based learning, and PCFGs
respectively. It is found that the three techniques
perform about equally well, with F7 of 94.1% us-
ing POS tags from the TnT tagger, and 98.4% with
gold tags. In Liepert (2003), a topological field
chunker is implemented using a multi-class ex-
tension to the canonically two-class support vec-
tor machine (SVM) machine learning framework.
Parameters to the machine learning algorithm are
fine-tuned by a genetic search algorithm, with a
resulting F;-measure of 92.25%. Training the pa-
rameters to SVM does not have a large effect on
performance, increasing the F-measure in the test
set by only 0.11%.

The corpus-based, stochastic topological field
parser of Becker and Frank (2002) is based on
a standard treebank PCFG model, in which rule
probabilities are estimated by frequency counts.
This model includes several enhancements, which
are also found in the Berkeley parser. First,
they use parameterized categories, splitting non-
terminals according to linguistically based intu-
itions, such as splitting different clause types (they
do not distinguish different clause types as basic
categories, unlike TiiBa-D/Z). Second, they take
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into account punctuation, which may help iden-
tify clause boundaries. They also binarize the very
flat topological tree structures, and prune rules
that only occur once. They test their parser on a
version of the NEGRA corpus, which has been
annotated with topological fields using a semi-
automatic method.

Ule (2003) proposes a process termed Directed
Treebank Refinement (DTR). The goal of DTR is
to refine a corpus to improve parsing performance.
DTR is comparable to the idea of latent variable
grammars on which the Berkeley parser is based,
in that both consider the observed treebank to be
less than ideal and both attempt to refine it by split-
ting and merging nonterminals. In this work, split-
ting and merging nonterminals are done by consid-
ering the nonterminals’ contexts (i.e., their parent
nodes) and the distribution of their productions.
Unlike in the Berkeley parser, splitting and merg-
ing are distinct stages, rather than parts of a sin-
gle iteration. Multiple splits are found first, then
multiple rounds of merging are performed. No
smoothing is done. As an evaluation, DTR is ap-
plied to topological field parsing of the TiiBa-D/Z
corpus. We discuss the performance of these topo-
logical field parsers in more detail below.

All of the topological parsing proposals pre-
date the advent of the Berkeley parser. The exper-
iments of this paper demonstrate that the Berke-
ley parser outperforms previous methods, many of
which are specialized for the task of topological
field chunking or parsing.

2 Topological Field Model of German

Topological fields are high-level linear fields in
an enclosing syntactic region, such as a clause
(Hohle, 1983). These fields may have constraints
on the number of words or phrases they contain,
and do not necessarily form a semantically co-
herent constituent. Although it has been argued
that a few languages have no word-order con-
straints whatsoever, most “free word-order” lan-
guages (even Warlpiri) have at the very least some
sort of sentence- or clause-initial topic field fol-
lowed by a second position that is occupied by
clitics, a finite verb or certain complementizers
and subordinating conjunctions. In a few Ger-
manic languages, including German, the topology
is far richer than that, serving to identify all of
the components of the verbal head of a clause,
except for some cases of long-distance dependen-



cies. Topological fields are useful, because while
Germanic word order is relatively free with respect
to grammatical functions, the order of the topolog-
ical fields is strict and unvarying.

Type | Fields

VL | (KOORD) (C) (MF) VC (NF)

V1 (KOORD) (LV) LK (MF) (VC) (NF)

V2 (KOORD) (LV) VF LK (MF) (VC) (NF)
Table 1: Topological field model of German.

Simplified from TiiBa-D/Z corpus’s annotation
schema (Telljohann et al., 2006).

In the German topological field model, clauses
belong to one of three types: verb-last (VL), verb-
second (V2), and verb-first (V1), each with a spe-
cific sequence of topological fields (Table 1). VL
clauses include finite and non-finite subordinate
clauses, V2 sentences are typically declarative
sentences and WH-questions in matrix clauses,
and V1 sentences include yes-no questions, and
certain conditional subordinate clauses. Below,
we give brief descriptions of the most common
topological fields.

e VF (Vorfeld or ‘pre-field’) is the first con-
stituent in sentences of the V2 type. This is
often the topic of the sentence, though as an
anonymous reviewer pointed out, this posi-
tion does not correspond to a single function
with respect to information structure. (e.g.,
the reviewer suggested this case, where VF
contains the focus: —Wer kommt zur Party?
—Peter kommt zur Party. —Who is coming to
the Party? —Peter is coming to the party.)

LK (Linke Klammer or ‘left bracket’) is the
position for finite verbs in V1 and V2 sen-
tences. It is replaced by a complementizer
with the field label C in VL sentences.

MF (Mittelfeld or ‘middle field’) is an op-
tional field bounded on the left by LK and
on the right by the verbal complex VC or
by NE. Most verb arguments, adverbs, and
prepositional phrases are found here, unless
they have been fronted and put in the VF, or
are prosodically heavy and postposed to the
NF field.

VC is the verbal complex field. It includes
infinite verbs, as well as finite verbs in VL
sentences.
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o NF (Nachfeld or ‘post-field’) contains
prosodically heavy elements such as post-
posed prepositional phrases or relative
clauses.

KOORD! (Koordinationsfeld or ‘coordina-
tion field’) is a field for clause-level conjunc-
tions.

LV (Linksversetzung or ‘left dislocation’) is
used for resumptive constructions involving
left dislocation. For a detailed linguistic
treatment, see (Frey, 2004).

Exceptions to the topological field model as de-
scribed above do exist. For instance, parenthetical
constructions exist as a mostly syntactically inde-
pendent clause inside another sentence. In our cor-
pus, they are attached directly underneath a clausal
node without any intervening topological field, as
in the following example. In this example, the par-
enthetical construction is highlighted in bold print.
Some clause and topological field labels under the
NF field are omitted for clarity.

(1 (a) (SIMPX “(VF Man) (LK muf3) (VC verstehen) ”

, (SIMPX sagte er), “ (NF daf} diese
Minderheiten seit langer Zeit massiv von den
Nazis bedroht werden)). ”

(b) Translation: “One must understand,” he said,
“that these minorities have been massively
threatened by the Nazis for a long time.”

3 A Latent Variable Parser

For our experiments, we used the latent variable-
based Berkeley parser (Petrov et al., 2006). La-
tent variable parsing assumes that an observed
treebank represents a coarse approximation of
an underlying, optimally refined grammar which
makes more fine-grained distinctions in the syn-
tactic categories. For example, the noun phrase
category NP in a treebank could be viewed as a
coarse approximation of two noun phrase cate-
gories corresponding to subjects and object, NP”S,
and NP"VP.

The Berkeley parser automates the process of
finding such distinctions. It starts with a simple bi-
narized X-bar grammar style backbone, and goes
through iterations of splitting and merging non-
terminals, in order to maximize the likelihood of
the training set treebank. In the splitting stage,

'The TiiBa-D/Z corpus distinguishes coordinating and
non-coordinating particles, as well as clausal and field co-
ordination. These distinctions need not concern us for this
explanation.



sIMPX
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Figure 1: “I could never have done that just for aesthetic reasons.” Sample TiiBa-D/Z tree, with topolog-
ical field annotations and edge labels. Topological field layer in bold.

an Expectation-Maximization algorithm is used to
find a good split for each nonterminal. In the
merging stage, categories that have been over-
split are merged together to keep the grammar size
tractable and reduce sparsity. Finally, a smoothing
stage occurs, where the probabilities of rules for
each nonterminal are smoothed toward the prob-
abilities of the other nonterminals split from the
same syntactic category.

The Berkeley parser has been applied to the
TiiBaD/Z corpus in the constituent parsing shared
task of the ACL-2008 Workshop on Parsing Ger-
man (Petrov and Klein, 2008), achieving an F’-
measure of 85.10% and 83.18% with and without
gold standard POS tags respectively?. We chose
the Berkeley parser for topological field parsing
because it is known to be robust across languages,
and because it is an unlexicalized parser. Lexi-
calization has been shown to be useful in more
general parsing applications due to lexical depen-
dencies in constituent parsing (e.g. (Kiibler et al.,
2006; Dubey and Keller, 2003) in the case of Ger-
man). However, topological fields explain a higher
level of structure pertaining to clause-level word
order, and we hypothesize that lexicalization is un-
likely to be helpful.

4 Experiments

4.1 Data

For our experiments, we primarily used the TiiBa-
D/Z (Tiibinger Baumbank des Deutschen / Schrift-
sprache) corpus, consisting of 26116 sentences
(20894 training, 2611 development, 2089 test,
with a further 522 sentences held out for future ex-

2This evaluation considered grammatical functions as
well as the syntactic category.
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periments)? taken from the German newspaper die
tageszeitung. The corpus consists of four levels
of annotation: clausal, topological, phrasal (other
than clausal), and lexical. We define the task of
topological field parsing to be recovering the first
two levels of annotation, following Ule (2003).
We also tested the parser on a version of the NE-
GRA corpus derived by Becker and Frank (2002),
in which syntax trees have been made projec-
tive and topological fields have been automatically
added through a series of linguistically informed
tree modifications. All internal phrasal structure
nodes have also been removed. The corpus con-
sists of 20596 sentences, which we split into sub-
sets of the same size as described by Becker and
Frank (2002)*. The set of topological fields in
this corpus differs slightly from the one used in
TiiBa-D/Z, making no distinction between clause
types, nor consistently marking field or clause
conjunctions. Because of the automatic anno-
tation of topological fields, this corpus contains
numerous annotation errors. Becker and Frank
(2002) manually corrected their test set and eval-
uated the automatic annotation process, reporting
labelled precision and recall of 93.0% and 93.6%
compared to their manual annotations. There are
also punctuation-related errors, including miss-
ing punctuation, sentences ending in commas, and
sentences composed of single punctuation marks.
We test on this data in order to provide a bet-
ter comparison with previous work. Although we
could have trained the model in Becker and Frank
(2002) on the TiiBa-D/Z corpus, it would not have

3These are the same splits into training, development, and
test sets as in the ACL-08 Parsing German workshop. This
corpus does not include sentences of length greater than 40.

416476 training sentences, 1000 development, 1058 test-
ing, and 2062 as held-out data. We were unable to obtain
the exact subsets used by Becker and Frank (2002). We will
discuss the ramifications of this on our evaluation procedure.



Gold tags | Edge labels | LP% | LR% | F1% | CB | CB0% | CB < 2% | EXACT%
- - 93.53 | 93.17 | 93.35 | 0.08 | 94.59 99.43 79.50
+ - 05.26 | 95.04 | 95.15 | 0.07 | 95.35 99.52 83.86
- + 92.38 | 92.67 | 92.52 | 0.11 | 92.82 99.19 77.79
+ + 92.36 | 92.60 | 9248 | 0.11 | 92.82 99.19 77.64

Table 2: Parsing results for topological fields and clausal constituents on the TiiBa-D/Z corpus.

been a fair comparison, as the parser depends quite
heavily on NEGRA’s annotation scheme. For ex-
ample, TiiBa-D/Z does not contain an equiva-
lent of the modified NEGRA’s parameterized cat-
egories; there exist edge labels in TiiBaD/Z, but
they are used to mark head-dependency relation-
ships, not subtypes of syntactic categories.

4.2 Results

We first report the results of our experiments on
the TiiBa-D/Z corpus. For the TiiBa-D/Z corpus,
we trained the Berkeley parser using the default
parameter settings. The grammar trainer attempts
six iterations of splitting, merging, and smoothing
before returning the final grammar. Intermediate
grammars after each step are also saved. There
were training and test sentences without clausal
constituents or topological fields, which were ig-
nored by the parser and by the evaluation. As
part of our experiment design, we investigated the
effect of providing gold POS tags to the parser,
and the effect of incorporating edge labels into the
nonterminal labels for training and parsing. In all
cases, gold annotations which include gold POS
tags were used when training the parser.

We report the standard PARSEVAL measures
of parser performance in Table 2, obtained by the
evalb program by Satoshi Sekine and Michael
Collins. This table shows the results after five it-
erations of grammar modification, parameterized
over whether we provide gold POS tags for pars-
ing, and edge labels for training and parsing. The
number of iterations was determined by experi-
ments on the development set. In the evaluation,
we do not consider edge labels in determining
correctness, but do consider punctuation, as Ule
(2003) did. If we ignore punctuation in our evalu-
ation, we obtain an F-measure of 95.42% on the
best model (+ Gold tags, - Edge labels).

Whether supplying gold POS tags improves
performance depends on whether edge labels are
considered in the grammar. Without edge labels,
gold POS tags improve performance by almost
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two points, corresponding to a relative error reduc-
tion of 33%. In contrast, performance is negatively
affected when edge labels are used and gold POS
tags are supplied (i.e., + Gold tags, + Edge la-
bels), making the performance worse than not sup-
plying gold tags. Incorporating edge label infor-
mation does not appear to improve performance,
possibly because it oversplits the initial treebank
and interferes with the parser’s ability to determine
optimal splits for refining the grammar.

Parser [ LP% | LR% | %
TiBa-D/Z

This work 95.26 95.04 95.15
Ule unknown | unknown | 91.98
NEGRA - from Becker and Frank (2002)

BFO02 (len. < 40) [ 92.1 [ 91.6 [ 91.8
NEGRA - our experiments

This work (Ien. < 40) 90.74 90.87 90.81
BFO02 (len. < 40) 89.54 88.14 88.83
This work (all) 90.29 90.51 90.40
BFO02 (all) 89.07 87.80 88.43

Table 3: BF02 = (Becker and Frank, 2002). Pars-
ing results for topological fields and clausal con-
stituents. Results from Ule (2003) and our results
were obtained using different training and test sets.
The first row of results of Becker and Frank (2002)
are from that paper; the rest were obtained by our
own experiments using that parser. All results con-
sider punctuation in evaluation.

To facilitate a more direct comparison with pre-
vious work, we also performed experiments on the
modified NEGRA corpus. In this corpus, topo-
logical fields are parameterized, meaning that they
are labelled with further syntactic and semantic in-
formation. For example, VF is split into VF-REL
for relative clauses, and VF-TOPIC for those con-
taining topics in a verb-second sentence, among
others. All productions in the corpus have also
been binarized. Tuning the parameter settings on
the development set, we found that parameterized
categories, binarization, and including punctua-
tion gave the best F7 performance. First-order
horizontal and zeroth order vertical markoviza-



tion after six iterations of splitting, merging, and
smoothing gave the best F result of 91.78%. We
parsed the corpus with both the Berkeley parser
and the best performing model of Becker and
Frank (2002).

The results of these experiments on the test set
for sentences of length 40 or less and for all sen-
tences are shown in Table 3. We also show other
results from previous work for reference. We
find that we achieve results that are better than
the model in Becker and Frank (2002) on the test
set. The difference is statistically significant (p =
0.0029, Wilcoxon signed-rank).

The results we obtain using the parser of Becker
and Frank (2002) are worse than the results de-
scribed in that paper. We suggest the following
reasons for this discrepancy. While the test set
used in the paper was manually corrected for eval-
uation, we did not correct our test set, because it
would be difficult to ensure that we adhered to the
same correction guidelines. No details of the cor-
rection process were provided in the paper, and de-
scriptive grammars of German provide insufficient
guidance on many of the examples in NEGRA on
issues such as ellipses, short infinitival clauses,
and expanded participial constructions modifying
nouns. Also, because we could not obtain the ex-
act sets used for training, development, and test-
ing, we had to recreate the sets by randomly split-
ting the corpus.

4.3 Category Specific Results

We now return to the TiiBa-D/Z corpus for a
more detailed analysis, and examine the category-
specific results for our best performing model (+
Gold tags, - Edge labels). Overall, Table 4 shows
that the best performing topological field cate-
gories are those that have constraints on the type
of word that is allowed to fill it (finite verbs in
LK, verbs in VC, complementizers and subordi-
nating conjunctions in C). VF, in which only one
constituent may appear, also performs relatively
well. Topological fields that can contain a vari-
able number of heterogeneous constituents, on the
other hand, have poorer F}-measure results. MF,
which is basically defined relative to the positions
of fields on either side of it, is parsed several points
below LK, C, and VC in accuracy. NF, which
contains different kinds of extraposed elements, is
parsed at a substantially worse level.

Poorly parsed categories tend to occur infre-
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quently, including LV, which marks a rare re-
sumptive construction; FKOORD, which marks
topological field coordination; and the discourse
marker DM. The other clause-level constituents
(PSIMPX for clauses in paratactic constructions,
RSIMPX for relative clauses, and SIMPX for
other clauses) also perform below average.

Topological Fields

Category # LP% LR% F1%
PARORD 20 100.00 | 100.00 | 100.00
VCE 3 100.00 | 100.00 | 100.00
LK 2186 | 99.68 99.82 99.75
C 642 99.53 98.44 98.98
VC 1777 | 98.98 98.14 98.56
VF 2044 | 96.84 97.55 97.20
KOORD 99 96.91 94.95 95.92
MF 2931 | 94.80 95.19 94.99
NF 643 83.52 81.96 82.73
FKOORD | 156 75.16 73.72 74.43
LV 17 10.00 5.88 7.41
Clausal Constituents

Category # LP% LR% F1%
SIMPX 2839 | 92.46 91.97 92.21
RSIMPX 225 91.23 92.44 91.83
PSIMPX 6 100.00 | 66.67 80.00
DM 28 59.26 57.14 58.18

Table 4: Category-specific results using grammar
with no edge labels and passing in gold POS tags.

4.4 Reranking for Paired Punctuation

While experimenting with the development set
of TiiBa-D/Z, we noticed that the parser some-
times returns parses, in which paired punctuation
(e.g. quotation marks, parentheses, brackets) is
not placed in the same clause—a linguistically im-
plausible situation. In these cases, the high-level
information provided by the paired punctuation is
overridden by the overall likelihood of the parse
tree. To rectify this problem, we performed a sim-
ple post-hoc reranking of the 50-best parses pro-
duced by the best parameter settings (+ Gold tags,
- Edge labels), selecting the first parse that places
paired punctuation in the same clause, or return-
ing the best parse if none of the 50 parses satisfy
the constraint. This procedure improved the Fi-
measure to 95.24% (LP = 95.39%, LR = 95.09%).

Overall, 38 sentences were parsed with paired
punctuation in different clauses, of which 16 were
reranked. Of the 38 sentences, reranking improved
performance in 12 sentences, did not affect perfor-
mance in 23 sentences (of which 10 already had a
perfect parse), and hurt performance in three sen-
tences. A two-tailed sign test suggests that rerank-



ing improves performance (p = 0.0352). We dis-
cuss below why sentences with paired punctuation
in different clauses can have perfect parse results.

To investigate the upper-bound in performance
that this form of reranking is able to achieve, we
calculated some statistics on our (+ Gold tags, -
Edge labels) 50-best list. We found that the aver-
age rank of the best scoring parse by F}-measure
is 2.61, and the perfect parse is present for 1649
of the 2088 sentences at an average rank of 1.90.
The oracle Fi-measure is 98.12%, indicating that
a more comprehensive reranking procedure might
allow further performance gains.

4.5 Qualitative Error Analysis

As a further analysis, we extracted the worst scor-
ing fifty sentences by F’-measure from the parsed
test set (+ Gold tags, - Edge labels), and compared
them against the gold standard trees, noting the
cause of the error. We analyze the parses before
reranking, to see how frequently the paired punc-
tuation problem described above severely affects a
parse. The major mistakes made by the parser are
summarized in Table 5.

Problem Freq.
Misidentification of Parentheticals 19
Coordination problems 13
Too few SIMPX 10
Paired punctuation problem 9
Other clause boundary errors 7
Other 6
Too many SIMPX 3
Clause type misidentification 2
MEF/NF boundary 2
LV 2
VF/MF boundary 2

Table 5: Types and frequency of parser errors in
the fifty worst scoring parses by F}-measure, us-
ing parameters (+ Gold tags, - Edge labels).

Misidentification of Parentheticals Parentheti-
cal constructions do not have any dependencies on
the rest of the sentence, and exist as a mostly syn-
tactically independent clause inside another sen-
tence. They can occur at the beginning, end, or
in the middle of sentences, and are often set off
orthographically by punctuation. The parser has
problems identifying parenthetical constructions,
often positing a parenthetical construction when
that constituent is actually attached to a topolog-
ical field in a neighbouring clause. The follow-
ing example shows one such misidentification in
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bracket notation. Clause internal topological fields
are omitted for clarity.

2) (a) TiBa-D/Z: (SIMPX Weder das Ausmaf3 der
Schonheit noch der friihere oder spiitere
Zeitpunkt der Geburt macht einen der Zwillinge
fiir eine Mutter mehr oder weniger echt /
authentisch / iiberlegen).

Parser: (SIMPX Weder das Ausmaf} der
Schonheit noch der friihere oder spiitere
Zeitpunkt der Geburt macht einen der Zwillinge
[iir eine Mutter mehr oder weniger echt)
(PARENTHETICAL / authentisch /
iiberlegen.)

Translation: “Neither the degree of beauty nor
the earlier or later time of birth makes one of the
twins any more or less real/authentic/superior to
a mother.”

(b)

()

We hypothesized earlier that lexicalization is
unlikely to give us much improvement in perfor-
mance, because topological fields work on a do-
main that is higher than that of lexical dependen-
cies such as subcategorization frames. However,
given the locally independent nature of legitimate
parentheticals, a limited form of lexicalization or
some other form of stronger contextual informa-
tion might be needed to improve identification per-
formance.

Coordination Problems The second most com-
mon type of error involves field and clause coordi-
nations. This category includes missing or incor-
rect FKOORD fields, and conjunctions of clauses
that are misidentified. In the following example,
the conjoined MFs and following NF in the cor-
rect parse tree are identified as a single long MF.

3) (a) TuBa-D/Z: Auf dem europdischen Kontinent
aber hat (FKOORD (MF kein Land und keine
Macht ein derartiges Interesse an guten
Beziehungen zu Rufland) und (MF auch kein
Land solche Erfahrungen im Umgang mit
Rupland)) (NF wie Deutschland).

Parser: Auf dem europdiischen Kontinent aber
hat (MF kein Land und keine Macht ein
derartiges Interesse an guten Beziehungen zu
Rupland und auch kein Land solche
Erfahrungen im Umgang mit Rufland wie
Deutschland).

Translation: “On the European continent,
however, no land and no power has such an
interest in good relations with Russia (as
Germany), and also no land (has) such
experience in dealing with Russia as Germany.”

(b)

©

Other Clause Errors Other clause-level errors
include the parser predicting too few or too many
clauses, or misidentifying the clause type. Clauses
are sometimes confused with NFs, and there is one
case of a relative clause being misidentified as a



main clause with an intransitive verb, as the finite
verb appears at the end of the clause in both cases.
Some clause errors are tied to incorrect treatment
of elliptical constructions, in which an element
that is inferable from context is missing.

Paired Punctuation Problems with paired
punctuation are the fourth most common type of
error. Punctuation is often a marker of clause
or phrase boundaries. Thus, predicting paired
punctuation incorrectly can lead to incorrect
parses, as in the following example.

(4) (@) “Auch (SIMPX wenn der Krieg heute ein
Mobilisierungsfaktor ist) ", so Pau, “ (SIMPX
die Leute sehen , daf3 man fiir die Arbeit wieder
auf die Strafie gehen muf3) . ”

Parser: (SIMPX “ (LV Auch (SIMPX wenn der
Krieg heute ein Mobilisierungsfaktor ist)) ” , so
Pau, “ (SIMPX die Leute sehen , daf man fiir
die Arbeit wieder auf die Strafie gehen muf3)) . ”
Translation: “Even if the war is a factor for
mobilization,” said Pau, “the people see, that
one must go to the street for employment again.”

(b)

(©

Here, the parser predicts a spurious SIMPX
clause spanning the text of the entire sentence, but
this causes the second pair of quotation marks to
be parsed as belonging to two different clauses.
The parser also predicts an incorrect LV field. Us-
ing the paired punctuation constraint, our rerank-
ing procedure was able to correct these errors.

Surprisingly, there are cases in which paired
punctuation does not belong inside the same
clause in the gold parses. These cases are ei-
ther extended quotations, in which each of the
quotation mark pair occurs in a different sen-
tence altogether, or cases where the second of the
quotation mark pair must be positioned outside
of other sentence-final punctuation due to ortho-
graphic conventions. Sentence-final punctuation
is typically placed outside a clause in this version
of TiiBa-D/Z.

Other Issues Other incorrect parses generated
by the parser include problems with the infre-
quently occurring topological fields like LV and
DM, inability to determine the boundary between
MF and NF in clauses without a VC field sepa-
rating the two, and misidentifying appositive con-
structions.  Another issue is that although the
parser output may disagree with the gold stan-
dard tree in TiiBa-D/Z, the parser output may be
a well-formed topological field parse for the same
sentence with a different interpretation, for ex-
ample because of attachment ambiguity. Each of
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the authors independently checked the fifty worst-
scoring parses, and determined whether each parse
produced by the Berkeley parser could be a well-
formed topological parse. Where there was dis-
agreement, we discussed our judgments until we
came to a consensus. Of the fifty parses, we de-
termined that nine, or 18%, could be legitimate
parses. Another five, or 10%, differ from the gold
standard parse only in the placement of punctua-
tion. Thus, the F;-measures we presented above
may be underestimating the parser’s performance.

5 Conclusion and Future Work

In this paper, we examined applying the latent-
variable Berkeley parser to the task of topological
field parsing of German, which aims to identify the
high-level surface structure of sentences. Without
any language or model-dependent adaptation, we
obtained results which compare favourably to pre-
vious work in topological field parsing. We further
examined the results of doing a simple reranking
process, constraining the output parse to put paired
punctuation in the same clause. This reranking
was found to result in a minor performance gain.

Overall, the parser performs extremely well in
identifying the traditional left and right brackets
of the topological field model; that is, the fields
C, LK, and VC. The parser achieves basically per-
fect results on these fields in the TiiBa-D/Z corpus,
with Fj-measure scores for each at over 98.5%.
These scores are higher than previous work in the
simpler task of topological field chunking. The fo-
cus of future research should thus be on correctly
identifying the infrequently occuring fields and
constructions, with parenthetical constructions be-
ing a particular concern. Possible avenues of fu-
ture research include doing a more comprehensive
discriminative reranking of the parser output. In-
corporating more contextual information might be
helpful to identify discourse-related constructions
such as parentheses, and the DM and LV topolog-
ical fields.

Acknowledgements

We are grateful to Markus Becker, Anette Frank,
Sandra Kuebler, and Slav Petrov for their invalu-
able help in gathering the resources necessary for
our experiments. This work is supported in part
by the Natural Sciences and Engineering Research
Council of Canada.



References

M. Becker and A. Frank. 2002. A stochastic topo-
logical parser for German. In Proceedings of the
19th International Conference on Computational
Linguistics, pages 71-77.

S. Brants, S. Dipper, S. Hansen, W. Lezius, and
G. Smith. 2002. The TIGER Treebank. In Proceed-
ings of the Workshop on Treebanks and Linguistic
Theories, pages 24-41.

U. Callmeier. 2000. PET-a platform for experimen-
tation with efficient HPSG processing techniques.
Natural Language Engineering, 6(01):99-107.

A. Dubey and F. Keller. 2003. Probabilistic parsing
for German using sister-head dependencies. In Pro-
ceedings of the 41st Annual Meeting of the Associa-
tion for Computational Linguistics, pages 96—103.

K.A. Foth, M. Daum, and W. Menzel. 2004. A
broad-coverage parser for German based on defea-
sible constraints. Constraint Solving and Language
Processing.

A. Frank, M. Becker, B. Crysmann, B. Kiefer, and
U. Schaefer. 2003. Integrated shallow and deep
parsing: TopP meets HPSG. In Proceedings of the
41st Annual Meeting of the Association for Compu-
tational Linguistics, pages 104-111.

W. Frey. 2004. Notes on the syntax and the pragmatics
of German Left Dislocation. In H. Lohnstein and
S. Trissler, editors, The Syntax and Semantics of the
Left Periphery, pages 203-233. Mouton de Gruyter,
Berlin.

. Hockenmaier. 2006. Creating a CCGbank and a
Wide-Coverage CCG Lexicon for German. In Pro-
ceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 505-512.

T.N. Hohle. 1983. Topologische Felder. Ph.D. thesis,
Kéln.

S. Kiibler, E.W. Hinrichs, and W. Maier. 2006. Is it re-
ally that difficult to parse German? In Proceedings
of EMNLP.

M. Liepert. 2003. Topological Fields Chunking for
German with SVM’s: Optimizing SVM-parameters
with GA’s. In Proceedings of the International Con-
ference on Recent Advances in Natural Language
Processing (RANLP), Bulgaria.

G. Neumann, C. Braun, and J. Piskorski. 2000. A
Divide-and-Conquer Strategy for Shallow Parsing
of German Free Texts. In Proceedings of the sixth
conference on Applied natural language processing,
pages 239-246. Morgan Kaufmann Publishers Inc.
San Francisco, CA, USA.

72

. Petrov and D. Klein. 2008. Parsing German with
Latent Variable Grammars. In Proceedings of the
ACL-08: HLT Workshop on Parsing German (PaGe-
08), pages 33-39.

. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006.
Learning accurate, compact, and interpretable tree
annotation. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and
44th Annual Meeting of the Association for Compu-
tational Linguistics, pages 433—440, Sydney, Aus-
tralia, July. Association for Computational Linguis-
tics.

. Rohrer and M. Forst. 2006. Improving coverage

and parsing quality of a large-scale LFG for Ger-
man. In Proceedings of the Language Resources
and Evaluation Conference (LREC-2006), Genoa,
Italy.

W. Skut, T. Brants, B. Krenn, and H. Uszkoreit.
1998. A Linguistically Interpreted Corpus of Ger-
man Newspaper Text. Proceedings of the ESSLLI
Workshop on Recent Advances in Corpus Annota-
tion.

H. Telljohann, E. Hinrichs, and S. Kubler. 2004.
The TiiBa-D/Z treebank: Annotating German with a
context-free backbone. In Proceedings of the Fourth

International Conference on Language Resources
and Evaluation (LREC 2004), pages 2229-2235.

H. Telljohann, E.-W. Hinrichs, S. Kubler, and H. Zins-
meister. 2006. Stylebook for the Tubingen Tree-
bank of Written German (TiiBa-D/Z). Seminar fur
Sprachwissenschaft, Universitat Tubingen, Tubin-
gen, Germany.

T. Ule. 2003. Directed Treebank Refinement for PCFG
Parsing. In Proceedings of Workshop on Treebanks
and Linguistic Theories (TLT) 2003, pages 177-188.

J. Veenstra, FH. Miiller, and T. Ule. 2002. Topolog-
ical field chunking for German. In Proceedings of
the Sixth Conference on Natural Language Learn-
ing, pages 56—62.



Unsupervised Multilingual Grammar Induction

Benjamin Snyder, Tahira Naseem, and Regina Barzilay
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
{bsnyder, tahira, regina}@csail.mit.edu

Abstract

We investigate the task of unsupervised
constituency parsing from bilingual par-
allel corpora. Our goal is to use bilin-
gual cues to learn improved parsing mod-
els for each language and to evaluate these
models on held-out monolingual test data.
We formulate a generative Bayesian model
which seeks to explain the observed par-
allel data through a combination of bilin-
gual and monolingual parameters. To this
end, we adapt a formalism known as un-
ordered tree alignment to our probabilistic
setting. Using this formalism, our model
loosely binds parallel trees while allow-
ing language-specific syntactic structure.
We perform inference under this model us-
ing Markov Chain Monte Carlo and dy-
namic programming. Applying this model
to three parallel corpora (Korean-English,
Urdu-English, and Chinese-English) we
find substantial performance gains over
the CCM model, a strong monolingual
baseline. On average, across a variety of
testing scenarios, our model achieves an
8.8 absolute gain in F-measure. !

1 Introduction

In this paper we investigate the task of unsuper-
vised constituency parsing when bilingual paral-
lel text is available. Our goal is to improve pars-
ing performance on monolingual test data for each
language by using unsupervised bilingual cues at
training time. Multilingual learning has been suc-
cessful for other linguistic induction tasks such as
lexicon acquisition, morphological segmentation,
and part-of-speech tagging (Genzel, 2005; Snyder
and Barzilay, 2008; Snyder et al., 2008; Snyder

!Code and the outputs of our experiments are available at
http://groups.csail.mit.edu/rbg/code/multiling_induction.
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et al., 2009). We focus here on the unsupervised
induction of unlabeled constituency brackets. This
task has been extensively studied in a monolingual
setting and has proven to be difficult (Charniak
and Carroll, 1992; Klein and Manning, 2002).

The key premise of our approach is that am-
biguous syntactic structures in one language may
correspond to less uncertain structures in the other
language. For instance, the English sentence /
saw [the student [from MIT]] exhibits the classic
problem of PP-attachment ambiguity. However,
its Urdu translation, literally glossed as I [[MIT of]
student] saw, uses a genitive phrase that may only
be attached to the adjacent noun phrase. Know-
ing the correspondence between these sentences
should help us resolve the English ambiguity.

One of the main challenges of unsupervised
multilingual learning is to exploit cross-lingual
patterns discovered in data, while still allowing
a wide range of language-specific idiosyncrasies.
To this end, we adapt a formalism known as un-
ordered tree alignment (Jiang et al., 1995) to
a probabilistic setting. Under this formalism,
any two trees can be embedded in an alignment
tree. This alignment tree allows arbitrary parts
of the two trees to diverge in structure, permitting
language-specific grammatical structure to be pre-
served. Additionally, a computational advantage
of this formalism is that the marginalized probabil-
ity over all possible alignments for any two trees
can be efficiently computed with a dynamic pro-
gram in linear time.

We formulate a generative Bayesian model
which seeks to explain the observed parallel data
through a combination of bilingual and mono-
lingual parameters. Our model views each pair
of sentences as having been generated as fol-
lows: First an alignment tree is drawn. Each
node in this alignment tree contains either a soli-
tary monolingual constituent or a pair of coupled
bilingual constituents. For each solitary mono-

Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 73-81,
Suntec, Singapore, 2-7 August 2009. ©2009 ACL and AFNLP



lingual constituent, a sequence of part-of-speech
tags is drawn from a language-specific distribu-
tion. For each pair of coupled bilingual con-
stituents, a pair of part-of-speech sequences are
drawn jointly from a cross-lingual distribution.
Word-level alignments are then drawn based on
the tree alignment. Finally, parallel sentences are
assembled from these generated part-of-speech se-
quences and word-level alignments.

To perform inference under this model, we use
a Metropolis-Hastings within-Gibbs sampler. We
sample pairs of trees and then compute marginal-
ized probabilities over all possible alignments us-
ing dynamic programming.

We test the effectiveness of our bilingual gram-
mar induction model on three corpora of parallel
text: English-Korean, English-Urdu and English-
Chinese. The model is trained using bilingual
data with automatically induced word-level align-
ments, but is tested on purely monolingual data
for each language. In all cases, our model out-
performs a state-of-the-art baseline: the Con-
stituent Context Model (CCM) (Klein and Man-
ning, 2002), sometimes by substantial margins.
On average, over all the testing scenarios that we
studied, our model achieves an absolute increase
in F-measure of 8.8 points, and a 19% reduction
in error relative to a theoretical upper bound.

2 Related Work

The unsupervised grammar induction task has
been studied extensively, mostly in a monolin-
gual setting (Charniak and Carroll, 1992; Stolcke
and Omohundro, 1994; Klein and Manning, 2002;
Seginer, 2007). While PCFGs perform poorly on
this task, the CCM model (Klein and Manning,
2002) has achieved large gains in performance and
is among the state-of-the-art probabilistic models
for unsupervised constituency parsing. We there-
fore use CCM as our basic model of monolingual
syntax.

While there has been some previous work on
bilingual CFG parsing, it has mainly focused on
improving MT systems rather than monolingual
parsing accuracy. Research in this direction was
pioneered by (Wu, 1997), who developed Inver-
sion Transduction Grammars to capture cross-
lingual grammar variations such as phrase re-
orderings. More general formalisms for the same
purpose were later developed (Wu and Wong,
1998; Chiang, 2005; Melamed, 2003; Eisner,
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2003; Zhang and Gildea, 2005; Blunsom et al.,
2008). We know of only one study which eval-
uates these bilingual grammar formalisms on the
task of grammar induction itself (Smith and Smith,
2004). Both our model and even the monolingual
CCM baseline yield far higher performance on the
same Korean-English corpus.

Our approach is closer to the unsupervised
bilingual parsing model developed by Kuhn
(2004), which aims to improve monolingual per-
formance. Assuming that trees induced over paral-
lel sentences have to exhibit certain structural reg-
ularities, Kuhn manually specifies a set of rules
for determining when parsing decisions in the two
languages are inconsistent with GIZA++ word-
level alignments. By incorporating these con-
straints into the EM algorithm he was able to im-
prove performance over a monolingual unsuper-
vised PCFG. Still, the performance falls short of
state-of-the-art monolingual models such as the
CCM.

More recently, there has been a body of work
attempting to improve parsing performance by ex-
ploiting syntactically annotated parallel data. In
one strand of this work, annotations are assumed
only in a resource-rich language and are projected
onto a resource-poor language using the parallel
data (Hwa et al., 2005; Xi and Hwa, 2005). In
another strand of work, syntactic annotations are
assumed on both sides of the parallel data, and a
model is trained to exploit the parallel data at test
time as well (Smith and Smith, 2004; Burkett and
Klein, 2008). In contrast to this work, our goal
is to explore the benefits of multilingual grammar
induction in a fully unsupervised setting.

We finally note a recent paper which uses pa-
rameter tying to improve unsupervised depen-
dency parse induction (Cohen and Smith, 2009).
While the primary performance gains occur when
tying related parameters within a language, some
additional benefit is observed through bilingual ty-
ing, even in the absence of a parallel corpus.

3 Model

We propose an unsupervised Bayesian model for
learning bilingual syntactic structure using paral-
lel corpora. Our key premise is that difficult-to-
learn syntactic structures of one language may cor-
respond to simpler or less uncertain structures in
the other language. We treat the part-of-speech
tag sequences of parallel sentences, as well as their
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Figure 1: A pair of trees (i) and two possible alignment trees. In (ii), no empty spaces are inserted, but
the order of one of the original tree’s siblings has been reversed. In (iii), only two pairs of nodes have
been aligned (indicated by arrows) and many empty spaces inserted.

word-level alignments, as observed data. We ob-
tain these word-level alignments using GIZA++
(Och and Ney, 2003).

Our model seeks to explain this observed data
through a generative process whereby two aligned
parse trees are produced jointly. Though they
are aligned, arbitrary parts of the two trees are
permitted to diverge, accommodating language-
specific grammatical structure. In effect, our
model loosely binds the two trees: node-to-node
alignments need only be used where repeated
bilingual patterns can be discovered in the data.

3.1 Tree Alignments

We achieve this loose binding of trees by adapting
unordered tree alignment (Jiang et al., 1995) to a
probabilistic setting. Under this formalism, any
two trees can be aligned using an alignment tree.
The alignment tree embeds the original two trees
within it: each node is labeled by a pair (x,y),
(\,y), or (z,\) where z is a node from the first
tree, y is a node from the second tree, and A is an
empty space. The individual structure of each tree
must be preserved under the embedding with the
exception of sibling order (to allow variations in
phrase and word order).

The flexibility of this formalism can be demon-
strated by two extreme cases: (1) an alignment be-
tween two trees may actually align none of their
individual nodes, instead inserting an empty space
A for each of the original two trees’ nodes. (2)
if the original trees are isomorphic to one an-
other, the alignment may match their nodes ex-
actly, without inserting any empty spaces. See
Figure 1 for an example.
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3.2 Model overview

As our basic model of syntactic structure, we
adopt the Constituent-Context Model (CCM) of
Klein and Manning (2002). Under this model,
the part-of-speech sequence of each span in a sen-
tence is generated either as a constituent yield
— if it is dominated by a node in the tree —
or otherwise as a distituent yield. For example,
in the bracketed sentence [John/NNP [climbed/VB
[the/DT tree/NN]]], the sequence VB DT NN is gen-
erated as a constituent yield, since it constitutes a
complete bracket in the tree. On the other hand,
the sequence VB DT is generated as a distituent,
since it does not. Besides these yields, the con-
texts (two surrounding POS tags) of constituents
and distituents are generated as well. In this exam-
ple, the context of the constituent VB DT NN would
be (NNP, #), while the context of the distituent VB
DT would be (NNP, NN). The CCM model em-
ploys separate multinomial distributions over con-
stituents, distituents, constituent contexts, and dis-
tituent contexts. While this model is deficient —
each observed subsequence of part-of-speech tags
is generated many times over — its performance
is far higher than that of unsupervised PCFGs.

Under our bilingual model, each pair of sen-
tences is assumed to have been generated jointly in
the following way: First, an unlabeled alignment
tree is drawn uniformly from the set of all such
trees. This alignment tree specifies the structure
of each of the two individual trees, as well as the
pairs of nodes which are aligned and those which
are not aligned (i.e. paired with a X).

For each pair of aligned nodes, a correspond-
ing pair of constituents and contexts are jointly
drawn from a bilingual distribution. For unaligned
nodes (i.e. nodes paired with a A in the alignment



tree), a single constituent and context are drawn,
from language-specific distributions. Distituents
and their contexts are also drawn from language-
specific distributions. Finally, word-level align-
ments are drawn based on the structure of the
alignment tree.

In the next two sections, we describe our model
in more formal detail by specifying the parame-
ters and generative process by which sentences are
formed.

3.3 Parameters

Our model employs a number of multinomial dis-
tributions:

: over constituent yields of language 1,
: over distituent yields of language i,

° gbZC :
° d)ZD :

e w : over pairs of constituent yields, one from
the first language and the other from the sec-
ond language,

over constituent contexts of language 1,

over distituent contexts of language 1,

® Gzpair : over a finite set of integer val-
ues {—m,...,—2,—1,0,1,2,...,m}, mea-
suring the Giza-score of aligned tree node
pairs (see below),

o Gzpode : Over a finite set of integer values
{—m,...,—2,—1,0}, measuring the Giza-
score of unaligned tree nodes (see below).

The first four distributions correspond exactly to
the parameters of the CCM model. Parameter w is
a “coupling parameter” which measures the com-
patibility of tree-aligned constituent yield pairs.
The final two parameters measure the compatibil-
ity of syntactic alignments with the observed lexi-
cal GIZA++ alignments. Intuitively, aligned nodes
should have a high density of word-level align-
ments between them, and unaligned nodes should
have few lexical alignments.

More formally, consider a tree-aligned node
pair (n1,ng) with corresponding yields (y1,y2).
We call a word-level alignment good if it aligns
a word in y; with a word in y2. We call a word-
level alignment bad if it aligns a word in y; with
a word outside yo, or vice versa. The Giza-
score for (ny,ng) is the number of good word
alignments minus the number of bad word align-
ments. For example, suppose the constituent my
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long name is node-aligned to its Urdu translation
mera lamba naam. If only the word-pairs my/mera
and name/naam are aligned, then the Giza-score
for this node-alignment would be 2. If however,
the English word long were (incorrectly) aligned
under GIZA++ to some Urdu word outside the cor-
responding constituent, then the score would drop
to 1. This score could even be negative if the num-
ber of bad alignments exceeds those that are good.
Distribution G 2, provides a probability for these
scores (up to some fixed absolute value).

For an unaligned node n with corresponding
yield y, only bad G1ZA++ alignments are possible,
thus the Giza-score for these nodes will always be
zero or negative. Distribution Gzy4. provides a
probability for these scores (down to some fixed
value). We want our model to find tree alignments
such that both aligned node pairs and unaligned
nodes have high Giza-score.

3.4 Generative Process

Now we describe the stochastic process whereby
the observed parallel sentences and their word-
level alignments are generated, according to our
model.

As the first step in the Bayesian generative pro-
cess, all the multinomial parameters listed in the
previous section are drawn from their conjugate
priors — Dirichlet distributions of appropriate di-
mension. Then, each pair of word-aligned parallel
sentences is generated through the following pro-
cess:

1. A pair of binary trees 77 and 75 along with
an alignment tree A are drawn according to
P(Ty,T5,A). Ais an alignment tree for 73
and 75 if it can be obtained by the follow-
ing steps: First insert blank nodes (labeled by
A) into 77 and T5. Then permute the order
of sibling nodes such that the two resulting
trees 77 and T3 are identical in structure. Fi-
nally, overlay 77 and 7% to obtain A. We ad-
ditionally require that A contain no extrane-
ous nodes — that is no nodes with two blank
labels (A, \). See Figure 1 for an example.

We define the distribution P (77,75, A) to be
uniform over all pairs of binary trees and their
alignments.

For each node in A of the form (ng, \) (i.e.
nodes in 7} left unaligned by A), draw

(i) aconstituent yield according to 77?,



(ii) a constituent context according to ¢,
(iii) a Giza-score according to G zyoge.

3. For each node in A of the form (A, n2) (i.e.
nodes in 75 left unaligned by A), draw

(i) a constituent yield according to 71'20 ,
(ii) a constituent context according to qbg,
(iii) a Giza-score according to Gzpoge-

4. For each node in A of the form (nq, n9) (i.e.
tree-aligned node pairs), draw

(i) a pair of constituent yields (y1,y2) ac-
cording to:

oF (y1) - 85 (y2) - w(y1,y2)
Z

(1)

which is a product of experts combining
the language specific context-yield dis-
tributions as well as the coupling distri-
bution w with normalization constant Z,

(ii) a pair of contexts according to the ap-
propriate language-specific parameters,

(iii) a Giza-score according to G zpajr-

. For each span in T; not dominated by a node
(for each language ¢ € {1,2}), draw a dis-
tituent yield according to 7riD and a distituent
context according to ¢P.

Draw actual word-level alignments consis-
tent with the Giza-scores, according to a uni-
form distribution.

In the next section we turn to the problem of
inference under this model when only the part-
of-speech tag sequences of parallel sentences and
their word-level alignments are observed.

3.5 Inference

Given a corpus of paired part-of-speech tag se-
quences (s1,s2) and their GIZA++ alignments
g, we would ideally like to predict the set of
tree pairs (T1,T2) which have highest proba-
bility when conditioned on the observed data:
P(Tl,Tzlsl,sz,g). We could rewrite this by
explicitly integrating over the yield, context, cou-
pling, Giza-score parameters as well as the align-
ment trees. However, since maximizing this in-
tegral directly would be intractable, we resort to
standard Markov chain sampling techniques. We
use Gibbs sampling (Hastings, 1970) to draw trees
for each sentence conditioned on those drawn for
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all other sentences. The samples form a Markov
chain which is guaranteed to converge to the true
joint distribution over all sentences.

In the monolingual setting, there is a well-
known tree sampling algorithm (Johnson et al.,
2007). This algorithm proceeds in top-down fash-
ion by sampling individual split points using the
marginal probabilities of all possible subtrees.
These marginals can be efficiently pre-computed
and form the “inside” table of the famous Inside-
Outside algorithm. However, in our setting, trees
come in pairs, and their joint probability crucially
depends on their alignment.

For the i parallel sentence, we wish to jointly
sample the pair of trees (77,75); together with
their alignment A;. To do so directly would in-
volve simultaneously marginalizing over all pos-
sible subtrees as well as all possible alignments
between such subtrees when sampling upper-level
split points. We know of no obvious algorithm
for computing this marginal. We instead first sam-
ple the pair of trees (77, 7%); from a simpler pro-
posal distribution (). Our proposal distribution as-
sumes that no nodes of the two trees are aligned
and therefore allows us to use the recursive top-
down sampling algorithm mentioned above. After
a new tree pair T = (T7,Ty); is drawn from @),
we accept the pair with the following probability:

mind 1 PEIT—i, Ay Q(T|T—i, A;)
"P(T|T-;, A) Q(T*|T-i, Ay)

where T' is the previously sampled tree-pair for
sentence ¢, P is the true model probability, and
@ is the probability under the proposal distribu-
tion. This use of a tractable proposal distribution
and acceptance ratio is known as the Metropolis-
Hastings algorithm and it preserves the conver-
gence guarantee of the Gibbs sampler (Hastings,
1970). To compute the terms P(7*|T_;, A_;)
and P(T|T_;, A_;) in the acceptance ratio above,
we need to marginalize over all possible align-
ments between tree pairs.

Fortunately, for any given pair of trees 77 and
T, this marginalization can be computed using
a dynamic program in time O(|T1||T2|). Here
we provide a very brief sketch. For every pair
of nodes ny € Ty,ny € T5, a table stores the
marginal probability of the subtrees rooted at 1
and ng, respectively. A dynamic program builds
this table from the bottom up: For each node pair
ni,n2, we sum the probabilities of all local align-
ment configurations, each multiplied by the appro-




priate marginals already computed in the table for
lower-level node pairs. This algorithm is an adap-
tation of the dynamic program presented in (Jiang
et al., 1995) for finding minimum cost alighment
trees (Fig. 5 of that publication).

Once a pair of trees (77,7%) has been sam-
pled, we can proceed to sample an alignment tree
A|Ty, T».> We sample individual alignment deci-
sions from the top down, at each step using the
alignment marginals for the remaining subtrees
(already computed using the afore-mentioned dy-
namic program). Once the triple (77,75, A) has
been sampled, we move on to the next parallel sen-
tence.

We avoid directly sampling parameter val-
ues, instead using the marginalized closed forms
for multinomials with Dirichlet conjugate-priors
using counts and hyperparameter pseudo-counts
(Gelman et al., 2004). Note that in the case of
yield pairs produced according to Distribution 1
(in step 4 of the generative process) conjugacy is
technically broken, since the yield pairs are no
longer produced by a single multinomial distribu-
tion. Nevertheless, we count the produced yields
as if they had been generated separately by each
of the distributions involved in the numerator of
Distribution 1.

4 Experimental setup

We test our model on three corpora of bilin-
gual parallel sentences: English-Korean, English-
Urdu, and English-Chinese. Though the model is
trained using parallel data, during testing it has ac-
cess only to monolingual data. This set-up ensures
that we are testing our model’s ability to learn bet-
ter parameters at training time, rather than its abil-
ity to exploit parallel data at test time. Following
(Klein and Manning, 2002), we restrict our model
to binary trees, though we note that the alignment
trees do not follow this restriction.

Data The Penn Korean Treebank (Han et al.,
2002) consists of 5,083 Korean sentences trans-
lated into English for the purposes of language
training in a military setting. Both the Korean
and English sentences are annotated with syntactic
trees. We use the first 4,000 sentences for training
and the last 1,083 sentences for testing. We note
that in the Korean data, a separate tag is given for

2Sampling the alignment tree is important, as it provides
us with counts of aligned constituents for the coupling pa-
rameter.
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each morpheme. We simply concatenate all the
morpheme tags given for each word and treat the
concatenation as a single tag. This procedure re-
sults in 199 different tags. The English-Urdu par-
allel corpus® consists of 4,325 sentences from the
first three sections of the Penn Treebank and their
Urdu translations annotated at the part-of-speech
level. The Urdu side of this corpus does not pro-
vide tree annotations so here we can test parse ac-
curacy only on English. We use the remaining
sections of the Penn Treebank for English test-
ing. The English-Chinese treebank (Bies et al.,
2007) consists of 3,850 Chinese newswire sen-
tences translated into English. Both the English
and Chinese sentences are annotated with parse
trees. We use the first 4/5 for training and the final
1/5 for testing.

During preprocessing of the corpora we remove
all punctuation marks and special symbols, fol-
lowing the setup in previous grammar induction
work (Klein and Manning, 2002). To obtain lex-
ical alignments between the parallel sentences we
employ GIZA++ (Och and Ney, 2003). We use in-
tersection alignments, which are one-to-one align-
ments produced by taking the intersection of one-
to-many alignments in each direction. These one-
to-one intersection alignments tend to have higher
precision.

We initialize the trees by making uniform split
decisions recursively from the top down for sen-
tences in both languages. Then for each pair of
parallel sentences we randomly sample an initial
alignment tree for the two sampled trees.

Baseline We implement a Bayesian version of
the CCM as a baseline. This model uses the same
inference procedure as our bilingual model (Gibbs
sampling). In fact, our model reduces to this
Bayesian CCM when it is assumed that no nodes
between the two parallel trees are ever aligned
and when word-level alignments are ignored. We
also reimplemented the original EM version of
CCM and found virtually no difference in perfor-
mance when using EM or Gibbs sampling. In both
cases our implementation achieves F-measure in
the range of 69-70% on WSJ10, broadly in line
with the performance reported by Klein and Man-
ning (2002).

Hyperparameters Klein (2005) reports using
smoothing pseudo-counts of 2 for constituent

*http://www.crulp.org
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Figure 2: The F-measure of the CCM baseline (dotted line) and bilingual model (solid line) plotted on
the y-axis, as the maximum sentence length in the test set is increased (x-axis). Results are averaged over

all training scenarios given in Table 1.

yields and contexts and 8 for distituent yields and
contexts. In our Bayesian model, these similar
smoothing counts occur as the parameters of the
Dirichlet priors. For Korean we found that the
baseline performed well using these values. How-
ever, on our English and Chinese data, we found
that somewhat higher smoothing values worked
best, so we utilized values of 20 and 80 for con-
stituent and distituent smoothing counts, respec-
tively.

Our model additionally requires hyperparam-
eter values for w (the coupling distribution for
aligned yields), G'zpair and Gzpoge (the distribu-
tions over Giza-scores for aligned nodes and un-
aligned nodes, respectively). For w we used a
symmetric Dirichlet prior with parameter 1. For
G 2pair and G zyode, in order to create a strong bias
towards high Giza-scores, we used non-symmetric
Dirichlet priors. In both cases, we capped the ab-
solute value of the scores at 3, to prevent count
sparsity. In the case of Gzp, we gave pseudo-
counts of 1,000 for negative values and zero, and
pseudo-counts of 1,000,000 for positive scores.
For Gzy04e We gave a pseudo-count of 1,000,000
for a score of zero, and 1,000 for all nega-
tive scores. This very strong prior bias encodes
our intuition that syntactic alignments which re-
spect lexical alignments should be preferred. Our
method is not sensitive to these exact values and
any reasonably strong bias gave similar results.

In all our experiments, we consider the hyper-
parameters fixed and observed values.

Testing and evaluation As mentioned above,
we test our model only on monolingual data,
where the parallel sentences are not provided to
the model. To predict the bracketings of these
monolingual test sentences, we take the smoothed
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counts accumulated in the final round of sampling
over the training data and perform a maximum
likelihood estimate of the monolingual CCM pa-
rameters. These parameters are then used to pro-
duce the highest probability bracketing of the test
set.

To evaluate both our model as well as the base-
line, we use (unlabeled) bracket precision, re-
call, and F-measure (Klein and Manning, 2002).
Following previous work, we include the whole-
sentence brackets but ignore single-word brack-
ets. We perform experiments on different subsets
of training and testing data based on the sentence-
length. In particular we experimented with sen-
tence length limits of 10, 20, and 30 for both the
training and testing sets. We also report the upper
bound on F-measure for binary trees. We average
the results over 10 separate sampling runs.

5 Results

Table 1 reports the full results of our experiments.
In all testing scenarios the bilingual model out-
performs its monolingual counterpart in terms of
both precision and recall. On average, the bilin-
gual model gains 10.2 percentage points in preci-
sion, 7.7 in recall, and 8.8 in F-measure. The gap
between monolingual performance and the binary
tree upper bound is reduced by over 19%.

The extent of the gain varies across pairings.
For instance, the smallest improvement is ob-
served for English when trained with Urdu. The
Korean-English pairing results in substantial im-
provements for Korean and quite large improve-
ments for English, for which the absolute gain
reaches 28 points in F-measure. In the case of Chi-
nese and English, the gains for English are fairly
minimal whereas those for Chinese are quite sub-



Max Sent. Length Monolingual Bilingual Upper Bound
Test Train Precision Recall F1 Precision Recall F1 F1

10 52.74 39.53 45.19 57.76 43.30 49.50 85.6

gl 10 20 41.87 31.38 35.87 61.66 46.22 52.83 85.6
= 30 33.43 25.06 28.65 64.41 48.28 55.19 85.6
; 20 20 35.12 25.12  29.29 56.96 40.74  47.50 83.3
M 30 26.26 18.78 21.90 60.07 42.96 50.09 83.3
30 30 23.95 16.81 19.76 58.01 40.73 47.86 824

10 71.07 62.55 66.54 75.63 66.56 70.81 93.6

Z | 10 20 71.35 62.79 66.80 77.61 68.30 72.66 93.6
= 30 71.37 62.81 66.82 77.87 68.53 7291 93.6
; 20 20 64.28 54.73  59.12 70.44 5998 64.79 91.9
» 30 64.29 54.75 59.14 70.81 60.30 65.13 91.9
30 30 63.63 54.17 58.52 70.11 59.70  64.49 91.9

10 50.09 34.18 40.63 37.46 25.56  30.39 81.0

51 10 20 58.86 40.17 47.75 50.24 3429 40.76 81.0
= 30 64.81 4422 52.57 68.24 46.57 55.36 81.0
; 20 20 41.90 30.52 35.31 38.64 28.15  32.57 84.3
M 30 52.83 38.49 44.53 58.50 42.62  49.31 84.3
30 30 46.35 33.67 39.00 51.40 37.33 43.25 84.1

10 39.87 2771  32.69 40.62 28.23 33.31 81.9

41| 10 20 43.44 30.19 35.62 47.54 33.03 38.98 81.9
k= 30 43.63 30.32 35.77 54.09 37.59 44.36 81.9
; 20 20 29.80 2346 26.25 36.93 29.07 32.53 88.0
©) 30 30.05 23.65 2647 43.99 34.63 38.75 88.0
30 30 24.46 1941 21.64 39.61 3143 35.05 88.4

10 57.98 45.68 51.10 73.43 57.85 64.71 88.1

110 20 70.57 55.60 62.20 80.24 63.22  70.72 88.1
k= 30 75.39 59.40 66.45 79.04 62.28 69.67 88.1
ZB 20 20 57.78 43.86 49.87 67.26 51.06 58.05 86.3
M 30 63.12 4791 54.47 64.45 48.92 55.62 86.3
30 30 57.36 43.02 49.17 57.97 4348 49.69 85.7

Table 1: Unlabeled precision, recall and F-measure for the monolingual baseline and the bilingual model
on several test sets. We report results for different combinations of maximum sentence length in both the
training and test sets. The right most column, in all cases, contains the maximum F-measure achievable
using binary trees. The best performance for each test-length is highlighted in bold.

stantial. This asymmetry should not be surprising,
as Chinese on its own seems to be quite a bit more
difficult to parse than English.

We also investigated the impact of sentence
length for both the training and testing sets. For
our model, adding sentences of greater length to
the training set leads to increases in parse accu-
racy for short sentences. For the baseline, how-
ever, adding this additional training data degrades
performance in the case of English paired with Ko-
rean. Figure 2 summarizes the performance of
our model for different sentence lengths on sev-
eral of the test-sets. As shown in the figure, the
largest improvements tend to occur at longer sen-
tence lengths.
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6 Conclusion

We have presented a probabilistic model for bilin-
gual grammar induction which uses raw parallel
text to learn tree pairs and their alignments. Our
formalism loosely binds the two trees, using bilin-
gual patterns when possible, but allowing substan-
tial language-specific variation. We tested our
model on three test sets and showed substantial
improvement over a state-of-the-art monolingual
baseline.*

“The authors acknowledge the support of the NSF (CA-
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Abstract

In this paper, we present a reinforce-
ment learning approach for mapping nat-
ural language instructions to sequences of
executable actions. We assume access to
a reward function that defines the qual-
ity of the executed actions. During train-
ing, the learner repeatedly constructs ac-
tion sequences for a set of documents, ex-
ecutes those actions, and observes the re-
sulting reward. We use a policy gradient
algorithm to estimate the parameters of a
log-linear model for action selection. We
apply our method to interpret instructions
in two domains — Windows troubleshoot-
ing guides and game tutorials. Our results
demonstrate that this method can rival su-
pervised learning techniques while requir-
ing few or no annotated training exam-
ples.!

1 Introduction

The problem of interpreting instructions written
in natural language has been widely studied since
the early days of artificial intelligence (Winograd,
1972; Di Eugenio, 1992). Mapping instructions to
a sequence of executable actions would enable the
automation of tasks that currently require human
participation. Examples include configuring soft-
ware based on how-to guides and operating simu-
lators using instruction manuals. In this paper, we
present a reinforcement learning framework for in-
ducing mappings from text to actions without the
need for annotated training examples.

For concreteness, consider instructions from a
Windows troubleshooting guide on deleting tem-
porary folders, shown in Figure 1. We aim to map

Code, data, and annotations used in this work are avail-
able at http://groups.csail.mit.edu/rbg/code/rl/
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o Click start, point to search, and then click for files or folders.

o In the search results dialog box, on the tools menu, click
folder options.

o In the folder options dialog box, on the view tab, under advanced
settings, click show hidden files and folders, and then click to
clear the hide file extensions for known file types check box.

o Click apply, and then click ok.

o In the search for files or folders named box, type msdownld.tmp.

o In the look in list, click my computer, and then click search now.

o In the search results pane, right-click msdownld.tmp and then click
delete on the shortcut menu, a confirm folder delete message
appears.

o Click yes.

Figure 1: A Windows troubleshooting article de-
scribing how to remove the “msdownld.tmp” tem-
porary folder.

this text to the corresponding low-level commands
and parameters. For example, properly interpret-
ing the third instruction requires clicking on a tab,
finding the appropriate option in a tree control, and
clearing its associated checkbox.

In this and many other applications, the valid-
ity of a mapping can be verified by executing the
induced actions in the corresponding environment
and observing their effects. For instance, in the
example above we can assess whether the goal
described in the instructions is achieved, i.e., the
folder is deleted. The key idea of our approach
is to leverage the validation process as the main
source of supervision to guide learning. This form
of supervision allows us to learn interpretations
of natural language instructions when standard su-
pervised techniques are not applicable, due to the
lack of human-created annotations.

Reinforcement learning is a natural framework
for building models using validation from an envi-
ronment (Sutton and Barto, 1998). We assume that
supervision is provided in the form of a reward
function that defines the quality of executed ac-
tions. During training, the learner repeatedly con-
structs action sequences for a set of given docu-
ments, executes those actions, and observes the re-
sulting reward. The learner’s goal is to estimate a

Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 8§2-90,
Suntec, Singapore, 2-7 August 2009. ©2009 ACL and AFNLP



policy — a distribution over actions given instruc-
tion text and environment state — that maximizes
future expected reward. Our policy is modeled in a
log-linear fashion, allowing us to incorporate fea-
tures of both the instruction text and the environ-
ment. We employ a policy gradient algorithm to
estimate the parameters of this model.

We evaluate our method on two distinct applica-
tions: Windows troubleshooting guides and puz-
zle game tutorials. The key findings of our ex-
periments are twofold. First, models trained only
with simple reward signals achieve surprisingly
high results, coming within 11% of a fully su-
pervised method in the Windows domain. Sec-
ond, augmenting unlabeled documents with even
a small fraction of annotated examples greatly re-
duces this performance gap, to within 4% in that
domain. These results indicate the power of learn-
ing from this new form of automated supervision.

2 Related Work

Grounded Language Acquisition Our work
fits into a broader class of approaches that aim to
learn language from a situated context (Mooney,
2008a; Mooney, 2008b; Fleischman and Roy,
2005; Yu and Ballard, 2004; Siskind, 2001; Oates,
2001). Instances of such approaches include
work on inferring the meaning of words from
video data (Roy and Pentland, 2002; Barnard and
Forsyth, 2001), and interpreting the commentary
of a simulated soccer game (Chen and Mooney,
2008). Most of these approaches assume some
form of parallel data, and learn perceptual co-
occurrence patterns. In contrast, our emphasis
is on learning language by proactively interacting
with an external environment.

Reinforcement Learning for Language Pro-
cessing Reinforcement learning has been previ-
ously applied to the problem of dialogue manage-
ment (Scheffler and Young, 2002; Roy et al., 2000;
Litman et al., 2000; Singh et al., 1999). These
systems converse with a human user by taking ac-
tions that emit natural language utterances. The
reinforcement learning state space encodes infor-
mation about the goals of the user and what they
say at each time step. The learning problem is to
find an optimal policy that maps states to actions,
through a trial-and-error process of repeated inter-
action with the user.

Reinforcement learning is applied very differ-
ently in dialogue systems compared to our setup.
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In some respects, our task is more easily amenable
to reinforcement learning. For instance, we are not
interacting with a human user, so the cost of inter-
action is lower. However, while the state space can
be designed to be relatively small in the dialogue
management task, our state space is determined by
the underlying environment and is typically quite
large. We address this complexity by developing
a policy gradient algorithm that learns efficiently
while exploring a small subset of the states.

3 Problem Formulation

Our task is to learn a mapping between documents
and the sequence of actions they express. Figure 2
shows how one example sentence is mapped to
three actions.

Mapping Text to Actions As input, we are
given a document d, comprising a sequence of sen-
tences (uq,...,us), where each u; is a sequence
of words. Our goal is to map d to a sequence of
actions @ = (ag, . .., an—1). Actions are predicted
and executed sequentially.”

An action a = (¢, R, W') encompasses a com-
mand c, the command’s parameters R, and the
words W' specifying ¢ and R. Elements of R re-
fer to objects available in the environment state, as
described below. Some parameters can also refer
to words in document d. Additionally, to account
for words that do not describe any actions, ¢ can
be a null command.

The Environment The environment state &
specifies the set of objects available for interac-
tion, and their properties. In Figure 2, £ is shown
on the right. The environment state £ changes
in response to the execution of command ¢ with
parameters 2 according to a transition distribu-
tion p(€'|€, ¢, R). This distribution is a priori un-
known to the learner. As we will see in Section 5,
our approach avoids having to directly estimate
this distribution.

State To predict actions sequentially, we need to
track the state of the document-to-actions map-
ping over time. A mapping state s is a tuple
(€,d,j, W), where & refers to the current environ-
ment state; j is the index of the sentence currently
being interpreted in document d; and W contains
words that were mapped by previous actions for

>That is, action a; is executed before a;4 is predicted.
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Figure 2: A three-step mapping from an instruction sentence to a sequence of actions in Windows 2000.
For each step, the figure shows the words selected by the action, along with the corresponding system
command and its parameters. The words of W’ are underlined, and the words of W are highlighted in

grey.

the same sentence. The mapping state s is ob-
served after each action.

The initial mapping state sg for document d is
(€4,d,0,0); E4 is the unique starting environment
state for d. Performing action a in state s =
(€,d,j,W) leads to a new state s’ according to
distribution p(s’|s, a), defined as follows: & tran-
sitions according to p(&’|€, ¢, R), W is updated
with a’s selected words, and j is incremented if
all words of the sentence have been mapped. For
the applications we consider in this work, environ-
ment state transitions, and consequently mapping
state transitions, are deterministic.

Training During training, we are provided with
a set D of documents, the ability to sample from
the transition distribution, and a reward function
r(h). Here, h = (80,a0,---,81—1,0n—1,Sn) 18
a history of states and actions visited while in-
terpreting one document. r(h) outputs a real-
valued score that correlates with correct action
selection.> We consider both immediate reward,
which is available after each action, and delayed
reward, which does not provide feedback until the
last action. For example, task completion is a de-
layed reward that produces a positive value after
the final action only if the task was completed suc-
cessfully. We will also demonstrate how manu-
ally annotated action sequences can be incorpo-
rated into the reward.

3In most reinforcement learning problems, the reward
function is defined over state-action pairs, as (s, a) — in this
case, 7(h) = >, 7(s¢, at), and our formulation becomes a
standard finite-horizon Markov decision process. Policy gra-
dient approaches allow us to learn using the more general
case of history-based reward.

The goal of training is to estimate parameters 6
of the action selection distribution p(als, #), called
the policy. Since the reward correlates with ac-
tion sequence correctness, the 6 that maximizes
expected reward will yield the best actions.

4 A Log-Linear Model for Actions

Our goal is to predict a sequence of actions. We
construct this sequence by repeatedly choosing an
action given the current mapping state, and apply-
ing that action to advance to a new state.

Given a state s = (£, d, j, W), the space of pos-
sible next actions is defined by enumerating sub-
spans of unused words in the current sentence (i.e.,
subspans of the jth sentence of d not in W), and
the possible commands and parameters in envi-
ronment state £.* We model the policy distribu-
tion p(als; @) over this action space in a log-linear
fashion (Della Pietra et al., 1997; Lafferty et al.,
2001), giving us the flexibility to incorporate a di-
verse range of features. Under this representation,
the policy distribution is:

e@-qﬁ(s,a)
plals; 0) =

a/

)

where ¢(s,a) € R" is an n-dimensional feature
representation. During test, actions are selected
according to the mode of this distribution.

“For parameters that refer to words, the space of possible
values is defined by the unused words in the current sentence.
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Input: A document set D,
Feature representation ¢,
Reward function r(h),
Number of iterations 7T’

S5 Reinforcement Learning

During training, our goal is to find the optimal pol-
icy p(als; 6). Since reward correlates with correct
action selection, a natural objective is to maximize
expected future reward — that is, the reward we
expect while acting according to that policy from
state s. Formally, we maximize the value function:

Initialization: Set 6 to small random values.

1 fort=1...Tdo
2 foreach d € D do

3 Sample history h ~ p(h|0) where

h = (s0,a0,-..,an-1, Sn) as follows:
_ 3a fort=0...n—1do
Va(s) = Ep(h|0) [r(n)], @ 3b Sample action a; ~ p(a|s¢;6)
. . 3c Execute a; on state s¢: S¢+1 ~ p(s|s¢, ar)
where the history h is the sequence of states and end

actions encountered while interpreting a single
document d € D. This expectation is averaged
over all documents in D. The distribution p(h|6)
returns the probability of seeing history ~ when
starting from state s and acting according to a pol-
icy with parameters #. This distribution can be de-
composed into a product over time steps:

n—1

p(hl0) = [ plarlse: O)p(sesilse,ar).  (3)
t=0

5.1 A Policy Gradient Algorithm

Our reinforcement learning problem is to find the
parameters 6 that maximize Vj from equation 2.
Although there is no closed form solution, policy
gradient algorithms (Sutton et al., 2000) estimate
the parameters 6 by performing stochastic gradi-
ent ascent. The gradient of Vj is approximated by
interacting with the environment, and the resulting
reward is used to update the estimate of . Policy
gradient algorithms optimize a non-convex objec-
tive and are only guaranteed to find a local opti-
mum. However, as we will see, they scale to large
state spaces and can perform well in practice.

To find the parameters § that maximize the ob-
jective, we first compute the derivative of Vj. Ex-
panding according to the product rule, we have:

0 0
%VO(S) = Eynjg) |7(h) t aelogp(atlst;G)] ,
4)

where the inner sum is over all time steps ¢ in
the current history h. Expanding the inner partial
derivative we observe that:

0
2 logplals: 0) = 6(s,a)= 3 o(s, a)p(d|s: 0),

00
&)
which is the derivative of a log-linear distribution.
Equation 5 is easy to compute directly. How-
ever, the complete derivative of Vj in equation 4

-

A 30 (d(st,ae) = X0, d(se,a)p(a]se0))
5 0 —0+r(h)A

end
end
Output: Estimate of parameters 0

Algorithm 1: A policy gradient algorithm.

is intractable, because computing the expectation
would require summing over all possible histo-
ries. Instead, policy gradient algorithms employ
stochastic gradient ascent by computing a noisy
estimate of the expectation using just a subset of
the histories. Specifically, we draw samples from
p(h|f) by acting in the target environment, and
use these samples to approximate the expectation
in equation 4. In practice, it is often sufficient to
sample a single history h for this approximation.

Algorithm 1 details the complete policy gradi-
ent algorithm. It performs T iterations over the
set of documents D. Step 3 samples a history that
maps each document to actions. This is done by
repeatedly selecting actions according to the cur-
rent policy, and updating the state by executing the
selected actions. Steps 4 and 5 compute the empir-
ical gradient and update the parameters 6.

In many domains, interacting with the environ-
ment is expensive. Therefore, we use two tech-
niques that allow us to take maximum advantage
of each environment interaction. First, a his-
tory h = (so,ap,...,Sy) contains subsequences
(8i,a4,...8,) for i = 1ton — 1, each with its
own reward value given by the environment as a
side effect of executing h. We apply the update
from equation 5 for each subsequence. Second,
for a sampled history h, we can propose alterna-
tive histories i’ that result in the same commands
and parameters with different word spans. We can
again apply equation 5 for each h/, weighted by its

probability under the current policy, ’; ((f;:“g)) )




The algorithm we have presented belongs to
a family of policy gradient algorithms that have
been successfully used for complex tasks such as
robot control (Ng et al., 2003). Our formulation is
unique in how it represents natural language in the
reinforcement learning framework.

5.2 Reward Functions and ML Estimation

We can design a range of reward functions to guide
learning, depending on the availability of anno-
tated data and environment feedback. Consider the
case when every training document d € D is an-
notated with its correct sequence of actions, and
state transitions are deterministic. Given these ex-
amples, it is straightforward to construct a reward
function that connects policy gradient to maxi-
mum likelihood. Specifically, define a reward
function r(h) that returns one when h matches the
annotation for the document being analyzed, and
zero otherwise. Policy gradient performs stochas-
tic gradient ascent on the objective from equa-
tion 2, performing one update per document. For
document d, this objective becomes:

Eyuio)[r()] = Y r(h)p(h|8) = p(hal6),
h

where hg is the history corresponding to the an-
notated action sequence. Thus, with this reward
policy gradient is equivalent to stochastic gradient
ascent with a maximum likelihood objective.

At the other extreme, when annotations are
completely unavailable, learning is still possi-
ble given informative feedback from the environ-
ment. Crucially, this feedback only needs to cor-
relate with action sequence quality. We detail
environment-based reward functions in the next
section. As our results will show, reward func-
tions built using this kind of feedback can provide
strong guidance for learning. We will also con-
sider reward functions that combine annotated su-
pervision with environment feedback.

6 Applying the Model

We study two applications of our model: follow-
ing instructions to perform software tasks, and
solving a puzzle game using tutorial guides.

6.1 Microsoft Windows Help and Support

On its Help and Support website,’ Microsoft pub-
lishes a number of articles describing how to per-

>support.microsoft.com
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Notation
o  Parameter referring to an environment object
L Set of object class names (e.g. “button”)
V' Vocabulary

Features on 1V and object o

Test if o is visible in s

Test if o has input focus

Test if o is in the foreground

Test if o was previously interacted with

Test if o came into existence since last action

Min. edit distance between w € W and object labels in s

Features on words in 1/, command c, and object o
Ve € C,w e V:itestifd =candw € W
V' € C,l € L: testif ¢ = cand [ is the class of o

Table 1: Example features in the Windows do-
main. All features are binary, except for the nor-
malized edit distance which is real-valued.

form tasks and troubleshoot problems in the Win-
dows operating systems. Examples of such tasks
include installing patches and changing security
settings. Figure 1 shows one such article.

Our goal is to automatically execute these sup-
port articles in the Windows 2000 environment.
Here, the environment state is the set of visi-
ble user interface (UI) objects, and object prop-
erties such as label, location, and parent window.
Possible commands include left-click, right-click,
double-click, and type-into, all of which take a Ul
object as a parameter; type-into additionally re-
quires a parameter for the input text.

Table 1 lists some of the features we use for this
domain. These features capture various aspects of
the action under consideration, the current Win-
dows UI state, and the input instructions. For ex-
ample, one lexical feature measures the similar-
ity of a word in the sentence to the UI labels of
objects in the environment. Environment-specific
features, such as whether an object is currently in
focus, are useful when selecting the object to ma-
nipulate. In total, there are 4,438 features.

Reward Function Environment feedback can
be used as a reward function in this domain. An
obvious reward would be task completion (e.g.,
whether the stated computer problem was fixed).
Unfortunately, verifying task completion is a chal-
lenging system issue in its own right.

Instead, we rely on a noisy method of check-
ing whether execution can proceed from one sen-
tence to the next: at least one word in each sen-
tence has to correspond to an object in the envi-
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Figure 3: Crossblock puzzle with tutorial. For this
level, four squares in a row or column must be re-
moved at once. The first move specified by the
tutorial is greyed in the puzzle.

ronment.® For instance, in the sentence from Fig-
ure 2 the word “Run” matches the Run... menu
item. If no words in a sentence match a current
environment object, then one of the previous sen-
tences was analyzed incorrectly. In this case, we
assign the history a reward of -1. This reward is
not guaranteed to penalize all incorrect histories,
because there may be false positive matches be-
tween the sentence and the environment. When
at least one word matches, we assign a positive
reward that linearly increases with the percentage
of words assigned to non-null commands, and lin-
early decreases with the number of output actions.
This reward signal encourages analyses that inter-
pret all of the words without producing spurious
actions.

6.2 Crossblock: A Puzzle Game

Our second application is to a puzzle game called
Crossblock, available online as a Flash game.’
Each of 50 puzzles is played on a grid, where some
grid positions are filled with squares. The object
of the game is to clear the grid by drawing vertical
or horizontal line segments that remove groups of
squares. Each segment must exactly cross a spe-
cific number of squares, ranging from two to seven
depending on the puzzle. Humans players have
found this game challenging and engaging enough
to warrant posting textual tutorials.® A sample
puzzle and tutorial are shown in Figure 3.

The environment is defined by the state of the
grid. The only command is clear, which takes a
parameter specifying the orientation (row or col-
umn) and grid location of the line segment to be

SWe assume that a word maps to an environment object if
the edit distance between the word and the object’s name is
below a threshold value.

"hexaditidom.deviantart.com/art/Crossblock-108669149

8www.jayisgames.com/archives/2009/01/crossblock.php
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removed. The challenge in this domain is to seg-
ment the text into the phrases describing each ac-
tion, and then correctly identify the line segments
from references such as “the bottom four from the
second column from the left.”

For this domain, we use two sets of binary fea-
tures on state-action pairs (s,a). First, for each
vocabulary word w, we define a feature that is one
if w is the last word of a’s consumed words W'.
These features help identify the proper text seg-
mentation points between actions. Second, we in-
troduce features for pairs of vocabulary word w
and attributes of action a, e.g., the line orientation
and grid locations of the squares that a would re-
move. This set of features enables us to match
words (e.g., “row”) with objects in the environ-
ment (e.g., a move that removes a horizontal series
of squares). In total, there are 8,094 features.

Reward Function For Crossblock it is easy to
directly verify task completion, which we use as
the basis of our reward function. The reward r(h)
is -1 if h ends in a state where the puzzle cannot
be completed. For solved puzzles, the reward is
a positive value proportional to the percentage of
words assigned to non-null commands.

7 Experimental Setup

Datasets For the Windows domain, our dataset
consists of 128 documents, divided into 70 for
training, 18 for development, and 40 for test. In
the puzzle game domain, we use 50 tutorials,
divided into 40 for training and 10 for test.’
Statistics for the datasets are shown below.

Windows | Puzzle
Total # of documents 128 50
Total # of words 5562 994
Vocabulary size 610 46
Avg. words per sentence 9.93 19.88
Avg. sentences per document 4.38 1.00
Avg. actions per document 10.37 5.86

The data exhibits certain qualities that make
for a challenging learning problem. For instance,
there are a surprising variety of linguistic con-
structs — as Figure 4 shows, in the Windows do-
main even a simple command is expressed in at
least six different ways.

°For Crossblock, because the number of puzzles is lim-
ited, we did not hold out a separate development set, and re-
port averaged results over five training/test splits.



On the tools menu, click internet options

Click tools, and then click internet options

Click tools, and then choose internet options

Click internet options on the tools menu

In internet explorer, click internet options on the tools menu
On the tools menu in internet explorer, click internet options

Figure 4: Variations of “click internet options on
the tools menu” present in the Windows corpus.

Experimental Framework To apply our algo-
rithm to the Windows domain, we use the Win32
application programming interface to simulate hu-
man interactions with the user interface, and to
gather environment state information. The operat-
ing system environment is hosted within a virtual
machine,'© allowing us to rapidly save and reset
system state snapshots. For the puzzle game do-
main, we replicated the game with an implemen-
tation that facilitates automatic play.

As is commonly done in reinforcement learn-
ing, we use a softmax temperature parameter to
smooth the policy distribution (Sutton and Barto,
1998), set to 0.1 in our experiments. For Windows,
the development set is used to select the best pa-
rameters. For Crossblock, we choose the parame-
ters that produce the highest reward during train-
ing. During evaluation, we use these parameters
to predict mappings for the test documents.

Evaluation Metrics For evaluation, we com-
pare the results to manually constructed sequences
of actions. We measure the number of correct ac-
tions, sentences, and documents. An action is cor-
rect if it matches the annotations in terms of com-
mand and parameters. A sentence is correct if all
of its actions are correctly identified, and analo-
gously for documents.!! Statistical significance is
measured with the sign test.

Additionally, we compute a word alignment
score to investigate the extent to which the input
text is used to construct correct analyses. This
score measures the percentage of words that are
aligned to the corresponding annotated actions in
correctly analyzed documents.

Baselines We consider the following baselines
to characterize the performance of our approach.

10y Mware Workstation, available at www.vmware.com

n these tasks, each action depends on the correct execu-
tion of all previous actions, so a single error can render the
remainder of that document’s mapping incorrect. In addition,
due to variability in document lengths, overall action accu-
racy is not guaranteed to be higher than document accuracy.
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e Full Supervision Sequence prediction prob-
lems like ours are typically addressed us-
ing supervised techniques. We measure how
a standard supervised approach would per-
form on this task by using a reward signal
based on manual annotations of output ac-
tion sequences, as defined in Section 5.2. As
shown there, policy gradient with this re-
ward is equivalent to stochastic gradient as-
cent with a maximum likelihood objective.

Partial Supervision We consider the case
when only a subset of training documents is
annotated, and environment reward is used
for the remainder. Our method seamlessly
combines these two kinds of rewards.

Random and Majority (Windows) We con-
sider two naive baselines. Both scan through
each sentence from left to right. A com-
mand c is executed on the object whose name
is encountered first in the sentence. This
command c is either selected randomly, or
set to the majority command, which is left-
click. This procedure is repeated until no
more words match environment objects.

Random (Puzzle) We consider a baseline
that randomly selects among the actions that
are valid in the current game state.!?

8 Results

Table 2 presents evaluation results on the test sets.
There are several indicators of the difficulty of this
task. The random and majority baselines’ poor
performance in both domains indicates that naive
approaches are inadequate for these tasks. The
performance of the fully supervised approach pro-
vides further evidence that the task is challenging.
This difficulty can be attributed in part to the large
branching factor of possible actions at each step —
on average, there are 27.14 choices per action in
the Windows domain, and 9.78 in the Crossblock
domain.

In both domains, the learners relying only
on environment reward perform well. Although
the fully supervised approach performs the best,
adding just a few annotated training examples
to the environment-based learner significantly re-
duces the performance gap.

12Since action selection is among objects, there is no natu-
ral majority baseline for the puzzle.



Windows Puzzle
Action Sent. Doc. | Word || Action Doc. | Word
Random baseline 0.128 0.101 0.000 —_— 0.081 0.111 —
Majority baseline 0.287 0.197 0.100 —_— — — —
Environment reward || * 0.647 | % 0.590 | % 0.375 | 0.819 || % 0.428 | % 0.453 | 0.686
Partial supervision ©0.723 | % 0.702 0.475 | 0.989 0.575 | % 0.523 | 0.850
Full supervision ¢ 0.756 0.714 0.525 | 0.991 0.632 0.630 | 0.869

Table 2: Performance on the test set with different reward signals and baselines. Our evaluation measures
the proportion of correct actions, sentences, and documents. We also report the percentage of correct
word alignments for the successfully completed documents. Note the puzzle domain has only single-
sentence documents, so its sentence and document scores are identical. The partial supervision line
refers to 20 out of 70 annotated training documents for Windows, and 10 out of 40 for the puzzle. Each
result marked with * or ¢ is a statistically significant improvement over the result immediately above it;
* indicates p < 0.01 and ¢ indicates p < 0.05.

Windows Domain Puzzle Game Domain
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0.757
8 8
= £ 0.557
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Figure 5: Comparison of two training scenarios where training is done using a subset of annotated
documents, with and without environment reward for the remaining unannotated documents.

Figure 5 shows the overall tradeoff between an- 9  Conclusions
notation effort and system performance for the two
domains. The ability to make this tradeoff is one
of the advantages of our approach. The figure also
shows that augmenting annotated documents with
additional environment-reward documents invari-
ably improves performance.

In this paper, we presented a reinforcement learn-

ing approach for inducing a mapping between in-

structions and actions. This approach is able to use

environment-based rewards, such as task comple-

tion, to learn to analyze text. We showed that hav-

ing access to a suitable reward function can signif-
The word alignment results from Table 2 in- icantly reduce the need for annotations.

dicate that the learners are mapping the correct

words to actions for documents that are success- Acknowledgments

fully completed. For example, the models that per-
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Abstract and the records provide a structured representation

A central problem in grounded language acqui-
sition is learning the correspondences between a
rich world state and a stream of text which refer-
ences that world state. To deal with the high de-
gree of ambiguity present in this setting, we present
a generative model that simultaneously segments
the text into utterances and maps each utterance
to a meaning representation grounded in the world
state. We show that our model generalizes across
three domains of increasing difficulty—Robocup
sportscasting, weather forecasts (a new domain),
and NFL recaps.

1 Introduction

Recent work in learning semantics has focused
on mapping sentences to meaning representa-
tions (e.g., some logical form) given aligned sen-
tence/meaning pairs as training data (Ge and
Mooney, 2005; Zettlemoyer and Collins, 2005;
Zettlemoyer and Collins, 2007; Lu et al., 2008).
However, this degree of supervision is unrealistic
for modeling human language acquisition and can
be costly to obtain for building large-scale, broad-
coverage language understanding systems.

A more flexible direction is grounded language
acquisition: learning the meaning of sentences
in the context of an observed world state. The
grounded approach has gained interest in various
disciplines (Siskind, 1996; Yu and Ballard, 2004;
Feldman and Narayanan, 2004; Gorniak and Roy,
2007). Some recent work in the NLP commu-
nity has also moved in this direction by relaxing
the amount of supervision to the setting where
each sentence is paired with a small set of can-
didate meanings (Kate and Mooney, 2007; Chen
and Mooney, 2008).

The goal of this paper is to reduce the amount
of supervision even further. We assume that we are
given a world state represented by a set of records
along with a text, an unsegmented sequence of
words. For example, in the weather forecast do-
main (Section 2.2), the text is the weather report,
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of the temperature, sky conditions, etc.

In this less restricted data setting, we must re-
solve multiple ambiguities: (1) the segmentation
of the text into utterances; (2) the identification of
relevant facts, i.e., the choice of records and as-
pects of those records; and (3) the alignment of ut-
terances to facts (facts are the meaning represen-
tations of the utterances). Furthermore, in some
of our examples, much of the world state is not
referenced at all in the text, and, conversely, the
text references things which are not represented in
our world state. This increased amount of ambigu-
ity and noise presents serious challenges for learn-
ing. To cope with these challenges, we propose a
probabilistic generative model that treats text seg-
mentation, fact identification, and alignment in a
single unified framework. The parameters of this
hierarchical hidden semi-Markov model can be es-
timated efficiently using EM.

We tested our model on the task of aligning
text to records in three different domains. The
first domain is Robocup sportscasting (Chen and
Mooney, 2008). Their best approach (KRISPER)
obtains 67% F7; our method achieves 76.5%. This
domain is simplified in that the segmentation is
known. The second domain is weather forecasts,
for which we created a new dataset. Here, the
full complexity of joint segmentation and align-
ment arises. Nonetheless, we were able to obtain
reasonable results on this task. The third domain
we considered is NFL recaps (Barzilay and Lap-
ata, 2005; Snyder and Barzilay, 2007). The lan-
guage used in this domain is richer by orders of
magnitude, and much of it does not reference the
world state. Nonetheless, taking the first unsuper-
vised approach to this problem, we were able to
make substantial progress: We achieve an F; of
53.2%, which closes over half of the gap between
a heuristic baseline (26%) and supervised systems
(68%—80%).

Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 91-99,
Suntec, Singapore, 2-7 August 2009. ©2009 ACL and AFNLP



Dataset | #scenarios | |w| |7 Is| |A
Robocup 1919 5.7 9 24 0.8
Weather 22146 | 287 12 36.0 5.8
NFL 78 1 969.0 44 329.0 243

Table 1: Statistics for the three datasets. We report average
values across all scenarios in the dataset: |w| is the number of
words in the text, | 7| is the number of record types, |s| is the
number of records, and |.A] is the number of gold alignments.

2 Domains and Datasets

Our goal is to learn the correspondence between a
text w and the world state s it describes. We use
the term scenario to refer to such a (w, s) pair.

The fext is simply a sequence of words w
(w1, ..., Ww). We represent the world state s as
a set of records, where each record r € s is de-
scribed by a record type r.t € T and a tuple of
field values r.~v = (r.vy,...,r.vy)." For exam-
ple, temperature is a record type in the weather
domain, and it has four fields: time, min, mean,
and max.

The record type r.t € T specifies the field type
r.ty € {INT,STR,CAT} of each field value 7.vy,
f 1,...,m. There are three possible field
types—integer (INT), string (STR), and categori-
cal (CAT)—which are assumed to be known and
fixed. Integer fields represent numeric properties
of the world such as temperature, string fields rep-
resent surface-level identifiers such as names of
people, and categorical fields represent discrete
concepts such as score types in football (touch-
down, field goal, and safety). The field type de-
termines the way we expect the field value to be
rendered in words: integer fields can be numeri-
cally perturbed, string fields can be spliced, and
categorical fields are represented by open-ended
word distributions, which are to be learned. See
Section 3.3 for details.

2.1 Robocup Sportscasting

In this domain, a Robocup simulator generates the
state of a soccer game, which is represented by
a set of event records. For example, the record
pass(argl=pink1,arg2=pink5) denotes a pass-
ing event; this type of record has two fields: argl
(the actor) and arg2 (the recipient). As the game is
progressing, humans interject commentaries about
notable events in the game, e.g., pinkl passes back
to pink5 near the middle of the field. All of the

!To simplify notation, we assume that each record has m
fields, though in practice, m depends on the record type r.t.
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fields in this domain are categorical, which means
there is no a priori association between the field
value pink1 and the word pinkl. This degree of
flexibility is desirable because pink/ is sometimes
referred to as pink goalie, a mapping which does
not arise from string operations but must instead
be learned.

We used the dataset created by Chen and
Mooney (2008), which contains 1919 scenarios
from the 2001-2004 Robocup finals. Each sce-
nario consists of a single sentence representing a
fragment of a commentary on the game, paired
with a set of candidate records. In the annotation,
each sentence corresponds to at most one record
(possibly one not in the candidate set, in which
case we automatically get that sentence wrong).
See Figure 1(a) for an example and Table 1 for
summary statistics on the dataset.

2.2 'Weather Forecasts

In this domain, the world state contains de-
tailed information about a local weather forecast
and the text is a short forecast report (see Fig-
ure 1(b) for an example). To create the dataset,
we collected local weather forecasts for 3,753
cities in the US (those with population at least
10,000) over three days (February 7-9, 2009) from
www .weather.gov. For each city and date, we
created two scenarios, one for the day forecast and
one for the night forecast. The forecasts consist of
hour-by-hour measurements of temperature, wind
speed, sky cover, chance of rain, etc., which rep-
resent the underlying world state.

This world state is summarized by records
which aggregate measurements over selected time
intervals. For example, one of the records states
the minimum, average, and maximum tempera-
ture from Spm to 6am. This aggregation pro-
cess produced 22,146 scenarios, each containing
|s| = 36 multi-field records. There are 12 record
types, each consisting of only integer and categor-
ical fields.

To annotate the data, we split the text by punc-
tuation into /ines and labeled each line with the
records to which the line refers. These lines are
used only for evaluation and are not part of the
model (see Section 5.1 for further discussion).

The weather domain is more complex than the
Robocup domain in several ways: The text w is
longer, there are more candidate records, and most
notably, w references multiple records (5.8 on av-



S
badPass(argl=pink11,arg2=purple3) ...
ballstopped() ’
ballstopped|()
kick(argl=pink11)
turnover(argl=pink11,arg2=purple3)

w:
pink11 makes a bad pass and was picked off by purple3

(a) Robocup sportscasting

rainChance(time=26-30,mode=Def)

windDir(time=17-30,mode=SE)

skyCover(time=17-30,mode=50-75)
rainChance(time=21-30,mode=--)

temperature(time=17-30,min=43, mean=44,max=47)

precipPotential (time=17-30,min=5,mean=26,max=

windSpeed (time=17-30,min=11,mean=12,max=14,mode=10-20).

75)

rainChance(time=17-30,mode===) e |
windChill(time=17-30,min=37,mean=38,max=42)

w:

- Occasional rain after 3am .

- Low around 43 .

- South wind between 11 and 14 mph .

Chance of precipitation is 80 % .

New rainfall amounts between a
quarter and half of an inch possible .

(b) Weather forecasts

rushing(entity=richie anderson,att=5,yds=37,avg="7.4,1g=16,td=0)

receiving(entity=richie anderson,rec=4,yds=46,avg=11.5,1g=20,6d=0) w---rer-r---

play(quarter=1,description=richie anderson ( dal ) rushed left side for 13 yards .)
defense(entity=eric ogbogu,tot=4,s0lo=3,ast=1,sck=0,yds=0)

Wi

weeee Former Jets player Richie Anderson
finished with 37 yards on 5 carries
plus 4 receptions for 46 yards .

(c) NFL recaps

Figure 1: An example of a scenario for each of the three domains. Each scenario consists of a candidate set of records s and a
text w. Each record is specified by a record type (e.g., badPass) and a set of field values. Integer values are in Roman, string
values are in italics, and categorical values are in typewriter. The gold alignments are shown.

erage), so the segmentation of w is unknown. See
Table 1 for a comparison of the two datasets.

2.3 NFL Recaps

In this domain, each scenario represents a single
NFL football game (see Figure 1(c) for an exam-
ple). The world state (the things that happened
during the game) is represented by database tables,
e.g., scoring summary, team comparison, drive
chart, play-by-play, etc. Each record is a database
entry, for instance, the receiving statistics for a cer-
tain player. The text is the recap of the game—
an article summarizing the game highlights. The
dataset we used was collected by Barzilay and La-
pata (2005). The data includes 466 games during
the 2003-2004 NFL season. 78 of these games
were annotated by Snyder and Barzilay (2007),
who aligned each sentence to a set of records.
This domain is by far the most complicated of
the three. Many records corresponding to inconse-
quential game statistics are not mentioned. Con-
versely, the text contains many general remarks
(e.g., it was just that type of game) which are
not present in any of the records. Furthermore,
the complexity of the language used in the re-
cap is far greater than what we can represent us-
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ing our simple model. Fortunately, most of the
fields are integer fields or string fields (generally
names or brief descriptions), which provide im-
portant anchor points for learning the correspon-
dences. Nonetheless, the same names and num-
bers occur in multiple records, so there is still un-
certainty about which record is referenced by a
given sentence.

3 Generative Model

To learn the correspondence between a text w and
a world state s, we propose a generative model
p(w | s) with latent variables specifying this cor-
respondence.

Our model combines segmentation with align-
ment. The segmentation aspect of our model is
similar to that of Grenager et al. (2005) and Eisen-
stein and Barzilay (2008), but in those two models,
the segments are clustered into topics rather than
grounded to a world state. The alignment aspect
of our model is similar to the HMM model for
word alignment (Ney and Vogel, 1996). DeNero
et al. (2008) perform joint segmentation and word
alignment for machine translation, but the nature
of that task is different from ours.

The model is defined by a generative process,



which proceeds in three stages (Figure 2 shows the
corresponding graphical model):

1. Record choice: choose a sequence of records
r = (ry,...,7) to describe, where each
T €8.

Field choice: for each chosen record 7;, se-
lect a sequence of fields £; = (fi, ..., fig,)),
where each f;; € {1,...,m}.

3. Word choice: for each chosen field f;;,
choose a number ¢;; > 0 and generate a se-

quence of ¢;; words.

The observed text w is the terminal yield formed
by concatenating the sequences of words of all
fields generated; note that the segmentation of w
provided by ¢ = {c¢;;} is latent. Think of the
words spanned by a record as constituting an ut-
terance with a meaning representation given by the
record and subset of fields chosen.

Formally, our probabilistic model places a dis-
tribution over (r, f, ¢, w) and factorizes according
to the three stages as follows:

p(r,f,c,w|s) =p(r|s)p(f | r)p(c,w |r,{,s)

The following three sections describe each of
these stages in more detail.

3.1 Record Choice Model

The record choice model specifies a distribu-
tion over an ordered sequence of records r
(r1,...,7))), where each record 7; € s. This
model is intended to capture two types of regu-
larities in the discourse structure of language. The
first is salience, that is, some record types are sim-
ply more prominent than others. For example, in
the NFL domain, 70% of scoring records are men-
tioned whereas only 1% of punting records are
mentioned. The second is the idea of local co-
herence, that is, the order in which one mentions
records tend to follow certain patterns. For ex-
ample, in the weather domain, the sky conditions
are generally mentioned first, followed by temper-
ature, and then wind speed.

To capture these two phenomena, we define a
Markov model on the record types (and given the
record type, a record is chosen uniformly from the
set of records with that type):

1

rit)]’ M

p(r|s) = Hpnt]nlt)|(
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2

where s(t) o {r € s :rt =t} and ro.t is
a dedicated START record type.© We also model
the transition of the final record type to a desig-
nated STOP record type in order to capture regu-
larities about the types of records which are de-
scribed last. More sophisticated models of coher-
ence could also be employed here (Barzilay and
Lapata, 2008).

We assume that s includes a special null record
whose type is NULL, responsible for generating
parts of our text which do not refer to any real
records.

3.2 Field Choice Model

Each record type t € 7 has a separate field choice
model, which specifies a distribution over a se-
quence of fields. We want to capture salience
and coherence at the field level like we did at the
record level. For instance, in the weather domain,
the minimum and maximum fields of a tempera-
ture record are mentioned whereas the average is
not. In the Robocup domain, the actor typically
precedes the recipient in passing event records.

Formally, we have a Markov model over the
fields:?

| 1551

HHP fiz | fz(j 1)

i=1j=1

p(f|r)= 2)

Each record type has a dedicated null field with
its own multinomial distribution over words, in-
tended to model words which refer to that record
type in general (e.g., the word passes for passing
records). We also model transitions into the first
field and transitions out of the final field with spe-
cial START and STOP fields. This Markov structure
allows us to capture a few elements of rudimentary
syntax.

3.3 Word Choice Model

We arrive at the final component of our model,
which governs how the information about a par-
ticular field of a record is rendered into words. For
each field f;;, we generate the number of words c;;
from a uniform distribution over {1, 2, ..., Ciax }»
where Chax is set larger than the length of the
longest text we expect to see. Conditioned on

2We constrain our inference to only consider record types
t that occur in s, i.e., s(t) # 0.

3During inference, we prohibit consecutive fields from re-
peating.



Record choice

Field choice

«— e = o« W;

Word choice

Figure 2: Graphical model representing the generative model. First, records are chosen and ordered from the set s. Then fields
are chosen for each record. Finally, words are chosen for each field. The world state s and the words w are observed, while
(r, f, c) are latent variables to be inferred (note that the number of latent variables itself is unknown).

the fields f, the words w are generated indepen-
dently:*

il

p(w|r,f,c,s)= pr(wk [ 7(Kk)-tpry, 7(K)- (1))
k=1

where 7(k) and f(k) are the record and field re-
sponsible for generating word wy, as determined
by the segmentation c. The word choice model
pw(w | t,v) specifies a distribution over words
given the field type ¢ and field value v. This distri-
bution is a mixture of a global backoff distribution
over words and a field-specific distribution which
depends on the field type ¢.

Although we designed our word choice model
to be relatively general, it is undoubtedly influ-
enced by the three domains. However, we can
readily extend or replace it with an alternative if
desired; this modularity is one principal benefit of
probabilistic modeling.

Integer Fields (t = INT) For integer fields, we
want to capture the intuition that a numeric quan-
tity v is rendered in the text as a word which
is possibly some other numerical value w due to
stylistic factors. Sometimes the exact value v is
used (e.g., in reporting football statistics). Other
times, it might be customary to round v (e.g., wind
speeds are typically rounded to a multiple of 5).
In other cases, there might just be some unex-
plained error, where w deviates from v by some
noise ey =w—v >0o0re. =v—w>0. We
model e, and e_ as geometric distributions.> In

*While a more sophisticated model of words would be
useful if we intended to use this model for natural language
generation, the false independence assumptions present here
matter less for the task of learning the semantic correspon-
dences because we always condition on w.

>Specifically, p(es; o) (1 — a3)“ta, where
oy is a field-specific parameter; p(e—; a—) is defined analo-
gously.
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(b) windSpeed.min

Figure 3: Two integer field types in the weather domain for
which we learn different distributions over the ways in which
a value v might appear in the text as a word w. Suppose the
record field value is v = 13. Both distributions are centered
around v, as is to be expected, but the two distributions have
different shapes: For temperature.min, almost all the mass
is to the left, suggesting that forecasters tend to report con-
servative lower bounds. For the wind speed, the mass is con-
centrated on 13 and 15, suggesting that forecasters frequently
round wind speeds to multiples of 5.

summary, we allow six possible ways of generat-
ing the word w given v:

[v]s  |v]s

Separate probabilities for choosing among these
possibilities are learned for each field type (see
Figure 3 for an example).

v rounds(v) v—e_ v+4eyq

String Fields (¢ = STR) Strings fields are in-
tended to represent values which we expect to be
realized in the text via a simple surface-level trans-
formation. For example, a name field with value
v = Moe Williams is sometimes referenced in the
text by just Williams. We used a simple generic
model of rendering string fields: Let w be a word
chosen uniformly from those in v.

Categorical Fields (¢ CAT) Unlike string
fields, categorical fields are not tied down to any
lexical representation; in fact, the identities of the
categorical field values are irrelevant. For each
categorical field f and possible value v, we have a



v ‘ pw(w | t,v)

0-25 , clear mostly sunny

25-50 partly , cloudy increasing

50-75 mostly cloudy , partly

75-100 | of inch an possible new a rainfall

Table 2: Highest probability words for the categorical field
skyCover.mode in the weather domain. It is interesting to
note that skyCover=75-100 is so highly correlated with rain
that the model learns to connect an overcast sky in the world
to the indication of rain in the text.

separate multinomial distribution over words from
which w is drawn. An example of a categori-
cal field is skyCover.mode in the weather domain,
which has four values: 0-25, 25-50, 50-75,
and 75-100. Table 2 shows the top words for
each of these field values learned by our model.

4 Learning and Inference

Our learning and inference methodology is a fairly
conventional application of Expectation Maxi-
mization (EM) and dynamic programming. The
input is a set of scenarios D, each of which is a
text w paired with a world state s. We maximize
the marginal likelihood of our data, summing out
the latent variables (r, f, ¢):

max [ > p(rfew|s:0),

(w,s)eDr.fc

3)

where 6 are the parameters of the model (all the
multinomial probabilities). We use the EM algo-
rithm to maximize (3), which alternates between
the E-step and the M-step. In the E-step, we
compute expected counts according to the poste-
rior p(r,f,c | w,s;0). In the M-step, we op-
timize the parameters 6 by normalizing the ex-
pected counts computed in the E-step. In our ex-
periments, we initialized EM with a uniform dis-
tribution for each multinomial and applied add-0.1
smoothing to each multinomial in the M-step.

As with most complex discrete models, the bulk
of the work is in computing expected counts under
p(r,f,c | w,s;0). Formally, our model is a hier-
archical hidden semi-Markov model conditioned
on s. Inference in the E-step can be done using a
dynamic program similar to the inside-outside al-
gorithm.

5 Experiments

Two important aspects of our model are the seg-
mentation of the text and the modeling of the co-
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herence structure at both the record and field lev-
els. To quantify the benefits of incorporating these
two aspects, we compare our full model with two
simpler variants.

e Model 1 (no model of segmentation or co-
herence): Each record is chosen indepen-
dently; each record generates one field, and
each field generates one word. This model is
similar in spirit to IBM model 1 (Brown et
al., 1993).

Model 2 (models segmentation but not coher-
ence): Records and fields are still generated
independently, but each field can now gener-
ate multiple words.

Model 3 (our full model of segmentation and
coherence): Records and fields are generated
according to the Markov chains described in
Section 3.

5.1 Evaluation

In the annotated data, each text w has been di-
vided into a set of lines. These lines correspond
to clauses in the weather domain and sentences in
the Robocup and NFL domains. Each line is an-
notated with a (possibly empty) set of records. Let
A be the gold set of these line-record alignment
pairs.

To evaluate a learned model, we com-
pute the Viterbi segmentation and alignment
(argmax, ¢ . p(r, f, ¢ | w,s)). We produce a pre-
dicted set of line-record pairs A’ by aligning a line
to a record r; if the span of (the utterance corre-
sponding to) r; overlaps the line. The reason we
evaluate indirectly using lines rather than using ut-
terances is that it is difficult to annotate the seg-
mentation of text into utterances in a simple and
consistent manner.

We compute standard precision, recall, and F;
of A’ with respect to .A. Unless otherwise spec-
ified, performance is reported on all scenarios,
which were also used for training. However, we
did not tune any hyperparameters, but rather used
generic values which worked well enough across
all three domains.

5.2 Robocup Sportscasting

We ran 10 iterations of EM on Models 1-3. Ta-
ble 3 shows that performance improves with in-
creased model sophistication. We also compare



Method | Precision Recall F;

Model 1 78.6 619 693
Model 2 74.1 84.1 7838
Model 3 773 84.0 80.5

Table 3: Alignment results on the Robocup sportscasting
dataset.

Method ‘ F,

Random baseline 48.0
Chen and Mooney (2008) | 67.0
Model 3 75.7

Table 4: F; scores based on the 4-fold cross-validation
scheme in Chen and Mooney (2008).

our model to the results of Chen and Mooney
(2008) in Table 4.

Figure 4 provides a closer look at the predic-
tions made by each of our three models for a par-
ticular example. Model 1 easily mistakes pinkl0
for the recipient of a pass record because decisions
are made independently for each word. Model 2
chooses the correct record, but having no model
of the field structure inside a record, it proposes
an incorrect field segmentation (although our eval-
uation is insensitive to this). Equipped with the
ability to prefer a coherent field sequence, Model
3 fixes these errors.

Many of the remaining errors are due to the
garbage collection phenomenon familiar from
word alignment models (Moore, 2004; Liang et
al., 2006). For example, the ballstopped record
occurs frequently but is never mentioned in the
text. At the same time, there is a correlation be-
tween ballstopped and utterances such as pink2
holds onto the ball, which are not aligned to any
record in the annotation. As a result, our model
incorrectly chooses to align the two.

5.3 Weather Forecasts

For the weather domain, staged training was nec-
essary to get good results. For Model 1, we ran
15 iterations of EM. For Model 2, we ran 5 it-
erations of EM on Model 1, followed by 10 it-
erations on Model 2. For Model 3, we ran 5 it-
erations of Model 1, 5 iterations of a simplified
variant of Model 3 where records were chosen in-
dependently, and finally, 5 iterations of Model 3.
When going from one model to another, we used
the final posterior distributions of the former to ini-
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Method | Precision Recall F;

Model 1 49.9 75.1  60.0
Model 2 67.3 704  68.8
Model 3 76.3 73.8 75.0

Table 5: Alignment results on the weather forecast dataset.

r: pass

[Model 1] f: |arg2=pink10

w: pinkl10 turns the ball over to purples
T turnover
[Model 2] f: arg2=purpleb
w: |pink10 turns the ball over|| to purple5
T turnover
[Model 3] f: |argl=pink10 arg2=purple5
w: pinkl10 turns the ball over to purples

Figure 4: An example of predictions made by each of the
three models on the Robocup dataset.

tialize the parameters of the latter.® We also pro-
hibited utterances in Models 2 and 3 from crossing
punctuation during inference.

Table 5 shows that performance improves sub-
stantially in the more sophisticated models, the
gains being greater than in the Robocup domain.
Figure 5 shows the predictions of the three models
on an example. Model 1 is only able to form iso-
lated (but not completely inaccurate) associations.
By modeling segmentation, Model 2 accounts for
the intermediate words, but errors are still made
due to the lack of Markov structure. Model 3
remedies this. However, unexpected structures
are sometimes learned. For example, the temper-
ature.time=6-21 field indicates daytime, which
happens to be perfectly correlated with the word
high, although high intuitively should be associ-
ated with the temperature.max field. In these cases
of high correlation (Table 2 provides another ex-
ample), it is very difficult to recover the proper
alignment without additional supervision.

5.4 NFL Recaps

In order to scale up our models to the NFL do-
main, we first pruned for each sentence the records
which have either no numerical values (e.g., 23,
23-10, 2/4) nor name-like words (e.g., those that
appear only capitalized in the text) in common.
This eliminated all but 1.5% of the record can-
didates per sentence, while maintaining an ora-

81t is interesting to note that this type of staged training
is evocative of language acquisition in children: lexical asso-
ciations are formed (Model 1) before higher-level discourse
structure is learned (Model 3).



r: windDir ||temperature windDir windSpeed windSpeed
[Model 1] £: time=6-21|| max=63 mode=SE min=>5 mean=9
w: cloudy , with a | high near 63 . |east southeast| wind between 5 and 11 mph .
r: |rainChance temperature windDir windSpeed
[Model 2] f: | [mode=- time=6-21 max=63 mode=SE mean=9
w: | | cloudy , | ||with a|| high near 03 . ||east southeast wind| between 5 and|| |11 mph .
r: |skyCover temperature windDir windSpeed
[MOdGﬂ 3] f: time=6-21 ' max=63| |mean=>56|| mode=SE min=5 max=13
w: | cloudy ,|||with a|| high near 63 east southeast||wind between, 5 and 11 |\mph .

Figure 5: An example of predictions made by each of the three models on the weather dataset.

cle alignment F; score of 88.7. Guessing a single
random record for each sentence yields an F; of
12.0. A reasonable heuristic which uses weighted
number- and string-matching achieves 26.7.

Due to the much greater complexity of this do-
main, Model 2 was easily misled as it tried with-
out success to find a coherent segmentation of the
fields. We therefore created a variant, Model 2’,
where we constrained each field to generate ex-
actly one word. To train Model 2’°, we ran 5 it-
erations of EM where each sentence is assumed
to have exactly one record, followed by 5 itera-
tions where the constraint was relaxed to also al-
low record boundaries at punctuation and the word
and. We did not experiment with Model 3 since
the discourse structure on records in this domain is
not at all governed by a simple Markov model on
record types—indeed, most regions do not refer to
any records at all. We also fixed the backoft prob-
ability to 0.1 instead of learning it and enforced
zero numerical deviation on integer field values.

Model 2’ achieved an F; of 39.9, an improve-
ment over Model 1, which attained 32.8. Inspec-
tion of the errors revealed the following problem:
The alignment task requires us to sometimes align
a sentence to multiple redundant records (e.g.,
play and score) referenced by the same part of the
text. However, our model generates each part of
text from only one record, and thus it can only al-
low an alignment to one record.” To cope with this
incompatibility between the data and our notion of
semantics, we used the following solution: We di-
vided the records into three groups by type: play,
score, and other. Each group has a copy of the
model, but we enforce that they share the same
segmentation. We also introduce a potential that
couples the presence or absence of records across

"The model can align a sentence to multiple records pro-
vided that the records are referenced by non-overlapping
parts of the text.

98

Method Precision Recall F;

Random (with pruning) 13.1 11.0 120
Baseline 29.2 246  26.7
Model 1 25.2 469 328
Model 2° 43.4 37.0 399
Model 2’ (with groups) 46.5 62.1 532
Graph matching (sup.) 73.4 64.5 68.6
Multilabel global (sup.) 87.3 745  80.3

Table 6: Alignment results on the NFL dataset. Graph match-
ing and multilabel are supervised results reported in Snyder
and Barzilay (2007).°

groups on the same segment to capture regular co-
occurrences between redundant records.

Table 6 shows our results. With groups, we
achieve an F; of 53.2. Though we still trail su-
pervised techniques, which attain numbers in the
68—80 range, we have made substantial progress
over our baseline using an unsupervised method.
Furthermore, our model provides a more detailed
analysis of the correspondence between the world
state and text, rather than just producing a single
alignment decision. Most of the remaining errors
made by our model are due to a lack of calibra-
tion. Sometimes, our false positives are close calls
where a sentence indirectly references a record,
and our model predicts the alignment whereas the
annotation standard does not. We believe that fur-
ther progress is possible with a richer model.

6 Conclusion

We have presented a generative model of corre-
spondences between a world state and an unseg-
mented stream of text. By having a joint model
of salience, coherence, and segmentation, as well
as a detailed rendering of the values in the world
state into words in the text, we are able to cope
with the increased ambiguity that arises in this new
data setting, successfully pushing the limits of un-
supervision.
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Abstract

In this paper, we propose a new Bayesian
model for fully unsupervised word seg-
mentation and an efficient blocked Gibbs
sampler combined with dynamic program-
ming for inference. Our model is a nested
hierarchical Pitman-Yor language model,
where Pitman-Yor spelling model is em-
bedded in the word model. We confirmed
that it significantly outperforms previous
reported results in both phonetic tran-
scripts and standard datasets for Chinese
and Japanese word segmentation. Our
model is also considered as a way to con-
struct an accurate word n-gram language
model directly from characters of arbitrary
language, without any “word” indications.

1 Introduction

“Word” is no trivial concept in many languages.
Asian languages such as Chinese and Japanese
have no explicit word boundaries, thus word seg-
mentation is a crucial first step when processing
them. Even in western languages, valid “words”
are often not identical to space-separated tokens.
For example, proper nouns such as “United King-
dom” or idiomatic phrases such as “with respect
to” actually function as a single word, and we of-
ten condense them into the virtual words “UK”
and “w.r.t.”.

In order to extract “words” from text streams,
unsupervised word segmentation is an important
research area because the criteria for creating su-
pervised training data could be arbitrary, and will
be suboptimal for applications that rely on seg-
mentations. It is particularly difficult to create
“correct” training data for speech transcripts, col-
loquial texts, and classics where segmentations are
often ambiguous, let alone is impossible for un-
known languages whose properties computational
linguists might seek to uncover.
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From a scientific point of view, it is also inter-
esting because it can shed light on how children
learn “words” without the explicitly given bound-
aries for every word, which is assumed by super-
vised learning approaches.

Lately, model-based methods have been intro-
duced for unsupervised segmentation, in particu-
lar those based on Dirichlet processes on words
(Goldwater et al., 2006; Xu et al., 2008). This
maximizes the probability of word segmentation
w given a string s :

ey

This approach often implicitly includes heuristic
criteria proposed so far!, while having a clear sta-
tistical semantics to find the most probable word
segmentation that will maximize the probability of
the data, here the strings.

However, they are still naive with respect to
word spellings, and the inference is very slow ow-
ing to inefficient Gibbs sampling. Crucially, since
they rely on sampling a word boundary between
two neighboring words, they can leverage only up
to bigram word dependencies.

In this paper, we extend this work to pro-
pose a more efficient and accurate unsupervised
word segmentation that will optimize the per-
formance of the word n-gram Pitman-Yor (i.e.
Bayesian Kneser-Ney) language model, with an
accurate character oo-gram Pitman-Yor spelling
model embedded in word models.  Further-
more, it can be viewed as a method for building
a high-performance n-gram language model di-
rectly from character strings of arbitrary language.
It is carefully smoothed and has no “unknown
words” problem, resulting from its model struc-
ture.

W = argmax p(w|s) .
w

This paper is organized as follows. In Section 2,

"For instance, TANGO algorithm (Ando and Lee, 2003)
essentially finds segments such that character n-gram proba-
bilities are maximized blockwise, averaged over n.

Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 100-108,
Suntec, Singapore, 2-7 August 2009. ©2009 ACL and AFNLP
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from the Pitman-Yor process. Here, n = 3.
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sing
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sing wisit  call
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Restaurant process. Each word in a training text is a “customer”

shown in italic, and added to the leaf of its two words context.

Figure 1: Hierarchical Pitman-Yor Language Model.

we briefly describe a language model based on the
Pitman-Yor process (Teh, 2006b), which is a gen-
eralization of the Dirichlet process used in previ-
ous research. By embedding a character n-gram
in word n-gram from a Bayesian perspective, Sec-
tion 3 introduces a novel language model for word
segmentation, which we call the Nested Pitman-
Yor language model. Section 4 describes an ef-
ficient blocked Gibbs sampler that leverages dy-
namic programming for inference. In Section 5 we
describe experiments on the standard datasets in
Chinese and Japanese in addition to English pho-
netic transcripts, and semi-supervised experiments
are also explored. Section 6 is a discussion and
Section 7 concludes the paper.

2 Pitman-Yor process and n-gram
models

To compute a probability p(w|s) in (1), we adopt
a Bayesian language model lately proposed by
(Teh, 2006b; Goldwater et al., 2005) based on
the Pitman-Yor process, a generalization of the
Dirichlet process. As we shall see, this is a
Bayesian theory of the best-performing Kneser-
Ney smoothing of n-grams (Kneser and Ney,
1995), allowing an integrated modeling from a
Bayesian perspective as persued in this paper.

The Pitman-Yor (PY) process is a stochastic
process that generates discrete probability distri-
bution G that is similar to another distribution G,
called a base measure. It is written as

G ~ PY(Gy,d, 0) ) (2)

where d is a discount factor and 6 controls how
similar G is to Gy on average.

Suppose we have a unigram word distribution
G1={p(-) } where - ranges over each word in the
lexicon. The bigram distribution G2 = { p(-|v) }
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given a word v is different from G, but will be
similar to GG; especially for high frequency words.
Therefore, we can generate Gz from a PY pro-
cess of base measure G, as Go ~ PY(G1,d,0).
Similarly, trigram distribution G3 = {p(:|v'v) }
given an additional word v’ is generated as G'3 ~
PY(G2,d,0), and G1,Gy,G3 will form a tree
structure shown in Figure 1(a).

In practice, we cannot observe G directly be-
cause it will be infinite dimensional distribution
over the possible words, as we shall see in this
paper. However, when we integrate out G it is
known that Figure 1(a) can be represented by an
equivalent hierarchical Chinese Restaurant Pro-
cess (CRP) (Aldous, 1985) as in Figure 1(b).

In this representation, each n-gram context h
(including the null context e for unigrams) is
a Chinese restaurant whose customers are the
n-gram counts c(w|h) seated over the tables
1..-tpy. The seatings has been incrementally
constructed by choosing the table k for each count
in c(w|h) with probability proportional to

{ (kzlv"'athw)
(k = new)

where cp,,1 1s the number of customers seated at
table k thus far and t5. = ), ths, is the total num-
ber of tables in h. When k = new is selected,
thw 18 Incremented, and this means that the count
was actually generated from the shorter context h’.
Therefore, in that case a proxy customer is sent to
the parent restaurant and this process will recurse.

For example, if we have a sentence “she will
sing” in the training data for trigrams, we add each
word “she” “will” “sing” “$” as a customer to its
two preceding words context node, as described
in Figure 1(b). Here, “$” is a special token rep-
resenting a sentence boundary in language model-

Chwk — d

3
0+ d-t, ©)



ing (Brown et al., 1992).
As a result, the n-gram probability of this hier-
archical Pitman-Yor language model (HPYLM) is
recursively computed as
c(w|h)=d -t
h) =
plwlh) 6-+c(h)

0+d-ty,.
O+c(h) ¥

(wlh),
“)

where p(w|h') is the same probability using a
(n—1)-gram context h’. When we set tp,, = 1, (4)
recovers a Kneser-Ney smoothing: thus a HPYLM
is a Bayesian Kneser-Ney language model as well
as an extension of the hierarchical Dirichlet Pro-
cess (HDP) used in Goldwater et al. (2006). 6,d
are hyperparameters that can be learned as Gamma
and Beta posteriors, respectively, given the data.
For details, see Teh (2006a).

The inference of this model interleaves adding
and removing a customer to optimize tj,,, d, and
0 using MCMC. However, in our case “words”
are not known a priori: the next section describes
how to accomplish this by constructing a nested
HPYLM of words and characters, with the associ-
ated inference algorithm.

3 Nested Pitman-Yor Language M odel

Thus far we have assumed that the unigram G
is already given, but of course it should also be
generated as G; ~ PY (G, d, 0).

Here, a problem occurs: What should we use for
G, namely the prior probabilities over words??
If a lexicon is finite, we can use a uniform prior
Go(w) = 1/|V| for every word w in lexicon V.
However, with word segmentation every substring
could be a word, thus the lexicon is not limited but
will be countably infinite.

Building an accurate Gy is crucial for word
segmentation, since it determines how the possi-
ble words will look like. Previous work using a
Dirichlet process used a relatively simple prior for
Gy, namely an uniform distribution over charac-
ters (Goldwater et al., 2006), or a prior solely de-
pendent on word length with a Poisson distribution
whose parameter is fixed by hand (Xu et al., 2008).

In contrast, in this paper we use a simple but
more elaborate model, that is, a character n-gram
language model that also employs HPYLM. This
is important because in English, for example,
words are likely to end in ‘—tion’ and begin with

Note that this is different from unigrams, which are pos-
terior distribution given data.
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Figure 2: Chinese restaurant representation of our
Nested Pitman-Yor Language Model (NPYLM).

‘re—’, but almost never end in ‘—tio’ nor begin with
‘sre—" 3.
Therefore, we use

Go(w) = ]Scl e ck)

= HP(Ci\Cl”'CPl)
i=1

where string c;---c; is a spelling of w, and
p(ci|er -+ - ¢i—1) is given by the character HPYLM
according to (4).

This language model, which we call Nested
Pitman-Yor Language Model (NPYLM) hereafter,
is the hierarchical language model shown in Fig-
ure 2, where the character HPYLM is embedded
as a base measure of the word HPYLM.* As the
final base measure for the character HPYLM, we
used a uniform prior over the possible characters
of a given language. To avoid dependency on n-
gram order n, we actually used the co-gram lan-
guage model (Mochihashi and Sumita, 2007), a
variable order HPYLM, for characters. However,
for generality we hereafter state that we used the
HPYLM. The theory remains the same for co-
grams, except sampling or marginalizing over n
as needed.

Furthermore, we corrected (5) so that word
length will have a Poisson distribution whose pa-
rameter can now be estimated for a given language
and word type. We describe this in detail in Sec-
tion 4.3.

&)
(6)

Chinese Restaurant Representation

In our NPYLM, the word model and the charac-
ter model are not separate but connected through
a nested CRP. When a word w is generated from
its parent at the unigram node, it means that w

*Imagine we try to segment an English character string
“itisrecognizedasthe- - -

4Strictly speaking, this is not “nested” in the sense of a
Nested Dirichlet process (Rodriguez et al., 2008) and could
be called “hierarchical HPYLM”, which denotes another
model for domain adaptation (Wood and Teh, 2008).



is drawn from the base measure, namely a char-
acter HPYLM. Then we divide w into characters
c1--- ¢ to yield a “sentence” of characters and
feed this into the character HPYLM as data.

Conversely, when a table becomes empty, this
means that the data associated with the table are
no longer valid. Therefore we remove the corre-
sponding customers from the character HPYLM
using the inverse procedure of adding a customer
in Section 2.

All these processes will be invoked when a
string is segmented into “words” and customers
are added to the leaves of the word HPYLM. To
segment a string into “words”, we used efficient
dynamic programming combined with MCMC, as
described in the next section.

4 |nference

To find the hidden word segmentation w of a string
§=cj - - cn, which is equivalent to the vector of
binary hidden variables z = z; --- 2y, the sim-
plest approach is to build a Gibbs sampler that ran-
domly selects a character c; and draw a binary de-
cision z; as to whether there is a word boundary,
and then update the language model according to
the new segmentation (Goldwater et al., 2006; Xu
et al., 2008). When we iterate this procedure suf-
ficiently long, it becomes a sample from the true
distribution (1) (Gilks et al., 1996).

However, this sampler is too inefficient since
time series data such as word segmentation have a
very high correlation between neighboring words.
As a result, the sampler is extremely slow to con-
verge. In fact, (Goldwater et al., 2006) reports that
the sampler would not mix without annealing, and
the experiments needed 20,000 times of sampling
for every character in the training data.

Furthermore, it has an inherent limitation that
it cannot deal with larger than bigrams, because it
uses only local statistics between directly contigu-
ous words for word segmentation.

4.1 Blocked Gibbssampler

Instead, we propose a sentence-wise Gibbs sam-
pler of word segmentation using efficient dynamic
programming, as shown in Figure 3.

In this algorithm, first we randomly select a
string, and then remove the “sentence” data of its
word segmentation from the NPYLM. Sampling
a new segmentation, we update the NPYLM by
adding a new ““sentence” according to the new seg-
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cforj=1.---Jdo
for s in randperm (sy,--- ,sp) do
if j>1then
Remove customers of w(s) from ©
end if
Draw w(s) according to p(w|s, ©)
Add customers of w(s) to ©
end for
Sample hyperparameters of ©
end for

1
2
3
4:
5:
6
7
8
9

10:
Figure 3: Blocked Gibbs Sampler of NPYLM ©.

mentation. When we repeat this process, it is ex-
pected to mix rapidly because it implicitly consid-
ers all possible segmentations of the given string
at the same time.

This is called a blocked Gibbs sampler that sam-
ples z block-wise for each sentence. It has an ad-
ditional advantage in that we can accommodate
higher-order relationships than bigrams, particu-
larly trigrams, for word segmentation. 3

4.2 Forward-Backward inference

Then, how can we sample a segmentation w for
each string s? In accordance with the Forward fil-
tering Backward sampling of HMM (Scott, 2002),
this is achieved by essentially the same algorithm
employed to sample a PCFG parse tree within
MCMC (Johnson et al., 2007) and grammar-based
segmentation (Johnson and Goldwater, 2009).

Forward Filtering. For this purpose, we main-
tain a forward variable «/[t][k] in the bigram case.
at][k] is the probability of a string ¢y - - - ¢; with
the final k& characters being a word (see Figure 4).
Segmentations before the final k£ characters are
marginalized using the following recursive rela-
tionship:

B

all[k] =}

t |Ct—k
t—k4+11C—k—j+1

ple )-aft=k][5] ()

[y

where a[0][0] =1 and we wrote ¢, - - - ¢, as .

The rationale for (7) is as follows. Since main-
taining binary variables zi,--- , zy is equivalent
to maintaining a distance to the nearest backward

3In principle fourgrams or beyond are also possible, but
will be too complex while the gain will be small. For this
purpose, Particle MCMC (Doucet et al., 2009) is promising
but less efficient in a preliminary experiment.

6 As Murphy (2002) noted, in semi-HMM we cannot use a
standard trick to avoid underflow by normalizing «[t][k] into
p(kl|t), since the model is asynchronous. Instead we always
compute (7) using | ogsumexp() .



t—k—j+1 t—k

t—k+1 1

-k
p( Ci—k—i—l \ Ci—k—j—o—l )

aft=k][j]

J

Figure 4: Forward filtering of «/[t][k] to marginal-
ize out possible segmentations j before ¢ —k.

1: fort =1to N do

2. for k = max(1,t—L) tot do

3 Compute «ft][k] according to (7).
4. endfor

5: end for

6: Initialize t < N, i « 0, wg < $

7: whilet > 0 do

8 Draw k o< p(wilc;_; ,©) - alt][K]
9:  Setw; — ¢4
10 Sett+—t—Fk,i—i+1
11: end while
12: Return w = w;, w; 1, -+ ,W1.

Figure 5: Forward-Backward sampling of word
segmentation w. (in bigram case)

word boundary for each ¢ as ¢;, we can write
alt)lk]=p(ci, a:=k)
= "p(d, =k, q—r=7)

®)
®)

J

= p(d ™ cl i =k, g =4)(10)
J

= " p(c}_pralei Pl e =4)11)
J

=3 pleh e alt K],

where we used conditional independency of g,
given ¢;_j and uniform prior over ¢, in (11) above.

(12)

Backward Sampling. Once the probability ta-
ble a[t][k] is obtained, we can sample a word seg-
mentation backwards. Since o[/V][k] is a marginal
probability of string ¢l with the last & charac-
ters being a word, and there is always a sentence
boundary token $ at the end of the string, with
probability proportional to p($|c_,)-a[N][k] we
can sample k to choose the boundary of the final
word. The second final word is similarly sampled
using the probability of preceding the last word
just sampled: we continue this process until we
arrive at the beginning of the string (Figure 5).

Trigram case. For simplicity, we showed the
algorithm for bigrams above. For trigrams, we
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maintain a forward variable «[t][k][j], which rep-
resents a marginal probability of string c; --- ¢
with both the final k£ characters and further j
characters preceding it being words. Forward-
Backward algorithm becomes complicated thus
omitted, but can be derived following the extended
algorithm for second order HMM (He, 1988).

Complexity This algorithm has a complexity of
O(NL?) for bigrams and O(NL?) for trigrams
for each sentence, where N is the length of the
sentence and L is the maximum allowed length of
aword (< N).

4.3 Poisson correction

As Nagata (1996) noted, when only (5) is used in-
adequately low probabilities are assigned to long
words, because it has a largely exponential dis-
tribution over length. To correct this, we assume
that word length % has a Poisson distribution with
a mean A:

)\k
Po(k|\) = e~

ik (13)

Since the appearance of c; - - - ¢ is equivalent
to that of length £ and the content, by making the
character n-gram model explicit as © we can set

pler---cx) = pler-- -, k) (14)
p(cl Ck:7k|@)

= Po(k|\ 15

2(k]0) o(k|A) (15)

where p(cy---ck, k|O) is an n-gram probabil-
ity given by (6), and p(k|©) is a probability
that a word of length k& will be generated from
©. While previous work used p(k|©) = (1 —
p($))*~1p($), this is only true for unigrams. In-
stead, we employed a Monte Carlo method that
generates words randomly from © to obtain the
empirical estimates of p(k|©).

Estimating A\.  Of course, we do not leave A as a
constant. Instead, we put a Gamma distribution
ba

I'(a)
to estimate A from the data for given language
and word type.” Here, I'(z) is a Gamma function
and a, b are the hyperparameters chosen to give a
nearly uniform prior distribution.?

p(A) = Ga(a,b) = A Lem0A

(16)

"We used different \ for different word types, such as dig-
its, alphabets, hiragana, CJK characters, and their mixtures.
W is a set of words of each such type, and (13) becomes a
mixture of Poisson distributions in this case.

81n the following experiments, we set a=0.2,b=0.1.



Denoting W as a set of “words” obtained from
word segmentation, the posterior distribution of A
used for (13) is

PAW) o< p(W[N)p(N)
=Ga(a+ > tw)lw], b+ Y _ tw)), (A7)

weWw weW
where ¢(w) is the number of times word w is gen-
erated from the character HPYLM, i.e. the number
of tables ¢, for w in word unigrams. We sampled
A from this posterior for each Gibbs iteration.

5 Experiments

To validate our model, we conducted experiments
on standard datasets for Chinese and Japanese
word segmentation that are publicly available, as
well as the same dataset used in (Goldwater et al.,
2006). Note that NPYLM maximizes the probabil-
ity of strings, equivalently, minimizes the perplex-
ity per character. Therefore, the recovery of the
“ground truth” that is not available for inference is
a byproduct in unsupervised learning.

Since our implementation is based on Unicode
and learns all hyperparameters from the data, we
also confirmed that NPYLM segments the Arabic
Gigawords equally well.

5.1 English phonetic transcripts

In order to directly compare with the previously
reported result, we first used the same dataset
as Goldwater et al. (2006). This dataset con-
sists of 9,790 English phonetic transcripts from
CHILDES data (MacWhinney and Snow, 1985).

Since our algorithm converges rather fast, we
ran the Gibbs sampler of trigram NPYLM for 200
iterations to obtain the results in Table 1. Among
the token precision (P), recall (R), and F-measure
(F), the recall is especially higher to outperform
the previous result based on HDP in F-measure.
Meanwhile, the same measures over the obtained
lexicon (LP, LR, LF) are not always improved.
Moreover, the average length of words inferred
was surprisingly similar to ground truth: 2.88,
while the ground truth is 2.87.

Table 2 shows the empirical computational time
needed to obtain these results. Although the con-
vergence in MCMC is not uniquely identified, im-
provement in efficiency is also outstanding.

5.2 Chinese and Japanese word segmentation

To show applicability beyond small phonetic tran-
scripts, we used standard datasets for Chinese and
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Model
NPY(3) | 74.8 | 75.2 | 75.0 | 47.8 | 59.7 | 53.1
NPY(2) | 74.8 | 76.7 | 75.7 | 57.3 | 56.6 | 57.0

|HDP(2) | 75.2[69.6 | 72.3 | 635|552 59.1 |

Table 1: Segmentation accuracies on English pho-
netic transcripts. NPY(n) means n-gram NPYLM.
Results for HDP(2) are taken from Goldwater et
al. (2009), which corrects the errors in Goldwater
et al. (2006).

P R F LP |LR |LF

Model time | iterations
NPYLM 17min 200
HDP 10h 55min 20000

Table 2: Computations needed for Table 1. Itera-
tions for “HDP” is the same as described in Gold-
water et al. (2009). Actually, NPYLM approxi-
mately converged around 50 iterations, 4 minutes.

Japanese word segmentation, with all supervised
segmentations removed in advance.

Chinese For Chinese, we used a publicly avail-
able SIGHAN Bakeoff 2005 dataset (Emerson,
2005). To compare with the latest unsupervised
results (using a closed dataset of Bakeoff 2006),
we chose the common sets prepared by Microsoft
Research Asia (MSR) for simplified Chinese, and
by City University of Hong Kong (CITYU) for
traditional Chinese. We used a random subset of
50,000 sentences from each dataset for training,
and the evaluation was conducted on the enclosed
test data. °

Japanese For Japanese, we used the Kyoto Cor-
pus (Kyoto) (Kurohashi and Nagao, 1998): we
used random subset of 1,000 sentences for evalua-
tion and the remaining 37,400 sentences for train-
ing. In all cases we removed all whitespaces to
yield raw character strings for inference, and set
L = 4 for Chinese and L = 8 for Japanese to run
the Gibbs sampler for 400 iterations.

The results (in token F-measures) are shown in
Table 3. Our NPYLM significantly ourperforms
the best results using a heuristic approach reported
in Zhao and Kit (2008). While Japanese accura-
cies appear lower, subjective qualities are much
higher. This is mostly because NPYLM segments
inflectional suffixes and combines frequent proper
names, which are inconsistent with the “correct”

Notice that analyzing a test data is not easy for character-
wise Gibbs sampler of previous work. Meanwhile, NPYLM

easily finds the best segmentation using the Viterbi algorithm
once the model is learned.



Modéd
NPY(2)
NPY(3)
ZK08

MSR
80.2 (51.9)
80.7 (48.8)
66.7 (—)

CITYU
82.4 (126.5)
81.7 (128.3)
69.2 (—)

Kyoto
62.1 (23.1)
66.6 (20.6)

Table 3: Accuracies and perplexities per character
(in parentheses) on actual corpora. “ZK08” are the
best results reported in Zhao and Kit (2008). We
used co-gram for characters.

MSR CITYU Kyoto
Semi | 0.895 (48.8) [ 0.898 (124.7) | 0.913 (20.3)
Sup |0.945 (81.4) | 0.941 (194.8) | 0.971 (21.3)

Table 4: Semi-supervised and supervised results.
Semi-supervised results used only 10K sentences
(1/5) of supervised segmentations.

segmentations. Bigram and trigram performances
are similar for Chinese, but trigram performs bet-
ter for Japanese. In fact, although the difference
in perplexity per character is not so large, the per-
plexity per word is radically reduced: 439.8 (bi-
gram) to 190.1 (trigram). This is because trigram
models can leverage complex dependencies over
words to yield shorter words, resulting in better
predictions and increased tokens.

Furthermore, NPYLM is easily amenable to
semi-supervised or even supervised learning. In
that case, we have only to replace the word seg-
mentation w(s) in Figure 3 to the supervised one,
for all or part of the training data. Table 4
shows the results using 10,000 sentences (1/5) or
complete supervision. Our completely generative
model achieves the performance of 94% (Chinese)
or even 97% (Japanese) in supervised case. The
result also shows that the supervised segmenta-
tions are suboptimal with respect to the perplex-
ity per character, and even worse than unsuper-
vised results. In semi-supervised case, using only
10K reference segmentations gives a performance
of around 90% accuracy and the lowest perplexity,
thanks to a combination with unsupervised data in
a principled fashion.

5.3 Classicsand English text

Our model is particularly effective for spoken tran-
scripts, colloquial texts, classics, or unknown lan-
guages where supervised segmentation data is dif-
ficult or even impossible to create. For example,
we are pleased to say that we can now analyze (and
build a language model on) “The Tale of Genji”,
the core of Japanese classics written 1,000 years
ago (Figure 6). The inferred segmentations are
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WIh o iRz, KA ERHEL SS50
ZEOTEHIC., e LT eREBICED
S5, IS THKYE 2S5 HY J0, 1IC
LY IRIF L BO BV EANDHM AL, O
TFEL T LI BLLY ZThRr2FS5, HLIF
. Zh k) THoEXR b3, £LTRT
»e T, WY o gticoid Ty, ...

Figure 6: Unsupervised segmentation result for

“The Tale of Genji”. (16,443 sentences, 899,668

characters in total)

mostly correct, with some inflectional suffixes be-
ing recognized as words, which is also the case
with English.

Finally, we note that our model is also effective
for western languages: Figure 7 shows a training
text of “Alicein Wonderland ” with all whitespaces
removed, and the segmentation result.

While the data is extremely small (only 1,431
lines, 115,961 characters), our trigram NPYLM
can infer the words surprisingly well. This is be-
cause our model contains both word and character
models that are combined and carefully smoothed,
from a Bayesian perspective.

6 Discussion

In retrospect, our NPYLM is essentially a hier-
archical Markov model where the units (=words)
evolve as the Markov process, and each unit
has subunits (=characters) that also evolve as the
Markov process. Therefore, for such languages
as English that have already space-separated to-
kens, we can also begin with tokens besides the
character-based approach in Section 5.3. In this
case, each token is a “character” whose code is the
integer token type, and a sentence is a sequence of
“characters.” Figure 8 shows a part of the result
computed over 100K sentences from Penn Tree-
bank. We can see that some frequent phrases are
identified as “words”, using a fully unsupervised
approach. Notice that this is only attainable with
NPYLM where each phrase is described as a n-
gram model on its own, here a word co-gram lan-
guage model.

While we developed an efficient forward-
backward algorithm for unsupervised segmenta-
tion, it is reminiscent of CRF in the discrimina-
tive approach. Therefore, it is also interesting
to combine them in a discriminative way as per-
sued in POS tagging using CRF+HMM (Suzuki et
al., 2007), let alone a simple semi-supervised ap-
proach in Section 5.2. This paper provides a foun-
dation of such possibilities.



lastly,shepicturedtoherselfthowthissamelittlesisterofhersw
ould,intheafter-time,beherselfagrownwoman;andhowshe

wouldkeep,throughallherriperyears,thesimpleandlovingh

eartofherchildhood:andhowshewouldgatheraboutherothe

rlittlechildren,andmaketheireyesbrightandeagerwithmany
astrangetale,perhapsevenwiththedreamofwonderlandoflo

ngago:andhowshewouldfeelwithalltheirsimplesorrows,an
dfindapleasureinalltheirsimplejoys,rememberingherownc
hild-life,andthehappysummerdays.

(a) Training data (in part).

last ly , she pictured to herself how this same little sis-
ter of her s would , inthe after - time , be herself agrown
woman ; and how she would keep , through allher ripery
ears , the simple and loving heart of her child hood : and
how she would gather about her other little children ,and
make theireyes bright and eager with many a strange tale
, perhaps even with the dream of wonderland of longago
: and how she would feel with all their simple sorrow s ,
and find a pleasure in all their simple joys , remember ing
her own child - life , and thehappy summerday s .

(b) Segmentation result. Note we used no dictionary.

Figure 7: Word segmentation of “Alice in \Wonder-
land ™.

7 Conclusion

In this paper, we proposed a much more efficient
and accurate model for fully unsupervised word
segmentation. With a combination of dynamic
programming and an accurate spelling model from
a Bayesian perspective, our model significantly
outperforms the previous reported results, and the
inference is very efficient.

This model is also considered as a way to build
a Bayesian Kneser-Ney smoothed word n-gram
language model directly from characters with no
“word” indications. In fact, it achieves lower per-
plexity per character than that based on supervised
segmentations. We believe this will be particu-
larly beneficial to build a language model on such
texts as speech transcripts, colloquial texts or un-
known languages, where word boundaries are hard
or even impossible to identify a priori.

Acknowledgments

We thank Vikash Mansinghka (MIT) for a mo-
tivating discussion leading to this research, and
Satoru Takabayashi (Google) for valuable techni-
cal advice.

References

David Aldous, 1985.
Topics, pages 1-198.
Math. 1117.

Exchangeability and Related
Springer Lecture Notes in

Rie Kubota Ando and Lillian Lee. 2003. Mostly-
Unsupervised Statistical Segmentation of Japanese

107

nevertheless ,

he was admired

by many of his immediate subordinates
for his long work hours

and dedication to building northwest
into what he called a “ mega carrier

”»

although

preliminary findings

were reported

more than a year ago ,

the latest results

appear

in today ’s

new england journal of medicine ,

a forum

likely to bring new attention to the problem

south korea

registered a trade deficit of $ 101 million

in october

, reflecting the country ’s economic sluggishness

, according to government figures released wednesday

Figure 8: Generative phrase segmentation of Penn
Treebank text computed by NPYLM. Each line is
a “word” consisting of actual words.

Kanji Sequences. Natural Language Engineering,
9(2):127-149.

Peter F. Brown, Vincent J. Della Pietra, Robert L. Mer-
cer, Stephen A. Della Pietra, and Jennifer C. Lai.
1992. An Estimate of an Upper Bound for the En-
tropy of English. Computational Linguistics, 18:31-
40.

Arnaud Doucet, Christophe Andrieu, and Roman
Holenstein. 2009. Particle Markov Chain Monte
Carlo. in submission.

Tom Emerson. 2005. SIGHAN Bakeoff 2005.
http://www.sighan.org/bakeoff2005/.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter.
1996. Markov Chain Monte Carlo in Practice.
Chapman & Hall / CRC.

Sharon Goldwater, Thomas L. Griffiths, and Mark
Johnson. 2005. Interpolating Between Types and

Tokens by Estimating Power-Law Generators. In
NIPS 2005.

Sharon Goldwater, Thomas L. Griffiths, and Mark
Johnson. 2006. Contextual Dependencies in Un-
supervised Word Segmentation. In Proceedings of
ACL/COLING 2006, pages 673—-680.

Sharon Goldwater, Thomas L. Griffiths, and Mark
Johnson. 2009. A Bayesian framework for word
segmentation: Exploring the effects of context.
Cognition, in press.

Yang He. 1988. Extended Viterbi algorithm for sec-
ond order hidden Markov process. In Proceedings
of ICPR 1988, pages 718-720.



Mark Johnson and Sharon Goldwater. 2009. Im-
proving nonparameteric Bayesian inference: exper-
iments on unsupervised word segmentation with
adaptor grammars. In NAACL 20009.

Mark Johnson, Thomas L. Griffiths, and Sharon Gold-
water. 2007. Bayesian Inference for PCFGs via
Markov Chain Monte Carlo. In Proceedings of
HLT/NAACL 2007, pages 139-146.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In Pro-
ceedings of ICASSP, volume 1, pages 181-184.

Sadao Kurohashi and Makoto Nagao. 1998. Building
a Japanese Parsed Corpus while Improving the Pars-
ing System. In Proceedings of LREC 1998, pages
719-724. http://nlp.kuee.kyoto-u.ac.jp/nl-resource/
corpus.html.

Brian MacWhinney and Catherine Snow. 1985. The
Child Language Data Exchange System. Journal of
Child Language, 12:271-296.

Daichi Mochihashi and Eiichiro Sumita. 2007. The
Infinite Markov Model. In NIPS 2007.

Kevin Murphy. 2002. Hidden semi-Markov models
(segment models). http://www.cs.ubc.ca/"murphyk/
Papers/segment.pdf.

Masaaki Nagata. 1996. Automatic Extraction of
New Words from Japanese Texts using General-
ized Forward-Backward Search. In Proceedings of
EMNLP 1996, pages 48-59.

Abel Rodriguez, David Dunson, and Alan Gelfand.
2008. The Nested Dirichlet Process. Journal of the
American Satistical Association, 103:1131-1154.

Steven L. Scott. 2002. Bayesian Methods for Hidden
Markov Models. Journal of the American Satistical
Association, 97:337-351.

Jun Suzuki, Akinori Fujino, and Hideki Isozaki. 2007.
Semi-Supervised Structured Output Learning Based
on a Hybrid Generative and Discriminative Ap-
proach. In Proceedings of EMNLP-CoNLL 2007,
pages 791-800.

Yee Whye Teh. 2006a. A Bayesian Interpreta-
tion of Interpolated Kneser-Ney. Technical Report
TRA2/06, School of Computing, NUS.

Yee Whye Teh. 2006b. A Hierarchical Bayesian Lan-
guage Model based on Pitman-Yor Processes. In
Proceedings of ACL/COLING 2006, pages 985-992.

Frank Wood and Yee Whye Teh. 2008. A Hierarchical,
Hierarchical Pitman-Yor Process Language Model.
In ICML 2008 Workshop on Nonparametric Bayes.

Jia Xu, Jianfeng Gao, Kristina Toutanova, and Her-
mann Ney. 2008. Bayesian Semi-Supervised Chi-
nese Word Segmentation for Statistical Machine
Translation. In Proceedings of COLING 2008,
pages 1017-1024.

108

Hai Zhao and Chunyu Kit. 2008. An Empirical Com-
parison of Goodness Measures for Unsupervised
Chinese Word Segmentation with a Unified Frame-
work. In Proceedings of IJCNLP 2008.



1

Suma Bhat
Department of ECE
University of Illinois

spbhat2@11i noi s. edu

Abstract

Empirical studies on corpora involve mak-
ing measurements of several quantities for
the purpose of comparing corpora, creat-
ing language models or to make general-
izations about specific linguistic phenom-
ena in a language. Quantities such as av-
erage word length are stable across sam-
ple sizes and hence can be reliably esti-
mated from large enough samples. How-
ever, quantities such asocabulary size
change with sample size. Thus measure-
ments based on a given sample will need
to beextrapolatedo obtain their estimates
over larger unseen samples. In this work,
we propose a novelonparametricestima-

tor of vocabulary size. Our main result is
to show thestatistical consistencyf the
estimator — the first of its kind in the lit-
erature. Finally, we compare our proposal
with the state of the art estimators (both
parametric and nonparametric) on large
standard corpora; apart from showing the
favorable performance of our estimator,
we also see that the classical Good-Turing
estimator consistently underestimates the
vocabulary size.

Introduction

Knowing the Unseen: Estimating Vocabulary Size over UnseeSamples

Richard Sproat

Center for Spoken Language Understanding

Oregon Health & Science University
rws@oba. com

ber of distinct word types changes are strictly sam-
ple size dependent. Given a sample we can ob-
tain the seen vocabulary and the seen number of
hapax legomena However, for the purpose of
comparison of corpora of different sizes or lin-
guistic phenomena based on samples of different
sizes it is imperative that these quantities be com-
pared based on similar sample sizes. We thus need
methods to extrapolate empirical measurements of
these gquantities to arbitrary sample sizes.

Our focus in this study will be estimators of
vocabulary size for samples larger than the sam-
ple available. There is an abundance of estima-
tors of population size (in our case, vocabulary
size) in existing literature. Excellent survey arti-
cles that summarize the state-of-the-art are avail-
able in (Bunge and Fitzpatrick, 1993) and (Gan-
dolfi and Sastri, 2004). Of particular interest to
us is the set of estimators that have been shown
to model word frequency distributions well. This
study proposes a nonparametric estimator of vo-
cabulary size and evaluates its theoretical and em-
pirical performance. For comparison we consider
some state-of-the-art parametric and nonparamet-
ric estimators of vocabulary size.

The proposed non-parametric estimator for the
number of unseen elements assumes a regime
characterizing word frequency distributions. This
work is motivated by a scaling formulation to ad-
dress the problem of unlikely events proposed in

Empirical studies on corpora involve making mea-(Baayen, 2001; Khmaladze, 1987; Khmaladze and
surements of several quantities for the purpose dghitashvili, 1989; Wagner et al., 2006). We also
comparing corpora, creating language models ofemonstrate that the estimator is strongly consis-
to make generalizations about specific linguistictent under the natural scaling formulation. While
phenomena ina |anguage_ Quantities such as ag.()mpared with other VocabUIary size estimates,
erage word length or average sentence length aMe see that our estimator performs at least as well
stable across sample sizes. Hence empirical me&S some of the state of the art estimators.
surements from large enough samples tend to bf Previous Work

reliable for even larger sample sizes. On the other

hand, quantities associated with word frequenciegylany estimators of vocabulary size are available
such as the number bhipax legomenar the num- in the literature and a comparison of several non
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parametric estimators of population size occurs irhow many unseen elements we would expect to
(Gandolfi and Sastri, 2004). While a definite com-see. Our nonparametric estimator for the number
parison including parametric estimators is lacking,of unseen elements is motivated by the character-
there is also no known work comparing methodsistic property of word frequency distributions, the
of extrapolation of vocabulary size. Baroni andLarge Number of Rare EventtNRE) (Baayen,
Evert, in (Baroni and Evert, 2005), evaluate the2001). We also demonstrate that the estimator is
performance of some estimators in extrapolatingstrongly consistent under a natural scaling formu-
vocabulary size for arbitrary sample sizes but limitlation described in (Khmaladze, 1987).

the study to parametric estimators. Since we con-
sider both parametric and nonparametric estima®
tors here, we consider this to be the first studyOur main interest is in probability distributioris
comparing a set of estimators for extrapolating vo-with the property that a large number of words in

.1 A Scaling Formulation

cabulary size. the vocabulanf? are unlikely, i.e., the chance any
Estimators of vocabulary size that we comparenord appears eventually in an arbitrarily long ob-
can be broadly classified into two types: servation is strictly between 0 and 1. The authors

) ) in (Baayen, 2001; Khmaladze and Chitashuvili,
1. Nonparametric estimatorshere word fré- ) qg9. \yagner et al., 2006) propose a natural scal-
quency information from the given sample i, tormuylation to study this problem: specifically,
alone is used to estimate the vocabu!ary S'_Ze(Baayen, 2001) has a tutorial-like summary of the
A good survey of the state of the artis avail- i oretical work in (Khmaladze, 1987; Khmaladze
able in (Gandolfi and Sastri, 2004). In this 5y chitashvili, 1989). In particular, the authors
paper, we compare our proposed estimatog,,qjjer sequencef vocabulary sets and prob-
with the_canonlcal_ estimators available in ability distributions, indexed by the observation
(Gandolfi and Sastri, 2004). sizen. Specifically, the observatiofX, .. ., X,,)

2. Parametric estimatorshere a probabilistic 1S drawn i.i.d. from a vocabular,, according to
model capturing the relation between ex-Probability P,,. If the probability of a word, say

pected vocabulary size and sample size is the’ € Q,, is p, then the probability that this specific
estimator. Given a sample of size the Wordw does notoccur in an observation of size
sample serves to calculate the parameters df .
the model. The expected vocabulary for a (I-p)".

given sample size is then determined using Fqr, to he an unlikely word, we would like this

the explicit relation.  The parametric esti- b opapility for largen to remain strictly between
mators considered in this study are (Baayeng 5nd 1. This implies that

2001; Baroni and Evert, 2005),

(a) Zipf-Mandelbrot estimator (ZM);

(b) finite Zipf-Mandelbrot estimator (fZM).
N _ _ for some strictly positive constants< ¢ < ¢ <
In addition to the above estimators we consider,, \we will assume throughout this paper thiat
anovel non parametric estimator. Itis the nonparaznqs are the same for every wotd € Q,,. This

metric estimator that we propose, taking into acimpjies that the vocabulary size is growirig-
count the characteristic feature of word frequencyaayly with the observation size:

distributions, to which we will turn next.

<p<

; )

S| o
§|Q>

<[] <

|3
o 3

3 Novel Estimator of Vocabulary size

We observe(Xy,...,X,), an ii.d. sequence This modelis called theNRE zoneand its appli-
drawn according to a probability distributioRi  cability in natural language corpora is studied in
from a large, but finite, vocabulaf2. Our goal detail in (Baayen, 2001).

is in estimating the “essential” size of the vocabu-

lary  using only the observations. In other words,3-2 Shadows

having seen a sample of sizewe wish to know, Consider the observation striig, ..., X, ) and
given another sample from the same populationlet us denote the quantity of interest — the number
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of word types in the vocabular®,, that are not 3.4 Profiles and their Limits

observed —byD,. This quantity is random since gy goal in this paper is to estimate the size of the
the observation string itself is. However, we note,nqgerlying vocabulary, i.e., the expression in (2),
that the distribution of),, is unaffected if one re-

labels the words if2,,. This motivates studying /C n d0n(y)
of the probabilities assigned [®;, without refer- sy D
ence to the labeling of the word; this is done in _

(Khmaladze and Chitashvili, 1989) via tsguc- Tom the observationgXj, ..., X,). We observe
tural distribution functionand in (Wagner et al., that since the scaled shado@, does not de-

2006) via theshadow Here we focus on the latter P€Nd on the labeling of the words in,, a suf-

(4)

description: f?cient statisticto _estimate _(4) from the obs_erva—
tion (X1, ..., X,) is theprofile of the observation:

Definition 1 Let X, be a random variable of,, (¥, ..., ), defined as follows? is the num-

with distribution P,,. The shadowof I, is de-  per of word types that appear exactiytimes in

fined to be the distribution of the random variable the observation, fok = 1, ..., n. Observe that

Pn({Xn}). n

For the finite vocabulary situation we are con- Z kel =mn,
sidering, specifying the shadow é&xactly equiv- k=1

alentto specifying the unordered components Ofand that
P, viewed as a probability vector. n
def n
V= E Pk )
3.3 Scaled Shadows Converge k=1

We will follow (Wagner et al., 2006) and sup- is the number obbservedvords. Thus, the object

pose that the scaled shadows, the distribution o?f ourinterest s,

n-P,(X,), denoted by, converge to a distribu- O = |Q] - V. (6)
tion . As an example, iP,, is a uniform distribu-

tion over a vocabulary of sizen, thenn - P,(X,,) 3.5 Convergence of Scaled Profiles

1 .
equals; almost surely for each (and hence it - gne of the main results of (Wagner et al., 2006) is
converges in distribution). From this CONVETGENCEhat the scaled profiles converge to a deterministic
assumption we can, further, infer the following: . 5papility vector under the scaling model intro-

) N ) duced in Section 3.3. Specifically, we have from
1. Since the probability of each wosdis lower Proposition 1 of (Wagner et al., 2006):
and upper bounded as in Equation (1), we ’

know that the distribution(,, is non-zero n

only in the ranggc, ¢]. Z — 0, almost surely (7)

— — A1

2. The “essential” size of the vocabulary, i.e.,where
the number of words of2,, on which P, -
puts non-zero probability can be evaluated di- ), .— / &M dQ(y) k=0,1,2,....
rectly from the scaled shadow, scaled%o;as ¢ k! (®)

: This convergence result suggests a natural estima-
/ H dQn(y). (2) torfor Oy, expressed in Equation (6).

3.6 A Consistent Estimator ofQ,,

Using the dominated convergence theoreMyye siart with the limiting expression for scaled
we can conclude that the convergence of theyoijes in Equation (7) and come up with a natu-
scaled shadows guarantees that the size of the| astimator forD,,. Our development leading to
vocabulary, scaled by/n, converges aswell: yhe estimator is somewhat heuristic and is aimed
R at motivating the structure of the estimator for the
2 /CldQ(y). 3) number of unseen word€),. We formally state
n e Y and prove its consistency at the end of this section.
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3.6.1 A Heuristic Derivation It helps to write the truncated geometric series as
Starting from (7), let us first make the approxima-& power series if:

tion that "
1 Y\ ¢
k Z 1-2
%zAk_h k=1,...,n. 9) c;< c)
Wi have the f | calculati I~ [ ¢ <y>’f
e NOW nave the tormal calculation _ TZZ( >(_1)k 4
Zn: o Zn: Ap1 € =0 k=0 K ¢
L. AN — (20) M M
k 1 14 y\F
= > Z( k )) " (3)
n ¢ e—yyk—l k=0 \¢=k
- > [ S dew uoo
k=1"¢ = > (- "y, (17)

Q

¢ eV n yk k=0
[ (X% ) dewmay
¢ Y o\ v where we have written

/:%(ef’—l)dQ(y) (12) L (i«))

T Gkl k
Q, CeY ¢ =k
| '—[7d@<y>. (13)

n

%

Q

Substituting the finite summation approximation
Here the approximation in Equation (10) follows in Equation 16 and its power series expression in
from the approximation in Equation (9), the ap-Equation (17) into Equation (14) and swapping the
proximation in Equation (11) involves swapping discrete summation with the integral, we can con-
the outer discrete summation with integration andinue
is justified formally later in the section, the ap-

M é
proximation in Equation (12) follows because Oy ~ kM —y, k
Lo 0 | eytdQe)
no ok k=0
> % —el—1, < k
Pl = > (1)*a k. (18)

i

0
asn — oo, and the approximation in Equa-

tion (13) is justified from the convergence in Equa-Here, in Equation (18), we used the definition of
tion (3). Now, comparing Equation (13) with A; from Equation (8). From the convergence in
Equation (6), we arrive at an approximation for Equation (7), we finally arrive at our estimate:

our quantity of interest:
M

) - Op > (=) a} (k+1)! @ (19)
e [ aow), (14) o .

n
3.6.2 Consistency
o Our main result is the demonstration of the consis-

The geometric series allows us to write

Z . . -
; _ Z (1 _ %) C Wye(0,é).  (15) tency of the estimator in Equation (19).
¢

[N

0 Theorem 1 For anye > 0,

Approximating this infinite series by a finite sum-

N M Nk M |
mation, we have for alj € (¢, ¢é), On = 2k=0 (=1)7 @y (k+ D! orpa

lim <e
n—oo n
M M
¢ Y
1 1 (1 _ g) _ (-9 almost surely, as long as
Yy Cco= C Y
M ¢log, e + log, (€¢)
1—-¢ M . 20
S Gt TS “ g -9 -1-log, @ 0
&



Proof: From Equation (6), we have Combining Equations (22) and (24), we have that,
almost surely,

Q n
O _ [l g o 0= S (D el (Dl g
n n —n L o
n & M
Q, A ¢ (1
= 'n‘ -y / e (——Z(—l)’“a%yﬂ dQ(y)- (25)
k=1 ¢ Y k=0
z”: 1 <@ B )\k_l) @ Combining Equation (16) with Equation (17), we
— k have
1 <& TR %)M
The first term in the right hand side (RHS) of 0<——>_ (-1)"at"y* < - (@8
Equation (21) converges as seen in Equation (3). k=0

The third term in the RHS of Equation (21) con- The quantity in Equation (25) can now be upper
verges to zero, almost surely, as seen from Equaounded by, using Equation (26),

tion (7). The second term in the RHS of Equa- —e(]_ M
tion (21), on the other hand, u
C
n e _ no For M that satisfy Equation (20) this term is less
Ak_1 eV Yy
Z ’ = 7 o dQ(y) thane. The proof concludes.
k=1 ¢ =1

3.7 Uniform Consistent Estimation

4 eV
- /C y (e = 1) dQ(y),n — 00, One of the main issues with actually employing
¢ ¢ gy the estimator for the number of unseen elements
= / —dQ(y) — / — dQ(y). (cf. Equation (19)) is that it involves knowing the
¢ Y ¢ Y parametet. In practice, there is no natural way to

The monotone convergence theorem justifies th btain any estimate on this parametert would

convergence in the second step above. Thus w % _most u_seful if there were a way to modify the
conclude that estimator in a way that it does not depend on the

unobservable quantity In this section we see that
0, ¢ oy such a modification is possible, while still retain-
nlggo = / o dQ(y) (22)  ing the main theoretical performance result of con-
c sistency (cf. Theorem 1).
almost surely. Coming to the estimator, we can The first step to see the r_nodifi_cgtipn is_ i.n ob-
Write it as the sum of two terms: serving where the need férarises: it is in writing
the geometric series for the functidn(cf. Equa-

M tions (15) and (16)). If we could letalong with
> (=D a kN (23) the number of elements/ itself depend on the
k=0 sample sizen, then we could still have the geo-

M (k+1)¢ metric series formula. More precisely, we have
£ (1) alh (7'“ A )
k=0

k) - M, 1 My,
) ey -y
Y Cné:() Cn Yy Cn

The second term in Equation (23) above is seen to

converge to zero almost surely as— oo, using

Equation (7) and noting that/ is a constant not as long as
depending om. The first term in Equation (23) én
can be written as, using the definition bf from M, —0, n—oo. (27)
Equation (8),

— 0, n— o0,

This simple calculation suggests that we can re-
o place¢ andM in the formula for the estimator (cf.

¢y VM k) g ' 24y Equation (19)) by terms that depend e@nd sat-
/@e (1;)( ) aky) Q) 24) isfy the condition expressed by Equation (27).
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4 Experiments

4.1 Corpora
In our experiments we used the following corpora:

1. TheBritish National CorpugBNC): A cor-
pus of about 100 million words of written and
spoken British English from the years 1975-
1994.

2. TheNew York Times CorpudNYT): A cor-
pus of about 5 million words.

3. TheMalayalam CorpugMAL): A collection
of about 2.5 million words from varied ar-
ticles in the Malayalam language from the
Central Institute of Indian Languages.

4. The Hindi Corpus (HIN): A collection of
about 3 million words from varied articles in
the Hindi language also from the Central In-
stitute of Indian Languages.

4.2 Methodology

We would like to see how well our estimator per-
forms in terms of estimating the number of unseen
elements. A natural way to study this is to ex-
pose only half of an existing corpus to be observed
and estimate the number of unseen elements (as-
suming the the actual corpus is twice the observed
size). We can then check numerically how well
our estimator performs with respect to the “true”
value. We use a subset (the first 10%, 20%, 30%,
40% and 50%) of the corpus as thieserved sam-
ple to estimate the vocabulary over twice the sam-
ple size. The following estimators have been com-
pared.

Nonparametric Along with our proposed esti-
mator (in Section 3), the following canonical es-
timators available in (Gandolfi and Sastri, 2004)
and (Baayen, 2001) are studied.

1. Our proposed estimatdd,, (cf. Section 3):
since the estimator is rather involved we con-
sider only small values af/ (we see empir-
ically that the estimator converges for very
small values of\/ itself) and choosé = M.
This allows our estimator for the number of
unseen elements to be of the following form,
for different values of\/:

M O,

1 2 (p1 — p2)

2 5 (01— ©2) + 33

3 %(@1—@2)+%(@3—%)
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Using this, the estimator of the true vocabu-
lary size is simply,

O, + V. (28)
Here (cf. Equation (5))

V=> g (29)
k=1

In the simulations below, we have considered
M large enough until we see numerical con-
vergence of the estimators: in all the cases,
no more than a value of 4 is needed fuf.
For the English corpora, very small values of
M suffice —in particular, we have considered
the average of the first three different estima-
tors (corresponding to the first three values
of M). For the non-English corpora, we have
needed to considev/ = 4.

. Gandolfi-Sastri estimator,

def n

Vas = (V+¢1v?), (30)
n—e
where
-V
A2 = prmn=v o
2n
/o2 +2n(V —3p1) + (V — ©1)?

2n ’

3. Chao estimator,

2
VChao dgf V+ ﬂ (31)

2(p2 ’

. Good-Turing estimator,

def V
Vor = @; (32)
. "Simplistic” estimator,
def Npew \ |
VSmpl =V < n > 5 (33)

here the supposition is that the vocabulary
size scales linearly with the sample size (here
nnew 1S the new sample size);

. Baayen estimator,

Vi & V + (%) Npew;  (34)

here the supposition is that the vocabulary
growth rate at the observed sample size is
given by the ratio of the number dfapax
legomenato the sample size (cf. (Baayen,
2001) pp. 50).



pares favorably with the best estimator of vo-
cabulary size and at some sample sizes even
surpasses it.

% error of top 2 and Good-Turing estimates compared

TYTT:

Our GT ZM

10

-10 0

Our estimator has theoretical performance
guarantees and its empirical performance is
comparable to that of the state of the art es-
timators. However, this performance comes
at a very small fraction of the computational
cost of the parametric estimators.

% error
-20

-30

-40

Our GT zZM Our GT zZM Our GT ZM

BNC NYT Malayalam Hindi

Figure 1: Comparison of error estimates of the 2 o
best estimators-ours and the ZM, with the Good-
Turing estimator using 10% sample size of all the
corpora. A bar with a positive height indicates
and overestimate and that with a negative height
indicates and underestimate. Our estimatot- 6 Conclusion
performsZM. Good-Turing estimator widelyn-
derestimatesocabulary size.

The state of the art nonparametric Good-
Turing estimator wildly underestimates the
vocabulary; this is true in each of the four
corpora studied and at all sample sizes.

In this paper, we have proposed a new nonpara-
metric estimator of vocabulary size that takes into
. i i account the LNRE property of word frequency
Parametric Parametric estimators use the 0b-giqyihtions and have shown that it is statistically
servations to f|_rst estimate the parameter_s. TheEonsistent. We then compared the performance of
the corresponding models are used to estimate thge honosed estimator with that of the state of the
vocabulary size over the larger sample. Thus the ogtimators on large corpora. While the perfor-
frequency spectra of the observations are My \.nce of our estimator seems favorable, we also
dlregtly used in extrapolatlng the vocabulary Siz€.qae that the widely used classical Good-Turing
In this study we consider state of the art paramety gsimator consistently underestimates the vocabu-
ric estimators, as surveyed by (Baroni and Everti, .y i, - Although as yet untested, with its com-
2005). We are aided in this study by the availabil-, ational simplicity and favorable performance,
ity of the implementations provided by t#e pf R o\ estimator may serve as a more reliable alter-
package and their default settings. native to the Good-Turing estimator for estimating
5 Results and Discussion vocabulary sizes.
The performance of the different estimators as perAcknowledgments

centage errors of the true vocabulary size usingl_ _ _
different corpora are tabulated in tables 1-4. We!NiS research was partially supported by Award
now summarize some important observations. [1S-0623805 from the National Science Founda-

tion.
e From the Figure 1, we see that our estima-

tor compares quite favorably with the best of

the state of the art estimators. The best of thd&References

state of the art e;tlmator IS a para.metn(.: an?. H. Baayen. 2001Word Frequency Distributions
(ZM), while ours is a nonparametric estima-  kjuwer Academic Publishers.

tor.
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In table 1 and table 2 we see that our esti-
mate is quite close to the true vocabulary, at
all sample sizes. Further, it compares very fa-
vorably to the state of the art estimators (both
parametric and nonparametric). J

Again, on the two non-English corpora (ta-
bles 3 and 4) we see that our estimator com-
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Sample True % error w.r.t the true value
(% of corpus)| value | Our| GT | ZM | fZM | Smpl| Byn | Chao| GS
10 153912 1| -27 -4 -8 46 23 8| -11
20 220847, -3 | -30 9| -12 39 19 4| -15
30 265813, -2 | -30 9| -11 39 20 6| -15
40 310351 1| -29 -7 -9 42 23 9| -13
50 340890 2| -28 -6 -8 43 24 10| -12

Table 1: Comparison of estimates of vocabulary size foBNE corpus as percentage errors w.r.t the
true value. A negative value indicates an underestimate.e§timatoroutperformsthe other estimators
at all sample sizes.

Sample True % error w.r.t the true value
(% of corpus)| value | Our| GT | ZM | fZM | Smpl| Byn | Chao| GS
10 37346 1| -24 5 -8 48 28 4| -8
20 51200 -3 | -26 0| -11 46 22 -1 -11
30 60829 -2 | -25 1| -10 48 23 1| -10
40 68774 -3 | -25 0| -10 49 21 -1 -11
50 75526 -2| -25 0| -10 50 21 0| -10

Table 2: Comparison of estimates of vocabulary size foNN& corpus as percentage errors w.r.t the
true value. A negative value indicates an underestimate e€timatorcompares favorablyith ZM and
Chao.

Sample True % error w.r.t the true value
(% of corpus)| value | Our| GT | ZM | fZM | Smpl| Byn | Chao| GS
10 146547, -2 | -27 -5 -10 9 34 82| -2
20 246723 8| -23 4 -2 19 47 105 5
30 339196 4| -27 0 -5 16 42 93| -1
40 422010 5| -28 1 -4 17 43 95| -1
50 500166 5| -28 1 -4 18 44 94| -2

Table 3: Comparison of estimates of vocabulary size forMadayalam corpus as percentage errors
w.r.t the true value. A negative value indicates an undienest. Our estimatotompares favorablyvith
ZM and GS.

Sample True % error w.r.t the true value
(% of corpus)| value | Our| GT | ZM | fZM | Smpl| Byn | Chao| GS
10 47639 -2 | -34 -4 -9 25 32 31| -12
20 71320 7| -30 2 -1 34| 43 51| -7
30 93259 2| -33 -1 -5 30 38 42 | -10
40 113186 0| -35 -5 -7 26 34 39| -13
50 131715 -1 | -36 -6 -8 24| 33 40 | -14

Table 4: Comparison of estimates of vocabulary size foHimali corpus as percentage errors w.r.t the
true value. A negative value indicates an underestimate.e§timatoroutperformsthe other estimators
at certain sample sizes.
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In many languages, certain syllables in words aré:)
phonetically more prominent in terms of duration,

A Ranking Approach to Stress Prediction
for Letter-to-Phoneme Conversion

Qing Dou, Shane Bergsma, Sittichai Jiampojamarn and Grzega Kondrak
Department of Computing Science
University of Alberta
Edmonton, AB, T6G 2E8, Canada
{qdou, ber gsmm, sj , kondr ak}@s. ual berta. ca

Abstract

Correct stress placement is important in
text-to-speech systems, in terms of both
the overall accuracy and the naturalness of
pronunciation. In this paper, we formu-
late stress assignment as a sequence pre-
diction problem. We represent words as
sequences of substrings, and use the sub-
strings as features in a Support Vector Ma-
chine (SVM) ranker, which is trained to
rank possible stress patterns. The rank-
ing approach facilitates inclusion of arbi-
trary features over both the input sequence
and output stress pattern. Our system ad-
vances the current state-of-the-art, predict-
ing primary stress in English, German, and
Dutch with up to 98% word accuracy on
phonemes, and 96% on letters. The sys-
tem is also highly accurate in predicting
secondary stress. Finally, when applied in
tandem with an L2P system, it substan-
tially reduces the word error rate when
predicting both phonemes and stress.

Introduction

report separate figures on stress prediction accu-
racy, or they only provide results on a single lan-

guage. Some only predict primary stress mark-

ers (Black et al., 1998; Webster, 2004; Demberg

et al., 2007), while those that predict both primary

and secondary stress generally achieve lower ac-
curacy (Bagshaw, 1998; Coleman, 2000; Pearson
et al., 2000).

In this paper, we formulate stress assignment as
a sequence prediction problem. We divide each
word into a sequence of substrings, and use these
substrings as features for a Support Vector Ma-
chine (SVM) ranker. For a given sequence length,
there is typically only a small number of stress
patterns in use. The task of the SVM is to rank
the true stress pattern above the small number of
acceptable alternatives. This is the first system
to predict stress within a powerful discriminative
learning framework. By using a ranking approach,
we enable the use of arbitrary features over the en-
tire (input) sequence and (output) stress pattern.
We show that the addition of a feature for the en-
tire output sequence improves prediction accuracy.

Our experiments on English, German, and
utch demonstrate that our ranking approach sub-
stantially outperforms previous systems. The

&VM ranker achieves exceptional 96.2% word ac-

pitch, and loudness. This phenomenon is referre : L
to aslexical stress In some languages, the loca- curacy on the challenging task of predicting the
’ full stress pattern in English. Moreover, when

tion of stress is entirely predictable. For example, o o }
combining our stress predictions with a state-of-

lexical stress regularly falls on the initial syllable . .
the-art L2P system (Jiampojamarn et al., 2008),

in Hungarian, and on the penultimate syllable in . L
Polish. In other languages, such as English anye set a new standard for the combined prediction
' ’ of phonemes and stress.

Russian, any syllable in the word can be stressed.

Correct stress placement is important in text- The paper is organized as follows. Section 2
to-speech systems because it affects the accurapyovides background on lexical stress and a task
of human word recognition (Tagliapietra and Ta-definition. Section 3 presents our automatic stress
bossi, 2005; Arciuli and Cupples, 2006). How- prediction algorithm. In Section 4, we confirm the
ever, the issue has often been ignored in previpower of the discriminative approach with experi-
ous letter-to-phoneme (L2P) systems. The sysments on three languages. Section 5 describes how
tems that do generate stress markers often do netress is integrated into L2P conversion.
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2 Background and Task Definition English (c.f., allow vs. alloy). Second, since
phoneme predictors typically utilize only local

There is a long history of research into the prin-context around a letter, they do not incorporate the
ciples governing lexical stress placement.  Zipfgohal, long-range information that is especially

(1929) showed that stressed syllables are ofpaqictive of stress, such as penultimate syllable

ten those with low frequency in speech, while gmphasis associated with the suffition. By tak-

unstressed syllables are usually very common siressed orthography as input, the L2P system
Chomsky and Halle (1968) proposed a set ofg gpje 1o implicitly leverage morphological infor-
context-sensitive rules for producing English yation beyond the local context.

stress from underlying word forms. Due 10 itS gjcating stress on letters can also be help-

importance in text-to-speech, there is also a long,| 5 hymans, especially second-language learn-
history of computational stress prediction SYS-ars. In some languages, such as Spanish, ortho-

tems (Fudge_z, 1984; Church, 1985; Wi”iamsgraphic markers are obligatory in words with ir-
1987). While these early approaches dependly oy stress. The location of stress is often ex-
on human definitions of vowel tensity, syllable yjiciiy marked in textbooks for students of Rus-
weight, word etymology, etc., our work follows gjan “ |y poth languages, the standard method of
arecent trend of purely data-driven approaches g, jicating stress is to place an acute accent above
stress prediction (Black et al., 1998; Pearson et a'the vowel bearing primary stress, e.gdios The
2000; Webster, 2004; Demberg et al., 2007). secondary stress in English can be indicated with
In many languages, only two levels of stressy grave accent (Coleman, 2000), emy&cede
are distinguished: stressed and unstressed. How- |, summary, our task is to assign primary and
ever, some languages exhibit more than two levelge o gary stress markers to stress-bearing vowels
of stress. For example, in the English wa&do-  , o input word. The input word may be either
nomi the first and the third syllable are stressednonemes or letters. If a stressed vowel is repre-
with the former receiving weaker emphasis thanggnteq by more than one letter, we adopt the con-
the latter. In this case, the initial syllable is said,,antion of marking the first vowel of the vowel se-
to carry a seco_ndary stress._ Although each Wor%uence, e.gmeéeting In this way, we are able to
has only one primary stress, it may have any nuMy, s o the task of stress prediction, without hav-
ber of secondary stresses. Predicting the full StréSfig to determine at the same time the exact sylla-
pattern is therefore inherently more difficult than 4 boundaries, or whether a vowel letter sequence

predicting the location of primary stress only. represents one or more spoken vowels (dgat-
Our objective is to automatically assign primary ing vs. be-at-i-fy).

and, where possible, secondary stress to out-of-

vocabulary words. Stress is an attribute of sylla-3  Automatic Stress Prediction

bles, but syllabification is a non-trivial task in it-

self (Bartlett et al., 2008). Rather than assumingUr stress assignment system maps a werdo a
correct syllabification of the input word, we in- stressed-form of the wordy. We formulate stress
stead follow Webster (2004) in placing the stress2ssignment as a sequence prediction problem. The
on the vowel which constitutes the nucleus of thessignment is made in three stages:

stressed syllable. If the syllable boundaries are ) )

known, the mapping from the vowel to the cor- (1) First, we map words to substrings)the ba-

responding syllable is straightforward. Sic units in our sequence (Section 3.1).

We investigate the assignment of stress to tW‘{z) Then, a particular stress pattet) {s chosen
related but different entities: the spoken word™ " ¢ o-h substring sequence. We use a sup-

(repre§ented by its phonetic transcription), apd port vector machine (SVM) to rank the possi-
the written word (represented by its orthographic ble patterns for each sequence (Section 3.2).
form). Although stress is a prosodic feature, as-

signing stress to written words (“stressed orthog+(3) Finally, the stress pattern is used to produce

raphy”) has been utilized as a preprocessing stage the stressed-form of the word (Section 3.3).
for the L2P task (Webster, 2004). This prepro-

cessing is motivated by two factors. First, stressTable 1 gives examples of words at each stage of
greatly influences the pronunciation of vowels inthe algorithm. We discuss each step in more detalil.
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Word Substrings  Pattern Wordl 3.2 Stress Prediction with SVM Ranking
w S - t — w

_) - . -
_ After creating a sequence of substring unis+
worker — wor-ker — 1-0 — wobrker
—
—

{s1-s9-...-sn'}, the next step is to choose an out-
put sequencet = {ti-to-...-tx}, that encodes
whether each unit is stressed or unstressed. We
use the number ‘1’ to indicate that a substring re-
ceives primary stress, ‘2’ for secondary stress, and
‘0’ to indicate no stress. We call this output se-
guence thetress pattertior a word. Table 1 gives

overdo ov-ver-do— 2-0-1 — overd
react re.ac — 0-1 — react
a&ebstreekt> aeb-rek — 0-1 — aebstréekt
prisid — ri-sid — 2-1 — prisid

Table 1: The steps in our stress prediction sys
tem (with orthographic gnd phonetic prediction examples of words, substrings, and stress patterns.
examples): (1) word splitting, (2) support vector \ye e supervised learning to train a system to
ranking of stress patterns, and (3) pattern-to-vowel it the stress pattern. We generate training

mapping. (s,t) pairs in the obvious way from our stress-
marked training wordsw. That is, we first ex-
3.1 Word Splitting tract the letter/phoneme portiony, and use it

The first step in our approach is to represent th(;f\0 create the substrings, We then create the

L e stress pattern;, usingw’s stress markers. Given
word as a sequence of individual units: w — the training pairs, any sequence predictor can be
s = {s1-s2-...-sy }. These units are used to define g pairs, any seq P

the features and outputs used by the SVM rankerused’ for example a Conditional Random Field

Although we are ultimately interested in assigning(CRF) (Lafferty et al., 2001) or a structured per-

S . ceptron (Collins, 2002). However, we can take
stress to individual vowels in the phoneme and Iet-advanta e of a Unique property of our problem to
ter sequence, it is beneficial to represent the task in 9 que property P

units larger than individual letters. use a more expressive framework than is typically

. o ) used in sequence prediction.
Our substrings are similar to syllables; they L
: ) The key observation is that the output space of
have a vowel as their nucleus and include con-

sonant context. By approximating syllables Ourpossible stress patterns is actually fairly limited.
. | : ’ Clopper (2002) shows that people have strong
substring patterns will allow us to learn recur-

- . epreferences for particular sequences of stress, and
rent stress regularities, as well as dependenci

between neighboring substrings. Since determinE%'S is confirmed by our training data (Section 4.1).

. ) . . In English, for example, we find that for each set
ing syllable breaks is a non-trivial task, we in- .
) . o of spoken words with the same number of sylla-
stead adopt the following simple splitting tech- . .
) . bles, there are no more than fifteen different stress
nique. Each vowel in the word forms the nucleus

of a substring. Any single preceding or follow- patterns. In total, among 55K English training ex-

ing consonant is added to the substring unit. Thusamples, there are only 70 different stress patterns.

. . [n both German and Dutch there are only about
each substring consists of at most three symbolgO patterns in 250K exampldsTherefore, for a
(Table 1). ' '

Using shorter substrings reduces the sparsity o?artpular mput sequence, we can safely limit our
e ) . consideration to only the small set of output pat-
our training data; words likeryer, dryer andfryer
terns of the same length.
are all mapped to the same formry-er. The

SVM can thus generalize from observed words to Thus, unlike typical sequence predlctqrs, we do
o not have to search for the highest-scoring output
similarly-spelled, unseen examples.

: according to our model. We can enumerate the
Since the number of vowels equals the num-,

ber of syllables in the phonetic form of the word, full set of outputs and simply choose the highest-

. . . scoring one. This enables a more expressive rep-
applying this approach to phonemes will always . . )

resentation. We can define arbitrary features over

generate the correct number of syllables. For let-

ters, splitting may result in a different number of the entire output sequence. In a typical CRF or

units than the true syllabification, e.gronounce structured perceptron approach, only output fea-

_, ron-no-un-ce This does not prevent the systemtures that can be computed incrementally during

. . search are used (e.g. Markov transition features
from producing the correct stress assignment afte

the pattern-to-vowel mapping stage (Section 3.?jhat permit Viterbi search). Since search is not
is complete. 1See (Dou, 2009) for more details.
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needed here, we can exploit longer-range features. Substring Siyti
Choosing the highest-scoring output from a Sis T, b

fixed set is a ranking problem, and we provide the Context Si—1,ti

full ranking formulation below. Unlike previous 8i—18i, L

ranking approaches (e.g. Collins and Koo (2005)), Sit1,ti

we do not rely on a generative model to produce SiSit1,ti

a list of candidates. Candidates are chosen in ad- 8i—15iSi+1, bi

vance from observed training patterns. Stress Pattern ¢1ts ... tx

3.2.1 Ranking Formulation Table 2: Feature Template

For a substring sequence,of length N, our task

is to select the correct output pattern from the se
of all length<V patterns observed in our training
data, a set we denote @sy. We score each possi-

Eonsider previously-observed output patterns, it is
impossible for our system to produce a nonsensi-
: o : ) cal result, such as having two primary stresses in
ble mput-out'put combination using a1_|mear model.One word. Standard search-based sequence pre-
Each substring sequence and possible output Ioaclj'ictors need to be specially augmented with hard

'iIeirn,t(S,t_Iz,h is reprefsented Vt\{'thl a Stet of fi'?‘tures’constraints in order to prevent such output (Roth
(s,t). The score for a particulas(t) combina- and Yih, 2005),

tion is a weighted sum of these featur&s® (s, t).
The specific features we use are described in Se%-. 22 Features
tion 3.2.2.

Let t/ be the stress pattern for théh training The power of our ranker to identify the correct
sequence’, both of lengthN. At training time,  stress pattern depends on how expressive our fea-
the weights,\, are chosen such that for eagh  tures are. Table 2 shows the feature templates used
the correct output pattern receives a higher scoréo create the feature® (s, t) for our ranker. We
than other patterns of the same lengthiu €  use binary features to indicate whether each com-

Ty, u #t7, bination occurs in the currens,¢) pair.
o , For example, if a substringion is unstressed in
A-@(s),t)) > X B(s7, u) (1) a(s,t) pair, theSubstringfeature{s;, t; = tion,0}

_ ~ will be true? In English, often the penultimate
The set of constraints generated by Equation Ly)aple is stressed if the final syllable fion.

are calledank constraints They are created sep- \we can capture such a regularity with t®n-
arately for every(s’,t’) training pair. ESSen- ey features; . 1,t;. If the following syllable is
tially, each training pair is matched with a Setyjon and the current syllable is stressed, the fea-
of automatically-created negative examples. Eacly, o {si41,%; = tion,1} will be true. This feature

negative has an incorrect, but plausible, stress pagjj| |ikely receive a positive weight, so that out-

tern, u. . put sequences with a stress beftimn receive a
We adopt a Support Vector Machine (SVM) so- higher rank.

lution to these ranking constraints as described by Finally

I[Jr? a}[chlms (2002). .The Iearr]:ter fmdg the We'(%[.ht ortant feature. Note that such a feature would
at ensure a maximum (soft) margin separatio ot be possible in standard sequence predictors,

between the correct scores and the COMPEUTOry here such information must be decomposed into

We use an SVM because it has been successtul 'lUIarkov transition features likg_¢;. In aranking

similar settings (Iearnir_1g with thousgrjds_of Spars?ramework, We can score output sequences using
features) for both ranking and classification taskstheirfull output pattern. Thus we can easily learn

and because an efficient implementation is avail; . .
, the rules in languages with regular stress rules. For
able (Joachims, 1999). guag g

A . il h ib| languages that do not have a fixed stress rule, pref-
ttest time We Simply Score each possible C)L{t'erences for particular patterns can be learned using
put pattern using the learned weights. That is

) this feature.
for an input sequence of length IV, we compute

A (I)_(S’ t) forallt € Ty, and we take the highest 2tjon is a substring composed of three phonemes but we
scoringt as our output. Note that because we onlyuse its orthographic representation here for clarity.

the full Stress Patterrserves as an im-
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3.3 Pattern-to-Vowel Mapping System Eng Ger | Dut
The final stage of our system uses the predicted P+S P P P

patternt to create the stress-marked form of the SUBSTRING | 96.2 98.0) 97.1) 93.1
word, w. Note the number of substrings created ORACLESYL | 954 96.4) 97.1) 93.2
by our splitting method always equals the number TOPPATTERN | 66.8 68.9]| 64.1| 60.8

of vowels in the word. We can thus simply map rapje 3: Stress prediction word accuracy (%) on
the indicator numbers iito markers on their cor- phonemesfor English, German, and DutchP:

responding vowels to produce the stressed word. predicting primary stress onlf+S: primary and
For our examplepronounce— ron-no-un-ce secondary.

if the SVM chooses the stress pattern, 0-1-0-

0, we produce the correct stress-marked word,

pronbunce If we instead stress the third vowel, 0-

0-1-0, we produce an incorrect outpptpnaince

CELEX also provides secondary stress annota-
tion for English. We therefore evaluate on both
primary and secondary stre$3+S) in English and

on primary stress assignment alori®) for En-
glish, German, and Dutch.

In this section, we evaluate our ranking approach

to stress prediction by assigning stress to spokeft-2 Comparison Approaches

and written words in three languages: EnglishWe evaluate three different systems on the letter
German, and Dutch. We first describe the data andnd phoneme sequences in the experimental data:
the various systems we evaluate, and then provid
the results.

4 Stress Prediction Experiments

f) SUBSTRING is the system presented in Sec-
tion 3. It uses the vowel-based splitting

4.1 Data method, followed by SVM ranking.

The data is extracted from CELEX (Baayen et al.,2)
1996). Following previous work on stress predic-
tion, we randomly partition the data into 85% for
training, 5% for development, and 10% for test-
ing. To make results on German and Dutch com-
parable with English, we reduce the training, de-
velopment, and testing set by 80% for each. Af-
ter removing all duplicated items as well as abbre-
viations, phrases, and diacritics, each training set
contains around 55K words.

In CELEX, stress is labeled on syllables in the
phonetic form of the words. Since our objec-

ORACLESYL splits the input word into sylla-
bles according to the CELEX gold-standard,
before applying SVM ranking. The output
pattern is evaluated directly against the gold-
standard, without pattern-to-vowel mapping.

) TOPPATTERN is our baseline system. It uses

the vowel-based splitting method to produce a
substring sequence of lengt. Then it simply
chooses the most common stress pattern among
all the stress patterns of lengith.

SUBSTRING and QRACLESYL use scores pro-

tive is to assign stress markers\vowels(as de-

duced by an SVM ranker trained on the training

scribed in Section 2) we automatically map thedata. We employ the ranking mode of the popular
stress markers from the stressed syllables in thiearning package SVt (Joachims, 1999). In
phonetic forms onto phonemes and letters repeach case, we learn a linear kernel ranker on the
resenting vowels. For phonemes, the process igaining set stress patterns and tune the parameter
straightforward: we move the stress marker fromthat trades-off training error and margin on the de-
the beginning of a syllable to the phoneme whichvelopment set.

constitutes the nucleus of the syllable. For let- We evaluate the systems usingrd accuracy
ters, we map the stress from the vowel phonemehe percent of words for which the output form of
onto the orthographic forms using the ALINE al- the word,w, matches the gold standard.

gorithm (Dwyer and Kondrak, 2009). The stress
marker is placed on the first letter within the sylla-
ble that represents a vowel souhd.

4.3 Results

Table 3 provides results on English, German, and
————— ) ) Dutch phonemes. Overall, the performance of our

Our stand-off stress annotations for English, German, . . .
automatic stress predictor,uBSTRING, is excel-

and Dutch CELEX orthographic data can be downloaded at: ) -
http://www.cs.ualberta.ca/-kondrak/celex.html. lent. It achieves 98.0% accuracy for predicting
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System Eng Ger | Dut 100

P+S P | P | P )
SUBSTRING | 93.5 95.1| 95.9| 91.0
ORACLESYL | 94.6 96.0| 96.6 | 92.8 o
TOPPATTERN | 65.5 67.6| 64.1| 60.8 °\;
c
Table 4: Stress prediction word accuracy (%) on 3
letters for English, German, and DutcIP: pre- ;}
dicting primary stress oni\P+S: primary and sec- g
ondary.
: : , : P S
primary stress in English, 97.1% in German, and 10000 100000

93.1% in Dutch. It also predicts both primary and
secondary stress in English with high accuracy,
96.2%. Performance is much higher than our base- Figure 1: Stress prediction accuracy on letters.
line accuracy, which is between 60% and 70%.
ORACLESYL, with longer substrings and hence
sparser data, does not generally improve perfor2007), which achieves 90.1% word accuracy on
mance. This indicates that perfect syllabificationletters in German CELEX, assuming perfect letter
is unnecessary for phonetic stress assignment. syllabification. In order to reproduce their strict
Our system is a major advance over the preexperimental setup, we re-partition the full set of
vious state-of-the-art in phonetic stress assignGerman CELEX data to ensure that no overlap of
ment. For predicting stressed/unstressed syllable¥ord stems exists between the training and test
in English, Black et al. (1998) obtained a per-Sets. Using the new data sets, our system achieves
syllable accuracy of 94.6%. We achieve 96.29@ Word accuracy of 92.3%, a 2.2% improvement
per-wordaccuracy for predicting both primary and 0ver Demberg et al. (2007)’s result. Moreover, if
secondary stress. Others report lower numberé/€ also assume perfect syllabification, the accu-
on English phonemes. Bagshaw (1998) obtaine#eCY is 94.3%, a 40% reduction in error rate.
65%-83.3% per-syllable accuracy using Church We performed a detailed analysis to understand
(1985)’s rule-based system. For predicting boththe strong performance of our system. First of all,
primary and secondary stress, Coleman (2000jote that an error could happen if a test-set stress
and Pearson et al. (2000) report 69.8% and 81.0%battern was not observed in the training data; its
word accuracy, respectively. correct stress pattern would not be considered as

The performance on letters (Table 4) is also@n output. In fact, no more than two test errors in
quite encouraging. $BSTRING predicts primary any test set were so caused. This strongly justi-
stress with accuracy above 95% for English andies the reduced set of outputs used in our ranking
German, and equal to 91% in Dutch. Performancdormulation.
is 1-3% lower on letters than on phonemes. On We also tested all systems with the Stress Pat-
the other hand, the performance oRACLESYL  tern feature removed. Results were worse in all
drops much less on letters. This indicates thatases. As expected, it is most valuable for pre-
most of SUBSTRING'S errors are caused by the dicting primary and secondary stress. On English
splitting method. Letter vowels may or may not phonemes, accuracy drops from 96.2% to 95.3%
represent spoken vowels. By creating a substringvithout it. On letters, it drops from 93.5% to
for every vowel letter we may produce an incorrect90.0%. The gain from this feature also validates
number of syllables. Our pattern feature is there-our ranking framework, as such arbitrary features
fore less effective. over the entire output sequence can not be used in

Nevertheless, 88STRING's accuracy on letters standard search-based sequence prediction.
also represents a clear improvement over previ- Finally, we examined the relationship between
ous work. Webster (2004) reports 80.3% wordtraining data size and performance by plotting
accuracy on letters in English and 81.2% in Gerdearning curves for letter stress accuracy (Fig-
man. The most comparable work is Demberg et alure 1). Unlike the tables above, here we use the

Number of training examples
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full set of data in Dutch and German CELEX to phoneme-generator and a stress predictor based on
create the largest-possible training sets (255K exstress pattern counts. In contrast, Webster (2004)
amples). None of the curves are levelling off; per-first assigns stress to letters, creating an expanded
formance grows log-linearly across the full range.input set, and then predicts both phonemes and
stress jointly. The system marks stress on let-
5 Lexical stress and L2P conversion ter vowels by determining the correspondence be-

. . . 1Iween affixes and stress in written words.
In this section, we evaluate various methods o .

- - ) Following the above approaches, we can expand
combining stress prediction with phoneme gener;

. , . o the input or output symbols of our L2P system to
ation. We first describe the specific system that we P PUt sy : ys
) include stress. However, since both decision tree

use for letter-to-phoneme (L2P) conversion. We . .
. . ... _systems and our L2P predictor utilize only local

then discuss the different ways stress prediction

can be integrated with L2P, and define the system%onteXt’ _they may produce invalid global OUtPUt'
. . . ) ne option, used by Demberg et al. (2007), is to
used in our experiments. Finally, we provide the

add a constraint to the output generation, requiring
results. :
each output sequence to have exactly one primary

5.1 The L2P system stress.

_ o _ We enhance this constraint, based on the obser-
We combine stress prediction with a state-of-the,ation that the number of valid output sequences

art L2P system (Jiampojamarn et al., 2008). Likeg tajrly limited (Section 3.2). The modified sys-
our stress ranker, their system is a data-driven Ssm produces the highest-scoring sequence such
quence predictor that is trained with supervisedpat the output's corresponding stress pattern has

learning. The score for each output sequence ifean ohserved in our training data. We call this
a weighted combination of features. The featurgyq sress pattern constraint This is a tighter

weights are trained using the Margin Infused Regnstraint than having only one primary stréss.
laxed Algorithm (MIRA) (Crammer and Singer, anqther advantage is that it provides some guid-
2003), a powerful online discriminative training gnce for the assignment of secondary stress.

framework. Like other recent L2P systems (Bisan_i Inspired by the aforementioned strategies, we
and Ney, 2002; Marchand ar_ld Damper, 2007; Jigyajuate the following approaches:
ampojamarn et al., 2007), this approach does not
generate stress, nor does it consider stress whenl) JOINT: The L2P system’s input sequence is let-
generates phonemes. ters, the output sequence is phonemes+stress.
For L2P experiments, we use the same training
testing, and development data as was used in Se
tion 4. For all experiments, we use the develop-

ment set to determine at which iteration to stop

training in the online algorithm. 3) POSTPROCESS The L2P system’s input is let-
ters, the output is phonemes. It then applies the
SVM stress ranker (Section 3) to the phonemes
to produce the full phoneme+stress output.

g) JOINT+CONSTR: Same as@INT, except it se-
lects the highest scoring output that obeys the
stress pattern constraint.

5.2 Combining stress and phoneme
generation

Various methods have been used for combining

stress and phoneme generation. Phonemes can ik LETTERSTRESS The L2P system’s input is
generated without regard to stress, with stress as- |etters+stress, the output is phonemes+stress.
signed as a post-process (Bagshaw, 1998; Cole- It creates the stress-marked letters by applying
man, 2000). Both van den Bosch (1997) and the SVM ranker to the input letters as a pre-
Black et al. (1998) argue that stress should be pre- Process.

dicted at the same time as phonemes. They e%;} ORACLESTRESS The same input/output as
pand the output set to distinguish between stresse LETTERSTRESS except it uses the gold-

and unstressed phonemes. Similarly, Demberg et standard stress on letters (Section 4.1)
al. (2007) produce phonemes, stress, and syllable- e
boundaries within a single joint n-gram model. “In practice, the L2P system generates a top-N list, and
Pearson et al. (2000) generate phonemes and str we take the highest-scoring output on the list that satisfies

A e - GRS constraint. If none satisfy the constraint, we take ¢ipe t
together by jointly optimizing a decision-tree output that has only one primary stress.
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System Eng Ger | Dut (from 88.8% to 91.4%). This can be explained by
P+S P P P the fact that English vowels are often reduced to
JOINT 78.9 80.0| 86.0|81.1 schwa when unstressed (Section 2).
JOINT+CONSTR | 84.6 86.0| 90.8 | 88.7 Predicting both phonemes and stress is a chal-
PosTPROCESs | 86.2 87.6| 90.9 | 88.8 lenging task, and each of our globally-informed
LETTERSTRESS | 86.5 87.2| 90.1| 86.6 systems represents a major improvement over pre-
ORACLESTRESS | 91.4 91.4| 92.6| 945 vious work. The accuracy of Festival is much
Festival 61.2 62.5|71.8|65.1 lower even than ourdINT approach, but the rel-
ative performance on the different languages is

Table 5: Combined phonemend stress predic- . ita similar

i %) for English, German and ' .
tion word accurgcy (% . ' ' A few papers report accuracy on the combined
Dutch. P: predicting primary stress onlyP+S:

) stress and phoneme prediction task. The most di-
primary and secondary.

rectly comparable work is van den Bosch (1997),
which also predicts primary and secondary stress
Note that while the first approach uses 0”|YUsing English CELEX data. However, the re-
local information to make predictions (featuresported word accuracy is only 62.1%. Three other
within a context window around the current let- papers report word accuracy on phonemes and
ter), systems 2 to 5 leverage global information ingyress, using different data sets. Pearson et al.
some manner: systems 3 and 4 use the predictionsoo) report 58.5% word accuracy for predicting

of our stress rgnker, while 2 uses a global stresgponemes and primary/secondary stress. Black et
pattern constrairt. al. (1998) report 74.6% word accuracy in English,
We also generated stress and phonemes usiRghijle Webster (2004) reports 68.2% on English
the popular Festival Speech Synthesis SyStemand 82.9% in German (all primary stress only).
(version 1.96, 2004) and report its accuracy. Finally, Demberg et al. (2007) report word accu-
53 Results racy on predicting phonemes, stressid syllab-
' ification on German CELEX data. They achieve
Word accuracy results for predicting both 86.3% word accuracy.
phonemes and stress are provided in Table 5.
First of all, note that the QinT approach, 6 Conclusion

which simply expands the output set, is 4%- L .
. We have presented a discriminative ranking ap-
8% worse than all other comparison systems

roach to lexical stress prediction, which clearl
across the three languages. These results cleariJ b y

indicate the drawbacks of predicting stress usﬁ{J tperforms previously developed systems. The

ing only local information. In English, both izglrgif)hbl;:? rgretlﬁ/ola;r;glrj]ziacge;:]r:jde%%r:]cleeﬁr;t,rspfe“_'
LETTERSTRESS and PRoSTPROCESS perform grap P P

best, while RSTPROCESS and the constrained sentations, and flexible enough to handle multi-

: le stress levels. When combined with an exist-

system are highest on German and Dutch. Results . . ) .
) " Ing L2P system, it achieves impressive accuracy
using the oracle letter stress show that given g . . )
. In generating pronunciations together with their
perfect stress assignment on letters, phoneme

. . ﬁ ress patterns. In the future, we will investigate
and stress can be predicted very accurately, in all | .. .
additional features to leverage syllabic and mor-
cases above 91%.

We also found that the ph dicti phological information, when available. Kernel
ca SIO ound tha 'the Ft) otneme pre I'(t: 0N aC%%nctions could also be used to automatically cre-
curacy alone (i.e., without stress) is quite SIMate aricher feature space; preliminary experiments

lar for akl)l. thg stystems. dThr? gains oveoldT have shown gains in performance using polyno-
on combined SIress and pnoneme accuracy algia and RBF kernels with our stress ranker.

almost entirely due to more accurate stress as-
signment.  Utilizing the oracle stress on lettersacknowledgements

markedly improves phoneme prediction in English
This research was supported by the Natural

5This constraint could also help the other systems. How-gciences and Engineering Research Council of
ever, since they already use global information, it yieldl/o .
marginal improvements. Canada, the Alberta Ingenuity Fund, and the Al-

Shttp:/iwww.cstr.ed.ac.uk/projects/festival/ berta Informatics Circle of Research Excellence.
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Abstract

Letter-to-phoneme (L2P) conversion is the
process of producing a correct phoneme
sequence for a word, given its letters. It
is often desirable to reduce the quantity of
training data — and hence human anno-
tation — that is needed to train an L2P
classifier for a new language. In this pa-
per, we confront the challenge of building
an accurate L2P classifier with a minimal
amount of training data by combining sev-
eral diverse techniques: context ordering,
letter clustering, active learning, and pho-
netic L2P alignment. Experiments on six
languages show up to 75% reduction in an-
notation effort.

1 Introduction

The task of letter-to-phoneme (L2P) conversion
is to produce a correct sequence of phonemes,
given the letters that comprise a word. An ac-
curate L2P converter is an important component
of a text-to-speech system. In general, a lookup
table does not suffice for L2P conversion, since
out-of-vocabulary words (e.g., proper names) are
inevitably encountered. This motivates the need
for classification techniques that can predict the
phonemes for an unseen word.

Numerous studies have contributed to the de-
velopment of increasingly accurate L2P sys-
tems (Black et al., 1998; Kienappel and Kneser,
2001; Bisani and Ney, 2002; Demberg et al., 2007;
Jiampojamarn et al., 2008). A common assump-
tion made in these works is that ample amounts of
labelled data are available for training a classifier.
Yet, in practice, this is the case for only a small
number of languages. In order to train an L2P clas-
sifier for a new language, we must first annotate
words in that language with their correct phoneme
sequences. As annotation is expensive, we would
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like to minimize the amount of effort that is re-
quired to build an adequate training set. The ob-
jective of this work is not necessarily to achieve
state-of-the-art performance when presented with
large amounts of training data, but to outperform
other approaches when training data is limited.

This paper proposes a system for training an ac-
curate L2P classifier while requiring as few an-
notated words as possible. We employ decision
trees as our supervised learning method because of
their transparency and flexibility. We incorporate
context ordering into a decision tree learner that
guides its tree-growing procedure towards gener-
ating more intuitive rules. A clustering over letters
serves as a back-off model in cases where individ-
ual letter counts are unreliable. An active learning
technique is employed to request the phonemes
(labels) for the words that are expected to be the
most informative. Finally, we apply a novel L2P
alignment technique based on phonetic similarity,
which results in impressive gains in accuracy with-
out relying on any training data.

Our empirical evaluation on several L2P
datasets demonstrates that significant reductions
in annotation effort are indeed possible in this do-
main. Individually, all four enhancements improve
the accuracy of our decision tree learner. The com-
bined system yields savings of up to 75% in the
number of words that have to be labelled, and re-
ductions of at least 52% are observed on all the
datasets. This is achieved without any additional
tuning for the various languages.

The paper is organized as follows. Section 2 ex-
plains how supervised learning for L2P conversion
is carried out with decision trees, our classifier of
choice. Sections 3 through 6 describe our four
main contributions towards reducing the annota-
tion effort for L2P: context ordering (Section 3),
clustering letters (Section 4), active learning (Sec-
tion 5), and phonetic alignment (Section 6). Our
experimental setup and results are discussed in
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Sections 7 and 8, respectively. Finally, Section 9
offers some concluding remarks.

2 Decision tree learning of L2P classifiers

In this work, we employ a decision tree model
to learn the mapping from words to phoneme se-
quences. Decision tree learners are attractive be-
cause they are relatively fast to train, require little
or no parameter tuning, and the resulting classifier
can be interpreted by the user. A number of prior
studies have applied decision trees to L2P data and
have reported good generalization accuracy (An-
dersen et al., 1996; Black et al., 1998; Kienappel
and Kneser, 2001). Also, the widely-used Festi-
val Speech Synthesis System (Taylor et al., 1998)
relies on decision trees for L2P conversion.

We adopt the standard approach of using the
letter context as features. The decision tree pre-
dicts the phoneme for the focus letter based on
the m letters that appear before and after it in
the word (including the focus letter itself, and be-
ginning/end of word markers, where applicable).
The model predicts a phoneme independently for
each letter in a given word. In order to keep our
model simple and transparent, we do not explore
the possibility of conditioning on adjacent (pre-
dicted) phonemes. Any improvement in accuracy
resulting from the inclusion of phoneme features
would also be realized by the baseline that we
compare against, and thus would not materially in-
fluence our findings.

We employ binary decision trees because they
substantially outperformed n-ary trees in our pre-
liminary experiments. In L2P, there are many
unique values for each attribute, namely, the let-
ters of a given alphabet. In a n-ary tree each de-
cision node partitions the data into n subsets, one
per letter, that are potentially sparse. By contrast,
a binary tree creates one branch for the nominated
letter, and one branch grouping the remaining let-
ters into a single subset. In the forthcoming exper-
iments, we use binary decision trees exclusively.

3 Context ordering

In the L2P task, context letters that are adjacent
to the focus letter tend to be more important than
context letters that are further away. For exam-
ple, the English letter c is usually pronounced as
[s] if the following letter is e or 7. The general
tree-growing algorithm has no notion of the letter
distance, but instead chooses the letters on the ba-
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sis of their estimated information gain (Manning
and Schiitze, 1999). As a result, it will sometimes
query a letter at position +3 (denoted [3), for ex-
ample, before examining the letters that are closer
to the center of the context window.

We propose to modify the tree-growing proce-
dure to encourage the selection of letters near the
focus letter before those at greater offsets are ex-
amined. In its strictest form, which resembles
the “dynamically expanding context” search strat-
egy of Davel and Barnard (2004), /; can only be
queried after [y, . . ., [;_1 have been queried. How-
ever, this approach seems overly rigid for L2P. In
English, for example, 2 can directly influence the
pronunciation of a vowel regardless of the value of
l1 (c.f., the difference between rid and ride).

Instead, we adopt a less intrusive strategy,
which we refer to as “context ordering,” that biases
the decision tree toward letters that are closer to
the focus, but permits gaps when the information
gain for a distant letter is relatively high. Specif-
ically, the ordering constraint described above is
still applied, but only to letters that have above-
average information gain (where the average is
calculated across all letters/attributes). This means
that a letter with above-average gain that is eligi-
ble with respect to the ordering will take prece-
dence over an ineligible letter that has an even
higher gain. However, if all the eligible letters
have below-average gain, the ineligible letter with
the highest gain is selected irrespective of its posi-
tion. Our only strict requirement is that the focus
letter must always be queried first, unless its infor-
mation gain is zero.

Kienappel and Kneser (2001) also worked on
improving decision tree performance for L2P, and
devised tie-breaking rules in the event that the tree-
growing procedure ranked two or more questions
as being equally informative. In our experience
with L2P datasets, exact ties are rare; our context
ordering mechanism will have more opportunities
to guide the tree-growing process. We expect this
change to improve accuracy, especially when the
amount of training data is very limited. By biasing
the decision tree learner toward questions that are
intuitively of greater utility, we make it less prone
to overfitting on small data samples.

4 Clustering letters

A decision tree trained on L2P data bases its pho-
netic predictions on the surrounding letter context.



Yet, when making predictions for unseen words,
contexts will inevitably be encountered that did
not appear in the training data. Instead of rely-
ing solely on the particular letters that surround
the focus letter, we postulate that the learner could
achieve better generalization if it had access to
information about the types of letters that appear
before and after. That is, instead of treating let-
ters as abstract symbols, we would like to encode
knowledge of the similarity between certain letters
as features. One way of achieving this goal is to
group the letters into classes or clusters based on
their contextual similarity. Then, when a predic-
tion has to be made for an unseen (or low probabil-
ity) letter sequence, the letter classes can provide
additional information.

Kienappel and Kneser (2001) report accuracy
gains when applying letter clustering to the L2P
task. However, their decision tree learner incorpo-
rates neighboring phoneme predictions, and em-
ploys a variety of different pruning strategies; the
portion of the gains attributable to letter clustering
are not evident. In addition to exploring the effect
of letter clustering on a wider range of languages,
we are particularly concerned with the impact that
clustering has on decision tree performance when
the training set is small. The addition of letter class
features to the data may enable the active learner
to better evaluate candidate words in the pool, and
therefore make more informed selections.

To group the letters into classes, we employ
a hierarchical clustering algorithm (Brown et al.,
1992). One advantage of inducing a hierarchy is
that we need not commit to a particular level of
granularity; in other words, we are not required to
specify the number of classes beforehand, as is the
case with some other clustering algorithms.'

The clustering algorithm is initialized by plac-
ing each letter in its own class, and then pro-
ceeds in a bottom-up manner. At each step, the
pair of classes is merged that leads to the small-
est loss in the average mutual information (Man-
ning and Schiitze, 1999) between adjacent classes.
The merging process repeats until a single class
remains that contains all the letters in the alpha-
bet. Recall that in our problem setting we have
access to a (presumably) large pool of unanno-
tated words. The unigram and bigram frequen-
cies required by the clustering algorithm are cal-

!This approach is inspired by the work of Miller et al.
(2004), who clustered words for a named-entity tagging task.
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’ Letter ‘ Bit String H Letter ‘ Bit String

a 01000 n 1111

b 10000000 0 01001
c 10100 p 10001
d 11000 q 1000001
e 0101 r 111010
f 100001 s 11010
g 11001 t 101010
h 10110 u 0111

i 0110 v 100110
] 10000001 w 100111
k 10111 X 111011
1 11100 y 11011
m 10010 z 101011

# 00

Table 1: Hierarchical clustering of English letters

culated from these words; hence, the letters can
be grouped into classes prior to annotation. The
letter classes only need to be computed once for
a given language. We implemented a brute-force
version of the algorithm that examines all the pos-
sible merges at each step, and generates a hierar-
chy within a few hours. However, when dealing
with a larger number of unique tokens (e.g., when
clustering words instead of letters), additional op-
timizations are needed in order to make the proce-
dure tractable.

The resulting hierarchy takes the form of a bi-
nary tree, where the root node/cluster contains all
the letters, and each leaf contains a single let-
ter. Hence, each letter can be represented by a bit
string that describes the path from the root to its
leaf. As an illustration, the clustering in Table 1
was automatically generated from the words in the
English CMU Pronouncing Dictionary (Carnegie
Mellon University, 1998). It is interesting to note
that the first bit distinguishes vowels from con-
sonants, meaning that these were the last two
groups that were merged by the clustering algo-
rithm. Note also that the beginning/end of word
marker (#) is included in the hierarchy, and is the
last character to be absorbed into a larger clus-
ter. This indicates that # carries more informa-
tion than most letters, as is to be expected, in light
of its distinct status. We also experimented with
a manually-constructed letter hierarchy, but ob-
served no significant differences in accuracy vis-
a-vis the automatic clustering.



S Active learning

Whereas a passive supervised learning algorithm
is provided with a collection of training exam-
ples that are typically drawn at random, an active
learner has control over the labelled data that it ob-
tains (Cohn et al., 1992). The latter attempts to se-
lect its training set intelligently by requesting the
labels of only those examples that are judged to be
the most useful or informative. Numerous studies
have demonstrated that active learners can make
more efficient use of unlabelled data than do pas-
sive learners (Abe and Mamitsuka, 1998; Miller
et al., 2004; Culotta and McCallum, 2005). How-
ever, relatively few researchers have applied active
learning techniques to the L2P domain. This is
despite the fact that annotated data for training an
L2P classifier is not available in most languages.
We briefly review two relevant studies before pro-
ceeding to describe our active learning strategy.

Maskey et al. (2004) propose a bootstrapping
technique that iteratively requests the labels of the
n most frequent words in a corpus. A classifier is
trained on the words that have been annotated thus
far, and then predicts the phonemes for each of the
n words being considered. Words for which the
prediction confidence is above a certain threshold
are immediately added to the lexicon, while the re-
maining words must be verified (and corrected, if
necessary) by a human annotator. The main draw-
back of such an approach lies in the risk of adding
erroneous entries to the lexicon when the classifier
is overly confident in a prediction.

Kominek and Black (2006) devise a word se-
lection strategy based on letter n-gram coverage
and word length. Their method slightly outper-
forms random selection, thereby establishing pas-
sive learning as a strong baseline. However, only a
single Italian dataset was used, and the results do
not necessarily generalize to other languages.

In this paper, we propose to apply an ac-
tive learning technique known as Query-by-
Bagging (Abe and Mamitsuka, 1998). We con-
sider a pool-based active learning setting, whereby
the learner has access to a pool of unlabelled ex-
amples (words), and may obtain labels (phoneme
sequences) at a cost. This is an iterative proce-
dure in which the learner trains a classifier on the
current set of labelled training data, then selects
one or more new examples to label, according to
the classifier’s predictions on the pool data. Once
labelled, these examples are added to the training
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set, the classifier is re-trained, and the process re-
peats until some stopping criterion is met (e.g., an-
notation resources are exhausted).

Query-by-Bagging (QBB) is an instance of the
Query-by-Committee algorithm (Freund et al.,
1997), which selects examples that have high clas-
sification variance. At each iteration, QBB em-
ploys the bagging procedure (Breiman, 1996) to
create a committee of classifiers C'. Given a train-
ing set T' containing k examples (in our setting,
k is the total number of letters that have been la-
belled), bagging creates each committee member
by sampling k£ times from 7" (with replacement),
and then training a classifier C; on the resulting
data. The example in the pool that maximizes the
disagreement among the predictions of the com-
mittee members is selected.

A crucial question is how to calculate the
disagreement among the predicted phoneme se-
quences for a word in the pool. In the L2P domain,
we assume that a human annotator specifies the
phonemes for an entire word, and that the active
learner cannot query individual letters. We require
a measure of confidence at the word level; yet, our
classifiers make predictions at the letter level. This
is analogous to the task of estimating record confi-
dence using field confidence scores in information
extraction (Culotta and McCallum, 2004).

Our solution is as follows. Let w be a word in
the pool. Each classifier C; predicts the phoneme
for each letter [ € w. These “votes” are aggre-
gated to produce a vector v; for letter [ that indi-
cates the distribution of the |C| predictions over its
possible phonemes. We then compute the margin
for each letter: If {p,p'} € v; are the two highest
vote totals, then the margin is M (v;) = |p — p'|.
A small margin indicates disagreement among the
constituent classifiers. We define the disagreement
score for the entire word as the minimum margin:

score(w) = min{M (v;)} (1)
lew

We also experimented with maximum vote en-
tropy and average margin/entropy, where the av-
erage is taken over all the letters in a word. The
minimum margin exhibited the best performance
on our development data; hence, we do not pro-
vide a detailed evaluation of the other measures.

6 L2P alignment

Before supervised learning can take place, the
letters in each word need to be aligned with



phonemes. However, a lexicon typically provides
just the letter and phoneme sequences for each
word, without specifying the specific phoneme(s)
that each letter elicits. The sub-task of L2P that
pairs letters with phonemes in the training data is
referred to as alignment. The L2P alignments that
are specified in the training data can influence the
accuracy of the resulting L2P classifier. In our set-
ting, we are interested in mapping each letter to
either a single phoneme or the “null” phoneme.

The standard approach to L2P alignment is de-
scribed by Damper et al. (2005). It performs an
Expectation-Maximization (EM) procedure that
takes a (preferably large) collection of words as
input and computes alignments for them simul-
taneously. However, since in our active learning
setting the data is acquired incrementally, we can-
not count on the initial availability of a substantial
set of words accompanied by their phonemic tran-
scriptions.

In this paper, we apply the ALINE algorithm
to the task of L2P alignment (Kondrak, 2000;
Inkpen et al., 2007). ALINE, which performs
phonetically-informed alignment of two strings of
phonemes, requires no training data, and so is
ideal for our purposes. Since our task requires the
alignment of phonemes with /etters, we wish to re-
place every letter with a phoneme that is the most
likely to be produced by that letter. On the other
hand, we would like our approach to be language-
independent. Our solution is to simply treat ev-
ery letter as an IPA symbol (International Phonetic
Association, 1999). The IPA is based on the Ro-
man alphabet, but also includes a number of other
symbols. The 26 IPA letter symbols tend to cor-
respond to the usual phonetic value that the letter
represents in the Latin script.> For example, the
IPA symbol [m] denotes “voiced bilabial nasal,”
which is the phoneme represented by the letter m
in most languages that utilize Latin script.

The alignments produced by ALINE are of high
quality. The example below shows the alignment
of the Italian word scianchi to its phonetic tran-
scription [fagki]. ALINE correctly aligns not only
identical IPA symbols (i:i), but also IPA symbols
that represent similar sounds (s:[, n:g, c:k).

s ¢ 1 a n ¢ h i1

| I .
| a g k i

2ALINE can also be applied to non-Latin scripts by re-
placing every grapheme with the IPA symbol that is phoneti-
cally closest to it (Jiampojamarn et al., 2009).
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7 Experimental setup

We performed experiments on six datasets, which
were obtained from the PRONALSYL Iletter-
to-phoneme conversion challenge.®> They are:
English CMUDict (Carnegie Mellon University,
1998); French BRULEX (Content et al., 1990),
Dutch and German CELEX (Baayen et al., 1996),
the Italian Festival dictionary (Cosi et al., 2000),
and the Spanish lexicon. Duplicate words and
words containing punctuation or numerals were
removed, as were abbreviations and acronyms.
The resulting datasets range in size from 31,491
to 111,897 words. The PRONALSYL datasets are
already divided into 10 folds; we used the first fold
as our test set, and the other folds were merged to-
gether to form the learning set. In our preliminary
experiments, we randomly set aside 10 percent of
this learning set to serve as our development set.

Since the focus of our work is on algorithmic
enhancements, we simulate the annotator with an
oracle and do not address the potential human in-
terface factors. During an experiment, 100 words
were drawn at random from the learning set; these
constituted the data on which an initial classifier
was trained. The rest of the words in the learning
set formed the unlabelled pool for active learning;
their phonemes were hidden, and a given word’s
phonemes were revealed if the word was selected
for labelling. After training a classifier on the
100 annotated words, we performed 190 iterations
of active learning. On each iteration, 10 words
were selected according to Equation 1, labelled by
an oracle, and added to the training set. In or-
der to speed up the experiments, a random sam-
ple of 2000 words was drawn from the pool and
presented to the active learner each time. Hence,
QBB selected 10 words from the 2000 candidates.
We set the QBB committee size |C'| to 10.

At each step, we measured word accuracy with
respect to the holdout set as the percentage of test
words that yielded no erroneous phoneme predic-
tions. Henceforth, we use accuracy to refer to
word accuracy. Note that although we query ex-
amples using a committee, we train a single tree on
these examples in order to produce an intelligible
model. Prior work has demonstrated that this con-
figuration performs well in practice (Dwyer and
Holte, 2007). Our results report the accuracy of
the single tree grown on each iteration, averaged

3 Available at http://pascallin.ecs.soton.ac.uk/Challenges/
PRONALSYL/Datasets/



over 10 random draws of the initial training set.

For our decision tree learner, we utilized the J48
algorithm provided by Weka (Witten and Frank,
2005). We also experimented with Wagon (Taylor
et al., 1998), an implementation of CART, but J48
performed better during preliminary trials. We ran
J48 with default parameter settings, except that bi-
nary trees were grown (see Section 2), and subtree
raising was disabled.*

Our feature template was established during de-
velopment set experiments with the English CMU
data; the data from the other five languages did not
influence these choices. The letter context con-
sisted of the focus letter and the 3 letters appear-
ing before and after the focus (or beginning/end of
word markers, where applicable). For letter class
features, bit strings of length 1 through 6 were
used for the focus letter and its immediate neigh-
bors. Bit strings of length at most 3 were used
at positions +2 and —2, and no such features were
added at +-3.> We experimented with other config-
urations, including using bit strings of up to length
6 at all positions, but they did not produce consis-
tent improvements over the selected scheme.

8 Results

We first examine the contributions of the indi-
vidual system components, and then compare our
complete system to the baseline. The dashed
curves in Figure 1 represent the baseline perfor-
mance with no clustering, no context ordering,
random sampling, and ALINE, unless otherwise
noted. In all plots, the error bars show the 99%
confidence interval for the mean. Because the av-
erage word length differs across languages, we re-
port the number of words along the x-axis. We
have verified that our system does not substantially
alter the average number of letters per word in the
training set for any of these languages. Hence, the
number of words reported here is representative of
the true annotation effort.

“Subtree raising is an expensive pruning operation that
had a negligible impact on accuracy during preliminary ex-
periments. Our pruning performs subtree replacement only.

SThe idea of lowering the specificity of letter class ques-
tions as the context length increases is due to Kienappel and
Kneser (2001), and is intended to avoid overfitting. However,
their configuration differs from ours in that they use longer
context lengths (4 for German and 5 for English) and ask let-
ter class questions at every position. Essentially, the authors
tuned the feature set in order to optimize performance on each
problem, whereas we seek a more general representation that
will perform well on a variety of languages.
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8.1 Context ordering

Our context ordering strategy improved the ac-
curacy of the decision tree learner on every lan-
guage (see Figure 1a). Statistically significant im-
provements were realized on Dutch, French, and
German. Our expectation was that context order-
ing would be particularly helpful during the early
rounds of active learning, when there is a greater
risk of overfitting on the small training sets. For
some languages (notably, German and Spanish)
this was indeed the case; yet, for Dutch, context
ordering became more effective as the training set
increased in size.

It should be noted that our context ordering
strategy is sufficiently general that it can be im-
plemented in other decision tree learners that grow
binary trees, such as Wagon/CART (Taylor et al.,
1998). An n-ary implementation is also feasible,
although we have not tried this variation.

8.2 Clustering letters

As can be seen in Figure 1b, clustering letters into
classes tended to produce a steady increase in ac-
curacy. The only case where it had no statistically
significant effect was on English. Another benefit
of clustering is that it reduces variance. The confi-
dence intervals are generally wider when cluster-
ing is disabled, meaning that the system’s perfor-
mance was less sensitive to changes in the initial
training set when letter classes were used.

8.3 Active learning

On five of the six datasets, Query-by-Bagging re-
quired significantly fewer labelled examples to
reach the maximum level of performance achieved
by the passive learner (see Figure 1c). For in-
stance, on the Spanish dataset, random sampling
reached 97% word accuracy after 1420 words had
been annotated, whereas QBB did so with only
510 words — a 64% reduction in labelling ef-
fort. Similarly, savings ranging from 30% to 63%
were observed for the other languages, with the
exception of English, where a statistically insignif-
icant 4% reduction was recorded. Since English is
highly irregular in comparison with the other five
languages, the active learner tends to query exam-
ples that are difficult to classify, but which are un-
helpful in terms of generalization.

It is important to note that empirical compar-
isons of different active learning techniques have
shown that random sampling establishes a very
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Figure 1: Performance of the individual system components

strong baseline on some datasets (Schein and Un-
gar, 2007; Settles and Craven, 2008). It is rarely
the case that a given active learning strategy is
able to unanimously outperform random sampling
across a range of datasets. From this perspective,
to achieve statistically significant improvements
on five of six L2P datasets (without ever being
beaten by random) is an excellent result for QBB.

8.4 L2P alignment

The ALINE method for L2P alignment outper-
formed EM on all six datasets (see Figure 1d). As
was mentioned in Section 6, the EM aligner de-
pends on all the available training data, whereas
ALINE processes words individually. Only on
Spanish and Italian, languages which have highly
regular spelling systems, was the EM aligner com-
petitive with ALINE. The accuracy gains on the

remaining four datasets are remarkable, consider-
ing that better alignments do not necessarily trans-
late into improved classification.

We hypothesized that EM’s inferior perfor-
mance was due to the limited quantities of data
that were available in the early stages of active
learning. In a follow-up experiment, we allowed
EM to align the entire learning set in advance,
and these aligned entries were revealed when re-
quested by the learner. We compared this with the
usual procedure whereby EM is applied to the la-
belled training data at each iteration of learning.
The learning curves (not shown) were virtually in-
distinguishable, and there were no statistically sig-
nificant differences on any of the languages. EM
appears to produce poor alignments regardless of
the amount of available data.
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8.5 Complete system

The complete system consists of context order-
ing, clustering, Query-by-Bagging, and ALINE;
the baseline represents random sampling with EM
alignment and no additional enhancements. Fig-
ure 2 plots the word accuracies for all six datasets.

Although the absolute word accuracies varied
considerably across the different languages, our
system significantly outperformed the baseline in
every instance. On the French dataset, for ex-
ample, the baseline labelled 1850 words before
reaching its maximum accuracy of 64%, whereas
the complete system required only 480 queries to
reach 64% accuracy. This represents a reduction
of 74% in the labelling effort. The savings for the
other languages are: Spanish, 75%; Dutch, 68%;
English, 59%; German, 59%; and Italian, 52%.5
Interestingly, the savings are the highest on Span-
ish, even though the corresponding accuracy gains
are the smallest. This demonstrates that our ap-
proach is also effective on languages with rela-
tively transparent orthography.

At first glance, the performance of both sys-
tems appears to be rather poor on the English
dataset. To put our results into perspective, Black
et al. (1998) report 57.8% accuracy on this dataset
with a similar alignment method and decision tree
learner. Our baseline system achieves 57.3% ac-
curacy when 90,000 words have been labelled.
Hence, the low values in Figure 2 simply reflect
the fact that many more examples are required to

The average savings in the number of labelled words
with respect to the entire learning curve are similar, ranging
from 50% on Italian to 73% on Spanish.
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learn an accurate classifier for the English data.

9 Conclusions

We have presented a system for learning a letter-
to-phoneme classifier that combines four distinct
enhancements in order to minimize the amount
of data that must be annotated. Our experiments
involving datasets from several languages clearly
demonstrate that unlabelled data can be used more
efficiently, resulting in greater accuracy for a given
training set size, without any additional tuning
for the different languages. The experiments also
show that a phonetically-based aligner may be
preferable to the widely-used EM alignment tech-
nique, a discovery that could lead to the improve-
ment of L2P accuracy in general.

While this work represents an important step
in reducing the cost of constructing an L2P train-
ing set, we intend to explore other active learners
and classification algorithms, including sequence
labelling strategies (Settles and Craven, 2008).
We also plan to incorporate user-centric enhance-
ments (Davel and Barnard, 2004; Culotta and Mc-
Callum, 2005) with the aim of reducing both the
effort and expertise that is required to annotate
words with their phoneme sequences.
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Abstract

This paper studies transliteration align-
ment, its evaluation metrics and applica-
tions. We propose a new evaluation met-
ric, alignment entropy, grounded on the
information theory, to evaluate the align-
ment quality without the need for the gold
standard reference and compare the metric
with F'-score. We study the use of phono-
logical features and affinity statistics for
transliteration alignment at phoneme and
grapheme levels. The experiments show
that better alignment consistently leads to
more accurate transliteration. In transliter-
ation modeling application, we achieve a
mean reciprocal rate (MRR) of 0.773 on
Xinhua personal name corpus, a signifi-
cant improvement over other reported re-
sults on the same corpus. In transliteration
validation application, we achieve 4.48%
equal error rate on a large LDC corpus.

1 Introduction

Transliteration is a process of rewriting a word
from a source language to a target language in a
different writing system using the word’s phono-
logical equivalent. The word and its translitera-
tion form a transliteration pair. Many efforts have
been devoted to two areas of studies where there
is a need to establish the correspondence between
graphemes or phonemes between a transliteration
pair, also known as transliteration alignment.
One area is the generative transliteration model-
ing (Knight and Graehl, 1998), which studies how
to convert a word from one language to another us-
ing statistical models. Since the models are trained
on an aligned parallel corpus, the resulting statisti-
cal models can only be as good as the alignment of
the corpus. Another area is the transliteration vali-
dation, which studies the ways to validate translit-
eration pairs. For example Knight and Graehl
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(1998) use the lexicon frequency, Qu and Grefen-
stette (2004) use the statistics in a monolingual
corpus and the Web, Kuo et al. (2007) use proba-
bilities estimated from the transliteration model to
validate transliteration candidates. In this paper,
we propose using the alignment distance between
the a bilingual pair of words to establish the evi-
dence of transliteration candidacy. An example of
transliteration pair alignment is shown in Figure 1.

grapheme tokens €y €, €3

A PO
iez 83 8465

source graphemes ALICE
T A A
target graphemes ¢4 Co C3 X Hr

Figure 1: An example of grapheme alignment (Al-
ice, X A7), where a Chinese grapheme, a char-
acter, is aligned to an English grapheme token.

Like the word alignment in statistical ma-
chine translation (MT), transliteration alignment
becomes one of the important topics in machine
transliteration, which has several unique chal-
lenges. Firstly, the grapheme sequence in a word
is not delimited into grapheme tokens, resulting
in an additional level of complexity. Secondly, to
maintain the phonological equivalence, the align-
ment has to make sense at both grapheme and
phoneme levels of the source and target languages.
This paper reports progress in our ongoing spoken
language translation project, where we are inter-
ested in the alignment problem of personal name
transliteration from English to Chinese.

This paper is organized as follows. In Section 2,
we discuss the prior work. In Section 3, we in-
troduce both statistically and phonologically mo-
tivated alignment techniques and in Section 4 we
advocate an evaluation metric, alignment entropy
that measures the alignment quality. We report the
experiments in Section 5. Finally, we conclude in
Section 6.
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2 Related Work

A number of transliteration studies have touched
on the alignment issue as a part of the translit-
eration modeling process, where alignment is
needed at levels of graphemes and phonemes. In
their seminal paper Knight and Graehl (1998) de-
scribed a transliteration approach that transfers the
grapheme representation of a word via the pho-
netic representation, which is known as phoneme-
based transliteration technique (Virga and Khu-
danpur, 2003; Meng et al.,, 2001; Jung et al.,
2000; Gao et al., 2004). Another technique is
to directly transfer the grapheme, known as di-
rect orthographic mapping, that was shown to
be simple and effective (Li et al., 2004). Some
other approaches that use both source graphemes
and phonemes were also reported with good per-
formance (Oh and Choi, 2002; Al-Onaizan and
Knight, 2002; Bilac and Tanaka, 2004).

To align a bilingual training corpus, some take a
phonological approach, in which the crafted map-
ping rules encode the prior linguistic knowledge
about the source and target languages directly into
the system (Wan and Verspoor, 1998; Meng et al.,
2001; Jiang et al., 2007; Xu et al., 2006). Oth-
ers adopt a statistical approach, in which the affin-
ity between phonemes or graphemes is learned
from the corpus (Gao et al., 2004; AbdulJaleel and
Larkey, 2003; Virga and Khudanpur, 2003).

In the phoneme-based technique where an in-
termediate level of phonetic representation is used
as the pivot, alignment between graphemes and
phonemes of the source and target words is
needed (Oh and Choi, 2005). If source and tar-
get languages have different phoneme sets, align-
ment between the the different phonemes is also
required (Knight and Graehl, 1998). Although
the direct orthographic mapping approach advo-
cates a direct transfer of grapheme at run-time,
we still need to establish the grapheme correspon-
dence at the model training stage, when phoneme
level alignment can help.

It is apparent that the quality of transliteration
alignment of a training corpus has a significant
impact on the resulting transliteration model and
its performance. Although there are many stud-
ies of evaluation metrics of word alignment for
MT (Lambert, 2008), there has been much less re-
ported work on evaluation metrics of translitera-
tion alignment. In MT, the quality of training cor-
pus alignment A is often measured relatively to

the gold standard, or the ground truth alignment
G, which is a manual alignment of the corpus or
a part of it. Three evaluation metrics are used:
precision, recall, and F'-score, the latter being a
function of the former two. They indicate how
close the alignment under investigation is to the
gold standard alignment (Mihalcea and Pedersen,
2003). Denoting the number of cross-lingual map-
pings that are common in both A and G as C'ag,
the number of cross-lingual mappings in A as C'x
and the number of cross-lingual mappings in G as
Ca, precision Pr is given as C4g/C'4, recall Rc
as Caq/Cq and F-score as 2Pr - Re/(Pr + Rc).

Note that these metrics hinge on the availability
of the gold standard, which is often not available.
In this paper we propose a novel evaluation metric
for transliteration alignment grounded on the in-
formation theory. One important property of this
metric is that it does not require a gold standard
alignment as a reference. We will also show that
how this metric is used in generative transliteration
modeling and transliteration validation.

3 Transliteration alignment techniques

We assume in this paper that the source language
is English and the target language is Chinese, al-
though the technique is not restricted to English-
Chinese alignment.

Let a word in the source language (English) be
{e;} = {e1...er} and its transliteration in the
target language (Chinese) be {c;} = {c1...cs},
e; € E,cj € C,and E, C being the English and
Chinese sets of characters, or graphemes, respec-
tively. Aligning {e;} and {c;} means for each tar-
get grapheme token ¢; finding a source grapheme
token é,,, which is an English substring in {e;}
that corresponds to c;, as shown in the example in
Figure 1. As Chinese is syllabic, we use a Chinese
character c; as the target grapheme token.

3.1 Grapheme affinity alignment

Given a distance function between graphemes of
the source and target languages d(e;, ¢;), the prob-
lem of alignment can be formulated as a dynamic
programming problem with the following function
to minimize:

D;j = min(D;—1 -1 + d(e;, ¢;),
D; i1 +d(x,c)), (D
D;_1; +d(e;, *))
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Here the asterisk * denotes a null grapheme that
is introduced to facilitate the alignment between
graphemes of different lengths. The minimum dis-
tance achieved is then given by

1

> d(es, co)

i=1

D

2)

where j = 0(i) is the correspondence between the
source and target graphemes. The alignment can
be performed via the Expectation-Maximization
(EM) by starting with a random initial alignment
and calculating the affinity matrix count(e;, c;)
over the whole parallel corpus, where element
(i,7) is the number of times character e; was
aligned to c¢;. From the affinity matrix conditional
probabilities P(e;|c;) can be estimated as

P(ei|cj) = count(e;, c;)/ Zcount(ei, c;) (3)
J

Alignment j = 6(i) between {e;} and {c;} that
maximizes probability

P = H P(CQ(Z—) |€2) (4)

is also the same alignment that minimizes align-
ment distance D:

D=~logP =~} logPcyple;) (5)

In other words, equations (2) and (5) are the same
when we have the distance function d(e;, cj) =
—log P(cjle;). Minimizing the overall distance
over a training corpus, we conduct EM iterations
until the convergence is achieved.

This technique solely relies on the affinity
statistics derived from training corpus, thus is
called grapheme affinity alignment. It is also
equally applicable for alignment between a pair of
symbol sequences representing either graphemes
or phonemes. (Gao et al., 2004; AbdulJaleel and
Larkey, 2003; Virga and Khudanpur, 2003).

3.2 Grapheme alignment via phonemes

Transliteration is about finding phonological
equivalent. It is therefore a natural choice to use
the phonetic representation as the pivot. It is
common though that the sound inventory differs
from one language to another, resulting in differ-
ent phonetic representations for source and tar-
get words. Continuing with the earlier example,
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graphemes A LICE
source L I |
phonemes AE LAH S
.
phonemes AY 1 i s iz
target .
graphemes X WY HF

Figure 2: An example of English-Chinese translit-
eration alignment via phonetic representations.

Figure 2 shows the correspondence between the
graphemes and phonemes of English word “Al-
ice” and its Chinese transliteration, with CMU
phoneme set used for English (Chase, 1997) and
IIR phoneme set for Chinese (Li et al., 2007a).

A Chinese character is often mapped to a unique
sequence of Chinese phonemes. Therefore, if
we align English characters {e;} and Chinese
phonemes {cpr} (cpr € CP set of Chinese
phonemes) well, we almost succeed in aligning
English and Chinese grapheme tokens. Alignment
between {e; } and {cpy } becomes the main task in
this paper.

3.2.1 Phoneme affinity alignment

Let the phonetic transcription of English word
{e;} be {epn}, ep, € EP, where EP is the set of
English phonemes. Alignment between {e;} and
{epn}, as well as between {ep, } and {cpx} can
be performed via EM as described above. We esti-
mate conditional probability of Chinese phoneme
cpy, after observing English character e; as

P(cplei)

> Plepilepn) Plepnle)  (6)
{epn}

We use the distance function between English
graphemes and Chinese phonemes d(e;, cpx)
—log P(cpgle;) to perform the initial alignment
between {e;} and {cpy} via dynamic program-
ming, followed by the EM iterations until con-
vergence. The estimates for P(cpylepn) and
P(epy|e;) are obtained from the affinity matrices:
the former from the alignment of English and Chi-
nese phonetic representations, the latter from the
alignment of English words and their phonetic rep-
resentations.

3.2.2 Phonological alignment

Alignment between the phonetic representations
of source and target words can also be achieved
using the linguistic knowledge of phonetic sim-
ilarity. Oh and Choi (2002) define classes of



phonemes and assign various distances between
phonemes of different classes. In contrast, we
make use of phonological descriptors to define the
similarity between phonemes in this paper.

Perhaps the most common way to measure the
phonetic similarity is to compute the distances be-
tween phoneme features (Kessler, 2005). Such
features have been introduced in many ways, such
as perceptual attributes or articulatory attributes.
Recently, Tao et al. (2006) and Yoon et al. (2007)
have studied the use of phonological features and
manually assigned phonological distance to mea-
sure the similarity of transliterated words for ex-
tracting transliterations from a comparable corpus.

We adopt the binary-valued articulatory at-
tributes as the phonological descriptors, which are
used to describe the CMU and IIR phoneme sets
for English and Chinese Mandarin respectively.
Withgott and Chen (1993) define a feature vec-
tor of phonological descriptors for English sounds.
We extend the idea by defining a 21-element bi-
nary feature vector for each English and Chinese
phoneme. Each element of the feature vector
represents presence or absence of a phonologi-
cal descriptor that differentiates various kinds of
phonemes, e.g. vowels from consonants, front
from back vowels, nasals from fricatives, etc!.

In this way, a phoneme is described by a fea-
ture vector. We express the similarity between
two phonemes by the Hamming distance, also
called the phonological distance, between the two
feature vectors. A difference in one descriptor
between two phonemes increases their distance
by 1. As the descriptors are chosen to differenti-
ate between sounds, the distance between similar
phonemes is low, while that between two very dif-
ferent phonemes, such as a vowel and a consonant,
is high. The null phoneme, added to both English
and Chinese phoneme sets, has a constant distance
to any actual phonemes, which is higher than that
between any two actual phonemes.

We use the phonological distance to perform
the initial alignment between English and Chi-
nese phonetic representations of words. After that
we proceed with recalculation of the distances be-
tween phonemes using the affinity matrix as de-
scribed in Section 3.1 and realign the corpus again.
We continue the iterations until convergence is

'The complete table of English and Chinese phonemes
with their descriptors, as well as the translitera-
tion system demo 1is available at http://translit.i2r.a-
star.edu.sg/demos/transliteration/
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reached. Because of the use of phonological de-
scriptors for the initial alignment, we call this tech-
nique the phonological alignment.

4 Transliteration alignment entropy

Having aligned the graphemes between two lan-
guages, we want to measure how good the align-
ment is. Aligning the graphemes means aligning
the English substrings, called the source grapheme
tokens, to Chinese characters, the target grapheme
tokens. Intuitively, the more consistent the map-
ping is, the better the alignment will be. We can
quantify the consistency of alignment via align-
ment entropy grounded on information theory.

Given a corpus of aligned transliteration pairs,
we calculate count(c;, €y,), the number of times
each Chinese grapheme token (character) c; is
mapped to each English grapheme token é,,. We
use the counts to estimate probabilities

P(én,cj) = count(cj, ép)/ Z count(c;, €m,)

m,j

P(ém|cj) = count(cj,ém)/ Z count(cj, €m,)

m

The alignment entropy of the transliteration corpus
is the weighted average of the entropy values for
all Chinese tokens:

H = fZP(CJ')Zp(ém|cj)logp(ém|cj)

= P(em, ¢;)log P(m|c;)

m,j

(7

Alignment entropy indicates the uncertainty of
mapping between the English and Chinese tokens
resulting from alignment. We expect and will
show that this estimate is a good indicator of the
alignment quality, and is as effective as the F'-
score, but without the need for a gold standard ref-
erence. A lower alignment entropy suggests that
each Chinese token tends to be mapped to fewer
distinct English tokens, reflecting better consis-
tency. We expect a good alignment to have a
sharp cross-lingual mapping with low alignment
entropy.

5 Experiments

We use two transliteration corpora: Xinhua cor-
pus (Xinhua News Agency, 1992) of 37,637
personal name pairs and LDC Chinese-English



named entity list LDC2005T34 (Linguistic Data
Consortium, 2005), containing 673,390 personal
name pairs. The LDC corpus is referred to as
LDCOS5 for short hereafter. For the results to be
comparable with other studies, we follow the same
splitting of Xinhua corpus as that in (Li et al,,
2007b) having a training and testing set of 34,777
and 2,896 names respectively. In contrast to the
well edited Xinhua corpus, LDCOS5 contains erro-
neous entries. We have manually verified and cor-
rected around 240,000 pairs to clean up the corpus.
As a result, we arrive at a set of 560,768 English-
Chinese (EC) pairs that follow the Chinese pho-
netic rules, and a set of 83,403 English-Japanese
Kanji (EJ) pairs, which follow the Japanese pho-
netic rules, and the rest 29,219 pairs (REST) be-
ing labeled as incorrect transliterations. Next we
conduct three experiments to study 1) alignment
entropy vs. F-score, 2) the impact of alignment
quality on transliteration accuracy, and 3) how to
validate transliteration using alignment metrics.

5.1 Alignment entropy vs. I'-score

As mentioned earlier, for English-Chinese
grapheme alignment, the main task is to align En-
glish graphemes to Chinese phonemes. Phonetic
transcription for the English names in Xinhua
corpus are obtained by a grapheme-to-phoneme
(G2P) converter (Lenzo, 1997), which generates
phoneme sequence without providing the exact
correspondence between the graphemes and
phonemes. G2P converter is trained on the CMU
dictionary (Lenzo, 2008).

We align English grapheme and phonetic repre-
sentations e — ep with the affinity alignment tech-
nique (Section 3.1) in 3 iterations. We further
align the English and Chinese phonetic represen-
tations ep — cp via both affinity and phonological
alignment techniques, by carrying out 6 and 7 it-
erations respectively. The alignment methods are
schematically shown in Figure 3.

To study how alignment entropy varies accord-
ing to different quality of alignment, we would
like to have many different alignment results. We
pair the intermediate results from the e — ep and
ep — cp alignment iterations (see Figure 3) to
form e — ep — cp alignments between English
graphemes and Chinese phonemes and let them
converge through few more iterations, as shown
in Figure 4. In this way, we arrive at a total of 114
phonological and 80 affinity alignments of differ-
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ent quality.

English
phonemes

Chinese
phonemes

English
graphemes

{ei} {epn} {cpi}
\ N
l affinity alignment ‘ l affinity alignment ‘ l phonological alignment ‘

€ — €P iteration 1
€ — €P iteration 2
€ — €p iteration 3

€ep — CP iteration 1
€ep — Cp iteration 2

€P — CP iteration 1
EP — CP iteration 2

ep — cp iteration 6 ep — ¢p iteration 7
Figure 3: Aligning English graphemes to
phonemes e—ep and English phonemes to Chinese
phonemes ep — cp. Intermediate e —ep and ep—cp
alignments are used for producing e — ep — cp
alignments.

iteration 1
iteration 2
iteration 3\

Figure 4: Example of aligning English graphemes
to Chinese phonemes. Each combination of e — ep
and ep — cp alignments is used to derive the initial
distance d(e;, cpy), resulting in several e —ep — cp
alignments due to the affinity alignment iterations.

e—ep
alignments

e—ep—cp

iteration 1

calculating

d(ei, cpx

affinity
bl >
) [ alignment

. . iteration 2
ep — cp iteration 1
affinity /
phonological
alignments iteration n’

iteration 2 etc

We have manually aligned a random set of
3,000 transliteration pairs from the Xinhua train-
ing set to serve as the gold standard, on which we
calculate the precision, recall and F'-score as well
as alignment entropy for each alignment. Each
alignment is reflected as a data point in Figures 5a
and 5b. From the figures, we can observe a clear
correlation between the alignment entropy and F'-
score, that validates the effectiveness of alignment
entropy as an evaluation metric. Note that we
don’t need the gold standard reference for report-
ing the alignment entropy.

We also notice that the data points seem to form
clusters inside which the value of F'-score changes
insignificantly as the alignment entropy changes.
Further investigation reveals that this could be due
to the limited number of entries in the gold stan-
dard. The 3,000 names in the gold standard are not
enough to effectively reflect the change across dif-
ferent alignments. F'-score requires a large gold
standard which is not always available. In con-
trast, because the alignment entropy doesn’t de-
pend on the gold standard, one can easily report
the alignment performance on any unaligned par-
allel corpus.
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(a) 80 affinity alignments

F-score
0.94
0.92
0.90
0.88
0.86
0.84
0.82

235 2.45 2.55 2.65

Alignment entropy

(b) 114 phonological alignments

Figure 5: Correlation between F'-score and align-
ment entropy for Xinhua training set alignments.
Results for precision and recall have similar trends

5.2 Impact of alignment quality on
transliteration accuracy

We now further study how the alignment affects
the generative transliteration model in the frame-
work of the joint source-channel model (Li et al.,
2004). This model performs transliteration by
maximizing the joint probability of the source and
target names P ({e;}, {c;}), where the source and
target names are sequences of English and Chi-
nese grapheme tokens. The joint probability is
expressed as a chain product of a series of condi-
tional probabilities of token pairs P({e;}, {c;}) =
P((ég,cr)|(ég—1,ck-1)), k = 1... N, where we
limit the history to one preceding pair, resulting in
a bigram model. The conditional probabilities for
token pairs are estimated from the aligned training
corpus. We use this model because it was shown
to be simple yet accurate (Ekbal et al., 2006; Li
et al., 2007b). We train a model for each of the
114 phonological alignments and the 80 affinity
alignments in Section 5.1 and conduct translitera-
tion experiment on the Xinhua test data.

During transliteration, an input English name
is first decoded into a lattice of all possible En-
glish and Chinese grapheme token pairs. Then the
joint source-channel transliteration model is used
to score the lattice to obtain a ranked list of m most
likely Chinese transliterations (m-best list).
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We measure transliteration accuracy as the
mean reciprocal rank (MRR) (Kantor and
Voorhees, 2000). If there is only one correct
Chinese transliteration of the k-th English word
and it is found at the rj-th position in the m-best
list, its reciprocal rank is 1 /7. If the list contains
no correct transliterations, the reciprocal rank is
0. In case of multiple correct transliterations, we
take the one that gives the highest reciprocal rank.
MRR is the average of the reciprocal ranks across
all words in the test set. It is commonly used as
a measure of transliteration accuracy, and also
allows us to make a direct comparison with other
reported work (Li et al., 2007b).

We take m = 20 and measure MRR on Xinhua
test set for each alignment of Xinhua training set
as described in Section 5.1. We report MRR and
the alignment entropy in Figures 6a and 7a for the
affinity and phonological alignments respectively.
The highest MRR we achieve is 0.771 for affin-
ity alignments and 0.773 for phonological align-
ments. This is a significant improvement over the
MRR of 0.708 reported in (Li et al., 2007b) on the
same data. We also observe that the phonological
alignment technique produces, on average, better
alignments than the affinity alignment technique
in terms of both the alignment entropy and MRR.

We also report the MRR and F'-scores for each
alignment in Figures 6b and 7b, from which we
observe that alignment entropy has stronger corre-
lation with MRR than F'-score does. The Spear-
man’s rank correlation coefficients are —0.89 and
—0.88 for data in Figure 6a and 7a respectively.
This once again demonstrates the desired property
of alignment entropy as an evaluation metric of
alignment.

To validate our findings from Xinhua corpus,
we further carry out experiments on the EC set
of LDCO5 containing 560,768 entries. We split
the set into 5 almost equal subsets for cross-
validation: in each of 5 experiments one subset is
used for testing and the remaining ones for train-
ing. Since LDCO5 contains one-to-many English-
Chinese transliteration pairs, we make sure that an
English name only appears in one subset.

Note that the EC set of LDCO05 contains
many names of non-English, and, generally, non-
European origin. This makes the G2P converter
less accurate, as it is trained on an English pho-
netic dictionary. We therefore only apply the affin-
ity alignment technique to align the EC set. We
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Figure 6: Mean reciprocal ratio on Xinhua test
set vs. alignment entropy and F'-score for mod-
els trained with different affinity alignments.

use each iteration of the alignment in the translit-
eration modeling and present the resulting MRR
along with alignment entropy in Figure 8. The
MRR results are the averages of five values pro-
duced in the five-fold cross-validations.

We observe a clear correlation between the
alignment entropy and transliteration accuracy ex-
pressed by MRR on LDCO5 corpus, similar to that
on Xinhua corpus, with the Spearman’s rank cor-
relation coefficient of —0.77. We obtain the high-
est average MRR of 0.720 on the EC set.

5.3 Validating transliteration using
alignment measure

Transliteration validation is a hypothesis test that
decides whether a given transliteration pair is gen-
uine or not. Instead of using the lexicon fre-
quency (Knight and Graehl, 1998) or Web statis-
tics (Qu and Grefenstette, 2004), we propose vali-
dating transliteration pairs according to the align-
ment distance D between the aligned English
graphemes and Chinese phonemes (see equations
(2) and (5)). A distance function d(e;,cpy) is
established from each alignment on the Xinhua
training set as discussed in Section 5.2.

An audit of LDCOS corpus groups the corpus
into three sets: an English-Chinese (EC) set of
560,768 samples, an English-Japanese (EJ) set
of 83,403 samples and the REST set of 29,219
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Figure 7: Mean reciprocal ratio on Xinhua test
set vs. alignment entropy and F'-score for models
trained with different phonological alignments.
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Figure 8: Mean reciprocal ratio vs. alignment en-
tropy for alignments of EC set.

samples that are not transliteration pairs. We
mark the EC name pairs as genuine and the rest
112,622 name pairs that do not follow the Chi-
nese phonetic rules as false transliterations, thus
creating the ground truth labels for an English-
Chinese transliteration validation experiment. In
other words, LDCO5 has 560,768 genuine translit-
eration pairs and 112,622 false ones.

We run one iteration of alignment over LDCO05
(both genuine and false) with the distance func-
tion d(e;, cpy) derived from the affinity matrix of
one aligned Xinhua training set. In this way, each
transliteration pair in LDCO5 provides an align-
ment distance. One can expect that a genuine
transliteration pair typically aligns well, leading
to a low distance, while a false transliteration pair
will do otherwise. To remove the effect of word
length, we normalize the distance by the English
name length, the Chinese phonetic transcription
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Figure 9: Detection error tradeoff (DET) curves
for transliteration validation on LDCO05.

We can now classify each LDCO05 name pair as
genuine or false by having a hypothesis test. When
the test score is lower than a pre-set threshold, the
name pair is accepted as genuine, otherwise false.
In this way, each pre-set threshold will present two
types of errors, a false alarm and a miss-detect
rate. A common way to present such results is via
the detection error tradeoff (DET) curves, which
show all possible decision points, and the equal er-
ror rate (EER), when false alarm and miss-detect
rates are equal.

Figure 9a shows three DET curves based on
scorey, scores and scores respectively for one
one alignment solution on the Xinhua training set.
The horizontal axis is the probability of miss-
detecting a genuine transliteration, while the verti-
cal one is the probability of false-alarms. It is clear
that out of the three, scores gives the best results.

We select the alignments of Xinhua training
set that produce the highest and the lowest MRR.
We also randomly select three other alignments
that produce different MRR values from the pool
of 114 phonological and 80 affinity alignments.
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Xinhua train | Alignment entropy MRR on Xinhua classl-ilf?t?ation
set alignment | of Xinhua train set test set EER, %
1 2.396 0.773 4.48
2 2.529 0.764 4.52
3 2.586 0.761 4.51
4 2.621 0.757 4.71
5 2.625 0.754 4.70

Table 1: Equal error ratio of LDC transliteration
pair validation for different alignments of Xinhua
training set.

We use each alignment to derive distance func-
tion d(e;, cpy). Table 1 shows the EER of LDCO05
validation using scoreg, along with the alignment
entropy of the Xinhua training set that derives
d(e;, cpy), and the MRR on Xinhua test set in the
generative transliteration experiment (see Section
5.2) for all 5 alignments. To avoid cluttering Fig-
ure 9b, we show the DET curves for alignments
1, 2 and 5 only. We observe that distance func-
tion derived from better aligned Xinhua corpus,
as measured by both our alignment entropy met-
ric and MRR, leads to a higher validation accuracy
consistently on LDCOS5.

6 Conclusions

We conclude that the alignment entropy is a re-
liable indicator of the alignment quality, as con-
firmed by our experiments on both Xinhua and
LDC corpora. Alignment entropy does not re-
quire the gold standard reference, it thus can be
used to evaluate alignments of large transliteration
corpora and is possibly to give more reliable esti-
mate of alignment quality than the F'-score metric
as shown in our transliteration experiment.

The alignment quality of training corpus has
a significant impact on the transliteration mod-
els. We achieve the highest MRR of 0.773 on
Xinhua corpus with phonological alignment tech-
nique, which represents a significant performance
gain over other reported results. Phonological
alignment outperforms affinity alignment on clean
database.

We propose using alignment distance to validate
transliterations. A high quality alignment on a
small verified corpus such as Xinhua can be effec-
tively used to validate a large noisy corpus, such
as LDCO05. We believe that this property would be
useful in transliteration extraction, cross-lingual
information retrieval applications.
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Abstract

We propose a method to automatically train
lemmatization rules that handle prefix, infix
and suffix changes to generate the lemma from
the full form of a word. We explain how the
lemmatization rules are created and how the
lemmatizer works. We trained this lemmatizer
on Danish, Dutch, English, German, Greek,
Icelandic, Norwegian, Polish, Slovene and
Swedish full form-lemma pairs respectively.
We obtained significant improvements of 24
percent for Polish, 2.3 percent for Dutch, 1.5
percent for English, 1.2 percent for German
and 1.0 percent for Swedish compared to plain
suffix lemmatization using a suffix-only lem-
matizer. Icelandic deteriorated with 1.9 per-
cent. We also made an observation regarding
the number of produced lemmatization rules as
a function of the number of training pairs.

1 Introduction

Lemmatizers and stemmers are valuable human
language technology tools to improve precision
and recall in an information retrieval setting. For
example, stemming and lemmatization make it
possible to match a query in one morphological
form with a word in a document in another mor-
phological form. Lemmatizers can also be used
in lexicography to find new words in text mate-
rial, including the words’ frequency of use. Other
applications are creation of index lists for book
indexes as well as key word lists

Lemmatization is the process of reducing a
word to its base form, normally the dictionary
look-up form (lemma) of the word. A trivial way
to do this is by dictionary look-up. More ad-
vanced systems use hand crafted or automatically

Hercules Dalianist
DSV, KTH - Stockholm University
Forum 100, 164 40 Kista, Sweden
TEuroling AB, SiteSeeker
Igeldammsgatan 22c
112 49 Stockholm, Sweden

hercules@dsv.su.se

generated transformation rules that look at the
surface form of the word and attempt to produce
the correct base form by replacing all or parts of
the word.

Stemming conflates a word to its stem. A stem
does not have to be the lemma of the word, but
can be any trait that is shared between a group of
words, so that even the group membership itself
can be regarded as the group’s stem.

The most famous stemmer is the Porter Stem-
mer for English (Porter 1980). This stemmer re-
moves around 60 different suffixes, using rewrit-
ing rules in two steps.

The paper is structured as follows: section 2
discusses related work, section 3 explains what
the new algorithm is supposed to do, section 4
describes some details of the new algorithm, sec-
tion 5 evaluates the results, conclusions are
drawn in section 6, and finally in section 7 we
mention plans for further tests and improve-
ments.

2 Reated work

There have been some attempts in creating
stemmers or lemmatizers automatically. Ek-
mekgioglu et al. (1996) have used N-gram
matching for Turkish that gave slightly better
results than regular rule based stemming. Theron
and Cloete (1997) learned two-level rules for
English, Xhosa and Afrikaans, but only single
character insertions, replacements and additions
were allowed. Oard et al. (2001) used a language
independent stemming technique in a dictionary
based cross language information retrieval ex-
periment for German, French and Italian where
English was the search language. A four stage
backoff strategy for improving recall was intro-
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duced. The system worked fine for French but
not so well for Italian and German. Majumder et
al. (2007) describe a statistical stemmer, YASS
(Yet Another Suffix Stripper), mainly for Ben-
gali and French, but they propose it also for
Hindi and Gujarati. The method finds clusters of
similar words in a corpus. The clusters are called
stems. The method works best for languages that
are basically suffix based. For Bengali precision
was 39.3 percent better than without stemming,
though no absolute numbers were reported for
precision. The system was trained on a corpus
containing 301 562 words.

Kanis & Miiller (2005) used an automatic
technique called OOV Words Lemmatization to
train their lemmatizer on Czech, Finnish and
English data. Their algorithm uses two pattern
tables to handle suffixes as well as prefixes. Plis-
son et al. (2004) presented results for a system
using Ripple Down Rules (RDR) to generate
lemmatization rules for Slovene, achieving up to
77 percent accuracy. Matjaz et al. (2007) present
an RDR system producing efficient suffix based
lemmatizers for 14 languages, three of which
(English, German and Slovene) our algorithm
also has been tested with.

Stempel (Biatecki 2004) is a stemmer for Pol-
ish that is trained on Polish full form — lemma
pairs. When tested with inflected out-of-
vocabulary (OOV) words Stempel produces 95.4
percent correct stems, of which about 81 percent
also happen to be correct lemmas.

Hedlund (2001) used two different approaches
to automatically find stemming rules from a cor-
pus, for both Swedish and English. Unfortunately
neither of these approaches did beat the hand
crafted rules in the Porter stemmer for English
(Porter 1980) or the Euroling SiteSeeker stem-
mer for Swedish, (Carlberger et al. 2001).

Jongejan & Haltrup (2005) constructed a
trainable lemmatizer for the lexicographical task
of finding lemmas outside the existing diction-
ary, bootstrapping from a training set of full form
— lemma pairs extracted from the existing dic-
tionary. This lemmatizer looks only at the suffix
part of the word. Its performance was compared
with a stemmer using hand crafted stemming
rules, the Euroling SiteSeeker stemmer for
Swedish, Danish and Norwegian, and also with a
stemmer for Greek, (Dalianis & Jongejan 2006).
The results showed that lemmatizer was as good
as the stemmer for Swedish, slightly better for
Danish and Norwegian but worse for Greek.
These results are very dependent on the quality

(errors, size) and complexity (diacritics, capitals)
of the training data.

In the current work we have used Jongejan &
Haltrup’s lemmatizer as a reference, referring to
it as the ‘suffix lemmatizer’.

3 Ddineation
3.1 Why affix rules?

German and Dutch need more advanced methods
than suffix replacement since their affixing of
words (inflection of words) can include both pre-
fixing, infixing and suffixing. Therefore we cre-
ated a trainable lemmatizer that handles pre- and
infixes in addition to suffixes.

Here is an example to get a quick idea of what
we wanted to achieve with the new training algo-
rithm. Suppose we have the following Dutch full
form — lemma pair:

afgevraagd - afvragen
(Translation: wondered, to wonder)

If this were the sole input given to the training
program, it should produce a transformation rule
like this:

*ge*a*d - ***en

The asterisks are wildcards and placeholders.
The pattern on the left hand side contains three
wildcards, each one corresponding to one place-
holder in the replacement string on the right hand
side, in the same order. The characters matched
by a wildcard are inserted in the place kept free
by the corresponding placeholder in the replace-
ment expression.

With this “set” of rules a lemmatizer would be
able to construct the correct lemma for some
words that had not been used during the training,
such as the word verstekgezaagd (Transla-
tion: mitre cut):

Word verstek ([ge |z |a|ag | d
Pattern * ge | *|al| * d
Replacement * * * | en
Lemma verstek z ag | en

Table 1. Application of a rule to an OOV word.

For most words, however, the lemmatizer would
simply fail to produce any output, because not all
words do contain the literal strings ge and a and
a final d. We remedy this by adding a one-size-
fits-all rule that says “return the input as output™:

* *

—
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So now our rule set consists of two rules:

*ge*a*d - ***en
* *

—

The lemmatizer then finds the rule with the most
specific pattern (see 4.2) that matches and ap-
plies only this rule. The last rule’s pattern
matches any word and so the lemmatizer cannot
fail to produce output. Thus, in our toy rule set
consisting of two rules, the first rule handles
words like gevraagd, afgezaagd,
geklaagd, (all three correctly) and getalmd
(incorrectly) while the second rule handles words
like directeur (correctly) and zei (incor-
rectly).

3.2 Inflected vs. agglutinated languages

A lemmatizer that only applies one rule per word
is useful for inflected languages, a class of lan-
guages that includes all Indo-European lan-
guages. For these languages morphological
change is not a productive process, which means
that no word can be morphologically changed in
an unlimited number of ways. Ideally, there are
only a finite number of inflection schemes and
thus a finite number of lemmatization rules
should suffice to lemmatize indefinitely many
words.

In agglutinated languages, on the other hand,
there are classes of words that in principle have
innumerous word forms. One way to lemmatize
such words is to peel off all agglutinated mor-
phemes one by one. This is an iterative process
and therefore the lemmatizer discussed in this
paper, which applies only one rule per word, is
not an obvious choice for agglutinated lan-
guages.

3.3 Supervised training

An automatic process to create lemmatization
rules is described in the following sections. By
reserving a small part of the available training
data for testing it is possible to quite accurately
estimate the probability that the lemmatizer
would produce the right lemma given any un-
known word belonging to the language, even
without requiring that the user masters the lan-
guage (Kohavi 1995).

On the downside, letting a program construct
lemmatization rules requires an extended list of
full form — lemma pairs that the program can
exercise on — at least tens of thousands and pos-
sibly over a million entries (Dalianis and Jonge-
jan 2006).

3.4 Criteriafor success

The main challenge for the training algorithm is
that it must produce rules that accurately lemma-
tize OOV words. This requirement translates to
two opposing tendencies during training. On the
one hand we must trust rules with a wide basis of
training examples more than rules with a small
basis, which favours rules with patterns that fit
many words. On the other hand we have the in-
compatible preference for cautious rules with
rather specific patterns, because these must be
better at avoiding erroneous rule applications
than rules with generous patterns. The envisaged
expressiveness of the lemmatization rules — al-
lowing all kinds of affixes and an unlimited
number of wildcards — turns the challenge into a
difficult balancing act.

In the current work we wanted to get an idea
of the advantages of an affix-based algorithm
compared to a suffix-only based algorithm.
Therefore we have made the task as hard as pos-
sible by not allowing language specific adapta-
tions to the algorithms and by not subdividing
the training words in word classes.

4  Generation of rules and look-up data
structure

4.1 Buildingaruleset from training pairs

The training algorithm generates a data structure
consisting of rules that a lemmatizer must trav-
erse to arrive at a rule that is elected to fire.

Conceptually the training process is as fol-
lows. As the data structure is being built, the full
form in each training pair is tentatively lemma-
tized using the data structure that has been cre-
ated up to that stage. If the elected rule produces
the right lemma from the full form, nothing
needs to be done. Otherwise, the data structure
must be expanded with a rule such that the new
rule @) is elected instead of the erroneous rule
and b) produces the right lemma from the full
form. The training process terminates when the
full forms in all pairs in the training set are trans-
formed to their corresponding lemmas.

After training, the data structure of rules is
made permanent and can be consulted by a lem-
matizer. The lemmatizer must elect and fire rules
in the same way as the training algorithm, so that
all words from the training set are lemmatized
correctly. It may however fail to produce the cor-
rect lemmas for words that were not in the train-
ing set — the OOV words.
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4.2 Internal structure of rules. prime and
derived rules

During training the Ratcliff/Obershelp algorithm
(Ratcliff & Metzener 1988) is used to find the
longest non-overlapping similar parts in a given
full form — lemma pair. For example, in the pair

afgevraagd - afvragen
the longest common substring is vra, followed
by af and g. These similar parts are replaced
with wildcards and placeholders:

*ge*a*d — ***en
Now we have the prime rule for the training pair,
the least specific rule necessary to lemmatize the
word correctly. Rules with more specific patterns
— derived rules — can be created by adding char-
acters and by removing or adding wildcards. A
rule that is derived from another rule (derived or
prime) is more specific than the original rule:
Any word that is successfully matched by the
pattern of a derived rule is also successfully
matched by the pattern of the original rule, but
the converse is not the case. This establishes a
partial ordering of all rules. See Figures 1 and 2,
where the rules marked ‘p’ are prime rules and
those marked ‘d’ are derived.

Innumerous rules can be derived from a rule
with at least one wildcard in its pattern, but only
a limited number can be tested in a finite time.
To keep the number of candidate rules within
practical limits, we used the strategy that the pat-
tern of a candidate is minimally different from its
parent’s pattern: it can have one extra literal
character or one wildcard less or replace one
wildcard with one literal character. Alternatively,
a candidate rule (such as the bottom rule in Fig-
ure 4) can arise by merging two rules. Within
these constraints, the algorithm creates all possi-
ble candidate rules that transform one or more
training words to their corresponding lemmas.

4.3 External structure of rules. partial or-
deringinaDAG and in atree

We tried two different data structures to store
new lemmatizer rules, a directed acyclic graph
(DAG) and a plain tree structure with depth first,
left to right traversal.

The DAG (Figure 1) expresses the complete
partial ordering of the rules. There is no prefer-
ential order between the children of a rule and all
paths away from the root must be regarded as
equally valid. Therefore the DAG may lead to
several lemmas for the same input word. For ex-
ample, without the rule in the bottom part of Fig-
ure 1, the word gelopen would have been lem-

matized to both lopen (correct) and gelopen
(incorrect):

gelopen:
*ge* — ** lopen
*pen — *pen gelopen

By adding a derived rule as a descendent of both
these two rules, we make sure that lemmatization
of the word gelopen is only handled by one
rule and only results in the correct lemma:

gelopen:

*ge*pen - **pen lopen

p
* _, %

ui — ui

— N

*gek K

P
*en — ¥

overgegaan — overgaan uien— ui

/

*pen —*pen d
lopen — lopen

/

*ge*pen — **pen d
gelopen — lopen

Figure 1. Five training pairs as supporters for
five rules in a DAG.

The tree in Figure 2 is a simpler data structure
and introduces a left to right preferential order
between the children of a rule. Only one rule
fires and only one lemma per word is produced.
For example, because the rule *xge* — ** pre-
cedes its sibling rule *en — *, whenever the
former rule is applicable, the latter rule and its
descendents are not even visited, irrespective of
their applicability. In our example, the former
rule — and only the former rule — handles the
lemmatization of gelopen, and since it pro-
duces the correct lemma an additional rule is not
necessary.

In contrast to the DAG, the tree implements
negation: if the N™ sibling of a row of children
fires, it not only means that the pattern of the N
rule matches the word, it also means that the pat-
terns of the N-1 preceding siblings do not match
the word. Such implicit negation is not possible
in the DAG, and this is probably the main reason
why the experiments with the DAG-structure
lead to huge numbers of rules, very little gener-

148



alization, uncontrollable training times (months,
not minutes!) and very low lemmatization qual-
ity. On the other hand, the experiments with the
tree structure were very successful. The building
time of the rules is acceptable, taking small re-
cursive steps during the training part. The mem-
ory use is tractable and the quality of the results
is good provided good training material.

p
® _y %

ui — ui

— N

kgek 5 **

*en N
overgegaan — overgaan
gelopen — lopen

uien— ui

/

*pen —*pen
lopen — lopen

Figure 2. The same five training pairs as sup-
porters for only four rules in a tree.

4.4 Rulesdection criteria

This section pertains to the training algorithm
employing a tree.

The typical situation during training is that a
rule that already has been added to the tree
makes lemmatization errors on some of the train-
ing words. In that case one or more corrective
children have to be added to the rule'.

If the pattern of a new child rule only matches
some, but not all training words that are lemma-
tized incorrectly by the parent, a right sibling
rule must be added. This is repeated until all
training words that the parent does not lemmatize
correctly are matched by the leftmost child rule
or one of its siblings.

A candidate child rule is faced with training
words that the parent did not lemmatize correctly
and, surprisingly, also supporters of the parent,
because the pattern of the candidate cannot dis-
criminate between these two groups.

On the output side of the candidate appear the
training pairs that are lemmatized correctly by
the candidate, those that are lemmatized incor-

'If the case of a DAG, care must be taken that the
complete representation of the partial ordering of
rules is maintained. Any new rule not only becomes a
child of the rule that it was aimed at as a corrective
child, but often also of several other rules.

rectly and those that do not match the pattern of
the candidate.

For each candidate rule the training algorithm
creates a 2x3 table (see Table 2) that counts the
number of training pairs that the candidate lem-
matizes correctly or incorrectly or that the candi-
date does not match. The two columns count the
training pairs that, respectively, were lemmatized
incorrectly and correctly by the parent. These six
parameters N,y can be used to select the best can-
didate. Only four parameters are independent,
because the numbers of training words that the
parent lemmatized incorrectly (N,,) and correctly
(N;) are the same for all candidates. Thus, after
the application of the first and most significant
selection criterion, up to three more selection
criteria of decreasing significance can be applied
if the preceding selection ends in a tie.

Parent | Incorrect | Correct
Child (supporters)
Correct Nur Nir
Incorrect Nyw Nrw
Not matched Nun n
Sum Ny N

Table 2. The six parameters for rule selection
among candidate rules.

A large Ny, and a small N,,, are desirable. N, is a
measure for the rate at which the updated data
structure has learned to correctly lemmatize
those words that previously were lemmatized
incorrectly. A small N, indicates that only few
words that previously were lemmatized correctly
are spoiled by the addition of the new rule. It is
less obvious how the other numbers weigh in.

We have obtained the most success with crite-
ria that first select for highest Ny + Np - Ny . If
the competition ends in a tie, we select for lowest
N;r among the remaining candidates. If the com-
petition again ends in a tie, we select for highest
Nin — Nuw . Due to the marginal effect of a fourth
criterion we let the algorithm randomly select
one of the remaining candidates instead.

The training pairs that are matched by the pat-
tern of the winning rule become the supporters
and non-supporters of that new rule and are no
longer supporters or non-supporters of the par-
ent. If the parent still has at least one non-
supporter, the remaining supporters and non-
supporters — the training pairs that the winning
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candidate does not match — are used to select the
right sibling of the new rule.

5 Evaluation

We trained the new lemmatizer using training
material for Danish (STO), Dutch (CELEX),
English (CELEX), German (CELEX), Greek
(Petasis et al. 2003), Icelandic (IFD), Norwegian
(SCARRIE), Polish (Morfologik), Slovene
(Jursic¢ et al. 2007) and Swedish (SUC).

The guidelines for the construction of the
training material are not always known to us. In
some cases, we know that the full forms have
been generated automatically from the lemmas.
On the other hand, we know that the Icelandic
data is derived from a corpus and only contains
word forms occurring in that corpus. Because of
the uncertainties, the results cannot be used for a
quantitative comparison of the accuracy of lem-
matization between languages.

Some of the resources were already disam-
biguated (one lemma per full form) when we re-
ceived the data. We decided to disambiguate the
remaining resources as well. Handling homo-
graphs wisely is important in many lemmatiza-
tion tasks, but there are many pitfalls. As we
only wanted to investigate the improvement of
the affix algorithm over the suffix algorithm, we
decided to factor out ambiguity. We simply
chose the lemma that comes first alphabetically
and discarded the other lemmas from the avail-
able data.

The evaluation was carried out by dividing the
available material in training data and test data in
seven different ratios, setting aside between
1.54% and 98.56% as training data and the re-
mainder as OOV test data. (See section 7). To
keep the sample standard deviation S for the ac-
curacy below an acceptable level we used the
evaluation method repeated random subsampling
validation that is proposed in Voorhees (2000)
and Bouckaert & Frank (2000). We repeated the
training and evaluation for each ratio with sev-
eral randomly chosen sets, up to 17 times for the
smallest and largest ratios, because these ratios
lead to relatively small training sets and test sets
respectively. The same procedure was followed
for the suffix lemmatizer, using the same training
and test sets. Table 3 shows the results for the
largest training sets.

For some languages lemmatization accuracy
for OOV words improved by deleting rules that
are based on very few examples from the training
data. This pruning was done after the training of

the rule set was completed. Regarding the affix
algorithm, the results for half of the languages
became better with mild pruning, i.e. deleting
rules with only one example. For Danish, Dutch,
German, Greek and Icelandic pruning did not
improve accuracy. Regarding the suffix algo-
rithm, only English and Swedish profited from
pruning.

Suffix Affix N x

Language | % % A% ] 1000 | n

Icelandic | 73.2+1.4 |71.3%1.5 -1.9 58| 17
Danish 93.24+0.4 92.8+0.2 -0.4 553 5
Norwegian | 87.840.4 87.610.3 -0.2 479 6
Greek 90.240.3 90.4+0.4 0.2 549 5
Slovene 86.010.6 86.7+0.3 0.7 199 9
Swedish 91.2440.18 | 92.3+0.3 1.0 478 6
German 90.310.5 91.46+0.17| 1.2 315 7
English 87.5+£0.9 89.0+1.3 1.5 76| 15
Dutch 88.240.5 90.4+0.5 2.3 302 7
Polish 69.69+0.06 | 93.88+0.08 | 24.2 | 3443 2

Table 3. Accuracy for the suffix and affix algo-
rithms. The fifth column shows the size of the
available data. Of these, 98.56% was used for
training and 1.44% for testing. The last column
shows the number n of performed iterations,
which was inversely proportional to VN with a
minimum of two.

6 Somelanguage specific notes

For Polish, the suffix algorithm suffers from
overtraining. The accuracy tops at about 100 000
rules, which is reached when the training set
comprises about 1 000 000 pairs.

accuracy

%
95 .

¥ i "-.ﬁ
90 ’J.p-_l".f-u'-
85

80
75
70
65 e
60

100,000 10,000,000

#rules

10 1,000

Figure 3. Accuracy vs. number of rules for Polish
Upper swarm of data points: affix algorithm.
Lower swarm of data points: suffix algorithm.
Each swarm combines results from six rule sets
with varying amounts of pruning (no pruning and
pruning with cut-off = 1..5).

If more training pairs are added, the number of

rules grows, but the accuracy falls. The affix al-
gorithm shows no sign of overtraining, even
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though the Polish material comprised 3.4 million
training pairs, more than six times the number of
the second language on the list, Danish. See Fig-
ure 3.

The improvement of the accuracy for Polish
was tremendous. The inflectional paradigm in
Polish (as in other Slavic languages) can be left
factorized, except for the superlative. However,
only 3.8% of the words in the used Polish data
have the superlative forming prefix naj, and
moreover this prefix is only removed from ad-
verbs and not from the much more numerous
adjectives.

The true culprit of the discrepancy is the great
number (> 23%) of words in the Polish data that
have the negative prefix nie, which very often
does not recur in the lemma. The suffix algo-
rithm cannot handle these 23% correctly.

The improvement over the suffix lemmatizer
for the case of German is unassuming. To find
out why, we looked at how often rules with infix
or prefix patterns fire and how well they are do-
ing. We trained the suffix algorithm with 9/10 of
the available data and tested with the remaining
1/10, about 30 000 words. Of these, 88% were
lemmatized correctly (a number that indicates the
smaller training set than in Table 3).

German Dutch

AO;OC' Freq % | Acc. % | Freq %
all 88.1 100.0 87.7 100.0
suffix- 88.7 94.0 88.1 94.9
only
prefix 79.9 4.4 80.9 2.4
infix 83.3 2.3 77.4 3.0
aou 92.8 0.26 N/A 0.0
ge infix 68.6 0.94 77.9 2.6

Table 4. Prevalence of suffix-only rules, rules
specifying a prefix, rules specifying an infix and
rules specifying infixes containing either &, O or
U or the letter combination ge.

Almost 94% of the lemmas were created using
suffix-only rules, with an accuracy of almost
89%. Less than 3% of the lemmas were created
using rules that included at least one infix sub-
pattern. Of these, about 83% were correctly
lemmatized, pulling the average down. We also
looked at two particular groups of infix-rules:
those including the letters &, & or 1 and those
with the letter combination ge. The former
group applies to many words that display umlaut,
while the latter applies to past participles. The

151

first group of rules, accounting for 11% of all
words handled by infix rules, performed better
than average, about 93%, while the latter group,
accounting for 40% of all words handled by infix
rules, performed poorly at 69% correct lemmas.
Table 4 summarizes the results for German and
the closely related Dutch language.

7 Sedf-organized criticality

Over the whole range of training set sizes the
number of rules goes like CN? with 0<C, and N
the number of training pairs. The value of C and
d not only depended on the chosen algorithm, but
also on the language. Figure 4 shows how the
number of generated lemmatization rules for Pol-
ish grows as a function of the number of training
pairs.

1,000,000 -
-
*
100,000 *
*
-
g - [ ]
— * -
= 10,000
:E .
L]
L]
1,000 *
L]
100 . .
10,000 100,000 1,000,000 10,000,000

#training pairs

Figure 4. Number of rules vs. number of training
pairs for Polish (double logarithmic scale).
Upper row: unpruned rule sets

Lower row: heavily pruned rule sets (cut-off=5)

There are two rows of data, each row containing
seven data points. The rules are counted after
training with 1.54 percent of the available data
and then repeatedly doubling to 3.08, 6.16,
12.32, 24.64, 49.28 and 98.56 percent of the
available data. The data points in the upper row
designate the number of rules resulting from the
training process. The data points in the lower
row arise by pruning rules that are based on less
than six examples from the training set.

The power law for the upper row of data points
for Polish in Figure 4 is

Nrules = 0'80Nt?égjr71ing



As a comparison, for Icelandic the power law for
the unpruned set of rules is

N,y =1.32N22

rules training

These power law expressions are derived for the
affix algorithm. For the suffix algorithm the ex-
ponent in the Polish power law expression is
very close to 1 (0.98), which indicates that the
suffix lemmatizer is not good at all at generaliz-
ing over the Polish training data: the number of
rules grows almost proportionally with the num-
ber of training words. (And, as Figure 3 shows,
to no avail.) On the other hand, the suffix lem-
matizer fares better than the affix algorithm for
Icelandic data, because in that case the exponent
in the power law expression is lower: 0.88 versus
0.90.

The power law is explained by self-organized
criticality (Bak et al. 1987, 1988). Rule sets that
originate from training sets that only differ in a
single training example can be dissimilar to any
degree depending on whether and where the dif-
ference is tipping the balance between competing
rule candidates. Whether one or the other rule
candidate wins has a very significant effect on
the parts of the tree that emanate as children or as
siblings from the winning node. If the difference
has an effect close to the root of the tree, a large
expanse of the tree is affected. If the difference
plays a role closer to a leaf node, only a small
patch of the tree is affected. The effect of adding
a single training example can be compared with
dropping a single rice corn on top of a pile of
rice, which can create an avalanche of unpredict-
able size.

8 Conclusions

Affix rules perform better than suffix rules if the
language has a heavy pre- and infix morphology
and the size of the training data is big. The new
algorithm worked very well with the Polish Mor-
fologik dataset and compares well with the
Stempel algorithm (Biatecki 2008).

Regarding Dutch and German we have ob-
served that the affix algorithm most often applies
suffix-only rules to OOV words. We have also
observed that words lemmatized this way are
lemmatized better than average. The remaining
words often need morphological changes in more
than one position, for example both in an infix
and a suffix. Although these changes are corre-
lated by the inflectional rules of the language, the
number of combinations is still large, while at
the same time the number of training examples
exhibiting such combinations is relatively small.

Therefore the more complex rules involving infix
or prefix subpatterns or combinations thereof are
less well-founded than the simple suffix-only
rules. The lemmatization accuracy of the com-
plex rules will therefore in general be lower than
that of the suffix-only rules. The reason why the
affix algorithm is still better than the algorithm
that only considers suffix rules is that the affix
algorithm only generates suffix-only rules from
words with suffix-only morphology. The suffix-
only algorithm is not able to generalize over
training examples that do not fulfil this condition
and generates many rules based on very few ex-
amples. Consequently, everything else being
equal, the set of suffix-only rules generated by
the affix algorithm must be of higher quality than
the set of rules generated by the suffix algorithm.

The new affix algorithm has fewer rules sup-
ported by only one example from the training
data than the suffix algorithm. This means that
the new algorithm is good at generalizing over
small groups of words with exceptional mor-
phology. On the other hand, the bulk of ‘normal’
training words must be bigger for the new affix
based lemmatizer than for the suffix lemmatizer.
This is because the new algorithm generates im-
mense numbers of candidate rules with only
marginal differences in accuracy, requiring many
examples to find the best candidate.

When we began experimenting with lemmati-
zation rules with unrestricted numbers of affixes,
we could not know whether the limited amount
of available training data would be sufficient to
fix the enormous amount of free variables with
enough certainty to obtain higher quality results
than obtainable with automatically trained lem-
matizers allowing only suffix transformations.

However, the results that we have obtained
with the new affix algorithm are on a par with or
better than those of the suffix lemmatizer. There
is still room for improvements as only part of the
parameter space of the new algorithm has been
searched. The case of Polish shows the superior-
ity of the new algorithm, whereas the poor re-
sults for Icelandic, a suffix inflecting language
with many inflection types, were foreseeable,
because we only had a small training set.

9 Futurework

Work with the new affix lemmatizer has until
now focused on the algorithm. To really know if
the carried out theoretical work is valuable we
would like to try it out in a real search setting in
a search engine and see if the users appreciate
the new algorithm’s results.
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Abstract

This paper revisits the pivot language ap-
proach for machine translation. First,
we investigate three different methods
for pivot translation. Then we employ
a hybrid method combining RBMT and
SMT systems to fill up the data gap
for pivot translation, where the source-
pivot and pivot-target corpora are inde-
pendent. Experimental results on spo-
ken language translation show that this
hybrid method significantly improves the
translation quality, which outperforms the
method using a source-target corpus of
the same size. In addition, we pro-
pose a system combination approach to
select better translations from those pro-
duced by various pivot translation meth-
ods. This method regards system com-
bination as a translation evaluation prob-
lem and formalizes it with a regression
learning model. Experimental results in-
dicate that our method achieves consistent
and significant improvement over individ-
ual translation outputs.

1 Introduction

Current statistical machine translation (SMT) sys-
tems rely on large parallel and monolingual train-
ing corpora to produce translations of relatively
higher quality. Unfortunately, large quantities of
parallel data are not readily available for some lan-
guages pairs, therefore limiting the potential use
of current SMT systems. In particular, for speech
translation, the translation task often focuses on a
specific domain such as the travel domain. It is es-
pecially difficult to obtain such a domain-specific
corpus for some language pairs such as Chinese to
Spanish translation.

To circumvent the data bottleneck, some re-
searchers have investigated to use a pivot language
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approach (Cohn and Lapata, 2007; Utiyama and
Isahara, 2007; Wu and Wang 2007; Bertoldi et al.,
2008). This approach introduces a third language,
named the pivot language, for which there exist
large source-pivot and pivot-target bilingual cor-
pora. A pivot task was also designed for spoken
language translation in the evaluation campaign of
IWSLT 2008 (Paul, 2008), where English is used
as a pivot language for Chinese to Spanish trans-
lation.

Three different pivot strategies have been in-
vestigated in the literature. The first is based
on phrase table multiplication (Cohn and Lap-
ata 2007; Wu and Wang, 2007). It multiples
corresponding translation probabilities and lexical
weights in source-pivot and pivot-target transla-
tion models to induce a new source-target phrase
table. We name it the triangulation method. The
second is the sentence translation strategy, which
first translates the source sentence to the pivot sen-
tence, and then to the target sentence (Utiyama and
Isahara, 2007; Khalilov et al., 2008). We name it
the transfer method. The third is to use existing
models to build a synthetic source-target corpus,
from which a source-target model can be trained
(Bertoldi et al., 2008). For example, we can ob-
tain a source-pivot corpus by translating the pivot
sentence in the source-pivot corpus into the target
language with pivot-target translation models. We
name it the synthetic method.

The working condition with the pivot language
approach is that the source-pivot and pivot-target
parallel corpora are independent, in the sense that
they are not derived from the same set of sen-
tences, namely independently sourced corpora.
Thus, some linguistic phenomena in the source-
pivot corpus will lost if they do not exist in the
pivot-target corpus, and vice versa. In order to fill
up this data gap, we make use of rule-based ma-
chine translation (RBMT) systems to translate the
pivot sentences in the source-pivot or pivot-target
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corpus into target or source sentences. As a re-
sult, we can build a synthetic multilingual corpus,
which can be used to improve the translation qual-
ity. The idea of using RBMT systems to improve
the translation quality of SMT sysems has been
explored in Hu et al. (2007). Here, we re-examine
the hybrid method to fill up the data gap for pivot
translation.

Although previous studies proposed several
pivot translation methods, there are no studies to
combine different pivot methods for translation
quality improvement. In this paper, we first com-
pare the individual pivot methods and then in-
vestigate to improve pivot translation quality by
combining the outputs produced by different sys-
tems. We propose to regard system combination
as a translation evaluation problem. For transla-
tions from one of the systems, this method uses the
outputs from other translation systems as pseudo
references. A regression learning method is used
to infer a function that maps a feature vector
(which measures the similarity of a translation to
the pseudo references) to a score that indicates the
quality of the translation. Scores are first gener-
ated independently for each translation, then the
translations are ranked by their respective scores.
The candidate with the highest score is selected
as the final translation. This is achieved by opti-
mizing the regression learning model’s output to
correlate against a set of training examples, where
the source sentences are provided with several ref-
erence translations, instead of manually labeling
the translations produced by various systems with
quantitative assessments as described in (Albrecht
and Hwa, 2007; Duh, 2008). The advantage of
our method is that we do not need to manually la-
bel the translations produced by each translation
system, therefore enabling our method suitable for
translation selection among any systems without
additional manual work.

We conducted experiments for spoken language
translation on the pivot task in the IWSLT 2008
evaluation campaign, where Chinese sentences in
travel domain need to be translated into Spanish,
with English as the pivot language. Experimen-
tal results show that (1) the performances of the
three pivot methods are comparable when only
SMT systems are used. However, the triangulation
method and the transfer method significantly out-
perform the synthetic method when RBMT sys-
tems are used to improve the translation qual-
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ity; (2) The hybrid method combining SMT and
RBMT system for pivot translation greatly im-
proves the translation quality. And this translation
quality is higher than that of those produced by the
system trained with a real Chinese-Spanish cor-
pus; (3) Our sentence-level translation selection
method consistently and significantly improves
the translation quality over individual translation
outputs in all of our experiments.

Section 2 briefly introduces the three pivot
translation methods. Section 3 presents the hy-
brid method combining SMT and RBMT sys-
tems. Section 4 describes the translation selec-
tion method. Experimental results are presented
in Section 5, followed by a discussion in Section
6. The last section draws conclusions.

2 Pivot Methods for Phrase-based SMT

2.1 Triangulation Method

Following the method described in Wu and Wang
(2007), we train the source-pivot and pivot-target
translation models using the source-pivot and
pivot-target corpora, respectively. Based on these
two models, we induce a source-target translation
model, in which two important elements need to
be induced: phrase translation probability and lex-
ical weight.

Phrase Translation Probability We induce the
phrase translation probability by assuming the in-
dependence between the source and target phrases
when given the pivot phrase.

o(3t) = Z o(3|p)o(plt) (1)

Where 3, p and ¢ represent the phrases in the lan-
guages Lg, L, and L;, respectively.

Lexical Weight According to the method de-
scribed in Koehn et al. (2003), there are two im-
portant elements in the lexical weight: word align-
ment information a in a phrase pair (8, ¢) and lex-
ical translation probability w(s|t).

Let a; and a9 represent the word alignment in-
formation inside the phrase pairs (s, p) and (p, t)
respectively, then the alignment information inside
(8,1) can be obtained as shown in Eq. (2).

a={(s,t)|3p: (s,p) € a1 & (p,t) € az} (2)

Based on the the induced word alignment in-
formation, we estimate the co-occurring frequen-
cies of word pairs directly from the induced phrase



pairs. Then we estimate the lexical translation
probability as shown in Eq. (3).

count(s,t)
> count(s',t)

Where count (s, t) represents the co-occurring fre-
quency of the word pair (s, t).

w(slt) = 3)

2.2 Transfer Method

The transfer method first translates from the
source language to the pivot language using a
source-pivot model, and then from the pivot lan-
guage to the target language using a pivot-target
model. Given a source sentence s, we can trans-
late it into n pivot sentences pi, p2, ..., Pn, USINg a
source-pivot translation system. Each p; can be
translated into m target sentences t;1, t;2, ..., tim.
We rescore all the n x m candidates using both
the source-pivot and pivot-target translation scores
following the method described in Utiyama and
Isahara (2007). If we use h/P and h** to denote the
features in the source-pivot and pivot-target sys-
tems, respectively, we get the optimal target trans-
lation according to the following formula.

L

t = argmax > _(NFRP(s,p) + M IY (p, 1)) (4)
tok—

Where L is the number of features used in SMT
systems. A*P and \P! are feature weights set by
performing minimum error rate training as de-
scribed in Och (2003).

2.3 Synthetic Method

There are two possible methods to obtain a source-
target corpus using the source-pivot and pivot-
target corpora. One is to obtain target transla-
tions for the source sentences in the source-pivot
corpus. This can be achieved by translating the
pivot sentences in source-pivot corpus to target
sentences with the pivot-target SMT system. The
other is to obtain source translations for the tar-
get sentences in the pivot-target corpus using the
pivot-source SMT system. And we can combine
these two source-target corpora to produced a fi-
nal synthetic corpus.

Given a pivot sentence, we can translate it into
n source or target sentences. These n translations
together with their source or target sentences are
used to create a synthetic bilingual corpus. Then
we build a source-target translation model using
this corpus.
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3 Using RBMT Systems for Pivot
Translation

Since the source-pivot and pivot-target parallel
corpora are independent, the pivot sentences in the
two corpora are distinct from each other. Thus,
some linguistic phenomena in the source-pivot
corpus will lost if they do not exist in the pivot-
target corpus, and vice versa. Here we use RBMT
systems to fill up this data gap. For many source-
target language pairs, the commercial pivot-source
and/or pivot-target RBMT systems are available
on markets. For example, for Chinese to Span-
ish translation, English to Chinese and English to
Spanish RBMT systems are available.

With the RBMT systems, we can create a syn-
thetic multilingual source-pivot-target corpus by
translating the pivot sentences in the pivot-source
or pivot-target corpus. The source-target pairs ex-
tracted from this synthetic multilingual corpus can
be used to build a source-target translation model.
Another way to use the synthetic multilingual cor-
pus is to add the source-pivot or pivot-target sen-
tence pairs in this corpus to the training data to re-
build the source-pivot or pivot-target SMT model.
The rebuilt models can be applied to the triangula-
tion method and the transfer method as described
in Section 2.

Moreover, the RBMT systems can also be used
to enlarge the size of bilingual training data. Since
it is easy to obtain monolingual corpora than bilin-
gual corpora, we use RBMT systems to translate
the available monolingual corpora to obtain syn-
thetic bilingual corpus, which are added to the
training data to improve the performance of SMT
systems. Even if no monolingual corpus is avail-
able, we can also use RBMT systems to translate
the sentences in the bilingual corpus to obtain al-
ternative translations. For example, we can use
source-pivot RBMT systems to provide alternative
translations for the source sentences in the source-
pivot corpus.

In addition to translating training data, the
source-pivot RBMT system can be used to trans-
late the test set into the pivot language, which
can be further translated into the target language
with the pivot-target RBMT system. The trans-
lated test set can be added to the training data to
further improve translation quality. The advantage
of this method is that the RBMT system can pro-
vide translations for sentences in the test set and
cover some out-of-vocabulary words in the test set



that are uncovered by the training data. It can also
change the distribution of some phrase pairs and
reinforce some phrase pairs relative to the test set.

4 Translation Selection

We propose a method to select the optimal trans-
lation from those produced by various translation
systems. We regard sentence-level translation se-
lection as a machine translation (MT) evaluation
problem and formalize this problem with a regres-
sion learning model. For each translation, this
method uses the outputs from other translation
systems as pseudo references. The regression ob-
jective is to infer a function that maps a feature
vector (which measures the similarity of a trans-
lation from one system to the pseudo references)
to a score that indicates the quality of the transla-
tion. Scores are first generated independently for
each translation, then the translations are ranked
by their respective scores. The candidate with the
highest score is selected.

The similar ideas have been explored in previ-
ous studies. Albrecht and Hwa (2007) proposed
a method to evaluate MT outputs with pseudo
references using support vector regression as the
learner to evaluate translations. Duh (2008) pro-
posed a ranking method to compare the transla-
tions proposed by several systems. These two
methods require quantitative quality assessments
by human judges for the translations produced by
various systems in the training set. When we apply
such methods to translation selection, the relative
values of the scores assigned by the subject sys-
tems are important. In different data conditions,
the relative values of the scores assigned by the
subject systems may change. In order to train a re-
liable learner, we need to prepare a balanced train-
ing set, where the translations produced by differ-
ent systems under different conditions are required
to be manually evaluated. In extreme cases, we
need to relabel the training data to obtain better
performance. In this paper, we modify the method
in Albrecht and Hwa (2007) to only prepare hu-
man reference translations for the training exam-
ples, and then evaluate the translations produced
by the subject systems against the references us-
ing BLEU score (Papineni et al., 2002). We use
smoothed sentence-level BLEU score to replace
the human assessments, where we use additive
smoothing to avoid zero BLEU scores when we
calculate the n-gram precisions. In this case, we
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ID | Description
1-4 | n-gram precisions against pseudo refer-
ences (1 <n <4)
5-6 | PER and WER
7-8 | precision, recall, fragmentation from
METEOR (Lavie and Agarwal, 2007)
9-12 | precisions and recalls of non-
consecutive bigrams with a gap
sizeofm (1 <m <2)
13-14 | longest common subsequences
15-19 | n-gram precision against a target cor-
pus (1 <n <5H)

Table 1: Feature sets for regression learning

can easily retrain the learner under different con-
ditions, therefore enabling our method to be ap-
plied to sentence-level translation selection from
any sets of translation systems without any addi-
tional human work.

In regression learning, we infer a function
f that maps a multi-dimensional input vec-
tor x to a continuous real value y, such that
the error over a set of m training examples,
(x1,91), (X2,Y2), - (Xm, Ym ), is minimized ac-
cording to a loss function. In the context of trans-
lation selection, y is assigned as the smoothed
BLEU score. The function f represents a math-
ematic model of the automatic evaluation metrics.
The input sentence is represented as a feature vec-
tor x, which are extracted from the input sen-
tence and the comparisons against the pseudo ref-
erences. We use the features as shown in Table 1.

5 Experiments

5.1 Data

We performed experiments on spoken language
translation for the pivot task of IWSLT 2008. This
task translates Chinese to Spanish using English
as the pivot language. Table 2 describes the data
used for model training in this paper, including the
BTEC (Basic Travel Expression Corpus) Chinese-
English (CE) corpus and the BTEC English-
Spanish (ES) corpus provided by IWSLT 2008 or-
ganizers, the HIT olympic CE corpus (2004-863-
008)' and the Europarl ES corpus®. There are
two kinds of BTEC CE corpus: BTEC CE1 and

"http://www.chineseldc.org/EN/purchasing.htm
*http://www.statmt.org/europarl/



Corpus Size SW T™W
BTEC CE1 | 20,000 | 164K 182K
BTECCE2 | 18,972 | 177K 182K

HIT CE 51,791 490K 502K

BTEC ES 19,972 | 182K 185K
Europarl ES | 400,000 | 8,485K | 8,219K

Table 2: Training data. SW and TW represent
source words and target words, respectively.

BTEC CE2. BTEC CE1 was distributed for the
pivot task in IWSLT 2008 while BTEC CE2 was
for the BTEC CE task, which is parallel to the
BTEC ES corpus. For Chinese-English transla-
tion, we mainly used BTEC CE1 corpus. We used
the BTEC CE2 corpus and the HIT Olympic cor-
pus for comparison experiments only. We used the
English parts of the BTEC CEI1 corpus, the BTEC
ES corpus, and the HIT Olympic corpus (if in-
volved) to train a 5-gram English language model
(LM) with interpolated Kneser-Ney smoothing.
For English-Spanish translation, we selected 400k
sentence pairs from the Europarl corpus that are
close to the English parts of both the BTEC CE
corpus and the BTEC ES corpus. Then we built
a Spanish LM by interpolating an out-of-domain
LM trained on the Spanish part of this selected
corpus with the in-domain LM trained with the
BTEC corpus.

For Chinese-English-Spanish translation, we
used the development set (devset3) released for
the pivot task as the test set, which contains 506
source sentences, with 7 reference translations in
English and Spanish. To be capable of tuning pa-
rameters on our sy