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Preface: General Chair

Welcome to the ACL-IJCNLP 2009, the first joint conference sponsored by the ACL (Association
for Computational Linguistics) and the AFNLP (Asian Federation of Natural Language Processing).
The idea to have a joint conference for ACL and AFNLP was first discussed at ACL-05 (Ann Arbor,
Michigan) among Martha Palmer (ACL President), Benjamin T’sou (AFNLP President), Jun’ichi Tsujii
(AFNLP Vice President) and Keh-Yih Su (AFNLP Conference Coordinating Committee Chair, also the
Secretary General). We are glad that the original idea has come true four years later, and even the
affiliation relationship between these two organizations has been built up now.

In this joint conference, we have tried to mix the spirit from both ACL and AFNLP; and, Singapore,
which itself has a mixture of diversified cultures from eastern and western regions, is certainly a
wonderful place to see how different languages meet each other. We hope you will enjoy this big event
held in this garden city, which is brought to you via the efforts from each member of the conference
organization team.

Among our hard working organizers, I would like to thank the Program Chairs, Jan Wiebe and Jian
Su, who has carefully selected papers from our record high submissions, and the Local Arrangements
Chair, Haizhou Li, who has shown his excellent capability in smoothly organizing various events and
details. My thanks will also go to other chairs for their competent and hard work: The Webmaster,
Minghui Dong; the Demo Chairs, Gary Geunbae Lee and Sabine Schulte im Walde; the Exhibits Chairs,
Timothy Baldwin and Philipp Koehn; the Mentoring Service Chairs, Hwee Tou Ng and Florence Reeder;
the Publication Chairs, Jing-Shin Chang and Regina Barzilay; the Publicity Chairs, Min-Yen Kan and
Andy Way; the Sponsorship Chairs, Hitoshi Isahara and Kim-Teng Lua; the Student Research Workshop
Chairs, Davis Dimalen, Jenny Rose Finkel, and Blaise Thomson; also the Faculty Advisors, Grace Ngai
and Brian Roark; the Tutorial Chairs, Diana McCarthy and Chengqing Zong; the Workshop Chairs,
Jimmy Lin and Yuji Matsumoto; last, the ACL Business Manager, Priscilla Rasmussen, who not only
provides useful advice but also helps to contact more sponsors and get their support.

Besides, I need to express my gratitude to the Conference Coordination Committee for their valuable
advice and support: in which Bonnie Dorr (chair), Steven Bird, Graeme Hirst, Kathleen McCoy, Martha
Palmer, Dragomir Radev, Priscilla Rasmussen, Mark Steedman are from ACL; and Yuji Matsumoto,
Keh-Yih Su, Jun’ichi Tsujii, Benjamin T’sou, Kam-Fai Wong are from AFNLP.

Last, I sincerely thank all the authors, reviewers, presenters, invited speakers, sponsors, exhibitors, local
supporting staff, and all the conference attendants. It is you that make this conference possible. Wish
you all enjoy the program that we provide.

Keh-Yih Su
ACL-IJCNLP 2009 General Chair
August 2009
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Preface: Program Committee Co-Chairs

For the first time, the flagship conferences of the Association for Computational Linguistics (ACL) and
the Asian Federation of Natural Language Processing (AFNLP) – the ACL and IJCNLP – are jointly
organized as a single event. ACL-IJCNLP 2009 covers a broad spectrum of technical areas related
to natural language and computation, representing a rich array of the state of the art. The conference
includes full papers, short papers, demonstrations, a student research workshop, as well as pre- and
post-conference tutorials and workshops.

This year, we again received a record number of submissions: 925 total valid paper submissions, a 24%
increase over ACL-08: HLT. This includes 569 full-paper submissions and 356 short-paper submissions
from more than 40 countries – approximately 51% from 20 countries in Asia Pacific, 27% from Canada,
Cuba and the United States, 22% from 15 countries in Europe, fewer than 1% from Argentina, and
one paper submitted anonymously. We thank all of the authors for submitting papers describing their
recent work. The significant submission increase is a trend extending over multiple years, and shows
how vigorous our field is. We also thank Hwee Tou Ng and Florence Reeder, the Mentoring Service
Co-Chairs, for organizing a 19-mentor team who provided English scientific paper writing support.

20 Area Chairs worked with 489 Program Committee members and 85 additional reviewers to come
up with 2551 reviews, in total, for the final paper selection. 21% of the full-paper submissions were
accepted; all will be presented orally. 26% of the short-paper submissions were accepted; some will be
presented orally and some as poster presentations. While short papers are distinguished from full papers
in the proceedings, there are no distinctions in the proceedings between short papers presented orally and
those presented as posters. We are absolutely indebted to the Area Chairs, Program Committee members,
and additional reviewers for their intensive efforts.

We are delighted to have two keynote speakers: Qiang Yang, who will talk about heterogeneous transfer
learning, and Bonnie Webber, who will address discourse and genre. Best (student) paper awards and
the ACL Lifetime Achievement Award will be announced in the last session of the conference as well.

We thank General Conference Chair Keh Yih Su, the Local Arrangements Committee headed by
Haizhou Li, and the ACL-AFNLP Conference Coordination Committee chaired by Bonnie Dorr, for
their help and advice, as well as last years PC Co-Chairs, Johanna Moore and Simone Teufel, for sharing
their experiences, Jason Eisner for his How to Serve as Program Chair of a Conference website and
corresponding emails, Jing-Shin Chang and Regina Barzilay, the Publication Co-Chairs for putting the
proceedings together, and all the other committee chairs for their work. Our thanks go to our assistant
Chen Bin, who worked tirelessly throughout the entire process, and who made our work with START
much easier. Together, everyone made such a wonderful event possible.

We hope that you enjoy the conference!

Jian Su, Institute for Infocomm Research
Jan Wiebe, University of Pittsburgh
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Invited Talk:

Heterogeneous Transfer Learning with Real-world Applications

Qiang Yang
Hong Kong University of Science and Technology

qyang@cse.ust.hk

Abstract

In many real-world machine learning and data mining applications, we often face the problem where
the training data are scarce in the feature space of interest, but much data are available in other feature
spaces. Many existing learning techniques cannot make use of these auxiliary data, because these
algorithms are based on the assumption that the training and test data must come from the same
distribution and feature spaces. When this assumption does not hold, we have to seek novel techniques
for ‘transferring’ the knowledge from one feature space to another.  In this talk, I will present our 
recent works on heterogeneous transfer learning. I will describe how to identify the common parts of
different feature spaces and learn a bridge between them to improve the learning performance in target
task domains. I will also present several interesting applications of heterogeneous transfer learning,
such as image clustering and classification, cross-domain classification and collaborative filtering.

Biography

Qiang Yang is a professor in the Department of Computer Science and Engineering, Hong Kong
University of Science and Technology. His research interests are artificial intelligence, including
automated planning, machine learning and data mining. He graduated from Peking University in 1982
with BSc. in Astrophysics, and obtained his MSc. degrees in Astrophysics and Computer Science from
the University of Maryland, College Park in 1985 and 1987, respectively. He obtained his PhD in
Computer Science from the University of Maryland, College Park in 1989. He was an
assistant/associate professor at the University of Waterloo between 1989 and 1995, and a professor
and NSERC Industrial Research Chair at Simon Fraser University in Canada from 1995 to 2001.

Qiang Yang has been active in research on artificial intelligence planning, machine learning and data
mining. His research teams won the 2004 and 2005 ACM KDDCUP international competitions on
data mining. He has been on several editorial boards of international journals, including IEEE
Intelligent Systems, IEEE Transactions on Knowledge and Data Engineering and Web Intelligence.
He has been an organizer for several international conferences in AI and data mining, including being
the conference co-chair for ACM IUI 2010 and ICCBR 2001, program co-chair for PRICAI 2006 and
PAKDD 2007, workshop chair for ACM KDD 2007, AAAI tutorial chair for AAAI 2005 and 2006,
data mining contest chair for IEEE ICDM 2007 and 2009, and vice chair for ICDM 2006 and CIKM
2009. He is a fellow of IEEE and a member of AAAI and ACM. His home page is at
http://www.cse.ust.hk/~qyang
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Invited Talk:

Discourse - Early Problems, Current Successes, Future Challenges

Bonnie Webber
University of Edinburgh, UK

bonnie.webber@ed.ac.uk

Abstract

I will look back through nearly forty years of computational research on discourse, noting some
problems (such as context-dependence and inference) that were identified early on as a hindrance to
further progress, some admirable successes that we have achieved so far in the development of
algorithms and resources, and some challenges that we may want to (or that we may have to!) take up
in the future, with particular attention to problems of data annotation and genre dependence.

Biography

Bonnie Webber was a researcher at Bolt Beranek and Newman while working on the PhD she
received from Harvard University in 1978. She then taught in the Department of Computer and
Information Science at the University of Pennsylvania for 20 years before joining the School of
Informatics at the University of Edinburgh. Known for research on discourse and on question
answering, she is a Past President of the Association for Computational Linguistics, co-developer
(with Aravind Joshi, Rashmi Prasad, Alan Lee and Eleni Miltsakaki) of the Penn Discourse TreeBank,
and co-editor (with Annie Zaenen and Martha Palmer) of the journal, Linguistic Issues in Language
Technology.
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08:30–08:55 Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumu-
lative Penalty
Yoshimasa Tsuruoka, Jun’ichi Tsujii and Sophia Ananiadou

08:55–09:20 A global model for joint lemmatization and part-of-speech prediction
Kristina Toutanova and Colin Cherry

09:20–09:45 Distributional Representations for Handling Sparsity in Supervised Sequence-Labeling
Fei Huang and Alexander Yates

xxxiii



Tuesday, August 4, 2009 (continued)

Session 4B: Word Segmentation and POS Tagging
Chaired by Hwee Tou Ng

08:30–08:55 Minimized Models for Unsupervised Part-of-Speech Tagging
Sujith Ravi and Kevin Knight

08:55–09:20 An Error-Driven Word-Character Hybrid Model for Joint Chinese Word Segmentation and
POS Tagging
Canasai Kruengkrai, Kiyotaka Uchimoto, Jun’ichi Kazama, Yiou Wang, Kentaro Torisawa
and Hitoshi Isahara

09:20–09:45 Automatic Adaptation of Annotation Standards: Chinese Word Segmentation and POS
Tagging – A Case Study
Wenbin Jiang, Liang Huang and Qun Liu

Session 4C: Spoken Language Processing 1
Chaired by Brian Roark

08:30–08:55 Linefeed Insertion into Japanese Spoken Monologue for Captioning
Tomohiro Ohno, Masaki Murata and Shigeki Matsubara

08:55–09:20 Semi-supervised Learning for Automatic Prosodic Event Detection Using Co-training Al-
gorithm
Je Hun Jeon and Yang Liu

09:20–09:45 Summarizing multiple spoken documents: finding evidence from untranscribed audio
Xiaodan Zhu, Gerald Penn and Frank Rudzicz

Session 4DI: Short Paper 1 (Syntax and Parsing)

Session 4DII: Short Paper 2 (Discourse and Dialogue)

09:45–10:15 Break

xxxiv



Tuesday, August 4, 2009 (continued)

Session 5A: Machine Translation 3
Chaired by Dan Gildea

10:15–10:40 Improving Tree-to-Tree Translation with Packed Forests
Yang Liu, Yajuan Lü and Qun Liu
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Abstract

In this paper, we present a new learning
scenario, heterogeneous transfer learn-
ing, which improves learning performance
when the data can be in different feature
spaces and where no correspondence be-
tween data instances in these spaces is pro-
vided. In the past, we have classified Chi-
nese text documents using English train-
ing data under the heterogeneous trans-
fer learning framework. In this paper,
we present image clustering as an exam-
ple to illustrate how unsupervised learning
can be improved by transferring knowl-
edge from auxiliary heterogeneous data
obtained from the social Web. Image
clustering is useful for image sense dis-
ambiguation in query-based image search,
but its quality is often low due to image-
data sparsity problem. We extend PLSA
to help transfer the knowledge from social
Web data, which have mixed feature repre-
sentations. Experiments on image-object
clustering and scene clustering tasks show
that our approach in heterogeneous trans-
fer learning based on the auxiliary data is
indeed effective and promising.

1 Introduction

Traditional machine learning relies on the avail-
ability of a large amount of data to train a model,
which is then applied to test data in the same
feature space. However, labeled data are often
scarce and expensive to obtain. Various machine
learning strategies have been proposed to address
this problem, including semi-supervised learning
(Zhu, 2007), domain adaptation (Wu and Diet-
terich, 2004; Blitzer et al., 2006; Blitzer et al.,
2007; Arnold et al., 2007; Chan and Ng, 2007;
Daume, 2007; Jiang and Zhai, 2007; Reichart

and Rappoport, 2007; Andreevskaia and Bergler,
2008), multi-task learning (Caruana, 1997; Re-
ichart et al., 2008; Arnold et al., 2008), self-taught
learning (Raina et al., 2007), etc. A commonality
among these methods is that they all require the
training data and test data to be in the same fea-
ture space. In addition, most of them are designed
for supervised learning. However, in practice, we
often face the problem where the labeled data are
scarce in their own feature space, whereas there
may be a large amount of labeled heterogeneous
data in another feature space. In such situations, it
would be desirable to transfer the knowledge from
heterogeneous data to domains where we have rel-
atively little training data available.

To learn from heterogeneous data, researchers
have previously proposed multi-view learning
(Blum and Mitchell, 1998; Nigam and Ghani,
2000) in which each instance has multiple views in
different feature spaces. Different from previous
works, we focus on the problem ofheterogeneous
transfer learning, which is designed for situation
when the training data are in one feature space
(such as text), and the test data are in another (such
as images), and there may be no correspondence
between instances in these spaces. The type of
heterogeneous data can be very different, as in the
case of text and image. To consider how hetero-
geneous transfer learning relates to other types of
learning, Figure 1 presents an intuitive illustration
of four learning strategies, including traditional
machine learning, transfer learning across differ-
ent distributions, multi-view learning and hetero-
geneous transfer learning. As we can see, an
important distinguishing feature of heterogeneous
transfer learning, as compared to other types of
learning, is that more constraints on the problem
are relaxed, such that data instances do not need to
correspond anymore. This allows, for example, a
collection of Chinese text documents to be classi-
fied using another collection of English text as the

1



training data (c.f. (Ling et al., 2008) and Section
2.1).

In this paper, we will give an illustrative exam-
ple of heterogeneous transfer learning to demon-
strate how the task of image clustering can ben-
efit from learning from the heterogeneous social
Web data. A major motivation of our work is
Web-based image search, where users submit tex-
tual queries and browse through the returned result
pages. One problem is that the user queries are of-
ten ambiguous. An ambiguous keyword such as
“Apple” might retrieve images of Apple comput-
ers and mobile phones, or images of fruits. Im-
age clustering is an effective method for improv-
ing the accessibility of image search result. Loeff
et al. (2006) addressed the image clustering prob-
lem with a focus on image sense discrimination.
In their approach, images associated with textual
features are used for clustering, so that the text
and images are clustered at the same time. Specif-
ically, spectral clustering is applied to the distance
matrix built from a multimodal feature set associ-
ated with the images to get a better feature repre-
sentation. This new representation contains both
image and text information, with which the per-
formance of image clustering is shown to be im-
proved. A problem with this approach is that when
images contained in the Web search results are
very scarce and when the textual data associated
with the images are very few, clustering on the im-
ages and their associated text may not be very ef-
fective.

Different from these previous works, in this pa-
per, we address the image clustering problem as
a heterogeneous transfer learningproblem. We
aim to leverage heterogeneous auxiliary data, so-
cial annotations, etc. to enhance image cluster-
ing performance. We observe that the World Wide
Web has many annotated images in Web sites such
as Flickr (http://www.flickr.com), which
can be used as auxiliary information source for
our clustering task. In this work, our objective
is to cluster a small collection of images that we
are interested in, where these images are not suf-
ficient for traditional clustering algorithms to per-
form well due to data sparsity and the low level of
image features. We investigate how to utilize the
readily available socially annotated image data on
the Web to improve image clustering. Although
these auxiliary data may be irrelevant to the im-
ages to be clustered and cannot be directly used

to solve the data sparsity problem, we show that
they can still be used to estimate a goodlatent fea-
ture representation, which can be used to improve
image clustering.

2 Related Works

2.1 Heterogeneous Transfer Learning
Between Languages

In this section, we summarize our previous work
on cross-language classification as an example of
heterogeneous transfer learning. This example
is related to our image clustering problem be-
cause they both rely on data from different feature
spaces.

As the World Wide Web in China grows rapidly,
it has become an increasingly important prob-
lem to be able to accurately classify Chinese Web
pages. However, because the labeled Chinese Web
pages are still not sufficient, we often find it diffi-
cult to achieve high accuracy by applying tradi-
tional machine learning algorithms to the Chinese
Web pages directly. Would it be possible to make
the best use of the relatively abundant labeled En-
glish Web pages for classifying the Chinese Web
pages?

To answer this question, in (Ling et al., 2008),
we developed a novel approach for classifying the
Web pages in Chinese using the training docu-
ments in English. In this subsection, we give a
brief summary of this work. The problem to be
solved is: we are given a collection of labeled
English documents and a large number of unla-
beled Chinese documents. The English and Chi-
nese texts are not aligned. Our objective is to clas-
sify the Chinese documents into the same label
space as the English data.

Our key observation is that even though the data
use different text features, they may still share
many of the same semantic information. What we
need to do is to uncover this latent semantic in-
formation by finding out what is common among
them. We did this in (Ling et al., 2008) by us-
ing the information bottleneck theory (Tishby et
al., 1999). In our work, we first translated the
Chinese document into English automatically us-
ing some available translation software, such as
Google translate. Then, we encoded the training
text as well as the translated target text together,
in terms of the information theory. We allowed all
the information to be put through a ‘bottleneck’
and be represented by a limited number ofcode-
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Figure 1: An intuitive illustration of different kinds learning strategies usingclassification/clustering of
imageapple andbanana as the example.

words (i.e. labels in the classification problem).
Finally, information bottleneck was used to main-
tain most of the common information between the
two data sources, and discard the remaining irrel-
evant information. In this way, we can approxi-
mate the ideal situation where similar training and
translated test pages shared in the common part are
encoded into the same codewords, and are thus as-
signed the correct labels. In (Ling et al., 2008), we
experimentally showed that heterogeneous trans-
fer learning can indeed improve the performance
of cross-language text classification as compared
to directly training learning models (e.g., Naive
Bayes or SVM) and testing on the translated texts.

2.2 Other Works in Transfer Learning

In the past, several other works made use of trans-
fer learning for cross-feature-space learning. Wu
and Oard (2008) proposed to handle the cross-
language learning problem by translating the data
into a same language and applyingkNN on the
latent topic space for classification. Most learning
algorithms for dealing with cross-language hetero-
geneous data require atranslator to convert the
data to the same feature space. For those data that
are in different feature spaces where no transla-
tor is available, Davis and Domingos (2008) pro-
posed a Markov-logic-based transfer learning al-
gorithm, which is calleddeep transfer, for trans-
ferring knowledge between biological domains
and Web domains. Dai et al. (2008a) proposed

a novel learning paradigm, known as translated
learning, to deal with the problem of learning het-
erogeneous data that belong to quite different fea-
ture spaces by using a risk minimization frame-
work.

2.3 Relation to PLSA

Our work makes use ofPLSA. Probabilistic la-
tent semantic analysis(PLSA) is a widely used
probabilistic model (Hofmann, 1999), and could
be considered as a probabilistic implementation of
latent semantic analysis(LSA) (Deerwester et al.,
1990). An extension toPLSA was proposed in
(Cohn and Hofmann, 2000), which incorporated
the hyperlink connectivity in thePLSA model by
using a joint probabilistic model for connectivity
and content. Moreover,PLSA has shown a lot
of applications ranging from text clustering (Hof-
mann, 2001) to image analysis (Sivic et al., 2005).

2.4 Relation to Clustering

Compared to many previous works on image clus-
tering, we note that traditional image cluster-
ing is generally based on techniques such asK-
means (MacQueen, 1967) and hierarchical clus-
tering (Kaufman and Rousseeuw, 1990). How-
ever, when the data are sparse, traditional clus-
tering algorithms may have difficulties in obtain-
ing high-quality image clusters. Recently, several
researchers have investigated how to leverage the
auxiliary information to improve target clustering
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performance, such as supervised clustering (Fin-
ley and Joachims, 2005), semi-supervised cluster-
ing (Basu et al., 2004), self-taught clustering (Dai
et al., 2008b), etc.

3 Image Clustering with Annotated
Auxiliary Data

In this section, we present ourannotation-based
probabilistic latent semantic analysisalgorithm
(aPLSA), which extends the traditionalPLSA
model by incorporating annotated auxiliary im-
age data. Intuitively, our algorithmaPLSA per-
forms PLSA analysis on the target images, which
are converted to an image instance-to-feature co-
occurrence matrix. At the same time, PLSA is
also applied to the annotated image data from so-
cial Web, which is converted into a text-to-image-
feature co-occurrence matrix. In order to unify
those two separate PLSA models, these two steps
are done simultaneously with common latent vari-
ables used as a bridge linking them. Through
these common latent variables, which are now
constrained by both target image data and auxil-
iary annotation data, a better clustering result is
expected for the target data.

3.1 Probabilistic Latent Semantic Analysis

Let F = {fi}
|F|
i=1 be an image feature space, and

V = {vi}
|V|
i=1 be the image data set. Each image

vi ∈ V is represented by abag-of-features{f |f ∈
vi ∧ f ∈ F}.

Based on the image data setV, we can esti-
mate an image instance-to-feature co-occurrence
matrix A|V|×|F| ∈ R

|V|×|F|, where each element
Aij (1 ≤ i ≤ |V| and1 ≤ j ≤ |F|) in the matrix
A is the frequency of the featurefj appearing in
the instancevi.

LetW = {wi}
|W|
i=1 be a text feature space. The

annotated image data allow us to obtain the co-
occurrence information between imagesv and text
featuresw ∈ W. An example of annotated im-
age data is the Flickr (http://www.flickr.
com), which is a social Web site containing a large
number of annotated images.

By extracting image features from the annotated
imagesv, we can estimate a text-to-image fea-
ture co-occurrence matrixB|W|×|F| ∈ R

|W|×|F|,
where each elementBij (1 ≤ i ≤ |W| and
1 ≤ j ≤ |F|) in the matrixB is the frequency
of the text featurewi and the image featurefj oc-
curring together in the annotated image data set.

V Z F
P (z|v) P (f |z)

Figure 2: Graphical model representation ofPLSA
model.

LetZ = {zi}
|Z|
i=1 be the latent variable set in our

aPLSA model. In clustering, each latent variable
zi ∈ Z corresponds to a certain cluster.

Our objective is to estimate a clustering func-
tion g : V 7→ Z with the help of the two co-
occurrence matricesA andB as defined above.

To formally introduce theaPLSA model, we
start from theprobabilistic latent semantic anal-
ysis (PLSA) (Hofmann, 1999) model.PLSA is
a probabilistic implementation oflatent seman-
tic analysis(LSA) (Deerwester et al., 1990). In
our image clustering task,PLSA decomposes the
instance-feature co-occurrence matrixA under the
assumption of conditional independence of image
instancesV and image featuresF , given the latent
variablesZ.

P (f |v) =
∑

z∈Z

P (f |z)P (z|v). (1)

The graphical model representation ofPLSA is
shown in Figure 2.
Based on thePLSA model, the log-likelihood can
be defined as:

L =
∑

i

∑

j

Aij
∑

j′ Aij′

log P (fj |vi) (2)

whereA|V|×|F| ∈ R
|V|×|F| is the image instance-

feature co-occurrence matrix. The termAij
P

j′ Aij′

in Equation (2) is a normalization term ensuring
each image is giving the same weight in the log-
likelihood.

Using EM algorithm (Dempster et al., 1977),
which locally maximizes the log-likelihood of
thePLSA model (Equation (2)), the probabilities
P (f |z) andP (z|v) can be estimated. Then, the
clustering function is derived as

g(v) = argmax
z∈Z

P (z|v). (3)

Due to space limitation, we omit the details for the
PLSA model, which can be found in (Hofmann,
1999).

3.2 aPLSA: Annotation-based PLSA

In this section, we consider how to incorporate
a large number of socially annotated images in a
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Z F

P (z|
v)

P (z|w)
P (f |z)

Figure 3: Graphical model representation of
aPLSA model.

unified PLSA model for the purpose of utilizing
the correlation between text features and image
features. In the auxiliary data, each image has cer-
tain textual tags that are attached by users. The
correlation between text features and image fea-
tures can be formulated as follows.

P (f |w) =
∑

z∈Z

P (f |z)P (z|w). (4)

It is clear that Equations (1) and (4) share a same
termP (f |z). So we design a newPLSA model by
joining the probabilistic model in Equation (1) and
the probabilistic model in Equation (4) into a uni-
fied model, as shown in Figure 3. In Figure 3, the
latent variablesZ depend not only on the corre-
lation between image instancesV and image fea-
turesF , but also the correlation between text fea-
turesW and image featuresF . Therefore, the aux-
iliary socially-annotated image data can be used
to help the target image clustering performance by
estimating good set of latent variablesZ.

Based on the graphical model representation in
Figure 3, we derive the log-likelihood objective
function, in a similar way as in (Cohn and Hof-
mann, 2000), as follows

L =
∑

j

[

λ
∑

i

Aij
∑

j′ Aij′

log P (fj |vi)

+(1− λ)
∑

l

Blj
∑

j′ Blj′

log P (fj |wl)

]

,

(5)

whereA|V|×|F| ∈ R
|V|×|F| is the image instance-

feature co-occurrence matrix, andB|W|×|F| ∈
R
|W|×|F| is the text-to-image feature-level co-

occurrence matrix. Similar to Equation (2),
Aij

P

j′ Aij′

and Blj
P

j′ Blj′

in Equation (5) are the nor-

malization terms to prevent imbalanced cases.
Furthermore,λ acts as a trade-off parameter be-

tween the co-occurrence matricesA and B. In
the extreme case whenλ = 1, the log-likelihood
objective function ignores all the biases from the

text-to-image occurrence matrixB. In this case,
the aPLSA model degenerates to the traditional
PLSA model. Therefore,aPLSA is an extension
to thePLSA model.

Now, the objective is to maximize the log-
likelihoodL of theaPLSA model in Equation (5).
Then we apply the EM algorithm (Dempster et
al., 1977) to estimate the conditional probabilities
P (f |z), P (z|w) andP (z|v) with respect to each
dependence in Figure 3 as follows.

• E-Step: calculate the posterior probability of
each latent variablez given the observation
of image featuresf , image instancesv and
text featuresw based on the old estimate of
P (f |z), P (z|w) andP (z|v):

P (zk|vi, fj) =
P (fj |zk)P (zk|vi)

∑

k′ P (fj |zk′)P (zk′ |vi)

(6)

P (zk|wl, fj) =
P (fj |zk)P (zk|wl)

∑

k′ P (fj |zk′)P (zk′ |wl)

(7)

• M-Step: re-estimates conditional probabili-
tiesP (zk|vi) andP (zk|wl):

P (zk|vi) =
∑

j

Aij
∑

j′ Aij′

P (zk|vi, fj) (8)

P (zk|wl) =
∑

j

Blj
∑

j′ Blj′

P (zk|wl, fj) (9)

and conditional probabilityP (fj |zk), which
is a mixture portion of posterior probability
of latent variables

P (fj |zk) ∝ λ
∑

i

Aij
∑

j′ Aij′

P (zk|vi, fj)

+ (1− λ)
∑

l

Blj
∑

j′ Blj′

P (zk|wl, fj)

(10)

Finally, the clustering function for a certain im-
agev is

g(v) = argmax
z∈Z

P (z|v). (11)

From the above equations, we can derive
our annotation-based probabilistic latent semantic
analysis (aPLSA) algorithm. As shown in Algo-
rithm 1, aPLSA iteratively performs the E-Step
and the M-Step in order to seek local optimal
points based on the objective functionL in Equa-
tion (5).
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Algorithm 1 Annotation-based PLSA Algorithm
(aPLSA)
Input: TheV-F co-occurrence matrixA andW-
F co-occurrence matrixB.
Output: A clustering (partition) functiong : V 7→
Z, which maps an image instancev ∈ V to a latent
variablez ∈ Z.

1: Initial Z so that|Z| equals the number clus-
ters desired.

2: Initialize P (z|v), P (z|w), P (f |z) randomly.
3: while the change ofL in Eq. (5) between two

sequential iterations is greater than a prede-
fined thresholddo

4: E-Step: UpdateP (z|v, f) and P (z|w, f)
based on Eq. (6) and (7) respectively.

5: M-Step: Update P (z|v), P (z|w) and
P (f |z) based on Eq. (8), (9) and (10) re-
spectively.

6: end while
7: for all v in V do
8: g(v)← argmax

z
P (z|v).

9: end for
10: Returng.

4 Experiments

In this section, we empirically evaluate theaPLSA
algorithm together with some state-of-art base-
line methods on two widely used image corpora,
to demonstrate the effectiveness of our algorithm
aPLSA.

4.1 Data Sets

In order to evaluate the effectiveness of our algo-
rithm aPLSA, we conducted experiments on sev-
eral data sets generated from two image corpora,
Caltech-256 (Griffin et al., 2007) and the fifteen-
scene (Lazebnik et al., 2006). The Caltech-256
data set has 256 image objective categories, rang-
ing from animals to buildings, from plants to au-
tomobiles, etc. The fifteen-scene data set con-
tains 15 scenes such asstore and forest.
From these two corpora, we randomly generated
eleven image clustering tasks, including seven 2-
way clustering tasks, two 4-way clustering task,
one 5-way clustering task and one 8-way cluster-
ing task. The detailed descriptions for these clus-
tering tasks are given in Table 1. In these tasks,
bi7 andoct1 were generated from fifteen-scene
data set, and the rest were from Caltech-256 data
set.

DATA SET INVOLVED CLASSES DATA SIZE

bi1 skateboard, airplanes 102, 800
bi2 billiards, mars 278, 155
bi3 cd, greyhound 102, 94
bi4 electric-guitar, snake 122, 112
bi5 calculator, dolphin 100, 106
bi6 mushroom, teddy-bear 202, 99
bi7 MIThighway, livingroom 260, 289

quad1
calculator, diamond-ring, dolphin,
microscope

100, 118, 106, 116

quad2 bonsai, comet, frog, saddle 122, 120, 115, 110

quint1 frog, kayak, bear, jesus-christ, watch
115, 102, 101, 87,
201

oct1
MIThighway, MITmountain,
kitchen, MITcoast, PARoffice, MIT-
tallbuilding, livingroom, bedroom

260, 374, 210, 360,
215, 356, 289, 216

tune1 coin, horse 123, 270
tune2 socks, spider 111, 106
tune3 galaxy, snowmobile 80, 112
tune4 dice, fern 98, 110
tune5 backpack, lightning, mandolin, swan 151, 136, 93, 114

Table 1: The descriptions of all the image clus-
tering tasks used in our experiment. Among
these data sets,bi7 and oct1 were generated
from fifteen-scenedata set, and the rest were from
Caltech-256data set.

To empirically investigate the parameterλ and
the convergence of our algorithmaPLSA, we gen-
erated five more date sets as the development sets.
The detailed description of these five development
sets, namelytune1 to tune5 is listed in Table 1
as well.

The auxiliary data were crawled from the Flickr
(http://www.flickr.com/) web site dur-
ing August 2007. Flickr is an internet community
where people share photos online and express their
opinions as social tags (annotations) attached to
each image. From Flicker, we collected19, 959
images and91, 719 related annotations, among
which 2, 600 words are distinct. Based on the
method described in Section 3, we estimated the
co-occurrence matrixB between text features and
image features. This co-occurrence matrixB was
used by all the clustering tasks in our experiments.

For data preprocessing, we adopted thebag-of-
featuresrepresentation of images (Li and Perona,
2005) in our experiments. Interesting points were
found in the images and described via theSIFT
descriptors(Lowe, 2004). Then, the interesting
points were clustered to generate a codebook to
form an image feature space. The size of code-
book was set to2, 000 in our experiments. Based
on the codebook, which serves as the image fea-
ture space, each image can be represented as a cor-
responding feature vector to be used in the next
step.

To set our evaluation criterion, we used the
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Data Set KMeans PLSA
STC aPLSAseparate combined separate combined

bi1 0.645±0.064 0.548±0.031 0.544±0.074 0.537±0.033 0.586±0.139 0.482±0.062
bi2 0.687±0.003 0.662±0.014 0.464±0.074 0.692±0.001 0.577±0.016 0.455±0.096
bi3 1.294±0.060 1.300±0.015 1.085±0.073 1.126±0.036 1.103±0.108 1.029±0.074
bi4 1.227±0.080 1.164±0.053 0.976±0.051 1.038±0.068 1.024±0.089 0.919±0.065
bi5 1.450±0.058 1.417±0.045 1.426±0.025 1.405±0.040 1.411±0.043 1.377±0.040
bi6 1.969±0.078 1.852±0.051 1.514±0.039 1.709±0.028 1.589±0.121 1.503±0.030
bi7 0.686±0.006 0.683±0.004 0.643±0.058 0.632±0.037 0.651±0.012 0.624±0.066

quad1 0.591±0.094 0.675±0.017 0.488±0.071 0.662±0.013 0.580±0.115 0.432±0.085
quad2 0.648±0.036 0.646±0.045 0.614±0.062 0.626±0.026 0.591±0.087 0.515±0.098
quint1 0.557±0.021 0.508±0.104 0.547±0.060 0.539±0.051 0.538±0.100 0.502±0.067
oct1 0.659±0.031 0.680±0.012 0.340±0.147 0.691±0.002 0.411±0.089 0.306±0.101

average 0.947±0.029 0.922±0.017 0.786±0.009 0.878±0.006 0.824±0.036 0.741±0.018

Table 2: Experimental result in term of entropy for all data sets and evaluation methods.

entropy to measure the quality of our clustering
results. In information theory, entropy (Shan-
non, 1948) is a measure of the uncertainty as-
sociated with a random variable. In our prob-
lem, entropy serves as a measure of randomness
of clustering result. The entropy ofg on a sin-
gle latent variablez is defined to beH(g, z) ,

−
∑

c∈C P (c|z) log2 P (c|z), whereC is the class

label set ofV and P (c|z) = |{v|g(v)=z∧t(v)=c}|
|{v|g(v)=z}| ,

in which t(v) is the true class label of imagev.
Lower entropyH(g,Z) indicates less randomness
and thus better clustering result.

4.2 Empirical Analysis

We now empirically analyze the effectiveness of
our aPLSA algorithm. Because, to our best of
knowledge, few existing methods addressed the
problem of image clustering with the help of so-
cial annotation image data, we can only compare
our aPLSA with several state-of-the-art cluster-
ing algorithms that are not directly designed for
our problem. The first baseline is the well-known
KMeans algorithm (MacQueen, 1967). Since our
algorithm is designed based onPLSA (Hofmann,
1999), we also includedPLSA for clustering as a
baseline method in our experiments.

For each of the above two baselines, we have
two strategies: (1)separated: the baseline
method was applied on the target image data only;
(2) combined: the baseline method was applied
to cluster the combined data consisting of both
target image data and the annotated image data.
Clustering results on target image data were used
for evaluation. Note that, in the combined data, all
the annotations were thrown away since baseline
methods evaluated in this paper do not leverage
annotation information.

In addition, we compared our algorithmaPLSA

to a state-of-the-art transfer clustering strategy,
known asself-taught clustering(STC) (Dai et al.,
2008b). STC makes use of auxiliary data to esti-
mate a better feature representation to benefit the
target clustering. In these experiments, the anno-
tated image data were used as auxiliary data in
STC, which does not use the annotation text.

In our experiments, the performance is in the
form of the average entropy and variance of five
repeats by randomly selecting50 images from
each of the categories. We selected only 50 im-
ages per category, since this paper is focused on
clustering sparse data. Table 2 shows the perfor-
mance with respect to all comparison methods on
each of the image clustering tasks measured by
the entropy criterion. From the tables, we can see
that our algorithmaPLSA outperforms the base-
line methods in all the data sets. We believe that is
becauseaPLSA can effectively utilize the knowl-
edge from the socially annotated image data. On
average,aPLSA gives rise to21.8% of entropy re-
duction and as compared toKMeans, 5.7% of en-
tropy reduction as compared toPLSA, and10.1%
of entropy reduction as compared toSTC.

4.2.1 Varying Data Size

We now show how the data size affectsaPLSA,
with two baseline methodsKMeans andPLSA as
reference. The experiments were conducted on
different amounts of target image data, varying
from 10 to 80. The corresponding experimental
results in average entropy over all the 11 clustering
tasks are shown in Figure 4(a). From this figure,
we observe thataPLSA always yields a significant
reduction in entropy as compared with two base-
line methodsKMeans andPLSA, regardless of the
size of target image data that we used.
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Figure 4: (a) The entropy curve as a function of different amounts of data per category. (b) The entropy
curve as a function of different number of iterations. (c) The entropy curve as a function of different
trade-off parameterλ.

4.2.2 Parameter Sensitivity
In aPLSA, there is a trade-off parameterλ that af-
fects how the algorithm relies on auxiliary data.
Whenλ = 0, theaPLSA relies only on annotated
image dataB. Whenλ = 1, aPLSA relies only
on target image dataA, in which caseaPLSA de-
generates toPLSA. Smallerλ indicates heavier re-
liance on the annotated image data. We have done
some experiments on the development sets to in-
vestigate how differentλ affect the performance
of aPLSA. We set the number of images per cate-
gory to50, and tested the performance ofaPLSA.
The result in average entropy over all development
sets is shown in Figure 4(b). In the experiments
described in this paper, we setλ to 0.2, which is
the best point in Figure 4(b).

4.2.3 Convergence
In our experiments, we tested the convergence
property of our algorithmaPLSA as well. Fig-
ure 4(c) shows the average entropy curve given
by aPLSA over all development sets. From this
figure, we see that the entropy decreases very fast
during the first100 iterations and becomes stable
after150 iterations. We believe that200 iterations
is sufficient foraPLSA to converge.

5 Conclusions
In this paper, we proposed a new learning scenario
called heterogeneous transfer learning and illus-
trated its application to image clustering. Image
clustering, a vital component in organizing search
results for query-based image search, was shown
to be improved by transferring knowledge from
unrelated images with annotations in a social Web.
This is done by first learning the high-quality la-
tent variables in the auxiliary data, and then trans-
ferring this knowledge to help improve the cluster-
ing of the target image data. We conducted experi-

ments on two image data sets, using the Flickr data
as the annotated auxiliary image data, and showed
that ouraPLSA algorithm can greatly outperform
several state-of-the-art clustering algorithms.

In natural language processing, there are many
future opportunities to apply heterogeneous trans-
fer learning. In (Ling et al., 2008) we have shown
how to classify the Chinese text using English text
as the training data. We may also consider cluster-
ing, topic modeling, question answering, etc., to
be done using data in different feature spaces. We
can consider data in different modalities, such as
video, image and audio, as the training data. Fi-
nally, we will explore the theoretical foundations
and limitations of heterogeneous transfer learning
as well.
Acknowledgement Qiang Yang thanks Hong
Kong CERG grant 621307 for supporting the re-
search.
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Abstract
The vast majority of work on word senses
has relied on predefined sense invento-
ries and an annotation schema where each
word instance is tagged with the best fit-
ting sense. This paper examines the case
for a graded notion of word meaning in
two experiments, one which uses WordNet
senses in a graded fashion, contrasted with
the “winner takes all” annotation, and one
which asks annotators to judge the similar-
ity of two usages. We find that the graded
responses correlate with annotations from
previous datasets, but sense assignments
are used in a way that weakens the case for
clear cut sense boundaries. The responses
from both experiments correlate with the
overlap of paraphrases from the English
lexical substitution task which bodes well
for the use of substitutes as a proxy for
word sense. This paper also provides two
novel datasets which can be used for eval-
uating computational systems.

1 Introduction

The vast majority of work on word sense tag-
ging has assumed that predefined word senses
from a dictionary are an adequate proxy for the
task, although of course there are issues with
this enterprise both in terms of cognitive valid-
ity (Hanks, 2000; Kilgarriff, 1997; Kilgarriff,
2006) and adequacy for computational linguis-
tics applications (Kilgarriff, 2006). Furthermore,
given a predefined list of senses, annotation efforts
and computational approaches to word sense dis-
ambiguation (WSD) have usually assumed that one
best fitting sense should be selected for each us-
age. While there is usually some allowance made

for multiple senses, this is typically not adopted by
annotators or computational systems.

Research on the psychology of concepts (Mur-
phy, 2002; Hampton, 2007) shows that categories
in the human mind are not simply sets with clear-
cut boundaries: Some items are perceived as
more typical than others (Rosch, 1975; Rosch and
Mervis, 1975), and there are borderline cases on
which people disagree more often, and on whose
categorization they are more likely to change their
minds (Hampton, 1979; McCloskey and Glucks-
berg, 1978). Word meanings are certainly related
to mental concepts (Murphy, 2002). This raises
the question of whether there is any such thing as
the one appropriate sense for a given occurrence.

In this paper we will explore using graded re-
sponses for sense tagging within a novel annota-
tion paradigm. Modeling the annotation frame-
work after psycholinguistic experiments, we do
not train annotators to conform to sense distinc-
tions; rather we assess individual differences by
asking annotators to produce graded ratings in-
stead of making a binary choice. We perform two
annotation studies. In the first one, referred to
as WSsim (Word Sense Similarity), annotators
give graded ratings on the applicability of Word-
Net senses. In the second one, Usim (Usage Sim-
ilarity), annotators rate the similarity of pairs of
occurrences (usages) of a common target word.
Both studies explore whether users make use of
a graded scale or persist in making binary deci-
sions even when there is the option for a graded
response. The first study additionally tests to what
extent the judgments on WordNet senses fall into
clear-cut clusters, while the second study allows
us to explore meaning similarity independently of
any lexicon resource.
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2 Related Work

Manual word sense assignment is difficult for
human annotators (Krishnamurthy and Nicholls,
2000). Reported inter-annotator agreement (ITA)
for fine-grained word sense assignment tasks has
ranged between 69% (Kilgarriff and Rosenzweig,
2000) for a lexical sample using the HECTOR dic-
tionary and 78.6.% using WordNet (Landes et al.,
1998) in all-words annotation. The use of more
coarse-grained senses alleviates the problem: In
OntoNotes (Hovy et al., 2006), an ITA of 90% is
used as the criterion for the construction of coarse-
grained sense distinctions. However, intriguingly,
for some high-frequency lemmas such as leave
this ITA threshold is not reached even after mul-
tiple re-partitionings of the semantic space (Chen
and Palmer, 2009). Similarly, the performance
of WSD systems clearly indicates that WSD is not
easy unless one adopts a coarse-grained approach,
and then systems tagging all words at best perform
a few percentage points above the most frequent
sense heuristic (Navigli et al., 2007). Good perfor-
mance on coarse-grained sense distinctions may
be more useful in applications than poor perfor-
mance on fine-grained distinctions (Ide and Wilks,
2006) but we do not know this yet and there is
some evidence to the contrary (Stokoe, 2005).

Rather than focus on the granularity of clus-
ters, the approach we will take in this paper
is to examine the phenomenon of word mean-
ing both with and without recourse to predefined
senses by focusing on the similarity of uses of a
word. Human subjects show excellent agreement
on judging word similarity out of context (Ruben-
stein and Goodenough, 1965; Miller and Charles,
1991), and human judgments have previously been
used successfully to study synonymy and near-
synonymy (Miller and Charles, 1991; Bybee and
Eddington, 2006). We focus on polysemy rather
than synonymy. Our aim will be to use WSsim
to determine to what extent annotations form co-
hesive clusters. In principle, it should be possi-
ble to use existing sense-annotated data to explore
this question: almost all sense annotation efforts
have allowed annotators to assign multiple senses
to a single occurrence, and the distribution of these
sense labels should indicate whether annotators
viewed the senses as disjoint or not. However,
the percentage of markables that received multi-
ple sense labels in existing corpora is small, and it
varies massively between corpora: In the SemCor

corpus (Landes et al., 1998), only 0.3% of all
markables received multiple sense labels. In the
SENSEVAL-3 English lexical task corpus (Mihal-
cea et al., 2004) (hereafter referred to as SE-3), the
ratio is much higher at 8% of all markables1. This
could mean annotators feel that there is usually a
single applicable sense, or it could point to a bias
towards single-sense assignment in the annotation
guidelines and/or the annotation tool. The WSsim
experiment that we report in this paper is designed
to eliminate such bias as far as possible and we
conduct it on data taken from SemCor and SE-3 so
that we can compare the annotations. Although we
use WordNet for the annotation, our study is not a
study of WordNet per se. We choose WordNet be-
cause it is sufficiently fine-grained to examine sub-
tle differences in usage, and because traditionally
annotated datasets exist to which we can compare
our results.

Predefined dictionaries and lexical resources are
not the only possibilities for annotating lexical
items with meaning. In cross-lingual settings, the
actual translations of a word can be taken as the
sense labels (Resnik and Yarowsky, 2000). Re-
cently, McCarthy and Navigli (2007) proposed
the English Lexical Substitution task (hereafter
referred to as LEXSUB) under the auspices of
SemEval-2007. It uses paraphrases for words in
context as a way of annotating meaning. The task
was proposed following a background of discus-
sions in the WSD community as to the adequacy
of predefined word senses. The LEXSUB dataset
comprises open class words (nouns, verbs, adjec-
tives and adverbs) with token instances of each
word appearing in the context of one sentence
taken from the English Internet Corpus (Sharoff,
2006). The methodology can only work where
there are paraphrases, so the dataset only contains
words with more than one meaning where at least
two different meanings have near synonyms. For
meanings without obvious substitutes the annota-
tors were allowed to use multiword paraphrases or
words with slightly more general meanings. This
dataset has been used to evaluate automatic sys-
tems which can find substitutes appropriate for the
context. To the best of our knowledge there has
been no study of how the data collected relates to
word sense annotations or judgments of semantic
similarity. In this paper we examine these relation-

1This is even though both annotation efforts use balanced
corpora, the Brown corpus in the case of SemCor, the British
National Corpus for SE-3.
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ships by re-using data from LEXSUB in both new
annotation experiments and testing the results for
correlation.

3 Annotation

We conducted two experiments through an on-
line annotation interface. Three annotators partic-
ipated in each experiment; all were native British
English speakers. The first experiment, WSsim,
collected annotator judgments about the applica-
bility of dictionary senses using a 5-point rating
scale. The second, Usim, also utilized a 5-point
scale but collected judgments on the similarity in
meaning between two uses of a word. 2 The scale
was 1 – completely different, 2 – mostly different,
3 – similar, 4 – very similar and 5 – identical. In
Usim, this scale rated the similarity of the two uses
of the common target word; in WSsim it rated the
similarity between the use of the target word and
the sense description. In both experiments, the an-
notation interface allowed annotators to revisit and
change previously supplied judgments, and a com-
ment box was provided alongside each item.

WSsim. This experiment contained a total of
430 sentences spanning 11 lemmas (nouns, verbs
and adjectives). For 8 of these lemmas, 50 sen-
tences were included, 25 of them randomly sam-
pled from SemCor 3 and 25 randomly sampled
from SE-3.4 The remaining 3 lemmas in the ex-
periment each had 10 sentences taken from the
LEXSUB data.

WSsim is a word sense annotation task using
WordNet senses.5 Unlike previous word sense an-
notation projects, we asked annotators to provide
judgments on the applicability of every WordNet
sense of the target lemma with the instruction: 6

2Throughout this paper, a target word is assumed to be a
word in a given PoS.

3The SemCor dataset was produced alongside WordNet,
so it can be expected to support the WordNet sense distinc-
tions. The same cannot be said for SE-3.

4Sentence fragments and sentences with 5 or fewer words
were excluded from the sampling. Annotators were given
the sentences, but not the original annotation from these re-
sources.

5WordNet 1.7.1 was used in the annotation of both SE-3
and SemCor; we used the more current WordNet 3.0 after
verifying that the lemmas included in this experiment had the
same senses listed in both versions. Care was taken addition-
ally to ensure that senses were not presented in an order that
reflected their frequency of occurrence.

6The guidelines for both experiments are avail-
able at http://comp.ling.utexas.edu/
people/katrin erk/graded sense and usage
annotation

Your task is to rate, for each of these descriptions,
how well they reflect the meaning of the boldfaced
word in the sentence.
Applicability judgments were not binary, but were
instead collected using the five-point scale given
above which allowed annotators to indicate not
only whether a given sense applied, but to what
degree. Each annotator annotated each of the 430
items. By having multiple annotators per item and
a graded, non-binary annotation scheme we al-
low for and measure differences between annota-
tors, rather than training annotators to conform to
a common sense distinction guideline. By asking
annotators to provide ratings for each individual
sense, we strive to eliminate all bias towards either
single-sense or multiple-sense assignment. In tra-
ditional word sense annotation, such bias could be
introduced directly through annotation guidelines
or indirectly, through tools that make it easier to
assign fewer senses. We focus not on finding the
best fitting sense but collect judgments on the ap-
plicability of all senses.

Usim. This experiment used data from LEXSUB.
For more information on LEXSUB, see McCarthy
and Navigli (2007). 34 lemmas (nouns, verbs, ad-
jectives and adverbs) were manually selected, in-
cluding the 3 lemmas also used in WSsim. We se-
lected lemmas which exhibited a range of mean-
ings and substitutes in the LEXSUB data, with
as few multiword substitutes as possible. Each
lemma is the target in 10 LEXSUB sentences. For
our experiment, we took every possible pairwise
comparison of these 10 sentences for a lemma. We
refer to each such pair of sentences as an SPAIR.
The resulting dataset comprised 45 SPAIRs per
lemma, adding up to 1530 comparisons per anno-
tator overall.

In this annotation experiment, annotators saw
SPAIRs with a common target word and rated the
similarity in meaning between the two uses of the
target word with the instruction:
Your task is to rate, for each pair of sentences, how
similar in meaning the two boldfaced words are on
a five-point scale.
In addition annotators had the ability to respond
with “Cannot Decide”, indicating that they were
unable to make an effective comparison between
the two contexts, for example because the mean-
ing of one usage was unclear. This occurred in
9 paired occurrences during the course of anno-
tation, and these items (paired occurrences) were
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excluded from further analysis.
The purpose of Usim was to collect judgments

about degrees of similarity between a word’s
meaning in different contexts. Unlike WSsim,
Usim does not rely upon any dictionary resource
as a basis for the judgments.

4 Analyses

This section reports on analyses on the annotated
data. In all the analyses we use Spearman’s rank
correlation coefficient (ρ), a nonparametric test,
because the data does not seem to be normally
distributed. We used two-tailed tests in all cases,
rather than assume the direction of the relation-
ship. As noted above, we have three annotators
per task, and each annotator gave judgments for
every sentence (WSsim) or sentence pair (Usim).
Since the annotators may vary as to how they use
the ordinal scale, we do not use the mean of judg-
ments7 but report all individual correlations. All
analyses were done using the R package.8

4.1 WSsim analysis

In the WSsim experiment, annotators rated the ap-
plicability of each WordNet 3.0 sense for a given
target word occurrence. Table 1 shows a sample
annotation for the target argument.n. 9

Pattern of annotation and annotator agree-
ment. Figure 1 shows how often each of the five
judgments on the scale was used, individually and
summed over all annotators. (The y-axis shows
raw counts of each judgment.) We can see from
this figure that the extreme ratings 1 and 5 are used
more often than the intermediate ones, but annota-
tors make use of the full ordinal scale when judg-
ing the applicability of a sense. Also, the figure
shows that annotator 1 used the extreme negative
rating 1 much less than the other two annotators.
Figure 2 shows the percentage of times each judg-
ment was used on senses of three lemmas, differ-
ent.a, interest.n, and win.v. In WordNet, they have
5, 7, and 4 senses, respectively. The pattern for
win.v resembles the overall distribution of judg-
ments, with peaks at the extreme ratings 1 and 5.
The lemma interest.n has a single peak at rating
1, partly due to the fact that senses 5 (financial

7We have also performed several of our calculations us-
ing the mean judgment, and they also gave highly significant
results in all the cases we tested.

8http://www.r-project.org/
9We use word.PoS to denote a target word (lemma).
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Figure 1: WSsim experiment: number of times
each judgment was used, by annotator and
summed over all annotators. The y-axis shows raw
counts of each judgment.
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Figure 2: WSsim experiment: percentage of times
each judgment was used for the lemmas differ-
ent.a, interest.n and win.v. Judgment counts were
summed over all three annotators.

involvement) and 6 (interest group) were rarely
judged to apply. For the lemma different.a, all
judgments have been used with approximately the
same frequency.

We measured the level of agreement between
annotators using Spearman’s ρ between the judg-
ments of every pair of annotators. The pairwise
correlations were ρ = 0.506, ρ = 0.466 and ρ =
0.540, all highly significant with p < 2.2e-16.

Agreement with previous annotation in
SemCor and SE-3. 200 of the items in WSsim
had been previously annotated in SemCor, and
200 in SE-3. This lets us compare the annotation
results across annotation efforts. Table 2 shows
the percentage of items where more than one
sense was assigned in the subset of WSsim from
SemCor (first row), from SE-3 (second row), and
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Senses
Sentence 1 2 3 4 5 6 7 Annotator
This question provoked arguments in America about the
Norton Anthology of Literature by Women, some of the
contents of which were said to have had little value as
literature.

1 4 4 2 1 1 3 Ann. 1
4 5 4 2 1 1 4 Ann. 2
1 4 5 1 1 1 1 Ann. 3

Table 1: A sample annotation in the WSsim experiment. The senses are: 1:statement, 2:controversy,
3:debate, 4:literary argument, 5:parameter, 6:variable, 7:line of reasoning

WSsim judgment
Data Orig. ≥ 3 ≥ 4 5
WSsim/SemCor 0.0 80.2 57.5 28.3
WSsim/SE-3 24.0 78.0 58.3 27.1
All WSsim 78.8 57.4 27.7

Table 2: Percentage of items with multiple senses
assigned. Orig: in the original SemCor/SE-3 data.
WSsim judgment: items with judgments at or
above the specified threshold. The percentages for
WSsim are averaged over the three annotators.

all of WSsim (third row). The Orig. column
indicates how many items had multiple labels in
the original annotation (SemCor or SE-3) 10. Note
that no item had more than one sense label in
SemCor. The columns under WSsim judgment
show the percentage of items (averaged over
the three annotators) that had judgments at or
above the specified threshold, starting from rating
3 – similar. Within WSsim, the percentage of
multiple assignments in the three rows is fairly
constant. WSsim avoids the bias to one sense
by deliberately asking for judgments on the
applicability of each sense rather than asking
annotators to find the best one.

To compute the Spearman’s correlation between
the original sense labels and those given in the
WSsim annotation, we converted SemCor and
SE-3 labels to the format used within WSsim: As-
signed senses were converted to a judgment of 5,
and unassigned senses to a judgment of 1. For the
WSsim/SemCor dataset, the correlation between
original and WSsim annotation was ρ = 0.234,
ρ = 0.448, and ρ = 0.390 for the three anno-
tators, each highly significant with p < 2.2e-16.
For the WSsim/SE-3 dataset, the correlations were
ρ = 0.346, ρ = 0.449 and ρ = 0.338, each of them
again highly significant at p < 2.2e-16.

Degree of sense grouping. Next we test to what
extent the sense applicability judgments in the

10Overall, 0.3% of tokens in SemCor have multiple labels,
and 8% of tokens in SE-3, so the multiple label assignment in
our sample is not an underestimate.

p < 0.05 p < 0.01
pos neg pos neg

Ann. 1 30.8 11.4 23.2 5.9
Ann. 2 22.2 24.1 19.6 19.6
Ann. 3 12.7 12.0 10.0 6.0

Table 3: Percentage of sense pairs that were sig-
nificantly positively (pos) or negatively (neg) cor-
related at p < 0.05 and p < 0.01, shown by anno-
tator.

j ≥ 3 j ≥ 4 j = 5
Ann. 1 71.9 49.1 8.1
Ann. 2 55.3 24.7 8.1
Ann. 3 42.8 24.0 4.9

Table 4: Percentage of sentences in which at least
two uncorrelated (p > 0.05) or negatively corre-
lated senses have been annotated with judgments
at the specified threshold.

WSsim task could be explained by more coarse-
grained, categorial sense assignments. We first
test how many pairs of senses for a given lemma
show similar patterns in the ratings that they re-
ceive. Table 3 shows the percentage of sense pairs
that were significantly correlated for each anno-
tator.11 Significantly positively correlated senses
can possibly be reduced to more coarse-grained
senses. Would annotators have been able to des-
ignate a single appropriate sense given these more
coarse-grained senses? Call two senses groupable
if they are significantly positively correlated; in or-
der not to overlook correlations that are relatively
weak but existent, we use a cutoff of p = 0.05 for
significant correlation. We tested how often anno-
tators gave ratings of at least similar, i.e. ratings
≥ 3, to senses that were not groupable. Table 4
shows the percentages of items where at least two
non-groupable senses received ratings at or above
the specified threshold. The table shows that re-
gardless of which annotator we look at, over 40%
of all items had two or more non-groupable senses
receive judgments of at least 3 (similar). There

11We exclude senses that received a uniform rating of 1 on
all items. This concerned 4 senses for annotator 2 and 6 for
annotator 3.
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1) We study the methods and concepts that each writer uses to
defend the cogency of legal, deliberative, or more generally
political prudence against explicit or implicit charges that
practical thinking is merely a knack or form of cleverness.

2) Eleven CIRA members have been convicted of criminal

charges and others are awaiting trial.

Figure 3: An SPAIR for charge.n. Annotator judg-
ments: 2,3,4

were even several items where two or more non-
groupable senses each got a judgment of 5. The
sentence in table 1 is a case where several non-
groupable senses got ratings ≥ 3. This is most
pronounced for Annotator 2, who along with sense
2 (controversy) assigned senses 1 (statement), 7
(line of reasoning), and 3 (debate), none of which
are groupable with sense 2.

4.2 Usim analysis

In this experiment, ratings between 1 and 5 were
given for every pairwise combination of sentences
for each target lemma. An example of an SPAIR

for charge.n is shown in figure 3. In this case the
verdicts from the annotators were 2, 3 and 4.

Pattern of Annotations and Annotator Agree-
ment Figure 4 gives a bar chart of the judgments
for each annotator and summed over annotators.
We can see from this figure that the annotators
use the full ordinal scale when judging the simi-
larity of a word’s usages, rather than sticking to
the extremes. There is variation across words, de-
pending on the relatedness of each word’s usages.
Figure 5 shows the judgments for the words bar.n,
work.v and raw.a. We see that bar.n has predom-
inantly different usages with a peak for category
1, work.v has more similar judgments (category 5)
compared to any other category and raw.a has a
peak in the middle category (3). 12 There are other
words, like for example fresh.a, where the spread
is more uniform.

To gauge the level of agreement between anno-
tators, we calculated Spearman’s ρ between the
judgments of every pair of annotators as in sec-
tion 4.1. The pairwise correlations are all highly
significant (p < 2.2e-16) with Spearman’s ρ =
0.502, 0.641 and 0.501 giving an average corre-
lation of 0.548. We also perform leave-one-out re-
sampling following Lapata (2006) which gave us
a Spearman’s correlation of 0.630.

12For figure 5 we sum the judgments over annotators.
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Figure 4: Usim experiment: number of times each
judgment was used, by annotator and summed
over all annotators
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Figure 5: Usim experiment: number of times each
judgment was used for bar.n, work.v and raw.a

Comparison with LEXSUB substitutions Next
we look at whether the Usim judgments on sen-
tence pairs (SPAIRs) correlate with LEXSUB sub-
stitutes. To do this we use the overlap of substi-
tutes provided by the five LEXSUB annotators be-
tween two sentences in an SPAIR. In LEXSUB the
annotators had to replace each item (a target word
within the context of a sentence) with a substitute
that fitted the context. Each annotator was permit-
ted to supply up to three substitutes provided that
they all fitted the context equally. There were 10
sentences per lemma. For our analyses we take
every SPAIR for a given lemma and calculate the
overlap (inter) of the substitutes provided by the
annotators for the two usages under scrutiny. Let
s1 and s2 be a pair of sentences in an SPAIR and
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x1 and x2 be the multisets of substitutes for the
respective sentences. Let f req(w,x) be the fre-
quency of a substitute w in a multiset x of sub-
stitutes for a given sentence. 13 INTER(s1,s2) =

∑w∈x1∩x2 min( f req(w,x1), f req(w,x2))
max(|x1|, |x2|)

Using this calculation for each SPAIR we can
now compute the correlation between the Usim
judgments for each annotator and the INTER val-
ues, again using Spearman’s. The figures are
shown in the leftmost block of table 5. The av-
erage correlation for the 3 annotators was 0.488
and the p-values were all < 2.2e-16. This shows
a highly significant correlation of the Usim judg-
ments and the overlap of substitutes.

We also compare the WSsim judgments against
the LEXSUB substitutes, again using the INTER

measure of substitute overlap. For this analysis,
we only use those WSsim sentences that are origi-
nally from LEXSUB. In WSsim, the judgments for
a sentence comprise judgments for each WordNet
sense of that sentence. In order to compare against
INTER, we need to transform these sentence-wise
ratings in WSsim to a WSsim-based judgment of
sentence similarity. To this end, we compute the
Euclidean Distance14 (ED) between two vectors J1
and J2 of judgments for two sentences s1,s2 for the
same lemma `. Each of the n indexes of the vector
represent one of the n different WordNet senses
for `. The value at entry i of the vector J1 is the
judgment that the annotator in question (we do not
average over annotators here) provided for sense i
of ` for sentence s1.

ED(J1,J2) =
√

(
n

∑
i=1

(J1[i]− J2[i])2) (1)

We correlate the Euclidean distances with
INTER. We can only test correlation for the subset
of WSsim that overlaps with the LEXSUB data: the
30 sentences for investigator.n, function.n and or-
der.v, which together give 135 unique SPAIRs. We
refer to this subset as W∩U. The results are given
in the third block of table 5. Note that since we are
measuring distance between SPAIRs for WSsim

13The frequency of a substitute in a multiset depends on
the number of LEXSUB annotators that picked the substitute
for this item.

14We use Euclidean Distance rather than a normalizing
measure like Cosine because a sentence where all ratings are
5 should be very different from a sentence where all senses
received a rating of 1.

Usim All Usim W∩U WSsim W∩U
ann. ρ ρ ann. ρ

4 0.383 0.330 1 -0.520
5 0.498 0.635 2 -0.503
6 0.584 0.631 3 -0.463

Table 5: Annotator correlation with LEXSUB sub-
stitute overlap (inter)

whereas INTER is a measure of similarity, the cor-
relation is negative. The results are highly signif-
icant with individual p-values from < 1.067e-10
to < 1.551e-08 and a mean correlation of -0.495.
The results in the first and third block of table 5 are
not directly comparable, as the results in the first
block are for all Usim data and not the subset of
LEXSUB with WSsim annotations. We therefore
repeated the analysis for Usim on the subset of
data in WSsim and provide the correlation in the
middle section of table 5. The mean correlation
for Usim on this subset of the data is 0.532, which
is a stronger relationship compared to WSsim, al-
though there is more discrepancy between individ-
ual annotators, with the result for annotator 4 giv-
ing a p-value = 9.139e-05 while the other two an-
notators had p-values < 2.2e-16.

The LEXSUB substitute overlaps between dif-
ferent usages correlate well with both Usim and
WSsim judgments, with a slightly stronger rela-
tionship to Usim, perhaps due to the more compli-
cated representation of word meaning in WSsim
which uses the full set of WordNet senses.

4.3 Correlation between WSsim and Usim

As we showed in section 4.1, WSsim correlates
with previous word sense annotations in SemCor
and SE-3 while allowing the user a more graded
response to sense tagging. As we saw in sec-
tion 4.2, Usim and WSsim judgments both have a
highly significant correlation with similarity of us-
ages as measured using the overlap of substitutes
from LEXSUB. Here, we look at the correlation
of WSsim and Usim, considering again the sub-
set of data that is common to both experiments.
We again transform WSsim sense judgments for
individual sentences to distances between SPAIRs
using Euclidean Distance (ED). The Spearman’s
ρ range between −0.307 and −0.671, and all re-
sults are highly significant with p-values between
0.0003 and < 2.2e-16. As above, the correla-
tion is negative because ED is a distance measure
between sentences in an SPAIR, whereas the judg-
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ments for Usim are similarity judgments. We see
that there is highly significant correlation for every
pairing of annotators from the two experiments.

5 Discussion

Validity of annotation scheme. Annotator rat-
ings show highly significant correlation on both
tasks. This shows that the tasks are well-defined.
In addition, there is a strong correlation between
WSsim and Usim, which indicates that the poten-
tial bias introduced by the use of dictionary senses
in WSsim is not too prominent. However, we note
that WSsim only contained a small portion of 3
lemmas (30 sentences and 135 SPAIRs) in com-
mon with Usim, so more annotation is needed to
be certain of this relationship. Given the differ-
ences between annotator 1 and the other annota-
tors in Fig. 1, it would be interesting to collect
judgments for additional annotators.

Graded judgments of use similarity and sense
applicability. The annotators made use of the
full spectrum of ratings, as shown in Figures 1 and
4. This may be because of a graded perception of
the similarity of uses as well as senses, or because
some uses and senses are very similar. Table 4
shows that for a large number of WSsim items,
multiple senses that were not significantly posi-
tively correlated got high ratings. This seems to
indicate that the ratings we obtained cannot sim-
ply be explained by more coarse-grained senses. It
may hence be reasonable to pursue computational
models of word meaning that are graded, maybe
even models that do not rely on dictionary senses
at all (Erk and Pado, 2008).

Comparison to previous word sense annotation.
Our graded WSsim annotations do correlate with
traditional “best fitting sense” annotations from
SemCor and SE-3; however, if annotators perceive
similarity between uses and senses as graded, tra-
ditional word sense annotation runs the risk of in-
troducing bias into the annotation.

Comparison to lexical substitutions. There is a
strong correlation between both Usim and WSsim
and the overlap in paraphrases that annotators gen-
erated for LEXSUB. This is very encouraging, and
especially interesting because LEXSUB annotators
freely generated paraphrases rather than selecting
them from a list.

6 Conclusions

We have introduced a novel annotation paradigm
for word sense annotation that allows for graded
judgments and for some variation between anno-
tators. We have used this annotation paradigm
in two experiments, WSsim and Usim, that shed
some light on the question of whether differences
between word usages are perceived as categorial
or graded. Both datasets will be made publicly
available. There was a high correlation between
annotator judgments within and across tasks, as
well as with previous word sense annotation and
with paraphrases proposed in the English Lex-
ical Substitution task. Annotators made ample
use of graded judgments in a way that cannot
be explained through more coarse-grained senses.
These results suggest that it may make sense to
evaluate WSD systems on a task of graded rather
than categorial meaning characterization, either
through dictionary senses or similarity between
uses. In that case, it would be useful to have more
extensive datasets with graded annotation, even
though this annotation paradigm is more time con-
suming and thus more expensive than traditional
word sense annotation.

As a next step, we will automatically cluster the
judgments we obtained in the WSsim and Usim
experiments to further explore the degree to which
the annotation gives rise to sense grouping. We
will also use the ratings in both experiments to
evaluate automatically induced models of word
meaning. The SemEval-2007 word sense induc-
tion task (Agirre and Soroa, 2007) already allows
for evaluation of automatic sense induction sys-
tems, but compares output to gold-standard senses
from OntoNotes. We hope that the Usim dataset
will be particularly useful for evaluating methods
which relate usages without necessarily producing
hard clusters. Also, we will extend the current
dataset using more annotators and exploring ad-
ditional lexicon resources.
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Abstract

A number of studies have presented
machine-learning approaches to semantic
role labeling with availability of corpora
such as FrameNet and PropBank. These
corpora define the semantic roles of predi-
cates for each frame independently. Thus,
it is crucial for the machine-learning ap-
proach to generalize semantic roles across
different frames, and to increase the size
of training instances. This paper ex-
plores several criteria for generalizing se-
mantic roles in FrameNet: role hierar-
chy, human-understandable descriptors of
roles, semantic types of filler phrases, and
mappings from FrameNet roles to the-
matic roles of VerbNet. We also pro-
pose feature functions that naturally com-
bine and weight these criteria, based on
the training data. The experimental result
of the role classification shows 19.16%
and 7.42% improvements in error reduc-
tion rate and macro-averaged F1 score, re-
spectively. We also provide in-depth anal-
yses of the proposed criteria.

1 Introduction

Semantic Role Labeling (SRL) is a task of analyz-
ing predicate-argument structures in texts. More
specifically, SRL identifies predicates and their
arguments with appropriate semantic roles. Re-
solving surface divergence of texts (e.g., voice
of verbs and nominalizations) into unified seman-
tic representations, SRL has attracted much at-
tention from researchers into various NLP appli-
cations including question answering (Narayanan
and Harabagiu, 2004; Shen and Lapata, 2007;

buy.v PropBank FrameNet
Frame buy.01 Commercebuy
Roles ARG0: buyer Buyer

ARG1: thing bought Goods
ARG2: seller Seller
ARG3: paid Money
ARG4: benefactive Recipient
... ...

Figure 1: A comparison of frames forbuy.vde-
fined in PropBank and FrameNet

Moschitti et al., 2007), and information extrac-
tion (Surdeanu et al., 2003).

In recent years, with the wide availability of cor-
pora such as PropBank (Palmer et al., 2005) and
FrameNet (Baker et al., 1998), a number of stud-
ies have presented statistical approaches to SRL
(Màrquez et al., 2008). Figure 1 shows an exam-
ple of the frame definitions for a verbbuy in Prop-
Bank and FrameNet. These corpora define a large
number of frames and define the semantic roles for
each frame independently. This fact is problem-
atic in terms of the performance of the machine-
learning approach, because these definitions pro-
duce many roles that have few training instances.

PropBank defines a frame for each sense of
predicates (e.g.,buy.01), and semantic roles are
defined in a frame-specific manner (e.g.,buyerand
sellerfor buy.01). In addition, these roles are asso-
ciated with tags such asARG0-5andAM-*, which
are commonly used in different frames. Most
SRL studies on PropBank have used these tags
in order to gather a sufficient amount of training
data, and to generalize semantic-role classifiers
across different frames. However, Yi et al. (2007)
reported that tagsARG2–ARG5 were inconsis-
tent and not that suitable as training instances.
Some recent studies have addressed alternative ap-
proaches to generalizing semantic roles across dif-
ferent frames (Gordon and Swanson, 2007; Zapi-
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Transfer::Recipient

Giving::Recipient

Commerce_buy::BuyerCommerce_sell::Buyer Commerce_buy::SellerCommerce_sell::Seller

Giving::Donor

Transfer::Donor

Buyer Seller

Agent role-to-role relation
hierarchical class
thematic role
role descriptor

Recipient Donor

Figure 2: An example of role groupings using different criteria.

rain et al., 2008).
FrameNet designs semantic roles as frame spe-

cific, but also defines hierarchical relations of se-
mantic roles among frames. Figure 2 illustrates
an excerpt of the role hierarchy in FrameNet; this
figure indicates that theBuyer role for theCom-
mercebuy frame (Commerce buy::Buyer here-
after) and theCommerce sell::Buyer role are in-
herited from theTransfer::Recipient role. Al-
though the role hierarchy was expected to gener-
alize semantic roles, no positive results for role
classification have been reported (Baldewein et al.,
2004). Therefore, the generalization of semantic
roles across different frames has been brought up
as a critical issue for FrameNet (Gildea and Juraf-
sky, 2002; Shi and Mihalcea, 2005; Giuglea and
Moschitti, 2006)

In this paper, we explore several criteria for gen-
eralizing semantic roles in FrameNet. In addi-
tion to the FrameNet hierarchy, we use various
pieces of information: human-understandable de-
scriptors of roles, semantic types of filler phrases,
and mappings from FrameNet roles to the thematic
roles of VerbNet. We also propose feature func-
tions that naturally combines these criteria in a
machine-learning framework. Using the proposed
method, the experimental result of the role classi-
fication shows 19.16% and 7.42% improvements
in error reduction rate and macro-averaged F1, re-
spectively. We provide in-depth analyses with re-
spect to these criteria, and state our conclusions.

2 Related Work

Moschitti et al. (2005) first classified roles by us-
ing four coarse-grained classes (Core Roles, Ad-
juncts, Continuation Arguments and Co-referring
Arguments), and built a classifier for each coarse-
grained class to tag PropBankARG tags. Even
though the initial classifiers could perform rough
estimations of semantic roles, this step was not
able to solve the ambiguity problem in PropBank
ARG2-5. When training a classifier for a seman-

tic role, Baldewein et al. (2004) re-used the train-
ing instances of other roles that were similar to the
target role. As similarity measures, they used the
FrameNet hierarchy, peripheral roles of FrameNet,
and clusters constructed by a EM-based method.
Gordon and Swanson (2007) proposed a general-
ization method for the PropBank roles based on
syntactic similarity in frames.

Many previous studies assumed that thematic
roles bridged semantic roles in different frames.
Gildea and Jurafsky (2002) showed that classifica-
tion accuracy was improved by manually replac-
ing FrameNet roles into 18 thematic roles. Shi
and Mihalcea (2005) and Giuglea and Moschitti
(2006) employed VerbNet thematic roles as the
target of mappings from the roles defined by the
different semantic corpora. Using the thematic
roles as alternatives ofARG tags, Loper et al.
(2007) and Yi et al. (2007) demonstrated that the
classification accuracy of PropBank roles was im-
proved forARG2roles, but that it was diminished
for ARG1. Yi et al. (2007) also described that
ARG2–5were mapped to a variety of thematic
roles. Zapirain et al. (2008) evaluated PropBank
ARG tags and VerbNet thematic roles in a state-of-
the-art SRL system, and concluded that PropBank
ARGtags achieved a more robust generalization of
the roles than did VerbNet thematic roles.

3 Role Classification

SRL is a complex task wherein several problems
are intertwined: frame-evoking word identifica-
tion, frame disambiguation(selecting a correct
frame from candidates for the evoking word),role-
phrase identification(identifying phrases that fill
semantic roles), androle classification(assigning
correct roles to the phrases). In this paper, we fo-
cus on role classification, in which the role gen-
eralization is particularly critical to the machine
learning approach.

In the role classification task, we are given a
sentence, a frame evoking word, a frame, and
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member roles 
Commerce_pay::Buyer

Intentionall_act::AgentGiving::Donor Getting::RecipientGiving::RecipientSending::Recipient Giving::TimePlacing::TimeEvent::Time
Commerce_pay::BuyerCommerce_buy::BuyerCommerce_sell::BuyerBuyer

Recipient Time
C_pay::BuyerGIVING::DonorIntentionally_ACT::Agent

Avoiding::AgentEvading::EvaderEvading::EvaderAvoiding::Agent
Getting::RecipientEvading::EvaderSt::Sentient St::Physical_ObjGiving::ThemePlacing::Theme

St::State_of_affairsGiving::Reason   Evading::ReasonGiving::Means    Evading::PurposeTheme::Agent
Theme::ThemeCommerce_buy::GoodsGetting::ThemeEvading:: Pursuer

Commerce_buy::BuyerCommerce_sell::SellerEvading::Evader
Role-descriptor groupsHierarchical-relation groups

Semantic-type groups
Thematic-role groups Group namelegend

Figure 4: Examples for each type of role group.

INPUT:
frame = Commerce_sell
candidate   roles ={Seller, Buyer, Goods, Reason, Time, ... , Place}
sentence = Can't [you] [sell Commerce_sell] [the factory] [to some other 

company]? 
OUTPUT:  
sentence = Can't [you Seller] [sell Commerce_sell] [the factory Goods]

[to some other company Buyer] ?

Figure 3: An example of input and output of role
classification.

phrases that take semantic roles. We are inter-
ested in choosing the correct role from the can-
didate roles for each phrase in the frame. Figure 3
shows a concrete example of input and output; the
semantic roles for the phrases are chosen from the
candidate roles:Seller, Buyer, Goods, Reason,
... , andPlace.

4 Design of Role Groups

We formalize the generalization of semantic roles
as the act of grouping several roles into a
class. We define arole group as a set of
role labels grouped by a criterion. Figure 4
shows examples of role groups; a groupGiv-
ing::Donor (in the hierarchical-relation groups)
contains the rolesGiving::Donor and Com-
merce pay::Buyer. The remainder of this section
describes the grouping criteria in detail.

4.1 Hierarchical relations among roles

FrameNet defines hierarchical relations among
frames (frame-to-frame relations). Each relation
is assigned one of the seven types of directional
relationships (Inheritance, Using, Perspectiveon,
Causativeof, Inchoativeof, Subframe, and Pre-
cedes). Some roles in two related frames are also
connected with role-to-role relations. We assume
that this hierarchy is a promising resource for gen-
eralizing the semantic roles; the idea is that the

role at a node in the hierarchy inherits the char-
acteristics of the roles of its ancestor nodes. For
example,Commerce sell::Seller in Figure 2 in-
herits the property ofGiving::Donor.

For Inheritance, Using, Perspectiveon, and
Subframerelations, we assume that descendant
roles in these relations have the same or special-
ized properties of their ancestors. Hence, for each
roleyi, we define the following two role groups,

Hchild
yi

= {y|y = yi ∨ y is a child ofyi},
Hdesc

yi
= {y|y = yi ∨ y is a descendant ofyi}.

The hierarchical-relation groups in Figure 4 are
the illustrations ofHdesc

yi
.

For the relation types Inchoativeof and
Causativeof, we define role groups in the oppo-
site direction of the hierarchy,

Hparent
yi

= {y|y = yi ∨ y is a parent ofyi},
Hance

yi
= {y|y = yi ∨ y is an ancestor ofyi}.

This is because lower roles ofInchoativeof
and Causativeof relations represent more neu-
tral stances or consequential states; for example,
Killing::Victim is a parent ofDeath::Protagonist
in theCausativeof relation.

Finally, thePrecedesrelation describes the se-
quence of states and events, but does not spec-
ify the direction of semantic inclusion relations.
Therefore, we simply tryHchild

yi
, Hdesc

yi
, Hparent

yi ,
andHance

yi
for this relation type.

4.2 Human-understandable role descriptor

FrameNet defines each role as frame-specific; in
other words, the same identifier does not appear
in different frames. However, in FrameNet,
human experts assign a human-understandable
name to each role in a rather systematic man-
ner. Some names are shared by the roles in
different frames, whose identifiers are dif-
ferent. Therefore, we examine the semantic
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commonality of these names; we construct an
equivalence class of the roles sharing the same
name. We call these human-understandable
namesrole descriptors. In Figure 4, the role-
descriptor groupBuyer collects the rolesCom-
merce pay::Buyer, Commerce buy::Buyer,
andCommerce sell::Buyer.

This criterion may be effective in collecting
similar roles since the descriptors have been anno-
tated by intuition of human experts. As illustrated
in Figure 2, the role descriptors group the seman-
tic roles which are similar to the roles that the
FrameNet hierarchy connects as sister or parent-
child relations. However, role-descriptor groups
cannot express the relations between the roles
as inclusions since they are equivalence classes.
For example, the rolesCommerce sell::Buyer
and Commerce buy::Buyer are included in the
role descriptor groupBuyer in Figure 2; how-
ever, it is difficult to mergeGiving::Recipient
and Commerce sell::Buyer because theCom-
merce sell::Buyer has the extra property that one
gives something of value in exchange and a hu-
man assigns different descriptors to them. We ex-
pect that the most effective weighting of these two
criteria will be determined from the training data.

4.3 Semantic type of phrases

We consider that the selectional restriction is help-
ful in detecting the semantic roles. FrameNet pro-
vides information concerning the semantic types
of role phrases (fillers); phrases that play spe-
cific roles in a sentence should fulfill the se-
mantic constraint from this information. For
instance, FrameNet specifies the constraint that
Self motion::Area should be filled by phrases
whose semantic type isLocation. Since these
types suggest a coarse-grained categorization of
semantic roles, we construct role groups that con-
tain roles whose semantic types are identical.

4.4 Thematic roles of VerbNet

VerbNet thematic roles are 23 frame-independent
semantic categories for arguments of verbs,
such as Agent, Patient, Theme and Source.
These categories have been used as consis-
tent labels across verbs. We use a partial
mapping between FrameNet roles and Verb-
Net thematic roles provided by SemLink.1

Each group is constructed as a setTti =
1http://verbs.colorado.edu/semlink/

{y|SemLink mapsy into the thematic roleti}.
SemLink currently maps 1,726 FrameNet roles

into VerbNet thematic roles, which are 37.61% of
roles appearing at least once in the FrameNet cor-
pus. This may diminish the effect of thematic-role
groups than its potential.

5 Role classification method

5.1 Traditional approach

We are given a frame-evoking worde, a framef
and a role phrasex detected by a human or some
automatic process in a sentences. Let Yf be the
set of semantic roles that FrameNet defines as be-
ing possible role assignments for the framef , and
let x = {x1, . . . , xn} be observed features forx
from s, e andf . The task of semantic role classifi-
cation can be formalized as the problem of choos-
ing the most suitable rolẽy from Yf . Suppose we
have a modelP (y|f,x) which yields the condi-
tional probability of the semantic roley for given
f andx. Then we can choosẽy as follows:

ỹ = argmax
y∈Yf

P (y|f,x). (1)

A traditional way to incorporate role groups
into this formalization is to overwrite each role
y in the training and test data with its role
group m(y) according to the memberships of
the group. For example, semantic rolesCom-
merce sell::Seller andGiving::Donor can be re-
placed by their thematic-role groupTheme::Agent
in this approach. We determine the most suitable
role groupc̃ as follows:

c̃ = argmax
c∈{m(y)|y∈Yf}

Pm(c|f,x). (2)

Here, Pm(c|f,x) presents the probability of the
role groupc for f andx. The roleỹ is determined
uniquely iff a single roley ∈ Yf is associated
with c̃. Some previous studies have employed this
idea to remedy the data sparseness problem in the
training data (Gildea and Jurafsky, 2002). How-
ever, we cannot apply this approach when multi-
ple roles inYf are contained in the same class. For
example, we can construct a semantic-type group
St::Stateof affairs in whichGiving::Reason and
Giving::Means are included, as illustrated in Fig-
ure 4. If c̃ = St::Stateof affairs, we cannot dis-
ambiguate which original role is correct. In ad-
dition, it may be more effective to use various
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groupings of roles together in the model. For in-
stance, the model could predict the correct role
Commerce sell::Seller for the phrase “you” in
Figure 3 more confidently, if it could infer its
thematic-role group asTheme::Agentand its par-
ent groupGiving::Donor correctly. Although the
ensemble of various groupings seems promising,
we need an additional procedure to prioritize the
groupings for the case where the models for mul-
tiple role groupings disagree; for example, it is un-
satisfactory if two models assign the groupsGiv-
ing::ThemeandTheme::Agentto the same phrase.

5.2 Role groups as feature functions

We thus propose another approach that incorpo-
rates group information as feature functions. We
model the conditional probabilityP (y|f,x) by us-
ing the maximum entropy framework,

p(y|f,x) =
exp(

∑
i λigi(x, y))∑

y∈Yf
exp(

∑
i λigi(x, y))

. (3)

Here,G = {gi} denotes a set ofn feature func-
tions, andΛ = {λi} denotes a weight vector for
the feature functions.

In general, feature functions for the maximum
entropy model are designed as indicator functions
for possible pairs ofxj andy. For example, the
event where the head word ofx is “you” (x1 = 1)
andx plays the roleCommerce sell::Seller in a
sentence is expressed by the indicator function,

grole
1 (x, y) =


1 (x1 = 1 ∧

y = Commerce sell::Seller)
0 (otherwise)

.

(4)
We call this kind of feature function anx-role.

In order to incorporate role groups into the
model, we also include all feature functions for
possible pairs ofxj and role groups. Equation 5
is an example of a feature function for instances
where the head word ofx is “you” andy is in the
role groupTheme::Agent,

gtheme
2 (x, y) =


1 (x1 = 1 ∧

y ∈ Theme::Agent)
0 (otherwise)

. (5)

Thus, this feature function fires for the roles wher-
ever the head word “you” playsAgent(e.g.,Com-
merce sell::Seller, Commerce buy::Buyer and
Giving::Donor). We call this kind of feature func-
tion anx-groupfunction.

In this way, we obtainx-group functions for

all grouping methods, e.g.,gtheme
k , g

hierarchy
k .

The role-group features will receive more training
instances by collecting instances for fine-grained
roles. Thus, semantic roles with few training in-
stances are expected to receive additional clues
from other training instances via role-group fea-
tures. Another advantage of this approach is that
the usefulness of the different role groups is de-
termined by the training processes in terms of
weights of feature functions. Thus, we do not need
to assume that we have found the best criterion for
grouping roles; we can allow a training process to
choose the criterion. We will discuss the contribu-
tions of different groupings in the experiments.

5.3 Comparison with related work

Baldewein et al. (2004) suggested an approach
that uses role descriptors and hierarchical rela-
tions as criteria for generalizing semantic roles
in FrameNet. They created a classifier for each
frame, additionally using training instances for the
role A to train the classifier for the roleB, if the
rolesA andB were judged as similar by a crite-
rion. This approach performs similarly to the over-
writing approach, and it may obscure the differ-
ences among roles. Therefore, they only re-used
the descriptors as a similarity measure for the roles
whosecorenesswasperipheral. 2

In contrast, we use all kinds of role descriptors
to construct groups. Since we use the feature func-
tions for both the original roles and their groups,
appropriate units for classification are determined
automatically in the training process.

6 Experiment and Discussion

We used the training set of the Semeval-2007
Shared task (Baker et al., 2007) in order to ascer-
tain the contributions of role groups. This dataset
consists of the corpus of FrameNet release 1.3
(containing roughly 150,000 annotations), and an
additional full-text annotation dataset. We ran-
domly extracted 10% of the dataset for testing, and
used the remainder (90%) for training.

Performance was measured by micro- and
macro-averaged F1 (Chang and Zheng, 2008) with
respect to a variety of roles. The micro average bi-
ases each F1 score by the frequencies of the roles,

2In FrameNet, each role is assigned one of four different
types ofcoreness(core, core-unexpressed, peripheral, extra-
thematic) It represents the conceptual necessity of the roles
in the frame to which it belongs.
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and the average is equal to the classification accu-
racy when we calculate it with all of the roles in
the test set. In contrast, the macro average does
not bias the scores, thus the roles having a small
number of instances affect the average more than
the micro average.

6.1 Experimental settings

We constructed a baseline classifier that uses
only the x-role features. The feature de-
sign is similar to that of the previous stud-
ies (Màrquez et al., 2008). The characteristics
of x are: frame, frame evoking word, head
word, content word (Surdeanu et al., 2003),
first/last word, head word of left/right sister,
phrase type, position, voice, syntactic path (di-
rected/undirected/partial), governing category
(Gildea and Jurafsky, 2002),WordNet super-
sense in the phrase, combination features of
frame evoking word & headword, combination
features offrame evoking word & phrase type,
and combination features ofvoice & phrase type.
We also usedPoS tagsandstem forms as extra
features of any word-features.

We employed Charniak and Johnson’s rerank-
ing parser (Charniak and Johnson, 2005) to an-
alyze syntactic trees. As an alternative for the
traditional named-entity features, we used Word-
Net supersenses: 41 coarse-grained semantic cate-
gories of words such as person, plant, state, event,
time, location. We used Ciaramita and Altun’s Su-
per Sense Tagger (Ciaramita and Altun, 2006) to
tag the supersenses. The baseline system achieved
89.00% with respect to the micro-averaged F1.

Thex-groupfeatures were instantiated similarly
to the x-role features; thex-group features com-
bined the characteristics ofx with the role groups
presented in this paper. The total number of fea-
tures generated for allx-roles and x-groupswas
74,873,602. The optimal weightsΛ of the fea-
tures were obtained by the maximum a poste-
rior (MAP) estimation. We maximized anL2-
regularized log-likelihood of the training set us-
ing the Limited-memory BFGS (L-BFGS) method
(Nocedal, 1980).

6.2 Effect of role groups

Table 1 shows the micro and macro averages of F1
scores. Each role group type improved the micro
average by 0.5 to 1.7 points. The best result was
obtained by using all types of groups together. The
result indicates that different kinds of group com-

Feature Micro Macro −Err.
Baseline 89.00 68.50 0.00
role descriptor 90.78 76.58 16.17
role descriptor (replace) 90.23 76.19 11.23
hierarchical relation 90.25 72.41 11.40
semantic type 90.36 74.51 12.38
VN thematic role 89.50 69.21 4.52
All 91.10 75.92 19.16

Table 1: The accuracy and error reduction rate of
role classification for each type of role group.

Feature #instances Pre. Rec. Micro
baseline ≤ 10 63.89 38.00 47.66

≤ 20 69.01 51.26 58.83
≤ 50 75.84 65.85 70.50

+ all groups ≤ 10 72.57 55.85 63.12
≤ 20 76.30 65.41 70.43
≤ 50 80.86 74.59 77.60

Table 2: The effect of role groups on the roles with
few instances.

plement each other with respect to semantic role
generalization. Baldewein et al. (2004) reported
that hierarchical relations did not perform well for
their method and experimental setting; however,
we found that significant improvements could also
be achieved with hierarchical relations. We also
tried a traditional label-replacing approach with
role descriptors (in the third row of Table 1). The
comparison between the second and third rows in-
dicates that mixing the original fine-grained roles
and the role groups does result in a more accurate
classification.

By using all types of groups together, the
model reduced 19.16 % of the classification errors
from the baseline. Moreover, the macro-averaged
F1 scores clearly showed improvements resulting
from using role groups. In order to determine
the reason for the improvements, we measured
the precision, recall, and F1-scores with respect
to roles for which the number of training instances
was at most 10, 20, and 50. In Table 2, we show
that the micro-averaged F1 score for roles hav-
ing 10 instances or less was improved (by 15.46
points) when all role groups were used. This result
suggests the reason for the effect of role groups; by
bridging similar semantic roles, they supply roles
having a small number of instances with the infor-
mation from other roles.

6.3 Analyses of role descriptors

In Table 1, the largest improvement was obtained
by the use of role descriptors. We analyze the ef-
fect of role descriptors in detail in Tables 3 and 4.
Table 3 shows the micro-averaged F1 scores of all
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Coreness #roles #instances/#role #groups #instances/#group #roles/#group
Core 1902 122.06 655 354.4 2.9
Peripheral 1924 25.24 250 194.3 7.7
Extra-thematic 763 13.90 171 62.02 4.5

Table 4: The analysis of the numbers of roles, instances, and role-descriptor groups, for each type of
coreness.

Coreness Micro
Baseline 89.00
Core 89.51
Peripheral 90.12
Extra-thematic 89.09
All 90.77

Table 3: The effect of employing role-descriptor
groups of each type of coreness.

semantic roles when we use role-descriptor groups
constructed from each type of coreness (core3, pe-
ripheral, and extra-thematic) individually. Thepe-
ripheral type generated the largest improvements.

Table 4 shows the number of roles associated
with each type of coreness (#roles), the number of
instances for the original roles (#instances/#role),
the number of groups for each type of coreness
(#groups), the number of instances for each group
(#instances/#group), and the number of roles per
each group (#roles/#group). In theperipheral
type, the role descriptors subdivided 1,924 distinct
roles into 250 groups, each of which contained 7.7
roles on average. Theperipheral type included
semantic roles such asplace, time, reason, dura-
tion. These semantic roles appear in many frames,
because they have general meanings that can be
shared by different frames. Moreover, the seman-
tic roles ofperipheraltype originally occurred in
only a small number (25.24) of training instances
on average. Thus, we infer that theperipheral
type generated the largest improvement because
semantic roles in this type acquired the greatest
benefit from the generalization.

6.4 Hierarchical relations and relation types

We analyzed the contributions of the FrameNet hi-
erarchy for each type of role-to-role relations and
for different depths of grouping. Table 5 shows
the micro-averaged F1 scores obtained from var-
ious relation types and depths. TheInheritance
andUsingrelations resulted in a slightly better ac-
curacy than the other types. We did not observe
any real differences among the remaining five re-
lation types, possibly because there were few se-

3We includeCore-unexpressedin core, because it has a
property ofcore inside one frame.

No. Relation Type Micro
- baseline 89.00
1 + Inheritance (children) 89.52
2 + Inheritance (descendants) 89.70
3 + Using (children) 89.35
4 + Using (descendants) 89.37
5 + Perspective on (children) 89.01
6 + Perspective on (descendants) 89.01
7 + Subframe (children) 89.04
8 + Subframe (descendants) 89.05
9 + Causative of (parents) 89.03
10 + Causative of (ancestors) 89.03
11 + Inchoative of (parents) 89.02
12 + Inchoative of (ancestors) 89.02
13 + Precedes (children) 89.01
14 + Precedes (descendants) 89.03
15 + Precedes (parents) 89.00
16 + Precedes (ancestors) 89.00
18 + all relations (2,4,6,8,10,12,14) 90.25

Table 5: Comparison of the accuracy with differ-
ent types of hierarchical relations.

mantic roles associated with these types. We ob-
tained better results by using not only groups for
parent roles, but also groups for all ancestors. The
best result was obtained by using all relations in
the hierarchy.

6.5 Analyses of different grouping criteria

Table 6 reports the precision, recall, and micro-
averaged F1 scores of semantic roles with respect
to each coreness type.4 In general, semantic roles
of the core coreness were easily identified by all
of the grouping criteria; even the baseline system
obtained an F1 score of 91.93. For identifying se-
mantic roles of theperipheralandextra-thematic
types of coreness, the simplest solution, the de-
scriptor criterion, outperformed other criteria.

In Table 7, we categorize feature functions
whose weights are in the top 1000 in terms of
greatest absolute value. The behaviors of the role
groups can be distinguished by the following two
characteristics. Groups of role descriptors and se-
mantic types have large weight values for the first
word and supersense features, which capture the
characteristics of adjunctive phrases. The original
roles and hierarchical-relation groups have strong

4The figures of role descriptors in Tables 4 and 6 differ.
In Table 4, we measured the performance when we used one
or all types of coreness for training. In contrast, in Table 6,
we used all types of coreness for training, but computed the
performance of semantic roles for each coreness separately.
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Feature Type Pre. Rec. Micro
baseline c 91.07 92.83 91.93

p 81.05 76.03 78.46
e 78.17 66.51 71.87

+ descriptor group c 92.50 93.41 92.95
p 84.32 82.72 83.51
e 80.91 69.59 74.82

+ hierarchical c 92.10 93.28 92.68
relation p 82.23 79.84 81.01
class e 77.94 65.58 71.23

+ semantic c 92.23 93.31 92.77
type group p 83.66 81.76 82.70

e 80.29 67.26 73.20
+ VN thematic c 91.57 93.06 92.31

role group p 80.66 76.95 78.76
e 78.12 66.60 71.90

+ all group c 92.66 93.61 93.13
p 84.13 82.51 83.31
e 80.77 68.56 74.17

Table 6: The precision and recall of each type of
coreness with role groups. Type represents the
type of coreness; c denotes core, p denotes periph-
eral, and e denotes extra-thematic.

associations with lexical and structural character-
istics such as the syntactic path, content word, and
head word. Table 7 suggests that role-descriptor
groups and semantic-type groups are effective for
peripheralor adjunctive roles, and hierarchical re-
lation groups are effective forcoreroles.

7 Conclusion

We have described different criteria for general-
izing semantic roles in FrameNet. They were:
role hierarchy, human-understandable descriptors
of roles, semantic types of filler phrases, and
mappings from FrameNet roles to thematic roles
of VerbNet. We also proposed a feature design
that combines and weights these criteria using the
training data. The experimental result of the role
classification task showed a 19.16% of the error
reduction and a 7.42% improvement in the macro-
averaged F1 score. In particular, the method we
have presented was able to classify roles having
few instances. We confirmed that modeling the
role generalization at feature level was better than
the conventional approach that replaces semantic
role labels.

Each criterion presented in this paper improved
the accuracy of classification. The most success-
ful criterion was the use of human-understandable
role descriptors. Unfortunately, the FrameNet hi-
erarchy did not outperform the role descriptors,
contrary to our expectations. A future direction
of this study would be to analyze the weakness of
the FrameNet hierarchy in order to discuss possi-
ble improvement of the usage and annotations of

features ofx class type
or hr rl st vn

frame 0 4 0 1 0
evoking word 3 4 7 3 0
ew & hw stem 9 34 20 8 0
ew & phrase type 11 7 11 3 1
head word 13 19 8 3 1
hw stem 11 17 8 8 1
content word 7 19 12 3 0
cw stem 11 26 13 5 0
cw PoS 4 5 14 15 2
directed path 19 27 24 6 7
undirected path 21 35 17 2 6
partial path 15 18 16 13 5
last word 15 18 12 3 2
first word 11 23 53 26 10
supersense 7 7 35 25 4
position 4 6 30 9 5
others 27 29 33 19 6
total 188 298 313 152 50

Table 7: The analysis of the top 1000 feature func-
tions. Each number denotes the number of feature
functions categorized in the corresponding cell.
Notations for the columns are as follows. ‘or’:
original role, ‘hr’: hierarchical relation, ‘rd’: role
descriptor, ‘st’: semantic type, and ‘vn’: VerbNet
thematic role.

the hierarchy.
Since we used the latest release of FrameNet

in order to use a greater number of hierarchical
role-to-role relations, we could not make a direct
comparison of performance with that of existing
systems; however we may say that the 89.00% F1
micro-average of our baseline system is roughly
comparable to the 88.93% value of Bejan and
Hathaway (2007) for SemEval-2007 (Baker et al.,
2007).5 In addition, the methodology presented in
this paper applies generally to any SRL resources;
we are planning to determine several grouping cri-
teria from existing linguistic resources and to ap-
ply the methodology to the PropBank corpus.
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Abstract

The task of Semantic Role Labeling
(SRL) is often divided into two sub-tasks:
verb argument identification, and argu-
ment classification. Current SRL algo-
rithms show lower results on the identifi-
cation sub-task. Moreover, most SRL al-
gorithms are supervised, relying on large
amounts of manually created data. In
this paper we present an unsupervised al-
gorithm for identifying verb arguments,
where the only type of annotation required
is POS tagging. The algorithm makes use
of a fully unsupervised syntactic parser,
using its output in order to detect clauses
and gather candidate argument colloca-
tion statistics. We evaluate our algorithm
on PropBank10, achieving a precision of
56%, as opposed to 47% of a strong base-
line. We also obtain an 8% increase in
precision for a Spanish corpus. This is
the first paper that tackles unsupervised
verb argument identification without using
manually encoded rules or extensive lexi-
cal or syntactic resources.

1 Introduction

Semantic Role Labeling (SRL) is a major NLP
task, providing a shallow sentence-level semantic
analysis. SRL aims at identifying the relations be-
tween the predicates (usually, verbs) in the sen-
tence and their associated arguments.

The SRL task is often viewed as consisting of
two parts: argument identification (ARGID) and ar-
gument classification. The former aims at identi-
fying the arguments of a given predicate present
in the sentence, while the latter determines the

type of relation that holds between the identi-
fied arguments and their corresponding predicates.
The division into two sub-tasks is justified by
the fact that they are best addressed using differ-
ent feature sets (Pradhan et al., 2005). Perfor-
mance in theARGID stage is a serious bottleneck
for general SRL performance, since only about
81% of the arguments are identified, while about
95% of the identified arguments are labeled cor-
rectly (Màrquez et al., 2008).

SRL is a complex task, which is reflected by the
algorithms used to address it. A standard SRL al-
gorithm requires thousands to dozens of thousands
sentences annotated with POS tags, syntactic an-
notation and SRL annotation. Current algorithms
show impressive results but only for languages and
domains where plenty of annotated data is avail-
able, e.g., English newspaper texts (see Section 2).
Results are markedly lower when testing is on a
domain wider than the training one, even in En-
glish (see the WSJ-Brown results in (Pradhan et
al., 2008)).

Only a small number of works that do not re-
quire manually labeled SRL training data have
been done (Swier and Stevenson, 2004; Swier and
Stevenson, 2005; Grenager and Manning, 2006).
These papers have replaced this data with the
VerbNet (Kipper et al., 2000) lexical resource or
a set of manually written rules and supervised
parsers.

A potential answer to the SRL training data bot-
tleneck are unsupervised SRL models that require
little to no manual effort for their training. Their
output can be used either by itself, or as training
material for modern supervised SRL algorithms.

In this paper we present an algorithm for unsu-
pervised argument identification. The only type of
annotation required by our algorithm is POS tag-
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ging, which needs relatively little manual effort.
The algorithm consists of two stages. As pre-

processing, we use a fully unsupervised parser to
parse each sentence. Initially, the set of possi-
ble arguments for a given verb consists of all the
constituents in the parse tree that do not contain
that predicate. The first stage of the algorithm
attempts to detect the minimal clause in the sen-
tence that contains the predicate in question. Us-
ing this information, it further reduces the possible
arguments only to those contained in the minimal
clause, and further prunes them according to their
position in the parse tree. In the second stage we
use pointwise mutual information to estimate the
collocation strength between the arguments and
the predicate, and use it to filter out instances of
weakly collocating predicate argument pairs.

We use two measures to evaluate the perfor-
mance of our algorithm, precision and F-score.
Precision reflects the algorithm’s applicability for
creating training data to be used by supervised
SRL models, while the standard SRL F-score mea-
sures the model’s performance when used by it-
self. The first stage of our algorithm is shown to
outperform a strong baseline both in terms of F-
score and of precision. The second stage is shown
to increase precision while maintaining a reason-
able recall.

We evaluated our model on sections 2-21 of
Propbank. As is customary in unsupervised pars-
ing work (e.g. (Seginer, 2007)), we bounded sen-
tence length by 10 (excluding punctuation). Our
first stage obtained a precision of 52.8%, which is
more than 6% improvement over the baseline. Our
second stage improved precision to nearly 56%, a
9.3% improvement over the baseline. In addition,
we carried out experiments on Spanish (on sen-
tences of length bounded by 15, excluding punctu-
ation), achieving an increase of over 7.5% in pre-
cision over the baseline. Our algorithm increases
F–score as well, showing an 1.8% improvement
over the baseline in English and a 2.2% improve-
ment in Spanish.

Section 2 reviews related work. In Section 3 we
detail our algorithm. Sections 4 and 5 describe the
experimental setup and results.

2 Related Work

The advance of machine learning based ap-
proaches in this field owes to the usage of large
scale annotated corpora. English is the most stud-

ied language, using the FrameNet (FN) (Baker et
al., 1998) and PropBank (PB) (Palmer et al., 2005)
resources. PB is a corpus well suited for evalu-
ation, since it annotates every non-auxiliary verb
in a real corpus (the WSJ sections of the Penn
Treebank). PB is a standard corpus for SRL eval-
uation and was used in the CoNLL SRL shared
tasks of 2004 (Carreras and Màrquez, 2004) and
2005 (Carreras and M̀arquez, 2005).

Most work on SRL has been supervised, requir-
ing dozens of thousands of SRL annotated train-
ing sentences. In addition, most models assume
that a syntactic representation of the sentence is
given, commonly in the form of a parse tree, a de-
pendency structure or a shallow parse. Obtaining
these is quite costly in terms of required human
annotation.

The first work to tackle SRL as an indepen-
dent task is (Gildea and Jurafsky, 2002), which
presented a supervised model trained and evalu-
ated on FrameNet. The CoNLL shared tasks of
2004 and 2005 were devoted to SRL, and stud-
ied the influence of different syntactic annotations
and domain changes on SRL results.Computa-
tional Linguisticshas recently published a special
issue on the task (M̀arquez et al., 2008), which
presents state-of-the-art results and surveys the lat-
est achievements and challenges in the field.

Most approaches to the task use a multi-level
approach, separating the task to anARGID and an
argument classification sub-tasks. They then use
the unlabeled argument structure (without the se-
mantic roles) as training data for theARGID stage
and the entire data (perhaps with other features)
for the classification stage. Better performance
is achieved on the classification, where state-
of-the-art supervised approaches achieve about
81% F-score on the in-domain identification task,
of which about 95% are later labeled correctly
(Màrquez et al., 2008).

There have been several exceptions to the stan-
dard architecture described in the last paragraph.
One suggestion poses the problem of SRL as a se-
quential tagging of words, training an SVM clas-
sifier to determine for each word whether it is in-
side, outside or in the beginning of an argument
(Hacioglu and Ward, 2003). Other works have in-
tegrated argument classification and identification
into one step (Collobert and Weston, 2007), while
others went further and combined the former two
along with parsing into a single model (Musillo
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and Merlo, 2006).

Work on less supervised methods has been
scarce. Swier and Stevenson (2004) and Swier
and Stevenson (2005) presented the first model
that does not use an SRL annotated corpus. How-
ever, they utilize the extensive verb lexicon Verb-
Net, which lists the possible argument structures
allowable for each verb, and supervised syntac-
tic tools. Using VerbNet along with the output of
a rule-based chunker (in 2004) and a supervised
syntactic parser (in 2005), they spot instances in
the corpus that are very similar to the syntactic
patterns listed in VerbNet. They then use these as
seed for a bootstrapping algorithm, which conse-
quently identifies the verb arguments in the corpus
and assigns their semantic roles.

Another less supervised work is that
of (Grenager and Manning, 2006), which presents
a Bayesian network model for the argument
structure of a sentence. They use EM to learn
the model’s parameters from unannotated data,
and use this model to tag a test corpus. However,
ARGID was not the task of that work, which dealt
solely with argument classification.ARGID was
performed by manually-created rules, requiring a
supervised or manual syntactic annotation of the
corpus to be annotated.

The three works above are relevant but incom-
parable to our work, due to the extensive amount
of supervision (namely, VerbNet and a rule-based
or supervised syntactic system) they used, both in
detecting the syntactic structure and in detecting
the arguments.

Work has been carried out in a few other lan-
guages besides English. Chinese has been studied
in (Xue, 2008). Experiments on Catalan and Span-
ish were done in SemEval 2007 (Màrquez et al.,
2007) with two participating systems. Attempts
to compile corpora for German (Burdchardt et al.,
2006) and Arabic (Diab et al., 2008) are also un-
derway. The small number of languages for which
extensive SRL annotated data exists reflects the
considerable human effort required for such en-
deavors.

Some SRL works have tried to use unannotated
data to improve the performance of a base su-
pervised model. Methods used include bootstrap-
ping approaches (Gildea and Jurafsky, 2002; Kate
and Mooney, 2007), where large unannotated cor-
pora were tagged with SRL annotation, later to
be used to retrain the SRL model. Another ap-

proach used similarity measures either between
verbs (Gordon and Swanson, 2007) or between
nouns (Gildea and Jurafsky, 2002) to overcome
lexical sparsity. These measures were estimated
using statistics gathered from corpora augmenting
the model’s training data, and were then utilized
to generalize across similar verbs or similar argu-
ments.

Attempts to substitute full constituency pars-
ing by other sources of syntactic information have
been carried out in the SRL community. Sugges-
tions include posing SRL as a sequence labeling
problem (M̀arquez et al., 2005) or as an edge tag-
ging problem in a dependency representation (Ha-
cioglu, 2004). Punyakanok et al. (2008) provide
a detailed comparison between the impact of us-
ing shallow vs. full constituency syntactic infor-
mation in an English SRL system. Their results
clearly demonstrate the advantage of using full an-
notation.

The identification of arguments has also been
carried out in the context of automatic subcatego-
rization frame acquisition. Notable examples in-
clude (Manning, 1993; Briscoe and Carroll, 1997;
Korhonen, 2002) who all used statistical hypothe-
sis testing to filter a parser’s output for arguments,
with the goal of compiling verb subcategorization
lexicons. However, these works differ from ours
as they attempt to characterize the behavior of a
verb type, by collecting statistics from various in-
stances of that verb, and not to determine which
are the arguments of specific verb instances.

The algorithm presented in this paper performs
unsupervised clause detection as an intermedi-
ate step towards argument identification. Super-
vised clause detection was also tackled as a sepa-
rate task, notably in the CoNLL 2001 shared task
(Tjong Kim Sang and D̀ejean, 2001). Clause in-
formation has been applied to accelerating a syn-
tactic parser (Glaysher and Moldovan, 2006).

3 Algorithm

In this section we describe our algorithm. It con-
sists of two stages, each of which reduces the set
of argument candidates, which a-priori contains all
consecutive sequences of words that do not con-
tain the predicate in question.

3.1 Algorithm overview

As pre-processing, we use an unsupervised parser
that generates an unlabeled parse tree for each sen-

30



tence (Seginer, 2007). This parser is unique in that
it is able to induce a bracketing (unlabeled pars-
ing) from raw text (without even using POS tags)
achieving state-of-the-art results. Since our algo-
rithm uses millions to tens of millions sentences,
we must use very fast tools. The parser’s high
speed (thousands of words per second) enables us
to process these large amounts of data.

The only type of supervised annotation we
use is POS tagging. We use the taggers MX-
POST (Ratnaparkhi, 1996) for English and Tree-
Tagger (Schmid, 1994) for Spanish, to obtain POS
tags for our model.

The first stage of our algorithm uses linguisti-
cally motivated considerations to reduce the set of
possible arguments. It does so by confining the set
of argument candidates only to those constituents
which obey the following two restrictions. First,
they should be contained in the minimal clause
containing the predicate. Second, they should be
k-th degree cousins of the predicate in the parse
tree. We propose a novel algorithm for clause de-
tection and use its output to determine which of
the constituents obey these two restrictions.

The second stage of the algorithm uses point-
wise mutual information to rule out constituents
that appear to be weakly collocating with the pred-
icate in question. Since a predicate greatly re-
stricts the type of arguments with which it may
appear (this is often referred to as “selectional re-
strictions”), we expect it to have certain character-
istic arguments with which it is likely to collocate.

3.2 Clause detection stage

The main idea behind this stage is the observation
that most of the arguments of a predicate are con-
tained within the minimal clause that contains the
predicate. We tested this on our development data
– section 24 of the WSJ PTB, where we saw that
86% of the arguments that are also constituents
(in the gold standard parse) were indeed contained
in that minimal clause (as defined by the tree la-
bel types in the gold standard parse that denote
a clause, e.g.,S, SBAR). Since we are not pro-
vided with clause annotation (or any label), we at-
tempted to detect them in an unsupervised manner.
Our algorithm attempts to find sub-trees within the
parse tree, whose structure resembles the structure
of a full sentence. This approximates the notion of
a clause.
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Figure 1: An example of an unlabeled POS tagged
parse tree. The middle tree is theST of ‘reach’
with the root as the encoded ancestor. The bot-
tom one is theST with its parent as the encoded
ancestor.

Statistics gathering. In order to detect which
of the verb’s ancestors is the minimal clause, we
score each of the ancestors and select the one that
maximizes the score. We represent each ancestor
using itsSpinal Tree(ST ). The ST of a given
verb’s ancestor is obtained by replacing all the
constituents that do not contain the verb by a leaf
having a label. This effectively encodes all thek-
th degree cousins of the verb (for everyk). The
leaf labels are either the word’s POS in case the
constituent is a leaf, or the generic label “L” de-
noting a non-leaf. See Figure 1 for an example.

In this stage we collect statistics of the occur-
rences ofSTs in a large corpus. For everyST in
the corpus, we count the number of times it oc-
curs in a form we consider to be a clause (positive
examples), and the number of times it appears in
other forms (negative examples).

Positive examples are divided into two main
types. First, when theST encodes the root an-
cestor (as in the middle tree of Figure 1); second,
when the ancestor complies to a clause lexico-
syntactic pattern. In many languages there is a
small set of lexico-syntactic patterns that mark a
clause, e.g. the English ‘that’, the German ‘dass’
and the Spanish ‘que’. The patterns which were
used in our experiments are shown in Figure 2.

For each verb instance, we traverse over its an-
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English

TO + VB. The constituent starts with “to” followed by
a verb in infinitive form.

WP. The constituent is preceded by a Wh-pronoun.

That. The constituent is preceded by a “that” marked
by an “IN” POS tag indicating that it is a subordinating
conjunction.

Spanish

CQUE. The constituent is preceded by a word with the
POS “CQUE” which denotes the word “que” as a con-
junction.

INT. The constituent is preceded by a word with the
POS “INT” which denotes an interrogative pronoun.

CSUB.The constituent is preceded by a word with one
of the POSs “CSUBF”, “CSUBI” or “CSUBX”, which
denote a subordinating conjunction.

Figure 2: The set of lexico-syntactic patterns that
mark clauses which were used by our model.

cestors from top to bottom. For each of them we
update the following counters:sentence(ST ) for
the root ancestor’sST , patterni(ST ) for the ones
complying to thei-th lexico-syntactic pattern and
negative(ST ) for the other ancestors1.

Clause detection. At test time, when detecting
the minimal clause of a verb instance, we use
the statistics collected in the previous stage. De-
note the ancestors of the verb withA1 . . . Am.
For each of them, we calculateclause(STAj

)
and total(STAj

). clause(STAj
) is the sum

of sentence(STAj
) and patterni(STAj

) if this
ancestor complies to thei-th pattern (if there
is no such pattern,clause(STAj

) is equal to
sentence(STAj

)). total(STAj
) is the sum of

clause(STAj
) andnegative(STAj

).
The selected ancestor is given by:

(1) Amax = argmaxAj

clause(STAj
)

total(STAj
)

An ST whosetotal(ST ) is less than a small
threshold2 is not considered a candidate to be the
minimal clause, since its statistics may be un-
reliable. In case of a tie, we choose the low-
est constituent that obtained the maximal score.

1If while traversing the tree, we encounter an ancestor
whose first word is preceded by a coordinating conjunction
(marked by the POS tag “CC”), we refrain from performing
any additional counter updates. Structures containing coor-
dinating conjunctions tend not to obey our lexico-syntactic
rules.

2We used 4 per million sentences, derived from develop-
ment data.

If there is only one verb in the sentence3 or if
clause(STAj

) = 0 for every 1 ≤ j ≤ m, we
choose the top level constituent by default to be
the minimal clause containing the verb. Other-
wise, the minimal clause is defined to be the yield
of the selected ancestor.

Argument identification. For each predicate in
the corpus, its argument candidates are now de-
fined to be the constituents contained in the min-
imal clause containing the predicate. However,
these constituents may be (and are) nested within
each other, violating a major restriction on SRL
arguments. Hence we now prune our set, by keep-
ing only the siblings of all of the verb’s ancestors,
as is common in supervised SRL (Xue and Palmer,
2004).

3.3 Using collocations

We use the following observation to filter out some
superfluous argument candidates: since the argu-
ments of a predicate many times bear a semantic
connection with that predicate, they consequently
tend to collocate with it.

We collect collocation statistics from a large
corpus, which we annotate with parse trees and
POS tags. We mark arguments using the argu-
ment detection algorithm described in the previous
two sections, and extract all (predicate, argument)
pairs appearing in the corpus. Recall that for each
sentence, the arguments are a subset of the con-
stituents in the parse tree.

We use two representations of an argument: one
is the POS tag sequence of the terminals contained
in the argument, the other is its head word4. The
predicate is represented as the conjunction of its
lemma with its POS tag.

Denote the number of times a predicatex
appeared with an argumenty by nxy. Denote
the total number of (predicate, argument) pairs
by N . Using these notations, we define the
following quantities:nx = Σynxy, ny = Σxnxy,
p(x) = nx

N , p(y) =
ny

N andp(x, y) =
nxy

N . The
pointwise mutual information ofx andy is then
given by:

3In this case, every argument in the sentence must be re-
lated to that verb.

4Since we do not have syntactic labels, we use an approx-
imate notion. For English we use the Bikel parser default
head word rules (Bikel, 2004). For Spanish, we use the left-
most word.
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(2) PMI(x, y) = log
p(x,y)

p(x)·p(y) = log
nxy

(nx·ny)/N

PMI effectively measures the ratio between
the number of timesx andy appeared together and
the number of times they were expected to appear,
had they been independent.

At test time, when an(x, y) pair is observed, we
check if PMI(x, y), computed on the large cor-
pus, is lower than a thresholdα for either ofx’s
representations. If this holds, for at least one rep-
resentation, we prune all instances of that(x, y)
pair. The parameterα may be selected differently
for each of the argument representations.

In order to avoid using unreliable statistics,
we apply this for a given pair only ifnx·ny

N >

r, for some parameterr. That is, we consider
PMI(x, y) to be reliable, only if the denomina-
tor in equation (2) is sufficiently large.

4 Experimental Setup

Corpora. We used the PropBank corpus for de-
velopment and for evaluation on English. Section
24 was used for the development of our model,
and sections 2 to 21 were used as our test data.
The free parameters of the collocation extraction
phase were tuned on the development data. Fol-
lowing the unsupervised parsing literature, multi-
ple brackets and brackets covering a single word
are omitted. We exclude punctuation according
to the scheme of (Klein, 2005). As is customary
in unsupervised parsing (e.g. (Seginer, 2007)), we
bounded the lengths of the sentences in the cor-
pus to be at most 10 (excluding punctuation). This
results in 207 sentences in the development data,
containing a total of 132 different verbs and 173
verb instances (of the non-auxiliary verbs in the
SRL task, see ‘evaluation’ below) having 403 ar-
guments. The test data has 6007 sentences con-
taining 1008 different verbs and 5130 verb in-
stances (as above) having 12436 arguments.

Our algorithm requires large amounts of data
to gather argument structure and collocation pat-
terns. For the statistics gathering phase of the
clause detection algorithm, we used 4.5M sen-
tences of the NANC (Graff, 1995) corpus, bound-
ing their length in the same manner. In order
to extract collocations, we used 2M sentences
from the British National Corpus (Burnard, 2000)
and about 29M sentences from the Dmoz cor-
pus (Gabrilovich and Markovitch, 2005). Dmoz
is a web corpus obtained by crawling and clean-

ing the URLs in the Open Directory Project
(dmoz.org). All of the above corpora were parsed
using Seginer’s parser and POS-tagged by MX-
POST (Ratnaparkhi, 1996).

For our experiments on Spanish, we used 3.3M
sentences of length at most 15 (excluding punctua-
tion) extracted from the Spanish Wikipedia. Here
we chose to bound the length by 15 due to the
smaller size of the available test corpus. The
same data was used both for the first and the sec-
ond stages. Our development and test data were
taken from the training data released for the Se-
mEval 2007 task on semantic annotation of Span-
ish (Màrquez et al., 2007). This data consisted
of 1048 sentences of length up to 15, from which
200 were randomly selected as our development
data and 848 as our test data. The development
data included 313 verb instances while the test
data included 1279. All corpora were parsed us-
ing the Seginer parser and tagged by the “Tree-
Tagger” (Schmid, 1994).

Baselines. Since this is the first paper, to our
knowledge, which addresses the problem of unsu-
pervised argument identification, we do not have
any previous results to compare to. We instead
compare to a baseline which marks allk-th degree
cousins of the predicate (for everyk) as arguments
(this is the second pruning we use in the clause
detection stage). We name this baseline the ALL

COUSINS baseline. We note that a random base-
line would score very poorly since any sequence of
terminals which does not contain the predicate is
a possible candidate. Therefore, beating this ran-
dom baseline is trivial.

Evaluation. Evaluation is carried out using
standard SRL evaluation software5. The algorithm
is provided with a list of predicates, whose argu-
ments it needs to annotate. For the task addressed
in this paper, non-consecutive parts of arguments
are treated as full arguments. A match is consid-
ered each time an argument in the gold standard
data matches a marked argument in our model’s
output. An unmatched argument is an argument
which appears in the gold standard data, and fails
to appear in our model’s output, and an exces-
sive argument is an argument which appears in
our model’s output but does not appear in the gold
standard. Precision and recall are defined accord-
ingly. We report an F-score as well (the harmonic
mean of precision and recall). We do not attempt

5http://www.lsi.upc.edu/∼srlconll/soft.html#software.
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to identify multi-word verbs, and therefore do not
report the model’s performance in identifying verb
boundaries.

Since our model detects clauses as an interme-
diate product, we provide a separate evaluation
of this task for the English corpus. We show re-
sults on our development data. We use the stan-
dard parsing F-score evaluation measure. As a
gold standard in this evaluation, we mark for each
of the verbs in our development data the minimal
clause containing it. A minimal clause is the low-
est ancestor of the verb in the parse tree that has
a syntactic label of a clause according to the gold
standard parse of the PTB. A verb is any terminal
marked by one of the POS tags of type verb ac-
cording to the gold standard POS tags of the PTB.

5 Results

Our results are shown in Table 1. The left section
presents results on English and the right section
presents results on Spanish. The top line lists re-
sults of the clause detection stage alone. The next
two lines list results of the full algorithm (clause
detection + collocations) in two different settings
of the collocation stage. The bottom line presents
the performance of the ALL COUSINSbaseline.

In the “Collocation Maximum Precision” set-
ting the parameters of the collocation stage (α and
r) were generally tuned such that maximal preci-
sion is achieved while preserving a minimal recall
level (40% for English, 20% for Spanish on the de-
velopment data). In the “Collocation Maximum F-
score” the collocation parameters were generally
tuned such that the maximum possible F-score for
the collocation algorithm is achieved.

The best or close to best F-score is achieved
when using the clause detection algorithm alone
(59.14% for English, 23.34% for Spanish). Note
that for both English and Spanish F-score im-
provements are achieved via a precision improve-
ment that is more significant than the recall degra-
dation. F-score maximization would be the aim of
a system that uses the output of our unsupervised
ARGID by itself.

The “Collocation Maximum Precision”
achieves the best precision level (55.97% for
English, 21.8% for Spanish) but at the expense
of the largest recall loss. Still, it maintains a
reasonable level of recall. The “Collocation
Maximum F-score” is an example of a model that
provides a precision improvement (over both the

baseline and the clause detection stage) with a
relatively small recall degradation. In the Spanish
experiments its F-score (23.87%) is even a bit
higher than that of the clause detection stage
(23.34%).

The full two–stage algorithm (clause detection
+ collocations) should thus be used when we in-
tend to use the model’s output as training data for
supervised SRL engines or supervisedARGID al-
gorithms.

In our algorithm, the initial set of potential ar-
guments consists of constituents in the Seginer
parser’s parse tree. Consequently the fraction
of arguments that are also constituents (81.87%
for English and 51.83% for Spanish) poses an
upper bound on our algorithm’s recall. Note
that the recall of the ALL COUSINS baseline is
74.27% (45.75%) for English (Spanish). This
score emphasizes the baseline’s strength, and jus-
tifies the restriction that the arguments should be
k-th cousins of the predicate. The difference be-
tween these bounds for the two languages provides
a partial explanation for the corresponding gap in
the algorithm’s performance.

Figure 3 shows the precision of the collocation
model (on development data) as a function of the
amount of data it was given. We can see that
the algorithm reaches saturation at about 5M sen-
tences. It achieves this precision while maintain-
ing a reasonable recall (an average recall of 43.1%
after saturation). The parameters of the colloca-
tion model were separately tuned for each corpus
size, and the graph displays the maximum which
was obtained for each of the corpus sizes.

To better understand our model’s performance,
we performed experiments on the English cor-
pus to test how well its first stage detects clauses.
Clause detection is used by our algorithm as a step
towards argument identification, but it can be of
potential benefit for other purposes as well (see
Section 2). The results are 23.88% recall and 40%
precision. As in theARGID task, a random se-
lection of arguments would have yielded an ex-
tremely poor result.

6 Conclusion

In this work we presented the first algorithm for ar-
gument identification that uses neither supervised
syntactic annotation nor SRL tagged data. We
have experimented on two languages: English and
Spanish. The straightforward adaptability of un-
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English (Test Data) Spanish (Test Data)
Precision Recall F1 Precision Recall F1

Clause Detection 52.84 67.14 59.14 18.00 33.19 23.34
Collocation Maximum F–score 54.11 63.53 58.44 20.22 29.13 23.87
Collocation Maximum Precision 55.97 40.02 46.67 21.80 18.47 20.00

ALL COUSINSbaseline 46.71 74.27 57.35 14.16 45.75 21.62

Table 1:Precision, Recall and F1 score for the different stages of our algorithm. Results are given for English (PTB, sentences
length bounded by 10, left part of the table) and Spanish (SemEval 2007 Spanish SRL task, right part of the table). The results
of the collocation (second) stage are given in two configurations, Collocation Maximum F-score and Collocation Maximum
Precision (see text). The upper bounds on Recall, obtained by taking all arguments output by our unsupervised parser, are
81.87% for English and 51.83% for Spanish.
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Figure 3:The performance of the second stage on English
(squares) vs. corpus size. The precision of the baseline (trian-
gles) and of the first stage (circles) is displayed for reference.
The graph indicates the maximum precision obtained for each
corpus size. The graph reaches saturation at about 5M sen-
tences. The average recall of the sampled points from there
on is 43.1%. Experiments were performed on the English
development data.

supervised models to different languages is one
of their most appealing characteristics. The re-
cent availability of unsupervised syntactic parsers
has offered an opportunity to conduct research on
SRL, without reliance on supervised syntactic an-
notation. This work is the first to address the ap-
plication of unsupervised parses to an SRL related
task.

Our model displayed an increase in precision of
9% in English and 8% in Spanish over a strong
baseline. Precision is of particular interest in this
context, as instances tagged by high quality an-
notation could be later used as training data for
supervised SRL algorithms. In terms of F–score,
our model showed an increase of 1.8% in English
and of 2.2% in Spanish over the baseline.

Although the quality of unsupervised parses is
currently low (compared to that of supervised ap-
proaches), using great amounts of data in identi-
fying recurring structures may reduce noise and
in addition address sparsity. The techniques pre-
sented in this paper are based on this observation,
using around 35M sentences in total for English

and 3.3M sentences for Spanish.
As this is the first work which addressed un-

supervisedARGID, many questions remain to be
explored. Interesting issues to address include as-
sessing the utility of the proposed methods when
supervised parses are given, comparing our model
to systems with no access to unsupervised parses
and conducting evaluation using more relaxed
measures.

Unsupervised methods for syntactic tasks have
matured substantially in the last few years. No-
table examples are (Clark, 2003) for unsupervised
POS tagging and (Smith and Eisner, 2006) for un-
supervised dependency parsing. Adapting our al-
gorithm to use the output of these models, either to
reduce the little supervision our algorithm requires
(POS tagging) or to provide complementary syn-
tactic information, is an interesting challenge for
future work.
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Abstract

We describe a semantic role labeling system
that makes primary use of CCG-based fea-
tures. Most previously developed systems
are CFG-based and make extensive use of a
treepath feature, which suffers from data spar-
sity due to its use of explicit tree configura-
tions. CCG affords ways to augment treepath-
based features to overcome these data sparsity
issues. By adding features over CCG word-
word dependencies and lexicalized verbal sub-
categorization frames (“supertags”), we can
obtain an F-score that is substantially better
than a previous CCG-based SRL system and
competitive with the current state of the art. A
manual error analysis reveals that parser errors
account for many of the errors of our system.
This analysis also suggests that simultaneous
incremental parsing and semantic role labeling
may lead to performance gains in both tasks.

1 Introduction

Semantic Role Labeling (SRL) is the process of assign-
ing semantic roles to strings of words in a sentence ac-
cording to their relationship to the semantic predicates
expressed in the sentence. The task is difficult because
the relationship between syntactic relations like “sub-
ject” and “object” do not always correspond to seman-
tic relations like “agent” and “patient”. An effective
semantic role labeling system must recognize the dif-
ferences between different configurations:

(a) [The man]Arg0 opened [the door]Arg1 [for
him]Arg3 [today]ArgM−TMP .

(b) [The door]Arg1 opened.

(c) [The door]Arg1 was opened by [a man]Arg0.

We use Propbank (Palmer et al., 2005), a corpus of
newswire text annotated with verb predicate semantic
role information that is widely used in the SRL litera-
ture (Màrquez et al., 2008). Rather than describe se-
mantic roles in terms of “agent” or “patient”, Propbank
defines semantic roles on a verb-by-verb basis. For ex-
ample, the verbopenencodes the OPENERas Arg0, the
OPENEEas Arg1, and the beneficiary of the OPENING

action as Arg3. Propbank also defines a set of adjunct

roles, denoted by the letter M instead of a number. For
example, ArgM-TMP denotes a temporal role, like “to-
day”. By using verb-specific roles, Propbank avoids
specific claims about parallels between the roles of dif-
ferent verbs.

We follow the approach in (Punyakanok et al., 2008)
in framing the SRL problem as a two-stage pipeline:
identification followed by labeling. During identifica-
tion, every word in the sentence is labeled either as
bearing some (as yet undetermined) semantic role or
not . This is done for each verb. Next, during label-
ing, the precise verb-specific roles for each word are
determined. In contrast to the approach in (Punyakanok
et al., 2008), which tags constituents directly, we tag
headwords and then associate them with a constituent,
as in a previous CCG-based approach (Gildea and
Hockenmaier, 2003). Another difference is our choice
of parsers. Brutus uses the CCG parser of (Clark and
Curran, 2007, henceforth the C&C parser), Charniak’s
parser (Charniak, 2001) for additional CFG-based fea-
tures, and MALT parser (Nivre et al., 2007) for de-
pendency features, while (Punyakanok et al., 2008)
use results from an ensemble of parses from Char-
niak’s Parser and a Collins parser (Collins, 2003; Bikel,
2004). Finally, the system described in (Punyakanok et
al., 2008) uses a joint inference model to resolve dis-
crepancies between multiple automatic parses. We do
not employ a similar strategy due to the differing no-
tions of constituency represented in our parsers (CCG
having a much more fluid notion of constituency and
the MALT parser using a different approach entirely).

For the identification and labeling steps, we train
a maximum entropy classifier (Berger et al., 1996)
over sections 02-21 of a version of the CCGbank cor-
pus (Hockenmaier and Steedman, 2007) that has been
augmented by projecting the Propbank semantic anno-
tations (Boxwell and White, 2008). We evaluate our
SRL system’s argument predictions at the word string
level, making our results directly comparable for each
argument labeling.1

In the following, we briefly introduce the CCG
grammatical formalism and motivate its use in SRL
(Sections 2–3). Our main contribution is to demon-
strate that CCG — arguably a more expressive and lin-

1This is guaranteed by our string-to-string mapping from
the original Propbank to the CCGbank.
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guistically appealing syntactic framework than vanilla
CFGs — is a viable basis for the SRL task. This is sup-
ported by our experimental results, the setup and details
of which we give in Sections 4–10. In particular, using
CCG enables us to map semantic roles directly onto
verbal categories, an innovation of our approach that
leads to performance gains (Section 7). We conclude
with an error analysis (Section 11), which motivates
our discussion of future research for computational se-
mantics with CCG (Section 12).

2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (Steedman, 2000)
is a grammatical framework that describes syntactic
structure in terms of the combinatory potential of the
lexical (word-level) items. Rather than using standard
part-of-speech tags and grammatical rules, CCG en-
codes much of the combinatory potential of each word
by assigning a syntactically informative category. For
example, the verbloves has the category (s\np)/np,
which could be read “the kind of word that would be
a sentence if it could combine with a noun phrase on
the right and a noun phrase on the left”. Further, CCG
has the advantage of a transparent interface between the
way the words combine and their dependencies with
other words. Word-word dependencies in the CCG-
bank are encoded using predicate-argument (PARG)
relations. PARG relations are defined by the functor
word, the argument word, the category of the functor
word and which argument slot of the functor category
is being filled. For example, in the sentenceJohn loves
Mary (figure 1), there are two slots on the verbal cat-
egory to be filled by NP arguments. The first argu-
ment (the subject) fills slot 1. This can be encoded
as <loves,john,(s\np)/np,1>, indicating the head of
the functor, the head of the argument, the functor cat-
egory and the argument slot. The second argument
(the direct object) fills slot 2. This can be encoded as
<loves,mary,(s\np)/np,2>. One of the potential ad-
vantages to using CCGbank-style PARG relations is
that they uniformly encode both local and long-range
dependencies — e.g., the noun phrasethe Mary that
John lovesexpresses the same set of two dependencies.
We will show this to be a valuable tool for semantic
role prediction.

3 Potential Advantages to using CCG

There are many potential advantages to using the CCG
formalism in SRL. One is the uniformity with which
CCG can express equivalence classes of local and long-
range (including unbounded) dependencies. CFG-
based approaches often rely on examining potentially
long sequences of categories (ortreepaths) between the
verb and the target word. Because there are a number of
different treepaths that correspond to a single relation
(figure 2), this approach can suffer from data sparsity.
CCG, however, can encode all treepath-distinct expres-
sions of a single grammatical relation into a single

predicate-argument relationship (figure 3). This fea-
ture has been shown (Gildea and Hockenmaier, 2003)
to be an effective substitute for treepath-based features.
But while predicate-argument-based features are very
effective, they are still vulnerable both to parser er-
rors and to cases where the semantics of a sentence
do not correspond directly to syntactic dependencies.
To counteract this, we use both kinds of features with
the expectation that the treepath feature will provide
low-level detail to compensate for missed, incorrect or
syntactically impossible dependencies.

Another advantage of a CCG-based approach (and
lexicalist approaches in general) is the ability to en-
code verb-specific argument mappings. An argument
mapping is a link between the CCG category and the
semantic roles that are likely to go with each of its ar-
guments. The projection of argument mappings onto
CCG verbal categories is explored in (Boxwell and
White, 2008). We describe this feature in more detail
in section 7.

4 Identification and Labeling Models

As in previous approaches to SRL, Brutus uses a two-
stage pipeline of maximum entropy classifiers. In ad-
dition, we train an argument mapping classifier (de-
scribed in more detail below) whose predictions are
used as features for the labeling model. The same
features are extracted for both treebank and automatic
parses. Automatic parses were generated using the
C&C CCG parser (Clark and Curran, 2007) with its
derivation output format converted to resemble that of
the CCGbank. This involved following the derivational
bracketings of the C&C parser’s output and recon-
structing the backpointers to the lexical heads using an
in-house implementation of the basic CCG combina-
tory operations. All classifiers were trained to 500 iter-
ations of L-BFGS training — a quasi-Newton method
from the numerical optimization literature (Liu and No-
cedal, 1989) — using Zhang Le’s maxent toolkit.2 To
prevent overfitting we used Gaussian priors with global
variances of 1 and 5 for the identifier and labeler, re-
spectively.3 The Gaussian priors were determined em-
pirically by testing on the development set.

Both the identifier and the labeler use the following
features:

(1) Words. Words drawn from a 3 word window
around the target word,4 with each word asso-
ciated with a binary indicator feature.

(2) Part of Speech. Part of Speech tags drawn
from a 3 word window around the target word,

2Available for download athttp://homepages.
inf.ed.ac.uk/s0450736/maxent_toolkit.
html.

3Gaussian priors achieve a smoothing effect (to prevent
overfitting) by penalizing very large feature weights.

4The size of the window was determined experimentally
on the development set – we use the same window sizes
throughout.
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John loves Mary

np (s[dcl]\np)/np np
>

s[dcl]\np
<

s[dcl]

Figure 1: This sentence has two depen-
dencies: <loves,mary,(s\np)/np,2> and
<loves,john,(s\np)/np,1>
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Figure 2: The semantic relation (Arg1) between ‘car’
and ‘fixed’ in both phrases is the same, but the
treepaths — traced with arrows above — are differ-
ent: (V>VP<NP<N and V>VP>S>RC>N<N, re-
spectively).

Robin fixed the car
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Figure 3: CCG word-word dependencies are passed
up through subordinate clauses, encoding the rela-
tion betweencar and fixed the same in both cases:
(s\np)/np.2.→ (Gildea and Hockenmaier, 2003)

with each associated with a binary indicator
feature.

(3) CCG Categories. CCG categories drawn from
a 3 word window around the target word, with
each associated with a binary indicator feature.

(4) Predicate. The lemma of the predicate we are
tagging. E.g.fix is the lemma offixed.

(5) Result Category Detail. The grammatical fea-
ture on the category of the predicate (indicat-
ing declarative, passive, progressive, etc). This
can be read off the verb category: declarative
for eats: (s[dcl]\np)/npor progressive forrun-
ning: s[ng]\np.

(6) Before/After. A binary indicator variable indi-
cating whether the target word is before or after
the verb.

(7) Treepath. The sequence of CCG categories
representing the path through the derivation
from the predicate to the target word. For
the relationship betweenfixed and car in the
first sentence of figure 3, the treepath is
(s[dcl]\np)/np>s[dcl]\np<np<n, with > and
< indicating movement up and down the tree,
respectively.

(8) Short Treepath. Similar to the above treepath
feature, except the path stops at the highest
node under the least common subsumer that
is headed by the target word (this is thecon-
stituentthat the role would be marked on if we
identified this terminal as a role-bearing word).
Again, for the relationship betweenfixed and
car in the first sentence of figure 3, the short
treepath is (s[dcl]\np)/np>s[dcl]\np<np.

(9) NP Modified. A binary indicator feature indi-
cating whether the target word is modified by
an NP modifier.5

5This is easily read off of the CCG PARG relationships.
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(10) Subcategorization. A sequence of the cate-
gories that the verb combines with in the CCG
derivation tree. For the first sentence in fig-
ure 3, the correct subcategorization would be
np,np. Notice that this is not necessarily a re-
statement of the verbal category – in the second
sentence of figure 3, the correct subcategoriza-
tion iss/(s\np),(np\np)/(s[dcl]/np),np.

(11) PARG feature. We follow a previous CCG-
based approach (Gildea and Hockenmaier,
2003) in using a feature to describe the PARG
relationship between the two words, if one ex-
ists. If there is a dependency in the PARG
structure between the two words, then this fea-
ture is defined as the conjunction of (1) the cat-
egory of the functor, (2) the argument slot that
is being filled in the functor category, and (3)
an indication as to whether the functor (→) or
the argument (←) is the lexical head. For ex-
ample, to indicate the relationship betweencar
andfixedin both sentences of figure 3, the fea-
ture is (s\np)/np.2.→.

The labeler uses all of the previous features, plus the
following:

(12) Headship. A binary indicator feature as to
whether the functor or the argument is the lex-
ical head of the dependency between the two
words, if one exists.

(13) Predicate and Before/After. The conjunction
of two earlier features: the predicate lemma
and the Before/After feature.

(14) Rel Clause. Whether the path from predicate
to target word passes through a relative clause
(e.g., marked by the word‘that’ or any other
word with a relativizer category).

(15) PP features. When the target word is a prepo-
sition, we define binary indicator features for
the word, POS, and CCG category of the head
of the topmost NP in the prepositional phrase
headed by a preposition (a.k.a. the ‘lexical
head’ of the PP). So, ifonheads the phrase‘on
the third Friday’, then we extract features re-
lating toFriday for the prepositionon. This is
null when the target word is not a preposition.

(16) Argument Mappings. If there is a PARG rela-
tion between the predicate and the target word,
the argument mapping is the most likely pre-
dicted role to go with that argument. These
mappings are predicted using a separate classi-
fier that is trained primarily on lexical informa-
tion of the verb, its immediate string-level con-
text, and its observed arguments in the train-
ing data. This feature is null when there is
no PARG relation between the predicate and
the target word. The Argument Mapping fea-
ture can be viewed as a simple prediction about

some of the non-modifier semantic roles that a
verb is likely to express. We use this informa-
tion as a feature and not a hard constraint to
allow other features to overrule the recommen-
dation made by the argument mapping classi-
fier. The features used in the argument map-
ping classifier are described in detail in section
7.

5 CFG based Features

In addition to CCG-based features, features can be
drawn from a traditional CFG-style approach when
they are available. Our motivation for this is twofold.
First, others (Punyakanok et al., 2008, e.g.), have found
that different parsers have different error patterns, and
so using multiple parsers can yield complementary
sources of correct information. Second, we noticed
that, although the CCG-based system performed well
on head word labeling, performance dropped when
projecting these labels to the constituent level (see sec-
tions 8 and 9 for more). This may have to do with the
fact that CCG is not centered around a constituency-
based analysis, as well as with inconsistencies between
CCG and Penn Treebank-style bracketings (the latter
being what was annotated in the original Propbank).

Penn Treebank-derived features are used in the iden-
tifier, labeler, and argument mapping classifiers. For
automatic parses, we use Charniak’s parser (Charniak,
2001). For gold-standard parses, we remove func-
tional tag and trace information from the Penn Tree-
bank parses before we extract features over them, so as
to simulate the conditions of an automatic parse. The
Penn Treebank features are as follows:

(17) CFG Treepath. A sequence of traditional
CFG-style categories representing the path
from the verb to the target word.

(18) CFG Short Treepath. Analogous to the CCG-
based short treepath feature.

(19) CFG Subcategorization. Analogous to the
CCG-based subcategorization feature.

(20) CFG Least Common Subsumer. The cate-
gory of the root of the smallest tree that domi-
nates both the verb and the target word.

6 Dependency Parser Features

Finally, several features can be extracted from a de-
pendency representation of the same sentence. Au-
tomatic dependency relations were produced by the
MALT parser. We incorporate MALT into our col-
lection of parses because it provides detailed informa-
tion on the exact syntactic relations between word pairs
(subject, object, adverb, etc) that is not found in other
automatic parsers. The features used from the depen-
dency parses are listed below:
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(21) DEP-Exists A binary indicator feature show-
ing whether or not there is a dependency be-
tween the target word and the predicate.

(22) DEP-Type If there is a dependency between
the target word and the predicate, what type of
dependency it is (SUBJ, OBJ, etc).

7 Argument Mapping Model

An innovation in our approach is to use a separate clas-
sifier to predict an argument mapping feature. An ar-
gument mapping is a mapping from the syntactic argu-
ments of a verbal category to the semantic arguments
that should correspond to them (Boxwell and White,
2008). In order to generate examples of the argument
mapping for training purposes, it is necessary to em-
ploy the PARG relations for a given sentence to identify
the headwords of each of the verbal arguments. That is,
we use the PARG relations to identify the headwords of
each of the constituents that are arguments of the verb.
Next, the appropriate semantic role that corresponds to
that headword (given by Propbank) is identified. This
is done by climbing the CCG derivation tree towards
the root until we find a semantic role corresponding to
the verb in question — i.e., by finding the point where
the constituent headed by the verbal category combines
with the constituent headed by the argument in ques-
tion. These semantic roles are then marked on the cor-
responding syntactic argument of the verb.

As an example, consider the sentenceThe boy loves
a girl. (figure 4). By examining the arguments that the
verbal category combines with in the treebank, we can
identify the corresponding semantic role for each argu-
ment that is marked on the verbal category. We then use
these tags to train the Argument Mapping model, which
will predict likely argument mappings for verbal cate-
gories based on their local surroundings and the head-
words of their arguments, similar to the supertagging
approaches used to label the informative syntactic cat-
egories of the verbs (Bangalore and Joshi, 1999; Clark,
2002), except tagging “one level above” the syntax.

The Argument Mapping Predictor uses the following
features:

(23) Predicate. The lemma of the predicate, as be-
fore.

(24) Words. Words drawn from a 5 word window
around the target word, with each word associ-
ated with a binary indicator feature, as before.

(25) Parts of Speech. Part of Speech tags drawn
from a 5 word window around the target word,
with each tag associated with a binary indicator
feature, as before.

(26) CCG Categories. CCG categories drawn from
a 5 word window around the target word, with
each category associated with a binary indica-
tor feature, as before.

the boy loves a girl

np/n n (s[dcl]\npArg0)/npArg1 np/n n
> >

np− Arg0 np− Arg1
>

s[dcl]\np
<

s[dcl]

Figure 4: By looking at the constituents that the verb
combines with, we can identify the semantic roles cor-
responding to the arguments marked on the verbal cat-
egory.

(27) Argument Data. The word, POS, and CCG
category, and treepath of the headwords of each
of the verbal arguments (i.e., PARG depen-
dents), each encoded as a separate binary in-
dicator feature.

(28) Number of arguments. The number of argu-
ments marked on the verb.

(29) Words of Arguments. The head words of each
of the verb’s arguments.

(30) Subcategorization. The CCG categories that
combine with this verb. This includes syntactic
adjuncts as well as arguments.

(31) CFG-Sisters. The POS categories of the sis-
ters of this predicate in the CFG representation.

(32) DEP-dependencies. The individual depen-
dency types of each of the dependencies re-
lating to the verb (SBJ, OBJ, ADV, etc) taken
from the dependency parse. We also incorpo-
rate a single feature representing the entire set
of dependency types associated with this verb
into a single feature, representing the set of de-
pendencies as a whole.

Given these features with gold standard parses, our
argument mapping model can predict entire argument
mappings with an accuracy rate of 87.96% on the test
set, and 87.70% on the development set. We found the
features generated by this model to be very useful for
semantic role prediction, as they enable us to make de-
cisions about entire sets of semantic roles associated
with individual lemmas, rather than choosing them in-
dependently of each other.

8 Enabling Cross-System Comparison

The Brutus system is designed to label headwords of
semantic roles, rather than entire constituents. How-
ever, because most SRL systems are designed to label
constituents rather than headwords, it is necessary to
project the roles up the derivation to the correct con-
stituent in order to make a meaningful comparison of
the system’s performance. This introduces the poten-
tial for further error, so we report results on the ac-
curacy of headwords as well as the correct string of
words. We deterministically move the role to the high-
est constituent in the derivation that is headed by the
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a man with glasses spoke

np/n n (np\np)/np np s\np
> >

np np\np
<

np− speak.Arg0
<

s

Figure 5: The role is moved towards the root until the
original node is no longer the head of the marked con-
stituent.

P R F

G&H (treebank) 67.5% 60.0% 63.5%
Brutus (treebank) 88.18% 85.00% 86.56%

G&H (automatic) 55.7% 49.5% 52.4%
Brutus (automatic) 76.06% 70.15% 72.99%

Table 1: Accuracy of semantic role prediction using
only CCG based features.

originally tagged terminal. In most cases, this corre-
sponds to the node immediately dominated by the low-
est common subsuming node of the the target word and
the verb (figure 5). In some cases, the highest con-
stituent that is headed by the target word is not imme-
diately dominated by the lowest common subsuming
node (figure 6).

9 Results

Using a version of Brutus incorporating only the CCG-
based features described above, we achieve better re-
sults than a previous CCG based system (Gildea and
Hockenmaier, 2003, henceforth G&H). This could be
due to a number of factors, including the fact that our
system employs a different CCG parser, uses a more
complete mapping of the Propbank onto the CCGbank,
uses a different machine learning approach,6 and has a
richer feature set. The results for constituent tagging
accuracy are shown in table 1.

As expected, by incorporating Penn Treebank-based
features and dependency features, we obtain better re-
sults than with the CCG-only system. The results for
gold standard parses are comparable to the winning
system of the CoNLL 2005 shared task on semantic
role labeling (Punyakanok et al., 2008). Other systems
(Toutanova et al., 2008; Surdeanu et al., 2007; Johans-
son and Nugues, 2008) have also achieved comparable
results – we compare our system to (Punyakanok et
al., 2008) due to the similarities in our approaches. The
performance of the full system is shown in table 2.

Table 3 shows the ability of the system to predict
the correct headwords of semantic roles. This is a nec-
essary condition for correctness of the full constituent,
but not a sufficient one. In parser evaluation, Carroll,
Minnen, and Briscoe (Carroll et al., 2003) have argued

6G&H use a generative model with a back-off lattice,
whereas we use a maximum entropy classifier.

P R F

P. et al (treebank) 86.22% 87.40% 86.81%
Brutus (treebank) 88.29% 86.39% 87.33%

P. et al (automatic) 77.09% 75.51% 76.29%
Brutus (automatic) 76.73% 70.45% 73.45%

Table 2: Accuracy of semantic role prediction using
CCG, CFG, and MALT based features.

P R F

Headword (treebank) 88.94% 86.98% 87.95%
Boundary (treebank) 88.29% 86.39% 87.33%

Headword (automatic) 82.36% 75.97% 79.04%
Boundary (automatic) 76.33% 70.59% 73.35%

Table 3: Accuracy of the system for labeling semantic
roles on both constituent boundaries and headwords.
Headwords are easier to predict than boundaries, re-
flecting CCG’s focus on word-word relations rather
than constituency.

for dependencies as a more appropriate means of eval-
uation, reflecting the focus on headwords from con-
stituent boundaries. We argue that, especially in the
heavily lexicalized CCG framework, headword evalu-
ation is more appropriate, reflecting the emphasis on
headword combinatorics in the CCG formalism.

10 The Contribution of the New Features

Two features which are less frequently used in SRL
research play a major role in the Brutus system: The
PARG feature (Gildea and Hockenmaier, 2003) and
the argument mapping feature. Removing them has
a strong effect on accuracy when labeling treebank
parses, as shown in our feature ablation results in ta-
ble 4. We do not report results including the Argu-
ment Mapping feature but not the PARG feature, be-
cause some predicate-argument relation information is
assumed in generating the Argument Mapping feature.

P R F

+PARG +AM 88.77% 86.15% 87.44%
+PARG -AM 88.42% 85.78% 87.08%
-PARG -AM 87.92% 84.65% 86.26%

Table 4: The effects of removing key features from the
system on gold standard parses.

The same is true for automatic parses, as shown in ta-
ble 5.

11 Error Analysis

Many of the errors made by the Brutus system can be
traced directly to erroneous parses, either in the auto-
matic or treebank parse. In some cases, PP attachment
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with even brief exposures causing symptoms

(((vp\vp)/vp[ng])/np n/n n/n n (s[ng]\np)/np np
> >

n s[ng]\np
>

n

np− cause.Arg0
>

(vp\vp)/vp[ng]
>

vp\vp

Figure 6: In this case,with is the head ofwith even brief exposures, so the role is correctly marked oneven brief
exposures(based on wsj0003.2).

P R F

+PARG +AM 74.14% 62.09% 67.58%
+PARG -AM 70.02% 64.68% 67.25%
-PARG -AM 73.90% 61.15% 66.93%

Table 5: The effects of removing key features from the
system on automatic parses.

ambiguities cause a role to be marked too high in the
derivation. In the sentencethe company stopped using
asbestos in 1956(figure 7), the correct Arg1 ofstopped
is using asbestos. However, becausein 1956 is erro-
neously modifying the verbusingrather than the verb
stoppedin the treebank parse, the system trusts the syn-
tactic analysis and places Arg1 ofstoppedonusing as-
bestos in 1956. This particular problem is caused by an
annotation error in the original Penn Treebank that was
carried through in the conversion to CCGbank.

Another common error deals with genitive construc-
tions. Consider the phrasea form of asbestos used
to make filters. By CCG combinatorics, the relative
clause could either attach toasbestosor to a form of
asbestos. The gold standard CCG parse attaches the
relative clause toa form of asbestos(figure 8). Prop-
bank agrees with this analysis, assigning Arg1 ofuse
to the constituenta form of asbestos. The automatic
parser, however, attaches the relative clause low – to
asbestos(figure 9). When the system is given the au-
tomatically generated parse, it incorrectly assigns the
semantic role toasbestos. In cases where the parser at-
taches the relative clause correctly, the system is much
more likely to assign the role correctly.

Problems with relative clause attachment to genitives
are not limited to automatic parses – errors in gold-
standard treebank parses cause similar problems when
Treebank parses disagree with Propbank annotator in-
tuitions. In the phrasea group of workers exposed to
asbestos(figure 10), the gold standard CCG parse at-
taches the relative clause toworkers. Propbank, how-
ever, annotatesa group of workersas Arg1 ofexposed,
rather than following the parse and assigning the role
only to workers. The system again follows the parse
and incorrectly assigns the role toworkersinstead ofa
group of workers. Interestingly, the C&C parser opts
for high attachment in this instance, resulting in the

a form of asbestos used to make filters

np (np\np)/np np np\np
>

np\np
<

np− Arg1
<

np

Figure 8: CCGbank gold-standard parse of a relative
clause attachment. The system correctly identifiesa
form of asbestosas Arg1 ofused. (wsj 0003.1)

a form of asbestos used to make filters

np (np\np)/np np− Arg1 np\np
<

np
>

np\np
<

np

Figure 9: Automatic parse of the noun phrase in fig-
ure 8. Incorrect relative clause attachment causes the
misidentification ofasbestosas a semantic role bearing
unit. (wsj 0003.1)

correct prediction ofa group of workersas Arg1 ofex-
posedin the automatic parse.

12 Future Work

As described in the error analysis section, a large num-
ber of errors in the system are attributable to errors in
the CCG derivation, either in the gold standard or in
automatically generated parses. Potential future work
may focus on developing an improved CCG parser us-
ing the revised (syntactic) adjunct-argument distinc-
tions (guided by the Propbank annotation) described in
(Boxwell and White, 2008). This resource, together
with the reasonable accuracy (≈ 90%) with which ar-
gument mappings can be predicted, suggests the possi-
bility of an integrated, simultaneous syntactic-semantic
parsing process, similar to that of (Musillo and Merlo,
2006; Merlo and Musillo, 2008). We expect this would
improve the reliability and accuracy of both the syntac-
tic and semantic analysis components.
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the company stopped using asbestos in 1956

np ((s[dcl]\np)/(s[ng]\np)) (s[ng]\np)/np np (s\np)\(s\np)
>

s[ng]\np
<

s[ng]\np− stop.Arg1
>

s[dcl]\np
<

s[dcl]

Figure 7: An example of how incorrect PP attachment can causean incorrect labeling. Stop.Arg1 should coverus-
ing asbestosrather thanusing asbestos in 1956. This sentence is based on wsj0003.3, with the structure simplified
for clarity.

a group of workers exposed to asbestos

np (np\np)/np np− exposed.Arg1 np\np
<

np
>

np\np
<

np

Figure 10: Propbank annotatesa group of workersas Arg1 ofexposed, while CCGbank attaches the relative clause
low. The system incorrectly labelsworkersas a role bearing unit. (Gold standard – wsj0003.1)

use of her PARG generation tool.
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S. Kübler, S. Marinov, and E. Marsi. 2007. Malt-
Parser: A language-independent system for data-
driven dependency parsing.Natural Language En-
gineering, 13(02):95–135.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An Annotated Cor-
pus of Semantic Roles.Computational Linguistics,
31(1):71–106.

44



Vasin Punyakanok, Dan Roth, and Wen tau Yih. 2008.
The Importance of Syntactic Parsing and Inference
in Semantic Role Labeling.Computational Linguis-
tics, 34(2):257–287.

Mark Steedman. 2000.The Syntactic Process. MIT
Press.

M. Surdeanu, L. M̀arquez, X. Carreras, and P. Comas.
2007. Combination strategies for semantic role la-
beling. Journal of Artificial Intelligence Research,
29:105–151.

K. Toutanova, A. Haghighi, and C.D. Manning. 2008.
A global joint model for semantic role labeling.
Computational Linguistics, 34(2):161–191.

45



Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 46–54,
Suntec, Singapore, 2-7 August 2009. c©2009 ACL and AFNLP

Exploiting Heterogeneous Treebanks for Parsing

Zheng-Yu Niu, Haifeng Wang, Hua Wu
Toshiba (China) Research and Development Center

5/F., Tower W2, Oriental Plaza, Beijing, 100738, China
{niuzhengyu,wanghaifeng,wuhua}@rdc.toshiba.com.cn

Abstract

We address the issue of using heteroge-
neous treebanks for parsing by breaking
it down into two sub-problems, convert-
ing grammar formalisms of the treebanks
to the same one, and parsing on these
homogeneous treebanks. First we pro-
pose to employ an iteratively trained tar-
get grammar parser to perform grammar
formalism conversion, eliminating prede-
fined heuristic rules as required in previ-
ous methods. Then we provide two strate-
gies to refine conversion results, and adopt
a corpus weighting technique for parsing
on homogeneous treebanks. Results on the
Penn Treebank show that our conversion
method achieves 42% error reduction over
the previous best result. Evaluation on
the Penn Chinese Treebank indicates that a
converted dependency treebank helps con-
stituency parsing and the use of unlabeled
data by self-training further increases pars-
ing f-score to 85.2%, resulting in 6% error
reduction over the previous best result.

1 Introduction

The last few decades have seen the emergence of
multiple treebanks annotated with different gram-
mar formalisms, motivated by the diversity of lan-
guages and linguistic theories, which is crucial to
the success of statistical parsing (Abeille et al.,
2000; Brants et al., 1999; Bohmova et al., 2003;
Han et al., 2002; Kurohashi and Nagao, 1998;
Marcus et al., 1993; Moreno et al., 2003; Xue et
al., 2005). Availability of multiple treebanks cre-
ates a scenario where we have a treebank anno-
tated with one grammar formalism, and another
treebank annotated with another grammar formal-
ism that we are interested in. We call the first

a source treebank, and the second a target tree-
bank. We thus encounter a problem of how to
use these heterogeneous treebanks for target gram-
mar parsing. Here heterogeneous treebanks refer
to two or more treebanks with different grammar
formalisms, e.g., one treebank annotated with de-
pendency structure (DS) and the other annotated
with phrase structure (PS).

It is important to acquire additional labeled data
for the target grammar parsing through exploita-
tion of existing source treebanks since there is of-
ten a shortage of labeled data. However, to our
knowledge, there is no previous study on this is-
sue.

Recently there have been some works on us-
ing multiple treebanks for domain adaptation of
parsers, where these treebanks have the same
grammar formalism (McClosky et al., 2006b;
Roark and Bacchiani, 2003). Other related works
focus on converting one grammar formalism of a
treebank to another and then conducting studies on
the converted treebank (Collins et al., 1999; Forst,
2003; Wang et al., 1994; Watkinson and Manand-
har, 2001). These works were done either on mul-
tiple treebanks with the same grammar formalism
or on only one converted treebank. We see that
their scenarios are different from ours as we work
with multiple heterogeneous treebanks.

For the use of heterogeneous treebanks1, we
propose a two-step solution: (1) converting the
grammar formalism of the source treebank to the
target one, (2) refining converted trees and using
them as additional training data to build a target
grammar parser.

For grammar formalism conversion, we choose
the DS to PS direction for the convenience of the
comparison with existing works (Xia and Palmer,
2001; Xia et al., 2008). Specifically, we assume
that the source grammar formalism is dependency

1Here we assume the existence of two treebanks.
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grammar, and the target grammar formalism is
phrase structure grammar.

Previous methods for DS to PS conversion
(Collins et al., 1999; Covington, 1994; Xia and
Palmer, 2001; Xia et al., 2008) often rely on pre-
defined heuristic rules to eliminate converison am-
biguity, e.g., minimal projection for dependents,
lowest attachment position for dependents, and the
selection of conversion rules that add fewer num-
ber of nodes to the converted tree. In addition, the
validity of these heuristic rules often depends on
their target grammars. To eliminate the heuristic
rules as required in previous methods, we propose
to use an existing target grammar parser (trained
on the target treebank) to generate N-best parses
for each sentence in the source treebank as conver-
sion candidates, and then select the parse consis-
tent with the structure of the source tree as the con-
verted tree. Furthermore, we attempt to use con-
verted trees as additional training data to retrain
the parser for better conversion candidates. The
procedure of tree conversion and parser retraining
will be run iteratively until a stopping condition is
satisfied.

Since some converted trees might be imper-
fect from the perspective of the target grammar,
we provide two strategies to refine conversion re-
sults: (1) pruning low-quality trees from the con-
verted treebank, (2) interpolating the scores from
the source grammar and the target grammar to se-
lect better converted trees. Finally we adopt a cor-
pus weighting technique to get an optimal combi-
nation of the converted treebank and the existing
target treebank for parser training.

We have evaluated our conversion algorithm on
a dependency structure treebank (produced from
the Penn Treebank) for comparison with previous
work (Xia et al., 2008). We also have investi-
gated our two-step solution on two existing tree-
banks, the Penn Chinese Treebank (CTB) (Xue et
al., 2005) and the Chinese Dependency Treebank
(CDT)2 (Liu et al., 2006). Evaluation on WSJ data
demonstrates that it is feasible to use a parser for
grammar formalism conversion and the conversion
benefits from converted trees used for parser re-
training. Our conversion method achieves 93.8%
f-score on dependency trees produced from WSJ
section 22, resulting in 42% error reduction over
the previous best result for DS to PS conversion.
Results on CTB show that score interpolation is

2Available at http://ir.hit.edu.cn/.

more effective than instance pruning for the use
of converted treebanks for parsing and converted
CDT helps parsing on CTB. When coupled with
self-training technique, a reranking parser with
CTB and converted CDT as labeled data achieves
85.2% f-score on CTB test set, an absolute 1.0%
improvement (6% error reduction) over the previ-
ous best result for Chinese parsing.

The rest of this paper is organized as follows. In
Section 2, we first describe a parser based method
for DS to PS conversion, and then we discuss pos-
sible strategies to refine conversion results, and
finally we adopt the corpus weighting technique
for parsing on homogeneous treebanks. Section
3 provides experimental results of grammar for-
malism conversion on a dependency treebank pro-
duced from the Penn Treebank. In Section 4, we
evaluate our two-step solution on two existing het-
erogeneous Chinese treebanks. Section 5 reviews
related work and Section 6 concludes this work.

2 Our Two-Step Solution

2.1 Grammar Formalism Conversion

Previous DS to PS conversion methods built a
converted tree by iteratively attaching nodes and
edges to the tree with the help of conversion
rules and heuristic rules, based on current head-
dependent pair from a source dependency tree and
the structure of the built tree (Collins et al., 1999;
Covington, 1994; Xia and Palmer, 2001; Xia et
al., 2008). Some observations can be made on
these methods: (1) for each head-dependent pair,
only one locally optimal conversion was kept dur-
ing tree-building process, at the risk of pruning
globally optimal conversions, (2) heuristic rules
are required to deal with the problem that one
head-dependent pair might have multiple conver-
sion candidates, and these heuristic rules are usu-
ally hand-crafted to reflect the structural prefer-
ence in their target grammars. To overcome these
limitations, we propose to employ a parser to gen-
erate N-best parses as conversion candidates and
then use the structural information of source trees
to select the best parse as a converted tree.

We formulate our conversion method as fol-
lows.

Let CDS be a source treebank annotated with
DS and CPS be a target treebank annotated with
PS. Our goal is to convert the grammar formalism
of CDS to that of CPS .

We first train a constituency parser on CPS
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Input: CPS , CDS , Q, and a constituency parser Output: Converted trees CDS
PS

1. Initialize:
— Set CDS,0

PS as null, DevScore=0, q=0;
— Split CPS into training set CPS,train and development set CPS,dev;
— Train the parser on CPS,train and denote it by Pq−1;

2. Repeat:
— Use Pq−1 to generate N-best PS parses for each sentence in CDS , and convert PS to DS for each parse;
— For each sentence in CDS Do

¦ t̂=argmaxtScore(xi,t), and select the t̂-th parse as a converted tree for this sentence;
— Let CDS,q

PS represent these converted trees, and let Ctrain=CPS,train
⋃

CDS,q
PS ;

— Train the parser on Ctrain, and denote the updated parser by Pq;
— Let DevScoreq be the f-score of Pq on CPS,dev;
— If DevScoreq > DevScore Then DevScore=DevScoreq, and CDS

PS =CDS,q
PS ;

— Else break;
— q++;
Until q > Q

Table 1: Our algorithm for DS to PS conversion.

(90% trees in CPS as training set CPS,train, and
other trees as development set CPS,dev) and then
let the parser generate N-best parses for each sen-
tence in CDS .

Let n be the number of sentences (or trees) in
CDS and ni be the number of N-best parses gen-
erated by the parser for the i-th (1 ≤ i ≤ n) sen-
tence in CDS . Let xi,t be the t-th (1 ≤ t ≤ ni)
parse for the i-th sentence. Let yi be the tree of the
i-th (1 ≤ i ≤ n) sentence in CDS .

To evaluate the quality of xi,t as a conversion
candidate for yi, we convert xi,t to a dependency
tree (denoted as xDS

i,t ) and then use unlabeled de-
pendency f-score to measure the similarity be-
tween xDS

i,t and yi. Let Score(xi,t) denote the
unlabeled dependency f-score of xDS

i,t against yi.
Then we determine the converted tree for yi by
maximizing Score(xi,t) over the N-best parses.

The conversion from PS to DS works as fol-
lows:

Step 1. Use a head percolation table to find the
head of each constituent in xi,t.

Step 2. Make the head of each non-head child
depend on the head of the head child for each con-
stituent.

Unlabeled dependency f-score is a harmonic
mean of unlabeled dependency precision and unla-
beled dependency recall. Precision measures how
many head-dependent word pairs found in xDS

i,t

are correct and recall is the percentage of head-
dependent word pairs defined in the gold-standard

tree that are found in xDS
i,t . Here we do not take

dependency tags into consideration for evaluation
since they cannot be obtained without more so-
phisticated rules.

To improve the quality of N-best parses, we at-
tempt to use the converted trees as additional train-
ing data to retrain the parser. The procedure of
tree conversion and parser retraining can be run it-
eratively until a termination condition is satisfied.
Here we use the parser’s f-score on CPS,dev as a
termination criterion. If the update of training data
hurts the performance on CPS,dev, then we stop
the iteration.

Table 1 shows this DS to PS conversion algo-
rithm. Q is an upper limit of the number of loops,
and Q ≥ 0.

2.2 Target Grammar Parsing

Through grammar formalism conversion, we have
successfully turned the problem of using hetero-
geneous treebanks for parsing into the problem of
parsing on homogeneous treebanks. Before using
converted source treebank for parsing, we present
two strategies to refine conversion results.

Instance Pruning For some sentences in
CDS , the parser might fail to generate high qual-
ity N-best parses, resulting in inferior converted
trees. To clean the converted treebank, we can re-
move the converted trees with low unlabeled de-
pendency f-scores (defined in Section 2.1) before
using the converted treebank for parser training

48



Figure 1: A parse tree in CTB for a sentence of
/­.<world> �<every> I<country> <
¬<people> Ñ<all> r<with> 81<eyes>
Ý �<cast> � l<Hong Kong>0with
/People from all over the world are cast-
ing their eyes on Hong Kong0as its English
translation.

because these trees are/misleading0training in-
stances. The number of removed trees will be de-
termined by cross validation on development set.

Score Interpolation Unlabeled dependency
f-scores used in Section 2.1 measure the quality of
converted trees from the perspective of the source
grammar only. In extreme cases, the top best
parses in the N-best list are good conversion can-
didates but we might select a parse ranked quite
low in the N-best list since there might be con-
flicts of syntactic structure definition between the
source grammar and the target grammar.

Figure 1 shows an example for illustration of
a conflict between the grammar of CDT and
that of CTB. According to Chinese head percola-
tion tables used in the PS to DS conversion tool
/Penn2Malt03 and Charniak’s parser4, the head
of VP-2 is the word /r0(a preposition, with
/BA0as its POS tag in CTB), and the head of
IP-OBJ is Ý�0. Therefore the word /Ý
�0depends on the word/r0. But according
to the annotation scheme in CDT (Liu et al., 2006),
the word/r0is a dependent of the word/Ý
�0. The conflicts between the two grammars
may lead to the problem that the selected parses
based on the information of the source grammar
might not be preferred from the perspective of the

3Available at http://w3.msi.vxu.se/∼nivre/.
4Available at http://www.cs.brown.edu/∼ec/.

target grammar.
Therefore we modified the selection metric in

Section 2.1 by interpolating two scores, the prob-
ability of a conversion candidate from the parser
and its unlabeled dependency f-score, shown as
follows:

̂Score(xi,t) = λ×Prob(xi,t)+(1−λ)×Score(xi,t). (1)

The intuition behind this equation is that converted
trees should be preferred from the perspective of
both the source grammar and the target grammar.
Here 0 ≤ λ ≤ 1. Prob(xi,t) is a probability pro-
duced by the parser for xi,t (0 ≤ Prob(xi,t) ≤ 1).
The value of λ will be tuned by cross validation on
development set.

After grammar formalism conversion, the prob-
lem now we face has been limited to how to build
parsing models on multiple homogeneous tree-
bank. A possible solution is to simply concate-
nate the two treebanks as training data. However
this method may lead to a problem that if the size
of CPS is significantly less than that of converted
CDS , converted CDS may weaken the effect CPS

might have. One possible solution is to reduce the
weight of examples from converted CDS in parser
training. Corpus weighting is exactly such an ap-
proach, with the weight tuned on development set,
that will be used for parsing on homogeneous tree-
banks in this paper.

3 Experiments of Grammar Formalism
Conversion

3.1 Evaluation on WSJ section 22

Xia et al. (2008) used WSJ section 19 from the
Penn Treebank to extract DS to PS conversion
rules and then produced dependency trees from
WSJ section 22 for evaluation of their DS to PS
conversion algorithm. They showed that their
conversion algorithm outperformed existing meth-
ods on the WSJ data. For comparison with their
work, we conducted experiments in the same set-
ting as theirs: using WSJ section 19 (1844 sen-
tences) as CPS , producing dependency trees from
WSJ section 22 (1700 sentences) as CDS

5, and
using labeled bracketing f-scores from the tool
/EVALB0on WSJ section 22 for performance
evaluation.

5We used the tool/Penn2Malt0to produce dependency
structures from the Penn Treebank, which was also used for
PS to DS conversion in our conversion algorithm.
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All the sentences
DevScore LR LP F

Models (%) (%) (%) (%)
The best result of
Xia et al. (2008) - 90.7 88.1 89.4

Q-0-method 86.8 92.2 92.8 92.5
Q-10-method 88.0 93.4 94.1 93.8

Table 2: Comparison with the work of Xia et al.
(2008) on WSJ section 22.

All the sentences
DevScore LR LP F

Models (%) (%) (%) (%)
Q-0-method 91.0 91.6 92.5 92.1

Q-10-method 91.6 93.1 94.1 93.6

Table 3: Results of our algorithm on WSJ section
2∼18 and 20∼22.

We employed Charniak’s maximum entropy in-
spired parser (Charniak, 2000) to generate N-best
(N=200) parses. Xia et al. (2008) used POS
tag information, dependency structures and depen-
dency tags in test set for conversion. Similarly, we
used POS tag information in the test set to restrict
search space of the parser for generation of better
N-best parses.

We evaluated two variants of our DS to PS con-
version algorithm:

Q-0-method: We set the value of Q as 0 for a
baseline method.

Q-10-method: We set the value of Q as 10 to
see whether it is helpful for conversion to retrain
the parser on converted trees.

Table 2 shows the results of our conversion al-
gorithm on WSJ section 22. In the experiment
of Q-10-method, DevScore reached the highest
value of 88.0% when q was 1. Then we used
CDS,1

PS as the conversion result. Finally Q-10-
method achieved an f-score of 93.8% on WSJ sec-
tion 22, an absolute 4.4% improvement (42% er-
ror reduction) over the best result of Xia et al.
(2008). Moreover, Q-10-method outperformed Q-
0-method on the same test set. These results indi-
cate that it is feasible to use a parser for DS to PS
conversion and the conversion benefits from the
use of converted trees for parser retraining.

3.2 Evaluation on WSJ section 2∼18 and
20∼22

In this experiment we evaluated our conversion al-
gorithm on a larger test set, WSJ section 2∼18 and
20∼22 (totally 39688 sentences). Here we also
used WSJ section 19 as CPS . Other settings for

All the sentences
LR LP F

Training data (%) (%) (%)
1× CTB + CDT PS 84.7 85.1 84.9
2× CTB + CDT PS 85.1 85.6 85.3
5× CTB + CDT PS 85.0 85.5 85.3
10× CTB + CDT PS 85.3 85.8 85.6
20× CTB + CDT PS 85.1 85.3 85.2
50× CTB + CDT PS 84.9 85.3 85.1

Table 4: Results of the generative parser on the de-
velopment set, when trained with various weight-
ing of CTB training set and CDTPS .

this experiment are as same as that in Section 3.1,
except that here we used a larger test set.

Table 3 provides the f-scores of our method with
Q equal to 0 or 10 on WSJ section 2∼18 and
20∼22.

With Q-10-method, DevScore reached the high-
est value of 91.6% when q was 1. Finally Q-
10-method achieved an f-score of 93.6% on WSJ
section 2∼18 and 20∼22, better than that of Q-0-
method and comparable with that of Q-10-method
in Section 3.1. It confirms our previous finding
that the conversion benefits from the use of con-
verted trees for parser retraining.

4 Experiments of Parsing

We investigated our two-step solution on two ex-
isting treebanks, CDT and CTB, and we used CDT
as the source treebank and CTB as the target tree-
bank.

CDT consists of 60k Chinese sentences, anno-
tated with POS tag information and dependency
structure information (including 28 POS tags, and
24 dependency tags) (Liu et al., 2006). We did not
use POS tag information as inputs to the parser in
our conversion method due to the difficulty of con-
version from CDT POS tags to CTB POS tags.

We used a standard split of CTB for perfor-
mance evaluation, articles 1-270 and 400-1151 as
training set, articles 301-325 as development set,
and articles 271-300 as test set.

We used Charniak’s maximum entropy inspired
parser and their reranker (Charniak and Johnson,
2005) for target grammar parsing, called a gener-
ative parser (GP) and a reranking parser (RP) re-
spectively. We reported ParseVal measures from
the EVALB tool.
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All the sentences
LR LP F

Models Training data (%) (%) (%)
GP CTB 79.9 82.2 81.0
RP CTB 82.0 84.6 83.3
GP 10× CTB + CDT PS 80.4 82.7 81.5
RP 10× CTB + CDT PS 82.8 84.7 83.8

Table 5: Results of the generative parser (GP) and
the reranking parser (RP) on the test set, when
trained on only CTB training set or an optimal
combination of CTB training set and CDTPS .

4.1 Results of a Baseline Method to Use CDT
We used our conversion algorithm6 to convert the
grammar formalism of CDT to that of CTB. Let
CDTPS denote the converted CDT by our method.
The average unlabeled dependency f-score of trees
in CDTPS was 74.4%, and their average index in
200-best list was 48.

We tried the corpus weighting method when
combining CDTPS with CTB training set (abbre-
viated as CTB for simplicity) as training data, by
gradually increasing the weight (including 1, 2, 5,
10, 20, 50) of CTB to optimize parsing perfor-
mance on the development set. Table 4 presents
the results of the generative parser with various
weights of CTB on the development set. Consid-
ering the performance on the development set, we
decided to give CTB a relative weight of 10.

Finally we evaluated two parsing models, the
generative parser and the reranking parser, on the
test set, with results shown in Table 5. When
trained on CTB only, the generative parser and the
reranking parser achieved f-scores of 81.0% and
83.3%. The use of CDTPS as additional training
data increased f-scores of the two models to 81.5%
and 83.8%.

4.2 Results of Two Strategies for a Better Use
of CDT

4.2.1 Instance Pruning
We used unlabeled dependency f-score of each
converted tree as the criterion to rank trees in
CDTPS and then kept only the top M trees
with high f-scores as training data for pars-
ing, resulting in a corpus CDTPS

M . M var-
ied from 100%×|CDTPS | to 10%×|CDTPS |
with 10%×|CDTPS | as the interval. |CDTPS |

6The setting for our conversion algorithm in this experi-
ment was as same as that in Section 3.1. In addition, we used
CTB training set as CPS,train, and CTB development set as
CPS,dev .

All the sentences
LR LP F

Models Training data (%) (%) (%)
GP CTB + CDT PS

λ 81.4 82.8 82.1
RP CTB + CDT PS

λ 83.0 85.4 84.2

Table 6: Results of the generative parser and the
reranking parser on the test set, when trained on
an optimal combination of CTB training set and
converted CDT.

is the number of trees in CDTPS . Then
we tuned the value of M by optimizing the
parser’s performance on the development set with
10×CTB+CDTPS

M as training data. Finally the op-
timal value of M was 100%×|CDT|. It indicates
that even removing very few converted trees hurts
the parsing performance. A possible reason is that
most of non-perfect parses can provide useful syn-
tactic structure information for building parsing
models.

4.2.2 Score Interpolation
We used ̂Score(xi,t)

7 to replace Score(xi,t) in
our conversion algorithm and then ran the updated
algorithm on CDT. Let CDTPS

λ denote the con-
verted CDT by this updated conversion algorithm.
The values of λ (varying from 0.0 to 1.0 with 0.1
as the interval) and the CTB weight (including 1,
2, 5, 10, 20, 50) were simultaneously tuned on the
development set8. Finally we decided that the op-
timal value of λ was 0.4 and the optimal weight of
CTB was 1, which brought the best performance
on the development set (an f-score of 86.1%). In
comparison with the results in Section 4.1, the
average index of converted trees in 200-best list
increased to 2, and their average unlabeled depen-
dency f-score dropped to 65.4%. It indicates that
structures of converted trees become more consis-
tent with the target grammar, as indicated by the
increase of average index of converted trees, fur-
ther away from the source grammar.

Table 6 provides f-scores of the generative
parser and the reranker on the test set, when
trained on CTB and CDTPS

λ . We see that the
performance of the reranking parser increased to

7Before calculating ̂Score(xi,t), we normal-
ized the values of Prob(xi,t) for each N-best list
by (1) Prob(xi,t)=Prob(xi,t)-Min(Prob(xi,∗)),
(2)Prob(xi,t)=Prob(xi,t)/Max(Prob(xi,∗)), resulting
in that their maximum value was 1 and their minimum value
was 0.

8Due to space constraint, we do not show f-scores of the
parser with different values of λ and the CTB weight.
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All the sentences
LR LP F

Models Training data (%) (%) (%)
Self-trained GP 10×T+10×D+P 83.0 84.5 83.7

Updated RP CTB+CDT PS
λ 84.3 86.1 85.2

Table 7: Results of the self-trained gen-
erative parser and updated reranking parser
on the test set. 10×T+10×D+P stands for
10×CTB+10×CDTPS

λ +PDC.

84.2% f-score, better than the result of the rerank-
ing parser with CTB and CDTPS as training data
(shown in Table 5). It indicates that the use of
probability information from the parser for tree
conversion helps target grammar parsing.

4.3 Using Unlabeled Data for Parsing

Recent studies on parsing indicate that the use of
unlabeled data by self-training can help parsing
on the WSJ data, even when labeled data is rel-
atively large (McClosky et al., 2006a; Reichart
and Rappoport, 2007). It motivates us to em-
ploy self-training technique for Chinese parsing.
We used the POS tagged People Daily corpus9

(Jan. 1998∼Jun. 1998, and Jan. 2000∼Dec.
2000) (PDC) as unlabeled data for parsing. First
we removed the sentences with less than 3 words
or more than 40 words from PDC to ease pars-
ing, resulting in 820k sentences. Then we ran the
reranking parser in Section 4.2.2 on PDC and used
the parses on PDC as additional training data for
the generative parser. Here we tried the corpus
weighting technique for an optimal combination
of CTB, CDTPS

λ and parsed PDC, and chose the
relative weight of both CTB and CDTPS

λ as 10
by cross validation on the development set. Fi-
nally we retrained the generative parser on CTB,
CDTPS

λ and parsed PDC. Furthermore, we used
this self-trained generative parser as a base parser
to retrain the reranker on CTB and CDTPS

λ .
Table 7 shows the performance of self-trained

generative parser and updated reranker on the test
set, with CTB and CDTPS

λ as labeled data. We see
that the use of unlabeled data by self-training fur-
ther increased the reranking parser’s performance
from 84.2% to 85.2%. Our results on Chinese data
confirm previous findings on English data shown
in (McClosky et al., 2006a; Reichart and Rap-
poport, 2007).

9Available at http://icl.pku.edu.cn/.

4.4 Comparison with Previous Studies for
Chinese Parsing

Table 8 and 9 present the results of previous stud-
ies on CTB. All the works in Table 8 used CTB
articles 1-270 as labeled data. In Table 9, Petrov
and Klein (2007) trained their model on CTB ar-
ticles 1-270 and 400-1151, and Burkett and Klein
(2008) used the same CTB articles and parse trees
of their English translation (from the English Chi-
nese Translation Treebank) as training data. Com-
paring our result in Table 6 with that of Petrov
and Klein (2007), we see that CDTPS

λ helps pars-
ing on CTB, which brought 0.9% f-score improve-
ment. Moreover, the use of unlabeled data further
boosted the parsing performance to 85.2%, an ab-
solute 1.0% improvement over the previous best
result presented in Burkett and Klein (2008).

5 Related Work

Recently there have been some studies address-
ing how to use treebanks with same grammar for-
malism for domain adaptation of parsers. Roark
and Bachiani (2003) presented count merging and
model interpolation techniques for domain adap-
tation of parsers. They showed that their sys-
tem with count merging achieved a higher perfor-
mance when in-domain data was weighted more
heavily than out-of-domain data. McClosky et al.
(2006b) used self-training and corpus weighting to
adapt their parser trained on WSJ corpus to Brown
corpus. Their results indicated that both unla-
beled in-domain data and labeled out-of-domain
data can help domain adaptation. In comparison
with these works, we conduct our study in a dif-
ferent setting where we work with multiple het-
erogeneous treebanks.

Grammar formalism conversion makes it possi-
ble to reuse existing source treebanks for the study
of target grammar parsing. Wang et al. (1994)
employed a parser to help conversion of a tree-
bank from a simple phrase structure to a more in-
formative phrase structure and then used this con-
verted treebank to train their parser. Collins et al.
(1999) performed statistical constituency parsing
of Czech on a treebank that was converted from
the Prague Dependency Treebank under the guid-
ance of conversion rules and heuristic rules, e.g.,
one level of projection for any category, minimal
projection for any dependents, and fixed position
of attachment. Xia and Palmer (2001) adopted bet-
ter heuristic rules to build converted trees, which
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≤ 40 words All the sentences
LR LP F LR LP F

Models (%) (%) (%) (%) (%) (%)
Bikel & Chiang (2000) 76.8 77.8 77.3 - - -
Chiang & Bikel (2002) 78.8 81.1 79.9 - - -

Levy & Manning (2003) 79.2 78.4 78.8 - - -
Bikel’s thesis (2004) 78.0 81.2 79.6 - - -
Xiong et. al. (2005) 78.7 80.1 79.4 - - -
Chen et. al. (2005) 81.0 81.7 81.2 76.3 79.2 77.7
Wang et. al. (2006) 79.2 81.1 80.1 76.2 78.0 77.1

Table 8: Results of previous studies on CTB with CTB articles 1-270 as labeled data.

≤ 40 words All the sentences
LR LP F LR LP F

Models (%) (%) (%) (%) (%) (%)
Petrov & Klein (2007) 85.7 86.9 86.3 81.9 84.8 83.3
Burkett & Klein (2008) - - - - - 84.2

Table 9: Results of previous studies on CTB with more labeled data.

reflected the structural preference in their target
grammar. For acquisition of better conversion
rules, Xia et al. (2008) proposed to automati-
cally extract conversion rules from a target tree-
bank. Moreover, they presented two strategies to
solve the problem that there might be multiple
conversion rules matching the same input depen-
dency tree pattern: (1) choosing the most frequent
rules, (2) preferring rules that add fewer number
of nodes and attach the subtree lower.

In comparison with the works of Wang et al.
(1994) and Collins et al. (1999), we went fur-
ther by combining the converted treebank with the
existing target treebank for parsing. In compar-
ison with previous conversion methods (Collins
et al., 1999; Covington, 1994; Xia and Palmer,
2001; Xia et al., 2008) in which for each head-
dependent pair, only one locally optimal conver-
sion was kept during tree-building process, we
employed a parser to generate globally optimal
syntactic structures, eliminating heuristic rules for
conversion. In addition, we used converted trees to
retrain the parser for better conversion candidates,
while Wang et al. (1994) did not exploit the use of
converted trees for parser retraining.

6 Conclusion

We have proposed a two-step solution to deal with
the issue of using heterogeneous treebanks for
parsing. First we present a parser based method
to convert grammar formalisms of the treebanks to
the same one, without applying predefined heuris-
tic rules, thus turning the original problem into the
problem of parsing on homogeneous treebanks.

Then we present two strategies, instance pruning
and score interpolation, to refine conversion re-
sults. Finally we adopt the corpus weighting tech-
nique to combine the converted source treebank
with the existing target treebank for parser train-
ing.

The study on the WSJ data shows the benefits of
our parser based approach for grammar formalism
conversion. Moreover, experimental results on the
Penn Chinese Treebank indicate that a converted
dependency treebank helps constituency parsing,
and it is better to exploit probability information
produced by the parser through score interpolation
than to prune low quality trees for the use of the
converted treebank.

Future work includes further investigation of
our conversion method for other pairs of grammar
formalisms, e.g., from the grammar formalism of
the Penn Treebank to more deep linguistic formal-
ism like CCG, HPSG, or LFG.

References
Anne Abeille, Lionel Clement and Francois Toussenel. 2000.

Building a Treebank for French. In Proceedings of LREC
2000, pages 87-94.

Daniel Bikel and David Chiang. 2000. Two Statistical Pars-
ing Models Applied to the Chinese Treebank. In Proceed-
ings of the Second SIGHAN workshop, pages 1-6.

Daniel Bikel. 2004. On the Parameter Space of Generative
Lexicalized Statistical Parsing Models. Ph.D. thesis, Uni-
versity of Pennsylvania.

Alena Bohmova, Jan Hajic, Eva Hajicova and Barbora
Vidova-Hladka. 2003. The Prague Dependency Tree-
bank: A Three-Level Annotation Scenario. Treebanks:

53



Building and Using Annotated Corpora. Kluwer Aca-
demic Publishers, pages 103-127.

Thorsten Brants, Wojciech Skut and Hans Uszkoreit. 1999.
Syntactic Annotation of a German Newspaper Corpus. In
Proceedings of the ATALA Treebank Workshop, pages 69-
76.

David Burkett and Dan Klein. 2008. Two Languages are
Better than One (for Syntactic Parsing). In Proceedings of
EMNLP 2008, pages 877-886.

Eugene Charniak. 2000. A Maximum Entropy Inspired
Parser. In Proceedings of NAACL 2000, pages 132-139.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-Fine
N-Best Parsing and MaxEnt Discriminative Reranking. In
Proceedings of ACL 2005, pages 173-180.

Ying Chen, Hongling Sun and Dan Jurafsky. 2005. A Cor-
rigendum to Sun and Jurafsky (2004) Shallow Semantic
Parsing of Chinese. University of Colorado at Boulder
CSLR Tech Report TR-CSLR-2005-01.

David Chiang and Daniel M. Bikel. 2002. Recovering La-
tent Information in Treebanks. In Proceedings of COL-
ING 2002, pages 1-7.

Micheal Collins, Lance Ramshaw, Jan Hajic and Christoph
Tillmann. 1999. A Statistical Parser for Czech. In Pro-
ceedings of ACL 1999, pages 505-512.

Micheal Covington. 1994. GB Theory as Dependency
Grammar. Research Report AI-1992-03.

Martin Forst. 2003. Treebank Conversion - Establishing
a Testsuite for a Broad-Coverage LFG from the TIGER
Treebank. In Proceedings of LINC at EACL 2003, pages
25-32.

Chunghye Han, Narae Han, Eonsuk Ko and Martha Palmer.
2002. Development and Evaluation of a Korean Treebank
and its Application to NLP. In Proceedings of LREC 2002,
pages 1635-1642.

Sadao Kurohashi and Makato Nagao. 1998. Building a
Japanese Parsed Corpus While Improving the Parsing Sys-
tem. In Proceedings of LREC 1998, pages 719-724.

Roger Levy and Christopher Manning. 2003. Is It Harder to
Parse Chinese, or the Chinese Treebank? In Proceedings
of ACL 2003, pages 439-446.

Ting Liu, Jinshan Ma and Sheng Li. 2006. Building a Depen-
dency Treebank for Improving Chinese Parser. Journal of
Chinese Language and Computing, 16(4):207-224.

Mitchell P. Marcus, Beatrice Santorini and Mary Ann
Marcinkiewicz. 1993. Building a Large Annotated Cor-
pus of English: The Penn Treebank. Computational Lin-
guistics, 19(2):313-330.

David McClosky, Eugene Charniak and Mark Johnson.
2006a. Effective Self-Training for Parsing. In Proceed-
ings of NAACL 2006, pages 152-159.

David McClosky, Eugene Charniak and Mark Johnson.
2006b. Reranking and Self-Training for Parser Adapta-
tion. In Proceedings of COLING/ACL 2006, pages 337-
344.

Antonio Moreno, Susana Lopez, Fernando Sanchez and
Ralph Grishman. 2003. Developing a Syntactic Anno-
tation Scheme and Tools for a Spanish Treebank. Tree-
banks: Building and Using Annotated Corpora. Kluwer
Academic Publishers, pages 149-163.

Slav Petrov and Dan Klein. 2007. Improved Inference for
Unlexicalized Parsing. In Proceedings of HLT/NAACL
2007, pages 404-411.

Roi Reichart and Ari Rappoport. 2007. Self-Training for En-
hancement and Domain Adaptation of Statistical Parsers
Trained on Small Datasets. In Proceedings of ACL 2007,
pages 616-623.

Brian Roark and Michiel Bacchiani. 2003. Supervised and
Unsupervised PCFG Adaptation to Novel Domains. In
Proceedings of HLT/NAACL 2003, pages 126-133.

Jong-Nae Wang, Jing-Shin Chang and Keh-Yih Su. 1994.
An Automatic Treebank Conversion Algorithm for Corpus
Sharing. In Proceedings of ACL 1994, pages 248-254.

Mengqiu Wang, Kenji Sagae and Teruko Mitamura. 2006. A
Fast, Accurate Deterministic Parser for Chinese. In Pro-
ceedings of COLING/ACL 2006, pages 425-432.

Stephen Watkinson and Suresh Manandhar. 2001. Translat-
ing Treebank Annotation for Evaluation. In Proceedings
of ACL Workshop on Evaluation Methodologies for Lan-
guage and Dialogue Systems, pages 1-8.

Fei Xia and Martha Palmer. 2001. Converting Dependency
Structures to Phrase Structures. In Proceedings of HLT
2001, pages 1-5.

Fei Xia, Rajesh Bhatt, Owen Rambow, Martha Palmer
and Dipti Misra. Sharma. 2008. Towards a Multi-
Representational Treebank. In Proceedings of the 7th In-
ternational Workshop on Treebanks and Linguistic Theo-
ries, pages 159-170.

Deyi Xiong, Shuanglong Li, Qun Liu, Shouxun Lin and
Yueliang Qian. 2005. Parsing the Penn Chinese Tree-
bank with Semantic Knowledge. In Proceedings of IJC-
NLP 2005, pages 70-81.

Nianwen Xue, Fei Xia, Fu-Dong Chiou and Martha Palmer.
2005. The Penn Chinese TreeBank: Phrase Structure An-
notation of a Large Corpus. Natural Language Engineer-
ing, 11(2):207-238.

54



Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 55–63,
Suntec, Singapore, 2-7 August 2009. c©2009 ACL and AFNLP

Cross Language Dependency Parsing using a Bilingual Lexicon∗

Hai Zhao(赵赵赵海海海)†‡, Yan Song(宋宋宋彦彦彦)†, Chunyu Kit†, Guodong Zhou‡
†Department of Chinese, Translation and Linguistics

City University of Hong Kong
83 Tat Chee Avenue, Kowloon, Hong Kong, China
‡School of Computer Science and Technology
Soochow University, Suzhou, China 215006

{haizhao,yansong,ctckit}@cityu.edu.hk, gdzhou@suda.edu.cn

Abstract
This paper proposes an approach to en-
hance dependency parsing in a language
by using a translated treebank from an-
other language. A simple statistical ma-
chine translation method, word-by-word
decoding, where not a parallel corpus but
a bilingual lexicon is necessary, is adopted
for the treebank translation. Using an en-
semble method, the key information ex-
tracted from word pairs with dependency
relations in the translated text is effectively
integrated into the parser for the target lan-
guage. The proposed method is evaluated
in English and Chinese treebanks. It is
shown that a translated English treebank
helps a Chinese parser obtain a state-of-
the-art result.

1 Introduction

Although supervised learning methods bring state-
of-the-art outcome for dependency parser infer-
ring (McDonald et al., 2005; Hall et al., 2007), a
large enough data set is often required for specific
parsing accuracy according to this type of meth-
ods. However, to annotate syntactic structure, ei-
ther phrase- or dependency-based, is a costly job.
Until now, the largest treebanks1 in various lan-
guages for syntax learning are with around one
million words (or some other similar units). Lim-
ited data stand in the way of further performance
enhancement. This is the case for each individual
language at least. But, this is not the case as we
observe all treebanks in different languages as a
whole. For example, of ten treebanks for CoNLL-
2007 shared task, none includes more than 500K

∗The study is partially supported by City University of
Hong Kong through the Strategic Research Grant 7002037
and 7002388. The first author is sponsored by a research fel-
lowship from CTL, City University of Hong Kong.

1It is a tradition to call an annotated syntactic corpus as
treebank in parsing community.

tokens, while the sum of tokens from all treebanks
is about two million (Nivre et al., 2007).

As different human languages or treebanks
should share something common, this makes it
possible to let dependency parsing in multiple lan-
guages be beneficial with each other. In this pa-
per, we study how to improve dependency parsing
by using (automatically) translated texts attached
with transformed dependency information. As a
case study, we consider how to enhance a Chinese
dependency parser by using a translated English
treebank. What our method relies on is not the
close relation of the chosen language pair but the
similarity of two treebanks, this is the most differ-
ent from the previous work.

Two main obstacles are supposed to confront in
a cross-language dependency parsing task. The
first is the cost of translation. Machine translation
has been shown one of the most expensive lan-
guage processing tasks, as a great deal of time and
space is required to perform this task. In addition,
a standard statistical machine translation method
based on a parallel corpus will not work effec-
tively if it is not able to find a parallel corpus that
right covers source and target treebanks. How-
ever, dependency parsing focuses on the relations
of word pairs, this allows us to use a dictionary-
based translation without assuming a parallel cor-
pus available, and the training stage of translation
may be ignored and the decoding will be quite fast
in this case. The second difficulty is that the out-
puts of translation are hardly qualified for the pars-
ing purpose. The most challenge in this aspect is
morphological preprocessing. We regard that the
morphological issue should be handled aiming at
the specific language, our solution here is to use
character-level features for a target language like
Chinese.

The rest of the paper is organized as follows.
The next section presents some related existing
work. Section 3 describes the procedure on tree-
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bank translation and dependency transformation.
Section 4 describes a dependency parser for Chi-
nese as a baseline. Section 5 describes how a
parser can be strengthened from the translated
treebank. The experimental results are reported in
Section 6. Section 7 looks into a few issues con-
cerning the conditions that the proposed approach
is suitable for. Section 8 concludes the paper.

2 The Related Work

As this work is about exploiting extra resources to
enhance an existing parser, it is related to domain
adaption for parsing that has been draw some in-
terests in recent years. Typical domain adaptation
tasks often assume annotated data in new domain
absent or insufficient and a large scale unlabeled
data available. As unlabeled data are concerned,
semi-supervised or unsupervised methods will be
naturally adopted. In previous works, two basic
types of methods can be identified to enhance an
existing parser from additional resources. The first
is usually focus on exploiting automatic generated
labeled data from the unlabeled data (Steedman
et al., 2003; McClosky et al., 2006; Reichart and
Rappoport, 2007; Sagae and Tsujii, 2007; Chen
et al., 2008), the second is on combining super-
vised and unsupervised methods, and only unla-
beled data are considered (Smith and Eisner, 2006;
Wang and Schuurmans, 2008; Koo et al., 2008).

Our purpose in this study is to obtain a further
performance enhancement by exploiting treebanks
in other languages. This is similar to the above
first type of methods, some assistant data should
be automatically generated for the subsequent pro-
cessing. The differences are what type of data are
concerned with and how they are produced. In our
method, a machine translation method is applied
to tackle golden-standard treebank, while all the
previous works focus on the unlabeled data.

Although cross-language technique has been
used in other natural language processing tasks,
it is basically new for syntactic parsing as few
works were concerned with this issue. The rea-
son is straightforward, syntactic structure is too
complicated to be properly translated and the cost
of translation cannot be afforded in many cases.
However, we empirically find this difficulty may
be dramatically alleviated as dependencies rather
than phrases are used for syntactic structure repre-
sentation. Even the translation outputs are not so
good as the expected, a dependency parser for the

target language can effectively make use of them
by only considering the most related information
extracted from the translated text.

The basic idea to support this work is to make
use of the semantic connection between different
languages. In this sense, it is related to the work of
(Merlo et al., 2002) and (Burkett and Klein, 2008).
The former showed that complementary informa-
tion about English verbs can be extracted from
their translations in a second language (Chinese)
and the use of multilingual features improves clas-
sification performance of the English verbs. The
latter iteratively trained a model to maximize the
marginal likelihood of tree pairs, with alignments
treated as latent variables, and then jointly parsing
bilingual sentences in a translation pair. The pro-
posed parser using features from monolingual and
mutual constraints helped its log-linear model to
achieve better performance for both monolingual
parsers and machine translation system. In this
work, cross-language features will be also adopted
as the latter work. However, although it is not es-
sentially different, we only focus on dependency
parsing itself, while the parsing scheme in (Bur-
kett and Klein, 2008) based on a constituent rep-
resentation.

Among of existing works that we are aware of,
we regard that the most similar one to ours is (Ze-
man and Resnik, 2008), who adapted a parser to a
new language that is much poorer in linguistic re-
sources than the source language. However, there
are two main differences between their work and
ours. The first is that they considered a pair of suf-
ficiently related languages, Danish and Swedish,
and made full use of the similar characteristics of
two languages. Here we consider two quite dif-
ferent languages, English and Chinese. As fewer
language properties are concerned, our approach
holds the more possibility to be extended to other
language pairs than theirs. The second is that a
parallel corpus is required for their work and a
strict statistical machine translation procedure was
performed, while our approach holds a merit of
simplicity as only a bilingual lexicon is required.

3 Treebank Translation and Dependency
Transformation

3.1 Data

As a case study, this work will be conducted be-
tween the source language, English, and the tar-
get language, Chinese, namely, we will investigate
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how a translated English treebank enhances a Chi-
nese dependency parser.

For English data, the Penn Treebank (PTB) 3
is used. The constituency structures is converted
to dependency trees by using the same rules as
(Yamada and Matsumoto, 2003) and the standard
training/development/test split is used. However,
only training corpus (sections 2-21) is used for
this study. For Chinese data, the Chinese Treebank
(CTB) version 4.0 is used in our experiments. The
same rules for conversion and the same data split
is adopted as (Wang et al., 2007): files 1-270 and
400-931 as training, 271-300 as testing and files
301-325 as development. We use the gold stan-
dard segmentation and part-of-speech (POS) tags
in both treebanks.

As a bilingual lexicon is required for our task
and none of existing lexicons are suitable for trans-
lating PTB, two lexicons, LDC Chinese-English
Translation Lexicon Version 2.0 (LDC2002L27),
and an English to Chinese lexicon in StarDict2,
are conflated, with some necessary manual exten-
sions, to cover 99% words appearing in the PTB
(the most part of the untranslated words are named
entities.). This lexicon includes 123K entries.

3.2 Translation
A word-by-word statistical machine translation
strategy is adopted to translate words attached
with the respective dependency information from
the source language to the target one. In detail, a
word-based decoding is used, which adopts a log-
linear framework as in (Och and Ney, 2002) with
only two features, translation model and language
model,

P (c|e) =
exp[

∑2
i=1 λihi(c, e)]

∑

c exp[
∑2

i=1 λihi(c, e)]

Where

h1(c, e) = log(pγ(c|e))

is the translation model, which is converted from
the bilingual lexicon, and

h2(c, e) = log(pθ(c))

is the language model, a word trigram model
trained from the CTB. In our experiment, we set
two weights λ1 = λ2 = 1.

2StarDict is an open source dictionary software, available
at http://stardict.sourceforge.net/.

The conversion process of the source treebank
is completed by three steps as the following:
1. Bind POS tag and dependency relation of a
word with itself;
2. Translate the PTB text into Chinese word by
word. Since we use a lexicon rather than a parallel
corpus to estimate the translation probabilities, we
simply assign uniform probabilities to all transla-
tion options. Thus the decoding process is actu-
ally only determined by the language model. Sim-
ilar to the “bag translation” experiment in (Brown
et al., 1990), the candidate target sentences made
up by a sequence of the optional target words are
ranked by the trigram language model. The output
sentence will be generated only if it is with maxi-
mum probability as follows,

c = argmax{pθ(c)pγ(c|e)}
= argmax pθ(c)

= argmax
∏

pθ(wc)

A beam search algorithm is used for this process
to find the best path from all the translation op-
tions; As the training stage, especially, the most
time-consuming alignment sub-stage, is skipped,
the translation only includes a decoding procedure
that takes about 4.5 hours for about one million
words of the PTB in a 2.8GHz PC.
3. After the target sentence is generated, the at-
tached POS tags and dependency information of
each English word will also be transferred to each
corresponding Chinese word. As word order is of-
ten changed after translation, the pointer of each
dependency relationship, represented by a serial
number, should be re-calculated.

Although we try to perform an exact word-by-
word translation, this aim cannot be fully reached
in fact, as the following case is frequently encoun-
tered, multiple English words have to be translated
into one Chinese word. To solve this problem,
we use a policy that lets the output Chinese word
only inherits the attached information of the high-
est syntactic head in the original multiple English
words.

4 Dependency Parsing: Baseline

4.1 Learning Model and Features
According to (McDonald and Nivre, 2007), all
data-driven models for dependency parsing that
have been proposed in recent years can be de-
scribed as either graph-based or transition-based.
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Table 1: Feature Notations

Notation Meaning
s The word in the top of stack
s′ The first word below the top of stack.
s−1,s1... The first word before(after) the word

in the top of stack.
i, i+1,... The first (second) word in the

unprocessed sequence, etc.
dir Dependent direction
h Head
lm Leftmost child
rm Rightmost child
rn Right nearest child
form word form
pos POS tag of word
cpos1 coarse POS: the first letter of POS tag of word
cpos2 coarse POS: the first two POS tags of word
lnverb the left nearest verb
char1 The first character of a word
char2 The first two characters of a word
char−1 The last character of a word
char−2 The last two characters of a word
. ’s, i.e., ‘s.dprel’ means dependent label

of character in the top of stack
+ Feature combination, i.e., ‘s.char+i.char’

means both s.char and i.char work as a
feature function.

Although the former will be also used as compari-
son, the latter is chosen as the main parsing frame-
work by this study for the sake of efficiency. In de-
tail, a shift-reduce method is adopted as in (Nivre,
2003), where a classifier is used to make a parsing
decision step by step. In each step, the classifier
checks a word pair, namely, s, the top of a stack
that consists of the processed words, and, i, the
first word in the (input) unprocessed sequence, to
determine if a dependent relation should be estab-
lished between them. Besides two dependency arc
building actions, a shift action and a reduce ac-
tion are also defined to maintain the stack and the
unprocessed sequence. In this work, we adopt a
left-to-right arc-eager parsing model, that means
that the parser scans the input sequence from left
to right and right dependents are attached to their
heads as soon as possible (Hall et al., 2007).

While memory-based and margin-based learn-
ing approaches such as support vector machines
are popularly applied to shift-reduce parsing, we
apply maximum entropy model as the learning
model for efficient training and adopting over-
lapped features as our work in (Zhao and Kit,
2008), especially, those character-level ones for
Chinese parsing. Our implementation of maxi-
mum entropy adopts L-BFGS algorithm for pa-
rameter optimization as usual.

With notations defined in Table 1, a feature set
as shown in Table 2 is adopted. Here, we explain
some terms in Tables 1 and 2. We used a large
scale feature selection approach as in (Zhao et al.,
2009) to obtain the feature set in Table 2. Some
feature notations in this paper are also borrowed
from that work.

The feature curroot returns the root of a par-
tial parsing tree that includes a specified node.
The feature charseq returns a character sequence
whose members are collected from all identified
children for a specified word.

In Table 2, as for concatenating multiple sub-
strings into a feature string, there are two ways,
seq and bag. The former is to concatenate all sub-
strings without do something special. The latter
will remove all duplicated substrings, sort the rest
and concatenate all at last.

Note that we systemically use a group of
character-level features. Surprisingly, as to our
best knowledge, this is the first report on using this
type of features in Chinese dependency parsing.
Although (McDonald et al., 2005) used the pre-
fix of each word form instead of word form itself
as features, character-level features here for Chi-
nese is essentially different from that. As Chinese
is basically a character-based written language.
Character plays an important role in many means,
most characters can be formed as single-character
words, and Chinese itself is character-order free
rather than word-order free to some extent. In ad-
dition, there is often a close connection between
the meaning of a Chinese word and its first or last
character.

4.2 Parsing using a Beam Search Algorithm

In Table 2, the feature preactn returns the previous
parsing action type, and the subscript n stands for
the action order before the current action. These
are a group of Markovian features. Without this
type of features, a shift-reduce parser may directly
scan through an input sequence in linear time.
Otherwise, following the work of (Duan et al.,
2007) and (Zhao, 2009), the parsing algorithm is
to search a parsing action sequence with the max-
imal probability.

Sdi
= argmax

∏

i

p(di|di−1di−2...),

where Sdi
is the object parsing action sequence,

p(di|di−1...) is the conditional probability, and di
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Figure 1: A comparison before and after translation

Table 2: Features for Parsing
in.form, n = 0, 1
i.form + i1.form
in.char2 + in+1.char2, n = −1, 0
i.char−1 + i1.char−1

in.char−2 n = 0, 3
i1.char−2 + i2.char−2 +i3.char−2

i.lnverb.char−2

i3.pos
in.pos + in+1.pos, n = 0, 1
i−2.cpos1 + i−1.cpos1
i1.cpos1 + i2.cpos1 + i3.cpos1
s′2.char1

s′.char−2 + s′1.char−2

s′−2.cpos2
s′−1.cpos2 + s′1.cpos2
s′.cpos2 + s′1.cpos2
s’.children.cpos2.seq
s’.children.dprel.seq
s’.subtree.depth
s′.h.form + s′.rm.cpos1
s′.lm.char2 + s′.char2

s.h.children.dprel.seq
s.lm.dprel
s.char−2 + i1.char−2

s.charn + i.charn, n = −1, 1
s−1.pos + i1.pos
s.pos + in.pos, n = −1, 0, 1
s : i|linePath.form.bag
s′.form + i.form
s′.char2 + in.char2, n = −1, 0, 1
s.curroot.pos + i.pos
s.curroot.char2 + i.char2

s.children.cpos2.seq + i.children.cpos2.seq
s.children.cpos2.seq + i.children.cpos2.seq
+ s.cpos2 + i.cpos2
s′.children.dprel.seq + i.children.dprel.seq
preact−1

preact−2

preact−2+preact−1

is i-th parsing action. We use a beam search algo-
rithm to find the object parsing action sequence.

5 Exploiting the Translated Treebank

As we cannot expect too much for a word-by-word
translation, only word pairs with dependency rela-
tion in translated text are extracted as useful and
reliable information. Then some features based
on a query in these word pairs according to the
current parsing state (namely, words in the cur-
rent stack and input) will be derived to enhance
the Chinese parser.

A translation sample can be seen in Figure 1.
Although most words are satisfactorily translated,
to generate effective features, what we still have to
consider at first is the inconsistence between the
translated text and the target text.

In Chinese, word lemma is always its word form
itself, this is a convenient characteristic in com-
putational linguistics and makes lemma features
unnecessary for Chinese parsing at all. However,
Chinese has a special primary processing task, i.e.,
word segmentation. Unfortunately, word defini-
tions for Chinese are not consistent in various lin-
guistical views, for example, seven segmentation
conventions for computational purpose are for-
mally proposed since the first Bakeoff3.

Note that CTB or any other Chinese treebank
has its own word segmentation guideline. Chi-
nese word should be strictly segmented according
to the guideline before POS tags and dependency
relations are annotated. However, as we say the

3Bakeoff is a Chinese processing share task held by
SIGHAN.
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English treebank is translated into Chinese word
by word, Chinese words in the translated text are
exactly some entries from the bilingual lexicon,
they are actually irregular phrases, short sentences
or something else rather than words that follows
any existing word segmentation convention. If the
bilingual lexicon is not carefully selected or re-
fined according to the treebank where the Chinese
parser is trained from, then there will be a serious
inconsistence on word segmentation conventions
between the translated and the target treebanks.

As all concerned feature values here are calcu-
lated from the searching result in the translated
word pair list according to the current parsing
state, and a complete and exact match cannot be
always expected, our solution to the above seg-
mentation issue is using a partial matching strat-
egy based on characters that the words include.

Above all, a translated word pair list, L, is ex-
tracted from the translated treebank. Each item in
the list consists of three elements, dependant word
(dp), head word (hd) and the frequency of this pair
in the translated treebank, f .

There are two basic strategies to organize the
features derived from the translated word pair list.
The first is to find the most matching word pair
in the list and extract some properties from it,
such as the matched length, part-of-speech tags
and so on, to generate features. Note that a
matching priority serial should be defined afore-
hand in this case. The second is to check every
matching models between the current parsing state
and the partially matched word pair. In an early
version of our approach, the former was imple-
mented. However, It is proven to be quite inef-
ficient in computation. Thus we adopt the sec-
ond strategy at last. Two matching model fea-
ture functions, φ(·) and ψ(·), are correspondingly
defined as follows. The return value of φ(·) or
ψ(·) is the logarithmic frequency of the matched
item. There are four input parameters required
by the function φ(·). Two parameters of them
are about which part of the stack(input) words is
chosen, and other two are about which part of
each item in the translated word pair is chosen.
These parameters could be set to full or charn as
shown in Table 1, where n = ...,−2,−1, 1, 2, ....
For example, a possible feature could be
φ(s.full, i.char1, dp.full, hd.char1), it tries to
find a match in L by comparing stack word and
dp word, and the first character of input word

Table 3: Features based on the translated treebank

φ(i.char3, s
′.full, dp.char3, hd.full)+i.char3

+s′.form
φ(i.char3, s.char2, dp.char3, hd.char2)+s.char2

φ(i.char3, s.full, dp.char3, hd.char2)+s.form
ψ(s′.char−2, hd.char−2, head)+i.pos+s′.pos
φ(i.char3, s.full, dp.char3, hd.char2)+s.full
φ(s′.full, i.char4, dp.full, hd.char4)+s′.pos+i.pos
ψ(i.full, hd.char2, root)+i.pos+s.pos
ψ(i.full, hd.char2, root)+i.pos+s′.pos
ψ(s.full, dp.full, dependant)+i.pos
pairscore(s′.pos, i.pos)+s′.form+i.form
rootscore(s′.pos)+s′.form+i.form
rootscore(s′.pos)+i.pos

and the first character of hd word. If such
a match item in L is found, then φ(·) returns
log(f). There are three input parameters required
by the function ψ(·). One parameter is about
which part of the stack(input) words is chosen,
and the other is about which part of each item
in the translated word pair is chosen. The third
is about the matching type that may be set to
dependant, head, or root. For example, the
function ψ(i.char1, hd.full, root) tries to find a
match in L by comparing the first character of in-
put word and the whole dp word. If such a match
item in L is found, then ψ(·) returns log(f) as hd
occurs as ROOT f times.

As having observed that CTB and PTB share a
similar POS guideline. A POS pair list from PTB
is also extract. Two types of features, rootscore
and pairscore are used to make use of such infor-
mation. Both of them returns the logarithmic value
of the frequency for a given dependent event. The
difference is, rootscore counts for the given POS
tag occurring as ROOT, and pairscore counts for
two POS tag combination occurring for a depen-
dent relationship.

A full adapted feature list that is derived from
the translated word pairs is in Table 3.

6 Evaluation Results

The quality of the parser is measured by the pars-
ing accuracy or the unlabeled attachment score
(UAS), i.e., the percentage of tokens with correct
head. Two types of scores are reported for compar-
ison: “UAS without p” is the UAS score without
all punctuation tokens and “UAS with p” is the one
with all punctuation tokens.

The results with different feature sets are in Ta-
ble 4. As the features preactn are involved, a
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beam search algorithm with width 5 is used for
parsing, otherwise, a simple shift-reduce decoding
is used. It is observed that the features derived
from the translated text bring a significant perfor-
mance improvement as high as 1.3%.

Table 4: The results with different feature sets
features with p without p

baseline -d 0.846 0.858
+da 0.848 0.860

+Tb -d 0.859 0.869
+d 0.861 0.870

a+d: using three Markovian features preact and
beam search decoding.

b+T: using features derived from the translated text
as in Table 3.

To compare our parser to the state-of-the-art
counterparts, we use the same testing data as
(Wang et al., 2005) did, selecting the sentences
length up to 40. Table 5 shows the results achieved
by other researchers and ours (UAS with p), which
indicates that our parser outperforms any other
ones 4. However, our results is only slightly better
than that of (Chen et al., 2008) as only sentences
whose lengths are less than 40 are considered. As
our full result is much better than the latter, this
comparison indicates that our approach improves
the performance for those longer sentences.

Table 5: Comparison against the state-of-the-art
full up to 40

(McDonald and Pereira, 2006)a - 0.825
(Wang et al., 2007) - 0.866
(Chen et al., 2008) 0.852 0.884

Ours 0.861 0.889
aThis results was reported in (Wang et al., 2007).

The experimental results in (McDonald and
Nivre, 2007) show a negative impact on the pars-
ing accuracy from too long dependency relation.
For the proposed method, the improvement rela-
tive to dependency length is shown in Figure 2.
From the figure, it is seen that our method gives
observable better performance when dependency
lengths are larger than 4. Although word order is
changed, the results here show that the useful in-
formation from the translated treebank still help
those long distance dependencies.

4There is a slight exception: using the same data splitting,
(Yu et al., 2008) reported UAS without p as 0.873 versus ours,
0.870.
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Figure 2: Performance vs. dependency length

7 Discussion

If a treebank in the source language can help im-
prove parsing in the target language, then there
must be something common between these two
languages, or more precisely, these two corre-
sponding treebanks. (Zeman and Resnik, 2008)
assumed that the morphology and syntax in the
language pair should be very similar, and that is
so for the language pair that they considered, Dan-
ish and Swedish, two very close north European
languages. Thus it is somewhat surprising that
we show a translated English treebank may help
Chinese parsing, as English and Chinese even be-
long to two different language systems. However,
it will not be so strange if we recognize that PTB
and CTB share very similar guidelines on POS and
syntactics annotation. Since it will be too abstract
in discussing the details of the annotation guide-
lines, we look into the similarities of two treebanks
from the matching degree of two word pair lists.
The reason is that the effectiveness of the proposed
method actually relies on how many word pairs at
every parsing states can find their full or partial
matched partners in the translated word pair list.
Table 6 shows such a statistics on the matching
degree distribution from all training samples for
Chinese parsing. The statistics in the table suggest
that most to-be-check word pairs during parsing
have a full or partial hitting in the translated word
pair list. The latter then obtains an opportunity to
provide a great deal of useful guideline informa-
tion to help determine how the former should be
tackled. Therefore we have cause for attributing
the effectiveness of the proposed method to the
similarity of these two treebanks. From Table 6,
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we also find that the partial matching strategy de-
fined in Section 5 plays a very important role in
improving the whole matching degree. Note that
our approach is not too related to the characteris-
tics of two languages. Our discussion here brings
an interesting issue, which difference is more im-
portant in cross language processing, between two
languages themselves or the corresponding anno-
tated corpora? This may be extensively discussed
in the future work.

Table 6: Matching degree distribution
dependant-match head-match Percent (%)

None None 9.6
None Partial 16.2
None Full 9.9
Partial None 12.4
Partial Partial 42.6
Partial Full 7.3
Full None 3.7
Full Partial 7.0
Full Full 0.2

Note that only a bilingual lexicon is adopted in
our approach. We regard it one of the most mer-
its for our approach. A lexicon is much easier to
be obtained than an annotated corpus. One of the
remained question about this work is if the bilin-
gual lexicon should be very specific for this kind
of tasks. According to our experiences, actually, it
is not so sensitive to choose a highly refined lexi-
con or not. We once found many words, mostly
named entities, were outside the lexicon. Thus
we managed to collect a named entity translation
dictionary to enhance the original one. However,
this extra effort did not receive an observable per-
formance improvement in return. Finally we re-
alize that a lexicon that can guarantee two word
pair lists highly matched is sufficient for this work,
and this requirement may be conveniently satis-
fied only if the lexicon consists of adequate high-
frequent words from the source treebank.

8 Conclusion and Future Work

We propose a method to enhance dependency
parsing in one language by using a translated tree-
bank from another language. A simple statisti-
cal machine translation technique, word-by-word
decoding, where only a bilingual lexicon is nec-
essary, is used to translate the source treebank.
As dependency parsing is concerned with the re-
lations of word pairs, only those word pairs with
dependency relations in the translated treebank are

chosen to generate some additional features to en-
hance the parser for the target language. The ex-
perimental results in English and Chinese tree-
banks show the proposed method is effective and
helps the Chinese parser in this work achieve a
state-of-the-art result.

Note that our method is evaluated in two tree-
banks with a similar annotation style and it avoids
using too many linguistic properties. Thus the
method is in the hope of being used in other simi-
larly annotated treebanks 5. For an immediate ex-
ample, we may adopt a translated Chinese tree-
bank to improve English parsing. Although there
are still something to do, the remained key work
has been as simple as considering how to deter-
mine the matching strategy for searching the trans-
lated word pair list in English according to the
framework of our method. .
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Abstract

Freer-word-order languages such as Ger-
man exhibit linguistic phenomena that
present unique challenges to traditional
CFG parsing. Such phenomena produce
discontinuous constituents, which are not
naturally modelled by projective phrase
structure trees. In this paper, we exam-
ine topological field parsing, a shallow
form of parsing which identifies the ma-
jor sections of a sentence in relation to
the clausal main verb and the subordinat-
ing heads. We report the results of topo-
logical field parsing of German using the
unlexicalized, latent variable-based Berke-
ley parser (Petrov et al., 2006) Without
any language- or model-dependent adapta-
tion, we achieve state-of-the-art results on
the TüBa-D/Z corpus, and a modified NE-
GRA corpus that has been automatically
annotated with topological fields (Becker
and Frank, 2002). We also perform a qual-
itative error analysis of the parser output,
and discuss strategies to further improve
the parsing results.

1 Introduction

Freer-word-order languages such as German ex-
hibit linguistic phenomena that present unique
challenges to traditional CFG parsing. Topic focus
ordering and word order constraints that are sen-
sitive to phenomena other than grammatical func-
tion produce discontinuous constituents, which are
not naturally modelled by projective (i.e., with-
out crossing branches) phrase structure trees. In
this paper, we examine topological field parsing, a
shallow form of parsing which identifies the ma-
jor sections of a sentence in relation to the clausal
main verb and subordinating heads, when present.
We report the results of parsing German using

the unlexicalized, latent variable-based Berkeley
parser (Petrov et al., 2006). Without any language-
or model-dependent adaptation, we achieve state-
of-the-art results on the TüBa-D/Z corpus (Telljo-
hann et al., 2004), with a F1-measure of 95.15%
using gold POS tags. A further reranking of
the parser output based on a constraint involv-
ing paired punctuation produces a slight additional
performance gain. To facilitate comparison with
previous work, we also conducted experiments on
a modified NEGRA corpus that has been automat-
ically annotated with topological fields (Becker
and Frank, 2002), and found that the Berkeley
parser outperforms the method described in that
work. Finally, we perform a qualitative error anal-
ysis of the parser output on the TüBa-D/Z corpus,
and discuss strategies to further improve the pars-
ing results.

German syntax and parsing have been studied
using a variety of grammar formalisms. Hocken-
maier (2006) has translated the German TIGER
corpus (Brants et al., 2002) into a CCG-based
treebank to model word order variations in Ger-
man. Foth et al. (2004) consider a version of de-
pendency grammars known as weighted constraint
dependency grammars for parsing German sen-
tences. On the NEGRA corpus (Skut et al., 1998),
they achieve an accuracy of 89.0% on parsing de-
pendency edges. In Callmeier (2000), a platform
for efficient HPSG parsing is developed. This
parser is later extended by Frank et al. (2003)
with a topological field parser for more efficient
parsing of German. The system by Rohrer and
Forst (2006) produces LFG parses using a manu-
ally designed grammar and a stochastic parse dis-
ambiguation process. They test on the TIGER cor-
pus and achieve an F1-measure of 84.20%. In
Dubey and Keller (2003), PCFG parsing of NE-
GRA is improved by using sister-head dependen-
cies, which outperforms standard head lexicaliza-
tion as well as an unlexicalized model. The best
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performing model with gold tags achieve an F1

of 75.60%. Sister-head dependencies are useful in
this case because of the flat structure of NEGRA’s
trees.

In contrast to the deeper approaches to parsing
described above, topological field parsing identi-
fies the major sections of a sentence in relation
to the clausal main verb and subordinating heads,
when present. Like other forms of shallow pars-
ing, topological field parsing is useful as the first
stage to further processing and eventual seman-
tic analysis. As mentioned above, the output of
a topological field parser is used as a guide to
the search space of a HPSG parsing algorithm in
Frank et al. (2003). In Neumann et al. (2000),
topological field parsing is part of a divide-and-
conquer strategy for shallow analysis of German
text with the goal of improving an information ex-
traction system.

Existing work in identifying topological fields
can be divided into chunkers, which identify the
lowest-level non-recursive topological fields, and
parsers, which also identify sentence and clausal
structure.

Veenstra et al. (2002) compare three approaches
to topological field chunking based on finite state
transducers, memory-based learning, and PCFGs
respectively. It is found that the three techniques
perform about equally well, with F1 of 94.1% us-
ing POS tags from the TnT tagger, and 98.4% with
gold tags. In Liepert (2003), a topological field
chunker is implemented using a multi-class ex-
tension to the canonically two-class support vec-
tor machine (SVM) machine learning framework.
Parameters to the machine learning algorithm are
fine-tuned by a genetic search algorithm, with a
resulting F1-measure of 92.25%. Training the pa-
rameters to SVM does not have a large effect on
performance, increasing the F1-measure in the test
set by only 0.11%.

The corpus-based, stochastic topological field
parser of Becker and Frank (2002) is based on
a standard treebank PCFG model, in which rule
probabilities are estimated by frequency counts.
This model includes several enhancements, which
are also found in the Berkeley parser. First,
they use parameterized categories, splitting non-
terminals according to linguistically based intu-
itions, such as splitting different clause types (they
do not distinguish different clause types as basic
categories, unlike TüBa-D/Z). Second, they take

into account punctuation, which may help iden-
tify clause boundaries. They also binarize the very
flat topological tree structures, and prune rules
that only occur once. They test their parser on a
version of the NEGRA corpus, which has been
annotated with topological fields using a semi-
automatic method.

Ule (2003) proposes a process termed Directed
Treebank Refinement (DTR). The goal of DTR is
to refine a corpus to improve parsing performance.
DTR is comparable to the idea of latent variable
grammars on which the Berkeley parser is based,
in that both consider the observed treebank to be
less than ideal and both attempt to refine it by split-
ting and merging nonterminals. In this work, split-
ting and merging nonterminals are done by consid-
ering the nonterminals’ contexts (i.e., their parent
nodes) and the distribution of their productions.
Unlike in the Berkeley parser, splitting and merg-
ing are distinct stages, rather than parts of a sin-
gle iteration. Multiple splits are found first, then
multiple rounds of merging are performed. No
smoothing is done. As an evaluation, DTR is ap-
plied to topological field parsing of the TüBa-D/Z
corpus. We discuss the performance of these topo-
logical field parsers in more detail below.

All of the topological parsing proposals pre-
date the advent of the Berkeley parser. The exper-
iments of this paper demonstrate that the Berke-
ley parser outperforms previous methods, many of
which are specialized for the task of topological
field chunking or parsing.

2 Topological Field Model of German

Topological fields are high-level linear fields in
an enclosing syntactic region, such as a clause
(Höhle, 1983). These fields may have constraints
on the number of words or phrases they contain,
and do not necessarily form a semantically co-
herent constituent. Although it has been argued
that a few languages have no word-order con-
straints whatsoever, most “free word-order” lan-
guages (even Warlpiri) have at the very least some
sort of sentence- or clause-initial topic field fol-
lowed by a second position that is occupied by
clitics, a finite verb or certain complementizers
and subordinating conjunctions. In a few Ger-
manic languages, including German, the topology
is far richer than that, serving to identify all of
the components of the verbal head of a clause,
except for some cases of long-distance dependen-
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cies. Topological fields are useful, because while
Germanic word order is relatively free with respect
to grammatical functions, the order of the topolog-
ical fields is strict and unvarying.

Type Fields
VL (KOORD) (C) (MF) VC (NF)
V1 (KOORD) (LV) LK (MF) (VC) (NF)
V2 (KOORD) (LV) VF LK (MF) (VC) (NF)

Table 1: Topological field model of German.
Simplified from TüBa-D/Z corpus’s annotation
schema (Telljohann et al., 2006).

In the German topological field model, clauses
belong to one of three types: verb-last (VL), verb-
second (V2), and verb-first (V1), each with a spe-
cific sequence of topological fields (Table 1). VL
clauses include finite and non-finite subordinate
clauses, V2 sentences are typically declarative
sentences and WH-questions in matrix clauses,
and V1 sentences include yes-no questions, and
certain conditional subordinate clauses. Below,
we give brief descriptions of the most common
topological fields.

• VF (Vorfeld or ‘pre-field’) is the first con-
stituent in sentences of the V2 type. This is
often the topic of the sentence, though as an
anonymous reviewer pointed out, this posi-
tion does not correspond to a single function
with respect to information structure. (e.g.,
the reviewer suggested this case, where VF
contains the focus: –Wer kommt zur Party?
–Peter kommt zur Party. –Who is coming to
the Party? –Peter is coming to the party.)

• LK (Linke Klammer or ‘left bracket’) is the
position for finite verbs in V1 and V2 sen-
tences. It is replaced by a complementizer
with the field label C in VL sentences.

• MF (Mittelfeld or ‘middle field’) is an op-
tional field bounded on the left by LK and
on the right by the verbal complex VC or
by NF. Most verb arguments, adverbs, and
prepositional phrases are found here, unless
they have been fronted and put in the VF, or
are prosodically heavy and postposed to the
NF field.

• VC is the verbal complex field. It includes
infinite verbs, as well as finite verbs in VL
sentences.

• NF (Nachfeld or ‘post-field’) contains
prosodically heavy elements such as post-
posed prepositional phrases or relative
clauses.

• KOORD1 (Koordinationsfeld or ‘coordina-
tion field’) is a field for clause-level conjunc-
tions.

• LV (Linksversetzung or ‘left dislocation’) is
used for resumptive constructions involving
left dislocation. For a detailed linguistic
treatment, see (Frey, 2004).

Exceptions to the topological field model as de-
scribed above do exist. For instance, parenthetical
constructions exist as a mostly syntactically inde-
pendent clause inside another sentence. In our cor-
pus, they are attached directly underneath a clausal
node without any intervening topological field, as
in the following example. In this example, the par-
enthetical construction is highlighted in bold print.
Some clause and topological field labels under the
NF field are omitted for clarity.

(1) (a) (SIMPX “(VF Man) (LK muß) (VC verstehen) ”
, (SIMPX sagte er), “ (NF daß diese
Minderheiten seit langer Zeit massiv von den
Nazis bedroht werden)). ”

(b) Translation: “One must understand,” he said,
“that these minorities have been massively
threatened by the Nazis for a long time.”

3 A Latent Variable Parser

For our experiments, we used the latent variable-
based Berkeley parser (Petrov et al., 2006). La-
tent variable parsing assumes that an observed
treebank represents a coarse approximation of
an underlying, optimally refined grammar which
makes more fine-grained distinctions in the syn-
tactic categories. For example, the noun phrase
category NP in a treebank could be viewed as a
coarse approximation of two noun phrase cate-
gories corresponding to subjects and object, NPˆS,
and NPˆVP.

The Berkeley parser automates the process of
finding such distinctions. It starts with a simple bi-
narized X-bar grammar style backbone, and goes
through iterations of splitting and merging non-
terminals, in order to maximize the likelihood of
the training set treebank. In the splitting stage,

1The TüBa-D/Z corpus distinguishes coordinating and
non-coordinating particles, as well as clausal and field co-
ordination. These distinctions need not concern us for this
explanation.
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Figure 1: “I could never have done that just for aesthetic reasons.” Sample TüBa-D/Z tree, with topolog-
ical field annotations and edge labels. Topological field layer in bold.

an Expectation-Maximization algorithm is used to
find a good split for each nonterminal. In the
merging stage, categories that have been over-
split are merged together to keep the grammar size
tractable and reduce sparsity. Finally, a smoothing
stage occurs, where the probabilities of rules for
each nonterminal are smoothed toward the prob-
abilities of the other nonterminals split from the
same syntactic category.

The Berkeley parser has been applied to the
TüBaD/Z corpus in the constituent parsing shared
task of the ACL-2008 Workshop on Parsing Ger-
man (Petrov and Klein, 2008), achieving an F1-
measure of 85.10% and 83.18% with and without
gold standard POS tags respectively2. We chose
the Berkeley parser for topological field parsing
because it is known to be robust across languages,
and because it is an unlexicalized parser. Lexi-
calization has been shown to be useful in more
general parsing applications due to lexical depen-
dencies in constituent parsing (e.g. (Kübler et al.,
2006; Dubey and Keller, 2003) in the case of Ger-
man). However, topological fields explain a higher
level of structure pertaining to clause-level word
order, and we hypothesize that lexicalization is un-
likely to be helpful.

4 Experiments

4.1 Data
For our experiments, we primarily used the TüBa-
D/Z (Tübinger Baumbank des Deutschen / Schrift-
sprache) corpus, consisting of 26116 sentences
(20894 training, 2611 development, 2089 test,
with a further 522 sentences held out for future ex-

2This evaluation considered grammatical functions as
well as the syntactic category.

periments)3 taken from the German newspaper die
tageszeitung. The corpus consists of four levels
of annotation: clausal, topological, phrasal (other
than clausal), and lexical. We define the task of
topological field parsing to be recovering the first
two levels of annotation, following Ule (2003).

We also tested the parser on a version of the NE-
GRA corpus derived by Becker and Frank (2002),
in which syntax trees have been made projec-
tive and topological fields have been automatically
added through a series of linguistically informed
tree modifications. All internal phrasal structure
nodes have also been removed. The corpus con-
sists of 20596 sentences, which we split into sub-
sets of the same size as described by Becker and
Frank (2002)4. The set of topological fields in
this corpus differs slightly from the one used in
TüBa-D/Z, making no distinction between clause
types, nor consistently marking field or clause
conjunctions. Because of the automatic anno-
tation of topological fields, this corpus contains
numerous annotation errors. Becker and Frank
(2002) manually corrected their test set and eval-
uated the automatic annotation process, reporting
labelled precision and recall of 93.0% and 93.6%
compared to their manual annotations. There are
also punctuation-related errors, including miss-
ing punctuation, sentences ending in commas, and
sentences composed of single punctuation marks.
We test on this data in order to provide a bet-
ter comparison with previous work. Although we
could have trained the model in Becker and Frank
(2002) on the TüBa-D/Z corpus, it would not have

3These are the same splits into training, development, and
test sets as in the ACL-08 Parsing German workshop. This
corpus does not include sentences of length greater than 40.

416476 training sentences, 1000 development, 1058 test-
ing, and 2062 as held-out data. We were unable to obtain
the exact subsets used by Becker and Frank (2002). We will
discuss the ramifications of this on our evaluation procedure.
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Gold tags Edge labels LP% LR% F1% CB CB0% CB ≤ 2% EXACT%
- - 93.53 93.17 93.35 0.08 94.59 99.43 79.50
+ - 95.26 95.04 95.15 0.07 95.35 99.52 83.86
- + 92.38 92.67 92.52 0.11 92.82 99.19 77.79
+ + 92.36 92.60 92.48 0.11 92.82 99.19 77.64

Table 2: Parsing results for topological fields and clausal constituents on the TüBa-D/Z corpus.

been a fair comparison, as the parser depends quite
heavily on NEGRA’s annotation scheme. For ex-
ample, TüBa-D/Z does not contain an equiva-
lent of the modified NEGRA’s parameterized cat-
egories; there exist edge labels in TüBaD/Z, but
they are used to mark head-dependency relation-
ships, not subtypes of syntactic categories.

4.2 Results
We first report the results of our experiments on
the TüBa-D/Z corpus. For the TüBa-D/Z corpus,
we trained the Berkeley parser using the default
parameter settings. The grammar trainer attempts
six iterations of splitting, merging, and smoothing
before returning the final grammar. Intermediate
grammars after each step are also saved. There
were training and test sentences without clausal
constituents or topological fields, which were ig-
nored by the parser and by the evaluation. As
part of our experiment design, we investigated the
effect of providing gold POS tags to the parser,
and the effect of incorporating edge labels into the
nonterminal labels for training and parsing. In all
cases, gold annotations which include gold POS
tags were used when training the parser.

We report the standard PARSEVAL measures
of parser performance in Table 2, obtained by the
evalb program by Satoshi Sekine and Michael
Collins. This table shows the results after five it-
erations of grammar modification, parameterized
over whether we provide gold POS tags for pars-
ing, and edge labels for training and parsing. The
number of iterations was determined by experi-
ments on the development set. In the evaluation,
we do not consider edge labels in determining
correctness, but do consider punctuation, as Ule
(2003) did. If we ignore punctuation in our evalu-
ation, we obtain an F1-measure of 95.42% on the
best model (+ Gold tags, - Edge labels).

Whether supplying gold POS tags improves
performance depends on whether edge labels are
considered in the grammar. Without edge labels,
gold POS tags improve performance by almost

two points, corresponding to a relative error reduc-
tion of 33%. In contrast, performance is negatively
affected when edge labels are used and gold POS
tags are supplied (i.e., + Gold tags, + Edge la-
bels), making the performance worse than not sup-
plying gold tags. Incorporating edge label infor-
mation does not appear to improve performance,
possibly because it oversplits the initial treebank
and interferes with the parser’s ability to determine
optimal splits for refining the grammar.

Parser LP% LR% F1%
TüBa-D/Z
This work 95.26 95.04 95.15
Ule unknown unknown 91.98
NEGRA - from Becker and Frank (2002)
BF02 (len. ≤ 40) 92.1 91.6 91.8
NEGRA - our experiments
This work (len. ≤ 40) 90.74 90.87 90.81
BF02 (len. ≤ 40) 89.54 88.14 88.83
This work (all) 90.29 90.51 90.40
BF02 (all) 89.07 87.80 88.43

Table 3: BF02 = (Becker and Frank, 2002). Pars-
ing results for topological fields and clausal con-
stituents. Results from Ule (2003) and our results
were obtained using different training and test sets.
The first row of results of Becker and Frank (2002)
are from that paper; the rest were obtained by our
own experiments using that parser. All results con-
sider punctuation in evaluation.

To facilitate a more direct comparison with pre-
vious work, we also performed experiments on the
modified NEGRA corpus. In this corpus, topo-
logical fields are parameterized, meaning that they
are labelled with further syntactic and semantic in-
formation. For example, VF is split into VF-REL
for relative clauses, and VF-TOPIC for those con-
taining topics in a verb-second sentence, among
others. All productions in the corpus have also
been binarized. Tuning the parameter settings on
the development set, we found that parameterized
categories, binarization, and including punctua-
tion gave the best F1 performance. First-order
horizontal and zeroth order vertical markoviza-
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tion after six iterations of splitting, merging, and
smoothing gave the best F1 result of 91.78%. We
parsed the corpus with both the Berkeley parser
and the best performing model of Becker and
Frank (2002).

The results of these experiments on the test set
for sentences of length 40 or less and for all sen-
tences are shown in Table 3. We also show other
results from previous work for reference. We
find that we achieve results that are better than
the model in Becker and Frank (2002) on the test
set. The difference is statistically significant (p =
0.0029, Wilcoxon signed-rank).

The results we obtain using the parser of Becker
and Frank (2002) are worse than the results de-
scribed in that paper. We suggest the following
reasons for this discrepancy. While the test set
used in the paper was manually corrected for eval-
uation, we did not correct our test set, because it
would be difficult to ensure that we adhered to the
same correction guidelines. No details of the cor-
rection process were provided in the paper, and de-
scriptive grammars of German provide insufficient
guidance on many of the examples in NEGRA on
issues such as ellipses, short infinitival clauses,
and expanded participial constructions modifying
nouns. Also, because we could not obtain the ex-
act sets used for training, development, and test-
ing, we had to recreate the sets by randomly split-
ting the corpus.

4.3 Category Specific Results
We now return to the TüBa-D/Z corpus for a
more detailed analysis, and examine the category-
specific results for our best performing model (+
Gold tags, - Edge labels). Overall, Table 4 shows
that the best performing topological field cate-
gories are those that have constraints on the type
of word that is allowed to fill it (finite verbs in
LK, verbs in VC, complementizers and subordi-
nating conjunctions in C). VF, in which only one
constituent may appear, also performs relatively
well. Topological fields that can contain a vari-
able number of heterogeneous constituents, on the
other hand, have poorer F1-measure results. MF,
which is basically defined relative to the positions
of fields on either side of it, is parsed several points
below LK, C, and VC in accuracy. NF, which
contains different kinds of extraposed elements, is
parsed at a substantially worse level.

Poorly parsed categories tend to occur infre-

quently, including LV, which marks a rare re-
sumptive construction; FKOORD, which marks
topological field coordination; and the discourse
marker DM. The other clause-level constituents
(PSIMPX for clauses in paratactic constructions,
RSIMPX for relative clauses, and SIMPX for
other clauses) also perform below average.

Topological Fields
Category # LP% LR% F1%
PARORD 20 100.00 100.00 100.00
VCE 3 100.00 100.00 100.00
LK 2186 99.68 99.82 99.75
C 642 99.53 98.44 98.98
VC 1777 98.98 98.14 98.56
VF 2044 96.84 97.55 97.20
KOORD 99 96.91 94.95 95.92
MF 2931 94.80 95.19 94.99
NF 643 83.52 81.96 82.73
FKOORD 156 75.16 73.72 74.43
LV 17 10.00 5.88 7.41
Clausal Constituents
Category # LP% LR% F1%
SIMPX 2839 92.46 91.97 92.21
RSIMPX 225 91.23 92.44 91.83
PSIMPX 6 100.00 66.67 80.00
DM 28 59.26 57.14 58.18

Table 4: Category-specific results using grammar
with no edge labels and passing in gold POS tags.

4.4 Reranking for Paired Punctuation
While experimenting with the development set
of TüBa-D/Z, we noticed that the parser some-
times returns parses, in which paired punctuation
(e.g. quotation marks, parentheses, brackets) is
not placed in the same clause–a linguistically im-
plausible situation. In these cases, the high-level
information provided by the paired punctuation is
overridden by the overall likelihood of the parse
tree. To rectify this problem, we performed a sim-
ple post-hoc reranking of the 50-best parses pro-
duced by the best parameter settings (+ Gold tags,
- Edge labels), selecting the first parse that places
paired punctuation in the same clause, or return-
ing the best parse if none of the 50 parses satisfy
the constraint. This procedure improved the F1-
measure to 95.24% (LP = 95.39%, LR = 95.09%).

Overall, 38 sentences were parsed with paired
punctuation in different clauses, of which 16 were
reranked. Of the 38 sentences, reranking improved
performance in 12 sentences, did not affect perfor-
mance in 23 sentences (of which 10 already had a
perfect parse), and hurt performance in three sen-
tences. A two-tailed sign test suggests that rerank-
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ing improves performance (p = 0.0352). We dis-
cuss below why sentences with paired punctuation
in different clauses can have perfect parse results.

To investigate the upper-bound in performance
that this form of reranking is able to achieve, we
calculated some statistics on our (+ Gold tags, -
Edge labels) 50-best list. We found that the aver-
age rank of the best scoring parse by F1-measure
is 2.61, and the perfect parse is present for 1649
of the 2088 sentences at an average rank of 1.90.
The oracle F1-measure is 98.12%, indicating that
a more comprehensive reranking procedure might
allow further performance gains.

4.5 Qualitative Error Analysis
As a further analysis, we extracted the worst scor-
ing fifty sentences by F1-measure from the parsed
test set (+ Gold tags, - Edge labels), and compared
them against the gold standard trees, noting the
cause of the error. We analyze the parses before
reranking, to see how frequently the paired punc-
tuation problem described above severely affects a
parse. The major mistakes made by the parser are
summarized in Table 5.

Problem Freq.
Misidentification of Parentheticals 19
Coordination problems 13
Too few SIMPX 10
Paired punctuation problem 9
Other clause boundary errors 7
Other 6
Too many SIMPX 3
Clause type misidentification 2
MF/NF boundary 2
LV 2
VF/MF boundary 2

Table 5: Types and frequency of parser errors in
the fifty worst scoring parses by F1-measure, us-
ing parameters (+ Gold tags, - Edge labels).

Misidentification of Parentheticals Parentheti-
cal constructions do not have any dependencies on
the rest of the sentence, and exist as a mostly syn-
tactically independent clause inside another sen-
tence. They can occur at the beginning, end, or
in the middle of sentences, and are often set off
orthographically by punctuation. The parser has
problems identifying parenthetical constructions,
often positing a parenthetical construction when
that constituent is actually attached to a topolog-
ical field in a neighbouring clause. The follow-
ing example shows one such misidentification in

bracket notation. Clause internal topological fields
are omitted for clarity.

(2) (a) TüBa-D/Z: (SIMPX Weder das Ausmaß der
Schönheit noch der frühere oder spätere
Zeitpunkt der Geburt macht einen der Zwillinge
für eine Mutter mehr oder weniger echt /
authentisch / überlegen).

(b) Parser: (SIMPX Weder das Ausmaß der
Schönheit noch der frühere oder spätere
Zeitpunkt der Geburt macht einen der Zwillinge
für eine Mutter mehr oder weniger echt)
(PARENTHETICAL / authentisch /
überlegen.)

(c) Translation: “Neither the degree of beauty nor
the earlier or later time of birth makes one of the
twins any more or less real/authentic/superior to
a mother.”

We hypothesized earlier that lexicalization is
unlikely to give us much improvement in perfor-
mance, because topological fields work on a do-
main that is higher than that of lexical dependen-
cies such as subcategorization frames. However,
given the locally independent nature of legitimate
parentheticals, a limited form of lexicalization or
some other form of stronger contextual informa-
tion might be needed to improve identification per-
formance.

Coordination Problems The second most com-
mon type of error involves field and clause coordi-
nations. This category includes missing or incor-
rect FKOORD fields, and conjunctions of clauses
that are misidentified. In the following example,
the conjoined MFs and following NF in the cor-
rect parse tree are identified as a single long MF.

(3) (a) TüBa-D/Z: Auf dem europäischen Kontinent
aber hat (FKOORD (MF kein Land und keine
Macht ein derartiges Interesse an guten
Beziehungen zu Rußland) und (MF auch kein
Land solche Erfahrungen im Umgang mit
Rußland)) (NF wie Deutschland).

(b) Parser: Auf dem europäischen Kontinent aber
hat (MF kein Land und keine Macht ein
derartiges Interesse an guten Beziehungen zu
Rußland und auch kein Land solche
Erfahrungen im Umgang mit Rußland wie
Deutschland).

(c) Translation: “On the European continent,
however, no land and no power has such an
interest in good relations with Russia (as
Germany), and also no land (has) such
experience in dealing with Russia as Germany.”

Other Clause Errors Other clause-level errors
include the parser predicting too few or too many
clauses, or misidentifying the clause type. Clauses
are sometimes confused with NFs, and there is one
case of a relative clause being misidentified as a

70



main clause with an intransitive verb, as the finite
verb appears at the end of the clause in both cases.
Some clause errors are tied to incorrect treatment
of elliptical constructions, in which an element
that is inferable from context is missing.

Paired Punctuation Problems with paired
punctuation are the fourth most common type of
error. Punctuation is often a marker of clause
or phrase boundaries. Thus, predicting paired
punctuation incorrectly can lead to incorrect
parses, as in the following example.

(4) (a) “ Auch (SIMPX wenn der Krieg heute ein
Mobilisierungsfaktor ist) ” , so Pau , “ (SIMPX
die Leute sehen , daß man für die Arbeit wieder
auf die Straße gehen muß) . ”

(b) Parser: (SIMPX “ (LV Auch (SIMPX wenn der
Krieg heute ein Mobilisierungsfaktor ist)) ” , so
Pau , “ (SIMPX die Leute sehen , daß man für
die Arbeit wieder auf die Straße gehen muß)) . ”

(c) Translation: “Even if the war is a factor for
mobilization,” said Pau, “the people see, that
one must go to the street for employment again.”

Here, the parser predicts a spurious SIMPX
clause spanning the text of the entire sentence, but
this causes the second pair of quotation marks to
be parsed as belonging to two different clauses.
The parser also predicts an incorrect LV field. Us-
ing the paired punctuation constraint, our rerank-
ing procedure was able to correct these errors.

Surprisingly, there are cases in which paired
punctuation does not belong inside the same
clause in the gold parses. These cases are ei-
ther extended quotations, in which each of the
quotation mark pair occurs in a different sen-
tence altogether, or cases where the second of the
quotation mark pair must be positioned outside
of other sentence-final punctuation due to ortho-
graphic conventions. Sentence-final punctuation
is typically placed outside a clause in this version
of TüBa-D/Z.

Other Issues Other incorrect parses generated
by the parser include problems with the infre-
quently occurring topological fields like LV and
DM, inability to determine the boundary between
MF and NF in clauses without a VC field sepa-
rating the two, and misidentifying appositive con-
structions. Another issue is that although the
parser output may disagree with the gold stan-
dard tree in TüBa-D/Z, the parser output may be
a well-formed topological field parse for the same
sentence with a different interpretation, for ex-
ample because of attachment ambiguity. Each of

the authors independently checked the fifty worst-
scoring parses, and determined whether each parse
produced by the Berkeley parser could be a well-
formed topological parse. Where there was dis-
agreement, we discussed our judgments until we
came to a consensus. Of the fifty parses, we de-
termined that nine, or 18%, could be legitimate
parses. Another five, or 10%, differ from the gold
standard parse only in the placement of punctua-
tion. Thus, the F1-measures we presented above
may be underestimating the parser’s performance.

5 Conclusion and Future Work

In this paper, we examined applying the latent-
variable Berkeley parser to the task of topological
field parsing of German, which aims to identify the
high-level surface structure of sentences. Without
any language or model-dependent adaptation, we
obtained results which compare favourably to pre-
vious work in topological field parsing. We further
examined the results of doing a simple reranking
process, constraining the output parse to put paired
punctuation in the same clause. This reranking
was found to result in a minor performance gain.

Overall, the parser performs extremely well in
identifying the traditional left and right brackets
of the topological field model; that is, the fields
C, LK, and VC. The parser achieves basically per-
fect results on these fields in the TüBa-D/Z corpus,
with F1-measure scores for each at over 98.5%.
These scores are higher than previous work in the
simpler task of topological field chunking. The fo-
cus of future research should thus be on correctly
identifying the infrequently occuring fields and
constructions, with parenthetical constructions be-
ing a particular concern. Possible avenues of fu-
ture research include doing a more comprehensive
discriminative reranking of the parser output. In-
corporating more contextual information might be
helpful to identify discourse-related constructions
such as parentheses, and the DM and LV topolog-
ical fields.
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Köln.
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Abstract

We investigate the task of unsupervised
constituency parsing from bilingual par-
allel corpora. Our goal is to use bilin-
gual cues to learn improved parsing mod-
els for each language and to evaluate these
models on held-out monolingual test data.
We formulate a generative Bayesian model
which seeks to explain the observed par-
allel data through a combination of bilin-
gual and monolingual parameters. To this
end, we adapt a formalism known as un-
ordered tree alignment to our probabilistic
setting. Using this formalism, our model
loosely binds parallel trees while allow-
ing language-specific syntactic structure.
We perform inference under this model us-
ing Markov Chain Monte Carlo and dy-
namic programming. Applying this model
to three parallel corpora (Korean-English,
Urdu-English, and Chinese-English) we
find substantial performance gains over
the CCM model, a strong monolingual
baseline. On average, across a variety of
testing scenarios, our model achieves an
8.8 absolute gain in F-measure. 1

1 Introduction

In this paper we investigate the task of unsuper-
vised constituency parsing when bilingual paral-
lel text is available. Our goal is to improve pars-
ing performance on monolingual test data for each
language by using unsupervised bilingual cues at
training time. Multilingual learning has been suc-
cessful for other linguistic induction tasks such as
lexicon acquisition, morphological segmentation,
and part-of-speech tagging (Genzel, 2005; Snyder
and Barzilay, 2008; Snyder et al., 2008; Snyder

1Code and the outputs of our experiments are available at
http://groups.csail.mit.edu/rbg/code/multiling induction.

et al., 2009). We focus here on the unsupervised
induction of unlabeled constituency brackets. This
task has been extensively studied in a monolingual
setting and has proven to be difficult (Charniak
and Carroll, 1992; Klein and Manning, 2002).

The key premise of our approach is that am-
biguous syntactic structures in one language may
correspond to less uncertain structures in the other
language. For instance, the English sentence I
saw [the student [from MIT]] exhibits the classic
problem of PP-attachment ambiguity. However,
its Urdu translation, literally glossed as I [[MIT of ]
student] saw, uses a genitive phrase that may only
be attached to the adjacent noun phrase. Know-
ing the correspondence between these sentences
should help us resolve the English ambiguity.

One of the main challenges of unsupervised
multilingual learning is to exploit cross-lingual
patterns discovered in data, while still allowing
a wide range of language-specific idiosyncrasies.
To this end, we adapt a formalism known as un-
ordered tree alignment (Jiang et al., 1995) to
a probabilistic setting. Under this formalism,
any two trees can be embedded in an alignment
tree. This alignment tree allows arbitrary parts
of the two trees to diverge in structure, permitting
language-specific grammatical structure to be pre-
served. Additionally, a computational advantage
of this formalism is that the marginalized probabil-
ity over all possible alignments for any two trees
can be efficiently computed with a dynamic pro-
gram in linear time.

We formulate a generative Bayesian model
which seeks to explain the observed parallel data
through a combination of bilingual and mono-
lingual parameters. Our model views each pair
of sentences as having been generated as fol-
lows: First an alignment tree is drawn. Each
node in this alignment tree contains either a soli-
tary monolingual constituent or a pair of coupled
bilingual constituents. For each solitary mono-
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lingual constituent, a sequence of part-of-speech
tags is drawn from a language-specific distribu-
tion. For each pair of coupled bilingual con-
stituents, a pair of part-of-speech sequences are
drawn jointly from a cross-lingual distribution.
Word-level alignments are then drawn based on
the tree alignment. Finally, parallel sentences are
assembled from these generated part-of-speech se-
quences and word-level alignments.

To perform inference under this model, we use
a Metropolis-Hastings within-Gibbs sampler. We
sample pairs of trees and then compute marginal-
ized probabilities over all possible alignments us-
ing dynamic programming.

We test the effectiveness of our bilingual gram-
mar induction model on three corpora of parallel
text: English-Korean, English-Urdu and English-
Chinese. The model is trained using bilingual
data with automatically induced word-level align-
ments, but is tested on purely monolingual data
for each language. In all cases, our model out-
performs a state-of-the-art baseline: the Con-
stituent Context Model (CCM) (Klein and Man-
ning, 2002), sometimes by substantial margins.
On average, over all the testing scenarios that we
studied, our model achieves an absolute increase
in F-measure of 8.8 points, and a 19% reduction
in error relative to a theoretical upper bound.

2 Related Work

The unsupervised grammar induction task has
been studied extensively, mostly in a monolin-
gual setting (Charniak and Carroll, 1992; Stolcke
and Omohundro, 1994; Klein and Manning, 2002;
Seginer, 2007). While PCFGs perform poorly on
this task, the CCM model (Klein and Manning,
2002) has achieved large gains in performance and
is among the state-of-the-art probabilistic models
for unsupervised constituency parsing. We there-
fore use CCM as our basic model of monolingual
syntax.

While there has been some previous work on
bilingual CFG parsing, it has mainly focused on
improving MT systems rather than monolingual
parsing accuracy. Research in this direction was
pioneered by (Wu, 1997), who developed Inver-
sion Transduction Grammars to capture cross-
lingual grammar variations such as phrase re-
orderings. More general formalisms for the same
purpose were later developed (Wu and Wong,
1998; Chiang, 2005; Melamed, 2003; Eisner,

2003; Zhang and Gildea, 2005; Blunsom et al.,
2008). We know of only one study which eval-
uates these bilingual grammar formalisms on the
task of grammar induction itself (Smith and Smith,
2004). Both our model and even the monolingual
CCM baseline yield far higher performance on the
same Korean-English corpus.

Our approach is closer to the unsupervised
bilingual parsing model developed by Kuhn
(2004), which aims to improve monolingual per-
formance. Assuming that trees induced over paral-
lel sentences have to exhibit certain structural reg-
ularities, Kuhn manually specifies a set of rules
for determining when parsing decisions in the two
languages are inconsistent with GIZA++ word-
level alignments. By incorporating these con-
straints into the EM algorithm he was able to im-
prove performance over a monolingual unsuper-
vised PCFG. Still, the performance falls short of
state-of-the-art monolingual models such as the
CCM.

More recently, there has been a body of work
attempting to improve parsing performance by ex-
ploiting syntactically annotated parallel data. In
one strand of this work, annotations are assumed
only in a resource-rich language and are projected
onto a resource-poor language using the parallel
data (Hwa et al., 2005; Xi and Hwa, 2005). In
another strand of work, syntactic annotations are
assumed on both sides of the parallel data, and a
model is trained to exploit the parallel data at test
time as well (Smith and Smith, 2004; Burkett and
Klein, 2008). In contrast to this work, our goal
is to explore the benefits of multilingual grammar
induction in a fully unsupervised setting.

We finally note a recent paper which uses pa-
rameter tying to improve unsupervised depen-
dency parse induction (Cohen and Smith, 2009).
While the primary performance gains occur when
tying related parameters within a language, some
additional benefit is observed through bilingual ty-
ing, even in the absence of a parallel corpus.

3 Model

We propose an unsupervised Bayesian model for
learning bilingual syntactic structure using paral-
lel corpora. Our key premise is that difficult-to-
learn syntactic structures of one language may cor-
respond to simpler or less uncertain structures in
the other language. We treat the part-of-speech
tag sequences of parallel sentences, as well as their
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(i) (ii) (iii)

Figure 1: A pair of trees (i) and two possible alignment trees. In (ii), no empty spaces are inserted, but
the order of one of the original tree’s siblings has been reversed. In (iii), only two pairs of nodes have
been aligned (indicated by arrows) and many empty spaces inserted.

word-level alignments, as observed data. We ob-
tain these word-level alignments using GIZA++
(Och and Ney, 2003).

Our model seeks to explain this observed data
through a generative process whereby two aligned
parse trees are produced jointly. Though they
are aligned, arbitrary parts of the two trees are
permitted to diverge, accommodating language-
specific grammatical structure. In effect, our
model loosely binds the two trees: node-to-node
alignments need only be used where repeated
bilingual patterns can be discovered in the data.

3.1 Tree Alignments

We achieve this loose binding of trees by adapting
unordered tree alignment (Jiang et al., 1995) to a
probabilistic setting. Under this formalism, any
two trees can be aligned using an alignment tree.
The alignment tree embeds the original two trees
within it: each node is labeled by a pair (x, y),
(λ, y), or (x, λ) where x is a node from the first
tree, y is a node from the second tree, and λ is an
empty space. The individual structure of each tree
must be preserved under the embedding with the
exception of sibling order (to allow variations in
phrase and word order).

The flexibility of this formalism can be demon-
strated by two extreme cases: (1) an alignment be-
tween two trees may actually align none of their
individual nodes, instead inserting an empty space
λ for each of the original two trees’ nodes. (2)
if the original trees are isomorphic to one an-
other, the alignment may match their nodes ex-
actly, without inserting any empty spaces. See
Figure 1 for an example.

3.2 Model overview

As our basic model of syntactic structure, we
adopt the Constituent-Context Model (CCM) of
Klein and Manning (2002). Under this model,
the part-of-speech sequence of each span in a sen-
tence is generated either as a constituent yield
— if it is dominated by a node in the tree —
or otherwise as a distituent yield. For example,
in the bracketed sentence [John/NNP [climbed/VB

[the/DT tree/NN]]], the sequence VB DT NN is gen-
erated as a constituent yield, since it constitutes a
complete bracket in the tree. On the other hand,
the sequence VB DT is generated as a distituent,
since it does not. Besides these yields, the con-
texts (two surrounding POS tags) of constituents
and distituents are generated as well. In this exam-
ple, the context of the constituent VB DT NN would
be (NNP, #), while the context of the distituent VB

DT would be (NNP, NN). The CCM model em-
ploys separate multinomial distributions over con-
stituents, distituents, constituent contexts, and dis-
tituent contexts. While this model is deficient —
each observed subsequence of part-of-speech tags
is generated many times over — its performance
is far higher than that of unsupervised PCFGs.

Under our bilingual model, each pair of sen-
tences is assumed to have been generated jointly in
the following way: First, an unlabeled alignment
tree is drawn uniformly from the set of all such
trees. This alignment tree specifies the structure
of each of the two individual trees, as well as the
pairs of nodes which are aligned and those which
are not aligned (i.e. paired with a λ).

For each pair of aligned nodes, a correspond-
ing pair of constituents and contexts are jointly
drawn from a bilingual distribution. For unaligned
nodes (i.e. nodes paired with a λ in the alignment
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tree), a single constituent and context are drawn,
from language-specific distributions. Distituents
and their contexts are also drawn from language-
specific distributions. Finally, word-level align-
ments are drawn based on the structure of the
alignment tree.

In the next two sections, we describe our model
in more formal detail by specifying the parame-
ters and generative process by which sentences are
formed.

3.3 Parameters
Our model employs a number of multinomial dis-
tributions:

• πC
i : over constituent yields of language i,

• πD
i : over distituent yields of language i,

• φC
i : over constituent contexts of language i,

• φD
i : over distituent contexts of language i,

• ω : over pairs of constituent yields, one from
the first language and the other from the sec-
ond language,

• Gzpair : over a finite set of integer val-
ues {−m, . . . ,−2,−1, 0, 1, 2, . . . ,m}, mea-
suring the Giza-score of aligned tree node
pairs (see below),

• Gznode : over a finite set of integer values
{−m, . . . ,−2,−1, 0}, measuring the Giza-
score of unaligned tree nodes (see below).

The first four distributions correspond exactly to
the parameters of the CCM model. Parameter ω is
a “coupling parameter” which measures the com-
patibility of tree-aligned constituent yield pairs.
The final two parameters measure the compatibil-
ity of syntactic alignments with the observed lexi-
cal GIZA++ alignments. Intuitively, aligned nodes
should have a high density of word-level align-
ments between them, and unaligned nodes should
have few lexical alignments.

More formally, consider a tree-aligned node
pair (n1, n2) with corresponding yields (y1, y2).
We call a word-level alignment good if it aligns
a word in y1 with a word in y2. We call a word-
level alignment bad if it aligns a word in y1 with
a word outside y2, or vice versa. The Giza-
score for (n1, n2) is the number of good word
alignments minus the number of bad word align-
ments. For example, suppose the constituent my

long name is node-aligned to its Urdu translation
mera lamba naam. If only the word-pairs my/mera
and name/naam are aligned, then the Giza-score
for this node-alignment would be 2. If however,
the English word long were (incorrectly) aligned
under GIZA++ to some Urdu word outside the cor-
responding constituent, then the score would drop
to 1. This score could even be negative if the num-
ber of bad alignments exceeds those that are good.
Distribution Gzpair provides a probability for these
scores (up to some fixed absolute value).

For an unaligned node n with corresponding
yield y, only bad GIZA++ alignments are possible,
thus the Giza-score for these nodes will always be
zero or negative. Distribution Gznode provides a
probability for these scores (down to some fixed
value). We want our model to find tree alignments
such that both aligned node pairs and unaligned
nodes have high Giza-score.

3.4 Generative Process
Now we describe the stochastic process whereby
the observed parallel sentences and their word-
level alignments are generated, according to our
model.

As the first step in the Bayesian generative pro-
cess, all the multinomial parameters listed in the
previous section are drawn from their conjugate
priors — Dirichlet distributions of appropriate di-
mension. Then, each pair of word-aligned parallel
sentences is generated through the following pro-
cess:

1. A pair of binary trees T1 and T2 along with
an alignment tree A are drawn according to
P (T1, T2, A). A is an alignment tree for T1

and T2 if it can be obtained by the follow-
ing steps: First insert blank nodes (labeled by
λ) into T1 and T2. Then permute the order
of sibling nodes such that the two resulting
trees T ′

1 and T ′
2 are identical in structure. Fi-

nally, overlay T ′
1 and T ′

2 to obtain A. We ad-
ditionally require that A contain no extrane-
ous nodes – that is no nodes with two blank
labels (λ, λ). See Figure 1 for an example.

We define the distribution P (T1, T2, A) to be
uniform over all pairs of binary trees and their
alignments.

2. For each node in A of the form (n1, λ) (i.e.
nodes in T1 left unaligned by A), draw

(i) a constituent yield according to πC
1 ,
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(ii) a constituent context according to φC
1 ,

(iii) a Giza-score according to Gznode.

3. For each node in A of the form (λ, n2) (i.e.
nodes in T2 left unaligned by A), draw

(i) a constituent yield according to πC
2 ,

(ii) a constituent context according to φC
2 ,

(iii) a Giza-score according to Gznode.

4. For each node in A of the form (n1, n2) (i.e.
tree-aligned node pairs), draw

(i) a pair of constituent yields (y1, y2) ac-
cording to:

φC
1 (y1) · φC

2 (y2) · ω(y1, y2)
Z

(1)

which is a product of experts combining
the language specific context-yield dis-
tributions as well as the coupling distri-
bution ω with normalization constant Z,

(ii) a pair of contexts according to the ap-
propriate language-specific parameters,

(iii) a Giza-score according to Gzpair.

5. For each span in Ti not dominated by a node
(for each language i ∈ {1, 2}), draw a dis-
tituent yield according to πD

i and a distituent
context according to φD

i .

6. Draw actual word-level alignments consis-
tent with the Giza-scores, according to a uni-
form distribution.

In the next section we turn to the problem of
inference under this model when only the part-
of-speech tag sequences of parallel sentences and
their word-level alignments are observed.

3.5 Inference
Given a corpus of paired part-of-speech tag se-
quences (s1, s2) and their GIZA++ alignments
g, we would ideally like to predict the set of
tree pairs (T1,T2) which have highest proba-
bility when conditioned on the observed data:
P

(
T1,T2

∣∣s1, s2,g
)
. We could rewrite this by

explicitly integrating over the yield, context, cou-
pling, Giza-score parameters as well as the align-
ment trees. However, since maximizing this in-
tegral directly would be intractable, we resort to
standard Markov chain sampling techniques. We
use Gibbs sampling (Hastings, 1970) to draw trees
for each sentence conditioned on those drawn for

all other sentences. The samples form a Markov
chain which is guaranteed to converge to the true
joint distribution over all sentences.

In the monolingual setting, there is a well-
known tree sampling algorithm (Johnson et al.,
2007). This algorithm proceeds in top-down fash-
ion by sampling individual split points using the
marginal probabilities of all possible subtrees.
These marginals can be efficiently pre-computed
and form the “inside” table of the famous Inside-
Outside algorithm. However, in our setting, trees
come in pairs, and their joint probability crucially
depends on their alignment.

For the ith parallel sentence, we wish to jointly
sample the pair of trees (T1, T2)i together with
their alignment Ai. To do so directly would in-
volve simultaneously marginalizing over all pos-
sible subtrees as well as all possible alignments
between such subtrees when sampling upper-level
split points. We know of no obvious algorithm
for computing this marginal. We instead first sam-
ple the pair of trees (T1, T2)i from a simpler pro-
posal distribution Q. Our proposal distribution as-
sumes that no nodes of the two trees are aligned
and therefore allows us to use the recursive top-
down sampling algorithm mentioned above. After
a new tree pair T ∗ = (T ∗

1 , T ∗
2 )i is drawn from Q,

we accept the pair with the following probability:

min
{

1,
P (T ∗|T−i,A−i) Q(T |T−i,A−i)
P (T |T−i,A−i) Q(T ∗|T−i,A−i)

}
where T is the previously sampled tree-pair for
sentence i, P is the true model probability, and
Q is the probability under the proposal distribu-
tion. This use of a tractable proposal distribution
and acceptance ratio is known as the Metropolis-
Hastings algorithm and it preserves the conver-
gence guarantee of the Gibbs sampler (Hastings,
1970). To compute the terms P (T ∗|T−i,A−i)
and P (T |T−i,A−i) in the acceptance ratio above,
we need to marginalize over all possible align-
ments between tree pairs.

Fortunately, for any given pair of trees T1 and
T2 this marginalization can be computed using
a dynamic program in time O(|T1||T2|). Here
we provide a very brief sketch. For every pair
of nodes n1 ∈ T1, n2 ∈ T2, a table stores the
marginal probability of the subtrees rooted at n1

and n2, respectively. A dynamic program builds
this table from the bottom up: For each node pair
n1, n2, we sum the probabilities of all local align-
ment configurations, each multiplied by the appro-
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priate marginals already computed in the table for
lower-level node pairs. This algorithm is an adap-
tation of the dynamic program presented in (Jiang
et al., 1995) for finding minimum cost alignment
trees (Fig. 5 of that publication).

Once a pair of trees (T1, T2) has been sam-
pled, we can proceed to sample an alignment tree
A|T1, T2.2 We sample individual alignment deci-
sions from the top down, at each step using the
alignment marginals for the remaining subtrees
(already computed using the afore-mentioned dy-
namic program). Once the triple (T1, T2, A) has
been sampled, we move on to the next parallel sen-
tence.

We avoid directly sampling parameter val-
ues, instead using the marginalized closed forms
for multinomials with Dirichlet conjugate-priors
using counts and hyperparameter pseudo-counts
(Gelman et al., 2004). Note that in the case of
yield pairs produced according to Distribution 1
(in step 4 of the generative process) conjugacy is
technically broken, since the yield pairs are no
longer produced by a single multinomial distribu-
tion. Nevertheless, we count the produced yields
as if they had been generated separately by each
of the distributions involved in the numerator of
Distribution 1.

4 Experimental setup

We test our model on three corpora of bilin-
gual parallel sentences: English-Korean, English-
Urdu, and English-Chinese. Though the model is
trained using parallel data, during testing it has ac-
cess only to monolingual data. This set-up ensures
that we are testing our model’s ability to learn bet-
ter parameters at training time, rather than its abil-
ity to exploit parallel data at test time. Following
(Klein and Manning, 2002), we restrict our model
to binary trees, though we note that the alignment
trees do not follow this restriction.

Data The Penn Korean Treebank (Han et al.,
2002) consists of 5,083 Korean sentences trans-
lated into English for the purposes of language
training in a military setting. Both the Korean
and English sentences are annotated with syntactic
trees. We use the first 4,000 sentences for training
and the last 1,083 sentences for testing. We note
that in the Korean data, a separate tag is given for

2Sampling the alignment tree is important, as it provides
us with counts of aligned constituents for the coupling pa-
rameter.

each morpheme. We simply concatenate all the
morpheme tags given for each word and treat the
concatenation as a single tag. This procedure re-
sults in 199 different tags. The English-Urdu par-
allel corpus3 consists of 4,325 sentences from the
first three sections of the Penn Treebank and their
Urdu translations annotated at the part-of-speech
level. The Urdu side of this corpus does not pro-
vide tree annotations so here we can test parse ac-
curacy only on English. We use the remaining
sections of the Penn Treebank for English test-
ing. The English-Chinese treebank (Bies et al.,
2007) consists of 3,850 Chinese newswire sen-
tences translated into English. Both the English
and Chinese sentences are annotated with parse
trees. We use the first 4/5 for training and the final
1/5 for testing.

During preprocessing of the corpora we remove
all punctuation marks and special symbols, fol-
lowing the setup in previous grammar induction
work (Klein and Manning, 2002). To obtain lex-
ical alignments between the parallel sentences we
employ GIZA++ (Och and Ney, 2003). We use in-
tersection alignments, which are one-to-one align-
ments produced by taking the intersection of one-
to-many alignments in each direction. These one-
to-one intersection alignments tend to have higher
precision.

We initialize the trees by making uniform split
decisions recursively from the top down for sen-
tences in both languages. Then for each pair of
parallel sentences we randomly sample an initial
alignment tree for the two sampled trees.

Baseline We implement a Bayesian version of
the CCM as a baseline. This model uses the same
inference procedure as our bilingual model (Gibbs
sampling). In fact, our model reduces to this
Bayesian CCM when it is assumed that no nodes
between the two parallel trees are ever aligned
and when word-level alignments are ignored. We
also reimplemented the original EM version of
CCM and found virtually no difference in perfor-
mance when using EM or Gibbs sampling. In both
cases our implementation achieves F-measure in
the range of 69-70% on WSJ10, broadly in line
with the performance reported by Klein and Man-
ning (2002).

Hyperparameters Klein (2005) reports using
smoothing pseudo-counts of 2 for constituent

3http://www.crulp.org
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Figure 2: The F-measure of the CCM baseline (dotted line) and bilingual model (solid line) plotted on
the y-axis, as the maximum sentence length in the test set is increased (x-axis). Results are averaged over
all training scenarios given in Table 1.

yields and contexts and 8 for distituent yields and
contexts. In our Bayesian model, these similar
smoothing counts occur as the parameters of the
Dirichlet priors. For Korean we found that the
baseline performed well using these values. How-
ever, on our English and Chinese data, we found
that somewhat higher smoothing values worked
best, so we utilized values of 20 and 80 for con-
stituent and distituent smoothing counts, respec-
tively.

Our model additionally requires hyperparam-
eter values for ω (the coupling distribution for
aligned yields), Gzpair and Gznode (the distribu-
tions over Giza-scores for aligned nodes and un-
aligned nodes, respectively). For ω we used a
symmetric Dirichlet prior with parameter 1. For
Gzpair and Gznode, in order to create a strong bias
towards high Giza-scores, we used non-symmetric
Dirichlet priors. In both cases, we capped the ab-
solute value of the scores at 3, to prevent count
sparsity. In the case of Gzpair we gave pseudo-
counts of 1,000 for negative values and zero, and
pseudo-counts of 1,000,000 for positive scores.
For Gznode we gave a pseudo-count of 1,000,000
for a score of zero, and 1,000 for all nega-
tive scores. This very strong prior bias encodes
our intuition that syntactic alignments which re-
spect lexical alignments should be preferred. Our
method is not sensitive to these exact values and
any reasonably strong bias gave similar results.

In all our experiments, we consider the hyper-
parameters fixed and observed values.

Testing and evaluation As mentioned above,
we test our model only on monolingual data,
where the parallel sentences are not provided to
the model. To predict the bracketings of these
monolingual test sentences, we take the smoothed

counts accumulated in the final round of sampling
over the training data and perform a maximum
likelihood estimate of the monolingual CCM pa-
rameters. These parameters are then used to pro-
duce the highest probability bracketing of the test
set.

To evaluate both our model as well as the base-
line, we use (unlabeled) bracket precision, re-
call, and F-measure (Klein and Manning, 2002).
Following previous work, we include the whole-
sentence brackets but ignore single-word brack-
ets. We perform experiments on different subsets
of training and testing data based on the sentence-
length. In particular we experimented with sen-
tence length limits of 10, 20, and 30 for both the
training and testing sets. We also report the upper
bound on F-measure for binary trees. We average
the results over 10 separate sampling runs.

5 Results

Table 1 reports the full results of our experiments.
In all testing scenarios the bilingual model out-
performs its monolingual counterpart in terms of
both precision and recall. On average, the bilin-
gual model gains 10.2 percentage points in preci-
sion, 7.7 in recall, and 8.8 in F-measure. The gap
between monolingual performance and the binary
tree upper bound is reduced by over 19%.

The extent of the gain varies across pairings.
For instance, the smallest improvement is ob-
served for English when trained with Urdu. The
Korean-English pairing results in substantial im-
provements for Korean and quite large improve-
ments for English, for which the absolute gain
reaches 28 points in F-measure. In the case of Chi-
nese and English, the gains for English are fairly
minimal whereas those for Chinese are quite sub-
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Max Sent. Length Monolingual Bilingual Upper Bound
Test Train Precision Recall F1 Precision Recall F1 F1

E
N

w
ith

K
R 10

10 52.74 39.53 45.19 57.76 43.30 49.50 85.6
20 41.87 31.38 35.87 61.66 46.22 52.83 85.6
30 33.43 25.06 28.65 64.41 48.28 55.19 85.6

20
20 35.12 25.12 29.29 56.96 40.74 47.50 83.3
30 26.26 18.78 21.90 60.07 42.96 50.09 83.3

30 30 23.95 16.81 19.76 58.01 40.73 47.86 82.4

K
R

w
ith

E
N 10

10 71.07 62.55 66.54 75.63 66.56 70.81 93.6
20 71.35 62.79 66.80 77.61 68.30 72.66 93.6
30 71.37 62.81 66.82 77.87 68.53 72.91 93.6

20
20 64.28 54.73 59.12 70.44 59.98 64.79 91.9
30 64.29 54.75 59.14 70.81 60.30 65.13 91.9

30 30 63.63 54.17 58.52 70.11 59.70 64.49 91.9

E
N

w
ith

C
H 10

10 50.09 34.18 40.63 37.46 25.56 30.39 81.0
20 58.86 40.17 47.75 50.24 34.29 40.76 81.0
30 64.81 44.22 52.57 68.24 46.57 55.36 81.0

20
20 41.90 30.52 35.31 38.64 28.15 32.57 84.3
30 52.83 38.49 44.53 58.50 42.62 49.31 84.3

30 30 46.35 33.67 39.00 51.40 37.33 43.25 84.1

C
H

w
ith

E
N 10

10 39.87 27.71 32.69 40.62 28.23 33.31 81.9
20 43.44 30.19 35.62 47.54 33.03 38.98 81.9
30 43.63 30.32 35.77 54.09 37.59 44.36 81.9

20
20 29.80 23.46 26.25 36.93 29.07 32.53 88.0
30 30.05 23.65 26.47 43.99 34.63 38.75 88.0

30 30 24.46 19.41 21.64 39.61 31.43 35.05 88.4

E
N

w
ith

U
R 10

10 57.98 45.68 51.10 73.43 57.85 64.71 88.1
20 70.57 55.60 62.20 80.24 63.22 70.72 88.1
30 75.39 59.40 66.45 79.04 62.28 69.67 88.1

20
20 57.78 43.86 49.87 67.26 51.06 58.05 86.3
30 63.12 47.91 54.47 64.45 48.92 55.62 86.3

30 30 57.36 43.02 49.17 57.97 43.48 49.69 85.7

Table 1: Unlabeled precision, recall and F-measure for the monolingual baseline and the bilingual model
on several test sets. We report results for different combinations of maximum sentence length in both the
training and test sets. The right most column, in all cases, contains the maximum F-measure achievable
using binary trees. The best performance for each test-length is highlighted in bold.

stantial. This asymmetry should not be surprising,
as Chinese on its own seems to be quite a bit more
difficult to parse than English.

We also investigated the impact of sentence
length for both the training and testing sets. For
our model, adding sentences of greater length to
the training set leads to increases in parse accu-
racy for short sentences. For the baseline, how-
ever, adding this additional training data degrades
performance in the case of English paired with Ko-
rean. Figure 2 summarizes the performance of
our model for different sentence lengths on sev-
eral of the test-sets. As shown in the figure, the
largest improvements tend to occur at longer sen-
tence lengths.

6 Conclusion

We have presented a probabilistic model for bilin-
gual grammar induction which uses raw parallel
text to learn tree pairs and their alignments. Our
formalism loosely binds the two trees, using bilin-
gual patterns when possible, but allowing substan-
tial language-specific variation. We tested our
model on three test sets and showed substantial
improvement over a state-of-the-art monolingual
baseline.4

4The authors acknowledge the support of the NSF (CA-
REER grant IIS-0448168, grant IIS-0835445, and grant IIS-
0835652). Thanks to Amir Globerson and members of the
MIT NLP group for their helpful suggestions. Any opinions,
findings, or conclusions are those of the authors, and do not
necessarily reflect the views of the funding organizations
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Abstract

In this paper, we present a reinforce-
ment learning approach for mapping nat-
ural language instructions to sequences of
executable actions. We assume access to
a reward function that defines the qual-
ity of the executed actions. During train-
ing, the learner repeatedly constructs ac-
tion sequences for a set of documents, ex-
ecutes those actions, and observes the re-
sulting reward. We use a policy gradient
algorithm to estimate the parameters of a
log-linear model for action selection. We
apply our method to interpret instructions
in two domains — Windows troubleshoot-
ing guides and game tutorials. Our results
demonstrate that this method can rival su-
pervised learning techniques while requir-
ing few or no annotated training exam-
ples.1

1 Introduction

The problem of interpreting instructions written
in natural language has been widely studied since
the early days of artificial intelligence (Winograd,
1972; Di Eugenio, 1992). Mapping instructions to
a sequence of executable actions would enable the
automation of tasks that currently require human
participation. Examples include configuring soft-
ware based on how-to guides and operating simu-
lators using instruction manuals. In this paper, we
present a reinforcement learning framework for in-
ducing mappings from text to actions without the
need for annotated training examples.

For concreteness, consider instructions from a
Windows troubleshooting guide on deleting tem-
porary folders, shown in Figure 1. We aim to map

1Code, data, and annotations used in this work are avail-
able at http://groups.csail.mit.edu/rbg/code/rl/

Figure 1: A Windows troubleshooting article de-
scribing how to remove the “msdownld.tmp” tem-
porary folder.

this text to the corresponding low-level commands
and parameters. For example, properly interpret-
ing the third instruction requires clicking on a tab,
finding the appropriate option in a tree control, and
clearing its associated checkbox.

In this and many other applications, the valid-
ity of a mapping can be verified by executing the
induced actions in the corresponding environment
and observing their effects. For instance, in the
example above we can assess whether the goal
described in the instructions is achieved, i.e., the
folder is deleted. The key idea of our approach
is to leverage the validation process as the main
source of supervision to guide learning. This form
of supervision allows us to learn interpretations
of natural language instructions when standard su-
pervised techniques are not applicable, due to the
lack of human-created annotations.

Reinforcement learning is a natural framework
for building models using validation from an envi-
ronment (Sutton and Barto, 1998). We assume that
supervision is provided in the form of a reward
function that defines the quality of executed ac-
tions. During training, the learner repeatedly con-
structs action sequences for a set of given docu-
ments, executes those actions, and observes the re-
sulting reward. The learner’s goal is to estimate a
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policy — a distribution over actions given instruc-
tion text and environment state — that maximizes
future expected reward. Our policy is modeled in a
log-linear fashion, allowing us to incorporate fea-
tures of both the instruction text and the environ-
ment. We employ a policy gradient algorithm to
estimate the parameters of this model.

We evaluate our method on two distinct applica-
tions: Windows troubleshooting guides and puz-
zle game tutorials. The key findings of our ex-
periments are twofold. First, models trained only
with simple reward signals achieve surprisingly
high results, coming within 11% of a fully su-
pervised method in the Windows domain. Sec-
ond, augmenting unlabeled documents with even
a small fraction of annotated examples greatly re-
duces this performance gap, to within 4% in that
domain. These results indicate the power of learn-
ing from this new form of automated supervision.

2 Related Work

Grounded Language Acquisition Our work
fits into a broader class of approaches that aim to
learn language from a situated context (Mooney,
2008a; Mooney, 2008b; Fleischman and Roy,
2005; Yu and Ballard, 2004; Siskind, 2001; Oates,
2001). Instances of such approaches include
work on inferring the meaning of words from
video data (Roy and Pentland, 2002; Barnard and
Forsyth, 2001), and interpreting the commentary
of a simulated soccer game (Chen and Mooney,
2008). Most of these approaches assume some
form of parallel data, and learn perceptual co-
occurrence patterns. In contrast, our emphasis
is on learning language by proactively interacting
with an external environment.

Reinforcement Learning for Language Pro-
cessing Reinforcement learning has been previ-
ously applied to the problem of dialogue manage-
ment (Scheffler and Young, 2002; Roy et al., 2000;
Litman et al., 2000; Singh et al., 1999). These
systems converse with a human user by taking ac-
tions that emit natural language utterances. The
reinforcement learning state space encodes infor-
mation about the goals of the user and what they
say at each time step. The learning problem is to
find an optimal policy that maps states to actions,
through a trial-and-error process of repeated inter-
action with the user.

Reinforcement learning is applied very differ-
ently in dialogue systems compared to our setup.

In some respects, our task is more easily amenable
to reinforcement learning. For instance, we are not
interacting with a human user, so the cost of inter-
action is lower. However, while the state space can
be designed to be relatively small in the dialogue
management task, our state space is determined by
the underlying environment and is typically quite
large. We address this complexity by developing
a policy gradient algorithm that learns efficiently
while exploring a small subset of the states.

3 Problem Formulation

Our task is to learn a mapping between documents
and the sequence of actions they express. Figure 2
shows how one example sentence is mapped to
three actions.

Mapping Text to Actions As input, we are
given a document d, comprising a sequence of sen-
tences (u1, . . . , u`), where each ui is a sequence
of words. Our goal is to map d to a sequence of
actions ~a = (a0, . . . , an−1). Actions are predicted
and executed sequentially.2

An action a = (c,R,W ′) encompasses a com-
mand c, the command’s parameters R, and the
words W ′ specifying c and R. Elements of R re-
fer to objects available in the environment state, as
described below. Some parameters can also refer
to words in document d. Additionally, to account
for words that do not describe any actions, c can
be a null command.

The Environment The environment state E
specifies the set of objects available for interac-
tion, and their properties. In Figure 2, E is shown
on the right. The environment state E changes
in response to the execution of command c with
parameters R according to a transition distribu-
tion p(E ′|E , c, R). This distribution is a priori un-
known to the learner. As we will see in Section 5,
our approach avoids having to directly estimate
this distribution.

State To predict actions sequentially, we need to
track the state of the document-to-actions map-
ping over time. A mapping state s is a tuple
(E , d, j,W ), where E refers to the current environ-
ment state; j is the index of the sentence currently
being interpreted in document d; and W contains
words that were mapped by previous actions for

2That is, action ai is executed before ai+1 is predicted.
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Figure 2: A three-step mapping from an instruction sentence to a sequence of actions in Windows 2000.
For each step, the figure shows the words selected by the action, along with the corresponding system
command and its parameters. The words of W ′ are underlined, and the words of W are highlighted in
grey.

the same sentence. The mapping state s is ob-
served after each action.

The initial mapping state s0 for document d is
(Ed, d, 0, ∅); Ed is the unique starting environment
state for d. Performing action a in state s =
(E , d, j,W ) leads to a new state s′ according to
distribution p(s′|s, a), defined as follows: E tran-
sitions according to p(E ′|E , c, R), W is updated
with a’s selected words, and j is incremented if
all words of the sentence have been mapped. For
the applications we consider in this work, environ-
ment state transitions, and consequently mapping
state transitions, are deterministic.

Training During training, we are provided with
a set D of documents, the ability to sample from
the transition distribution, and a reward function
r(h). Here, h = (s0, a0, . . . , sn−1, an−1, sn) is
a history of states and actions visited while in-
terpreting one document. r(h) outputs a real-
valued score that correlates with correct action
selection.3 We consider both immediate reward,
which is available after each action, and delayed
reward, which does not provide feedback until the
last action. For example, task completion is a de-
layed reward that produces a positive value after
the final action only if the task was completed suc-
cessfully. We will also demonstrate how manu-
ally annotated action sequences can be incorpo-
rated into the reward.

3In most reinforcement learning problems, the reward
function is defined over state-action pairs, as r(s, a) — in this
case, r(h) =

P
t r(st, at), and our formulation becomes a

standard finite-horizon Markov decision process. Policy gra-
dient approaches allow us to learn using the more general
case of history-based reward.

The goal of training is to estimate parameters θ
of the action selection distribution p(a|s, θ), called
the policy. Since the reward correlates with ac-
tion sequence correctness, the θ that maximizes
expected reward will yield the best actions.

4 A Log-Linear Model for Actions

Our goal is to predict a sequence of actions. We
construct this sequence by repeatedly choosing an
action given the current mapping state, and apply-
ing that action to advance to a new state.

Given a state s = (E , d, j,W ), the space of pos-
sible next actions is defined by enumerating sub-
spans of unused words in the current sentence (i.e.,
subspans of the jth sentence of d not in W ), and
the possible commands and parameters in envi-
ronment state E .4 We model the policy distribu-
tion p(a|s; θ) over this action space in a log-linear
fashion (Della Pietra et al., 1997; Lafferty et al.,
2001), giving us the flexibility to incorporate a di-
verse range of features. Under this representation,
the policy distribution is:

p(a|s; θ) =
eθ·φ(s,a)

∑

a′

eθ·φ(s,a′)
, (1)

where φ(s, a) ∈ R
n is an n-dimensional feature

representation. During test, actions are selected
according to the mode of this distribution.

4For parameters that refer to words, the space of possible
values is defined by the unused words in the current sentence.
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5 Reinforcement Learning

During training, our goal is to find the optimal pol-
icy p(a|s; θ). Since reward correlates with correct
action selection, a natural objective is to maximize
expected future reward — that is, the reward we
expect while acting according to that policy from
state s. Formally, we maximize the value function:

Vθ(s) = Ep(h|θ) [r(h)] , (2)

where the history h is the sequence of states and
actions encountered while interpreting a single
document d ∈ D. This expectation is averaged
over all documents in D. The distribution p(h|θ)
returns the probability of seeing history h when
starting from state s and acting according to a pol-
icy with parameters θ. This distribution can be de-
composed into a product over time steps:

p(h|θ) =

n−1
∏

t=0

p(at|st; θ)p(st+1|st, at). (3)

5.1 A Policy Gradient Algorithm
Our reinforcement learning problem is to find the
parameters θ that maximize Vθ from equation 2.
Although there is no closed form solution, policy
gradient algorithms (Sutton et al., 2000) estimate
the parameters θ by performing stochastic gradi-
ent ascent. The gradient of Vθ is approximated by
interacting with the environment, and the resulting
reward is used to update the estimate of θ. Policy
gradient algorithms optimize a non-convex objec-
tive and are only guaranteed to find a local opti-
mum. However, as we will see, they scale to large
state spaces and can perform well in practice.

To find the parameters θ that maximize the ob-
jective, we first compute the derivative of Vθ. Ex-
panding according to the product rule, we have:

∂

∂θ
Vθ(s) = Ep(h|θ)

[

r(h)
∑

t

∂

∂θ
log p(at|st; θ)

]

,

(4)
where the inner sum is over all time steps t in
the current history h. Expanding the inner partial
derivative we observe that:

∂

∂θ
log p(a|s; θ) = φ(s, a)−

∑

a′

φ(s, a′)p(a′|s; θ),

(5)
which is the derivative of a log-linear distribution.

Equation 5 is easy to compute directly. How-
ever, the complete derivative of Vθ in equation 4

Input: A document set D,
Feature representation φ,
Reward function r(h),
Number of iterations T

Initialization: Set θ to small random values.

for i = 1 . . . T do1
foreach d ∈ D do2

Sample history h ∼ p(h|θ) where3
h = (s0, a0, . . . , an−1, sn) as follows:

3a for t = 0 . . . n− 1 do
3b Sample action at ∼ p(a|st; θ)
3c Execute at on state st: st+1 ∼ p(s|st, at)

end

∆←
P

t

`
φ(st, at)−

P
a′ φ(st, a

′)p(a′|st; θ)
´

4
θ ← θ + r(h)∆5

end
end
Output: Estimate of parameters θ

Algorithm 1: A policy gradient algorithm.

is intractable, because computing the expectation
would require summing over all possible histo-
ries. Instead, policy gradient algorithms employ
stochastic gradient ascent by computing a noisy
estimate of the expectation using just a subset of
the histories. Specifically, we draw samples from
p(h|θ) by acting in the target environment, and
use these samples to approximate the expectation
in equation 4. In practice, it is often sufficient to
sample a single history h for this approximation.

Algorithm 1 details the complete policy gradi-
ent algorithm. It performs T iterations over the
set of documents D. Step 3 samples a history that
maps each document to actions. This is done by
repeatedly selecting actions according to the cur-
rent policy, and updating the state by executing the
selected actions. Steps 4 and 5 compute the empir-
ical gradient and update the parameters θ.

In many domains, interacting with the environ-
ment is expensive. Therefore, we use two tech-
niques that allow us to take maximum advantage
of each environment interaction. First, a his-
tory h = (s0, a0, . . . , sn) contains subsequences
(si, ai, . . . sn) for i = 1 to n − 1, each with its
own reward value given by the environment as a
side effect of executing h. We apply the update
from equation 5 for each subsequence. Second,
for a sampled history h, we can propose alterna-
tive histories h′ that result in the same commands
and parameters with different word spans. We can
again apply equation 5 for each h′, weighted by its
probability under the current policy, p(h

′|θ)
p(h|θ) .
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The algorithm we have presented belongs to
a family of policy gradient algorithms that have
been successfully used for complex tasks such as
robot control (Ng et al., 2003). Our formulation is
unique in how it represents natural language in the
reinforcement learning framework.

5.2 Reward Functions and ML Estimation
We can design a range of reward functions to guide
learning, depending on the availability of anno-
tated data and environment feedback. Consider the
case when every training document d ∈ D is an-
notated with its correct sequence of actions, and
state transitions are deterministic. Given these ex-
amples, it is straightforward to construct a reward
function that connects policy gradient to maxi-
mum likelihood. Specifically, define a reward
function r(h) that returns one when h matches the
annotation for the document being analyzed, and
zero otherwise. Policy gradient performs stochas-
tic gradient ascent on the objective from equa-
tion 2, performing one update per document. For
document d, this objective becomes:

Ep(h|θ)[r(h)] =
∑

h

r(h)p(h|θ) = p(hd|θ),

where hd is the history corresponding to the an-
notated action sequence. Thus, with this reward
policy gradient is equivalent to stochastic gradient
ascent with a maximum likelihood objective.

At the other extreme, when annotations are
completely unavailable, learning is still possi-
ble given informative feedback from the environ-
ment. Crucially, this feedback only needs to cor-
relate with action sequence quality. We detail
environment-based reward functions in the next
section. As our results will show, reward func-
tions built using this kind of feedback can provide
strong guidance for learning. We will also con-
sider reward functions that combine annotated su-
pervision with environment feedback.

6 Applying the Model

We study two applications of our model: follow-
ing instructions to perform software tasks, and
solving a puzzle game using tutorial guides.

6.1 Microsoft Windows Help and Support
On its Help and Support website,5 Microsoft pub-
lishes a number of articles describing how to per-

5support.microsoft.com

Notation
o Parameter referring to an environment object
L Set of object class names (e.g. “button”)
V Vocabulary

Features on W and object o
Test if o is visible in s
Test if o has input focus
Test if o is in the foreground
Test if o was previously interacted with
Test if o came into existence since last action
Min. edit distance between w ∈W and object labels in s

Features on words in W , command c, and object o
∀c′ ∈ C, w ∈ V : test if c′ = c and w ∈W
∀c′ ∈ C, l ∈ L: test if c′ = c and l is the class of o

Table 1: Example features in the Windows do-
main. All features are binary, except for the nor-
malized edit distance which is real-valued.

form tasks and troubleshoot problems in the Win-
dows operating systems. Examples of such tasks
include installing patches and changing security
settings. Figure 1 shows one such article.

Our goal is to automatically execute these sup-
port articles in the Windows 2000 environment.
Here, the environment state is the set of visi-
ble user interface (UI) objects, and object prop-
erties such as label, location, and parent window.
Possible commands include left-click, right-click,
double-click, and type-into, all of which take a UI
object as a parameter; type-into additionally re-
quires a parameter for the input text.

Table 1 lists some of the features we use for this
domain. These features capture various aspects of
the action under consideration, the current Win-
dows UI state, and the input instructions. For ex-
ample, one lexical feature measures the similar-
ity of a word in the sentence to the UI labels of
objects in the environment. Environment-specific
features, such as whether an object is currently in
focus, are useful when selecting the object to ma-
nipulate. In total, there are 4,438 features.

Reward Function Environment feedback can
be used as a reward function in this domain. An
obvious reward would be task completion (e.g.,
whether the stated computer problem was fixed).
Unfortunately, verifying task completion is a chal-
lenging system issue in its own right.

Instead, we rely on a noisy method of check-
ing whether execution can proceed from one sen-
tence to the next: at least one word in each sen-
tence has to correspond to an object in the envi-
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Figure 3: Crossblock puzzle with tutorial. For this
level, four squares in a row or column must be re-
moved at once. The first move specified by the
tutorial is greyed in the puzzle.

ronment.6 For instance, in the sentence from Fig-
ure 2 the word “Run” matches the Run... menu
item. If no words in a sentence match a current
environment object, then one of the previous sen-
tences was analyzed incorrectly. In this case, we
assign the history a reward of -1. This reward is
not guaranteed to penalize all incorrect histories,
because there may be false positive matches be-
tween the sentence and the environment. When
at least one word matches, we assign a positive
reward that linearly increases with the percentage
of words assigned to non-null commands, and lin-
early decreases with the number of output actions.
This reward signal encourages analyses that inter-
pret all of the words without producing spurious
actions.

6.2 Crossblock: A Puzzle Game

Our second application is to a puzzle game called
Crossblock, available online as a Flash game.7

Each of 50 puzzles is played on a grid, where some
grid positions are filled with squares. The object
of the game is to clear the grid by drawing vertical
or horizontal line segments that remove groups of
squares. Each segment must exactly cross a spe-
cific number of squares, ranging from two to seven
depending on the puzzle. Humans players have
found this game challenging and engaging enough
to warrant posting textual tutorials.8 A sample
puzzle and tutorial are shown in Figure 3.

The environment is defined by the state of the
grid. The only command is clear, which takes a
parameter specifying the orientation (row or col-
umn) and grid location of the line segment to be

6We assume that a word maps to an environment object if
the edit distance between the word and the object’s name is
below a threshold value.

7hexaditidom.deviantart.com/art/Crossblock-108669149
8www.jayisgames.com/archives/2009/01/crossblock.php

removed. The challenge in this domain is to seg-
ment the text into the phrases describing each ac-
tion, and then correctly identify the line segments
from references such as “the bottom four from the
second column from the left.”

For this domain, we use two sets of binary fea-
tures on state-action pairs (s, a). First, for each
vocabulary word w, we define a feature that is one
if w is the last word of a’s consumed words W ′.
These features help identify the proper text seg-
mentation points between actions. Second, we in-
troduce features for pairs of vocabulary word w
and attributes of action a, e.g., the line orientation
and grid locations of the squares that a would re-
move. This set of features enables us to match
words (e.g., “row”) with objects in the environ-
ment (e.g., a move that removes a horizontal series
of squares). In total, there are 8,094 features.

Reward Function For Crossblock it is easy to
directly verify task completion, which we use as
the basis of our reward function. The reward r(h)
is -1 if h ends in a state where the puzzle cannot
be completed. For solved puzzles, the reward is
a positive value proportional to the percentage of
words assigned to non-null commands.

7 Experimental Setup

Datasets For the Windows domain, our dataset
consists of 128 documents, divided into 70 for
training, 18 for development, and 40 for test. In
the puzzle game domain, we use 50 tutorials,
divided into 40 for training and 10 for test.9

Statistics for the datasets are shown below.

Windows Puzzle
Total # of documents 128 50
Total # of words 5562 994
Vocabulary size 610 46
Avg. words per sentence 9.93 19.88
Avg. sentences per document 4.38 1.00
Avg. actions per document 10.37 5.86

The data exhibits certain qualities that make
for a challenging learning problem. For instance,
there are a surprising variety of linguistic con-
structs — as Figure 4 shows, in the Windows do-
main even a simple command is expressed in at
least six different ways.

9For Crossblock, because the number of puzzles is lim-
ited, we did not hold out a separate development set, and re-
port averaged results over five training/test splits.
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Figure 4: Variations of “click internet options on
the tools menu” present in the Windows corpus.

Experimental Framework To apply our algo-
rithm to the Windows domain, we use the Win32
application programming interface to simulate hu-
man interactions with the user interface, and to
gather environment state information. The operat-
ing system environment is hosted within a virtual
machine,10 allowing us to rapidly save and reset
system state snapshots. For the puzzle game do-
main, we replicated the game with an implemen-
tation that facilitates automatic play.

As is commonly done in reinforcement learn-
ing, we use a softmax temperature parameter to
smooth the policy distribution (Sutton and Barto,
1998), set to 0.1 in our experiments. For Windows,
the development set is used to select the best pa-
rameters. For Crossblock, we choose the parame-
ters that produce the highest reward during train-
ing. During evaluation, we use these parameters
to predict mappings for the test documents.

Evaluation Metrics For evaluation, we com-
pare the results to manually constructed sequences
of actions. We measure the number of correct ac-
tions, sentences, and documents. An action is cor-
rect if it matches the annotations in terms of com-
mand and parameters. A sentence is correct if all
of its actions are correctly identified, and analo-
gously for documents.11 Statistical significance is
measured with the sign test.

Additionally, we compute a word alignment
score to investigate the extent to which the input
text is used to construct correct analyses. This
score measures the percentage of words that are
aligned to the corresponding annotated actions in
correctly analyzed documents.

Baselines We consider the following baselines
to characterize the performance of our approach.

10VMware Workstation, available at www.vmware.com
11In these tasks, each action depends on the correct execu-

tion of all previous actions, so a single error can render the
remainder of that document’s mapping incorrect. In addition,
due to variability in document lengths, overall action accu-
racy is not guaranteed to be higher than document accuracy.

• Full Supervision Sequence prediction prob-
lems like ours are typically addressed us-
ing supervised techniques. We measure how
a standard supervised approach would per-
form on this task by using a reward signal
based on manual annotations of output ac-
tion sequences, as defined in Section 5.2. As
shown there, policy gradient with this re-
ward is equivalent to stochastic gradient as-
cent with a maximum likelihood objective.

• Partial Supervision We consider the case
when only a subset of training documents is
annotated, and environment reward is used
for the remainder. Our method seamlessly
combines these two kinds of rewards.

• Random and Majority (Windows) We con-
sider two naı̈ve baselines. Both scan through
each sentence from left to right. A com-
mand c is executed on the object whose name
is encountered first in the sentence. This
command c is either selected randomly, or
set to the majority command, which is left-
click. This procedure is repeated until no
more words match environment objects.

• Random (Puzzle) We consider a baseline
that randomly selects among the actions that
are valid in the current game state.12

8 Results

Table 2 presents evaluation results on the test sets.
There are several indicators of the difficulty of this
task. The random and majority baselines’ poor
performance in both domains indicates that naı̈ve
approaches are inadequate for these tasks. The
performance of the fully supervised approach pro-
vides further evidence that the task is challenging.
This difficulty can be attributed in part to the large
branching factor of possible actions at each step —
on average, there are 27.14 choices per action in
the Windows domain, and 9.78 in the Crossblock
domain.

In both domains, the learners relying only
on environment reward perform well. Although
the fully supervised approach performs the best,
adding just a few annotated training examples
to the environment-based learner significantly re-
duces the performance gap.

12Since action selection is among objects, there is no natu-
ral majority baseline for the puzzle.
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Windows Puzzle
Action Sent. Doc. Word Action Doc. Word

Random baseline 0.128 0.101 0.000 —– 0.081 0.111 —–
Majority baseline 0.287 0.197 0.100 —– —– —– —–
Environment reward ∗ 0.647 ∗ 0.590 ∗ 0.375 0.819 ∗ 0.428 ∗ 0.453 0.686
Partial supervision � 0.723 ∗ 0.702 0.475 0.989 0.575 ∗ 0.523 0.850
Full supervision � 0.756 0.714 0.525 0.991 0.632 0.630 0.869

Table 2: Performance on the test set with different reward signals and baselines. Our evaluation measures
the proportion of correct actions, sentences, and documents. We also report the percentage of correct
word alignments for the successfully completed documents. Note the puzzle domain has only single-
sentence documents, so its sentence and document scores are identical. The partial supervision line
refers to 20 out of 70 annotated training documents for Windows, and 10 out of 40 for the puzzle. Each
result marked with ∗ or � is a statistically significant improvement over the result immediately above it;
∗ indicates p < 0.01 and � indicates p < 0.05.

Figure 5: Comparison of two training scenarios where training is done using a subset of annotated
documents, with and without environment reward for the remaining unannotated documents.

Figure 5 shows the overall tradeoff between an-
notation effort and system performance for the two
domains. The ability to make this tradeoff is one
of the advantages of our approach. The figure also
shows that augmenting annotated documents with
additional environment-reward documents invari-
ably improves performance.

The word alignment results from Table 2 in-
dicate that the learners are mapping the correct
words to actions for documents that are success-
fully completed. For example, the models that per-
form best in the Windows domain achieve nearly
perfect word alignment scores.

To further assess the contribution of the instruc-
tion text, we train a variant of our model without
access to text features. This is possible in the game
domain, where all of the puzzles share a single
goal state that is independent of the instructions.
This variant solves 34% of the puzzles, suggest-
ing that access to the instructions significantly im-
proves performance.

9 Conclusions

In this paper, we presented a reinforcement learn-
ing approach for inducing a mapping between in-
structions and actions. This approach is able to use
environment-based rewards, such as task comple-
tion, to learn to analyze text. We showed that hav-
ing access to a suitable reward function can signif-
icantly reduce the need for annotations.

Acknowledgments

The authors acknowledge the support of the NSF
(CAREER grant IIS-0448168, grant IIS-0835445,
grant IIS-0835652, and a Graduate Research Fel-
lowship) and the ONR. Thanks to Michael Collins,
Amir Globerson, Tommi Jaakkola, Leslie Pack
Kaelbling, Dina Katabi, Martin Rinard, and mem-
bers of the MIT NLP group for their suggestions
and comments. Any opinions, findings, conclu-
sions, or recommendations expressed in this paper
are those of the authors, and do not necessarily re-
flect the views of the funding organizations.

89



References
Kobus Barnard and David A. Forsyth. 2001. Learning

the semantics of words and pictures. In Proceedings
of ICCV.

David L. Chen and Raymond J. Mooney. 2008. Learn-
ing to sportscast: a test of grounded language acqui-
sition. In Proceedings of ICML.

Stephen Della Pietra, Vincent J. Della Pietra, and
John D. Lafferty. 1997. Inducing features of ran-
dom fields. IEEE Trans. Pattern Anal. Mach. Intell.,
19(4):380–393.

Barbara Di Eugenio. 1992. Understanding natural lan-
guage instructions: the case of purpose clauses. In
Proceedings of ACL.

Michael Fleischman and Deb Roy. 2005. Intentional
context in situated language learning. In Proceed-
ings of CoNLL.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of ICML.

Diane J. Litman, Michael S. Kearns, Satinder Singh,
and Marilyn A. Walker. 2000. Automatic optimiza-
tion of dialogue management. In Proceedings of
COLING.

Raymond J. Mooney. 2008a. Learning language
from its perceptual context. In Proceedings of
ECML/PKDD.

Raymond J. Mooney. 2008b. Learning to connect lan-
guage and perception. In Proceedings of AAAI.

Andrew Y. Ng, H. Jin Kim, Michael I. Jordan, and
Shankar Sastry. 2003. Autonomous helicopter flight
via reinforcement learning. In Advances in NIPS.

James Timothy Oates. 2001. Grounding knowledge
in sensors: Unsupervised learning for language and
planning. Ph.D. thesis, University of Massachusetts
Amherst.

Deb K. Roy and Alex P. Pentland. 2002. Learn-
ing words from sights and sounds: a computational
model. Cognitive Science 26, pages 113–146.

Nicholas Roy, Joelle Pineau, and Sebastian Thrun.
2000. Spoken dialogue management using proba-
bilistic reasoning. In Proceedings of ACL.

Konrad Scheffler and Steve Young. 2002. Automatic
learning of dialogue strategy using dialogue simula-
tion and reinforcement learning. In Proceedings of
HLT.

Satinder P. Singh, Michael J. Kearns, Diane J. Litman,
and Marilyn A. Walker. 1999. Reinforcement learn-
ing for spoken dialogue systems. In Advances in
NIPS.

Jeffrey Mark Siskind. 2001. Grounding the lexical se-
mantics of verbs in visual perception using force dy-
namics and event logic. J. Artif. Intell. Res. (JAIR),
15:31–90.

Richard S. Sutton and Andrew G. Barto. 1998. Re-
inforcement Learning: An Introduction. The MIT
Press.

Richard S. Sutton, David McAllester, Satinder Singh,
and Yishay Mansour. 2000. Policy gradient meth-
ods for reinforcement learning with function approx-
imation. In Advances in NIPS.

Terry Winograd. 1972. Understanding Natural Lan-
guage. Academic Press.

Chen Yu and Dana H. Ballard. 2004. On the integra-
tion of grounding language and learning objects. In
Proceedings of AAAI.

90



Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 91–99,
Suntec, Singapore, 2-7 August 2009. c©2009 ACL and AFNLP

Learning Semantic Correspondences with Less Supervision

Percy Liang
UC Berkeley

pliang@cs.berkeley.edu

Michael I. Jordan
UC Berkeley

jordan@cs.berkeley.edu

Dan Klein
UC Berkeley

klein@cs.berkeley.edu

Abstract

A central problem in grounded language acqui-
sition is learning the correspondences between a
rich world state and a stream of text which refer-
ences that world state. To deal with the high de-
gree of ambiguity present in this setting, we present
a generative model that simultaneously segments
the text into utterances and maps each utterance
to a meaning representation grounded in the world
state. We show that our model generalizes across
three domains of increasing difficulty—Robocup
sportscasting, weather forecasts (a new domain),
and NFL recaps.

1 Introduction

Recent work in learning semantics has focused
on mapping sentences to meaning representa-
tions (e.g., some logical form) given aligned sen-
tence/meaning pairs as training data (Ge and
Mooney, 2005; Zettlemoyer and Collins, 2005;
Zettlemoyer and Collins, 2007; Lu et al., 2008).
However, this degree of supervision is unrealistic
for modeling human language acquisition and can
be costly to obtain for building large-scale, broad-
coverage language understanding systems.

A more flexible direction is grounded language
acquisition: learning the meaning of sentences
in the context of an observed world state. The
grounded approach has gained interest in various
disciplines (Siskind, 1996; Yu and Ballard, 2004;
Feldman and Narayanan, 2004; Gorniak and Roy,
2007). Some recent work in the NLP commu-
nity has also moved in this direction by relaxing
the amount of supervision to the setting where
each sentence is paired with a small set of can-
didate meanings (Kate and Mooney, 2007; Chen
and Mooney, 2008).

The goal of this paper is to reduce the amount
of supervision even further. We assume that we are
given a world state represented by a set of records
along with a text, an unsegmented sequence of
words. For example, in the weather forecast do-
main (Section 2.2), the text is the weather report,

and the records provide a structured representation
of the temperature, sky conditions, etc.

In this less restricted data setting, we must re-
solve multiple ambiguities: (1) the segmentation
of the text into utterances; (2) the identification of
relevant facts, i.e., the choice of records and as-
pects of those records; and (3) the alignment of ut-
terances to facts (facts are the meaning represen-
tations of the utterances). Furthermore, in some
of our examples, much of the world state is not
referenced at all in the text, and, conversely, the
text references things which are not represented in
our world state. This increased amount of ambigu-
ity and noise presents serious challenges for learn-
ing. To cope with these challenges, we propose a
probabilistic generative model that treats text seg-
mentation, fact identification, and alignment in a
single unified framework. The parameters of this
hierarchical hidden semi-Markov model can be es-
timated efficiently using EM.

We tested our model on the task of aligning
text to records in three different domains. The
first domain is Robocup sportscasting (Chen and
Mooney, 2008). Their best approach (KRISPER)
obtains 67% F1; our method achieves 76.5%. This
domain is simplified in that the segmentation is
known. The second domain is weather forecasts,
for which we created a new dataset. Here, the
full complexity of joint segmentation and align-
ment arises. Nonetheless, we were able to obtain
reasonable results on this task. The third domain
we considered is NFL recaps (Barzilay and Lap-
ata, 2005; Snyder and Barzilay, 2007). The lan-
guage used in this domain is richer by orders of
magnitude, and much of it does not reference the
world state. Nonetheless, taking the first unsuper-
vised approach to this problem, we were able to
make substantial progress: We achieve an F1 of
53.2%, which closes over half of the gap between
a heuristic baseline (26%) and supervised systems
(68%–80%).
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Dataset # scenarios |w| |T | |s| |A|
Robocup 1919 5.7 9 2.4 0.8
Weather 22146 28.7 12 36.0 5.8
NFL 78 969.0 44 329.0 24.3

Table 1: Statistics for the three datasets. We report average
values across all scenarios in the dataset: |w| is the number of
words in the text, |T | is the number of record types, |s| is the
number of records, and |A| is the number of gold alignments.

2 Domains and Datasets

Our goal is to learn the correspondence between a
text w and the world state s it describes. We use
the term scenario to refer to such a (w, s) pair.

The text is simply a sequence of words w =
(w1, . . . , w|w|). We represent the world state s as
a set of records, where each record r ∈ s is de-
scribed by a record type r.t ∈ T and a tuple of
field values r.v = (r.v1, . . . , r.vm).1 For exam-
ple, temperature is a record type in the weather
domain, and it has four fields: time, min, mean,
and max.

The record type r.t ∈ T specifies the field type
r.tf ∈ {INT, STR, CAT} of each field value r.vf ,
f = 1, . . . ,m. There are three possible field
types—integer (INT), string (STR), and categori-
cal (CAT)—which are assumed to be known and
fixed. Integer fields represent numeric properties
of the world such as temperature, string fields rep-
resent surface-level identifiers such as names of
people, and categorical fields represent discrete
concepts such as score types in football (touch-
down, field goal, and safety). The field type de-
termines the way we expect the field value to be
rendered in words: integer fields can be numeri-
cally perturbed, string fields can be spliced, and
categorical fields are represented by open-ended
word distributions, which are to be learned. See
Section 3.3 for details.

2.1 Robocup Sportscasting

In this domain, a Robocup simulator generates the
state of a soccer game, which is represented by
a set of event records. For example, the record
pass(arg1=pink1,arg2=pink5) denotes a pass-
ing event; this type of record has two fields: arg1
(the actor) and arg2 (the recipient). As the game is
progressing, humans interject commentaries about
notable events in the game, e.g., pink1 passes back
to pink5 near the middle of the field. All of the

1To simplify notation, we assume that each record has m
fields, though in practice, m depends on the record type r.t.

fields in this domain are categorical, which means
there is no a priori association between the field
value pink1 and the word pink1. This degree of
flexibility is desirable because pink1 is sometimes
referred to as pink goalie, a mapping which does
not arise from string operations but must instead
be learned.

We used the dataset created by Chen and
Mooney (2008), which contains 1919 scenarios
from the 2001–2004 Robocup finals. Each sce-
nario consists of a single sentence representing a
fragment of a commentary on the game, paired
with a set of candidate records. In the annotation,
each sentence corresponds to at most one record
(possibly one not in the candidate set, in which
case we automatically get that sentence wrong).
See Figure 1(a) for an example and Table 1 for
summary statistics on the dataset.

2.2 Weather Forecasts

In this domain, the world state contains de-
tailed information about a local weather forecast
and the text is a short forecast report (see Fig-
ure 1(b) for an example). To create the dataset,
we collected local weather forecasts for 3,753
cities in the US (those with population at least
10,000) over three days (February 7–9, 2009) from
www.weather.gov. For each city and date, we
created two scenarios, one for the day forecast and
one for the night forecast. The forecasts consist of
hour-by-hour measurements of temperature, wind
speed, sky cover, chance of rain, etc., which rep-
resent the underlying world state.

This world state is summarized by records
which aggregate measurements over selected time
intervals. For example, one of the records states
the minimum, average, and maximum tempera-
ture from 5pm to 6am. This aggregation pro-
cess produced 22,146 scenarios, each containing
|s| = 36 multi-field records. There are 12 record
types, each consisting of only integer and categor-
ical fields.

To annotate the data, we split the text by punc-
tuation into lines and labeled each line with the
records to which the line refers. These lines are
used only for evaluation and are not part of the
model (see Section 5.1 for further discussion).

The weather domain is more complex than the
Robocup domain in several ways: The text w is
longer, there are more candidate records, and most
notably, w references multiple records (5.8 on av-
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x
badPass(arg1=pink11,arg2=purple3)

ballstopped()
ballstopped()

kick(arg1=pink11)
turnover(arg1=pink11,arg2=purple3)

s

w:
pink11 makes a bad pass and was picked off by purple3

(a) Robocup sportscasting

. . .
rainChance(time=26-30,mode=Def)

temperature(time=17-30,min=43,mean=44,max=47)
windDir(time=17-30,mode=SE)

windSpeed(time=17-30,min=11,mean=12,max=14,mode=10-20)
precipPotential(time=17-30,min=5,mean=26,max=75)

rainChance(time=17-30,mode=--)
windChill(time=17-30,min=37,mean=38,max=42)

skyCover(time=17-30,mode=50-75)
rainChance(time=21-30,mode=--)

. . .

s

w:
Occasional rain after 3am .
Low around 43 .
South wind between 11 and 14 mph .
Chance of precipitation is 80 % .
New rainfall amounts between a

quarter and half of an inch possible .

(b) Weather forecasts

. . .
rushing(entity=richie anderson,att=5,yds=37,avg=7.4,lg=16,td=0)

receiving(entity=richie anderson,rec=4,yds=46,avg=11.5,lg=20,td=0)
play(quarter=1,description=richie anderson ( dal ) rushed left side for 13 yards .)

defense(entity=eric ogbogu,tot=4,solo=3,ast=1,sck=0,yds=0)
. . .

s w:
. . .
Former Jets player Richie Anderson

finished with 37 yards on 5 carries
plus 4 receptions for 46 yards .

. . .

(c) NFL recaps

Figure 1: An example of a scenario for each of the three domains. Each scenario consists of a candidate set of records s and a
text w. Each record is specified by a record type (e.g., badPass) and a set of field values. Integer values are in Roman, string
values are in italics, and categorical values are in typewriter. The gold alignments are shown.

erage), so the segmentation of w is unknown. See
Table 1 for a comparison of the two datasets.

2.3 NFL Recaps

In this domain, each scenario represents a single
NFL football game (see Figure 1(c) for an exam-
ple). The world state (the things that happened
during the game) is represented by database tables,
e.g., scoring summary, team comparison, drive
chart, play-by-play, etc. Each record is a database
entry, for instance, the receiving statistics for a cer-
tain player. The text is the recap of the game—
an article summarizing the game highlights. The
dataset we used was collected by Barzilay and La-
pata (2005). The data includes 466 games during
the 2003–2004 NFL season. 78 of these games
were annotated by Snyder and Barzilay (2007),
who aligned each sentence to a set of records.

This domain is by far the most complicated of
the three. Many records corresponding to inconse-
quential game statistics are not mentioned. Con-
versely, the text contains many general remarks
(e.g., it was just that type of game) which are
not present in any of the records. Furthermore,
the complexity of the language used in the re-
cap is far greater than what we can represent us-

ing our simple model. Fortunately, most of the
fields are integer fields or string fields (generally
names or brief descriptions), which provide im-
portant anchor points for learning the correspon-
dences. Nonetheless, the same names and num-
bers occur in multiple records, so there is still un-
certainty about which record is referenced by a
given sentence.

3 Generative Model

To learn the correspondence between a text w and
a world state s, we propose a generative model
p(w | s) with latent variables specifying this cor-
respondence.

Our model combines segmentation with align-
ment. The segmentation aspect of our model is
similar to that of Grenager et al. (2005) and Eisen-
stein and Barzilay (2008), but in those two models,
the segments are clustered into topics rather than
grounded to a world state. The alignment aspect
of our model is similar to the HMM model for
word alignment (Ney and Vogel, 1996). DeNero
et al. (2008) perform joint segmentation and word
alignment for machine translation, but the nature
of that task is different from ours.

The model is defined by a generative process,
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which proceeds in three stages (Figure 2 shows the
corresponding graphical model):

1. Record choice: choose a sequence of records
r = (r1, . . . , r|r|) to describe, where each
ri ∈ s.

2. Field choice: for each chosen record ri, se-
lect a sequence of fields fi = (fi1, . . . , fi|fi|),
where each fij ∈ {1, . . . ,m}.

3. Word choice: for each chosen field fij ,
choose a number cij > 0 and generate a se-
quence of cij words.

The observed text w is the terminal yield formed
by concatenating the sequences of words of all
fields generated; note that the segmentation of w
provided by c = {cij} is latent. Think of the
words spanned by a record as constituting an ut-
terance with a meaning representation given by the
record and subset of fields chosen.

Formally, our probabilistic model places a dis-
tribution over (r, f , c,w) and factorizes according
to the three stages as follows:

p(r, f , c,w | s) = p(r | s)p(f | r)p(c,w | r, f , s)

The following three sections describe each of
these stages in more detail.

3.1 Record Choice Model
The record choice model specifies a distribu-
tion over an ordered sequence of records r =
(r1, . . . , r|r|), where each record ri ∈ s. This
model is intended to capture two types of regu-
larities in the discourse structure of language. The
first is salience, that is, some record types are sim-
ply more prominent than others. For example, in
the NFL domain, 70% of scoring records are men-
tioned whereas only 1% of punting records are
mentioned. The second is the idea of local co-
herence, that is, the order in which one mentions
records tend to follow certain patterns. For ex-
ample, in the weather domain, the sky conditions
are generally mentioned first, followed by temper-
ature, and then wind speed.

To capture these two phenomena, we define a
Markov model on the record types (and given the
record type, a record is chosen uniformly from the
set of records with that type):

p(r | s) =

|r|
∏

i=1

p(ri.t | ri−1.t)
1

|s(ri.t)|
, (1)

where s(t) def
= {r ∈ s : r.t = t} and r0.t is

a dedicated START record type.2 We also model
the transition of the final record type to a desig-
nated STOP record type in order to capture regu-
larities about the types of records which are de-
scribed last. More sophisticated models of coher-
ence could also be employed here (Barzilay and
Lapata, 2008).

We assume that s includes a special null record
whose type is NULL, responsible for generating
parts of our text which do not refer to any real
records.

3.2 Field Choice Model

Each record type t ∈ T has a separate field choice
model, which specifies a distribution over a se-
quence of fields. We want to capture salience
and coherence at the field level like we did at the
record level. For instance, in the weather domain,
the minimum and maximum fields of a tempera-
ture record are mentioned whereas the average is
not. In the Robocup domain, the actor typically
precedes the recipient in passing event records.

Formally, we have a Markov model over the
fields:3

p(f | r) =

|r|
∏

i=1

|fj |
∏

j=1

p(fij | fi(j−1)). (2)

Each record type has a dedicated null field with
its own multinomial distribution over words, in-
tended to model words which refer to that record
type in general (e.g., the word passes for passing
records). We also model transitions into the first
field and transitions out of the final field with spe-
cial START and STOP fields. This Markov structure
allows us to capture a few elements of rudimentary
syntax.

3.3 Word Choice Model

We arrive at the final component of our model,
which governs how the information about a par-
ticular field of a record is rendered into words. For
each field fij , we generate the number of words cij
from a uniform distribution over {1, 2, . . . , Cmax},
where Cmax is set larger than the length of the
longest text we expect to see. Conditioned on

2We constrain our inference to only consider record types
t that occur in s, i.e., s(t) 6= ∅.

3During inference, we prohibit consecutive fields from re-
peating.
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· · · fn|fn|

w · · · w|w|

cn|fn|

Record choice

Field choice

Word choice

Figure 2: Graphical model representing the generative model. First, records are chosen and ordered from the set s. Then fields
are chosen for each record. Finally, words are chosen for each field. The world state s and the words w are observed, while
(r, f , c) are latent variables to be inferred (note that the number of latent variables itself is unknown).

the fields f , the words w are generated indepen-
dently:4

p(w | r, f , c, s) =

|w|
∏

k=1

pw(wk | r(k).tf(k), r(k).vf(k)),

where r(k) and f(k) are the record and field re-
sponsible for generating word wk, as determined
by the segmentation c. The word choice model
pw(w | t, v) specifies a distribution over words
given the field type t and field value v. This distri-
bution is a mixture of a global backoff distribution
over words and a field-specific distribution which
depends on the field type t.

Although we designed our word choice model
to be relatively general, it is undoubtedly influ-
enced by the three domains. However, we can
readily extend or replace it with an alternative if
desired; this modularity is one principal benefit of
probabilistic modeling.

Integer Fields (t = INT) For integer fields, we
want to capture the intuition that a numeric quan-
tity v is rendered in the text as a word which
is possibly some other numerical value w due to
stylistic factors. Sometimes the exact value v is
used (e.g., in reporting football statistics). Other
times, it might be customary to round v (e.g., wind
speeds are typically rounded to a multiple of 5).
In other cases, there might just be some unex-
plained error, where w deviates from v by some
noise ε+ = w − v > 0 or ε− = v − w > 0. We
model ε+ and ε− as geometric distributions.5 In

4While a more sophisticated model of words would be
useful if we intended to use this model for natural language
generation, the false independence assumptions present here
matter less for the task of learning the semantic correspon-
dences because we always condition on w.

5Specifically, p(ε+;α+) = (1 − α+)ε+−1α+, where
α+ is a field-specific parameter; p(ε−;α−) is defined analo-
gously.
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(a) temperature.min (b) windSpeed.min

Figure 3: Two integer field types in the weather domain for
which we learn different distributions over the ways in which
a value v might appear in the text as a word w. Suppose the
record field value is v = 13. Both distributions are centered
around v, as is to be expected, but the two distributions have
different shapes: For temperature.min, almost all the mass
is to the left, suggesting that forecasters tend to report con-
servative lower bounds. For the wind speed, the mass is con-
centrated on 13 and 15, suggesting that forecasters frequently
round wind speeds to multiples of 5.

summary, we allow six possible ways of generat-
ing the word w given v:

v dve5 bvc5 round5(v) v − ε− v + ε+

Separate probabilities for choosing among these
possibilities are learned for each field type (see
Figure 3 for an example).

String Fields (t = STR) Strings fields are in-
tended to represent values which we expect to be
realized in the text via a simple surface-level trans-
formation. For example, a name field with value
v = Moe Williams is sometimes referenced in the
text by just Williams. We used a simple generic
model of rendering string fields: Let w be a word
chosen uniformly from those in v.

Categorical Fields (t = CAT) Unlike string
fields, categorical fields are not tied down to any
lexical representation; in fact, the identities of the
categorical field values are irrelevant. For each
categorical field f and possible value v, we have a
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v pw(w | t, v)
0-25 , clear mostly sunny
25-50 partly , cloudy increasing
50-75 mostly cloudy , partly
75-100 of inch an possible new a rainfall

Table 2: Highest probability words for the categorical field
skyCover.mode in the weather domain. It is interesting to
note that skyCover=75-100 is so highly correlated with rain
that the model learns to connect an overcast sky in the world
to the indication of rain in the text.

separate multinomial distribution over words from
which w is drawn. An example of a categori-
cal field is skyCover.mode in the weather domain,
which has four values: 0-25, 25-50, 50-75,
and 75-100. Table 2 shows the top words for
each of these field values learned by our model.

4 Learning and Inference

Our learning and inference methodology is a fairly
conventional application of Expectation Maxi-
mization (EM) and dynamic programming. The
input is a set of scenarios D, each of which is a
text w paired with a world state s. We maximize
the marginal likelihood of our data, summing out
the latent variables (r, f , c):

max
θ

∏

(w,s)∈D

∑

r,f ,c

p(r, f , c,w | s; θ), (3)

where θ are the parameters of the model (all the
multinomial probabilities). We use the EM algo-
rithm to maximize (3), which alternates between
the E-step and the M-step. In the E-step, we
compute expected counts according to the poste-
rior p(r, f , c | w, s; θ). In the M-step, we op-
timize the parameters θ by normalizing the ex-
pected counts computed in the E-step. In our ex-
periments, we initialized EM with a uniform dis-
tribution for each multinomial and applied add-0.1
smoothing to each multinomial in the M-step.

As with most complex discrete models, the bulk
of the work is in computing expected counts under
p(r, f , c | w, s; θ). Formally, our model is a hier-
archical hidden semi-Markov model conditioned
on s. Inference in the E-step can be done using a
dynamic program similar to the inside-outside al-
gorithm.

5 Experiments

Two important aspects of our model are the seg-
mentation of the text and the modeling of the co-

herence structure at both the record and field lev-
els. To quantify the benefits of incorporating these
two aspects, we compare our full model with two
simpler variants.

• Model 1 (no model of segmentation or co-
herence): Each record is chosen indepen-
dently; each record generates one field, and
each field generates one word. This model is
similar in spirit to IBM model 1 (Brown et
al., 1993).

• Model 2 (models segmentation but not coher-
ence): Records and fields are still generated
independently, but each field can now gener-
ate multiple words.

• Model 3 (our full model of segmentation and
coherence): Records and fields are generated
according to the Markov chains described in
Section 3.

5.1 Evaluation

In the annotated data, each text w has been di-
vided into a set of lines. These lines correspond
to clauses in the weather domain and sentences in
the Robocup and NFL domains. Each line is an-
notated with a (possibly empty) set of records. Let
A be the gold set of these line-record alignment
pairs.

To evaluate a learned model, we com-
pute the Viterbi segmentation and alignment
(argmaxr,f ,c p(r, f , c | w, s)). We produce a pre-
dicted set of line-record pairsA′ by aligning a line
to a record ri if the span of (the utterance corre-
sponding to) ri overlaps the line. The reason we
evaluate indirectly using lines rather than using ut-
terances is that it is difficult to annotate the seg-
mentation of text into utterances in a simple and
consistent manner.

We compute standard precision, recall, and F1

of A′ with respect to A. Unless otherwise spec-
ified, performance is reported on all scenarios,
which were also used for training. However, we
did not tune any hyperparameters, but rather used
generic values which worked well enough across
all three domains.

5.2 Robocup Sportscasting

We ran 10 iterations of EM on Models 1–3. Ta-
ble 3 shows that performance improves with in-
creased model sophistication. We also compare
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Method Precision Recall F1

Model 1 78.6 61.9 69.3
Model 2 74.1 84.1 78.8
Model 3 77.3 84.0 80.5

Table 3: Alignment results on the Robocup sportscasting
dataset.

Method F1

Random baseline 48.0
Chen and Mooney (2008) 67.0
Model 3 75.7

Table 4: F1 scores based on the 4-fold cross-validation
scheme in Chen and Mooney (2008).

our model to the results of Chen and Mooney
(2008) in Table 4.

Figure 4 provides a closer look at the predic-
tions made by each of our three models for a par-
ticular example. Model 1 easily mistakes pink10
for the recipient of a pass record because decisions
are made independently for each word. Model 2
chooses the correct record, but having no model
of the field structure inside a record, it proposes
an incorrect field segmentation (although our eval-
uation is insensitive to this). Equipped with the
ability to prefer a coherent field sequence, Model
3 fixes these errors.

Many of the remaining errors are due to the
garbage collection phenomenon familiar from
word alignment models (Moore, 2004; Liang et
al., 2006). For example, the ballstopped record
occurs frequently but is never mentioned in the
text. At the same time, there is a correlation be-
tween ballstopped and utterances such as pink2
holds onto the ball, which are not aligned to any
record in the annotation. As a result, our model
incorrectly chooses to align the two.

5.3 Weather Forecasts

For the weather domain, staged training was nec-
essary to get good results. For Model 1, we ran
15 iterations of EM. For Model 2, we ran 5 it-
erations of EM on Model 1, followed by 10 it-
erations on Model 2. For Model 3, we ran 5 it-
erations of Model 1, 5 iterations of a simplified
variant of Model 3 where records were chosen in-
dependently, and finally, 5 iterations of Model 3.
When going from one model to another, we used
the final posterior distributions of the former to ini-

Method Precision Recall F1

Model 1 49.9 75.1 60.0
Model 2 67.3 70.4 68.8
Model 3 76.3 73.8 75.0

Table 5: Alignment results on the weather forecast dataset.

[Model 1]
r:
f :
w:

pass
arg2=pink10

pink10 turns the ball over to purple5

[Model 2]
r:
f :
w:

turnover
x

pink10 turns the ball over
arg2=purple5

to purple5

[Model 3]
r:
f :
w:

turnover
arg1=pink10

pink10
x

turns the ball over to
arg2=purple5

purple5

Figure 4: An example of predictions made by each of the
three models on the Robocup dataset.

tialize the parameters of the latter.6 We also pro-
hibited utterances in Models 2 and 3 from crossing
punctuation during inference.

Table 5 shows that performance improves sub-
stantially in the more sophisticated models, the
gains being greater than in the Robocup domain.
Figure 5 shows the predictions of the three models
on an example. Model 1 is only able to form iso-
lated (but not completely inaccurate) associations.
By modeling segmentation, Model 2 accounts for
the intermediate words, but errors are still made
due to the lack of Markov structure. Model 3
remedies this. However, unexpected structures
are sometimes learned. For example, the temper-
ature.time=6-21 field indicates daytime, which
happens to be perfectly correlated with the word
high, although high intuitively should be associ-
ated with the temperature.max field. In these cases
of high correlation (Table 2 provides another ex-
ample), it is very difficult to recover the proper
alignment without additional supervision.

5.4 NFL Recaps

In order to scale up our models to the NFL do-
main, we first pruned for each sentence the records
which have either no numerical values (e.g., 23,
23-10, 2/4) nor name-like words (e.g., those that
appear only capitalized in the text) in common.
This eliminated all but 1.5% of the record can-
didates per sentence, while maintaining an ora-

6It is interesting to note that this type of staged training
is evocative of language acquisition in children: lexical asso-
ciations are formed (Model 1) before higher-level discourse
structure is learned (Model 3).
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[Model 1]
r:
f :
w: cloudy , with a

windDir
time=6-21
high near

temperature
max=63

63 .

windDir
mode=SE

east southeast wind between

windSpeed
min=5

5 and

windSpeed
mean=9

11 mph .

[Model 2]
r:
f :
w:

rainChance
mode=–
cloudy ,

temperature
x

with a
time=6-21
high near

max=63
63 .

windDir
mode=SE

east southeast wind
x

between 5 and

windSpeed
mean=9
11 mph .

[Model 3]
r:
f :
w:

skyCover
x

cloudy ,

temperature
x

with a
time=6-21
high near

max=63
63

mean=56
.

windDir
mode=SE

east southeast
x

wind between

windSpeed
min=5

5
max=13
and 11

x
mph .

Figure 5: An example of predictions made by each of the three models on the weather dataset.

cle alignment F1 score of 88.7. Guessing a single
random record for each sentence yields an F1 of
12.0. A reasonable heuristic which uses weighted
number- and string-matching achieves 26.7.

Due to the much greater complexity of this do-
main, Model 2 was easily misled as it tried with-
out success to find a coherent segmentation of the
fields. We therefore created a variant, Model 2’,
where we constrained each field to generate ex-
actly one word. To train Model 2’, we ran 5 it-
erations of EM where each sentence is assumed
to have exactly one record, followed by 5 itera-
tions where the constraint was relaxed to also al-
low record boundaries at punctuation and the word
and. We did not experiment with Model 3 since
the discourse structure on records in this domain is
not at all governed by a simple Markov model on
record types—indeed, most regions do not refer to
any records at all. We also fixed the backoff prob-
ability to 0.1 instead of learning it and enforced
zero numerical deviation on integer field values.

Model 2’ achieved an F1 of 39.9, an improve-
ment over Model 1, which attained 32.8. Inspec-
tion of the errors revealed the following problem:
The alignment task requires us to sometimes align
a sentence to multiple redundant records (e.g.,
play and score) referenced by the same part of the
text. However, our model generates each part of
text from only one record, and thus it can only al-
low an alignment to one record.7 To cope with this
incompatibility between the data and our notion of
semantics, we used the following solution: We di-
vided the records into three groups by type: play,
score, and other. Each group has a copy of the
model, but we enforce that they share the same
segmentation. We also introduce a potential that
couples the presence or absence of records across

7The model can align a sentence to multiple records pro-
vided that the records are referenced by non-overlapping
parts of the text.

Method Precision Recall F1

Random (with pruning) 13.1 11.0 12.0
Baseline 29.2 24.6 26.7
Model 1 25.2 46.9 32.8
Model 2’ 43.4 37.0 39.9
Model 2’ (with groups) 46.5 62.1 53.2
Graph matching (sup.) 73.4 64.5 68.6
Multilabel global (sup.) 87.3 74.5 80.3

Table 6: Alignment results on the NFL dataset. Graph match-
ing and multilabel are supervised results reported in Snyder
and Barzilay (2007).9

groups on the same segment to capture regular co-
occurrences between redundant records.

Table 6 shows our results. With groups, we
achieve an F1 of 53.2. Though we still trail su-
pervised techniques, which attain numbers in the
68–80 range, we have made substantial progress
over our baseline using an unsupervised method.
Furthermore, our model provides a more detailed
analysis of the correspondence between the world
state and text, rather than just producing a single
alignment decision. Most of the remaining errors
made by our model are due to a lack of calibra-
tion. Sometimes, our false positives are close calls
where a sentence indirectly references a record,
and our model predicts the alignment whereas the
annotation standard does not. We believe that fur-
ther progress is possible with a richer model.

6 Conclusion

We have presented a generative model of corre-
spondences between a world state and an unseg-
mented stream of text. By having a joint model
of salience, coherence, and segmentation, as well
as a detailed rendering of the values in the world
state into words in the text, we are able to cope
with the increased ambiguity that arises in this new
data setting, successfully pushing the limits of un-
supervision.
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Abstract

In this paper, we propose a new Bayesian
model for fully unsupervised word seg-
mentation and an efficient blocked Gibbs
sampler combined with dynamic program-
ming for inference. Our model is a nested
hierarchical Pitman-Yor language model,
where Pitman-Yor spelling model is em-
bedded in the word model. We confirmed
that it significantly outperforms previous
reported results in both phonetic tran-
scripts and standard datasets for Chinese
and Japanese word segmentation. Our
model is also considered as a way to con-
struct an accurate word n-gram language
model directly from characters of arbitrary
language, without any “word” indications.

1 Introduction

“Word” is no trivial concept in many languages.
Asian languages such as Chinese and Japanese
have no explicit word boundaries, thus word seg-
mentation is a crucial first step when processing
them. Even in western languages, valid “words”
are often not identical to space-separated tokens.
For example, proper nouns such as “United King-
dom” or idiomatic phrases such as “with respect
to” actually function as a single word, and we of-
ten condense them into the virtual words “UK”
and “w.r.t.”.

In order to extract “words” from text streams,
unsupervised word segmentation is an important
research area because the criteria for creating su-
pervised training data could be arbitrary, and will
be suboptimal for applications that rely on seg-
mentations. It is particularly difficult to create
“correct” training data for speech transcripts, col-
loquial texts, and classics where segmentations are
often ambiguous, let alone is impossible for un-
known languages whose properties computational
linguists might seek to uncover.

From a scientific point of view, it is also inter-
esting because it can shed light on how children
learn “words” without the explicitly given bound-
aries for every word, which is assumed by super-
vised learning approaches.

Lately, model-based methods have been intro-
duced for unsupervised segmentation, in particu-
lar those based on Dirichlet processes on words
(Goldwater et al., 2006; Xu et al., 2008). This
maximizes the probability of word segmentation
w given a string s :

ŵ = argmax
w

p(w|s) . (1)

This approach often implicitly includes heuristic
criteria proposed so far1, while having a clear sta-
tistical semantics to find the most probable word
segmentation that will maximize the probability of
the data, here the strings.

However, they are still naı̈ve with respect to
word spellings, and the inference is very slow ow-
ing to inefficient Gibbs sampling. Crucially, since
they rely on sampling a word boundary between
two neighboring words, they can leverage only up
to bigram word dependencies.

In this paper, we extend this work to pro-
pose a more efficient and accurate unsupervised
word segmentation that will optimize the per-
formance of the word n-gram Pitman-Yor (i.e.
Bayesian Kneser-Ney) language model, with an
accurate character ∞-gram Pitman-Yor spelling
model embedded in word models. Further-
more, it can be viewed as a method for building
a high-performance n-gram language model di-
rectly from character strings of arbitrary language.
It is carefully smoothed and has no “unknown
words” problem, resulting from its model struc-
ture.

This paper is organized as follows. In Section 2,
1For instance, TANGO algorithm (Ando and Lee, 2003)

essentially finds segments such that character n-gram proba-
bilities are maximized blockwise, averaged over n.
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(a) Generating n-gram distributions G hierarchically
from the Pitman-Yor process. Here, n = 3.

(b) Equivalent representation using a hierarchical Chinese
Restaurant process. Each word in a training text is a “customer”
shown in italic, and added to the leaf of its two words context.

Figure 1: Hierarchical Pitman-Yor Language Model.

we briefly describe a language model based on the
Pitman-Yor process (Teh, 2006b), which is a gen-
eralization of the Dirichlet process used in previ-
ous research. By embedding a character n-gram
in word n-gram from a Bayesian perspective, Sec-
tion 3 introduces a novel language model for word
segmentation, which we call the Nested Pitman-
Yor language model. Section 4 describes an ef-
ficient blocked Gibbs sampler that leverages dy-
namic programming for inference. In Section 5 we
describe experiments on the standard datasets in
Chinese and Japanese in addition to English pho-
netic transcripts, and semi-supervised experiments
are also explored. Section 6 is a discussion and
Section 7 concludes the paper.

2 Pitman-Yor process and n-gram
models

To compute a probability p(w|s) in (1), we adopt
a Bayesian language model lately proposed by
(Teh, 2006b; Goldwater et al., 2005) based on
the Pitman-Yor process, a generalization of the
Dirichlet process. As we shall see, this is a
Bayesian theory of the best-performing Kneser-
Ney smoothing of n-grams (Kneser and Ney,
1995), allowing an integrated modeling from a
Bayesian perspective as persued in this paper.

The Pitman-Yor (PY) process is a stochastic
process that generates discrete probability distri-
bution G that is similar to another distribution G0,
called a base measure. It is written as

G ∼ PY(G0, d, θ) , (2)
where d is a discount factor and θ controls how
similar G is to G0 on average.

Suppose we have a unigram word distribution
G1 ={ p(·) } where · ranges over each word in the
lexicon. The bigram distribution G2 = { p(·|v) }

given a word v is different from G1, but will be
similar to G1 especially for high frequency words.
Therefore, we can generate G2 from a PY pro-
cess of base measure G1, as G2 ∼ PY(G1, d, θ).
Similarly, trigram distribution G3 = { p(·|v′v) }
given an additional word v′ is generated as G3 ∼
PY(G2, d, θ), and G1, G2, G3 will form a tree
structure shown in Figure 1(a).

In practice, we cannot observe G directly be-
cause it will be infinite dimensional distribution
over the possible words, as we shall see in this
paper. However, when we integrate out G it is
known that Figure 1(a) can be represented by an
equivalent hierarchical Chinese Restaurant Pro-
cess (CRP) (Aldous, 1985) as in Figure 1(b).

In this representation, each n-gram context h

(including the null context ε for unigrams) is
a Chinese restaurant whose customers are the
n-gram counts c(w|h) seated over the tables
1 · · · thw. The seatings has been incrementally
constructed by choosing the table k for each count
in c(w|h) with probability proportional to

{

chwk − d (k = 1, · · · , thw)

θ + d·th· (k = new) ,
(3)

where chwk is the number of customers seated at
table k thus far and th· =

∑

w thw is the total num-
ber of tables in h. When k = new is selected,
thw is incremented, and this means that the count
was actually generated from the shorter context h′.
Therefore, in that case a proxy customer is sent to
the parent restaurant and this process will recurse.

For example, if we have a sentence “she will
sing” in the training data for trigrams, we add each
word “she” “will” “sing” “$” as a customer to its
two preceding words context node, as described
in Figure 1(b). Here, “$” is a special token rep-
resenting a sentence boundary in language model-
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ing (Brown et al., 1992).
As a result, the n-gram probability of this hier-

archical Pitman-Yor language model (HPYLM) is
recursively computed as

p(w|h) =
c(w|h)−d·thw

θ+c(h)
+

θ+d·th·
θ+c(h)

p(w|h′),

(4)
where p(w|h′) is the same probability using a
(n−1)-gram context h′. When we set thw ≡ 1, (4)
recovers a Kneser-Ney smoothing: thus a HPYLM
is a Bayesian Kneser-Ney language model as well
as an extension of the hierarchical Dirichlet Pro-
cess (HDP) used in Goldwater et al. (2006). θ, d

are hyperparameters that can be learned as Gamma
and Beta posteriors, respectively, given the data.
For details, see Teh (2006a).

The inference of this model interleaves adding
and removing a customer to optimize thw, d, and
θ using MCMC. However, in our case “words”
are not known a priori: the next section describes
how to accomplish this by constructing a nested
HPYLM of words and characters, with the associ-
ated inference algorithm.

3 Nested Pitman-Yor Language Model

Thus far we have assumed that the unigram G1

is already given, but of course it should also be
generated as G1 ∼ PY(G0, d, θ).

Here, a problem occurs: What should we use for
G0, namely the prior probabilities over words2?
If a lexicon is finite, we can use a uniform prior
G0(w) = 1/|V | for every word w in lexicon V .
However, with word segmentation every substring
could be a word, thus the lexicon is not limited but
will be countably infinite.

Building an accurate G0 is crucial for word
segmentation, since it determines how the possi-
ble words will look like. Previous work using a
Dirichlet process used a relatively simple prior for
G0, namely an uniform distribution over charac-
ters (Goldwater et al., 2006), or a prior solely de-
pendent on word length with a Poisson distribution
whose parameter is fixed by hand (Xu et al., 2008).

In contrast, in this paper we use a simple but
more elaborate model, that is, a character n-gram
language model that also employs HPYLM. This
is important because in English, for example,
words are likely to end in ‘–tion’ and begin with

2Note that this is different from unigrams, which are pos-
terior distribution given data.

Figure 2: Chinese restaurant representation of our
Nested Pitman-Yor Language Model (NPYLM).
‘re–’, but almost never end in ‘–tio’ nor begin with
‘sre–’ 3.

Therefore, we use
G0(w) = p(c1 · · · ck) (5)

=

k
∏

i=1

p(ci|c1 · · · ci−1) (6)

where string c1 · · · ck is a spelling of w, and
p(ci|c1 · · · ci−1) is given by the character HPYLM
according to (4).

This language model, which we call Nested
Pitman-Yor Language Model (NPYLM) hereafter,
is the hierarchical language model shown in Fig-
ure 2, where the character HPYLM is embedded
as a base measure of the word HPYLM.4 As the
final base measure for the character HPYLM, we
used a uniform prior over the possible characters
of a given language. To avoid dependency on n-
gram order n, we actually used the ∞-gram lan-
guage model (Mochihashi and Sumita, 2007), a
variable order HPYLM, for characters. However,
for generality we hereafter state that we used the
HPYLM. The theory remains the same for ∞-
grams, except sampling or marginalizing over n

as needed.
Furthermore, we corrected (5) so that word

length will have a Poisson distribution whose pa-
rameter can now be estimated for a given language
and word type. We describe this in detail in Sec-
tion 4.3.
Chinese Restaurant Representation
In our NPYLM, the word model and the charac-
ter model are not separate but connected through
a nested CRP. When a word w is generated from
its parent at the unigram node, it means that w

3Imagine we try to segment an English character string
“itisrecognizedasthe· · · .”

4Strictly speaking, this is not “nested” in the sense of a
Nested Dirichlet process (Rodriguez et al., 2008) and could
be called “hierarchical HPYLM”, which denotes another
model for domain adaptation (Wood and Teh, 2008).
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is drawn from the base measure, namely a char-
acter HPYLM. Then we divide w into characters
c1 · · · ck to yield a “sentence” of characters and
feed this into the character HPYLM as data.

Conversely, when a table becomes empty, this
means that the data associated with the table are
no longer valid. Therefore we remove the corre-
sponding customers from the character HPYLM
using the inverse procedure of adding a customer
in Section 2.

All these processes will be invoked when a
string is segmented into “words” and customers
are added to the leaves of the word HPYLM. To
segment a string into “words”, we used efficient
dynamic programming combined with MCMC, as
described in the next section.

4 Inference

To find the hidden word segmentation w of a string
s = c1 · · · cN , which is equivalent to the vector of
binary hidden variables z = z1 · · · zN , the sim-
plest approach is to build a Gibbs sampler that ran-
domly selects a character ci and draw a binary de-
cision zi as to whether there is a word boundary,
and then update the language model according to
the new segmentation (Goldwater et al., 2006; Xu
et al., 2008). When we iterate this procedure suf-
ficiently long, it becomes a sample from the true
distribution (1) (Gilks et al., 1996).

However, this sampler is too inefficient since
time series data such as word segmentation have a
very high correlation between neighboring words.
As a result, the sampler is extremely slow to con-
verge. In fact, (Goldwater et al., 2006) reports that
the sampler would not mix without annealing, and
the experiments needed 20,000 times of sampling
for every character in the training data.

Furthermore, it has an inherent limitation that
it cannot deal with larger than bigrams, because it
uses only local statistics between directly contigu-
ous words for word segmentation.

4.1 Blocked Gibbs sampler

Instead, we propose a sentence-wise Gibbs sam-
pler of word segmentation using efficient dynamic
programming, as shown in Figure 3.

In this algorithm, first we randomly select a
string, and then remove the “sentence” data of its
word segmentation from the NPYLM. Sampling
a new segmentation, we update the NPYLM by
adding a new “sentence” according to the new seg-

1: for j = 1 · · · J do
2: for s in randperm (s1, · · · , sD) do
3: if j >1 then
4: Remove customers of w(s) from Θ
5: end if
6: Draw w(s) according to p(w|s,Θ)
7: Add customers of w(s) to Θ
8: end for
9: Sample hyperparameters of Θ

10: end for

Figure 3: Blocked Gibbs Sampler of NPYLM Θ.

mentation. When we repeat this process, it is ex-
pected to mix rapidly because it implicitly consid-
ers all possible segmentations of the given string
at the same time.

This is called a blocked Gibbs sampler that sam-
ples z block-wise for each sentence. It has an ad-
ditional advantage in that we can accommodate
higher-order relationships than bigrams, particu-
larly trigrams, for word segmentation. 5

4.2 Forward-Backward inference

Then, how can we sample a segmentation w for
each string s? In accordance with the Forward fil-
tering Backward sampling of HMM (Scott, 2002),
this is achieved by essentially the same algorithm
employed to sample a PCFG parse tree within
MCMC (Johnson et al., 2007) and grammar-based
segmentation (Johnson and Goldwater, 2009).

Forward Filtering. For this purpose, we main-
tain a forward variable α[t][k] in the bigram case.
α[t][k] is the probability of a string c1 · · · ct with
the final k characters being a word (see Figure 4).
Segmentations before the final k characters are
marginalized using the following recursive rela-
tionship:

α[t][k] =
t−k
∑

j=1

p(ct
t−k+1|c

t−k
t−k−j+1)·α[t−k][j] (7)

where α[0][0] = 1 and we wrote cn · · · cm as cm
n .6

The rationale for (7) is as follows. Since main-
taining binary variables z1, · · · , zN is equivalent
to maintaining a distance to the nearest backward

5In principle fourgrams or beyond are also possible, but
will be too complex while the gain will be small. For this
purpose, Particle MCMC (Doucet et al., 2009) is promising
but less efficient in a preliminary experiment.

6As Murphy (2002) noted, in semi-HMM we cannot use a
standard trick to avoid underflow by normalizing α[t][k] into
p(k|t), since the model is asynchronous. Instead we always
compute (7) using logsumexp().
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Figure 4: Forward filtering of α[t][k] to marginal-
ize out possible segmentations j before t−k.

1: for t = 1 to N do
2: for k = max(1, t−L) to t do
3: Compute α[t][k] according to (7).
4: end for
5: end for
6: Initialize t← N , i← 0, w0 ← $
7: while t > 0 do
8: Draw k ∝ p(wi|c

t
t−k+1,Θ) · α[t][k]

9: Set wi ← ct
t−k+1

10: Set t← t− k, i← i + 1
11: end while
12: Return w = wi, wi−1, · · · , w1.
Figure 5: Forward-Backward sampling of word
segmentation w. (in bigram case)

word boundary for each t as qt, we can write
α[t][k]=p(ct

1, qt =k) (8)

=
∑

j

p(ct
1, qt =k, qt−k =j) (9)

=
∑

j

p(ct−k
1 , ct

t−k+1, qt =k, qt−k =j)(10)

=
∑

j

p(ct
t−k+1|c

t−k
1 )p(ct−k

1 , qt−k =j)(11)

=
∑

j

p(ct
t−k+1|c

t−k
1 )α[t−k][j] , (12)

where we used conditional independency of qt

given qt−k and uniform prior over qt in (11) above.

Backward Sampling. Once the probability ta-
ble α[t][k] is obtained, we can sample a word seg-
mentation backwards. Since α[N ][k] is a marginal
probability of string cN

1 with the last k charac-
ters being a word, and there is always a sentence
boundary token $ at the end of the string, with
probability proportional to p($|cN

N−k)·α[N ][k] we
can sample k to choose the boundary of the final
word. The second final word is similarly sampled
using the probability of preceding the last word
just sampled: we continue this process until we
arrive at the beginning of the string (Figure 5).

Trigram case. For simplicity, we showed the
algorithm for bigrams above. For trigrams, we

maintain a forward variable α[t][k][j], which rep-
resents a marginal probability of string c1 · · · ct

with both the final k characters and further j

characters preceding it being words. Forward-
Backward algorithm becomes complicated thus
omitted, but can be derived following the extended
algorithm for second order HMM (He, 1988).

Complexity This algorithm has a complexity of
O(NL2) for bigrams and O(NL3) for trigrams
for each sentence, where N is the length of the
sentence and L is the maximum allowed length of
a word (≤ N ).

4.3 Poisson correction

As Nagata (1996) noted, when only (5) is used in-
adequately low probabilities are assigned to long
words, because it has a largely exponential dis-
tribution over length. To correct this, we assume
that word length k has a Poisson distribution with
a mean λ:

Po(k|λ) = e−λ λk

k!
. (13)

Since the appearance of c1 · · · ck is equivalent
to that of length k and the content, by making the
character n-gram model explicit as Θ we can set

p(c1 · · · ck) = p(c1 · · · ck, k) (14)

=
p(c1 · · · ck, k|Θ)

p(k|Θ)
Po(k|λ) (15)

where p(c1 · · · ck, k|Θ) is an n-gram probabil-
ity given by (6), and p(k|Θ) is a probability
that a word of length k will be generated from
Θ. While previous work used p(k|Θ) = (1 −
p($))k−1p($), this is only true for unigrams. In-
stead, we employed a Monte Carlo method that
generates words randomly from Θ to obtain the
empirical estimates of p(k|Θ).

Estimating λ. Of course, we do not leave λ as a
constant. Instead, we put a Gamma distribution

p(λ) = Ga(a, b) =
ba

Γ(a)
λa−1e−bλ (16)

to estimate λ from the data for given language
and word type.7 Here, Γ(x) is a Gamma function
and a, b are the hyperparameters chosen to give a
nearly uniform prior distribution.8

7We used different λ for different word types, such as dig-
its, alphabets, hiragana, CJK characters, and their mixtures.
W is a set of words of each such type, and (13) becomes a
mixture of Poisson distributions in this case.

8In the following experiments, we set a=0.2, b=0.1.
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Denoting W as a set of “words” obtained from
word segmentation, the posterior distribution of λ

used for (13) is
p(λ|W ) ∝ p(W |λ)p(λ)

= Ga
(

a+
∑

w∈W

t(w)|w|, b+
∑

w∈W

t(w)
)

, (17)

where t(w) is the number of times word w is gen-
erated from the character HPYLM, i.e. the number
of tables tεw for w in word unigrams. We sampled
λ from this posterior for each Gibbs iteration.

5 Experiments

To validate our model, we conducted experiments
on standard datasets for Chinese and Japanese
word segmentation that are publicly available, as
well as the same dataset used in (Goldwater et al.,
2006). Note that NPYLM maximizes the probabil-
ity of strings, equivalently, minimizes the perplex-
ity per character. Therefore, the recovery of the
“ground truth” that is not available for inference is
a byproduct in unsupervised learning.

Since our implementation is based on Unicode
and learns all hyperparameters from the data, we
also confirmed that NPYLM segments the Arabic
Gigawords equally well.

5.1 English phonetic transcripts

In order to directly compare with the previously
reported result, we first used the same dataset
as Goldwater et al. (2006). This dataset con-
sists of 9,790 English phonetic transcripts from
CHILDES data (MacWhinney and Snow, 1985).

Since our algorithm converges rather fast, we
ran the Gibbs sampler of trigram NPYLM for 200
iterations to obtain the results in Table 1. Among
the token precision (P), recall (R), and F-measure
(F), the recall is especially higher to outperform
the previous result based on HDP in F-measure.
Meanwhile, the same measures over the obtained
lexicon (LP, LR, LF) are not always improved.
Moreover, the average length of words inferred
was surprisingly similar to ground truth: 2.88,
while the ground truth is 2.87.

Table 2 shows the empirical computational time
needed to obtain these results. Although the con-
vergence in MCMC is not uniquely identified, im-
provement in efficiency is also outstanding.

5.2 Chinese and Japanese word segmentation

To show applicability beyond small phonetic tran-
scripts, we used standard datasets for Chinese and

Model P R F LP LR LF
NPY(3) 74.8 75.2 75.0 47.8 59.7 53.1
NPY(2) 74.8 76.7 75.7 57.3 56.6 57.0
HDP(2) 75.2 69.6 72.3 63.5 55.2 59.1

Table 1: Segmentation accuracies on English pho-
netic transcripts. NPY(n) means n-gram NPYLM.
Results for HDP(2) are taken from Goldwater et
al. (2009), which corrects the errors in Goldwater
et al. (2006).

Model time iterations
NPYLM 17min 200
HDP 10h 55min 20000

Table 2: Computations needed for Table 1. Itera-
tions for “HDP” is the same as described in Gold-
water et al. (2009). Actually, NPYLM approxi-
mately converged around 50 iterations, 4 minutes.

Japanese word segmentation, with all supervised
segmentations removed in advance.

Chinese For Chinese, we used a publicly avail-
able SIGHAN Bakeoff 2005 dataset (Emerson,
2005). To compare with the latest unsupervised
results (using a closed dataset of Bakeoff 2006),
we chose the common sets prepared by Microsoft
Research Asia (MSR) for simplified Chinese, and
by City University of Hong Kong (CITYU) for
traditional Chinese. We used a random subset of
50,000 sentences from each dataset for training,
and the evaluation was conducted on the enclosed
test data. 9

Japanese For Japanese, we used the Kyoto Cor-
pus (Kyoto) (Kurohashi and Nagao, 1998): we
used random subset of 1,000 sentences for evalua-
tion and the remaining 37,400 sentences for train-
ing. In all cases we removed all whitespaces to
yield raw character strings for inference, and set
L = 4 for Chinese and L = 8 for Japanese to run
the Gibbs sampler for 400 iterations.

The results (in token F-measures) are shown in
Table 3. Our NPYLM significantly ourperforms
the best results using a heuristic approach reported
in Zhao and Kit (2008). While Japanese accura-
cies appear lower, subjective qualities are much
higher. This is mostly because NPYLM segments
inflectional suffixes and combines frequent proper
names, which are inconsistent with the “correct”

9Notice that analyzing a test data is not easy for character-
wise Gibbs sampler of previous work. Meanwhile, NPYLM
easily finds the best segmentation using the Viterbi algorithm
once the model is learned.
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Model MSR CITYU Kyoto
NPY(2) 80.2 (51.9) 82.4 (126.5) 62.1 (23.1)
NPY(3) 80.7 (48.8) 81.7 (128.3) 66.6 (20.6)
ZK08 66.7 (—) 69.2 (—) —

Table 3: Accuracies and perplexities per character
(in parentheses) on actual corpora. “ZK08” are the
best results reported in Zhao and Kit (2008). We
used∞-gram for characters.

MSR CITYU Kyoto
Semi 0.895 (48.8) 0.898 (124.7) 0.913 (20.3)
Sup 0.945 (81.4) 0.941 (194.8) 0.971 (21.3)

Table 4: Semi-supervised and supervised results.
Semi-supervised results used only 10K sentences
(1/5) of supervised segmentations.
segmentations. Bigram and trigram performances
are similar for Chinese, but trigram performs bet-
ter for Japanese. In fact, although the difference
in perplexity per character is not so large, the per-
plexity per word is radically reduced: 439.8 (bi-
gram) to 190.1 (trigram). This is because trigram
models can leverage complex dependencies over
words to yield shorter words, resulting in better
predictions and increased tokens.

Furthermore, NPYLM is easily amenable to
semi-supervised or even supervised learning. In
that case, we have only to replace the word seg-
mentation w(s) in Figure 3 to the supervised one,
for all or part of the training data. Table 4
shows the results using 10,000 sentences (1/5) or
complete supervision. Our completely generative
model achieves the performance of 94% (Chinese)
or even 97% (Japanese) in supervised case. The
result also shows that the supervised segmenta-
tions are suboptimal with respect to the perplex-
ity per character, and even worse than unsuper-
vised results. In semi-supervised case, using only
10K reference segmentations gives a performance
of around 90% accuracy and the lowest perplexity,
thanks to a combination with unsupervised data in
a principled fashion.
5.3 Classics and English text

Our model is particularly effective for spoken tran-
scripts, colloquial texts, classics, or unknown lan-
guages where supervised segmentation data is dif-
ficult or even impossible to create. For example,
we are pleased to say that we can now analyze (and
build a language model on) “The Tale of Genji”,
the core of Japanese classics written 1,000 years
ago (Figure 6). The inferred segmentations are
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Figure 6: Unsupervised segmentation result for
“The Tale of Genji”. (16,443 sentences, 899,668
characters in total)

mostly correct, with some inflectional suffixes be-
ing recognized as words, which is also the case
with English.

Finally, we note that our model is also effective
for western languages: Figure 7 shows a training
text of “Alice in Wonderland ” with all whitespaces
removed, and the segmentation result.

While the data is extremely small (only 1,431
lines, 115,961 characters), our trigram NPYLM
can infer the words surprisingly well. This is be-
cause our model contains both word and character
models that are combined and carefully smoothed,
from a Bayesian perspective.

6 Discussion

In retrospect, our NPYLM is essentially a hier-
archical Markov model where the units (=words)
evolve as the Markov process, and each unit
has subunits (=characters) that also evolve as the
Markov process. Therefore, for such languages
as English that have already space-separated to-
kens, we can also begin with tokens besides the
character-based approach in Section 5.3. In this
case, each token is a “character” whose code is the
integer token type, and a sentence is a sequence of
“characters.” Figure 8 shows a part of the result
computed over 100K sentences from Penn Tree-
bank. We can see that some frequent phrases are
identified as “words”, using a fully unsupervised
approach. Notice that this is only attainable with
NPYLM where each phrase is described as a n-
gram model on its own, here a word∞-gram lan-
guage model.

While we developed an efficient forward-
backward algorithm for unsupervised segmenta-
tion, it is reminiscent of CRF in the discrimina-
tive approach. Therefore, it is also interesting
to combine them in a discriminative way as per-
sued in POS tagging using CRF+HMM (Suzuki et
al., 2007), let alone a simple semi-supervised ap-
proach in Section 5.2. This paper provides a foun-
dation of such possibilities.
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lastly,shepicturedtoherselfhowthissamelittlesisterofhersw
ould,intheafter-time,beherselfagrownwoman;andhowshe
wouldkeep,throughallherriperyears,thesimpleandlovingh
eartofherchildhood:andhowshewouldgatheraboutherothe
rlittlechildren,andmaketheireyesbrightandeagerwithmany
astrangetale,perhapsevenwiththedreamofwonderlandoflo
ngago:andhowshewouldfeelwithalltheirsimplesorrows,an
dfindapleasureinalltheirsimplejoys,rememberingherownc
hild-life,andthehappysummerdays.

(a) Training data (in part).
last ly , she pictured to herself how this same little sis-
ter of her s would , inthe after - time , be herself agrown
woman ; and how she would keep , through allher ripery
ears , the simple and loving heart of her child hood : and
how she would gather about her other little children ,and
make theireyes bright and eager with many a strange tale
, perhaps even with the dream of wonderland of longago
: and how she would feel with all their simple sorrow s ,
and find a pleasure in all their simple joys , remember ing
her own child - life , and thehappy summerday s .

(b) Segmentation result. Note we used no dictionary.

Figure 7: Word segmentation of “Alice in Wonder-
land ”.

7 Conclusion

In this paper, we proposed a much more efficient
and accurate model for fully unsupervised word
segmentation. With a combination of dynamic
programming and an accurate spelling model from
a Bayesian perspective, our model significantly
outperforms the previous reported results, and the
inference is very efficient.

This model is also considered as a way to build
a Bayesian Kneser-Ney smoothed word n-gram
language model directly from characters with no
“word” indications. In fact, it achieves lower per-
plexity per character than that based on supervised
segmentations. We believe this will be particu-
larly beneficial to build a language model on such
texts as speech transcripts, colloquial texts or un-
known languages, where word boundaries are hard
or even impossible to identify a priori.
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Abstract

Empirical studies on corpora involve mak-
ing measurements of several quantities for
the purpose of comparing corpora, creat-
ing language models or to make general-
izations about specific linguistic phenom-
ena in a language. Quantities such as av-
erage word length are stable across sam-
ple sizes and hence can be reliably esti-
mated from large enough samples. How-
ever, quantities such asvocabulary size
change with sample size. Thus measure-
ments based on a given sample will need
to beextrapolatedto obtain their estimates
over larger unseen samples. In this work,
we propose a novelnonparametricestima-
tor of vocabulary size. Our main result is
to show thestatistical consistencyof the
estimator – the first of its kind in the lit-
erature. Finally, we compare our proposal
with the state of the art estimators (both
parametric and nonparametric) on large
standard corpora; apart from showing the
favorable performance of our estimator,
we also see that the classical Good-Turing
estimator consistently underestimates the
vocabulary size.

1 Introduction

Empirical studies on corpora involve making mea-
surements of several quantities for the purpose of
comparing corpora, creating language models or
to make generalizations about specific linguistic
phenomena in a language. Quantities such as av-
erage word length or average sentence length are
stable across sample sizes. Hence empirical mea-
surements from large enough samples tend to be
reliable for even larger sample sizes. On the other
hand, quantities associated with word frequencies,
such as the number ofhapax legomenaor the num-

ber of distinct word types changes are strictly sam-
ple size dependent. Given a sample we can ob-
tain the seen vocabulary and the seen number of
hapax legomena. However, for the purpose of
comparison of corpora of different sizes or lin-
guistic phenomena based on samples of different
sizes it is imperative that these quantities be com-
pared based on similar sample sizes. We thus need
methods to extrapolate empirical measurements of
these quantities to arbitrary sample sizes.

Our focus in this study will be estimators of
vocabulary size for samples larger than the sam-
ple available. There is an abundance of estima-
tors of population size (in our case, vocabulary
size) in existing literature. Excellent survey arti-
cles that summarize the state-of-the-art are avail-
able in (Bunge and Fitzpatrick, 1993) and (Gan-
dolfi and Sastri, 2004). Of particular interest to
us is the set of estimators that have been shown
to model word frequency distributions well. This
study proposes a nonparametric estimator of vo-
cabulary size and evaluates its theoretical and em-
pirical performance. For comparison we consider
some state-of-the-art parametric and nonparamet-
ric estimators of vocabulary size.

The proposed non-parametric estimator for the
number of unseen elements assumes a regime
characterizing word frequency distributions. This
work is motivated by a scaling formulation to ad-
dress the problem of unlikely events proposed in
(Baayen, 2001; Khmaladze, 1987; Khmaladze and
Chitashvili, 1989; Wagner et al., 2006). We also
demonstrate that the estimator is strongly consis-
tent under the natural scaling formulation. While
compared with other vocabulary size estimates,
we see that our estimator performs at least as well
as some of the state of the art estimators.

2 Previous Work

Many estimators of vocabulary size are available
in the literature and a comparison of several non
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parametric estimators of population size occurs in
(Gandolfi and Sastri, 2004). While a definite com-
parison including parametric estimators is lacking,
there is also no known work comparing methods
of extrapolation of vocabulary size. Baroni and
Evert, in (Baroni and Evert, 2005), evaluate the
performance of some estimators in extrapolating
vocabulary size for arbitrary sample sizes but limit
the study to parametric estimators. Since we con-
sider both parametric and nonparametric estima-
tors here, we consider this to be the first study
comparing a set of estimators for extrapolating vo-
cabulary size.

Estimators of vocabulary size that we compare
can be broadly classified into two types:

1. Nonparametric estimators- here word fre-
quency information from the given sample
alone is used to estimate the vocabulary size.
A good survey of the state of the art is avail-
able in (Gandolfi and Sastri, 2004). In this
paper, we compare our proposed estimator
with the canonical estimators available in
(Gandolfi and Sastri, 2004).

2. Parametric estimators- here a probabilistic
model capturing the relation between ex-
pected vocabulary size and sample size is the
estimator. Given a sample of sizen, the
sample serves to calculate the parameters of
the model. The expected vocabulary for a
given sample size is then determined using
the explicit relation. The parametric esti-
mators considered in this study are (Baayen,
2001; Baroni and Evert, 2005),

(a) Zipf-Mandelbrot estimator (ZM);

(b) finite Zipf-Mandelbrot estimator (fZM).

In addition to the above estimators we consider
a novel non parametric estimator. It is the nonpara-
metric estimator that we propose, taking into ac-
count the characteristic feature of word frequency
distributions, to which we will turn next.

3 Novel Estimator of Vocabulary size

We observe(X1, . . . ,Xn), an i.i.d. sequence
drawn according to a probability distributionP
from a large, but finite, vocabularyΩ. Our goal
is in estimating the “essential” size of the vocabu-
lary Ω using only the observations. In other words,
having seen a sample of sizen we wish to know,
given another sample from the same population,

how many unseen elements we would expect to
see. Our nonparametric estimator for the number
of unseen elements is motivated by the character-
istic property of word frequency distributions, the
Large Number of Rare Events(LNRE) (Baayen,
2001). We also demonstrate that the estimator is
strongly consistent under a natural scaling formu-
lation described in (Khmaladze, 1987).

3.1 A Scaling Formulation

Our main interest is in probability distributionsP
with the property that a large number of words in
the vocabularyΩ are unlikely, i.e., the chance any
word appears eventually in an arbitrarily long ob-
servation is strictly between 0 and 1. The authors
in (Baayen, 2001; Khmaladze and Chitashvili,
1989; Wagner et al., 2006) propose a natural scal-
ing formulation to study this problem; specifically,
(Baayen, 2001) has a tutorial-like summary of the
theoretical work in (Khmaladze, 1987; Khmaladze
and Chitashvili, 1989). In particular, the authors
consider asequenceof vocabulary sets and prob-
ability distributions, indexed by the observation
sizen. Specifically, the observation(X1, . . . ,Xn)
is drawn i.i.d. from a vocabularyΩn according to
probability Pn. If the probability of a word, say
ω ∈ Ωn is p, then the probability that this specific
wordω does not occur in an observation of sizen

is
(1− p)n .

Forω to be an unlikely word, we would like this
probability for largen to remain strictly between
0 and 1. This implies that

č

n
≤ p ≤

ĉ

n
, (1)

for some strictly positive constants0 < č < ĉ <

∞. We will assume throughout this paper thatč

and ĉ are the same for every wordω ∈ Ωn. This
implies that the vocabulary size is growinglin-
early with the observation size:

n

ĉ
≤ |Ωn| ≤

n

č
.

This model is called theLNRE zoneand its appli-
cability in natural language corpora is studied in
detail in (Baayen, 2001).

3.2 Shadows

Consider the observation string(X1, . . . ,Xn) and
let us denote the quantity of interest – the number
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of word types in the vocabularyΩn that are not
observed – byOn. This quantity is random since
the observation string itself is. However, we note
that the distribution ofOn is unaffected if one re-
labels the words inΩn. This motivates studying
of the probabilities assigned byPn without refer-
ence to the labeling of the word; this is done in
(Khmaladze and Chitashvili, 1989) via thestruc-
tural distribution functionand in (Wagner et al.,
2006) via theshadow. Here we focus on the latter
description:

Definition 1 LetXn be a random variable onΩn

with distribution Pn. The shadowof Pn is de-
fined to be the distribution of the random variable
Pn({Xn}).

For the finite vocabulary situation we are con-
sidering, specifying the shadow isexactly equiv-
alent to specifying the unordered components of
Pn, viewed as a probability vector.

3.3 Scaled Shadows Converge

We will follow (Wagner et al., 2006) and sup-
pose that the scaled shadows, the distribution of
n ·Pn(Xn), denoted byQn converge to a distribu-
tion Q. As an example, ifPn is a uniform distribu-
tion over a vocabulary of sizecn, thenn · Pn(Xn)
equals 1

c
almost surely for eachn (and hence it

converges in distribution). From this convergence
assumption we can, further, infer the following:

1. Since the probability of each wordω is lower
and upper bounded as in Equation (1), we
know that the distributionQn is non-zero
only in the range[č, ĉ].

2. The “essential” size of the vocabulary, i.e.,
the number of words ofΩn on which Pn

puts non-zero probability can be evaluated di-
rectly from the scaled shadow, scaled by1

n
as

∫ ĉ

č

1

y
dQn(y). (2)

Using the dominated convergence theorem,
we can conclude that the convergence of the
scaled shadows guarantees that the size of the
vocabulary, scaled by1/n, converges as well:

|Ωn|

n
→

∫ ĉ

č

1

y
dQ(y). (3)

3.4 Profiles and their Limits

Our goal in this paper is to estimate the size of the
underlying vocabulary, i.e., the expression in (2),

∫ ĉ

č

n

y
dQn(y), (4)

from the observations(X1, . . . ,Xn). We observe
that since the scaled shadowQn does not de-
pend on the labeling of the words inΩn, a suf-
ficient statisticto estimate (4) from the observa-
tion (X1, . . . ,Xn) is theprofileof the observation:
(ϕn

1 , . . . , ϕn
n), defined as follows.ϕn

k is the num-
ber of word types that appear exactlyk times in
the observation, fork = 1, . . . , n. Observe that

n
∑

k=1

kϕn
k = n,

and that

V
def
=

n
∑

k=1

ϕn
k (5)

is the number ofobservedwords. Thus, the object
of our interest is,

On = |Ωn| − V. (6)

3.5 Convergence of Scaled Profiles

One of the main results of (Wagner et al., 2006) is
that the scaled profiles converge to a deterministic
probability vector under the scaling model intro-
duced in Section 3.3. Specifically, we have from
Proposition 1 of (Wagner et al., 2006):

n
∑

k=1

∣

∣

∣

∣

kϕk

n
− λk−1

∣

∣

∣

∣

−→ 0, almost surely, (7)

where

λk :=

∫ č

č

yk exp(−y)

k!
dQ(y) k = 0, 1, 2, . . . .

(8)
This convergence result suggests a natural estima-
tor for On, expressed in Equation (6).

3.6 A Consistent Estimator ofOn

We start with the limiting expression for scaled
profiles in Equation (7) and come up with a natu-
ral estimator forOn. Our development leading to
the estimator is somewhat heuristic and is aimed
at motivating the structure of the estimator for the
number of unseen words,On. We formally state
and prove its consistency at the end of this section.
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3.6.1 A Heuristic Derivation

Starting from (7), let us first make the approxima-
tion that

kϕk

n
≈ λk−1, k = 1, . . . , n. (9)

We now have the formal calculation

n
∑

k=1

ϕn
k

n
≈

n
∑

k=1

λk−1

k
(10)

=

n
∑

k=1

∫ ĉ

č

e−yyk−1

k!
dQ(y)

≈

∫ ĉ

č

e−y

y

(

n
∑

k=1

yk

k!

)

dQ(y) (11)

≈

∫ ĉ

č

e−y

y
(ey − 1) dQ(y) (12)

≈
|Ωn|

n
−

∫ ĉ

č

e−y

y
dQ(y). (13)

Here the approximation in Equation (10) follows
from the approximation in Equation (9), the ap-
proximation in Equation (11) involves swapping
the outer discrete summation with integration and
is justified formally later in the section, the ap-
proximation in Equation (12) follows because

n
∑

k=1

yk

k!
→ ey − 1,

as n → ∞, and the approximation in Equa-
tion (13) is justified from the convergence in Equa-
tion (3). Now, comparing Equation (13) with
Equation (6), we arrive at an approximation for
our quantity of interest:

On

n
≈

∫ ĉ

č

e−y

y
dQ(y). (14)

The geometric series allows us to write

1

y
=

1

ĉ

∞
∑

ℓ=0

(

1−
y

ĉ

)ℓ

, ∀y ∈ (0, ĉ) . (15)

Approximating this infinite series by a finite sum-
mation, we have for ally ∈ (č, ĉ),

1

y
−

1

ĉ

M
∑

ℓ=0

(

1−
y

ĉ

)ℓ

=

(

1− y
ĉ

)M

y

≤

(

1− č
ĉ

)M

č
. (16)

It helps to write the truncated geometric series as
a power series iny:

1

ĉ

M
∑

ℓ=0

(

1−
y

ĉ

)ℓ

=
1

ĉ

M
∑

ℓ=0

ℓ
∑

k=0

(

ℓ

k

)

(−1)k
(y

ĉ

)k

=
1

ĉ

M
∑

k=0

(

M
∑

ℓ=k

(

ℓ

k

)

)

(−1)k
(y

ĉ

)k

=

M
∑

k=0

(−1)k aM
k yk, (17)

where we have written

aM
k :=

1

ĉk+1

(

M
∑

ℓ=k

(

ℓ

k

)

)

.

Substituting the finite summation approximation
in Equation 16 and its power series expression in
Equation (17) into Equation (14) and swapping the
discrete summation with the integral, we can con-
tinue

On

n
≈

M
∑

k=0

(−1)k
aM

k

∫ ĉ

č

e−yyk dQ(y)

=

M
∑

k=0

(−1)k
aM

k k!λk. (18)

Here, in Equation (18), we used the definition of
λk from Equation (8). From the convergence in
Equation (7), we finally arrive at our estimate:

On ≈

M
∑

k=0

(−1)k aM
k (k + 1)! ϕk+1. (19)

3.6.2 Consistency

Our main result is the demonstration of the consis-
tency of the estimator in Equation (19).

Theorem 1 For anyǫ > 0,

lim
n→∞

∣

∣

∣
On −

∑M
k=0 (−1)k aM

k (k + 1)! ϕk+1

∣

∣

∣

n
≤ ǫ

almost surely, as long as

M ≥
č log2 e + log2 (ǫč)

log2 (ĉ− č)− 1− log2 (ĉ)
. (20)
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Proof: From Equation (6), we have

On

n
=

|Ωn|

n
−

n
∑

k=1

ϕk

n

=
|Ωn|

n
−

n
∑

k=1

λk−1

k
−

n
∑

k=1

1

k

(

kϕk

n
− λk−1

)

. (21)

The first term in the right hand side (RHS) of
Equation (21) converges as seen in Equation (3).
The third term in the RHS of Equation (21) con-
verges to zero, almost surely, as seen from Equa-
tion (7). The second term in the RHS of Equa-
tion (21), on the other hand,

n
∑

k=1

λk−1

k
=

∫ ĉ

č

e−y

y

(

n
∑

k=1

yk

k!

)

dQ(y)

→

∫ ĉ

č

e−y

y
(ey − 1) dQ(y), n →∞,

=

∫ ĉ

č

1

y
dQ(y)−

∫ ĉ

č

e−y

y
dQ(y).

The monotone convergence theorem justifies the
convergence in the second step above. Thus we
conclude that

lim
n→∞

On

n
=

∫ ĉ

č

e−y

y
dQ(y) (22)

almost surely. Coming to the estimator, we can
write it as the sum of two terms:

M
∑

k=0

(−1)k aM
k k!λk (23)

+
M
∑

k=0

(−1)k aM
k k!

(

(k + 1) ϕk+1

n
− λk

)

.

The second term in Equation (23) above is seen to
converge to zero almost surely asn → ∞, using
Equation (7) and noting thatM is a constant not
depending onn. The first term in Equation (23)
can be written as, using the definition ofλk from
Equation (8),

∫ ĉ

č

e−y

(

M
∑

k=0

(−1)k aM
k yk

)

dQ(y). (24)

Combining Equations (22) and (24), we have that,
almost surely,

lim
n→∞

On −
∑M

k=0 (−1)k aM
k (k + 1)! ϕk+1

n
=

∫ ĉ

č

e−y

(

1

y
−

M
∑

k=0

(−1)k aM
k yk

)

dQ(y). (25)

Combining Equation (16) with Equation (17), we
have

0 <
1

y
−

M
∑

k=0

(−1)k aM
k yk ≤

(

1− č
ĉ

)M

č
. (26)

The quantity in Equation (25) can now be upper
bounded by, using Equation (26),

e−č
(

1− č
ĉ

)M

č
.

For M that satisfy Equation (20) this term is less
thanǫ. The proof concludes.

3.7 Uniform Consistent Estimation

One of the main issues with actually employing
the estimator for the number of unseen elements
(cf. Equation (19)) is that it involves knowing the
parameter̂c. In practice, there is no natural way to
obtain any estimate on this parameterĉ. It would
be most useful if there were a way to modify the
estimator in a way that it does not depend on the
unobservable quantitŷc. In this section we see that
such a modification is possible, while still retain-
ing the main theoretical performance result of con-
sistency (cf. Theorem 1).

The first step to see the modification is in ob-
serving where the need forĉ arises: it is in writing
the geometric series for the function1

y
(cf. Equa-

tions (15) and (16)). If we could let̂c along with
the number of elementsM itself depend on the
sample sizen, then we could still have the geo-
metric series formula. More precisely, we have

1

y
−

1

ĉn

Mn
∑

ℓ=0

(

1−
y

ĉn

)ℓ

=
1

y

(

1−
y

ĉn

)Mn

→ 0, n →∞,

as long as

ĉn

Mn
→ 0, n →∞. (27)

This simple calculation suggests that we can re-
placeĉ andM in the formula for the estimator (cf.
Equation (19)) by terms that depend onn and sat-
isfy the condition expressed by Equation (27).
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4 Experiments

4.1 Corpora

In our experiments we used the following corpora:

1. TheBritish National Corpus(BNC): A cor-
pus of about 100 million words of written and
spoken British English from the years 1975-
1994.

2. TheNew York Times Corpus(NYT): A cor-
pus of about 5 million words.

3. TheMalayalam Corpus(MAL): A collection
of about 2.5 million words from varied ar-
ticles in the Malayalam language from the
Central Institute of Indian Languages.

4. The Hindi Corpus (HIN): A collection of
about 3 million words from varied articles in
the Hindi language also from the Central In-
stitute of Indian Languages.

4.2 Methodology

We would like to see how well our estimator per-
forms in terms of estimating the number of unseen
elements. A natural way to study this is to ex-
pose only half of an existing corpus to be observed
and estimate the number of unseen elements (as-
suming the the actual corpus is twice the observed
size). We can then check numerically how well
our estimator performs with respect to the “true”
value. We use a subset (the first 10%, 20%, 30%,
40% and 50%) of the corpus as theobserved sam-
ple to estimate the vocabulary over twice the sam-
ple size. The following estimators have been com-
pared.

Nonparametric: Along with our proposed esti-
mator (in Section 3), the following canonical es-
timators available in (Gandolfi and Sastri, 2004)
and (Baayen, 2001) are studied.

1. Our proposed estimatorOn (cf. Section 3):
since the estimator is rather involved we con-
sider only small values ofM (we see empir-
ically that the estimator converges for very
small values ofM itself) and choosêc = M.

This allows our estimator for the number of
unseen elements to be of the following form,
for different values ofM :

M On

1 2 (ϕ1 − ϕ2)

2 3
2 (ϕ1 − ϕ2) + 3

4ϕ3

3 4
3 (ϕ1 − ϕ2) + 8

9

(

ϕ3 −
ϕ4

3

)

Using this, the estimator of the true vocabu-
lary size is simply,

On + V. (28)

Here (cf. Equation (5))

V =

n
∑

k=1

ϕn
k . (29)

In the simulations below, we have considered
M large enough until we see numerical con-
vergence of the estimators: in all the cases,
no more than a value of 4 is needed forM .
For the English corpora, very small values of
M suffice – in particular, we have considered
the average of the first three different estima-
tors (corresponding to the first three values
of M ). For the non-English corpora, we have
needed to considerM = 4.

2. Gandolfi-Sastri estimator,

VGS
def
=

n

n− ϕ1

(

V + ϕ1γ
2
)

, (30)

where

γ2 =
ϕ1 − n− V

2n
+

√

5n2 + 2n(V − 3ϕ1) + (V − ϕ1)2

2n
;

3. Chao estimator,

VChao
def
= V +

ϕ2
1

2ϕ2
; (31)

4. Good-Turing estimator,

VGT
def
=

V
(

1− ϕ1

n

) ; (32)

5. “Simplistic” estimator,

VSmpl
def
= V

(nnew

n

)

; (33)

here the supposition is that the vocabulary
size scales linearly with the sample size (here
nnew is the new sample size);

6. Baayen estimator,

VByn
def
= V +

(ϕ1

n

)

nnew; (34)

here the supposition is that the vocabulary
growth rate at the observed sample size is
given by the ratio of the number ofhapax
legomenato the sample size (cf. (Baayen,
2001) pp. 50).
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Figure 1: Comparison of error estimates of the 2
best estimators-ours and the ZM, with the Good-
Turing estimator using 10% sample size of all the
corpora. A bar with a positive height indicates
and overestimate and that with a negative height
indicates and underestimate. Our estimatorout-
performsZM. Good-Turing estimator widelyun-
derestimatesvocabulary size.

Parametric: Parametric estimators use the ob-
servations to first estimate the parameters. Then
the corresponding models are used to estimate the
vocabulary size over the larger sample. Thus the
frequency spectra of the observations are onlyin-
directly used in extrapolating the vocabulary size.
In this study we consider state of the art paramet-
ric estimators, as surveyed by (Baroni and Evert,
2005). We are aided in this study by the availabil-
ity of the implementations provided by theZipfR
package and their default settings.

5 Results and Discussion

The performance of the different estimators as per-
centage errors of the true vocabulary size using
different corpora are tabulated in tables 1-4. We
now summarize some important observations.

• From the Figure 1, we see that our estima-
tor compares quite favorably with the best of
the state of the art estimators. The best of the
state of the art estimator is a parametric one
(ZM), while ours is a nonparametric estima-
tor.

• In table 1 and table 2 we see that our esti-
mate is quite close to the true vocabulary, at
all sample sizes. Further, it compares very fa-
vorably to the state of the art estimators (both
parametric and nonparametric).

• Again, on the two non-English corpora (ta-
bles 3 and 4) we see that our estimator com-

pares favorably with the best estimator of vo-
cabulary size and at some sample sizes even
surpasses it.

• Our estimator has theoretical performance
guarantees and its empirical performance is
comparable to that of the state of the art es-
timators. However, this performance comes
at a very small fraction of the computational
cost of the parametric estimators.

• The state of the art nonparametric Good-
Turing estimator wildly underestimates the
vocabulary; this is true in each of the four
corpora studied and at all sample sizes.

6 Conclusion

In this paper, we have proposed a new nonpara-
metric estimator of vocabulary size that takes into
account the LNRE property of word frequency
distributions and have shown that it is statistically
consistent. We then compared the performance of
the proposed estimator with that of the state of the
art estimators on large corpora. While the perfor-
mance of our estimator seems favorable, we also
see that the widely used classical Good-Turing
estimator consistently underestimates the vocabu-
lary size. Although as yet untested, with its com-
putational simplicity and favorable performance,
our estimator may serve as a more reliable alter-
native to the Good-Turing estimator for estimating
vocabulary sizes.
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Abstract

Correct stress placement is important in
text-to-speech systems, in terms of both
the overall accuracy and the naturalness of
pronunciation. In this paper, we formu-
late stress assignment as a sequence pre-
diction problem. We represent words as
sequences of substrings, and use the sub-
strings as features in a Support Vector Ma-
chine (SVM) ranker, which is trained to
rank possible stress patterns. The rank-
ing approach facilitates inclusion of arbi-
trary features over both the input sequence
and output stress pattern. Our system ad-
vances the current state-of-the-art, predict-
ing primary stress in English, German, and
Dutch with up to 98% word accuracy on
phonemes, and 96% on letters. The sys-
tem is also highly accurate in predicting
secondary stress. Finally, when applied in
tandem with an L2P system, it substan-
tially reduces the word error rate when
predicting both phonemes and stress.

1 Introduction

In many languages, certain syllables in words are
phonetically more prominent in terms of duration,
pitch, and loudness. This phenomenon is referred
to aslexical stress. In some languages, the loca-
tion of stress is entirely predictable. For example,
lexical stress regularly falls on the initial syllable
in Hungarian, and on the penultimate syllable in
Polish. In other languages, such as English and
Russian, any syllable in the word can be stressed.

Correct stress placement is important in text-
to-speech systems because it affects the accuracy
of human word recognition (Tagliapietra and Ta-
bossi, 2005; Arciuli and Cupples, 2006). How-
ever, the issue has often been ignored in previ-
ous letter-to-phoneme (L2P) systems. The sys-
tems that do generate stress markers often do not

report separate figures on stress prediction accu-
racy, or they only provide results on a single lan-
guage. Some only predict primary stress mark-
ers (Black et al., 1998; Webster, 2004; Demberg
et al., 2007), while those that predict both primary
and secondary stress generally achieve lower ac-
curacy (Bagshaw, 1998; Coleman, 2000; Pearson
et al., 2000).

In this paper, we formulate stress assignment as
a sequence prediction problem. We divide each
word into a sequence of substrings, and use these
substrings as features for a Support Vector Ma-
chine (SVM) ranker. For a given sequence length,
there is typically only a small number of stress
patterns in use. The task of the SVM is to rank
the true stress pattern above the small number of
acceptable alternatives. This is the first system
to predict stress within a powerful discriminative
learning framework. By using a ranking approach,
we enable the use of arbitrary features over the en-
tire (input) sequence and (output) stress pattern.
We show that the addition of a feature for the en-
tire output sequence improves prediction accuracy.

Our experiments on English, German, and
Dutch demonstrate that our ranking approach sub-
stantially outperforms previous systems. The
SVM ranker achieves exceptional 96.2% word ac-
curacy on the challenging task of predicting the
full stress pattern in English. Moreover, when
combining our stress predictions with a state-of-
the-art L2P system (Jiampojamarn et al., 2008),
we set a new standard for the combined prediction
of phonemes and stress.

The paper is organized as follows. Section 2
provides background on lexical stress and a task
definition. Section 3 presents our automatic stress
prediction algorithm. In Section 4, we confirm the
power of the discriminative approach with experi-
ments on three languages. Section 5 describes how
stress is integrated into L2P conversion.
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2 Background and Task Definition

There is a long history of research into the prin-
ciples governing lexical stress placement. Zipf
(1929) showed that stressed syllables are of-
ten those with low frequency in speech, while
unstressed syllables are usually very common.
Chomsky and Halle (1968) proposed a set of
context-sensitive rules for producing English
stress from underlying word forms. Due to its
importance in text-to-speech, there is also a long
history of computational stress prediction sys-
tems (Fudge, 1984; Church, 1985; Williams,
1987). While these early approaches depend
on human definitions of vowel tensity, syllable
weight, word etymology, etc., our work follows
a recent trend of purely data-driven approaches to
stress prediction (Black et al., 1998; Pearson et al.,
2000; Webster, 2004; Demberg et al., 2007).

In many languages, only two levels of stress
are distinguished: stressed and unstressed. How-
ever, some languages exhibit more than two levels
of stress. For example, in the English wordeco-
nomic, the first and the third syllable are stressed,
with the former receiving weaker emphasis than
the latter. In this case, the initial syllable is said
to carry a secondary stress. Although each word
has only one primary stress, it may have any num-
ber of secondary stresses. Predicting the full stress
pattern is therefore inherently more difficult than
predicting the location of primary stress only.

Our objective is to automatically assign primary
and, where possible, secondary stress to out-of-
vocabulary words. Stress is an attribute of sylla-
bles, but syllabification is a non-trivial task in it-
self (Bartlett et al., 2008). Rather than assuming
correct syllabification of the input word, we in-
stead follow Webster (2004) in placing the stress
on the vowel which constitutes the nucleus of the
stressed syllable. If the syllable boundaries are
known, the mapping from the vowel to the cor-
responding syllable is straightforward.

We investigate the assignment of stress to two
related but different entities: the spoken word
(represented by its phonetic transcription), and
the written word (represented by its orthographic
form). Although stress is a prosodic feature, as-
signing stress to written words (“stressed orthog-
raphy”) has been utilized as a preprocessing stage
for the L2P task (Webster, 2004). This prepro-
cessing is motivated by two factors. First, stress
greatly influences the pronunciation of vowels in

English (c.f., allow vs. alloy). Second, since
phoneme predictors typically utilize only local
context around a letter, they do not incorporate the
global, long-range information that is especially
predictive of stress, such as penultimate syllable
emphasis associated with the suffix-ation. By tak-
ing stressed orthography as input, the L2P system
is able to implicitly leverage morphological infor-
mation beyond the local context.

Indicating stress on letters can also be help-
ful to humans, especially second-language learn-
ers. In some languages, such as Spanish, ortho-
graphic markers are obligatory in words with ir-
regular stress. The location of stress is often ex-
plicitly marked in textbooks for students of Rus-
sian. In both languages, the standard method of
indicating stress is to place an acute accent above
the vowel bearing primary stress, e.g.,adiós. The
secondary stress in English can be indicated with
a grave accent (Coleman, 2000), e.g.,prèćede.

In summary, our task is to assign primary and
secondary stress markers to stress-bearing vowels
in an input word. The input word may be either
phonemes or letters. If a stressed vowel is repre-
sented by more than one letter, we adopt the con-
vention of marking the first vowel of the vowel se-
quence, e.g.,méeting. In this way, we are able to
focus on the task of stress prediction, without hav-
ing to determine at the same time the exact sylla-
ble boundaries, or whether a vowel letter sequence
represents one or more spoken vowels (e.g.,beat-
ing vs. be-at-i-fy).

3 Automatic Stress Prediction

Our stress assignment system maps a word,w, to a
stressed-form of the word,̄w. We formulate stress
assignment as a sequence prediction problem. The
assignment is made in three stages:

(1) First, we map words to substrings (s), the ba-
sic units in our sequence (Section 3.1).

(2) Then, a particular stress pattern (t) is chosen
for each substring sequence. We use a sup-
port vector machine (SVM) to rank the possi-
ble patterns for each sequence (Section 3.2).

(3) Finally, the stress pattern is used to produce
the stressed-form of the word (Section 3.3).

Table 1 gives examples of words at each stage of
the algorithm. We discuss each step in more detail.
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Word Substrings Pattern Word’
w → s → t → w̄

worker → wor-ker → 1-0 → wórker
overdo → ov-ver-do→ 2-0-1 → òverd́o
react → re-ac → 0-1 → reáct

æbstrækt→ æb-ræk → 0-1 → æbstrǽkt
prisid → ri-sid → 2-1 → prı̀sı́d

Table 1: The steps in our stress prediction sys-
tem (with orthographic and phonetic prediction
examples): (1) word splitting, (2) support vector
ranking of stress patterns, and (3) pattern-to-vowel
mapping.

3.1 Word Splitting

The first step in our approach is to represent the
word as a sequence ofN individual units: w →
s = {s1-s2-...-sN}. These units are used to define
the features and outputs used by the SVM ranker.
Although we are ultimately interested in assigning
stress to individual vowels in the phoneme and let-
ter sequence, it is beneficial to represent the task in
units larger than individual letters.

Our substrings are similar to syllables; they
have a vowel as their nucleus and include con-
sonant context. By approximating syllables, our
substring patterns will allow us to learn recur-
rent stress regularities, as well as dependencies
between neighboring substrings. Since determin-
ing syllable breaks is a non-trivial task, we in-
stead adopt the following simple splitting tech-
nique. Each vowel in the word forms the nucleus
of a substring. Any single preceding or follow-
ing consonant is added to the substring unit. Thus,
each substring consists of at most three symbols
(Table 1).

Using shorter substrings reduces the sparsity of
our training data; words likecryer, dryer andfryer
are all mapped to the same form:ry-er. The
SVM can thus generalize from observed words to
similarly-spelled, unseen examples.

Since the number of vowels equals the num-
ber of syllables in the phonetic form of the word,
applying this approach to phonemes will always
generate the correct number of syllables. For let-
ters, splitting may result in a different number of
units than the true syllabification, e.g.,pronounce
→ ron-no-un-ce. This does not prevent the system
from producing the correct stress assignment after
the pattern-to-vowel mapping stage (Section 3.3)
is complete.

3.2 Stress Prediction with SVM Ranking

After creating a sequence of substring units,s =
{s1-s2-...-sN}, the next step is to choose an out-
put sequence,t = {t1-t2-...-tN}, that encodes
whether each unit is stressed or unstressed. We
use the number ‘1’ to indicate that a substring re-
ceives primary stress, ‘2’ for secondary stress, and
‘0’ to indicate no stress. We call this output se-
quence thestress patternfor a word. Table 1 gives
examples of words, substrings, and stress patterns.

We use supervised learning to train a system to
predict the stress pattern. We generate training
(s, t) pairs in the obvious way from our stress-
marked training words,̄w. That is, we first ex-
tract the letter/phoneme portion,w, and use it
to create the substrings,s. We then create the
stress pattern,t, usingw̄’s stress markers. Given
the training pairs, any sequence predictor can be
used, for example a Conditional Random Field
(CRF) (Lafferty et al., 2001) or a structured per-
ceptron (Collins, 2002). However, we can take
advantage of a unique property of our problem to
use a more expressive framework than is typically
used in sequence prediction.

The key observation is that the output space of
possible stress patterns is actually fairly limited.
Clopper (2002) shows that people have strong
preferences for particular sequences of stress, and
this is confirmed by our training data (Section 4.1).
In English, for example, we find that for each set
of spoken words with the same number of sylla-
bles, there are no more than fifteen different stress
patterns. In total, among 55K English training ex-
amples, there are only 70 different stress patterns.
In both German and Dutch there are only about
50 patterns in 250K examples.1 Therefore, for a
particular input sequence, we can safely limit our
consideration to only the small set of output pat-
terns of the same length.

Thus, unlike typical sequence predictors, we do
not have to search for the highest-scoring output
according to our model. We can enumerate the
full set of outputs and simply choose the highest-
scoring one. This enables a more expressive rep-
resentation. We can define arbitrary features over
the entire output sequence. In a typical CRF or
structured perceptron approach, only output fea-
tures that can be computed incrementally during
search are used (e.g. Markov transition features
that permit Viterbi search). Since search is not

1See (Dou, 2009) for more details.
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needed here, we can exploit longer-range features.
Choosing the highest-scoring output from a

fixed set is a ranking problem, and we provide the
full ranking formulation below. Unlike previous
ranking approaches (e.g. Collins and Koo (2005)),
we do not rely on a generative model to produce
a list of candidates. Candidates are chosen in ad-
vance from observed training patterns.

3.2.1 Ranking Formulation

For a substring sequence,s, of lengthN , our task
is to select the correct output pattern from the set
of all length-N patterns observed in our training
data, a set we denote asTN . We score each possi-
ble input-output combination using a linear model.
Each substring sequence and possible output pat-
tern, (s, t), is represented with a set of features,
Φ(s, t). The score for a particular (s, t) combina-
tion is a weighted sum of these features,λ·Φ(s, t).
The specific features we use are described in Sec-
tion 3.2.2.

Let tj be the stress pattern for thejth training
sequencesj, both of lengthN . At training time,
the weights,λ, are chosen such that for eachsj ,
the correct output pattern receives a higher score
than other patterns of the same length:∀u ∈
TN ,u 6= tj,

λ ·Φ(sj, tj) > λ ·Φ(sj ,u) (1)

The set of constraints generated by Equation 1
are calledrank constraints. They are created sep-
arately for every(sj , tj) training pair. Essen-
tially, each training pair is matched with a set
of automatically-created negative examples. Each
negative has an incorrect, but plausible, stress pat-
tern,u.

We adopt a Support Vector Machine (SVM) so-
lution to these ranking constraints as described by
Joachims (2002). The learner finds the weights
that ensure a maximum (soft) margin separation
between the correct scores and the competitors.
We use an SVM because it has been successful in
similar settings (learning with thousands of sparse
features) for both ranking and classification tasks,
and because an efficient implementation is avail-
able (Joachims, 1999).

At test time we simply score each possible out-
put pattern using the learned weights. That is,
for an input sequences of lengthN , we compute
λ ·Φ(s, t) for all t ∈ TN , and we take the highest
scoringt as our output. Note that because we only

Substring si, ti
si, i, ti

Context si−1, ti
si−1si, ti
si+1, ti
sisi+1, ti
si−1sisi+1, ti

Stress Pattern t1t2 . . . tN

Table 2: Feature Template

consider previously-observed output patterns, it is
impossible for our system to produce a nonsensi-
cal result, such as having two primary stresses in
one word. Standard search-based sequence pre-
dictors need to be specially augmented with hard
constraints in order to prevent such output (Roth
and Yih, 2005).

3.2.2 Features

The power of our ranker to identify the correct
stress pattern depends on how expressive our fea-
tures are. Table 2 shows the feature templates used
to create the featuresΦ(s, t) for our ranker. We
use binary features to indicate whether each com-
bination occurs in the current (s,t) pair.

For example, if a substringtion is unstressed in
a(s, t) pair, theSubstringfeature{si, ti = tion,0}
will be true.2 In English, often the penultimate
syllable is stressed if the final syllable istion.
We can capture such a regularity with theCon-
text featuresi+1, ti. If the following syllable is
tion and the current syllable is stressed, the fea-
ture{si+1, ti = tion,1} will be true. This feature
will likely receive a positive weight, so that out-
put sequences with a stress beforetion receive a
higher rank.

Finally, the full Stress Patternserves as an im-
portant feature. Note that such a feature would
not be possible in standard sequence predictors,
where such information must be decomposed into
Markov transition features liketi−1ti. In a ranking
framework, we can score output sequences using
their full output pattern. Thus we can easily learn
the rules in languages with regular stress rules. For
languages that do not have a fixed stress rule, pref-
erences for particular patterns can be learned using
this feature.

2tion is a substring composed of three phonemes but we
use its orthographic representation here for clarity.
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3.3 Pattern-to-Vowel Mapping

The final stage of our system uses the predicted
patternt to create the stress-marked form of the
word, w̄. Note the number of substrings created
by our splitting method always equals the number
of vowels in the word. We can thus simply map
the indicator numbers int to markers on their cor-
responding vowels to produce the stressed word.

For our example,pronounce→ ron-no-un-ce,
if the SVM chooses the stress pattern, 0-1-0-
0, we produce the correct stress-marked word,
pronóunce. If we instead stress the third vowel, 0-
0-1-0, we produce an incorrect output,pronóunce.

4 Stress Prediction Experiments

In this section, we evaluate our ranking approach
to stress prediction by assigning stress to spoken
and written words in three languages: English,
German, and Dutch. We first describe the data and
the various systems we evaluate, and then provide
the results.

4.1 Data

The data is extracted from CELEX (Baayen et al.,
1996). Following previous work on stress predic-
tion, we randomly partition the data into 85% for
training, 5% for development, and 10% for test-
ing. To make results on German and Dutch com-
parable with English, we reduce the training, de-
velopment, and testing set by 80% for each. Af-
ter removing all duplicated items as well as abbre-
viations, phrases, and diacritics, each training set
contains around 55K words.

In CELEX, stress is labeled on syllables in the
phonetic form of the words. Since our objec-
tive is to assign stress markers tovowels(as de-
scribed in Section 2) we automatically map the
stress markers from the stressed syllables in the
phonetic forms onto phonemes and letters rep-
resenting vowels. For phonemes, the process is
straightforward: we move the stress marker from
the beginning of a syllable to the phoneme which
constitutes the nucleus of the syllable. For let-
ters, we map the stress from the vowel phoneme
onto the orthographic forms using the ALINE al-
gorithm (Dwyer and Kondrak, 2009). The stress
marker is placed on the first letter within the sylla-
ble that represents a vowel sound.3

3Our stand-off stress annotations for English, German,
and Dutch CELEX orthographic data can be downloaded at:
http://www.cs.ualberta.ca/˜kondrak/celex.html.

System Eng Ger Dut
P+S P P P

SUBSTRING 96.2 98.0 97.1 93.1
ORACLESYL 95.4 96.4 97.1 93.2
TOPPATTERN 66.8 68.9 64.1 60.8

Table 3: Stress prediction word accuracy (%) on
phonemesfor English, German, and Dutch.P:
predicting primary stress only.P+S: primary and
secondary.

CELEX also provides secondary stress annota-
tion for English. We therefore evaluate on both
primary and secondary stress (P+S) in English and
on primary stress assignment alone (P) for En-
glish, German, and Dutch.

4.2 Comparison Approaches

We evaluate three different systems on the letter
and phoneme sequences in the experimental data:

1) SUBSTRING is the system presented in Sec-
tion 3. It uses the vowel-based splitting
method, followed by SVM ranking.

2) ORACLESYL splits the input word into sylla-
bles according to the CELEX gold-standard,
before applying SVM ranking. The output
pattern is evaluated directly against the gold-
standard, without pattern-to-vowel mapping.

3) TOPPATTERN is our baseline system. It uses
the vowel-based splitting method to produce a
substring sequence of lengthN . Then it simply
chooses the most common stress pattern among
all the stress patterns of lengthN .

SUBSTRING and ORACLESYL use scores pro-
duced by an SVM ranker trained on the training
data. We employ the ranking mode of the popular
learning package SVMlight (Joachims, 1999). In
each case, we learn a linear kernel ranker on the
training set stress patterns and tune the parameter
that trades-off training error and margin on the de-
velopment set.

We evaluate the systems usingword accuracy:
the percent of words for which the output form of
the word,w̄, matches the gold standard.

4.3 Results

Table 3 provides results on English, German, and
Dutch phonemes. Overall, the performance of our
automatic stress predictor, SUBSTRING, is excel-
lent. It achieves 98.0% accuracy for predicting
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System Eng Ger Dut
P+S P P P

SUBSTRING 93.5 95.1 95.9 91.0
ORACLESYL 94.6 96.0 96.6 92.8
TOPPATTERN 65.5 67.6 64.1 60.8

Table 4: Stress prediction word accuracy (%) on
letters for English, German, and Dutch.P: pre-
dicting primary stress only.P+S: primary and sec-
ondary.

primary stress in English, 97.1% in German, and
93.1% in Dutch. It also predicts both primary and
secondary stress in English with high accuracy,
96.2%. Performance is much higher than our base-
line accuracy, which is between 60% and 70%.
ORACLESYL , with longer substrings and hence
sparser data, does not generally improve perfor-
mance. This indicates that perfect syllabification
is unnecessary for phonetic stress assignment.

Our system is a major advance over the pre-
vious state-of-the-art in phonetic stress assign-
ment. For predicting stressed/unstressed syllables
in English, Black et al. (1998) obtained a per-
syllable accuracy of 94.6%. We achieve 96.2%
per-wordaccuracy for predicting both primary and
secondary stress. Others report lower numbers
on English phonemes. Bagshaw (1998) obtained
65%-83.3% per-syllable accuracy using Church
(1985)’s rule-based system. For predicting both
primary and secondary stress, Coleman (2000)
and Pearson et al. (2000) report 69.8% and 81.0%
word accuracy, respectively.

The performance on letters (Table 4) is also
quite encouraging. SUBSTRING predicts primary
stress with accuracy above 95% for English and
German, and equal to 91% in Dutch. Performance
is 1-3% lower on letters than on phonemes. On
the other hand, the performance of ORACLESYL

drops much less on letters. This indicates that
most of SUBSTRING’s errors are caused by the
splitting method. Letter vowels may or may not
represent spoken vowels. By creating a substring
for every vowel letter we may produce an incorrect
number of syllables. Our pattern feature is there-
fore less effective.

Nevertheless, SUBSTRING’s accuracy on letters
also represents a clear improvement over previ-
ous work. Webster (2004) reports 80.3% word
accuracy on letters in English and 81.2% in Ger-
man. The most comparable work is Demberg et al.

 84

 86

 88

 90

 92

 94

 96

 98

 100

 10000  100000

W
or

d 
A

cc
ur

ac
y 

(%
)

Number of training examples

German
Dutch

English

Figure 1: Stress prediction accuracy on letters.

(2007), which achieves 90.1% word accuracy on
letters in German CELEX, assuming perfect letter
syllabification. In order to reproduce their strict
experimental setup, we re-partition the full set of
German CELEX data to ensure that no overlap of
word stems exists between the training and test
sets. Using the new data sets, our system achieves
a word accuracy of 92.3%, a 2.2% improvement
over Demberg et al. (2007)’s result. Moreover, if
we also assume perfect syllabification, the accu-
racy is 94.3%, a 40% reduction in error rate.

We performed a detailed analysis to understand
the strong performance of our system. First of all,
note that an error could happen if a test-set stress
pattern was not observed in the training data; its
correct stress pattern would not be considered as
an output. In fact, no more than two test errors in
any test set were so caused. This strongly justi-
fies the reduced set of outputs used in our ranking
formulation.

We also tested all systems with the Stress Pat-
tern feature removed. Results were worse in all
cases. As expected, it is most valuable for pre-
dicting primary and secondary stress. On English
phonemes, accuracy drops from 96.2% to 95.3%
without it. On letters, it drops from 93.5% to
90.0%. The gain from this feature also validates
our ranking framework, as such arbitrary features
over the entire output sequence can not be used in
standard search-based sequence prediction.

Finally, we examined the relationship between
training data size and performance by plotting
learning curves for letter stress accuracy (Fig-
ure 1). Unlike the tables above, here we use the
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full set of data in Dutch and German CELEX to
create the largest-possible training sets (255K ex-
amples). None of the curves are levelling off; per-
formance grows log-linearly across the full range.

5 Lexical stress and L2P conversion

In this section, we evaluate various methods of
combining stress prediction with phoneme gener-
ation. We first describe the specific system that we
use for letter-to-phoneme (L2P) conversion. We
then discuss the different ways stress prediction
can be integrated with L2P, and define the systems
used in our experiments. Finally, we provide the
results.

5.1 The L2P system

We combine stress prediction with a state-of-the-
art L2P system (Jiampojamarn et al., 2008). Like
our stress ranker, their system is a data-driven se-
quence predictor that is trained with supervised
learning. The score for each output sequence is
a weighted combination of features. The feature
weights are trained using the Margin Infused Re-
laxed Algorithm (MIRA) (Crammer and Singer,
2003), a powerful online discriminative training
framework. Like other recent L2P systems (Bisani
and Ney, 2002; Marchand and Damper, 2007; Ji-
ampojamarn et al., 2007), this approach does not
generate stress, nor does it consider stress when it
generates phonemes.

For L2P experiments, we use the same training,
testing, and development data as was used in Sec-
tion 4. For all experiments, we use the develop-
ment set to determine at which iteration to stop
training in the online algorithm.

5.2 Combining stress and phoneme
generation

Various methods have been used for combining
stress and phoneme generation. Phonemes can be
generated without regard to stress, with stress as-
signed as a post-process (Bagshaw, 1998; Cole-
man, 2000). Both van den Bosch (1997) and
Black et al. (1998) argue that stress should be pre-
dicted at the same time as phonemes. They ex-
pand the output set to distinguish between stressed
and unstressed phonemes. Similarly, Demberg et
al. (2007) produce phonemes, stress, and syllable-
boundaries within a single joint n-gram model.
Pearson et al. (2000) generate phonemes and stress
together by jointly optimizing a decision-tree

phoneme-generator and a stress predictor based on
stress pattern counts. In contrast, Webster (2004)
first assigns stress to letters, creating an expanded
input set, and then predicts both phonemes and
stress jointly. The system marks stress on let-
ter vowels by determining the correspondence be-
tween affixes and stress in written words.

Following the above approaches, we can expand
the input or output symbols of our L2P system to
include stress. However, since both decision tree
systems and our L2P predictor utilize only local
context, they may produce invalid global output.
One option, used by Demberg et al. (2007), is to
add a constraint to the output generation, requiring
each output sequence to have exactly one primary
stress.

We enhance this constraint, based on the obser-
vation that the number of valid output sequences
is fairly limited (Section 3.2). The modified sys-
tem produces the highest-scoring sequence such
that the output’s corresponding stress pattern has
been observed in our training data. We call this
the stress pattern constraint. This is a tighter
constraint than having only one primary stress.4

Another advantage is that it provides some guid-
ance for the assignment of secondary stress.

Inspired by the aforementioned strategies, we
evaluate the following approaches:

1) JOINT: The L2P system’s input sequence is let-
ters, the output sequence is phonemes+stress.

2) JOINT+CONSTR: Same as JOINT, except it se-
lects the highest scoring output that obeys the
stress pattern constraint.

3) POSTPROCESS: The L2P system’s input is let-
ters, the output is phonemes. It then applies the
SVM stress ranker (Section 3) to the phonemes
to produce the full phoneme+stress output.

4) LETTERSTRESS: The L2P system’s input is
letters+stress, the output is phonemes+stress.
It creates the stress-marked letters by applying
the SVM ranker to the input letters as a pre-
process.

5) ORACLESTRESS: The same input/output as
LETTERSTRESS, except it uses the gold-
standard stress on letters (Section 4.1).
4In practice, the L2P system generates a top-N list, and

we take the highest-scoring output on the list that satisfies
the constraint. If none satisfy the constraint, we take the top
output that has only one primary stress.
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System Eng Ger Dut
P+S P P P

JOINT 78.9 80.0 86.0 81.1
JOINT+CONSTR 84.6 86.0 90.8 88.7
POSTPROCESS 86.2 87.6 90.9 88.8
LETTERSTRESS 86.5 87.2 90.1 86.6
ORACLESTRESS 91.4 91.4 92.6 94.5
Festival 61.2 62.5 71.8 65.1

Table 5: Combined phonemeand stress predic-
tion word accuracy (%) for English, German, and
Dutch. P: predicting primary stress only.P+S:
primary and secondary.

Note that while the first approach uses only
local information to make predictions (features
within a context window around the current let-
ter), systems 2 to 5 leverage global information in
some manner: systems 3 and 4 use the predictions
of our stress ranker, while 2 uses a global stress
pattern constraint.5

We also generated stress and phonemes using
the popular Festival Speech Synthesis System6

(version 1.96, 2004) and report its accuracy.

5.3 Results

Word accuracy results for predicting both
phonemes and stress are provided in Table 5.
First of all, note that the JOINT approach,
which simply expands the output set, is 4%-
8% worse than all other comparison systems
across the three languages. These results clearly
indicate the drawbacks of predicting stress us-
ing only local information. In English, both
LETTERSTRESS and POSTPROCESS perform
best, while POSTPROCESS and the constrained
system are highest on German and Dutch. Results
using the oracle letter stress show that given
perfect stress assignment on letters, phonemes
and stress can be predicted very accurately, in all
cases above 91%.

We also found that the phoneme prediction ac-
curacy alone (i.e., without stress) is quite simi-
lar for all the systems. The gains over JOINT

on combined stress and phoneme accuracy are
almost entirely due to more accurate stress as-
signment. Utilizing the oracle stress on letters
markedly improves phoneme prediction in English

5This constraint could also help the other systems. How-
ever, since they already use global information, it yields only
marginal improvements.

6http://www.cstr.ed.ac.uk/projects/festival/

(from 88.8% to 91.4%). This can be explained by
the fact that English vowels are often reduced to
schwa when unstressed (Section 2).

Predicting both phonemes and stress is a chal-
lenging task, and each of our globally-informed
systems represents a major improvement over pre-
vious work. The accuracy of Festival is much
lower even than our JOINT approach, but the rel-
ative performance on the different languages is
quite similar.

A few papers report accuracy on the combined
stress and phoneme prediction task. The most di-
rectly comparable work is van den Bosch (1997),
which also predicts primary and secondary stress
using English CELEX data. However, the re-
ported word accuracy is only 62.1%. Three other
papers report word accuracy on phonemes and
stress, using different data sets. Pearson et al.
(2000) report 58.5% word accuracy for predicting
phonemes and primary/secondary stress. Black et
al. (1998) report 74.6% word accuracy in English,
while Webster (2004) reports 68.2% on English
and 82.9% in German (all primary stress only).
Finally, Demberg et al. (2007) report word accu-
racy on predicting phonemes, stress,and syllab-
ification on German CELEX data. They achieve
86.3% word accuracy.

6 Conclusion

We have presented a discriminative ranking ap-
proach to lexical stress prediction, which clearly
outperforms previously developed systems. The
approach is largely language-independent, appli-
cable to both orthographic and phonetic repre-
sentations, and flexible enough to handle multi-
ple stress levels. When combined with an exist-
ing L2P system, it achieves impressive accuracy
in generating pronunciations together with their
stress patterns. In the future, we will investigate
additional features to leverage syllabic and mor-
phological information, when available. Kernel
functions could also be used to automatically cre-
ate a richer feature space; preliminary experiments
have shown gains in performance using polyno-
mial and RBF kernels with our stress ranker.
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Abstract

Letter-to-phoneme (L2P) conversion is the
process of producing a correct phoneme
sequence for a word, given its letters. It
is often desirable to reduce the quantity of
training data — and hence human anno-
tation — that is needed to train an L2P
classifier for a new language. In this pa-
per, we confront the challenge of building
an accurate L2P classifier with a minimal
amount of training data by combining sev-
eral diverse techniques: context ordering,
letter clustering, active learning, and pho-
netic L2P alignment. Experiments on six
languages show up to 75% reduction in an-
notation effort.

1 Introduction

The task of letter-to-phoneme (L2P) conversion
is to produce a correct sequence of phonemes,
given the letters that comprise a word. An ac-
curate L2P converter is an important component
of a text-to-speech system. In general, a lookup
table does not suffice for L2P conversion, since
out-of-vocabulary words (e.g., proper names) are
inevitably encountered. This motivates the need
for classification techniques that can predict the
phonemes for an unseen word.

Numerous studies have contributed to the de-
velopment of increasingly accurate L2P sys-
tems (Black et al., 1998; Kienappel and Kneser,
2001; Bisani and Ney, 2002; Demberg et al., 2007;
Jiampojamarn et al., 2008). A common assump-
tion made in these works is that ample amounts of
labelled data are available for training a classifier.
Yet, in practice, this is the case for only a small
number of languages. In order to train an L2P clas-
sifier for a new language, we must first annotate
words in that language with their correct phoneme
sequences. As annotation is expensive, we would

like to minimize the amount of effort that is re-
quired to build an adequate training set. The ob-
jective of this work is not necessarily to achieve
state-of-the-art performance when presented with
large amounts of training data, but to outperform
other approaches when training data is limited.

This paper proposes a system for training an ac-
curate L2P classifier while requiring as few an-
notated words as possible. We employ decision
trees as our supervised learning method because of
their transparency and flexibility. We incorporate
context ordering into a decision tree learner that
guides its tree-growing procedure towards gener-
ating more intuitive rules. A clustering over letters
serves as a back-off model in cases where individ-
ual letter counts are unreliable. An active learning
technique is employed to request the phonemes
(labels) for the words that are expected to be the
most informative. Finally, we apply a novel L2P
alignment technique based on phonetic similarity,
which results in impressive gains in accuracy with-
out relying on any training data.

Our empirical evaluation on several L2P
datasets demonstrates that significant reductions
in annotation effort are indeed possible in this do-
main. Individually, all four enhancements improve
the accuracy of our decision tree learner. The com-
bined system yields savings of up to 75% in the
number of words that have to be labelled, and re-
ductions of at least 52% are observed on all the
datasets. This is achieved without any additional
tuning for the various languages.

The paper is organized as follows. Section 2 ex-
plains how supervised learning for L2P conversion
is carried out with decision trees, our classifier of
choice. Sections 3 through 6 describe our four
main contributions towards reducing the annota-
tion effort for L2P: context ordering (Section 3),
clustering letters (Section 4), active learning (Sec-
tion 5), and phonetic alignment (Section 6). Our
experimental setup and results are discussed in
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Sections 7 and 8, respectively. Finally, Section 9
offers some concluding remarks.

2 Decision tree learning of L2P classifiers

In this work, we employ a decision tree model
to learn the mapping from words to phoneme se-
quences. Decision tree learners are attractive be-
cause they are relatively fast to train, require little
or no parameter tuning, and the resulting classifier
can be interpreted by the user. A number of prior
studies have applied decision trees to L2P data and
have reported good generalization accuracy (An-
dersen et al., 1996; Black et al., 1998; Kienappel
and Kneser, 2001). Also, the widely-used Festi-
val Speech Synthesis System (Taylor et al., 1998)
relies on decision trees for L2P conversion.

We adopt the standard approach of using the
letter context as features. The decision tree pre-
dicts the phoneme for the focus letter based on
the m letters that appear before and after it in
the word (including the focus letter itself, and be-
ginning/end of word markers, where applicable).
The model predicts a phoneme independently for
each letter in a given word. In order to keep our
model simple and transparent, we do not explore
the possibility of conditioning on adjacent (pre-
dicted) phonemes. Any improvement in accuracy
resulting from the inclusion of phoneme features
would also be realized by the baseline that we
compare against, and thus would not materially in-
fluence our findings.

We employ binary decision trees because they
substantially outperformed n-ary trees in our pre-
liminary experiments. In L2P, there are many
unique values for each attribute, namely, the let-
ters of a given alphabet. In a n-ary tree each de-
cision node partitions the data into n subsets, one
per letter, that are potentially sparse. By contrast,
a binary tree creates one branch for the nominated
letter, and one branch grouping the remaining let-
ters into a single subset. In the forthcoming exper-
iments, we use binary decision trees exclusively.

3 Context ordering

In the L2P task, context letters that are adjacent
to the focus letter tend to be more important than
context letters that are further away. For exam-
ple, the English letter c is usually pronounced as
[s] if the following letter is e or i. The general
tree-growing algorithm has no notion of the letter
distance, but instead chooses the letters on the ba-

sis of their estimated information gain (Manning
and Schütze, 1999). As a result, it will sometimes
query a letter at position +3 (denoted l3), for ex-
ample, before examining the letters that are closer
to the center of the context window.

We propose to modify the tree-growing proce-
dure to encourage the selection of letters near the
focus letter before those at greater offsets are ex-
amined. In its strictest form, which resembles
the “dynamically expanding context” search strat-
egy of Davel and Barnard (2004), li can only be
queried after l0, . . . , li−1 have been queried. How-
ever, this approach seems overly rigid for L2P. In
English, for example, l2 can directly influence the
pronunciation of a vowel regardless of the value of
l1 (c.f., the difference between rid and ride).

Instead, we adopt a less intrusive strategy,
which we refer to as “context ordering,” that biases
the decision tree toward letters that are closer to
the focus, but permits gaps when the information
gain for a distant letter is relatively high. Specif-
ically, the ordering constraint described above is
still applied, but only to letters that have above-
average information gain (where the average is
calculated across all letters/attributes). This means
that a letter with above-average gain that is eligi-
ble with respect to the ordering will take prece-
dence over an ineligible letter that has an even
higher gain. However, if all the eligible letters
have below-average gain, the ineligible letter with
the highest gain is selected irrespective of its posi-
tion. Our only strict requirement is that the focus
letter must always be queried first, unless its infor-
mation gain is zero.

Kienappel and Kneser (2001) also worked on
improving decision tree performance for L2P, and
devised tie-breaking rules in the event that the tree-
growing procedure ranked two or more questions
as being equally informative. In our experience
with L2P datasets, exact ties are rare; our context
ordering mechanism will have more opportunities
to guide the tree-growing process. We expect this
change to improve accuracy, especially when the
amount of training data is very limited. By biasing
the decision tree learner toward questions that are
intuitively of greater utility, we make it less prone
to overfitting on small data samples.

4 Clustering letters

A decision tree trained on L2P data bases its pho-
netic predictions on the surrounding letter context.
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Yet, when making predictions for unseen words,
contexts will inevitably be encountered that did
not appear in the training data. Instead of rely-
ing solely on the particular letters that surround
the focus letter, we postulate that the learner could
achieve better generalization if it had access to
information about the types of letters that appear
before and after. That is, instead of treating let-
ters as abstract symbols, we would like to encode
knowledge of the similarity between certain letters
as features. One way of achieving this goal is to
group the letters into classes or clusters based on
their contextual similarity. Then, when a predic-
tion has to be made for an unseen (or low probabil-
ity) letter sequence, the letter classes can provide
additional information.

Kienappel and Kneser (2001) report accuracy
gains when applying letter clustering to the L2P
task. However, their decision tree learner incorpo-
rates neighboring phoneme predictions, and em-
ploys a variety of different pruning strategies; the
portion of the gains attributable to letter clustering
are not evident. In addition to exploring the effect
of letter clustering on a wider range of languages,
we are particularly concerned with the impact that
clustering has on decision tree performance when
the training set is small. The addition of letter class
features to the data may enable the active learner
to better evaluate candidate words in the pool, and
therefore make more informed selections.

To group the letters into classes, we employ
a hierarchical clustering algorithm (Brown et al.,
1992). One advantage of inducing a hierarchy is
that we need not commit to a particular level of
granularity; in other words, we are not required to
specify the number of classes beforehand, as is the
case with some other clustering algorithms.1

The clustering algorithm is initialized by plac-
ing each letter in its own class, and then pro-
ceeds in a bottom-up manner. At each step, the
pair of classes is merged that leads to the small-
est loss in the average mutual information (Man-
ning and Schütze, 1999) between adjacent classes.
The merging process repeats until a single class
remains that contains all the letters in the alpha-
bet. Recall that in our problem setting we have
access to a (presumably) large pool of unanno-
tated words. The unigram and bigram frequen-
cies required by the clustering algorithm are cal-

1This approach is inspired by the work of Miller et al.
(2004), who clustered words for a named-entity tagging task.

Letter Bit String Letter Bit String
a 01000 n 1111
b 10000000 o 01001
c 10100 p 10001
d 11000 q 1000001
e 0101 r 111010
f 100001 s 11010
g 11001 t 101010
h 10110 u 0111
i 0110 v 100110
j 10000001 w 100111
k 10111 x 111011
l 11100 y 11011

m 10010 z 101011
# 00

Table 1: Hierarchical clustering of English letters

culated from these words; hence, the letters can
be grouped into classes prior to annotation. The
letter classes only need to be computed once for
a given language. We implemented a brute-force
version of the algorithm that examines all the pos-
sible merges at each step, and generates a hierar-
chy within a few hours. However, when dealing
with a larger number of unique tokens (e.g., when
clustering words instead of letters), additional op-
timizations are needed in order to make the proce-
dure tractable.

The resulting hierarchy takes the form of a bi-
nary tree, where the root node/cluster contains all
the letters, and each leaf contains a single let-
ter. Hence, each letter can be represented by a bit
string that describes the path from the root to its
leaf. As an illustration, the clustering in Table 1
was automatically generated from the words in the
English CMU Pronouncing Dictionary (Carnegie
Mellon University, 1998). It is interesting to note
that the first bit distinguishes vowels from con-
sonants, meaning that these were the last two
groups that were merged by the clustering algo-
rithm. Note also that the beginning/end of word
marker (#) is included in the hierarchy, and is the
last character to be absorbed into a larger clus-
ter. This indicates that # carries more informa-
tion than most letters, as is to be expected, in light
of its distinct status. We also experimented with
a manually-constructed letter hierarchy, but ob-
served no significant differences in accuracy vis-
à-vis the automatic clustering.
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5 Active learning

Whereas a passive supervised learning algorithm
is provided with a collection of training exam-
ples that are typically drawn at random, an active
learner has control over the labelled data that it ob-
tains (Cohn et al., 1992). The latter attempts to se-
lect its training set intelligently by requesting the
labels of only those examples that are judged to be
the most useful or informative. Numerous studies
have demonstrated that active learners can make
more efficient use of unlabelled data than do pas-
sive learners (Abe and Mamitsuka, 1998; Miller
et al., 2004; Culotta and McCallum, 2005). How-
ever, relatively few researchers have applied active
learning techniques to the L2P domain. This is
despite the fact that annotated data for training an
L2P classifier is not available in most languages.
We briefly review two relevant studies before pro-
ceeding to describe our active learning strategy.

Maskey et al. (2004) propose a bootstrapping
technique that iteratively requests the labels of the
n most frequent words in a corpus. A classifier is
trained on the words that have been annotated thus
far, and then predicts the phonemes for each of the
n words being considered. Words for which the
prediction confidence is above a certain threshold
are immediately added to the lexicon, while the re-
maining words must be verified (and corrected, if
necessary) by a human annotator. The main draw-
back of such an approach lies in the risk of adding
erroneous entries to the lexicon when the classifier
is overly confident in a prediction.

Kominek and Black (2006) devise a word se-
lection strategy based on letter n-gram coverage
and word length. Their method slightly outper-
forms random selection, thereby establishing pas-
sive learning as a strong baseline. However, only a
single Italian dataset was used, and the results do
not necessarily generalize to other languages.

In this paper, we propose to apply an ac-
tive learning technique known as Query-by-
Bagging (Abe and Mamitsuka, 1998). We con-
sider a pool-based active learning setting, whereby
the learner has access to a pool of unlabelled ex-
amples (words), and may obtain labels (phoneme
sequences) at a cost. This is an iterative proce-
dure in which the learner trains a classifier on the
current set of labelled training data, then selects
one or more new examples to label, according to
the classifier’s predictions on the pool data. Once
labelled, these examples are added to the training

set, the classifier is re-trained, and the process re-
peats until some stopping criterion is met (e.g., an-
notation resources are exhausted).

Query-by-Bagging (QBB) is an instance of the
Query-by-Committee algorithm (Freund et al.,
1997), which selects examples that have high clas-
sification variance. At each iteration, QBB em-
ploys the bagging procedure (Breiman, 1996) to
create a committee of classifiers C. Given a train-
ing set T containing k examples (in our setting,
k is the total number of letters that have been la-
belled), bagging creates each committee member
by sampling k times from T (with replacement),
and then training a classifier Ci on the resulting
data. The example in the pool that maximizes the
disagreement among the predictions of the com-
mittee members is selected.

A crucial question is how to calculate the
disagreement among the predicted phoneme se-
quences for a word in the pool. In the L2P domain,
we assume that a human annotator specifies the
phonemes for an entire word, and that the active
learner cannot query individual letters. We require
a measure of confidence at the word level; yet, our
classifiers make predictions at the letter level. This
is analogous to the task of estimating record confi-
dence using field confidence scores in information
extraction (Culotta and McCallum, 2004).

Our solution is as follows. Let w be a word in
the pool. Each classifier Ci predicts the phoneme
for each letter l ∈ w. These “votes” are aggre-
gated to produce a vector vl for letter l that indi-
cates the distribution of the |C| predictions over its
possible phonemes. We then compute the margin
for each letter: If {p, p′} ∈ vl are the two highest
vote totals, then the margin is M(vl) = |p − p′|.
A small margin indicates disagreement among the
constituent classifiers. We define the disagreement
score for the entire word as the minimum margin:

score(w) = min
l∈w

{M(vl)} (1)

We also experimented with maximum vote en-
tropy and average margin/entropy, where the av-
erage is taken over all the letters in a word. The
minimum margin exhibited the best performance
on our development data; hence, we do not pro-
vide a detailed evaluation of the other measures.

6 L2P alignment

Before supervised learning can take place, the
letters in each word need to be aligned with
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phonemes. However, a lexicon typically provides
just the letter and phoneme sequences for each
word, without specifying the specific phoneme(s)
that each letter elicits. The sub-task of L2P that
pairs letters with phonemes in the training data is
referred to as alignment. The L2P alignments that
are specified in the training data can influence the
accuracy of the resulting L2P classifier. In our set-
ting, we are interested in mapping each letter to
either a single phoneme or the “null” phoneme.

The standard approach to L2P alignment is de-
scribed by Damper et al. (2005). It performs an
Expectation-Maximization (EM) procedure that
takes a (preferably large) collection of words as
input and computes alignments for them simul-
taneously. However, since in our active learning
setting the data is acquired incrementally, we can-
not count on the initial availability of a substantial
set of words accompanied by their phonemic tran-
scriptions.

In this paper, we apply the ALINE algorithm
to the task of L2P alignment (Kondrak, 2000;
Inkpen et al., 2007). ALINE, which performs
phonetically-informed alignment of two strings of
phonemes, requires no training data, and so is
ideal for our purposes. Since our task requires the
alignment of phonemes with letters, we wish to re-
place every letter with a phoneme that is the most
likely to be produced by that letter. On the other
hand, we would like our approach to be language-
independent. Our solution is to simply treat ev-
ery letter as an IPA symbol (International Phonetic
Association, 1999). The IPA is based on the Ro-
man alphabet, but also includes a number of other
symbols. The 26 IPA letter symbols tend to cor-
respond to the usual phonetic value that the letter
represents in the Latin script.2 For example, the
IPA symbol [m] denotes “voiced bilabial nasal,”
which is the phoneme represented by the letter m
in most languages that utilize Latin script.

The alignments produced by ALINE are of high
quality. The example below shows the alignment
of the Italian word scianchi to its phonetic tran-
scription [SaNki]. ALINE correctly aligns not only
identical IPA symbols (i:i), but also IPA symbols
that represent similar sounds (s:S, n:N, c:k).

s c i a n c h i
| | | | |
S a N k i

2ALINE can also be applied to non-Latin scripts by re-
placing every grapheme with the IPA symbol that is phoneti-
cally closest to it (Jiampojamarn et al., 2009).

7 Experimental setup

We performed experiments on six datasets, which
were obtained from the PRONALSYL letter-
to-phoneme conversion challenge.3 They are:
English CMUDict (Carnegie Mellon University,
1998); French BRULEX (Content et al., 1990),
Dutch and German CELEX (Baayen et al., 1996),
the Italian Festival dictionary (Cosi et al., 2000),
and the Spanish lexicon. Duplicate words and
words containing punctuation or numerals were
removed, as were abbreviations and acronyms.
The resulting datasets range in size from 31,491
to 111,897 words. The PRONALSYL datasets are
already divided into 10 folds; we used the first fold
as our test set, and the other folds were merged to-
gether to form the learning set. In our preliminary
experiments, we randomly set aside 10 percent of
this learning set to serve as our development set.

Since the focus of our work is on algorithmic
enhancements, we simulate the annotator with an
oracle and do not address the potential human in-
terface factors. During an experiment, 100 words
were drawn at random from the learning set; these
constituted the data on which an initial classifier
was trained. The rest of the words in the learning
set formed the unlabelled pool for active learning;
their phonemes were hidden, and a given word’s
phonemes were revealed if the word was selected
for labelling. After training a classifier on the
100 annotated words, we performed 190 iterations
of active learning. On each iteration, 10 words
were selected according to Equation 1, labelled by
an oracle, and added to the training set. In or-
der to speed up the experiments, a random sam-
ple of 2000 words was drawn from the pool and
presented to the active learner each time. Hence,
QBB selected 10 words from the 2000 candidates.
We set the QBB committee size |C| to 10.

At each step, we measured word accuracy with
respect to the holdout set as the percentage of test
words that yielded no erroneous phoneme predic-
tions. Henceforth, we use accuracy to refer to
word accuracy. Note that although we query ex-
amples using a committee, we train a single tree on
these examples in order to produce an intelligible
model. Prior work has demonstrated that this con-
figuration performs well in practice (Dwyer and
Holte, 2007). Our results report the accuracy of
the single tree grown on each iteration, averaged

3Available at http://pascallin.ecs.soton.ac.uk/Challenges/
PRONALSYL/Datasets/
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over 10 random draws of the initial training set.
For our decision tree learner, we utilized the J48

algorithm provided by Weka (Witten and Frank,
2005). We also experimented with Wagon (Taylor
et al., 1998), an implementation of CART, but J48
performed better during preliminary trials. We ran
J48 with default parameter settings, except that bi-
nary trees were grown (see Section 2), and subtree
raising was disabled.4

Our feature template was established during de-
velopment set experiments with the English CMU
data; the data from the other five languages did not
influence these choices. The letter context con-
sisted of the focus letter and the 3 letters appear-
ing before and after the focus (or beginning/end of
word markers, where applicable). For letter class
features, bit strings of length 1 through 6 were
used for the focus letter and its immediate neigh-
bors. Bit strings of length at most 3 were used
at positions +2 and −2, and no such features were
added at ±3.5 We experimented with other config-
urations, including using bit strings of up to length
6 at all positions, but they did not produce consis-
tent improvements over the selected scheme.

8 Results

We first examine the contributions of the indi-
vidual system components, and then compare our
complete system to the baseline. The dashed
curves in Figure 1 represent the baseline perfor-
mance with no clustering, no context ordering,
random sampling, and ALINE, unless otherwise
noted. In all plots, the error bars show the 99%
confidence interval for the mean. Because the av-
erage word length differs across languages, we re-
port the number of words along the x-axis. We
have verified that our system does not substantially
alter the average number of letters per word in the
training set for any of these languages. Hence, the
number of words reported here is representative of
the true annotation effort.

4Subtree raising is an expensive pruning operation that
had a negligible impact on accuracy during preliminary ex-
periments. Our pruning performs subtree replacement only.

5The idea of lowering the specificity of letter class ques-
tions as the context length increases is due to Kienappel and
Kneser (2001), and is intended to avoid overfitting. However,
their configuration differs from ours in that they use longer
context lengths (4 for German and 5 for English) and ask let-
ter class questions at every position. Essentially, the authors
tuned the feature set in order to optimize performance on each
problem, whereas we seek a more general representation that
will perform well on a variety of languages.

8.1 Context ordering

Our context ordering strategy improved the ac-
curacy of the decision tree learner on every lan-
guage (see Figure 1a). Statistically significant im-
provements were realized on Dutch, French, and
German. Our expectation was that context order-
ing would be particularly helpful during the early
rounds of active learning, when there is a greater
risk of overfitting on the small training sets. For
some languages (notably, German and Spanish)
this was indeed the case; yet, for Dutch, context
ordering became more effective as the training set
increased in size.

It should be noted that our context ordering
strategy is sufficiently general that it can be im-
plemented in other decision tree learners that grow
binary trees, such as Wagon/CART (Taylor et al.,
1998). An n-ary implementation is also feasible,
although we have not tried this variation.

8.2 Clustering letters

As can be seen in Figure 1b, clustering letters into
classes tended to produce a steady increase in ac-
curacy. The only case where it had no statistically
significant effect was on English. Another benefit
of clustering is that it reduces variance. The confi-
dence intervals are generally wider when cluster-
ing is disabled, meaning that the system’s perfor-
mance was less sensitive to changes in the initial
training set when letter classes were used.

8.3 Active learning

On five of the six datasets, Query-by-Bagging re-
quired significantly fewer labelled examples to
reach the maximum level of performance achieved
by the passive learner (see Figure 1c). For in-
stance, on the Spanish dataset, random sampling
reached 97% word accuracy after 1420 words had
been annotated, whereas QBB did so with only
510 words — a 64% reduction in labelling ef-
fort. Similarly, savings ranging from 30% to 63%
were observed for the other languages, with the
exception of English, where a statistically insignif-
icant 4% reduction was recorded. Since English is
highly irregular in comparison with the other five
languages, the active learner tends to query exam-
ples that are difficult to classify, but which are un-
helpful in terms of generalization.

It is important to note that empirical compar-
isons of different active learning techniques have
shown that random sampling establishes a very
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Figure 1: Performance of the individual system components

strong baseline on some datasets (Schein and Un-
gar, 2007; Settles and Craven, 2008). It is rarely
the case that a given active learning strategy is
able to unanimously outperform random sampling
across a range of datasets. From this perspective,
to achieve statistically significant improvements
on five of six L2P datasets (without ever being
beaten by random) is an excellent result for QBB.

8.4 L2P alignment

The ALINE method for L2P alignment outper-
formed EM on all six datasets (see Figure 1d). As
was mentioned in Section 6, the EM aligner de-
pends on all the available training data, whereas
ALINE processes words individually. Only on
Spanish and Italian, languages which have highly
regular spelling systems, was the EM aligner com-
petitive with ALINE. The accuracy gains on the

remaining four datasets are remarkable, consider-
ing that better alignments do not necessarily trans-
late into improved classification.

We hypothesized that EM’s inferior perfor-
mance was due to the limited quantities of data
that were available in the early stages of active
learning. In a follow-up experiment, we allowed
EM to align the entire learning set in advance,
and these aligned entries were revealed when re-
quested by the learner. We compared this with the
usual procedure whereby EM is applied to the la-
belled training data at each iteration of learning.
The learning curves (not shown) were virtually in-
distinguishable, and there were no statistically sig-
nificant differences on any of the languages. EM
appears to produce poor alignments regardless of
the amount of available data.
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Figure 2: Performance of the complete system

8.5 Complete system

The complete system consists of context order-
ing, clustering, Query-by-Bagging, and ALINE;
the baseline represents random sampling with EM
alignment and no additional enhancements. Fig-
ure 2 plots the word accuracies for all six datasets.

Although the absolute word accuracies varied
considerably across the different languages, our
system significantly outperformed the baseline in
every instance. On the French dataset, for ex-
ample, the baseline labelled 1850 words before
reaching its maximum accuracy of 64%, whereas
the complete system required only 480 queries to
reach 64% accuracy. This represents a reduction
of 74% in the labelling effort. The savings for the
other languages are: Spanish, 75%; Dutch, 68%;
English, 59%; German, 59%; and Italian, 52%.6

Interestingly, the savings are the highest on Span-
ish, even though the corresponding accuracy gains
are the smallest. This demonstrates that our ap-
proach is also effective on languages with rela-
tively transparent orthography.

At first glance, the performance of both sys-
tems appears to be rather poor on the English
dataset. To put our results into perspective, Black
et al. (1998) report 57.8% accuracy on this dataset
with a similar alignment method and decision tree
learner. Our baseline system achieves 57.3% ac-
curacy when 90,000 words have been labelled.
Hence, the low values in Figure 2 simply reflect
the fact that many more examples are required to

6The average savings in the number of labelled words
with respect to the entire learning curve are similar, ranging
from 50% on Italian to 73% on Spanish.

learn an accurate classifier for the English data.

9 Conclusions

We have presented a system for learning a letter-
to-phoneme classifier that combines four distinct
enhancements in order to minimize the amount
of data that must be annotated. Our experiments
involving datasets from several languages clearly
demonstrate that unlabelled data can be used more
efficiently, resulting in greater accuracy for a given
training set size, without any additional tuning
for the different languages. The experiments also
show that a phonetically-based aligner may be
preferable to the widely-used EM alignment tech-
nique, a discovery that could lead to the improve-
ment of L2P accuracy in general.

While this work represents an important step
in reducing the cost of constructing an L2P train-
ing set, we intend to explore other active learners
and classification algorithms, including sequence
labelling strategies (Settles and Craven, 2008).
We also plan to incorporate user-centric enhance-
ments (Davel and Barnard, 2004; Culotta and Mc-
Callum, 2005) with the aim of reducing both the
effort and expertise that is required to annotate
words with their phoneme sequences.
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Abstract
This paper studies transliteration align-
ment, its evaluation metrics and applica-
tions. We propose a new evaluation met-
ric, alignment entropy, grounded on the
information theory, to evaluate the align-
ment quality without the need for the gold
standard reference and compare the metric
with F -score. We study the use of phono-
logical features and affinity statistics for
transliteration alignment at phoneme and
grapheme levels. The experiments show
that better alignment consistently leads to
more accurate transliteration. In transliter-
ation modeling application, we achieve a
mean reciprocal rate (MRR) of 0.773 on
Xinhua personal name corpus, a signifi-
cant improvement over other reported re-
sults on the same corpus. In transliteration
validation application, we achieve 4.48%
equal error rate on a large LDC corpus.

1 Introduction

Transliteration is a process of rewriting a word
from a source language to a target language in a
different writing system using the word’s phono-
logical equivalent. The word and its translitera-
tion form a transliteration pair. Many efforts have
been devoted to two areas of studies where there
is a need to establish the correspondence between
graphemes or phonemes between a transliteration
pair, also known as transliteration alignment.

One area is the generative transliteration model-
ing (Knight and Graehl, 1998), which studies how
to convert a word from one language to another us-
ing statistical models. Since the models are trained
on an aligned parallel corpus, the resulting statisti-
cal models can only be as good as the alignment of
the corpus. Another area is the transliteration vali-
dation, which studies the ways to validate translit-
eration pairs. For example Knight and Graehl

(1998) use the lexicon frequency, Qu and Grefen-
stette (2004) use the statistics in a monolingual
corpus and the Web, Kuo et al. (2007) use proba-
bilities estimated from the transliteration model to
validate transliteration candidates. In this paper,
we propose using the alignment distance between
the a bilingual pair of words to establish the evi-
dence of transliteration candidacy. An example of
transliteration pair alignment is shown in Figure 1.

e5e1 e2 e3 e4

c1 c2 c3

A   L I  C E

艾 丽 斯

source graphemes

target graphemes

e1 e2 e3grapheme tokens

Figure 1: An example of grapheme alignment (Al-
ice, 艾丽斯), where a Chinese grapheme, a char-
acter, is aligned to an English grapheme token.

Like the word alignment in statistical ma-
chine translation (MT), transliteration alignment
becomes one of the important topics in machine
transliteration, which has several unique chal-
lenges. Firstly, the grapheme sequence in a word
is not delimited into grapheme tokens, resulting
in an additional level of complexity. Secondly, to
maintain the phonological equivalence, the align-
ment has to make sense at both grapheme and
phoneme levels of the source and target languages.
This paper reports progress in our ongoing spoken
language translation project, where we are inter-
ested in the alignment problem of personal name
transliteration from English to Chinese.

This paper is organized as follows. In Section 2,
we discuss the prior work. In Section 3, we in-
troduce both statistically and phonologically mo-
tivated alignment techniques and in Section 4 we
advocate an evaluation metric, alignment entropy
that measures the alignment quality. We report the
experiments in Section 5. Finally, we conclude in
Section 6.
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2 Related Work

A number of transliteration studies have touched
on the alignment issue as a part of the translit-
eration modeling process, where alignment is
needed at levels of graphemes and phonemes. In
their seminal paper Knight and Graehl (1998) de-
scribed a transliteration approach that transfers the
grapheme representation of a word via the pho-
netic representation, which is known as phoneme-
based transliteration technique (Virga and Khu-
danpur, 2003; Meng et al., 2001; Jung et al.,
2000; Gao et al., 2004). Another technique is
to directly transfer the grapheme, known as di-
rect orthographic mapping, that was shown to
be simple and effective (Li et al., 2004). Some
other approaches that use both source graphemes
and phonemes were also reported with good per-
formance (Oh and Choi, 2002; Al-Onaizan and
Knight, 2002; Bilac and Tanaka, 2004).

To align a bilingual training corpus, some take a
phonological approach, in which the crafted map-
ping rules encode the prior linguistic knowledge
about the source and target languages directly into
the system (Wan and Verspoor, 1998; Meng et al.,
2001; Jiang et al., 2007; Xu et al., 2006). Oth-
ers adopt a statistical approach, in which the affin-
ity between phonemes or graphemes is learned
from the corpus (Gao et al., 2004; AbdulJaleel and
Larkey, 2003; Virga and Khudanpur, 2003).

In the phoneme-based technique where an in-
termediate level of phonetic representation is used
as the pivot, alignment between graphemes and
phonemes of the source and target words is
needed (Oh and Choi, 2005). If source and tar-
get languages have different phoneme sets, align-
ment between the the different phonemes is also
required (Knight and Graehl, 1998). Although
the direct orthographic mapping approach advo-
cates a direct transfer of grapheme at run-time,
we still need to establish the grapheme correspon-
dence at the model training stage, when phoneme
level alignment can help.

It is apparent that the quality of transliteration
alignment of a training corpus has a significant
impact on the resulting transliteration model and
its performance. Although there are many stud-
ies of evaluation metrics of word alignment for
MT (Lambert, 2008), there has been much less re-
ported work on evaluation metrics of translitera-
tion alignment. In MT, the quality of training cor-
pus alignment A is often measured relatively to

the gold standard, or the ground truth alignment
G, which is a manual alignment of the corpus or
a part of it. Three evaluation metrics are used:
precision, recall, and F -score, the latter being a
function of the former two. They indicate how
close the alignment under investigation is to the
gold standard alignment (Mihalcea and Pedersen,
2003). Denoting the number of cross-lingual map-
pings that are common in both A and G as CAG,
the number of cross-lingual mappings in A as CA
and the number of cross-lingual mappings in G as
CG, precision Pr is given as CAG/CA, recall Rc
as CAG/CG and F -score as 2Pr ·Rc/(Pr+Rc).

Note that these metrics hinge on the availability
of the gold standard, which is often not available.
In this paper we propose a novel evaluation metric
for transliteration alignment grounded on the in-
formation theory. One important property of this
metric is that it does not require a gold standard
alignment as a reference. We will also show that
how this metric is used in generative transliteration
modeling and transliteration validation.

3 Transliteration alignment techniques

We assume in this paper that the source language
is English and the target language is Chinese, al-
though the technique is not restricted to English-
Chinese alignment.

Let a word in the source language (English) be
{ei} = {e1 . . . eI} and its transliteration in the
target language (Chinese) be {cj} = {c1 . . . cJ},
ei ∈ E, cj ∈ C, and E, C being the English and
Chinese sets of characters, or graphemes, respec-
tively. Aligning {ei} and {cj} means for each tar-
get grapheme token c̄j finding a source grapheme
token ēm, which is an English substring in {ei}
that corresponds to cj , as shown in the example in
Figure 1. As Chinese is syllabic, we use a Chinese
character cj as the target grapheme token.

3.1 Grapheme affinity alignment

Given a distance function between graphemes of
the source and target languages d(ei, cj), the prob-
lem of alignment can be formulated as a dynamic
programming problem with the following function
to minimize:

Dij = min(Di−1,j−1 + d(ei, cj),

Di,j−1 + d(∗, cj),
Di−1,j + d(ei, ∗))

(1)
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Here the asterisk * denotes a null grapheme that
is introduced to facilitate the alignment between
graphemes of different lengths. The minimum dis-
tance achieved is then given by

D =
I

∑

i=1

d(ei, cθ(i)) (2)

where j = θ(i) is the correspondence between the
source and target graphemes. The alignment can
be performed via the Expectation-Maximization
(EM) by starting with a random initial alignment
and calculating the affinity matrix count(ei, cj)
over the whole parallel corpus, where element
(i, j) is the number of times character ei was
aligned to cj . From the affinity matrix conditional
probabilities P (ei|cj) can be estimated as

P (ei|cj) = count(ei, cj)/
∑

j

count(ei, cj) (3)

Alignment j = θ(i) between {ei} and {cj} that
maximizes probability

P =
∏

i

P (cθ(i)|ei) (4)

is also the same alignment that minimizes align-
ment distance D:

D = − logP = −
∑

i

logP (cθ(i)|ei) (5)

In other words, equations (2) and (5) are the same
when we have the distance function d(ei, cj) =
− logP (cj |ei). Minimizing the overall distance
over a training corpus, we conduct EM iterations
until the convergence is achieved.

This technique solely relies on the affinity
statistics derived from training corpus, thus is
called grapheme affinity alignment. It is also
equally applicable for alignment between a pair of
symbol sequences representing either graphemes
or phonemes. (Gao et al., 2004; AbdulJaleel and
Larkey, 2003; Virga and Khudanpur, 2003).

3.2 Grapheme alignment via phonemes
Transliteration is about finding phonological
equivalent. It is therefore a natural choice to use
the phonetic representation as the pivot. It is
common though that the sound inventory differs
from one language to another, resulting in differ-
ent phonetic representations for source and tar-
get words. Continuing with the earlier example,

艾

AE L AH S
A L I C E

AY l i s iz

丽 斯

graphemes

phonemes

phonemes

graphemes

source

target

Figure 2: An example of English-Chinese translit-
eration alignment via phonetic representations.

Figure 2 shows the correspondence between the
graphemes and phonemes of English word “Al-
ice” and its Chinese transliteration, with CMU
phoneme set used for English (Chase, 1997) and
IIR phoneme set for Chinese (Li et al., 2007a).

A Chinese character is often mapped to a unique
sequence of Chinese phonemes. Therefore, if
we align English characters {ei} and Chinese
phonemes {cpk} (cpk ∈ CP set of Chinese
phonemes) well, we almost succeed in aligning
English and Chinese grapheme tokens. Alignment
between {ei} and {cpk} becomes the main task in
this paper.

3.2.1 Phoneme affinity alignment
Let the phonetic transcription of English word
{ei} be {epn}, epn ∈ EP , where EP is the set of
English phonemes. Alignment between {ei} and
{epn}, as well as between {epn} and {cpk} can
be performed via EM as described above. We esti-
mate conditional probability of Chinese phoneme
cpk after observing English character ei as

P (cpk|ei) =
∑

{epn}

P (cpk|epn)P (epn|ei) (6)

We use the distance function between English
graphemes and Chinese phonemes d(ei, cpk) =
− logP (cpk|ei) to perform the initial alignment
between {ei} and {cpk} via dynamic program-
ming, followed by the EM iterations until con-
vergence. The estimates for P (cpk|epn) and
P (epn|ei) are obtained from the affinity matrices:
the former from the alignment of English and Chi-
nese phonetic representations, the latter from the
alignment of English words and their phonetic rep-
resentations.

3.2.2 Phonological alignment
Alignment between the phonetic representations
of source and target words can also be achieved
using the linguistic knowledge of phonetic sim-
ilarity. Oh and Choi (2002) define classes of
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phonemes and assign various distances between
phonemes of different classes. In contrast, we
make use of phonological descriptors to define the
similarity between phonemes in this paper.

Perhaps the most common way to measure the
phonetic similarity is to compute the distances be-
tween phoneme features (Kessler, 2005). Such
features have been introduced in many ways, such
as perceptual attributes or articulatory attributes.
Recently, Tao et al. (2006) and Yoon et al. (2007)
have studied the use of phonological features and
manually assigned phonological distance to mea-
sure the similarity of transliterated words for ex-
tracting transliterations from a comparable corpus.

We adopt the binary-valued articulatory at-
tributes as the phonological descriptors, which are
used to describe the CMU and IIR phoneme sets
for English and Chinese Mandarin respectively.
Withgott and Chen (1993) define a feature vec-
tor of phonological descriptors for English sounds.
We extend the idea by defining a 21-element bi-
nary feature vector for each English and Chinese
phoneme. Each element of the feature vector
represents presence or absence of a phonologi-
cal descriptor that differentiates various kinds of
phonemes, e.g. vowels from consonants, front
from back vowels, nasals from fricatives, etc1.

In this way, a phoneme is described by a fea-
ture vector. We express the similarity between
two phonemes by the Hamming distance, also
called the phonological distance, between the two
feature vectors. A difference in one descriptor
between two phonemes increases their distance
by 1. As the descriptors are chosen to differenti-
ate between sounds, the distance between similar
phonemes is low, while that between two very dif-
ferent phonemes, such as a vowel and a consonant,
is high. The null phoneme, added to both English
and Chinese phoneme sets, has a constant distance
to any actual phonemes, which is higher than that
between any two actual phonemes.

We use the phonological distance to perform
the initial alignment between English and Chi-
nese phonetic representations of words. After that
we proceed with recalculation of the distances be-
tween phonemes using the affinity matrix as de-
scribed in Section 3.1 and realign the corpus again.
We continue the iterations until convergence is

1The complete table of English and Chinese phonemes
with their descriptors, as well as the translitera-
tion system demo is available at http://translit.i2r.a-
star.edu.sg/demos/transliteration/

reached. Because of the use of phonological de-
scriptors for the initial alignment, we call this tech-
nique the phonological alignment.

4 Transliteration alignment entropy

Having aligned the graphemes between two lan-
guages, we want to measure how good the align-
ment is. Aligning the graphemes means aligning
the English substrings, called the source grapheme
tokens, to Chinese characters, the target grapheme
tokens. Intuitively, the more consistent the map-
ping is, the better the alignment will be. We can
quantify the consistency of alignment via align-
ment entropy grounded on information theory.

Given a corpus of aligned transliteration pairs,
we calculate count(cj , ēm), the number of times
each Chinese grapheme token (character) cj is
mapped to each English grapheme token ēm. We
use the counts to estimate probabilities

P (ēm, cj) = count(cj , ēm)/
∑

m,j

count(cj , ēm)

P (ēm|cj) = count(cj , ēm)/
∑

m

count(cj , ēm)

The alignment entropy of the transliteration corpus
is the weighted average of the entropy values for
all Chinese tokens:

H = −
∑

j

P (cj)
∑

m

P (ēm|cj) logP (ēm|cj)

= −
∑

m,j

P (ēm, cj) logP (ēm|cj)

(7)

Alignment entropy indicates the uncertainty of
mapping between the English and Chinese tokens
resulting from alignment. We expect and will
show that this estimate is a good indicator of the
alignment quality, and is as effective as the F -
score, but without the need for a gold standard ref-
erence. A lower alignment entropy suggests that
each Chinese token tends to be mapped to fewer
distinct English tokens, reflecting better consis-
tency. We expect a good alignment to have a
sharp cross-lingual mapping with low alignment
entropy.

5 Experiments

We use two transliteration corpora: Xinhua cor-
pus (Xinhua News Agency, 1992) of 37,637
personal name pairs and LDC Chinese-English
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named entity list LDC2005T34 (Linguistic Data
Consortium, 2005), containing 673,390 personal
name pairs. The LDC corpus is referred to as
LDC05 for short hereafter. For the results to be
comparable with other studies, we follow the same
splitting of Xinhua corpus as that in (Li et al.,
2007b) having a training and testing set of 34,777
and 2,896 names respectively. In contrast to the
well edited Xinhua corpus, LDC05 contains erro-
neous entries. We have manually verified and cor-
rected around 240,000 pairs to clean up the corpus.
As a result, we arrive at a set of 560,768 English-
Chinese (EC) pairs that follow the Chinese pho-
netic rules, and a set of 83,403 English-Japanese
Kanji (EJ) pairs, which follow the Japanese pho-
netic rules, and the rest 29,219 pairs (REST) be-
ing labeled as incorrect transliterations. Next we
conduct three experiments to study 1) alignment
entropy vs. F -score, 2) the impact of alignment
quality on transliteration accuracy, and 3) how to
validate transliteration using alignment metrics.

5.1 Alignment entropy vs. F -score

As mentioned earlier, for English-Chinese
grapheme alignment, the main task is to align En-
glish graphemes to Chinese phonemes. Phonetic
transcription for the English names in Xinhua
corpus are obtained by a grapheme-to-phoneme
(G2P) converter (Lenzo, 1997), which generates
phoneme sequence without providing the exact
correspondence between the graphemes and
phonemes. G2P converter is trained on the CMU
dictionary (Lenzo, 2008).

We align English grapheme and phonetic repre-
sentations e− ep with the affinity alignment tech-
nique (Section 3.1) in 3 iterations. We further
align the English and Chinese phonetic represen-
tations ep − cp via both affinity and phonological
alignment techniques, by carrying out 6 and 7 it-
erations respectively. The alignment methods are
schematically shown in Figure 3.

To study how alignment entropy varies accord-
ing to different quality of alignment, we would
like to have many different alignment results. We
pair the intermediate results from the e − ep and
ep − cp alignment iterations (see Figure 3) to
form e − ep − cp alignments between English
graphemes and Chinese phonemes and let them
converge through few more iterations, as shown
in Figure 4. In this way, we arrive at a total of 114
phonological and 80 affinity alignments of differ-

ent quality.

{cpk}{ei}

English
graphemes

{epn}
English

phonemes
Chinese

phonemes

affinity alignment affinity alignment

e− ep iteration 1
e− ep iteration 2
e− ep iteration 3

ep− cp iteration 1
ep− cp iteration 2

...
ep− cp iteration 6

phonological alignment

ep− cp iteration 1
ep− cp iteration 2

...
ep− cp iteration 7

Figure 3: Aligning English graphemes to
phonemes e−ep and English phonemes to Chinese
phonemes ep−cp. Intermediate e−ep and ep−cp
alignments are used for producing e − ep − cp
alignments.

e− ep
alignments

ep− cp
affinity / 

phonological
alignments

iteration 1
iteration 2
iteration 3

iteration 1
iteration 2

iteration n
...

...

calculating
d(ei, cpk)

affinity
alignment

iteration 1
iteration 2

...

e− ep− cp

etc

Figure 4: Example of aligning English graphemes
to Chinese phonemes. Each combination of e−ep
and ep− cp alignments is used to derive the initial
distance d(ei, cpk), resulting in several e−ep−cp
alignments due to the affinity alignment iterations.

We have manually aligned a random set of
3,000 transliteration pairs from the Xinhua train-
ing set to serve as the gold standard, on which we
calculate the precision, recall and F -score as well
as alignment entropy for each alignment. Each
alignment is reflected as a data point in Figures 5a
and 5b. From the figures, we can observe a clear
correlation between the alignment entropy and F -
score, that validates the effectiveness of alignment
entropy as an evaluation metric. Note that we
don’t need the gold standard reference for report-
ing the alignment entropy.

We also notice that the data points seem to form
clusters inside which the value of F -score changes
insignificantly as the alignment entropy changes.
Further investigation reveals that this could be due
to the limited number of entries in the gold stan-
dard. The 3,000 names in the gold standard are not
enough to effectively reflect the change across dif-
ferent alignments. F -score requires a large gold
standard which is not always available. In con-
trast, because the alignment entropy doesn’t de-
pend on the gold standard, one can easily report
the alignment performance on any unaligned par-
allel corpus.
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Figure 5: Correlation between F -score and align-
ment entropy for Xinhua training set alignments.
Results for precision and recall have similar trends
.

5.2 Impact of alignment quality on
transliteration accuracy

We now further study how the alignment affects
the generative transliteration model in the frame-
work of the joint source-channel model (Li et al.,
2004). This model performs transliteration by
maximizing the joint probability of the source and
target names P ({ei}, {cj}), where the source and
target names are sequences of English and Chi-
nese grapheme tokens. The joint probability is
expressed as a chain product of a series of condi-
tional probabilities of token pairs P ({ei}, {cj}) =
P ((ēk, ck)|(ēk−1, ck−1)), k = 1 . . . N , where we
limit the history to one preceding pair, resulting in
a bigram model. The conditional probabilities for
token pairs are estimated from the aligned training
corpus. We use this model because it was shown
to be simple yet accurate (Ekbal et al., 2006; Li
et al., 2007b). We train a model for each of the
114 phonological alignments and the 80 affinity
alignments in Section 5.1 and conduct translitera-
tion experiment on the Xinhua test data.

During transliteration, an input English name
is first decoded into a lattice of all possible En-
glish and Chinese grapheme token pairs. Then the
joint source-channel transliteration model is used
to score the lattice to obtain a ranked list ofmmost
likely Chinese transliterations (m-best list).

We measure transliteration accuracy as the
mean reciprocal rank (MRR) (Kantor and
Voorhees, 2000). If there is only one correct
Chinese transliteration of the k-th English word
and it is found at the rk-th position in the m-best
list, its reciprocal rank is 1/rk. If the list contains
no correct transliterations, the reciprocal rank is
0. In case of multiple correct transliterations, we
take the one that gives the highest reciprocal rank.
MRR is the average of the reciprocal ranks across
all words in the test set. It is commonly used as
a measure of transliteration accuracy, and also
allows us to make a direct comparison with other
reported work (Li et al., 2007b).

We take m = 20 and measure MRR on Xinhua
test set for each alignment of Xinhua training set
as described in Section 5.1. We report MRR and
the alignment entropy in Figures 6a and 7a for the
affinity and phonological alignments respectively.
The highest MRR we achieve is 0.771 for affin-
ity alignments and 0.773 for phonological align-
ments. This is a significant improvement over the
MRR of 0.708 reported in (Li et al., 2007b) on the
same data. We also observe that the phonological
alignment technique produces, on average, better
alignments than the affinity alignment technique
in terms of both the alignment entropy and MRR.

We also report the MRR and F -scores for each
alignment in Figures 6b and 7b, from which we
observe that alignment entropy has stronger corre-
lation with MRR than F -score does. The Spear-
man’s rank correlation coefficients are −0.89 and
−0.88 for data in Figure 6a and 7a respectively.
This once again demonstrates the desired property
of alignment entropy as an evaluation metric of
alignment.

To validate our findings from Xinhua corpus,
we further carry out experiments on the EC set
of LDC05 containing 560,768 entries. We split
the set into 5 almost equal subsets for cross-
validation: in each of 5 experiments one subset is
used for testing and the remaining ones for train-
ing. Since LDC05 contains one-to-many English-
Chinese transliteration pairs, we make sure that an
English name only appears in one subset.

Note that the EC set of LDC05 contains
many names of non-English, and, generally, non-
European origin. This makes the G2P converter
less accurate, as it is trained on an English pho-
netic dictionary. We therefore only apply the affin-
ity alignment technique to align the EC set. We
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Figure 6: Mean reciprocal ratio on Xinhua test
set vs. alignment entropy and F -score for mod-
els trained with different affinity alignments.

use each iteration of the alignment in the translit-
eration modeling and present the resulting MRR
along with alignment entropy in Figure 8. The
MRR results are the averages of five values pro-
duced in the five-fold cross-validations.

We observe a clear correlation between the
alignment entropy and transliteration accuracy ex-
pressed by MRR on LDC05 corpus, similar to that
on Xinhua corpus, with the Spearman’s rank cor-
relation coefficient of −0.77. We obtain the high-
est average MRR of 0.720 on the EC set.

5.3 Validating transliteration using
alignment measure

Transliteration validation is a hypothesis test that
decides whether a given transliteration pair is gen-
uine or not. Instead of using the lexicon fre-
quency (Knight and Graehl, 1998) or Web statis-
tics (Qu and Grefenstette, 2004), we propose vali-
dating transliteration pairs according to the align-
ment distance D between the aligned English
graphemes and Chinese phonemes (see equations
(2) and (5)). A distance function d(ei, cpk) is
established from each alignment on the Xinhua
training set as discussed in Section 5.2.

An audit of LDC05 corpus groups the corpus
into three sets: an English-Chinese (EC) set of
560,768 samples, an English-Japanese (EJ) set
of 83,403 samples and the REST set of 29,219
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Figure 7: Mean reciprocal ratio on Xinhua test
set vs. alignment entropy and F -score for models
trained with different phonological alignments.
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Figure 8: Mean reciprocal ratio vs. alignment en-
tropy for alignments of EC set.

samples that are not transliteration pairs. We
mark the EC name pairs as genuine and the rest
112,622 name pairs that do not follow the Chi-
nese phonetic rules as false transliterations, thus
creating the ground truth labels for an English-
Chinese transliteration validation experiment. In
other words, LDC05 has 560,768 genuine translit-
eration pairs and 112,622 false ones.

We run one iteration of alignment over LDC05
(both genuine and false) with the distance func-
tion d(ei, cpk) derived from the affinity matrix of
one aligned Xinhua training set. In this way, each
transliteration pair in LDC05 provides an align-
ment distance. One can expect that a genuine
transliteration pair typically aligns well, leading
to a low distance, while a false transliteration pair
will do otherwise. To remove the effect of word
length, we normalize the distance by the English
name length, the Chinese phonetic transcription
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length, and the sum of both, producing score1,
score2 and score3 respectively.
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Figure 9: Detection error tradeoff (DET) curves
for transliteration validation on LDC05.

We can now classify each LDC05 name pair as
genuine or false by having a hypothesis test. When
the test score is lower than a pre-set threshold, the
name pair is accepted as genuine, otherwise false.
In this way, each pre-set threshold will present two
types of errors, a false alarm and a miss-detect
rate. A common way to present such results is via
the detection error tradeoff (DET) curves, which
show all possible decision points, and the equal er-
ror rate (EER), when false alarm and miss-detect
rates are equal.

Figure 9a shows three DET curves based on
score1, score2 and score3 respectively for one
one alignment solution on the Xinhua training set.
The horizontal axis is the probability of miss-
detecting a genuine transliteration, while the verti-
cal one is the probability of false-alarms. It is clear
that out of the three, score2 gives the best results.

We select the alignments of Xinhua training
set that produce the highest and the lowest MRR.
We also randomly select three other alignments
that produce different MRR values from the pool
of 114 phonological and 80 affinity alignments.

Xinhua train 

set alignment

Alignment entropy 

of Xinhua train set

MRR on Xinhua 

test set

LDC 

classification 

EER, %

1

2

3

4

5

2.396 0.773 4.48

2.529 0.764 4.52

2.586 0.761 4.51

2.621 0.757 4.71

2.625 0.754 4.70

Table 1: Equal error ratio of LDC transliteration
pair validation for different alignments of Xinhua
training set.

We use each alignment to derive distance func-
tion d(ei, cpk). Table 1 shows the EER of LDC05
validation using score2, along with the alignment
entropy of the Xinhua training set that derives
d(ei, cpk), and the MRR on Xinhua test set in the
generative transliteration experiment (see Section
5.2) for all 5 alignments. To avoid cluttering Fig-
ure 9b, we show the DET curves for alignments
1, 2 and 5 only. We observe that distance func-
tion derived from better aligned Xinhua corpus,
as measured by both our alignment entropy met-
ric and MRR, leads to a higher validation accuracy
consistently on LDC05.

6 Conclusions

We conclude that the alignment entropy is a re-
liable indicator of the alignment quality, as con-
firmed by our experiments on both Xinhua and
LDC corpora. Alignment entropy does not re-
quire the gold standard reference, it thus can be
used to evaluate alignments of large transliteration
corpora and is possibly to give more reliable esti-
mate of alignment quality than the F -score metric
as shown in our transliteration experiment.

The alignment quality of training corpus has
a significant impact on the transliteration mod-
els. We achieve the highest MRR of 0.773 on
Xinhua corpus with phonological alignment tech-
nique, which represents a significant performance
gain over other reported results. Phonological
alignment outperforms affinity alignment on clean
database.

We propose using alignment distance to validate
transliterations. A high quality alignment on a
small verified corpus such as Xinhua can be effec-
tively used to validate a large noisy corpus, such
as LDC05. We believe that this property would be
useful in transliteration extraction, cross-lingual
information retrieval applications.
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Abstract 

We propose a method to automatically train 
lemmatization rules that handle prefix, infix 
and suffix changes to generate the lemma from 
the full form of a word. We explain how the 
lemmatization rules are created and how the 
lemmatizer works. We trained this lemmatizer 
on Danish, Dutch, English, German, Greek, 
Icelandic, Norwegian, Polish, Slovene and 
Swedish full form-lemma pairs respectively. 
We obtained significant improvements of 24 
percent for Polish, 2.3 percent for Dutch, 1.5 
percent for English, 1.2 percent for German 
and 1.0 percent for Swedish compared to plain 
suffix lemmatization using a suffix-only lem-
matizer. Icelandic deteriorated with 1.9 per-
cent. We also made an observation regarding 
the number of produced lemmatization rules as 
a function of the number of training pairs. 

1 Introduction 

Lemmatizers and stemmers are valuable human 
language technology tools to improve precision 
and recall in an information retrieval setting. For 
example, stemming and lemmatization make it 
possible to match a query in one morphological 
form with a word in a document in another mor-
phological form. Lemmatizers can also be used 
in lexicography to find new words in text mate-
rial, including the words’ frequency of use. Other 
applications are creation of index lists for book 
indexes as well as key word lists 

Lemmatization is the process of reducing a 
word to its base form, normally the dictionary 
look-up form (lemma) of the word. A trivial way 
to do this is by dictionary look-up.  More ad-
vanced systems use hand crafted or automatically 

generated transformation rules that look at the 
surface form of the word and attempt to produce 
the correct base form by replacing all or parts of 
the word. 

Stemming conflates a word to its stem. A stem 
does not have to be the lemma of the word, but 
can be any trait that is shared between a group of 
words, so that even the group membership itself 
can be regarded as the group’s stem.  

The most famous stemmer is the Porter Stem-
mer for English (Porter 1980). This stemmer re-
moves around 60 different suffixes, using rewrit-
ing rules in two steps. 

The paper is structured as follows: section 2 
discusses related work, section 3 explains what 
the new algorithm is supposed to do, section 4 
describes some details of the new algorithm, sec-
tion 5 evaluates the results, conclusions are 
drawn in section 6, and finally in section 7 we 
mention plans for further tests and improve-
ments. 

2 Related work  

There have been some attempts in creating 
stemmers or lemmatizers automatically. Ek-
mekçioglu et al. (1996) have used N-gram 
matching for Turkish that gave slightly better 
results than regular rule based stemming. Theron 
and Cloete (1997) learned two-level rules for 
English, Xhosa and Afrikaans, but only single 
character insertions, replacements and additions 
were allowed. Oard et al. (2001) used a language 
independent stemming technique in a dictionary 
based cross language information retrieval ex-
periment for German, French and Italian where 
English was the search language. A four stage 
backoff strategy for improving recall was intro-
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duced. The system worked fine for French but 
not so well for Italian and German. Majumder et 
al. (2007) describe a statistical stemmer, YASS 
(Yet Another Suffix Stripper), mainly for Ben-
gali and French, but they propose it also for 
Hindi and Gujarati. The method finds clusters of 
similar words in a corpus. The clusters are called 
stems. The method works best for languages that 
are basically suffix based. For Bengali precision 
was 39.3 percent better than without stemming, 
though no absolute numbers were reported for 
precision. The system was trained on a corpus 
containing 301 562 words.  

Kanis & Müller (2005) used an automatic 
technique called OOV Words Lemmatization to 
train their lemmatizer on Czech, Finnish and 
English data. Their algorithm uses two pattern 
tables to handle suffixes as well as prefixes. Plis-
son et al. (2004) presented results for a system 
using Ripple Down Rules (RDR) to generate 
lemmatization rules for Slovene, achieving up to 
77 percent accuracy. Matjaž et al. (2007) present 
an RDR system producing efficient suffix based 
lemmatizers for 14 languages, three of which 
(English, German and Slovene) our algorithm 
also has been tested with. 

Stempel (Białecki 2004) is a stemmer for Pol-
ish that is trained on Polish full form – lemma 
pairs. When tested with inflected out-of-
vocabulary (OOV) words Stempel produces 95.4 
percent correct stems, of which about 81 percent  
also happen to be correct lemmas.  

Hedlund (2001) used two different approaches 
to automatically find stemming rules from a cor-
pus, for both Swedish and English. Unfortunately 
neither of these approaches did beat the hand 
crafted rules in the Porter stemmer for English 
(Porter 1980) or the Euroling SiteSeeker stem-
mer for Swedish, (Carlberger et al. 2001).  

Jongejan & Haltrup (2005) constructed a 
trainable lemmatizer for the lexicographical task 
of finding lemmas outside the existing diction-
ary, bootstrapping from a training set of full form 
– lemma pairs extracted from the existing dic-
tionary. This lemmatizer looks only at the suffix 
part of the word. Its performance was compared 
with a stemmer using hand crafted stemming 
rules, the Euroling SiteSeeker stemmer for 
Swedish, Danish and Norwegian, and also with a 
stemmer for Greek, (Dalianis & Jongejan 2006). 
The results showed that lemmatizer was as good 
as the stemmer for Swedish, slightly better for 
Danish and Norwegian but worse for Greek. 
These results are very dependent on the quality 

(errors, size) and complexity (diacritics, capitals) 
of the training data. 

In the current work we have used Jongejan & 
Haltrup’s lemmatizer as a reference, referring to 
it as the ‘suffix lemmatizer’. 

3 Delineation 

3.1 Why affix rules? 

German and Dutch need more advanced methods 
than suffix replacement since their affixing of 
words (inflection of words) can include both pre-
fixing, infixing and suffixing. Therefore we cre-
ated a trainable lemmatizer that handles pre- and 
infixes in addition to suffixes. 

Here is an example to get a quick idea of what 
we wanted to achieve with the new training algo-
rithm. Suppose we have the following Dutch full 
form – lemma pair: 

afgevraagd → afvragen 
(Translation: wondered, to wonder) 

If this were the sole input given to the training 
program, it should produce a transformation rule 
like this: 

*ge*a*d → ***en 
The asterisks are wildcards and placeholders. 
The pattern on the left hand side contains three 
wildcards, each one corresponding to one place-
holder in the replacement string on the right hand 
side, in the same order. The characters matched 
by a wildcard are inserted in the place kept free 
by the corresponding placeholder in the replace-
ment expression. 

With this “set” of rules a lemmatizer would be 
able to construct the correct lemma for some 
words that had not been used during the training, 
such as the word verstekgezaagd (Transla-
tion: mitre cut): 

 

Word verstek ge z a ag d 

Pattern * ge * a * d 

Replacement *  *  * en

Lemma verstek  z  ag en
 

Table 1. Application of a rule to an OOV word. 
 

 
For most words, however, the lemmatizer would 
simply fail to produce any output, because not all 
words do contain the literal strings ge and a and 
a final d.  We remedy this by adding a one-size-
fits-all rule that says “return the input as output”: 

 
* → * 
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So now our rule set consists of two rules: 
*ge*a*d → ***en 
* → * 

The lemmatizer then finds the rule with the most 
specific pattern (see 4.2) that matches and ap-
plies only this rule. The last rule’s pattern 
matches any word and so the lemmatizer cannot 
fail to produce output. Thus, in our toy rule set 
consisting of two rules, the first rule handles 
words like gevraagd, afgezaagd, 
geklaagd, (all three correctly) and getalmd 
(incorrectly) while the second rule handles words 
like directeur (correctly) and zei (incor-
rectly). 

3.2 Inflected vs. agglutinated languages 

A lemmatizer that only applies one rule per word 
is useful for inflected languages, a class of lan-
guages that includes all Indo-European lan-
guages. For these languages morphological 
change is not a productive process, which means 
that no word can be morphologically changed in 
an unlimited number of ways. Ideally, there are 
only a finite number of inflection schemes and 
thus a finite number of lemmatization rules 
should suffice to lemmatize indefinitely many 
words.  

In agglutinated languages, on the other hand, 
there are classes of words that in principle have 
innumerous word forms. One way to lemmatize 
such words is to peel off all agglutinated mor-
phemes one by one. This is an iterative process 
and therefore the lemmatizer discussed in this 
paper, which applies only one rule per word, is 
not an obvious choice for agglutinated lan-
guages. 

3.3 Supervised training 

An automatic process to create lemmatization 
rules is described in the following sections. By 
reserving a small part of the available training 
data for testing it is possible to quite accurately 
estimate the probability that the lemmatizer 
would produce the right lemma given any un-
known word belonging to the language, even 
without requiring that the user masters the lan-
guage (Kohavi 1995). 

On the downside, letting a program construct 
lemmatization rules requires an extended list of 
full form – lemma pairs that the program can 
exercise on – at least tens of thousands and pos-
sibly over a million entries (Dalianis and Jonge-
jan 2006). 

3.4 Criteria for success 

The main challenge for the training algorithm is 
that it must produce rules that accurately lemma-
tize OOV words. This requirement translates to 
two opposing tendencies during training. On the 
one hand we must trust rules with a wide basis of 
training examples more than rules with a small 
basis, which favours rules with patterns that fit 
many words. On the other hand we have the in-
compatible preference for cautious rules with 
rather specific patterns, because these must be 
better at avoiding erroneous rule applications 
than rules with generous patterns. The envisaged 
expressiveness of the lemmatization rules – al-
lowing all kinds of affixes and an unlimited 
number of wildcards – turns the challenge into a 
difficult balancing act. 

In the current work we wanted to get an idea 
of the advantages of an affix-based algorithm 
compared to a suffix-only based algorithm. 
Therefore we have made the task as hard as pos-
sible by not allowing language specific adapta-
tions to the algorithms and by not subdividing 
the training words in word classes.  

4 Generation of rules and look-up data 
structure  

4.1 Building a rule set from training pairs 

The training algorithm generates a data structure 
consisting of rules that a lemmatizer must trav-
erse to arrive at a rule that is elected to fire.  

Conceptually the training process is as fol-
lows. As the data structure is being built, the full 
form in each training pair is tentatively lemma-
tized using the data structure that has been cre-
ated up to that stage. If the elected rule produces 
the right lemma from the full form, nothing 
needs to be done. Otherwise, the data structure 
must be expanded with a rule such that the new 
rule a) is elected instead of the erroneous rule 
and b) produces the right lemma from the full 
form. The training process terminates when the 
full forms in all pairs in the training set are trans-
formed to their corresponding lemmas.  

After training, the data structure of rules is 
made permanent and can be consulted by a lem-
matizer. The lemmatizer must elect and fire rules 
in the same way as the training algorithm, so that 
all words from the training set are lemmatized 
correctly. It may however fail to produce the cor-
rect lemmas for words that were not in the train-
ing set – the OOV words. 
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4.2 Internal structure of rules: prime and 
derived rules 

During training the Ratcliff/Obershelp algorithm 
(Ratcliff & Metzener 1988) is used to find the 
longest non-overlapping similar parts in a given 
full form – lemma pair. For example, in the pair 

afgevraagd → afvragen 
the longest common substring is vra, followed 
by af and g. These similar parts are replaced 
with wildcards and placeholders: 

*ge*a*d → ***en 
Now we have the prime rule for the training pair, 
the least specific rule necessary to lemmatize the 
word correctly. Rules with more specific patterns 
– derived rules – can be created by adding char-
acters and by removing or adding wildcards. A 
rule that is derived from another rule (derived or 
prime) is more specific than the original rule: 
Any word that is successfully matched by the 
pattern of a derived rule is also successfully 
matched by the pattern of the original rule, but 
the converse is not the case. This establishes a 
partial ordering of all rules. See Figures 1 and 2, 
where the rules marked ‘p’ are prime rules and 
those marked ‘d’ are derived. 

Innumerous rules can be derived from a rule 
with at least one wildcard in its pattern, but only 
a limited number can be tested in a finite time. 
To keep the number of candidate rules within 
practical limits, we used the strategy that the pat-
tern of a candidate is minimally different from its 
parent’s pattern: it can have one extra literal 
character or one wildcard less or replace one 
wildcard with one literal character. Alternatively, 
a candidate rule (such as the bottom rule in Fig-
ure 4) can arise by merging two rules. Within 
these constraints, the algorithm creates all possi-
ble candidate rules that transform one or more 
training words to their corresponding lemmas. 

4.3 External structure of rules: partial or-
dering in a DAG and in a tree 

We tried two different data structures to store 
new lemmatizer rules, a directed acyclic graph 
(DAG) and a plain tree structure with depth first, 
left to right traversal. 

The DAG (Figure 1) expresses the complete 
partial ordering of the rules. There is no prefer-
ential order between the children of a rule and all 
paths away from the root must be regarded as 
equally valid. Therefore the DAG may lead to 
several lemmas for the same input word. For ex-
ample, without the rule in the bottom part of Fig-
ure 1, the word gelopen would have been lem-

matized to both lopen (correct) and gelopen 
(incorrect): 

gelopen: 
*ge* → **   lopen 
*pen → *pen  gelopen 

By adding a derived rule as a descendent of both 
these two rules, we make sure that lemmatization 
of the word gelopen is only handled by one 
rule and only results in the correct lemma: 

gelopen: 
*ge*pen → **pen  lopen 

 
 

Figure 1. Five training pairs as supporters for 
five rules in a DAG. 

 

 
The tree in Figure 2 is a simpler data structure 
and introduces a left to right preferential order 
between the children of a rule. Only one rule 
fires and only one lemma per word is produced. 
For example, because the rule *ge* → ** pre-
cedes its sibling rule *en → *, whenever the 
former rule is applicable, the latter rule and its 
descendents are not even visited, irrespective of 
their applicability. In our example, the former 
rule – and only the former rule – handles the 
lemmatization of gelopen, and since it pro-
duces the correct lemma an additional rule is not 
necessary.  

In contrast to the DAG, the tree implements 
negation: if the Nth sibling of a row of children 
fires, it not only means that the pattern of the Nth 
rule matches the word, it also means that the pat-
terns of the N-1 preceding siblings do not match 
the word. Such implicit negation is not possible 
in the DAG, and this is probably the main reason 
why the experiments with the DAG-structure 
lead to huge numbers of rules, very little gener-

* → * 
ui → ui 

*ge* → ** 
overgegaan → overgaan 

*en → * 
uien→ ui 

*pen →*pen 
lopen → lopen 

*ge*pen → **pen 
gelopen → lopen 

p 

p p 

d 

d 
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alization, uncontrollable training times (months, 
not minutes!) and very low lemmatization qual-
ity. On the other hand, the experiments with the 
tree structure were very successful. The building 
time of the rules is acceptable, taking small re-
cursive steps during the training part. The mem-
ory use is tractable and the quality of the results 
is good provided good training material. 

  
 

Figure 2. The same five training pairs as sup-
porters for only four rules in a tree. 

 

4.4 Rule selection criteria 

This section pertains to the training algorithm 
employing a tree. 

The typical situation during training is that a 
rule that already has been added to the tree 
makes lemmatization errors on some of the train-
ing words. In that case one or more corrective 
children have to be added to the rule1.  

If the pattern of a new child rule only matches 
some, but not all training words that are lemma-
tized incorrectly by the parent, a right sibling 
rule must be added. This is repeated until all 
training words that the parent does not lemmatize 
correctly are matched by the leftmost child rule 
or one of its siblings. 

A candidate child rule is faced with training 
words that the parent did not lemmatize correctly 
and, surprisingly, also supporters of the parent, 
because the pattern of the candidate cannot dis-
criminate between these two groups. 

On the output side of the candidate appear the 
training pairs that are lemmatized correctly by 
the candidate, those that are lemmatized incor-

                                                 
1 If the case of a DAG, care must be taken that the 
complete representation of the partial ordering of 
rules is maintained. Any new rule not only becomes a 
child of the rule that it was aimed at as a corrective 
child, but often also of several other rules. 

rectly and those that do not match the pattern of 
the candidate.  

For each candidate rule the training algorithm 
creates a 2×3 table (see Table 2) that counts the 
number of training pairs that the candidate lem-
matizes correctly or incorrectly or that the candi-
date does not match. The two columns count the 
training pairs that, respectively, were lemmatized 
incorrectly and correctly by the parent. These six 
parameters Nxy can be used to select the best can-
didate. Only four parameters are independent, 
because the numbers of training words that the 
parent lemmatized incorrectly (Nw) and correctly 
(Nr) are the same for all candidates. Thus, after 
the application of the first and most significant 
selection criterion, up to three more selection 
criteria of decreasing significance can be applied 
if the preceding selection ends in a tie. 

 
           Parent 
Child 

Incorrect Correct 
(supporters) 

Correct  Nwr Nrr 

Incorrect  Nww Nrw 

Not matched Nwn Nrn 

Sum Nw Nr 
 

Table 2. The six parameters for rule selection 
among candidate rules. 

 

A large Nwr and a small Nrw are desirable. Nwr is a 
measure for the rate at which the updated data 
structure has learned to correctly lemmatize 
those words that previously were lemmatized 
incorrectly. A small Nrw indicates that only few 
words that previously were lemmatized correctly 
are spoiled by the addition of the new rule. It is 
less obvious how the other numbers weigh in.  

We have obtained the most success with crite-
ria that first select for highest Nwr + Nrr - Nrw . If 
the competition ends in a tie, we select for lowest 
Nrr among the remaining candidates. If the com-
petition again ends in a tie, we select for highest 
Nrn – Nww . Due to the marginal effect of a fourth 
criterion we let the algorithm randomly select 
one of the remaining candidates instead. 

The training pairs that are matched by the pat-
tern of the winning rule become the supporters 
and non-supporters of that new rule and are no 
longer supporters or non-supporters of the par-
ent. If the parent still has at least one non-
supporter, the remaining supporters and non-
supporters – the training pairs that the winning 

* → * 
ui → ui 

*ge* → ** 
overgegaan → overgaan 

gelopen → lopen 

*en → * 
uien→ ui 

*pen →*pen 
lopen → lopen 

p 

p p 

d 
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candidate does not match – are used to select the 
right sibling of the new rule. 

5 Evaluation 

We trained the new lemmatizer using training 
material for Danish (STO), Dutch (CELEX), 
English (CELEX), German (CELEX), Greek 
(Petasis et al. 2003), Icelandic (IFD), Norwegian 
(SCARRIE), Polish (Morfologik), Slovene 
(Juršič et al. 2007) and Swedish (SUC).  

The guidelines for the construction of the 
training material are not always known to us. In 
some cases, we know that the full forms have 
been generated automatically from the lemmas. 
On the other hand, we know that the Icelandic 
data is derived from a corpus and only contains 
word forms occurring in that corpus. Because of 
the uncertainties, the results cannot be used for a 
quantitative comparison of the accuracy of lem-
matization between languages. 

Some of the resources were already disam-
biguated (one lemma per full form) when we re-
ceived the data. We decided to disambiguate the 
remaining resources as well. Handling homo-
graphs wisely is important in many lemmatiza-
tion tasks, but there are many pitfalls. As we 
only wanted to investigate the improvement of 
the affix algorithm over the suffix algorithm, we 
decided to factor out ambiguity. We simply 
chose the lemma that comes first alphabetically 
and discarded the other lemmas from the avail-
able data. 

The evaluation was carried out by dividing the 
available material in training data and test data in 
seven different ratios, setting aside between 
1.54% and 98.56% as training data and the re-
mainder as OOV test data. (See section 7). To 
keep the sample standard deviation s for the ac-
curacy below an acceptable level we used the 
evaluation method repeated random subsampling 
validation that is proposed in Voorhees (2000) 
and Bouckaert & Frank (2000). We repeated the 
training and evaluation for each ratio with sev-
eral randomly chosen sets, up to 17 times for the 
smallest and largest ratios, because these ratios 
lead to relatively small training sets and test sets 
respectively. The same procedure was followed 
for the suffix lemmatizer, using the same training 
and test sets. Table 3 shows the results for the 
largest training sets. 

For some languages lemmatization accuracy 
for OOV words improved by deleting rules that 
are based on very few examples from the training 
data. This pruning was done after the training of 

the rule set was completed. Regarding the affix 
algorithm, the results for half of the languages 
became better with mild pruning, i.e. deleting 
rules with only one example. For Danish, Dutch, 
German, Greek and Icelandic pruning did not 
improve accuracy. Regarding the suffix algo-
rithm, only English and Swedish profited from 
pruning. 

 

Language 
Suffix  
% 

Affix 
% Δ %  

N × 
1000 n 

Icelandic 73.2±1.4 71.3±1.5 -1.9 58 17
Danish 93.2±0.4 92.8±0.2 -0.4 553 5
Norwegian 87.8±0.4 87.6±0.3 -0.2 479 6
Greek 90.2±0.3 90.4±0.4 0.2 549 5
Slovene 86.0±0.6 86.7±0.3 0.7 199 9
Swedish 91.24±0.18 92.3±0.3 1.0 478 6
German 90.3±0.5 91.46±0.17 1.2 315 7
English 87.5±0.9 89.0±1.3 1.5 76 15
Dutch 88.2±0.5 90.4±0.5 2.3 302 7
Polish 69.69±0.06 93.88±0.08 24.2 3443 2

 

Table 3. Accuracy for the suffix and affix algo-
rithms. The fifth column shows the size of the 
available data. Of these, 98.56% was used for 
training and 1.44% for testing. The last column 
shows the number n of performed iterations, 
which was inversely proportional to √N with a 
minimum of two. 

6 Some language specific notes 

For Polish, the suffix algorithm suffers from 
overtraining. The accuracy tops at about 100 000 
rules, which is reached when the training set 
comprises about 1 000 000 pairs.  
 

  
Figure 3. Accuracy vs. number of rules for Polish 
Upper swarm of data points: affix algorithm. 
Lower swarm of data points: suffix algorithm. 
Each swarm combines results from six rule sets 
with varying amounts of pruning (no pruning and 
pruning with cut-off = 1..5). 
 

If more training pairs are added, the number of 
rules grows, but the accuracy falls. The affix al-
gorithm shows no sign of overtraining, even 
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though the Polish material comprised 3.4 million 
training pairs, more than six times the number of 
the second language on the list, Danish. See Fig-
ure 3. 

The improvement of the accuracy for Polish 
was tremendous. The inflectional paradigm in 
Polish (as in other Slavic languages) can be left 
factorized, except for the superlative. However, 
only 3.8% of the words in the used Polish data 
have the superlative forming prefix naj, and 
moreover this prefix is only removed from ad-
verbs and not from the much more numerous 
adjectives.  

The true culprit of the discrepancy is the great 
number (> 23%) of words in the Polish data that 
have the negative prefix nie, which very often 
does not recur in the lemma. The suffix algo-
rithm cannot handle these 23% correctly. 

The improvement over the suffix lemmatizer 
for the case of German is unassuming. To find 
out why, we looked at how often rules with infix 
or prefix patterns fire and how well they are do-
ing. We trained the suffix algorithm with 9/10 of 
the available data and tested with the remaining 
1/10, about 30 000 words. Of these, 88% were 
lemmatized correctly (a number that indicates the 
smaller training set than in Table 3). 

  
 German Dutch 

Acc. 
% Freq % Acc. % Freq % 

all 88.1  100.0 87.7 100.0
suffix-
only 88.7 94.0 88.1 94.9

prefix 79.9 4.4 80.9 2.4
infix 83.3 2.3 77.4 3.0
ä ö ü  92.8 0.26 N/A 0.0
ge infix 68.6 0.94 77.9 2.6

 

Table 4. Prevalence of suffix-only rules, rules 
specifying a prefix, rules specifying an infix and 
rules specifying infixes containing either ä, ö or 
ü or the letter combination ge. 
 

Almost 94% of the lemmas were created using 
suffix-only rules, with an accuracy of almost 
89%. Less than 3% of the lemmas were created 
using rules that included at least one infix sub-
pattern. Of these, about 83% were correctly 
lemmatized, pulling the average down. We also 
looked at two particular groups of infix-rules: 
those including the letters ä, ö or ü and those 
with the letter combination ge. The former 
group applies to many words that display umlaut, 
while the latter applies to past participles. The 

first group of rules, accounting for 11% of all 
words handled by infix rules, performed better 
than average, about 93%, while the latter group, 
accounting for 40% of all words handled by infix 
rules, performed poorly at 69% correct lemmas. 
Table 4 summarizes the results for German and 
the closely related Dutch language. 

7 Self-organized criticality 

Over the whole range of training set sizes the 
number of rules goes like dNC.  with C<0 , and N 
the number of training pairs. The value of C and 
d not only depended on the chosen algorithm, but 
also on the language. Figure 4 shows how the 
number of generated lemmatization rules for Pol-
ish grows as a function of the number of training 
pairs.  

  
Figure 4.  Number of rules vs. number of training 
pairs for Polish (double logarithmic scale). 
Upper row: unpruned rule sets 
Lower row: heavily pruned rule sets (cut-off=5) 
 

There are two rows of data, each row containing 
seven data points. The rules are counted after 
training with 1.54 percent of the available data 
and then repeatedly doubling to 3.08, 6.16, 
12.32, 24.64, 49.28 and 98.56 percent of the 
available data. The data points in the upper row 
designate the number of rules resulting from the 
training process. The data points in the lower 
row arise by pruning rules that are based on less 
than six examples from the training set. 
The power law for the upper row of data points 
for Polish in Figure 4 is 

87.080.0 trainingrules NN =
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As a comparison, for Icelandic the power law for 
the unpruned set of rules is 

90.032.1 trainingrules NN =
 

These power law expressions are derived for the 
affix algorithm. For the suffix algorithm the ex-
ponent in the Polish power law expression is 
very close to 1 (0.98), which indicates that the 
suffix lemmatizer is not good at all at generaliz-
ing over the Polish training data: the number of 
rules grows almost proportionally with the num-
ber of training words. (And, as Figure 3 shows, 
to no avail.) On the other hand, the suffix lem-
matizer fares better than the affix algorithm for 
Icelandic data, because in that case the exponent 
in the power law expression is lower: 0.88 versus 
0.90.  

The power law is explained by self-organized 
criticality (Bak et al. 1987, 1988). Rule sets that 
originate from training sets that only differ in a 
single training example can be dissimilar to any 
degree depending on whether and where the dif-
ference is tipping the balance between competing 
rule candidates. Whether one or the other rule 
candidate wins has a very significant effect on 
the parts of the tree that emanate as children or as 
siblings from the winning node. If the difference 
has an effect close to the root of the tree, a large 
expanse of the tree is affected. If the difference 
plays a role closer to a leaf node, only a small 
patch of the tree is affected. The effect of adding 
a single training example can be compared with 
dropping a single rice corn on top of a pile of 
rice, which can create an avalanche of unpredict-
able size. 

8 Conclusions 

Affix rules perform better than suffix rules if the 
language has a heavy pre- and infix morphology 
and the size of the training data is big. The new 
algorithm worked very well with the Polish Mor-
fologik dataset and compares well with the 
Stempel algorithm (Białecki 2008).  

Regarding Dutch and German we have ob-
served that the affix algorithm most often applies 
suffix-only rules to OOV words. We have also 
observed that words lemmatized this way are 
lemmatized better than average. The remaining 
words often need morphological changes in more 
than one position, for example both in an infix 
and a suffix. Although these changes are corre-
lated by the inflectional rules of the language, the 
number of combinations is still large, while at 
the same time the number of training examples 
exhibiting such combinations is relatively small. 

Therefore the more complex rules involving infix 
or prefix subpatterns or combinations thereof are 
less well-founded than the simple suffix-only 
rules. The lemmatization accuracy of the com-
plex rules will therefore in general be lower than 
that of the suffix-only rules. The reason why the 
affix algorithm is still better than the algorithm 
that only considers suffix rules is that the affix 
algorithm only generates suffix-only rules from 
words with suffix-only morphology. The suffix-
only algorithm is not able to generalize over 
training examples that do not fulfil this condition 
and generates many rules based on very few ex-
amples. Consequently, everything else being 
equal, the set of suffix-only rules generated by 
the affix algorithm must be of higher quality than 
the set of rules generated by the suffix algorithm. 

The new affix algorithm has fewer rules sup-
ported by only one example from the training 
data than the suffix algorithm. This means that 
the new algorithm is good at generalizing over 
small groups of words with exceptional mor-
phology. On the other hand, the bulk of ‘normal’ 
training words must be bigger for the new affix 
based lemmatizer than for the suffix lemmatizer. 
This is because the new algorithm generates im-
mense numbers of candidate rules with only 
marginal differences in accuracy, requiring many 
examples to find the best candidate. 

When we began experimenting with lemmati-
zation rules with unrestricted numbers of affixes, 
we could not know whether the limited amount 
of available training data would be sufficient to 
fix the enormous amount of free variables with 
enough certainty to obtain higher quality results 
than obtainable with automatically trained lem-
matizers allowing only suffix transformations. 

However, the results that we have obtained 
with the new affix algorithm are on a par with or 
better than those of the suffix lemmatizer. There 
is still room for improvements as only part of the 
parameter space of the new algorithm has been 
searched. The case of Polish shows the superior-
ity of the new algorithm, whereas the poor re-
sults for Icelandic, a suffix inflecting language 
with many inflection types, were foreseeable, 
because we only had a small training set. 

9 Future work  
Work with the new affix lemmatizer has until 
now focused on the algorithm. To really know if 
the carried out theoretical work is valuable we 
would like to try it out in a real search setting in 
a search engine and see if the users appreciate 
the new algorithm’s results. 
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Abstract
This paper revisits the pivot language ap-
proach for machine translation. First,
we investigate three different methods
for pivot translation. Then we employ
a hybrid method combining RBMT and
SMT systems to fill up the data gap
for pivot translation, where the source-
pivot and pivot-target corpora are inde-
pendent. Experimental results on spo-
ken language translation show that this
hybrid method significantly improves the
translation quality, which outperforms the
method using a source-target corpus of
the same size. In addition, we pro-
pose a system combination approach to
select better translations from those pro-
duced by various pivot translation meth-
ods. This method regards system com-
bination as a translation evaluation prob-
lem and formalizes it with a regression
learning model. Experimental results in-
dicate that our method achieves consistent
and significant improvement over individ-
ual translation outputs.

1 Introduction

Current statistical machine translation (SMT) sys-
tems rely on large parallel and monolingual train-
ing corpora to produce translations of relatively
higher quality. Unfortunately, large quantities of
parallel data are not readily available for some lan-
guages pairs, therefore limiting the potential use
of current SMT systems. In particular, for speech
translation, the translation task often focuses on a
specific domain such as the travel domain. It is es-
pecially difficult to obtain such a domain-specific
corpus for some language pairs such as Chinese to
Spanish translation.

To circumvent the data bottleneck, some re-
searchers have investigated to use a pivot language

approach (Cohn and Lapata, 2007; Utiyama and
Isahara, 2007; Wu and Wang 2007; Bertoldi et al.,
2008). This approach introduces a third language,
named the pivot language, for which there exist
large source-pivot and pivot-target bilingual cor-
pora. A pivot task was also designed for spoken
language translation in the evaluation campaign of
IWSLT 2008 (Paul, 2008), where English is used
as a pivot language for Chinese to Spanish trans-
lation.

Three different pivot strategies have been in-
vestigated in the literature. The first is based
on phrase table multiplication (Cohn and Lap-
ata 2007; Wu and Wang, 2007). It multiples
corresponding translation probabilities and lexical
weights in source-pivot and pivot-target transla-
tion models to induce a new source-target phrase
table. We name it the triangulation method. The
second is the sentence translation strategy, which
first translates the source sentence to the pivot sen-
tence, and then to the target sentence (Utiyama and
Isahara, 2007; Khalilov et al., 2008). We name it
the transfer method. The third is to use existing
models to build a synthetic source-target corpus,
from which a source-target model can be trained
(Bertoldi et al., 2008). For example, we can ob-
tain a source-pivot corpus by translating the pivot
sentence in the source-pivot corpus into the target
language with pivot-target translation models. We
name it the synthetic method.

The working condition with the pivot language
approach is that the source-pivot and pivot-target
parallel corpora are independent, in the sense that
they are not derived from the same set of sen-
tences, namely independently sourced corpora.
Thus, some linguistic phenomena in the source-
pivot corpus will lost if they do not exist in the
pivot-target corpus, and vice versa. In order to fill
up this data gap, we make use of rule-based ma-
chine translation (RBMT) systems to translate the
pivot sentences in the source-pivot or pivot-target
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corpus into target or source sentences. As a re-
sult, we can build a synthetic multilingual corpus,
which can be used to improve the translation qual-
ity. The idea of using RBMT systems to improve
the translation quality of SMT sysems has been
explored in Hu et al. (2007). Here, we re-examine
the hybrid method to fill up the data gap for pivot
translation.

Although previous studies proposed several
pivot translation methods, there are no studies to
combine different pivot methods for translation
quality improvement. In this paper, we first com-
pare the individual pivot methods and then in-
vestigate to improve pivot translation quality by
combining the outputs produced by different sys-
tems. We propose to regard system combination
as a translation evaluation problem. For transla-
tions from one of the systems, this method uses the
outputs from other translation systems as pseudo
references. A regression learning method is used
to infer a function that maps a feature vector
(which measures the similarity of a translation to
the pseudo references) to a score that indicates the
quality of the translation. Scores are first gener-
ated independently for each translation, then the
translations are ranked by their respective scores.
The candidate with the highest score is selected
as the final translation. This is achieved by opti-
mizing the regression learning model’s output to
correlate against a set of training examples, where
the source sentences are provided with several ref-
erence translations, instead of manually labeling
the translations produced by various systems with
quantitative assessments as described in (Albrecht
and Hwa, 2007; Duh, 2008). The advantage of
our method is that we do not need to manually la-
bel the translations produced by each translation
system, therefore enabling our method suitable for
translation selection among any systems without
additional manual work.

We conducted experiments for spoken language
translation on the pivot task in the IWSLT 2008
evaluation campaign, where Chinese sentences in
travel domain need to be translated into Spanish,
with English as the pivot language. Experimen-
tal results show that (1) the performances of the
three pivot methods are comparable when only
SMT systems are used. However, the triangulation
method and the transfer method significantly out-
perform the synthetic method when RBMT sys-
tems are used to improve the translation qual-

ity; (2) The hybrid method combining SMT and
RBMT system for pivot translation greatly im-
proves the translation quality. And this translation
quality is higher than that of those produced by the
system trained with a real Chinese-Spanish cor-
pus; (3) Our sentence-level translation selection
method consistently and significantly improves
the translation quality over individual translation
outputs in all of our experiments.

Section 2 briefly introduces the three pivot
translation methods. Section 3 presents the hy-
brid method combining SMT and RBMT sys-
tems. Section 4 describes the translation selec-
tion method. Experimental results are presented
in Section 5, followed by a discussion in Section
6. The last section draws conclusions.

2 Pivot Methods for Phrase-based SMT

2.1 Triangulation Method
Following the method described in Wu and Wang
(2007), we train the source-pivot and pivot-target
translation models using the source-pivot and
pivot-target corpora, respectively. Based on these
two models, we induce a source-target translation
model, in which two important elements need to
be induced: phrase translation probability and lex-
ical weight.

Phrase Translation Probability We induce the
phrase translation probability by assuming the in-
dependence between the source and target phrases
when given the pivot phrase.

φ(s̄|t̄) =
∑

p̄

φ(s̄|p̄)φ(p̄|t̄) (1)

Where s̄, p̄ and t̄ represent the phrases in the lan-
guages Ls, Lp and Lt, respectively.

Lexical Weight According to the method de-
scribed in Koehn et al. (2003), there are two im-
portant elements in the lexical weight: word align-
ment information a in a phrase pair (s̄, t̄) and lex-
ical translation probability w(s|t).

Let a1 and a2 represent the word alignment in-
formation inside the phrase pairs (s̄, p̄) and (p̄, t̄)
respectively, then the alignment information inside
(s̄, t̄) can be obtained as shown in Eq. (2).

a = {(s, t)|∃p : (s, p) ∈ a1 & (p, t) ∈ a2} (2)

Based on the the induced word alignment in-
formation, we estimate the co-occurring frequen-
cies of word pairs directly from the induced phrase
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pairs. Then we estimate the lexical translation
probability as shown in Eq. (3).

w(s|t) =
count(s, t)

∑

s′ count(s′, t)
(3)

Where count(s, t) represents the co-occurring fre-
quency of the word pair (s, t).

2.2 Transfer Method
The transfer method first translates from the
source language to the pivot language using a
source-pivot model, and then from the pivot lan-
guage to the target language using a pivot-target
model. Given a source sentence s, we can trans-
late it into n pivot sentences p1, p2, ..., pn using a
source-pivot translation system. Each pi can be
translated into m target sentences ti1, ti2, ..., tim.
We rescore all the n × m candidates using both
the source-pivot and pivot-target translation scores
following the method described in Utiyama and
Isahara (2007). If we use hfp and hpt to denote the
features in the source-pivot and pivot-target sys-
tems, respectively, we get the optimal target trans-
lation according to the following formula.

t̂ = argmax
t

L
∑

k=1

(λsp
k hsp

k (s, p)+λpt
k hpt

k (p, t)) (4)

Where L is the number of features used in SMT
systems. λsp and λpt are feature weights set by
performing minimum error rate training as de-
scribed in Och (2003).

2.3 Synthetic Method
There are two possible methods to obtain a source-
target corpus using the source-pivot and pivot-
target corpora. One is to obtain target transla-
tions for the source sentences in the source-pivot
corpus. This can be achieved by translating the
pivot sentences in source-pivot corpus to target
sentences with the pivot-target SMT system. The
other is to obtain source translations for the tar-
get sentences in the pivot-target corpus using the
pivot-source SMT system. And we can combine
these two source-target corpora to produced a fi-
nal synthetic corpus.

Given a pivot sentence, we can translate it into
n source or target sentences. These n translations
together with their source or target sentences are
used to create a synthetic bilingual corpus. Then
we build a source-target translation model using
this corpus.

3 Using RBMT Systems for Pivot
Translation

Since the source-pivot and pivot-target parallel
corpora are independent, the pivot sentences in the
two corpora are distinct from each other. Thus,
some linguistic phenomena in the source-pivot
corpus will lost if they do not exist in the pivot-
target corpus, and vice versa. Here we use RBMT
systems to fill up this data gap. For many source-
target language pairs, the commercial pivot-source
and/or pivot-target RBMT systems are available
on markets. For example, for Chinese to Span-
ish translation, English to Chinese and English to
Spanish RBMT systems are available.

With the RBMT systems, we can create a syn-
thetic multilingual source-pivot-target corpus by
translating the pivot sentences in the pivot-source
or pivot-target corpus. The source-target pairs ex-
tracted from this synthetic multilingual corpus can
be used to build a source-target translation model.
Another way to use the synthetic multilingual cor-
pus is to add the source-pivot or pivot-target sen-
tence pairs in this corpus to the training data to re-
build the source-pivot or pivot-target SMT model.
The rebuilt models can be applied to the triangula-
tion method and the transfer method as described
in Section 2.

Moreover, the RBMT systems can also be used
to enlarge the size of bilingual training data. Since
it is easy to obtain monolingual corpora than bilin-
gual corpora, we use RBMT systems to translate
the available monolingual corpora to obtain syn-
thetic bilingual corpus, which are added to the
training data to improve the performance of SMT
systems. Even if no monolingual corpus is avail-
able, we can also use RBMT systems to translate
the sentences in the bilingual corpus to obtain al-
ternative translations. For example, we can use
source-pivot RBMT systems to provide alternative
translations for the source sentences in the source-
pivot corpus.

In addition to translating training data, the
source-pivot RBMT system can be used to trans-
late the test set into the pivot language, which
can be further translated into the target language
with the pivot-target RBMT system. The trans-
lated test set can be added to the training data to
further improve translation quality. The advantage
of this method is that the RBMT system can pro-
vide translations for sentences in the test set and
cover some out-of-vocabulary words in the test set
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that are uncovered by the training data. It can also
change the distribution of some phrase pairs and
reinforce some phrase pairs relative to the test set.

4 Translation Selection

We propose a method to select the optimal trans-
lation from those produced by various translation
systems. We regard sentence-level translation se-
lection as a machine translation (MT) evaluation
problem and formalize this problem with a regres-
sion learning model. For each translation, this
method uses the outputs from other translation
systems as pseudo references. The regression ob-
jective is to infer a function that maps a feature
vector (which measures the similarity of a trans-
lation from one system to the pseudo references)
to a score that indicates the quality of the transla-
tion. Scores are first generated independently for
each translation, then the translations are ranked
by their respective scores. The candidate with the
highest score is selected.

The similar ideas have been explored in previ-
ous studies. Albrecht and Hwa (2007) proposed
a method to evaluate MT outputs with pseudo
references using support vector regression as the
learner to evaluate translations. Duh (2008) pro-
posed a ranking method to compare the transla-
tions proposed by several systems. These two
methods require quantitative quality assessments
by human judges for the translations produced by
various systems in the training set. When we apply
such methods to translation selection, the relative
values of the scores assigned by the subject sys-
tems are important. In different data conditions,
the relative values of the scores assigned by the
subject systems may change. In order to train a re-
liable learner, we need to prepare a balanced train-
ing set, where the translations produced by differ-
ent systems under different conditions are required
to be manually evaluated. In extreme cases, we
need to relabel the training data to obtain better
performance. In this paper, we modify the method
in Albrecht and Hwa (2007) to only prepare hu-
man reference translations for the training exam-
ples, and then evaluate the translations produced
by the subject systems against the references us-
ing BLEU score (Papineni et al., 2002). We use
smoothed sentence-level BLEU score to replace
the human assessments, where we use additive
smoothing to avoid zero BLEU scores when we
calculate the n-gram precisions. In this case, we

ID Description
1-4 n-gram precisions against pseudo refer-

ences (1 ≤ n ≤ 4)
5-6 PER and WER
7-8 precision, recall, fragmentation from

METEOR (Lavie and Agarwal, 2007)
9-12 precisions and recalls of non-

consecutive bigrams with a gap
size of m (1 ≤ m ≤ 2)

13-14 longest common subsequences
15-19 n-gram precision against a target cor-

pus (1 ≤ n ≤ 5)

Table 1: Feature sets for regression learning

can easily retrain the learner under different con-
ditions, therefore enabling our method to be ap-
plied to sentence-level translation selection from
any sets of translation systems without any addi-
tional human work.

In regression learning, we infer a function
f that maps a multi-dimensional input vec-
tor x to a continuous real value y, such that
the error over a set of m training examples,
(x1, y1), (x2, y2), ..., (xm, ym), is minimized ac-
cording to a loss function. In the context of trans-
lation selection, y is assigned as the smoothed
BLEU score. The function f represents a math-
ematic model of the automatic evaluation metrics.
The input sentence is represented as a feature vec-
tor x, which are extracted from the input sen-
tence and the comparisons against the pseudo ref-
erences. We use the features as shown in Table 1.

5 Experiments

5.1 Data

We performed experiments on spoken language
translation for the pivot task of IWSLT 2008. This
task translates Chinese to Spanish using English
as the pivot language. Table 2 describes the data
used for model training in this paper, including the
BTEC (Basic Travel Expression Corpus) Chinese-
English (CE) corpus and the BTEC English-
Spanish (ES) corpus provided by IWSLT 2008 or-
ganizers, the HIT olympic CE corpus (2004-863-
008)1 and the Europarl ES corpus2. There are
two kinds of BTEC CE corpus: BTEC CE1 and

1http://www.chineseldc.org/EN/purchasing.htm
2http://www.statmt.org/europarl/
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Corpus Size SW TW
BTEC CE1 20,000 164K 182K
BTEC CE2 18,972 177K 182K

HIT CE 51,791 490K 502K
BTEC ES 19,972 182K 185K

Europarl ES 400,000 8,485K 8,219K

Table 2: Training data. SW and TW represent
source words and target words, respectively.

BTEC CE2. BTEC CE1 was distributed for the
pivot task in IWSLT 2008 while BTEC CE2 was
for the BTEC CE task, which is parallel to the
BTEC ES corpus. For Chinese-English transla-
tion, we mainly used BTEC CE1 corpus. We used
the BTEC CE2 corpus and the HIT Olympic cor-
pus for comparison experiments only. We used the
English parts of the BTEC CE1 corpus, the BTEC
ES corpus, and the HIT Olympic corpus (if in-
volved) to train a 5-gram English language model
(LM) with interpolated Kneser-Ney smoothing.
For English-Spanish translation, we selected 400k
sentence pairs from the Europarl corpus that are
close to the English parts of both the BTEC CE
corpus and the BTEC ES corpus. Then we built
a Spanish LM by interpolating an out-of-domain
LM trained on the Spanish part of this selected
corpus with the in-domain LM trained with the
BTEC corpus.

For Chinese-English-Spanish translation, we
used the development set (devset3) released for
the pivot task as the test set, which contains 506
source sentences, with 7 reference translations in
English and Spanish. To be capable of tuning pa-
rameters on our systems, we created a develop-
ment set of 1,000 sentences taken from the training
sets, with 3 reference translations in both English
and Spanish. This development set is also used to
train the regression learning model.

5.2 Systems and Evaluation Method

We used two commercial RBMT systems in our
experiments: System A for Chinese-English bidi-
rectional translation and System B for English-
Chinese and English-Spanish translation. For
phrase-based SMT translation, we used the Moses
decoder (Koehn et al., 2007) and its support train-
ing scripts. We ran the decoder with its default
settings and then used Moses’ implementation of
minimum error rate training (Och, 2003) to tune
the feature weights on the development set.

To select translation among outputs produced
by different pivot translation systems, we used
SVM-light (Joachins, 1999) to perform support
vector regression with the linear kernel.

Translation quality was evaluated using both the
BLEU score proposed by Papineni et al. (2002)
and also the modified BLEU (BLEU-Fix) score3

used in the IWSLT 2008 evaluation campaign,
where the brevity calculation is modified to use
closest reference length instead of shortest refer-
ence length.

5.3 Results by Using SMT Systems

We conducted the pivot translation experiments
using the BTEC CE1 and BTEC ES described
in Section 5.1. We used the three methods de-
scribed in Section 2 for pivot translation. For the
transfer method, we selected the optimal transla-
tions among 10× 10 candidates. For the synthetic
method, we used the ES translation model to trans-
late the English part of the CE corpus to Spanish to
construct a synthetic corpus. And we also used the
BTEC CE1 corpus to build a EC translation model
to translate the English part of ES corpus into Chi-
nese. Then we combined these two synthetic cor-
pora to build a Chinese-Spanish translation model.
In our experiments, only 1-best Chinese or Span-
ish translation was used since using n-best results
did not greatly improve the translation quality. We
used the method described in Section 4 to select
translations from the translations produced by the
three systems. For each system, we used three
different alignment heuristics (grow, grow-diag,
grow-diag-final4) to obtain the final alignment re-
sults, and then constructed three different phrase
tables. Thus, for each system, we can get three
different translations for each input. These differ-
ent translations can serve as pseudo references for
the outputs of other systems. In our case, for each
sentence, we have 6 pseudo reference translations.
In addition, we found out that the grow heuristic
performed the best for all the systems. Thus, for
an individual system, we used the translation re-
sults produced using the grow alignment heuristic.

The translation results are shown in Table 3.
ASR and CRR represent different input condi-
tions, namely the result of automatic speech recog-

3https://www.slc.atr.jp/Corpus/IWSLT08/eval/IWSLT08
auto eval.tgz

4A description of the alignment heuristics can be found at
http://www.statmt.org/jhuws/?n=FactoredTraining.Training
Parameters
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Method BLEU BLEU-Fix
Triangulation 33.70/27.46 31.59/25.02

Transfer 33.52/28.34 31.36/26.20
Synthetic 34.35/27.21 32.00/26.07

Combination 38.14/29.32 34.76/27.39

Table 3: CRR/ASR translation results by using
SMT systems

nition and correct recognition result, respectively.
Here, we used the 1-best ASR result. From the
translation results, it can be seen that three meth-
ods achieved comparable translation quality on
both ASR and CRR inputs, with the translation re-
sults on CRR inputs are much better than those on
ASR inputs because of the errors in the ASR in-
puts. The results also show that our translation se-
lection method is very effective, which achieved
absolute improvements of about 4 and 1 BLEU
scores on CRR and ASR inputs, respectively.

5.4 Results by Using both RBMT and SMT
Systems

In order to fill up the data gap as discussed in Sec-
tion 3, we used the RBMT System A to translate
the English sentences in the ES corpus into Chi-
nese. As described in Section 3, this corpus can
be used by the three pivot translation methods.
First, the synthetic Chinese-Spanish corpus can be
combined with those produced by the EC and ES
SMT systems, which were used in the synthetic
method. Second, the synthetic Chinese-English
corpus can be added into the BTEC CE1 corpus to
build the CE translation model. In this way, the in-
tersected English phrases in the CE corpus and ES
corpus becomes more, which enables the Chinese-
Spanish translation model induced using the trian-
gulation method to cover more phrase pairs. For
the transfer method, the CE translation quality can
be also improved, which would result in the im-
provement of the Spanish translation quality.

The translation results are shown in the columns
under ”EC RBMT” in Table 4. As compared with
those in Table 3, the translation quality was greatly
improved, with absolute improvements of at least
5.1 and 3.9 BLEU scores on CRR and ASR inputs
for system combination results. The above results
indicate that RBMT systems indeed can be used to
fill up the data gap for pivot translation.

In our experiments, we also used a CE RBMT
system to enlarge the size of training data by pro-
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Figure 1: Coverage on test source phrases

viding alternative English translations for the Chi-
nese part of the CE corpus. The translation results
are shown in the columns under “+CE RBMT” in
Table 4. From the translation results, it can be
seen that, enlarging the size of training data with
RBMT systems can further improve the translation
quality.

In addition to translating the training data, the
CE RBMT system can be also used to translate the
test set into English, which can be further trans-
lated into Spanish with the ES RBMT system B.56

The translated test set can be further added to the
training data to improve translation quality. The
columns under “+Test Set” in Table 4 describes
the translation results. The results show that trans-
lating the test set using RBMT systems greatly im-
proved the translation result, with further improve-
ments of about 2 and 1.5 BLEU scores on CRR
and ASR inputs, respectively.

The results also indicate that both the triangula-
tion method and the transfer method greatly out-
performed the synthetic method when we com-
bined both RBMT and SMT systems in our exper-
iments. Further analysis shows that the synthetic
method contributed little to system combination.
The selection results are almost the same as those
selected from the translations produced by the tri-
angulation and transfer methods.

In order to further analyze the translation re-
sults, we evaluated the above systems by examin-
ing the coverage of the phrase tables over the test
phrases. We took the triangulation method as a
case study, the results of which are shown in Fig-

5Although using the ES RBMT system B to translate the
training data did not improve the translation quality, it im-
proved the translation quality by translating the test set.

6The RBMT systems achieved a BLEU score of 24.36 on
the test set.
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EC RBMT + CE RBMT + Test Set
Method BLEU BLEU-Fix BLEU BLEU-Fix BLEU BLEU-Fix

Triangulation 40.69/31.02 37.99/29.15 41.59/31.43 39.39/29.95 44.71/32.60 42.37/31.14
Transfer 42.06/31.72 39.73/29.35 43.40/33.05 40.73/30.06 45.91/34.52 42.86/31.92
Synthetic 39.10/29.73 37.26/28.45 39.90/30.00 37.90/28.66 41.16/31.30 37.99/29.36

Combination 43.21/33.23 40.58/31.17 45.09/34.10 42.88/31.73 47.06/35.62 44.94/32.99

Table 4: CRR/ASR translation results by using RBMT and SMT systems

Method BLEU BLEU-Fix
Triangulation 45.64/33.15 42.11/31.11

Transfer 47.18/34.56 43.61/32.17
Combination 48.42/36.42 45.42/33.52

Table 5: CRR/ASR translation results by using ad-
ditional monolingual corpora

ure 1. It can be seen that using RBMT systems
to translate the training and/or test data can cover
more source phrases in the test set, which results
in translation quality improvement.

5.5 Results by Using Monolingual Corpus
In addition to translating the limited bilingual cor-
pus, we also translated additional monolingual
corpus to further enlarge the size of the training
data. We assume that it is easier to obtain a mono-
lingual pivot corpus than to obtain a monolingual
source or target corpus. Thus, we translated the
English part of the HIT Olympic corpus into Chi-
nese and Spanish using EC and ES RBMT sys-
tems. The generated synthetic corpus was added to
the training data to train EC and ES SMT systems.
Here, we used the synthetic CE Olympic corpus
to train a model, which was interpolated with the
CE model trained with both the BTEC CE1 cor-
pus and the synthetic BTEC corpus to obtain an
interpolated CE translation model. Similarly, we
obtained an interpolated ES translation model. Ta-
ble 5 describes the translation results.7 The results
indicate that translating monolingual corpus using
the RBMT system further improved the translation
quality as compared with those in Table 4.

6 Discussion

6.1 Effects of Different RBMT Systems
In this section, we compare the effects of two
commercial RBMT systems with different transla-

7Here we excluded the synthetic method since it greatly
falls behind the other two methods.

Method Sys. A Sys. B Sys. A+B
Triangulation 40.69 39.28 41.01

Transfer 42.06 39.57 43.03
Synthetic 39.10 38.24 39.26

Combination 43.21 40.59 44.27

Table 6: CRR translation results (BLEU scores)
by using different RBMT systems

tion accuracy on spoken language translation. The
goals are (1) to investigate whether a RBMT sys-
tem can improve pivot translation quality even if
its translation accuracy is not high, and (2) to com-
pare the effects of RBMT system with different
translation accuracy on pivot translation. Besides
the EC RBMT system A used in the above section,
we also used the EC RBMT system B for this ex-
periment.

We used the two systems to translate the test set
from English to Chinese, and then evaluated the
translation quality against Chinese references ob-
tained from the IWSLT 2008 evaluation campaign.
The BLEU scores are 43.90 and 29.77 for System
A and System B, respectively. This shows that
the translation quality of System B on spoken lan-
guage corpus is much lower than that of System A.
Then we applied these two different RBMT sys-
tems to translate the English part of the BTEC ES
corpus into Chinese as described in Section 5.4.
The translation results on CRR inputs are shown
in Table 6.8 We replicated some of the results in
Table 4 for the convenience of comparison. The
results indicate that the higher the translation ac-
curacy of the RBMT system is, the better the pivot
translation is. If we compare the results with those
only using SMT systems as described in Table 3,
the translation quality was greatly improved by at
least 3 BLEU scores, even if the translation ac-

8We omitted the ASR translation results since the trends
are the same as those for CRR inputs. And we only showed
BLEU scores since the trend for BLEU-Fix scores is similar.
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Method Multilingual + BTEC CE1
Triangulation 41.86/39.55 42.41/39.55

Transfer 42.46/39.09 43.84/40.34
Standard 42.21/40.23 42.21/40.23

Combination 43.75/40.34 44.68/41.14

Table 7: CRR translation results by using multilin-
gual corpus. ”/” separates the BLEU and BLEU-
fix scores.

curacy of System B is not so high. Combining
two RBMT systems further improved the transla-
tion quality, which indicates that the two systems
complement each other.

6.2 Results by Using Multilingual Corpus

In this section, we compare the translation results
by using a multilingual corpus with those by us-
ing independently sourced corpora. BTEC CE2
and BTEC ES are from the same source sentences,
which can be taken as a multilingual corpus. The
two corpora were employed to build CE and ES
SMT models, which were used in the triangula-
tion method and the transfer method. We also ex-
tracted the Chinese-Spanish (CS) corpus to build a
standard CS translation system, which is denoted
as Standard. The comparison results are shown
in Table 7. The translation quality produced by
the systems using a multilingual corpus is much
higher than that produced by using independently
sourced corpora as described in Table 3, with an
absolute improvement of about 5.6 BLEU scores.
If we used the EC RBMT system, the translation
quality of those in Table 4 is comparable to that by
using the multilingual corpus, which indicates that
our method using RBMT systems to fill up the data
gap is effective. The results also indicate that our
translation selection method for pivot translation
outperforms the method using only a real source-
target corpus.

For comparison purpose, we added BTEC CE1
into the training data. The translation quality was
improved by only 1 BLEU score. This again
proves that our method to fill up the data gap is
more effective than that to increase the size of the
independently sourced corpus.

6.3 Comparison with Related Work

In IWSLT 2008, the best result for the pivot task
is achieved by Wang et al. (2008). In order to
compare the results, we added the bilingual HIT

Ours Wang TSAL
BLEU 49.57 - 48.25

BLEU-Fix 46.74 45.10 45.27

Table 8: Comparison with related work

Olympic corpus into the CE training data.9 We
also compared our translation selection method
with that proposed in (Wang et al., 2008) that
is based on the target sentence average length
(TSAL). The translation results are shown in Ta-
ble 8. ”Wang” represents the results in Wang et al.
(2008). ”TSAL” represents the translation selec-
tion method proposed in Wang et al. (2008), which
is applied to our experiment. From the results, it
can be seen that our method outperforms the best
system in IWSLT 2008 and that our translation se-
lection method outperforms the method based on
target sentence average length.

7 Conclusion

In this paper, we have compared three differ-
ent pivot translation methods for spoken language
translation. Experimental results indicated that the
triangulation method and the transfer method gen-
erally outperform the synthetic method. Then we
showed that the hybrid method combining RBMT
and SMT systems can be used to fill up the data
gap between the source-pivot and pivot-target cor-
pora. By translating the pivot sentences in inde-
pendent corpora, the hybrid method can produce
translations whose quality is higher than those pro-
duced by the method using a source-target corpus
of the same size. We also showed that even if the
translation quality of the RBMT system is low, it
still greatly improved the translation quality.

In addition, we proposed a system combination
method to select better translations from outputs
produced by different pivot methods. This method
is developed through regression learning, where
only a small size of training examples with ref-
erence translations are required. Experimental re-
sults indicate that this method can consistently and
significantly improve translation quality over indi-
vidual translation outputs. And our system out-
performs the best system for the pivot task in the
IWSLT 2008 evaluation campaign.

9We used about 70k sentence pairs for CE model training,
while Wang et al. (2008) used about 100k sentence pairs, a
CE translation dictionary and more monolingual corpora for
model training.
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Abstract

Minimum Error Rate Training (MERT)
and Minimum Bayes-Risk (MBR) decod-
ing are used in most current state-of-the-
art Statistical Machine Translation (SMT)
systems. The algorithms were originally
developed to work with N -best lists of
translations, and recently extended to lat-
tices that encode many more hypotheses
than typical N -best lists. We here extend
lattice-based MERT and MBR algorithms
to work with hypergraphs that encode a
vast number of translations produced by
MT systems based on Synchronous Con-
text Free Grammars. These algorithms
are more efficient than the lattice-based
versions presented earlier. We show how
MERT can be employed to optimize pa-
rameters for MBR decoding. Our exper-
iments show speedups from MERT and
MBR as well as performance improve-
ments from MBR decoding on several lan-
guage pairs.

1 Introduction

Statistical Machine Translation (SMT) systems
have improved considerably by directly using the
error criterion in both training and decoding. By
doing so, the system can be optimized for the
translation task instead of a criterion such as like-
lihood that is unrelated to the evaluation met-
ric. Two popular techniques that incorporate the
error criterion are Minimum Error Rate Train-
ing (MERT) (Och, 2003) and Minimum Bayes-
Risk (MBR) decoding (Kumar and Byrne, 2004).
These two techniques were originally developed
for N -best lists of translation hypotheses and re-
cently extended to translation lattices (Macherey
et al., 2008; Tromble et al., 2008) generated by a
phrase-based SMT system (Och and Ney, 2004).
Translation lattices contain a significantly higher

number of translation alternatives relative to N -
best lists. The extension to lattices reduces the
runtimes for both MERT and MBR, and gives per-
formance improvements from MBR decoding.

SMT systems based on synchronous context
free grammars (SCFG) (Chiang, 2007; Zollmann
and Venugopal, 2006; Galley et al., 2006) have
recently been shown to give competitive perfor-
mance relative to phrase-based SMT. For these
systems, a hypergraph or packed forest provides a
compact representation for encoding a huge num-
ber of translation hypotheses (Huang, 2008).

In this paper, we extend MERT and MBR
decoding to work on hypergraphs produced by
SCFG-based MT systems. We present algorithms
that are more efficient relative to the lattice al-
gorithms presented in Macherey et al. (2008;
Tromble et al. (2008). Lattice MBR decoding uses
a linear approximation to the BLEU score (Pap-
ineni et al., 2001); the weights in this linear loss
are set heuristically by assuming that n-gram pre-
cisions decay exponentially with n. However, this
may not be optimal in practice. We employ MERT
to select these weights by optimizing BLEU score
on a development set.

A related MBR-inspired approach for hyper-
graphs was developed by Zhang and Gildea
(2008). In this work, hypergraphs were rescored to
maximize the expected count of synchronous con-
stituents in the translation. In contrast, our MBR
algorithm directly selects the hypothesis in the
hypergraph with the maximum expected approx-
imate corpus BLEU score (Tromble et al., 2008).
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Figure 1: An example hypergraph.
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2 Translation Hypergraphs

A translation lattice compactly encodes a large
number of hypotheses produced by a phrase-based
SMT system. The corresponding representation
for an SMT system based on SCFGs (e.g. Chi-
ang (2007), Zollmann and Venugopal (2006), Mi
et al. (2008)) is a directed hypergraph or a packed
forest (Huang, 2008).

Formally, a hypergraph is a pair H = 〈V, E〉
consisting of a vertex set V and a set of hyperedges
E ⊆ V∗ × V . Each hyperedge e ∈ E connects a
head vertex h(e) with a sequence of tail vertices
T (e) = {v1, ..., vn}. The number of tail vertices
is called the arity (|e|) of the hyperedge. If the ar-
ity of a hyperedge is zero, h(e) is called a source
vertex. The arity of a hypergraph is the maximum
arity of its hyperedges. A hyperedge of arity 1 is a
regular edge, and a hypergraph of arity 1 is a regu-
lar graph (lattice). Each hyperedge is labeled with
a rule re from the SCFG. The number of nontermi-
nals on the right-hand side of re corresponds with
the arity of e. An example without scores is shown
in Figure 1. A path in a translation hypergraph in-
duces a translation hypothesis E along with its se-
quence of SCFG rules D = r1, r2, ..., rK which,
if applied to the start symbol, derives E. The se-
quence of SCFG rules induced by a path is also
called a derivation tree for E.

3 Minimum Error Rate Training

Given a set of source sentences FS
1 with corre-

sponding reference translations RS
1 , the objective

of MERT is to find a parameter set λ̂M
1 which min-

imizes an automated evaluation criterion under a
linear model:

λ̂M
1 = arg min

λM
1

 SX
s=1

Err
`
Rs, Ê(Fs; λM

1 )
´ff

Ê(Fs; λM
1 ) = arg max

E

 SX
s=1

λmhm(E, Fs)

ff
.

In the context of statistical machine translation,
the optimization procedure was first described in
Och (2003) for N -best lists and later extended to
phrase-lattices in Macherey et al. (2008). The al-
gorithm is based on the insight that, under a log-
linear model, the cost function of any candidate
translation can be represented as a line in the plane
if the initial parameter set λM

1 is shifted along a
direction dM

1 . Let C = {E1, ..., EK} denote a set
of candidate translations, then computing the best
scoring translation hypothesis Ê out of C results in
the following optimization problem:

Ê(F ; γ) = arg max
E∈C

n
(λM

1 + γ · dM
1 )> · hM

1 (E, F )
o

= arg max
E∈C

X
m

λmhm(E, F )| {z }
=a(E,F )

+ γ ·
X
m

dmhm(E, F )| {z }
=b(E,F )

ff

= arg max
E∈C

˘
a(E, F ) + γ · b(E, F )| {z }

(∗)

¯
Hence, the total score (∗) for each candidate trans-
lation E ∈ C can be described as a line with
γ as the independent variable. For any particu-
lar choice of γ, the decoder seeks that translation
which yields the largest score and therefore corre-
sponds to the topmost line segment. If γ is shifted
from −∞ to +∞, other translation hypotheses
may at some point constitute the topmost line seg-
ments and thus change the decision made by the
decoder. The entire sequence of topmost line seg-
ments is called upper envelope and provides an ex-
haustive representation of all possible outcomes
that the decoder may yield if γ is shifted along
the chosen direction. Both the translations and
their corresponding line segments can efficiently
be computed without incorporating any error crite-
rion. Once the envelope has been determined, the
translation candidates of its constituent line seg-
ments are projected onto their corresponding error
counts, thus yielding the exact and unsmoothed er-
ror surface for all candidate translations encoded
in C. The error surface can now easily be traversed
in order to find that γ̂ under which the new param-
eter set λM

1 + γ̂ · dM
1 minimizes the global error.

In this section, we present an extension of the
algorithm described in Macherey et al. (2008)
that allows us to efficiently compute and repre-
sent upper envelopes over all candidate transla-
tions encoded in hypergraphs. Conceptually, the
algorithm works by propagating (initially empty)
envelopes from the hypergraph’s source nodes
bottom-up to its unique root node, thereby ex-
panding the envelopes by applying SCFG rules to
the partial candidate translations that are associ-
ated with the envelope’s constituent line segments.
To recombine envelopes, we need two operators:
the sum and the maximum over convex polygons.
To illustrate which operator is applied when, we
transform H = 〈V, E〉 into a regular graph with
typed nodes by (1) marking all vertices v ∈ V with
the symbol ∨ and (2) replacing each hyperedge
e ∈ E , |e| > 1, with a small subgraph consisting
of a new vertex v∧(e) whose incoming and out-
going edges connect the same head and tail nodes
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Algorithm 1 ∧-operation (Sum)
input: associative map a: V → Env(V), hyperarc e
output: Minkowski sum of envelopes over T (e)

for (i = 0; i < |T (e)|; ++i) {
v = Ti(e);
pq.enqueue(〈 v, i, 0〉);

}

L = ∅;
D = 〈 e, ε1 · · · ε|e|〉
while (!pq.empty()) {

〈 v, i, j〉 = pq.dequeue();
` = A[v][j];
D[i+1] = `.D;
if (L.empty() ∨ L.back().x < `.x) {

if (0 < j) {
`.y += L.back().y - A[v][j-1].y;
`.m += L.back().m - A[v][j-1].m;

}
L.push_back(`);
L.back().D = D;

} else {
L.back().y += `.y;
L.back().m += `.m;
L.back().D[i+1] = `.D;
if (0 < j) {

L.back().y -= A[v][j-1].y;
L.back().m -= A[v][j-1].m;

}
}
if (++j < A[v].size())

pq.enqueue(〈 v, i, j〉);
}
return L;

in the transformed graph as were connected by e
in the original graph. The unique outgoing edge
of v∧(e) is associated with the rule re; incoming
edges are not linked to any rule. Figure 2 illus-
trates the transformation for a hyperedge with ar-
ity 3. The graph transformation is isomorphic.

The rules associated with every hyperedge spec-
ify how line segments in the envelopes of a hyper-
edge’s tail nodes can be combined. Suppose we
have a hyperedge e with rule re : X → aX1bX2c
and T (e) = {v1, v2}. Then we substitute X1 and
X2 in the rule with candidate translations associ-
ated with line segments in envelopes Env(v1) and
Env(v2) respectively.

To derive the algorithm, we consider the gen-
eral case of a hyperedge e with rule re : X →
w1X1w2...wnXnwn+1. Because the right-hand
side of re has n nonterminals, the arity of e is
|e| = n. Let T (e) = {v1, ..., vn} denote the
tail nodes of e. We now assume that each tail
node vi ∈ T (e) is associated with the upper en-
velope over all candidate translations that are in-
duced by derivations of the corresponding nonter-
minal symbol Xi. These envelopes shall be de-

Algorithm 2 ∨-operation (Max)
input: array L[0..K-1] containing line objects
output: upper envelope of L

Sort(L:m);
j = 0; K = size(L);
for (i = 0; i < K; ++i) {

` = L[i];
`.x = -∞;
if (0 < j) {

if (L[j-1].m == `.m) {
if (`.y <= L[j-1].y) continue;
--j;

}
while (0 < j) {

`.x = (`.y - L[j-1].y)/
(L[j-1].m - `.m);

if (L[j-1].x < `.x) break;
--j;

}
if (0 == j) `.x = -∞;
L[j++] = `;

} else L[j++] = `;
}
L.resize(j);
return L;

noted by Env(vi). To decompose the problem of
computing and propagating the tail envelopes over
the hyperedge e to its head node, we now define
two operations, one for either node type, to spec-
ify how envelopes associated with the tail vertices
are propagated to the head vertex.

Nodes of Type “∧”: For a type ∧ node, the
resulting envelope is the Minkowski sum over
the envelopes of the incoming edges (Berg et
al., 2008). Since the envelopes of the incoming
edges are convex hulls, the Minkowski sum pro-
vides an upper bound to the number of line seg-
ments that constitute the resulting envelope: the
bound is the sum over the number of line seg-
ments in the envelopes of the incoming edges, i.e.:∣∣Env(v∧(e))

∣∣ ≤ ∑
v∨∈T (e)

∣∣Env(v∨)
∣∣.

Algorithm 1 shows the pseudo code for comput-
ing the Minkowski sum over multiple envelopes.
The line objects ` used in this algorithm are
encoded as 4-tuples, each consisting of the x-
intercept with `’s left-adjacent line stored as `.x,
the slope `.m, the y-intercept `.y, and the (partial)
derivation tree `.D. At the beginning, the leftmost
line segment of each envelope is inserted into a
priority queue pq. The priority is defined in terms
of a line’s x-intercept such that lower values imply
higher priority. Hence, the priority queue enumer-
ates all line segments from left to right in ascend-
ing order of their x-intercepts, which is the order
needed to compute the Minkowski sum.

Nodes of Type “∨”: The operation performed
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Figure 2: Transformation of a hypergraph into
a factor graph and bottom-up propagation of en-
velopes.

at nodes of type “∨” computes the convex hull
over the union of the envelopes propagated over
the incoming edges. This operation is a “max”
operation and it is identical to the algorithm de-
scribed in (Macherey et al., 2008) for phrase lat-
tices. Algorithm 2 contains the pseudo code.

The complete algorithm then works as follows:
Traversing all nodes in H bottom-up in topolog-
ical order, we proceed for each node v ∈ V over
its incoming hyperedges and combine in each such
hyperedge e the envelopes associated with the tail
nodes T (e) by computing their sum according to
Algorithm 1 (∧-operation). For each incoming
hyperedge e, the resulting envelope is then ex-
panded by applying the rule re to its constituent
line segments. The envelopes associated with dif-
ferent incoming hyperedges of node v are then
combined and reduced according to Algorithm 2
(∨-operation). By construction, the envelope at
the root node is the convex hull over the line seg-
ments of all candidate translations that can be de-
rived from the hypergraph.

The suggested algorithm has similar properties
as the algorithm presented in (Macherey et al.,
2008). In particular, it has the same upper bound
on the number of line segments that constitute the
envelope at the root node, i.e, the size of this enve-
lope is guaranteed to be no larger than the number
of edges in the transformed hypergraph.

4 Minimum Bayes-Risk Decoding

We first review Minimum Bayes-Risk (MBR) de-
coding for statistical MT. An MBR decoder seeks
the hypothesis with the least expected loss under a
probability model (Bickel and Doksum, 1977). If
we think of statistical MT as a classifier that maps

a source sentence F to a target sentence E, the
MBR decoder can be expressed as follows:

Ê = argmin
E′∈G

∑
E∈G

L(E,E′)P (E|F ), (1)

where L(E,E′) is the loss between any two hy-
potheses E and E′, P (E|F ) is the probability
model, and G is the space of translations (N -best
list, lattice, or a hypergraph).

MBR decoding for translation can be performed
by reranking an N -best list of hypotheses gener-
ated by an MT system (Kumar and Byrne, 2004).
This reranking can be done for any sentence-
level loss function such as BLEU (Papineni et al.,
2001), Word Error Rate, or Position-independent
Error Rate.

Recently, Tromble et al. (2008) extended
MBR decoding to translation lattices under an
approximate BLEU score. They approximated
log(BLEU) score by a linear function of n-gram
matches and candidate length. If E and E′ are the
reference and the candidate translations respec-
tively, this linear function is given by:

G(E,E′) = θ0|E′|+
∑
w

θ|w|#w(E′)δw(E), (2)

where w is an n-gram present in either E or E′,
and θ0, θ1, ..., θN are weights which are deter-
mined empirically, where N is the maximum n-
gram order.

Under such a linear decomposition, the MBR
decoder (Equation 1) can be written as

Ê = argmax
E′∈G

θ0|E′|+
∑
w

θ|w|#w(E′)p(w|G), (3)

where the posterior probability of an n-gram in the
lattice is given by

p(w|G) =
∑
E∈G

1w(E)P (E|F ). (4)

Tromble et al. (2008) implement the MBR
decoder using Weighted Finite State Automata
(WFSA) operations. First, the set of n-grams
is extracted from the lattice. Next, the posterior
probability of each n-gram is computed. A new
automaton is then created by intersecting each n-
gram with weight (from Equation 2) to an un-
weighted lattice. Finally, the MBR hypothesis is
extracted as the best path in the automaton. We
will refer to this procedure as FSAMBR.

The above steps are carried out one n-gram at
a time. For a moderately large lattice, there can
be several thousands of n-grams and the proce-
dure becomes expensive. We now present an alter-
nate approximate procedure which can avoid this
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enumeration making the resulting algorithm much
faster than FSAMBR.

4.1 Efficient MBR for lattices
The key idea behind this new algorithm is to
rewrite the n-gram posterior probability (Equa-
tion 4) as follows:

p(w|G) =
∑
E∈G

∑
e∈E

f(e, w,E)P (E|F ) (5)

where f(e, w,E) is a score assigned to edge e on
path E containing n-gram w:

f(e, w,E) =


1 w ∈ e, p(e|G) > p(e′|G),

e′ precedes e on E
0 otherwise

(6)

In other words, for each path E, we count the edge
that contributes n-gram w and has the highest edge
posterior probability relative to its predecessors on
the path E; there is exactly one such edge on each
lattice path E.

We note that f(e, w,E) relies on the full path
E which means that it cannot be computed based
on local statistics. We therefore approximate the
quantity f(e, w,E) with f∗(e, w,G) that counts
the edge e with n-gram w that has the highest arc
posterior probability relative to predecessors in the
entire lattice G. f∗(e, w,G) can be computed lo-
cally, and the n-gram posterior probability based
on f∗ can be determined as follows:

p(w|G) =
X
E∈G

X
e∈E

f∗(e, w,G)P (E|F ) (7)

=
X
e∈E

1w∈ef
∗(e, w,G)

X
E∈G

1E(e)P (E|F )

=
X
e∈E

1w∈ef
∗(e, w,G)P (e|G),

where P (e|G) is the posterior probability of a lat-
tice edge. The algorithm to perform Lattice MBR
is given in Algorithm 3. For each node t in the lat-
tice, we maintain a quantity Score(w, t) for each
n-gram w that lies on a path from the source node
to t. Score(w, t) is the highest posterior probabil-
ity among all edges on the paths that terminate on t
and contain n-gram w. The forward pass requires
computing the n-grams introduced by each edge;
to do this, we propagate n-grams (up to maximum
order −1) terminating on each node.

4.2 Extension to Hypergraphs
We next extend the Lattice MBR decoding algo-
rithm (Algorithm 3) to rescore hypergraphs pro-
duced by a SCFG based MT system. Algorithm 4
is an extension to the MBR decoder on lattices

Algorithm 3 MBR Decoding on Lattices
1: Sort the lattice nodes topologically.
2: Compute backward probabilities of each node.
3: Compute posterior prob. of each n-gram:
4: for each edge e do
5: Compute edge posterior probability P (e|G).
6: Compute n-gram posterior probs. P (w|G):
7: for each n-gram w introduced by e do
8: Propagate n− 1 gram suffix to he.
9: if p(e|G) > Score(w, T (e)) then

10: Update posterior probs. and scores:
p(w|G) += p(e|G) − Score(w, T (e)).
Score(w, he) = p(e|G).

11: else
12: Score(w, he) = Score(w, T (e)).
13: end if
14: end for
15: end for
16: Assign scores to edges (given by Equation 3).
17: Find best path in the lattice (Equation 3).

(Algorithm 3). However, there are important dif-
ferences when computing the n-gram posterior
probabilities (Step 3). In this inside pass, we now
maintain both n-gram prefixes and suffixes (up to
the maximum order−1) on each hypergraph node.
This is necessary because unlike a lattice, new n-
grams may be created at subsequent nodes by con-
catenating words both to the left and the right side
of the n-gram. When the arity of the edge is 2,
a rule has the general form aX1bX2c, where X1

and X2 are sequences from tail nodes. As a result,
we need to consider all new sequences which can
be created by the cross-product of the n-grams on
the two tail nodes. E.g. if X1 = {c, cd, d} and
X2 = {f, g}, then a total of six sequences will
result. In practice, such a cross-product is not pro-

Algorithm 4 MBR Decoding on Hypergraphs
1: Sort the hypergraph nodes topologically.
2: Compute inside probabilities of each node.
3: Compute posterior prob. of each hyperedge P (e|G).
4: Compute posterior prob. of each n-gram:
5: for each hyperedge e do
6: Merge the n-grams on the tail nodes T (e). If the

same n-gram is present on multiple tail nodes, keep
the highest score.

7: Apply the rule on e to the n-grams on T (e).
8: Propagate n− 1 gram prefixes/suffixes to he.
9: for each n-gram w introduced by this hyperedge do

10: if p(e|G) > Score(w, T (e)) then
11: p(w|G) += p(e|G) − Score(w, T (e))

Score(w, he) = p(e|G)
12: else
13: Score(w, he) = Score(w, T (e))
14: end if
15: end for
16: end for
17: Assign scores to hyperedges (Equation 3).
18: Find best path in the hypergraph (Equation 3).
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hibitive when the maximum n-gram order in MBR
does not exceed the order of the n-gram language
model used in creating the hypergraph. In the lat-
ter case, we will have a small set of unique prefixes
and suffixes on the tail nodes.

5 MERT for MBR Parameter
Optimization

Lattice MBR Decoding (Equation 3) assumes a
linear form for the gain function (Equation 2).
This linear function contains n + 1 parameters
θ0, θ1, ..., θN , where N is the maximum order of
the n-grams involved. Tromble et al. (2008) ob-
tained these factors as a function of n-gram preci-
sions derived from multiple training runs. How-
ever, this does not guarantee that the resulting
linear score (Equation 2) is close to the corpus
BLEU. We now describe how MERT can be used
to estimate these factors to achieve a better ap-
proximation to the corpus BLEU.

We recall that MERT selects weights in a lin-
ear model to optimize an error criterion (e.g. cor-
pus BLEU) on a training set. The lattice MBR
decoder (Equation 3) can be written as a lin-
ear model: Ê = argmaxE′∈G

∑N
i=0 θigi(E′, F ),

where g0(E′, F ) = |E′| and gi(E′, F ) =∑
w:|w|=i #w(E′)p(w|G).
The linear approximation to BLEU may not

hold in practice for unseen test sets or language-
pairs. Therefore, we would like to allow the de-
coder to backoff to the MAP translation in such
cases. To do that, we introduce an additional fea-
ture function gN+1(E,F ) equal to the original de-
coder cost for this sentence. A weight assignment
of 1.0 for this feature function and zeros for the
other feature functions would imply that the MAP
translation is chosen. We now have a total of N+2
feature functions which we optimize using MERT
to obtain highest BLEU score on a training set.

6 Experiments

We now describe our experiments to evaluate
MERT and MBR on lattices and hypergraphs, and
show how MERT can be used to tune MBR pa-
rameters.

6.1 Translation Tasks
We report results on two tasks. The first one is
the constrained data track of the NIST Arabic-
to-English (aren) and Chinese-to-English (zhen)
translation task1. On this task, the parallel and the

1http://www.nist.gov/speech/tests/mt

Dataset # of sentences
aren zhen

dev 1797 1664
nist02 1043 878
nist03 663 919

Table 1: Statistics over the NIST dev/test sets.

monolingual data included all the allowed train-
ing sets for the constrained track. Table 1 reports
statistics computed over these data sets. Our de-
velopment set (dev) consists of the NIST 2005 eval
set; we use this set for optimizing MBR parame-
ters. We report results on NIST 2002 and NIST
2003 evaluation sets.

The second task consists of systems for 39
language-pairs with English as the target language
and trained on at most 300M word tokens mined
from the web and other published sources. The de-
velopment and test sets for this task are randomly
selected sentences from the web, and contain 5000
and 1000 sentences respectively.

6.2 MT System Description

Our phrase-based statistical MT system is simi-
lar to the alignment template system described in
(Och and Ney, 2004; Tromble et al., 2008). Trans-
lation is performed using a standard dynamic pro-
gramming beam-search decoder (Och and Ney,
2004) using two decoding passes. The first de-
coder pass generates either a lattice or an N -best
list. MBR decoding is performed in the second
pass.

We also train two SCFG-based MT systems:
a hierarchical phrase-based SMT (Chiang, 2007)
system and a syntax augmented machine transla-
tion (SAMT) system using the approach described
in Zollmann and Venugopal (2006). Both systems
are built on top of our phrase-based systems. In
these systems, the decoder generates an initial hy-
pergraph or an N -best list, which are then rescored
using MBR decoding.

6.3 MERT Results

Table 2 shows runtime experiments for the hyper-
graph MERT implementation in comparison with
the phrase-lattice implementation on both the aren
and the zhen system. The first two columns show
the average amount of time in msecs that either
algorithm requires to compute the upper envelope
when applied to phrase lattices. Compared to the
algorithm described in (Macherey et al., 2008)
which is optimized for phrase lattices, the hyper-
graph implementation causes a small increase in
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Avg. Runtime/sent [msec]
(Macherey 2008) Suggested Alg.
aren zhen aren zhen

phrase lattice 8.57 7.91 10.30 8.65
hypergraph – – 8.19 8.11

Table 2: Average time for computing envelopes.

running time. This increase is mainly due to the
representation of line segments; while the phrase-
lattice implementation stores a single backpointer,
the hypergraph version stores a vector of back-
pointers.

The last two columns show the average amount
of time that is required to compute the upper en-
velope on hypergraphs. For comparison, we prune
hypergraphs to the same density (# of edges per
edge on the best path) and achieve identical run-
ning times for computing the error surface.

6.4 MBR Results

We first compare the new lattice MBR (Algo-
rithm 3) with MBR decoding on 1000-best lists
and FSAMBR (Tromble et al., 2008) on lattices
generated by the phrase-based systems; evaluation
is done using both BLEU and average run-time per
sentence (Table 3). Note that N -best MBR uses
a sentence BLEU loss function. The new lattice
MBR algorithm gives about the same performance
as FSAMBR while yielding a 20X speedup.

We next report the performance of MBR on hy-
pergraphs generated by Hiero/SAMT systems. Ta-
ble 4 compares Hypergraph MBR (HGMBR) with
MAP and MBR decoding on 1000 best lists. On
some systems such as the Arabic-English SAMT,
the gains from Hypergraph MBR over 1000-best
MBR are significant. In other cases, Hypergraph
MBR performs at least as well as N -best MBR.
In all cases, we observe a 7X speedup in run-
time. This shows the usefulness of Hypergraph
MBR decoding as an efficient alternative to N -
best MBR.

6.5 MBR Parameter Tuning with MERT

We now describe the results by tuning MBR n-
gram parameters (Equation 2) using MERT. We
first compute N + 1 MBR feature functions on
each edge of the lattice/hypergraph. We also in-
clude the total decoder cost on the edge as as addi-
tional feature function. MERT is then performed
to optimize the BLEU score on a development set;
For MERT, we use 40 random initial parameters as
well as parameters computed using corpus based
statistics (Tromble et al., 2008).

BLEU (%) Avg.
aren zhen time

nist03 nist02 nist03 nist02 (ms.)
MAP 54.2 64.2 40.1 39.0 -

N -best MBR 54.3 64.5 40.2 39.2 3.7
Lattice MBR

FSAMBR 54.9 65.2 40.6 39.5 3.7
LatMBR 54.8 65.2 40.7 39.4 0.2

Table 3: Lattice MBR for a phrase-based system.

BLEU (%) Avg.
aren zhen time

nist03 nist02 nist03 nist02 (ms.)
Hiero

MAP 52.8 62.9 41.0 39.8 -
N -best MBR 53.2 63.0 41.0 40.1 3.7

HGMBR 53.3 63.1 41.0 40.2 0.5
SAMT

MAP 53.4 63.9 41.3 40.3 -
N -best MBR 53.8 64.3 41.7 41.1 3.7

HGMBR 54.0 64.6 41.8 41.1 0.5

Table 4: Hypergraph MBR for Hiero/SAMT systems.

Table 5 shows results for NIST systems. We
report results on nist03 set and present three sys-
tems for each language pair: phrase-based (pb),
hierarchical (hier), and SAMT; Lattice MBR is
done for the phrase-based system while HGMBR
is used for the other two. We select the MBR
scaling factor (Tromble et al., 2008) based on the
development set; it is set to 0.1, 0.01, 0.5, 0.2, 0.5
and 1.0 for the aren-phrase, aren-hier, aren-samt,
zhen-phrase zhen-hier and zhen-samt systems re-
spectively. For the multi-language case, we train
phrase-based systems and perform lattice MBR
for all language pairs. We use a scaling factor of
0.7 for all pairs. Additional gains can be obtained
by tuning this factor; however, we do not explore
that dimension in this paper. In all cases, we prune
the lattices/hypergraphs to a density of 30 using
forward-backward pruning (Sixtus and Ortmanns,
1999).

We consider a BLEU score difference to be a)
gain if is at least 0.2 points, b) drop if it is at most
-0.2 points, and c) no change otherwise. The re-
sults are shown in Table 6. In both tables, the fol-
lowing results are reported: Lattice/HGMBR with
default parameters (−5, 1.5, 2, 3, 4) computed us-
ing corpus statistics (Tromble et al., 2008),
Lattice/HGMBR with parameters derived from
MERT both without/with the baseline model cost
feature (mert−b, mert+b). For multi-language
systems, we only show the # of language-pairs
with gains/no-changes/drops for each MBR vari-
ant with respect to the MAP translation.
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We observed in the NIST systems that MERT
resulted in short translations relative to MAP on
the unseen test set. To prevent this behavior,
we modify the MERT error criterion to include
a sentence-level brevity scorer with parameter α:
BLEU+brevity(α). This brevity scorer penalizes
each candidate translation that is shorter than the
average length over its reference translations, us-
ing a penalty term which is linear in the difference
between either length. We tune α on the develop-
ment set so that the brevity score of MBR transla-
tion is close to that of the MAP translation.

In the NIST systems, MERT yields small im-
provements on top of MBR with default param-
eters. This is the case for Arabic-English Hi-
ero/SAMT. In all other cases, we see no change
or even a slight degradation due to MERT.
We hypothesize that the default MBR parame-
ters (Tromble et al., 2008) are well tuned. There-
fore there is little gain by additional tuning using
MERT.

In the multi-language systems, the results show
a different trend. We observe that MBR with de-
fault parameters results in gains on 18 pairs, no
differences on 9 pairs, and losses on 12 pairs.
When we optimize MBR features with MERT, the
number of language pairs with gains/no changes/-
drops is 22/5/12. Thus, MERT has a bigger impact
here than in the NIST systems. We hypothesize
that the default MBR parameters are sub-optimal
for some language pairs and that MERT helps to
find better parameter settings. In particular, MERT
avoids the need for manually tuning these param-
eters by language pair.

Finally, when baseline model costs are added
as an extra feature (mert+b), the number of pairs
with gains/no changes/drops is 26/8/5. This shows
that this feature can allow MBR decoding to back-
off to the MAP translation. When MBR does not
produce a higher BLEU score relative to MAP
on the development set, MERT assigns a higher
weight to this feature function. We see such an
effect for 4 systems.

7 Discussion

We have presented efficient algorithms
which extend previous work on lattice-based
MERT (Macherey et al., 2008) and MBR de-
coding (Tromble et al., 2008) to work with
hypergraphs. Our new MERT algorithm can work
with both lattices and hypergraphs. On lattices, it
achieves similar run-times as the implementation

System BLEU (%)
MAP MBR

default mert-b mert+b
aren.pb 54.2 54.8 54.8 54.9
aren.hier 52.8 53.3 53.5 53.7
aren.samt 53.4 54.0 54.4 54.0
zhen.pb 40.1 40.7 40.7 40.9
zhen.hier 41.0 41.0 41.0 41.0
zhen.samt 41.3 41.8 41.6 41.7

Table 5: MBR Parameter Tuning on NIST systems

MBR wrt. MAP default mert-b mert+b
# of gains 18 22 26
# of no-changes 9 5 8
# of drops 12 12 5

Table 6: MBR on Multi-language systems.

described in Macherey et al. (2008). The new
Lattice MBR decoder achieves a 20X speedup
relative to either FSAMBR implementation
described in Tromble et al. (2008) or MBR on
1000-best lists. The algorithm gives comparable
results relative to FSAMBR. On hypergraphs
produced by Hierarchical and Syntax Augmented
MT systems, our MBR algorithm gives a 7X
speedup relative to 1000-best MBR while giving
comparable or even better performance.

Lattice MBR decoding is obtained under a lin-
ear approximation to BLEU, where the weights
are obtained using n-gram precisions derived from
development data. This may not be optimal in
practice for unseen test sets and language pairs,
and the resulting linear loss may be quite differ-
ent from the corpus level BLEU. In this paper, we
have described how MERT can be employed to
estimate the weights for the linear loss function
to maximize BLEU on a development set. On an
experiment with 40 language pairs, we obtain im-
provements on 26 pairs, no difference on 8 pairs
and drops on 5 pairs. This was achieved with-
out any need for manual tuning for each language
pair. The baseline model cost feature helps the al-
gorithm effectively back off to the MAP transla-
tion in language pairs where MBR features alone
would not have helped.

MERT and MBR decoding are popular tech-
niques for incorporating the final evaluation met-
ric into the development of SMT systems. We be-
lieve that our efficient algorithms will make them
more widely applicable in both SCFG-based and
phrase-based MT systems.
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Abstract 

This paper proposes a forest-based tree se-
quence to string translation model for syntax- 
based statistical machine translation, which 
automatically learns tree sequence to string 
translation rules from word-aligned source-
side-parsed bilingual texts. The proposed 
model leverages on the strengths of both tree 
sequence-based and forest-based translation 
models. Therefore, it can not only utilize forest 
structure that compactly encodes exponential 
number of parse trees but also capture non-
syntactic translation equivalences with linguis-
tically structured information through tree se-
quence. This makes our model potentially 
more robust to parse errors and structure di-
vergence. Experimental results on the NIST 
MT-2003 Chinese-English translation task 
show that our method statistically significantly 
outperforms the four baseline systems. 

1 Introduction 

Recently syntax-based statistical machine trans-
lation (SMT) methods have achieved very prom-
ising results and attracted more and more inter-
ests in the SMT research community. Fundamen-
tally, syntax-based SMT views translation as a 
structural transformation process. Therefore, 
structure divergence and parse errors are two of 
the major issues that may largely compromise 
the performance of syntax-based SMT (Zhang et 
al., 2008a; Mi et al., 2008).  

Many solutions have been proposed to address 
the above two issues. Among these advances, 
forest-based modeling (Mi et al., 2008; Mi and 
Huang, 2008) and tree sequence-based modeling 
(Liu et al., 2007; Zhang et al., 2008a) are two 
interesting modeling methods with promising 
results reported. Forest-based modeling aims to 
improve translation accuracy through digging the 
potential better parses from n-bests (i.e. forest) 
while tree sequence-based modeling aims to 

model non-syntactic translations with structured 
syntactic knowledge. In nature, the two methods 
would be complementary to each other since 
they manage to solve the negative impacts of 
monolingual parse errors and cross-lingual struc-
ture divergence on translation results from dif-
ferent viewpoints. Therefore, one natural way is 
to combine the strengths of the two modeling 
methods for better performance of syntax-based 
SMT. However, there are many challenges in 
combining the two methods into a single model 
from both theoretical and implementation engi-
neering viewpoints. In theory, one may worry 
about whether the advantage of tree sequence has 
already been covered by forest because forest 
encodes implicitly a huge number of parse trees 
and these parse trees may generate many differ-
ent phrases and structure segmentations given a 
source sentence. In system implementation, the 
exponential combinations of tree sequences with 
forest structures make the rule extraction and 
decoding tasks much more complicated than that 
of the two individual methods.  

In this paper, we propose a forest-based tree 
sequence to string model, which is designed to 
integrate the strengths of the forest-based and the 
tree sequence-based modeling methods. We pre-
sent our solutions that are able to extract transla-
tion rules and decode translation results for our 
model very efficiently. A general, configurable 
platform was designed for our model. With this 
platform, we can easily implement our method 
and many previous syntax-based methods by 
simple parameter setting. We evaluate our 
method on the NIST MT-2003 Chinese-English 
translation tasks. Experimental results show that 
our method significantly outperforms the two 
individual methods and other baseline methods. 
Our study shows that the proposed method is 
able to effectively combine the strengths of the 
forest-based and tree sequence-based methods, 
and thus having great potential to address the 
issues of parse errors and non-syntactic transla-
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tions resulting from structure divergence. It also 
indicates that tree sequence and forest play dif-
ferent roles and make contributions to our model 
in different ways. 

The remainder of the paper is organized as fol-
lows. Section 2 describes related work while sec-
tion 3 defines our translation model. In section 4 
and section 5, the key rule extraction and decod-
ing algorithms are elaborated. Experimental re-
sults are reported in section 6 and the paper is 
concluded in section 7. 

2 Related work  

As discussed in section 1, two of the major chal-
lenges to syntax-based SMT are structure diver-
gence and parse errors. Many techniques have 
been proposed to address the structure diver-
gence issue while only fewer studies are reported 
in addressing the parse errors in the SMT re-
search community. 

To address structure divergence issue, many 
researchers (Eisner, 2003; Zhang et al., 2007) 
propose using the Synchronous Tree Substitution 
Grammar (STSG) grammar in syntax-based 
SMT since the STSG uses larger tree fragment as 
translation unit. Although promising results have 
been reported, STSG only uses one single sub-
tree as translation unit which is still committed to 
the syntax strictly. Motivated by the fact that 
non-syntactic phrases make non-trivial contribu-
tion to phrase-based SMT, the tree sequence-
based translation model is proposed (Liu et al., 
2007; Zhang et al., 2008a) that uses tree se-
quence as the basic translation unit, rather than 
using single sub-tree as in the STSG. Here, a tree 
sequence refers to a sequence of consecutive 
sub-trees that are embedded in a full parse tree. 
For any given phrase in a sentence, there is at 
least one tree sequence covering it. Thus the tree 
sequence-based model has great potential to ad-
dress the structure divergence issue by using tree 
sequence-based non-syntactic translation rules. 
Liu et al. (2007) propose the tree sequence con-
cept and design a tree sequence to string transla-
tion model. Zhang et al. (2008a) propose a tree 
sequence-based tree to tree translation model and 
Zhang et al. (2008b) demonstrate that the tree 
sequence-based modelling method can well ad-
dress the structure divergence issue for syntax-
based SMT. 

To overcome the parse errors for SMT, Mi et 
al. (2008) propose a forest-based translation 
method that uses forest instead of one best tree as 
translation input, where a forest is a compact rep-
resentation of exponentially number of n-best 

parse trees. Mi and Huang (2008) propose a for-
est-based rule extraction algorithm, which learn 
tree to string rules from source forest and target 
string. By using forest in rule extraction and de-
coding, their methods are able to well address the 
parse error issue. 

From the above discussion, we can see that 
traditional tree sequence-based method uses sin-
gle tree as translation input while the forest-
based model uses single sub-tree as the basic 
translation unit that can only learn tree-to-string 
(Galley et al. 2004; Liu et al., 2006) rules. There-
fore, the two methods display different strengths, 
and which would be complementary to each 
other. To integrate their strengths, in this paper, 
we propose a forest-based tree sequence to string 
translation model.  

3 Forest-based tree sequence to string 
model  

In this section, we first explain what a packed 
forest is and then define the concept of the tree 
sequence in the context of forest followed by the 
discussion on our proposed model. 

3.1 Packed Forest 

A packed forest (forest in short) is a special kind 
of hyper-graph (Klein and Manning, 2001; 
Huang and Chiang, 2005), which is used to rep-
resent all derivations (i.e. parse trees) for a given 
sentence under a context free grammar (CFG). A 
forest F is defined as a triple ൏ ܸ, ,ܧ ܵ ൐, where ܸ is non-terminal node set, ܧ  is hyper-edge set 
and ܵ is leaf node set (i.e. all sentence words). A 
forest F satisfies the following two conditions: 

 

1) Each node ݊  in ܸ  should cover a phrase, 
which is a continuous word sub-sequence in ܵ. 

2) Each hyper-edge ݁  in ܧ  is defined as ݒ௙ ֜ ଵݒ … ௜ݒ … ,௡ݒ ൫ݒ௜ א ሺܸ ׫ ܵሻ, ௙ݒ א ܸ൯ , 
where ݒଵ ௜ݒ … … ௡ݒ  covers a sequence of conti-
nuous and non-overlap phrases, ݒ௙  is the father 
node of the children sequence ݒଵ … ௜ݒ …  ௡. Theݒ
phrase covered by ݒ௙  is just the sum of all the 
phrases covered by each child node ݒ௜. 

 

We here introduce another concept that is used 
in our subsequent discussions. A complete forest 
CF is a general forest with one additional condi-
tion that there is only one root node N in CF, i.e., 
all nodes except the root N in a CF must have at 
least one father node. 

Fig. 1 is a complete forest while Fig. 7 is a 
non-complete forest due to the virtual node 
“VV+VV” introduced in Fig. 7. Fig. 2 is a hyper-
edge (IP => NP VP) of Fig. 1, where NP covers 
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the phrase “Xinhuashe”, VP covers the phrase 
“shengming youguan guiding” and IP covers the 
entire sentence. In Fig.1, only root IP has no fa-
ther node, so it is a complete forest. The two 
parse trees T1 and T2 encoded in Fig. 1 are 
shown separately in Fig. 3 and Fig. 41.  

Different parse tree represents different deri-
vations and explanations for a given sentence. 
For example, for the same input sentence in Fig. 
1, T1 interprets it as “XNA (Xinhua News 
Agency) declares some regulations.” while T2 
interprets it as “XNA declaration is related to 
some regulations.”.  

 

 
 

Figure 1. A packed forest for sentence “新华社

/Xinhuashe 声明 /shengming 有关 /youguan 规定
/guiding” 

             
Figure 2.  A hyper-edge used in Fig. 1 

 

       
 
Figure 3. Tree 1 (T1)            Figure 4. Tree 2 (T2) 

3.2 Tree sequence in packed forest 

Similar to the definition of tree sequence used in 
a single parse tree defined in Liu et al. (2007) 
and Zhang et al. (2008a), a tree sequence in a 
forest also refers to an ordered sub-tree sequence 
that covers a continuous phrase without overlap-
ping. However, the major difference between 
                                                           
1 Please note that a single tree (as T1 and T2 shown in Fig. 
3 and Fig. 4) is represented by edges instead of hyper-edges. 
A hyper-edge is a group of edges satisfying the 2nd condi-
tion as shown in the forest definition. 

them lies in that the sub-trees of a tree sequence 
in forest may belongs to different single parse 
trees while, in a single parse tree-based model, 
all the sub-trees in a tree sequence are committed 
to the same parse tree.  

The forest-based tree sequence enables our 
model to have the potential of exploring addi-
tional parse trees that may be wrongly pruned out 
by the parser and thus are not encoded in the for-
est. This is because that a tree sequence in a for-
est allows its sub-trees coming from different 
parse trees, where these sub-trees may not be 
merged finally to form a complete parse tree in 
the forest. Take the forest in Fig. 1 as an exam-
ple, where ((VV shengming) (JJ youguan)) is a 
tree sequence that all sub-trees appear in T1 
while ((VV shengming) (VV youguan)) is a tree 
sequence whose sub-trees do not belong to any 
single tree in the forest. But, indeed the two sub-
trees (VV shengming) and (VV youguan) can be 
merged together and further lead to a complete 
single parse tree which may offer a correct inter-
pretation to the input sentence (as shown in Fig. 
5). In addition, please note that, on the other 
hand, more parse trees may introduce more noisy 
structures. In this paper, we leave this problem to 
our model and let the model decide which sub-
structures are noisy features. 

 

          
 

 Figure 5. A parse tree that was wrongly 
pruned out 

 

            

    Figure 6. A tree sequence to string rule 
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A tree-sequence to string translation rule in a 
forest is a triple <L, R, A>, where L is the tree 
sequence in source language, R is the string con-
taining words and variables in target language, 
and A is the alignment between the leaf nodes of 
L and R. This definition is similar to that of (Liu 
et al. 2007, Zhang et al. 2008a) except our tree-
sequence is defined in forest. The shaded area of 
Fig. 6 exemplifies a tree sequence to string trans-
lation rule in the forest.  

3.3 Forest-based tree-sequence to string 
translation model 

Given a source forest F and target translation TS 
as well as word alignment A, our translation 
model is formulated as: 

  
 Prሺܨ, ௦ܶ, ሻܣ ൌ ∑ ∏ ,஀,஼ሺ஀ሻୀሺி אఏ೔ఏ೔א௜ሻ௥೔ݎሺ݌ ೞ்,஺ሻ  

 
By the above Eq., translation becomes a tree 

sequence structure to string mapping issue. Giv-
en the F, TS and A, there are multiple derivations 
that could map F to TS under the constraint A. 
The mapping probability Prሺܨ, ௦ܶ, ሻܣ  in our 
study is obtained by summing over the probabili-
ties of all derivations Θ. The probability of each 
derivation ߠ௜ is given as the product of the prob-
abilities of all the rules ( )ip r  used in the deriva-
tion (here we assume that each rule is applied 
independently in a derivation). 

Our model is implemented under log-linear 
framework (Och and Ney, 2002). We use seven 
basic features that are analogous to the common-
ly used features in phrase-based systems (Koehn, 
2003): 1) bidirectional rule mapping probabilities, 
2) bidirectional lexical rule translation probabili-
ties, 3) target language model, 4) number of rules 
used and 5) number of target words. In addition, 
we define two new features: 1) number of leaf 
nodes in auxiliary rules (the auxiliary rule will be 
explained later in this paper) and 2) product of 
the probabilities of all hyper-edges of the tree 
sequences in forest. 

4 Training  

This section discusses how to extract our transla-
tion rules given a triple ൏ ,ܨ ௦ܶ, ܣ ൐ . As we 
know, the traditional tree-to-string rules can be 
easily extracted from ൏ ,ܨ ௦ܶ, ܣ ൐ using the algo-
rithm of Mi and Huang (2008)2. We would like 

                                                           
2 Mi and Huang (2008) extend the tree-based rule extraction 
algorithm (Galley et al., 2004) to forest-based by introduc-
ing non-deterministic mechanism. Their algorithm consists 
of two steps, minimal rule extraction and composed rule 
generation. 

to leverage on their algorithm in our study. Un-
fortunately, their algorithm is not directly appli-
cable to our problem because tree rules have only 
one root while tree sequence rules have multiple 
roots. This makes the tree sequence rule extrac-
tion very complex due to its interaction with for-
est structure. To address this issue, we introduce 
the concepts of virtual node and virtual hyper-
edge to convert a complete parse forest ܨ  to a 
non-complete forest ܨ which is designed to en-
code all the tree sequences that we want. There-
fore, by doing so, the tree sequence rules can be 
extracted from a forest in the following two 
steps: 

1) Convert the complete parse forest ܨ into a 
non-complete forest ܨ  in order to cover those 
tree sequences that cannot be covered by a single 
tree node. 

2) Employ the forest-based tree rule extraction 
algorithm (Mi and Huang, 2008) to extract our 
rules from the non-complete forest. 

To facilitate our discussion, here we introduce 
two notations:  

• Alignable: A consecutive source phrase is 
an alignable phrase if and only if it can be 
aligned with at least one consecutive target 
phrase under the word-alignment con-
straint. The covered source span is called 
alignable span. 

• Node sequence: a sequence of nodes (ei-
ther leaf or internal nodes) in a forest cov-
ering a consecutive span. 

Algorithm 1 illustrates the first step of our rule 
extraction algorithm, which is a CKY-style Dy-
namic Programming (DP) algorithm to add vir-
tual nodes into forest. It includes the following 
steps: 

1) We traverse the forest to visit each span in 
bottom-up fashion (line 1-2), 
1.1) for each span [u,v] that is covered by 

single tree nodes3, we put these tree 
nodes into the set NSS(u,v) and go 
back to step 1 (line 4-6). 

1.2) otherwise we concatenate the tree se-
quences of sub-spans to generate the 
set of tree sequences covering the cur-
rent larger span (line 8-13). Then, we 
prune the set of node sequences (line 
14). If this span is alignable, we 
create virtual father nodes and corres-
ponding virtual hyper-edges to link 
the node sequences with the virtual 
father nodes (line 15-20). 

                                                           
3 Note that in a forest, there would be multiple single tree 
nodes covering the same span as shown Fig.1.  
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2) Finally we obtain a forest with each align-
able span covered by either original tree 
nodes or the newly-created tree sequence 
virtual nodes. 

Theoretically, there is exponential number of 
node sequences in a forest. Take Fig. 7 as an ex-
ample. The NSS of span [1,2] only contains “NP” 
since it is alignable and covered by the single 
tree node NP. However, span [2,3] cannot be 
covered by any single tree node, so we have to 
create the NSS of span[2,3] by concatenating the 
NSSs of span [2,2] and span [3,3]. Since NSS of 
span [2,2] contains 4 element {“NN”, “NP”, 
“VV”, “VP”} and NSS of span [3, 3] also con-
tains 4 element {“VV”, “VP”, “JJ”, “ADJP”}, 
NSS of span [2,3] contains 16=4*4 elements. To 
make the NSS manageable, we prune it with the 
following thresholds: 

• each node sequence should contain less 
than n nodes 

• each node sequence set should contain less 
than m node sequences 

• sort node sequences according to their 
lengths and only keep the k shortest ones 

Each virtual node is simply labeled by the 
concatenation of all its children’s labels as 
shown in Fig. 7. 
 
Algorithm 1. add virtual nodes into forest 
Input: packed forest F, alignment A 
Notation:  

   L: length of source sentence 
   NSS(u,v): the set of node sequences covering span [u,v] 
  VN(ns): virtual father node for node sequence ns. 

Output: modified forest F with virtual nodes 
 
 
1. for length := 0 to L - 1 do 
2.      for start := 1 to L - length do 
3.          stop := start + length 
4.          if span[start, stop] covered by tree nodes then 
5.                for each node n of span [start, stop] do 
6.                    add n into NSS(start, stop) 
7.          else  
8.                for pivot := start to stop - 1 
9.                     for each ns1 in NSS(start, pivot) do 
10.                          for each ns2 in NSS(pivot+1, stop) do 
11.                               create ݊ݏ ൌ׷ ۩ 1ݏ݊   2ݏ݊ 
12.                                if ns is not in NSS(start, stop) then 
13.                                      add ns into NSS(start, stop) 
14.                do pruning on NSS(start, stop) 
15.                if the span[start, stop] is alignable then 
16.                    for each ns of NSS(start, stop) do 
17.                   if node VN(ns) is not in F then 
18.                                add node VN(ns) into F 
19.                          add a hyper-edge h into F,  
20.                          let lhs(h) := VN(ns), rhs(h) := ns 
 

Algorithm 1 outputs a non-complete forest CF 
with each alignable span covered by either tree 
nodes or virtual nodes. Then we can easily ex-

tract our rules from the CF using the tree rule 
extraction algorithm (Mi and Huang, 2008). 

Finally, to calculate rule feature probabilities 
for our model, we need to calculate the fractional 
counts (it is a kind of probability defined in Mi 
and Huang, 2008) of each translation rule in a 
parse forest. In the tree case, we can use the in-
side-outside-based methods (Mi and Huang 
2008) to do it. In the tree sequence case, since 
the previous method cannot be used directly, we 
provide another solution by making an indepen-
dent assumption that each tree in a tree sequence 
is independent to each other. With this assump-
tion, the fractional counts of both tree and tree 
sequence can be calculated as follows: 

 ܿሺݎሻ ൌ ఈఉሺ௟௛௦ሺ௥ሻሻఈఉሺ்ை௉ሻ   
ሻ݃ܽݎሺ݂ߚߙ  ൌ ෑ ௥௢௢௧ሺ௙௥௔௚ሻאሻ௩ݒሺߙ כ ෑ ܲሺ݄ሻ௛א௙௥௔௚ כ ෑ ௟௘௔௩௘௦ሺ௙௥௔௚ሻאሻ௩ݒሺߚ  

 

where ܿሺݎሻ is the fractional counts to be calcu-
lated for rule r, a frag is either lhs(r) (excluding 
virtual nodes and virtual hyper-edges) or any tree 
node in a forest, TOP is the root of the forest, ߙሺ. ሻ and ߚሺ.) are the outside and inside probabil-
ities of nodes, ݐ݋݋ݎሺ. ሻ returns the root nodes of a 
tree sequence fragment, ݈݁ܽݏ݁ݒሺ. ሻ  returns the 
leaf nodes of a tree sequence fragment, ݌ሺ݄ሻ is 
the hyper-edge probability. 
 

 
 

              Figure 7. A virtual node in forest 

5 Decoding  

We benefit from the same strategy as used in our 
rule extraction algorithm in designing our decod-
ing algorithm, recasting the forest-based tree se-
quence-to-string decoding problem as a forest-
based tree-to-string decoding problem. Our de-
coding algorithm consists of four steps: 

1) Convert the complete parse forest to a non-
complete one by introducing virtual nodes. 
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2) Convert the non-complete parse forest into 
a translation forest4 ܶܨ by using the translation 
rules and the pattern-matching algorithm pre-
sented in Mi et al. (2008). 

3) Prune out redundant nodes and add auxil-
iary hyper-edge into the translation forest for 
those nodes that have either no child or no father. 
By this step, the translation forest ܶܨ becomes a 
complete forest.  

4) Decode the translation forest using our 
translation model and a dynamic search algo-
rithm. 

The process of step 1 is similar to Algorithm 1 
except no alignment constraint used here. This 
may generate a large number of additional virtual 
nodes; however, all redundant nodes will be fil-
tered out in step 3. In step 2, we employ the tree-
to-string pattern match algorithm (Mi et al., 
2008) to convert a parse forest to a translation 
forest. In step 3, all those nodes not covered by 
any translation rules are removed. In addition, 
please note that the translation forest is already 
not a complete forest due to the virtual nodes and 
the pruning of rule-unmatchable nodes. We, 
therefore, propose Algorithm 2 to add auxiliary 
hyper-edges to make the translation forest com-
plete.  

In Algorithm 2, we travel the forest in bottom-
up fashion (line 4-5). For each span, we do: 

1) generate all the NSS for this span (line 7-12)  
2) filter the NSS to a manageable size (line 13) 
3) add auxiliary hyper-edges for the current 

span (line 15-19) if it can be covered by at least 
one single tree node, otherwise go to step 1 . This 
is the key step in our Algorithm 2. For each tree 
node and each node sequences covering the same 
span (stored in the current NSS), if the tree node 
has no children or at least one node in the node 
sequence has no father, we add an auxiliary hy-
per-edge to connect the tree node as father node 
with the node sequence as children. Since Algo-
rithm 2 is DP-based and traverses the forest in a 
bottom-up way, all the nodes in a node sequence 
should already have children node after the lower 
level process in a small span. Finally, we re-build 
the NSS of current span for upper level NSS 
combination use (line 20-22). 

 

 In Fig. 8, the hyper-edge “IP=>NP VV+VV 
NP” is an auxiliary hyper-edge introduced by 
Algorithm 2. By Algorithm 2, we convert the 
translation forest into a complete translation for-
est. We then use a bottom-up node-based search 
                                                           
4 The concept of translation forest is proposed in Mi et 
al. (2008). It is a forest that consists of only the hyper-
edges induced from translation rules. 

algorithm to do decoding on the complete trans-
lation forest. We also use Cube Pruning algo-
rithm (Huang and Chiang 2007) to speed up the 
translation process. 

 

 
 

Figure 8. Auxiliary hyper-edge in a translation 
forest 
 
Algorithm 2. add auxiliary hyper-edges into mt forest F 
Input:  mt forest F 
Output: complete forest F with auxiliary hyper-edges 
 
1. for i := 1 to L do 
2.      for each node n of span [i, i] do 
3.          add n into NSS(i, i) 
4. for length := 1 to L - 1 do 
5.      for start := 1 to L - length do 
6.          stop := start + length 
7.          for pivot := start to stop-1 do 
8.               for each ns1 in NSS (start, pivot) do 
9.                    for each ns2 in NSS (pivot+1,stop) do 
10.                 create ݊ݏ ൌ׷ ۩ 1ݏ݊  2ݏ݊ 
11.                          if ns is not in NSS(start, stop) then 
12.                                add ns into NSS (start, stop) 
13.           do pruning on NSS(start, stop) 
14.           if there is tree node cover span [start, stop] then 
15.         for each tree node n of span [start,stop] do 
16.                      for each ns of NSS(start, stop) do 
17.                     if node n have no children or  

there is node in ns with no father  
then 

18.                                add auxiliary hyper-edge h into F 
19.                                let lhs(h) := n, rhs(h) := ns 
20.          empty NSS(start, stop) 
21.          for each node n of span [start, stop] do 
22.                 add n into NSS(start, stop) 

6 Experiment 

6.1 Experimental Settings 

We evaluate our method on Chinese-English 
translation task. We use the FBIS corpus as train-
ing set, the NIST MT-2002 test set as develop-
ment (dev) set and the NIST MT-2003 test set as 
test set. We train Charniak’s parser (Charniak 
2000) on CTB5 to do Chinese parsing, and modi-
fy it to output packed forest. We tune the parser 
on section 301-325 and test it on section 271-
300. The F-measure on all sentences is 80.85%. 
A 3-gram language model is trained on the Xin-
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hua portion of the English Gigaword3 corpus and 
the target side of the FBIS corpus using the 
SRILM Toolkits (Stolcke, 2002) with modified 
Kneser-Ney smoothing (Kenser and Ney, 1995). 
GIZA++ (Och and Ney, 2003) and the heuristics 
“grow-diag-final-and” are used to generate m-to-
n word alignments. For the MER training (Och, 
2003), Koehn’s MER trainer (Koehn, 2007) is 
modified for our system. For significance test, 
we use Zhang et al.’s implementation (Zhang et 
al, 2004). Our evaluation metrics is case-
sensitive BLEU-4 (Papineni et al., 2002). 

For parse forest pruning (Mi et al., 2008), we 
utilize the Margin-based pruning algorithm pre-
sented in (Huang, 2008). Different from Mi et al. 
(2008) that use a static pruning threshold, our 
threshold is sentence-depended. For each sen-
tence, we compute the Margin between the n-th 
best and the top 1 parse tree, then use the Mar-
gin-based pruning algorithm presented in 
(Huang, 2008) to do pruning. By doing so, we 
can guarantee to use at least all the top n best 
parse trees in the forest. However, please note 
that even after pruning there is still exponential 
number of additional trees embedded in the for-
est because of the sharing structure of forest. 
Other parameters are set as follows: maximum 
number of roots in a tree sequence is 3, maxi-
mum height of a translation rule is 3, maximum 
number of leaf nodes is 7, maximum number of 
node sequences on each span is 10, and maxi-
mum number of rules extracted from one node is 
10000. 

6.2 Experimental Results 

We implement our proposed methods as a gen-
eral, configurable platform for syntax-based 
SMT study. Based on this platform, we are able 
to easily implement most of the state-of-the-art 
syntax-based x-to-string SMT methods via sim-
ple parameter setting. For training, we set forest 
pruning threshold to 1 best for tree-based me-
thods and 100 best for forest-based methods. For 
decoding, we set: 

1) TT2S: tree-based tree-to-string model by 
setting the forest pruning threshold to 1 best and 
the number of sub-trees in a tree sequence to 1. 

2) TTS2S: tree-based tree-sequence to string 
system by setting the forest pruning threshold to 
1 best and the maximum number of sub-trees in a 
tree sequence to 3. 

3) FT2S: forest-based tree-to-string system by 
setting the forest pruning threshold to 500 best, 
the number of sub-trees in a tree sequence to 1. 

4) FTS2S: forest-based tree-sequence to string 
system by setting the forest pruning threshold to 

500 best and the maximum number of sub-trees 
in a tree sequence to 3. 

 

Model BLEU(%) 
Moses 25.68 
TT2S 26.08 
TTS2S 26.95 
FT2S 27.66 
FTS2S 28.83 

 

Table 1. Performance Comparison 
 

We use the first three syntax-based systems 
(TT2S, TTS2S, FT2S) and Moses (Koehn et al., 
2007), the state-of-the-art phrase-based system, 
as our baseline systems. Table 1 compares the 
performance of the five methods, all of which are 
fine-tuned.  It shows that: 

1) FTS2S significantly outperforms (p<0.05) 
FT2S. This shows that tree sequence is very use-
ful to forest-based model. Although a forest can 
cover much more phrases than a single tree does, 
there are still many non-syntactic phrases that 
cannot be captured by a forest due to structure 
divergence issue. On the other hand, tree se-
quence is a good solution to non-syntactic trans-
lation equivalence modeling. This is mainly be-
cause tree sequence rules are only sensitive to 
word alignment while tree rules, even extracted 
from a forest (like in FT2S), are also limited by 
syntax according to grammar parsing rules. 

2) FTS2S shows significant performance im-
provement (p<0.05) over TTS2S due to the con-
tribution of forest. This is mainly due to the fact 
that forest can offer very large number of parse 
trees for rule extraction and decoder. 

3) Our model statistically significantly outper-
forms all the baselines system. This clearly de-
monstrates the effectiveness of our proposed 
model for syntax-based SMT. It also shows that 
the forest-based method and tree sequence-based 
method are complementary to each other and our 
proposed method is able to effectively integrate 
their strengths. 

4) All the four syntax-based systems show bet-
ter performance than Moses and three of them 
significantly outperforms (p<0.05) Moses. This 
suggests that syntax is very useful to SMT and 
translation can be viewed as a structure mapping 
issue as done in the four syntax-based systems. 

Table 2 and Table 3 report the distribution of 
different kinds of translation rules in our model 
(training forest pruning threshold is set to 100 
best) and in our decoding (decoding forest prun-
ing threshold is set to 500 best) for one best 
translation generation. From the two tables, we 
can find that: 
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Rule Type Tree 
to String 

Tree Sequence 
to String 

L 4,854,406 20,526,674 
P 37,360,684 58,826,261 
U 3,297,302 3,775,734 

All 45,512,392 83,128,669 
 

Table 2. # of rules extracted from training cor-
pus. L means fully lexicalized, P means partially 
lexicalized, U means unlexicalized. 

 
Rule Type Tree 

to String 
Tree Sequence 

to String 
L 10,592 1,161 
P 7,132 742 
U 4,874 278 

All 22,598 2,181 
 

Table 3. # of rules used to generate one-best 
translation result in testing 

 
1) In Table 2, the number of tree sequence 

rules is much larger than that of tree rules al-
though our rule extraction algorithm only ex-
tracts those tree sequence rules over the spans 
that tree rules cannot cover. This suggests that 
the non-syntactic structure mapping is still a big 
challenge to syntax-based SMT. 

2) Table 3 shows that the tree sequence rules 
is around 9% of the tree rules when generating 
the one-best translation. This suggests that 
around 9% of translation equivalences in the test 
set can be better modeled by tree sequence to 
string rules than by tree to string rules. The 9% 
tree sequence rules contribute 1.17 BLEU score 
improvement (28.83-27.66 in Table 1) to FTS2S 
over FT2S.  

3) In Table 3, the fully-lexicalized rules are 
the major part (around 60%), followed by the 
partially-lexicalized (around 35%) and un-
lexicalized (around 15%). However, in Table 2, 
partially-lexicalized rules extracted from training 
corpus are the major part (more than 70%). This 
suggests that most partially-lexicalized rules are 
less effective in our model. This clearly directs 
our future work in model optimization. 

 
BLEU (%)    

N-best \ model FT2S FTS2S 
100 Best 27.40 28.61 
500 Best  27.66 28.83 
2500 Best  27.66 28.96 
5000 Best  27.79 28.89 

 

Table 4. Impact of the forest pruning  
 

Forest pruning is a key step for forest-based 
method. Table 4 reports the performance of the 
two forest-based models using different values of 
the forest pruning threshold for decoding. It 
shows that: 

1) FTS2S significantly outperforms (p<0.05) 
FT2S consistently in all test cases. This again 
demonstrates the effectiveness of our proposed 
model. Even if in the 5000 Best case, tree se-
quence is still able to contribute 1.1 BLEU score 
improvement (28.89-27.79). It indicates the ad-
vantage of tree sequence cannot be covered by 
forest even if we utilize a very large forest.  

2) The BLEU scores are very similar to each 
other when we increase the forest pruning thre-
shold. Moreover, in one case the performance 
even drops. This suggests that although more 
parse trees in a forest can offer more structure 
information, they may also introduce more noise 
that may confuse the decoder. 

7 Conclusion   

In this paper, we propose a forest-based tree-
sequence to string translation model to combine 
the strengths of forest-based methods and tree-
sequence based methods. This enables our model 
to have the great potential to address the issues 
of structure divergence and parse errors for syn-
tax-based SMT. We convert our forest-based tree 
sequence rule extraction and decoding issues to 
tree-based by introducing virtual nodes, virtual 
hyper-edges and auxiliary rules (hyper-edges). In 
our system implementation, we design a general 
and configurable platform for our method, based 
on which we can easily realize many previous 
syntax-based methods. Finally, we examine our 
methods on the FBIS corpus and the NIST MT-
2003 Chinese-English translation task. Experi-
mental results show that our model greatly out-
performs the four baseline systems. Our study 
demonstrates that forest-based method and tree 
sequence-based method are complementary to 
each other and our proposed method is able to 
effectively combine the strengths of the two in-
dividual methods for syntax-based SMT. 
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Abstract

Statistical machine translation (SMT)
models require bilingual corpora for train-
ing, and these corpora are often multi-
lingual with parallel text in multiple lan-
guages simultaneously. We introduce an
active learning task of adding a new lan-
guage to an existing multilingual set of
parallel text and constructing high quality
MT systems, from each language in the
collection into this new target language.
We show that adding a new language using
active learning to the EuroParl corpus pro-
vides a significant improvement compared
to a random sentence selection baseline.
We also provide new highly effective sen-
tence selection methods that improve AL
for phrase-based SMT in the multilingual
and single language pair setting.

1 Introduction
The main source of training data for statistical
machine translation (SMT) models is a parallel
corpus. In many cases, the same information is
available in multiple languages simultaneously as
a multilingual parallel corpus, e.g., European Par-
liament (EuroParl) and U.N. proceedings. In this
paper, we consider how to use active learning (AL)
in order to add a new language to such a multilin-
gual parallel corpus and at the same time we con-
struct an MT system from each language in the
original corpus into this new target language. We
introduce a novel combined measure of translation
quality for multiple target language outputs (the
same content from multiple source languages).

The multilingual setting provides new opportu-
nities for AL over and above a single language
pair. This setting is similar to the multi-task AL
scenario (Reichart et al., 2008). In our case, the
multiple tasks are individual machine translation
tasks for several language pairs. The nature of the
translation processes vary from any of the source

∗Thanks to James Peltier for systems support for our ex-
periments. This research was partially supported by NSERC,
Canada (RGPIN: 264905) and an IBM Faculty Award.

languages to the new language depending on the
characteristics of each source-target language pair,
hence these tasks are competing for annotating the
same resource. However it may be that in a single
language pair, AL would pick a particular sentence
for annotation, but in a multilingual setting, a dif-
ferent source language might be able to provide a
good translation, thus saving annotation effort. In
this paper, we explore how multiple MT systems
can be used to effectively pick instances that are
more likely to improve training quality.

Active learning is framed as an iterative learn-
ing process. In each iteration new human labeled
instances (manual translations) are added to the
training data based on their expected training qual-
ity. However, if we start with only a small amount
of initial parallel data for the new target language,
then translation quality is very poor and requires
a very large injection of human labeled data to
be effective. To deal with this, we use a novel
framework for active learning: we assume we are
given a small amount of parallel text and a large
amount of monolingual source language text; us-
ing these resources, we create a large noisy par-
allel text which we then iteratively improve using
small injections of human translations. When we
build multiple MT systems from multiple source
languages to the new target language, each MT
system can be seen as a different ‘view’ on the de-
sired output translation. Thus, we can train our
multiple MT systems using either self-training or
co-training (Blum and Mitchell, 1998). In self-
training each MT system is re-trained using human
labeled data plus its own noisy translation output
on the unlabeled data. In co-training each MT sys-
tem is re-trained using human labeled data plus
noisy translation output from the other MT sys-
tems in the ensemble. We use consensus transla-
tions (He et al., 2008; Rosti et al., 2007; Matusov
et al., 2006) as an effective method for co-training
between multiple MT systems.

This paper makes the following contributions:
• We provide a new framework for multilingual

MT, in which we build multiple MT systems
and add a new language to an existing multi-
lingual parallel corpus. The multilingual set-
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ting allows new features for active learning
which we exploit to improve translation qual-
ity while reducing annotation effort.
• We introduce new highly effective sentence

selection methods that improve phrase-based
SMT in the multilingual and single language
pair setting.
• We describe a novel co-training based active

learning framework that exploits consensus
translations to effectively select only those
sentences that are difficult to translate for all
MT systems, thus sharing annotation cost.
• We show that using active learning to add

a new language to the EuroParl corpus pro-
vides a significant improvement compared to
the strong random sentence selection base-
line.

2 AL-SMT: Multilingual Setting
Consider a multilingual parallel corpus, such as
EuroParl, which contains parallel sentences for
several languages. Our goal is to add a new lan-
guage to this corpus, and at the same time to con-
struct high quality MT systems from the existing
languages (in the multilingual corpus) to the new
language. This goal is formalized by the following
objective function:

O =
D
∑

d=1

αd × TQ(MF d→E) (1)

where F d’s are the source languages in the mul-
tilingual corpus (D is the total number of lan-
guages), and E is the new language. The transla-
tion quality is measured by TQ for individual sys-
temsMF d→E ; it can be BLEU score or WER/PER
(Word error rate and position independent WER)
which induces a maximization or minimization
problem, respectively. The non-negative weights
αd reflect the importance of the different transla-
tion tasks and

∑

d αd = 1. AL-SMT formulation
for single language pair is a special case of this
formulation where only one of the αd’s in the ob-
jective function (1) is one and the rest are zero.
Moreover the algorithmic framework that we in-
troduce in Sec. 2.1 for AL in the multilingual set-
ting includes the single language pair setting as a
special case (Haffari et al., 2009).

We denote the large unlabeled multilingual cor-
pus by U := {(f1

j , .., f
D
j )}, and the small labeled

multilingual corpus by L := {(f1
i , .., f

D
i , ei)}. We

overload the term entry to denote a tuple in L or
in U (it should be clear from the context). For a
single language pair we use U and L.

2.1 The Algorithmic Framework

Algorithm 1 represents our AL approach for the
multilingual setting. We train our initial MT sys-
tems {MF d→E}Dd=1 on the multilingual corpus L,
and use them to translate all monolingual sen-
tences in U. We denote sentences in U together
with their multiple translations by U

+ (line 4 of
Algorithm 1). Then we retrain the SMT sys-
tems on L ∪ U

+ and use the resulting model to
decode the test set. Afterwards, we select and
remove a subset of highly informative sentences
from U, and add those sentences together with
their human-provided translations to L. This pro-
cess is continued iteratively until a certain level of
translation quality is met (we use the BLEU score,
WER and PER) (Papineni et al., 2002). In the
baseline, against which we compare our sentence
selection methods, the sentences are chosen ran-
domly.

When (re-)training the models, two phrase ta-
bles are learned for each SMT model: one from
the labeled data L and the other one from pseudo-
labeled data U

+ (which we call the main and aux-
iliary phrase tables respectively). (Ueffing et al.,
2007; Haffari et al., 2009) show that treating U

+

as a source for a new feature function in a log-
linear model for SMT (Och and Ney, 2004) allows
us to maximally take advantage of unlabeled data
by finding a weight for this feature using minimum
error-rate training (MERT) (Och, 2003).

Since each entry in U
+ has multiple transla-

tions, there are two options when building the aux-
iliary table for a particular language pair (F d, E):
(i) to use the corresponding translation ed of the
source language in a self-training setting, or (ii) to
use the consensus translation among all the trans-
lation candidates (e1, .., eD) in a co-training set-
ting (sharing information between multiple SMT
models).

A whole range of methods exist in the literature
for combining the output translations of multiple
MT systems for a single language pair, operating
either at the sentence, phrase, or word level (He et
al., 2008; Rosti et al., 2007; Matusov et al., 2006).
The method that we use in this work operates at
the sentence level, and picks a single high qual-
ity translation from the union of the n-best lists
generated by multiple SMT models. Sec. 5 gives
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Algorithm 1 AL-SMT-Multiple
1: Given multilingual corpora L and U

2: {MF d→E}Dd=1 = multrain(L, ∅)
3: for t = 1, 2, ... do
4: U

+ = multranslate(U, {MF d→E}Dd=1)
5: Select k sentences from U

+, and ask a hu-
man for their true translations.

6: Remove the k sentences from U, and add
the k sentence pairs (translated by human)
to L

7: {MF d→E}Dd=1 = multrain(L,U+)
8: Monitor the performance on the test set
9: end for

more details about features which are used in our
consensus finding method, and how it is trained.
Now let us address the important question of se-
lecting highly informative sentences (step 5 in the
Algorithm 1) in the following section.

3 Sentence Selection: Multiple Language
Pairs

The goal is to optimize the objective function
(1) with minimum human effort in providing the
translations. This motivates selecting sentences
which are maximally beneficial for all the MT sys-
tems. In this section, we present several protocols
for sentence selection based on the combined in-
formation from multiple language pairs.

3.1 Alternating Selection

The simplest selection protocol is to choose k sen-
tences (entries) in the first iteration of AL which
improve maximally the first modelMF 1→E , while
ignoring other models. In the second iteration, the
sentences are selected with respect to the second
model, and so on (Reichart et al., 2008).

3.2 Combined Ranking

Pick any AL-SMT scoring method for a single lan-
guage pair (see Sec. 4). Using this method, we
rank the entries in unlabeled data U for each trans-
lation task defined by language pair (F d, E). This
results in several ranking lists, each of which rep-
resents the importance of entries with respect to
a particular translation task. We combine these
rankings using a combined score:

Score
(

(f1, .., fD)
)

=
D
∑

d=1

αdRankd(fd)

Rankd(.) is the ranking of a sentence in the list for
the dth translation task (Reichart et al., 2008).

3.3 Disagreement Among the Translations

Disagreement among the candidate translations of
a particular entry is evidence for the difficulty of
that entry for different translation models. The
reason is that disagreement increases the possibil-
ity that most of the translations are not correct.
Therefore it would be beneficial to ask human for
the translation of these hard entries.

Now the question is how to quantify the no-
tion of disagreement among the candidate trans-
lations (e1, .., eD). We propose two measures of
disagreement which are related to the portion of
shared n-grams (n ≤ 4) among the translations:

• Let ec be the consensus among all the can-
didate translations, then define the disagree-
ment as

∑

d αd

(

1− BLEU(ec, ed)
)

.

• Based on the disagreement of every pair
of candidate translations:

∑

d αd
∑

d′
(

1 −
BLEU(ed′ , ed)

)

.

For the single language pair setting, (Haffari et
al., 2009) presents and compares several sentence
selection methods for statistical phrase-based ma-
chine translation. We introduce novel techniques
which outperform those methods in the next sec-
tion.

4 Sentence Selection: Single Language
Pair

Phrases are basic units of translation in phrase-
based SMT models. The phrases which may po-
tentially be extracted from a sentence indicate its
informativeness. The more new phrases a sen-
tence can offer, the more informative it is; since it
boosts the generalization of the model. Addition-
ally phrase translation probabilities need to be es-
timated accurately, which means sentences that of-
fer phrases whose occurrences in the corpus were
rare are informative. When selecting new sen-
tences for human translation, we need to pay atten-
tion to this tradeoff between exploration and ex-
ploitation, i.e. selecting sentences to discover new
phrases v.s. estimating accurately the phrase trans-
lation probabilities. Smoothing techniques partly
handle accurate estimation of translation probabil-
ities when the events occur rarely (indeed it is the
main reason for smoothing). So we mainly focus
on how to expand effectively the lexicon or set of
phrases of the model.

The more frequent a phrase (not a phrase pair)
is in the unlabeled data, the more important it is to

183



know its translation; since it is more likely to see
it in test data (specially when the test data is in-
domain with respect to unlabeled data). The more
frequent a phrase is in the labeled data, the more
unimportant it is; since probably we have observed
most of its translations.

In the labeled dataL, phrases are the ones which
are extracted by the SMT models; but what are
the candidate phrases in the unlabeled data U?
We use the currently trained SMT models to an-
swer this question. Each translation in the n-best
list of translations (generated by the SMT mod-
els) corresponds to a particular segmentation of
a sentence, which breaks that sentence into sev-
eral fragments (see Fig. 1). Some of these frag-
ments are the source language part of a phrase pair
available in the phrase table, which we call regular
phrases and denote their set byXreg

s for a sentence
s. However, there are some fragments in the sen-
tence which are not covered by the phrase table –
possibly because of the OOVs (out-of-vocabulary
words) or the constraints imposed by the phrase
extraction algorithm – called Xoov

s for a sentence
s. Each member of Xoov

s offers a set of potential
phrases (also referred to as OOV phrases) which
are not observed due to the latent segmentation of
this fragment. We present two generative models
for the phrases and show how to estimate and use
them for sentence selection.

4.1 Model 1

In the first model, the generative story is to gen-
erate phrases for each sentence based on indepen-
dent draws from a multinomial. The sample space
of the multinomial consists of both regular and
OOV phrases.

We build two models, i.e. two multinomials,
one for labeled data and the other one for unla-
beled data. Each model is trained by maximizing
the log-likelihood of its corresponding data:

LD :=
∑

s∈D
P̃ (s)

∑

x∈Xs

logP (x|θD) (2)

where D is either L or U , P̃ (s) is the empiri-
cal distribution of the sentences1, and θD is the
parameter vector of the corresponding probability

1P̃ (s) is the number of times that the sentence s is seen
in D divided by the number of all sentences in D.

distribution. When x ∈ Xoov
s , we will have

P (x|θU ) =
∑

h∈Hx

P (x, h|θU )

=
∑

h∈Hx

P (h)P (x|h,θU )

=
1

|Hx|
∑

h∈Hx

∏

y∈Y h
x

θU (y) (3)

where Hx is the space of all possible segmenta-
tions for the OOV fragment x, Y h

x is the result-
ing phrases from x based on the segmentation h,
and θU (y) is the probability of the OOV phrase
y in the multinomial associated with U . We let
Hx to be all possible segmentations of the frag-
ment x for which the resulting phrase lengths are
not greater than the maximum length constraint for
phrase extraction in the underlying SMT model.
Since we do not know anything about the segmen-
tations a priori, we have put a uniform distribution
over such segmentations.

Maximizing (2) to find the maximum likelihood
parameters for this model is an extremely diffi-
cult problem2. Therefore, we maximize the fol-
lowing lower-bound on the log-likelihood which
is derived using Jensen’s inequality:

LD ≥
∑

s∈D
P̃ (s)

[

∑

x∈Xreg
s

log θD(x)

+
∑

x∈Xoov
s

∑

h∈Hx

1

|Hx|
∑

y∈Y h
x

log θD(y)
]

(4)

Maximizing (4) amounts to set the probability of
each regular / potential phrase proportional to its
count / expected count in the data D.

Let ρk(xi:j) be the number of possible segmen-
tations from position i to position j of an OOV
fragment x, and k is the maximum phrase length;

ρk(x1:|x|) =











0, if |x| = 0

1, if |x| = 1
∑k

i=1 ρk(xi+1:|x|), otherwise

which gives us a dynamic programming algorithm
to compute the number of segmentation |Hx| =
ρk(x1:|x|) of the OOV fragment x. The expected
count of a potential phrase y based on an OOV
segment x is (see Fig. 1.c):

E[y|x] =

∑

i≤j δ[y=xi:j ]ρk(x1:i−1)ρk(xj+1:|x|)

ρk(x)

2Setting partial derivatives of the Lagrangian to zero
amounts to finding the roots of a system of multivariate poly-
nomials (a major topic in Algebraic Geometry).
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i will go to school on friday

Regular Phrases

OOV segment

go
to
school
go to
to school

2/3

2/3
1/3

1/3
1/3

i will
in friday

XXX
XXX

.01
.004...

...
...

(a)

potential phr.

source target prob

count

(b) (c)

Figure 1: The given sentence in (b) is segmented, based on the source side phrases extracted from the phrase table in (a), to
yield regular phrases and OOV segment. The table in (c) shows the potential phrases extracted from the OOV segment “go to
school” and their expected counts (denoted by count) where the maximum length for the potential phrases is set to 2. In the
example, “go to school” has 3 segmentations with maximum phrase length 2: (go)(to school), (go to)(school), (go)(to)(school).

where δ[C] is 1 if the condition C is true, and zero
otherwise. We have used the fact that the num-
ber of occurrences of a phrase spanning the indices
[i, j] is the product of the number of segmentations
of the left and the right sub-fragments, which are
ρk(x1:i−1) and ρk(xj+1:|x|) respectively.

4.2 Model 2

In the second model, we consider a mixture model
of two multinomials responsible for generating
phrases in each of the labeled and unlabeled data
sets. To generate a phrase, we first toss a coin and
depending on the outcome we either generate the
phrase from the multinomial associated with regu-
lar phrases θreg

U or potential phrases θoov
U :

P (x|θU ) := βUθreg
U (x) + (1− βU )θoov

U (x)

where θU includes the mixing weight β and the
parameter vectors of the two multinomials. The
mixture model associated with L is written simi-
larly. The parameter estimation is based on maxi-
mizing a lower-bound on the log-likelihood which
is similar to what was done for the Model 1.

4.3 Sentence Scoring

The sentence score is a linear combination of two
terms: one coming from regular phrases and the
other from OOV phrases:

φ1(s) :=
λ

|Xreg
s |

∑

x∈Xreg
s

log
P (x|θU )

P (x|θL)

+
1− λ
|Xoov

s |
∑

x∈Xoov
s

∑

h∈Hx

1

|Hx|
log

∏

y∈Y h
x

P (y|θU )

P (y|θL)

where we use either Model 1 or Model 2 for
P (.|θD). The first term is the log probability ra-
tio of regular phrases under phrase models corre-
sponding to unlabeled and labeled data, and the
second term is the expected log probability ratio
(ELPR) under the two models. Another option for

the contribution of OOV phrases is to take log of
expected probability ratio (LEPR):

φ2(s) :=
λ

|Xreg
s |

∑

x∈Xreg
s

log
P (x|θU )

P (x|θL)

+
1− λ
|Xoov

s |
∑

x∈Xoov
s

log
∑

h∈Hx

1

|Hx|
∏

y∈Y h
x

P (y|θU )

P (y|θL)

It is not difficult to prove that there is no difference
between Model 1 and Model 2 when ELPR scor-
ing is used for sentence selection. However, the
situation is different for LEPR scoring: the two
models produce different sentence rankings in this
case.

5 Experiments
Corpora. We pre-processed the EuroParl corpus
(http://www.statmt.org/europarl) (Koehn, 2005)
and built a multilingual parallel corpus with
653,513 sentences, excluding the Q4/2000 por-
tion of the data (2000-10 to 2000-12) which is
reserved as the test set. We subsampled 5,000
sentences as the labeled data L and 20,000 sen-
tences as U for the pool of untranslated sentences
(while hiding the English part). The test set con-
sists of 2,000 multi-language sentences and comes
from the multilingual parallel corpus built from
Q4/2000 portion of the data.
Consensus Finding. Let T be the union of the n-
best lists of translations for a particular sentence.
The consensus translation tc is

arg max
t∈T

w1
LM(t)
|t|

+w2
Qd(t)
|t|

+w3Rd(t)+w4,d

where LM(t) is the score from a 3-gram language
model, Qd(t) is the translation score generated by
the decoder for MF d→E if t is produced by the
dth SMT model, Rd(t) is the rank of the transla-
tion in the n-best list produced by the dth model,
w4,d is a bias term for each translation model to
make their scores comparable, and |t| is the length
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Figure 2: The performance of different sentence selection strategies as the iteration of AL loop goes on for three translation
tasks. Plots show the performance of sentence selection methods for single language pair in Sec. 4 compared to the GeomPhrase
(Haffari et al., 2009) and random sentence selection baseline.

of the translation sentence. The number of weights
wi is 3 plus the number of source languages, and
they are trained using minimum error-rate training
(MERT) to maximize the BLEU score (Och, 2003)
on a development set.
Parameters. We use add-ε smoothing where ε =
.5 to smooth the probabilities in Sec. 4; moreover
λ = .4 for ELPR and LEPR sentence scoring and
maximum phrase length k is set to 4. For the mul-
tilingual experiments (which involve four source
languages) we set αd = .25 to make the impor-
tance of individual translation tasks equal.
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Figure 3: Random sentence selection baseline using self-
training and co-training (Germanic languages to English).

5.1 Results

First we evaluate the proposed sentence selection
methods in Sec. 4 for the single language pair.
Then the best method from the single language
pair setting is used to evaluate sentence selection
methods for AL in multilingual setting. After
building the initial MT system for each experi-
ment, we select and remove 500 sentences from
U and add them together with translations to L for
10 total iterations. The random sentence selection
baselines are averaged over 3 independent runs.

mode self-train co-train
Method wer per wer per

Combined Rank 40.2 30.0 40.0 29.6
Alternate 41.0 30.2 40.1 30.1
Disagree-Pairwise 41.9 32.0 40.5 30.9
Disagree-Center 41.8 31.8 40.6 30.7
Random Baseline 41.6 31.0 40.5 30.7

Germanic languages to English

mode self-train co-train
Method wer per wer per

Combined Rank 37.7 27.3 37.3 27.0
Alternate 37.7 27.3 37.3 27.0
Random Baseline 38.6 28.1 38.1 27.6

Romance languages to English
Table 1: Comparison of multilingual selection methods with
WER (word error rate), PER (position independent WER).
95% confidence interval for WER numbers is 0.7 and for PER
numbers is 0.5. Bold: best result, italic: significantly better.

We use three language pairs in our single lan-
guage pair experiments: French-English, German-
English, and Spanish- English. In addition to ran-
dom sentence selection baseline, we also compare
the methods proposed in this paper to the best
method reported in (Haffari et al., 2009) denoted
by GeomPhrase, which differs from our models
since it considers each individual OOV segment as
a single OOV phrase and does not consider subse-
quences. The results are presented in Fig. 2. Se-
lecting sentences based on our proposed methods
outperform the random sentence selection baseline
and GeomPhrase. We suspect for the situations
where L is out-of-domain and the average phrase
length is relatively small, our method will outper-
form GeomPhrase even more.

For the multilingual experiments, we use Ger-
manic (German, Dutch, Danish, Swedish) and Ro-
mance (French, Spanish, Italian, Portuguese3) lan-

3A reviewer pointed out that EuroParl English-Portuguese
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Figure 4: The left/right plot show the performance of our AL methods for multilingual setting combined with self-training/co-
training. The sentence selection methods from Sec. 3 are compared with random sentence selection baseline. The top plots cor-
respond to Danish-German-Dutch-Swedish to English, and the bottom plots correspond to French-Spanish-Italian-Portuguese
to English.

guages as the source and English as the target lan-
guage as two sets of experiments.4 Fig. 3 shows
the performance of random sentence selection for
AL combined with self-training/co-training for the
multi-source translation from the four Germanic
languages to English. It shows that the co-training
mode outperforms the self-training mode by al-
most 1 BLEU point. The results of selection
strategies in the multilingual setting are presented
in Fig. 4 and Tbl. 1. Having noticed that Model
1 with ELPR performs well in the single language
pair setting, we use it to rank entries for individual
translation tasks. Then these rankings are used by
‘Alternate’ and ‘Combined Rank’ selection strate-
gies in the multilingual case. The ‘Combined
Rank’ method outperforms all the other methods
including the strong random selection baseline in
both self-training and co-training modes. The
disagreement-based selection methods underper-
form the baseline for translation of Germanic lan-
guages to English, so we omitted them for the Ro-
mance language experiments.

5.2 Analysis

The basis for our proposed methods has been the
popularity of regular/OOV phrases in U and their

data is very noisy and future work should omit this pair.
4Choice of Germanic and Romance for our experimental

setting is inspired by results in (Cohn and Lapata, 2007)

unpopularity in L, which is measured by P (x|θU )
P (x|θL) .

We need P (x|θU ), the estimated distribution of
phrases in U , to be as similar as possible to P ∗(x),
the true distribution of phrases in U . We investi-
gate this issue for regular/OOV phrases as follows:
• Using the output of the initially trained MT sys-
tem on L, we extract the regular/OOV phrases as
described in §4. The smoothed relative frequen-
cies give us the regular/OOV phrasal distributions.
• Using the true English translation of the sen-
tences in U , we extract the true phrases. Separat-
ing the phrases into two sets of regular and OOV
phrases defined by the previous step, we use the
smoothed relative frequencies and form the true
OOV/regular phrasal distributions.

We use the KL-divergence to see how dissim-
ilar are a pair of given probability distributions.
As Tbl. 2 shows, the KL-divergence between the
true and estimated distributions are less than that

De2En Fr2En Es2En
KL(P ∗reg ‖ Preg) 4.37 4.17 4.38
KL(P ∗reg ‖ unif ) 5.37 5.21 5.80
KL(P ∗oov ‖ Poov) 3.04 4.58 4.73
KL(P ∗oov ‖ unif ) 3.41 4.75 4.99

Table 2: For regular/OOV phrases, the KL-divergence be-
tween the true distribution (P ∗) and the estimated (P ) or uni-
form (unif ) distributions are shown, where:
KL(P ∗ ‖ P ) :=

P
x P ∗(x) log P∗(x)

P (x)
.
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Figure 5: The log-log Zipf plots representing the true and
estimated probabilities of a (source) phrase vs the rank of
that phrase in the German to English translation task. The
plots for the Spanish to English and French to English tasks
are also similar to the above plots, and confirm a power law
behavior in the true phrasal distributions.

between the true and uniform distributions, in all
three language pairs. Since uniform distribution
conveys no information, this is evidence that there
is some information encoded in the estimated dis-
tribution about the true distribution. However
we noticed that the true distributions of regu-
lar/OOV phrases exhibit Zipfian (power law) be-
havior5 which is not well captured by the esti-
mated distributions (see Fig. 5). Enhancing the es-
timated distributions to capture this power law be-
havior would improve the quality of the proposed
sentence selection methods.

6 Related Work
(Haffari et al., 2009) provides results for active
learning for MT using a single language pair. Our
work generalizes to the use of multilingual corpora
using new methods that are not possible with a sin-
gle language pair. In this paper, we also introduce
new selection methods that outperform the meth-
ods in (Haffari et al., 2009) even for MT with a
single language pair. In addition in this paper by
considering multilingual parallel corpora we were
able to introduce co-training for AL, while (Haf-
fari et al., 2009) only use self-training since they
are using a single language pair.

5This observation is at the phrase level and not at the word
(Zipf, 1932) or even n-gram level (Ha et al., 2002).

(Reichart et al., 2008) introduces multi-task ac-
tive learning where unlabeled data require annota-
tions for multiple tasks, e.g. they consider named-
entities and parse trees, and showed that multi-
ple tasks helps selection compared to individual
tasks. Our setting is different in that the target lan-
guage is the same across multiple MT tasks, which
we exploit to use consensus translations and co-
training to improve active learning performance.

(Callison-Burch and Osborne, 2003b; Callison-
Burch and Osborne, 2003a) provide a co-training
approach to MT, where one language pair creates
data for another language pair. In contrast, our
co-training approach uses consensus translations
and our setting for active learning is very differ-
ent from their semi-supervised setting. A Ph.D.
proposal by Chris Callison-Burch (Callison-burch,
2003) lays out the promise of AL for SMT and
proposes some algorithms. However, the lack of
experimental results means that performance and
feasibility of those methods cannot be compared
to ours.

While we use consensus translations (He et al.,
2008; Rosti et al., 2007; Matusov et al., 2006)
as an effective method for co-training in this pa-
per, unlike consensus for system combination, the
source languages for each of our MT systems are
different, which rules out a set of popular methods
for obtaining consensus translations which assume
translation for a single language pair. Finally, we
briefly note that triangulation (see (Cohn and Lap-
ata, 2007)) is orthogonal to the use of co-training
in our work, since it only enhances each MT sys-
tem in our ensemble by exploiting the multilingual
data. In future work, we plan to incorporate trian-
gulation into our active learning approach.

7 Conclusion
This paper introduced the novel active learning
task of adding a new language to an existing multi-
lingual set of parallel text. We construct SMT sys-
tems from each language in the collection into the
new target language. We show that we can take ad-
vantage of multilingual corpora to decrease anno-
tation effort thanks to the highly effective sentence
selection methods we devised for active learning
in the single language-pair setting which we then
applied to the multilingual sentence selection pro-
tocols. In the multilingual setting, a novel co-
training method for active learning in SMT is pro-
posed using consensus translations which outper-
forms AL-SMT with self-training.
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Abstract
This paper presents DEPEVAL(summ),
a dependency-based metric for automatic
evaluation of summaries. Using a rerank-
ing parser and a Lexical-Functional Gram-
mar (LFG) annotation, we produce a
set of dependency triples for each sum-
mary. The dependency set for each
candidate summary is then automatically
compared against dependencies generated
from model summaries. We examine a
number of variations of the method, in-
cluding the addition of WordNet, par-
tial matching, or removing relation la-
bels from the dependencies. In a test
on TAC 2008 and DUC 2007 data, DE-
PEVAL(summ) achieves comparable or
higher correlations with human judg-
ments than the popular evaluation metrics
ROUGE and Basic Elements (BE).

1 Introduction

Evaluation is a crucial component in the area of
automatic summarization; it is used both to rank
multiple participant systems in shared summariza-
tion tasks, such as the Summarization track at Text
Analysis Conference (TAC) 2008 and its Docu-
ment Understanding Conference (DUC) predeces-
sors, and to provide feedback to developers whose
goal is to improve their summarization systems.
However, manual evaluation of a large number
of documents necessary for a relatively unbiased
view is often unfeasible, especially in the contexts
where repeated evaluations are needed. Therefore,
there is a great need for reliable automatic metrics
that can perform evaluation in a fast and consistent
manner.

In this paper, we explore one such evaluation
metric, DEPEVAL(summ), based on the compar-
ison of Lexical-Functional Grammar (LFG) de-
pendencies between a candidate summary and

one or more model (reference) summaries. The
method is similar in nature to Basic Elements
(Hovy et al., 2005), in that it extends beyond
a simple string comparison of word sequences,
reaching instead to a deeper linguistic analysis
of the text. Both methods use hand-written ex-
traction rules to derive dependencies from con-
stituent parses produced by widely available Penn
II Treebank parsers. The difference between
DEPEVAL(summ) and BE is that in DEPE-
VAL(summ) the dependency extraction is accom-
plished through an LFG annotation of Cahill et
al. (2004) applied to the output of the reranking
parser of Charniak and Johnson (2005), whereas
in BE (in the version presented here) dependen-
cies are generated by the Minipar parser (Lin,
1995). Despite relying on a the same concept, our
approach outperforms BE in most comparisons,
and it often achieves higher correlations with hu-
man judgments than the string-matching metric
ROUGE (Lin, 2004).

A more detailed description of BE and ROUGE
is presented in Section 2, which also gives an ac-
count of manual evaluation methods employed at
TAC 2008. Section 3 gives a short introduction to
the LFG annotation. Section 4 describes in more
detail DEPEVAL(summ) and its variants. Sec-
tion 5 presents the experiment in which we com-
pared the perfomance of all three metrics on the
TAC 2008 data (consisting of 5,952 100-words
summaries) and on the DUC 2007 data (1,620
250-word summaries) and discusses the correla-
tions these metrics achieve. Finally, Section 6
presents conclusions and some directions for fu-
ture work.

2 Current practice in summary
evaluation

In the first Text Analysis Conference (TAC 2008),
as well as its predecessor, the Document Under-
standing Conference (DUC) series, the evaluation
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of summarization tasks was conducted using both
manual and automatic methods. Since manual
evaluation is still the undisputed gold standard,
both at TAC and DUC there was much effort to
evaluate manually as much data as possible.

2.1 Manual evaluation
Manual assessment, performed by human judges,
usually centers around two main aspects of sum-
mary quality: content and form. Similarly to Ma-
chine Translation, where these two aspects are rep-
resented by the categories of Accuracy and Flu-
ency, in automatic summarization evaluation per-
formed at TAC and DUC they surface as (Content)
Responsiveness and Readability. In TAC 2008
(Dang and Owczarzak, 2008), however, Content
Responsiveness was replaced by Overall Respon-
siveness, conflating these two dimensions and re-
flecting the overall quality of the summary: the
degree to which a summary was responding to
the information need contained in the topic state-
ment, as well as its linguistic quality. A sepa-
rate Readability score was still provided, assess-
ing the fluency and structure independently of con-
tent, based on such aspects as grammaticality, non-
redundancy, referential clarity, focus, structure,
and coherence. Both Overall Responsiveness and
Readability were evaluated according to a five-
point scale, ranging from “Very Poor” to “Very
Good”.

Content was evaluated manually by NIST asses-
sors using the Pyramid framework (Passonneau et
al., 2005). In the Pyramid evaluation, assessors
first extract all possible “information nuggets”, or
Summary Content Units (SCUs) from the four
human-crafted model summaries on a given topic.
Each SCU is assigned a weight in proportion to the
number of model summaries in which it appears,
on the assumption that information which appears
in most or all human-produced model summaries
is more essential to the topic. Once all SCUs are
harvested from the model summaries, assessors
determine how many of these SCUs are present
in each of the automatic peer summaries. The
final score for an automatic summary is its total
SCU weight divided by the maximum SCU weight
available to a summary of average length (where
the average length is determined by the mean SCU
count of the model summaries for this topic).

All types of manual assessment are expensive
and time-consuming, which is why it can be rarely

provided for all submitted runs in shared tasks
such as the TAC Summarization track. It is also
not a viable tool for system developers who ide-
ally would like a fast, reliable, and above all au-
tomatic evaluation method that can be used to im-
prove their systems. The creation and testing of
automatic evaluation methods is, therefore, an im-
portant research venue, and the goal is to produce
automatic metrics that will correlate with manual
assessment as closely as possible.

2.2 Automatic evaluation
Automatic metrics, because of their relative speed,
can be applied more widely than manual evalua-
tion. In TAC 2008 Summarization track, all sub-
mitted runs were scored with the ROUGE (Lin,
2004) and Basic Elements (BE) metrics (Hovy et
al., 2005).

ROUGE is a collection of string-comparison
techniques, based on matching n-grams between
a candidate string and a reference string. The
string in question might be a single sentence (as
in the case of translation), or a set of sentences
(as in the case of summaries). The variations of
ROUGE range from matching unigrams (i.e. sin-
gle words) to matching four-grams, with or with-
out lemmatization and stopwords, with the options
of using different weights or skip-n-grams (i.e.
matching n-grams despite intervening words). The
two versions used in TAC 2008 evaluations were
ROUGE-2 and ROUGE-SU4, where ROUGE-2
calculates the proportion of matching bigrams be-
tween the candidate summary and the reference
summaries, and ROUGE-SU4 is a combination of
unigram match and skip-bigram match with skip
distance of 4 words.

BE, on the other hand, employs a certain de-
gree of linguistic analysis in the assessment pro-
cess, as it rests on comparing the “Basic Elements”
between the candidate and the reference. Basic El-
ements are syntactic in nature, and comprise the
heads of major syntactic constituents in the text
(noun, verb, adjective, etc.) and their modifiers
in a dependency relation, expressed as a triple
(head, modifier, relation type). First, the input text
is parsed with a syntactic parser, then Basic Ele-
ments are extracted from the resulting parse, and
the candidate BEs are matched against the refer-
ence BEs. In TAC 2008 and DUC 2008 evalua-
tions the BEs were extracted with Minipar (Lin,
1995). Since BE, contrary to ROUGE, does not
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rely solely on the surface sequence of words to de-
termine similarity between summaries, but delves
into what could be called a shallow semantic struc-
ture, comprising thematic roles such as subject and
object, it is likely to notice identity of meaning
where such identity is obscured by variations in
word order. In fact, when it comes to evaluation
of automatic summaries, BE shows higher corre-
lations with human judgments than ROUGE, al-
though the difference is not large enough to be
statistically significant. In the TAC 2008 evalua-
tions, BE-HM (a version of BE where the words
are stemmed and the relation type is ignored) ob-
tained a correlation of 0.911 with human assess-
ment of overall responsiveness and 0.949 with the
Pyramid score, whereas ROUGE-2 showed corre-
lations of 0.894 and 0.946, respectively.

While using dependency information is an im-
portant step towards integrating linguistic knowl-
edge into the evaluation process, there are many
ways in which this could be approached. Since
this type of evaluation processes information in
stages (constituent parser, dependency extraction,
and the method of dependency matching between
a candidate and a reference), there is potential
for variance in performance among dependency-
based evaluation metrics that use different com-
ponents. Therefore, it is interesting to compare
our method, which relies on the Charniak-Johnson
parser and the LFG annotation, with BE, which
uses Minipar to parse the input and produce de-
pendencies.

3 Lexical-Functional Grammar and the
LFG parser

The method discussed in this paper rests on the
assumptions of Lexical-Functional Grammar (Ka-
plan and Bresnan, 1982; Bresnan, 2001) (LFG). In
LFG sentence structure is represented in terms of
c(onstituent)-structure and f(unctional)-structure.
C-structure represents the word order of the sur-
face string and the hierarchical organisation of
phrases in terms of trees. F-structures are re-
cursive feature structures, representing abstract
grammatical relations such as subject, object,
oblique, adjunct, etc., approximating to predicate-
argument structure or simple logical forms. C-
structure and f-structure are related by means of
functional annotations in c-structure trees, which
describe f-structures.

While c-structure is sensitive to surface rear-

rangement of constituents, f-structure abstracts
away from (some of) the particulars of surface re-
alization. The sentences John resigned yesterday
and Yesterday, John resigned will receive differ-
ent tree representations, but identical f-structures.
The f-structure can also be described in terms of a
flat set of triples, or dependencies. In triples for-
mat, the f-structure for these two sentences is rep-
resented in 1.

(1)

subject(resign,john)
person(john,3)
number(john,sg)
tense(resign,past)
adjunct(resign,yesterday)
person(yesterday,3)
number(yesterday,sg)

Cahill et al. (2004), in their presentation of
LFG parsing resources, distinguish 32 types of
dependencies, divided into two major groups: a
group of predicate-only dependencies and non-
predicate dependencies. Predicate-only dependen-
cies are those whose path ends in a predicate-
value pair, describing grammatical relations. For
instance, in the sentence John resigned yester-
day, predicate-only dependencies would include:
subject(resign, john) and adjunct(resign, yester-
day), while non-predicate dependencies are per-
son(john,3), number(john,sg), tense(resign,past),
person(yesterday,3), num(yesterday,sg). Other
predicate-only dependencies include: apposition,
complement, open complement, coordination, de-
terminer, object, second object, oblique, second
oblique, oblique agent, possessive, quantifier, rel-
ative clause, topic, and relative clause pronoun.
The remaining non-predicate dependencies are:
adjectival degree, coordination surface form, fo-
cus, complementizer forms: if, whether, and that,
modal, verbal particle, participle, passive, pro-
noun surface form, and infinitival clause.

These 32 dependencies, produced by LFG an-
notation, and the overlap between the set of de-
pendencies derived from the candidate summary
and the reference summaries, form the basis of our
evaluation method, which we present in Section 4.

First, a summary is parsed with the Charniak-
Johnson reranking parser (Charniak and Johnson,
2005) to obtain the phrase-structure tree. Then,
a sequence of scripts annotates the output, trans-
lating the relative phrase position into f-structural
dependencies. The treebank-based LFG annota-
tion used in this paper and developed by Cahill et
al. (2004) obtains high precision and recall rates.
As reported in Cahill et al. (2008), the version of
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the LFG parser which applies the LFG annotation
algorithm to the earlier Charniak’s parser (Char-
niak, 2000) obtains an f-score of 86.97 on the Wall
Street Journal Section 23 test set. The LFG parser
is robust as well, with coverage levels exceeding
99.9%, measured in terms of complete spanning
parse.

4 Dependency-based evaluation

Our dependency-based evaluation method, simi-
larly to BE, compares two unordered sets of de-
pendencies: one bag contains dependencies har-
vested from the candidate summary and the other
contains dependencies from one or more reference
summaries. Overlap between the candidate bag
and the reference bag is calculated in the form
of precision, recall, and the f-measure (with pre-
cision and recall equally weighted). Since for
ROUGE and BE the only reported score is recall,
we present recall results here as well, calculated as
in 2:

(2) DEPEVAL(summ) Recall = |Dcand|∩|Dref |
|Dref |

where Dcand are the candidate dependencies
and Dref are the reference dependencies.

The dependency-based method using LFG an-
notation has been successfully employed in the
evaluation of Machine Translation (MT). In
Owczarzak (2008), the method achieves equal or
higher correlations with human judgments than
METEOR (Banerjee and Lavie, 2005), one of the
best-performing automatic MT evaluation metrics.
However, it is not clear that the method can be ap-
plied without change to the task of assessing au-
tomatic summaries; after all, the two tasks - of
summarization and translation - produce outputs
that are different in nature. In MT, the unit of
text is a sentence; text is translated, and the trans-
lation evaluated, sentence by sentence. In auto-
matic summarization, the output unit is a sum-
mary with length varying depending on task, but
which most often consists of at least several sen-
tences. This has bearing on the matching pro-
cess: with several sentences on the candidate and
reference side each, there is increased possibility
of trivial matches, such as dependencies contain-
ing function words, which might inflate the sum-
mary score even in the absence of important con-
tent. This is particularly likely if we were to em-
ploy partial matching for dependencies. Partial
matching (indicated in the result tables with the

tag pm) “splits” each predicate dependency into
two, replacing one or the other element with a
variable, e.g. for the dependency subject(resign,
John) we would obtain two partial dependencies
subject(resign, x) and subject(x, John). This pro-
cess helps circumvent some of the syntactic and
lexical variation between a candidate and a refer-
ence, and it proved very useful in MT evaluation
(Owczarzak, 2008). In summary evaluation, as
will be shown in Section 5, it leads to higher cor-
relations with human judgments only in the case
of human-produced model summaries, because al-
most any variation between two model summaries
is “legal”, i.e. either a paraphrase or another, but
equally relevant, piece of information. For au-
tomatic summaries, which are of relatively poor
quality, partial matching lowers our method’s abil-
ity to reflect human judgment, because it results in
overly generous matching in situations where the
examined information is neither a paraphrase nor
relevant.

Similarly, evaluating a summary against the
union of all references, as we do in the base-
line version of our method, increases the pool
of possible matches, but may also produce score
inflation through matching repetitive information
across models. To deal with this, we produce a
version of the score (marked in the result tables
with the tag one) that counts only one “hit” for ev-
ery dependency match, independent of how many
instances of a given dependency are present in the
comparison.

The use of WordNet1 module (Rennie, 2000)
did not provide a great advantage (see results
tagged with wn), and sometimes even lowered our
correlations, especially in evaluation of automatic
systems. This makes sense if we take into consid-
eration that WordNet lists all possible synonyms
for all possible senses of a word, and so, given
a great number of cross-sentence comparisons in
multi-sentence summaries, there is an increased
risk of spurious matches between words which,
despite being potentially synonymous in certain
contexts, are not equivalent in the text.

Another area of concern was the potential noise
introduced by the parser and the annotation pro-
cess. Due to parsing errors, two otherwise equiv-
alent expressions might be encoded as differ-
ing sets of dependencies. In MT evaluation,
the dependency-based method can alleviate parser

1http://wordnet.princeton.edu/
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noise by comparing n-best parses for the candidate
and the reference (Owczarzak et al., 2007), but this
is not an efficient solution for comparing multi-
sentence summaries. We have therefore attempted
to at least partially counteract this issue by remov-
ing relation labels from the dependencies (i.e. pro-
ducing dependencies of the form (resign, John) in-
stead of subject(resign, John)), which did provide
some improvement (see results tagged with norel).

Finally, we experimented with a predicate-only
version of the evaluation, where only the predi-
cate dependencies participate in the comparison,
excluding dependencies that provide purely gram-
matical information such as person, tense, or num-
ber (tagged in the results table as pred). This
move proved beneficial only in the case of system
summaries, perhaps by decreasing the number of
trivial matches, but decreased the method’s corre-
lation for model summaries, where such detailed
information might be necessary to assess the de-
gree of similarity between two human summaries.

5 Experimental results

The first question we have to ask is: which of
the manual evaluation categories do we want our
metric to imitate? It is unlikely that a single au-
tomatic measure will be able to correctly reflect
both Readability and Content Responsiveness, as
form and content are separate qualities and need
different measures. Content seems to be the more
important aspect, especially given that Readabil-
ity can be partially derived from Responsiveness
(a summary high in content cannot be very low
in readability, although some very readable sum-
maries can have little relevant content). Content
Responsiveness was provided in DUC 2007 data,
but not in TAC 2008, where the extrinsic Pyra-
mid measure was used to evaluate content. It is,
in fact, preferable to compare our metric against
the Pyramid score rather than Content Responsive-
ness, because both the Pyramid and our method
aim to measure the degree of similarity between
a candidate and a model, whereas Content Re-
sponsiveness is a direct assessment of whether the
summary’s content is adequate given a topic and
a source text. The Pyramid is, at the same time,
a costly manual evaluation method, so an auto-
matic metric that successfully emulates it would
be a useful replacement.

Another question is whether we focus on
system-level or summary-level evaluation. The

correlation values at the summary-level are gener-
ally much lower than on the system-level, which
means the metrics are better at evaluating sys-
tem performance than the quality of individual
summaries. System-level evaluations are essen-
tial to shared summarization tasks; summary-level
assessment might be useful to developers who
want to test the effect of particular improvements
in their system. Of course, the ideal evaluation
metric would show high correlations with human
judgment on both levels.

We used the data from the TAC 2008 and
DUC 2007 Summarization tracks. The first set
comprised 58 system submissions and 4 human-
produced model summaries for each of the 96 sub-
topics (there were 48 topics, each of which re-
quired two summaries: a main and an update sum-
mary), as well as human-produced Overall Re-
sponsiveness and Pyramid scores for each sum-
mary. The second set included 32 system submis-
sions and 4 human models for each of the 45 top-
ics. For fair comparison of models and systems,
we used jackknifing: while each model was evalu-
ated against the remaining three models, each sys-
tem summary was evaluated four times, each time
against a different set of three models, and the four
scores were averaged.

5.1 System-level correlations
Table 1 presents system-level Pearson’s cor-
relations between the scores provided by our
dependency-based metric DEPEVAL(summ),
as well as the automatic metrics ROUGE-2,
ROUGE-SU4, and BE-HM used in the TAC
evaluation, and the manual Pyramid scores, which
measured the content quality of the systems.
It also includes correlations with the manual
Overall Responsiveness score, which reflected
both content and linguistic quality. Table 3 shows
the correlations with Content Responsiveness
for DUC 2007 data for ROUGE, BE, and those
few select versions of DEPEVAL(summ) which
achieve optimal results on TAC 2008 data (for
a more detailed discussion of the selection see
Section 6).

The correlations are listed for the following ver-
sions of our method: pm - partial matching for
dependencies; wn - WordNet; pred - matching
predicate-only dependencies; norel - ignoring de-
pendency relation label; one - counting a match
only once irrespective of how many instances of
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TAC 2008 Pyramid Overall Responsiveness
Metric models systems models systems
DEPEVAL(summ): Variations
base 0.653 0.931 0.883 0.862
pm 0.690 0.811 0.943 0.740
wn 0.687 0.929 0.888 0.860
pred 0.415 0.946 0.706 0.909
norel 0.676 0.929 0.880 0.861
one 0.585 0.958* 0.858 0.900
DEPEVAL(summ): Combinations
pm wn 0.694 0.903 0.952* 0.839
pm pred 0.534 0.880 0.898 0.831
pm norel 0.722 0.907 0.936 0.835
pm one 0.611 0.950 0.876 0.895
wn pred 0.374 0.946 0.716 0.912
wn norel 0.405 0.941 0.752 0.905
wn one 0.611 0.952 0.856 0.897
pred norel 0.415 0.945 0.735 0.905
pred one 0.415 0.953 0.721 0.921*
norel one 0.600 0.958* 0.863 0.900
pm wn pred 0.527 0.870 0.905 0.821
pm wn norel 0.738 0.897 0.931 0.826
pm wn one 0.634 0.936 0.887 0.881
pm pred norel 0.642 0.876 0.946 0.815
pm pred one 0.504 0.948 0.817 0.907
pm norel one 0.725 0.941 0.905 0.880
wn pred norel 0.433 0.944 0.764 0.906
wn pred one 0.385 0.950 0.722 0.919
wn norel one 0.632 0.954 0.872 0.896
pred norel one 0.452 0.955 0.756 0.919
pm wn pred norel 0.643 0.861 0.940 0.800
pm wn pred one 0.486 0.932 0.809 0.890
pm pred norel one 0.711 0.939 0.881 0.891
pm wn norel one 0.743* 0.930 0.902 0.870
wn pred norel one 0.467 0.950 0.767 0.918
pm wn pred norel one 0.712 0.927 0.887 0.880
Other metrics
ROUGE-2 0.277 0.946 0.725 0.894
ROUGE-SU4 0.457 0.928 0.866 0.874
BE-HM 0.423 0.949 0.656 0.911

Table 1: System-level Pearson’s correlation between auto-
matic and manual evaluation metrics for TAC 2008 data.

a particular dependency are present in the candi-
date and reference. For each of the metrics, in-
cluding ROUGE and BE, we present the correla-
tions for recall. The highest result in each category
is marked by an asterisk. The background gradi-
ent indicates whether DEPEVAL(summ) correla-
tion is higher than all three competitors ROUGE-
2, ROUGE-SU4, and BE (darkest grey), two of the
three (medium grey), one of the three (light grey),
or none (white). The 95% confidence intervals are
not included here for reasons of space, but their
comparison suggests that none of the system-level
differences in correlation levels are large enough
to be significant. This is because the intervals
themselves are very wide, due to relatively small
number of summarizers (58 automatic and 8 hu-
man for TAC; 32 automatic and 10 human for
DUC) involved in the comparison.

5.2 Summary-level correlations
Tables 2 and 4 present the same correlations,
but this time on the level of individual sum-
maries. As before, the highest level in each
category is marked by an asterisk. Contrary to
system-level, here some correlations obtained by

DEPEVAL(summ) are significantly higher than
those achieved by the three competing metrics,
ROUGE-2, ROUGE-SU4, and BE-HM, as de-
termined by the confidence intervals. The let-
ters in parenthesis indicate that a given DEPE-
VAL(summ) variant is significantly better at cor-
relating with human judgment than ROUGE-2 (=
R2), ROUGE-SU4 (= R4), or BE-HM (= B).

6 Discussion and future work

It is obvious that none of the versions performs
best across the board; their different character-
istics might render them better suited either for
models or for automatic systems, but not for
both at the same time. This can be explained if
we understand that evaluating human gold stan-
dard summaries and automatically generated sum-
maries of poor-to-medium quality is, in a way, not
the same task. Given that human models are by
default well-formed and relevant, relaxing any re-
straints on matching between them (i.e. allowing
partial dependencies, removing the relation label,
or adding synonyms) serves, in effect, to accept as
correct either (1) the same conceptual information
expressed in different ways (where the difference
might be real or introduced by faulty parsing),
or (2) other information, yet still relevant to the
topic. Accepting information of the former type
as correct will ratchet up the score for the sum-
mary and the correlation with the summary’s Pyra-
mid score, which measures identity of information
across summaries. Accepting the first and second
type of information will raise the score and the
correlation with Responsiveness, which measures
relevance of information to the particular topic.
However, in evaluating system summaries such re-
laxation of matching constraints will result in ac-
cepting irrelevant and ungrammatical information
as correct, driving up the DEPEVAL(summ) score,
but lowering its correlation with both Pyramid and
Responsiveness. In simple words, it is okay to give
a model summary “the benefit of doubt”, and ac-
cept its content as correct even if it is not match-
ing other model summaries exactly, but the same
strategy applied to a system summary might cause
mass over-estimation of the summary’s quality.

This substantial difference in the nature of
human-generated models and system-produced
summaries has impact on all automatic means of
evaluation, as long as we are limited to methods
that operate on more shallow levels than a full
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TAC 2008 Pyramid Overall Responsiveness
Metric models systems models systems
DEPEVAL(summ): Variations
base 0.436 (B) 0.595 (R2,R4,B) 0.186 0.373 (R2,B)
pm 0.467 (B) 0.584 (R2,B) 0.183 0.368 (B)
wn 0.448 (B) 0.592 (R2,B) 0.192 0.376 (R2,R4,B)
pred 0.344 0.543 (B) 0.170 0.327
norel 0.437 (B) 0.596* (R2,R4,B) 0.186 0.373 (R2,B)
one 0.396 0.587 (R2,B) 0.171 0.376 (R2,R4,B)
DEPEVAL(summ): Combinations
pm wn 0.474 (B) 0.577 (R2,B) 0.194* 0.371 (R2,B)
pm pred 0.407 0.537 (B) 0.153 0.337
pm norel 0.483 (R2,B) 0.584 (R2,B) 0.168 0.362
pm one 0.402 0.577 (R2,B) 0.167 0.384 (R2,R4,B)
wn pred 0.352 0.537 (B) 0.182 0.328
wn norel 0.364 0.541 (B) 0.187 0.329
wn one 0.411 0.581 (R2,B) 0.182 0.384 (R2,R4,B)
pred norel 0.351 0.547 (B) 0.169 0.327
pred one 0.325 0.542 (B) 0.171 0.347
norel one 0.403 0.589 (R2,B) 0.176 0.377 (R2,R4,B)
pm wn pred 0.415 0.526 (B) 0.167 0.337
pm wn norel 0.488* (R2,R4,B) 0.576 (R2,B) 0.168 0.366 (B)
pm wn one 0.417 0.563 (B) 0.179 0.389* (R2,R4.B)
pm pred norel 0.433 (B) 0.538 (B) 0.124 0.333
pm pred one 0.357 0.545 (B) 0.151 0.381 (R2,R4,B)
pm norel one 0.437 (B) 0.567 (R2,B) 0.174 0.369 (B)
wn pred norel 0.353 0.541 (B) 0.180 0.324
wn pred one 0.328 0.535 (B) 0.179 0.346
wn norel one 0.416 0.584 (R2,B) 0.185 0.385 (R2,R4,B)
pred norel one 0.336 0.549 (B) 0.169 0.351
pm wn pred norel 0.428 (B) 0.524 (B) 0.120 0.334
pm wn pred one 0.363 0.525 (B) 0.164 0.380 (R2,R4,B)
pm pred norel one 0.420 (B) 0.533 (B) 0.154 0.375 (R2,R4,B)
pm wn norel one 0.452 (B) 0.558 (B) 0.179 0.376 (R2,R4,B)
wn pred norel one 0.338 0.544 (B) 0.178 0.349
pm wn pred norel one 0.427 (B) 0.522 (B) 0.153 0.379 (R2,R4,B)
Other metrics
ROUGE-2 0.307 0.527 0.098 0.323
ROUGE-SU4 0.318 0.557 0.153 0.327
BE-HM 0.239 0.456 0.135 0.317

Table 2: Summary-level Pearson’s correlation between automatic and manual
evaluation metrics for TAC 2008 data.

DUC 2007 Content Responsiveness
Metric models systems
DEPEVAL(summ) 0.7341 0.8429
DEPEVAL(summ) wn 0.7355 0.8354
DEPEVAL(summ) norel 0.7394 0.8277
DEPEVAL(summ) one 0.7507 0.8634
ROUGE-2 0.4077 0.8772
ROUGE-SU4 0.2533 0.8297
BE-HM 0.5471 0.8608

Table 3: System-level Pearson’s correlation
between automatic metrics and Content Respon-
siveness for DUC 2007 data. For model sum-
maries, only DEPEVAL correlations are signif-
icant (the 95% confidence interval does not in-
clude zero). None of the differences between
metrics are significant at the 95% level.

DUC 2007 Content Responsiveness
Metric models systems
DEPEVAL(summ) 0.2059 0.4150
DEPEVAL(summ) wn 0.2081 0.4178
DEPEVAL(summ) norel 0.2119 0.4185
DEPEVAL(summ) one 0.1999 0.4101
ROUGE-2 0.1501 0.3875
ROUGE-SU4 0.1397 0.4264
BE-HM 0.1330 0.3722

Table 4: Summary-level Pearson’s correlation
between automatic metrics and Content Respon-
siveness for DUC 2007 data. ROUGE-SU4 and
BE correlations for model summaries are not
statistically significant. None of the differences
between metrics are significant at the 95% level.

semantic and pragmatic analysis against human-
level world knowledge. The problem is twofold:
first, our automatic metrics measure identity rather
than quality. Similarity of content between a can-
didate summary and one or more references is act-
ing as a proxy measure for the quality of the can-
didate summary; yet, we cannot forget that the re-
lation between these two features is not purely lin-
ear. A candidate highly similar to the reference
will be, necessarily, of good quality, but a candi-
date which is dissimilar from a reference is not
necessarily of low quality (vide the case of par-
allel model summaries, which almost always con-
tain some non-overlapping information).

The second problem is the extent to which our
metrics are able to distinguish content through
the veil of differing forms. Synonyms, para-
phrases, or pragmatic features such as the choice
of topic and focus render simple string-matching
techniques ineffective, especially in the area of
summarization where the evaluation happens on
a supra-sentential level. As a result, then, a lot
of effort was put into developing metrics that
can identify similar content despite non-similar
form, which naturally led to the application of
linguistically-oriented approaches that look be-
yond surface word order.

Essentially, though, we are using imperfect
measures of similarity as an imperfect stand-in for
quality, and the accumulated noise often causes
a divergence in our metrics’ performance with
model and system summaries. Much like the in-
verse relation of precision and recall, changes and
additions that improve a metric’s correlation with
human scores for model summaries often weaken
the correlation for system summaries, and vice
versa. Admittedly, we could just ignore this prob-
lem and focus on increasing correlations for auto-
matic summaries only; after all, the whole point
of creating evaluation metrics is to score and rank
the output of systems. Such a perspective can be
rather short-sighted, though, given that we expect
continuous improvement from the summarization
systems to, ideally, human levels, so the same is-
sues which now prevent high correlations for mod-
els will start surfacing in evaluation of system-
produced summaries as well. Using metrics that
only perform reliably for low-quality summaries
might prevent us from noticing when those sum-
maries become better. Our goal should be, there-
fore, to develop a metric which obtains high cor-
relations in both categories, with the assumption
that such a metric will be more reliable in evaluat-
ing summaries of varying quality.
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Since there is no single winner among all 32
variants of DEPEVAL(summ) on TAC 2008 data,
we must decide which of the categories is most im-
portant to a successful automatic evaluation met-
ric. Correlations with Overall Responsiveness are
in general lower than those with the Pyramid score
(except in the case of system-level models). This
makes sense, if we rememeber that Overall Re-
sponsiveness judges content as well as linguistic
quality, which are two different dimensions and so
a single automatic metric is unlikely to reflect it
well, and that it judges content in terms of its rel-
evance to topic, which is also beyond the reach
of contemporary metrics which can at most judge
content similarity to a model. This means that the
Pyramid score makes for a more relevant metric to
emulate.

The last dilemma is whether we choose to focus
on system- or summary-level correlations. This
ties in with the purpose which the evaluation met-
ric should serve. In comparisons of multiple sys-
tems, such as in TAC 2008, the value is placed
in the correct ordering of these systems; while
summary-level assessment can give us important
feedback and insight during the system develop-
ment stage.

The final choice among all DEPEVAL(summ)
versions hinges on all of these factors: we should
prefer a variant which correlates highly with the
Pyramid score rather than with Responsiveness,
which minimizes the gap between model and au-
tomatic peer correlations while retaining relatively
high values for both, and which fulfills these re-
quirements similarly well on both summary- and
system-levels. Three such variants are the base-
line DEPEVAL(summ), the WordNet version DE-
PEVAL(summ) wn, and the version with removed
relation labels DEPEVAL(summ) norel. Both the
baseline and norel versions achieve significant im-
provement over ROUGE and BE in correlations
with the Pyramid score for automatic summaries,
and over BE for models, on the summary level. In
fact, almost in all categories they achieve higher
correlations than ROUGE and BE. The only ex-
ceptions are the correlations with Pyramid for sys-
tems at the system-level, but there the results are
close and none of the differences in that category
are significant. To balance this exception, DE-
PEVAL(summ) achieves much higher correlations
with the Pyramid scores for model summaries than
either ROUGE or BE on the system level.

In order to see whether the DEPEVAL(summ)
advantage holds for other data, we examined the
most optimal versions (baseline, wn, norel, as
well as one, which is the closest counterpart
to label-free BE-HM) on data from DUC 2007.
Because only a portion of the DUC 2007 data
was evaluated with Pyramid, we chose to look
rather at the Content Responsiveness scores. As
can be seen in Tables 3 and 4, the same pat-
terns hold: decided advantage over ROUGE/BE
when it comes to model summaries (especially
at system-level), comparable results for automatic
summaries. Since DUC 2007 data consisted of
fewer summaries (1,620 vs 5,952 at TAC) and
fewer submissions (32 vs 57 at TAC), some results
did not reach statistical significance. In Table 3, in
the models category, only DEPEVAL(summ) cor-
relations are significant. In Table 4, in the model
category, only DEPEVAL(summ) and ROUGE-2
correlations are significant. Note also that these
correlations with Content Responsiveness are gen-
erally lower than those with Pyramid in previous
tables, but in the case of summary-level compari-
son higher than the correlations with Overall Re-
sponsiveness. This is to be expected given our
earlier discussion of the differences in what these
metrics measure.

As mentioned before, the dependency-based
evaluation can be approached from different an-
gles, leading to differences in performance. This
is exemplified in our experiment, where DEPE-
VAL(summ) outperforms BE, even though both
these metrics rest on the same general idea. The
new implementation of BE presented at the TAC
2008 workshop (Tratz and Hovy, 2008) introduces
transformations for dependencies in order to in-
crease the number of matches among elements that
are semantically similar yet differ in terms of syn-
tactic structure and/or lexical choices, and adds
WordNet for synonym matching. Its core modules
were updated as well: Minipar was replaced with
the Charniak-Johnson reranking parser (Charniak
and Johnson, 2005), Named Entity identification
was added, and the BE extraction is conducted us-
ing a set of Tregex rules (Levy and Andrew, 2006).
Since our method, presented in this paper, also
uses the reranking parser, as well as WordNet, it
would be interesting to compare both methods di-
rectly in terms of the performance of the depen-
dency extraction procedure.

197



References
Satanjeev Banerjee and Alon Lavie. 2005. METEOR:

An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL 2005 Workshop on Intrinsic and
Extrinsic Evaluation Measures for MT and/or Sum-
marization, pages 65–73, Ann Arbor, MI, USA.

Joan Bresnan. 2001. Lexical-Functional Syntax.
Blackwell, Oxford.

Aoife Cahill, Michael Burke, Ruth O’Donovan, Josef
van Genabith, and Andy Way. 2004. Long-
distance dependency resolution in automatically ac-
quired wide-coverage PCFG-based LFG approxima-
tions. In Proceedings of the 42th Annual Meeting
of the Association for Computational Linguistics,
pages 320–327, Barcelona, Spain.

Aoife Cahill, Michael Burke, Ruth O’Donovan, Stefan
Riezler, Josef van Genabith, and Andy Way. 2008.
Wide-coverage deep statistical parsing using auto-
matic dependency structure annotation. Comput.
Linguist., 34(1):81–124.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and MaxEnt discriminative
reranking. In ACL 2005: Proceedings of the 43rd
Annual Meeting of the Association for Computa-
tional Linguistics, pages 173–180, Morristown, NJ,
USA. Association for Computational Linguistics.

Eugene Charniak. 2000. A maximum entropy inspired
parser. In Proceedings of the 1st Annual Meeting of
the North American Chapter of the Association for
Computational Linguistics, pages 132–139, Seattle,
WA, USA.

Hoa Trang Dang and Karolina Owczarzak. 2008.
Overview of the tac 2008 summarization track: Up-
date task. In to appear in: Proceedings of the 1st
Text Analysis Conference (TAC).

Eduard Hovy, Chin-Yew Lin, and Liang Zhou. 2005.
Evaluating DUC 2005 using Basic Elements. In
Proceedings of the 5th Document Understanding
Conference (DUC).

Ronald M. Kaplan and Joan Bresnan, 1982. The Men-
tal Representation of Grammatical Relations, chap-
ter Lexical-functional Grammar: A Formal System
for Grammatical Representation. MIT Press, Cam-
bridge, MA, USA.

Roger Levy and Galen Andrew. 2006. Tregex and tsur-
geon: Tools for querying and manipulating tree data
structures. In Proceedings of the 5th International
Conference on Language Resources and Evaluation.

Dekang Lin. 1995. A dependency-based method for
evaluating broad-coverage parsers. In Proceedings
of the 14th International Joint Conference on Artifi-
cial Intelligence, pages 1420–1427.

Chin-Yew Lin. 2004. ROUGE: A package for au-
tomatic evaluation of summaries. In Proceedings
of the ACL 2004 Workshop: Text Summarization
Branches Out, pages 74–81.

Karolina Owczarzak, Josef van Genabith, and Andy
Way. 2007. Evaluating Machine Translation with
LFG dependencies. Machine Translation, 21(2):95–
119.

Karolina Owczarzak. 2008. A novel dependency-
based evaluation metric for Machine Translation.
Ph.D. thesis, Dublin City University.

Rebecca J. Passonneau, Ani Nenkova, Kathleen McK-
eown, and Sergey Sigelman. 2005. Applying
the Pyramid method in DUC 2005. In Proceed-
ings of the 5th Document Understanding Conference
(DUC).

Jason Rennie. 2000. Wordnet::querydata: a
Perl module for accessing the WordNet database.
http://people.csail.mit.edu/ jrennie/WordNet.

Stephen Tratz and Eduard Hovy. 2008. Summariza-
tion evaluation using transformed Basic Elements.
In Proceedings of the 1st Text Analysis Conference
(TAC).

198



Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 199–207,
Suntec, Singapore, 2-7 August 2009. c©2009 ACL and AFNLP

Summarizing Definition from Wikipedia

Shiren Ye and Tat-Seng Chua and Jie Lu
Lab of Media Search

National University of Singapore
{yesr|chuats|luj}@comp.nus.edu.sg

Abstract

Wikipedia provides a wealth of knowl-
edge, where the first sentence, infobox
(and relevant sentences), and even the en-
tire document of a wiki article could be
considered as diverse versions of sum-
maries (definitions) of the target topic.
We explore how to generate a series of
summaries with various lengths based on
them. To obtain more reliable associations
between sentences, we introduce wiki con-
cepts according to the internal links in
Wikipedia. In addition, we develop an
extended document concept lattice model
to combine wiki concepts and non-textual
features such as the outline and infobox.
The model can concatenate representative
sentences from non-overlapping salient lo-
cal topics for summary generation. We test
our model based on our annotated wiki ar-
ticles which topics come from TREC-QA
2004-2006 evaluations. The results show
that the model is effective in summariza-
tion and definition QA.

1 Introduction
Nowadays, ‘ask Wikipedia’ has become as pop-
ular as ‘Google it’ during Internet surfing, as
Wikipedia is able to provide reliable information
about the concept (entity) that the users want. As
the largest online encyclopedia, Wikipedia assem-
bles immense human knowledge from thousands of
volunteer editors, and exhibits significant contribu-
tions to NLP problems such as semantic related-
ness, word sense disambiguation and question an-
swering (QA).

For a given definition query, many search en-
gines (e.g., specified by ‘define:’ in Google) often
place the first sentence of the corresponding wiki1
article at the top of the returned list. The use of

1 For readability, we follow the upper/lower case rule
on web (say, ‘web pages’ and ‘on the Web’), and utilize

one-sentence snippets provides a brief and concise
description of the query. However, users often need
more information beyond such a one-sentence de-
finition, while feeling that the corresponding wiki
article is too long. Thus, there is a strong demand
to summarize wiki articles as definitions with vari-
ous lengths to suite different user needs.

The initial motivation of this investigation is to
find better definition answer for TREC-QA task
using Wikipedia (Kor and Chua, 2007). Accord-
ing to past results on TREC-QA (Voorhees, 2004;
Voorhees and Dang, 2005), definition queries are
usually recognized as being more difficult than fac-
toid and list queries. Wikipedia could help to
improve the quality of answer finding and even
provide the answers directly. Its results are bet-
ter than other external resources such as WordNet,
Gazetteers and Google’s define operator, especially
for definition QA (Lita et al., 2004).

Different from the free text used in QA and sum-
marization, a wiki article usually contains valuable
information like infobox and wiki link. Infobox
tabulates the key properties about the target, such
as birth place/date and spouse for a person as well
as type, founder and products for a company. In-
fobox, as a form of thumbnail biography, can be
considered as a mini version of a wiki article’s sum-
mary. In addition, the relevant concepts existing in
a wiki article usually refer to other wiki pages by
wiki internal links, which will form a close set of
reference relations. The current Wikipedia recur-
sively defines over 2 million concepts (in English)
via wiki links. Most of these concepts are multi-
word terms, whereas WordNet has only 50,000 plus
multi-word terms. Any term could appear in the
definition of a concept if necessary, while the total
vocabulary existing in WordNet’s glossary defini-
tion is less than 2000. Wikipedia addresses explicit
semantics for numerous concepts. These special
knowledge representations will provide additional
information for analysis and summarization. We
thus need to extend existing summarization tech-
nologies to take advantage of the knowledge repre-
sentations in Wikipedia.

‘wiki(pedia) articles’ and ‘on (the) Wikipedia’, the latter re-
ferring to the entire Wikipedia.
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The goal of this investigation is to explore sum-
maries with different lengths in Wikipedia. Our
main contribution lies in developing a summariza-
tion method that can (i) explore more reliable asso-
ciations between passages (sentences) in huge fea-
ture space represented by wiki concepts; and (ii) ef-
fectively combine textual and non-textual features
such as infobox and outline in Wikipedia to gener-
ate summaries as definition.

The rest of this paper is organized as follows: In
the next section, we discuss the background of sum-
marization using both textual and structural fea-
tures. Section 3 presents the extended document
concept lattice model for summarizing wiki arti-
cles. Section 4 describes corpus construction and
experiments are described; while Section 5 con-
cludes the paper.

2 Background
Besides some heuristic rules such as sentence po-
sition and cue words, typical summarization sys-
tems measure the associations (links) between sen-
tences by term repetitions (e.g., LexRank (Erkan
and Radev, 2004)). However, sophisticated authors
usually utilize synonyms and paraphrases in vari-
ous forms rather than simple term repetitions. Fur-
nas et al. (1987) reported that two people choose
the same main key word for a single well-known
object less than 20% of the time. A case study by
Ye et al. (2007) showed that 61 different words ex-
isting in 8 relevant sentences could be mapped into
16 distinctive concepts by means of grouping terms
with close semantic (such as [British, Britain, UK]
and [war, fought, conflict, military]). However,
most existing summarization systems only consider
the repeated words between sentences, where latent
associations in terms of inter-word synonyms and
paraphrases are ignored. The incomplete data likely
lead to unreliable sentence ranking and selection for
summary generation.

To recover the hidden associations between sen-
tences, Ye et al. (2007) compute the semantic simi-
larity using WordNet. The term pairs with semantic
similarity higher than a predefined threshold will be
grouped together. They demonstrated that collect-
ing more links between sentences will lead to bet-
ter summarization as measured by ROUGE scores,
and such systems were rated among the top systems
in DUC (document understanding conference) in
2005 and 2006. This WordNet-based approach has
several shortcomings due to the problems of data
deficiency and word sense ambiguity, etc.

Wikipedia already defined millions of multi-
word concepts in separate articles. Its definition is
much larger than that of WordNet. For instance,
more than 20 kinds of songs and movies called But-
terfly , such as Butterfly (Kumi Koda song), Butter-
fly (1999 film) and Butterfly (2004 film), are listed

in Wikipedia. When people say something about
butterfly in Wikipedia, usually, a link is assigned
to refer to a particular butterfly. Following this
link, we can acquire its explicit and exact seman-
tic (Gabrilovich and Markovitch, 2007), especially
for multi-word concepts. Phrases are more im-
portant than individual words for document re-
trieval (Liu et al., 2004). We hope that the wiki con-
cepts are appropriate text representation for sum-
marization.

Generally, wiki articles have little redundancy
in their contents as they utilize encyclopedia style.
Their authors tend to use wiki links and ‘See Also’
links to refer to the involved concepts rather than
expand these concepts. In general, the guideline
for composing wiki articles is to avoid overlong
and over-complicated styles. Thus, the strategy of
‘split it’ into a series of articles is recommended;
so wiki articles are usually not too long and contain
limited number of sentences. These factors lead to
fewer links between sentences within a wiki article,
as compared to normal documents. However, the
principle of typical extractive summarization ap-
proaches is that the sentences whose contents are
repeatedly emphasized by the authors are most im-
portant and should be included (Silber and McCoy,
2002). Therefore, it is challenging to summarize
wiki articles due to low redundancy (and links)
between sentences. To overcome this problem,
we seek (i) more reliable links between passages,
(ii) appropriate weighting metric to emphasize the
salient concepts about the topic, and (iii) additional
guideline on utilizing non-textual features such as
outline and infobox. Thus, we develop wiki con-
cepts to replace ‘bag-of-words’ approach for better
link measurements between sentences, and extend
an existing summarization model on free text to in-
tegrate structural information.

By analyzing rhetorical discourse structure of
aim, background, solution, etc. or citation context,
we can obtain appropriate abstracts and the most
influential contents from scientific articles (Teufel
and Moens, 2002; Mei and Zhai, 2008). Similarly,
we believe that the structural information such as
infobox and outline is able to improve summariza-
tion as well. The outline of a wiki article using in-
ner links will render the structure of its definition.
In addition, infobox could be considered as topic
signature (Lin and Hovy, 2000) or keywords about
the topic. Since keywords and summary of a doc-
ument can be mutually boosted (Wan et al., 2007),
infobox is capable of summarization instruction.

When Ahn (2004) and Kor (2007) utilize
Wikipedia for TREC-QA definition, they treat the
Wikipedia as the Web and perform normal search
on it. High-frequency terms in the query snippets
returned from wiki index are used to extend query
and rank (re-rank) passages. These snippets usually
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come from multiple wiki articles. Here the use-
ful information may be beyond these snippets but
existing terms are possibly irrelevant to the topic.
On the contrary, our approach concentrates on the
wiki article having the exact topic only. We as-
sume that every sentence in the article is used to de-
fine the query topic, no matter whether it contains
the term(s) of the topic or not. In order to extract
some salient sentences from the article as definition
summaries, we will build a summarization model
that describes the relations between the sentences,
where both textual and structural features are con-
sidered.

3 Our Approach

3.1 Wiki Concepts
In this subsection, we address how to find rea-
sonable and reliable links between sentences using
wiki concepts.

Consider a sentence: ‘After graduating from
Boston University in 1988, she went to work at a
Calvin Klein store in Boston.’ from a wiki article
‘Carolyn Bessette Kennedy’2, we can find 11 dis-
tinctive terms, such as after, graduate, Boston, Uni-
versity,1988, go, work, Calvin, Klein, store, Boston,
if stop words are ignored.

However, multi-word terms such as Boston
University and Calvin Klein are linked to the
corresponding wiki articles, where their definitions
are given. Clearly, considering the anchor texts as
two wiki concepts rather than four words is more
reasonable. Their granularity are closer to semantic
content units in a summarization evaluation method
Pyramid (Nenkova et al., 2007) and nuggets in
TREC-QA . When the text is represented by
wiki concepts, whose granularity is similar to the
evaluation units, it is possibly easy to detect the
matching output using a model. Here,
• Two separate words, Calvin and Klein, are

meaningless and should be discarded; oth-
erwise, spurious links between sentences are
likely to occur.

• Boston University and Boston are processed
separately, as they are different named entities.
No link between them is appropriate3.

• Terms such as ‘John F. Kennedy, Jr.’ and
‘John F. Kennedy’ will be considered as two
diverse wiki concepts, but we do not account
on how many repeated words there are.

• Different anchor texts, such as U.S.A. and
United States of America, are recognized as

2All sample sentences in this paper come from this article
if not specified.

3Consider new pseudo sentence: ‘After graduating from
Stanford in 1988, she went to work ... in Boston.’ We do not
need assign link between Stanford and Boston as well.

an identical concept since they refer to the
same wiki article.

• Two concepts, such as money and cash, will
be merged into an identical concept when their
semantics are similar.

In wiki articles, the first occurrence of a wiki
concept is tagged by a wiki link, but there is no
such a link to its subsequent occurrences in the re-
maining parts of the text in most cases. To allevi-
ate this problem, a set of heuristic rules is proposed
to unify the subsequent occurrences of concepts in
normal text with previous wiki concepts in the an-
chor text. These heuristic rules include: (i) edit dis-
tance between linked wiki concept and candidates
in normal text is larger than a predefined threshold;
and (ii) partially overlapping words beginning with
capital letter, etc.

After filtering out wiki concepts, the words re-
maining in wiki articles could be grouped into two
sets: close-class terms like pronouns and preposi-
tions as well as open-class terms like nouns and
verbs. For example, in the sentence ‘She died at age
33, along with her husband and sister’, the open-
class terms include die, age, 33, husband and sister.
Even though most open-class terms are defined in
Wikipedia as well, the authors of the article do not
consider it necessary to present their references us-
ing wiki links. Hence, we need to extend wiki con-
cepts by concatenating them with these open-class
terms to form an extended vector. In addition, we
ignore all close-class terms, since we cannot find
efficient method to infer reliable links across them.
As a result, texts are represented as a vector of wiki
concepts.

Once we introduce wiki concepts to replace typ-
ical ‘bag-of-words’ approach, the dimensions of
concept space will reach six order of magnitudes.
We cannot ignore the data spareness issue and com-
putation cost when the concept space is so huge.
Actually, for a wiki article and a set of relevant arti-
cles, the involved concepts are limited, and we need
to explore them in a small sub-space. For instance,
59 articles about Kennedy family in Wikipedia have
10,399 distinctive wiki concepts only, where 5,157
wiki concepts exist twice and more. Computing the
overlapping among them is feasible.

Furthermore, we need to merge the wiki concepts
with identical or close semantic (namely, building
links between these synonyms and paraphrases).
We measure the semantic similarity between two
concepts by using cosine distance between their
wiki articles, which are represented as the vectors
of wiki concepts as well. For computation effi-
ciency, we calculate semantic similarities between
all promising concept pairs beforehand, and then
retrieve the value in a Hash table directly. We spent
CPU time of about 12.5 days preprocessing the se-
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mantic calculation. Details are available at our tech-
nical report (Lu et al., 2008).

Following the principle of TFIDF, we define
the weighing metric for the vector represented
by wiki concepts using the entire Wikipedia as
the observation collection. We define the CFIDF
weight of wiki concept i in article j as:

wi,j = cfi,j· idfi =
ni,j

∑

k nk,j

· log
|D|

|dj : ti ∈ dj| ,
(1)

where cfi,j is the frequency of concept i in arti-
cle j; idfi is the inverse frequency of concept i
in Wikipedia; and D is the number of articles in
Wikipedia. Here, sparse wiki concepts will have
more contribution.

In brief, we represent articles in terms of wiki
concepts using the steps below.

1. Extract the wiki concepts marked by wiki
links in context.

2. Detect the remaining open-class terms as wiki
concepts as well.

3. Merge concepts whose semantic similarity is
larger than predefined threshold (0.35 in our
experiments) into the one with largest idf .

4. Weight all concepts according to Eqn (1).

3.2 Document Concept Lattice Model
Next, we build the document concept lattice (DCL)
for articles represented by wiki concepts. For il-
lustration on how DCL is built, we consider 8 sen-
tences from DUC 2005 Cluster d324e (Ye et al.,
2007) as case study. 8 sentences, represented by 16
distinctive concepts A-P, are considered as the base
nodes 1-8 as shown in Figure 1. Once we group
nodes by means of the maximal common concepts
among base nodes hierarchically, we can obtain the
derived nodes 11-41, which form a DCL. A derived
node will annotate a local topic through a set of
shared concepts, and define a sub concept space that
contains the covered base nodes under proper pro-
jection. The derived node, accompanied with its
base nodes, is apt to interpret a particular argument
(or statement) about the involved concepts. Further-
more, one base node among them, coupled with the
corresponding sentence, is capable of this interpre-
tation and could represent the other base nodes to
some degree.

In order to Extract a set of sentences to cover
key distinctive local topics (arguments) as much as
possible, we need to select a set of important non-
overlapping derived nodes. We measure the impor-
tance of node N in DCL of article j in term of rep-
resentative power (RP) as:

RP (N) =
∑

ci∈N

(|ci|·wi,j)/ log(|N |), (2)
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Figure 1: A sample of concept lattice

where concept ci in node N is weighted by wi,j

according to Eqn (1), and |N | denotes the concept
number in N (if N is a base node) or the number
of distinct concepts in |N | (if N is a derived node),
respectively. Here, |ci| represents the c’s frequency
in N , and log(|N |) reflects N ’s cost if N is selected
(namely, how many concepts are used in N ). For
example, 7 concepts in sentence 1 lead to the total
|c| of 34 if their weights are set to 1 equally. Its
RP is RP (1) = 34/log(7) = 40.23. Similarly,
RP (31) = 6 ∗ 3/log(3) = 37.73.

By selecting a set of non-overlapping derived
nodes with maximal RP, we are able to obtain a set
of local topics with highest representativeness and
diversity. Next, a representative sentence with max-
imal RP in each of such derived nodes is chosen to
represent the local topics in observation. When the
length of the required summary changes, the num-
ber of the local topics needed will also be modi-
fied. Consequently, we are able to select the sets of
appropriate derived nodes in diverse generalization
levels, and obtain various versions of summaries
containing the local topics with appropriate gran-
ularities.

In the DCL example shown in Figure 1, if we ex-
pect to have a summary with two sentences, we will
select the derived nodes 31 and 32 with highest RP.
Nodes 31 and 32 will infer sentences 4 and 2, and
they will be concatenated to form a summary. If the
summary is increased to three sentences, then three
derived nodes 31, 23 and 33 with maximal RP will
render representative sentences 4, 5 and 6. Hence,
the different number of actual sentences (4+5+6 vs.
4+2) will be selected depending on the length of
the required summary. The uniqueness of DCL is
that the sentences used in a shorter summary may
not appear in a longer summary for the same source
text. According to the distinctive derived nodes in
diverse levels, the sentences with different general-
ization abilities are chosen to generate various sum-
maries.
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Figure 2: Properties in infobox and their support
sentences

3.3 Model of Extended Document Concept
Lattice (EDCL)

Different from free text and general web docu-
ments, wiki articles contain structural features, such
as infoboxes and outlines, which correlate strongly
to nuggets in definition TREC-QA. By integrating
these structural features, we will generate better RP
measures in derived topics which facilitates better
priority assignment in local topics.

3.3.1 Outline: Wiki Macro Structure
A long wiki article usually has a hierarchical out-
line using inner links to organize its contents. For
example, wiki article Cat consists of a set of hier-
archical sections under the outline of mouth, legs,
Metabolism, genetics, etc. This outline provides
a hierarchical clustering of sub-topics assigned by
its author(s), which implies that selecting sentences
from diverse sections of outline is apt to obtain a
balanced summary. Actually, DCL could be con-
sidered as the composite of many kinds of clus-
terings (Ye et al., 2007). Importing the clustering
from outline into DCL will be helpful for the gen-
eration of a balanced summary. We thus incorpo-
rate the structure of outline into DCL as follows:
(i) treat section titles as concepts in the pseudo de-
rived nodes; (ii) link these pseudo nodes and the
base nodes in this section if they share concepts;
and (iii) revise base nodes’ RP in Eqn (2) (see Sec-
tion 3.3.3).

3.3.2 Infobox: a Mini Version of Summary
Infobox tabulates the key properties about the topic
concept of a wiki article. It could be considered
as a mini summary, where many nuggets in TREC-
QA are included. As properties in infobox are not
complete sentences and do not present relevant ar-
guments, it is inappropriate to concatenate them
as a summary. However, they are good indicators
for summary generation. Following the terms in a
property (e.g., spouse name and graduation school),
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Figure 3: Extend document concept lattice by out-
line and infobox in Wikipedia

we can find the corresponding sentences in the body
of the text that contains such terms4. It describes the
details about the involved property and provides the
relevant arguments. We call it support sentence.

Now, again, we have a hierarchy: Infobox +
properties + support sentences. This hierarchy can
be used to render a summary by concatenating the
support sentences. This summary is inferred from
hand-crafted infobox directly and is a full version
of infobox; so its quality is guaranteed. However, it
is possibly inapplicable due to its improper length.
Following the iterative reinforcement approach for
summarization and keyword extraction (Wan et al.,
2007), it could be used to refine other versions of
summaries. Hence, we utilize infobox and its sup-
port sentences to modify nodes’ RPs in DCL so that
the priority of local topics has bias to infobox. To
achieve it, we extend DCL by inserting a hierarchy
from infobox: (i) generate a pseudo derived node
for each property; (ii) link every derived node to
its support sentences; and (iii) cover these pseudo
nodes by a virtual derived node called infobox.

3.3.3 Summary Generation from EDCL
In DCL, sentences with common concepts form lo-
cal topics by autonomous approach, where shared
concepts are depicted in derived nodes. Now we
introduce two additional hierarchies derived from
outline and infobox into DCL to refine RPs of
salient local topics for summarization, which will
render a model named extended document con-
cept lattice (EDCL). As shown in Figure 3, base
nodes in EDCL covered by pseudo derived nodes
will increase their RPs when they receive influence
from outline and infobox. Also, if RPs of their cov-
ered base nodes changes, the original derived nodes
will modify their RPs as well. Therefore, the new

4Sometimes, we can find more than one appropriate sen-
tence for a property. In our investigation, we select top two
sentences with the occurrence of the particular term if avail-
able.
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RPs in derived nodes and based nodes will lead to
better priority of ranking derived nodes, which is
likely to result in a better summary. One important
direct consequence of introducing the extra hierar-
chies is to increase the RP of nodes relevant to out-
line and infobox so that the summaries from EDCL
are likely to follow human-crafted ones.

The influence of human effects are transmitted
in a ‘V’ curve approach. We utilize the following
steps to generate a summary with a given length
(say m sentences) from EDCL.

1. Build a normal DCL, and compute RP for
each node according to Eqn 2.

2. Generate pseudo derived nodes (denoted by
P ) based on outline and infobox, and link the
pseudo derived nodes to their relevant base
nodes (denoted by B0).

3. Update RP in B0 by magnifying the contri-
bution of shared concepts between P and N0

5.

4. Update RP in derived nodes that cover B0 on
account of the new RP in B0.

5. Select m non-overlapping derived nodes with
maximal RP as the current observation.

6. Concatenate representative sentences with
top RP from each derived node in the current
observation as output.

7. If one representative sentence is covered by
more than one derived node in step 5, the
output will be less than m sentences. In this
case, we need to increase m and repeat step
5-6 until m sentences are selected.

4 Experiments
The purposes of our experiment are two-fold: (i)
evaluate the effects of wiki definition to the TREC-
QA task; and (ii) examine the characteristics and
summarization performance of EDCL.

4.1 Corpus Construction
We adopt the tasks of TREC-QA in 2004-2006
(TREC 12-14) as test scope. We retrieve arti-
cles with identical topic names from Wikipedia6.
Non-letter transformations are permitted (e.g., from
‘Carolyn Bessette-Kennedy’ to ‘Carolyn Bessette-
Kennedy’). Because our focus is summariza-
tion evaluation, we ignore the cases in TREC-
QA where the exact topics do not exist in
Wikipedia, even though relevant topics are avail-
able (e.g., ‘France wins World Cup in soccer’
in TREC-QA vs. ‘France national football team’

5We magnify it by adding |c0| ∗ wc ∗ η. Here, c0 is the
shared concepts between P and N0, and η is the influence
factor and set to 2-5 in our experiments.

6The dump is available at
http://download.wikimedia.org/. Our dump
was downloaded in Sept 2007.

and ‘2006 FIFA World Cup’ in Wikipedia). Fi-
nally, among the 215 topics in TREC 12-14, we ob-
tain 180 wiki articles with the same topics.

We ask 15 undergraduate and graduate students
from the Department of English Literature in Na-
tional University of Singapore to choose 7-14 sen-
tences in the above wiki articles as extractive sum-
maries. Each wiki article is annotated by 3 per-
sons separately. In order for the volunteers to avoid
the bias from TREC-QA corpus, we do not provide
queries and nuggets used in TREC-QA. Similar to
TREC nuggets, we call the selected sentences wiki
nuggets. Wiki nuggets provides the ground truth
of the performance evaluation, since some TREC
nuggets are possibly unavailable in Wikipedia.

Here, we did not ask the volunteers to create
snippets (like TREC-QA) or compose an abstrac-
tive summary (like DUC). This is because of the
special style of wiki articles: the entire document
is a long summary without trivial stuff. Usually, we
do not need to concatenate key phrases from diverse
sentences to form a recapitulative sentence. Mean-
while, selecting a set of salient sentences to form a
concise version is a relatively less time-consuming
but applicable approach. Snippets, by and large,
lead to bad readability, and therefore we do not em-
ploy this approach.

In addition, the volunteers also annotate 7-10
pairs of question/answer for each article for fur-
ther research on QA using Wikipedia. The cor-
pus, called TREC-Wiki collection, is available at
our site (http://nuscu.ddns.comp.nus.edu.sg). The
system of Wikipedia summarization using EDCL is
launched on the Web as well.

4.2 Corpus Exploration

4.2.1 Answer availability

The availability of answers in Wikipedia for TREC-
QA could be measured in two aspects: (i) how
many TREC-QA topics have been covered by
Wikipedia? and (ii) how many nuggets could be
found in the corresponding wiki article? We find
that (i) over 80% of topics (180/215) in the TREC
12-14 are available in Wikipedia, and (ii) about
47% TREC nuggets could be detected directly from
Wikipedia (examining applet modified from Pour-
pre (Lin and Demner-Fushman, 2006)). In contrast,
6,463 nuggets existing in TREC-QA 12-14 are dis-
tributed in 4,175 articles from AQUAINT corpus.
We can say that Wikipedia is the answer goldmine
for TREC-QA questions.

When we look into these TREC nuggets in wiki
articles closely, we find that most of them are em-
bedded in wiki links or relevant to infobox. It sug-
gests that they are indicators for sentences having
nuggets.
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4.2.2 Correlation between TREC nuggets
and non-text features

Analyzing the features used could let us understand
summarization better (Nenkova and Louis, 2008).
Here, we focus on the statistical analysis between
TREC/wiki nuggets and non-textual features such
as wiki links, infobox and outline. The features
used are introduced in Table 1. The correlation co-
efficients are listed in Table 2.

Observation: (1) On the whole, wiki nuggets
exhibit higher correlation to non-textual features
than TREC nuggets do. The possible reason is that
TREC nuggets are extracted from AQUAINT rather
than Wikipedia. (2) As compared to other features,
infobox and wiki links strongly relate to nuggets.
They are thus reliable features beyond text for sum-
marization. (3) Sentence positions exhibit weak
correlation to nuggets, even though the first sen-
tence of an article is a good one-sentence definition.

Feature Description
Link Does the sentence have link?
Topic rel. Does the sentence contain any

word in topic concept?
Outline rel. Does the sentence hold word in

its section title(s) (outline)?
Infobox rel. Is it a support sentence?
Position First sentence of the article, first

sentence and last sentence of a
paragraph, or others?

Table 1: Features for correlation measurement

Feature TREC nuggets Wiki nuggets
Link 0.087 0.120
Topic rel. 0.038 0.058
Outline rel. 0.078 0.076
Infobox rel. 0.089 0.170
Position -0.047 0.021

Table 2: Correlation Coefficients between non-
textual features in Wiki and TREC/wiki nuggets

4.3 Statistical Characteristics of EDCL
We design four runs with various configurations as
shown in Table 3. We implement a sentence re-
ranking program using MMR (maximal marginal
relevance) (Carbonell and Goldstein, 1998) in Run
1, which is considered as the test baseline. We ap-
ply standard DCL in Run 2, where concepts are
determined according to their definitions in Word-
Net (Ye et al., 2007). We introduce wiki concepts
for standard DCL in Run 3. Run 4 is the full ver-

sion of EDCL, which considers both outline and in-
fobox.

Observations: (1) In Run 1, the average num-
ber of distinctive words per article is near to 1200
after stop words are filtered out. When we merge
diverse words having similar semantic according to
WordNet concepts , we obtain 873 concepts per ar-
ticle on average in Run 2. The word number de-
creases by about 28% as a result of the omission
of close-class terms and the merging of synonyms
and paraphrases. (2) When wiki concepts are intro-
duced in Run 3, the number of concepts continues
to decrease. Here, some adjacent single-word terms
are merged into wiki concepts if they are annotated
by wiki links. Even though the reduction of total
concepts is limited, these new wiki concepts will
group the terms that cannot be detected by Word-
Net. (3) DCL based on WordNet concepts has less
derived nodes (Run 3) than DCL based on wiki con-
cepts does, although the former has more concepts.
It implies that wiki concepts lead to higher link den-
sity in DCL as more links between concepts can be
detected. (4) Outline and infobox will bring addi-
tional 54 derived nodes (from 1695 to 1741). Ad-
ditional computation cost is limited when they are
introduced into EDCL.

Run 1 Word co-occurrence + MMR
Run 2 Basic DCL model (WordNet concepts)
Run 3 DCL + wiki concepts
Run 4 EDCL (DCL + wiki concepts + outline

+ infobox)

Table 3: Test configurations

Concepts Base nodes Derived nodes
Run 1 1173 (number of words)
Run 2 873 259 1517
Run 3 826 259 1695
Run 4 831 259 1741

Table 4: Average node/concept numbers in DCL
and EDCL

4.4 Summarization Performance of EDCL
We evaluate the performance of EDCL from two as-
pects such as contribution to TREC-QA definition
task and accuracy of summarization in our TREC-
Wiki collection.

Since factoid/list questions are about the most es-
sential information of the target as well, like Cui’s
approach (2005), we treat factoid/list answers as
essential nuggets and add them to the gold stan-
dard list of definition nuggets. We set the sentence
number of summaries generated by the system to
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12. We examine the definition quality by nugget re-
call (NR) and an approximation to nugget precision
(NP) on answer length. These scores are combined
using the F1 and F3 measures. The recall in F3

is weighted three times as important as precision.
The evaluation is automatically conducted by Pour-
pre v1.1 (Lin and Demner-Fushman, 2006).

Based on the performance of EDCL for TREC-
QA definition task listed in Table 5, we observe
that: (i) When EDCL considers wiki concepts and
structural features such as outline and infobox, its
F-scores increase significantly (Run 3 and Run 4).
(ii) Table 5 also lists the results of Cui’s system
(marked by asterisk) using bigram soft patterns
(Cui et al., 2005), which is trained by TREC-12
and tested on TREC 13. Our EDCL can achieve
comparable or better F-scores on the 180 topics in
TREC 12-14. It suggests that Wikipedia could pro-
vide high-quality definition directly even though we
do not use AQUAINT. (iii) The precision of EDCL
in Run 4 outperforms that of soft-pattern approach
remarkably (from 0.34 to 0.497). One possible rea-
son is that all sentences in a wiki article are oriented
to its topic, and the sentence irrelevant to its topic
hardly occurs.

NR NP F1 F3

Run 1 0.247 0.304 0.273 0.252
Run 2 0.262 0.325 0.290 0.267
Run 3 0.443 0.431 0.431 0.442
Run 4 0.538 0.497 0.517 0.534
Bigram SP* 0.552 0.340 0.421 0.510

Table 5: EDCL evaluated by TREC-QA nuggets
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Figure 4: Performance of summarizing Wikipedia
using EDCL with different configurations

We also test the performance of EDCL using ex-
tractive summaries in TREC-Wiki collection. By
means of comparing to each set of sentences se-
lected by a volunteer, we examine how many ex-
act annotated sentences are selected by the system

using different configurations. The average recalls
and precisions as well as their F-scores are shown
in Figure 4.

Observations: (i) The structural information of
Wikipeida has significant contribution to EDCL for
summarization. We manually examine some sum-
maries and find that the sentences containing more
wiki links are apt to be chosen when wiki concepts
are introduced in EDCL. Most sentences in output
summaries in Run 4 usually have 1-3 links and rel-
evant to infobox or outline. (ii) When using wiki
concepts, infobox and outline to enrich DCL, we
find that the precision of sentence selection has im-
proved more than the recall. It reaffirms the con-
clusion in the previous TREC-QA test in this sub-
section. (iii) In addition, we manually examine the
summaries on some wiki articles with common top-
ics, such as car, house, money, etc. We find that the
summaries generated by EDCL could effectively
grasp the key information about the topics when the
sentence number of summaries exceeds 10.

5 Conclusion and Future Work
Wikipedia recursively defines enormous concepts
in huge vector space of wiki concepts. The explicit
semantic representation via wiki concepts allows
us to obtain more reliable links between passages.
Wikipedia’s special structural features, such as wiki
links, infobox and outline, reflect the hidden human
knowledge. The first sentence of a wiki article, in-
fobox (and its support sentences), outline (and its
relevant sentences), as well as the entire document
could be considered as diverse summaries with var-
ious lengths. In our proposed model, local topics
are autonomously organized in a lattice structure
according to their overlapping relations. The hier-
archies derived from infobox and outline are im-
ported to refine the representative powers of local
topics by emphasizing the concepts relevant to in-
fobox and outline. Experiments indicate that our
proposed model exhibits promising performance in
summarization and QA definition tasks.

Of course, there are rooms to further improve the
model. Possible improvements includes: (a) using
advanced semantic and parsing technologies to de-
tect the support and relevant sentences for infobox
and outline; (b) summarizing multiple articles in a
wiki category; and (c) exploring the mapping from
close-class terms to open-class terms for more links
between passages is likely to forward some interest-
ing results.

More generally, the knowledge hidden in non-
textual features of Wikipedia allow the model to
harvest better definition summaries. It is challeng-
ing but possibly fruitful to recast the normal docu-
ments with wiki styles so as to adopt EDCL for free
text and enrich the research efforts on other NLP
tasks.
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Abstract

In this paper, we investigate an ap-
proach for creating a comprehensive tex-
tual overview of a subject composed of in-
formation drawn from the Internet. We use
the high-level structure of human-authored
texts to automatically induce a domain-
specific template for the topic structure of
a new overview. The algorithmic innova-
tion of our work is a method to learn topic-
specific extractors for content selection
jointly for the entire template. We aug-
ment the standard perceptron algorithm
with a global integer linear programming
formulation to optimize both local fit of
information into each topic and global co-
herence across the entire overview. The
results of our evaluation confirm the bene-
fits of incorporating structural information
into the content selection process.

1 Introduction

In this paper, we consider the task of automatically
creating a multi-paragraph overview article that
provides a comprehensive summary of a subject of
interest. Examples of such overviews include ac-
tor biographies from IMDB and disease synopses
from Wikipedia. Producing these texts by hand is
a labor-intensive task, especially when relevant in-
formation is scattered throughout a wide range of
Internet sources. Our goal is to automate this pro-
cess. We aim to create an overview of a subject –
e.g., 3-M Syndrome – by intelligently combining
relevant excerpts from across the Internet.

As a starting point, we can employ meth-
ods developed for multi-document summarization.
However, our task poses additional technical chal-
lenges with respect to content planning. Gen-
erating a well-rounded overview article requires
proactive strategies to gather relevant material,

such as searching the Internet. Moreover, the chal-
lenge of maintaining output readability is mag-
nified when creating a longer document that dis-
cusses multiple topics.

In our approach, we explore how the high-
level structure of human-authored documents can
be used to produce well-formed comprehensive
overview articles. We select relevant material for
an article using a domain-specific automatically
generated content template. For example, a tem-
plate for articles about diseases might contain di-
agnosis, causes, symptoms, and treatment. Our
system induces these templates by analyzing pat-
terns in the structure of human-authored docu-
ments in the domain of interest. Then, it produces
a new article by selecting content from the Internet
for each part of this template. An example of our
system’s output1 is shown in Figure 1.

The algorithmic innovation of our work is a
method for learning topic-specific extractors for
content selection jointly across the entire template.
Learning a single topic-specific extractor can be
easily achieved in a standard classification frame-
work. However, the choices for different topics
in a template are mutually dependent; for exam-
ple, in a multi-topic article, there is potential for
redundancy across topics. Simultaneously learn-
ing content selection for all topics enables us to
explicitly model these inter-topic connections.

We formulate this task as a structured classifica-
tion problem. We estimate the parameters of our
model using the perceptron algorithm augmented
with an integer linear programming (ILP) formu-
lation, run over a training set of example articles
in the given domain.

The key features of this structure-aware ap-
proach are twofold:

1This system output was added to Wikipedia at http://
en.wikipedia.org/wiki/3-M syndrome on June
26, 2008. The page’s history provides examples of changes
performed by human editors to articles created by our system.
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Diagnosis . . . No laboratories offering molecular genetic testing for prenatal diagnosis of 3-M syndrome are listed in the
GeneTests Laboratory Directory. However, prenatal testing may be available for families in which the disease-causing mutations
have been identified in an affected family member in a research or clinical laboratory.

Causes Three M syndrome is thought to be inherited as an autosomal recessive genetic trait. Human traits, including the classic
genetic diseases, are the product of the interaction of two genes, one received from the father and one from the mother. In recessive
disorders, the condition does not occur unless an individual inherits the same defective gene for the same trait from each parent. . . .

Symptoms . . . Many of the symptoms and physical features associated with the disorder are apparent at birth (congenital). In
some cases, individuals who carry a single copy of the disease gene (heterozygotes) may exhibit mild symptoms associated with
Three M syndrome.

Treatment . . . Genetic counseling will be of benefit for affected individuals and their families. Family members of affected indi-
viduals should also receive regular clinical evaluations to detect any symptoms and physical characteristics that may be potentially
associated with Three M syndrome or heterozygosity for the disorder. Other treatment for Three M syndrome is symptomatic and
supportive.

Figure 1: A fragment from the automatically created article for 3-M Syndrome.

• Automatic template creation: Templates
are automatically induced from human-
authored documents. This ensures that the
overview article will have the breadth ex-
pected in a comprehensive summary, with
content drawn from a wide variety of Inter-
net sources.

• Joint parameter estimation for content se-
lection: Parameters are learned jointly for
all topics in the template. This procedure op-
timizes both local relevance of information
for each topic and global coherence across
the entire article.

We evaluate our approach by creating articles in
two domains: Actors and Diseases. For a data set,
we use Wikipedia, which contains articles simi-
lar to those we wish to produce in terms of length
and breadth. An advantage of this data set is that
Wikipedia articles explicitly delineate topical sec-
tions, facilitating structural analysis. The results
of our evaluation confirm the benefits of structure-
aware content selection over approaches that do
not explicitly model topical structure.

2 Related Work

Concept-to-text generation and text-to-text gener-
ation take very different approaches to content se-
lection. In traditional concept-to-text generation,
a content planner provides a detailed template for
what information should be included in the output
and how this information should be organized (Re-
iter and Dale, 2000). In text-to-text generation,
such templates for information organization are
not available; sentences are selected based on their
salience properties (Mani and Maybury, 1999).
While this strategy is robust and portable across

domains, output summaries often suffer from co-
herence and coverage problems.

In between these two approaches is work on
domain-specific text-to-text generation. Instances
of these tasks are biography generation in sum-
marization and answering definition requests in
question-answering. In contrast to a generic sum-
marizer, these applications aim to characterize
the types of information that are essential in a
given domain. This characterization varies greatly
in granularity. For instance, some approaches
coarsely discriminate between biographical and
non-biographical information (Zhou et al., 2004;
Biadsy et al., 2008), while others go beyond binary
distinction by identifying atomic events – e.g., oc-
cupation and marital status – that are typically in-
cluded in a biography (Weischedel et al., 2004;
Filatova and Prager, 2005; Filatova et al., 2006).
Commonly, such templates are specified manually
and are hard-coded for a particular domain (Fujii
and Ishikawa, 2004; Weischedel et al., 2004).

Our work is related to these approaches; how-
ever, content selection in our work is driven by
domain-specific automatically induced templates.
As our experiments demonstrate, patterns ob-
served in domain-specific training data provide
sufficient constraints for topic organization, which
is crucial for a comprehensive text.

Our work also relates to a large body of recent
work that uses Wikipedia material. Instances of
this work include information extraction, ontology
induction and resource acquisition (Wu and Weld,
2007; Biadsy et al., 2008; Nastase, 2008; Nastase
and Strube, 2008). Our focus is on a different task
— generation of new overview articles that follow
the structure of Wikipedia articles.
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3 Method

The goal of our system is to produce a compre-
hensive overview article given a title – e.g., Can-
cer. We assume that relevant information on the
subject is available on the Internet but scattered
among several pages interspersed with noise.

We are provided with a training corpus consist-
ing of n documents d1 . . . dn in the same domain
– e.g., Diseases. Each document di has a title and
a set of delineated sections2 si1 . . . sim. The num-
ber of sections m varies between documents. Each
section sij also has a corresponding heading hij –
e.g., Treatment.

Our overview article creation process consists
of three parts. First, a preprocessing step creates
a template and searches for a number of candidate
excerpts from the Internet. Next, parameters must
be trained for the content selection algorithm us-
ing our training data set. Finally, a complete ar-
ticle may be created by combining a selection of
candidate excerpts.

1. Preprocessing (Section 3.1) Our prepro-
cessing step leverages previous work in topic
segmentation and query reformulation to pre-
pare a template and a set of candidate ex-
cerpts for content selection. Template gen-
eration must occur once per domain, whereas
search occurs every time an article is gener-
ated in both learning and application.

(a) Template Induction To create a con-
tent template, we cluster all section
headings hi1 . . . him for all documents
di. Each cluster is labeled with the most
common heading hij within the clus-
ter. The largest k clusters are selected to
become topics t1 . . . tk, which form the
domain-specific content template.

(b) Search For each document that we
wish to create, we retrieve from the In-
ternet a set of r excerpts ej1 . . . ejr for
each topic tj from the template. We de-
fine appropriate search queries using the
requested document title and topics tj .

2. Learning Content Selection (Section 3.2)
For each topic tj , we learn the corresponding
topic-specific parameters wj to determine the

2In data sets where such mark-up is not available, one can
employ topical segmentation algorithms as an additional pre-
processing step.

quality of a given excerpt. Using the percep-
tron framework augmented with an ILP for-
mulation for global optimization, the system
is trained to select the best excerpt for each
document di and each topic tj . For train-
ing, we assume the best excerpt is the original
human-authored text sij .

3. Application (Section 3.2) Given the title of
a requested document, we select several ex-
cerpts from the candidate vectors returned by
the search procedure (1b) to create a com-
prehensive overview article. We perform the
decoding procedure jointly using learned pa-
rameters w1 . . .wk and the same ILP formu-
lation for global optimization as in training.
The result is a new document with k excerpts,
one for each topic.

3.1 Preprocessing

Template Induction A content template speci-
fies the topical structure of documents in one do-
main. For instance, the template for articles about
actors consists of four topics t1 . . . t4: biography,
early life, career, and personal life. Using this
template to create the biography of a new actor
will ensure that its information coverage is con-
sistent with existing human-authored documents.

We aim to derive these templates by discovering
common patterns in the organization of documents
in a domain of interest. There has been a sizable
amount of research on structure induction ranging
from linear segmentation (Hearst, 1994) to content
modeling (Barzilay and Lee, 2004). At the core
of these methods is the assumption that fragments
of text conveying similar information have simi-
lar word distribution patterns. Therefore, often a
simple segment clustering across domain texts can
identify strong patterns in content structure (Barzi-
lay and Elhadad, 2003). Clusters containing frag-
ments from many documents are indicative of top-
ics that are essential for a comprehensive sum-
mary. Given the simplicity and robustness of this
approach, we utilize it for template induction.

We cluster all section headings hi1 . . . him from
all documents di using a repeated bisectioning
algorithm (Zhao et al., 2005). As a similarity
function, we use cosine similarity weighted with
TF*IDF. We eliminate any clusters with low in-
ternal similarity (i.e., smaller than 0.5), as we as-
sume these are “miscellaneous” clusters that will
not yield unified topics.
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We determine the average number of sections
k over all documents in our training set, then se-
lect the k largest section clusters as topics. We or-
der these topics as t1 . . . tk using a majority order-
ing algorithm (Cohen et al., 1998). This algorithm
finds a total order among clusters that is consistent
with a maximal number of pairwise relationships
observed in our data set.

Each topic tj is identified by the most frequent
heading found within the cluster – e.g., Causes.
This set of topics forms the content template for a
domain.
Search To retrieve relevant excerpts, we must
define appropriate search queries for each topic
t1 . . . tk. Query reformulation is an active area of
research (Agichtein et al., 2001). We have exper-
imented with several of these methods for draw-
ing search queries from representative words in the
body text of each topic; however, we find that the
best performance is provided by deriving queries
from a conjunction of the document title and topic
– e.g., “3-M syndrome” diagnosis.

Using these queries, we search using Yahoo!
and retrieve the first ten result pages for each topic.
From each of these pages, we extract all possible
excerpts consisting of chunks of text between stan-
dardized boundary indicators (such as <p> tags).
In our experiments, there are an average of 6 ex-
cerpts taken from each page. For each topic tj of
each document we wish to create, the total number
of excerpts r found on the Internet may differ. We
label the excerpts ej1 . . . ejr.

3.2 Selection Model

Our selection model takes the content template
t1 . . . tk and the candidate excerpts ej1 . . . ejr for
each topic tj produced in the previous steps. It
then selects a series of k excerpts, one from each
topic, to create a coherent summary.

One possible approach is to perform individ-
ual selections from each set of excerpts ej1 . . . ejr

and then combine the results. This strategy is
commonly used in multi-document summariza-
tion (Barzilay et al., 1999; Goldstein et al., 2000;
Radev et al., 2000), where the combination step
eliminates the redundancy across selected ex-
cerpts. However, separating the two steps may not
be optimal for this task — the balance between
coverage and redundancy is harder to achieve
when a multi-paragraph summary is generated. In
addition, a more discriminative selection strategy

is needed when candidate excerpts are drawn di-
rectly from the web, as they may be contaminated
with noise.

We propose a novel joint training algorithm that
learns selection criteria for all the topics simulta-
neously. This approach enables us to maximize
both local fit and global coherence. We implement
this algorithm using the perceptron framework, as
it can be easily modified for structured prediction
while preserving convergence guarantees (Daumé
III and Marcu, 2005; Snyder and Barzilay, 2007).

In this section, we first describe the structure
and decoding procedure of our model. We then
present an algorithm to jointly learn the parame-
ters of all topic models.

3.2.1 Model Structure
The model inputs are as follows:

• The title of the desired document
• t1 . . . tk — topics from the content template
• ej1 . . . ejr — candidate excerpts for each

topic tj

In addition, we define feature and parameter
vectors:

• φ(ejl) — feature vector for the lth candidate
excerpt for topic tj

• w1 . . .wk — parameter vectors, one for each
of the topics t1 . . . tk

Our model constructs a new article by following
these two steps:
Ranking First, we attempt to rank candidate
excerpts based on how representative they are of
each individual topic. For each topic tj , we induce
a ranking of the excerpts ej1 . . . ejr by mapping
each excerpt ejl to a score:

scorej(ejl) = φ(ejl) ·wj

Candidates for each topic are ranked from high-
est to lowest score. After this procedure, the posi-
tion l of excerpt ejl within the topic-specific can-
didate vector is the excerpt’s rank.
Optimizing the Global Objective To avoid re-
dundancy between topics, we formulate an opti-
mization problem using excerpt rankings to create
the final article. Given k topics, we would like to
select one excerpt ejl for each topic tj , such that
the rank is minimized; that is, scorej(ejl) is high.

To select the optimal excerpts, we employ inte-
ger linear programming (ILP). This framework is
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commonly used in generation and summarization
applications where the selection process is driven
by multiple constraints (Marciniak and Strube,
2005; Clarke and Lapata, 2007).

We represent excerpts included in the output
using a set of indicator variables, xjl. For each
excerpt ejl, the corresponding indicator variable
xjl = 1 if the excerpt is included in the final doc-
ument, and xjl = 0 otherwise.

Our objective is to minimize the ranks of the
excerpts selected for the final document:

min
k∑

j=1

r∑
l=1

l · xjl

We augment this formulation with two types of
constraints.
Exclusivity Constraints We want to ensure that
exactly one indicator xjl is nonzero for each topic
tj . These constraints are formulated as follows:

r∑
l=1

xjl = 1 ∀j ∈ {1 . . . k}

Redundancy Constraints We also want to pre-
vent redundancy across topics. We define
sim(ejl, ej′l′) as the cosine similarity between ex-
cerpts ejl from topic tj and ej′l′ from topic tj′ .
We introduce constraints that ensure no pair of ex-
cerpts has similarity above 0.5:

(xjl + xj′l′) · sim(ejl, ej′l′) ≤ 1

∀j, j′ = 1 . . . k ∀l, l′ = 1 . . . r

If excerpts ejl and ej′l′ have cosine similarity
sim(ejl, ej′l′) > 0.5, only one excerpt may be
selected for the final document – i.e., either xjl

or xj′l′ may be 1, but not both. Conversely, if
sim(ejl, ej′l′) ≤ 0.5, both excerpts may be se-
lected.
Solving the ILP Solving an integer linear pro-
gram is NP-hard (Cormen et al., 1992); however,
in practice there exist several strategies for solving
certain ILPs efficiently. In our study, we employed
lp solve,3 an efficient mixed integer programming
solver which implements the Branch-and-Bound
algorithm. On a larger scale, there are several al-
ternatives to approximate the ILP results, such as a
dynamic programming approximation to the knap-
sack problem (McDonald, 2007).

3http://lpsolve.sourceforge.net/5.5/

Feature Value
UNI wordi count of word occurrences
POS wordi first position of word in excerpt
BI wordi wordi+1 count of bigram occurrences
SENT count of all sentences
EXCL count of exclamations
QUES count of questions
WORD count of all words
NAME count of title mentions
DATE count of dates
PROP count of proper nouns
PRON count of pronouns
NUM count of numbers
FIRST word1 1∗

FIRST word1 word2 1†

SIMS count of similar excerpts‡

Table 1: Features employed in the ranking model.
∗ Defined as the first unigram in the excerpt.
† Defined as the first bigram in the excerpt.
‡ Defined as excerpts with cosine similarity > 0.5

Features As shown in Table 1, most of the fea-
tures we select in our model have been employed
in previous work on summarization (Mani and
Maybury, 1999). All features except the SIMS
feature are defined for individual excerpts in isola-
tion. For each excerpt ejl, the value of the SIMS
feature is the count of excerpts ejl′ in the same
topic tj for which sim(ejl, ejl′) > 0.5. This fea-
ture quantifies the degree of repetition within a
topic, often indicative of an excerpt’s accuracy and
relevance.

3.2.2 Model Training

Generating Training Data For training, we are
given n original documents d1 . . . dn, a content
template consisting of topics t1 . . . tk, and a set of
candidate excerpts eij1 . . . eijr for each document
di and topic tj . For each section of each docu-
ment, we add the gold excerpt sij to the corre-
sponding vector of candidate excerpts eij1 . . . eijr.
This excerpt represents the target for our training
algorithm. Note that the algorithm does not re-
quire annotated ranking data; only knowledge of
this “optimal” excerpt is required. However, if
the excerpts provided in the training data have low
quality, noise is introduced into the system.
Training Procedure Our algorithm is a
modification of the perceptron ranking algo-
rithm (Collins, 2002), which allows for joint
learning across several ranking problems (Daumé
III and Marcu, 2005; Snyder and Barzilay, 2007).
Pseudocode for this algorithm is provided in
Figure 2.

First, we define Rank(eij1 . . . eijr,wj), which
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ranks all excerpts from the candidate excerpt
vector eij1 . . . eijr for document di and topic
tj . Excerpts are ordered by scorej(ejl) using
the current parameter values. We also define
Optimize(eij1 . . . eijr), which finds the optimal
selection of excerpts (one per topic) given ranked
lists of excerpts eij1 . . . eijr for each document di

and topic tj . These functions follow the ranking
and optimization procedures described in Section
3.2.1. The algorithm maintains k parameter vec-
tors w1 . . .wk, one associated with each topic tj
desired in the final article. During initialization,
all parameter vectors are set to zeros (line 2).

To learn the optimal parameters, this algorithm
iterates over the training set until the parameters
converge or a maximum number of iterations is
reached (line 3). For each document in the train-
ing set (line 4), the following steps occur: First,
candidate excerpts for each topic are ranked (lines
5-6). Next, decoding through ILP optimization is
performed over all ranked lists of candidate ex-
cerpts, selecting one excerpt for each topic (line
7). Finally, the parameters are updated in a joint
fashion. For each topic (line 8), if the selected
excerpt is not similar enough to the gold excerpt
(line 9), the parameters for that topic are updated
using a standard perceptron update rule (line 10).
When convergence is reached or the maximum it-
eration count is exceeded, the learned parameter
values are returned (line 12).

The use of ILP during each step of training
sets this algorithm apart from previous work. In
prior research, ILP was used as a postprocess-
ing step to remove redundancy and make other
global decisions about parameters (McDonald,
2007; Marciniak and Strube, 2005; Clarke and La-
pata, 2007). However, in our training, we inter-
twine the complete decoding procedure with the
parameter updates. Our joint learning approach
finds per-topic parameter values that are maxi-
mally suited for the global decoding procedure for
content selection.

4 Experimental Setup

We evaluate our method by observing the quality
of automatically created articles in different do-
mains. We compute the similarity of a large num-
ber of articles produced by our system and sev-
eral baselines to the original human-authored arti-
cles using ROUGE, a standard metric for summary
quality. In addition, we perform an analysis of edi-

Input:
d1 . . . dn: A set of n documents, each containing

k sections si1 . . . sik

eij1 . . . eijr: Sets of candidate excerpts for each topic
tj and document di

Define:
Rank(eij1 . . . eijr,wj):

As described in Section 3.2.1:
Calculates scorej(eijl) for all excerpts for

document di and topic tj , using parameters wj .
Orders the list of excerpts by scorej(eijl)

from highest to lowest.
Optimize(ei11 . . . eikr):

As described in Section 3.2.1:
Finds the optimal selection of excerpts to form a

final article, given ranked lists of excerpts
for each topic t1 . . . tk.

Returns a list of k excerpts, one for each topic.
φ(eijl):

Returns the feature vector representing excerpt eijl

Initialization:
1 For j = 1 . . . k
2 Set parameters wj = 0
Training:
3 Repeat until convergence or while iter < itermax:
4 For i = 1 . . . n
5 For j = 1 . . . k
6 Rank(eij1 . . . eijr,wj)
7 x1 . . . xk = Optimize(ei11 . . . eikr)
8 For j = 1 . . . k
9 If sim(xj , sij) < 0.8
10 wj = wj + φ(sij)− φ(xi)
11 iter = iter + 1
12 Return parameters w1 . . .wk

Figure 2: An algorithm for learning several rank-
ing problems with a joint decoding mechanism.

tor reaction to system-produced articles submitted
to Wikipedia.

Data For evaluation, we consider two domains:
American Film Actors and Diseases. These do-
mains have been commonly used in prior work
on summarization (Weischedel et al., 2004; Zhou
et al., 2004; Filatova and Prager, 2005; Demner-
Fushman and Lin, 2007; Biadsy et al., 2008). Our
text corpus consists of articles drawn from the cor-
responding categories in Wikipedia. There are
2,150 articles in American Film Actors and 523
articles in Diseases. For each domain, we ran-
domly select 90% of articles for training and test
on the remaining 10%. Human-authored articles
in both domains contain an average of four top-
ics, and each topic contains an average of 193
words. In order to model the real-world scenario
where Wikipedia articles are not always available
(as for new or specialized topics), we specifically
exclude Wikipedia sources during our search pro-
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Avg. Excerpts Avg. Sources
Amer. Film Actors
Search 2.3 1
No Template 4 4.0
Disjoint 4 2.1
Full Model 4 3.4
Oracle 4.3 4.3
Diseases
Search 3.1 1
No Template 4 2.5
Disjoint 4 3.0
Full Model 4 3.2
Oracle 5.8 3.9

Table 2: Average number of excerpts selected and
sources used in article creation for test articles.

cedure (Section 3.1) for evaluation.
Baselines Our first baseline, Search, relies
solely on search engine ranking for content selec-
tion. Using the article title as a query – e.g., Bacil-
lary Angiomatosis, this method selects the web
page that is ranked first by the search engine. From
this page we select the first k paragraphs where k
is defined in the same way as in our full model. If
there are less than k paragraphs on the page, all
paragraphs are selected, but no other sources are
used. This yields a document of comparable size
with the output of our system. Despite its sim-
plicity, this baseline is not naive: extracting ma-
terial from a single document guarantees that the
output is coherent, and a page highly ranked by a
search engine may readily contain a comprehen-
sive overview of the subject.

Our second baseline, No Template, does not
use a template to specify desired topics; there-
fore, there are no constraints on content selection.
Instead, we follow a simplified form of previous
work on biography creation, where a classifier is
trained to distinguish biographical text (Zhou et
al., 2004; Biadsy et al., 2008).

In this case, we train a classifier to distinguish
domain-specific text. Positive training data is
drawn from all topics in the given domain cor-
pus. To find negative training data, we perform
the search procedure as in our full model (see
Section 3.1) using only the article titles as search
queries. Any excerpts which have very low sim-
ilarity to the original articles are used as negative
examples. During the decoding procedure, we use
the same search procedure. We then classify each
excerpt as relevant or irrelevant and select the k
non-redundant excerpts with the highest relevance

confidence scores.
Our third baseline, Disjoint, uses the ranking

perceptron framework as in our full system; how-
ever, rather than perform an optimization step
during training and decoding, we simply select
the highest-ranked excerpt for each topic. This
equates to standard linear classification for each
section individually.

In addition to these baselines, we compare
against an Oracle system. For each topic present
in the human-authored article, the Oracle selects
the excerpt from our full model’s candidate ex-
cerpts with the highest cosine similarity to the
human-authored text. This excerpt is the optimal
automatic selection from the results available, and
therefore represents an upper bound on our excerpt
selection task. Some articles contain additional
topics beyond those in the template; in these cases,
the Oracle system produces a longer article than
our algorithm.

Table 2 shows the average number of excerpts
selected and sources used in articles created by our
full model and each baseline.
Automatic Evaluation To assess the quality of
the resulting overview articles, we compare them
with the original human-authored articles. We
use ROUGE, an evaluation metric employed at the
Document Understanding Conferences (DUC),
which assumes that proximity to human-authored
text is an indicator of summary quality. We
use the publicly available ROUGE toolkit (Lin,
2004) to compute recall, precision, and F-score for
ROUGE-1. We use the Wilcoxon Signed Rank Test
to determine statistical significance.
Analysis of Human Edits In addition to our auto-
matic evaluation, we perform a study of reactions
to system-produced articles by the general pub-
lic. To achieve this goal, we insert automatically
created articles4 into Wikipedia itself and exam-
ine the feedback of Wikipedia editors. Selection
of specific articles is constrained by the need to
find topics which are currently of “stub” status that
have enough information available on the Internet
to construct a valid article. After a period of time,
we analyzed the edits made to the articles to deter-
mine the overall editor reaction. We report results
on 15 articles in the Diseases category5.

4In addition to the summary itself, we also include proper
citations to the sources from which the material is extracted.

5We are continually submitting new articles; however, we
report results on those that have at least a 6 month history at
time of writing.
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Recall Precision F-score
Amer. Film Actors
Search 0.09 0.37 0.13 ∗

No Template 0.33 0.50 0.39 ∗

Disjoint 0.45 0.32 0.36 ∗

Full Model 0.46 0.40 0.41
Oracle 0.48 0.64 0.54 ∗

Diseases
Search 0.31 0.37 0.32 †

No Template 0.32 0.27 0.28 ∗

Disjoint 0.33 0.40 0.35 ∗

Full Model 0.36 0.39 0.37
Oracle 0.59 0.37 0.44 ∗

Table 3: Results of ROUGE-1 evaluation.
∗ Significant with respect to our full model for p ≤ 0.05.
† Significant with respect to our full model for p ≤ 0.10.

Since Wikipedia is a live resource, we do not
repeat this procedure for our baseline systems.
Adding articles from systems which have previ-
ously demonstrated poor quality would be im-
proper, especially in Diseases. Therefore, we
present this analysis as an additional observation
rather than a rigorous technical study.

5 Results

Automatic Evaluation The results of this evalu-
ation are shown in Table 3. Our full model outper-
forms all of the baselines. By surpassing the Dis-
joint baseline, we demonstrate the benefits of joint
classification. Furthermore, the high performance
of both our full model and the Disjoint baseline
relative to the other baselines shows the impor-
tance of structure-aware content selection. The
Oracle system, which represents an upper bound
on our system’s capabilities, performs well.

The remaining baselines have different flaws:
Articles produced by the No Template baseline
tend to focus on a single topic extensively at the
expense of breadth, because there are no con-
straints to ensure diverse topic selection. On the
other hand, performance of the Search baseline
varies dramatically. This is expected; this base-
line relies heavily on both the search engine and
individual web pages. The search engine must cor-
rectly rank relevant pages, and the web pages must
provide the important material first.
Analysis of Human Edits The results of our ob-
servation of editing patterns are shown in Table
4. These articles have resided on Wikipedia for
a period of time ranging from 5-11 months. All
of them have been edited, and no articles were re-
moved due to lack of quality. Moreover, ten au-
tomatically created articles have been promoted

Type Count
Total articles 15

Promoted articles 10
Edit types

Intra-wiki links 36
Formatting 25
Grammar 20
Minor topic edits 2
Major topic changes 1

Total edits 85

Table 4: Distribution of edits on Wikipedia.

by human editors from stubs to regular Wikipedia
entries based on the quality and coverage of the
material. Information was removed in three cases
for being irrelevant, one entire section and two
smaller pieces. The most common changes were
small edits to formatting and introduction of links
to other Wikipedia articles in the body text.

6 Conclusion

In this paper, we investigated an approach for cre-
ating a multi-paragraph overview article by select-
ing relevant material from the web and organiz-
ing it into a single coherent text. Our algorithm
yields significant gains over a structure-agnostic
approach. Moreover, our results demonstrate the
benefits of structured classification, which out-
performs independently trained topical classifiers.
Overall, the results of our evaluation combined
with our analysis of human edits confirm that the
proposed method can effectively produce compre-
hensive overview articles.

This work opens several directions for future re-
search. Diseases and American Film Actors ex-
hibit fairly consistent article structures, which are
successfully captured by a simple template cre-
ation process. However, with categories that ex-
hibit structural variability, more sophisticated sta-
tistical approaches may be required to produce ac-
curate templates. Moreover, a promising direction
is to consider hierarchical discourse formalisms
such as RST (Mann and Thompson, 1988) to sup-
plement our template-based approach.
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Abstract

Computational story telling has sparked
great interest in artificial intelligence,
partly because of its relevance to educa-
tional and gaming applications. Tradition-
ally, story generators rely on a large repos-
itory of background knowledge contain-
ing information about the story plot and
its characters. This information is detailed
and usually hand crafted. In this paper we
propose a data-driven approach for gen-
erating short children’s stories that does
not require extensive manual involvement.
We create an end-to-end system that real-
izes the various components of the gen-
eration pipeline stochastically. Our system
follows a generate-and-and-rank approach
where the space of multiple candidate sto-
ries is pruned by considering whether they
are plausible, interesting, and coherent.

1 Introduction

Recent years have witnessed increased interest in
the use of interactive language technology in ed-
ucational and entertainment applications. Compu-
tational story telling could play a key role in these
applications by effectively engaging learners and
assisting them in creating a story. It could also al-
low teachers to generate stories on demand that
suit their classes’ needs. And enhance the enter-
tainment value of role-playing games1. The major-
ity of these games come with a set of pre-specified
plots that the players must act out. Ideally, the plot
should adapt dynamically in response to the play-
ers’ actions.

Computational story telling has a longstanding
tradition in the field of artificial intelligence. Early
work has been largely inspired by Propp’s (1968)

1A role-playing game (RPG) is a game in which the par-
ticipants assume the roles of fictional characters and act out
an adventure.

typology of narrative structure. Propp identified in
Russian fairy tales a small number of recurring
units (e.g., the hero is defeated, the villain causes
harm) and rules that could be used to describe their
relation (e.g., the hero is pursued and the rescued).
Story grammars (Thorndyke, 1977) were initially
used to capture Propp’s high-level plot elements
and character interactions. A large body of more
recent work views story generation as a form of
agent-based planning (Theune et al., 2003; Fass,
2002; Oinonen et al., 2006). The agents act as
characters with a list of goals. They form plans
of action and try to fulfill them. Interesting stories
emerge as agents’ plans interact and cause failures
and possible replanning.

Perhaps the biggest challenge faced by compu-
tational story generators is the amount of world
knowledge required to create compelling stories.
A hypothetical system must have information
about the characters involved, how they inter-
act, what their goals are, and how they influence
their environment. Furthermore, all this informa-
tion must be complete and error-free if it is to be
used as input to a planning algorithm. Tradition-
ally, this knowledge is created by hand, and must
be recreated for different domains. Even the sim-
ple task of adding a new character requires a whole
new set of action descriptions and goals.

A second challenge concerns the generation
task itself and the creation of stories character-
ized by high-quality prose. Most story genera-
tion systems focus on generating plot outlines,
without considering the actual linguistic structures
found in the stories they are trying to mimic (but
see Callaway and Lester 2002 for a notable ex-
ception). In fact, there seems to be little com-
mon ground between story generation and natural
language generation (NLG), despite extensive re-
search in both fields. The NLG process (Reiter and
Dale, 2000) is often viewed as a pipeline consist-
ing of content planning (selecting and structuring
the story’s content), microplanning (sentence ag-
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gregation, generation of referring expressions, lex-
ical choice), and surface realization (agreement,
verb-subject ordering). However, story generation
systems typically operate in two phases: (a) creat-
ing a plot for the story and (b) transforming it into
text (often by means of template-based NLG).

In this paper we address both challenges fac-
ing computational story telling. We propose a
data-driven approach to story generation that does
not require extensive manual involvement. Our
goal is to create stories automatically by leverag-
ing knowledge inherent in corpora. Stories within
the same genre (e.g., fairy tales, parables) typically
have similar structure, characters, events, and vo-
cabularies. It is precisely this type of information
we wish to extract and quantify. Of course, build-
ing a database of characters and their actions is
merely the first step towards creating an automatic
story generator. The latter must be able to select
which information to include in the story, in what
order to present it, how to convert it into English.

Recent work in natural language generation has
seen the development of learning methods for re-
alizing each of these tasks automatically with-
out much hand coding. For example, Duboue and
McKeown (2002) and Barzilay and Lapata (2005)
propose to learn a content planner from a paral-
lel corpus. Mellish et al. (1998) advocate stochas-
tic search methods for document structuring. Stent
et al. (2004) learn how to combine the syntactic
structure of elementary speech acts into one or
more sentences from a corpus of good and bad ex-
amples. And Knight and Hatzivassiloglou (1995)
use a language model for selecting a fluent sen-
tence among the vast number of surface realiza-
tions corresponding to a single semantic represen-
tation. Although successful on their own, these
methods have not been yet integrated together into
an end-to-end probabilistic system. Our work at-
tempts to do this for the story generation task,
while bridging the gap between story generators
and NLG systems.

Our generator operates over predicate-argument
and predicate-predicate co-occurrence statistics
gathered from corpora. These are used to pro-
duce a large set of candidate stories which are
subsequently ranked based on their interesting-
ness and coherence. The top-ranked candidate
is selected for presentation and verbalized us-
ing a language model interfaced with RealPro
(Lavoie and Rambow, 1997), a text generation
engine. This generate-and-rank architecture cir-
cumvents the complexity of traditional generation

This is a fat hen.
The hen has a nest in the box.
She has eggs in the nest.
A cat sees the nest, and can get the eggs.
The sun will soon set.
The cows are on their way to the barn.
One old cow has a bell on her neck.
She sees the dog, but she will not run.
The dog is kind to the cows.

Figure 1: Children’s stories from McGuffey’s
Eclectic Primer Reader; it contains primary read-
ing matter to be used in the first year of school
work.

systems, where numerous, often conflicting con-
straints, have to be encoded during development
in order to produce a single high-quality output.

As a proof of concept we initially focus on
children’s stories (see Figure 1 for an example).
These stories exhibit several recurrent patterns and
are thus amenable to a data-driven approach. Al-
though they have limited vocabulary and non-
elaborate syntax, they nevertheless present chal-
lenges at almost all stages of the generation pro-
cess. Also from a practical point of view, chil-
dren’s stories have great potential for educational
applications (Robertson and Good, 2003). For in-
stance, the system we describe could serve as an
assistant to a person who wants suggestions as to
what could happen next in a story. In the remain-
der of this paper, we first describe the components
of our story generator (Section 2) and explain how
these are interfaced with our story ranker (Sec-
tion 3). Next, we present the resources and evalu-
ation methodology used in our experiments (Sec-
tion 4) and discuss our results (Section 5).

2 The Story Generator

As common in previous work (e.g., Shim and Kim
2002), we assume that our generator operates in an
interactive context. Specifically, the user supplies
the topic of the story and its desired length. By
topic we mean the entities (or characters) around
which the story will revolve. These can be a list
of nouns such as dog and duck or a sentence, such
as the dog chases the duck. The generator next
constructs several possible stories involving these
entities by consulting a knowledge base containing
information about dogs and ducks (e.g., dogs bark,
ducks swim) and their interactions (e.g., dogs
chase ducks, ducks love dogs). We conceptualize
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the dog chases the duck

the dog barks the duck runs away

the dog catches the duck the duck escapes

Figure 2: Example of a simplified story tree.

the story generation process as a tree (see Figure 2)
whose levels represent different story lengths. For
example, a tree of depth 3 will only generate sto-
ries with three sentences. The tree encodes many
stories efficiently, the nodes correspond to differ-
ent sentences and there is no sibling order (the
tree in Figure 2 can generate three stories). Each
sentence in the tree has a score. Story generation
amounts to traversing the tree and selecting the
nodes with the highest score

Specifically, our story generator applies two
distinct search procedures. Although we are ul-
timately searching for the best overall story at
the document level, we must also find the most
suitable sentences that can be generated from the
knowledge base (see Figure 4). The space of pos-
sible stories can increase dramatically depending
on the size of the knowledge base so that an ex-
haustive tree search becomes computationally pro-
hibitive. Fortunately, we can use beam search to
prune low-scoring sentences and the stories they
generate. For example, we may prefer sentences
describing actions that are common for their char-
acters. We also apply two additional criteria in se-
lecting good stories, namely whether they are co-
herent and interesting. At each depth in the tree
we maintain the N-best stories. Once we reach the
required length, the highest scoring story is pre-
sented to the user. In the following we describe
the components of our system in more detail.

2.1 Content Planning
As mentioned earlier our generator has access to
a knowledge base recording entities and their in-
teractions. These are essentially predicate argu-
ment structures extracted from a corpus. In our ex-
periments this knowledge base was created using
the RASP relational parser (Briscoe and Carroll,
2002). We collected all verb-subject, verb-object,
verb-adverb, and noun-adjective relations from the
parser’s output and scored them with the mutual

dog:SUBJ:bark whistle:OBJ:dog
dog:SUBJ:bite treat:OBJ:dog
dog:SUBJ:see give:OBJ:dog
dog:SUBJ:like have: OBJ:dog
hungry:ADJ:dog lovely:ADJ:dog

Table 1: Relations for the noun dog with high
MI scores (SUBJ is a shorthand for subject-of,
OBJ for object-of and ADJ for adjective-of).

information-based metric proposed in Lin (1998):

MI = ln
(
‖ w,r,w′ ‖ × ‖ ∗,r,∗ ‖
‖ w,r,∗ ‖ × ‖ ∗,r,w′ ‖

)
(1)

where w and w′ are two words with relation type r.
∗ denotes all words in that particular relation and
‖ w,r,w′ ‖ represents the number of times w,r,w′

occurred in the corpus. These MI scores are used
to inform the generation system about likely entity
relationships at the sentence level. Table 1 shows
high scoring relations for the noun dog extracted
from the corpus used in our experiments (see Sec-
tion 4 for details).

Note that MI weighs binary relations which in
some cases may be likely on their own without
making sense in a ternary relation. For instance, al-
though both dog:SUBJ:run and president:OBJ:run
are probable we may not want to create the sen-
tence “The dog runs for president”. Ditransitive
verbs pose a similar problem, where two incongru-
ent objects may appear together (the sentence John
gives an apple to the highway is semantically odd,
whereas John gives an apple to the teacher would
be fine). To help reduce these problems, we need
to estimate the likelihood of ternary relations. We
therefore calculate the conditional probability:

p(a1,a2 | s,v) =
‖ s,v,a1,a2 ‖
‖ s,v,∗,∗ ‖

(2)

where s is the subject of verb v, a1 is the first argu-
ment of v and a2 is the second argument of v and
v,s,a1 6= ε. When a verb takes two arguments, we
first consult (2), to see if the combination is likely
before backing off to (1).

The knowledge base described above can only
inform the generation system about relationships
on the sentence level. However, a story created
simply by concatenating sentences in isolation
will often be incoherent. Investigations into the
interpretation of narrative discourse (Asher and
Lascarides, 2003) have shown that lexical infor-
mation plays an important role in determining
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Figure 3: Graph encoding (partially ordered)
chains of events

the discourse relations between propositions. Al-
though we don’t have an explicit model of rhetor-
ical relations and their effects on sentence order-
ing, we capture the lexical inter-dependencies be-
tween sentences by focusing on events (verbs)
and their precedence relationships in the corpus.
For every entity in our training corpus we extract
event chains similar to those proposed by Cham-
bers and Jurafsky (2008). Specifically, we identify
the events every entity relates to and record their
(partial) order. We assume that verbs sharing the
same arguments are more likely to be semantically
related than verbs with no arguments in common.
For example, if we know that someone steals and
then runs, we may expect the next action to be that
they hide or that they are caught.

In order to track entities and their associated
events throughout a text, we first resolve entity
mentions using OpenNLP2. The list of events per-
formed by co-referring entities and their gram-
matical relation (i.e., subject or object) are sub-
sequently stored in a graph. The edges between
event nodes are scored using the MI equation
given in (1). A fragment of the action graph
is shown in Figure 3 (for simplicity, the edges
in the example are weighted with co-occurrence
frequencies). Contrary to Chambers and Juraf-
sky (2008) we do not learn global narrative
chains over an entire corpus. Currently, we con-
sider local chains of length two and three (i.e.,
chains of two or three events sharing gram-
matical arguments). The generator consults the
graph when selecting a verb for an entity. It
will favor verbs that are part of an event chain
(e.g., SUBJ:chase → SUBJ:run → SUBJ:fall in
Figure 3). This way, the search space is effectively
pruned as finding a suitable verb in the current sen-
tence is influenced by the choice of verb in the next
sentence.

2See http://opennlp.sourceforge.net/.

2.2 Sentence Planning
So far we have described how we gather knowl-
edge about entities and their interactions, which
must be subsequently combined into a sentence.
The backbone of our sentence planner is a gram-
mar with subcategorization information which we
collected from the lexicon created by Korhonen
and Briscoe (2006) and the COMLEX dictionary
(Grishman et al., 1994). The grammar rules act
as templates. They each take a verb as their head
and propose ways of filling its argument slots. This
means that when generating a story, the choice of
verb will affect the structure of the sentence. The
subcategorization templates are weighted by their
probability of occurrence in the reference dictio-
naries. This allows the system to prefer less elab-
orate grammatical structures. The grammar rules
were converted to a format compatible with our
surface realizer (see Section 2.3) and include in-
formation pertaining to mood, agreement, argu-
ment role, etc.

Our sentence planner aggregates together infor-
mation from the knowledge base, without how-
ever generating referring expressions. Although
this would be a natural extension, we initially
wanted to assess whether the stochastic approach
advocated here is feasible at all, before venturing
towards more ambitious components.

2.3 Surface Realization
The surface realization process is performed by
RealPro (Lavoie and Rambow (1997)). The sys-
tem takes an abstract sentence representation and
transforms it into English. There are several gram-
matical issues that will affect the final realization
of the sentence. For nouns we must decide whether
they are singular or plural, whether they are pre-
ceded by a definite or indefinite article or with no
article at all. Adverbs can either be pre-verbal or
post-verbal. There is also the issue of selecting
an appropriate tense for our generated sentences,
however, we simply assume all sentences are in
the present tense. Since we do not know a priori
which of these parameters will result in a gram-
matical sentence, we generate all possible combi-
nations and select the most likely one according to
a language model. We used the SRI toolkit to train
a trigram language model on the British National
Corpus, with interpolated Kneser-Ney smoothing
and perplexity as the scoring metric for the gener-
ated sentences.
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root

dog

. . . bark

bark(dog) bark at(dog,OBJ)

bark at(dog,duck) bark at(dog,cat)

bark(dog,ADV)

bark(dog,loudly)

hide run

duck

quack

. . .

run

. . .

fly

. . .

Figure 4: Simplified generation example for the in-
put sentence the dog chases the duck.

2.4 Sentence Generation Example
It is best to illustrate the generation procedure with
a simple example (see Figure 4). Given the sen-
tence the dog chases the duck as input, our gen-
erator assumes that either dog or duck will be the
subject of the following sentence. This is a some-
what simplistic attempt at generating coherent sto-
ries. Centering (Grosz et al., 1995) and other dis-
course theories argue that topical entities are likely
to appear in prominent syntactic positions such as
subject or object. Next, we select verbs from the
knowledge base that take the words duck and dog
as their subject (e.g., bark, run, fly). Our beam
search procedure will reduce the list of verbs to
a small subset by giving preference to those that
are likely to follow chase and have duck and dog
as their subjects or objects.

The sentence planner gives a set of possible
frames for these verbs which may introduce ad-
ditional entities (see Figure 4). For example, bark
can be intransitive or take an object or adver-
bial complement. We select an object for bark,
by retrieving from the knowledge base the set
of objects it co-occurs with. Our surface real-
izer will take structures like “bark(dog,loudly)”,
“bark at(dog,cat)”, “bark at(dog,duck)” and gen-
erate the sentences the dog barks loudly, the dog
barks at the cat and the dog barks at the duck. This
procedure is repeated to create a list of possible
candidates for the third sentence, and so on.

As Figure 4 illustrates, there are many candidate
sentences for each entity. In default of generating
all of these exhaustively, our system utilizes the
MI scores from the knowledge base to guide the

search. So, at each choice point in the generation
process, e.g., when selecting a verb for an entity or
a frame for a verb, we consider the N best alterna-
tives assuming that these are most likely to appear
in a good story.

3 Story Ranking

We have so far described most modules of our
story generator, save one important component,
namely the story ranker. As explained earlier, our
generator produces stories stochastically, by rely-
ing on co-occurrence frequencies collected from
the training corpus. However, there is no guaran-
tee that these stories will be interesting or coher-
ent. Engaging stories have some element of sur-
prise and originality in them (Turner, 1994). Our
stories may simply contain a list of actions typi-
cally performed by the story characters. Or in the
worst case, actions that make no sense when col-
lated together.

Ideally, we would like to be able to discern in-
teresting stories from tedious ones. Another im-
portant consideration is their coherence. We have
to ensure that the discourse smoothly transitions
from one topic to the next. To remedy this, we
developed two ranking functions that assess the
candidate stories based on their interest and coher-
ence. Following previous work (Stent et al., 2004;
Barzilay and Lapata, 2007) we learn these ranking
functions from training data (i.e., stories labeled
with numeric values for interestingness and coher-
ence).

Interest Model A stumbling block to assessing
how interesting a story may be, is that the very no-
tion of interestingness is subjective and not very
well understood. Although people can judge fairly
reliably whether they like or dislike a story, they
have more difficulty isolating what exactly makes
it interesting. Furthermore, there are virtually no
empirical studies investigating the linguistic (sur-
face level) correlates of interestingness. We there-
fore conducted an experiment where we asked par-
ticipants to rate a set of human authored stories in
terms of interest. Our stories were Aesop’s fables
since they resemble the stories we wish to gener-
ate. They are fairly short (average length was 3.7
sentences) and with a few characters. We asked
participants to judge 40 fables on a set of crite-
ria: plot, events, characters, coherence and interest
(using a 5-point rating scale). The fables were split
into 5 sets of 8; each participant was randomly as-
signed one of the 5 sets to judge. We obtained rat-
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ings (440 in total) from 55 participants, using the
WebExp3 experimental software.

We next investigated if easily observable syn-
tactic and lexical features were correlated with in-
terest. Participants gave the fables an average in-
terest rating of 3.05. For each story we extracted
the number of tokens and types for nouns, verbs,
adverbs and adjectives as well as the number
of verb-subject and verb-object relations. Using
the MRC Psycholinguistic database4 tokens were
also annotated along the following dimensions:
number of letters (NLET), number of phonemes
(NPHON), number of syllables (NSYL), written
frequency in the Brown corpus (Kucera and Fran-
cis 1967; K-F-FREQ), number of categories in the
Brown corpus (K-F-NCATS), number of samples
in the Brown corpus (K-F-NSAMP), familiarity
(FAM), concreteness (CONC), imagery (IMAG),
age of acquisition (AOA), and meaningfulness
(MEANC and MEANP).

Correlation analysis was used to assess the de-
gree of linear relationship between interest ratings
and the above features. The results are shown in
Table 2. As can be seen the highest predictor is the
number of objects in a story, followed by the num-
ber of noun tokens and types. Imagery, concrete-
ness and familiarity all seem to be significantly
correlated with interest. Story length was not a
significant predictor. Regressing the best predic-
tors from Table 2 against the interest ratings yields
a correlation coefficient of 0.608 (p < 0.05). The
predictors account uniquely for 37.2% of the vari-
ance in interest ratings. Overall, these results indi-
cate that a model of story interest can be trained
using shallow syntactic and lexical features. We
used the Aesop’s fables with the human ratings as
training data from which we extracted features that
shown to be significant predictors in our correla-
tion analysis. Word-based features were summed
in order to obtain a representation for the en-
tire story. We used Joachims’s (2002) SVMlight

package for training with cross-validation (all pa-
rameters set to their default values). The model
achieved a correlation of 0.948 (Kendall’s tau)
with the human ratings on the test set.

Coherence Model As well as being interesting
we have to ensure that our stories make sense
to the reader. Here, we focus on local coher-
ence, which captures text organization at the level

3See http://www.webexp.info/.
4http://www.psy.uwa.edu.au/mrcdatabase/uwa_

mrc.htm

Interest Interest
NTokens 0.188∗∗ NLET 0.120∗

NTypes 0.173∗∗ NPHON 0.140∗∗

VTokens 0.123∗ NSYL 0.125∗∗

VTypes 0.154∗∗ K-F-FREQ 0.054
AdvTokens 0.056 K-F-NCATS 0.137∗∗

AdvTypes 0.051 K-F-NSAMP 0.103∗

AdjTokens 0.035 FAM 0.162∗∗

AdjTypes 0.029 CONC 0.166∗∗

NumSubj 0.150∗∗ IMAG 0.173∗∗

NumObj 0.240∗∗ AOA 0.111∗

MEANC 0.169∗∗ MEANP 0.156∗∗

Table 2: Correlation values for the human ratings
of interest against syntactic and lexical features;
∗ : p < 0.05, ∗∗ : p < 0.01.

of sentence to sentence transitions. We created a
model of local coherence using using the Entity
Grid approach described in Barzilay and Lapata
(2007). This approach represents each document
as a two-dimensional array in which the columns
correspond to entities and the rows to sentences.
Each cell indicates whether an entity appears in a
given sentence or not and whether it is a subject,
object or neither. This entity grid is then converted
into a vector of entity transition sequences. Train-
ing the model required examples of both coher-
ent and incoherent stories. An artificial training set
was created by permuting the sentences of coher-
ent stories, under the assumption that the original
story is more coherent than its permutations. The
model was trained and tested on the Andrew Lang
fairy tales collection5 on a random split of the data.
It ranked the original stories higher than their cor-
responding permutations 67.40% of the time.

4 Experimental Setup

In this section we present our experimental set-up
for assessing the performance of our story genera-
tor. We give details on our training corpus, system,
parameters (such as the width of the beam), the
baselines used for comparison, and explain how
our system output was evaluated.

Corpus The generator was trained on 437 sto-
ries from the Andrew Lang fairy tale corpus.6 The
stories had an average length of 125.18 sentences.
The corpus contained 15,789 word tokens. We

5Aesop’s fables were too short to learn a coherence
model.

6See http://www.mythfolklore.net/andrewlang/.
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discarded word tokens that did not appear in the
Children’s Printed Word Database7, a database of
printed word frequencies as read by children aged
between five and nine.

Story search When searching the story space,
we set the beam width to 500. This means that
we allow only 500 sentences to be considered at
a particular depth before generating the next set of
sentences in the story. For each entity we select the
five most likely events and event sequences. Anal-
ogously, we consider the five most likely subcate-
gorization templates for each verb. Considerable
latitude is available when applying the ranking
functions. We may use only one of them, or one
after the other, or both of them. To evaluate which
system configuration was best, we asked two hu-
man evaluators to rate (on a 1–5 scale) stories pro-
duced in the following conditions: (a) score the
candidate stories using the interest function first
and then coherence (and vice versa), (b) score the
stories simultaneously using both rankers and se-
lect the story with the highest score. We also ex-
amined how best to prune the search space, i.e., by
selecting the highest scoring stories, the lowest
scoring one, or simply at random. We created ten
stories of length five using the fairy tale corpus for
each permutation of the parameters. The results
showed that the evaluators preferred the version
of the system that applied both rankers simultane-
ously and maintained the highest scoring stories in
the beam.

Baselines We compared our system against two
simpler alternatives. The first one does not use
a beam. Instead, it decides deterministically how
to generate a story on the basis of the most
likely predicate-argument and predicate-predicate
counts in the knowledge base. The second one
creates a story randomly without taking any co-
occurrence frequency into account. Neither of
these systems therefore creates more than one
story hypothesis whilst generating.

Evaluation The system generated stories for
10 input sentences. These were created using com-
monly occurring sentences in the fairy tales corpus
(e.g., The family has the baby, The monkey climbs
the tree, The giant guards the child). Each sys-
tem generated one story for each sentence result-
ing in 30 (3×10) stories for evaluation. All sto-
ries had the same length, namely five sentences.
Human judges (21 in total) were asked to rate the

7http://www.essex.ac.uk/psychology/cpwd/

System Fluency Coherence Interest
Random 1.95∗ 2.40∗ 2.09∗

Deterministic 2.06∗ 2.53∗ 2.09∗

Rank-based 2.20 2.65 2.20

Table 3: Human evaluation results: mean story rat-
ings for three versions of our system; ∗: signifi-
cantly different from Rank-based.

stories on a scale of 1 to 5 for fluency (was the
sentence grammatical?), coherence (does the story
make sense overall?) and interest (how interesting
is the story?). The stories were presented in ran-
dom order. Participants were told that all stories
were generated by a computer program. They were
instructed to rate more favorably interesting sto-
ries, stories that were comprehensible and overall
grammatical.

5 Results

Our results are summarized in Table 3 which lists
the average human ratings for the three systems.
We performed an Analysis of Variance (ANOVA)
to examine the effect of system type on the story
generation task. Statistical tests were carried out
on the mean of the ratings shown in Table 3 for
fluency, coherence, and interest. We observed a re-
liable effect of system type by subjects and items
on all three dimensions. Post-hoc Tukey tests re-
vealed that the stories created with our rank-
based system are perceived as significantly better
in terms of fluency, interest, and coherence than
those generated by both the deterministic and ran-
dom systems (α < 0.05). The deterministic system
is not significantly better than the random one ex-
cept in terms of coherence.

These results are not entirely surprising. The
deterministic system maintains a local restricted
view of what constitutes a good story. It creates
a story by selecting isolated entity-event relation-
ships with high MI scores. As a result, the stories
are unlikely to have a good plot. Moreover, it tends
to primarily favor verb-object or verb-subject re-
lations, since these are most frequent in the cor-
pus. The stories thus have little structural varia-
tion and feel repetitive. The random system uses
even less information in generating a story (entity-
action relationships are chosen at random without
taking note of the MI scores). In contrast to these
baselines, the rank-based system assesses candi-
date stories more globally. It thus favors coher-
ent stories, with varied word choice and structure.
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The family has the baby The giant guards the child

R
an

do
m The family has the baby. The family is how to empty

up to a fault. The baby vanishes into the cave. The fam-
ily meets with a stranger. The baby says for the boy to
fancy the creature.

The giant guards the child. The child calls for the
window to order the giant. The child suffers from a
pleasure. The child longer hides the forest. The child
reaches presently.

D
et

er
m The family has the baby. The family rounds up the

waist. The family comes in. The family wonders. The
family meets with the terrace.

The giant guards the child. The child rescues the clutch.
The child beats down on a drum. The child feels out of
a shock. The child hears from the giant.

R
an

k-
ba

se
d The family has the baby. The baby is to seat the lady at

the back. The baby sees the lady in the family. The fam-
ily marries a lady for the triumph. The family quickly
wishes the lady vanishes.

The giant guards the child. The child rescues the son
from the power. The child begs the son for a pardon.
The giant cries that the son laughs the happiness out of
death. The child hears if the happiness tells a story.

Table 4: Stories generated by the random, deterministic, and rank-based systems.

A note of caution here concerns referring expres-
sions which our systems cannot at the moment
generate. This may have disadvantaged the stories
overall, rendering them stylistically awkward.

The stories generated by both the determinis-
tic and random systems are perceived as less in-
teresting in comparison to the rank-based system.
This indicates that taking interest into account is a
promising direction even though the overall inter-
estingness of the stories we generate is somewhat
low (see third column in Table 3). Our interest
ranking function was trained on well-formed hu-
man authored stories. It is therefore possible that
the ranker was not as effective as it could be sim-
ply because it was applied to out-of-domain data.
An interesting extension which we plan for the
future is to evaluate the performance of a ranker
trained on machine generated stories.

Table 4 illustrates the stories generated by each
system for two input sentences. The rank-based
stories read better overall and are more coherent.
Our subjects also gave them high interest scores.
The deterministic system tends to select simplis-
tic sentences which although read well by them-
selves do not lead to an overall narrative. Interest-
ingly, the story generated by the random system
for the input The family has the baby, scored high
on interest too. The story indeed contains interest-
ing imagery (e.g. The baby vanishes into the cave)
although some of the sentences are syntactically
odd (e.g. The family is how to empty up to a fault).

6 Conclusions and Future Work

In this paper we proposed a novel method to
computational story telling. Our approach has
three key features. Firstly, story plot is created
dynamically by consulting an automatically cre-
ated knowledge base. Secondly, our generator re-
alizes the various components of the generation

pipeline stochastically, without extensive manual
coding. Thirdly, we generate and store multiple
stories efficiently in a tree data structure. Story
creation amounts to traversing the tree and select-
ing the nodes with the highest score. We develop
two scoring functions that rate stories in terms
of how coherent and interesting they are. Experi-
mental results show that these bring improvements
over versions of the system that rely solely on
the knowledge base. Overall, our results indicate
that the overgeneration-and-ranking approach ad-
vocated here is viable in producing short stories
that exhibit narrative structure. As our system can
be easily rertrained on different corpora, it can po-
tentially generate stories that vary in vocabulary,
style, genre, and domain.

An important future direction concerns a more
detailed assessment of our search procedure. Cur-
rently we don’t have a good estimate of the type of
stories being overlooked due to the restrictions we
impose on the search space. An appealing alterna-
tive is the use of Genetic Algorithms (Goldberg,
1989). The operations of mutation and crossover
have the potential of creating more varied and
original stories. Our generator would also bene-
fit from an explicit model of causality which is
currently approximated by the entity chains. Such
a model could be created from existing resources
such as ConceptNet (Liu and Davenport, 2004),
a freely available commonsense knowledge base.
Finally, improvements such as the generation of
referring expressions and the modeling of selec-
tional restrictions would create more fluent stories.
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Abstract

This paper presents an unsupervised opin-
ion analysis method fordebate-side clas-
sification, i.e., recognizing which stance a
person is taking in an online debate. In
order to handle the complexities of this
genre, we mine the web to learn associa-
tions that are indicative of opinion stances
in debates. We combine this knowledge
with discourse information, and formu-
late the debate side classification task as
an Integer Linear Programming problem.
Our results show that our method is sub-
stantially better than challenging baseline
methods.

1 Introduction

This paper presents a method fordebate-side clas-
sification, i.e., recognizing which stance a per-
son is taking in an online debate posting. In on-
line debate forums, people debate issues, express
their preferences, and argue why their viewpoint is
right. In addition to expressing positive sentiments
about one’s preference, a key strategy is also to
express negative sentiments about the other side.
For example, in the debate“which mobile phone is
better: iPhone or Blackberry,”a participant on the
iPhone side may explicitly assert and rationalize
why the iPhone is better, and, alternatively, also ar-
gue why the Blackberry is worse. Thus, to recog-
nize stances, we need to consider not only which
opinions are positive and negative, but also what
the opinions are about (theirtargets).

Participants directly express their opinions,
such as“The iPhone is cool,”but, more often, they
mention associated aspects. Some aspects are par-
ticular to one topic (e.g., Active-X is part of IE
but not Firefox), and so distinguish between them.
But even an aspect the topics share may distin-
guish between them, because people who are pos-
itive toward one topic may value that aspect more.

For example, both the iPhone and Blackberry have
keyboards, but we observed in our corpus that pos-
itive opinions about the keyboard are associated
with the pro Blackberry stance. Thus, we need to
find distinguishing aspects, which the topics may
or may not share.

Complicating the picture further, participants
may concede positive aspects of the opposing is-
sue or topic, without coming out in favor of it,
and they may concede negative aspects of the is-
sue or topic they support. For example, in the fol-
lowing sentence, the speaker says positive things
about the iPhone, even though he does not pre-
fer it: “Yes, the iPhone may be cool to take it out
and play with and show off, but past that, it offers
nothing.” Thus, we need to consider discourse re-
lations to sort out which sentiments in fact reveal
the writer’s stance, and which are merely conces-
sions.

Many opinion mining approaches find negative
and positive words in a document, and aggregate
their counts to determine the final document po-
larity, ignoring the targets of the opinions. Some
work in product review mining finds aspects of a
central topic, and summarizes opinions with re-
spect to these aspects. However, they do not find
distinguishing factors associated with a preference
for a stance. Finally, while other opinion anal-
ysis systems have considered discourse informa-
tion, they have not distinguished between conces-
sionary and non-concessionary opinions when de-
termining the overall stance of a document.

This work proposes an unsupervised opinion
analysis method to address the challenges de-
scribed above. First, for each debate side, we mine
the web for opinion-target pairs that are associated
with a preference for that side. This information
is employed, in conjunction with discourse infor-
mation, in an Integer Linear Programming (ILP)
framework. This framework combines the individ-
ual pieces of information to arrive at debate-side

226



classifications of posts in online debates.
The remainder of this paper is organized as fol-

lows. We introduce our debate genre in Section 2
and describe our method in Section 3. We present
the experiments in Section 4 and analyze the re-
sults in Section 5. Related work is in Section 6,
and the conclusions are in Section 7.

2 The Debate Genre

In this section, we describe our debate data,
and elaborate on characteristic ways of express-
ing opinions in this genre. For our current
work, we use the online debates from the website
http://www.convinceme.net.1

In this work, we deal only with dual-sided,
dual-topic debates about named entities, for ex-
ample iPhone vs. Blackberry, wheretopic1 =
iPhone,topic2 =Blackberry,side1 = pro-iPhone,
andside2=pro-Blackberry.

Our test data consists of posts of 4 debates:
Windows vs. Mac, Firefox vs. Internet Explorer,
Firefox vs. Opera, and Sony Ps3 vs. Nintendo
Wii. The iPhone vs. Blackberry debate and two
other debates, were used as development data.

Given below are examples of debate posts. Post
1 is taken from the iPhone vs. Blackberry debate,
Post 2 is from the Firefox vs. Internet Explorer
debate, and Post 3 is from the Windows vs. Mac
debate:

(1) While the iPhone may appeal to younger
generations and the BB to older, there is no
way it is geared towards a less rich popula-
tion. In fact it’s exactly the opposite. It’s a
gimmick. The initial purchase may be half
the price, but when all is said and done you
pay at least $200 more for the 3g.

(2) In-line spell check...helps me with big
words like onomatopoeia

(3) Apples are nice computers with an excep-
tional interface. Vista will close the gap on
the interface some but Apple still has the
prettiest, most pleasing interface and most
likely will for the next several years.

2.1 Observations

As described in Section 1, the debate genre poses
significant challenges to opinion analysis. This

1http://www.forandagainst.com and
http://www.createdebate.com are other similar debating
websites.

subsection elaborates upon some of the complexi-
ties.

Multiple polarities to argue for a side. Debate
participants, in advocating their choice, switch
back and forth between their opinions towards the
sides. This makes it difficult for approaches that
use only positive and negative word counts to de-
cide which side the post is on. Posts 1 and 3 illus-
trate this phenomenon.

Sentiments towards both sides (topics) within a
single post. The above phenomenon gives rise
to an additional problem: often, conflicting sides
(and topics) are addressed within the same post,
sometimes within the same sentence. The second
sentence of Post 3 illustrates this, as it has opinions
about both Windows and Mac.

Differentiating aspects and personal prefer-
ences. People seldom repeatedly mention the
topic/side; they show their evaluations indirectly,
by evaluating aspects of each topic/side.Differen-
tiating aspects determine the debate-post’s side.

Some aspects are unique to one side/topic or the
other, e.g., “3g” in Example 1 and “inline spell
check” in Example 2. However, the debates are
about topics that belong to the same domain and
which therefore share many aspects. Hence, a
purely ontological approach of finding “has-a” and
“is-a” relations, or an approach looking only for
product specifications, would not be sufficient for
finding differentiating features.

When the two topics do share an aspect (e.g., a
keyboard in the iPhone vs. Blackberry debate), the
writer may perceive it to be more positive for one
than the other. And, if the writer values that as-
pect, it will influence his or her overall stance. For
example, many people prefer the Blackberry key-
board over the iPhone keyboard; people to whom
phone keyboards are important are more likely to
prefer the Blackberry.

Concessions. While debating, participants often
refer to and acknowledge the viewpoints of the op-
posing side. However, they do not endorse this ri-
val opinion. Uniform treatment of all opinions in
a post would obviously cause errors in such cases.
The first sentence of Example 1 is an instance of
this phenomenon. The participant concedes that
the iPhone appeals to young consumers, but this
positive opinion is opposite to his overall stance.
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DIRECT OBJECT Rule:dobj(opinion, target)
In words: The target is the direct object of the opinion

Example: I loveopinion1 Firefoxtarget1 and defendedopinion2 ittarget2

NOMINAL SUBJECT Rule: nsubj(opinion, target)
In words: The target is the subject of the opinion
Example: IEtarget breaksopinion with everything.

ADJECTIVAL MODIFIER Rule: amod(target, opinion)
In words: The opinion is an adjectival modifier of the target

Example: The annoyingopinion popuptarget

PREPOSITIONAL OBJECT Rule: if prep(target1,IN)⇒ pobj(IN, target2)
In words: The prepositional object of a known target is also atarget of the same opinion

Example: The annoyingopinion popuptarget1 in IEtarget2 (“popup” and “IE” are targets of “annoying”)
RECURSIVE MODIFIERS Rule: if conj(adj2, opinionadj1) ⇒ amod(target, adj2)

In words: If the opinion is an adjective (adj1) and it is conjoined with another adjective (adj2),
then the opinion is tied to what adj2 modifies

Example: It is a powerfulopinion(adj1) and easyopinion(adj2) applicationtarget

(“powerful” is attached to the target “application” via theadjective “easy”)

Table 1: Examples of syntactic rules for finding targets of opinions

3 Method

We propose an unsupervised approach to classify-
ing the stance of a post in a dual-topic debate. For
this, we first use a web corpus to learn preferences
that are likely to be associated with a side. These
learned preferences are then employed in conjunc-
tion with discourse constraints to identify the side
for a given post.

3.1 Finding Opinions and Pairing them with
Targets

We need to find opinions and pair them with tar-
gets, both to mine the web for general preferences
and to classify the stance of a debate post. We use
straightforward methods, as these tasks are not the
focus of this paper.

To find opinions, we look up words in a sub-
jectivity lexicon: all instances of those words are
treated as opinions. An opinion is assigned the
prior polarity that is listed for that word in the lex-
icon, except that, if the prior polarity is positive or
negative, and the instance is modified by a nega-
tion word (e.g., “not”), then the polarity of that in-
stance is reversed. We use the subjectivity lexicon
of (Wilson et al., 2005),2 which contains approxi-
mately 8000 words which may be used to express
opinions. Each entry consists of a subjective word,
its prior polarity (positive (+), negative (−), neu-
tral (∗)), morphological information, and part of
speech information.

To pair opinions with targets, we built a rule-
based system based on dependency parse informa-
tion. The dependency parses are obtained using

2Available at http://www.cs.pitt.edu/mpqa.

the Stanford parser.3 We developed the syntactic
rules on separate data that is not used elsewhere in
this paper. Table 1 illustrates some of these rules.
Note that the rules are constructed (and explained
in Table 1) with respect to the grammatical relation
notations of the Stanford parser. As illustrated in
the table, it is possible for an opinion to have more
than one target. In such cases, the single opin-
ion results in multiple opinion-target pairs, one for
each target.

Once these opinion-target pairs are created, we
mask the identity of the opinion word, replacing
the word with its polarity. Thus, the opinion-
target pair is converted to a polarity-target pair.
For instance, “pleasing-interface” is converted to
interface+. This abstraction is essential for han-
dling the sparseness of the data.

3.2 Learning aspects and preferences from
the web

We observed in our development data that people
highlight the aspects of topics that are the bases
for their stances, both positive opinions toward as-
pects of the preferred topic, and negative opinions
toward aspects of the dispreferred one. Thus, we
decided to mine the web for aspects associated
with a side in the debate, and then use that infor-
mation to recognize the stances expressed in indi-
vidual posts.

Previous work mined web data for aspects as-
sociated with topics (Hu and Liu, 2004; Popescu
et al., 2005). In our work, we search for aspects
associated with a topic, but particularized to po-
larity. Not all aspects associated with a topic are

3http://nlp.stanford.edu/software/lex-parser.shtml.
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side1 (pro-iPhone) side2 (pro-blackberry)
termp P (iPhone+|termp) P (blackberry−|termp) P (iPhone−|termp) P (blackberry+|termp)
storm+ 0.227 0.068 0.022 0.613
storm− 0.062 0.843 0.06 0.03
phone+ 0.333 0.176 0.137 0.313
e-mail+ 0 0.333 0.166 0.5
ipod+ 0.5 0 0.33 0
battery− 0 0 0.666 0.333
network− 0.333 0 0.666 0
keyboard+ 0.09 0.12 0 0.718
keyboard− 0.25 0.25 0.125 0.375

Table 2: Probabilities learned from the web corpus (iPhone vs. blackberry debate)

discriminative with respect to stance; we hypoth-
esized that, by including polarity, we would be
more likely to find useful associations. An aspect
may be associated with both of the debate top-
ics, but not, by itself, be discriminative between
stances toward the topics. However,opinionsto-
ward that aspect might discriminate between them.
Thus, the basic unit in our web mining process is
a polarity-target pair. Polarity-target pairs which
explicitly mention one of the topics are used to an-
chor the mining process. Opinions about relevant
aspects are gathered from the surrounding context.

For each debate, we downloaded weblogs and
forums that talk about the main topics (corre-
sponding to the sides) of that debate. For ex-
ample, for the iPhone vs. Blackberry debate,
we search the web for pages containing “iPhone”
and “Blackberry.” We used the Yahoo search API
and imposed the search restriction that the pages
should contain both topics in the http URL. This
ensured that we downloaded relevant pages. An
average of 3000 documents were downloaded per
debate.

We apply the method described in Section
3.1 to the downloaded web pages. That is,
we find all instances of words in the lexicon,
extract their targets, and mask the words with
their polarities, yielding polarity-target pairs. For
example, suppose the sentence“The interface
is pleasing” is in the corpus. The system
extracts the pair “pleasing-interface,” which is
masked to “positive-interface,” which we notate
as interface+. If the target in a polarity-target
pair happens to be one of the topics, we select the
polarity-target pairs in its vicinity for further pro-
cessing (the rest are discarded). The intuition be-
hind this is that, if someone expresses an opinion
about a topic, he or she is likely to follow it up
with reasons for that opinion. The sentiments in

the surrounding context thus reveal factors that in-
fluence the preference or dislike towards the topic.
We define the vicinity as the same sentence plus
the following 5 sentences.

Each unique target wordtargeti in the web cor-
pus, i.e., each word used as the target of an opin-
ion one or more times, is processed to generate the
following conditional probabilities.

P (topic
q
j |target

p
i ) =

#(topic
q
j , target

p
i )

#target
p
i

(1)

wherep = {+,− ,∗ } andq = {+,− ,∗ } denote the
polarities of the target and the topic, respectively;
j = {1, 2}; and i = {1...M}, whereM is the
number of unique targets in the corpus. For exam-
ple,P (Mac+|interface+) is the probability that
“interface” is the target of a positive opinion that is
in the vicinity of a positive opinion toward “Mac.”

Table 2 lists some of the probabilities learned
by this approach. (Note that the neutral cases are
not shown.)

3.2.1 Interpreting the learned probabilities

Table 2 contains examples of the learned proba-
bilities. These probabilities align with what we
qualitatively found in our development data. For
example, the opinions towards “Storm” essen-
tially follow the opinions towards “Blackberry;”
that is, positive opinions toward “Storm” are usu-
ally found in the vicinity of positive opinions to-
ward “Blackberry,” and negative opinions toward
“Storm” are usually found in the vicinity of neg-
ative opinions toward “Blackberry” (for example,
in the row forstorm+, P (blackberry+|storm+)
is much higher than the other probabilities). Thus,
an opinion expressed about “Storm” is usually the
opinion one has toward “Blackberry.” This is ex-
pected, as Storm is a type of Blackberry. A similar
example isipod+, which follows the opinion to-
ward the iPhone. This is interesting because an
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iPod is not a phone; the association is due to pref-
erence for the brand. In contrast, the probability
distribution for “phone” does not show a prefer-
ence for any one side, even though both iPhone
and Blackberry are phones. This indicates that
opinions towards phones in general will not be
able to distinguish between the debate sides.

Another interesting case is illustrated by the
probabilities for “e-mail.” People who like e-mail
capability are more likely to praise the Blackberry,
or even criticize the iPhone — they would thus be-
long to the pro-Blackberry camp.

While we noted earlier that positive evaluations
of keyboards are associated with positive evalua-
tions of the Blackberry (by far the highest prob-
ability in that row), negative evaluations of key-
boards, are, however,not a strong discriminating
factor.

For the other entries in the table, we see that
criticisms of batteries and the phone network are
more associated with negative sentiments towards
the iPhones.

The possibility of these various cases motivates
our approach, in which opinions and their polar-
ities are considered when searching for associa-
tions between debate topics and their aspects.

3.3 Debate-side classification

Once we have the probabilities collected from the
web, we can build our classifier to classify the de-
bate posts.

Here again, we use the process described in Sec-
tion 3.1 to extract polarity-target pairs for each
opinion expressed in the post. LetN be the num-
ber of instances of polarity-target pairs in the post.
For each instanceIj (j = {1...N}), we look up
the learned probabilities of Section 3.2 to create
two scores,wj anduj :

wj = P (topic+
1 |target

p
i ) + P (topic−2 |target

p
i ) (2)

uj = P (topic−1 |target
p
i ) + P (topic+

2 |target
p
i ) (3)

wheretarget
p
i is the polarity-target type of which

Ij is an instance.
Scorewj corresponds toside1 and uj corre-

sponds toside2. A point to note is that, if a tar-
get word is repeated, and it occurs in different
polarity-target instances, it is counted as a sepa-
rate instance each time — that is, here we account
for tokens, not types. Via Equations 2 and 3, we
interpret the observed polarity-target instanceIj in
terms of debate sides.

We formulate the problem of finding the over-
all side of the post as an Integer Linear Program-
ming (ILP) problem. The side that maximizes the
overall side-score for the post, given all theN in-
stancesIj, is chosen by maximizing the objective
function

N
∑

j=1

(wjxj + ujyj) (4)

subject to the following constraints

xj ∈ {0, 1}, ∀j (5)

yj ∈ {0, 1}, ∀j (6)

xj + yj = 1, ∀j (7)

xj − xj−1 = 0, j ∈ {2..N} (8)

yj − yj−1 = 0, j ∈ {2..N} (9)

Equations 5 and 6 implement binary constraints.
Equation 7 enforces the constraint that eachIj can
belong to exactly one side. Finally, Equations 8
and 9 ensure that a single side is chosen for the
entire post.

3.4 Accounting for concession

As described in Section 2, debate participants of-
ten acknowledge the opinions held by the oppos-
ing side. We recognize such discourse constructs
using the Penn Discourse Treebank (Prasad et al.,
2007) list of discourse connectives. In particu-
lar, we use the list of connectives from the Con-
cession and Contra-expectation category. Exam-
ples of connectives in these categories are “while,”
“nonetheless,” “however,” and “even if.” We use
approximations to finding the arguments to the
discourse connectives (ARG1andARG2in Penn
Discourse Treebank terms). If the connective is
mid-sentence, the part of the sentence prior to
the connective is considered conceded, and the
part that follows the connective is considered non-
conceded. An example is the second sentence of
Example 3. If, on the other hand, the connective
is sentence-initial, the sentence is split at the first
comma that occurs mid sentence. The first part is
considered conceded, and the second part is con-
sidered non-conceded. An example is the first sen-
tence of Example 1.

The opinions occurring in the conceded part are
interpreted in reverse. That is, the weights corre-
sponding to the sideswj anduj are interchanged
in equation 4. Thus, conceded opinions are effec-
tively made to count towards the opposing side.

230



4 Experiments

On http://www.convinceme.net, the html page for
each debate contains side information for each
post (side1 is blue in color andside2 is green).
This gives us automatically labeled data for our
evaluations. For each of the 4 debates in our test
set, we use posts with at least 5 sentences for eval-
uation.

4.1 Baselines

We implemented two baselines: the OpTopic sys-
tem that uses topic information only, and the
OpPMI system that uses topic as well as related
word (noun) information. All systems use the
same lexicon, as well as exactly the same pro-
cesses for opinion finding and opinion-target pair-
ing.

The OpTopic system This system considers
only explicit mentions of the topic for the opin-
ion analysis. Thus, for this system, the step
of opinion-target pairing only finds alltopic+

1 ,
topic−1 , topic+

2 , topic−2 instances in the post
(where, for example, an instance oftopic+

1 is a
positive opinion whose target is explicitlytopic1).
The polarity-topic pairs are counted for each de-
bate side according to the following equations.

score(side1) = #topic+
1 + #topic−2 (10)

score(side2) = #topic−1 + #topic+
2 (11)

The post is assigned the side with the higher score.

The OpPMI system This system finds opinion-
target pairs for not only the topics, but also for the
words in the debate that are significantly related to
either of the topics.

We find semantic relatedness of each noun in
the post with the two main topics of the debate
by calculating the Pointwise Mutual Information
(PMI) between the term and each topic over the
entire web corpus. We use the API provided by the
Measures of Semantic Relatedness (MSR)4 engine
for this purpose. The MSR engine issues Google
queries to retrieve documents and finds the PMI
between any two given words. Table 3 lists PMIs
between the topics and the words from Table 2.

Each nounk is assigned to the topic with the
higher PMI score. That is, if
PMI(topic1,k) > PMI(topic2,k) ⇒k= topic1

and if
4http://cwl-projects.cogsci.rpi.edu/msr/

PMI(topic2,k) > PMI(topic1,k) ⇒k= topic2

Next, the polarity-target pairs are found for the
post, as before, and Equations 10 and 11 are used
to assign a side to the post as in the OpTopic
system, except that here, related nouns are also
counted as instances of their associated topics.

word iPhone blackberry
storm 0.923 0.941
phone 0.908 0.885
e-mail 0.522 0.623
ipod 0.909 0.976
battery 0.974 0.927
network 0.658 0.961
keyboard 0.961 0.983

Table 3: PMI of words with the topics

4.2 Results

Performance is measured using the follow-
ing metrics: Accuracy (#Correct

#Total posts
), Precision

(#Correct
#guessed

), Recall (#Correct
#relevant

) and F-measure

( 2∗Precision∗Recall
(Precision+Recall)).

In our task, it is desirable to make a pre-
diction for all the posts; hence#relevant =
#Total posts. This results in Recall and Accu-
racy being the same. However, all of the systems
do not classify a post if the post does not con-
tain the information it needs. Thus,#guessed ≤
#Total posts, and Precision is not the same as
Accuracy.

Table 4 reports the performance of four systems
on the test data: the two baselines, our method
using the preferences learned from the web cor-
pus (OpPr) and the method additionally using dis-
course information to reverse conceded opinions.

The OpTopic has low recall. This is expected,
because it relies only on opinions explicitly toward
the topics.

The OpPMI has better recall than OpTopic;
however, the precision drops for some debates. We
believe this is due to the addition of noise. This re-
sult suggests that not all terms that are relevant to
a topic are useful for determining the debate side.

Finally, both of the OpPr systems are better than
both baselines in Accuracy as well as F-measure
for all four debates.

The accuracy of the full OpPr system improves,
on average, by 35 percentage points over the Op-
Topic system, and by 20 percentage points over the
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OpPMI system. The F-measure improves, on aver-
age, by 25 percentage points over the OpTopic sys-
tem, and by 17 percentage points over the OpPMI
system. Note that in 3 out of 4 of the debates, the
full system is able to make a guess for all of the
posts (hence, the metrics all have the same values).

In three of the four debates, the system us-
ing concession handling described in Section 3.4
outperforms the system without it, providing evi-
dence that our treatment of concessions is effec-
tive. On average, there is a 3 percentage point
improvement in Accuracy, 5 percentage point im-
provement in Precision and 5 percentage point im-
provement in F-measure due to the added conces-
sion information.

OpTopic OpPMI OpPr OpPr
+ Disc

Firefox Vs Internet explorer (62 posts)
Acc 33.87 53.23 64.52 66.13
Prec 67.74 60.0 64.52 66.13
Rec 33.87 53.23 64.52 66.13
F1 45.16 56.41 64.52 66.13

Windows vs. Mac (15 posts)
Acc 13.33 46.67 66.67 66.67
Prec 40.0 53.85 66.67 66.67
Rec 13.33 46.67 66.67 66.67
F1 20.0 50.00 66.67 66.67

SonyPs3 vs. Wii (36 posts)
Acc 33.33 33.33 56.25 61.11
Prec 80.0 46.15 56.25 68.75
Rec 33.33 33.33 50.0 61.11
F1 47.06 38.71 52.94 64.71

Opera vs. Firefox (4 posts)
Acc 25.0 50.0 75.0 100.0
Prec 33.33 100 75.0 100.0
Rec 25.0 50 75.0 100.0
F1 28.57 66.67 75.0 100.0

Table 4: Performance of the systems on the test
data

5 Discussion

In this section, we discuss the results from the pre-
vious section and describe the sources of errors.

As reported in the previous section, the OpPr
system outperforms both the OpTopic and the
OpPMI systems. In order to analyze why OpPr
outperforms OpPMI, we need to compare Tables
2 and 3. Table 2 reports the conditional proba-

bilities learned from the web corpus for polarity-
target pairs used in OpPr, and Table 3 reports the
PMI of these same targets with the debate topics
used in OpPMI. First, we observe that the PMI
numbers are intuitive, in that all the words, ex-
cept for “e-mail,” show a high PMI relatedness to
both topics. All of them are indeed semantically
related to the domain. Additionally, we see that
some conclusions of the OpPMI system are simi-
lar to those of the OpPr system, for example, that
“Storm” is more closely related to the Blackberry
than the iPhone.

However, notice two cases: the PMI values
for “phone” and “e-mail” are intuitive, but they
may cause errors in debate analysis. Because the
iPhone and the Blackberry are both phones, the
word “phone” does not have any distinguishing
power in debates. On the other hand, the PMI
measure of “e-mail” suggests that it is not closely
related to the debate topics, though it is, in fact, a
desirable feature for smart phone users, even more
so with Blackberry users. The PMI measure does
not reflect this.

The “network” aspect shows a comparatively
greater relatedness to the blackberry than to the
iPhone. Thus, OpPMI uses it as a proxy for
the Blackberry. This may be erroneous, how-
ever, because negative opinions towards “net-
work” are more indicative of negative opinions to-
wards iPhones, a fact revealed by Table 2.

In general, even if the OpPMI system knows
what topic the given word is more related to, it
still does not know what the opinion towards that
wordmeansin the debate scenario. The OpPr sys-
tem, on the other hand, is able to map it to a debate
side.

5.1 Errors

False lexicon hits. The lexicon is word based,
but, as shown by (Wiebe and Mihalcea, 2006; Su
and Markert, 2008), many subjective words have
both objective and subjective senses. Thus, one
major source of errors is a false hit of a word in
the lexicon.

Opinion-target pairing. The syntactic rule-
based opinion-target pairing system is a large
source of errors in the OpPr as well as the base-
line systems. Product review mining work has ex-
plored finding opinions with respect to, or in con-
junction with, aspects (Hu and Liu, 2004; Popescu
et al., 2005); however, in our work, we need to find
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information in the other direction – that is, given
the opinion, what is the opinion about. Stoyanov
and Cardie (2008) work on opinion co-reference;
however, we need to identify the specific target.

Pragmatic opinions. Some of the errors are due
to the fact that the opinions expressed in the post
are pragmatic. This becomes a problem especially
when the debate post is small, and we have few
other lexical clues in the post. The following post
is an example:

(4) The blackberry is something like $150 and
the iPhone is $500. I don’t think it’s worth
it. You could buy a iPod separate and have
a boatload of extra money left over.

In this example, the participant mentions the
difference in the prices in the first sentence. This
sentence implies a negative opinion towards the
iPhone. However, recognizing this would require
a system to have extensive world knowledge. In
the second sentence, the lexicon does hit the word
“worth,” and, using syntactic rules, we can deter-
mine it is negated. However, the opinion-target
pairing system only tells us that the opinion is tied
to the “it.” A co-reference system would be needed
to tie the “it” to “iPhone” in the first sentence.

6 Related Work

Several researchers have worked on similar tasks.
Kim and Hovy (2007) predict the results of an
election by analyzing forums discussing the elec-
tions. Theirs is a supervised bag-of-words sys-
tem using unigrams, bigrams, and trigrams as fea-
tures. In contrast, our approach is unsupervised,
and exploits different types of information. Bansal
et al. (2008) predict the vote from congressional
floor debates using agreement/disagreement fea-
tures. We do not model inter-personal exchanges;
instead, we model factors that influence stance
taking. Lin at al (2006) identify opposing perspec-
tives. Though apparently related at the task level,
perspectives as they define them are not the same
as opinions. Their approach does not involve any
opinion analysis. Fujii and Ishikawa (2006) also
work with arguments. However, their focus is on
argument visualization rather than on recognizing
stances.

Other researchers have also mined data to learn
associations among products and features. In
their work on mining opinions in comparative sen-
tences, Ganapathibhotla and Liu (2008) look for

user preferences for one product’s features over
another’s. We do not exploit comparative con-
structs, but rather probabilistic associations. Thus,
our approach and theirs are complementary. A
number of works in product review mining (Hu
and Liu, 2004; Popescu et al., 2005; Kobayashi et
al., 2005; Bloom et al., 2007) automatically find
features of the reviewed products. However, our
approach is novel in that it learns and exploits as-
sociations among opinion/polarity, topics, and as-
pects.

Several researchers have recognized the im-
portant role discourse plays in opinion analysis
(Polanyi and Zaenen, 2005; Snyder and Barzilay,
2007; Somasundaran et al., 2008; Asher et al.,
2008; Sadamitsu et al., 2008). However, previous
work did not account for concessions in determin-
ing whether an opinion supports one side or the
other.

More sophisticated approaches to identifying
opinions and recognizing their contextual polar-
ity have been published (e.g., (Wilson et al., 2005;
Ikeda et al., 2008; Sadamitsu et al., 2008)). Those
components are not the focus of our work.

7 Conclusions

This paper addresses challenges faced by opinion
analysis in the debate genre. In our method, fac-
tors that influence the choice of a debate side are
learned by mining a web corpus for opinions. This
knowledge is exploited in an unsupervised method
for classifying the side taken by a post, which also
accounts for concessionary opinions.

Our results corroborate our hypothesis that find-
ing relations between aspects associated with a
topic, but particularized to polarity, is more effec-
tive than finding relations between topics and as-
pects alone. The system that implements this in-
formation, mined from the web, outperforms the
web PMI-based baseline. Our hypothesis that ad-
dressing concessionary opinions is useful is also
corroborated by improved performance.
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Abstract 

The lack of Chinese sentiment corpora limits 
the research progress on Chinese sentiment 
classification. However, there are many freely 
available English sentiment corpora on the 
Web.  This paper focuses on the problem of 
cross-lingual sentiment classification, which 
leverages an available English corpus for Chi-
nese sentiment classification by using the Eng-
lish corpus as training data. Machine transla-
tion services are used for eliminating the lan-
guage gap between the training set and test set, 
and English features and Chinese features are 
considered as two independent views of the 
classification problem. We propose a co-
training approach to making use of unlabeled 
Chinese data.  Experimental results show the 
effectiveness of the proposed approach, which 
can outperform the standard inductive classifi-
ers and the transductive classifiers.  

1 Introduction 

Sentiment classification is the task of identifying 
the sentiment polarity of a given text. The senti-
ment polarity is usually positive or negative and 
the text genre is usually product review. In recent 
years, sentiment classification has drawn much 
attention in the NLP field and it has many useful 
applications, such as opinion mining and summa-
rization (Liu et al., 2005; Ku et al., 2006; Titov 
and McDonald, 2008). 

To date, a variety of corpus-based methods 
have been developed for sentiment classification. 
The methods usually rely heavily on an anno-
tated corpus for training the sentiment classifier. 
The sentiment corpora are considered as the most 
valuable resources for the sentiment classifica-
tion task. However, such resources in different 
languages are very imbalanced. Because most 
previous work focuses on English sentiment 
classification, many annotated corpora for Eng-
lish sentiment classification are freely available 
on the Web. However, the annotated corpora for 

Chinese sentiment classification are scarce and it 
is not a trivial task to manually label reliable 
Chinese sentiment corpora. The challenge before 
us is how to leverage rich English corpora for 
Chinese sentiment classification. In this study, 
we focus on the problem of cross-lingual senti-
ment classification, which leverages only English 
training data for supervised sentiment classifica-
tion of Chinese product reviews, without using 
any Chinese resources. Note that the above prob-
lem is not only defined for Chinese sentiment 
classification, but also for various sentiment 
analysis tasks in other different languages.  

Though pilot studies have been performed to 
make use of English corpora for subjectivity 
classification in other languages (Mihalcea et al., 
2007; Banea et al., 2008), the methods are very 
straightforward by directly employing an induc-
tive classifier (e.g. SVM, NB), and the classifica-
tion performance is far from satisfactory because 
of the language gap between the original lan-
guage and the translated language.  

In this study, we propose a co-training ap-
proach to improving the classification accuracy 
of polarity identification of Chinese product re-
views. Unlabeled Chinese reviews can be fully 
leveraged in the proposed approach. First, ma-
chine translation services are used to translate 
English training reviews into Chinese reviews 
and also translate Chinese test reviews and addi-
tional unlabeled reviews into English reviews. 
Then, we can view the classification problem in 
two independent views: Chinese view with only 
Chinese features and English view with only 
English features. We then use the co-training 
approach to making full use of the two redundant 
views of features. The SVM classifier is adopted 
as the basic classifier in the proposed approach. 
Experimental results show that the proposed ap-
proach can outperform the baseline inductive 
classifiers and the more advanced transductive 
classifiers.  

The rest of this paper is organized as follows: 
Section 2 introduces related work. The proposed 
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co-training approach is described in detail in 
Section 3. Section 4 shows the experimental re-
sults. Lastly we conclude this paper in Section 5. 

2 Related Work 
2.1 Sentiment Classification 

Sentiment classification can be performed on 
words, sentences or documents. In this paper we 
focus on document sentiment classification. The 
methods for document sentiment classification 
can be generally categorized into lexicon-based 
and corpus-based.  

Lexicon-based methods usually involve deriv-
ing a sentiment measure for text based on senti-
ment lexicons.  Turney (2002) predicates the sen-
timent orientation of a review by the average se-
mantic orientation of the phrases in the review 
that contain adjectives or adverbs, which is de-
noted as the semantic oriented method. Kim and 
Hovy (2004) build three models to assign a sen-
timent category to a given sentence by combin-
ing the individual sentiments of sentiment-
bearing words. Hiroshi et al. (2004) use the tech-
nique of deep language analysis for machine 
translation to extract sentiment units in text 
documents. Kennedy and Inkpen (2006) deter-
mine the sentiment of a customer review by 
counting positive and negative terms and taking 
into account contextual valence shifters, such as 
negations and intensifiers. Devitt and Ahmad 
(2007) explore a computable metric of positive 
or negative polarity in financial news text.  

Corpus-based methods usually consider the 
sentiment analysis task as a classification task 
and they use a labeled corpus to train a sentiment 
classifier. Since the work of Pang et al. (2002), 
various classification models and linguistic fea-
tures have been proposed to improve the classifi-
cation performance (Pang and Lee, 2004; Mullen 
and Collier, 2004; Wilson et al., 2005; Read, 
2005). Most recently, McDonald et al. (2007) 
investigate a structured model for jointly classi-
fying the sentiment of text at varying levels of 
granularity. Blitzer et al. (2007) investigate do-
main adaptation for sentiment classifiers, focus-
ing on online reviews for different types of prod-
ucts. Andreevskaia and Bergler (2008) present a 
new system consisting of the ensemble of a cor-
pus-based classifier and a lexicon-based classi-
fier with precision-based vote weighting. 

Chinese sentiment analysis has also been stud-
ied (Tsou et al., 2005; Ye et al., 2006; Li and Sun, 
2007) and most such work uses similar lexicon-

based or corpus-based methods for Chinese sen-
timent classification.  

To date, several pilot studies have been per-
formed to leverage rich English resources for 
sentiment analysis in other languages. Standard 
Naïve Bayes and SVM classifiers have been ap-
plied for subjectivity classification in Romanian 
(Mihalcea et al., 2007; Banea et al., 2008), and 
the results show that automatic translation is a 
viable alternative for the construction of re-
sources and tools for subjectivity analysis in a 
new target language. Wan (2008) focuses on lev-
eraging both Chinese and English lexicons to 
improve Chinese sentiment analysis by using 
lexicon-based methods. In this study, we focus 
on improving the corpus-based method for cross-
lingual sentiment classification of Chinese prod-
uct reviews by developing novel approaches.  

2.2 Cross-Domain Text Classification 

Cross-domain text classification can be consid-
ered as a more general task than cross-lingual 
sentiment classification. In the problem of cross-
domain text classification, the labeled and unla-
beled data come from different domains, and 
their underlying distributions are often different 
from each other, which violates the basic as-
sumption of traditional classification learning.  

To date, many semi-supervised learning algo-
rithms have been developed for addressing the 
cross-domain text classification problem by 
transferring knowledge across domains, includ-
ing Transductive SVM (Joachims, 1999), 
EM(Nigam et al., 2000), EM-based Naïve Bayes 
classifier (Dai et al., 2007a), Topic-bridged 
PLSA (Xue et al., 2008), Co-Clustering based 
classification (Dai et al., 2007b), two-stage ap-
proach (Jiang and Zhai, 2007). DauméIII and 
Marcu (2006) introduce a statistical formulation 
of this problem in terms of a simple mixture 
model.  

In particular, several previous studies focus on 
the problem of cross-lingual text classification, 
which can be considered as a special case of 
general cross-domain text classification. Bel et al. 
(2003) present practical and cost-effective solu-
tions. A few novel models have been proposed to 
address the problem, e.g. the EM-based algo-
rithm (Rigutini et al., 2005), the information bot-
tleneck approach (Ling et al., 2008), the multi-
lingual domain models (Gliozzo and Strapparava, 
2005), etc. To the best of our knowledge, co-
training has not yet been investigated for cross-
domain or cross-lingual text classification. 
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3 The Co-Training Approach  

3.1 Overview 

The purpose of our approach is to make use of 
the annotated English corpus for sentiment polar-
ity identification of Chinese reviews in a super-
vised framework, without using any Chinese re-
sources. Given the labeled English reviews and 
unlabeled Chinese reviews, two straightforward 
methods for addressing the problem are as fol-
lows:  

1) We first learn a classifier based on the la-
beled English reviews, and then translate Chi-
nese reviews into English reviews. Lastly, we 
use the classifier to classify the translated Eng-
lish reviews.  

2) We first translate the labeled English re-
views into Chinese reviews, and then learn a 
classifier based on the translated Chinese reviews 
with labels. Lastly, we use the classifier to clas-
sify the unlabeled Chinese reviews.  

The above two methods have been used in 
(Banea et al., 2008) for Romanian subjectivity 
analysis, but the experimental results are not very 
promising. As shown in our experiments, the 
above two methods do not perform well for Chi-
nese sentiment classification, either, because the 
underlying distribution between the original lan-
guage and the translated language are different.  

In order to address the above problem, we 
propose to use the co-training approach to make 
use of some amounts of unlabeled Chinese re-
views to improve the classification accuracy. The 
co-training approach can make full use of both 
the English features and the Chinese features in a 
unified framework. The framework of the pro-
posed approach is illustrated in Figure 1. 

 The framework consists of a training phase 
and a classification phase. In the training phase, 
the input is the labeled English reviews and some 
amounts of unlabeled Chinese reviews1. The la-
beled English reviews are translated into labeled 
Chinese reviews, and the unlabeled Chinese re-
views are translated into unlabeled English re-
views, by using machine translation services. 
Therefore, each review is associated with an 
English version and a Chinese version. The Eng-
lish features and the Chinese features for each 
review are considered two independent and re-
dundant views of the review. The co-training 
algorithm is then applied to learn two classifiers 

                                                 
1 The unlabeled Chinese reviews used for co-training do not 
include the unlabeled Chinese reviews for testing, i.e., the 
Chinese reviews for testing are blind to the training phase.  

and finally the two classifiers are combined into 
a single sentiment classifier. In the classification 
phase, each unlabeled Chinese review for testing 
is first translated into English review, and then 
the learned classifier is applied to classify the 
review into either positive or negative.  

The steps of review translation and the co-
training algorithm are described in details in the 
next sections, respectively.  
 

 
Figure 1. Framework of the proposed approach 

3.2 Review Translation 

In order to overcome the language gap, we must 
translate one language into another language. 
Fortunately, machine translation techniques have 
been well developed in the NLP field, though the 
translation performance is far from satisfactory. 
A few commercial machine translation services 
can be publicly accessed, e.g. Google Translate2, 
Yahoo Babel Fish3 and Windows Live Translate4. 

                                                 
2 http://translate.google.com/translate_t 
3 http://babelfish.yahoo.com/translate_txt 
4 http://www.windowslivetranslator.com/ 
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In this study, we adopt Google Translate for both 
English-to-Chinese Translation and Chinese-to-
English Translation, because it is one of the 
state-of-the-art commercial machine translation 
systems used today. Google Translate applies 
statistical learning techniques to build a transla-
tion model based on both monolingual text in the 
target language and aligned text consisting of 
examples of human translations between the lan-
guages.  

3.3 The Co-Training Algorithm 

The co-training algorithm (Blum and Mitchell, 
1998) is a typical bootstrapping method, which 
starts with a set of labeled data, and increase the 
amount of annotated data using some amounts of 
unlabeled data in an incremental way. One im-
portant aspect of co-training is that two condi-
tional independent views are required for co-
training to work, but the independence assump-
tion can be relaxed. Till now, co-training has 
been successfully applied to statistical parsing 
(Sarkar, 2001), reference resolution (Ng and 
Cardie, 2003), part of speech tagging (Clark et 
al., 2003), word sense disambiguation (Mihalcea, 
2004) and email classification (Kiritchenko and 
Matwin, 2001). 

In the context of cross-lingual sentiment clas-
sification, each labeled English review or unla-
beled Chinese review has two views of features: 
English features and Chinese features. Here, a 
review is used to indicate both its Chinese ver-
sion and its English version, until stated other-
wise. The co-training algorithm is illustrated in 
Figure 2. In the algorithm, the class distribution 
in the labeled data is maintained by balancing the 
parameter values of p and n at each iteration. 

The intuition of the co-training algorithm is 
that if one classifier can confidently predict the 
class of an example, which is very similar to 
some of labeled ones, it can provide one more 
training example for the other classifier. But, of 
course, if this example happens to be easy to be 
classified by the first classifier, it does not mean 
that this example will be easy to be classified by 
the second classifier, so the second classifier will 
get useful information to improve itself and vice 
versa (Kiritchenko and Matwin, 2001). 

In the co-training algorithm, a basic classifica-
tion algorithm is required to construct Cen and 
Ccn. Typical text classifiers include Support Vec-
tor Machine (SVM), Naïve Bayes (NB), Maxi-
mum Entropy (ME), K-Nearest Neighbor (KNN), 
etc. In this study, we adopt the widely-used SVM 
classifier (Joachims, 2002). Viewing input data 

as two sets of vectors in a feature space, SVM 
constructs a separating hyperplane in the space 
by maximizing the margin between the two data 
sets. The English or Chinese features used in this 
study include both unigrams and bigrams5 and 
the feature weight is simply set to term fre-
quency6. Feature selection methods (e.g. Docu-
ment Frequency (DF), Information Gain (IG), 
and Mutual Information (MI)) can be used for 
dimension reduction. But we use all the features 
in the experiments for comparative analysis, be-
cause there is no significant performance im-
provement after applying the feature selection 
techniques in our empirical study. The output 
value of the SVM classifier for a review indi-
cates the confidence level of the review’s classi-
fication. Usually, the sentiment polarity of a re-
view is indicated by the sign of the prediction 
value.  

Given: 
- Fen and Fcn are redundantly sufficient 

sets of features, where Fen represents 
the English features, Fcn represents the 
Chinese features; 

- L is a set of labeled training reviews; 
- U is a set of unlabeled reviews; 

Loop for I iterations: 
1. Learn the first classifier Cen from L 

based on Fen; 
2. Use Cen to label reviews from U 

based on Fen; 
3. Choose p positive and n negative the 

most confidently predicted reviews 
Een from U; 

4. Learn the second classifier Ccn from L 
based on Fcn; 

5. Use Ccn to label reviews from U 
based on Fcn; 

6. Choose p positive and n negative the 
most confidently predicted reviews 
Ecn from U; 

7. Removes reviews Een∪Ecn from U7; 
8. Add reviews Een∪Ecn with the corre-

sponding labels to L; 
Figure 2. The co-training algorithm 

In the training phase, the co-training algorithm 
learns two separate classifiers: Cen and Ccn. 
                                                 
5 For Chinese text, a unigram refers to a Chinese word and a 
bigram refers to two adjacent Chinese words.  
6 Term frequency performs better than TFIDF by our em-
pirical analysis.  
7 Note that the examples with conflicting labels are not in-
cluded in Een∪Ecn In other words, if an example is in both 
Een and Ecn, but the labels for the example is conflicting, the 
example will be excluded from Een∪Ecn. 
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Therefore, in the classification phase, we can 
obtain two prediction values for a test review.  
We normalize the prediction values into [-1, 1] 
by dividing the maximum absolute value. Finally, 
the average of the normalized values is used as 
the overall prediction value of the review.  

4 Empirical Evaluation 
4.1 Evaluation Setup 

4.1.1 Data set 

The following three datasets were collected and 
used in the experiments: 

Test Set (Labeled Chinese Reviews): In or-
der to assess the performance of the proposed 
approach, we collected and labeled 886 product 
reviews (451 positive reviews + 435 negative 
reviews) from a popular Chinese IT product web 
site-IT1688. The reviews focused on such prod-
ucts as mp3 players, mobile phones, digital cam-
era and laptop computers.  

Training Set (Labeled English Reviews): 
There are many labeled English corpora avail-
able on the Web and we used the corpus con-
structed for multi-domain sentiment classifica-
tion (Blitzer et al., 2007)9, because the corpus 
was large-scale and it was within similar do-
mains as the test set. The dataset consisted of 
8000 Amazon product reviews (4000 positive 
reviews + 4000 negative reviews) for four differ-
ent product types: books, DVDs, electronics and 
kitchen appliances.  

Unlabeled Set (Unlabeled Chinese Reviews): 
We downloaded additional 1000 Chinese product 
reviews from IT168 and used the reviews as the 
unlabeled set. Therefore, the unlabeled set and 
the test set were in the same domain and had 
similar underlying feature distributions.  

Each Chinese review was translated into Eng-
lish review, and each English review was trans-
lated into Chinese review. Therefore, each re-
view has two independent views: English view 
and Chinese view. A review is represented by 
both its English view and its Chinese view.  

Note that the training set and the unlabeled set 
are used in the training phase, while the test set is 
blind to the training phase. 

4.1.2 Evaluation Metric 

We used the standard precision, recall and F-
measure to measure the performance of positive 
and negative class, respectively, and used the 
                                                 
8 http://www.it168.com 
9 http://www.cis.upenn.edu/~mdredze/datasets/sentiment/ 

accuracy metric to measure the overall perform-
ance of the system. The metrics are defined the 
same as in general text categorization. 

4.1.3 Baseline Methods 

In the experiments, the proposed co-training ap-
proach (CoTrain) is compared with the following 
baseline methods: 

SVM(CN): This method applies the inductive 
SVM with only Chinese features for sentiment 
classification in the Chinese view. Only English-
to-Chinese translation is needed. And the unla-
beled set is not used.  

SVM(EN): This method applies the inductive 
SVM with only English features for sentiment 
classification in the English view. Only Chinese-
to-English translation is needed. And the unla-
beled set is not used. 

SVM(ENCN1): This method applies the in-
ductive SVM with both English and Chinese fea-
tures for sentiment classification in the two 
views. Both English-to-Chinese and Chinese-to-
English translations are required. And the unla-
beled set is not used. 

SVM(ENCN2): This method combines the re-
sults of SVM(EN) and SVM(CN) by averaging 
the prediction values in the same way with the 
co-training approach.  

TSVM(CN): This method applies the trans-
ductive SVM with only Chinese features for sen-
timent classification in the Chinese view. Only 
English-to-Chinese translation is needed. And 
the unlabeled set is used.  

TSVM(EN): This method applies the trans-
ductive SVM with only English features for sen-
timent classification in the English view. Only 
Chinese-to-English translation is needed. And 
the unlabeled set is used. 

TSVM(ENCN1): This method applies the 
transductive SVM with both English and Chinese 
features for sentiment classification in the two 
views. Both English-to-Chinese and Chinese-to-
English translations are required. And the unla-
beled set is used.  

TSVM(ENCN2): This method combines the 
results of TSVM(EN) and TSVM(CN) by aver-
aging the prediction values. 

Note that the first four methods are straight-
forward methods used in previous work, while 
the latter four methods are strong baselines be-
cause the transductive SVM has been widely 
used for improving the classification accuracy by 
leveraging additional unlabeled examples.  
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4.2 Evaluation Results 

4.2.1 Method Comparison 

In the experiments, we first compare the pro-
posed co-training approach (I=40 and p=n=5) 
with the eight baseline methods. The three pa-
rameters in the co-training approach are empiri-
cally set by considering the total number (i.e. 
1000) of the unlabeled Chinese reviews. In our 
empirical study, the proposed approach can per-
form well with a wide range of parameter values, 
which will be shown later. Table 1 shows the 
comparison results.  

Seen from the table, the proposed co-training 
approach outperforms all eight baseline methods 
over all metrics. Among the eight baselines, the 
best one is TSVM(ENCN2), which combines the 
results of two transductive SVM classifiers. Ac-
tually, TSVM(ENCN2) is similar to CoTrain 
because CoTrain also combines the results of 
two classifiers in the same way. However, the 
co-training approach can train two more effective 
classifiers, and the accuracy values of the com-
ponent English and Chinese classifiers are 0.775 
and 0.790, respectively, which are higher than 
the corresponding TSVM classifiers. Overall, the 
use of transductive learning and the combination 
of English and Chinese views are beneficial to 
the final classification accuracy, and the co-
training approach is more suitable for making 
use of the unlabeled Chinese reviews than the 
transductive SVM.  

4.2.2 Influences of Iteration Number (I) 

Figure 3 shows the accuracy curve of the co-
training approach (Combined Classifier) with 
different numbers of iterations. The iteration 
number I is varied from 1 to 80. When I is set to 
1, the co-training approach is degenerated into 
SVM(ENCN2). The accuracy curves of the com-
ponent English and Chinese classifiers learned in 
the co-training approach are also shown in the 

figure. We can see that the proposed co-training 
approach can outperform the best baseline-
TSVM(ENCN2) after 20 iterations. After a large 
number of iterations, the performance of the co-
training approach decreases because noisy train-
ing examples may be selected from the remain-
ing unlabeled set. Finally, the performance of the 
approach does not change any more, because the 
algorithm runs out of all possible examples in the 
unlabeled set. Fortunately, the proposed ap-
proach performs well with a wide range of itera-
tion numbers. We can also see that the two com-
ponent classifier has similar trends with the co-
training approach. It is encouraging that the com-
ponent Chinese classifier alone can perform bet-
ter than the best baseline when the iteration 
number is set between 40 and 70. 

4.2.3 Influences of Growth Size (p, n) 

Figure 4 shows how the growth size at each it-
eration (p positive and n negative confident ex-
amples) influences the accuracy of the proposed 
co-training approach. In the above experiments, 
we set p=n, which is considered as a balanced 
growth. When p differs very much from n, the 
growth is considered as an imbalanced growth. 
Balanced growth of (2, 2), (5, 5), (10, 10) and 
(15, 15) examples and imbalanced growth of (1, 
5), (5, 1) examples are compared in the figure. 
We can see that the performance of the co-
training approach with the balanced growth can 
be improved after a few iterations. And the per-
formance of the co-training approach with large 
p and n will more quickly become unchanged, 
because the approach runs out of the limited ex-
amples in the unlabeled set more quickly. How-
ever, the performance of the co-training ap-
proaches with the two imbalanced growths is 
always going down quite rapidly, because the 
labeled unbalanced examples hurt the perform-
ance badly at each iteration.  

 
Positive Negative Total Method Precision Recall F-measure Precision Recall F-measure Accuracy

SVM(CN) 0.733 0.865 0.793 0.828 0.674 0.743 0.771 
SVM(EN) 0.717 0.803 0.757 0.766 0.671 0.716 0.738 

SVM(ENCN1) 0.744 0.820 0.781 0.792 0.708 0.748 0.765 
SVM(ENCN2) 0.746 0.847 0.793 0.816 0.701 0.754 0.775 

TSVM(CN) 0.724 0.878 0.794 0.838 0.653 0.734 0.767 
TSVM(EN) 0.732 0.860 0.791 0.823 0.674 0.741 0.769 

TSVM(ENCN1) 0.743 0.878 0.805 0.844 0.685 0.756 0.783 
TSVM(ENCN2) 0.744 0.896 0.813 0.863 0.680 0.761 0.790 

CoTrain          
(I=40; p=n=5) 0.768 0.905 0.831 0.879 0.717 0.790 0.813 

Table 1. Comparison results  
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Figure 3. Accuracy vs. number of iterations for co-training (p=n=5) 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Iteration Number (I )

A
cc

ur
ac

y

(p=2,n=2) (p=5,n=5) (p=10,n=10)
(p=15,n=15) (p=1,n=5) (p=5,n=1)

 
Figure 4. Accuracy vs. different (p, n) for co-training 
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4.2.4 Influences of Feature Selection 

In the above experiments, all features (unigram + 
bigram) are used. As mentioned earlier, feature 
selection techniques are widely used for dimen-
sion reduction. In this section, we further con-
duct experiments to investigate the influences of 
feature selection techniques on the classification 
results. We use the simple but effective docu-
ment frequency (DF) for feature selection.  Fig-
ures 6 show the comparison results of different 
feature sizes for the co-training approach and 
two strong baselines. The feature size is meas-
ured as the proportion of the selected features 
against the total features (i.e. 100%).   

We can see from the figure that the feature se-
lection technique has very slight influences on 
the classification accuracy of the methods. It can 
be seen that the co-training approach can always 
outperform the two baselines with different fea-
ture sizes. The results further demonstrate the 
effectiveness and robustness of the proposed co-
training approach.  

5 Conclusion and Future Work  

In this paper, we propose to use the co-training 
approach to address the problem of cross-lingual 
sentiment classification. The experimental results 
show the effectiveness of the proposed approach. 

In future work, we will improve the sentiment 
classification accuracy in the following two ways: 

1) The smoothed co-training approach used in 
(Mihalcea, 2004) will be adopted for sentiment 
classification. The approach has the effect of 
“smoothing” the learning curves. During the 
bootstrapping process of smoothed co-training, 
the classifier at each iteration is replaced with a 
majority voting scheme applied to all classifiers 
constructed at previous iterations.  

2) The feature distributions of the translated 
text and the natural text in the same language are 
still different due to the inaccuracy of the ma-
chine translation service. We will employ the 
structural correspondence learning (SCL) domain 
adaption algorithm used in (Blitzer et al., 2007) 
for linking the translated text and the natural text.  
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Abstract

Sentiment classification refers to the task
of automatically identifying whether a
given piece of text expresses positive or
negative opinion towards a subject at hand.
The proliferation of user-generated web
content such as blogs, discussion forums
and online review sites has made it possi-
ble to perform large-scale mining of pub-
lic opinion. Sentiment modeling is thus
becoming a critical component of market
intelligence and social media technologies
that aim to tap into the collective wis-
dom of crowds. In this paper, we consider
the problem of learning high-quality senti-
ment models with minimal manual super-
vision. We propose a novel approach to
learn from lexical prior knowledge in the
form of domain-independent sentiment-
laden terms, in conjunction with domain-
dependent unlabeled data and a few la-
beled documents. Our model is based on a
constrained non-negative tri-factorization
of the term-document matrix which can
be implemented using simple update rules.
Extensive experimental studies demon-
strate the effectiveness of our approach on
a variety of real-world sentiment predic-
tion tasks.

1 Introduction

Web 2.0 platforms such as blogs, discussion fo-
rums and other such social media have now given
a public voice to every consumer. Recent sur-
veys have estimated that a massive number of in-
ternet users turn to such forums to collect rec-
ommendations for products and services, guid-
ing their own choices and decisions by the opin-
ions that other consumers have publically ex-
pressed. Gleaning insights by monitoring and an-
alyzing large amounts of such user-generated data

is thus becoming a key competitive differentia-
tor for many companies. While tracking brand
perceptions in traditional media is hardly a new
challenge, handling the unprecedented scale of
unstructured user-generated web content requires
new methodologies. These methodologies are
likely to be rooted in natural language processing
and machine learning techniques.

Automatically classifying the sentiment ex-
pressed in a blog around selected topics of interest
is a canonical machine learning task in this dis-
cussion. A standard approach would be to manu-
ally label documents with their sentiment orienta-
tion and then apply off-the-shelf text classification
techniques. However, sentiment is often conveyed
with subtle linguistic mechanisms such as the use
of sarcasm and highly domain-specific contextual
cues. This makes manual annotation of sentiment
time consuming and error-prone, presenting a bot-
tleneck in learning high quality models. Moreover,
products and services of current focus, and asso-
ciated community of bloggers with their idiosyn-
cratic expressions, may rapidly evolve over time
causing models to potentially lose performance
and become stale. This motivates the problem of
learning robust sentiment models from minimal
supervision.

In their seminal work, (Pang et al., 2002)
demonstrated that supervised learning signifi-
cantly outperformed a competing body of work
where hand-crafted dictionaries are used to assign
sentiment labels based on relative frequencies of
positive and negative terms. As observed by (Ng et
al., 2006), most semi-automated dictionary-based
approaches yield unsatisfactory lexicons, with ei-
ther high coverage and low precision or vice versa.
However, the treatment of such dictionaries as
forms of prior knowledge that can be incorporated
in machine learning models is a relatively less ex-
plored topic; even lesser so in conjunction with
semi-supervised models that attempt to utilize un-
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labeled data. This is the focus of the current paper.
Our models are based on a constrained non-

negative tri-factorization of the term-document
matrix, which can be implemented using simple
update rules. Treated as a set of labeled features,
the sentiment lexicon is incorporated as one set of
constraints that enforce domain-independent prior
knowledge. A second set of constraints introduce
domain-specific supervision via a few document
labels. Together these constraints enable learning
from partial supervision along both dimensions of
the term-document matrix, in what may be viewed
more broadly as a framework for incorporating
dual-supervision in matrix factorization models.
We provide empirical comparisons with several
competing methodologies on four, very different
domains – blogs discussing enterprise software
products, political blogs discussing US presiden-
tial candidates, amazon.com product reviews and
IMDB movie reviews. Results demonstrate the ef-
fectiveness and generality of our approach.

The rest of the paper is organized as follows.
We begin by discussing related work in Section 2.
Section 3 gives a quick background on Non-
negative Matrix Tri-factorization models. In Sec-
tion 4, we present a constrained model and compu-
tational algorithm for incorporating lexical knowl-
edge in sentiment analysis. In Section 5, we en-
hance this model by introducing document labels
as additional constraints. Section 6 presents an
empirical study on four datasets. Finally, Section 7
concludes this paper.

2 Related Work

We point the reader to a recent book (Pang and
Lee, 2008) for an in-depth survey of literature on
sentiment analysis. In this section, we briskly
cover related work to position our contributions
appropriately in the sentiment analysis and ma-
chine learning literature.

Methods focussing on the use and generation of
dictionaries capturing the sentiment of words have
ranged from manual approaches of developing
domain-dependent lexicons (Das and Chen, 2001)
to semi-automated approaches (Hu and Liu, 2004;
Zhuang et al., 2006; Kim and Hovy, 2004), and
even an almost fully automated approach (Turney,
2002). Most semi-automated approaches have met
with limited success (Ng et al., 2006) and super-
vised learning models have tended to outperform
dictionary-based classification schemes (Pang et

al., 2002). A two-tier scheme (Pang and Lee,
2004) where sentences are first classified as sub-
jective versus objective, and then applying the sen-
timent classifier on only the subjective sentences
further improves performance. Results in these
papers also suggest that using more sophisticated
linguistic models, incorporating parts-of-speech
and n-gram language models, do not improve over
the simple unigram bag-of-words representation.
In keeping with these findings, we also adopt a
unigram text model. A subjectivity classification
phase before our models are applied may further
improve the results reported in this paper, but our
focus is on driving the polarity prediction stage
with minimal manual effort.

In this regard, our model brings two inter-
related but distinct themes from machine learning
to bear on this problem: semi-supervised learn-
ing and learning from labeled features. The goal
of the former theme is to learn from few labeled
examples by making use of unlabeled data, while
the goal of the latter theme is to utilize weak
prior knowledge about term-class affinities (e.g.,
the term “awful” indicates negative sentiment and
therefore may be considered as a negatively la-
beled feature). Empirical results in this paper
demonstrate that simultaneously attempting both
these goals in a single model leads to improve-
ments over models that focus on a single goal.
(Goldberg and Zhu, 2006) adapt semi-supervised
graph-based methods for sentiment analysis but
do not incorporate lexical prior knowledge in the
form of labeled features. Most work in machine
learning literature on utilizing labeled features has
focused on using them to generate weakly labeled
examples that are then used for standard super-
vised learning: (Schapire et al., 2002) propose one
such framework for boosting logistic regression;
(Wu and Srihari, 2004) build a modified SVM
and (Liu et al., 2004) use a combination of clus-
tering and EM based methods to instantiate simi-
lar frameworks. By contrast, we incorporate lex-
ical knowledge directly as constraints on our ma-
trix factorization model. In recent work, Druck et
al. (Druck et al., 2008) constrain the predictions of
a multinomial logistic regression model on unla-
beled instances in a Generalized Expectation for-
mulation for learning from labeled features. Un-
like their approach which uses only unlabeled in-
stances, our method uses both labeled and unla-
beled documents in conjunction with labeled and
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unlabeled words.
The matrix tri-factorization models explored in

this paper are closely related to the models pro-
posed recently in (Li et al., 2008; Sindhwani et al.,
2008). Though, their techniques for proving algo-
rithm convergence and correctness can be readily
adapted for our models, (Li et al., 2008) do not
incorporate dual supervision as we do. On the
other hand, while (Sindhwani et al., 2008) do in-
corporate dual supervision in a non-linear kernel-
based setting, they do not enforce non-negativity
or orthogonality – aspects of matrix factorization
models that have shown benefits in prior empirical
studies, see e.g., (Ding et al., 2006).

We also note the very recent work of (Sind-
hwani and Melville, 2008) which proposes a dual-
supervision model for semi-supervised sentiment
analysis. In this model, bipartite graph regulariza-
tion is used to diffuse label information along both
sides of the term-document matrix. Conceptually,
their model implements a co-clustering assump-
tion closely related to Singular Value Decomposi-
tion (see also (Dhillon, 2001; Zha et al., 2001) for
more on this perspective) while our model is based
on Non-negative Matrix Factorization. In another
recent paper (Sandler et al., 2008), standard regu-
larization models are constrained using graphs of
word co-occurences. These are very recently pro-
posed competing methodologies, and we have not
been able to address empirical comparisons with
them in this paper.

Finally, recent efforts have also looked at trans-
fer learning mechanisms for sentiment analysis,
e.g., see (Blitzer et al., 2007). While our focus
is on single-domain learning in this paper, we note
that cross-domain variants of our model can also
be orthogonally developed.

3 Background

3.1 Basic Matrix Factorization Model

Our proposed models are based on non-negative
matrix Tri-factorization (Ding et al., 2006). In
these models, an m× n term-document matrix X
is approximated by three factors that specify soft
membership of terms and documents in one of k-
classes:

X ≈ FSGT . (1)
where F is an m× k non-negative matrix repre-
senting knowledge in the word space, i.e., i-th row
of F represents the posterior probability of word

i belonging to the k classes, G is an n× k non-
negative matrix representing knowledge in docu-
ment space, i.e., the i-th row of G represents the
posterior probability of document i belonging to
the k classes, and S is an k× k nonnegative matrix
providing a condensed view of X .

The matrix factorization model is similar to
the probabilistic latent semantic indexing (PLSI)
model (Hofmann, 1999). In PLSI, X is treated
as the joint distribution between words and doc-
uments by the scaling X → X̄ = X/∑i j Xi j thus
∑i j X̄i j = 1). X̄ is factorized as

X̄ ≈WSDT ,∑
k

Wik = 1,∑
k

D jk = 1,∑
k

Skk = 1.

(2)
where X is the m × n word-document seman-
tic matrix, X = WSD, W is the word class-
conditional probability, and D is the document
class-conditional probability and S is the class
probability distribution.

PLSI provides a simultaneous solution for the
word and document class conditional distribu-
tion. Our model provides simultaneous solution
for clustering the rows and the columns of X . To
avoid ambiguity, the orthogonality conditions

FT F = I, GT G = I. (3)

can be imposed to enforce each row of F and G
to possess only one nonzero entry. Approximating
the term-document matrix with a tri-factorization
while imposing non-negativity and orthogonal-
ity constraints gives a principled framework for
simultaneously clustering the rows (words) and
columns (documents) of X . In the context of co-
clustering, these models return excellent empiri-
cal performance, see e.g., (Ding et al., 2006). Our
goal now is to bias these models with constraints
incorporating (a) labels of features (coming from
a domain-independent sentiment lexicon), and (b)
labels of documents for the purposes of domain-
specific adaptation. These enhancements are ad-
dressed in Sections 4 and 5 respectively.

4 Incorporating Lexical Knowledge

We used a sentiment lexicon generated by the
IBM India Research Labs that was developed for
other text mining applications (Ramakrishnan et
al., 2003). It contains 2,968 words that have been
human-labeled as expressing positive or negative
sentiment. In total, there are 1,267 positive (e.g.
“great”) and 1,701 negative (e.g., “bad”) unique
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terms after stemming. We eliminated terms that
were ambiguous and dependent on context, such
as “dear” and “fine”. It should be noted, that this
list was constructed without a specific domain in
mind; which is further motivation for using train-
ing examples and unlabeled data to learn domain
specific connotations.

Lexical knowledge in the form of the polarity
of terms in this lexicon can be introduced in the
matrix factorization model. By partially specify-
ing term polarities via F , the lexicon influences
the sentiment predictions G over documents.

4.1 Representing Knowledge in Word Space

Let F0 represent prior knowledge about sentiment-
laden words in the lexicon, i.e., if word i is a
positive word (F0)i1 = 1 while if it is negative
(F0)i2 = 1. Note that one may also use soft sen-
timent polarities though our experiments are con-
ducted with hard assignments. This information
is incorporated in the tri-factorization model via a
squared loss term,

min
F,G,S
‖X −FSGT‖2 +αTr

[

(F−F0)
TC1(F−F0)

]

(4)
where the notation Tr(A) means trace of the matrix
A. Here, α > 0 is a parameter which determines
the extent to which we enforce F ≈ F0, C1 is a m×
m diagonal matrix whose entry (C1)ii = 1 if the
category of the i-th word is known (i.e., specified
by the i-th row of F0) and (C1)ii = 0 otherwise.
The squared loss terms ensure that the solution for
F in the otherwise unsupervised learning problem
be close to the prior knowledge F0. Note that if
C1 = I, then we know the class orientation of all
the words and thus have a full specification of F0,
Eq.(4) is then reduced to

min
F,G,S
‖X−FSGT‖2 +α‖F−F0‖

2 (5)

The above model is generic and it allows certain
flexibility. For example, in some cases, our prior
knowledge on F0 is not very accurate and we use
smaller α so that the final results are not depen-
dent on F0 very much, i.e., the results are mostly
unsupervised learning results. In addition, the in-
troduction of C1 allows us to incorporate partial
knowledge on word polarity information.

4.2 Computational Algorithm

The optimization problem in Eq.( 4) can be solved
using the following update rules

G jk← G jk
(XT FS) jk

(GGT XT FS) jk
, (6)

Sik ← Sik
(FT XG)ik

(FT FSGT G)ik
. (7)

Fik← Fik
(XGST +αC1F0)ik

(FFT XGST +αC1F)ik
. (8)

The algorithm consists of an iterative procedure
using the above three rules until convergence. We
call this approach Matrix Factorization with Lex-
ical Knowledge (MFLK) and outline the precise
steps in the table below.

Algorithm 1 Matrix Factorization with Lexical
Knowledge (MFLK)
begin
1. Initialization:

Initialize F = F0
G to K-means clustering results,
S = (FT F)−1FT XG(GT G)−1.

2. Iteration:
Update G: fixing F,S, updating G
Update F: fixing S,G, updating F
Update S: fixing F,G, updating S

end

4.3 Algorithm Correctness and Convergence

Updating F,G,S using the rules above leads to an
asymptotic convergence to a local minima. This
can be proved using arguments similar to (Ding
et al., 2006). We outline the proof of correctness
for updating F since the squared loss term that in-
volves F is a new component in our models.

Theorem 1 The above iterative algorithm con-
verges.

Theorem 2 At convergence, the solution satisfies
the Karuch, Kuhn, Tucker optimality condition,
i.e., the algorithm converges correctly to a local
optima.

Theorem 1 can be proved using the standard
auxiliary function approach used in (Lee and Se-
ung, 2001).
Proof of Theorem 2. Following the theory of con-
strained optimization (Nocedal and Wright, 1999),
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we minimize the following function

L(F)= ||X−FSGT ||2 +αTr
[

(F−F0)
TC1(F−F0)

]

Note that the gradient of L is,

∂L
∂F

=−2XGST +2FSGT GST +2αC1(F−F0).

(9)
The KKT complementarity condition for the non-
negativity of Fik gives

[−2XGST +FSGT GST +2αC1(F−F0)]ikFik = 0.

(10)
This is the fixed point relation that local minima
for F must satisfy. Given an initial guess of F , the
successive update of F using Eq.(8) will converge
to a local minima. At convergence, we have

Fik = Fik
(XGST +αC1F0)ik

(FFT XGST +αC1F)ik
.

which is equivalent to the KKT condition of
Eq.(10). The correctness of updating rules for G in
Eq.(6) and S in Eq.(7) have been proved in (Ding
et al., 2006). u–

Note that we do not enforce exact orthogonality
in our updating rules since this often implies softer
class assignments.

5 Semi-Supervised Learning With
Lexical Knowledge

So far our models have made no demands on hu-
man effort, other than unsupervised collection of
the term-document matrix and a one-time effort in
compiling a domain-independent sentiment lexi-
con. We now assume that a few documents are
manually labeled for the purposes of capturing
some domain-specific connotations leading to a
more domain-adapted model. The partial labels
on documents can be described using G0 where
(G0)i1 = 1 if the document expresses positive sen-
timent, and (G0)i2 = 1 for negative sentiment. As
with F0, one can also use soft sentiment labeling
for documents, though our experiments are con-
ducted with hard assignments.

Therefore, the semi-supervised learning with
lexical knowledge can be described as

min
F,G,S
‖X−FSGT‖2 +αTr

[

(F−F0)
TC1(F−F0)

]

+

βTr
[

(G−G0)
TC2(G−G0)

]

Where α > 0,β > 0 are parameters which deter-
mine the extent to which we enforce F ≈ F0 and

G ≈ G0 respectively, C1 and C2 are diagonal ma-
trices indicating the entries of F0 and G0 that cor-
respond to labeled entities. The squared loss terms
ensure that the solution for F,G, in the otherwise
unsupervised learning problem, be close to the
prior knowledge F0 and G0.

5.1 Computational Algorithm

The optimization problem in Eq.( 4) can be solved
using the following update rules

G jk← G jk
(XT FS+βC2G0) jk

(GGT XT FS+βGGTC2G0) jk
(11)

Sik ← Sik
(FT XG)ik

(FT FSGT G)ik
. (12)

Fik← Fik
(XGST +αC1F0)ik

(FFT XGST +αC1F)ik
. (13)

Thus the algorithm for semi-supervised learning
with lexical knowledge based on our matrix fac-
torization framework, referred as SSMFLK, con-
sists of an iterative procedure using the above three
rules until convergence. The correctness and con-
vergence of the algorithm can also be proved using
similar arguments as what we outlined earlier for
MFLK in Section 4.3.

A quick word about computational complexity.
The term-document matrix is typically very sparse
with z� nm non-zero entries while k is typically
also much smaller than n,m. By using sparse ma-
trix multiplications and avoiding dense intermedi-
ate matrices, the updates can be very efficiently
and easily implemented. In particular, updating
F,S,G each takes O(k2(m + n) + kz) time per it-
eration which scales linearly with the dimensions
and density of the data matrix. Empirically, the
number of iterations before practical convergence
is usually very small (less than 100). Thus, com-
putationally our approach scales to large datasets
even though our experiments are run on relatively
small-sized datasets.

6 Experiments

6.1 Datasets Description

Four different datasets are used in our experi-
ments.

Movies Reviews: This is a popular dataset in
sentiment analysis literature (Pang et al., 2002).
It consists of 1000 positive and 1000 negative
movie reviews drawn from the IMDB archive of
the rec.arts.movies.reviews newsgroups.
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Lotus blogs: The data set is targeted at detect-
ing sentiment around enterprise software, specif-
ically pertaining to the IBM Lotus brand (Sind-
hwani and Melville, 2008). An unlabeled set
of blog posts was created by randomly sampling
2000 posts from a universe of 14,258 blogs that
discuss issues relevant to Lotus software. In ad-
dition to this unlabeled set, 145 posts were cho-
sen for manual labeling. These posts came from
14 individual blogs, 4 of which are actively post-
ing negative content on the brand, with the rest
tending to write more positive or neutral posts.
The data was collected by downloading the lat-
est posts from each blogger’s RSS feeds, or ac-
cessing the blog’s archives. Manual labeling re-
sulted in 34 positive and 111 negative examples.
Political candidate blogs: For our second blog
domain, we used data gathered from 16,742 polit-
ical blogs, which contain over 500,000 posts. As
with the Lotus dataset, an unlabeled set was cre-
ated by randomly sampling 2000 posts. 107 posts
were chosen for labeling. A post was labeled as
having positive or negative sentiment about a spe-
cific candidate (Barack Obama or Hillary Clinton)
if it explicitly mentioned the candidate in posi-
tive or negative terms. This resulted in 49 posi-
tively and 58 negatively labeled posts. Amazon
Reviews: The dataset contains product reviews
taken from Amazon.com from 4 product types:
Kitchen, Books, DVDs, and Electronics (Blitzer
et al., 2007). The dataset contains about 4000 pos-
itive reviews and 4000 negative reviews and can
be obtained from http://www.cis.upenn.
edu/˜mdredze/datasets/sentiment/.

For all datasets, we picked 5000 words with
highest document-frequency to generate the vo-
cabulary. Stopwords were removed and a nor-
malized term-frequency representation was used.
Genuinely unlabeled posts for Political and Lo-
tus were used for semi-supervised learning experi-
ments in section 6.3; they were not used in section
6.2 on the effect of lexical prior knowledge. In the
experiments, we set α, the parameter determining
the extent to which to enforce the feature labels,
to be 1/2, and β, the corresponding parameter for
enforcing document labels, to be 1.

6.2 Sentiment Analysis with Lexical
Knowledge

Of course, one can remove all burden on hu-
man effort by simply using unsupervised tech-

niques. Our interest in the first set of experi-
ments is to explore the benefits of incorporating a
sentiment lexicon over unsupervised approaches.
Does a one-time effort in compiling a domain-
independent dictionary and using it for different
sentiment tasks pay off in comparison to simply
using unsupervised methods? In our case, matrix
tri-factorization and other co-clustering methods
form the obvious unsupervised baseline for com-
parison and so we start by comparing our method
(MFLK) with the following methods:

• Four document clustering methods: K-
means, Tri-Factor Nonnegative Ma-
trix Factorization (TNMF) (Ding et al.,
2006), Information-Theoretic Co-clustering
(ITCC) (Dhillon et al., 2003), and Euclidean
Co-clustering algorithm (ECC) (Cho et al.,
2004). These methods do not make use of
the sentiment lexicon.

• Feature Centroid (FC): This is a simple
dictionary-based baseline method. Recall
that each word can be expressed as a “bag-
of-documents” vector. In this approach, we
compute the centroids of these vectors, one
corresponding to positive words and another
corresponding to negative words. This yields
a two-dimensional representation for docu-
ments, on which we then perform K-means
clustering.

Performance Comparison Figure 1 shows the
experimental results on four datasets using accu-
racy as the performance measure. The results are
obtained by averaging 20 runs. It can be observed
that our MFLK method can effectively utilize the
lexical knowledge to improve the quality of senti-
ment prediction.
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Figure 1: Accuracy results on four datasets

249



Size of Sentiment Lexicon We also investigate
the effects of the size of the sentiment lexicon on
the performance of our model. Figure 2 shows
results with random subsets of the lexicon of in-
creasing size. We observe that generally the per-
formance increases as more and more lexical su-
pervision is provided.
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Figure 2: MFLK accuracy as size of sentiment
lexicon (i.e., number of words in the lexicon) in-
creases on the four datasets

Robustness to Vocabulary Size High dimen-
sionality and noise can have profound impact on
the comparative performance of clustering and
semi-supervised learning algorithms. We simu-
late scenarios with different vocabulary sizes by
selecting words based on information gain. It
should, however, be kept in mind that in a tru-
ely unsupervised setting document labels are un-
available and therefore information gain cannot
be practically computed. Figure 3 and Figure 4
show results for Lotus and Amazon datasets re-
spectively and are representative of performance
on other datasets. MLFK tends to retain its po-
sition as the best performing method even at dif-
ferent vocabulary sizes. ITCC performance is also
noteworthy given that it is a completely unsuper-
vised method.
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Figure 3: Accuracy results on Lotus dataset with
increasing vocabulary size

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

Fraction of Original Vocabulary

A
cc

ur
ac

y

 

 

MFLK
FC
TNMF
K−Means
ITCC
ECC

Figure 4: Accuracy results on Amazon dataset
with increasing vocabulary size

6.3 Sentiment Analysis with Dual
Supervision

We now assume that together with labeled features
from the sentiment lexicon, we also have access to
a few labeled documents. The natural question is
whether the presence of lexical constraints leads
to better semi-supervised models. In this section,
we compare our method (SSMFLK) with the fol-
lowing three semi-supervised approaches: (1) The
algorithm proposed in (Zhou et al., 2003) which
conducts semi-supervised learning with local and
global consistency (Consistency Method); (2) Zhu
et al.’s harmonic Gaussian field method coupled
with the Class Mass Normalization (Harmonic-
CMN) (Zhu et al., 2003); and (3) Green’s function
learning algorithm (Green’s Function) proposed
in (Ding et al., 2007).

We also compare the results of SSMFLK with
those of two supervised classification methods:
Support Vector Machine (SVM) and Naive Bayes.
Both of these methods have been widely used in
sentiment analysis. In particular, the use of SVMs
in (Pang et al., 2002) initially sparked interest
in using machine learning methods for sentiment
classification. Note that none of these competing
methods utilizes lexical knowledge.

The results are presented in Figure 5, Figure 6,
Figure 7, and Figure 8. We note that our SSMFLK
method either outperforms all other methods over
the entire range of number of labeled documents
(Movies, Political), or ultimately outpaces other
methods (Lotus, Amazon) as a few document la-
bels come in.

Learning Domain-Specific Connotations In
our first set of experiments, we incorporated the
sentiment lexicon in our models and learnt the
sentiment orientation of words and documents via
F,G factors respectively. In the second set of
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Figure 5: Accuracy results with increasing number
of labeled documents on Movies dataset
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Figure 6: Accuracy results with increasing number
of labeled documents on Lotus dataset

experiments, we additionally introduced labeled
documents for domain-specific adjustments. Be-
tween these experiments, we can now look for
words that switch sentiment polarity. These words
are interesting because their domain-specific con-
notation differs from their lexical orientation. For
amazon reviews, the following words switched
polarity from positive to negative: fan, impor-
tant, learning, cons, fast, feature, happy, memory,
portable, simple, small, work while the following
words switched polarity from negative to positive:
address, finish, lack, mean, budget, rent, throw.
Note that words like fan, memory probably refer
to product or product components (i.e., computer
fan and memory) in the amazon review context
but have a very different connotation say in the
context of movie reviews where they probably re-
fer to movie fanfare and memorable performances.
We were surprised to see happy switch polarity!
Two examples of its negative-sentiment usage are:
I ended up buying a Samsung and I couldn’t be
more happy and BORING, not one single exciting
thing about this book. I was happy when my lunch
break ended so I could go back to work and stop
reading.
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Figure 7: Accuracy results with increasing number
of labeled documents on Political dataset
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Figure 8: Accuracy results with increasing number
of labeled documents on Amazon dataset

7 Conclusion

The primary contribution of this paper is to pro-
pose and benchmark new methodologies for sen-
timent analysis. Non-negative Matrix Factoriza-
tions constitute a rich body of algorithms that have
found applicability in a variety of machine learn-
ing applications: from recommender systems to
document clustering. We have shown how to build
effective sentiment models by appropriately con-
straining the factors using lexical prior knowledge
and document annotations. To more effectively
utilize unlabeled data and induce domain-specific
adaptation of our models, several extensions are
possible: facilitating learning from related do-
mains, incorporating hyperlinks between docu-
ments, incorporating synonyms or co-occurences
between words etc. As a topic of vigorous current
activity, there are several very recently proposed
competing methodologies for sentiment analysis
that we would like to benchmark against. These
are topics for future work.
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Abstract

This paper describes an approach to uti-
lizing term weights for sentiment analysis
tasks and shows how various term weight-
ing schemes improve the performance of
sentiment analysis systems. Previously,
sentiment analysis was mostly studied un-
der data-driven and lexicon-based frame-
works. Such work generally exploits tex-
tual features for fact-based analysis tasks
or lexical indicators from a sentiment lexi-
con. We propose to model term weighting
into a sentiment analysis system utilizing
collection statistics, contextual and topic-
related characteristics as well as opinion-
related properties. Experiments carried
out on various datasets show that our
approach effectively improves previous
methods.

1 Introduction

With the explosion in the amount of commentaries
on current issues and personal views expressed in
weblogs on the Internet, the field of studying how
to analyze such remarks and sentiments has been
increasing as well. The field of opinion mining
and sentiment analysis involves extracting opin-
ionated pieces of text, determining the polarities
and strengths, and extracting holders and targets
of the opinions.

Much research has focused on creating testbeds
for sentiment analysis tasks. Most notable
and widely used are Multi-Perspective Question
Answering (MPQA) and Movie-review datasets.
MPQA is a collection of newspaper articles anno-
tated with opinions and private states at the sub-
sentence level (Wiebe et al., 2003). Movie-review
dataset consists of positive and negative reviews
from the Internet Movie Database (IMDb) archive
(Pang et al., 2002).

Evaluation workshops such as TREC and NT-
CIR have recently joined in this new trend of re-
search and organized a number of successful meet-
ings. At the TREC Blog Track meetings, re-
searchers have dealt with the problem of retriev-
ing topically-relevant blog posts and identifying
documents with opinionated contents (Ounis et
al., 2008). NTCIR Multilingual Opinion Analy-
sis Task (MOAT) shared a similar mission, where
participants are provided with a number of topics
and a set of relevant newspaper articles for each
topic, and asked to extract opinion-related proper-
ties from enclosed sentences (Seki et al., 2008).

Previous studies for sentiment analysis belong
to either the data-driven approach where an anno-
tated corpus is used to train a machine learning
(ML) classifier, or to the lexicon-based approach
where a pre-compiled list of sentiment terms is uti-
lized to build a sentiment score function.

This paper introduces an approach to the senti-
ment analysis tasks with an emphasis on how to
represent and evaluate the weights of sentiment
terms. We propose a number of characteristics of
good sentiment terms from the perspectives of in-
formativeness, prominence, topic–relevance, and
semantic aspects using collection statistics, con-
textual information, semantic associations as well
as opinion–related properties of terms. These term
weighting features constitute the sentiment analy-
sis model in our opinion retrieval system. We test
our opinion retrieval system with TREC and NT-
CIR datasets to validate the effectiveness of our
term weighting features. We also verify the ef-
fectiveness of the statistical features used in data-
driven approaches by evaluating an ML classifier
with labeled corpora.

2 Related Work

Representing text with salient features is an im-
portant part of a text processing task, and there ex-
ists many works that explore various features for
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text analysis systems (Sebastiani, 2002; Forman,
2003). Sentiment analysis task have also been us-
ing various lexical, syntactic, and statistical fea-
tures (Pang and Lee, 2008). Pang et al. (2002)
employed n-gram and POS features for ML meth-
ods to classify movie-review data. Also, syntac-
tic features such as the dependency relationship of
words and subtrees have been shown to effectively
improve the performances of sentiment analysis
(Kudo and Matsumoto, 2004; Gamon, 2004; Mat-
sumoto et al., 2005; Ng et al., 2006).

While these features are usually employed by
data-driven approaches, there are unsupervised ap-
proaches for sentiment analysis that make use of a
set of terms that are semantically oriented toward
expressing subjective statements (Yu and Hatzi-
vassiloglou, 2003). Accordingly, much research
has focused on recognizing terms’ semantic ori-
entations and strength, and compiling sentiment
lexicons (Hatzivassiloglou and Mckeown, 1997;
Turney and Littman, 2003; Kamps et al., 2004;
Whitelaw et al., 2005; Esuli and Sebastiani, 2006).

Interestingly, there are conflicting conclusions
about the usefulness of the statistical features in
sentiment analysis tasks (Pang and Lee, 2008).
Pang et al. (2002) presents empirical results in-
dicating that using term presence over term fre-
quency is more effective in a data-driven sentiment
classification task. Such a finding suggests that
sentiment analysis may exploit different types of
characteristics from the topical tasks, that, unlike
fact-based text analysis tasks, repetition of terms
does not imply a significance on the overall senti-
ment. On the other hand, Wiebe et al. (2004) have
noted that hapax legomena (terms that only appear
once in a collection of texts) are good signs for
detecting subjectivity. Other works have also ex-
ploited rarely occurring terms for sentiment anal-
ysis tasks (Dave et al., 2003; Yang et al., 2006).

The opinion retrieval task is a relatively recent
issue that draws both the attention of IR and NLP
communities. Its task is to find relevant documents
that also contain sentiments about a given topic.
Generally, the opinion retrieval task has been ap-
proached as a two–stage task: first, retrieving top-
ically relevant documents, then reranking the doc-
uments by the opinion scores (Ounis et al., 2006).
This approach is also appropriate for evaluation
systems such as NTCIR MOAT that assumes that
the set of topically relevant documents are already
known in advance. On the other hand, there are

also some interesting works on modeling the topic
and sentiment of documents in a unified way (Mei
et al., 2007; Zhang and Ye, 2008).

3 Term Weighting and Sentiment
Analysis

In this section, we describe the characteristics of
terms that are useful in sentiment analysis, and
present our sentiment analysis model as part of
an opinion retrieval system and an ML sentiment
classifier.

3.1 Characteristics of Good Sentiment Terms

This section examines the qualities of useful terms
for sentiment analysis tasks and corresponding
features. For the sake of organization, we cate-
gorize the sources of features into either global or
local knowledge, and either topic-independent or
topic-dependent knowledge.

Topic-independently speaking, a good senti-
ment term is discriminative and prominent, such
that the appearance of the term imposes greater
influence on the judgment of the analysis system.
The rare occurrence of terms in document collec-
tions has been regarded as a very important feature
in IR methods, and effective IR models of today,
either explicitly or implicitly, accommodate this
feature as an Inverse Document Frequency (IDF)
heuristic (Fang et al., 2004). Similarly, promi-
nence of a term is recognized by the frequency of
the term in its local context, formulated as Term
Frequency (TF) in IR.

If a topic of the text is known, terms that are rel-
evant and descriptive of the subject should be re-
garded to be more useful than topically-irrelevant
and extraneous terms. One way of measuring this
is using associations between the query and terms.
Statistical measures of associations between terms
include estimations by the co-occurrence in the
whole collection, such as Point-wise Mutual In-
formation (PMI) and Latent Semantic Analysis
(LSA). Another method is to use proximal infor-
mation of the query and the word, using syntactic
structure such as dependency relations of words
that provide the graphical representation of the
text (Mullen and Collier, 2004). The minimum
spans of words in such graph may represent their
associations in the text. Also, the distance between
words in the local context or in the thesaurus-
like dictionaries such as WordNet may be approx-
imated as such measure.
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3.2 Opinion Retrieval Model
The goal of an opinion retrieval system is to find a
set of opinionated documents that are relevant to a
given topic. We decompose the opinion retrieval
system into two tasks: the topical retrieval task
and the sentiment analysis task. This two-stage
approach for opinion retrieval has been taken by
many systems and has been shown to perform well
(Ounis et al., 2006). The topic and the sentiment
aspects of the opinion retrieval task are modeled
separately, and linearly combined together to pro-
duce a list of topically-relevant and opinionated
documents as below.

ScoreOpRet(D,Q) = λ·Scorerel(D,Q)+(1−λ)·Scoreop(D,Q)

The topic-relevance model Scorerel may be sub-
stituted by any IR system that retrieves relevant
documents for the query Q. For tasks such as
NTCIR MOAT, relevant documents are already
known in advance and it becomes unnecessary to
estimate the relevance degree of the documents.
We focus on modeling the sentiment aspect of
the opinion retrieval task, assuming that the topic-
relevance of documents is provided in some way.

To assign documents with sentiment degrees,
we estimate the probability of a document D to
generate a query Q and to possess opinions as in-
dicated by a random variable Op.1 Assuming uni-
form prior probabilities of documentsD, queryQ,
and Op, and conditional independence between Q
and Op, the opinion score function reduces to es-
timating the generative probability of Q and Op
given D.

Scoreop(D,Q) ≡ p(D | Op,Q) ∝ p(Op,Q | D)

If we regard that the document D is represented
as a bag of words and that the words are uniformly
distributed, then

p(Op,Q | D) =
X

w∈D

p(Op,Q | w) · p(w | D)

=
X

w∈D

p(Op | w) · p(Q | w) · p(w | D) (1)

Equation 1 consists of three factors: the proba-
bility of a word to be opinionated (P (Op|w)), the
likelihood of a query given a word (P (Q|w)), and
the probability of a document generating a word
(P (w|D)). Intuitively speaking, the probability of
a document embodying topically related opinion is
estimated by accumulating the probabilities of all

1Throughout this paper, Op indicates Op = 1.

words from the document to have sentiment mean-
ings and associations with the given query.

In the following sections, we assess the three
factors of the sentiment models from the perspec-
tives of term weighting.

3.2.1 Word Sentiment Model
Modeling the sentiment of a word has been a pop-
ular approach in sentiment analysis. There are
many publicly available lexicon resources. The
size, format, specificity, and reliability differ in all
these lexicons. For example, lexicon sizes range
from a few hundred to several hundred thousand.
Some lexicons assign real number scores to in-
dicate sentiment orientations and strengths (i.e.
probabilities of having positive and negative sen-
timents) (Esuli and Sebastiani, 2006) while other
lexicons assign discrete classes (weak/strong, pos-
itive/negative) (Wilson et al., 2005). There are
manually compiled lexicons (Stone et al., 1966)
while some are created semi-automatically by ex-
panding a set of seed terms (Esuli and Sebastiani,
2006).

The goal of this paper is not to create or choose
an appropriate sentiment lexicon, but rather it is
to discover useful term features other than the
sentiment properties. For this reason, one sen-
timent lexicon, namely SentiWordNet, is utilized
throughout the whole experiment.

SentiWordNet is an automatically generated
sentiment lexicon using a semi-supervised method
(Esuli and Sebastiani, 2006). It consists of Word-
Net synsets, where each synset is assigned three
probability scores that add up to 1: positive, nega-
tive, and objective.

These scores are assigned at sense level (synsets
in WordNet), and we use the following equations
to assess the sentiment scores at the word level.

p(Pos | w) = max
s∈synset(w)

SWNP os(s)

p(Neg | w) = max
s∈synset(w)

SWNNeg(s)

p(Op | w) = max (p(Pos | w), p(Neg | w))

where synset(w) is the set of synsets of w and
SWNPos(s), SWNNeg(s) are positive and neg-
ative scores of a synset in SentiWordNet. We as-
sess the subjective score of a word as the maxi-
mum value of the positive and the negative scores,
because a word has either a positive or a negative
sentiment in a given context.

The word sentiment model can also make use
of other types of sentiment lexicons. The sub-
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jectivity lexicon used in OpinionFinder2 is com-
piled from several manually and automatically
built resources. Each word in the lexicon is tagged
with the strength (strong/weak) and polarity (Pos-
itive/Negative/Neutral). The word sentiment can
be modeled as below.

P (Pos|w) =

8><>:
1.0 if w is Positive and Strong
0.5 if w is Positive and Weak
0.0 otherwise

P (Op | w) = max (p(Pos | w), p(Neg | w))

3.2.2 Topic Association Model
If a topic is given in the sentiment analysis, terms
that are closely associated with the topic should
be assigned heavy weighting. For example, sen-
timent words such as scary and funny are more
likely to be associated with topic words such as
book and movie than grocery or refrigerator.

In the topic association model, p(Q | w) is es-
timated from the associations between the word w
and a set of query terms Q.

p(Q | w) =

P
q∈Q Asc-Score(q, w)

| Q |
∝
X
q∈Q

Asc-Score(q, w)

Asc-Score(q, w) is the association score between
q and w, and | Q | is the number of query words.

To measure associations between words, we
employ statistical approaches using document col-
lections such as LSA and PMI, and local proximity
features using the distance in dependency trees or
texts.

Latent Semantic Analysis (LSA) (Landauer and
Dumais, 1997) creates a semantic space from a
collection of documents to measure the semantic
relatedness of words. Point-wise Mutual Informa-
tion (PMI) is a measure of associations used in in-
formation theory, where the association between
two words is evaluated with the joint and individ-
ual distributions of the two words. PMI-IR (Tur-
ney, 2001) uses an IR system and its search op-
erators to estimate the probabilities of two terms
and their conditional probabilities. Equations for
association scores using LSA and PMI are given
below.

Asc-ScoreLSA(w1, w2) =
1 + LSA(w1, w2)

2

Asc-ScorePMI(w1, w2) =
1 + PMI-IR(w1, w2)

2

2http://www.cs.pitt.edu/mpqa/

For the experimental purpose, we used publicly
available online demonstrations for LSA and PMI.
For LSA, we used the online demonstration mode
from the Latent Semantic Analysis page from the
University of Colorado at Boulder.3 For PMI, we
used the online API provided by the CogWorks
Lab at the Rensselaer Polytechnic Institute.4

Word associations between two terms may also
be evaluated in the local context where the terms
appear together. One way of measuring the prox-
imity of terms is using the syntactic structures.
Given the dependency tree of the text, we model
the association between two terms as below.

Asc-ScoreDT P (w1, w2) =

(
1.0 min. span in dep. tree ≤ Dsyn

0.5 otherwise

where, Dsyn is arbitrarily set to 3.
Another way is to use co-occurrence statistics

as below.

Asc-ScoreW P (w1, w2) =

(
1.0 if distance betweenw1andw2 ≤ K
0.5 otherwise

where K is the maximum window size for the
co-occurrence and is arbitrarily set to 3 in our ex-
periments.

The statistical approaches may suffer from data
sparseness problems especially for named entity
terms used in the query, and the proximal clues
cannot sufficiently cover all term–query associa-
tions. To avoid assigning zero probabilities, our
topic association models assign 0.5 to word pairs
with no association and 1.0 to words with perfect
association.

Note that proximal features using co-occurrence
and dependency relationships were used in pre-
vious work. For opinion retrieval tasks, Yang et
al. (2006) and Zhang and Ye (2008) used the co-
occurrence of a query word and a sentiment word
within a certain window size. Mullen and Collier
(2004) manually annotated named entities in their
dataset (i.e. title of the record and name of the
artist for music record reviews), and utilized pres-
ence and position features in their ML approach.

3.2.3 Word Generation Model
Our word generation model p(w | d) evaluates the
prominence and the discriminativeness of a word

3http://lsa.colorado.edu/, default parameter settings for
the semantic space (TASA, 1st year college level) and num-
ber of factors (300).

4http://cwl-projects.cogsci.rpi.edu/msr/, PMI-IR with the
Google Search Engine.
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w in a document d. These issues correspond to the
core issues of traditional IR tasks. IR models, such
as Vector Space (VS), probabilistic models such
as BM25, and Language Modeling (LM), albeit in
different forms of approach and measure, employ
heuristics and formal modeling approaches to ef-
fectively evaluate the relevance of a term to a doc-
ument (Fang et al., 2004). Therefore, we estimate
the word generation model with popular IR mod-
els’ the relevance scores of a document d given w
as a query.5

p(w | d) ≡ IR-SCORE(w, d)

In our experiments, we use the Vector Space
model with Pivoted Normalization (VS), Proba-
bilistic model (BM25), and Language modeling
with Dirichlet Smoothing (LM).

V SPN(w, d) =
1 + ln(1 + ln(c(w, d)))

(1− s) + s ·
| d |
avgdl

· ln
N + 1

df(w)

BM25(w, d) = ln
N − df(w) + 0.5

df(w) + 0.5
·

(k1 + 1) · c(w, d)

k1

“
(1− b) + b

|d|
avgdl

”
+ c(w, d)

LMDI(w, d) = ln

 
1 +

c(w, d)

µ · c(w,C)

!
+ ln

µ

| d | +µ

c(w, d) is the frequency of w in d, | d | is the
number of unique terms in d, avgdl is the average
| d | of all documents, N is the number of doc-
uments in the collection, df(w) is the number of
documents with w, C is the entire collection, and
k1 and b are constants 2.0 and 0.75.

3.3 Data-driven Approach
To verify the effectiveness of our term weight-
ing schemes in experimental settings of the data-
driven approach, we carry out a set of simple ex-
periments with ML classifiers. Specifically, we
explore the statistical term weighting features of
the word generation model with Support Vector
machine (SVM), faithfully reproducing previous
work as closely as possible (Pang et al., 2002).

Each instance of train and test data is repre-
sented as a vector of features. We test various
combinations of the term weighting schemes listed
below.

• PRESENCE: binary indicator for the pres-
ence of a term
• TF: term frequency
5With proper assumptions and derivations, p(w | d) can

be derived to language modeling approaches. Refer to (Zhai
and Lafferty, 2004).

• VS.TF: normalized tf as in VS
• BM25.TF: normalized tf as in BM25
• IDF: inverse document frequency
• VS.IDF: normalized idf as in VS
• BM25.IDF: normalized idf as in BM25

4 Experiment

Our experiments consist of an opinion retrieval
task and a sentiment classification task. We use
MPQA and movie-review corpora in our experi-
ments with an ML classifier. For the opinion re-
trieval task, we use the two datasets used by TREC
blog track and NTCIR MOAT evaluation work-
shops.

The opinion retrieval task at TREC Blog Track
consists of three subtasks: topic retrieval, opinion
retrieval, and polarity retrieval. Opinion and polar-
ity retrieval subtasks use the relevant documents
retrieved at the topic retrieval stage. On the other
hand, the NTCIR MOAT task aims to find opin-
ionated sentences given a set of documents that are
already hand-assessed to be relevant to the topic.

4.1 Opinion Retieval Task – TREC Blog
Track

4.1.1 Experimental Setting
TREC Blog Track uses the TREC Blog06 corpus
(Macdonald and Ounis, 2006). It is a collection
of RSS feeds (38.6 GB), permalink documents
(88.8GB), and homepages (28.8GB) crawled on
the Internet over an eleven week period from De-
cember 2005 to February 2006.

Non-relevant content of blog posts such as
HTML tags, advertisement, site description, and
menu are removed with an effective internal spam
removal algorithm (Nam et al., 2009). While our
sentiment analysis model uses the entire relevant
portion of the blog posts, further stopword re-
moval and stemming is done for the blog retrieval
system.

For the relevance retrieval model, we faithfully
reproduce the passage-based language model with
pseudo-relevance feedback (Lee et al., 2008).

We use in total 100 topics from TREC 2007 and
2008 blog opinion retrieval tasks (07:901-950 and
08:1001-1050). We use the topics from Blog 07
to optimize the parameter for linearly combining
the retrieval and opinion models, and use Blog 08
topics as our test data. Topics are extracted only
from the Title field, using the Porter stemmer and
a stopword list.
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Table 1: Performance of opinion retrieval models
using Blog 08 topics. The linear combination pa-
rameter λ is optimized on Blog 07 topics. † indi-
cates statistical significance at the 1% level over
the baseline.

Model MAP R-prec P@10
TOPIC REL. 0.4052 0.4366 0.6440
BASELINE 0.4141 0.4534 0.6440

VS 0.4196 0.4542 0.6600
BM25 0.4235† 0.4579 0.6600

LM 0.4158 0.4520 0.6560
PMI 0.4177 0.4538 0.6620
LSA 0.4155 0.4526 0.6480
WP 0.4165 0.4533 0.6640

BM25·PMI 0.4238† 0.4575 0.6600
BM25·LSA 0.4237† 0.4578 0.6600
BM25·WP 0.4237† 0.4579 0.6600

BM25·PMI·WP 0.4242† 0.4574 0.6620
BM25·LSA·WP 0.4238† 0.4576 0.6580

4.1.2 Experimental Result

Retrieval performances using different combina-
tions of term weighting features are presented in
Table 1. Using only the word sentiment model is
set as our baseline.

First, each feature of the word generation and
topic association models are tested; all features of
the models improve over the baseline. We observe
that the features of our word generation model is
more effective than those of the topic association
model. Among the features of the word generation
model, the most improvement was achieved with
BM25, improving the MAP by 2.27%.

Features of the topic association model show
only moderate improvements over the baseline.
We observe that these features generally improve
P@10 performance, indicating that they increase
the accuracy of the sentiment analysis system.
PMI out-performed LSA for all evaluation mea-
sures. Among the topic association models, PMI
performs the best in MAP and R-prec, while WP
achieved the biggest improvement in P@10.

Since BM25 performs the best among the word
generation models, its combination with other fea-
tures was investigated. Combinations of BM25
with the topic association models all improve the
performance of the baseline and BM25. This
demonstrates that the word generation model and
the topic association model are complementary to
each other.

The best MAP was achieved with BM25, PMI,
and WP (+2.44% over the baseline). We observe
that PMI and WP also complement each other.

4.2 Sentiment Analysis Task – NTCIR
MOAT

4.2.1 Experimental Setting

Another set of experiments for our opinion analy-
sis model was carried out on the NTCIR-7 MOAT
English corpus. The English opinion corpus
for NTCIR MOAT consists of newspaper articles
from the Mainichi Daily News, Korea Times, Xin-
hua News, Hong Kong Standard, and the Straits
Times. It is a collection of documents manu-
ally assessed for relevance to a set of queries
from NTCIR-7 Advanced Cross-lingual Informa-
tion Access (ACLIA) task. The corpus consists of
167 documents, or 4,711 sentences for 14 test top-
ics. Each sentence is manually tagged with opin-
ionatedness, polarity, and relevance to the topic by
three annotators from a pool of six annotators.

For preprocessing, no removal or stemming is
performed on the data. Each sentence was pro-
cessed with the Stanford English parser6 to pro-
duce a dependency parse tree. Only the Title fields
of the topics were used.

For performance evaluations of opinion and po-
larity detection, we use precision, recall, and F-
measure, the same measure used to report the offi-
cial results at the NTCIR MOAT workshop. There
are lenient and strict evaluations depending on the
agreement of the annotators; if two out of three an-
notators agreed upon an opinion or polarity anno-
tation then it is used during the lenient evaluation,
similarly three out of three agreements are used
during the strict evaluation. We present the perfor-
mances using the lenient evaluation only, for the
two evaluations generally do not show much dif-
ference in relative performance changes.

Since MOAT is a classification task, we use a
threshold parameter to draw a boundary between
opinionated and non-opinionated sentences. We
report the performance of our system using the
NTCIR-7 dataset, where the threshold parameter
is optimized using the NTCIR-6 dataset.

4.2.2 Experimental Result

We present the performance of our sentiment anal-
ysis system in Table 2. As in the experiments with

6http://nlp.stanford.edu/software/lex-parser.shtml
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Table 2: Performance of the Sentiment Analy-
sis System on NTCIR7 dataset. System parame-
ters are optimized for F-measure using NTCIR6
dataset with lenient evaluations.

Opinionated
Model Precision Recall F-Measure

BASELINE 0.305 0.866 0.451
VS 0.331 0.807 0.470

BM25 0.327 0.795 0.464
LM 0.325 0.794 0.461
LSA 0.315 0.806 0.453
PMI 0.342 0.603 0.436
DTP 0.322 0.778 0.455

VS·LSA 0.335 0.769 0.466
VS·PMI 0.311 0.833 0.453
VS·DTP 0.342 0.745 0.469

VS·LSA·DTP 0.349 0.719 0.470
VS·PMI·DTP 0.328 0.773 0.461

the TREC dataset, using only the word sentiment
model is used as our baseline.

Similarly to the TREC experiments, the features
of the word generation model perform exception-
ally better than that of the topic association model.
The best performing feature of the word genera-
tion model is VS, achieving a 4.21% improvement
over the baseline’s f-measure. Interestingly, this is
the tied top performing f-measure over all combi-
nations of our features.

While LSA and DTP show mild improvements,
PMI performed worse than baseline, with higher
precision but a drop in recall. DTP was the best
performing topic association model.

When combining the best performing feature
of the word generation model (VS) with the fea-
tures of the topic association model, LSA, PMI
and DTP all performed worse than or as well as
the VS in f-measure evaluation. LSA and DTP im-
proves precision slightly, but with a drop in recall.
PMI shows the opposite tendency.

The best performing system was achieved using
VS, LSA and DTP at both precision and f-measure
evaluations.

4.3 Classification task – SVM

4.3.1 Experimental Setting
To test our SVM classifier, we perform the classi-
fication task. Movie Review polarity dataset7 was

7http://www.cs.cornell.edu/people/pabo/movie-review-
data/

Table 3: Average ten-fold cross-validation accura-
cies of polarity classification task with SVM.

Accuracy
Features Movie-review MPQA

PRESENCE 82.6 76.8
TF 71.1 76.5

VS.TF 81.3 76.7
BM25.TF 81.4 77.9

IDF 61.6 61.8
VS.IDF 83.6 77.9

BM25.IDF 83.6 77.8
VS.TF·VS.IDF 83.8 77.9

BM25.TF·BM25.IDF 84.1 77.7
BM25.TF·VS.IDF 85.1 77.7

first introduced by Pang et al. (2002) to test various
ML-based methods for sentiment classification. It
is a balanced dataset of 700 positive and 700 neg-
ative reviews, collected from the Internet Movie
Database (IMDb) archive. MPQA Corpus8 con-
tains 535 newspaper articles manually annotated
at sentence and subsentence level for opinions and
other private states (Wiebe et al., 2005).

To closely reproduce the experiment with the
best performance carried out in (Pang et al., 2002)
using SVM, we use unigram with the presence
feature. We test various combinations of our fea-
tures applicable to the task. For evaluation, we use
ten-fold cross-validation accuracy.

4.3.2 Experimental Result

We present the sentiment classification perfor-
mances in Table 3.

As observed by Pang et al. (2002), using the raw
tf drops the accuracy of the sentiment classifica-
tion (-13.92%) of movie-review data. Using the
raw idf feature worsens the accuracy even more
(-25.42%). Normalized tf-variants show improve-
ments over tf but are worse than presence. Nor-
malized idf features produce slightly better accu-
racy results than the baseline. Finally, combining
any normalized tf and idf features improved the
baseline (high 83% ∼ low 85%). The best combi-
nation was BM25.TF·VS.IDF.

MPQA corpus reveals similar but somewhat un-
certain tendency.

8http://www.cs.pitt.edu/mpqa/databaserelease/
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4.4 Discussion

Overall, the opinion retrieval and the sentiment
analysis models achieve improvements using our
proposed features. Especially, the features of the
word generation model improve the overall per-
formances drastically. Its effectiveness is also ver-
ified with a data-driven approach; the accuracy of
a sentiment classifier trained on a polarity dataset
was improved by various combinations of normal-
ized tf and idf statistics.

Differences in effectiveness of VS, BM25, and
LM come from parameter tuning and corpus dif-
ferences. For the TREC dataset, BM25 performed
better than the other models, and for the NTCIR
dataset, VS performed better.

Our features of the topic association model
show mild improvement over the baseline perfor-
mance in general. PMI and LSA, both modeling
the semantic associations between words, show
different behaviors on the datasets. For the NT-
CIR dataset, LSA performed better, while PMI
is more effective for the TREC dataset. We be-
lieve that the explanation lies in the differences
between the topics for each dataset. In general,
the NTCIR topics are general descriptive words
such as “regenerative medicine”, “American econ-
omy after the 911 terrorist attacks”, and “law-
suit brought against Microsoft for monopolistic
practices.” The TREC topics are more named-
entity-like terms such as “Carmax”, “Wikipedia
primary source”, “Jiffy Lube”, “Starbucks”, and
“Windows Vista.” We have experimentally shown
that LSA is more suited to finding associations
between general terms because its training docu-
ments are from a general domain.9 Our PMI mea-
sure utilizes a web search engine, which covers a
variety of named entity terms.

Though the features of our topic association
model, WP and DTP, were evaluated on different
datasets, we try our best to conjecture the differ-
ences. WP on TREC dataset shows a small im-
provement of MAP compared to other topic asso-
ciation features, while the precision is improved
the most when this feature is used alone. The DTP
feature displays similar behavior with precision. It
also achieves the best f-measure over other topic
association features. DTP achieves higher rela-
tive improvement (3.99% F-measure verse 2.32%
MAP), and is more effective for improving the per-
formance in combination with LSA and PMI.

9TASA Corpus, http://lsa.colorado.edu/spaces.html

5 Conclusion

In this paper, we proposed various term weighting
schemes and how such features are modeled in the
sentiment analysis task. Our proposed features in-
clude corpus statistics, association measures using
semantic and local-context proximities. We have
empirically shown the effectiveness of the features
with our proposed opinion retrieval and sentiment
analysis models.

There exists much room for improvement with
further experiments with various term weighting
methods and datasets. Such methods include,
but by no means limited to, semantic similarities
between word pairs using lexical resources such
as WordNet (Miller, 1995) and data-driven meth-
ods with various topic-dependent term weighting
schemes on labeled corpus with topics such as
MPQA.
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Abstract

Can we automatically compose a large set
of Wiktionaries and translation dictionar-
ies to yield a massive, multilingual dic-
tionary whose coverage is substantially
greater than that of any of its constituent
dictionaries?

The composition of multiple translation
dictionaries leads to a transitive inference
problem: if word A translates to word
B which in turn translates to word C,
what is the probability that C is a trans-
lation of A? The paper introduces a
novel algorithm that solves this problem
for 10,000,000 words in more than 1,000
languages. The algorithm yields PANDIC-
TIONARY, a novel multilingual dictionary.
PANDICTIONARY contains more than four
times as many translations than in the
largest Wiktionary at precision 0.90 and
over 200,000,000 pairwise translations in
over 200,000 language pairs at precision
0.8.

1 Introduction and Motivation

In the era of globalization, inter-lingual com-
munication is becoming increasingly important.
Although nearly 7,000 languages are in use to-
day (Gordon, 2005), most language resources are
mono-lingual, or bi-lingual.1 This paper investi-
gates whether Wiktionaries and other translation
dictionaries available over the Web can be auto-
matically composed to yield a massive, multilin-
gual dictionary with superior coverage at compa-
rable precision.

We describe the automatic construction of a
massive multilingual translation dictionary, called

1The English Wiktionary, a lexical resource developed by
volunteers over the Internet is one notable exception that con-
tains translations of English words in about 500 languages.

Figure 1: A fragment of the translation graph for two senses
of the English word ‘spring’. Edges labeled ‘1’ and ‘3’ are
for spring in the sense of a season, and ‘2’ and ‘4’ are for
the flexible coil sense. The graph shows translation entries
from an English dictionary merged with ones from a French
dictionary.

PANDICTIONARY, that could serve as a resource
for translation systems operating over a very
broad set of language pairs. The most immedi-
ate application of PANDICTIONARY is to lexical
translation—the translation of individual words or
simple phrases (e.g., “sweet potato”). Because
lexical translation does not require aligned cor-
pora as input, it is feasible for a much broader
set of languages than statistical Machine Transla-
tion (SMT). Of course, lexical translation cannot
replace SMT, but it is useful for several applica-
tions including translating search-engine queries,
library classifications, meta-data tags,2 and recent
applications like cross-lingual image search (Et-
zioni et al., 2007), and enhancing multi-lingual
Wikipedias (Adar et al., 2009). Furthermore,
lexical translation is a valuable component in
knowledge-based Machine Translation systems,
e.g., (Bond et al., 2005; Carbonell et al., 2006).

PANDICTIONARY currently contains over 200
million pairwise translations in over 200,000 lan-
guage pairs at precision 0.8. It is constructed from
information harvested from 631 online dictionar-
ies and Wiktionaries. This necessitates match-

2Meta-data tags appear in community Web sites such as
flickr.com and del.icio.us.
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ing word senses across multiple, independently-
authored dictionaries. Because of the millions of
translations in the dictionaries, a feasible solution
to this sense matching problem has to be scalable;
because sense matches are imperfect and uncer-
tain, the solution has to be probabilistic.

The core contribution of this paper is a princi-
pled method for probabilistic sense matching to in-
fer lexical translations between two languages that
do not share a translation dictionary. For exam-
ple, our algorithm can conclude that Basque word
‘udaherri’ is a translation of Maori word ‘koanga’
in Figure 1. Our contributions are as follows:

1. We describe the design and construction of
PANDICTIONARY—a novel lexical resource
that spans over 200 million pairwise transla-
tions in over 200,000 language pairs at 0.8
precision, a four-fold increase when com-
pared to the union of its input translation dic-
tionaries.

2. We introduce SenseUniformPaths, a scal-
able probabilistic method, based on graph
sampling, for inferring lexical translations,
which finds 3.5 times more inferred transla-
tions at precison 0.9 than the previous best
method.

3. We experimentally contrast PANDIC-
TIONARY with the English Wiktionary and
show that PANDICTIONARY is from 4.5 to
24 times larger depending on the desired
precision.

The remainder of this paper is organized as fol-
lows. Section 2 describes our earlier work on
sense matching (Etzioni et al., 2007). Section 3
describes how the PANDICTIONARY builds on and
improves on their approach. Section 4 reports on
our experimental results. Section 5 considers re-
lated work on lexical translation. The paper con-
cludes in Section 6 with directions for future work.

2 Building a Translation Graph

In previous work (Etzioni et al., 2007) we intro-
duced an approach to sense matching that is based
on translation graphs (see Figure 1 for an exam-
ple). Each vertex v ∈ V in the graph is an or-
dered pair (w, l) where w is a word in a language
l. Undirected edges in the graph denote transla-
tions between words: an edge e ∈ E between (w1,
l1) and (w2, l2) represents the belief that w1 and
w2 share at least one word sense.

Construction: The Web hosts a large num-
ber of bilingual dictionaries in different languages
and several Wiktionaries. Bilingual dictionaries
translate words from one language to another, of-
ten without distinguishing the intended sense. For
example, an Indonesian-English dictionary gives
‘light’ as a translation of the Indonesian word ‘en-
teng’, but does not indicate whether this means il-
lumination, light weight, light color, or the action
of lighting fire.

The Wiktionaries (wiktionary.org) are sense-
distinguished, multilingual dictionaries created by
volunteers collaborating over the Web. A transla-
tion graph is constructed by locating these dictio-
naries, parsing them into a common XML format,
and adding the nodes and edges to the graph.

Figure 1 shows a fragment of a translation
graph, which was constructed from two sets of
translations for the word ‘spring’ from an English
Wiktionary, and two corresponding entries from
a French Wiktionary for ‘printemps’ (spring sea-
son) and ‘ressort’ (flexible spring). Translations of
the season ‘spring’ have edges labeled with sense
ID=1, the flexible coil sense has ID=2, translations
of ‘printemps’ have ID=3, and so forth.3

For clarity, we show only a few of the actual
vertices and edges; e.g., the figure doesn’t show
the edge (ID=1) between ‘udaherri’ and ‘primav-
era’.

Inference: In our previous system we had
a simple inference procedure over translation
graphs, called TRANSGRAPH, to find translations
beyond those provided by any source dictionary.
TRANSGRAPH searched for paths in the graph be-
tween two vertices and estimated the probability
that the path maintains the same word sense along
all edges in the path, even when the edges come
from different dictionaries. For example, there are
several paths between ‘udaherri’ and ‘koanga’ in
Figure 1, but all shift from sense ID 1 to 3. The
probability that the two words are translations is
equivalent to the probability that IDs 1 and 3 rep-
resent the same sense.

TRANSGRAPH used two formulae to estimate
these probabilities. One formula estimates the
probability that two multi-lingual dictionary en-
tries represent the same word sense, based on the
proportion of overlapping translations for the two
entries. For example, most of the translations of

3Sense-distinguished multi-lingual entries give rise to
cliques all of which share a common sense ID.
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French ‘printemps’ are also translations of the sea-
son sense of ‘spring’. A second formula is based
on triangles in the graph (useful for bilingual dic-
tionaries): a clique of 3 nodes with an edge be-
tween each pair of nodes. In such cases, there is
a high probability that all 3 nodes share a word
sense.

Critique: While TRANSGRAPH was the first
to present a scalable inference method for lexical
translation, it suffers from several drawbacks. Its
formulae operate only on local information: pairs
of senses that are adjacent in the graph or triangles.
It does not incorporate evidence from longer paths
when an explicit triangle is not present. Moreover,
the probabilities from different paths are com-
bined conservatively (either taking the max over
all paths, or using “noisy or” on paths that are
completely disjoint, except end points), thus lead-
ing to suboptimal precision/recall.

In response to this critique, the next section
presents an inference algorithm, called SenseUni-
formPaths (SP), with substantially improved recall
at equivalent precision.

3 Translation Inference Algorithms

In essence, inference over a translation graph
amounts to transitive sense matching: if word A
translates to word B, which translates in turn to
word C, what is the probability that C is a trans-
lation of A? If B is polysemous then C may not
share a sense with A. For example, in Figure 2(a)
if A is the French word ‘ressort’ (the flexible-
coil sense of spring) and B is the English word
‘spring’, then Slovenian word ‘vzmet’ may or may
not be a correct translation of ‘ressort’ depending
on whether the edge (B,C) denotes the flexible-
coil sense of spring, the season sense, or another
sense. Indeed, given only the knowledge of the
path A − B − C we cannot claim anything with
certainty regarding A to C.

However, if A, B, and C are on a circuit that
starts at A, passes through B and C and re-
turns to A, there is a high probability that all
nodes on that circuit share a common word sense,
given certain restrictions that we enumerate later.
Where TRANSGRAPH used evidence from circuits
of length 3, we extend this to paths of arbitrary
lengths.

To see how this works, let us begin with the sim-
plest circuit, a triangle of three nodes as shown in
Figure 2(b). We can be quite certain that ‘vzmet’

shares the sense of coil with both ‘spring’ and
‘ressort’. Our reasoning is as follows: even
though both ‘ressort’ and ‘spring’ are polysemous
they share only one sense. For a triangle to form
we have two choices – (1) either ‘vzmet’ means
spring coil, or (2) ‘vzmet’ means both the spring
season and jurisdiction, but not spring coil. The
latter is possible but such a coincidence is very un-
likely, which is why a triangle is strong evidence
for the three words to share a sense.

As an example of longer paths, our inference
algorithms can conclude that in Figure 2(c), both
‘molla’ and ‘vzmet’ have the sense coil, even
though no explicit triangle is present. To show
this, let us define a translation circuit as follows:

Definition 1 A translation circuit from v∗1 with
sense s∗ is a cycle that starts and ends at v∗1 with
no repeated vertices (other than v∗1 at end points).
Moreover, the path includes an edge between v∗1
and another vertex v∗2 that also has sense s∗.

All vertices on a translation circuit are mutual
translations with high probability, as in Figure
2(c). The edge from ‘spring’ indicates that ‘vzmet’
means either coil or season, while the edge from
‘ressort’ indicates that ‘molla’ means either coil
or jurisdiction. The edge from ‘vzmet’ to ‘molla’
indicates that they share a sense, which will hap-
pen if all nodes share the sense season or if either
‘vzmet’ has the unlikely combination of coil and
jurisdiction (or ‘molla’ has coil and season).

We also develop a mathematical model of
sense-assignment to words that lets us formally
prove these insights. For more details on the the-
ory please refer to our extended version. This pa-
per reports on our novel algorithm and experimen-
tal results.

These insights suggest a basic version of our al-
gorithm: “given two vertices, v∗1 and v∗2 , that share
a sense (say s∗) compute all translation circuits
from v∗1 in the sense s∗; mark all vertices in the
circuits as translations of the sense s∗”.

To implement this algorithm we need to decide
whether a vertex lies on a translation circuit, which
is trickier than it seems. Notice that knowing
that v is connected independently to v∗1 and v∗2
doesn’t imply that there exists a translation circuit
through v, because both paths may go through a
common node, thus violating of the definition of
translation circuit. For example, in Figure 2(d) the
Catalan word ‘ploma’ has paths to both spring and
ressort, but there is no translation circuit through
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Figure 2: Snippets of translation graphs illustrating various inference scenarios. The nodes in question mark represent the
nodes in focus for each illustration. For all cases we are trying to infer translations of the flexible coil sense of spring.

it. Hence, it will not be considered a transla-
tion. This example also illustrates potential errors
avoided by our algorithm – here, German word
‘Feder’ mean feather and spring coil, but ‘ploma’
means feather and not the coil.

An exhaustive search to find translation circuits
would be too slow, so we approximate the solution
by a random walk scheme. We start the random
walk from v∗1 (or v∗2) and choose random edges
without repeating any vertices in the current path.
At each step we check if the current node has an
edge to v∗2 (or v∗1). If it does, then all the ver-
tices in the current path form a translation circuit
and, thus, are valid translations. We repeat this
random walk many times and keep marking the
nodes. In our experiments for each inference task
we performed a total of 2,000 random walks (NR

in pseudo-code) of max circuit length 7. We chose
these parameters based on a development set of 50
inference tasks.

Our first experiments with this basic algorithm
resulted in a much higher recall than TRANS-
GRAPH, albeit, at a significantly lower precision.
A closer examination of the results revealed two
sources of error – (1) errors in source dictionary
data, and (2) correlated sense shifts in translation
circuits. Below we add two new features to our
algorithm to deal with each of these error sources,
respectively.

3.1 Errors in Source Dictionaries
In practice, source dictionaries contain mistakes
and errors occur in processing the dictionaries to
create the translation graph. Thus, existence of a
single translation circuit is only limited evidence
for a vertex as a translation. We wish to exploit
the insight that more translation circuits constitute
stronger evidence. However, the different circuits
may share some edges, and thus the evidence can-
not be simply the number of translation circuits.

We model the errors in dictionaries by assigning
a probability less than 1.0 to each edge4 (pe in the

4In our experiments we used a flat value of 0.6, chosen by

pseudo-code). We assume that the probability of
an edge being erroneous is independent of the rest
of the graph. Thus, a translation graph with pos-
sible data errors converts into a distribution over
accurate translation graphs.

Under this distribution, we can use the proba-
bility of existence of a translation circuit through a
vertex as the probability that the vertex is a trans-
lation. This value captures our insights, since a
larger number of translation circuits gives a higher
probability value.

We sample different graph topologies from our
given distribution. Some translation circuits will
exist in some of the sampled graphs, but not in
others. This, in turn, means that a given vertex v
will only be on a circuit for a fraction of the sam-
pled graphs. We take the proportion of samples in
which v is on a circuit to be the probability that v
is in the translation set. We refer to this algorithm
as Unpruned SenseUniformPaths (uSP).

3.2 Avoiding Correlated Sense-shifts

The second source of errors are circuits that in-
clude a pair of nodes sharing the same polysemy,
i.e., having the same pair of senses. A circuit
might maintain sense s∗ until it reaches a node that
has both s∗ and a distinct si. The next edge may
lead to a node with si, but not s∗, causing an ex-
traction error. The path later shifts back to sense
s∗ at a second node that also has s∗ and si. An ex-
ample for this is illustrated in Figure 2(e), where
both the German and Swedish words mean feather
and spring coil. Here, Italian ‘penna’ means only
the feather and not the coil.

Two nodes that share the same two senses oc-
cur frequently in practice. For example, many
languages use the same word for ‘heart’ (the or-
gan) and center; similarly, it is common for lan-
guages to use the same word for ‘silver’, the metal
and the color. These correlations stem from com-

parameter tuning on a development set of 50 inference tasks.
In future we can use different values for different dictionaries
based on our confidence in their accuracy.
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Figure 3: The set {B, C} has a shared ambiguity - each
node has both sense 1 (from the lower clique) and sense 2
(from the upper clique). A circuit that contains two nodes
from the same ambiguity set with an intervening node not in
that set is likely to create translation errors.

mon metaphor and the shared evolutionary roots
of some languages.

We are able to avoid circuits with this type of
correlated sense-shift by automatically identifying
ambiguity sets, sets of nodes known to share mul-
tiple senses. For instance, in Figure 2(e) ‘Feder’
and ‘fjäder’ form an ambiguity set (shown within
dashed lines), as they both mean feather and coil.

Definition 2 An ambiguity set A is a set of ver-
tices that all share the same two senses. I.e.,
∃s1, s2, with s1 6= s2 s.t. ∀v ∈ A, sense(v, s1)∧
sense(v, s2), where sense(v, s) denotes that v has
sense s.

To increase the precision of our algorithm we
prune the circuits that contain two nodes in the
same ambiguity set and also have one or more in-
tervening nodes that are not in the ambiguity set.
There is a strong likelihood that the intervening
nodes will represent a translation error.

Ambiguity sets can be detected from the graph
topology as follows. Each clique in the graph rep-
resents a set of vertices that share a common word
sense. When two cliques intersect in two or more
vertices, the intersecting vertices share the word
sense of both cliques. This may either mean that
both cliques represent the same word sense, or that
the intersecting vertices form an ambiguity set. A
large overlap between two cliques makes the for-
mer case more likely; a small overlap makes it
more likely that we have found an ambiguity set.

Figure 3 illustrates one such computation.
All nodes of the clique V1, V2, A, B,C,D share
a word sense, and all nodes of the clique
B,C,E, F, G, H also share a word sense. The set
{B,C} has nodes that have both senses, forming
an ambiguity set. We denote the set of ambiguity
sets by A in the pseudo-code.

Having identified these ambiguity sets, we mod-
ify our random walk scheme by keeping track of

whether we are entering or leaving an ambiguity
set. We prune away all paths that enter the same
ambiguity set twice. We name the resulting algo-
rithm SenseUniformPaths (SP), summarized at a
high level in Algorithm 1.
Comparing Inference Algorithms Our evalua-
tion demonstrated that SP outperforms uSP. Both
these algorithms have significantly higher recall
than TRANSGRAPH algorithm. The detailed re-
sults are presented in Section 4.2. We choose SP
as our inference algorithm for all further research,
in particular to create PANDICTIONARY.

3.3 Compiling PanDictionary

Our goal is to automatically compile PANDIC-
TIONARY, a sense-distinguished lexical transla-
tion resource, where each entry is a distinct word
sense. Associated with each word sense is a list of
translations in multiple languages.

We use Wiktionary senses as the base senses
for PANDICTIONARY. Recall that SP requires two
nodes (v∗1 and v∗2) for inference. We use the Wik-
tionary source word as v∗1 and automatically pick
the second word from the set of Wiktionary trans-
lations of that sense by choosing a word that is
well connected, and, which does not appear in
other senses of v∗1 (i.e., is expected to share only
one sense with v∗1).

We first run SenseUniformPaths to expand the
approximately 50,000 senses in the English Wik-
tionary. We further expand any senses from the
other Wiktionaries that are not yet covered by
PANDICTIONARY, and add these to PANDIC-
TIONARY. This results in the creation of the
world’s largest multilingual, sense-distinguished
translation resource, PANDICTIONARY. It con-
tains a little over 80,000 senses. Its construction
takes about three weeks on a 3.4 GHz processor
with a 2 GB memory.

Algorithm 1 S.P.(G, v∗1, v
∗
2,A)

1: parameters NG: no. of graph samples, NR: no. of ran-
dom walks, pe: prob. of sampling an edge

2: create NG versions of G by sampling each edge indepen-
dently with probability pe

3: for all i = 1..NG do
4: for all vertices v : rp[v][i] = 0
5: perform NR random walks starting at v∗1 (or v∗2 ) and

pruning any walk that enters (or exits) an ambiguity
set in A twice. All walks that connect to v∗2 (or v∗1 )
form a translation circuit.

6: for all vertices v do
7: if(v is on a translation circuit) rp[v][i] = 1

8: return
∑

i
rp[v][i]

NG
as the prob. that v is a translation
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4 Empirical Evaluation

In our experiments we investigate three key ques-
tions: (1) which of the three algorithms (TG, uSP
and SP) is superior for translation inference (Sec-
tion 4.2)? (2) how does the coverage of PANDIC-
TIONARY compare with the largest existing mul-
tilingual dictionary, the English Wiktionary (Sec-
tion 4.3)? (3) what is the benefit of inference over
the mere aggregation of 631 dictionaries (Section
4.4)? Additionally, we evaluate the inference algo-
rithm on two other dimensions – variation with the
degree of polysemy of source word, and variation
with original size of the seed translation set.

4.1 Experimental Methodology

Ideally, we would like to evaluate a random sam-
ple of the more than 1,000 languages represented
in PANDICTIONARY.5 However, a high-quality
evaluation of translation between two languages
requires a person who is fluent in both languages.
Such people are hard to find and may not even
exist for many language pairs (e.g., Basque and
Maori). Thus, our evaluation was guided by our
ability to recruit volunteer evaluators. Since we
are based in an English speaking country we were
able to recruit local volunteers who are fluent in
a range of languages and language families, and
who are also bilingual in English.6

The experiments in Sections 4.2 and 4.3 test
whether translations in a PANDICTIONARY have
accurate word senses. We provided our evalua-
tors with a random sample of translations into their
native language. For each translation we showed
the English source word and gloss of the intended
sense. For example, a Dutch evaluator was shown
the sense ‘free (not imprisoned)’ together with the
Dutch word ‘loslopende’. The instructions were
to mark a word as correct if it could be used to ex-
press the intended sense in a sentence in their na-
tive language. For experiments in Section 4.4 we
tested precision of pairwise translations, by having
informants in several pairs of languages discuss
whether the words in their respective languages
can be used for the same sense.

We use the tags of correct or incorrect to com-
pute the precision: the percentage of correct trans-

5The distribution of words in PANDICTIONARY is highly
non-uniform ranging from 182,988 words in English to 6,154
words in Luxembourgish and 189 words in Tuvalu.

6The languages used was based on the availability of na-
tive speakers. This varied between the different experiments,
which were conducted at different times.

Figure 4: The SenseUniformPaths algorithm (SP) more
than doubles the number of correct translations at precision
0.95, compared to a baseline of translations that can be found
without inference.

lations divided by correct plus incorrect transla-
tions. We then order the translations by probabil-
ity and compute the precision at various probabil-
ity thresholds.

4.2 Comparing Inference Algorithms

Our first evaluation compares our SenseUniform-
Paths (SP) algorithm (before and after pruning)
with TRANSGRAPH on both precision and num-
ber of translations.

To carry out this comparison, we randomly sam-
pled 1,000 senses from English Wiktionary and
ran the three algorithms over them. We evalu-
ated the results on 7 languages – Chinese, Danish,
German, Hindi, Japanese, Russian, and Turkish.
Each informant tagged 60 random translations in-
ferred by each algorithm, which resulted in 360-
400 tags per algorithm7. The precision over these
was taken as a surrogate for the precision across
all the senses.

We compare the number of translations for each
algorithm at comparable precisions. The baseline
is the set of translations (for these 1000 senses)
found in the source dictionaries without inference,
which has a precision 0.95 (as evaluated by our
informants).8

Our results are shown in Figure 4. At this high
precision, SP more than doubles the number of
baseline translations, finding 5 times as many in-
ferred translations (in black) as TG.

Indeed, both uSP and SP massively outperform
TG. SP is consistently better than uSP, since it
performs better for polysemous words, due to its
pruning based on ambiguity sets. We conclude

7Some translations were marked as “Don’t know”.
8Our informants tended to underestimate precision, often

marking correct translations in minor senses of a word as in-
correct.
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Figure 5: Precision vs. coverage curve for PANDIC-
TIONARY. It quadruples the size of the English Wiktionary at
precision 0.90, is more than 8 times larger at precision 0.85
and is almost 24 times the size at precision 0.7.

that SP is the best inference algorithm and employ
it for PANDICTIONARY construction.

4.3 Comparison with English Wiktionary

We now compare the coverage of PANDIC-
TIONARY with the English Wiktionary at varying
levels of precision. The English Wiktionary is the
largest Wiktionary with a total of 403,413 transla-
tions. It is also more reliable than some other Wik-
tionaries in making word sense distinctions. In this
study we use only the subset of PANDICTIONARY

that was computed starting from the English Wik-
tionary senses. Thus, this subsection under-reports
PANDICTIONARY’s coverage.

To evaluate a huge resource such as PANDIC-
TIONARY we recruited native speakers of 14 lan-
guages – Arabic, Bulgarian, Danish, Dutch, Ger-
man, Hebrew, Hindi, Indonesian, Japanese, Ko-
rean, Spanish, Turkish, Urdu, and Vietnamese. We
randomly sampled 200 translations per language,
which resulted in about 2,500 tags. Figure 5
shows the total number of translations in PANDIC-
TIONARY in senses from the English Wiktionary.
At precision 0.90, PANDICTIONARY has 1.8 mil-
lion translations, 4.5 times as many as the English
Wiktionary.

We also compare the coverage of PANDIC-
TIONARY with that of the English Wiktionary in
terms of languages covered. Table 1 reports, for
each resource, the number of languages that have
a minimum number of distinct words in the re-
source. PANDICTIONARY has 1.4 times as many
languages with at least 1,000 translations at pre-
cision 0.90 and more than twice at precision 0.7.
These observations reaffirm our faith in the pan-
lingual nature of the resource.

PANDICTIONARY’s ability to expand the lists
of translations provided by the English Wiktionary
is most pronounced for senses with a small num-
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Figure 6: Variation of precision with the degree of poly-
semy of the source English word. The precision decreases as
polysemy increases, still maintaining reasonably high values.

ber of translations. For example, at precision 0.90,
senses that originally had 3 to 6 translations are in-
creased 5.3 times in size. The increase is 2.2 times
when the original sense size is greater than 20.

For closer analysis we divided the English
source words (v∗1) into different bins based on the
number of senses that English Wiktionary lists for
them. Figure 6 plots the variation of precision with
this degree of polysemy. We find that translation
quality decreases as degree of polysemy increases,
but this decline is gradual, which suggests that SP
algorithm is able to hold its ground well in difficult
inference tasks.

4.4 Comparison with All Source Dictionaries
We have shown that PANDICTIONARY has much
broader coverage than the English Wiktionary, but
how much of this increase is due to the inference
algorithm versus the mere aggregation of hundreds
of translation dictionaries in PANDICTIONARY?

Since most bilingual dictionaries are not sense-
distinguished, we ignore the word senses and
count the number of distinct (word1, word2) trans-
lation pairs.

We evaluated the precision of word-word trans-
lations by a collaborative tagging scheme, with
two native speakers of different languages, who
are both bi-lingual in English. For each sug-
gested translation they discussed the various
senses of words in their respective languages
and tag a translation correct if they found some
sense that is shared by both words. For this
study we tagged 7 language pairs: Hindi-Hebrew,

# languages with distinct words
≥ 1000 ≥ 100 ≥ 1

English Wiktionary 49 107 505
PanDictionary (0.90) 67 146 608
PanDictionary (0.85) 75 175 794
PanDictionary (0.70) 107 607 1066

Table 1: PANDICTIONARY covers substantially more lan-
guages than the English Wiktionary.
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Figure 7: The number of distinct word-word translation
pairs from PANDICTIONARY is several times higher than the
number of translation pairs in the English Wiktionary (EW)
or in all 631 source dictionaries combined (631 D). A major-
ity of PANDICTIONARY translations are inferred by combin-
ing entries from multiple dictionaries.

Japanese-Russian, Chinese-Turkish, Japanese-
German, Chinese-Russian, Bengali-German, and
Hindi-Turkish.

Figure 7 compares the number of word-word
translation pairs in the English Wiktionary (EW),
in all 631 source dictionaries (631 D), and in PAN-
DICTIONARY at precisions 0.90, 0.85, and 0.80.
PANDICTIONARY increases the number of word-
word translations by 73% over the source dictio-
nary translations at precision 0.90 and increases it
by 2.7 times at precision 0.85. PANDICTIONARY

also adds value by identifying the word sense of
the translation, which is not given in most of the
source dictionaries.

5 Related Work

Because we are considering a relatively new prob-
lem (automatically building a panlingual transla-
tion resource) there is little work that is directly re-
lated to our own. The closest research is our previ-
ous work on TRANSGRAPH algorithm (Etzioni et
al., 2007). Our current algorithm outperforms the
previous state of the art by 3.5 times at precision
0.9 (see Figure 4). Moreover, we compile this in a
dictionary format, thus considerably reducing the
response time compared to TRANSGRAPH, which
performed inference at query time.

There has been considerable research on meth-
ods to acquire translation lexicons from either
MRDs (Neff and McCord, 1990; Helmreich et
al., 1993; Copestake et al., 1994) or from par-
allel text (Gale and Church, 1991; Fung, 1995;
Melamed, 1997; Franz et al., 2001), but this has
generally been limited to a small number of lan-
guages. Manually engineered dictionaries such as
EuroWordNet (Vossen, 1998) are also limited to
a relatively small set of languages. There is some
recent work on compiling dictionaries from mono-

lingual corpora, which may scale to several lan-
guage pairs in future (Haghighi et al., 2008).

Little work has been done in combining mul-
tiple dictionaries in a way that maintains word
senses across dictionaries. Gollins and Sanderson
(2001) explored using triangulation between alter-
nate pivot languages in cross-lingual information
retrieval. Their triangulation essentially mixes
together circuits for all word senses, hence, is un-
able to achieve high precision.

Dyvik’s “semantic mirrors” uses translation
paths to tease apart distinct word senses from
inputs that are not sense-distinguished (Dyvik,
2004). However, its expensive processing and
reliance on parallel corpora would not scale to
large numbers of languages. Earlier (Knight and
Luk, 1994) discovered senses of Spanish words by
matching several English translations to a Word-
Net synset. This approach applies only to specific
kinds of bilingual dictionaries, and also requires a
taxonomy of synsets in the target language.

Random walks, graph sampling and Monte
Carlo simulations are popular in literature, though,
to our knowledge, none have applied these to our
specific problems (Henzinger et al., 1999; Andrieu
et al., 2003; Karger, 1999).

6 Conclusions
We have described the automatic construction of
a unique multilingual translation resource, called
PANDICTIONARY, by performing probabilistic in-
ference over the translation graph. Overall, the
construction process consists of large scale in-
formation extraction over the Web (parsing dic-
tionaries), combining it into a single resource (a
translation graph), and then performing automated
reasoning over the graph (SenseUniformPaths) to
yield a much more extensive and useful knowl-
edge base.

We have shown that PANDICTIONARY has
more coverage than any other existing bilingual
or multilingual dictionary. Even at the high preci-
sion of 0.90, PANDICTIONARY more than quadru-
ples the size of the English Wiktionary, the largest
available multilingual resource today.

We plan to make PANDICTIONARY available
to the research community, and also to the Wik-
tionary community in an effort to bolster their ef-
forts. PANDICTIONARY entries can suggest new
translations for volunteers to add to Wiktionary
entries, particularly if combined with an intelli-
gent editing tool (e.g., (Hoffmann et al., 2009)).
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Abstract 

This paper presents a novel metric-based 

framework for the task of automatic taxonomy 

induction. The framework incrementally clus-

ters terms based on ontology metric, a score 

indicating semantic distance; and transforms 

the task into a multi-criteria optimization 

based on minimization of taxonomy structures 

and modeling of term abstractness. It com-

bines the strengths of both lexico-syntactic 

patterns and clustering through incorporating 

heterogeneous features. The flexible design of 

the framework allows a further study on which 

features are the best for the task under various 

conditions. The experiments not only show 

that our system achieves higher F1-measure 

than other state-of-the-art systems, but also re-

veal the interaction between features and vari-

ous types of relations, as well as the interac-

tion between features and term abstractness.  

1 Introduction 

Automatic taxonomy induction is an important 

task in the fields of Natural Language 

Processing, Knowledge Management, and Se-

mantic Web. It has been receiving increasing 

attention because semantic taxonomies, such as 

WordNet (Fellbaum, 1998), play an important 

role in solving knowledge-rich problems, includ-

ing question answering (Harabagiu et al., 2003) 

and textual entailment (Geffet and Dagan, 2005). 

Nevertheless, most existing taxonomies are ma-

nually created at great cost. These taxonomies 

are rarely complete; it is difficult to include new 

terms in them from emerging or rapidly changing 

domains. Moreover, manual taxonomy construc-

tion is time-consuming, which may make it un-

feasible for specialized domains and personalized 

tasks. Automatic taxonomy induction is a solu-

tion to augment existing resources and to pro-

duce new taxonomies for such domains and 

tasks. 

Automatic taxonomy induction can be decom-

posed into two subtasks: term extraction and re-

lation formation. Since term extraction is rela-

tively easy, relation formation becomes the focus 

of most research on automatic taxonomy induc-

tion. In this paper, we also assume that terms in a 

taxonomy are given and concentrate on the sub-

task of relation formation. 

Existing work on automatic taxonomy induc-

tion has been conducted under a variety of 

names, such as ontology learning, semantic class 

learning, semantic relation classification, and 

relation extraction. The approaches fall into two 

main categories: pattern-based and clustering-

based. Pattern-based approaches define lexical-

syntactic patterns for relations, and use these pat-

terns to discover instances of relations. Cluster-

ing-based approaches hierarchically cluster terms 

based on similarities of their meanings usually 

represented by a vector of quantifiable features. 

Pattern-based approaches are known for their 

high accuracy in recognizing instances of rela-

tions if the patterns are carefully chosen, either 

manually (Berland and Charniak, 1999; Kozare-

va et al., 2008) or via automatic bootstrapping 

(Hearst, 1992; Widdows and Dorow, 2002; Girju 

et al., 2003). The approaches, however, suffer 

from sparse coverage of patterns in a given cor-

pus. Recent studies (Etzioni et al., 2005; Kozare-

va et al., 2008) show that if the size of a corpus, 

such as the Web, is nearly unlimited, a pattern 

has a higher chance to explicitly appear in the 

corpus. However, corpus size is often not that 

large; hence the problem still exists. Moreover, 

since patterns usually extract instances in pairs, 

the approaches suffer from the problem of incon-

sistent concept chains after connecting pairs of 

instances to form taxonomy hierarchies.  

Clustering-based approaches have a main ad-

vantage that they are able to discover relations 
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which do not explicitly appear in text. They also 

avoid the problem of inconsistent chains by ad-

dressing the structure of a taxonomy globally 

from the outset. Nevertheless, it is generally be-

lieved that clustering-based approaches cannot 

generate relations as accurate as pattern-based 

approaches. Moreover, their performance is 

largely influenced by the types of features used. 

The common types of features include contextual 

(Lin, 1998), co-occurrence (Yang and Callan, 

2008), and syntactic dependency (Pantel and Lin, 

2002; Pantel and Ravichandran, 2004). So far 

there is no systematic study on which features 

are the best for automatic taxonomy induction 

under various conditions. 

This paper presents a metric-based taxonomy 

induction framework. It combines the strengths 

of both pattern-based and clustering-based ap-

proaches by incorporating lexico-syntactic pat-

terns as one type of features in a clustering 

framework. The framework integrates contex-

tual, co-occurrence, syntactic dependency, lexi-

cal-syntactic patterns, and other features to learn 

an ontology metric, a score indicating semantic 

distance, for each pair of terms in a taxonomy; it 

then incrementally clusters terms based on their 

ontology metric scores. The incremental cluster-

ing is transformed into an optimization problem 

based on two assumptions: minimum evolution 

and abstractness. The flexible design of the 

framework allows a further study of the interac-

tion between features and relations, as well as 

that between features and term abstractness. 

2 Related Work 

There has been a substantial amount of research 

on automatic taxonomy induction. As we men-

tioned earlier, two main approaches are pattern-

based and clustering-based.  

Pattern-based approaches are the main trend 

for automatic taxonomy induction. Though suf-

fering from the problems of sparse coverage and 

inconsistent chains, they are still popular due to 

their simplicity and high accuracy. They have 

been applied to extract various types of lexical 

and semantic relations, including is-a, part-of, 

sibling, synonym, causal, and many others.  

Pattern-based approaches started from and still 

pay a great deal of attention to the most common  

is-a relations. Hearst (1992) pioneered using a 

hand crafted list of hyponym patterns as seeds 

and employing bootstrapping to discover is-a 

relations. Since then, many approaches (Mann, 

2002; Etzioni et al., 2005; Snow et al., 2005) 

have used Hearst-style patterns in their work on 

is-a relations. For instance, Mann (2002) ex-

tracted is-a relations for proper nouns by Hearst-

style patterns. Pantel et al. (2004) extended is-a 

relation acquisition towards terascale, and auto-

matically identified hypernym patterns by mi-

nimal edit distance. 

Another common relation is sibling, which de-

scribes the relation of sharing similar meanings 

and being members of the same class. Terms in 

sibling relations are also known as class mem-

bers or similar terms. Inspired by the conjunction 

and appositive structures, Riloff and Shepherd 

(1997), Roark and Charniak (1998) used co-

occurrence statistics in local context to discover 

sibling relations. The KnowItAll system (Etzioni 

et al., 2005) extended the work in (Hearst, 1992) 

and bootstrapped patterns on the Web to discover 

siblings; it also ranked and selected the patterns 

by statistical measures. Widdows and Dorow 

(2002) combined symmetric patterns and graph 

link analysis to discover sibling relations. Davi-

dov and Rappoport (2006) also used symmetric 

patterns for this task. Recently, Kozareva et al. 

(2008) combined a double-anchored hyponym 

pattern with graph structure to extract siblings. 

The third common relation is part-of. Berland 

and Charniak (1999) used two meronym patterns 

to discover part-of relations, and also used statis-

tical measures to rank and select the matching 

instances. Girju et al. (2003) took a similar ap-

proach to Hearst (1992) for part-of relations. 

Other types of relations that have been studied 

by pattern-based approaches include question-

answer relations (such as birthdates and inven-

tor) (Ravichandran and Hovy, 2002), synonyms 

and antonyms (Lin et al., 2003), general purpose 

analogy (Turney et al., 2003), verb relations (in-

cluding similarity, strength, antonym, enable-

ment and temporal) (Chklovski and Pantel, 

2004), entailment (Szpektor et al., 2004), and 

more specific relations, such as purpose, creation 

(Cimiano and Wenderoth, 2007), LivesIn, and 

EmployedBy (Bunescu and Mooney , 2007).  

 The most commonly used technique in pat-

tern-based approaches is bootstrapping (Hearst, 

1992; Etzioni et al., 2005; Girju et al., 2003; Ra-

vichandran and Hovy, 2002; Pantel and Pennac-

chiotti, 2006). It utilizes a few man-crafted seed 

patterns to extract instances from corpora, then 

extracts new patterns using these instances, and 

continues the cycle to find new instances and 

new patterns. It is effective and scalable to large 

datasets; however, uncontrolled bootstrapping 
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soon generates undesired instances once a noisy 

pattern brought into the cycle. 

 To aid bootstrapping, methods of pattern 

quality control are widely applied. Statistical 

measures, such as point-wise mutual information 

(Etzioni et al., 2005; Pantel and Pennacchiotti, 

2006) and conditional probability (Cimiano and 

Wenderoth, 2007),   have been shown to be ef-

fective to rank and select patterns and instances. 

Pattern quality control is also investigated by 

using WordNet (Girju et al., 2006), graph struc-

tures built among terms (Widdows and Dorow, 

2002; Kozareva et al., 2008), and pattern clusters 

(Davidov and Rappoport, 2008). 

Clustering-based approaches usually represent 

word contexts as vectors and cluster words based 

on similarities of the vectors (Brown et al., 1992; 

Lin, 1998). Besides contextual features, the vec-

tors can also be represented by verb-noun rela-

tions (Pereira et al., 1993), syntactic dependency 

(Pantel and Ravichandran, 2004; Snow et al., 

2005), co-occurrence (Yang and Callan, 2008), 

conjunction and appositive features (Caraballo, 

1999). More work is described in (Buitelaar et 

al., 2005; Cimiano and Volker, 2005). Cluster-

ing-based approaches allow discovery of rela-

tions which do not explicitly appear in text. Pan-

tel and Pennacchiotti (2006), however, pointed 

out that clustering-based approaches generally 

fail to produce coherent cluster for small corpora. 

In addition, clustering-based approaches had on-

ly applied to solve is-a and sibling relations. 

Many clustering-based approaches face the 

challenge of appropriately labeling non-leaf clus-

ters. The labeling amplifies the difficulty in crea-

tion and evaluation of taxonomies. Agglomera-

tive clustering (Brown et al., 1992; Caraballo, 

1999; Rosenfeld and Feldman, 2007; Yang and 

Callan, 2008) iteratively merges the most similar 

clusters into bigger clusters, which need to be 

labeled. Divisive clustering, such as CBC (Clus-

tering By Committee) which constructs cluster 

centroids by averaging the feature vectors of a 

subset of carefully chosen cluster members (Pan-

tel and Lin, 2002; Pantel and Ravichandran, 

2004), also need to label the parents of split clus-

ters. In this paper, we take an incremental clus-

tering approach, in which terms and relations are 

added into a taxonomy one at a time, and their 

parents are from the existing taxonomy. The ad-

vantage of the incremental approach is that it 

eliminates the trouble of inventing cluster labels 

and concentrates on placing terms in the correct 

positions in a taxonomy hierarchy.  

The work by Snow et al. (2006) is the most 

similar to ours because they also took an incre-

mental approach to construct taxonomies. In their 

work, a taxonomy grows based on maximization 

of conditional probability of relations given evi-

dence; while in our work based on optimization 

of taxonomy structures and modeling of term 

abstractness. Moreover, our approach employs 

heterogeneous features from a wide range; while 

their approach only used syntactic dependency. 

We compare system performance between (Snow 

et al., 2006) and our framework in Section 5.  

3 The Features 

The features used in this work are indicators of 
semantic relations between terms. Given two in-
put terms yx cc , , a feature is defined as a func-
tion generating a single numeric score 

∈),( yx cch ℝ or a vector of numeric scores 
∈),( yx cch ℝ

n
. The features include contextual, 

co-occurrence, syntactic dependency, lexical-
syntactic patterns, and miscellaneous.  

The first set of features captures contextual in-

formation of terms. According to Distributional 

Hypothesis (Harris, 1954), words appearing in 

similar contexts tend to be similar. Therefore, 

word meanings can be inferred from and 

represented by contexts. Based on the hypothe-

sis, we develop the following features: (1) Glob-

al Context KL-Divergence: The global context of 

each input term is the search results collected 

through querying search engines against several 

corpora (Details in Section 5.1). It is built into a 

unigram language model without smoothing for 

each term. This feature function measures the 

Kullback-Leibler divergence (KL divergence) 

between the language models associated with the 

two inputs. (2) Local Context KL-Divergence: 

The local context is the collection of all the left 

two and the right two words surrounding an input 

term. Similarly, the local context is built into a 

unigram language model without smoothing for 

each term; the feature function outputs KL diver-

gence between the models. 

The second set of features is co-occurrence. In 

our work, co-occurrence is measured by point-

wise mutual information between two terms:  

)()(

),(
log),(

yx

yx
yx

cCountcCount

ccCount
ccpmi =  

where Count(.) is defined as the number of doc-

uments or sentences containing the term(s); or n 

as in “Results 1-10 of about n for term” appear-

ing on the first page of Google search results for 

a term or the concatenation of a term pair. Based 
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on different definitions of Count(.), we have (3) 

Document PMI, (4) Sentence PMI, and (5) 

Google PMI as the co-occurrence features. 

The third set of features employs syntactic de-

pendency analysis. We have (6) Minipar Syntac-

tic Distance to measure the average length of the 

shortest syntactic paths (in the first syntactic 

parse tree returned by Minipar
1
) between two 

terms in sentences containing them, (7) Modifier 

Overlap, (8) Object Overlap, (9) Subject Over-

lap, and (10) Verb Overlap to measure the num-

ber of overlaps between modifiers, objects, sub-

jects, and verbs, respectively, for the two terms 

in sentences containing them. We use Assert
2
 to 

label the semantic roles. 

The fourth set of features is lexical-syntactic 

patterns. We have (11) Hypernym Patterns based 

on patterns proposed by (Hearst, 1992) and 

(Snow et al., 2005), (12) Sibling Patterns which 

are basically conjunctions, and (13) Part-of Pat-

terns based on patterns proposed by (Girju et al., 

2003) and (Cimiano and Wenderoth, 2007). Ta-

ble 1 lists all patterns. Each feature function re-

turns a vector of scores for two input terms, one 

score per pattern. A score is 1 if two terms match 

a pattern in text, 0 otherwise. 

The last set of features is miscellaneous. We 

have (14) Word Length Difference to measure the 

length difference between two terms, and (15) 

Definition Overlap to measure the number of 

word overlaps between the term definitions ob-

tained by querying Google with “define:term”. 

These heterogeneous features vary from sim-

ple statistics to complicated syntactic dependen-

cy features, basic word length to comprehensive 

Web-based contextual features. The flexible de-

sign of our learning framework allows us to use 

all of them, and even allows us to use different 

sets of them under different conditions, for in-

stance, different types of relations and different 

abstraction levels. We study the interaction be-

                                                 
1 http://www.cs.ualberta.ca/lindek/minipar.htm. 
2 http://cemantix.org/assert. 

tween features and relations and that between 

features and abstractness in Section 5. 

4 The Metric-based Framework 

This section presents the metric-based frame-

work which incrementally clusters terms to form 

taxonomies. By minimizing the changes of tax-

onomy structures and modeling term abstractness 

at each step, it finds the optimal position for each 

term in a taxonomy. We first introduce defini-

tions, terminologies and assumptions about tax-

onomies; then, we formulate automatic taxono-

my induction as a multi-criterion optimization 

and solve it by a greedy algorithm; lastly, we 

show how to estimate ontology metrics.      

4.1 Taxonomies, Ontology Metric, Assump-

tions, and Information Functions 

We define a taxonomy T as a data model that 

represents a set of terms C and a set of relations 

R between these terms. T can be written as 

T(C,R). Note that for the subtask of relation for-

mation, we assume that the term set C is given. A 

full taxonomy is a tree containing all the terms in 

C. A partial taxonomy is a tree containing only a 

subset of terms in C.  

In our framework, automatic taxonomy induc-

tion is the process to construct a full taxonomy T̂

given a set of terms C and an initial partial tax-

onomy ),( 000
RST , where CS ⊆

0 . Note that T
0 

is 

possibly empty. The process starts from the ini-

tial partial taxonomy T
0
 and randomly adds terms 

from C to T
0
 one by one, until a full taxonomy is 

formed, i.e., all terms in C are added. 

Ontology Metric 

We define an ontology metric as a distance 

measure between two terms (cx,cy) in a taxonomy 

T(C,R). Formally, it is a function →× CCd : ℝ+, 

where C is the set of terms in T.  An ontology 

metric d on a taxonomy T with edge weights w 

for any term pair (cx,cy)∈C is the sum of all edge 

weights along the shortest path between the pair: 

∑
∈

=

),(

,),(

,

)(),(

yxPe

yxyxwT

yx

ewccd  

Hypernym Patterns Sibling Patterns 

NPx (,)?and/or other NPy NPx and/or NPy 

such NPy as NPx Part-of Patterns 

NPy (,)? such as NPx NPx of NPy 

NPy (,)? including NPx NPy’s NPx 

NPy (,)? especially NPx NPy has/had/have NPx 

NPy like NPx NPy is made (up)? of NPx 

NPy called NPx NPy comprises NPx 

NPx is a/an NPy NPy consists of NPx 

NPx , a/an NPy  

Table 1. Lexico-Syntactic Patterns. 

 
Figure 1. Illustration of Ontology Metric. 
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where ),( yxP  is the set of edges defining the 

shortest path from term cx to cy . Figure 1 illu-

strates ontology metrics for a 5-node taxonomy. 

Section 4.3 presents the details of learning ontol-

ogy metrics. 

Information Functions 

The amount of information in a taxonomy T is 

measured and represented by an information 

function Info(T). An information function is de-

fined as the sum of the ontology metrics among a 

set of term pairs. The function can be defined 

over a taxonomy, or on a single level of a tax-

onomy. For a taxonomy T(C,R), we define its 

information function as: 

∑
∈<

=

Cycxcyx

yx ccdTInfo

,,

),()(   (1) 

Similarly, we define the information function 

for an abstraction level Li as:  

∑
∈<

=

iLycxcyx

yxii ccdLInfo

,,

),()(   (2) 

where Li is the subset of terms lying at the i
th
 lev-

el of a taxonomy T. For example, in Figure 1, 

node 1 is at level L1, node 2 and node 5 level L2. 

Assumptions 

Given the above definitions about taxonomies, 

we make the following assumptions: 

Minimum Evolution Assumption. Inspired by 

the minimum evolution tree selection criterion 

widely used in phylogeny (Hendy and Penny, 

1985), we assume that a good taxonomy not only 

minimizes the overall semantic distance among 

the terms but also avoid dramatic changes. Con-

struction of a full taxonomy is proceeded by add-

ing terms one at a time, which yields a series of 

partial taxonomies. After adding each term, the 

current taxonomy T
n+1

 from the previous tax-

onomy T
n
 is one that introduces the least changes 

between the information in the two taxonomies: 

),(minarg '

'

1
TTInfoT

n

T

n
∆=

+  

where the information change function is 

|)()(| ),( baba
TInfoTInfoTTInfo −=∆ .  

Abstractness Assumption. In a taxonomy, con-
crete concepts usually lay at the bottom of the 
hierarchy while abstract concepts often occupy 
the intermediate and top levels. Concrete con-
cepts often represent physical entities, such as 
“basketball” and “mercury pollution”. While ab-
stract concepts, such as “science” and “econo-
my”, do not have a physical form thus we must 
imagine their existence. This obvious difference 
suggests that there is a need to treat them diffe-
rently in taxonomy induction. Hence we assume 
that terms at the same abstraction level have 

common characteristics and share the same Info(.) 
function. We also assume that terms at different 
abstraction levels have different characteristics; 
hence they do not necessarily share the same  
Info(.) function. That is to say, ,concept  Tc ∈∀

, leveln abstractio TLi ⊂  (.). uses ii InfocLc ⇒∈  

4.2 Problem Formulation 

The Minimum Evolution Objective 

Based on the minimum evolution assumption, we 

define the goal of taxonomy induction is to find 

the optimal full taxonomy T̂  such that the infor-

mation changes are the least since the initial par-

tial taxonomy T
0
, i.e., to find:  

),(minargˆ '0

'

TTInfoT

T

∆=   (3) 

where '
T  is a full taxonomy, i.e., the set of terms 

in '
T  equals C. 

To find the optimal solution for Equation (3),  

T̂ , we need to find the optimal term set Ĉ and 

the optimal relation set R̂ . Since the optimal term 

set for a full taxonomy is always C, the only un-

known part left is R̂ . Thus, Equation (3) can be 

transformed equivalently into: 
)),(),,((minargˆ 000''

'

RSTRCTInfoR

R

∆=  

Note that in the framework, terms are added 

incrementally into a taxonomy. Each term inser-

tion yields a new partial taxonomy T. By the 

minimum evolution assumption, the optimal next 

partial taxonomy is one gives the least informa-

tion change. Therefore, the updating function for 

the set of relations 1+n
R after a new term z is in-

serted can be calculated as: 

)),(),},{((minargˆ '

'

nnn

R

RSTRzSTInfoR ∪∆=

 
By plugging in the definition of the information 

change function (.,.)Info∆ in Section 4.1 and Equ-

ation (1), the updating function becomes: 

|),(),(|minargˆ

,}{,
'

∑∑
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The above updating function can be transformed 

into a minimization problem: 

yx
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min

 
The minimization follows the minimum evolu-

tion assumption; hence we call it the minimum 

evolution objective. 
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The Abstractness Objective 

The abstractness assumption suggests that term 

abstractness should be modeled explicitly by 

learning separate information functions for terms 

at different abstraction levels. We approximate 

an information function by a linear interpolation 

of some underlying feature functions. Each ab-

straction level Li is characterized by its own in-

formation function Infoi(.). The least square fit of 

Infoi(.) is: .|)(|min 2
i

T
iii HWLInfo −  

By plugging Equation (2) and minimizing over 

every abstraction level, we have: 
2

,,

,

)),(),((min yxji

j

ji

i iLycxc

yx cchwccd ∑∑ ∑ −

∈

where jih , (.,.) is the j
th
 underlying feature func-

tion for term pairs at level Li, jiw , is the weight 

for jih , (.,.). This minimization follows the ab-

stractness assumption; hence we call it the ab-

stractness objective. 

The Multi-Criterion Optimization Algorithm 

We propose that both minimum evolution and 

abstractness objectives need to be satisfied. To 

optimize multiple criteria, the Pareto optimality 

needs to be satisfied (Boyd and Vandenberghe, 

2004). We handle this by introducing � � �0,1� to 

control the contribution of each objective. The 

multi-criterion optimization function is: 
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The above optimization can be solved by a gree-

dy optimization algorithm. At each term insertion 

step, it produces a new partial taxonomy by add-

ing to the existing partial taxonomy a new term z, 

and a new set of relations R(z,.). z is attached to 

every nodes in the existing partial taxonomy; and 

the algorithm selects the optimal position indi-

cated by R(z,.), which minimizes the multi-

criterion objective function. The algorithm is: 

);,(

)};)1((min{arg

;
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The above algorithm presents a general incre-

mental clustering procedure to construct taxono-

mies. By minimizing the taxonomy structure 

changes and modeling term abstractness at each 

step, it finds the optimal position of each term in 

the taxonomy hierarchy. 

4.3 Estimating Ontology Metric 

Learning a good ontology metric is important for 

the multi-criterion optimization algorithm. In this 

work, the estimation and prediction of ontology 

metric are achieved by ridge regression (Hastie et 

al., 2001). In the training data, an ontology me-

tric d(cx,cy) for a term pair (cx,cy) is generated by 

assuming every edge weight as 1 and summing 

up all the edge weights along the shortest path 

from cx to cy. We assume that there are some un-

derlying feature functions which measure the 

semantic distance from term cx to cy. A weighted 

combination of these functions approximates the 

ontology metric for (cx,cy): 

∑= ),(),( yxjjj cchwyxd  

where jw  is the j
th
 weight for ),( yxj cch , the j

th
 

feature function. The feature functions are gener-

ated as mentioned in Section 3.  

5 Experiments  

5.1 Data 

The gold standards used in the evaluation are 

hypernym taxonomies extracted from WordNet 

and ODP (Open Directory Project), and me-

ronym taxonomies extracted from WordNet. In 

WordNet taxonomy extraction, we only use the 

word senses within a particular taxonomy to en-

sure no ambiguity. In ODP taxonomy extraction, 

we parse the topic lines, such as “Topic 

r:id=`Top/Arts/Movies’”, in the XML databases 

to obtain relations, such as is_a(movies, arts). In 

total, there are 100 hypernym taxonomies, 50 

each extracted from WordNet
3
 and ODP

4
, and 50 

meronym taxonomies from WordNet
5
. Table 2  

                                                 
3 WordNet hypernym taxonomies are from 12 topics: ga-

thering, professional, people, building, place, milk, meal, 

water, beverage, alcohol, dish, and herb. 
4 ODP hypernym taxonomies are from 16 topics: computers, 

robotics, intranet, mobile computing, database, operating 

system, linux, tex, software, computer science, data commu-

nication, algorithms, data formats, security multimedia, and 

artificial intelligence. 
5 WordNet meronym taxonomies are from 15 topics: bed, 

car, building, lamp, earth, television, body, drama, theatre, 

water, airplane, piano, book, computer, and watch. 

Statistics WN/is-a ODP/is-a WN/part-of 

#taxonomies 50 50 50 

#terms 1,964 2,210 1,812 

Avg #terms 39 44 37 

Avg depth 6 6 5 

Table 2. Data Statistics. 
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summarizes the data statistics. 

We also use two Web-based auxiliary datasets 

to generate features mentioned in Section 3: 

• Wikipedia corpus. The entire Wikipedia corpus 

is downloaded and indexed by Indri
6
. The top 

100 documents returned by Indri are the global 

context of a term when querying with the term.  

• Google corpus. A collection of the top 1000 

documents by querying Google using each 

term, and each term pair. Each top 1000 docu-

ments are the global context of a query term. 

Both corpora are split into sentences and are used 

to generate contextual, co-occurrence, syntactic 

dependency and lexico-syntactic pattern features.  

5.2 Methodology 

We evaluate the quality of automatic generated 

taxonomies by comparing them with the gold 

standards in terms of precision, recall and F1-

measure. F1-measure is calculated as 2*P*R/ 

(P+R), where P is precision, the percentage of 

correctly returned relations out of the total re-

turned relations, R is recall, the percentage of 

correctly returned relations out of the total rela-

tions in the gold standard. 

Leave-one-out cross validation is used to aver-

age the system performance across different 

training and test datasets. For each 50 datasets 

from WordNet hypernyms, WordNet meronyms 

or ODP hypernyms, we randomly pick 49 of 

them to generate training data, and test on the 

remaining dataset. We repeat the process for 50 

times, with different training and test sets at each 

                                                 
6 http://www.lemurproject.org/indri/. 

time, and report the averaged precision, recall 

and F1-measure across all 50 runs. 

We also group the fifteen features in Section 3 

into six sets: contextual, co-concurrence, pat-

terns, syntactic dependency, word length differ-

ence and definition. Each set is turned on one by 

one for experiments in Section 5.4 and 5.5. 

5.3 Performance of Taxonomy Induction 

In this section, we compare the following auto-

matic taxonomy induction systems: HE, the sys-

tem by Hearst (1992) with 6 hypernym patterns; 

GI, the system by Girju et al. (2003) with 3 me-

ronym patterns; PR, the probabilistic framework 

by Snow et al. (2006); and ME, the metric-based 

framework proposed in this paper. To have a fair 

comparison, for PR, we estimate the conditional 

probability of a relation given the evidence 

P(Rij|Eij), as in (Snow et al. 2006), by using the 

same set of features as in ME. 

Table 3 shows precision, recall, and F1-

measure of each system for WordNet hypernyms 

(is-a), WordNet meronyms (part-of) and ODP 

hypernyms (is-a). Bold font indicates the best 

performance in a column. Note that HE is not 

applicable to part-of, so is GI to is-a. 

Table 3 shows that systems using heterogene-

ous features (PR and ME) achieve higher F1-

measure than systems only using patterns (HE 

and GI) with a significant absolute gain of >30%. 

Generally speaking, pattern-based systems show 

higher precision and lower recall, while systems 

using heterogeneous features show lower preci-

sion and higher recall. However, when consider-

ing both precision and recall, using heterogene-

ous features is more effective than just using pat-

terns. The proposed system ME consistently pro-

duces the best F1-measure for all three tasks.  
The performance of the systems for ODP/is-a 

is worse than that for WordNet/is-a. This may be 
because there is more noise in ODP than in 

WordNet/is-a 

System Precision Recall F1-measure 

HE 0.85 0.32 0.46 

GI n/a n/a n/a 

PR 0.75 0.73 0.74 

ME 0.82 0.79 0.82 

ODP/is-a 

System Precision Recall F1-measure 

HE 0.31 0.29 0.30 

GI n/a n/a n/a 

PR 0.60 0.72 0.65 

ME 0.64 0.70 0.67 

WordNet/part-of 

System Precision Recall F1-measure 

HE n/a n/a n/a 

GI 0.75 0.25 0.38 

PR 0.68 0.52 0.59 

ME 0.69 0.55 0.61 

Table 3. System Performance. 

Feature  is-a sibling part-

of 

Benefited 

Relations  

Contextual 0.21 0.42 0.12 sibling 

Co-occur. 0.48 0.41 0.28 All 

Patterns 0.46 0.41 0.30 All 

Syntactic 0.22 0.36 0.12 sibling 

Word Leng. 0.16 0.16 0.15 All but 

limited 

Definition 0.12 0.18 0.10 Sibling but 

limited 

Best Features Co-

occur., 

patterns  

Contextual, 

co-occur., 

patterns 

Co-

occur., 

patterns 

 

Table 4. F1-measure for Features vs. Relations: WordNet. 
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WordNet. For example, under artificial intelli-
gence, ODP has neural networks, natural lan-
guage and academic departments. Clearly, aca-
demic departments is not a hyponym of artificial 
intelligence. The noise in ODP interferes with 
the learning process, thus hurts the performance. 

5.4 Features vs. Relations 

This section studies the impact of different sets 
of features on different types of relations. Table 4 
shows F1-measure of using each set of features 
alone on taxonomy induction for WordNet is-a, 
sibling, and part-of relations. Bold font means a 
feature set gives a major contribution to the task 
of automatic taxonomy induction for a particular 
type of relation. 

Table 4 shows that different relations favor 
different sets of features.  Both co-occurrence 
and lexico-syntactic patterns work well for all 
three types of relations. It is interesting to see 
that simple co-occurrence statistics work as good 
as lexico-syntactic patterns. Contextual features 
work well for sibling relations, but not for is-a 
and part-of. Syntactic features also work well for 
sibling, but not for is-a and part-of. The similar 
behavior of contextual and syntactic features 
may be because that four out of five syntactic 
features (Modifier, Subject, Object, and Verb 
overlaps) are just surrounding context for a term. 

Comparing the is-a and part-of columns in 
Table 4 and the ME rows in Table 3, we notice a 
significant difference in F1-measure. It indicates 
that combination of heterogeneous features gives 
more rise to the system performance than a sin-
gle set of features does. 

5.5 Features vs. Abstractness 

This section studies the impact of different sets 
of features on terms at different abstraction le-

vels. In the experiments, F1-measure is evaluated 
for terms at each level of a taxonomy, not the 
whole taxonomy. Table 5 and 6 demonstrate F1-
measure of using each set of features alone on 
each abstraction levels. Columns 2-6 are indices 
of the levels in a taxonomy. The larger the indic-
es are, the lower the levels. Higher levels contain 
abstract terms, while lower levels contain con-
crete terms. L1 is ignored here since it only con-
tains a single term, the root. Bold font indicates 
good performance in a column. 

Both tables show that abstract terms and con-
crete terms favor different sets of features. In 
particular, contextual, co-occurrence, pattern, 
and syntactic features work well for terms at L4-
L6, i.e., concrete terms; co-occurrence works well 
for terms at L2-L3, i.e., abstract terms. This differ-
ence indicates that terms at different abstraction 
levels have different characteristics; it confirms 
our abstractness assumption in Section 4.1.  

We also observe that for abstract terms in 
WordNet, patterns work better than contextual 
features; while for abstract terms in ODP, the 
conclusion is the opposite. This may be because 
that WordNet has a richer vocabulary and a more 
rigid definition of hypernyms, and hence is-a 
relations in WordNet are recognized more effec-
tively by using lexico-syntactic patterns; while 
ODP contains more noise, and hence it favors 
features requiring less rigidity, such as the con-
textual features generated from the Web. 

6 Conclusions  

This paper presents a novel metric-based tax-
onomy induction framework combining the 
strengths of lexico-syntactic patterns and cluster-
ing. The framework incrementally clusters terms 
and transforms automatic taxonomy induction 
into a multi-criteria optimization based on mini-
mization of taxonomy structures and modeling of 
term abstractness. The experiments show that our 
framework is effective; it achieves higher F1-
measure than three state-of-the-art systems. The 
paper also studies which features are the best for 
different types of relations and for terms at dif-
ferent abstraction levels.  

Most prior work uses a single rule or feature 
function for automatic taxonomy induction at all 
levels of abstraction. Our work is a more general 
framework which allows a wider range of fea-
tures and different metric functions at different 
abstraction levels.  This more general framework 
has the potential to learn more complex taxono-
mies than previous approaches. 
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Feature  L2 L3 L4 L5 L6 

Contextual 0.29 0.31 0.35 0.36 0.36 

Co-occurrence 0.47 0.56 0.45 0.41 0.41 

Patterns 0.47 0.44 0.42 0.39 0.40 

Syntactic 0.31 0.28 0.36 0.38 0.39 

Word Length 0.16 0.16 0.16 0.16 0.16 

Definition 0.12 0.12 0.12 0.12 0.12 

Table 5. F1-measure for Features vs. Abstractness: 

WordNet/is-a. 

Feature  L2 L3 L4 L5 L6 

Contextual 0.30 0.30 0.33 0.29 0.29 

Co-occurrence 0.34 0.36 0.34 0.31 0.31 

Patterns 0.23 0.25 0.30 0.28 0.28 

Syntactic 0.18 0.18 0.23 0.27 0.27 

Word Length 0.15 0.15 0.15 0.14 0.14 

Definition 0.13 0.13 0.13 0.12 0.12 

Table 6. F1-measure for Features vs. Abstractness: 

ODP/is-a. 
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Abstract

It is usually assumed that the kind of noise
existing in annotated data is random clas-
sification noise. Yet there is evidence
that differences between annotators are not
always random attention slips but could
result from different biases towards the
classification categories, at least for the
harder-to-decide cases. Under an annota-
tion generation model that takes this into
account, there is a hazard that some of the
training instances are actually hard cases
with unreliable annotations. We show
that these are relatively unproblematic for
an algorithm operating under the 0-1 loss
model, whereas for the commonly used
voted perceptron algorithm, hard training
cases could result in incorrect prediction
on the uncontroversial cases at test time.

1 Introduction

It is assumed, often tacitly, that the kind of
noise existing in human-annotated datasets used in
computational linguistics is random classification
noise (Kearns, 1993; Angluin and Laird, 1988),
resulting from annotator attention slips randomly
distributed across instances. For example, Os-
borne (2002) evaluates noise tolerance of shallow
parsers, with random classification noise taken to
be “crudely approximating annotation errors.” It
has been shown, both theoretically and empiri-
cally, that this type of noise is tolerated well by
the commonly used machine learning algorithms
(Cohen, 1997; Blum et al., 1996; Osborne, 2002;
Reidsma and Carletta, 2008).

Yet this might be overly optimistic. Reidsma
and op den Akker (2008) show that apparent dif-
ferences between annotators are not random slips
of attention but rather result from different biases
annotators might have towards the classification

categories. When training data comes from one
annotator and test data from another, the first an-
notator’s biases are sometimes systematic enough
for a machine learner to pick them up, with detri-
mental results for the algorithm’s performance on
the test data. A small subset of doubly anno-
tated data (for inter-annotator agreement check)
and large chunks of singly annotated data (for
training algorithms) is not uncommon in compu-
tational linguistics datasets; such a setup is prone
to problems if annotators are differently biased.1

Annotator bias is consistent with a number of
noise models. For example, it could be that an
annotator’s bias is exercised on each and every in-
stance, making his preferred category likelier for
any instance than in another person’s annotations.
Another possibility, recently explored by Beigman
Klebanov and Beigman (2009), is that some items
are really quite clear-cut for an annotator with any
bias, belonging squarely within one particular ca-
tegory. However, some instances – termed hard
cases therein – are harder to decide upon, and this
is where various preferences and biases come into
play. In a metaphor annotation study reported by
Beigman Klebanov et al. (2008), certain markups
received overwhelming annotator support when
people were asked to validate annotations after a
certain time delay. Other instances saw opinions
split; moreover, Beigman Klebanov et al. (2008)
observed cases where people retracted their own
earlier annotations.

To start accounting for such annotator behavior,
Beigman Klebanov and Beigman (2009) proposed
a model where instances are either easy, and then
all annotators agree on them, or hard, and then
each annotator flips his or her own coin to de-

1The different biases might not amount to much in the
small doubly annotated subset, resulting in acceptable inter-
annotator agreement; yet when enacted throughout a large
number of instances they can be detrimental from a machine
learner’s perspective.
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cide on a label (each annotator can have a different
“coin” reflecting his or her biases). For annota-
tions generated under such a model, there is a dan-
ger of hard instances posing as easy – an observed
agreement between annotators being a result of all
coins coming up heads by chance. They therefore
define the expected proportion of hard instances in
agreed items as annotation noise. They provide
an example from the literature where an annota-
tion noise rate of about 15% is likely.

The question addressed in this article is: How
problematic is learning from training data with an-
notation noise? Specifically, we are interested in
estimating the degree to which performance on
easy instances at test time can be hurt by the pre-
sence of hard instances in training data.

Definition 1 The hard case bias, τ , is the portion
of easy instances in the test data that are misclas-
sified as a result of hard instances in the training
data.

This article proceeds as follows. First, we show
that a machine learner operating under a 0-1 loss
minimization principle could sustain a hard case
bias of θ( 1√

N
) in the worst case. Thus, while an-

notation noise is hazardous for small datasets, it is
better tolerated in larger ones. However, 0-1 loss
minimization is computationally intractable for
large datasets (Feldman et al., 2006; Guruswami
and Raghavendra, 2006); substitute loss functions
are often used in practice. While their tolerance to
random classification noise is as good as for 0-1
loss, their tolerance to annotation noise is worse.
For example, the perceptron family of algorithms
handle random classification noise well (Cohen,
1997). We show in section 3.4 that the widely
used Freund and Schapire (1999) voted percep-
tron algorithm could face a constant hard case bias
when confronted with annotation noise in training
data, irrespective of the size of the dataset. Finally,
we discuss the implications of our findings for the
practice of annotation studies and for data utiliza-
tion in machine learning.

2 0-1 Loss

Let a sample be a sequence x1, . . . , xN drawn uni-
formly from the d-dimensional discrete cube Id =
{−1, 1}d with corresponding labels y1, . . . , yN ∈
{−1, 1}. Suppose further that the learning al-
gorithm operates by finding a hyperplane (w,ψ),
w ∈ Rd, ψ ∈ R, that minimizes the empirical er-
rorL(w,ψ) =

∑
j=1...N [yj−sgn(

∑
i=1...d x

i
jw

i−

ψ)]2. Let there be H hard cases, such that the an-
notation noise is γ = H

N .2

Theorem 1 In the worst case configuration of in-
stances a hard case bias of τ = θ( 1√

N
) cannot be

ruled out with constant confidence.

Idea of the proof : We prove by explicit con-
struction of an adversarial case. Suppose there is
a plane that perfectly separates the easy instances.
The θ(N) hard instances will be concentrated in
a band parallel to the separating plane, that is
near enough to the plane so as to trap only about
θ(
√
N) easy instances between the plane and the

band (see figure 1 for an illustration). For a ran-
dom labeling of the hard instances, the central
limit theorem shows there is positive probability
that there would be an imbalance between +1 and
−1 labels in favor of −1s on the scale of

√
N ,

which, with appropriate constants, would lead to
the movement of the empirically minimal separa-
tion plane to the right of the hard case band, mis-
classifying the trapped easy cases.

Proof : Let v = v(x) =
∑

i=1...d x
i denote the

sum of the coordinates of an instance in Id and
take λe =

√
d · F−1(

√
γ · 2−

d
2 + 1

2) and λh =√
d · F−1(γ +

√
γ · 2−

d
2 + 1

2), where F (t) is the
cumulative distribution function of the normal dis-
tribution. Suppose further that instances xj such
that λe < vj < λh are all and only hard instances;
their labels are coinflips. All other instances are
easy, and labeled y = y(x) = sgn(v). In this case,
the hyperplane 1√

d
(1 . . . 1) is the true separation

plane for the easy instances, with ψ = 0. Figure 1
shows this configuration.

According to the central limit theorem, for d,N
large, the distribution of v is well approximated by
N (0,

√
d). If N = c1 · 2d, for some 0 < c1 < 4,

the second application of the central limit the-
orem ensures that, with high probability, about
γN = c1γ2d items would fall between λe and λh
(all hard), and

√
γ · 2−

d
2N = c1

√
γ2d would fall

between 0 and λe (all easy, all labeled +1).
Let Z be the sum of labels of the hard cases,

Z =
∑

i=1...H yi. Applying the central limit the-
orem a third time, for large N , Z will, with a
high probability, be distributed approximately as

2In Beigman Klebanov and Beigman (2009), annotation
noise is defined as percentage of hard instances in the agreed
annotations; this implies noise measurement on multiply an-
notated material. When there is just one annotator, no dis-
tinction between easy vs hard instances can be made; in this
sense, all hard instances are posing as easy.
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0 λe λh

Figure 1: The adversarial case for 0-1 loss.
Squares correspond to easy instances, circles – to
hard ones. Filled squares and circles are labeled
−1, empty ones are labeled +1.

N (0,
√
γN). This implies that a value as low as

−2σ cannot be ruled out with high (say 95%) con-
fidence. Thus, an imbalance of up to 2

√
γN , or of

2
√
c1γ2d, in favor of −1s is possible.

There are between 0 and λh about 2
√
c1

√
γ2d

more−1 hard instances than +1 hard instances, as
opposed to c1

√
γ2d easy instances that are all +1.

As long as c1 < 2
√
c1, i.e. c1 < 4, the empirically

minimal threshold would move to λh, resulting in

a hard case bias of τ =
√
γ
√
c12d

(1−γ)·c12d = θ( 1√
N

).
To see that this is the worst case scenario, we

note that 0-1 loss sustained on θ(N) hard cases
is the order of magnitude of the possible imba-
lance between −1 and +1 random labels, which
is θ(

√
N). For hard case loss to outweigh the loss

on the misclassified easy instances, there cannot
be more than θ(

√
N) of the latter 2

Note that the proof requires that N = θ(2d)
namely, that asymptotically the sample includes
a fixed portion of the instances. If the sample is
asymptotically smaller, then λe will have to be ad-
justed such that λe =

√
d · F−1(θ( 1√

N
) + 1

2).
According to theorem 1, for a 10K dataset with

15% hard case rate, a hard case bias of about 1%
cannot be ruled out with 95% confidence.

Theorem 1 suggests that annotation noise as
defined here is qualitatively different from more
malicious types of noise analyzed in the agnostic
learning framework (Kearns and Li, 1988; Haus-
sler, 1992; Kearns et al., 1994), where an adver-

sary can not only choose the placement of the hard
cases, but also their labels. In worst case, the 0-1
loss model would sustain a constant rate of error
due to malicious noise, whereas annotation noise
is tolerated quite well in large datasets.

3 Voted Perceptron

Freund and Schapire (1999) describe the voted
perceptron. This algorithm and its many vari-
ants are widely used in the computational lin-
guistics community (Collins, 2002a; Collins and
Duffy, 2002; Collins, 2002b; Collins and Roark,
2004; Henderson and Titov, 2005; Viola and
Narasimhan, 2005; Cohen et al., 2004; Carreras
et al., 2005; Shen and Joshi, 2005; Ciaramita and
Johnson, 2003). In this section, we show that the
voted perceptron can be vulnerable to annotation
noise. The algorithm is shown below.

Algorithm 1 Voted Perceptron
Training
Input: a labeled training set (x1, y1), . . . , (xN , yN )
Output: a list of perceptrons w1, . . . , wN

Initialize: t← 0; w1 ← 0; ψ1 ← 0
for t = 1 . . . N do
ŷt ← sign(〈wt, xt〉+ ψt)

wt+1 ← wt + yt−ŷt
2
· xt

ψt+1 ← ψt + yt−ŷt
2
· 〈wt, xt〉

end for

Forecasting
Input: a list of perceptrons w1, . . . , wN

an unlabeled instance x
Output: A forecasted label y

ŷ ←
PN

t=1 sign(〈wt, xt〉+ ψt)

y ← sign(ŷ)

The voted perceptron algorithm is a refinement
of the perceptron algorithm (Rosenblatt, 1962;
Minsky and Papert, 1969). Perceptron is a dy-
namic algorithm; starting with an initial hyper-
plane w0, it passes repeatedly through the labeled
sample. Whenever an instance is misclassified
by wt, the hyperplane is modified to adapt to the
instance. The algorithm terminates once it has
passed through the sample without making any
classification mistakes. The algorithm terminates
iff the sample can be separated by a hyperplane,
and in this case the algorithm finds a separating
hyperplane. Novikoff (1962) gives a bound on the
number of iterations the algorithm goes through
before termination, when the sample is separable
by a margin.
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The perceptron algorithm is vulnerable to noise,
as even a little noise could make the sample in-
separable. In this case the algorithm would cycle
indefinitely never meeting termination conditions,
wt would obtain values within a certain dynamic
range but would not converge. In such setting,
imposing a stopping time would be equivalent to
drawing a random vector from the dynamic range.

Freund and Schapire (1999) extend the percep-
tron to inseparable samples with their voted per-
ceptron algorithm and give theoretical generaliza-
tion bounds for its performance. The basic idea
underlying the algorithm is that if the dynamic
range of the perceptron is not too large then wt
would classify most instances correctly most of
the time (for most values of t). Thus, for a sample
x1, . . . , xN the new algorithm would keep track
of w0, . . . , wN , and for an unlabeled instance x it
would forecast the classification most prominent
amongst these hyperplanes.

The bounds given by Freund and Schapire
(1999) depend on the hinge loss of the dataset. In
section 3.2 we construct a difficult setting for this
algorithm. To prove that voted perceptron would
suffer from a constant hard case bias in this set-
ting using the exact dynamics of the perceptron is
beyond the scope of this article. Instead, in sec-
tion 3.3 we provide a lower bound on the hinge
loss for a simplified model of the perceptron algo-
rithm dynamics, which we argue would be a good
approximation to the true dynamics in the setting
we constructed. For this simplified model, we
show that the hinge loss is large, and the bounds
in Freund and Schapire (1999) cannot rule out a
constant level of error regardless of the size of the
dataset. In section 3.4 we study the dynamics of
the model and prove that τ = θ(1) for the adver-
sarial setting.

3.1 Hinge Loss

Definition 2 The hinge loss of a labeled instance
(x, y) with respect to hyperplane (w,ψ) and mar-
gin δ > 0 is given by ζ = ζ(ψ, δ) = max(0, δ −
y · (〈w, x〉 − ψ)).

ζ measures the distance of an instance from
being classified correctly with a δ margin. Figure 2
shows examples of hinge loss for various data
points.

Theorem 2 (Freund and Schapire (1999))
After one pass on the sample, the probability
that the voted perceptron algorithm does not

δ
ζ

ζ
ζ

ζ

ζ ζ

Figure 2: Hinge loss ζ for various data points in-
curred by the separator with margin δ.

predict correctly the label of a test instance
xN+1 is bounded by 2

N+1EN+1

[
d+D
δ

]2
where

D = D(w,ψ, δ) =
√∑N

i=1 ζ
2
i .

This result is used to explain the convergence of
weighted or voted perceptron algorithms (Collins,
2002a). It is useful as long as the expected value of
D is not too large. We show that in an adversarial
setting of the annotation noise D is large, hence
these bounds are trivial.

3.2 Adversarial Annotation Noise

Let a sample be a sequence x1, . . . , xN drawn uni-
formly from Id with y1, . . . , yN ∈ {−1, 1}. Easy
cases are labeled y = y(x) = sgn(v) as before,
with v = v(x) =

∑
i=1...d x

i. The true separation
plane for the easy instances is w∗ = 1√

d
(1 . . . 1),

ψ∗ = 0. Suppose hard cases are those where
v(x) > c1

√
d, where c1 is chosen so that the

hard instances account for γN of all instances.3

Figure 3 shows this setting.

3.3 Lower Bound on Hinge Loss

In the simplified case, we assume that the algo-
rithm starts training with the hyperplane w0 =
w∗ = 1√

d
(1 . . . 1), and keeps it throughout the

training, only updating ψ. In reality, each hard in-
stance can be decomposed into a component that is
parallel to w∗, and a component that is orthogonal
to it. The expected contribution of the orthogonal

3See the proof of 0-1 case for a similar construction using
the central limit theorem.
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0 c1√d

Figure 3: An adversarial case of annotation noise
for the voted perceptron algorithm.

component to the algorithm’s update will be posi-
tive due to the systematic positioning of the hard
cases, while the contributions of the parallel com-
ponents are expected to cancel out due to the sym-
metry of the hard cases around the main diagonal
that is orthogonal to w∗. Thus, while wt will not
necessarily parallel w∗, it will be close to parallel
for most t > 0. The simplified case is thus a good
approximation of the real case, and the bound we
obtain is expected to hold for the real case as well.

For any initial value ψ0 < 0 all misclassified in-
stances are labeled −1 and classified as +1, hence
the update will increase ψ0, and reach 0 soon
enough. We can therefore assume that ψt ≥ 0
for any t > t0 where t0 � N .

Lemma 3 For any t > t0, there exist α =
α(γ, T ) > 0 such that E(ζ2) ≥ α · δ.

Proof : For ψ ≥ 0 there are two main sources
of hinge loss: easy +1 instances that are clas-
sified as −1, and hard -1 instances classified as
+1. These correspond to the two components of
the following sum (the inequality is due to disre-
garding the loss incurred by a correct classification
with too wide a margin):

E(ζ2) ≥
[ψ]∑
l=0

1
2d

(
d

l

)
(
ψ√
d
− l√

d
+ δ)2

+
1
2

d∑
l=c1

√
d

1
2d

(
d

l

)
(
l√
d
− ψ√

d
+ δ)2

Let 0 < T < c1 be a parameter. For ψ > T
√
d,

misclassified easy instances dominate the loss:

E(ζ2) ≥
[ψ]∑
l=0

1
2d

(
d

l

)
(
ψ√
d
− l√

d
+ δ)2

≥
[T
√
d]∑

l=0

1
2d

(
d

l

)
(
T
√
d√
d
− l√

d
+ δ)2

≥
T
√
d∑

l=0

1
2d

(
d

l

)
(T − l√

d
+ δ)2

≥ 1√
2π

∫ T

0
(T + δ − t)2e−t

2/2dt = HT (δ)

The last inequality follows from a normal ap-
proximation of the binomial distribution (see, for
example, Feller (1968)).

For 0 ≤ ψ ≤ T
√
d, misclassified hard cases

dominate:

E(ζ2) ≥ 1
2

d∑
l=c1

√
d

1
2d

(
d

l

)
(
l√
d
− ψ√

d
+ δ)2

≥ 1
2

d∑
l=c1

√
d

1
2d

(
d

l

)
(
l√
d
− T

√
d√
d

+ δ)2

≥ 1
2
· 1√

2π

∫ ∞

Φ−1(γ)
(t− T + δ)2e−t

2/2dt

= Hγ(δ)

where Φ−1(γ) is the inverse of the normal distri-
bution density.

Thus E(ζ2) ≥ min{HT (δ),Hγ(δ)}, and
there exists α = α(γ, T ) > 0 such that
min{HT (δ),Hγ(δ)} ≥ α · δ 2

Corollary 4 The bound in theorem 2 does not
converge to zero for large N .

We recall that Freund and Schapire (1999) bound
is proportional to D2 =

∑N
i=1 ζ

2
i . It follows from

lemma 3 that D2 = θ(N), hence the bound is in-
effective.

3.4 Lower Bound on τ for Voted Perceptron
Under Simplified Dynamics

Corollary 4 does not give an estimate on the hard
case bias. Indeed, it could be that wt = w∗ for
almost every t. There would still be significant
hinge in this case, but the hard case bias for the
voted forecast would be zero. To assess the hard
case bias we need a model of perceptron dyna-
mics that would account for the history of hyper-
planesw0, . . . , wN the perceptron goes through on
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a sample x1, . . . , xN . The key simplification in
our model is assuming that wt parallels w∗ for all
t, hence the next hyperplane depends only on the
offset ψt. This is a one dimensional Markov ran-
dom walk governed by the distribution

P(ψt+1−ψt = r|ψt) = P(x|yt − ŷt
2

·〈w∗, x〉 = r)

In general −d ≤ ψt ≤ d but as mentioned before
lemma 3, we may assume ψt > 0.

Lemma 5 There exists c > 0 such that with a high
probability ψt > c ·

√
d for most 0 ≤ t ≤ N .

Proof : Let c0 = F−1(γ2 + 1
2); c1 = F−1(1−γ).

We designate the intervals I0 = [0, c0 ·
√
d]; I1 =

[c0 ·
√
d, c1 ·

√
d] and I2 = [c1 ·

√
d, d] and define

Ai = {x : v(x) ∈ Ii} for i = 0, 1, 2. Note that the
constants c0 and c1 are chosen so that P(A0) = γ

2
and P(A2) = γ. It follows from the construction
in section 3.2 that A0 and A1 are easy instances
and A2 are hard. Given a sample x1, . . . , xN , a
misclassification of xt ∈ A0 by ψt could only hap-
pen when an easy +1 instance is classified as −1.
Thus the algorithm would shift ψt to the left by
no more than |vt − ψt| since vt = 〈w∗, xt〉. This
shows that ψt ∈ I0 implies ψt+1 ∈ I0. In the
same manner, it is easy to verify that if ψt ∈ Ij
and xt ∈ Ak then ψt+1 ∈ Ik, unless j = 0 and
k = 1, in which case ψt+1 ∈ I0 because xt ∈ A1

would be classified correctly by ψt ∈ I0.
We construct a Markov chain with three states

a0 = 0, a1 = c0 ·
√
d and a2 = c1 ·

√
d governed

by the following transition distribution:
1− γ

2 0 γ
2

γ
2 1− γ γ

2

γ
2

1
2 −

3γ
2

1
2 + γ


Let Xt be the state at time t. The principal eigen-
vector of the transition matrix (1

3 ,
1
3 ,

1
3) gives the

stationary probability distribution of Xt. Thus
Xt ∈ {a1, a2} with probability 2

3 . Since the tran-
sition distribution of Xt mirrors that of ψt, and
since aj are at the leftmost borders of Ij , respec-
tively, it follows that Xt ≤ ψt for all t, thus
Xt ∈ {a1, a2} implies ψt ∈ I1∪I2. It follows that
ψt > c0 ·

√
d with probability 2

3 , and the lemma
follows from the law of large numbers 2

Corollary 6 With high probability τ = θ(1).

Proof : Lemma 5 shows that for a sample
x1, . . . , xN with high probability ψt is most of

the time to the right of c ·
√
d. Consequently

for any x in the band 0 ≤ v ≤ c ·
√
d we get

sign(〈w∗, x〉+ψt) = −1 for most t hence by defi-
nition, the voted perceptron would classify such
an instance as −1, although it is in fact a +1 easy
instance. Since there are θ(N) misclassified easy
instances, τ = θ(1) 2

4 Discussion

In this article we show that training with annota-
tion noise can be detrimental for test-time results
on easy, uncontroversial instances; we termed this
phenomenon hard case bias. Although under
the 0-1 loss model annotation noise can be tole-
rated for larger datasets (theorem 1), minimizing
such loss becomes intractable for larger datasets.
Freund and Schapire (1999) voted perceptron al-
gorithm and its variants are widely used in compu-
tational linguistics practice; our results show that
it could suffer a constant rate of hard case bias ir-
respective of the size of the dataset (section 3.4).

How can hard case bias be reduced? One pos-
sibility is removing as many hard cases as one
can not only from the test data, as suggested in
Beigman Klebanov and Beigman (2009), but from
the training data as well. Adding the second an-
notator is expected to detect about half the hard
cases, as they would surface as disagreements be-
tween the annotators. Subsequently, a machine
learner can be told to ignore those cases during
training, reducing the risk of hard case bias. While
this is certainly a daunting task, it is possible that
for annotation studies that do not require expert
annotators and extensive annotator training, the
newly available access to a large pool of inexpen-
sive annotators, such as the Amazon Mechanical
Turk scheme (Snow et al., 2008),4 or embedding
the task in an online game played by volunteers
(Poesio et al., 2008; von Ahn, 2006) could provide
some solutions.

Reidsma and op den Akker (2008) suggest a
different option. When non-overlapping parts of
the dataset are annotated by different annotators,
each classifier can be trained to reflect the opinion
(albeit biased) of a specific annotator, using dif-
ferent parts of the datasets. Such “subjective ma-
chines” can be applied to a new set of data; an
item that causes disagreement between classifiers
is then extrapolated to be a case of potential dis-
agreement between the humans they replicate, i.e.

4http://aws.amazon.com/mturk/
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a hard case. Our results suggest that, regardless
of the success of such an extrapolation scheme in
detecting hard cases, it could erroneously invali-
date easy cases: Each classifier would presumably
suffer from a certain hard case bias, i.e. classify
incorrectly things that are in fact uncontroversial
for any human annotator. If each such classifier
has a different hard case bias, some inter-classifier
disagreements would occur on easy cases. De-
pending on the distribution of those easy cases in
the feature space, this could invalidate valuable
cases. If the situation depicted in figure 1 corre-
sponds to the pattern learned by one of the clas-
sifiers, it would lead to marking the easy cases
closest to the real separation boundary (those be-
tween 0 and λe) as hard, and hence unsuitable for
learning, eliminating the most informative mate-
rial from the training data.

Reidsma and Carletta (2008) recently showed
by simulation that different types of annotator
behavior have different impact on the outcomes of
machine learning from the annotated data. Our re-
sults provide a theoretical analysis that points in
the same direction: While random classification
noise is tolerable, other types of noise – such as
annotation noise handled here – are more proble-
matic. It is therefore important to develop models
of annotator behavior and of the resulting imper-
fections of the annotated datasets, in order to di-
agnose the potential learning problem and suggest
mitigation strategies.
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Abstract

Semantic role labels are the representa-
tion of the grammatically relevant aspects
of a sentence meaning. Capturing the
nature and the number of semantic roles
in a sentence is therefore fundamental to
correctly describing the interface between
grammar and meaning. In this paper, we
compare two annotation schemes, Prop-
Bank and VerbNet, in a task-independent,
general way, analysing how well they fare
in capturing the linguistic generalisations
that are known to hold for semantic role
labels, and consequently how well they
grammaticalise aspects of meaning. We
show that VerbNet is more verb-specific
and better able to generalise to new seman-
tic role instances, while PropBank better
captures some of the structural constraints
among roles. We conclude that these two
resources should be used together, as they
are complementary.

1 Introduction

Most current approaches to language analysis as-
sume that the structure of a sentence depends on
the lexical semantics of the verb and of other pred-
icates in the sentence. It is also assumed that only
certain aspects of a sentence meaning are gram-
maticalised. Semantic role labels are the represen-
tation of the grammatically relevant aspects of a
sentence meaning.

Capturing the nature and the number of seman-
tic roles in a sentence is therefore fundamental
to correctly describe the interface between gram-
mar and meaning, and it is of paramount impor-
tance for all natural language processing (NLP)
applications that attempt to extract meaning rep-
resentations from analysed text, such as question-
answering systems or even machine translation.

The role of theories of semantic role lists is to
obtain a set of semantic roles that can apply to
any argument of any verb, to provide an unam-
biguous identifier of the grammatical roles of the
participants in the event described by the sentence
(Dowty, 1991). Starting from the first proposals
(Gruber, 1965; Fillmore, 1968; Jackendoff, 1972),
several approaches have been put forth, ranging
from a combination of very few roles to lists of
very fine-grained specificity. (See Levin and Rap-
paport Hovav (2005) for an exhaustive review).

In NLP, several proposals have been put forth in
recent years and adopted in the annotation of large
samples of text (Baker et al., 1998; Palmer et al.,
2005; Kipper, 2005; Loper et al., 2007). The an-
notated PropBank corpus, and therefore implicitly
its role labels inventory, has been largely adopted
in NLP because of its exhaustiveness and because
it is coupled with syntactic annotation, properties
that make it very attractive for the automatic learn-
ing of these roles and their further applications to
NLP tasks. However, the labelling choices made
by PropBank have recently come under scrutiny
(Zapirain et al., 2008; Loper et al., 2007; Yi et al.,
2007).

The annotation of PropBank labels has been
conceived in a two-tiered fashion. A first tier
assigns abstract labels such as ARG0 or ARG1,
while a separate annotation records the second-
tier, verb-sense specific meaning of these labels.
Labels ARG0 or ARG1 are assigned to the most
prominent argument in the sentence (ARG1 for
unaccusative verbs and ARG0 for all other verbs).
The other labels are assigned in the order of promi-
nence. So, while the same high-level labels are
used across verbs, they could have different mean-
ings for different verb senses. Researchers have
usually concentrated on the high-level annotation,
but as indicated in Yi et al. (2007), there is rea-
son to think that these labels do not generalise
across verbs, nor to unseen verbs or to novel verb
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senses. Because the meaning of the role annota-
tion is verb-specific, there is also reason to think
that it fragments the data and creates data sparse-
ness, making automatic learning from examples
more difficult. These short-comings are more ap-
parent in the annotation of less prominent and less
frequent roles, marked by the ARG2 to ARG5 la-
bels.

Zapirain et al. (2008), Loper et al. (2007) and
Yi et al. (2007) investigated the ability of the Prop-
Bank role inventory to generalise compared to the
annotation in another semantic role list, proposed
in the electronic dictionary VerbNet. VerbNet la-
bels are assigned in a verb-class specific way and
have been devised to be more similar to the inven-
tories of thematic role lists usually proposed by
linguists. The results in these papers are conflict-
ing.

While Loper et al. (2007) and Yi et al. (2007)
show that augmenting PropBank labels with Verb-
Net labels increases generalisation of the less fre-
quent labels, such as ARG2, to new verbs and new
domains, they also show that PropBank labels per-
form better overall, in a semantic role labelling
task. Confirming this latter result, Zapirain et al.
(2008) find that PropBank role labels are more ro-
bust than VerbNet labels in predicting new verb
usages, unseen verbs, and they port better to new
domains.

The apparent contradiction of these results can
be due to several confounding factors in the exper-
iments. First, the argument labels for which the
VerbNet improvement was found are infrequent,
and might therefore not have influenced the over-
all results enough to counterbalance new errors in-
troduced by the finer-grained annotation scheme;
second, the learning methods in both these exper-
imental settings are largely based on syntactic in-
formation, thereby confounding learning and gen-
eralisation due to syntax — which would favour
the more syntactically-driven PropBank annota-
tion — with learning due to greater generality of
the semantic role annotation; finally, task-specific
learning-based experiments do not guarantee that
the learners be sufficiently powerful to make use
of the full generality of the semantic role labels.

In this paper, we compare the two annotation
schemes, analysing how well they fare in captur-
ing the linguistic generalisations that are known
to hold for semantic role labels, and consequently
how well they grammaticalise aspects of mean-

ing. Because the well-attested strong correlation
between syntactic structure and semantic role la-
bels (Levin and Rappaport Hovav, 2005; Merlo
and Stevenson, 2001) could intervene as a con-
founding factor in this analysis, we expressly limit
our investigation to data analyses and statistical
measures that do not exploit syntactic properties or
parsing techniques. The conclusions reached this
way are not task-specific and are therefore widely
applicable.

To preview, based on results in section 3, we
conclude that PropBank is easier to learn, but
VerbNet is more informative in general, it gener-
alises better to new role instances and its labels are
more strongly correlated to specific verbs. In sec-
tion 4, we show that VerbNet labels provide finer-
grained specificity. PropBank labels are more con-
centrated on a few VerbNet labels at higher fre-
quency. This is not true at low frequency, where
VerbNet provides disambiguations to overloaded
PropBank variables. Practically, these two sets
of results indicate that both annotation schemes
could be useful in different circumstances, and at
different frequency bands. In section 5, we report
results indicating that PropBank role sets are high-
level abstractions of VerbNet role sets and that
VerbNet role sets are more verb and class-specific.
In section 6, we show that PropBank more closely
captures the thematic hierarchy and is more corre-
lated to grammatical functions, hence potentially
more useful for semantic role labelling, for learn-
ers whose features are based on the syntactic tree.
Finally, in section 7, we summarise some previ-
ous results, and we provide new statistical evi-
dence to argue that VerbNet labels are more gen-
eral across verbs. These conclusions are reached
by task-independent statistical analyses. The data
and the measures used to reach these conclusions
are discussed in the next section.

2 Materials and Method

In data analysis and inferential statistics, careful
preparation of the data and choice of the appropri-
ate statistical measures are key. We illustrate the
data and the measures used here.

2.1 Data and Semantic Role Annotation

Proposition Bank (Palmer et al., 2005) adds
Levin’s style predicate-argument annotation and
indication of verbs’ alternations to the syntactic
structures of the Penn Treebank (Marcus et al.,
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1993).

It defines a limited role typology. Roles are
specified for each verb individually. Verbal pred-
icates in the Penn Treebank (PTB) receive a label
REL and their arguments are annotated with ab-
stract semantic role labels A0-A5 or AA for those
complements of the predicative verb that are con-
sidered arguments, while those complements of
the verb labelled with a semantic functional label
in the original PTB receive the composite seman-
tic role label AM-X , where X stands for labels
such as LOC, TMP or ADV, for locative, tem-
poral and adverbial modifiers respectively. Prop-
Bank uses two levels of granularity in its annota-
tion, at least conceptually. Arguments receiving
labels A0-A5 or AA do not express consistent se-
mantic roles and are specific to a verb, while argu-
ments receiving an AM-X label are supposed to
be adjuncts and the respective roles they express
are consistent across all verbs. However, among
argument labels, A0 and A1 are assigned attempt-
ing to capture Proto-Agent and Proto-Patient prop-
erties (Dowty, 1991). They are, therefore, more
valid across verbs and verb instances than the A2-
A5 labels. Numerical results in Yi et al. (2007)
show that 85% of A0 occurrences translate into
Agent roles and more than 45% instances of A1
map into Patient and Patient-like roles, using a
VerbNet labelling scheme. This is also confirmed
by our counts, as illustrated in Tables 3 and 4 and
discussed in Section 4 below.

VerbNet is a lexical resource for English verbs,
yielding argumental and thematic information
(Kipper, 2005). VerbNet resembles WordNet in
spirit, it provides a verbal lexicon tying verbal se-
mantics (theta-roles and selectional restrictions) to
verbal distributional syntax. VerbNet defines 23
thematic roles that are valid across verbs. The list
of thematic roles can be seen in the first column of
Table 4.

For some of our comparisons below to be valid,
we will need to reduce the inventory of labels of
VerbNet to the same number of labels in Prop-
Bank. Following previous work (Loper et al.,
2007), we define equivalence classes of VerbNet
labels. We will refer to these classes as VerbNet
groups. The groups we define are illustrated in
Figure 1. Notice also that all our comparisons,
like previous work, will be limited to the obliga-
tory arguments in PropBank, the A0 to A5, AA
arguments, to be comparable to VerbNet. VerbNet

is a lexicon and by definition it does not list op-
tional modifiers (the arguments labelled AM-X in
PropBank).

In order to support the joint use of both these re-
sources and their comparison, SemLink has been
developed (Loper et al., 2007). SemLink1 pro-
vides mappings from PropBank to VerbNet for the
WSJ portion of the Penn Treebank. The mapping
have been annotated automatically by a two-stage
process: a lexical mapping and an instance classi-
fier (Loper et al., 2007). The results were hand-
corrected. In addition to semantic roles for both
PropBank and VerbNet, SemLink contains infor-
mation about verbs, their senses and their VerbNet
classes which are extensions of Levin’s classes.

The annotations in SemLink 1.1. are not com-
plete. In the analyses presented here, we have
only considered occurrences of semantic roles for
which both a PropBank and a VerbNet label is
available in the data (roughly 45% of the Prop-
Bank semantic roles have a VerbNet semantic
role).2 Furthermore, we perform our analyses on
training and development data only. This means
that we left section 23 of the Wall Street Journal
out. The analyses are done on the basis of 106,459
semantic role pairs.

For the analysis concerning the correlation be-
tween semantic roles and syntactic dependencies
in Section 6, we merged the SemLink data with the
non-projectivised gold data of the CoNNL 2008
shared task on syntactic and semantic dependency
parsing (Surdeanu et al., 2008). Only those depen-
dencies that bear both a syntactic and a semantic
label have been counted for test and development
set. We have discarded discontinous arguments.
Analyses are based on 68,268 dependencies in to-
tal.

2.2 Measures

In the following sections, we will use simple pro-
portions, entropy, joint entropy, conditional en-
tropy, mutual information, and a normalised form
of mutual information which measures correlation
between nominal attributes called symmetric un-
certainty (Witten and Frank, 2005, 291). These are
all widely used measures (Manning and Schuetze,
1999), excepted perhaps the last one. We briefly
describe it here.

1(http://verbs.colorado.edu/semlink/)
2In some cases SemLink allows for multiple annotations.

In those cases we selected the first annotation.
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AGENT: Agent, Agent1
PATIENT: Patient
GOAL: Recipient, Destination, Location, Source,
Material, Beneficiary, Goal
EXTENT: Extent, Asset, Value
PREDATTR: Predicate, Attribute, Theme,
Theme1, Theme2, Topic, Stimulus, Proposition
PRODUCT: Patient2, Product, Patient1
INSTRCAUSE: Instrument, Cause, Experiencer,
Actor2, Actor, Actor1

Figure 1: VerbNet Groups

Given a random variable X, the entropy H(X)
describes our uncertainty about the value of X, and
hence it quantifies the information contained in a
message trasmitted by this variable. Given two
random variables X,Y, the joint entropy H(X,Y)
describes our uncertainty about the value of the
pair (X,Y). Symmetric uncertainty is a normalised
measure of the information redundancy between
the distributions of two random variables. It cal-
culates the ratio between the joint entropy of the
two random variables if they are not independent
and the joint entropy if the two random variables
were independent (which is the sum of their indi-
vidual entropies). This measure is calculated as
follows.

U(A, B) = 2
H(A) + H(B)−H(A, B)

H(A) + H(B)

where H(X) = −Σx∈X p(x)logp(x) and
H(X, Y ) = −Σx∈X,y∈Y p(x, y)logp(x, y).

Symmetric uncertainty lies between 0 and 1. A
higher value for symmetric uncertainty indicates
that the two random variables are more highly as-
sociated (more redundant), while lower values in-
dicate that the two random variables approach in-
dependence.

We use these measures to evaluate how well two
semantic role inventories capture well-known dis-
tributional generalisations. We discuss several of
these generalisations in the following sections.

3 Amount of Information in Semantic
Roles Inventory

Most proposals of semantic role inventories agree
on the fact that the number of roles should be small
to be valid generally. 3

3With the notable exception of FrameNet, which is devel-
oping a large number of labels organised hierarchically and

Task PropBank ERR VerbNet ERR
Role generalisation 62 (82−52/48) 66 (77−33/67)
No verbal features 48 (76−52/48) 43 (58−33/67)
Unseen predicates 50 (75−52/48) 37 (62−33/67)

Table 2: Percent Error rate reduction (ERR) across
role labelling sets in three tasks in Zapirain et al.
(2008). ERR= (result − baseline / 100% − base-
line )

PropBank and VerbNet clearly differ in the level
of granularity of the semantic roles that have been
assigned to the arguments. PropBank makes fewer
distinctions than VerbNet, with 7 core argument
labels compared to VerbNet’s 23. More important
than the size of the inventory, however, is the fact
that PropBank has a much more skewed distribu-
tion than VerbNet, illustrated in Table 1. Conse-
quently, the distribution of PropBank labels has
an entropy of 1.37 bits, and even when the Verb-
Net labels are reduced to 7 equivalence classes
the distribution has an entropy of 2.06 bits. Verb-
Net therefore conveys more information, but it is
also more difficult to learn, as it is more uncertain.
An uninformed PropBank learner that simply as-
signed the most frequent label would be correct
52% of the times by always assigning an A1 label,
while for VerbNet would be correct only 33% of
the times assigning Agent.

This simple fact might cast new light on some
of the comparative conclusions of previous work.
In some interesting experiments, Zapirain et al.
(2008) test generalising abilities of VerbNet and
PropBank comparatively to new role instances in
general (their Table 1, line CoNLL setting, col-
umn F1 core), and also on unknown verbs and in
the absence of verbal features. They find that a
learner based on VerbNet has worse learning per-
formance. They interpret this result as indicating
that VerbNet labels are less general and more de-
pendent on knowledge of specific verbs. However,
a comparison that takes into consideration the dif-
ferential baseline is able to factor the difficulty of
the task out of the results for the overall perfor-
mance. A simple baseline for a classifier is based
on a majority class assignment (see our Table 1).
We use the performance results reported in Zapi-
rain et al. (2008) and calculate the reduction in er-
ror rate based on this differential baseline for the
two annotation schemes. We compare only the
results for the core labels in PropBank as those

interpreted frame-specifically (Ruppenhofer et al., 2006).
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PropBank VerbNet
A0 38.8 Agent 32.8 Cause 1.9 Source 0.9 Asset 0.3 Goal 0.00
A1 51.7 Theme 26.3 Product 1.6 Actor1 0.8 Material 0.2 Agent1 0.00
A2 9.0 Topic 11.5 Extent 1.3 Theme2 0.8 Beneficiary 0.2
A3 0.5 Patient 5.8 Destination 1.2 Theme1 0.8 Proposition 0.1
A4 0.0 Experiencer 4.2 Patient1 1.2 Attribute 0.7 Value 0.1
A5 0.0 Predicate 2.3 Location 1.0 Patient2 0.5 Instrument 0.1
AA 0.0 Recipient 2.2 Stimulus 0.9 Actor2 0.3 Actor 0.0

Table 1: Distribution of PropBank core labels and VerbNet labels.

are the ones that correspond to VerbNet.4 We
find more mixed results than previously reported.
VerbNet has better role generalising ability overall
as its reduction in error rate is greater than Prop-
Bank (first line of Table 2), but it is more degraded
by lack of verb information (second and third lines
of Table 2). The importance of verb information
for VerbNet is confirmed by information-theoretic
measures. While the entropy of VerbNet labels
is higher than that of PropBank labels (2.06 bits
vs. 1.37 bits), as seen before, the conditional en-
tropy of respective PropBank and VerbNet distri-
butions given the verb is very similar, but higher
for PropBank (1.11 vs 1.03 bits), thereby indicat-
ing that the verb provides much more information
in association with VerbNet labels. The mutual in-
formation of the PropBank labels and the verbs
is only 0.26 bits, while it is 1.03 bits for Verb-
Net. These results are expected if we recall the
two-tiered logic that inspired PropBank annota-
tion, where the abstract labels are less related to
verbs than labels in VerbNet.

These results lead us to our first conclusion:
while PropBank is easier to learn, VerbNet is more
informative in general, it generalises better to new
role instances, and its labels are more strongly cor-
related to specific verbs. It is therefore advisable
to use both annotations: VerbNet labels if the verb
is available, reverting to PropBank labels if no lex-

4We assume that our majority class can roughly corre-
spond to Zapirain et al. (2008)’s data. Notice however that
both sampling methods used to collect the counts are likely
to slightly overestimate frequent labels. Zapirain et al. (2008)
sample only complete propositions. It is reasonable to as-
sume that higher numbered PropBank roles (A3, A4, A5) are
more difficult to define. It would therefore more often happen
that these labels are not annotated than it happens that A0,
A1, A2, the frequent labels, are not annotated. This reason-
ing is confirmed by counts on our corpus, which indicate that
incomplete propositions include a higher proportion of low
frequency labels and a lower proportion of high frequency
labels that the overall distribution. However, our method is
also likely to overestimate frequent labels, since we count all
labels, even those in incomplete propositions. By the same
reasoning, we will find more frequent labels than the under-
lying real distribution of a complete annotation.

ical information is known.

4 Equivalence Classes of Semantic Roles

An observation that holds for all semantic role la-
belling schemes is that certain labels seem to be
more similar than others, based on their ability to
occur in the same syntactic environment and to
be expressed by the same function words. For
example, Agent and Instrumental Cause are of-
ten subjects (of verbs selecting animate and inan-
imate subjects respectively); Patients/Themes can
be direct objects of transitive verbs and subjects
of change of state verbs; Goal and Beneficiary can
be passivised and undergo the dative alternation;
Instrument and Comitative are expressed by the
same preposition in many languages (see Levin
and Rappaport Hovav (2005).) However, most an-
notation schemes in NLP and linguistics assume
that semantic role labels are atomic. It is there-
fore hard to explain why labels do not appear to be
equidistant in meaning, but rather to form equiva-
lence classes in certain contexts. 5

While both role inventories under scrutiny here
use atomic labels, their joint distribution shows
interesting relations. The proportion counts are
shown in Table 3 and 4.

If we read these tables column-wise, thereby
taking the more linguistically-inspired labels in
VerbNet to be the reference labels, we observe
that the labels in PropBank are especially con-
centrated on those labels that linguistically would
be considered similar. Specifically, in Table 3
A0 mostly groups together Agents and Instrumen-
tal Causes; A1 mostly refers to Themes and Pa-
tients; while A2 refers to Goals and Themes. If we

5Clearly, VerbNet annotators recognise the need to ex-
press these similarities since they use variants of the same
label in many cases. Because the labels are atomic however,
the distance between Agent and Patient is the same as Patient
and Patient1 and the intended greater similarity of certain la-
bels is lost to a learning device. As discussed at length in the
linguistic literature, features bundles instead of atomic labels
would be the mechanism to capture the differential distance
of labels in the inventory (Levin and Rappaport Hovav, 2005).
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A0 A1 A2 A3 A4 A5 AA
Agent 32.6 0.2 - - - - -
Patient 0.0 5.8 - - - - -
Goal 0.0 1.5 4.0 0.2 0.0 0.0 -
Extent - 0.2 1.3 0.2 - - -
PredAttr 1.2 39.3 2.9 0.0 - - 0.0
Product 0.1 2.7 0.6 - 0.0 - -
InstrCause 4.8 2.2 0.3 0.1 - - -

Table 3: Distribution of PropBank by VerbNet
group labels according to SemLink. Counts indi-
cated as 0.0 approximate zero by rounding, while
a - sign indicates that no occurrences were found.

read these tables row-wise, thereby concentrating
on the grouping of PropBank labels provided by
VerbNet labels, we see that low frequency Prop-
Bank labels are more evenly spread across Verb-
Net labels than the frequent labels, and it is more
difficult to identify a dominant label than for high-
frequency labels. Because PropBank groups to-
gether VerbNet labels at high frequency, while
VerbNet labels make different distinctions at lower
frequencies, the distribution of PropBank is much
more skewed than VerbNet, yielding the differ-
ences in distributions and entropy discussed in the
previous section.

We can draw, then, a second conclusion: while
VerbNet is finer-grained than PropBank, the two
classifications are not in contradiction with each
other. VerbNet greater specificity can be used in
different ways depending on the frequency of the
label. Practically, PropBank labels could provide
a strong generalisation to a VerbNet annotation at
high-frequency. VerbNet labels, on the other hand,
can act as disambiguators of overloaded variables
in PropBank. This conclusion was also reached
by Loper et al. (2007). Thus, both annotation
schemes could be useful in different circumstances
and at different frequency bands.

5 The Combinatorics of Semantic Roles

Semantic roles exhibit paradigmatic generalisa-
tions — generalisations across similar semantic
roles in the inventory — (which we saw in section
4.) They also show syntagmatic generalisations,
generalisations that concern the context. One kind
of context is provided by what other roles they can
occur with. It has often been observed that cer-
tain semantic roles sets are possible, while oth-
ers are not; among the possible sets, certain are
much more frequent than others (Levin and Rap-
paport Hovav, 2005). Some linguistically-inspired

A0 A1 A2 A3 A4 A5 AA
Actor 0.0 - - - - - -
Actor1 0.8 - - - - - -
Actor2 - 0.3 0.1 - - - -
Agent1 0.0 - - - - - -
Agent 32.6 0.2 - - - - -
Asset - 0.1 0.0 0.2 - - -
Attribute - 0.1 0.7 - - - -
Beneficiary - 0.0 0.1 0.1 0.0 - -
Cause 0.7 1.1 0.1 0.1 - - -
Destination - 0.4 0.8 0.0 - - -
Experiencer 3.3 0.9 0.1 - - - -
Extent - - 1.3 - - - -
Goal - - - - 0.0 - -
Instrument - - 0.1 0.0 - - -
Location 0.0 0.4 0.6 0.0 - 0.0 -
Material - 0.1 0.1 0.0 - - -
Patient 0.0 5.8 - - - - -
Patient1 0.1 1.1 - - - - -
Patient2 - 0.1 0.5 - - - -
Predicate - 1.2 1.1 0.0 - - -
Product 0.0 1.5 0.1 - 0.0 - -
Proposition - 0.0 0.1 - - - -
Recipient - 0.3 2.0 - 0.0 - -
Source - 0.3 0.5 0.1 - - -
Stimulus - 1.0 - - - - -
Theme 0.8 25.1 0.5 0.0 - - 0.0
Theme1 0.4 0.4 0.0 0.0 - - -
Theme2 0.1 0.4 0.3 - - - -
Topic - 11.2 0.3 - - - -
Value - 0.1 - - - - -

Table 4: Distribution of PropBank by original
VerbNet labels according to SemLink. Counts
indicated as 0.0 approximate zero by rounding,
while a - sign indicates that no occurrences were
found.

semantic role labelling techniques do attempt to
model these dependencies directly (Toutanova et
al., 2008; Merlo and Musillo, 2008).

Both annotation schemes impose tight con-
straints on co-occurrence of roles, independently
of any verb information, with 62 role sets for
PropBank and 116 role combinations for VerbNet,
fewer than possible. Among the observed role
sets, some are more frequent than expected un-
der an assumption of independence between roles.
For example, in PropBank, propositions compris-
ing A0, A1 roles are observed 85% of the time,
while they would be expected to occur only in 20%
of the cases. In VerbNet the difference is also great
between the 62% observed Agent, PredAttr propo-
sitions and the 14% expected.

Constraints on possible role sets are the expres-
sion of structural constraints among roles inherited
from syntax, which we discuss in the next section,
but also of the underlying event structure of the
verb. Because of this relation, we expect a strong
correlation between role sets and their associated
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A0,A1 A0,A2 A1,A2
Agent, Theme 11650 109 4
Agent, Topic 8572 14 0
Agent, Patient 1873 0 0
Experiencer, Theme 1591 0 15
Agent, Product 993 1 0
Agent, Predicate 960 64 0
Experiencer, Stimulus 843 0 0
Experiencer, Cause 756 0 2

Table 5: Sample of role sets correspondences

verb, as well as role sets and verb classes for both
annotation schemes. However, PropBank roles are
associated based on the meaning of the verb, but
also based on their positional prominence in the
tree, and so we can expect their relation to the ac-
tual verb entry to be weaker.

We measure here simply the correlation as in-
dicated by the symmetric uncertainty of the joint
distribution of role sets by verbs and of role sets
by verb classes, for each of the two annotation
schemes. We find that the correlation between
PropBank role sets and verb classes is weaker
than the correlation between VerbNet role sets and
verb classes, as expected (PropBank: U=0.21 vs
VerbNet: U=0.46). We also find that correlation
between PropBank role sets and verbs is weaker
than the correlation between VerbNet role sets and
verbs (PropBank: U=0.23 vs VerbNet U=0.43).
Notice that this result holds for VerbNet role label
groups, and is therefore not a side-effect of a dif-
ferent size in role inventory. This result confirms
our findings reported in Table 2, which showed
a larger degradation of VerbNet labels in the ab-
sence of verb information.

If we analyse the data, we see that many role
sets that form one single set in PropBank are split
into several sets in VerbNet, with those roles that
are different being roles that in PropBank form a
group. So, for example, a role list (A0, A1) in
PropBank will corresponds to 14 different lists in
VerbNet (when using the groups). The three most
frequent VerbNet role sets describe 86% of the
cases: (Agent, Predattr) 71%, (InstrCause, Pre-
dAttr) 9%, and (Agent, Patient) 6% . Using the
original VerbNet labels – a very small sample of
the most frequent ones is reported in Table 5 —
we find 39 different sets. Conversely, we see that
VerbNet sets corresponds to few PropBank sets,
even for high frequency.

The third conclusion we can draw then is two-
fold. First, while VerbNet labels have been as-
signed to be valid across verbs, as confirmed by

their ability to enter in many combinations, these
combinations are more verb and class-specific
than combinations in PropBank. Second, the fine-
grained, coarse-grained correspondence of anno-
tations between VerbNet and PropBank that was
illustrated by the results in Section 4 is also borne
out when we look at role sets: PropBank role sets
appear to be high-level abstractions of VerbNet
role sets.

6 Semantic Roles and Grammatical
Functions: the Thematic Hierarchy

A different kind of context-dependence is pro-
vided by thematic hierarchies. It is a well-attested
fact that lexical semantic properties described by
semantic roles and grammatical functions appear
to be distributed according to prominence scales
(Levin and Rappaport Hovav, 2005). Seman-
tic roles are organized according to the thematic
hierarchy (one proposal among many is Agent
> Experiencer> Goal/Source/Location> Patient
(Grimshaw, 1990)). This hierarchy captures the
fact that the options for the structural realisation
of a particular argument do not depend only on
its role, but also on the roles of other arguments.
For example in psychological verbs, the position
of the Experiencer as a syntactic subject or ob-
ject depends on whether the other role in the sen-
tence is a Stimulus, hence lower in the hierar-
chy, as in the psychological verbs of the fear class
or an Agent/Cause as in the frighten class. Two
prominence scales can combine by matching ele-
ments harmonically, higher elements with higher
elements and lower with lower (Aissen, 2003).
Grammatical functions are also distributed accord-
ing to a prominence scale. Thus, we find that most
subjects are Agents, most objects are Patients or
Themes, and most indirect objects are Goals, for
example.

The semantic role inventory, thus, should show
a certain correlation with the inventory of gram-
matical functions. However, perfect correlation is
clearly not expected as in this case the two levels
of representation would be linguistically and com-
putationally redundant. Because PropBank was
annotated according to argument prominence, we
expect to see that PropBank reflects relationships
between syntax and semantic role labels more
strongly than VerbNet. Comparing syntactic de-
pendency labels to their corresponding PropBank
or VerbNet groups labels (groups are used to elim-
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inate the confound of different inventory sizes), we
find that the joint entropy of PropBank and depen-
dency labels is 2.61 bits while the joint entropy of
VerbNet and dependency labels is 3.32 bits. The
symmetric uncertainty of PropBank and depen-
dency labels is 0.49, while the symmetric uncer-
tainty of VerbNet and dependency labels is 0.39.

On the basis of these correlations, we can con-
firm previous findings: PropBank more closely
captures the thematic hierarchy and is more corre-
lated to grammatical functions, hence potentially
more useful for semantic role labelling, for learn-
ers whose features are based on the syntactic tree.
VerbNet, however, provides a level of annotation
that is more independent of syntactic information,
a property that might be useful in several applica-
tions, such as machine translation, where syntactic
information might be too language-specific.

7 Generality of Semantic Roles

Semantic roles are not meant to be domain-
specific, but rather to encode aspects of our con-
ceptualisation of the world. A semantic role in-
ventory that wants to be linguistically perspicuous
and also practically useful in several tasks needs to
reflect our grammatical representation of events.
VerbNet is believed to be superior in this respect
to PropBank, as it attempts to be less verb-specific
and to be portable across classes. Previous results
(Loper et al., 2007; Zapirain et al., 2008) appear to
indicate that this is not the case because a labeller
has better performance with PropBank labels than
with VerbNet labels. But these results are task-
specific, and they were obtained in the context of
parsing. Since we know that PropBank is more
closely related to grammatical function and syn-
tactic annotation than VerbNet, as indicated above
in Section 6, then these results could simply indi-
cate that parsing predicts PropBank labels better
because they are more closely related to syntactic
labels, and not because the semantic roles inven-
tory is more general.

Several of the findings in the previous sections
shed light on the generality of the semantic roles in
the two inventories. Results in Section 3 show that
previous results can be reinterpreted as indicating
that VerbNet labels generalise better to new roles.

We attempt here to determine the generality of
the “meaning” of a role label without recourse
to a task-specific experiment. It is often claimed
in the literature that semantic roles are better de-

scribed by feature bundles. In particular, the fea-
tures sentience and volition have been shown to be
useful in distinguishing Proto-Agents from Proto-
Patients (Dowty, 1991). These features can be as-
sumed to be correlated to animacy. Animacy has
indeed been shown to be a reliable indicator of
semantic role differences (Merlo and Stevenson,
2001). Personal pronouns in English grammati-
calise animacy. We extract all the occurrences of
the unambiguously animate pronouns (I, you, he,
she, us, we, me, us, him) and the unambiguously
inanimate pronoun it, for each semantic role label,
in PropBank and VerbNet. We find occurrences
for three semantic role labels in PropBank and six
in VerbNet. We reduce the VerbNet groups to five
by merging Patient roles with PredAttr roles to
avoid artificial variation among very similar roles.
An analysis of variance of the distributions of the
pronous yields a significant effect of animacy for
VerbNet (F(4)=5.62, p< 0.05), but no significant
effect for PropBank (F(2)=4.94, p=0.11). This re-
sult is a preliminary indication that VerbNet labels
might capture basic components of meaning more
clearly than PropBank labels, and that they might
therefore be more general.

8 Conclusions

In this paper, we have proposed a task-
independent, general method to analyse anno-
tation schemes. The method is based on
information-theoretic measures and comparison
with attested linguistic generalisations, to evalu-
ate how well semantic role inventories and anno-
tations capture grammaticalised aspects of mean-
ing. We show that VerbNet is more verb-specific
and better able to generalise to new semantic roles,
while PropBank, because of its relation to syntax,
better captures some of the structural constraints
among roles. Future work will investigate another
basic property of semantic role labelling schemes:
cross-linguistic validity.
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Abstract
Existing evaluation metrics for machine translation
lack crucial robustness: their correlations with hu-
man quality judgments vary considerably across lan-
guages and genres. We believe that the main reason
is their inability to properly capture meaning: A good
translation candidate means the same thing as the
reference translation, regardless of formulation. We
propose a metric that evaluates MT output based on
a rich set of features motivated by textual entailment,
such as lexical-semantic (in-)compatibility and ar-
gument structure overlap. We compare this metric
against a combination metric of four state-of-the-
art scores (BLEU, NIST, TER, and METEOR) in
two different settings. The combination metric out-
performs the individual scores, but is bested by the
entailment-based metric. Combining the entailment
and traditional features yields further improvements.

1 Introduction

Constant evaluation is vital to the progress of ma-
chine translation (MT). Since human evaluation is
costly and difficult to do reliably, a major focus of
research has been on automatic measures of MT
quality, pioneered by BLEU (Papineni et al., 2002)
and NIST (Doddington, 2002). BLEU and NIST
measure MT quality by using the strong correla-
tion between human judgments and the degree of
n-gram overlap between a system hypothesis trans-
lation and one or more reference translations. The
resulting scores are cheap and objective.

However, studies such as Callison-Burch et al.
(2006) have identified a number of problems with
BLEU and related n-gram-based scores: (1) BLEU-
like metrics are unreliable at the level of individual
sentences due to data sparsity; (2) BLEU metrics
can be “gamed” by permuting word order; (3) for
some corpora and languages, the correlation to hu-
man ratings is very low even at the system level;
(4) scores are biased towards statistical MT; (5) the
quality gap between MT and human translations is
not reflected in equally large BLEU differences.

∗This paper is based on work funded by the Defense Ad-
vanced Research Projects Agency through IBM. The content
does not necessarily reflect the views of the U.S. Government,
and no official endorsement should be inferred.

This is problematic, but not surprising: The met-
rics treat any divergence from the reference as a
negative, while (computational) linguistics has long
dealt with linguistic variation that preserves the
meaning, usually called paraphrase, such as:

(1) HYP: However, this was declared terrorism
by observers and witnesses.

REF: Nevertheless, commentators as well as
eyewitnesses are terming it terrorism.

A number of metrics have been designed to account
for paraphrase, either by making the matching more
intelligent (TER, Snover et al. (2006)), or by using
linguistic evidence, mostly lexical similarity (ME-
TEOR, Banerjee and Lavie (2005); MaxSim, Chan
and Ng (2008)), or syntactic overlap (Owczarzak et
al. (2008); Liu and Gildea (2005)). Unfortunately,
each metrics tend to concentrate on one particu-
lar type of linguistic information, none of which
always correlates well with human judgments.

Our paper proposes two strategies. We first ex-
plore the combination of traditional scores into a
more robust ensemble metric with linear regression.
Our second, more fundamental, strategy replaces
the use of loose surrogates of translation quality
with a model that attempts to comprehensively as-
sess meaning equivalence between references and
MT hypotheses. We operationalize meaning equiv-
alence by bidirectional textual entailment (RTE,
Dagan et al. (2005)), and thus predict the qual-
ity of MT hypotheses with a rich RTE feature set.
The entailment-based model goes beyond existing
word-level “semantic” metrics such as METEOR
by integrating phrasal and compositional aspects
of meaning equivalence, such as multiword para-
phrases, (in-)correct argument and modification
relations, and (dis-)allowed phrase reorderings. We
demonstrate that the resulting metric beats both in-
dividual and combined traditional MT metrics. The
complementary features of both metric types can
be combined into a joint, superior metric.
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HYP: Three aid workers were kidnapped.

REF: Three aid workers were kidnapped by pirates.
no entailment entailment

HYP: The virus did not infect anybody.

REF: No one was infected by the virus.
entailment entailment

Figure 1: Entailment status between an MT system
hypothesis and a reference translation for equiva-
lent (top) and non-equivalent (bottom) translations.

2 Regression-based MT Quality Prediction

Current MT metrics tend to focus on a single dimen-
sion of linguistic information. Since the importance
of these dimensions tends not to be stable across
language pairs, genres, and systems, performance
of these metrics varies substantially. A simple strat-
egy to overcome this problem could be to combine
the judgments of different metrics. For example,
Paul et al. (2007) train binary classifiers on a fea-
ture set formed by a number of MT metrics. We
follow a similar idea, but use a regularized linear
regression to directly predict human ratings.

Feature combination via regression is a super-
vised approach that requires labeled data. As we
show in Section 5, this data is available, and the
resulting model generalizes well from relatively
small amounts of training data.

3 Textual Entailment vs. MT Evaluation

Our novel approach to MT evaluation exploits the
similarity between MT evaluation and textual en-
tailment (TE). TE was introduced by Dagan et
al. (2005) as a concept that corresponds more
closely to “common sense” reasoning patterns than
classical, strict logical entailment. Textual entail-
ment is defined informally as a relation between
two natural language sentences (a premise P and
a hypothesis H) that holds if “a human reading P
would infer that H is most likely true”. Knowledge
about entailment is beneficial for NLP tasks such as
Question Answering (Harabagiu and Hickl, 2006).

The relation between textual entailment and MT
evaluation is shown in Figure 1. Perfect MT output
and the reference translation entail each other (top).
Translation problems that impact semantic equiv-
alence, e.g., deletion or addition of material, can
break entailment in one or both directions (bottom).

On the modelling level, there is common ground
between RTE and MT evaluation: Both have to

distinguish between valid and invalid variation to
determine whether two texts convey the same in-
formation or not. For example, to recognize the
bidirectional entailment in Ex. (1), RTE must ac-
count for the following reformulations: synonymy
(However/Nevertheless), more general semantic
relatedness (observers/commentators), phrasal re-
placements (and/as well as), and an active/passive
alternation that implies structural change (is de-
clared/are terming). This leads us to our main hy-
pothesis: RTE features are designed to distinguish
meaning-preserving variation from true divergence
and are thus also good predictors in MT evaluation.
However, while the original RTE task is asymmet-
ric, MT evaluation needs to determine meaning
equivalence, which is a symmetric relation. We do
this by checking for entailment in both directions
(see Figure 1). Operationally, this ensures we detect
translations which either delete or insert material.

Clearly, there are also differences between the
two tasks. An important one is that RTE assumes
the well-formedness of the two sentences. This is
not generally true in MT, and could lead to de-
graded linguistic analyses. However, entailment
relations are more sensitive to the contribution of
individual words (MacCartney and Manning, 2008).
In Example 2, the modal modifiers break the entail-
ment between two otherwise identical sentences:

(2) HYP: Peter is certainly from Lincolnshire.
REF: Peter is possibly from Lincolnshire.

This means that the prediction of TE hinges on
correct semantic analysis and is sensitive to mis-
analyses. In contrast, human MT judgments behave
robustly. Translations that involve individual errors,
like (2), are judged lower than perfect ones, but
usually not crucially so, since most aspects are
still rendered correctly. We thus expect even noisy
RTE features to be predictive for translation quality.
This allows us to use an off-the-shelf RTE system
to obtain features, and to combine them using a
regression model as described in Section 2.

3.1 The Stanford Entailment Recognizer
The Stanford Entailment Recognizer (MacCartney
et al., 2006) is a stochastic model that computes
match and mismatch features for each premise-
hypothesis pair. The three stages of the system
are shown in Figure 2. The system first uses a
robust broad-coverage PCFG parser and a deter-
ministic constituent-dependency converter to con-
struct linguistic representations of the premise and
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Stage 3: Feature computation (w/ numbers of features)

Premise: India buys 1,000 tanks.
Hypothesis: India acquires arms.

Stage 1: Linguistic analysis

India

buys

1,000 tanks
subj dobj

India

acquires

arms
subj dobj

Stage 2: Alignment

India

buys

1,000 tanks
subj dobj

India

acquires

arms
subj dobj

0.9

1.0 0.7

Alignment (8):
Semantic 
compatibility 
(34): 
Insertions and
deletions (20):
Preservation of 
reference (16):
Structural 
alignment (28):

Overall alignment quality
Modality, Factivity, Polarity, 
Quantification, Lexical-semantic 
relatedness, Tense
Felicity of appositions and adjuncts, 
Types of unaligned material 
Locations, Dates, Entities

Alignment of main verbs and 
syntactically prominent words, 
Argument structure (mis-)matches

Figure 2: The Stanford Entailment Recognizer

the hypothesis. The results are typed dependency
graphs that contain a node for each word and la-
beled edges representing the grammatical relations
between words. Named entities are identified, and
contiguous collocations grouped. Next, it identifies
the highest-scoring alignment from each node in
the hypothesis graph to a single node in the premise
graph, or to null. It uses a locally decomposable
scoring function: The score of an alignment is the
sum of the local word and edge alignment scores.
The computation of these scores make extensive
use of about ten lexical similarity resources, in-
cluding WordNet, InfoMap, and Dekang Lin’s the-
saurus. Since the search space is exponential in
the hypothesis length, the system uses stochastic
(rather than exhaustive) search based on Gibbs sam-
pling (see de Marneffe et al. (2007)).

Entailment features. In the third stage, the sys-
tem produces roughly 100 features for each aligned
premise-hypothesis pair. A small number of them
are real-valued (mostly quality scores), but most
are binary implementations of small linguistic the-
ories whose activation indicates syntactic and se-

mantic (mis-)matches of different types. Figure 2
groups the features into five classes. Alignment
features measure the overall quality of the align-
ment as given by the lexical resources. Semantic
compatibility features check to what extent the
aligned material has the same meaning and pre-
serves semantic dimensions such as modality and
factivity, taking a limited amount of context into
account. Insertion/deletion features explicitly ad-
dress material that remains unaligned and assess its
felicity. Reference features ascertain that the two
sentences actually refer to the same events and par-
ticipants. Finally, structural features add structural
considerations by ensuring that argument structure
is preserved in the translation. See MacCartney et
al. (2006) for details on the features, and Sections
5 and 6 for examples of feature firings.

Efficiency considerations. The use of deep lin-
guistic analysis makes our entailment-based met-
ric considerably more heavyweight than traditional
MT metrics. The average total runtime per sentence
pair is 5 seconds on an AMD 2.6GHz Opteron core
– efficient enough to perform regular evaluations on
development and test sets. We are currently investi-
gating caching and optimizations that will enable
the use of our metric for MT parameter tuning in a
Minimum Error Rate Training setup (Och, 2003).

4 Experimental Evaluation

4.1 Experiments

Traditionally, human ratings for MT quality have
been collected in the form of absolute scores on a
five- or seven-point Likert scale, but low reliabil-
ity numbers for this type of annotation have raised
concerns (Callison-Burch et al., 2008). An alter-
native that has been adopted by the yearly WMT
evaluation shared tasks since 2008 is the collection
of pairwise preference judgments between pairs of
MT hypotheses which can be elicited (somewhat)
more reliably. We demonstrate that our approach
works well for both types of annotation and differ-
ent corpora. Experiment 1 models absolute scores
on Asian newswire, and Experiment 2 pairwise
preferences on European speech and news data.

4.2 Evaluation

We evaluate the output of our models both on the
sentence and on the system level. At the sentence
level, we can correlate predictions in Experiment 1
directly with human judgments with Spearman’s ρ ,
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a non-parametric rank correlation coefficient appro-
priate for non-normally distributed data. In Experi-
ment 2, the predictions cannot be pooled between
sentences. Instead of correlation, we compute “con-
sistency” (i.e., accuracy) with human preferences.

System-level predictions are computed in both
experiments from sentence-level predictions, as the
ratio of sentences for which each system provided
the best translation (Callison-Burch et al., 2008).
We extend this procedure slightly because real-
valued predictions cannot predict ties, while human
raters decide for a significant portion of sentences
(as much as 80% in absolute score annotation) to
“tie” two systems for first place. To simulate this
behavior, we compute “tie-aware” predictions as
the percentage of sentences where the system’s hy-
pothesis was assigned a score better or at most ε

worse than the best system. ε is set to match the
frequency of ties in the training data.

Finally, the predictions are again correlated with
human judgments using Spearman’s ρ . “Tie aware-
ness” makes a considerable practical difference,
improving correlation figures by 5–10 points.1

4.3 Baseline Metrics
We consider four baselines. They are small regres-
sion models as described in Section 2 over com-
ponent scores of four widely used MT metrics. To
alleviate possible nonlinearity, we add all features
in linear and log space. Each baselines carries the
name of the underlying metric plus the suffix -R.2

BLEUR includes the following 18 sentence-level
scores: BLEU-n and n-gram precision scores
(1 ≤ n ≤ 4); BLEU brevity penalty (BP); BLEU
score divided by BP. To counteract BLEU’s brittle-
ness at the sentence level, we also smooth BLEU-n
and n-gram precision as in Lin and Och (2004).

NISTR consists of 16 features. NIST-n scores
(1 ≤ n ≤ 10) and information-weighted n-gram
precision scores (1 ≤ n ≤ 4); NIST brevity penalty
(BP); and NIST score divided by BP.

1Due to space constraints, we only show results for “tie-
aware” predictions. See Padó et al. (2009) for a discussion.

2The regression models can simulate the behaviour of each
component by setting the weights appropriately, but are strictly
more powerful. A possible danger is that the parameters over-
fit on the training set. We therefore verified that the three
non-trivial “baseline” regression models indeed confer a bene-
fit over the default component combination scores: BLEU-1
(which outperformed BLEU-4 in the MetricsMATR 2008 eval-
uation), NIST-4, and TER (with all costs set to 1). We found
higher robustness and improved correlations for the regression
models. An exception is BLEU-1 and NIST-4 on Expt. 1 (Ar,
Ch), which perform 0.5–1 point better at the sentence level.

TERR includes 50 features. We start with the
standard TER score and the number of each of the
four edit operations. Since the default uniform cost
does not always correlate well with human judg-
ment, we duplicate these features for 9 non-uniform
edit costs. We find it effective to set insertion cost
close to 0, as a way of enabling surface variation,
and indeed the new TERp metric uses a similarly
low default insertion cost (Snover et al., 2009).

METEORR consists of METEOR v0.7.

4.4 Combination Metrics

The following three regression models implement
the methods discussed in Sections 2 and 3.

MTR combines the 85 features of the four base-
line models. It uses no entailment features.

RTER uses the 70 entailment features described
in Section 3.1, but no MTR features.

MT+RTER uses all MTR and RTER features,
combining matching and entailment evidence.3

5 Expt. 1: Predicting Absolute Scores

Data. Our first experiment evaluates the models
we have proposed on a corpus with traditional an-
notation on a seven-point scale, namely the NIST
OpenMT 2008 corpus.4 The corpus contains trans-
lations of newswire text into English from three
source languages (Arabic (Ar), Chinese (Ch), Urdu
(Ur)). Each language consists of 1500–2800 sen-
tence pairs produced by 7–15 MT systems.

We use a “round robin” scheme. We optimize
the weights of our regression models on two lan-
guages and then predict the human scores on the
third language. This gauges performance of our
models when training and test data come from the
same genre, but from different languages, which
we believe to be a setup of practical interest. For
each test set, we set the system-level tie parameter
ε so that the relative frequency of ties was equal
to the training set (65–80%). Hypotheses generally
had to receive scores within 0.3−0.5 points to tie.

Results. Table 1 shows the results. We first con-
centrate on the upper half (sentence-level results).
The predictions of all models correlate highly sig-
nificantly with human judgments, but we still see
robustness issues for the individual MT metrics.

3Software for RTER and MT+RTER is available from
http://nlp.stanford.edu/software/mteval.shtml.

4Available from http://www.nist.gov.
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Evaluation Data Metrics
train test BLEUR METEORR NISTR TERR MTR RTER MT+RTER

Sentence-level
Ar+Ch Ur 49.9 49.1 49.5 50.1 50.1 54.5 55.6
Ar+Ur Ch 53.9 61.1 53.1 50.3 57.3 58.0 62.7
Ch+Ur Ar 52.5 60.1 50.4 54.5 55.2 59.9 61.1

System-level
Ar+Ch Ur 73.9 68.4 50.0 90.0∗ 92.7∗ 77.4∗ 81.0∗
Ar+Ur Ch 38.5 44.3 40.0 59.0∗ 51.8∗ 47.7 57.3∗
Ch+Ur Ar 59.7∗ 86.3∗ 61.9∗ 42.1 48.1 59.7∗ 61.7∗

Table 1: Expt. 1: Spearman’s ρ for correlation between human absolute scores and model predictions on
NIST OpenMT 2008. Sentence level: All correlations are highly significant. System level: ∗: p<0.05.

METEORR achieves the best correlation for Chi-
nese and Arabic, but fails for Urdu, apparently the
most difficult language. TERR shows the best result
for Urdu, but does worse than METEORR for Ara-
bic and even worse than BLEUR for Chinese. The
MTR combination metric alleviates this problem to
some extent by improving the “worst-case” perfor-
mance on Urdu to the level of the best individual
metric. The entailment-based RTER system outper-
forms MTR on each language. It particularly im-
proves on MTR’s correlation on Urdu. Even though
METEORR still does somewhat better than MTR
and RTER, we consider this an important confirma-
tion for the usefulness of entailment features in MT
evaluation, and for their robustness.5

In addition, the combined model MT+RTER is
best for all three languages, outperforming METE-
ORR for each language pair. It performs consid-
erably better than either MTR or RTER. This is a
second result: the types of evidence provided by
MTR and RTER appear to be complementary and
can be combined into a superior model.

On the system level (bottom half of Table 1),
there is high variance due to the small number of
predictions per language, and many predictions are
not significantly correlated with human judgments.
BLEUR, METEORR, and NISTR significantly pre-
dict one language each (all Arabic); TERR, MTR,
and RTER predict two languages. MT+RTER is
the only model that shows significance for all three
languages. This result supports the conclusions we
have drawn from the sentence-level analysis.

Further analysis. We decided to conduct a thor-
ough analysis of the Urdu dataset, the most difficult
source language for all metrics. We start with a fea-

5These results are substantially better than the performance
our metric showed in the MetricsMATR 2008 challenge. Be-
yond general enhancement of our model, we attribute the less
good MetricsMATR 2008 results to an infelicitous choice
of training data for the submission, coupled with the large
amount of ASR output in the test data, whose disfluencies
represent an additional layer of problems for deep approaches.
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Figure 3: Experiment 1: Learning curve (Urdu).

ture ablation study. Removing any feature group
from RTER results in drops in correlation of at least
three points. The largest drops occur for the struc-
tural (δ = −11) and insertion/deletion (δ = −8)
features. Thus, all feature groups appear to con-
tribute to the good correlation of RTER. However,
there are big differences in the generality of the
feature groups: in isolation, the insertion/deletion
features achieve almost no correlation, and need to
be complemented by more robust features.

Next, we analyze the role of training data. Fig-
ure 3 shows Urdu average correlations for models
trained on increasing subsets of the training data
(10% increments, 10 random draws per step; Ar
and Ch show similar patterns.) METEORR does not
improve, which is to be expected given the model
definition. RTER has a rather flat learning curve
that climbs to within 2 points of the final correla-
tion value for 20% of the training set (about 400
sentence pairs). Apparently, entailment features do
not require a large training set, presumably because
most features of RTER are binary. The remaining
two models, MTR and MT+RTER, show clearer
benefit from more data. With 20% of the total data,
they climb to within 5 points of their final perfor-
mance, but keep slowly improving further.
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REF: I shall face that fact today.
HYP: Today I will face this reality.
[doc WL-34-174270-7483871, sent 4, system1]

Gold: 6
METEORR: 2.8
RTER: 6.1
• Only function words unaligned (will, this)
• Alignment fact/reality: hypernymy is ok

in upward monotone context

REF: What does BBC’s Haroon Rasheed say after a visit to Lal Masjid Jamia
Hafsa complex? There are no underground tunnels in Lal Masjid or Jamia
Hafsa. The presence of the foreigners could not be confirmed as well. What
became of the extremists like Abuzar?
HYP: BBC Haroon Rasheed Lal Masjid, Jamia Hafsa after his visit to Auob
Medical Complex says Lal Masjid and seminary in under a land mine, not
also been confirmed the presence of foreigners could not be, such as Abu by
the extremist? [doc WL-12-174261-7457007, sent 2, system2]

Gold: 1
METEORR: 4.5
RTER: 1.2
• Hypothesis root node unaligned
• Missing alignments for subjects
• Important entities in hypothesis cannot be

aligned
• Reference, hypothesis differ in polarity

Table 2: Expt. 1: Reference translations and MT output (Urdu). Scores are out of 7 (higher is better).

Finally, we provide a qualitative comparison of
RTER’s performance against the best baseline met-
ric, METEORR. Since the computation of RTER
takes considerably more resources than METEORR,
it is interesting to compare the predictions of RTER
against METEORR. Table 2 shows two classes of
examples with apparent improvements.

The first example (top) shows a good translation
that is erroneously assigned a low score by ME-
TEORR because (a) it cannot align fact and reality
(METEORR aligns only synonyms) and (b) it pun-
ishes the change of word order through its “penalty”
term. RTER correctly assigns a high score. The
features show that this prediction results from two
semantic judgments. The first is that the lack of
alignments for two function words is unproblem-
atic; the second is that the alignment between fact
and reality, which is established on the basis of
WordNet similarity, is indeed licensed in the cur-
rent context. More generally, we find that RTER
is able to account for more valid variation in good
translations because (a) it judges the validity of
alignments dependent on context; (b) it incorpo-
rates more semantic similarities; and (c) it weighs
mismatches according to the word’s status.

The second example (bottom) shows a very bad
translation that is scored highly by METEORR,
since almost all of the reference words appear either
literally or as synonyms in the hypothesis (marked
in italics). In combination with METEORR’s con-
centration on recall, this is sufficient to yield a
moderately high score. In the case of RTER, a num-
ber of mismatch features have fired. They indicate
problems with the structural well-formedness of
the MT output as well as semantic incompatibil-
ity between hypothesis and reference (argument
structure and reference mismatches).

6 Expt. 2: Predicting Pairwise Preferences

In this experiment, we predict human pairwise pref-
erence judgments (cf. Section 4). We reuse the
linear regression framework from Section 2 and
predict pairwise preferences by predicting two ab-
solute scores (as before) and comparing them.6

Data. This experiment uses the 2006–2008 cor-
pora of the Workshop on Statistical Machine
Translation (WMT).7 It consists of data from EU-
ROPARL (Koehn, 2005) and various news com-
mentaries, with five source languages (French, Ger-
man, Spanish, Czech, and Hungarian). As training
set, we use the portions of WMT 2006 and 2007
that are annotated with absolute scores on a five-
point scale (around 14,000 sentences produced by
40 systems). The test set is formed by the WMT
2008 relative rank annotation task. As in Experi-
ment 1, we set ε so that the incidence of ties in the
training and test set is equal (60%).

Results. Table 4 shows the results. The left result
column shows consistency, i.e., the accuracy on
human pairwise preference judgments.8 The pat-
tern of results matches our observations in Expt. 1:
Among individual metrics, METEORR and TERR
do better than BLEUR and NISTR. MTR and RTER
outperform individual metrics. The best result by a
wide margin, 52.5%, is shown by MT+RTER.

6We also experimented with a logistic regression model
that predicts binary preferences directly. Its performance is
comparable; see Padó et al. (2009) for details.

7Available from http://www.statmt.org/.
8The random baseline is not 50%, but, according to our

experiments, 39.8%. This has two reasons: (1) the judgments
include contradictory and tie annotations that cannot be pre-
dicted correctly (raw inter-annotator agreement on WMT 2008
was 58%); (2) metrics have to submit a total order over the
translations for each sentence, which introduces transitivity
constraints. For details, see Callison-Burch et al. (2008).
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Segment MTR RTER MT+RTER Gold

REF: Scottish NHS boards need to improve criminal records checks for
employees outside Europe, a watchdog has said.

HYP: The Scottish health ministry should improve the controls on extra-
community employees to check whether they have criminal precedents,
said the monitoring committee. [1357, lium-systran]

Rank: 3 Rank: 1 Rank: 2 Rank: 1

REF: Arguments, bullying and fights between the pupils have extended
to the relations between their parents.
HYP: Disputes, chicane and fights between the pupils transposed in
relations between the parents. [686, rbmt4]

Rank: 5 Rank: 2 Rank: 4 Rank: 5

Table 3: Expt. 2: Reference translations and MT output (French). Ranks are out of five (smaller is better).

Feature set Consis-
tency (%)

System-level
correlation (ρ)

BLEUR 49.6 69.3
METEORR 51.1 72.6
NISTR 50.2 70.4
TERR 51.2 72.5
MTR 51.5 73.1
RTER 51.8 78.3
MT+RTER 52.5 75.8
WMT 08 (worst) 44 37
WMT 08 (best) 56 83

Table 4: Expt. 2: Prediction of pairwise preferences
on the WMT 2008 dataset.

The right column shows Spearman’s ρ for the
correlation between human judgments and tie-
aware system-level predictions. All metrics predict
system scores highly significantly, partly due to the
larger number of systems compared (87 systems).
Again, we see better results for METEORR and
TERR than for BLEUR and NISTR, and the indi-
vidual metrics do worse than the combination mod-
els. Among the latter, the order is: MTR (worst),
MT+RTER, and RTER (best at 78.3).

WMT 2009. We submitted the Expt. 2 RTER
metric to the WMT 2009 shared MT evaluation
task (Padó et al., 2009). The results provide fur-
ther validation for our results and our general ap-
proach. At the system level, RTER made third place
(avg. correlation ρ = 0.79), trailing the two top met-
rics closely (ρ = 0.80, ρ = 0.83) and making the
best predictions for Hungarian. It also obtained the
second-best consistency score (53%, best: 54%).

Metric comparison. The pairwise preference an-
notation of WMT 2008 gives us the opportunity to
compare the MTR and RTER models by comput-
ing consistency separately on the “top” (highest-
ranked) and “bottom” (lowest-ranked) hypotheses

for each reference. RTER performs about 1.5 per-
cent better on the top than on the bottom hypothe-
ses. The MTR model shows the inverse behavior,
performing 2 percent worse on the top hypothe-
ses. This matches well with our intuitions: We see
some noise-induced degradation for the entailment
features, but not much. In contrast, surface-based
features are better at detecting bad translations than
at discriminating among good ones.

Table 3 further illustrates the difference between
the top models on two example sentences. In the top
example, RTER makes a more accurate prediction
than MTR. The human rater’s favorite translation
deviates considerably from the reference in lexi-
cal choice, syntactic structure, and word order, for
which it is punished by MTR (rank 3/5). In contrast,
RTER determines correctly that the propositional
content of the reference is almost completely pre-
served (rank 1). In the bottom example, RTER’s
prediction is less accurate. This sentence was rated
as bad by the judge, presumably due to the inap-
propriate main verb translation. Together with the
subject mismatch, MTR correctly predicts a low
score (rank 5/5). RTER’s attention to semantic over-
lap leads to an incorrect high score (rank 2/5).

Feature Weights. Finally, we make two observa-
tions about feature weights in the RTER model.

First, the model has learned high weights not
only for the overall alignment score (which be-
haves most similarly to traditional metrics), but also
for a number of binary syntacto-semantic match
and mismatch features. This confirms that these
features systematically confer the benefit we have
shown anecdotally in Table 2. Features with a con-
sistently negative effect include dropping adjuncts,
unaligned or poorly aligned root nodes, incompat-
ible modality between the main clauses, person
and location mismatches (as opposed to general
mismatches) and wrongly handled passives. Con-
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versely, higher scores result from factors such as
high alignment score, matching embeddings under
factive verbs, and matches between appositions.

Second, good MT evaluation feature weights are
not good weights for RTE. Some differences, par-
ticularly for structural features, are caused by the
low grammaticality of MT data. For example, the
feature that fires for mismatches between depen-
dents of predicates is unreliable on the WMT data.
Other differences do reflect more fundamental dif-
ferences between the two tasks (cf. Section 3). For
example, RTE puts high weights onto quantifier
and polarity features, both of which have the poten-
tial of influencing entailment decisions, but are (at
least currently) unimportant for MT evaluation.

7 Related Work

Researchers have exploited various resources to en-
able the matching between words or n-grams that
are semantically close but not identical. Banerjee
and Lavie (2005) and Chan and Ng (2008) use
WordNet, and Zhou et al. (2006) and Kauchak
and Barzilay (2006) exploit large collections of
automatically-extracted paraphrases. These ap-
proaches reduce the risk that a good translation
is rated poorly due to lexical deviation, but do not
address the problem that a translation may contain
many long matches while lacking coherence and
grammaticality (cf. the bottom example in Table 2).

Thus, incorporation of syntactic knowledge has
been the focus of another line of research. Amigó
et al. (2006) use the degree of overlap between the
dependency trees of reference and hypothesis as a
predictor of translation quality. Similar ideas have
been applied by Owczarzak et al. (2008) to LFG
parses, and by Liu and Gildea (2005) to features
derived from phrase-structure tress. This approach
has also been successful for the related task of
summarization evaluation (Hovy et al., 2006).

The most comparable work to ours is Giménez
and Márquez (2008). Our results agree on the cru-
cial point that the use of a wide range of linguistic
knowledge in MT evaluation is desirable and im-
portant. However, Giménez and Márquez advocate
the use of a bottom-up development process that
builds on a set of “heterogeneous”, independent
metrics each of which measures overlap with re-
spect to one linguistic level. In contrast, our aim
is to provide a “top-down”, integrated motivation
for the features we integrate through the textual
entailment recognition paradigm.

8 Conclusion and Outlook

In this paper, we have explored a strategy for the
evaluation of MT output that aims at comprehen-
sively assessing the meaning equivalence between
reference and hypothesis. To do so, we exploit the
common ground between MT evaluation and the
Recognition of Textual Entailment (RTE), both of
which have to distinguish valid from invalid lin-
guistic variation. Conceputalizing MT evaluation
as an entailment problem motivates the use of a
rich feature set that covers, unlike almost all earlier
metrics, a wide range of linguistic levels, including
lexical, syntactic, and compositional phenomena.

We have used an off-the-shelf RTE system to
compute these features, and demonstrated that a
regression model over these features can outper-
form an ensemble of traditional MT metrics in two
experiments on different datasets. Even though the
features build on deep linguistic analysis, they are
robust enough to be used in a real-world setting, at
least on written text. A limited amount of training
data is sufficient, and the weights generalize well.

Our data analysis has confirmed that each of the
feature groups contributes to the overall success of
the RTE metric, and that its gains come from its
better success at abstracting away from valid vari-
ation (such as word order or lexical substitution),
while still detecting major semantic divergences.
We have also clarified the relationship between MT
evaluation and textual entailment: The majority of
phenomena (but not all) that are relevant for RTE
are also informative for MT evaluation.

The focus of this study was on the use of an ex-
isting RTE infrastructure for MT evaluation. Future
work will have to assess the effectiveness of individ-
ual features and investigate ways to customize RTE
systems for the MT evaluation task. An interesting
aspect that we could not follow up on in this paper
is that entailment features are linguistically inter-
pretable (cf. Fig. 2) and may find use in uncovering
systematic shortcomings of MT systems.

A limitation of our current metric is that it is
language-dependent and relies on NLP tools in
the target language that are still unavailable for
many languages, such as reliable parsers. To some
extent, of course, this problem holds as well for
state-of-the-art MT systems. Nevertheless, it must
be an important focus of future research to develop
robust meaning-based metrics for other languages
that can cash in the promise that we have shown
for evaluating translation into English.
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Abstract

A number of approaches to Automatic
MT Evaluation based on deep linguistic
knowledge have been suggested. How-
ever, n-gram based metrics are still to-
day the dominant approach. The main
reason is that the advantages of employ-
ing deeper linguistic information have not
been clarified yet. In this work, we pro-
pose a novel approach for meta-evaluation
of MT evaluation metrics, since correla-
tion cofficient against human judges do
not reveal details about the advantages and
disadvantages of particular metrics. We
then use this approach to investigate the
benefits of introducing linguistic features
into evaluation metrics. Overall, our ex-
periments show that (i) both lexical and
linguistic metrics present complementary
advantages and (ii) combining both kinds
of metrics yields the most robust meta-
evaluation performance.

1 Introduction

Automatic evaluation methods based on similarity
to human references have substantially accelerated
the development cycle of many NLP tasks, such
as Machine Translation, Automatic Summariza-
tion, Sentence Compression and Language Gen-
eration. These automatic evaluation metrics allow
developers to optimize their systems without the
need for expensive human assessments for each
of their possible system configurations. However,
estimating the system output quality according to
its similarity to human references is not a trivial
task. The main problem is that many NLP tasks
are open/subjective; therefore, different humans
may generate different outputs, all of them equally
valid. Thus, language variability is an issue.

In order to tackle language variability in the

context of Machine Translation, a considerable ef-
fort has also been made to include deeper linguis-
tic information in automatic evaluation metrics,
both syntactic and semantic (see Section 2 for de-
tails). However, the most commonly used metrics
are still based on n-gram matching. The reason is
that the advantages of employing higher linguistic
processing levels have not been clarified yet.

The main goal of our work is to analyze to what
extent deep linguistic features can contribute to the
automatic evaluation of translation quality. For
that purpose, we compare – using four different
test beds – the performance of 16 n-gram based
metrics, 48 linguistic metrics and one combined
metric from the state of the art.

Analyzing the reliability of evaluation met-
rics requires meta-evaluation criteria. In this re-
spect, we identify important drawbacks of the
standard meta-evaluation methods based on cor-
relation with human judgements. In order to
overcome these drawbacks, we then introduce six
novel meta-evaluation criteria which represent dif-
ferent metric reliability dimensions. Our analysis
indicates that: (i) both lexical and linguistic met-
rics have complementary advantages and different
drawbacks; (ii) combining both kinds of metrics
is a more effective and robust evaluation method
across all meta-evaluation criteria.

In addition, we also perform a qualitative analy-
sis of one hundred sentences that were incorrectly
evaluated by state-of-the-art metrics. The analysis
confirms that deep linguistic techniques are neces-
sary to avoid the most common types of error.

Section 2 examines the state of the art Section 3
describes the test beds and metrics considered in
our experiments. In Section 4 the correlation be-
tween human assessors and metrics is computed,
with a discussion of its drawbacks. In Section 5
different quality aspects of metrics are analysed.
Conclusions are drawn in the last section.
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2 Previous Work on Machine
Translation Meta-Evaluation

Insofar as automatic evaluation metrics for ma-
chine translation have been proposed, different
meta-evaluation frameworks have been gradually
introduced. For instance, Papineni et al. (2001)
introduced the BLEU metric and evaluated its re-
liability in terms of Pearson correlation with hu-
man assessments for adequacy and fluency judge-
ments. With the aim of overcoming some of the
deficiencies of BLEU, Doddington (2002) intro-
duced the NIST metric. Metric reliability was
also estimated in terms of correlation with human
assessments, but over different document sources
and for a varying number of references and seg-
ment sizes. Melamed et al. (2003) argued, at the
time of introducing the GTM metric, that Pearson
correlation coefficients can be affected by scale
properties, and suggested, in order to avoid this
effect, to use the non-parametric Spearman corre-
lation coefficients instead.

Lin and Och (2004) experimented, unlike pre-
vious works, with a wide set of metrics, including
NIST, WER (Nießen et al., 2000), PER (Tillmann
et al., 1997), and variants of ROUGE, BLEU and
GTM. They computed both Pearson and Spearman
correlation, obtaining similar results in both cases.
In a different work, Banerjee and Lavie (2005) ar-
gued that the measured reliability of metrics can
be due to averaging effects but might not be robust
across translations. In order to address this issue,
they computed the translation-by-translation cor-
relation with human judgements (i.e., correlation
at the segment level).

All that metrics were based on n-gram over-
lap. But there is also extensive research fo-
cused on including linguistic knowledge in met-
rics (Owczarzak et al., 2006; Reeder et al., 2001;
Liu and Gildea, 2005; Amigó et al., 2006; Mehay
and Brew, 2007; Giménez and Màrquez, 2007;
Owczarzak et al., 2007; Popovic and Ney, 2007;
Giménez and Màrquez, 2008b) among others. In
all these cases, metrics were also evaluated by
means of correlation with human judgements.

In a different research line, several authors
have suggested approaching automatic evalua-
tion through the combination of individual metric
scores. Among the most relevant let us cite re-
search by Kulesza and Shieber (2004), Albrecht
and Hwa (2007). But finding optimal metric
combinations requires a meta-evaluation criterion.

Most approaches again rely on correlation with
human judgements. However, some of them mea-
sured the reliability of metric combinations in
terms of their ability to discriminate between hu-
man translations and automatic ones (human like-
ness) (Amigó et al., 2005). .

In this work, we present a novel approach to
meta-evaluation which is distinguished by the use
of additional easily interpretable meta-evaluation
criteria oriented to measure different aspects of
metric reliability. We then apply this approach to
find out about the advantages and challenges of in-
cluding linguistic features in meta-evaluation cri-
teria.

3 Metrics and Test Beds

3.1 Metric Set

For our study, we have compiled a rich set of met-
ric variants at three linguistic levels: lexical, syn-
tactic, and semantic. In all cases, translation qual-
ity is measured by comparing automatic transla-
tions against a set of human references.

At the lexical level, we have included several
standard metrics, based on different similarity as-
sumptions: edit distance (WER, PER and TER),
lexical precision (BLEU and NIST), lexical recall
(ROUGE), and F-measure (GTM and METEOR). At
the syntactic level, we have used several families
of metrics based on dependency parsing (DP) and
constituency trees (CP). At the semantic level, we
have included three different families which op-
erate using named entities (NE), semantic roles
(SR), and discourse representations (DR). A de-
tailed description of these metrics can be found in
(Giménez and Màrquez, 2007).

Finally, we have also considered ULC, which
is a very simple approach to metric combina-
tion based on the unnormalized arithmetic mean
of metric scores, as described by Giménez and
Màrquez (2008a). ULC considers a subset of met-
rics which operate at several linguistic levels. This
approach has proven very effective in recent eval-
uation campaigns. Metric computation has been
carried out using the IQMT Framework for Auto-
matic MT Evaluation (Giménez, 2007)1. The sim-
plicity of this approach (with no training of the
metric weighting scheme) ensures that the poten-
tial advantages detected in our experiments are not
due to overfitting effects.

1http://www.lsi.upc.edu/˜nlp/IQMT
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2004 2005
AE CE AE CE

#references 5 5 5 4
#systemsassessed 5 10 5+1 5
#casesassessed 347 447 266 272

Table 1: NIST 2004/2005 MT Evaluation Cam-
paigns. Test bed description

3.2 Test Beds

We use the test beds from the 2004 and 2005
NIST MT Evaluation Campaigns (Le and Przy-
bocki, 2005)2. Both campaigns include two dif-
ferent translations exercises: Arabic-to-English
(‘AE’) and Chinese-to-English (‘CE’). Human as-
sessments of adequacy and fluency, on a 1-5 scale,
are available for a subset of sentences, each eval-
uated by two different human judges. A brief nu-
merical description of these test beds is available
in Table 1. The corpus AE05 includes, apart from
five automatic systems, one human-aided system
that is only used in our last experiment.

4 Correlation with Human Judgements

4.1 Correlation at the Segment vs. System
Levels

Let us first analyze the correlation with human
judgements for linguistic vs. n-gram based met-
rics. Figure 1 shows the correlation obtained by
each automatic evaluation metric at system level
(horizontal axis) versus segment level (vertical
axis) in our test beds. Linguistic metrics are rep-
resented by grey plots, and black plots represent
metrics based on n-gram overlap.

The most remarkable aspect is that there exists
a certain trade-off between correlation at segment
versus system level. In fact, this graph produces
a negative Pearson correlation coefficient between
system and segment levels of 0.44. In other words,
depending on how the correlation is computed,
the relative predictive power of metrics can swap.
Therefore, we need additional meta-evaluation cri-
teria in order to clarify the behavior of linguistic
metrics as compared to n-gram based metrics.

However, there are some exceptions. Some
metrics achieve high correlation at both levels.
The first one is ULC (the circle in the plot), which
combines both kind of metrics in a heuristic way
(see Section 3.1). The metric nearest to ULC is

2http://www.nist.gov/speech/tests/mt

Figure 1: Averaged Pearson correlation at system
vs. segment level over all test beds.

DP-Or-?, which computes lexical overlapping but
on dependency relationships. These results are a
first evidence of the advantages of combining met-
rics at several linguistic processing levels.

4.2 Drawbacks of Correlation-based
Meta-evaluation

Although correlation with human judgements is
considered the standard meta-evaluation criterion,
it presents serious drawbacks. With respect to
correlation at system level, the main problem is
that the relative performance of different metrics
changes almost randomly between testbeds. One
of the reasons is that the number of assessed sys-
tems per testbed is usually low, and then correla-
tion has a small number of samples to be estimated
with. Usually, the correlation at system level is
computed over no more than a few systems.

For instance, Table 2 shows the best 10 met-
rics in CE05 according to their correlation with
human judges at the system level, and then the
ranking they obtain in the AE05 testbed. There
are substantial swaps between both rankings. In-
deed, the Pearson correlation of both ranks is only
0.26. This result supports the intuition in (Baner-
jee and Lavie, 2005) that correlation at segment
level is necessary to ensure the reliability of met-
rics in different situations.

However, the correlation values of metrics at
segment level have also drawbacks related to their
interpretability. Most metrics achieve a Pearson
coefficient lower than 0.5. Figure 2 shows two
possible relationships between human and metric
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Table 2: Metrics rankings according to correlation
with human judgements using CE05 vs. AE05

Figure 2: Human judgements and scores of two
hypothetical metrics with Pearson correlation 0.5

produced scores. Both hypothetical metrics A and
B would achieve a 0.5 correlation. In the case
of Metric A, a high score implies a high human
assessed quality, but not the reverse. This is the
tendency hypothesized by Culy and Riehemann
(2003). In the case of Metric B, the high scored
translations can achieve both low or high quality
according to human judges but low scores ensure
low quality. Therefore, the same Pearson coeffi-
cient may hide very different behaviours. In this
work, we tackle these drawbacks by defining more
specific meta-evaluation criteria.

5 Alternatives to Correlation-based
Meta-evaluation

We have seen that correlation with human judge-
ments has serious limitations for metric evalua-
tion. Therefore, we have focused on other aspects
of metric reliability that have revealed differences
between n-gram and linguistic based metrics:

1. Is the metric able to accurately reveal im-
provements between two systems?

2. Can we trust the metric when it says that a
translation is very good or very bad?

Figure 3: SIP versus SIR

3. Are metrics able to identify good translations
which are dissimilar from the models?

We now discuss each of these aspects sepa-
rately.

5.1 Ability of metrics to Reveal System
Improvements

We now investigate to what extent a significant
system improvement according to the metric im-
plies a significant improvement according to hu-
man assessors, and viceversa. In other words: are
the metrics able to detect any quality improve-
ment? Is a metric score improvement a strong ev-
idence of quality increase? Knowing that a metric
has a 0.8 Pearson correlation at the system level or
0.5 at the segment level does not provide a direct
answer to this question.

In order to tackle this issue, we compare met-
rics versus human assessments in terms of pre-
cision and recall over statistically significant im-
provements within all system pairs in the test
beds. First, Table 3 shows the amount of signif-
icant improvements over human judgements ac-
cording to the Wilcoxon statistical significant test
(α ≤ 0.025). For instance, the testbed CE2004
consists of 10 systems, i.e. 45 system pairs; from
these, in 40 cases (rightmost column) one of the
systems significantly improves the other.

Now we would like to know, for every metric, if
the pairs which are significantly different accord-
ing to human judges are also the pairs which are
significantly different according to the metric.

Based on these data, we define two meta-
metrics: Significant Improvement Precision (SIP)
and Significant Improvement Recall (SIR). SIP
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Systems System pairs Sig. imp.
CE2004 10 45 40
AE2004 5 10 8
CE2005 5 10 4
AE2005 5 10 6
Total 25 75 58

Table 3: System pairs with a significant difference
according to human judgements (Wilcoxon test)

(precision) represents the reliability of improve-
ments detected by metrics. SIR (recall) represents
to what extent the metric is able to cover the sig-
nificant improvements detected by humans. Let
Ih be the set of significant improvements detected
by human assessors and Im the set detected by the
metric m. Then:

SIP =
|Ih ∩ Im|
|Im|

SIR =
|Ih ∩ Im|
|Ih|

Figure 3 shows the SIR and SIP values obtained
for each metric. Linguistic metrics achieve higher
precision values but at the cost of an important re-
call decrease. Given that linguistic metrics require
matching translation with references at additional
linguistic levels, the significant improvements de-
tected are more reliable (higher precision or SIP),
but at the cost of recall over real significant im-
provements (lower SIR).

This result supports the behaviour predicted in
(Giménez and Màrquez, 2009). Although linguis-
tic metrics were motivated by the idea of model-
ing linguistic variability, the practical effect is that
current linguistic metrics introduce additional re-
strictions (such as dependency tree overlap, for in-
stance) for accepting automatic translations. Then
they reward precision at the cost of recall in the
evaluation process, and this explains the high cor-
relation with human judgements at system level
with respect to segment level.

All n-gram based metrics achieve SIP and SIR
values between 0.8 and 0.9. This result suggests
that n-gram based metrics are reasonably reliable
for this purpose. Note that the combined met-
ric, ULC (the circle in the figure), achieves re-
sults comparable to n-gram based metrics with
this test3. That is, combining linguistic and n-
gram based metrics preserves the good behavior
of n-gram based metrics in this test.

3Notice that we just have 75 significant improvement
samples, so small differences in SIP or SIR have no relevance

5.2 Reliability of High and Low Metric
Scores

The issue tackled in this section is to what extent
a very low or high score according to the metric
is reliable for detecting extreme cases (very good
or very bad translations). In particular, note that
detecting wrong translations is crucial in order to
analyze the system drawbacks.

In order to define an accuracy measure for the
reliability of very low/high metric scores, it is nec-
essary to define quality thresholds for both the
human assessments and metric scales. Defining
thresholds for manual scores is immediate (e.g.,
lower than 4/10). However, each automatic evalu-
ation metric has its own scale properties. In order
to solve scaling problems we will focus on equiva-
lent rank positions: we associate the ith translation
according to the metric ranking with the quality
value manually assigned to the ith translation in
the manual ranking.

Being Qh(t) and Qm(t) the human and met-
ric assessed quality for the translation t, and being
rankh(t) and rankm(t) the rank of the translation
t according to humans and the metric, the normal-
ized metric assessed quality is:

QNm(t) = Qh(t′)| (rankh(t′) = rankm(t))

In order to analyze the reliability of metrics
when identifying wrong or high quality transla-
tions, we look for contradictory results between
the metric and the assessments. In other words,
we look for metric errors in which the quality es-
timated by the metric is low (QNm(t) ≤ 3) but the
quality assigned by assessors is high (Qh(t) ≥ 5)
or viceversa (QNm(t) ≥ 7 and Qh(t) ≤ 4).

The vertical axis in Figure 4 represents the ra-
tio of errors in the set of low scored translations
according to a given metric. The horizontal axis
represents the ratio of errors over the set of high
scored translations. The first observation is that
all metrics are less reliable when they assign low
scores (which corresponds with the situation A de-
scribed in Section 4.2). For instance, the best met-
ric erroneously assigns a low score in more than
20% of the cases. In general, the linguistic met-
rics do not improve the ability to capture wrong
translations (horizontal axis in the figure). How-
ever, again, the combining metric ULC achieves
the same reliability as the best n-gram based met-
ric.
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In order to check the robustness of these results,
we computed the correlation of individual metric
failures between test beds, obtaining 0.67 Pearson
for the lowest correlated test bed pair (AE2004 and
CE2005) and 0.88 for the highest correlated pair
(AE2004 and CE2004).

Figure 4: Counter sample ratio for high vs low
metric scored translations

5.2.1 Analysis of Evaluation Samples
In order to shed some light on the reasons for the
automatic evaluation failures when assigning low
scores, we have manually analyzed cases in which
a metric score is low but the quality according to
humans is high (QNm ≤ 3 and Qh ≥ 7). We
have studied 100 sentence evaluation cases from
representatives of each metric family including: 1-
PER, BLEU, DP-Or-?, GTM (e = 2), METEOR
and ROUGEL. The evaluation cases have been ex-
tracted from the four test beds. We have identified
four main (non exclusive) failure causes:
Format issues, e.g. “US ” vs “United States”).
Elements such as abbreviations, acronyms or num-
bers which do not match the manual translation.
Pseudo-synonym terms, e.g. “US Scheduled the
Release” vs. “US set to Release”). ) In most of
these cases, synonymy can only be identified from
the discourse context. Therefore, terminological
resources (e.g., WordNet) are not enough to tackle
this problem.
Non relevant information omissions, e.g.
“Thank you” vs. “Thank you very much” or
“dollar” vs. “US dollar”)). The translation
system obviates some information which, in
context, is not considered crucial by the human
assessors. This effect is specially important in

short sentences.
Incorrect structures that change the meaning
while maintaining the same idea (e.g., “Bush
Praises NASA ’s Mars Mission” vs “ Bush praises
nasa of Mars mission” ).

Note that all of these kinds of failure - except
formatting issues - require deep linguistic process-
ing while n-gram overlap or even synonyms ex-
tracted from a standard ontology are not enough to
deal with them. This conclusion motivates the in-
corporation of linguistic processing into automatic
evaluation metrics.

5.3 Ability to Deal with Translations that are
Dissimilar to References.

The results presented in Section 5.2 indicate that a
high score in metrics tends to be highly related to
truly good translations. This is due to the fact that
a high word overlapping with human references is
a reliable evidence of quality. However, in some
cases the translations to be evaluated are not so
similar to human references.

An example of this appears in the test bed
NIST05AE which includes a human-aided sys-
tem, LinearB (Callison-Burch, 2005). This system
produces correct translations whose words do not
necessarily overlap with references. On the other
hand, a statistics based system tends to produce
incorrect translations with a high level of lexical
overlapping with the set of human references. This
case was reported by Callison-Burch et al. (2006)
and later studied by Giménez and Màrquez (2007).
They found out that lexical metrics fail to pro-
duce reliable evaluation scores. They favor sys-
tems which share the expected reference sublan-
guage (e.g., statistical) and penalize those which
do not (e.g., LinearB).

We can find in our test bed many instances in
which the statistical systems obtain a metric score
similar to the assisted system while achieving a
lower mark according to human assessors. For in-
stance, for the following translations, ROUGEL

assigns a slightly higher score to the output of a
statistical system which contains a lot of grammat-
ical and syntactical failures.

Human assisted system: The Chinese President made un-
precedented criticism of the leaders of Hong Kong after
political failings in the former British colony on Mon-
day . Human assessment=8.5.

Statistical system: Chinese President Hu Jintao today un-
precedented criticism to the leaders of Hong Kong
wake political and financial failure in the former
British colony. Human assessment=3.
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Figure 5: Maximum translation quality decreasing
over similarly scored translation pairs.

In order to check the metric resistance to be
cheated by translations with high lexical over-
lapping, we estimate the quality decrease that
we could cause if we optimized the human-aided
translations according to the automatic metric. For
this, we consider in each translation case c, the
worse automatic translation t that equals or im-
proves the human-aided translation th according
to the automatic metric m. Formally the averaged
quality decrease is:

Quality decrease(m) =

Avgc(maxt(Qh(th)−Qh(t)|Qm(th) ≤ Qm(t)))

Figure 5 illustrates the results obtained. All
metrics are suitable to be cheated, assigning sim-
ilar or higher scores to worse translations. How-
ever, linguistic metrics are more resistant. In addi-
tion, the combined metric ULC obtains the best re-
sults, better than both linguistic and n-gram based
metrics. Our conclusion is that including higher
linguistic levels in metrics is relevant to prevent
ungrammatical n-gram matching to achieve simi-
lar scores than grammatical constructions.

5.4 The Oracle System Test

In order to obtain additional evidence about the
usefulness of combining evaluation metrics at dif-
ferent processing levels, let us consider the follow-
ing situation: given a set of reference translations
we want to train a combined system that takes
the most appropriate translation approach for each
text segment. We consider the set of translations
system presented in each competition as the trans-
lation approaches pool. Then, the upper bound on
the quality of the combined system is given by the

Metric OST
maxOST 6.72

ULC 5.79
ROUGEW 5.71
DP-Or-? 5.70
CP-Oc-? 5.70

NIST 5.70
randOST 5.20
minOST 3.67

Table 4: Metrics ranked according to the Oracle
System Test

predictive power of the employed automatic eval-
uation metric. This upper bound is obtained by se-
lecting the highest scored translation t according
to a specific metric m for each translation case c.
The Oracle System Test (OST) consists of com-
puting the averaged human assessed quality Qh

of the selected translations according to human as-
sessors across all cases. Formally:

OST(m) = Avgc(Qh(Argmaxt(Qm(t))|t ∈ c))

We use the sum of adequacy and fluency, both
in a 1-5 scale, as a global quality measure. Thus,
OST scores are in a 2-10 range. In summary,
the OST represents the best combined system that
could be trained according to a specific automatic
evaluation metric.

Table 4 shows OST values obtained for the best
metrics. In the table we have also included a ran-
dom, a maximum (always pick the best transla-
tion according to humans) and a minimum (al-
ways pick the worse translation according to hu-
man) OST for all 4. The most remarkable result
in Table 4 is that metrics are closer to the random
baseline than to the upperbound (maximum OST).
This result confirms the idea that an improvement
on metric reliability could contribute considerably
to the systems optimization process. However, the
key point is that the combined metric, ULC, im-
proves all the others (5.79 vs. 5.71), indicating
the importance of combining n-gram and linguis-
tic features.

6 Conclusions

Our experiments show that, on one hand, tradi-
tional n-gram based metrics are more or equally

4In all our experiments, the meta-metric values are com-
puted over each test bed independently before averaging in
order to assign equal relevance to the four possible contexts
(test beds)
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reliable for estimating the translation quality at the
segment level, for predicting significant improve-
ment between systems and for detecting poor and
excellent translations.

On the other hand, linguistically motivated met-
rics improve n-gram metrics in two ways: (i) they
achieve higher correlation with human judgements
at system level and (ii) they are more resistant to
reward poor translations with high word overlap-
ping with references.

The underlying phenomenon is that, rather
than managing the linguistics variability, linguis-
tic based metrics introduce additional restrictions
for assigning high scores. This effect decreases
the recall over significant system improvements
achieved by n-gram based metrics and does not
solve the problem of detecting wrong translations.
Linguistic metrics, however, are more difficult to
cheat.

In general, the greatest pitfall of metrics is the
low reliability of low metric values. Our qualita-
tive analysis of evaluated sentences has shown that
deeper linguistic techniques are necessary to over-
come the important surface differences between
acceptable automatic translations and human ref-
erences.

But our key finding is that combining both kinds
of metrics gives top performance according to ev-
ery meta-evaluation criteria. In addition, our Com-
bined System Test shows that, when training a
combined translation system, using metrics at sev-
eral linguistic processing levels improves substan-
tially the use of individual metrics.

In summary, our results motivate: (i) work-
ing on new linguistic metrics for overcoming the
barrier of linguistic variability and (ii) perform-
ing new metric combining schemes based on lin-
ear regression over human judgements (Kulesza
and Shieber, 2004), training models over hu-
man/machine discrimination (Albrecht and Hwa,
2007) or non parametric methods based on refer-
ence to reference distances (Amigó et al., 2005).
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Abstract

Syntactic analysis influences the way in
which the source sentence is translated.
Previous efforts add syntactic constraints
to phrase-based translation by directly
rewarding/punishing a hypothesis when-
ever it matches/violates source-side con-
stituents. We present a new model that
automatically learns syntactic constraints,
including but not limited to constituent
matching/violation, from training corpus.
The model brackets a source phrase as
to whether it satisfies the learnt syntac-
tic constraints. The bracketed phrases are
then translated as a whole unit by the de-
coder. Experimental results and analy-
sis show that the new model outperforms
other previous methods and achieves a
substantial improvement over the baseline
which is not syntactically informed.

1 Introduction

The phrase-based approach is widely adopted in
statistical machine translation (SMT). It segments
a source sentence into a sequence of phrases, then
translates and reorder these phrases in the target.
In such a process, original phrase-based decod-
ing (Koehn et al., 2003) does not take advan-
tage of any linguistic analysis, which, however,
is broadly used in rule-based approaches. Since
it is not linguistically motivated, original phrase-
based decoding might produce ungrammatical or
even wrong translations. Consider the following
Chinese fragment with its parse tree:

Src: [把 [[7月 11日]NP [设立 [为 [航海 节]NP
]PP]VP ]IP ]VP

Ref: established July 11 as Sailing Festival day

Output: [to/把 [〈[set up/设立 [for/为 naviga-
tion/航海]] on July 11/7月11日〉 knots/节]]

The output is generated from a phrase-based sys-
tem which does not involve any syntactic analy-
sis. Here we use “[]” (straight orientation) and
“〈〉” (inverted orientation) to denote the common
structure of the source fragment and its transla-
tion found by the decoder. We can observe that
the decoder inadequately breaks up the second NP
phrase and translates the two words “航海” and
“节” separately. However, the parse tree of the
source fragment constrains the phrase “航海 节”
to be translated as a unit.

Without considering syntactic constraints from
the parse tree, the decoder makes wrong decisions
not only on phrase movement but also on the lex-
ical selection for the multi-meaning word “节”1.
To avert such errors, the decoder can fully respect
linguistic structures by only allowing syntactic
constituent translations and reorderings. This, un-
fortunately, significantly jeopardizes performance
(Koehn et al., 2003; Xiong et al., 2008) because by
integrating syntactic constraint into decoding as a
hard constraint, it simply prohibits any other use-
ful non-syntactic translations which violate con-
stituent boundaries.

To better leverage syntactic constraint yet still
allow non-syntactic translations, Chiang (2005)
introduces a count for each hypothesis and ac-
cumulates it whenever the hypothesis exactly
matches syntactic boundaries on the source side.
On the contrary, Marton and Resnik (2008) and
Cherry (2008) accumulate a count whenever hy-
potheses violate constituent boundaries. These
constituent matching/violation counts are used as
a feature in the decoder’s log-linear model and
their weights are tuned via minimal error rate
training (MERT) (Och, 2003). In this way, syn-
tactic constraint is integrated into decoding as a
soft constraint to enable the decoder to reward hy-
potheses that respect syntactic analyses or to pe-

1This word can be translated into “section”, “festival”,
and “knot” in different contexts.
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nalize hypotheses that violate syntactic structures.
Although experiments show that this con-

stituent matching/violation counting feature
achieves significant improvements on various
language-pairs, one issue is that matching syn-
tactic analysis can not always guarantee a good
translation, and violating syntactic structure does
not always induce a bad translation. Marton and
Resnik (2008) find that some constituency types
favor matching the source parse while others
encourage violations. Therefore it is necessary to
integrate more syntactic constraints into phrase
translation, not just the constraint of constituent
matching/violation.

The other issue is that during decoding we are
more concerned with the question of phrase co-
hesion, i.e. whether the current phrase can be
translated as a unit or not within particular syntac-
tic contexts (Fox, 2002)2, than that of constituent
matching/violation. Phrase cohesion is one of
the main reasons that we introduce syntactic con-
straints (Cherry, 2008). If a source phrase remains
contiguous after translation, we refer this type of
phrasebracketable, otherwiseunbracketable. It
is more desirable to translate a bracketable phrase
than an unbracketable one.

In this paper, we propose a syntax-driven brack-
eting (SDB) model to predict whether a phrase
(a sequence of contiguous words) is bracketable
or not using rich syntactic constraints. We parse
the source language sentences in the word-aligned
training corpus. According to the word align-
ments, we define bracketable and unbracketable
instances. For each of these instances, we auto-
matically extract relevant syntactic features from
the source parse tree as bracketing evidences.
Then we tune the weights of these features us-
ing a maximum entropy (ME) trainer. In this way,
we build two bracketing models: 1) a unary SDB
model (UniSDB) which predicts whether an inde-
pendent phrase is bracketable or not; and 2) a bi-
nary SDB model(BiSDB) which predicts whether
two neighboring phrases are bracketable. Similar
to previous methods, our SDB model is integrated
into the decoder’s log-linear model as a feature so
that we can inherit the idea of soft constraints.

In contrast to the constituent matching/violation
counting (CMVC) (Chiang, 2005; Marton and
Resnik, 2008; Cherry, 2008), our SDB model has

2Here we expand the definition of phrase to include both
syntactic and non-syntactic phrases.

the following advantages

• The SDB model automatically learns syntac-
tic constraints from training data while the
CMVC uses manually defined syntactic con-
straints: constituency matching/violation. In
our SDB model, each learned syntactic fea-
ture from bracketing instances can be consid-
ered as a syntactic constraint. Therefore we
can use thousands of syntactic constraints to
guide phrase translation.

• The SDB model maintains and protects the
strength of the phrase-based approach in a
better way than the CMVC does. It is able to
reward non-syntactic translations by assign-
ing an adequate probability to them if these
translations are appropriate to particular syn-
tactic contexts on the source side, rather than
always punish them.

We test our SDB model against the baseline
which doest not use any syntactic constraints on
Chinese-to-English translation. To compare with
the CMVC, we also conduct experiments using
(Marton and Resnik, 2008)’s XP+. The XP+ ac-
cumulates a count for each hypothesis whenever
it violates the boundaries of a constituent with a
label from{NP, VP, CP, IP, PP, ADVP, QP, LCP,
DNP}. The XP+ is the best feature among all fea-
tures that Marton and Resnik use for Chinese-to-
English translation. Our experimental results dis-
play that our SDB model achieves a substantial
improvement over the baseline and significantly
outperforms XP+ according to the BLEU metric
(Papineni et al., 2002). In addition, our analysis
shows further evidences of the performance gain
from a different perspective than that of BLEU.

The paper proceeds as follows. In section 2 we
describe how to learn bracketing instances from
a training corpus. In section 3 we elaborate the
syntax-driven bracketing model, including feature
generation and the integration of the SDB model
into phrase-based SMT. In section 4 and 5, we
present our experiments and analysis. And we fi-
nally conclude in section 6.

2 The Acquisition of Bracketing
Instances

In this section, we formally define the bracket-
ing instance, comprising two types namely binary
bracketing instance and unary bracketing instance.
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We present an algorithm to automatically ex-
tract these bracketing instances from word-aligned
bilingual corpus where the source language sen-
tences are parsed.

Let c and e be the source sentence and the
target sentence,W be the word alignment be-
tween them,T be the parse tree ofc. We
define a binary bracketing instance as a tu-
ple 〈b, τ(ci..j), τ(cj+1..k), τ(ci..k)〉 where b ∈
{bracketable, unbracketable}, ci..j and cj+1..k

are two neighboring source phrases andτ(T, s)
(τ(s) for short) is a subtree function which returns
the minimal subtree covering the source sequence
s from the source parse treeT . Note thatτ(ci..k)
includes bothτ(ci..j) andτ(cj+1..k). For the two
neighboring source phrases, the following condi-
tions are satisfied:

∃eu..v, ep..q ∈ e s.t.

∀(m,n) ∈ W, i ≤ m ≤ j ↔ u ≤ n ≤ v (1)

∀(m,n) ∈ W, j + 1 ≤ m ≤ k ↔ p ≤ n ≤ q (2)

The above (1) means that there exists a target
phraseeu..v aligned toci..j and (2) denotes a tar-
get phraseep..q aligned tocj+1..k. If eu..v and
ep..q are neighboring to each other or all words be-
tween the two phrases are aligned to null, we set
b = bracketable, otherwiseb = unbracketable.
From a binary bracketing instance, we derive a
unary bracketing instance〈b, τ(ci..k)〉, ignoring
the subtreesτ(ci..j) andτ(cj+1..k).

Let n be the number of words ofc. If we ex-
tract all potential bracketing instances, there will
be o(n2) unary instances ando(n3) binary in-
stances. To keep the number of bracketing in-
stances tractable, we only record 4 representa-
tive bracketing instances for each indexj: 1) the
bracketable instance with the minimalτ(ci..k), 2)
the bracketable instance with the maximalτ(ci..k),
3) the unbracketable instance with the minimal
τ(ci..k), and 4) the unbracketable instance with the
maximalτ(ci..k).

Figure 1 shows the algorithm to extract brack-
eting instances. Line 3-11 find all potential brack-
eting instances for each(i, j, k) ∈ c but only keep
4 bracketing instances for each indexj: two min-
imal and two maximal instances. This algorithm
learns binary bracketing instances, from which we
can derive unary bracketing instances.

1: Input : sentence pair(c, e), the parse treeT of c and the
word alignmentW betweenc ande

2: < := ∅
3: for each(i, j, k) ∈ c do
4: if There exist a target phraseeu..v aligned toci..j and

ep..q aligned tocj+1..k then
5: Getτ(ci..j), τ(cj+1..k), andτ(ci..k)
6: Determineb according to the relationship between

eu..v andep..q

7: if τ(ci..k) is currently maximal or minimalthen
8: Update bracketing instances for indexj
9: end if

10: end if
11: end for
12: for eachj ∈ c do
13: < := < ∪ {bracketing instances fromj}
14: end for
15: Output : bracketing instances<

Figure 1: Bracketing Instances Extraction Algo-
rithm.

3 The Syntax-Driven Bracketing Model

3.1 The Model

Our interest is to automatically detect phrase
bracketing using rich contextual information. We
consider this task as a binary-class classification
problem: whether the current source phrases is
bracketable (b) within particular syntactic contexts
(τ(s)). If two neighboring sub-phrasess1 ands2

are given, we can use more inner syntactic con-
texts to complete this binary classification task.

We construct the syntax-driven bracketing
model within the maximum entropy framework. A
unary SDB model is defined as:

PUniSDB(b|τ(s), T ) =

exp(
∑

i θihi(b, τ(s), T )
∑

b exp(
∑

i θihi(b, τ(s), T )
(3)

wherehi ∈ {0, 1} is a binary feature function
which we will describe in the next subsection, and
θi is the weight ofhi. Similarly, a binary SDB
model is defined as:

PBiSDB(b|τ(s1), τ(s2), τ(s), T ) =

exp(
∑

i θihi(b, τ(s1), τ(s2), τ(s), T )
∑

b exp(
∑

i θihi(b, τ(s1), τ(s2), τ(s), T )
(4)

The most important advantage of ME-based
SDB model is its capacity of incorporating more
fine-grained contextual features besides the binary
feature that detects constituent boundary violation
or matching. By employing these features, we
can investigate the value of various syntactic con-
straints in phrase translation.

317



j
i
n
g
f
a
n
g

p
o
l
i
c
e


y
i
 f
e
n
g
s
u
o

b
l
o
c
k


l
e
 b
a
o
z
h
a

b
o
m
b


x
i
a
n
c
h
a
n
g

s
c
e
n
e


N
N
 N
N


N
P


V
P


A
S
V
V
A
D
N
N


A
D
V
P


V
P


N
P


I
P


s


s
1
 s
2


Figure 2: Illustration of syntax-driven features
used in SDB. Here we only show the features for
the source phrases. The triangle, rounded rect-
angle and rectangle denote the rule feature, path
feature and constituent boundary matching feature
respectively.

3.2 Syntax-Driven Features

Let s be the source phrase in question,s1 ands2

be the two neighboring sub-phrases.σ(.) is the
root node ofτ(.). The SDB model exploits various
syntactic features as follows.

• Rule Features (RF)
We use the CFG rules ofσ(s), σ(s1) and
σ(s2) as features. These features capture
syntactic “horizontal context” which demon-
strates the expansion trend of the source
phrases, s1 ands2 on the parse tree.

In figure 2, the CFG rule “ADVP→AD”,
“VP→VV AS NP”, and “VP→ADVP
VP” are used as features fors1, s2 and s
respectively.

• Path Features (PF)
The tree pathσ(s1)..σ(s) connectingσ(s1)
and σ(s), σ(s2)..σ(s) connecting σ(s2)
and σ(s), andσ(s)..ρ connectingσ(s) and
the root nodeρ of the whole parse tree are
used as features. These features provide
syntactic “vertical context” which shows the
generation history of the source phrases on
the parse tree.

(
a
)
 (
b
)
 (
c
)


Figure 3: Three scenarios of the relationship be-
tween phrase boundaries and constituent bound-
aries. The gray circles are constituent boundaries
while the black circles are phrase boundaries.

In figure 2, the path features are “ADVP
VP”, “VP VP” and “VP IP” for s1, s2 ands
respectively.

• Constituent Boundary Matching Features
(CBMF)
These features are to capture the relationship
between a source phrases and τ(s) or
τ(s)’s subtrees. There are three different
scenarios3: 1) exact match, wheres exactly
matches the boundaries ofτ(s) (figure 3(a)),
2) inside match, where s exactly spans a
sequence ofτ(s)’s subtrees (figure 3(b)), and
3) crossing, wheres crosses the boundaries
of one or two subtrees ofτ(s) (figure 3(c)).
In the case of 1) or 2), we set the value of
this feature toσ(s)-M or σ(s)-I respectively.
When s crosses the boundaries of the sub-
constituentεl on s’s left, we set the value to
σ(εl)-LC; If s crosses the boundaries of the
sub-constituentεr on s’s right, we set the
value toσ(εr)-RC; If both, we set the value
to σ(εl)-LC-σ(εr)-RC.

Let’s revisit the Figure 2. The source
phrases1 exactly matches the constituent
ADVP, therefore CBMF is “ADVP-M”. The
source phrases2 exactly spans two sub-trees
VV and AS of VP, therefore CBMF is
“VP-I”. Finally, the source phrases cross
boundaries of the lower VP on the right,
therefore CBMF is “VP-RC”.

3.3 The Integration of the SDB Model into
Phrase-Based SMT

We integrate the SDB model into phrase-based
SMT to help decoder perform syntax-driven
phrase translation. In particular, we add a

3The three scenarios that we define here are similar to
those in (L̈u et al., 2002).
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new feature into the log-linear translation model:
PSDB(b|T, τ(.)). This feature is computed by the
SDB model described in equation (3) or equation
(4), which estimates a probability that a source
span is to be translated as a unit within partic-
ular syntactic contexts. If a source span can be
translated as a unit, the feature will give a higher
probability even though this span violates bound-
aries of a constituent. Otherwise, a lower proba-
bility is given. Through this additional feature, we
want the decoder to prefer hypotheses that trans-
late source spans which can be translated as a unit,
and avoids translating those which are discontinu-
ous after translation. The weight of this new fea-
ture is tuned via MERT, which measures the extent
to which this feature should be trusted.

In this paper, we implement the SDB model in a
state-of-the-art phrase-based system which adapts
a binary bracketing transduction grammar (BTG)
(Wu, 1997) to phrase translation and reordering,
described in (Xiong et al., 2006). Whenever a
BTG merging rule (s → [s1 s2] or s → 〈s1 s2〉)
is used, the SDB model gives a probability to the
spans covered by the rule, which estimates the
extent to which the span is bracketable. For the
unary SDB model, we only consider the features
from τ(s). For the binary SDB model, we use all
features fromτ(s1), τ(s2) andτ(s) since the bi-
nary SDB model is naturally suitable to the binary
BTG rules.

The SDB model, however, is not only limited
to phrase-based SMT using BTG rules. Since it
is applied on a source span each time, any other
hierarchical phrase-based or syntax-based system
that translates source spans recursively or linearly,
can adopt the SDB model.

4 Experiments

We carried out the MT experiments on Chinese-
to-English translation, using (Xiong et al., 2006)’s
system as our baseline system. We modified the
baseline decoder to incorporate our SDB mod-
els as descried in section 3.3. In order to com-
pare with Marton and Resnik’s approach, we also
adapted the baseline decoder to their XP+ feature.

4.1 Experimental Setup

In order to obtain syntactic trees for SDB models
and XP+, we parsed source sentences using a lex-
icalized PCFG parser (Xiong et al., 2005). The
parser was trained on the Penn Chinese Treebank

with an F1 score of 79.4%.
All translation models were trained on the FBIS

corpus. We removed 15,250 sentences, for which
the Chinese parser failed to produce syntactic
parse trees. To obtain word-level alignments, we
ran GIZA++ (Och and Ney, 2000) on the remain-
ing corpus in both directions, and applied the
“grow-diag-final” refinement rule (Koehn et al.,
2005) to produce the final many-to-many word
alignments. We built our four-gram language
model using Xinhua section of the English Gi-
gaword corpus (181.1M words) with the SRILM
toolkit (Stolcke, 2002).

For the efficiency of MERT, we built our de-
velopment set (580 sentences) using sentences not
exceeding 50 characters from the NIST MT-02 set.
We evaluated all models on the NIST MT-05 set
using case-sensitive BLEU-4. Statistical signif-
icance in BLEU score differences was tested by
paired bootstrap re-sampling (Koehn, 2004).

4.2 SDB Training

We extracted 6.55M bracketing instances from our
training corpus using the algorithm shown in fig-
ure 1, which contains 4.67M bracketable instances
and 1.89M unbracketable instances. From ex-
tracted bracketing instances we generated syntax-
driven features, which include 73,480 rule fea-
tures, 153,614 path features and 336 constituent
boundary matching features. To tune weights of
features, we ran the MaxEnt toolkit (Zhang, 2004)
with iteration number being set to 100 and Gaus-
sian prior to 1 to avoid overfitting.

4.3 Results

We ran the MERT module with our decoders to
tune the feature weights. The values are shown
in Table 1. ThePSDB receives the largest feature
weight, 0.29 for UniSDB and 0.38 for BiSDB, in-
dicating that the SDB models exert a nontrivial im-
pact on decoder.

In Table 2, we present our results. Like (Mar-
ton and Resnik, 2008), we find that the XP+ fea-
ture obtains a significant improvement of 1.08
BLEU over the baseline. However, using all
syntax-driven features described in section 3.2,
our SDB models achieve larger improvements
of up to 1.67 BLEU. The binary SDB (BiSDB)
model statistically significantly outperforms Mar-
ton and Resnik’s XP+ by an absolute improvement
of 0.59 (relatively 2%). It is also marginally better
than the unary SDB model.
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Features
System P (c|e) P (e|c) Pw(c|e) Pw(e|c) Plm(e) Pr(e) Word Phr. XP+ PSDB

Baseline 0.041 0.030 0.006 0.065 0.20 0.35 0.19 -0.12 — —
XP+ 0.002 0.049 0.046 0.044 0.17 0.29 0.16 0.12 -0.12 —
UniSDB 0.023 0.051 0.055 0.012 0.21 0.20 0.12 0.04 — 0.29
BiSDB 0.016 0.032 0.027 0.013 0.13 0.23 0.08 0.09 — 0.38

Table 1: Feature weights obtained by MERT on the development set. The first 4 features are the phrase
translation probabilities in both directions and the lexical translation probabilities in both directions.Plm

= language model;Pr = MaxEnt-based reordering model; Word = word bonus; Phr = phrase bonus.

BLEU-n n-gram Precision
System 4 1 2 3 4 5 6 7 8
Baseline 0.2612 0.71 0.36 0.18 0.10 0.054 0.030 0.016 0.009
XP+ 0.2720** 0.72 0.37 0.19 0.11 0.060 0.035 0.021 0.012
UniSDB 0.2762**+ 0.72 0.37 0.20 0.11 0.062 0.035 0.020 0.011
BiSDB 0.2779**++ 0.72 0.37 0.20 0.11 0.065 0.038 0.022 0.014

Table 2: Results on the test set. **: significantly better than baseline (p < 0.01). + or ++: significantly
better than Marton and Resnik’s XP+ (p < 0.05 or p < 0.01, respectively).

5 Analysis

In this section, we present analysis to perceive the
influence mechanism of the SDB model on phrase
translation by studying the effects of syntax-driven
features and differences of 1-best translation out-
puts.

5.1 Effects of Syntax-Driven Features

We conducted further experiments using individ-
ual syntax-driven features and their combinations.
Table 3 shows the results, from which we have the
following key observations.

• The constituent boundary matching feature
(CBMF) is a very important feature, which
by itself achieves significant improvement
over the baseline (up to 1.13 BLEU). Both
our CBMF and Marton and Resnik’s XP+
feature focus on the relationship between a
source phrase and a constituent. Their signifi-
cant contribution to the improvement implies
that this relationship is an important syntactic
constraint for phrase translation.

• Adding more features, such as path feature
and rule feature, achieves further improve-
ments. This demonstrates the advantage of
using more syntactic constraints in the SDB
model, compared with Marton and Resnik’s
XP+.

BLEU-4
Features UniSDB BiSDB
PF + RF 0.2555 0.2644*@@
PF 0.2596 0.2671**@@
CBMF 0.2678** 0.2725**@
RF + CBMF 0.2737** 0.2780**++@@
PF + CBMF 0.2755**+ 0.2782**++@−

RF + PF + CBMF 0.2762**+ 0.2779**++

Table 3: Results of different feature sets. * or **:
significantly better than baseline (p < 0.05 or p <
0.01, respectively). + or ++: significantly better
than XP+ (p < 0.05 or p < 0.01, respectively).
@−: almost significantly better than its UniSDB
counterpart (p < 0.075). @ or @@: significantly
better than its UniSDB counterpart (p < 0.05 or
p < 0.01, respectively).

• In most cases, the binary SDB is constantly
significantly better than the unary SDB, sug-
gesting that inner contexts are useful in pre-
dicting phrase bracketing.

5.2 Beyond BLEU

We want to further study the happenings after we
integrate the constraint feature (our SDB model
and Marton and Resnik’s XP+) into the log-linear
translation model. In particular, we want to inves-
tigate: to what extent syntactic constraints change
translation outputs? And in what direction the
changes take place? Since BLEU is not sufficient

320



System CCM Rate (%)
Baseline 43.5
XP+ 74.5
BiSDB 72.4

Table 4: Consistent constituent matching rates re-
ported on 1-best translation outputs.

to provide such insights, we introduce a new sta-
tistical metric which measures the proportion of
syntactic constituents4 whose boundaries are con-
sistently matched by decoder during translation.
This proportion, which we callconsistent con-
stituent matching (CCM) rate , reflects the ex-
tent to which the translation output respects the
source parse tree.

In order to calculate this rate, we output transla-
tion results as well as phrase alignments found by
decoders. Then for each multi-branch constituent
cj
i spanning fromi to j on the source side, we

check the following conditions.

• If its boundariesi andj are aligned to phrase
segmentation boundaries found by decoder.

• If all target phrases insidecj
i ’s target span5

are aligned to the source phrases withincj
i

and not to the phrases outsidecj
i .

If both conditions are satisfied, the constituentcj
i

is consistently matched by decoder.
Table 4 shows the consistent constituent match-

ing rates. Without using any source-side syntac-
tic information, the baseline obtains a low CCM
rate of 43.53%, indicating that the baseline de-
coder violates the source parse tree more than it
respects the source structure. The translation out-
put described in section 1 is actually generated by
the baseline decoder, where the second NP phrase
boundaries are violated.

By integrating syntactic constraints into decod-
ing, we can see that both Marton and Resnik’s
XP+ and our SDB model achieve a significantly
higher constituent matching rate, suggesting that
they are more likely to respect the source struc-
ture. The examples in Table 5 show that the de-
coder is able to generate better translations if it is

4We only consider multi-branch constituents.
5Given a phrase alignmentP = {cg

f ↔ eq
p}, if the seg-

mentation withincj
i defined byP is cj

i = cj1
i1

...c
jk
ik

, and

cjr
ir
↔ evr

ur
∈ P, 1 ≤ r ≤ k, we define thetarget spanof cj

i

as a pair where the first element ismin(eu1 ...euk ) and the
second element ismax(ev1 ...evk ), similar to (Fox, 2002).

CCM Rates (%)
System <6 6-10 11-15 16-20 >20
XP+ 75.2 70.9 71.0 76.2 82.2
BiSDB 69.3 74.7 74.2 80.0 85.6

Table 6: Consistent constituent matching rates for
structures with different spans.

faithful to the source parse tree by using syntactic
constraints.

We further conducted a deep comparison of
translation outputs of BiSDB vs. XP+ with re-
gard to constituent matching and violation. We
found two significant differences that may explain
why our BiSDB outperforms XP+. First, although
the overall CCM rate of XP+ is higher than that
of BiSDB, BiSDB obtains higher CCM rates for
long-span structures than XP+ does, which are
shown in Table 6. Generally speaking, viola-
tions of long-span constituents have a more neg-
ative impact on performance than short-span vio-
lations if these violations are toxic. This explains
why BiSDB achieves relatively higher precision
improvements for highern-grams over XP+, as
shown in Table 3.

Second, compared with XP+ that only punishes
constituent boundary violations, our SDB model
is able to encourage violations if these violations
are done on bracketable phrases. We observed in
many cases that by violating constituent bound-
aries BiSDB produces better translations than XP+
does, which on the contrary matches these bound-
aries. Still consider the example shown in section
1. The following translations are found by XP+
and BiSDB respectively.

XP+: [to/把 〈[set up/设立 [for the/为 [naviga-
tion/航海 section/节]]] on July 11/7月11日〉]

BiSDB: [to/把 〈[[set up/设立 a/为] [marine/航海
festival/节]] on July 11/7月11日〉]

XP+ here matches all constituent boundaries while
BiSDB violates the PP constituent to translate the
non-syntactic phrase “设立 为”. Table 7 shows
more examples. From these examples, we clearly
see that appropriate violations are helpful and even
necessary for generating better translations. By
allowing appropriate violations to translate non-
syntactic phrases according to particular syntac-
tic contexts, our SDB model better inherits the
strength of phrase-based approach than XP+.
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Src: [[为 [印度洋灾区民众]NP ]PP[奉献 [自己]NP [一份爱心]NP ]VP ]VP
Ref: show their loving hearts to people in the Indian Ocean disaster areas
Baseline: 〈love/爱心 [for the/为 〈[people/民众 [to/奉献 [own/自己 a report/一份]]] 〉 〈in/灾区 the Indian Ocean/印

度洋〉]〉
XP+: 〈[contribute/奉献 [its/自己 [part/一份 love/爱心]]] [for/为 〈the people/民众 〈in/灾区 the Indian Ocean/印

度洋〉〉]〉
BiSDB: 〈[[[contribute/奉献 its/自己] part/一份] love/爱心] [for/为 〈the people/民众 〈in/灾区 the Indian Ocean印

度洋〉〉]〉
Src: [五角大厦 [已]ADVP [派遣 [[二十架]QP飞机]NP [至南亚]PP]VP]IP [，]PU [其中包括...]IP
Ref: The Pentagon has dispatched 20 airplanes to South Asia, including...
Baseline: [[The Pentagon/五角大厦 has sent/已派遣] [〈[to/至 [[South Asia/南亚 ,/，] including/其中包括]] [20/二

十 plane/架飞机]〉]]
XP+: [The Pentagon/五角大厦 [has/已 [sent/派遣 [[20/二十 planes/架飞机] [to/至 South Asia/南亚]]]]] [,/ ，

[including/其中包括...]]
BiSDB: [The Pentagon/五角大厦 [has sent/已派遣 [[20/二十 planes/架飞机] [to/至 South Asia/南亚]]] [,/， [in-

cluding/其中包括...]]

Table 5: Translation examples showing that both XP+ and BiSDB produce better translations than the
baseline, which inappropriately violates constituent boundaries (within underlined phrases).

Src: [[在 [[[美国国务院与鲍尔]NP [短暂]ADJP [会谈]NP]NP后]LCP]PP表示]VP
Ref: said after a brief discussion with Powell at the US State Department
XP+: [〈after/后 〈〈[a brief/短暂 meeting/会谈] [with/与 Powell/鲍尔]〉 [in/在 the US State Department/美国国

务院]〉 said/表示]
BiSDB: 〈said after/后表示 〈[a brief/短暂 meeting/会谈] 〈 with Powell/与鲍尔 [at/在 the State Department of the

United States/美国国务院]〉〉〉
Src: [向 [[建立 [未来民主政治]NP]VP]IP]PP[迈出了 [关键性的一步]NP]VP
Ref: took a key step towards building future democratic politics
XP+: 〈[a/了 [key/关键性 step/的一步]] 〈forward/迈出 [to/向 [a/建立 [future/未来 political democracy/民主政

治]]] 〉〉
BiSDB: 〈[made a/迈出了 [key/关键性 step/的一步]] [towards establishing a/向建立 〈democratic politics/民主政

治 in the future/未来〉]〉

Table 7: Translation examples showing that BiSDB produces better translations than XP+ via appropriate
violations of constituent boundaries (within double-underlined phrases).

6 Conclusion

In this paper, we presented a syntax-driven brack-
eting model that automatically learns bracketing
knowledge from training corpus. With this knowl-
edge, the model is able to predict whether source
phrases can be translated together, regardless of
matching or crossing syntactic constituents. We
integrate this model into phrase-based SMT to
increase its capacity of linguistically motivated
translation without undermining its strengths. Ex-
periments show that our model achieves substan-
tial improvements over baseline and significantly
outperforms (Marton and Resnik, 2008)’s XP+.

Compared with previous constituency feature,
our SDB model is capable of incorporating more
syntactic constraints, and rewarding necessary vi-
olations of the source parse tree. Marton and
Resnik (2008) find that their constituent con-
straints are sensitive to language pairs. In the fu-
ture work, we will use other language pairs to test

our models so that we could know whether our
method is language-independent.
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Abstract

Hierarchical phrase-based models are at-
tractive because they provide a consis-
tent framework within which to character-
ize both local and long-distance reorder-
ings, but they also make it dif�cult to
distinguish many implausible reorderings
from those that are linguistically plausi-
ble. Rather than appealing to annotation-
driven syntactic modeling, we address this
problem by observing the in�uential role
of function words in determining syntac-
tic structure, and introducing soft con-
straints on function word relationships as
part of a standard log-linear hierarchi-
cal phrase-based model. Experimentation
on Chinese-English and Arabic-English
translation demonstrates that the approach
yields signi�cant gains in performance.

1 Introduction
Hierarchical phrase-based models (Chiang, 2005;
Chiang, 2007) offer a number of attractive bene-
�ts in statistical machine translation (SMT), while
maintaining the strengths of phrase-based systems
(Koehn et al., 2003). The most important of these
is the ability to model long-distance reordering ef-
�ciently. To model such a reordering, a hierar-
chical phrase-based system demands no additional
parameters, since long and short distance reorder-
ings are modeled identically using synchronous
context free grammar (SCFG) rules. The same
rule, depending on its topological ordering � i.e.
its position in the hierarchical structure � can af-
fect both short and long spans of text. Interest-
ingly, hierarchical phrase-based models provide
this bene�t without making any linguistic commit-
ments beyond the structure of the model.

However, the system's lack of linguistic com-
mitment is also responsible for one of its great-

est drawbacks. In the absence of linguistic knowl-
edge, the system models linguistic structure using
an SCFG that contains only one type of nontermi-
nal symbol1. As a result, the system is susceptible
to the overgeneration problem: the grammar may
suggest more reordering choices than appropriate,
and many of those choices lead to ungrammatical
translations.

Chiang (2005) hypothesized that incorrect re-
ordering choices would often correspond to hier-
archical phrases that violate syntactic boundaries
in the source language, and he explored the use
of a �constituent feature� intended to reward the
application of hierarchical phrases which respect
source language syntactic categories. Although
this did not yield signi�cant improvements, Mar-
ton and Resnik (2008) and Chiang et al. (2008)
extended this approach by introducing soft syn-
tactic constraints similar to the constituent feature,
but more �ne-grained and sensitive to distinctions
among syntactic categories; these led to substan-
tial improvements in performance. Zollman et al.
(2006) took a complementary approach, constrain-
ing the application of hierarchical rules to respect
syntactic boundaries in the target language syn-
tax. Whether the focus is on constraints from the
source language or the target language, the main
ingredient in both previous approaches is the idea
of constraining the spans of hierarchical phrases to
respect syntactic boundaries.

In this paper, we pursue a different approach
to improving reordering choices in a hierarchical
phrase-based model. Instead of biasing the model
toward hierarchical phrases whose spans respect
syntactic boundaries, we focus on the topologi-
cal ordering of phrases in the hierarchical struc-
ture. We conjecture that since incorrect reorder-
ing choices correspond to incorrect topological or-
derings, boosting the probability of correct topo-

1In practice, one additional nonterminal symbol is used in
�glue rules�. This is not relevant in the present discussion.
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logical ordering choices should improve the sys-
tem. Although related to previous proposals (cor-
rect topological orderings lead to correct spans
and vice versa), our proposal incorporates broader
context and is structurally more aware, since we
look at the topological ordering of a phrase relative
to other phrases, rather than modeling additional
properties of a phrase in isolation. In addition, our
proposal requires no monolingual parsing or lin-
guistically informed syntactic modeling for either
the source or target language.

The key to our approach is the observation that
we can approximate the topological ordering of
hierarchical phrases via the topological ordering
of function words. We introduce a statistical re-
ordering model that we call the pairwise domi-
nance model, which characterizes reorderings of
phrases around a pair of function words. In mod-
eling function words, our model can be viewed as
a successor to the function words-centric reorder-
ing model (Setiawan et al., 2007), expanding on
the previous approach by modeling pairs of func-
tion words rather than individual function words
in isolation.

The rest of the paper is organized as follows. In
Section 2, we brie�y review hierarchical phrase-
based models. In Section 3, we �rst describe the
overgeneration problem in more detail with a con-
crete example, and then motivate our idea of us-
ing the topological ordering of function words to
address the problem. In Section 4, we develop
our idea by introducing the pairwise dominance
model, expressing function word relationships in
terms of what we call the the dominance predi-
cate. In Section 5, we describe an algorithm to es-
timate the parameters of the dominance predicate
from parallel text. In Sections 6 and 7, we describe
our experiments, and in Section 8, we analyze the
output of our system and lay out a possible future
direction. Section 9 discusses the relation of our
approach to prior work and Section 10 wraps up
with our conclusions.

2 Hierarchical Phrase-based System

Formally, a hierarchical phrase-based SMT sys-
tem is based on a weighted synchronous context
free grammar (SCFG) with one type of nonter-
minal symbol. Synchronous rules in hierarchical
phrase-based models take the following form:

X → 〈γ, α,∼〉 (1)

where X is the nonterminal symbol and γ and α
are strings that contain the combination of lexical
items and nonterminals in the source and target
languages, respectively. The ∼ symbol indicates
that nonterminals in γ and α are synchronized
through co-indexation; i.e., nonterminals with the
same index are aligned. Nonterminal correspon-
dences are strictly one-to-one, and in practice the
number of nonterminals on the right hand side is
constrained to at most two, which must be sepa-
rated by lexical items.

Each rule is associated with a score that is com-
puted via the following log linear formula:

w(X → 〈γ, α,∼〉) =
∏

i

fλi
i (2)

where fi is a feature describing one particular as-
pect of the rule and λi is the corresponding weight
of that feature. Given ẽ and f̃ as the source
and target phrases associated with the rule, typi-
cal features used are rule's translation probability
Ptrans(f̃ |ẽ) and its inverse Ptrans(ẽ|f̃), the lexi-
cal probability Plex(f̃ |ẽ) and its inverse Plex(ẽ|f̃).
Systems generally also employ a word penalty, a
phrase penalty, and target language model feature.
(See (Chiang, 2005) for more detailed discussion.)
Our pairwise dominance model will be expressed
as an additional rule-level feature in the model.

Translation of a source sentence e using hier-
archical phrase-based models is formulated as a
search for the most probable derivation D∗ whose
source side is equal to e:

D∗ = argmax P (D), where source(D)=e.

D = Xi, i ∈ 1...|D| is a set of rules following a
certain topological ordering, indicated here by the
use of the superscript.

3 Overgeneration and Topological
Ordering of Function Words

The use of only one type of nonterminal allows a
�exible permutation of the topological ordering of
the same set of rules, resulting in a huge number of
possible derivations from a given source sentence.
In that respect, the overgeneration problem is not
new to SMT: Bracketing Transduction Grammar
(BTG) (Wu, 1997) uses a single type of nontermi-
nal and is subject to overgeneration problems, as
well.2

2Note, however, that overgeneration in BTG can be
viewed as a feature, not a bug, since the formalism was origi-
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The problem may be less severe in hierarchi-
cal phrase-based MT than in BTG, since lexical
items on the rules' right hand sides often limit the
span of nonterminals. Nonetheless overgeneration
of reorderings is still problematic, as we illustrate
using the hypothetical Chinese-to-English exam-
ple in Fig. 1.

Suppose we want to translate the Chinese sen-
tence in Fig. 1 into English using the following set
of rules:

1. Xa → 〈�
Z X1, computers and X1〉
2. Xb → 〈X14 X2, X1 are X2〉
3. Xc → 〈Cå , cell phones 〉
4. Xd → 〈X1{�Ò , inventions of X1〉
5. Xe → 〈ÞÇ-� , the last century 〉
Co-indexation of nonterminals on the right hand

side is indicated by subscripts, and for our ex-
amples the label of the nonterminal on the left
hand side is used as the rule's unique identi�er.
To correctly translate the sentence, a hierarchical
phrase-based system needs to model the subject
noun phrase, object noun phrase and copula con-
structions; these are captured by rules Xa, Xd and
Xb respectively, so this set of rules represents a
hierarchical phrase-based system that can be used
to correctly translate the Chinese sentence. Note
that the Chinese word order is correctly preserved
in the subject (Xa) as well as copula constructions
(Xb), and correctly inverted in the object construc-
tion (Xd).

However, although it can generate the correct
translation in Fig. 2, the grammar has no mech-
anism to prevent the generation of an incorrect
translation like the one illustrated in Fig. 3. If
we contrast the topological ordering of the rules
in Fig. 2 and Fig. 3, we observe that the difference
is small but quite signi�cant. Using precede sym-
bol (≺) to indicate the �rst operand immediately
dominates the second operand in the hierarchical
structure, the topological orderings in Fig. 2 and
Fig. 3 are Xa ≺ Xb ≺ Xc ≺ Xd ≺ Xe and
Xd ≺ Xa ≺ Xb ≺ Xc ≺ Xe, respectively. The
only difference is the topological ordering of Xd:
in Fig. 2, it appears below most of the other hier-
archical phrases, while in Fig. 3, it appears above
all the other hierarchical phrases.
nally introduced for bilingual analysis rather than generation
of translations.

Modeling the topological ordering of hierarchi-
cal phrases is computationally prohibitive, since
there are literally millions of hierarchical rules in
the system's automatically-learned grammar and
millions of possible ways to order their applica-
tion. To avoid this computational problem and
still model the topological ordering, we propose
to use the topological ordering of function words
as a practical approximation. This is motivated by
the fact that function words tend to carry crucial
syntactic information in sentences, serving as the
�glue� for content-bearing phrases. Moreover, the
positional relationships between function words
and content phrases tends to be �xed (e.g., in En-
glish, prepositions invariably precede their object
noun phrase), at least for the languages we have
worked with thus far.

In the Chinese sentence above, there are three
function words involved: the conjunctionZ (and),
the copula 4 (are), and the noun phrase marker
{ (of).3 Using the function words as approximate
representations of the rules in which they appear,
the topological ordering of hierarchical phrases in
Fig. 2 is Z(and) ≺ 4(are) ≺ {(of), while that
in Fig. 3 is {(of) ≺ Z(and) ≺ 4(are).4 We
can distinguish the correct and incorrect reorder-
ing choices by looking at this simple information.
In the correct reordering choice,{(of) appears at
the lower level of the hierarchy while in the incor-
rect one,{(of) appears at the highest level of the
hierarchy.

4 Pairwise Dominance Model
Our example suggests that we may be able to im-
prove the translation model's sensitivity to correct
versus incorrect reordering choices by modeling
the topological ordering of function words. We do
so by introducing a predicate capturing the domi-
nance relationship in a derivation between pairs of
neighboring function words.5

Let us de�ne a predicate d(Y ′, Y ′′) that takes
two function words as input and outputs one of

3We use the term �noun phrase marker� here in a general
sense, meaning that in this example it helps tell us that the
phrase is part of an NP, not as a technical linguistic term. It
serves in other grammatical roles, as well. Disambiguating
the syntactic roles of function words might be a particularly
useful thing to do in the model we are proposing; this is a
question for future research.

4Note that for expository purposes, we designed our sim-
ple grammar to ensure that these function words appear in
separate rules.

5Two function words are considered neighbors iff no other
function word appears between them in the source sentence.
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arecomputers and cell phones inventions of the last century

Figure 1: A running example of Chinese-to-English translation.

Xa⇒〈�
Z Xb, computers and Xb〉
⇒〈�
Z Xc4 Xd, computers and Xc are Xd〉
⇒〈�
ZCå4 Xd, computers and cell phones are Xd〉
⇒〈�
ZCå4 Xe{�Ò , computers and cell phones are inventions of Xe〉
⇒〈�
ZCå4ÞÇ-�{�Ò , computers and cell phones are inventions of the last century〉

Figure 2: The derivation that leads to the correct translation

Xd⇒〈Xa{�Ò , inventions of Xa〉
⇒〈�
Z Xb{�Ò , inventions of computers and Xb〉
⇒〈�
Z Xc4 Xe{�Ò , inventions of computers and Xc are Xe〉
⇒〈�
ZCå4 Xe{�Ò , inventions of computers and cell phones are Xe〉
⇒〈�
ZCå4ÞÇ-�{�Ò , inventions of computers and cell phones are the last century〉

Figure 3: The derivation that leads to the incorrect translation

four values: {leftFirst, rightFirst, dontCare, nei-
ther}, where Y ′ appears to the left of Y ′′ in the
source sentence. The value leftFirst indicates that
in the derivation's topological ordering, Y ′ pre-
cedes Y ′′ (i.e. Y ′ dominates Y ′′ in the hierarchi-
cal structure), while rightFirst indicates that Y ′′

dominates Y ′. In Fig. 2, d(Y ′, Y ′′) = leftFirst
for Y ′ = the copula 4 (are) and Y ′′ = the noun
phrase marker{ (of).

The dontCare and neither values capture two
additional relationships: dontCare indicates that
the topological ordering of the function words is
�exible, and neither indicates that the topologi-
cal ordering of the function words is disjoint. The
former is useful in cases where the hierarchical
phrases suggest the same kind of reordering, and
therefore restricting their topological ordering is
not necessary. This is illustrated in Fig. 2 by the
pairZ(and) and the copula 4(are), where putting
either one above the other does not change the �-
nal word order. The latter is useful in cases where
the two function words do not share a same parent.

Formally, this model requires several changes in
the design of the hierarchical phrase-based system.

1. To facilitate topological ordering of function
words, the hierarchical phrases must be sub-
categorized with function words. Taking Xb

in Fig. 2 as a case in point, subcategorization

using function words would yield:6

Xb(4 ≺{) → Xc4 Xd({) (3)

The subcategorization (indicated by the
information in parentheses following the
nonterminal) propagates the function word
4(are) of Xb to the higher level structure to-
gether with the function word {(of) of Xd.
This propagation process generalizes to other
rules by maintaining the ordering of the func-
tion words according to their appearance in
the source sentence. Note that the subcate-
gorized nonterminals often resemble genuine
syntactic categories, for instance X({) can
frequently be interpreted as a noun phrase.

2. To facilitate the computation of the domi-
nance relationship, the coindexing in syn-
chronized rules (indicated by the ∼ symbol
in Eq. 1) must be expanded to include infor-
mation not only about the nonterminal corre-
spondences but also about the alignment of
the lexical items. For example, adding lexi-
cal alignment information to rule Xd would
yield:

Xd → 〈X1{2�Ò3, inventions3 of2 X1〉
(4)

6The target language side is concealed for clarity.
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The computation of the dominance relation-
ship using this alignment information will be
discussed in detail in the next section.

Again taking Xb in Fig. 2 as a case in point, the
dominance feature takes the following form:

fdom(Xb) ≈ dom(d(4,{)|4, {)) (5)

dom(d(YL, YR)|YL, YR)) (6)

where the probability of4 ≺{ is estimated ac-
cording to the probability of d(4,{).

In practice, both 4(are) and {(of) may ap-
pear together in one same rule. In such a case, a
dominance score is not calculated since the topo-
logical ordering of the two function words is un-
ambiguous. Hence, in our implementation, a
dominance score is only calculated at the points
where the topological ordering of the hierarchical
phrases needs to be resolved, i.e. the two function
words always come from two different hierarchi-
cal phrases.

5 Parameter Estimation

Learning the dominance model involves extract-
ing d values for every pair of neighboring func-
tion words in the training bitext. Such statistics
are not directly observable in parallel corpora, so
estimation is needed. Our estimation method is
based on two facts: (1) the topological ordering
of hierarchical phrases is tightly coupled with the
span of the hierarchical phrases, and (2) the span
of a hierarchical phrase at a higher level is al-
ways a superset of the span of all other hierarchical
phrases at the lower level of its substructure. Thus,
to establish soft estimates of dominance counts,
we utilize alignment information available in the
rule together with the consistent alignment heuris-
tic (Och and Ney, 2004) traditionally used to guess
phrase alignments.

Speci�cally, we de�ne the span of a function
word as a maximal, consistent alignment in the
source language that either starts from or ends
with the function word. (Requiring that spans be
maximal ensures their uniqueness.) We will re-
fer to such spans as Maximal Consistent Align-
ments (MCA). Note that each function word has
two such Maximal Consistent Alignments: one
that ends with the function word (MCAR)and an-
other that starts from the function word (MCAL).

Y ′ Y ′′ left- right- dont- nei-
First First Care ther

Z (and) 4 (are) 0.11 0.16 0.68 0.05
4 (are) { (of) 0.57 0.15 0.06 0.22

Table 1: The distribution of the dominance values
of the function words involved in Fig. 1. The value
with the highest probability is in bold.

Given two function words Y ′ and Y ′′, with Y ′

preceding Y ′′, we de�ne the value of d by exam-
ining the MCAs of the two function words.

d(Y ′, Y ′′) =






















leftFirst, Y ′ 6∈ MCAR(Y ′′) ∧ Y ′′∈ MCAL(Y ′)
rightFirst, Y ′∈ MCAR(Y ′′) ∧ Y ′′ 6∈ MCAL(Y ′)
dontCare, Y ′∈ MCAR(Y ′′) ∧ Y ′′∈ MCAL(Y ′)
neither, Y ′ 6∈ MCAR(Y ′′) ∧ Y ′′ 6∈ MCAL(Y ′)

(6)

Fig. 4a illustrates the leftFirst dominance value
where the intersection of the MCAs contains only
the second function word ({(of)). Fig. 4b illus-
trates the dontCare value, where the intersection
contains both function words. Similarly, rightFirst
and neither are represented by an intersection that
contains only Y ′, or by an empty intersection, re-
spectively. Once all the d values are counted, the
pairwise dominance model of neighboring func-
tion words can be estimated simply from counts
using maximum likelihood. Table 1 illustrates es-
timated dominance values that correctly resolve
the topological ordering for our running example.

6 Experimental Setup
We tested the effect of introducing the pairwise
dominance model into hierarchical phrase-based
translation on Chinese-to-English and Arabic-to-
English translation tasks, thus studying its effect
in two languages where the use of function words
differs signi�cantly. Following Setiawan et al.
(2007), we identify function words as the N most
frequent words in the corpus, rather than identify-
ing them according to linguistic criteria; this ap-
proximation removes the need for any additional
language-speci�c resources. We report results
for N = 32, 64, 128, 256, 512, 1024, 2048.7 For

7We observe that even N = 2048 represents less than
1.5% and 0.8% of the words in the Chinese and Arabic vo-
cabularies, respectively. The validity of the frequency-based
strategy, relative to linguistically-de�ned function words, is
discussed in Section 8
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Figure 4: Illustrations for: a) the leftFirst value,
and b) the dontCare value. Thickly bordered
boxes are MCAs of the function words while solid
circles are the alignment points of the function
words. The gray boxes are the intersections of the
two MCAs.

all experiments, we report performance using the
BLEU score (Papineni et al., 2002), and we assess
statistical signi�cance using the standard boot-
strapping approach introduced by (Koehn, 2004).

Chinese-to-English experiments. We trained
the system on the NIST MT06 Eval corpus ex-
cluding the UN data (approximately 900K sen-
tence pairs). For the language model, we used a 5-
gram model with modi�ed Kneser-Ney smoothing
(Kneser and Ney, 1995) trained on the English side
of our training data as well as portions of the Giga-
word v2 English corpus. We used the NIST MT03
test set as the development set for optimizing inter-
polation weights using minimum error rate train-
ing (MERT; (Och and Ney, 2002)). We carried out
evaluation of the systems on the NIST 2006 eval-
uation test (MT06) and the NIST 2008 evaluation
test (MT08). We segmented Chinese as a prepro-
cessing step using the Harbin segmenter (Zhao et
al., 2001).

Arabic-to-English experiments. We trained
the system on a subset of 950K sentence pairs
from the NIST MT08 training data, selected by

�subsampling� from the full training data using a
method proposed by Kishore Papineni (personal
communication). The subsampling algorithm se-
lects sentence pairs from the training data in a
way that seeks reasonable representation for all n-
grams appearing in the test set. For the language
model, we used a 5-gram model trained on the En-
glish portion of the whole training data plus por-
tions of the Gigaword v2 corpus. We used the
NIST MT03 test set as the development set for
optimizing the interpolation weights using MERT.
We carried out the evaluation of the systems on the
NIST 2006 evaluation set (MT06) and the NIST
2008 evaluation set (MT08). Arabic source text
was preprocessed by separating clitics, the de�-
niteness marker, and the future tense marker from
their stems.

7 Experimental Results

Chinese-to-English experiments. Table 2 sum-
marizes the results of our Chinese-to-English ex-
periments. These results con�rm that the pairwise
dominance model can signi�cantly increase per-
formance as measured by the BLEU score, with a
consistent pattern of results across the MT06 and
MT08 test sets. Modeling N = 32 drops the per-
formance marginally below baseline, suggesting
that perhaps there are not enough words for the
pairwise dominance model to work with. Dou-
bling the number of words (N = 64) produces
a small gain, and de�ning the pairwise dominance
model using N = 128 most frequent words pro-
duces a statistically signi�cant 1-point gain over
the baseline (p < 0.01). Larger values of N
yield statistically signi�cant performance above
the baseline, but without further improvements
over N = 128.
Arabic-to-English experiments. Table 3 sum-
marizes the results of our Arabic-to-English ex-
periments. This set of experiments shows a pat-
tern consistent with what we observed in Chinese-
to-English translation, again generally consistent
across MT06 and MT08 test sets although mod-
eling a small number of lexical items (N = 32)
brings a marginal improvement over the baseline.
In addition, we again �nd that the pairwise dom-
inance model with N = 128 produces the most
signi�cant gain over the baseline in the MT06,
although, interestingly, modeling a much larger
number of lexical items (N = 2048) yields the
strongest improvement for the MT08 test set.
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MT06 MT08
baseline 30.58 24.08
+dom(N = 32) 30.43 23.91
+dom(N = 64) 30.96 24.45
+dom(N = 128) 31.59 24.91
+dom(N = 256) 31.24 24.26
+dom(N = 512) 31.33 24.39
+dom(N = 1024) 31.22 24.79
+dom(N = 2048) 30.75 23.92

Table 2: Experimental results on Chinese-to-
English translation with the pairwise dominance
model (dom) of different N . The baseline (the
�rst line) is the original hierarchical phrase-based
system. Statistically signi�cant results (p < 0.01)
over the baseline are in bold.

MT06 MT08
baseline 41.56 40.06
+dom(N = 32) 41.66 40.26
+dom(N = 64) 42.03 40.73
+dom(N = 128) 42.66 41.08
+dom(N = 256) 42.28 40.69
+dom(N = 512) 41.97 40.95
+dom(N = 1024) 42.05 40.55
+dom(N = 2048) 42.48 41.47

Table 3: Experimental results on Arabic-to-
English translation with the pairwise dominance
model (dom) of different N . The baseline (the
�rst line) is the original hierarchical phrase-based
system. Statistically signi�cant results over the
baseline (p < 0.01) are in bold.

8 Discussion and Future Work

The results in both sets of experiments show con-
sistently that we have achieved a signi�cant gains
by modeling the topological ordering of function
words. When we visually inspect and compare
the outputs of our system with those of the base-
line, we observe that improved BLEU score often
corresponds to visible improvements in the sub-
jective translation quality. For example, the trans-
lations for the Chinese sentence ��<1 
�2 :3
��4 ó5 ��6 8ñ7 �8 �9 À10 õ11 È12

?13�, taken from Chinese MT06 test set, are as
follows (co-indexing subscripts represent recon-
structed word alignments):

• baseline: �military1 intelligence2 un-
der observation8 in5 u.s.6 air raids7 :3 iran4

to9 how11 long12 ?13 �

• +dom(N=128): � military1 survey2 :3 how11

long12 iran4 under8 air strikes7 of the u.s6

can9 hold out10 ?13 �

In addition to some lexical translation errors
(e.g. ��6 should be translated to U.S. Army),
the baseline system also makes mistakes in re-
ordering. The most obvious, perhaps, is its fail-
ure to capture the wh-movement involving the in-
terrogative word õ11 (how); this should move
to the beginning of the translated clause, consis-
tent with English wh-fronting as opposed to Chi-
nese wh in situ. The pairwise dominance model
helps, since the dominance value between the in-
terrogative word and its previous function word,
the modal verb �9(can) in the baseline system's
output, is neither, rather than rightFirst as in the
better translation.

The fact that performance tends to be best us-
ing a frequency threshold of N = 128 strikes
us as intuitively sensible, given what we know
about word frequency rankings.8 In English,
for example, the most frequent 128 words in-
clude virtually all common conjunctions, deter-
miners, prepositions, auxiliaries, and comple-
mentizers � the crucial elements of �syntactic
glue� that characterize the types of linguistic
phrases and the ordering relationships between
them � and a very small proportion of con-
tent words. Using Adam Kilgarriff's lemma-
tized frequency list from the British National Cor-
pus, http://www.kilgarriff.co.uk/bnc-readme.html,
the most frequent 128 words in English are heav-
ily dominated by determiners, �functional� ad-
verbs like not and when, �particle� adverbs like
up, prepositions, pronouns, and conjunctions, with
some arguably �functional� auxiliary and light
verbs like be, have, do, give, make, take. Con-
tent words are generally limited to a small number
of frequent verbs like think and want and a very
small handful of frequent nouns. In contrast, ranks
129-256 are heavily dominated by the traditional
content-word categories, i.e. nouns, verbs, adjec-
tives and adverbs, with a small number of left-over
function words such as less frequent conjunctions
while, when, and although.

Consistent with these observations for English,
the empirical results for Chinese suggest that our

8In fact, we initially simply chose N = 128 for our exper-
imentation, and then did runs with alternative N to con�rm
our intuitions.
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approximation of function words using word fre-
quency is reasonable. Using a list of approxi-
mately 900 linguistically identi�ed function words
in Chinese extracted from (Howard, 2002), we ob-
serve that that the performance drops when in-
creasing N above 128 corresponds to a large in-
crease in the number of non-function words used
in the model. For example, with N = 2048, the
proportion of non-function words is 88%, com-
pared to 60% when N = 128.9

One natural extension of this work, therefore,
would be to tighten up our characterization of
function words, whether statistically, distribution-
ally, or simply using manually created resources
that exist for many languages. As a �rst step, we
did a version of the Chinese-English experiment
using the list of approximately 900 genuine func-
tion words, testing on the Chinese MT06 set. Per-
haps surprisingly, translation performance, 30.90
BLEU, was around the level we obtained when
using frequency to approximate function words at
N = 64. However, we observe that many of
the words in the linguistically motivated function
word list are quite infrequent; this suggests that
data sparseness may be an additional factor worth
investigating.

Finally, although we believe there are strong
motivations for focusing on the role of function
words in reordering, there may well be value in
extending the dominance model to include content
categories. Verbs and many nouns have subcat-
egorization properties that may in�uence phrase
ordering, for example, and this may turn out to ex-
plain the increase in Arabic-English performance
for N = 2048 using the MT08 test set. More gen-
erally, the approach we are taking can be viewed
as a way of selectively lexicalizing the automati-
cally extracted grammar, and there is a large range
of potentially interesting choices in how such lex-
icalization could be done.

9 Related Work

In the introduction, we discussed Chiang's (2005)
constituency feature, related ideas explored by
Marton and Resnik (2008) and Chiang et al.
(2008), and the target-side variation investigated
by Zollman et al. (2006). These methods differ
from each other mainly in terms of the speci�c lin-

9We plan to do corresponding experimentation and anal-
ysis for Arabic once we identify a suitable list of manually
identi�ed function words.

guistic knowledge being used and on which side
the constraints are applied.

Shen et al. (2008) proposed to use lin-
guistic knowledge expressed in terms of a de-
pendency grammar, instead of a syntactic con-
stituency grammar. Villar et al. (2008) attempted
to use syntactic constituency on both the source
and target languages in the same spirit as the con-
stituency feature, along with some simple pattern-
based heuristics � an approach also investigated by
Iglesias et al. (2009). Aiming at improving the se-
lection of derivations, Zhou et al. (2008) proposed
prior derivation models utilizing syntactic annota-
tion of the source language, which can be seen as
smoothing the probabilities of hierarchical phrase
features.

A key point is that the model we have intro-
duced in this paper does not require the linguistic
supervision needed in most of this prior work. We
estimate the parameters of our model from parallel
text without any linguistic annotation. That said,
we would emphasize that our approach is, in fact,
motivated in linguistic terms by the role of func-
tion words in natural language syntax.

10 Conclusion
We have presented a pairwise dominance model
to address reordering issues that are not handled
particularly well by standard hierarchical phrase-
based modeling. In particular, the minimal lin-
guistic commitment in hierarchical phrase-based
models renders them susceptible to overgenera-
tion of reordering choices. Our proposal han-
dles the overgeneration problem by identifying
hierarchical phrases with function words and by
using function word relationships to incorporate
soft constraints on topological orderings. Our
experimental results demonstrate that introducing
the pairwise dominance model into hierarchical
phrase-based modeling improves performance sig-
ni�cantly in large-scale Chinese-to-English and
Arabic-to-English translation tasks.
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Abstract

An efficient decoding algorithm is a cru-
cial element of any statistical machine
translation system. Some researchers have
noted certain similarities between SMT
decoding and the famous Traveling Sales-
man Problem; in particular (Knight, 1999)
has shown that any TSP instance can be
mapped to a sub-case of a word-based
SMT model, demonstrating NP-hardness
of the decoding task. In this paper, we fo-
cus on the reverse mapping, showing that
any phrase-based SMT decoding problem
can be directly reformulated as a TSP. The
transformation is very natural, deepens our
understanding of the decoding problem,
and allows direct use of any of the pow-
erful existing TSP solvers for SMT de-
coding. We test our approach on three
datasets, and compare a TSP-based de-
coder to the popular beam-search algo-
rithm. In all cases, our method provides
competitive or better performance.

1 Introduction

Phrase-based systems (Koehn et al., 2003) are
probably the most widespread class of Statistical
Machine Translation systems, and arguably one of
the most successful. They use aligned sequences
of words, called biphrases, as building blocks for
translations, and score alternative candidate trans-
lations for the same source sentence based on a
log-linear model of the conditional probability of
target sentences given the source sentence:

p(T, a|S) =
1

ZS

exp
∑

k

λkhk(S, a, T ) (1)

where thehk are features, that is, functions of the
source stringS, of the target stringT , and of the

∗ This work was conducted during an internship at
XRCE.

alignmenta, where the alignment is a representa-
tion of the sequence of biphrases that where used
in order to buildT from S; Theλk’s are weights
andZS is a normalization factor that guarantees
that p is a proper conditional probability distri-
bution over the pairs(T, A). Some features are
local, i.e. decompose over biphrases and can be
precomputed and stored in advance. These typ-
ically include forward and reverse phrase condi-
tional probability featureslog p(t̃|s̃) as well as
log p(s̃|t̃), where s̃ is the source side of the
biphrase and̃t the target side, and the so-called
“phrase penalty” and “word penalty” features,
which count the number of phrases and words in
the alignment. Other features arenon-local, i.e.
depend on the order in which biphrases appear in
the alignment. Typical non-local features include
one or more n-gram language models as well as
a distortion feature, measuring by how much the
order of biphrases in the candidate translation de-
viates from their order in the source sentence.

Given such a model, where theλi’s have been
tuned on a development set in order to minimize
some error rate (see e.g. (Lopez, 2008)), together
with a library of biphrases extracted from some
large training corpus, adecoderimplements the
actual search among alternative translations:

(a∗, T ∗) = arg max
(a,T )

P (T, a|S). (2)

The decoding problem (2) is a discrete optimiza-
tion problem. Usually, it is very hard to find the
exact optimum and, therefore, an approximate so-
lution is used. Currently, most decoders are based
on some variant of a heuristic left-to-right search,
that is, they attempt to build a candidate translation
(a, T ) incrementally, from left to right, extending
the current partial translation at each step with a
new biphrase, and computing a score composed of
two contributions: one for the known elements of
the partial translation so far, and one a heuristic
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estimate of the remaining cost for completing the
translation. The variant which is mostly used is
a form ofbeam-search, where several partial can-
didates are maintained in parallel, and candidates
for which the current score is too low are pruned
in favor of candidates that are more promising.

We will see in the next section that some char-
acteristics of beam-search make it a suboptimal
choice for phrase-based decoding, and we will
propose an alternative. This alternative is based on
the observation that phrase-based decoding can be
very naturally cast as a Traveling Salesman Prob-
lem (TSP), one of the best studied problems in
combinatorial optimization. We will show that this
formulation is not only a powerful conceptual de-
vice for reasoning on decoding, but is also prac-
tically convenient: in the same amount of time,
off-the-shelf TSP solvers can find higher scoring
solutions than the state-of-the art beam-search de-
coder implemented inMoses(Hoang and Koehn,
2008).

2 Related work

Beam-search decoding
In beam-search decoding, candidate translation
prefixes are iteratively extended with new phrases.
In its most widespread variant,stack decoding,
prefixes obtained by consuming the same number
of source words, no matter which, are grouped to-
gether in the samestack1 and compete against one
another.Thresholdandhistogrampruning are ap-
plied: the former consists in dropping all prefixes
having a score lesser than the best score by more
than some fixed amount (a parameter of the algo-
rithm), the latter consists in dropping all prefixes
below a certain rank.

While quite successful in practice, stack decod-
ing presents some shortcomings. A first one is that
prefixes obtained by translating different subsets
of source words compete against one another. In
one early formulation of stack decoding for SMT
(Germann et al., 2001), the authors indeed pro-
posed to lazily create one stack for each subset
of source words, but acknowledged issues with
the potential combinatorial explosion in the num-
ber of stacks. This problem is reduced by the use
of heuristics for estimating the cost of translating
the remaining part of the source sentence. How-

1While commonly adopted in the speech and SMT com-
munities, this is a bit of a misnomer, since the used data struc-
tures are priority queues, not stacks.

ever, this solution is only partially satisfactory. On
the one hand, heuristics should be computationally
light, much lighter than computing the actual best
score itself, while, on the other hand, the heuris-
tics should be tight, as otherwise pruning errors
will ensue. There is no clear criterion to guide
in this trade-off. Even when good heuristics are
available, the decoder will show a bias towards
putting at the beginning the translation of a certain
portion of the source, either because this portion
is less ambiguous (i.e. its translation has larger
conditional probability) or because the associated
heuristics is less tight, hence more optimistic. Fi-
nally, since the translation is built left-to-right the
decoder cannot optimize the search by taking ad-
vantage of highly unambiguous and informative
portions that should be best translated far from the
beginning. All these reasons motivate considering
alternative decoding strategies.

Word-based SMT and the TSP
As already mentioned, the similarity between
SMT decoding and TSP was recognized in
(Knight, 1999), who focussed on showing that
any TSP can be reformulated as a sub-class of the
SMT decoding problem, proving that SMT decod-
ing is NP-hard. Following this work, the exis-
tence of many efficient TSP algorithms then in-
spired certain adaptations of the underlying tech-
niques to SMT decoding for word-based models.
Thus, (Germann et al., 2001) adapt a TSP sub-
tour elimination strategy to an IBM-4 model, us-
ing generic Integer Programming techniques. The
paper comes close to a TSP formulation of de-
coding with IBM-4 models, but does not pursue
this route to the end, stating that“It is difficult
to convert decoding into straight TSP, but a wide
range of combinatorial optimization problems (in-
cluding TSP) can be expressed in the more gen-
eral framework of linear integer programming”.
By employing generic IP techniques, it is how-
ever impossible to rely on the variety of more
efficient both exact and approximate approaches
which have been designed specifically for the TSP.
In (Tillmann and Ney, 2003) and (Tillmann, 2006),
the authors modify a certain Dynamic Program-
ming technique used for TSP for use with an IBM-
4 word-based model and a phrase-based model re-
spectively. However, to our knowledge, none of
these works has proposed a direct reformulation
of these SMT models as TSP instances. We be-
lieve we are the first to do so, working in our case
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with the mainstream phrase-based SMT models,
and therefore making it possible to directly apply
existing TSP solvers to SMT.

3 The Traveling Salesman Problem and
its variants

In this paper the Traveling Salesman Problem ap-
pears in four variants:

STSP. The most standard, and most studied,
variant is theSymmetric TSP: we are given a non-
directed graphG on N nodes, where the edges
carry real-valued costs. The STSP problem con-
sists in finding a tour of minimal total cost, where
a tour (also called Hamiltonian Circuit) is a “cir-
cular” sequence of nodes visiting each node of the
graph exactly once;

ATSP. TheAsymmetric TSP, or ATSP, is a vari-
ant where the underlying graphG is directed and
where, for i and j two nodes of the graph, the
edges (i,j) and (j,i) may carry different costs.

SGTSP. The Symmetric Generalized TSP, or
SGTSP: given a non-oriented graphG of |G|
nodes with edges carrying real-valued costs, given
a partition of these|G| nodes intom non-empty,
disjoint, subsets (called clusters), find a circular
sequence ofm nodes of minimal total cost, where
each cluster is visited exactly once.

AGTSP. TheAsymmetric Generalized TSP, or
AGTSP: similar to the SGTSP, butG is now a di-
rected graph.

The STSP is often simply denoted TSP in the
literature, and is known to be NP-hard (Applegate
et al., 2007); however there has been enormous
interest in developing efficient solvers for it, both
exact and approximate.

Most of existing algorithms are designed for
STSP, but ATSP, SGTSPandAGTSPmay be re-
duced toSTSP, and therefore solved bySTSPal-
gorithms.

3.1 Reductions AGTSP→ATSP→STSP

The transformation of the AGTSP into the ATSP,
introduced by (Noon and Bean, 1993)), is illus-
trated in Figure (1). In this diagram, we assume
that Y1, . . . , YK are the nodes of a given cluster,
while X andZ are arbitrary nodes belonging to
other clusters. In the transformed graph, we in-
troduce edges between theYi’s in order to form a
cycle as shown in the figure, where each edge has
a large negative cost−K. We leave alone the in-
coming edge toYi from X, but the outgoing edge

Figure 1: AGTSP→ATSP.

from Yi to X has its origin changed toYi−1. A
feasible tour in the original AGTSP problem pass-
ing throughX, Yi, Z will then be “encoded” as a
tour of the transformed graph that first traverses
X , then traversesYi, . . . , YK , . . . , Yi−1, then tra-
versesZ (this encoding will have the same cost as
the original cost, minus(k − 1)K). Crucially, if
K is large enough, then the solver for the trans-
formed ATSP graph will tend to traverse as many
K edges as possible, meaning that it will traverse
exactlyk − 1 such edges in the cluster, that is, it
will produce an encoding of some feasible tour of
the AGTSP problem.

As for the transformation ATSP→STSP, several
variants are described in the literature, e.g. (Ap-
plegate et al., 2007, p. 126); the one we use is from
(Wikipedia, 2009) (not illustrated here for lack of
space).

3.2 TSP algorithms

TSP is one of the most studied problems in com-
binatorial optimization, and even a brief review of
existing approaches would take too much place.
Interested readers may consult (Applegate et al.,
2007; Gutin, 2003) for good introductions.

One of the best existing TSP solvers is imple-
mented in the open sourceConcordepackage (Ap-
plegate et al., 2005).Concordeincludes the fastest
exact algorithm and one of the most efficient im-
plementations of the Lin-Kernighan (LK) heuris-
tic for finding an approximate solution. LK works
by generating an initial random feasible solution
for the TSP problem, and then repeatedly identi-
fying an ordered subset ofk edges in the current
tour and an ordered subset ofk edges not included
in the tour such that when they are swapped the
objective function is improved. This is somewhat
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reminiscent of theGreedy decodingof (Germann
et al., 2001), but in LK several transformations can
be applied simultaneously, so that the risk of being
stuck in a local optimum is reduced (Applegate et
al., 2007, chapter 15).

As will be shown in the next section, phrase-
based SMT decoding can be directly reformulated
as an AGTSP. Here we useConcorde through
first transforming AGTSP into STSP, but it might
also be interesting in the future to use algorithms
specifically designed for AGTSP, which could im-
prove efficiency further (see Conclusion).

4 Phrase-based Decoding as TSP

In this section we reformulate the SMT decoding
problem as anAGTSP. We will illustrate the ap-
proach through a simple example: translating the
French sentence“cette traduction automatique est
curieuse” into English. We assume that the rele-
vant biphrases for translating the sentence are as
follows:

ID source target
h cette this
t traduction translation
ht cette traduction this translation
mt traduction automatique machine translation
a automatique automatic
m automatique machine
i est is
s curieuse strange
c curieuse curious

Under this model, we can produce, among others,
the following translations:

h · mt · i · s this machine translation is strange
h · c · t · i · a this curious translation is automatic
ht · s · i · a this translation strange is automatic

where we have indicated on the left the ordered se-
quence of biphrases that leads to each translation.

We now formulate decoding as an AGTSP, in
the following way. The graph nodes are all the
possible pairs(w, b), wherew is a source word in
the source sentences andb is a biphrase contain-
ing this source word. The graph clusters are the
subsets of the graph nodes that share a common
source wordw.

The costs of a transition between nodesM and
N of the graph are defined as follows:
(a) If M is of the form(w, b) andN of the form
(w′, b), in whichb is a single biphrase, andw and
w′ are consecutive words inb, then the transition
cost is 0: once we commit to using the first word
of b, there is no additional cost for traversing the

other source words covered byb.
(b) If M = (w, b), where w is the rightmost
source wordin the biphraseb, andN = (w′, b′),
wherew′ 6= w is the leftmost source wordin b′,
then the transition cost corresponds to the cost
of selectingb′ just after b; this will correspond
to “consuming” the source side ofb′ after having
consumed the source side ofb (whatever their rel-
ative positions in the source sentence), and to pro-
ducing the target side ofb′ directly after the target
side ofb; the transition cost is then the addition of
several contributions (weighted by their respective
λ (not shown), as in equation 1):

• The cost associated with the features local to
b in the biphrase library;

• The “distortion” cost of consuming the
source wordw′ just after the source wordw:
|pos(w′) − pos(w) − 1|, where pos(w) and
pos(w′) are the positions ofw andw′ in the
source sentence.

• The language model cost of producing the
target words ofb′ right after the target words
of b; with a bigram language model, this cost
can be precomputed directly fromb and b′.
This restriction to bigram models will be re-
moved in Section 4.1.

(c) In all other cases, the transition cost is infinite,
or, in other words, there is no edge in the graph
betweenM andN .

A special cluster containing a single node (de-
noted by $-$$ in the figures), and corresponding to
specialbeginning-of-sentencesymbols must also
be included: the corresponding edges and weights
can be worked out easily. Figures 2 and 3 give
some illustrations of what we have just described.

4.1 From Bigram to N-gram LM

Successful phrase-based systems typically employ
language models of order higher than two. How-
ever, our models so far have the following impor-
tant “Markovian” property: the cost of a path is
additive relative to the costs of transitions. For
example, in the example of Figure 3, the cost of
this · machine translation· is · strange, can only
take into account the conditional probability of the
word strangerelative to the wordis, but not rela-
tive to the wordstranslationandis. If we want to
extend the power of the model to general n-gram
language models, and in particular to the 3-gram
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Figure 2: Transition graph for the source sentence
cette traduction automatique est curieuse. Only
edges entering or exiting the node traduction−mt
are shown. The only successor to[traduction−
mt] is [automatique− mt], and[cette− ht] is not a
predecessor of[traduction− mt].

Figure 3: A GTSP tours is illustrated, correspond-
ing to the displayed output.

case (on which we concentrate here, but the tech-
niques can be easily extended to the general case),
the following approach can be applied.

Compiling Out for Trigram models
This approach consists in “compiling out” all
biphrases with a target side of only one word.
We replace each biphraseb with single-word tar-
get side by “extended” biphrasesb1, . . . , br, which
are “concatenations” ofb and some other biphrase
b′ in the library.2 To give an example, consider
that we: (1) remove from the biphrase library the
biphrasei, which has a single word target, and (2)
add to the library the extended biphrasesmti, ti,
si, . . ., that is, all the extended biphrases consist-
ing of the concatenation of a biphrase in the library
with i, then it is clear that these extended biphrases
will provide enough context to compute a trigram
probability for the target word produced immedi-
ately next (in the examples, for the wordsstrange,

2In the figures, such “concatenations” are denoted by
[b′ · b] ; they are interpreted as encapsulations of first con-
suming the source side ofb′, whether or not this source side
precedes the source side ofb in the source sentence, produc-
ing the target side ofb′, consuming the source side ofb, and
producing the target side ofb immediately after that ofb′.

Figure 4: Compiling-out of biphrasei: (est,is).

automaticandautomaticrespectively). If we do
that exhaustively for all biphrases (relevant for the
source sentence at hand) that, likei, have a single-
word target, we will obtain a representation that
allows a trigram language model to be computed
at each point.

The situation becomes clearer by looking at Fig-
ure 4, where we have only eliminated the biphrase
i, and only shown some of the extended biphrases
that now encapsulatei, and where we show one
valid circuit. Note that we are now able to as-
sociate with the edge connecting the two nodes
(est, mti) and(curieuse, s) a trigram cost because
mti provides a large enough target context.

While this exhaustive “compiling out” method
works in principle, it has a serious defect: if for
the sentence to be translated, there arem relevant
biphrases, among whichk have single-word tar-
gets, then we will create on the order ofkm ex-
tended biphrases, which may represent a signif-
icant overhead for the TSP solver, as soon ask

is large relative tom, which is typically the case.
The problem becomes even worse if we extend the
compiling-out method to n-gram language models
with n > 3. In the Future Work section below,
we describe a powerful approach for circumvent-
ing this problem, but with which we have not ex-
perimented yet.

5 Experiments

5.1 Monolingual word re-ordering

In the first series of experiments we consider the
artificial task of reconstructing the original word
order of a given English sentence. First, we ran-
domly permute words in the sentence, and then
we try to reconstruct the original order by max-
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Figure 5: (a), (b): LM and BLEU scores as functions of time for a bigramLM; (c), (d): the same for
a trigram LM. The x axis corresponds to the cumulative time for processing the test set; for (a) and (c),
the y axis corresponds to the mean difference (over all sentences) between the lm score of the output
and the lm score of the reference normalized by the sentence length N: (LM(ref)-LM(true))/N. The solid
line with star marks corresponds to using beam-search with different pruning thresholds, which result in
different processing times and performances. The cross corresponds to using the exact-TSP decoder (in
this case the time to the optimal solution is not under the user’s control).

imizing the LM score over all possible permuta-
tions. The reconstruction procedure may be seen
as a translation problem from “Bad English” to
“Good English”. Usually the LM score is used
as one component of a more complex decoder
score which also includes biphrase and distortion
scores. But in this particular “translation task”
from bad to good English, we consider that all
“biphrases” are of the forme − e, wheree is an
English word, and we do not take into account
any distortion: we only consider the quality of
the permutation as it is measured by the LM com-
ponent. Since for each “source word”e, there is
exactly one possible “biphrase”e − e each clus-
ter of the Generalized TSP representation of the
decoding problem contains exactly one node; in
other terms, the Generalized TSP in this situation
is simply a standard TSP. Since the decoding phase
is then equivalent to a word reordering, the LM
score may be used to compare the performance
of different decoding algorithms. Here, we com-
pare three different algorithms: classical beam-
search (Moses); a decoder based on an exact TSP
solver (Concorde); a decoder based on an approx-
imate TSP solver (Lin-Kernighan as implemented
in the Concorde solver)3. In the Beam-search
and the LK-based TSP solver we can control the
trade-off between approximation quality and run-
ning time. To measure re-ordering quality, we use
two scores. The first one is just the “internal” LM
score; since all three algorithms attempt to maxi-
mize this score, a natural evaluation procedure is
to plot its value versus the elapsed time. The sec-

3Both TSP decoders may be used with/or without adistor-
tion limit; in our experiments we do not use this parameter.

ond score is BLEU (Papineni et al., 2001), com-
puted between the reconstructed and the original
sentences, which allows us to check how well the
quality of reconstruction correlates with the inter-
nal score. The training dataset for learning the LM
consists of 50000 sentences from NewsCommen-
tary corpus (Callison-Burch et al., 2008), the test
dataset for word reordering consists of 170 sen-
tences, the average length of test sentences is equal
to 17 words.

Bigram based reordering. First we consider
a bigram Language Model and the algorithms try
to find the re-ordering that maximizes the LM
score. The TSP solver used here is exact, that is,
it actually finds the optimal tour. Figures 5(a,b)
present the performance of the TSP and Beam-
search based methods.

Trigram based reordering. Then we consider
a trigram based Language Model and the algo-
rithms again try to maximize the LM score. The
trigram model used is a variant of the exhaustive
compiling-out procedure described in Section 4.1.
Again, we use an exact TSP solver.

Looking at Figure 5a, we see a somewhat sur-
prising fact: the cross and some star points have
positive y coordinates! This means that, when us-
ing a bigram language model, it is often possible
to reorder the words of a randomly permuted ref-
erence sentence in such a way that the LM score
of the reordered sentence is larger than the LM of
the reference. A second notable point is that the
increase in the LM-score of the beam-search with
time is steady but very slow, and never reaches the
level of performance obtained with the exact-TSP
procedure, even when increasing the time by sev-
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eral orders of magnitude. Also to be noted is that
the solution obtained by the exact-TSP is provably
the optimum, which is almost never the case of
the beam-search procedure. In Figure 5b, we re-
port the BLEU score of the reordered sentences
in the test set relative to the original reference
sentences. Here we see that the exact-TSP out-
puts are closer to the references in terms of BLEU
than the beam-search solutions. Although the TSP
output does not recover the reference sentences
(it produces sentences with a slightly higher LM
score than the references), it does reconstruct the
references better than the beam-search. The ex-
periments with trigram language models (Figures
5(c,d)) show similar trends to those with bigrams.

5.2 Translation experiments with a bigram
language model

In this section we consider two real translation
tasks, namely, translation from English to French,
trained on Europarl (Koehn et al., 2003) and trans-
lation from German to Spanish training on the
NewsCommentary corpus. For Europarl, the train-
ing set includes 2.81 million sentences, and the
test set 500. For NewsCommentary the training
set is smaller: around 63k sentences, with a test
set of 500 sentences. Figure 6 presents Decoder
and Bleu scores as functions of time for the two
corpuses.

Since in the real translation task, the size of the
TSP graph is much larger than in the artificial re-
ordering task (in our experiments the median size
of the TSP graph was around 400 nodes, some-
times growing up to 2000 nodes), directly apply-
ing the exact TSP solver would take too long; in-
stead we use the approximate LK algorithm and
compare it to Beam-Search. The efficiency of the
LK algorithm can be significantly increased by us-
ing a good initialization. To compare the quality of
the LK and Beam-Search methods we take a rough
initial solution produced by the Beam-Search al-
gorithm using a small value for the stack size and
then use it as initial point, both for the LK algo-
rithm and for further Beam-Search optimization
(where as before we vary the Beam-Search thresh-
olds in order to trade quality for time).

In the case of the Europarl corpus, we observe
that LK outperforms Beam-Search in terms of the
Decoder score as well as in terms of the BLEU
score. Note that the difference between the two al-
gorithms increases steeply at the beginning, which

means that we can significantly increase the qual-
ity of the Beam-Search solution by using the LK
algorithm at a very small price. In addition, it is
important to note that the BLEU scores obtained in
these experiments correspond to feature weights,
in the log-linear model (1), that have been opti-
mized for the Moses decoder, but not for the TSP
decoder: optimizing these parameters relatively to
the TSP decoder could improve its BLEU scores
still further.

On the News corpus, again, LK outperforms
Beam-Search in terms of the Decoder score. The
situation with the BLEU score is more confuse.
Both algorithms do not show any clear score im-
provement with increasing running time which
suggests that the decoder’s objective function is
not very well correlated with the BLEU score on
this corpus.

6 Future Work

In section 4.1, we described a general “compiling
out” method for extending our TSP representation
to handling trigram and N-gram language models,
but we noted that the method may lead to combi-
natorial explosion of the TSP graph. While this
problem was manageable for the artificial mono-
lingual word re-ordering (which had only one pos-
sible translation for each source word), it be-
comes unwieldy for the real translation experi-
ments, which is why in this paper we only consid-
ered bigram LMs for these experiments. However,
we know how to handle this problem in principle,
and we now describe a method that we plan to ex-
periment with in the future.

To avoid the large number of artificial biphrases
as in 4.1, we perform anadaptive selection. Let us
suppose that(w, b) is a SMT decoding graph node,
whereb is a biphrase containing only one word on
the target side. On the first step, when we evaluate
the traveling cost from(w, b) to (w′, b′), we take
the language model component equal to

min
b′′ 6=b′,b

− log p(b′.v|b.e, b′′.e),

whereb′.v represents the first word of theb′ tar-
get side, b.e is the only word of theb target
side, andb′′.e is the last word of theb′′ tar-
get size. This procedure underestimates the total
cost of tour passing through biphrases that have a
single-word target. Therefore if the optimal tour
passes only through biphrases with more than one
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Figure 6: (a), (b): Europarl corpus, translation from English to French; (c),(d): NewsCommentary cor-
pus, translation from German to Spanish. Average value of the decoder and the BLEU scores (over 500
test sentences) as a function of time. The trade-off quality/time in the case of LK is controlled by the
number of iterations, and each point corresponds to a particular number of iterations, in our experiments
LK was run with a number of iterations varying between 2k and 170k. The same trade-off in the case of
Beam-Search is controlled by varying the beam thresholds.

word on their target side, then we are sure that
this tour is also optimal in terms of the tri-gram
language model. Otherwise, if the optimal tour
passes through(w, b), whereb is a biphrase hav-
ing a single-word target, we add only the extended
biphrases related tob as we described in section
4.1, and then we recompute the optimal tour. Iter-
ating this procedure provably converges to an op-
timal solution.

This powerful method, which was proposed in
(Kam and Kopec, 1996; Popat et al., 2001) in the
context of a finite-state model (but not of TSP),
can be easily extended to N-gram situations, and
typically converges in a small number of itera-
tions.

7 Conclusion

The main contribution of this paper has been to
propose a transformation for an arbitrary phrase-
based SMT decoding instance into a TSP instance.
While certain similarities of SMT decoding and
TSP were already pointed out in (Knight, 1999),
where it was shown that any Traveling Salesman
Problem may be reformulated as an instance of
a (simplistic) SMT decoding task, and while cer-
tain techniques used for TSP were then adapted to
word-based SMT decoding (Germann et al., 2001;
Tillmann and Ney, 2003; Tillmann, 2006), we are
not aware of any previous work that shows that
SMT decoding can be directly reformulated as a
TSP. Beside the general interest of this transfor-
mation for understanding decoding, it also opens
the door to direct application of the variety of ex-
isting TSP algorithms to SMT. Our experiments
on synthetic and real data show that fast TSP al-
gorithms can handle selection and reordering in

SMT comparably or better than the state-of-the-
art beam-search strategy, converging on solutions
with higher objective function in a shorter time.

The proposed method proceeds by first con-
structing an AGTSP instance from the decoding
problem, and then converting this instance first
into ATSP and finally into STSP. At this point, a
direct application of the well known STSP solver
Concorde(with Lin-Kernighan heuristic) already
gives good results. We believe however that there
might exist even more efficient alternatives. In-
stead of converting the AGTSP instance into a
STSP instance, it might prove better to use di-
rectly algorithms expressly designed for ATSP
or AGTSP. For instance, some of the algorithms
tested in the context of theDIMACS implemen-
tation challenge for ATSP (Johnson et al., 2002)
might well prove superior. There is also active re-
search around AGTSP algorithms. Recently new
effective methods based on a “memetic” strategy
(Buriol et al., 2004; Gutin et al., 2008) have been
put forward. These methods combined with our
proposed formulation provide ready-to-use SMT
decoders, which it will be interesting to compare.

Acknowledgments

Thanks to Vassilina Nikoulina for her advice about
running Moses on the test datasets.

340



References

David L. Applegate, Robert E. Bixby, Vasek Chvatal,
and William J. Cook. 2005. Concorde
tsp solver. http://www.tsp.gatech.edu/
concorde.html.

David L. Applegate, Robert E. Bixby, Vasek Chvatal,
and William J. Cook. 2007.The Traveling Sales-
man Problem: A Computational Study (Princeton
Series in Applied Mathematics). Princeton Univer-
sity Press, January.

Luciana Buriol, Paulo M. França, and Pablo Moscato.
2004. A new memetic algorithm for the asymmetric
traveling salesman problem.Journal of Heuristics,
10(5):483–506.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Josh Schroeder, and Cameron Shaw Fordyce, edi-
tors. 2008.Proceedings of the Third Workshop on
SMT. ACL, Columbus, Ohio, June.

Ulrich Germann, Michael Jahr, Kevin Knight, and
Daniel Marcu. 2001. Fast decoding and optimal
decoding for machine translation. InIn Proceedings
of ACL 39, pages 228–235.

Gregory Gutin, Daniel Karapetyan, and Krasnogor Na-
talio. 2008. Memetic algorithm for the generalized
asymmetric traveling salesman problem. InNICSO
2007, pages 199–210. Springer Berlin.

G. Gutin. 2003. Travelling salesman and related prob-
lems. InHandbook of Graph Theory.

Hieu Hoang and Philipp Koehn. 2008. Design of the
Moses decoder for statistical machine translation. In
ACL 2008 Software workshop, pages 58–65, Colum-
bus, Ohio, June. ACL.

D.S. Johnson, G. Gutin, L.A. McGeoch, A. Yeo,
W. Zhang, and A. Zverovich. 2002. Experimen-
tal analysis of heuristics for the atsp. InThe Trav-
elling Salesman Problem and Its Variations, pages
445–487.

Anthony C. Kam and Gary E. Kopec. 1996. Document
image decoding by heuristic search.IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
18:945–950.

Kevin Knight. 1999. Decoding complexity in word-
replacement translation models.Computational
Linguistics, 25:607–615.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In
NAACL 2003, pages 48–54, Morristown, NJ, USA.
Association for Computational Linguistics.

Adam Lopez. 2008. Statistical machine translation.
ACM Comput. Surv., 40(3):1–49.

C. Noon and J.C. Bean. 1993. An efficient transforma-
tion of the generalized traveling salesman problem.
INFOR, pages 39–44.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei J. Zhu. 2001. BLEU: a Method for Automatic
Evaluation of Machine Translation.IBM Research
Report, RC22176.

Kris Popat, Daniel H. Greene, Justin K. Romberg, and
Dan S. Bloomberg. 2001. Adding linguistic con-
straints to document image decoding: Comparing
the iterated complete path and stack algorithms.

Christoph Tillmann and Hermann Ney. 2003. Word re-
ordering and a dynamic programming beam search
algorithm for statistical machine translation.Com-
put. Linguist., 29(1):97–133.

Christoph Tillmann. 2006. Efficient Dynamic Pro-
gramming Search Algorithms For Phrase-Based
SMT. InWorkshop On Computationally Hard Prob-
lems And Joint Inference In Speech And Language
Processing.

Wikipedia. 2009. Travelling Salesman Problem —
Wikipedia, The Free Encyclopedia. [Online; ac-
cessed 5-May-2009].

341



Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 342–350,
Suntec, Singapore, 2-7 August 2009. c©2009 ACL and AFNLP

Concise Integer Linear Programming Formulations
for Dependency Parsing
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Abstract

We formulate the problem of non-
projective dependency parsing as a
polynomial-sized integer linear pro-
gram. Our formulation is able to handle
non-local output features in an efficient
manner; not only is it compatible with
prior knowledge encoded as hard con-
straints, it can also learn soft constraints
from data. In particular, our model is able
to learn correlations among neighboring
arcs (siblings and grandparents), word
valency, and tendencies toward nearly-
projective parses. The model parameters
are learned in a max-margin framework
by employing a linear programming
relaxation. We evaluate the performance
of our parser on data in several natural
languages, achieving improvements over
existing state-of-the-art methods.

1 Introduction

Much attention has recently been devoted to in-
teger linear programming (ILP) formulations of
NLP problems, with interesting results in appli-
cations like semantic role labeling (Roth and Yih,
2005; Punyakanok et al., 2004), dependency pars-
ing (Riedel and Clarke, 2006), word alignment
for machine translation (Lacoste-Julien et al.,
2006), summarization (Clarke and Lapata, 2008),
and coreference resolution (Denis and Baldridge,
2007), among others. In general, the rationale for
the development of ILP formulations is to incorpo-
rate non-local features or global constraints, which
are often difficult to handle with traditional algo-
rithms. ILP formulations focus more on the mod-
eling of problems, rather than algorithm design.
While solving an ILP is NP-hard in general, fast
solvers are available today that make it a practical
solution for many NLP problems.

This paper presents new, concise ILP formu-
lations for projective and non-projective depen-

dency parsing. We believe that our formula-
tions can pave the way for efficient exploitation of
global features and constraints in parsing applica-
tions, leading to more powerful models. Riedel
and Clarke (2006) cast dependency parsing as
an ILP, but efficient formulations remain an open
problem. Our formulations offer the following
comparative advantages:

• The numbers of variables and constraints are
polynomial in the sentence length, as opposed to
requiring exponentially many constraints, elim-
inating the need for incremental procedures like
the cutting-plane algorithm;

• LP relaxations permit fast online discriminative
training of the constrained model;

• Soft constraints may be automatically learned
from data. In particular, our formulations han-
dle higher-order arc interactions (like siblings
and grandparents), model word valency, and can
learn to favor nearly-projective parses.

We evaluate the performance of the new parsers
on standard parsing tasks in seven languages. The
techniques that we present are also compatible
with scenarios where expert knowledge is avail-
able, for example in the form of hard or soft first-
order logic constraints (Richardson and Domin-
gos, 2006; Chang et al., 2008).

2 Dependency Parsing

2.1 Preliminaries

A dependency tree is a lightweight syntactic repre-
sentation that attempts to capture functional rela-
tionships between words. Lately, this formalism
has been used as an alternative to phrase-based
parsing for a variety of tasks, ranging from ma-
chine translation (Ding and Palmer, 2005) to rela-
tion extraction (Culotta and Sorensen, 2004) and
question answering (Wang et al., 2007).

Let us first describe formally the set of legal de-
pendency parse trees. Consider a sentence x =
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〈w0, . . . , wn〉, where wi denotes the word at the i-
th position, and w0 = $ is a wall symbol. We form
the (complete1) directed graph D = 〈V,A〉, with
vertices in V = {0, . . . , n} (the i-th vertex corre-
sponding to the i-th word) and arcs in A = V 2.
Using terminology from graph theory, we say that
B ⊆ A is an r-arborescence2 of the directed
graph D if 〈V,B〉 is a (directed) tree rooted at r.
We define the set of legal dependency parse trees
of x (denoted Y(x)) as the set of 0-arborescences
of D, i.e., we admit each arborescence as a poten-
tial dependency tree.

Let y ∈ Y(x) be a legal dependency tree for
x; if the arc a = 〈i, j〉 ∈ y, we refer to i as the
parent of j (denoted i = π(j)) and j as a child of
i. We also say that a is projective (in the sense of
Kahane et al., 1998) if any vertex k in the span of
a is reachable from i (in other words, if for any k
satisfying min(i, j) < k < max(i, j), there is a
directed path in y from i to k). A dependency tree
is called projective if it only contains projective
arcs. Fig. 1 illustrates this concept.3

The formulation to be introduced in §3 makes
use of the notion of the incidence vector associ-
ated with a dependency tree y ∈ Y(x). This is
the binary vector z , 〈za〉a∈A with each compo-
nent defined as za = I(a ∈ y) (here, I(.) denotes
the indicator function). Considering simultane-
ously all incidence vectors of legal dependency
trees and taking the convex hull, we obtain a poly-
hedron that we call the arborescence polytope,
denoted by Z(x). Each vertex of Z(x) can be
identified with a dependency tree in Y(x). The
Minkowski-Weyl theorem (Rockafellar, 1970) en-
sures that Z(x) has a representation of the form
Z(x) = {z ∈ R|A| | Az ≤ b}, for some p-by-|A|
matrix A and some vector b in Rp. However, it is
not easy to obtain a compact representation (where
p grows polynomially with the number of words
n). In §3, we will provide a compact represen-
tation of an outer polytope Z̄(x) ⊇ Z(x) whose
integer vertices correspond to dependency trees.
Hence, the problem of finding the dependency tree
that maximizes some linear function of the inci-

1The general case where A ⊆ V 2 is also of interest; it
arises whenever a constraint or a lexicon forbids some arcs
from appearing in dependency tree. It may also arise as a
consequence of a first-stage pruning step where some candi-
date arcs are eliminated; this will be further discussed in §4.

2Or “directed spanning tree with designated root r.”
3In this paper, we consider unlabeled dependency parsing,

where only the backbone structure (i.e., the arcs without the
labels depicted in Fig. 1) is to be predicted.

Figure 1: A projective dependency graph.

Figure 2: Non-projective dependency graph.

those that assume each dependency decision is in-
dependent modulo the global structural constraint
that dependency graphs must be trees. Such mod-
els are commonly referred to as edge-factored since
their parameters factor relative to individual edges
of the graph (Paskin, 2001; McDonald et al.,
2005a). Edge-factored models have many computa-
tional benefits, most notably that inference for non-
projective dependency graphs can be achieved in
polynomial time (McDonald et al., 2005b). The pri-
mary problem in treating each dependency as in-
dependent is that it is not a realistic assumption.
Non-local information, such as arity (or valency)
and neighbouring dependencies, can be crucial to
obtaining high parsing accuracies (Klein and Man-
ning, 2002; McDonald and Pereira, 2006). How-
ever, in the data-driven parsing setting this can be
partially adverted by incorporating rich feature rep-
resentations over the input (McDonald et al., 2005a).

The goal of this work is to further our current
understanding of the computational nature of non-
projective parsing algorithms for both learning and
inference within the data-driven setting. We start by
investigating and extending the edge-factored model
of McDonald et al. (2005b). In particular, we ap-
peal to the Matrix Tree Theorem for multi-digraphs
to design polynomial-time algorithms for calculat-
ing both the partition function and edge expecta-
tions over all possible dependency graphs for a given
sentence. To motivate these algorithms, we show
that they can be used in many important learning
and inference problems including min-risk decod-
ing, training globally normalized log-linear mod-
els, syntactic language modeling, and unsupervised

learning via the EM algorithm – none of which have
previously been known to have exact non-projective
implementations.

We then switch focus to models that account for
non-local information, in particular arity and neigh-
bouring parse decisions. For systems that model ar-
ity constraints we give a reduction from the Hamilto-
nian graph problem suggesting that the parsing prob-
lem is intractable in this case. For neighbouring
parse decisions, we extend the work of McDonald
and Pereira (2006) and show that modeling vertical
neighbourhoods makes parsing intractable in addi-
tion to modeling horizontal neighbourhoods. A con-
sequence of these results is that it is unlikely that
exact non-projective dependency parsing is tractable
for any model assumptions weaker than those made
by the edge-factored models.

1.1 Related Work
There has been extensive work on data-driven de-
pendency parsing for both projective parsing (Eis-
ner, 1996; Paskin, 2001; Yamada and Matsumoto,
2003; Nivre and Scholz, 2004; McDonald et al.,
2005a) and non-projective parsing systems (Nivre
and Nilsson, 2005; Hall and Nóvák, 2005; McDon-
ald et al., 2005b). These approaches can often be
classified into two broad categories. In the first cat-
egory are those methods that employ approximate
inference, typically through the use of linear time
shift-reduce parsing algorithms (Yamada and Mat-
sumoto, 2003; Nivre and Scholz, 2004; Nivre and
Nilsson, 2005). In the second category are those
that employ exhaustive inference algorithms, usu-
ally by making strong independence assumptions, as
is the case for edge-factored models (Paskin, 2001;
McDonald et al., 2005a; McDonald et al., 2005b).
Recently there have also been proposals for exhaus-
tive methods that weaken the edge-factored assump-
tion, including both approximate methods (McDon-
ald and Pereira, 2006) and exact methods through in-
teger linear programming (Riedel and Clarke, 2006)
or branch-and-bound algorithms (Hirakawa, 2006).

For grammar based models there has been limited
work on empirical systems for non-projective pars-
ing systems, notable exceptions include the work
of Wang and Harper (2004). Theoretical studies of
note include the work of Neuhaus and Böker (1997)
showing that the recognition problem for a mini-
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Figure 1: A projective dependency parse (top), and a non-
projective dependency parse (bottom) for two English sen-
tences; examples from McDonald and Satta (2007).

dence vectors can be cast as an ILP. A similar idea
was applied to word alignment by Lacoste-Julien
et al. (2006), where permutations (rather than ar-
borescences) were the combinatorial structure be-
ing requiring representation.

Letting X denote the set of possible sentences,
define Y ,

⋃
x∈X Y(x). Given a labeled dataset

L , 〈〈x1, y1〉, . . . , 〈xm, ym〉〉 ∈ (X × Y)m, we
aim to learn a parser, i.e., a function h : X → Y
that given x ∈ X outputs a legal dependency parse
y ∈ Y(x). The fact that there are exponentially
many candidates in Y(x) makes dependency pars-
ing a structured classification problem.

2.2 Arc Factorization and Locality
There has been much recent work on dependency
parsing using graph-based, transition-based, and
hybrid methods; see Nivre and McDonald (2008)
for an overview. Typical graph-based methods
consider linear classifiers of the form

hw(x) = argmaxy∈Y w>f(x, y), (1)

where f(x, y) is a vector of features and w is the
corresponding weight vector. One wants hw to
have small expected loss; the typical loss func-
tion is the Hamming loss, `(y′; y) , |{〈i, j〉 ∈
y′ : 〈i, j〉 /∈ y}|. Tractability is usually ensured
by strong factorization assumptions, like the one
underlying the arc-factored model (Eisner, 1996;
McDonald et al., 2005), which forbids any feature
that depends on two or more arcs. This induces a
decomposition of the feature vector f(x, y) as:

f(x, y) =
∑

a∈y fa(x). (2)

Under this decomposition, each arc receives a
score; parsing amounts to choosing the configu-
ration that maximizes the overall score, which, as
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shown by McDonald et al. (2005), is an instance
of the maximal arborescence problem. Combi-
natorial algorithms (Chu and Liu, 1965; Edmonds,
1967) can solve this problem in cubic time.4 If
the dependency parse trees are restricted to be
projective, cubic-time algorithms are available via
dynamic programming (Eisner, 1996). While in
the projective case, the arc-factored assumption
can be weakened in certain ways while maintain-
ing polynomial parser runtime (Eisner and Satta,
1999), the same does not happen in the nonprojec-
tive case, where finding the highest-scoring tree
becomes NP-hard (McDonald and Satta, 2007).
Approximate algorithms have been employed to
handle models that are not arc-factored (although
features are still fairly local): McDonald and
Pereira (2006) adopted an approximation based
on O(n3) projective parsing followed by a hill-
climbing algorithm to rearrange arcs, and Smith
and Eisner (2008) proposed an algorithm based on
loopy belief propagation.

3 Dependency Parsing as an ILP

Our approach will build a graph-based parser
without the drawback of a restriction to local fea-
tures. By formulating inference as an ILP, non-
local features can be easily accommodated in our
model; furthermore, by using a relaxation tech-
nique we can still make learning tractable. The im-
pact of LP-relaxed inference in the learning prob-
lem was studied elsewhere (Martins et al., 2009).

A linear program (LP) is an optimization prob-
lem of the form

minx∈Rd c>x
s.t. Ax ≤ b.

(3)

If the problem is feasible, the optimum is attained
at a vertex of the polyhedron that defines the con-
straint space. If we add the constraint x ∈ Zd, then
the above is called an integer linear program
(ILP). For some special parameter settings—e.g.,
when b is an integer vector and A is totally uni-
modular5—all vertices of the constraining polyhe-
dron are integer points; in these cases, the integer
constraint may be suppressed and (3) is guaran-
teed to have integer solutions (Schrijver, 2003).
Of course, this need not happen: solving a gen-
eral ILP is an NP-complete problem. Despite this

4There is also a quadratic algorithm due to Tarjan (1977).
5A matrix is called totally unimodular if the determinants

of each square submatrix belong to {0, 1,−1}.

fact, fast solvers are available today that make this
a practical solution for many problems. Their per-
formance depends on the dimensions and degree
of sparsity of the constraint matrix A.

Riedel and Clarke (2006) proposed an ILP for-
mulation for dependency parsing which refines
the arc-factored model by imposing linguistically
motivated “hard” constraints that forbid some arc
configurations. Their formulation includes an ex-
ponential number of constraints—one for each
possible cycle. Since it is intractable to throw
in all constraints at once, they propose a cutting-
plane algorithm, where the cycle constraints are
only invoked when violated by the current solu-
tion. The resulting algorithm is still slow, and an
arc-factored model is used as a surrogate during
training (i.e., the hard constraints are only used at
test time), which implies a discrepancy between
the model that is optimized and the one that is ac-
tually going to be used.

Here, we propose ILP formulations that elim-
inate the need for cycle constraints; in fact, they
require only a polynomial number of constraints.
Not only does our model allow expert knowledge
to be injected in the form of constraints, it is also
capable of learning soft versions of those con-
straints from data; indeed, it can handle features
that are not arc-factored (correlating, for exam-
ple, siblings and grandparents, modeling valency,
or preferring nearly projective parses). While, as
pointed out by McDonald and Satta (2007), the
inclusion of these features makes inference NP-
hard, by relaxing the integer constraints we obtain
approximate algorithms that are very efficient and
competitive with state-of-the-art methods. In this
paper, we focus on unlabeled dependency parsing,
for clarity of exposition. If it is extended to labeled
parsing (a straightforward extension), our formu-
lation fully subsumes that of Riedel and Clarke
(2006), since it allows using the same hard con-
straints and features while keeping the ILP poly-
nomial in size.

3.1 The Arborescence Polytope

We start by describing our constraint space. Our
formulations rely on a concise polyhedral repre-
sentation of the set of candidate dependency parse
trees, as sketched in §2.1. This will be accom-
plished by drawing an analogy with a network
flow problem.

Let D = 〈V,A〉 be the complete directed graph
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associated with a sentence x ∈ X , as stated in
§2. A subgraph y = 〈V,B〉 is a legal dependency
tree (i.e., y ∈ Y(x)) if and only if the following
conditions are met:

1. Each vertex in V \ {0} must have exactly one
incoming arc in B,

2. 0 has no incoming arcs in B,

3. B does not contain cycles.

For each vertex v ∈ V , let δ−(v) , {〈i, j〉 ∈
A | j = v} denote its set of incoming arcs, and
δ+(v) , {〈i, j〉 ∈ A | i = v} denote its set of
outgoing arcs. The two first conditions can be eas-
ily expressed by linear constraints on the incidence
vector z:∑

a∈δ−(j) za = 1, j ∈ V \ {0} (4)∑
a∈δ−(0) za = 0 (5)

Condition 3 is somewhat harder to express. Rather
than adding exponentially many constraints, one
for each potential cycle (like Riedel and Clarke,
2006), we equivalently replace condition 3 by

3′. B is connected.

Note that conditions 1-2-3 are equivalent to 1-2-
3′, in the sense that both define the same set Y(x).
However, as we will see, the latter set of condi-
tions is more convenient. Connectedness of graphs
can be imposed via flow constraints (by requir-
ing that, for any v ∈ V \ {0}, there is a directed
path in B connecting 0 to v). We adapt the single
commodity flow formulation for the (undirected)
minimum spanning tree problem, due to Magnanti
and Wolsey (1994), that requires O(n2) variables
and constraints. Under this model, the root node
must send one unit of flow to every other node.
By making use of extra variables, φ , 〈φa〉a∈A,
to denote the flow of commodities through each
arc, we are led to the following constraints in ad-
dition to Eqs. 4–5 (we denote U , [0, 1], and
B , {0, 1} = U ∩ Z):

• Root sends flow n:∑
a∈δ+(0) φa = n (6)

• Each node consumes one unit of flow:∑
a∈δ−(j)

φa −
∑

a∈δ+(j)

φa = 1, j ∈ V \ {0} (7)

• Flow is zero on disabled arcs:

φa ≤ nza, a ∈ A (8)

• Each arc indicator lies in the unit interval:

za ∈ U, a ∈ A. (9)

These constraints project an outer bound of the ar-
borescence polytope, i.e.,

Z̄(x) , {z ∈ R|A| | (z,φ) satisfy (4–9)}
⊇ Z(x). (10)

Furthermore, the integer points of Z̄(x) are pre-
cisely the incidence vectors of dependency trees
in Y(x); these are obtained by replacing Eq. 9 by

za ∈ B, a ∈ A. (11)

3.2 Arc-Factored Model
Given our polyhedral representation of (an outer
bound of) the arborescence polytope, we can
now formulate dependency parsing with an arc-
factored model as an ILP. By storing the arc-
local feature vectors into the columns of a matrix
F(x) , [fa(x)]a∈A, and defining the score vec-
tor s , F(x)>w (each entry is an arc score) the
inference problem can be written as

max
y∈Y(x)

w>f(x, y) = max
z∈Z(x)

w>F(x)z

= max
z,φ

s>z

s.t. A

[
z
φ

]
≤ b

z ∈ B
(12)

where A is a sparse constraint matrix (withO(|A|)
non-zero elements), and b is the constraint vec-
tor; A and b encode the constraints (4–9). This
is an ILP with O(|A|) variables and constraints
(hence, quadratic in n); if we drop the integer
constraint the problem becomes the LP relaxation.
As is, this formulation is no more attractive than
solving the problem with the existing combinato-
rial algorithms discussed in §2.2; however, we can
now start adding non-local features to build a more
powerful model.

3.3 Sibling and Grandparent Features
To cope with higher-order features of the form
fa1,...,aK (x) (i.e., features whose values depend on
the simultaneous inclusion of arcs a1, . . . , aK on
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a candidate dependency tree), we employ a lin-
earization trick (Boros and Hammer, 2002), defin-
ing extra variables za1...aK , za1 ∧ . . .∧zaK . This
logical relation can be expressed by the following
O(K) agreement constraints:6

za1...aK ≤ zai , i = 1, . . . ,K
za1...aK ≥

∑K
i=1 zai −K + 1. (13)

As shown by McDonald and Pereira (2006) and
Carreras (2007), the inclusion of features that
correlate sibling and grandparent arcs may be
highly beneficial, even if doing so requires resort-
ing to approximate algorithms.7 Define Rsibl ,
{〈i, j, k〉 | 〈i, j〉 ∈ A, 〈i, k〉 ∈ A} and Rgrand ,
{〈i, j, k〉 | 〈i, j〉 ∈ A, 〈j, k〉 ∈ A}. To include
such features in our formulation, we need to add
extra variables zsibl , 〈zr〉r∈Rsibl and zgrand ,
〈zr〉r∈Rgrand that indicate the presence of sibling
and grandparent arcs. Observe that these indica-
tor variables are conjunctions of arc indicator vari-
ables, i.e., zsibl

ijk = zij ∧ zik and zgrand
ijk = zij ∧ zjk.

Hence, these features can be handled in our formu-
lation by adding the following O(|A| · |V |) vari-
ables and constraints:

zsibl
ijk ≤ zij , zsibl

ijk ≤ zik, zsibl
ijk ≥ zij + zik − 1

(14)
for all triples 〈i, j, k〉 ∈ Rsibl, and

z
grand
ijk ≤ zij , z

grand
ijk ≤ zjk, z

grand
ijk ≥ zij+zjk−1

(15)
for all triples 〈i, j, k〉 ∈ Rgrand. Let R , A ∪
Rsibl ∪ Rgrand; by redefining z , 〈zr〉r∈R and
F(x) , [fr(x)]r∈R, we may express our inference
problem as in Eq. 12, with O(|A| · |V |) variables
and constraints.

Notice that the strategy just described to han-
dle sibling features is not fully compatible with
the features proposed by Eisner (1996) for pro-
jective parsing, as the latter correlate only con-
secutive siblings and are also able to place spe-
cial features on the first child of a given word.
The ability to handle such “ordered” features is
intimately associated with Eisner’s dynamic pro-
gramming parsing algorithm and with the Marko-
vian assumptions made explicitly by his genera-
tive model. We next show how similar features

6Actually, any logical condition can be encoded with lin-
ear constraints involving binary variables; see e.g. Clarke and
Lapata (2008) for an overview.

7By sibling features we mean features that depend on
pairs of sibling arcs (i.e., of the form 〈i, j〉 and 〈i, k〉); by
grandparent features we mean features that depend on pairs
of grandparent arcs (of the form 〈i, j〉 and 〈j, k〉).

can be incorporated in our model by adding “dy-
namic” constraints to our ILP. Define:

znext sibl
ijk ,


1 if 〈i, j〉 and 〈i, k〉 are

consecutive siblings,
0 otherwise,

zfirst child
ij ,

{
1 if j is the first child of i,
0 otherwise.

Suppose (without loss of generality) that i < j <
k ≤ n. We could naively compose the constraints
(14) with additional linear constraints that encode
the logical relation

znext sibl
ijk = zsibl

ijk ∧
∧

j<l<k ¬zil,

but this would yield a constraint matrix with
O(n4) non-zero elements. Instead, we define aux-
iliary variables βjk and γij :

βjk =

{
1, if ∃l s.t. π(l) = π(j) < j < l < k
0, otherwise,

γij =

{
1, if ∃k s.t. i < k < j and 〈i, k〉 ∈ y
0, otherwise.

(16)

Then, we have that znext sibl
ijk = zsibl

ijk ∧ (¬βjk) and
zfirst child
ij = zij∧(¬γij), which can be encoded via

znext sibl
ijk ≤ zsibl

ijk zfirst child
ij ≤ zij

znext sibl
ijk ≤ 1− βjk zfirst child

ij ≤ 1− γij

znext sibl
ijk ≥ zsibl

ijk − βjk zfirst child
ij ≥ zij − γij

The following “dynamic” constraints encode the
logical relations for the auxiliary variables (16):

βj(j+1) = 0 γi(i+1) = 0
βj(k+1) ≥ βjk γi(j+1) ≥ γij

βj(k+1) ≥
∑
i<j

zsibl
ijk γi(j+1) ≥ zij

βj(k+1) ≤ βjk +
∑
i<j

zsibl
ijk γi(j+1) ≤ γij + zij

Auxiliary variables and constraints are defined
analogously for the case n ≥ i > j > k. This
results in a sparser constraint matrix, with only
O(n3) non-zero elements.

3.4 Valency Features
A crucial fact about dependency grammars is that
words have preferences about the number and ar-
rangement of arguments and modifiers they ac-
cept. Therefore, it is desirable to include features
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that indicate, for a candidate arborescence, how
many outgoing arcs depart from each vertex; de-
note these quantities by vi ,

∑
a∈δ+(i) za, for

each i ∈ V . We call vi the valency of the ith ver-
tex. We add valency indicators zval

ik , I(vi = k)
for i ∈ V and k = 0, . . . , n− 1. This way, we are
able to penalize candidate dependency trees that
assign unusual valencies to some of their vertices,
by specifying a individual cost for each possible
value of valency. The following O(|V |2) con-
straints encode the agreement between valency in-
dicators and the other variables:∑n−1

k=0 kz
val
ik =

∑
a∈δ+(i) za, i ∈ V (17)∑n−1

k=0 z
val
ik = 1, i ∈ V
zval
ik ≥ 0, i ∈ V, k ∈ {0, . . . , n− 1}

3.5 Projectivity Features
For most languages, dependency parse trees tend
to be nearly projective (cf. Buchholz and Marsi,
2006). We wish to make our model capable of
learning to prefer “nearly” projective parses when-
ever that behavior is observed in the data.

The multicommodity directed flow model of
Magnanti and Wolsey (1994) is a refinement of the
model described in §3.1 which offers a compact
and elegant way to indicate nonprojective arcs, re-
quiring O(n3) variables and constraints. In this
model, every node k 6= 0 defines a commodity:
one unit of commodity k originates at the root
node and must be delivered to node k; the vari-
able φk

ij denotes the flow of commodity k in arc
〈i, j〉. We first replace (4–9) by (18–22):

• The root sends one unit of commodity to each
node:∑

a∈δ−(0)

φk
a −

∑
a∈δ+(0)

φk
a = −1, k ∈ V \ {0} (18)

• Any node consumes its own commodity and no
other:∑

a∈δ−(j)

φk
a −

∑
a∈δ+(j)

φk
a = δk

j , j, k ∈ V \ {0} (19)

where δk
j , I(j = k) is the Kronecker delta.

• Disabled arcs do not carry any flow:

φk
a ≤ za, a ∈ A, k ∈ V (20)

• There are exactly n enabled arcs:∑
a∈A za = n (21)

• All variables lie in the unit interval:

za ∈ U, φk
a ∈ U, a ∈ A, k ∈ V (22)

We next define auxiliary variables ψjk that indi-
cate if there is a path from j to k. Since each ver-
tex except the root has only one incoming arc, the
following linear equalities are enough to describe
these new variables:

ψjk =
∑

a∈δ−(j) φ
k
a, j, k ∈ V \ {0}

ψ0k = 1, k ∈ V \ {0}. (23)

Now, define indicators znp , 〈znp
a 〉a∈A, where

znp
a , I(a ∈ y and a is nonprojective).

From the definition of projective arcs in §2.1, we
have that znp

a = 1 if and only if the arc is active
(za = 1) and there is some vertex k in the span of
a = 〈i, j〉 such that ψik = 0. We are led to the
following O(|A| · |V |) constraints for 〈i, j〉 ∈ A:

z
np
ij ≤ zij

z
np
ij ≥ zij − ψik, min(i, j) ≤ k ≤ max(i, j)

z
np
ij ≤ −

∑max(i,j)−1
k=min(i,j)+1 ψik + |j − i| − 1

There are other ways to introduce nonprojectiv-
ity indicators and alternative definitions of “non-
projective arc.” For example, by using dynamic
constraints of the same kind as those in §3.3,
we can indicate arcs that “cross” other arcs with
O(n3) variables and constraints, and a cubic num-
ber of non-zero elements in the constraint matrix
(omitted for space).

3.6 Projective Parsing
It would be straightforward to adapt the con-
straints in §3.5 to allow only projective parse trees:
simply force znp

a = 0 for any a ∈ A. But there are
more efficient ways of accomplish this. While it is
difficult to impose projectivity constraints or cycle
constraints individually, there is a simpler way of
imposing both. Consider 3 (or 3′) from §3.1.

Proposition 1 Replace condition 3 (or 3′) with

3′′. If 〈i, j〉 ∈ B, then, for any k = 1, . . . , n
such that k 6= j, the parent of k must satisfy
(defining i′ , min(i, j) and j′ , max(i, j)):
i′ ≤ π(k) ≤ j′, if i′ < k < j′,
π(k) < i′ ∨ π(k) > j′, if k < i′ or k > j′

or k = i.
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Then, Y(x) will be redefined as the set of projec-
tive dependency parse trees.

We omit the proof for space. Conditions 1, 2, and
3′′ can be encoded with O(n2) constraints.

4 Experiments

We report experiments on seven languages, six
(Danish, Dutch, Portuguese, Slovene, Swedish
and Turkish) from the CoNLL-X shared task
(Buchholz and Marsi, 2006), and one (English)
from the CoNLL-2008 shared task (Surdeanu et
al., 2008).8 All experiments are evaluated using
the unlabeled attachment score (UAS), using the
default settings.9 We used the same arc-factored
features as McDonald et al. (2005) (included in the
MSTParser toolkit10); for the higher-order models
described in §3.3–3.5, we employed simple higher
order features that look at the word, part-of-speech
tag, and (if available) morphological information
of the words being correlated through the indica-
tor variables. For scalability (and noting that some
of the models require O(|V | · |A|) constraints and
variables, which, when A = V 2, grows cubically
with the number of words), we first prune the base
graph by running a simple algorithm that ranks the
k-best candidate parents for each word in the sen-
tence (we set k = 10); this reduces the number of
candidate arcs to |A| = kn.11 This strategy is sim-
ilar to the one employed by Carreras et al. (2008)
to prune the search space of the actual parser. The
ranker is a local model trained using a max-margin
criterion; it is arc-factored and not subject to any
structural constraints, so it is very fast.

The actual parser was trained via the online
structured passive-aggressive algorithm of Cram-
mer et al. (2006); it differs from the 1-best MIRA
algorithm of McDonald et al. (2005) by solv-
ing a sequence of loss-augmented inference prob-
lems.12 The number of iterations was set to 10.

The results are summarized in Table 1; for the
sake of comparison, we reproduced three strong

8We used the provided train/test splits except for English,
for which we tested on the development partition. For train-
ing, sentences longer than 80 words were discarded. For test-
ing, all sentences were kept (the longest one has length 118).

9
http://nextens.uvt.nl/∼conll/software.html

10
http://sourceforge.net/projects/mstparser

11Note that, unlike reranking approaches, there are still ex-
ponentially many candidate parse trees after pruning. The
oracle constrained to pick parents from these lists achieves
> 98% in every case.

12The loss-augmented inference problem can also be ex-
pressed as an LP for Hamming loss functions that factor over
arcs; we refer to Martins et al. (2009) for further details.

baselines, all of them state-of-the-art parsers based
on non-arc-factored models: the second order
model of McDonald and Pereira (2006), the hy-
brid model of Nivre and McDonald (2008), which
combines a (labeled) transition-based and a graph-
based parser, and a refinement of the latter, due
to Martins et al. (2008), which attempts to ap-
proximate non-local features.13 We did not repro-
duce the model of Riedel and Clarke (2006) since
the latter is tailored for labeled dependency pars-
ing; however, experiments reported in that paper
for Dutch (and extended to other languages in the
CoNLL-X task) suggest that their model performs
worse than our three baselines.

By looking at the middle four columns, we can
see that adding non-arc-factored features makes
the models more accurate, for all languages. With
the exception of Portuguese, the best results are
achieved with the full set of features. We can
also observe that, for some languages, the valency
features do not seem to help. Merely modeling
the number of dependents of a word may not be
as valuable as knowing what kinds of dependents
they are (for example, distinguishing among argu-
ments and adjuncts).

Comparing with the baselines, we observe that
our full model outperforms that of McDonald and
Pereira (2006), and is in line with the most ac-
curate dependency parsers (Nivre and McDonald,
2008; Martins et al., 2008), obtained by com-
bining transition-based and graph-based parsers.14

Notice that our model, compared with these hy-
brid parsers, has the advantage of not requiring an
ensemble configuration (eliminating, for example,
the need to tune two parsers). Unlike the ensem-
bles, it directly handles non-local output features
by optimizing a single global objective. Perhaps
more importantly, it makes it possible to exploit
expert knowledge through the form of hard global
constraints. Although not pursued here, the same
kind of constraints employed by Riedel and Clarke
(2006) can straightforwardly fit into our model,
after extending it to perform labeled dependency
parsing. We believe that a careful design of fea-

13Unlike our model, the hybrid models used here as base-
lines make use of the dependency labels at training time; in-
deed, the transition-based parser is trained to predict a la-
beled dependency parse tree, and the graph-based parser use
these predicted labels as input features. Our model ignores
this information at training time; therefore, this comparison
is slightly unfair to us.

14See also Zhang and Clark (2008) for a different approach
that combines transition-based and graph-based methods.
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[M
P06]

[NM08]

[M
DSX08]

ARC-FACTORED

+SIBL/GRANDP.

+VALENCY

+PROJ. (FULL)

FULL, RELAXED

DANISH 90.60 91.30 91.54 89.80 91.06 90.98 91.18 91.04 (-0.14)
DUTCH 84.11 84.19 84.79 83.55 84.65 84.93 85.57 85.41 (-0.16)
PORTUGUESE 91.40 91.81 92.11 90.66 92.11 92.01 91.42 91.44 (+0.02)
SLOVENE 83.67 85.09 85.13 83.93 85.13 85.45 85.61 85.41 (-0.20)
SWEDISH 89.05 90.54 90.50 89.09 90.50 90.34 90.60 90.52 (-0.08)
TURKISH 75.30 75.68 76.36 75.16 76.20 76.08 76.34 76.32 (-0.02)
ENGLISH 90.85 – – 90.15 91.13 91.12 91.16 91.14 (-0.02)

Table 1: Results for nonprojective dependency parsing (unlabeled attachment scores). The three baselines are the second order
model of McDonald and Pereira (2006) and the hybrid models of Nivre and McDonald (2008) and Martins et al. (2008). The
four middle columns show the performance of our model using exact (ILP) inference at test time, for increasing sets of features
(see §3.2–§3.5). The rightmost column shows the results obtained with the full set of features using relaxed LP inference
followed by projection onto the feasible set. Differences are with respect to exact inference for the same set of features. Bold
indicates the best result for a language. As for overall performance, both the exact and relaxed full model outperform the arc-
factored model and the second order model of McDonald and Pereira (2006) with statistical significance (p < 0.01) according
to Dan Bikel’s randomized method (http://www.cis.upenn.edu/∼dbikel/software.html).

tures and constraints can lead to further improve-
ments on accuracy.

We now turn to a different issue: scalability. In
previous work (Martins et al., 2009), we showed
that training the model via LP-relaxed inference
(as we do here) makes it learn to avoid frac-
tional solutions; as a consequence, ILP solvers
will converge faster to the optimum (on average).
Yet, it is known from worst case complexity the-
ory that solving a general ILP is NP-hard; hence,
these solvers may not scale well with the sentence
length. Merely considering the LP-relaxed version
of the problem at test time is unsatisfactory, as it
may lead to a fractional solution (i.e., a solution
whose components indexed by arcs, z̃ = 〈za〉a∈A,
are not all integer), which does not correspond to a
valid dependency tree. We propose the following
approximate algorithm to obtain an actual parse:
first, solve the LP relaxation (which can be done
in polynomial time with interior-point methods);
then, if the solution is fractional, project it onto the
feasible set Y(x). Fortunately, the Euclidean pro-
jection can be computed in a straightforward way
by finding a maximal arborescence in the directed
graph whose weights are defined by z̃ (we omit
the proof for space); as we saw in §2.2, the Chu-
Liu-Edmonds algorithm can do this in polynomial
time. The overall parsing runtime becomes poly-
nomial with respect to the length of the sentence.

The last column of Table 1 compares the ac-
curacy of this approximate method with the ex-
act one. We observe that there is not a substantial
drop in accuracy; on the other hand, we observed
a considerable speed-up with respect to exact in-
ference, particularly for long sentences. The av-

erage runtime (across all languages) is 0.632 sec-
onds per sentence, which is in line with existing
higher-order parsers and is much faster than the
runtimes reported by Riedel and Clarke (2006).

5 Conclusions

We presented new dependency parsers based on
concise ILP formulations. We have shown how
non-local output features can be incorporated,
while keeping only a polynomial number of con-
straints. These features can act as soft constraints
whose penalty values are automatically learned
from data; in addition, our model is also compati-
ble with expert knowledge in the form of hard con-
straints. Learning through a max-margin frame-
work is made effective by the means of a LP-
relaxation. Experimental results on seven lan-
guages show that our rich-featured parsers outper-
form arc-factored and approximate higher-order
parsers, and are in line with stacked parsers, hav-
ing with respect to the latter the advantage of not
requiring an ensemble configuration.
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Abstract

We present a novel transition system for
dependency parsing, which constructs arcs
only between adjacent words but can parse
arbitrary non-projective trees by swapping
the order of words in the input. Adding
the swapping operation changes the time
complexity for deterministic parsing from
linear to quadratic in the worst case, but
empirical estimates based on treebank data
show that the expected running time is in
fact linear for the range of data attested in
the corpora. Evaluation on data from five
languages shows state-of-the-art accuracy,
with especially good results for the labeled
exact match score.

1 Introduction

Syntactic parsing using dependency structures has
become a standard technique in natural language
processing with many different parsing models, in
particular data-driven models that can be trained
on syntactically annotated corpora (Yamada and
Matsumoto, 2003; Nivre et al., 2004; McDonald
et al., 2005a; Attardi, 2006; Titov and Henderson,
2007). A hallmark of many of these models is that
they can be implemented very efficiently. Thus,
transition-based parsers normally run in linear or
quadratic time, using greedy deterministic search
or fixed-width beam search (Nivre et al., 2004; At-
tardi, 2006; Johansson and Nugues, 2007; Titov
and Henderson, 2007), and graph-based models
support exact inference in at most cubic time,
which is efficient enough to make global discrim-
inative training practically feasible (McDonald et
al., 2005a; McDonald et al., 2005b).

However, one problem that still has not found
a satisfactory solution in data-driven dependency
parsing is the treatment of discontinuous syntactic
constructions, usually modeled by non-projective

dependency trees, as illustrated in Figure 1. In a
projective dependency tree, the yield of every sub-
tree is a contiguous substring of the sentence. This
is not the case for the tree in Figure 1, where the
subtrees rooted at node 2 (hearing) and node 4
(scheduled) both have discontinuous yields.

Allowing non-projective trees generally makes
parsing computationally harder. Exact inference
for parsing models that allow non-projective trees
is NP hard, except under very restricted indepen-
dence assumptions (Neuhaus and Bröker, 1997;
McDonald and Pereira, 2006; McDonald and
Satta, 2007). There is recent work on algorithms
that can cope with important subsets of all non-
projective trees in polynomial time (Kuhlmann
and Satta, 2009; Gómez-Rodrı́guez et al., 2009),
but the time complexity is at best O(n6), which
can be problematic in practical applications. Even
the best algorithms for deterministic parsing run in
quadratic time, rather than linear (Nivre, 2008a),
unless restricted to a subset of non-projective
structures as in Attardi (2006) and Nivre (2007).

But allowing non-projective dependency trees
also makes parsing empirically harder, because
it requires that we model relations between non-
adjacent structures over potentially unbounded
distances, which often has a negative impact on
parsing accuracy. On the other hand, it is hardly
possible to ignore non-projective structures com-
pletely, given that 25% or more of the sentences
in some languages cannot be given a linguistically
adequate analysis without invoking non-projective
structures (Nivre, 2006; Kuhlmann and Nivre,
2006; Havelka, 2007).

Current approaches to data-driven dependency
parsing typically use one of two strategies to deal
with non-projective trees (unless they ignore them
completely). Either they employ a non-standard
parsing algorithm that can combine non-adjacent
substructures (McDonald et al., 2005b; Attardi,
2006; Nivre, 2007), or they try to recover non-
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Figure 1: Dependency tree for an English sentence (non-projective).

projective dependencies by post-processing the
output of a strictly projective parser (Nivre and
Nilsson, 2005; Hall and Novák, 2005; McDonald
and Pereira, 2006). In this paper, we will adopt
a different strategy, suggested in recent work by
Nivre (2008b) and Titov et al. (2009), and pro-
pose an algorithm that only combines adjacent
substructures but derives non-projective trees by
reordering the input words.

The rest of the paper is structured as follows.
In Section 2, we define the formal representations
needed and introduce the framework of transition-
based dependency parsing. In Section 3, we first
define a minimal transition system and explain
how it can be used to perform projective depen-
dency parsing in linear time; we then extend the
system with a single transition for swapping the
order of words in the input and demonstrate that
the extended system can be used to parse unre-
stricted dependency trees with a time complexity
that is quadratic in the worst case but still linear
in the best case. In Section 4, we present experi-
ments indicating that the expected running time of
the new system on naturally occurring data is in
fact linear and that the system achieves state-of-
the-art parsing accuracy. We discuss related work
in Section 5 and conclude in Section 6.

2 Background Notions

2.1 Dependency Graphs and Trees
Given a set L of dependency labels, a dependency
graph for a sentence x = w1, . . . , wn is a directed
graph G = (Vx, A), where

1. Vx = {0, 1, . . . , n} is a set of nodes,

2. A ⊆ Vx × L× Vx is a set of labeled arcs.

The set Vx of nodes is the set of positive integers
up to and including n, each corresponding to the
linear position of a word in the sentence, plus an
extra artificial root node 0. The set A of arcs is a
set of triples (i, l, j), where i and j are nodes and l
is a label. For a dependency graph G = (Vx, A) to

be well-formed, we in addition require that it is a
tree rooted at the node 0, as illustrated in Figure 1.

2.2 Transition Systems
Following Nivre (2008a), we define a transition
system for dependency parsing as a quadruple S =
(C, T, cs, Ct), where

1. C is a set of configurations,

2. T is a set of transitions, each of which is a
(partial) function t : C → C,

3. cs is an initialization function, mapping a
sentence x = w1, . . . , wn to a configuration
c ∈ C,

4. Ct ⊆ C is a set of terminal configurations.
In this paper, we take the set C of configurations
to be the set of all triples c = (Σ, B,A) such that
Σ and B are disjoint sublists of the nodes Vx of
some sentence x, andA is a set of dependency arcs
over Vx (and some label set L); we take the initial
configuration for a sentence x = w1, . . . , wn to
be cs(x) = ([0], [1, . . . , n], { }); and we take the
set Ct of terminal configurations to be the set of
all configurations of the form c = ([0], [ ], A) (for
any arc set A). The set T of transitions will be
discussed in detail in Sections 3.1–3.2.

We will refer to the list Σ as the stack and the list
B as the buffer, and we will use the variables σ and
β for arbitrary sublists of Σ and B, respectively.
For reasons of perspicuity, we will write Σ with its
head (top) to the right and B with its head to the
left. Thus, c = ([σ|i], [j|β], A) is a configuration
with the node i on top of the stack Σ and the node
j as the first node in the buffer B.

Given a transition system S = (C, T, cs, Ct), a
transition sequence for a sentence x is a sequence
C0,m = (c0, c1, . . . , cm) of configurations, such
that

1. c0 = cs(x),

2. cm ∈ Ct,
3. for every i (1 ≤ i ≤ m), ci = t(ci−1) for

some t ∈ T .
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Transition Condition

LEFT-ARCl ([σ|i, j], B,A)⇒ ([σ|j], B,A∪{(j, l, i)}) i 6= 0

RIGHT-ARCl ([σ|i, j], B,A)⇒ ([σ|i], B,A∪{(i, l, j)})

SHIFT (σ, [i|β], A)⇒ ([σ|i], β, A)

SWAP ([σ|i, j], β, A)⇒ ([σ|j], [i|β], A) 0 < i < j

Figure 2: Transitions for dependency parsing; Tp = {LEFT-ARCl, RIGHT-ARCl, SHIFT}; Tu = Tp ∪ {SWAP}.

The parse assigned to S by C0,m is the depen-
dency graph Gcm = (Vx, Acm), where Acm is the
set of arcs in cm.

A transition system S is sound for a class G of
dependency graphs iff, for every sentence x and
transition sequence C0,m for x in S, Gcm ∈ G. S
is complete for G iff, for every sentence x and de-
pendency graph G for x in G, there is a transition
sequence C0,m for x in S such that Gcm = G.

2.3 Deterministic Transition-Based Parsing

An oracle for a transition system S is a function
o : C → T . Ideally, o should always return the
optimal transition t for a given configuration c, but
all we require formally is that it respects the pre-
conditions of transitions in T . That is, if o(c) = t
then t is permissible in c. Given an oracle o, deter-
ministic transition-based parsing can be achieved
by the following simple algorithm:

PARSE(o, x)
1 c← cs(x)
2 while c 6∈ Ct
3 do t← o(c); c← t(c)
4 return Gc

Starting in the initial configuration cs(x), the
parser repeatedly calls the oracle function o for the
current configuration c and updates c according to
the oracle transition t. The iteration stops when a
terminal configuration is reached. It is easy to see
that, provided that there is at least one transition
sequence in S for every sentence, the parser con-
structs exactly one transition sequence C0,m for a
sentence x and returns the parse defined by the ter-
minal configuration cm, i.e., Gcm = (Vx, Acm).
Assuming that the calls o(c) and t(c) can both be
performed in constant time, the worst-case time
complexity of a deterministic parser based on a
transition system S is given by an upper bound on
the length of transition sequences in S.

When building practical parsing systems, the
oracle can be approximated by a classifier trained
on treebank data, a technique that has been used
successfully in a number of systems (Yamada and
Matsumoto, 2003; Nivre et al., 2004; Attardi,
2006). This is also the approach we will take in
the experimental evaluation in Section 4.

3 Transitions for Dependency Parsing

Having defined the set of configurations, including
initial and terminal configurations, we will now
focus on the transition set T required for depen-
dency parsing. The total set of transitions that will
be considered is given in Figure 2, but we will start
in Section 3.1 with the subset Tp (p for projective)
consisting of the first three. In Section 3.2, we
will add the fourth transition (SWAP) to get the full
transition set Tu (u for unrestricted).

3.1 Projective Dependency Parsing

The minimal transition set Tp for projective depen-
dency parsing contains three transitions:

1. LEFT-ARCl updates a configuration with i, j
on top of the stack by adding (j, l, i) toA and
replacing i, j on the stack by j alone. It is
permissible as long as i is distinct from 0.

2. RIGHT-ARCl updates a configuration with
i, j on top of the stack by adding (i, l, j) to
A and replacing i, j on the stack by i alone.

3. SHIFT updates a configuration with i as the
first node of the buffer by removing i from
the buffer and pushing it onto the stack.

The system Sp = (C, Tp, cs, Ct) is sound and
complete for the set of projective dependency
trees (over some label set L) and has been used,
in slightly different variants, by a number of
transition-based dependency parsers (Yamada and
Matsumoto, 2003; Nivre, 2004; Attardi, 2006;
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Transition Stack (Σ) Buffer (B) Added Arc
[ROOT0] [A1, . . . , .9]

SHIFT [ROOT0,A1] [hearing2, . . . , .9]
SHIFT [ROOT0,A1, hearing2] [is3, . . . , .9]
LADET [ROOT0, hearing2] [is3, . . . , .9] (2, DET, 1)
SHIFT [ROOT0, hearing2, is3] [scheduled4, . . . , .9]
SHIFT [ROOT0, . . . , is3, scheduled4] [on5, . . . , .9]
SHIFT [ROOT0, . . . , scheduled4, on5] [the6, . . . , .9]
SWAP [ROOT0, . . . , is3, on5] [scheduled4, . . . , .9]
SWAP [ROOT0, hearing2, on5] [is3, . . . , .9]
SHIFT [ROOT0, . . . , on5, is3] [scheduled4, . . . , .9]
SHIFT [ROOT0, . . . , is3, scheduled4] [the6, . . . , .9]
SHIFT [ROOT0, . . . , scheduled4, the6] [issue7, . . . , .9]
SWAP [ROOT0, . . . , is3, the6] [scheduled4, . . . , .9]
SWAP [ROOT0, . . . , on5, the6] [is3, . . . , .9]
SHIFT [ROOT0, . . . , the6, is3] [scheduled4, . . . , .9]
SHIFT [ROOT0, . . . , is3, scheduled4] [issue7, . . . , .9]
SHIFT [ROOT0, . . . , scheduled4, issue7] [today8, .9]
SWAP [ROOT0, . . . , is3, issue7] [scheduled4, . . . , .9]
SWAP [ROOT0, . . . , the6, issue7] [is3, . . . , .9]
LADET [ROOT0, . . . , on5, issue7] [is3, . . . , .9] (7, DET, 6)
RAPC [ROOT0, hearing2, on5] [is3, . . . , .9] (5, PC, 7)
RANMOD [ROOT0, hearing2] [is3, . . . , .9] (2, NMOD, 5)
SHIFT [ROOT0, . . . , hearing2, is3] [scheduled4, . . . , .9]
LASBJ [ROOT0, is3] [scheduled4, . . . , .9] (3, SBJ, 2)
SHIFT [ROOT0, is3, scheduled4] [today8, .9]
SHIFT [ROOT0, . . . , scheduled4, today8] [.9]
RAADV [ROOT0, is3, scheduled4] [.9] (4, ADV, 8)
RAVG [ROOT0, is3] [.9] (3, VG, 4)
SHIFT [ROOT0, is3, .9] [ ]
RAP [ROOT0, is3] [ ] (3, P, 9)
RAROOT [ROOT0] [ ] (0, ROOT, 3)

Figure 3: Transition sequence for parsing the sentence in Figure 1 (LA = LEFT-ARC, RA = REFT-ARC).

Nivre, 2008a). For proofs of soundness and com-
pleteness, see Nivre (2008a).

As noted in section 2, the worst-case time com-
plexity of a deterministic transition-based parser is
given by an upper bound on the length of transition
sequences. In Sp, the number of transitions for a
sentence x = w1, . . . , wn is always exactly 2n,
since a terminal configuration can only be reached
after n SHIFT transitions (moving nodes 1, . . . , n
from B to Σ) and n applications of LEFT-ARCl or
RIGHT-ARCl (removing the same nodes from Σ).
Hence, the complexity of deterministic parsing is
O(n) in the worst case (as well as in the best case).

3.2 Unrestricted Dependency Parsing

We now consider what happens when we add the
fourth transition from Figure 2 to get the extended

transition set Tu. The SWAP transition updates
a configuration with stack [σ|i, j] by moving the
node i back to the buffer. This has the effect that
the order of the nodes i and j in the appended list
Σ+B is reversed compared to the original word
order in the sentence. It is important to note that
SWAP is only permissible when the two nodes on
top of the stack are in the original word order,
which prevents the same two nodes from being
swapped more than once, and when the leftmost
node i is distinct from the root node 0. Note also
that SWAP moves the node i back to the buffer, so
that LEFT-ARCl, RIGHT-ARCl or SWAP can sub-
sequently apply with the node j on top of the stack.

The fact that we can swap the order of nodes,
implicitly representing subtrees, means that we
can construct non-projective trees by applying
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o(c) =


LEFT-ARCl if c = ([σ|i, j], B,Ac), (j, l, i)∈A and Ai ⊆ Ac
RIGHT-ARCl if c = ([σ|i, j], B,Ac), (i, l, j)∈A and Aj ⊆ Ac
SWAP if c = ([σ|i, j], B,Ac) and j <G i
SHIFT otherwise

Figure 4: Oracle function for Su = (C, Tu, cs, Ct) with target tree G = (Vx, A). We use the notation Ai

to denote the subset of A that only contains the outgoing arcs of the node i.

LEFT-ARCl or RIGHT-ARCl to subtrees whose
yields are not adjacent according to the original
word order. This is illustrated in Figure 3, which
shows the transition sequence needed to parse the
example in Figure 1. For readability, we represent
both the stack Σ and the bufferB as lists of tokens,
indexed by position, rather than abstract nodes.
The last column records the arc that is added to
the arc set A in a given transition (if any).

Given the simplicity of the extension, it is rather
remarkable that the system Su = (C, Tu, cs, Ct)
is sound and complete for the set of all depen-
dency trees (over some label set L), including all
non-projective trees. The soundness part is triv-
ial, since any terminating transition sequence will
have to move all the nodes 1, . . . , n from B to Σ
(using SHIFT) and then remove them from Σ (us-
ing LEFT-ARCl or RIGHT-ARCl), which will pro-
duce a tree with root 0.

For completeness, we note first that projectiv-
ity is not a property of a dependency tree in itself,
but of the tree in combination with a word order,
and that a tree can always be made projective by
reordering the nodes. For instance, let x be a sen-
tence with dependency tree G = (Vx, A), and let
<G be the total order on Vx defined by an inorder
traversal of G that respects the local ordering of a
node and its children given by the original word
order. Regardless of whether G is projective with
respect to x, it must by necessity be projective with
respect to <G. We call <G the projective order
corresponding to x andG and use it as our canoni-
cal way of finding a node order that makes the tree
projective. By way of illustration, the projective
order for the sentence and tree in Figure 1 is: A1

<G hearing2 <G on5 <G the6 <G issue7 <G is3

<G scheduled4 <G today8 <G .9.

If the words of a sentence x with dependency
tree G are already in projective order, this means
that G is projective with respect to x and that we
can parse the sentence using only transitions in Tp,

because nodes can be pushed onto the stack in pro-
jective order using only the SHIFT transition. If
the words are not in projective order, we can use
a combination of SHIFT and SWAP transitions to
ensure that nodes are still pushed onto the stack in
projective order. More precisely, if the next node
in the projective order is the kth node in the buffer,
we perform k SHIFT transitions, to get this node
onto the stack, followed by k−1 SWAP transitions,
to move the preceding k − 1 nodes back to the
buffer.1 In this way, the parser can effectively sort
the input nodes into projective order on the stack,
repeatedly extracting the minimal element of <G
from the buffer, and build a tree that is projective
with respect to the sorted order. Since any input
can be sorted using SHIFT and SWAP, and any pro-
jective tree can be built using SHIFT, LEFT-ARCl
and RIGHT-ARCl, the system Su is complete for
the set of all dependency trees.

In Figure 4, we define an oracle function o for
the system Su, which implements this “sort and
parse” strategy and predicts the optimal transition
t out of the current configuration c, given the tar-
get dependency tree G = (Vx, A) and the pro-
jective order <G. The oracle predicts LEFT-ARCl
or RIGHT-ARCl if the two top nodes on the stack
should be connected by an arc and if the depen-
dent node of this arc is already connected to all its
dependents; it predicts SWAP if the two top nodes
are not in projective order; and it predicts SHIFT

otherwise. This is the oracle that has been used to
generate training data for classifiers in the experi-
mental evaluation in Section 4.

Let us now consider the time complexity of the
extended system Su = (C, Tu, cs, Ct) and let us
begin by observing that 2n is still a lower bound
on the number of transitions required to reach a
terminal configuration. A sequence of 2n transi-

1This can be seen in Figure 3, where transitions 4–8, 9–
13, and 14–18 are the transitions needed to make sure that
on5, the6 and issue7 are processed on the stack before is3 and
scheduled4.
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Figure 5: Abstract running time during training (black) and parsing (white) for Arabic (1460/146 sen-
tences) and Danish (5190/322 sentences).

tions occurs when no SWAP transitions are per-
formed, in which case the behavior of the system
is identical to the simpler system Sp. This is im-
portant, because it means that the best-case com-
plexity of the deterministic parser is stillO(n) and
that the we can expect to observe the best case for
all sentences with projective dependency trees.

The exact number of additional transitions
needed to reach a terminal configuration is deter-
mined by the number of SWAP transitions. Since
SWAP moves one node from Σ to B, there will
be one additional SHIFT for every SWAP, which
means that the total number of transitions is 2n +
2k, where k is the number of SWAP transitions.
Given the condition that SWAP can only apply in a
configuration c = ([σ|i, j], B,A) if 0 < i < j, the
number of SWAP transitions is bounded by n(n−1)

2 ,
which means that 2n + n(n − 1) = n + n2 is an
upper bound on the number of transitions in a ter-
minating sequence. Hence, the worst-case com-
plexity of the deterministic parser is O(n2).

The running time of a deterministic transition-
based parser using the system Su is O(n) in the
best case and O(n2) in the worst case. But what
about the average case? Empirical studies, based
on data from a wide range of languages, have
shown that dependency trees tend to be projective
and that most non-projective trees only contain
a small number of discontinuities (Nivre, 2006;
Kuhlmann and Nivre, 2006; Havelka, 2007). This
should mean that the expected number of swaps
per sentence is small, and that the running time is
linear on average for the range of inputs that occur
in natural languages. This is a hypothesis that will

be tested experimentally in the next section.

4 Experiments

Our experiments are based on five data sets from
the CoNLL-X shared task: Arabic, Czech, Danish,
Slovene, and Turkish (Buchholz and Marsi, 2006).
These languages have been selected because the
data come from genuine dependency treebanks,
whereas all the other data sets are based on some
kind of conversion from another type of represen-
tation, which could potentially distort the distribu-
tion of different types of structures in the data.

4.1 Running Time

In section 3.2, we hypothesized that the expected
running time of a deterministic parser using the
transition system Su would be linear, rather than
quadratic. To test this hypothesis, we examine
how the number of transitions varies as a func-
tion of sentence length. We call this the abstract
running time, since it abstracts over the actual
time needed to compute each oracle prediction and
transition, which is normally constant but depen-
dent on the type of classifier used.

We first measured the abstract running time on
the training sets, using the oracle to derive the
transition sequence for every sentence, to see how
many transitions are required in the ideal case. We
then performed the same measurement on the test
sets, using classifiers trained on the oracle transi-
tion sequences from the training sets (as described
below in Section 4.2), to see whether the trained
parsers deviate from the ideal case.

The result for Arabic and Danish can be seen
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Arabic Czech Danish Slovene Turkish
System AS EM AS EM AS EM AS EM AS EM
Su 67.1 (9.1) 11.6 82.4 (73.8) 35.3 84.2 (22.5) 26.7 75.2 (23.0) 29.9 64.9 (11.8) 21.5
Sp 67.3 (18.2) 11.6 80.9 (3.7) 31.2 84.6 (0.0) 27.0 74.2 (3.4) 29.9 65.3 (6.6) 21.0
Spp 67.2 (18.2) 11.6 82.1 (60.7) 34.0 84.7 (22.5) 28.9 74.8 (20.7) 26.9 65.5 (11.8) 20.7
Malt-06 66.7 (18.2) 11.0 78.4 (57.9) 27.4 84.8 (27.5) 26.7 70.3 (20.7) 19.7 65.7 (9.2) 19.3
MST-06 66.9 (0.0) 10.3 80.2 (61.7) 29.9 84.8 (62.5) 25.5 73.4 (26.4) 20.9 63.2 (11.8) 20.2
MSTMalt 68.6 (9.4) 11.0 82.3 (69.2) 31.2 86.7 (60.0) 29.8 75.9 (27.6) 26.6 66.3 (9.2) 18.6

Table 1: Labeled accuracy; AS = attachment score (non-projective arcs in brackets); EM = exact match.

in Figure 5, where black dots represent training
sentences (parsed with the oracle) and white dots
represent test sentences (parsed with a classifier).
For Arabic there is a very clear linear relationship
in both cases with very few outliers. Fitting the
data with a linear function using the least squares
method gives us m = 2.06n (R2 = 0.97) for the
training data and m = 2.02n (R2 = 0.98) for the
test data, where m is the number of transitions in
parsing a sentence of length n. For Danish, there
is clearly more variation, especially for the train-
ing data, but the least-squares approximation still
explains most of the variance, with m = 2.22n
(R2 = 0.85) for the training data and m = 2.07n
(R2 = 0.96) for the test data. For both languages,
we thus see that the classifier-based parsers have
a lower mean number of transitions and less vari-
ance than the oracle parsers. And in both cases, the
expected number of transitions is only marginally
greater than the 2n of the strictly projective transi-
tion system Sp.

We have chosen to display results for Arabic
and Danish because they are the two extremes in
our sample. Arabic has the smallest variance and
the smallest linear coefficients, and Danish has the
largest variance and the largest coefficients. The
remaining three languages all lie somewhere in
the middle, with Czech being closer to Arabic and
Slovene closer to Danish. Together, the evidence
from all five languages strongly corroborates the
hypothesis that the expected running time for the
system Su is linear in sentence length for naturally
occurring data.

4.2 Parsing Accuracy

In order to assess the parsing accuracy that can
be achieved with the new transition system, we
trained a deterministic parser using the new tran-
sition system Su for each of the five languages.
For comparison, we also trained two parsers using

Sp, one that is strictly projective and one that uses
the pseudo-projective parsing technique to recover
non-projective dependencies in a post-processing
step (Nivre and Nilsson, 2005). We will refer to
the latter system as Spp. All systems use SVM
classifiers with a polynomial kernel to approxi-
mate the oracle function, with features and para-
meters taken from Nivre et al. (2006), which was
the best performing transition-based system in the
CoNLL-X shared task.2

Table 1 shows the labeled parsing accuracy of
the parsers measured in two ways: attachment
score (AS) is the percentage of tokens with the
correct head and dependency label; exact match
(EM) is the percentage of sentences with a com-
pletely correct labeled dependency tree. The score
in brackets is the attachment score for the (small)
subset of tokens that are connected to their head
by a non-projective arc in the gold standard parse.
For comparison, the table also includes results
for the two best performing systems in the origi-
nal CoNLL-X shared task, Malt-06 (Nivre et al.,
2006) and MST-06 (McDonald et al., 2006), as
well as the integrated system MSTMalt, which is
a graph-based parser guided by the predictions of
a transition-based parser and currently has the best
reported results on the CoNLL-X data sets (Nivre
and McDonald, 2008).

Looking first at the overall attachment score, we
see that Su gives a substantial improvement over
Sp (and outperforms Spp) for Czech and Slovene,
where the scores achieved are rivaled only by the
combo system MSTMalt. For these languages,
there is no statistical difference between Su and
MSTMalt, which are both significantly better than
all the other parsers, except Spp for Czech (Mc-
Nemar’s test, α = .05). This is accompanied
by an improvement on non-projective arcs, where

2Complete information about experimental settings can
be found at http://stp.lingfil.uu.se/∼nivre/exp/.
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Su outperforms all other systems for Czech and
is second only to the two MST parsers (MST-06
and MSTMalt) for Slovene. It is worth noting that
the percentage of non-projective arcs is higher for
Czech (1.9%) and Slovene (1.9%) than for any of
the other languages.

For the other three languages, Su has a drop
in overall attachment score compared to Sp, but
none of these differences is statistically signifi-
cant. In fact, the only significant differences in
attachment score here are the positive differences
between MSTMalt and all other systems for Arabic
and Danish, and the negative difference between
MST-06 and all other systems for Turkish. The
attachment scores for non-projective arcs are gen-
erally very low for these languages, except for the
two MST parsers on Danish, but Su performs at
least as well as Spp on Danish and Turkish. (The
results for Arabic are not very meaningful, given
that there are only eleven non-projective arcs in
the entire test set, of which the (pseudo-)projective
parsers found two and Su one, while MSTMalt and
MST-06 found none at all.)

Considering the exact match scores, finally, it is
very interesting to see that Su almost consistently
outperforms all other parsers, including the combo
system MSTMalt, and sometimes by a fairly wide
margin (Czech, Slovene). The difference is statis-
tically significant with respect to all other systems
except MSTMalt for Slovene, all except MSTMalt

and Spp for Czech, and with respect to MSTMalt

for Turkish. For Arabic and Danish, there are no
significant differences in the exact match scores.
We conclude that Su may increase the probabil-
ity of finding a completely correct analysis, which
is sometimes reflected also in the overall attach-
ment score, and we conjecture that the strength of
the positive effect is dependent on the frequency
of non-projective arcs in the language.

5 Related Work

Processing non-projective trees by swapping the
order of words has recently been proposed by both
Nivre (2008b) and Titov et al. (2009), but these
systems cannot handle unrestricted non-projective
trees. It is worth pointing out that, although the
system described in Nivre (2008b) uses four tran-
sitions bearing the same names as the transitions
of Su, the two systems are not equivalent. In par-
ticular, the system of Nivre (2008b) is sound but
not complete for the class of all dependency trees.

There are also affinities to the system of Attardi
(2006), which combines non-adjacent nodes on
the stack instead of swapping nodes and is equiva-
lent to a restricted version of our system, where no
more than two consecutive SWAP transitions are
permitted. This restriction preserves linear worst-
case complexity at the expense of completeness.
Finally, the algorithm first described by Covington
(2001) and used for data-driven parsing by Nivre
(2007), is complete but has quadratic complexity
even in the best case.

6 Conclusion

We have presented a novel transition system for
dependency parsing that can handle unrestricted
non-projective trees. The system reuses standard
techniques for building projective trees by com-
bining adjacent nodes (representing subtrees with
adjacent yields), but adds a simple mechanism for
swapping the order of nodes on the stack, which
gives a system that is sound and complete for the
set of all dependency trees over a given label set
but behaves exactly like the standard system for
the subset of projective trees. As a result, the time
complexity of deterministic parsing is O(n2) in
the worst case, which is rare, but O(n) in the best
case, which is common, and experimental results
on data from five languages support the conclusion
that expected running time is linear in the length
of the sentence. Experimental results also show
that parsing accuracy is competitive, especially
for languages like Czech and Slovene where non-
projective dependency structures are common, and
especially with respect to the exact match score,
where it has the best reported results for four out
of five languages. Finally, the simplicity of the
system makes it very easy to implement.

Future research will include an in-depth error
analysis to find out why the system works better
for some languages than others and why the exact
match score improves even when the attachment
score goes down. In addition, we want to explore
alternative oracle functions, which try to minimize
the number of swaps by allowing the stack to be
temporarily “unsorted”.
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Abstract

In this paper, we propose a novel method
for semi-supervised learning of non-
projective log-linear dependency parsers
using directly expressed linguistic prior
knowledge (e.g. a noun’s parent is often a
verb). Model parameters are estimated us-
ing a generalized expectation (GE) objec-
tive function that penalizes the mismatch
between model predictions and linguistic
expectation constraints. In a comparison
with two prominent “unsupervised” learn-
ing methods that require indirect biasing
toward the correct syntactic structure, we
show that GE can attain better accuracy
with as few as 20 intuitive constraints. We
also present positive experimental results
on longer sentences in multiple languages.

1 Introduction

Early approaches to parsing assumed a grammar
provided by human experts (Quirk et al., 1985).
Later approaches avoided grammar writing by
learning the grammar from sentences explicitly
annotated with their syntactic structure (Black et
al., 1992). While such supervised approaches have
yielded accurate parsers (Charniak, 2001), the
syntactic annotation of corpora such as the Penn
Treebank is extremely costly, and consequently
there are few treebanks of comparable size.

As a result, there has been recent interest in
unsupervised parsing. However, in order to at-
tain reasonable accuracy, these methods have to
be carefully biased towards the desired syntac-
tic structure. This weak supervision has been
encoded using priors and initializations (Klein
and Manning, 2004; Smith, 2006), specialized
models (Klein and Manning, 2004; Seginer,
2007; Bod, 2006), and implicit negative evi-
dence (Smith, 2006). These indirect methods for

leveraging prior knowledge can be cumbersome
and unintuitive for a non-machine-learning expert.

This paper proposes a method for directly guid-
ing the learning of dependency parsers with nat-
urally encoded linguistic insights. Generalized
expectation (GE) (Mann and McCallum, 2008;
Druck et al., 2008) is a recently proposed frame-
work for incorporating prior knowledge into the
learning of conditional random fields (CRFs) (Laf-
ferty et al., 2001). GE criteria express a preference
on the value of a model expectation. For example,
we know that “in English, when a determiner is di-
rectly to the left of a noun, the noun is usually the
parent of the determiner”. With GE we may add
a term to the objective function that encourages a
feature-rich CRF to match this expectation on un-
labeled data, and in the process learn about related
features. In this paper we use a non-projective de-
pendency tree CRF (Smith and Smith, 2007).

While a complete exploration of linguistic prior
knowledge for dependency parsing is beyond the
scope of this paper, we provide several promis-
ing demonstrations of the proposed method. On
the English WSJ10 data set, GE training outper-
forms two prominent unsupervised methods using
only 20 constraints either elicited from a human
or provided by an “oracle” simulating a human.
We also present experiments on longer sentences
in Dutch, Spanish, and Turkish in which we obtain
accuracy comparable to supervised learning with
tens to hundreds of complete parsed sentences.

2 Related Work

This work is closely related to the prototype-
driven grammar induction method of Haghighi
and Klein (2006), which uses prototype phrases
to guide the EM algorithm in learning a PCFG.
Direct comparison with this method is not possi-
ble because we are interested in dependency syn-
tax rather than phrase structure syntax. However,
the approach we advocate has several significant
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advantages. GE is more general than prototype-
driven learning because GE constraints can be un-
certain. Additionally prototype-driven grammar
induction needs to be used in conjunction with
other unsupervised methods (distributional simi-
larity and CCM (Klein and Manning, 2004)) to
attain reasonable accuracy, and is only evaluated
on length 10 or less sentences with no lexical in-
formation. In contrast, GE uses only the provided
constraints and unparsed sentences, and is used to
train a feature-rich discriminative model.

Conventional semi-supervised learning requires
parsed sentences. Kate and Mooney (2007) and
McClosky et al. (2006) both use modified forms
of self-training to bootstrap parsers from limited
labeled data. Wang et al. (2008) combine a struc-
tured loss on parsed sentences with a least squares
loss on unlabeled sentences. Koo et al. (2008) use
a large unlabeled corpus to estimate cluster fea-
tures which help the parser generalize with fewer
examples. Smith and Eisner (2007) apply entropy
regularization to dependency parsing. The above
methods can be applied to small seed corpora, but
McDonald1 has criticized such methods as work-
ing from an unrealistic premise, as a significant
amount of the effort required to build a treebank
comes in the first 100 sentences (both because of
the time it takes to create an appropriate rubric and
to train annotators).

There are also a number of methods for unsu-
pervised learning of dependency parsers. Klein
and Manning (2004) use a carefully initialized and
structured generative model (DMV) in conjunc-
tion with the EM algorithm to get the first positive
results on unsupervised dependency parsing. As
empirical evidence of the sensitivity of DMV to
initialization, Smith (2006) (pg. 37) uses three dif-
ferent initializations, and only one, the method of
Klein and Manning (2004), gives accuracy higher
than 31% on the WSJ10 corpus (see Section 5).
This initialization encodes the prior knowledge
that long distance attachments are unlikely.

Smith and Eisner (2005) develop contrastive
estimation (CE), in which the model is encour-
aged to move probability mass away from im-
plicit negative examples defined using a care-
fully chosen neighborhood function. For instance,
Smith (2006) (pg. 82) uses eight different neigh-
borhood functions to estimate parameters for the
DMV model. The best performing neighborhood

1R. McDonald, personal communication, 2007

function DEL1ORTRANS1 provides accuracy of
57.6% on WSJ10 (see Section 5). Another neigh-
borhood, DEL1ORTRANS2, provides accuracy of
51.2%. The remaining six neighborhood func-
tions provide accuracy below 50%. This demon-
strates that constructing an appropriate neighbor-
hood function can be delicate and challenging.

Smith and Eisner (2006) propose structural an-
nealing (SA), in which a strong bias for local de-
pendency attachments is enforced early in learn-
ing, and then gradually relaxed. This method is
sensitive to the annealing schedule. Smith (2006)
(pg. 136) use 10 annealing schedules in conjunc-
tion with three initializers. The best performing
combination attains accuracy of 66.7% on WSJ10,
but the worst attains accuracy of 32.5%.

Finally, Seginer (2007) and Bod (2006) ap-
proach unsupervised parsing by constructing
novel syntactic models. The development and tun-
ing of the above methods constitute the encoding
of prior domain knowledge about the desired syn-
tactic structure. In contrast, our framework pro-
vides a straightforward and explicit method for in-
corporating prior knowledge.

Ganchev et al. (2009) propose a related method
that uses posterior constrained EM to learn a pro-
jective target language parser using only a source
language parser and word alignments.

3 Generalized Expectation Criteria

Generalized expectation criteria (Mann and Mc-
Callum, 2008; Druck et al., 2008) are terms in
a parameter estimation objective function that ex-
press a preference on the value of a model expec-
tation. Let x represent input variables (i.e. a sen-
tence) and y represent output variables (i.e. a parse
tree). A generalized expectation term G(λ) is de-
fined by a constraint function G(y,x) that returns
a non-negative real value given input and output
variables, an empirical distribution p̃(x) over in-
put variables (i.e. unlabeled data), a model distri-
bution pλ(y|x), and a score function S:

G(λ) = S(Ep̃(x)[Epλ(y|x)[G(y,x)]]).

In this paper, we use a score function that is the
squared difference of the model expectation of G
and some target expectation G̃:

Ssq = −(G̃− Ep̃(x)[Epλ(y|x)[G(y,x)]])2 (1)

We can incorporate prior knowledge into the train-
ing of pλ(y|x) by specifying the from of the con-
straint function G and the target expectation G̃.
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Importantly, G does not need to match a particular
feature in the underlying model.

The complete objective function2 includes mul-
tiple GE terms and a prior on parameters3, p(λ)

O(λ;D) = p(λ) +
∑

G
G(λ)

GE has been applied to logistic regression mod-
els (Mann and McCallum, 2007; Druck et al.,
2008) and linear chain CRFs (Mann and McCal-
lum, 2008). In the following sections we apply
GE to non-projective CRF dependency parsing.

3.1 GE in General CRFs

We first consider an arbitrarily structured condi-
tional random field (Lafferty et al., 2001) pλ(y|x).
We describe the CRF for non-projective depen-
dency parsing in Section 3.2. The probability of
an output y conditioned on an input x is

pλ(y|x) =
1

Zx
exp

(

∑

j

λjFj(y,x)
)

,

where Fj are feature functions over the cliques
of the graphical model and Z(x) is a normaliz-
ing constant that ensures pλ(y|x) sums to 1. We
are interested in the expectation of constraint func-
tion G(x,y) under this model. We abbreviate this
model expectation as:

Gλ = Ep̃(x)[Epλ(y|x)[G(y,x)]]

It can be shown that partial derivative of G(λ) us-
ing Ssq4 with respect to model parameter λj is

∂

∂λj
G(λ) = 2(G̃−Gλ) (2)

(

Ep̃(x)

[

Epλ(y|x) [G(y,x)Fj(y,x)]

−Epλ(y|x) [G(y,x)]Epλ(y|x) [Fj(y,x)]
])

.

Equation 2 has an intuitive interpretation. The first
term (on the first line) is the difference between the
model and target expectations. The second term

2In general, the objective function could also include the
likelihood of available labeled data, but throughout this paper
we assume we have no parsed sentences.

3Throughout this paper we use a Gaussian prior on pa-
rameters with σ2 = 10.

4In previous work, S was the KL-divergence from the tar-
get expectation. The partial derivative of the KL divergence
score function includes the same covariance term as above
but substitutes a different multiplicative term: G̃/Gλ.

(the rest of the equation) is the predicted covari-
ance between the constraint function G and the
model feature function Fj . Therefore, if the con-
straint is not satisfied, GE updates parameters for
features that the model predicts are related to the
constraint function.

If there are constraint functions G for all model
feature functions Fj , and the target expectations
G̃ are estimated from labeled data, then the glob-
ally optimal parameter setting under the GE objec-
tive function is equivalent to the maximum likeli-
hood solution. However, GE does not require such
a one-to-one correspondence between constraint
functions and model feature functions. This al-
lows bootstrapping of feature-rich models with a
small number of prior expectation constraints.

3.2 Non-Projective Dependency Tree CRFs

We now define a CRF pλ(y|x) for unlabeled, non-
projective5 dependency parsing. The tree y is rep-
resented as a vector of the same length as the sen-
tence, where yi is the index of the parent of word
i. The probability of a tree y given sentence x is

pλ(y|x) =
1

Zx
exp

(

n
∑

i=1

∑

j

λjfj(xi, xyi ,x)
)

,

where fj are edge-factored feature functions that
consider the child input (word, tag, or other fea-
ture), the parent input, and the rest of the sen-
tence. This factorization implies that dependency
decisions are independent conditioned on the in-
put sentence x if y is a tree. ComputingZx and the
edge expectations needed for partial derivatives re-
quires summing over all possible trees for x.

By relating the sum of the scores of all possible
trees to counting the number of spanning trees in a
graph, it can be shown that Zx is the determinant
of the Kirchoff matrix K, which is constructed us-
ing the scores of possible edges. (McDonald and
Satta, 2007; Smith and Smith, 2007). Computing
the determinant takes O(n3) time, where n is the
length of the sentence. To compute the marginal
probability of a particular edge k → i (i.e. yi=k),
the score of any edge k′ → i such that k′ 6= k is
set to 0. The determinant of the resulting modi-
fied Kirchoff matrix Kk→i is then the sum of the
scores of all trees that include the edge k → i. The

5Note that we could instead define a CRF for projective
dependency parse trees and use a variant of the inside outside
algorithm for inference. We choose non-projective because it
is the more general case.
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marginal p(yi=k|x; θ) can be computed by divid-
ing this score by Zx (McDonald and Satta, 2007).
Computing all edge expectations with this algo-
rithm takes O(n5) time. Smith and Smith (2007)
describe a more efficient algorithm that can com-
pute all edge expectations in O(n3) time using the
inverse of the Kirchoff matrix K−1.

3.3 GE for Non-Projective Dependency Tree
CRFs

While in general constraint functions G may
consider multiple edges, in this paper we use
edge-factored constraint functions. In this case
Epλ(y|x)[G(y,x)]Epλ(y|x)[Fj(y,x)], the second
term of the covariance in Equation 2, can be
computed using the edge marginal distributions
pλ(yi|x). The first term of the covariance
Epλ(y|x)[G(y,x)Fj(y,x)] is more difficult to
compute because it requires the marginal proba-
bility of two edges pλ(yi, yi′ |x). It is important to
note that the model pλ is still edge-factored.

The sum of the scores of all trees that contain
edges k → i and k′ → i′ can be computed by set-
ting the scores of edges j → i such that j 6= k and
j′ → i′ such that j′ 6= k′ to 0, and computing the
determinant of the resulting modified Kirchoff ma-
trixKk→i,k′→i′ . There areO(n4) pairs of possible
edges, and the determinant computation takes time
O(n3), so this naive algorithm takes O(n7) time.

An improved algorithm computes, for each pos-
sible edge k → i, a modified Kirchoff matrix
Kk→i that requires the presence of that edge.
Then, the method of Smith and Smith (2007) can
be used to compute the probability of every pos-
sible edge conditioned on the presence of k → i,
pλ(yi′ =k′|yi = k,x), using K−1

k→i. Multiplying
this probability by pλ(yi=k|x) yields the desired
two edge marginal. Because this algorithm pulls
the O(n3) matrix operation out of the inner loop
over edges, the run time is reduced to O(n5).

If it were possible to perform only one O(n3)
matrix operation per sentence, then the gradient
computation would take onlyO(n4) time, the time
required to consider all pairs of edges. Unfortu-
nately, there is no straightforward generalization
of the method of Smith and Smith (2007) to the
two edge marginal problem. Specifically, Laplace
expansion generalizes to second-order matrix mi-
nors, but it is not clear how to compute second-
order cofactors from the inverse Kirchoff matrix
alone (c.f. (Smith and Smith, 2007)).

Consequently, we also propose an approxima-
tion that can be used to speed up GE training at
the expense of a less accurate covariance compu-
tation. We consider different cases of the edges
k → i, and k′ → i′.

• pλ(yi=k, yi′=k′|x)=0 when i=i′ and k 6=k′
(different parent for the same word), or when
i=k′ and k=i′ (cycle), because these pairs of
edges break the tree constraint.

• pλ(yi=k, yi′ =k′|x)=pλ(yi=k|x) when i=
i′, k=k′.

• pλ(yi=k, yi′ =k′|x)≈pλ(yi=k|x)pλ(yi′ =
k′|x) when i 6= i′ and i 6= k′ or i′ 6= k
(different words, do not create a cycle). This
approximation assumes that pairs of edges
that do not fall into one of the above cases
are conditionally independent given x. This
is not true because there are partial trees in
which k → i and k′ → i′ can appear sepa-
rately, but not together (for example if i = k′

and the partial tree contains i′ → k).

Using this approximation, the covariance for one
sentence is approximately equal to

n
∑

i

Epλ(yi|x)[fj(xi, xyi ,x)g(xi, xyi ,x)]

−
n
∑

i

Epλ(yi|x)[fj(xi, xyi ,x)]Epλ(yi|x)[g(xi, xyi ,x)]

−
n
∑

i,k

pλ(yi=k|x)pλ(yk=i|x)fj(xi, xk,x)g(xk, xi,x).

Intuitively, the first and second terms compute a
covariance over possible parents for a single word,
and the third term accounts for cycles. Computing
the above takes O(n3) time, the time required to
compute single edge marginals. In this paper, we
use the O(n5) exact method, though we find that
the accuracy attained by approximate training is
usually within 5% of the exact method.

If G is not edge-factored, then we need to com-
pute a marginal over three or more edges, making
exact training intractable. An appealing alterna-
tive to a similar approximation to the above would
use loopy belief propagation to efficiently approx-
imate the marginals (Smith and Eisner, 2008).

In this paper g is binary and normalized by its
total count in the corpus. The expectation of g is
then the probability that it indicates a true edge.
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4 Linguistic Prior Knowledge

Training parsers using GE with the aid of linguists
is an exciting direction for future work. In this pa-
per, we use constraints derived from several basic
types of linguistic knowledge.

One simple form of linguistic knowledge is the
set of possible parent tags for a given child tag.
This type of constraint was used in the devel-
opment of a rule-based dependency parser (De-
busmann et al., 2004). Additional information
can be obtained from small grammar fragments.
Haghighi and Klein (2006) provide a list of proto-
type phrase structure rules that can be augmented
with dependencies and used to define constraints
involving parent and child tags, surrounding or
interposing tags, direction, and distance. Finally
there are well known hypotheses about the direc-
tion and distance of attachments that can be used
to define constraints. Eisner and Smith (2005) use
the fact that short attachments are more common
to improve unsupervised parsing accuracy.

4.1 “Oracle” constraints

For some experiments that follow we use “ora-
cle” constraints that are estimated from labeled
data. This involves choosing feature templates
(motivated by the linguistic knowledge described
above) and estimating target expectations. Oracle
methods used in this paper consider three simple
statistics of candidate constraint functions: count
c̃(g), edge count c̃edge(g), and edge probability
p̃(edge|g). Let D be the labeled corpus.

c̃(g) =
∑

x∈D

∑

i

∑

j

g(xi, xj ,x)

c̃edge(g) =
∑

(x,y)∈D

∑

i

g(xi, xyi ,x)

p̃(edge|g) =
c̃edge(g)

c̃(g)

Constraint functions are selected according to
some combination of the above statistics. In
some cases we additionally prune the candidate
set by considering only certain templates. To
compute the target expectation, we simply use
bin(p̃(edge|g)), where bin returns the closest
value in the set {0, 0.1, 0.25, 0.5, 0.75, 1}. This
can be viewed as specifying that g is very indica-
tive of edge, somewhat indicative of edge, etc.

5 Experimental Comparison with
Unsupervised Learning

In this section we compare GE training with meth-
ods for unsupervised parsing. We use the WSJ10
corpus (as processed by Smith (2006)), which is
comprised of English sentences of ten words or
fewer (after stripping punctuation) from the WSJ
portion of the Penn Treebank. As in previous work
sentences contain only part-of-speech tags.

We compare GE and supervised training of an
edge-factored CRF with unsupervised learning of
a DMV model (Klein and Manning, 2004) using
EM and contrastive estimation (CE) (Smith and
Eisner, 2005). We also report the accuracy of an
attach-right baseline6. Finally, we report the ac-
curacy of a constraint baseline that assigns a score
to each possible edge that is the sum of the target
expectations for all constraints on that edge. Pos-
sible edges without constraints receive a score of
0. These scores are used as input to the maximum
spanning tree algorithm, which returns the best
tree. Note that this is a strong baseline because it
can handle uncertain constraints, and the tree con-
straint imposed by the MST algorithm helps infor-
mation propagate across edges.

We note that there are considerable differences
between the DMV and CRF models. The DMV
model is more expressive than the CRF because
it can model the arity of a head as well as sib-
ling relationships. Because these features consider
multiple edges, including them in the CRF model
would make exact inference intractable (McDon-
ald and Satta, 2007). However, the CRF may con-
sider the distance between head and child, whereas
DMV does not model distance. The CRF also
models non-projective trees, which when evaluat-
ing on English is likely a disadvantage.

Consequently, we experiment with two sets of
features for the CRF model. The first, restricted
set includes features that consider the head and
child tags of the dependency conjoined with the
direction of the attachment, (parent-POS,child-
POS,direction). With this feature set, the CRF
model is less expressive than DMV. The sec-
ond full set includes standard features for edge-
factored dependency parsers (McDonald et al.,
2005), though still unlexicalized. The CRF can-
not consider valency even with the full feature set,
but this is balanced by the ability to use distance.

6The reported accuracies with the DMV model and the
attach-right baseline are taken from (Smith, 2006).
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feature ex. feature ex.
MD→ VB 1.00 NNS← VBD 0.75
POS← NN 0.75 PRP← VBD 0.75
JJ← NNS 0.75 VBD→ TO 1.00

NNP← POS 0.75 VBD→ VBN 0.75
ROOT→MD 0.75 NNS← VBP 0.75

ROOT→ VBD 1.00 PRP← VBP 0.75
ROOT→ VBP 0.75 VBP→ VBN 0.75
ROOT→ VBZ 0.75 PRP← VBZ 0.75

TO→ VB 1.00 NN← VBZ 0.75
VBN→ IN 0.75 VBZ→ VBN 0.75

Table 1: 20 constraints that give 61.3% accuracy
on WSJ10. Tags are grouped according to heads,
and are in the order they appear in the sentence,
with the arrow pointing from head to modifier.

We generate constraints in two ways. First,
we use oracle constraints of the form (parent-
POS,child-POS,direction) such that c̃(g) ≥ 200.
We choose constraints in descending order of
p̃(edge|g). The first 20 constraints selected using
this method are displayed in Table 1.

Although the reader can verify that the con-
straints in Table 1 are reasonable, we addition-
ally experiment with human-provided constraints.
We use the prototype phrase-structure constraints
provided by Haghighi and Klein (2006), and
with the aid of head-finding rules, extract 14
(parent-pos,child-pos,direction) constraints.7 We
then estimated target expectations for these con-
straints using our prior knowledge, without look-
ing at the training data. We also created a second
constraint set with an additional six constraints for
tag pairs that were previously underrepresented.

5.1 Results

We present results varying the number of con-
straints in Figures 1 and 2. Figure 1 compares
supervised and GE training of the CRF model, as
well as the feature constraint baseline. First we
note that GE training using the full feature set sub-
stantially outperforms the restricted feature set,
despite the fact that the same set of constraints
is used for both experiments. This result demon-
strates GE’s ability to learn about related but non-
constrained features. GE training also outper-
forms the baseline8.

We compare GE training of the CRF model

7Because the CFG rules in (Haghighi and Klein, 2006)
are “flattened” and in some cases do not generate appropriate
dependency constraints, we only used a subset.

8The baseline eventually matches the accuracy of the re-
stricted CRF but this is understandable because GE’s ability
to bootstrap is greatly reduced with the restricted feature set.

with unsupervised learning of the DMV model
in Figure 29. Despite the fact that the restricted
CRF is less expressive than DMV, GE training of
this model outperforms EM with 30 constraints
and CE with 50 constraints. GE training of the
full CRF outperforms EM with 10 constraints and
CE with 20 constraints (those displayed in Ta-
ble 1). GE training of the full CRF with the set of
14 constraints from (Haghighi and Klein, 2006),
gives accuracy of 53.8%, which is above the inter-
polated oracle constraints curve (43.5% accuracy
with 10 constraints, 61.3% accuracy with 20 con-
straints). With the 6 additional constraints, we ob-
tain accuracy of 57.7% and match CE.

Recall that CE, EM, and the DMV model in-
corporate prior knowledge indirectly, and that the
reported results are heavily-tuned ideal cases (see
Section 2). In contrast, GE provides a method to
directly encode intuitive linguistic insights.

Finally, note that structural annealing (Smith
and Eisner, 2006) provides 66.7% accuracy on
WSJ10 when choosing the best performing an-
nealing schedule (Smith, 2006). As noted in Sec-
tion 2 other annealing schedules provide accuracy
as low as 32.5%. GE training of the full CRF at-
tains accuracy of 67.0% with 30 constraints.

6 Experimental Comparison with
Supervised Training on Long
Sentences

Unsupervised parsing methods are typically eval-
uated on short sentences, as in Section 5. In this
section we show that GE can be used to train
parsers for longer sentences that provide compa-
rable accuracy to supervised training with tens to
hundreds of parsed sentences.

We use the standard train/test splits of the
Spanish, Dutch, and Turkish data from the 2006
CoNLL Shared Task. We also use standard
edge-factored feature templates (McDonald et al.,
2005)10. We experiment with versions of the dat-

9Klein and Manning (2004) report 43.2% accuracy for
DMV with EM on WSJ10. When jointly modeling con-
stituency and dependencies, Klein and Manning (2004) re-
port accuracy of 47.5%. Seginer (2007) and Bod (2006) pro-
pose unsupervised phrase structure parsing methods that give
better unlabeled F-scores than DMV with EM, but they do
not report directed dependency accuracy.

10Typical feature processing uses only supported features,
or those features that occur on at least one true edge in the
training data. Because we assume that the data is unlabeled,
we instead use features on all possible edges. This generates
tens of millions features, so we prune those features that oc-
cur fewer than 10 total times, as in (Smith and Eisner, 2007).
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Figure 1: Comparison of the constraint baseline and
both GE and supervised training of the restricted and
full CRF. Note that supervised training uses 5,301
parsed sentences. GE with human provided con-
straints closely matches the oracle results.
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Figure 2: Comparison of GE training of the re-
stricted and full CRFs with unsupervised learning of
DMV. GE training of the full CRF outperforms CE
with just 20 constraints. GE also matches CE with
20 human provided constraints.

sets in which we remove sentences that are longer
than 20 words and 60 words.

For these experiments, we use an oracle
constraint selection method motivated by the
linguistic prior knowledge described in Section 4.
The first set of constraints specify the most
frequent head tag, attachment direction, and
distance combinations for each child tag. Specif-
ically, we select oracle constraints of the type
(parent-CPOS,child-CPOS,direction,distance)11.
We add constraints for every g such that
c̃edge(g) > 100 for max length 60 data sets, and
c̃edge(g)>10 times for max length 20 data sets.

In some cases, the possible parent constraints
described above will not be enough to provide
high accuracy, because they do not consider other
tags in the sentence (McDonald et al., 2005).
Consequently, we experiment with adding an
additional 25 sequence constraints (for what are
often called “between” and “surrounding” fea-
tures). The oracle feature selection method aims to
choose such constraints that help to reduce uncer-
tainty in the possible parents constraint set. Con-
sequently, we consider sequence features gs with
p̃(edge|gs=1) ≥ 0.75, and whose corresponding
(parent-CPOS,child-CPOS,direction,distance)
constraint g, has edge probability p̃(edge|g) ≤
0.25. Among these candidates, we sort by
c̃(gs=1), and select the top 25.

We compare with the constraint baseline de-
scribed in Section 5. Additionally, we report

11For these experiments we use coarse-grained part-of-
speech tags in constraints.

the number of parsed sentences required for su-
pervised CRF training (averaged over 5 random
splits) to match the accuracy of GE training using
the possible parents + sequence constraint set.

The results are provided in Table 2. We first
observe that GE always beats the baseline, espe-
cially on parent decisions for which there are no
constraints (not reported in Table 2, but for exam-
ple 53.8% vs. 20.5% on Turkish 20). Second, we
note that accuracy is always improved by adding
sequence constraints. Importantly, we observe
that GE gives comparable performance to super-
vised training with tens or hundreds of parsed sen-
tences. These parsed sentences provide a tremen-
dous amount of information to the model, as for
example in 20 Spanish length ≤ 60 sentences, a
total of 1,630,466 features are observed, 330,856
of them unique. In contrast, the constraint-based
methods are provided at most a few hundred con-
straints. When comparing the human costs of
parsing sentences and specifying constraints, re-
member that parsing sentences requires the devel-
opment of detailed annotation guidelines, which
can be extremely time-consuming (see also the
discussion is Section 2).

Finally, we experiment with iteratively
adding constraints. We sort constraints with
c̃(g) > 50 by p̃(edge|g), and ensure that 50%
are (parent-CPOS,child-CPOS,direction,distance)
constraints and 50% are sequence constraints.
For lack of space, we only show the results for
Spanish 60. In Figure 3, we see that GE beats
the baseline more soundly than above, and that
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possible parent constraints + sequence constraints complete trees
baseline GE baseline GE

dutch 20 69.5 70.7 69.8 71.8 80-160
dutch 60 66.5 69.3 66.7 69.8 40-80
spanish 20 70.0 73.2 71.2 75.8 40-80
spanish 60 62.1 66.2 62.7 66.9 20-40
turkish 20 66.3 71.8 67.1 72.9 80-160
turkish 60 62.1 65.5 62.3 66.6 20-40

Table 2: Experiments on Dutch, Spanish, and Turkish with maximum sentence lengths of 20 and 60. Observe that GE
outperforms the baseline, adding sequence constraints improves accuracy, and accuracy with GE training is comparable to
supervised training with tens to hundreds of parsed sentences.

parent tag true predicted
det. 0.005 0.005
adv. 0.018 0.013
conj. 0.012 0.001
pron. 0.011 0.009
verb 0.355 0.405
adj. 0.067 0.075
punc. 0.031 0.013
noun 0.276 0.272
prep. 0.181 0.165

direction true predicted
right 0.621 0.598
left 0.339 0.362
distance true predicted
1 0.495 0.564
2 0.194 0.206
3 0.066 0.050
4 0.042 0.037
5 0.028 0.031
6-10 0.069 0.033
> 10 0.066 0.039

feature (distance) false pos. occ.
verb→ punc. (>10) 1183

noun→ prep. (1) 1139
adj. → prep. (1) 855

verb→ verb (6-10) 756
verb→ verb (>10) 569
noun← punc. (1) 512
verb← punc. (2) 509
prep. ← punc. (1) 476
verb→ punc. (4) 427
verb→ prep. (1) 422

Table 3: Error analysis for GE training with possible parent + sequence constraints on Spanish 60 data. On the left, the
predicted and true distribution over parent coarse part-of-speech tags. In the middle, the predicted and true distributions over
attachment directions and distances. On the right, common features on false positive edges.
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Figure 3: Comparing GE training of a CRF and constraint
baseline while increasing the number of oracle constraints.

adding constraints continues to increase accuracy.

7 Error Analysis

In this section, we analyze the errors of the model
learned with the possible parent + sequence con-
straints on the Spanish 60 data. In Table 3, we
present four types of analysis. First, we present
the predicted and true distributions over coarse-
grained parent part of speech tags. We can see
that verb is being predicted as a parent tag more
often then it should be, while most other tags are
predicted less often than they should be. Next, we
show the predicted and true distributions over at-
tachment direction and distance. From this we see
that the model is often incorrectly predicting left
attachments, and is predicting too many short at-
tachments. Finally, we show the most common
parent-child tag with direction and distance fea-

tures that occur on false positive edges. From this
table, we see that many errors concern the attach-
ments of punctuation. The second line indicates a
prepositional phrase attachment ambiguity.

This analysis could also be performed by a lin-
guist by looking at predicted trees for selected sen-
tences. Once errors are identified, GE constraints
could be added to address these problems.

8 Conclusions

In this paper, we developed a novel method for
the semi-supervised learning of a non-projective
CRF dependency parser that directly uses linguis-
tic prior knowledge as a training signal. It is our
hope that this method will permit more effective
leveraging of linguistic insight and resources and
enable the construction of parsers in languages and
domains where treebanks are not available.
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Abstract

Broad-coverage annotated treebanks nec-
essary to train parsers do not exist for
many resource-poor languages. The wide
availability of parallel text and accurate
parsers in English has opened up the pos-
sibility of grammar induction through par-
tial transfer across bitext. We consider
generative and discriminative models for
dependency grammar induction that use
word-level alignments and a source lan-
guage parser (English) to constrain the
space of possible target trees. Unlike
previous approaches, our framework does
not require full projected parses, allowing
partial, approximate transfer through lin-
ear expectation constraints on the space
of distributions over trees. We consider
several types of constraints that range
from generic dependency conservation to
language-specific annotation rules for aux-
iliary verb analysis. We evaluate our ap-
proach on Bulgarian and Spanish CoNLL
shared task data and show that we con-
sistently outperform unsupervised meth-
ods and can outperform supervised learn-
ing for limited training data.

1 Introduction

For English and a handful of other languages,
there are large, well-annotated corpora with a vari-
ety of linguistic information ranging from named
entity to discourse structure. Unfortunately, for
the vast majority of languages very few linguis-
tic resources are available. This situation is
likely to persist because of the expense of creat-
ing annotated corpora that require linguistic exper-
tise (Abeillé, 2003). On the other hand, parallel
corpora between many resource-poor languages
and resource-rich languages are ample, motivat-

ing recent interest in transferring linguistic re-
sources from one language to another via parallel
text. For example, several early works (Yarowsky
and Ngai, 2001; Yarowsky et al., 2001; Merlo
et al., 2002) demonstrate transfer of shallow pro-
cessing tools such as part-of-speech taggers and
noun-phrase chunkers by using word-level align-
ment models (Brown et al., 1994; Och and Ney,
2000).

Alshawi et al. (2000) and Hwa et al. (2005)
explore transfer of deeper syntactic structure:
dependency grammars. Dependency and con-
stituency grammar formalisms have long coex-
isted and competed in linguistics, especially be-
yond English (Mel’čuk, 1988). Recently, depen-
dency parsing has gained popularity as a simpler,
computationally more efficient alternative to con-
stituency parsing and has spurred several super-
vised learning approaches (Eisner, 1996; Yamada
and Matsumoto, 2003a; Nivre and Nilsson, 2005;
McDonald et al., 2005) as well as unsupervised in-
duction (Klein and Manning, 2004; Smith and Eis-
ner, 2006). Dependency representation has been
used for language modeling, textual entailment
and machine translation (Haghighi et al., 2005;
Chelba et al., 1997; Quirk et al., 2005; Shen et al.,
2008), to name a few tasks.

Dependency grammars are arguably more ro-
bust to transfer since syntactic relations between
aligned words of parallel sentences are better con-
served in translation than phrase structure (Fox,
2002; Hwa et al., 2005). Nevertheless, sev-
eral challenges to accurate training and evalua-
tion from aligned bitext remain: (1) partial word
alignment due to non-literal or distant transla-
tion; (2) errors in word alignments and source lan-
guage parses, (3) grammatical annotation choices
that differ across languages and linguistic theo-
ries (e.g., how to analyze auxiliary verbs, conjunc-
tions).

In this paper, we present a flexible learning
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framework for transferring dependency grammars
via bitext using the posterior regularization frame-
work (Graça et al., 2008). In particular, we ad-
dress challenges (1) and (2) by avoiding com-
mitment to an entire projected parse tree in the
target language during training. Instead, we ex-
plore formulations of both generative and discrim-
inative probabilistic models where projected syn-
tactic relations are constrained to hold approxi-
mately and only in expectation. Finally, we ad-
dress challenge (3) by introducing a very small
number of language-specific constraints that dis-
ambiguate arbitrary annotation choices.

We evaluate our approach by transferring from
an English parser trained on the Penn treebank to
Bulgarian and Spanish. We evaluate our results
on the Bulgarian and Spanish corpora from the
CoNLL X shared task. We see that our transfer
approach consistently outperforms unsupervised
methods and, given just a few (2 to 7) language-
specific constraints, performs comparably to a su-
pervised parser trained on a very limited corpus
(30 - 140 training sentences).

2 Approach

At a high level our approach is illustrated in Fig-
ure 1(a). A parallel corpus is word-level aligned
using an alignment toolkit (Graça et al., 2009) and
the source (English) is parsed using a dependency
parser (McDonald et al., 2005). Figure 1(b) shows
an aligned sentence pair example where depen-
dencies are perfectly conserved across the align-
ment. An edge from English parent p to child c is
called conserved if word p aligns to word p′ in the
second language, c aligns to c′ in the second lan-
guage, and p′ is the parent of c′. Note that we are
not restricting ourselves to one-to-one alignments
here; p, c, p′, and c′ can all also align to other
words. After filtering to identify well-behaved
sentences and high confidence projected depen-
dencies, we learn a probabilistic parsing model us-
ing the posterior regularization framework (Graça
et al., 2008). We estimate both generative and dis-
criminative models by constraining the posterior
distribution over possible target parses to approxi-
mately respect projected dependencies and other
rules which we describe below. In our experi-
ments we evaluate the learned models on depen-
dency treebanks (Nivre et al., 2007).

Unfortunately the sentence in Figure 1(b) is
highly unusual in its amount of dependency con-

servation. To get a feel for the typical case, we
used off-the-shelf parsers (McDonald et al., 2005)
for English, Spanish and Bulgarian on two bi-
texts (Koehn, 2005; Tiedemann, 2007) and com-
pared several measures of dependency conserva-
tion. For the English-Bulgarian corpus, we ob-
served that 71.9% of the edges we projected were
edges in the corpus, and we projected on average
2.7 edges per sentence (out of 5.3 tokens on aver-
age). For Spanish, we saw conservation of 64.4%
and an average of 5.9 projected edges per sentence
(out of 11.5 tokens on average).

As these numbers illustrate, directly transfer-
ring information one dependency edge at a time
is unfortunately error prone for two reasons. First,
parser and word alignment errors cause much of
the transferred information to be wrong. We deal
with this problem by constraining groups of edges
rather than a single edge. For example, in some
sentence pair we might find 10 edges that have
both end points aligned and can be transferred.
Rather than requiring our target language parse to
contain each of the 10 edges, we require that the
expected number of edges from this set is at least
10η, where η is a strength parameter. This gives
the parser freedom to have some uncertainty about
which edges to include, or alternatively to choose
to exclude some of the transferred edges.

A more serious problem for transferring parse
information across languages are structural differ-
ences and grammar annotation choices between
the two languages. For example dealing with aux-
iliary verbs and reflexive constructions. Hwa et al.
(2005) also note these problems and solve them by
introducing dozens of rules to transform the trans-
ferred parse trees. We discuss these differences
in detail in the experimental section and use our
framework introduce a very small number of rules
to cover the most common structural differences.

3 Parsing Models

We explored two parsing models: a generative
model used by several authors for unsupervised in-
duction and a discriminative model used for fully
supervised training.

The discriminative parser is based on the
edge-factored model and features of the MST-
Parser (McDonald et al., 2005). The parsing
model defines a conditional distribution pθ(z | x)
over each projective parse tree z for a particular
sentence x, parameterized by a vector θ. The prob-
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(a)

(b)

Figure 1: (a) Overview of our grammar induction approach via bitext: the source (English) is parsed and word-aligned with
target; after filtering, projected dependencies define constraints over target parse tree space, providing weak supervision for
learning a target grammar. (b) An example word-aligned sentence pair with perfectly projected dependencies.

ability of any particular parse is

pθ(z | x) ∝
∏

z∈z
eθ·φ(z,x), (1)

where z is a directed edge contained in the parse
tree z and φ is a feature function. In the fully su-
pervised experiments we run for comparison, pa-
rameter estimation is performed by stochastic gra-
dient ascent on the conditional likelihood func-
tion, similar to maximum entropy models or con-
ditional random fields. One needs to be able to
compute expectations of the features φ(z,x) under
the distribution pθ(z | x). A version of the inside-
outside algorithm (Lee and Choi, 1997) performs
this computation. Viterbi decoding is done using
Eisner’s algorithm (Eisner, 1996).

We also used a generative model based on de-
pendency model with valence (Klein and Man-
ning, 2004). Under this model, the probability of
a particular parse z and a sentence with part of
speech tags x is given by

pθ(z,x) = proot(r(x)) · (2)
(

∏

z∈z
p¬stop(zp, zd, vz) pchild(zp, zd, zc)

)

·
(

∏

x∈x
pstop(x, left, vl) pstop(x, right, vr)

)

where r(x) is the part of speech tag of the root
of the parse tree z, z is an edge from parent zp
to child zc in direction zd, either left or right, and
vz indicates valency—false if zp has no other chil-
dren further from it in direction zd than zc, true
otherwise. The valencies vr/vl are marked as true
if x has any children on the left/right in z, false
otherwise.

4 Posterior Regularization

Graça et al. (2008) introduce an estimation frame-

work that incorporates side-information into un-
supervised problems in the form of linear con-
straints on posterior expectations. In grammar
transfer, our basic constraint is of the form: the
expected proportion of conserved edges in a sen-
tence pair is at least η (the exact proportion we
used was 0.9, which was determined using un-
labeled data as described in Section 5). Specifi-
cally, let Cx be the set of directed edges projected
from English for a given sentence x, then given
a parse z, the proportion of conserved edges is
f(x, z) = 1

|Cx|
∑

z∈z 1(z ∈ Cx) and the expected
proportion of conserved edges under distribution
p(z | x) is

Ep[f(x, z)] =
1

|Cx|
∑

z∈Cx

p(z | x).

The posterior regularization framework (Graça
et al., 2008) was originally defined for gener-
ative unsupervised learning. The standard ob-
jective is to minimize the negative marginal
log-likelihood of the data : ̂E[− log pθ(x)] =
̂E[− log

∑

z pθ(z,x)] over the parameters θ (we
use ̂E to denote expectation over the sample sen-
tences x). We typically also add standard regular-
ization term on θ, resulting from a parameter prior
− log p(θ) = R(θ), where p(θ) is Gaussian for the
MST-Parser models and Dirichlet for the valence
model.

To introduce supervision into the model, we de-
fine a set Qx of distributions over the hidden vari-
ables z satisfying the desired posterior constraints
in terms of linear equalities or inequalities on fea-
ture expectations (we use inequalities in this pa-
per):

Qx = {q(z) : E[f(x, z)] ≤ b}.
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Basic Uni-gram Features
xi-word, xi-pos
xi-word
xi-pos
xj-word, xj-pos
xj-word
xj-pos

Basic Bi-gram Features
xi-word, xi-pos, xj-word, xj-pos
xi-pos, xj-word, xj-pos
xi-word, xj-word, xj-pos
xi-word, xi-pos, xj-pos
xi-word, xi-pos, xj-word
xi-word, xj-word
xi-pos, xj-pos

In Between POS Features
xi-pos, b-pos, xj-pos

Surrounding Word POS Features
xi-pos, xi-pos+1, xj-pos-1, xj-pos
xi-pos-1, xi-pos, xj-pos-1, xj-pos
xi-pos, xi-pos+1, xj-pos, xj-pos+1
xi-pos-1, xi-pos, xj-pos, xj-pos+1

Table 1: Features used by the MSTParser. For each edge (i, j), xi-word is the parent word and xj-word is the child word,
analogously for POS tags. The +1 and -1 denote preceeding and following tokens in the sentence, while b denotes tokens
between xi and xj .

In this paper, for example, we use the conserved-
edge-proportion constraint as defined above. The
marginal log-likelihood objective is then modi-
fied with a penalty for deviation from the de-
sired set of distributions, measured by KL-
divergence from the set Qx, KL(Qx||pθ(z|x)) =
minq∈Qx KL(q(z)||pθ(z|x)). The generative
learning objective is to minimize:

̂E[− log pθ(x)] +R(θ) + ̂E[KL(Qx||pθ(z | x))].

For discriminative estimation (Ganchev et al.,
2008), we do not attempt to model the marginal
distribution of x, so we simply have the two regu-
larization terms:

R(θ) + ̂E[KL(Qx||pθ(z | x))].

Note that the idea of regularizing moments is re-
lated to generalized expectation criteria algorithm
of Mann and McCallum (2007), as we discuss in
the related work section below. In general, the
objectives above are not convex in θ. To opti-
mize these objectives, we follow an Expectation
Maximization-like scheme. Recall that standard
EM iterates two steps. An E-step computes a prob-
ability distribution over the model’s hidden vari-
ables (posterior probabilities) and an M-step that
updates the model’s parameters based on that dis-
tribution. The posterior-regularized EM algorithm
leaves the M-step unchanged, but involves project-
ing the posteriors onto a constraint set after they
are computed for each sentence x:

arg min
q

KL(q(z) ‖ pθ(z|x))

s.t. Eq[f(x, z)] ≤ b,
(3)

where pθ(z|x) are the posteriors. The new poste-
riors q(z) are used to compute sufficient statistics
for this instance and hence to update the model’s
parameters in the M-step for either the generative
or discriminative setting.

The optimization problem in Equation 3 can be
efficiently solved in its dual formulation:

arg min
λ≥0

b>λ+log
∑

z

pθ(z | x) exp {−λ>f(x, z)}.

(4)
Given λ, the primal solution is given by: q(z) =
pθ(z | x) exp{−λ>f(x, z)}/Z, where Z is a nor-
malization constant. There is one dual variable per
expectation constraint, and we can optimize them
by projected gradient descent, similar to log-linear
model estimation. The gradient with respect to λ
is given by: b − Eq[f(x, z)], so it involves com-
puting expectations under the distribution q(z).
This remains tractable as long as features factor by
edge, f(x, z) =

∑

z∈z f(x, z), because that en-
sures that q(z) will have the same form as pθ(z |
x). Furthermore, since the constraints are per in-
stance, we can use incremental or online version
of EM (Neal and Hinton, 1998), where we update
parameters θ after posterior-constrained E-step on
each instance x.

5 Experiments

We conducted experiments on two languages:
Bulgarian and Spanish, using each of the pars-
ing models. The Bulgarian experiments transfer a
parser from English to Bulgarian, using the Open-
Subtitles corpus (Tiedemann, 2007). The Span-
ish experiments transfer from English to Spanish
using the Spanish portion of the Europarl corpus
(Koehn, 2005). For both corpora, we performed
word alignments with the open source PostCAT
(Graça et al., 2009) toolkit. We used the Tokyo
tagger (Tsuruoka and Tsujii, 2005) to POS tag
the English tokens, and generated parses using
the first-order model of McDonald et al. (2005)
with projective decoding, trained on sections 2-21
of the Penn treebank with dependencies extracted
using the head rules of Yamada and Matsumoto
(2003b). For Bulgarian we trained the Stanford
POS tagger (Toutanova et al., 2003) on the Bul-
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Discriminative model Generative model
Bulgarian Spanish Bulgarian Spanish

no rules 2 rules 7 rules no rules 3 rules no rules 2 rules 7 rules no rules 3 rules

Baseline 63.8 72.1 72.6 67.6 69.0 66.5 69.1 71.0 68.2 71.3
Post.Reg. 66.9 77.5 78.3 70.6 72.3 67.8 70.7 70.8 69.5 72.8

Table 2: Comparison between transferring a single tree of edges and transferring all possible projected edges. The transfer
models were trained on 10k sentences of length up to 20, all models tested on CoNLL train sentences of up to 10 words.
Punctuation was stripped at train time.

gtreebank corpus from CoNLL X. The Spanish
Europarl data was POS tagged with the FreeLing
language analyzer (Atserias et al., 2006). The dis-
criminative model used the same features as MST-
Parser, summarized in Table 1.

In order to evaluate our method, we a baseline
inspired by Hwa et al. (2005). The baseline con-
structs a full parse tree from the incomplete and
possibly conflicting transferred edges using a sim-
ple random process. We start with no edges and
try to add edges one at a time verifying at each
step that it is possible to complete the tree. We
first try to add the transferred edges in random or-
der, then for each orphan node we try all possible
parents (both in random order). We then use this
full labeling as supervision for a parser. Note that
this baseline is very similar to the first iteration of
our model, since for a large corpus the different
random choices made in different sentences tend
to smooth each other out. We also tried to cre-
ate rules for the adoption of orphans, but the sim-
ple rules we tried added bias and performed worse
than the baseline we report. Table 2 shows at-
tachment accuracy of our method and the baseline
for both language pairs under several conditions.
By attachment accuracy we mean the fraction of
words assigned the correct parent. The experimen-
tal details are described in this section. Link-left
baselines for these corpora are much lower: 33.8%
and 27.9% for Bulgarian and Spanish respectively.

5.1 Preprocessing

Preliminary experiments showed that our word
alignments were not always appropriate for syn-
tactic transfer, even when they were correct for
translation. For example, the English “bike/V”
could be translated in French as “aller/V en
vélo/N”, where the word “bike” would be aligned
with “vélo”. While this captures some of the se-
mantic shared information in the two languages,
we have no expectation that the noun “vélo”
will have a similar syntactic behavior to the verb

“bike”. To prevent such false transfer, we filter
out alignments between incompatible POS tags. In
both language pairs, filtering out noun-verb align-
ments gave the biggest improvement.

Both corpora also contain sentence fragments,
either because of question responses or frag-
mented speech in movie subtitles or because of
voting announcements and similar formulaic sen-
tences in the parliamentary proceedings. We over-
come this problem by filtering out sentences that
do not have a verb as the English root or for which
the English root is not aligned to a verb in the
target language. For the subtitles corpus we also
remove sentences that end in an ellipsis or con-
tain more than one comma. Finally, following
(Klein and Manning, 2004) we strip out punctu-
ation from the sentences. For the discriminative
model this did not affect results significantly but
improved them slightly in most cases. We found
that the generative model gets confused by punctu-
ation and tends to predict that periods at the end of
sentences are the parents of words in the sentence.

Our basic model uses constraints of the form:
the expected proportion of conserved edges in a
sentence pair is at least η = 90%.1

5.2 No Language-Specific Rules
We call the generic model described above “no-
rules” to distinguish it from the language-specific
constraints we introduce in the sequel. The no
rules columns of Table 2 summarize the perfor-
mance in this basic setting. Discriminative models
outperform the generative models in the majority
of cases. The left panel of Table 3 shows the most
common errors by child POS tag, as well as by
true parent and guessed parent POS tag.

Figure 2 shows that the discriminative model
continues to improve with more transfer-type data

1We chose η in the following way: we split the unlabeled
parallel text into two portions. We trained a models with dif-
ferent η on one portion and ran it on the other portion. We
chose the model with the highest fraction of conserved con-
straints on the second portion.
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Figure 2: Learning curve of the discriminative no-rules
transfer model on Bulgarian bitext, testing on CoNLL train
sentences of up to 10 words.

Figure 3: A Spanish example where an auxiliary verb dom-
inates the main verb.

up to at least 40 thousand sentences.

5.3 Annotation guidelines and constraints

Using the straightforward approach outlined
above is a dramatic improvement over the standard
link-left baseline (and the unsupervised generative
model as we discuss below), however it doesn’t
have any information about the annotation guide-
lines used for the testing corpus. For example, the
Bulgarian corpus has an unusual treatment of non-
finite clauses. Figure 4 shows an example. We see
that the “da” is the parent of both the verb and its
object, which is different than the treatment in the
English corpus.

We propose to deal with these annotation dis-
similarities by creating very simple rules. For
Spanish, we have three rules. The first rule sets
main verbs to dominate auxiliary verbs. Specifi-
cally, whenever an auxiliary precedes a main verb
the main verb becomes its parent and adopts its
children; if there is only one main verb it becomes
the root of the sentence; main verbs also become

Figure 4: An example where transfer fails because of
different handling of reflexives and nonfinite clauses. The
alignment links provide correct glosses for Bulgarian words.
“B�h” is a past tense marker while “se” is a reflexive marker.

parents of pronouns, adverbs, and common nouns
that directly preceed auxiliary verbs. By adopt-
ing children we mean that we change the parent
of transferred edges to be the adopting node. The
second Spanish rule states that the first element
of an adjective-noun or noun-adjective pair domi-
nates the second; the first element also adopts the
children of the second element. The third and fi-
nal Spanish rule sets all prepositions to be chil-
dren of the first main verb in the sentence, unless
the preposition is a “de” located between two noun
phrases. In this later case, we set the closest noun
in the first of the two noun phrases as the preposi-
tion’s parent.

For Bulgarian the first rule is that “da” should
dominate all words until the next verb and adopt
their noun, preposition, particle and adverb chil-
dren. The second rule is that auxiliary verbs
should dominate main verbs and adopt their chil-
dren. We have a list of 12 Bulgarian auxiliary
verbs. The “seven rules” experiments add rules for
5 more words similar to the rule for “da”, specif-
ically “qe”, “li”, “kakvo”, “ne”, “za”. Table 3
compares the errors for different linguistic rules.
When we train using the “da” rule and the rules for
auxiliary verbs, the model learns that main verbs
attach to auxiliary verbs and that “da” dominates
its nonfinite clause. This causes an improvement
in the attachment of verbs, and also drastically re-
duces words being attached to verbs instead of par-
ticles. The latter is expected because “da” is an-
alyzed as a particle in the Bulgarian POS tagset.
We see an improvement in root/verb confusions
since “da” is sometimes errenously attached to a
the following verb rather than being the root of the
sentence.

The rightmost panel of Table 3 shows similar
analysis when we also use the rules for the five
other closed-class words. We see an improvement
in attachments in all categories, but no qualitative
change is visible. The reason for this is probably
that these words are relatively rare, but by encour-
aging the model to add an edge, it also rules out in-
correct edges that would cross it. Consequently we
are seeing improvements not only directly from
the constraints we enforce but also indirectly as
types of edges that tend to get ruled out.

5.4 Generative parser

The generative model we use is a state of the art
model for unsupervised parsing and is our only
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No Rules Two Rules Seven Rules
child POS parent POS

acc(%) errors errors
V 65.2 2237 T/V 2175
N 73.8 1938 V/V 1305
P 58.5 1705 N/V 1112
R 70.3 961 root/V 555

child POS parent POS
acc(%) errors errors

N 78.7 1572 N/V 938
P 70.2 1224 V/V 734
V 84.4 1002 V/N 529
R 79.3 670 N/N 376

child POS parent POS
acc(%) errors errors

N 79.3 1532 N/V 1116
P 75.7 998 V/V 560
R 69.3 993 V/N 507
V 86.2 889 N/N 450

Table 3: Top 4 discriminative parser errors by child POS tag and true/guess parent POS tag in the Bulgarian CoNLL train data
of length up to 10. Training with no language-specific rules (left); two rules (center); and seven rules (right). POS meanings:
V verb, N noun, P pronoun, R preposition, T particle. Accuracies are by child or parent truth/guess POS tag.
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Figure 5: Comparison to parsers with supervised estimation and transfer. Top: Generative. Bottom: Discriminative. Left:
Bulgarian. Right: Spanish. The transfer models were trained on 10k sentences all of length at most 20, all models tested
on CoNLL train sentences of up to 10 words. The x-axis shows the number of examples used to train the supervised model.
Boxes show first and third quartile, whiskers extend to max and min, with the line passing through the median. Supervised
experiments used 30 random samples from CoNLL train.

fully unsupervised baseline. As smoothing we add
a very small backoff probability of 4.5 × 10−5 to
each learned paramter. Unfortunately, we found
generative model performance was disappointing
overall. The maximum unsupervised accuracy it
achieved on the Bulgarian data is 47.6% with ini-
tialization from Klein and Manning (2004) and
this result is not stable. Changing the initialization
parameters, training sample, or maximum sen-
tence length used for training drastically affected
the results, even for samples with several thousand
sentences. When we use the transferred informa-
tion to constrain the learning, EM stabilizes and
achieves much better performance. Even setting
all parameters equal at the outset does not prevent
the model from learning the dependency structure
of the aligned language. The top panels in Figure 5

show the results in this setting. We see that perfor-
mance is still always below the accuracy achieved
by supervised training on 20 annotated sentences.
However, the improvement in stability makes the
algorithm much more usable. As we shall see be-
low, the discriminative parser performs even better
than the generative model.

5.5 Discriminative parser

We trained our discriminative parser for 100 iter-
ations of online EM with a Gaussian prior vari-
ance of 100. Results for the discriminative parser
are shown in the bottom panels of Figure 5. The
supervised experiments are given to provide con-
text for the accuracies. For Bulgarian, we see that
without any hints about the annotation guidelines,
the transfer system performs better than an unsu-
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pervised parser, comparable to a supervised parser
trained on 10 sentences. However, if we spec-
ify just the two rules for “da” and verb conjuga-
tions performance jumps to that of training on 60-
70 fully labeled sentences. If we have just a lit-
tle more prior knowledge about how closed-class
words are handled, performance jumps above 140
fully labeled sentence equivalent.

We observed another desirable property of the
discriminative model. While the generative model
can get confused and perform poorly when the
training data contains very long sentences, the dis-
criminative parser does not appear to have this
drawback. In fact we observed that as the maxi-
mum training sentence length increased, the pars-
ing performance also improved.

6 Related Work

Our work most closely relates to Hwa et al. (2005),
who proposed to learn generative dependency
grammars using Collins’ parser (Collins, 1999) by
constructing full target parses via projected de-
pendencies and completion/transformation rules.
Hwa et al. (2005) found that transferring depen-
dencies directly was not sufficient to get a parser
with reasonable performance, even when both
the source language parses and the word align-
ments are performed by hand. They adjusted for
this by introducing on the order of one or two
dozen language-specific transformation rules to
complete target parses for unaligned words and
to account for diverging annotation rules. Trans-
ferring from English to Spanish in this way, they
achieve 72.1% and transferring to Chinese they
achieve 53.9%.

Our learning method is very closely related to
the work of (Mann and McCallum, 2007; Mann
and McCallum, 2008) who concurrently devel-
oped the idea of using penalties based on pos-
terior expectations of features not necessarily in
the model in order to guide learning. They call
their method generalized expectation constraints
or alternatively expectation regularization. In this
volume (Druck et al., 2009) use this framework
to train a dependency parser based on constraints
stated as corpus-wide expected values of linguis-
tic rules. The rules select a class of edges (e.g.
auxiliary verb to main verb) and require that the
expectation of these be close to some value. The
main difference between this work and theirs is
the source of the information (a linguistic infor-

mant vs. cross-lingual projection). Also, we de-
fine our regularization with respect to inequality
constraints (the model is not penalized for exceed-
ing the required model expectations), while they
require moments to be close to an estimated value.
We suspect that the two learning methods could
perform comparably when they exploit similar in-
formation.

7 Conclusion

In this paper, we proposed a novel and effec-
tive learning scheme for transferring dependency
parses across bitext. By enforcing projected de-
pendency constraints approximately and in expec-
tation, our framework allows robust learning from
noisy partially supervised target sentences, instead
of committing to entire parses. We show that dis-
criminative training generally outperforms gener-
ative approaches even in this very weakly super-
vised setting. By adding easily specified language-
specific constraints, our models begin to rival
strong supervised baselines for small amounts of
data. Our framework can handle a wide range of
constraints and we are currently exploring richer
syntactic constraints that involve conservation of
multiple edge constructions as well as constraints
on conservation of surface length of dependen-
cies.
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Abstract

Pure statistical parsing systems achieves
high in-domain accuracy but performs
poorly out-domain. In this paper, we
propose two different approaches to pro-
duce syntactic dependency structures us-
ing a large-scale hand-crafted HPSG gram-
mar. The dependency backbone of an
HPSG analysis is used to provide general
linguistic insights which, when combined
with state-of-the-art statistical dependency
parsing models, achieves performance im-
provements on out-domain tests.†

1 Introduction

Syntactic dependency parsing is attracting more
and more research focus in recent years, par-
tially due to its theory-neutral representation, but
also thanks to its wide deployment in various
NLP tasks (machine translation, textual entailment
recognition, question answering, information ex-
traction, etc.). In combination with machine learn-
ing methods, several statistical dependency pars-
ing models have reached comparable high parsing
accuracy (McDonald et al., 2005b; Nivre et al.,
2007b). In the meantime, successful continuation
of CoNLL Shared Tasks since 2006 (Buchholz and
Marsi, 2006; Nivre et al., 2007a; Surdeanu et al.,
2008) have witnessed how easy it has become to
train a statistical syntactic dependency parser pro-
vided that there is annotated treebank.

While the dissemination continues towards var-
ious languages, several issues arise with such
purely data-driven approaches. One common
observation is that statistical parser performance
drops significantly when tested on a dataset differ-
ent from the training set. For instance, when using

†The first author thanks the German Excellence Cluster
of Multimodal Computing and Interaction for the support of
the work. The second author is funded by the PIRE PhD
scholarship program.

the Wall Street Journal (WSJ) sections of the Penn
Treebank (Marcus et al., 1993) as training set, tests
on BROWN Sections typically result in a 6-8%
drop in labeled attachment scores, although the av-
erage sentence length is much shorter in BROWN

than that in WSJ. The common interpretation is
that the test set is heterogeneous to the training set,
hence in a different “domain” (in a loose sense).
The typical cause of this is that the model overfits
the training domain. The concerns over random
choice of training corpus leading to linguistically
inadequate parsing systems increase over time.

While the statistical revolution in the field
of computational linguistics gaining high pub-
licity, the conventional symbolic grammar-based
parsing approaches have undergone a quiet pe-
riod of development during the past decade, and
reemerged very recently with several large scale
grammar-driven parsing systems, benefiting from
the combination of well-established linguistic the-
ories and data-driven stochastic models. The ob-
vious advantage of such systems over pure statis-
tical parsers is their usage of hand-coded linguis-
tic knowledge irrespective of the training data. A
common problem with grammar-based parser is
the lack of robustness. Also it is difficult to de-
rive grammar compatible annotations to train the
statistical components.

2 Parser Domain Adaptation

In recent years, two statistical dependency parsing
systems, MaltParser (Nivre et al., 2007b) and
MSTParser (McDonald et al., 2005b), repre-
senting different threads of research in data-driven
machine learning approaches have obtained high
publicity, for their state-of-the-art performances in
open competitions such as CoNLL Shared Tasks.
MaltParser follows the transition-based ap-
proach, where parsing is done through a series
of actions deterministically predicted by an oracle
model. MSTParser, on the other hand, follows
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the graph-based approach where the best parse
tree is acquired by searching for a spanning tree
which maximizes the score on either a partially
or a fully connected graph with all words in the
sentence as nodes (Eisner, 1996; McDonald et al.,
2005b).

As reported in various evaluation competitions,
the two systems achieved comparable perfor-
mances. More recently, approaches of combining
these two parsers achieved even better dependency
accuracy (Nivre and McDonald, 2008). Granted
for the differences between their approaches, both
systems heavily rely on machine learning methods
to estimate the parsing model from an annotated
corpus as training set. Due to the heavy cost of
developing high quality large scale syntactically
annotated corpora, even for a resource-rich lan-
guage like English, only very few of them meets
the criteria for training a general purpose statisti-
cal parsing model. For instance, the text style of
WSJ is newswire, and most of the sentences are
statements. Being lack of non-statements in the
training data could cause problems, when the test-
ing data contain many interrogative or imperative
sentences as in the BROWN corpus. Therefore, the
unbalanced distribution of linguistic phenomena
in the training data leads to inadequate parser out-
put structures. Also, the financial domain specific
terminology seen in WSJ can skew the interpreta-
tion of daily life sentences seen in BROWN.

There has been a substantial amount of work on
parser adaptation, especially from WSJ to BROWN.
Gildea (2001) compared results from different
combinations of the training and testing data to
demonstrate that the size of the feature model
can be reduced via excluding “domain-dependent”
features, while the performance could still be pre-
served. Furthermore, he also pointed out that if the
additional training data is heterogeneous from the
original one, the parser will not obtain a substan-
tially better performance. Bacchiani et al. (2006)
generalized the previous approaches using a maxi-
mum a posteriori (MAP) framework and proposed
both supervised and unsupervised adaptation of
statistical parsers. McClosky et al. (2006) and Mc-
Closky et al. (2008) have shown that out-domain
parser performance can be improved with self-
training on a large amount of unlabeled data. Most
of these approaches focused on the machine learn-
ing perspective instead of the linguistic knowledge
embraced in the parsers. Little study has been re-

ported on approaches of incorporating linguistic
features to make the parser less dependent on the
nature of training and testing dataset, without re-
sorting to huge amount of unlabeled out-domain
data. In addition, most of the previous work have
been focusing on constituent-based parsing, while
the domain adaptation of the dependency parsing
has not been fully explored.

Taking a different approach towards parsing,
grammar-based parsers appear to have much
linguistic knowledge encoded within the gram-
mars. In recent years, several of these linguisti-
cally motivated grammar-driven parsing systems
achieved high accuracy which are comparable to
the treebank-based statistical parsers. Notably are
the constraint-based linguistic frameworks with
mathematical rigor, and provide grammatical anal-
yses for a large variety of phenomena. For in-
stance, the Head-Driven Phrase Structure Gram-
mar (Pollard and Sag, 1994) has been success-
fully applied in several parsing systems for more
than a dozen of languages. Some of these gram-
mars, such as the English Resource Grammar
(ERG; Flickinger (2002)), have undergone over
decades of continuous development, and provide
precise linguistic analyses for a broad range of
phenomena. These linguistic knowledge are en-
coded in highly generalized form according to lin-
guists’ reflection for the target languages, and tend
to be largely independent from any specific do-
main.

The main issue of parsing with precision gram-
mars is that broad coverage and high precision on
linguistic phenomena do not directly guarantee ro-
bustness of the parser with noisy real world texts.
Also, the detailed linguistic analysis is not always
of the highest interest to all NLP applications. It
is not always straightforward to scale down the
detailed analyses embraced by deep grammars to
a shallower representation which is more acces-
sible for specific NLP tasks. On the other hand,
since the dependency representation is relatively
theory-neutral, it is possible to convert from other
frameworks into its backbone representation in de-
pendencies. For HPSG, this is further assisted by
the clear marking of head daughters in headed
phrases. Although the statistical components of
the grammar-driven parser might be still biased
by the training domain, the hand-coded grammar
rules guarantee the basic linguistic constraints to
be met. This not to say that domain adaptation is
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Figure 1: Different dependency parsing models
and their combinations. DB stands for dependency
backbone.

not an issue for grammar-based parsing systems,
but the built-in linguistic knowledge can be ex-
plored to reduce the performance drop in pure sta-
tistical approaches.

3 Dependency Parsing with HPSG

In this section, we explore two possible applica-
tions of the HPSG parsing onto the syntactic de-
pendency parsing task. One is to extract depen-
dency backbone from the HPSG analyses of the
sentences and directly convert them into the tar-
get representation; the other way is to encode the
HPSG outputs as additional features into the ex-
isting statistical dependency parsing models. In
the previous work, Nivre and McDonald (2008)
have integrated MSTParser and MaltParser
by feeding one parser’s output as features into the
other. The relationships between our work and
their work are roughly shown in Figure 1.

3.1 Extracting Dependency Backbone from
HPSG Derivation Tree

Given a sentence, each parse produced by the
parser is represented by a typed feature structure,
which recursively embeds smaller feature struc-
tures for lower level phrases or words. For the
purpose of dependency backbone extraction, we
only look at the derivation tree which corresponds
to the constituent tree of an HPSG analysis, with
all non-terminal nodes labeled by the names of the
grammar rules applied. Figure 2 shows an exam-
ple. Note that all grammar rules in ERG are ei-
ther unary or binary, giving us relatively deep trees
when compared with annotations such as Penn
Treebank. Conceptually, this conversion is sim-
ilar to the conversions from deeper structures to
GR reprsentations reported by Clark and Curran
(2007) and Miyao et al. (2007).

np_title_cmpnd

ms_n2 proper_np

subjh

generic_proper_ne

Haag

play_v1

hcomp

proper_np

generic_proper_ne

Elianti.

playsMs.

Figure 2: An example of an HPSG derivation tree
with ERG

Ms. Haag plays Elianti.

hcompnp_title_cmpnd subjh

Figure 3: An HPSG dependency backbone struc-
ture

The dependency backbone extraction works by
first identifying the head daughter for each bi-
nary grammar rule, and then propagating the head
word of the head daughter upwards to their par-
ents, and finally creating a dependency relation, la-
beled with the HPSG rule name of the parent node,
from the head word of the parent to the head word
of the non-head daughter. See Figure 3 for an ex-
ample of such an extracted backbone.

For the experiments in this paper, we used July-
08 version of the ERG, which contains in total
185 grammar rules (morphological rules are not
counted). Among them, 61 are unary rules, and
124 are binary. Many of the binary rules are
clearly marked as headed phrases. The gram-
mar also indicates whether the head is on the left
(head-initial) or on the right (head-final). How-
ever, there are still quite a few binary rules which
are not marked as headed-phrases (according to
the linguistic theory), e.g. rules to handle coor-
dinations, appositions, compound nouns, etc. For
these rules, we refer to the conversion of the Penn
Treebank into dependency structures used in the
CoNLL 2008 Shared Task, and mark the heads of
these rules in a way that will arrive at a compat-
ible dependency backbone. For instance, the left
most daughters of coordination rules are marked
as heads. In combination with the right-branching
analysis of coordination in ERG, this leads to the
same dependency attachment in the CoNLL syn-
tax. Eventually, 37 binary rules are marked with
a head daughter on the left, and 86 with a head
daughter on the right.

Although the extracted dependency is similar to
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the CoNLL shared task dependency structures, mi-
nor systematic differences still exist for some phe-
nomena. For example, the possessive “’s” is an-
notated to be governed by its preceding word in
CoNLL dependency; while in HPSG, it is treated as
the head of a “specifier-head” construction, hence
governing the preceding word in the dependency
backbone. With several simple tree rewriting
rules, we are able to fix the most frequent inconsis-
tencies. With the rule-based backbone extraction
and repair, we can finally turn our HPSG parser
outputs into dependency structures1. The unla-
beled attachment agreement between the HPSG
backbone and CoNLL dependency annotation will
be shown in Section 4.2.

3.2 Robust Parsing with HPSG

As mentioned in Section 2, one pitfall of using a
precision-oriented grammar in parsing is its lack
of robustness. Even with a large scale broad cover-
age grammar like ERG, using our settings we only
achieved 75% of sentential coverage2. Given that
the grammar has never been fine-tuned for the fi-
nancial domain, such coverage is very encourag-
ing. But still, the remaining unparsed sentences
comprise a big coverage gap.

Different strategies can be taken here. One
can either keep the high precision by only look-
ing at full parses from the HPSG parser, of which
the analyses are completely admitted by gram-
mar constraints. Or one can trade precision for
extra robustness by looking at the most proba-
ble incomplete analysis. Several partial parsing
strategies have been proposed (Kasper et al., 1999;
Zhang and Kordoni, 2008) as the robust fallbacks
for the parser when no available analysis can be
derived. In our experiment, we select the se-
quence of most likely fragment analyses accord-
ing to their local disambiguation scores as the par-
tial parse. When combined with the dependency
backbone extraction, partial parses generate dis-
joint tree fragments. We simply attach all frag-
ments onto the virtual root node.

1It is also possible map from HPSG rule names (together
with the part-of-speech of head and dependent) to CoNLL
dependency labels. This remains to be explored in the future.

2More recent study shows that with carefully designed
retokenization and preprocessing rules, over 80% sentential
coverage can be achieved on the WSJ sections of the Penn
Treebank data using the same version of ERG. The numbers
reported in this paper are based on a simpler preprocessor,
using rather strict time/memory limits for the parser. Hence
the coverage number reported here should not be taken as an
absolute measure of grammar performance.

3.3 Using Feature-Based Models
Besides directly using the dependency backbone
of the HPSG output, we could also use it for build-
ing feature-based models of statistical dependency
parsers. Since we focus on the domain adapta-
tion issue, we incorporate a less domain dependent
language resource (i.e. the HPSG parsing outputs
using ERG) into the features models of statistical
parsers. As mordern grammar-based parsers has
achieved high runtime efficency (with our HPSG
parser parsing at an average speed of∼3 sentences
per second), this adds up to an acceptable over-
head.

3.3.1 Feature Model with MSTParser
As mentioned before, MSTParser is a graph-
based statistical dependency parser, whose learn-
ing procedure can be viewed as the assignment
of different weights to all kinds of dependency
arcs. Therefore, the feature model focuses on each
kind of head-child pair in the dependency tree, and
mainly contains four categories of features (Mc-
donald et al., 2005a): basic uni-gram features, ba-
sic bi-gram features, in-between POS features, and
surrounding POS features. It is emphasized by the
authors that the last two categories contribute a
large improvement to the performance and bring
the parser to the state-of-the-art accuracy.

Therefore, we extend this feature set by adding
four more feature categories, which are similar to
the original ones, but the dependency relation was
replaced by the dependency backbone of the HPSG
outputs. The extended feature set is shown in Ta-
ble 1.

3.3.2 Feature Model with MaltParser
MaltParser is another trend of dependency
parser, which is based on transitions. The learning
procedure is to train a statistical model, which can
help the parser to decide which operation to take at
each parsing status. The basic data structures are a
stack, where the constructed dependency graph is
stored, and an input queue, where the unprocessed
data are put. Therefore, the feature model focuses
on the tokens close to the top of the stack and also
the head of the queue.

Provided with the original features used in
MaltParser, we add extra ones about the top
token in the stack and the head token of the queue
derived from the HPSG dependency backbone.
The extended feature set is shown in Table 2 (the
new features are listed separately).
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Uni-gram Features: h-w,h-p; h-w; h-p; c-w,c-p; c-w; c-p
Bi-gram Features: h-w,h-p,c-w,c-p; h-p,c-w,c-p; h-w,c-w,c-p; h-w,h-p,c-p; h-w,h-p,c-w; h-w,c-w; h-p,c-p
POS Features of words in between: h-p,b-p,c-p
POS Features of words surround: h-p,h-p+1,c-p-1,c-p; h-p-1,h-p,c-p-1,c-p; h-p,h-p+1,c-p,c-p+1; h-p-1,h-p,c-p,c-p+1

Table 1: The Extra Feature Set for MSTParser. h: the HPSG head of the current token; c: the current
token; b: each token in between; -1/+1: the previous/next token; w: word form; p: POS

POS Features: s[0]-p; s[1]-p; i[0]-p; i[1]-p; i[2]-p; i[3]-p
Word Form Features: s[0]-h-w; s[0]-w; i[0]-w; i[1]-w
Dependency Features: s[0]-lmc-d; s[0]-d; s[0]-rmc-d; i[0]-lmc-d
New Features: s[0]-hh-w; s[0]-hh-p; s[0]-hr; i[0]-hh-w; i[0]-hh-p; i[0]-hr

Table 2: The Extended Feature Set for MaltParser. s[0]/s[1]: the first and second token on the top of
the stack; i[0]/i[1]/i[2]/i[3]: front tokens in the input queue; h: head of the token; hh: HPSG DB head of
the token; w: word form; p: POS; d: dependency relation; hr: HPSG rule; lmc/rmc: left-/right-most child

With the extra features, we hope that the train-
ing of the statistical model will not overfit the in-
domain data, but be able to deal with domain in-
dependent linguistic phenomena as well.

4 Experiment Results & Error Analyses

To evaluate the performance of our different
dependency parsing models, we tested our ap-
proaches on several dependency treebanks for En-
glish in a similar spirit to the CoNLL 2006-2008
Shared Tasks. In this section, we will first de-
scribe the datasets, then present the results. An
error analysis is also carried out to show both pros
and cons of different models.

4.1 Datasets

In previous years of CoNLL Shared Tasks, sev-
eral datasets have been created for the purpose
of dependency parser evaluation. Most of them
are converted automatically from existing tree-
banks in various forms. Our experiments adhere
to the CoNLL 2008 dependency syntax (Yamada
et al. 2003, Johansson et al. 2007) which was
used to convert Penn-Treebank constituent trees
into single-head, single-root, traceless and non-
projective dependencies.

WSJ This dataset comprises of three portions.
The larger part is converted from the Penn Tree-
bank Wall Street Journal Sections #2–#21, and
is used for training statistical dependency parsing
models; the smaller part, which covers sentences
from Section #23, is used for testing.

Brown This dataset contains a subset of con-
verted sentences from BROWN sections of the
Penn Treebank. It is used for the out-domain test.

PChemtb This dataset was extracted from the
PennBioIE CYP corpus, containing 195 sentences
from biomedical domain. The same dataset has
been used for the domain adaptation track of the
CoNLL 2007 Shared Task. Although the original
annotation scheme is similar to the Penn Treebank,
the dependency extraction setting is slightly dif-
ferent to the CoNLLWSJ dependencies (e.g. the
coordinations).

Childes This is another out-domain test set from
the children language component of the TalkBank,
containing dialogs between parents and children.
This is the other datasets used in the domain adap-
tation track of the CoNLL 2007 Shared Task. The
dataset is annotated with unlabeled dependencies.
As have been reported by others, several system-
atic differences in the original CHILDES annota-
tion scheme has led to the poor system perfor-
mances on this track of the Shared Task in 2007.
Two main differences concern a) root attach-
ments, and b) coordinations. With several sim-
ple heuristics, we change the annotation scheme of
the original dataset to match the Penn Treebank-
based datasets. The new dataset is referred to as
CHILDES*.

4.2 HPSG Backbone as Dependency Parser

First we test the agreement between HPSG depen-
dency backbone and CoNLL dependency. While
approximating a target dependency structure with
rule-based conversion is not the main focus of this
work, the agreement between two representations
gives indication on how similar and consistent the
two representations are, and a rough impression of
whether the feature-based models can benefit from
the HPSG backbone.
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# sentence φ w/s DB(F)% DB(P)%
WSJ 2399 24.04 50.68 63.85
BROWN 425 16.96 66.36 76.25
PCHEMTB 195 25.65 50.27 61.60
CHILDES* 666 7.51 67.37 70.66
WSJ-P 1796 (75%) 22.25 71.33 –
BROWN-P 375 (88%) 15.74 80.04 –
PCHEMTB-P 147 (75%) 23.99 69.27 –
CHILDES*-P 595 (89%) 7.49 73.91 –

Table 3: Agreement between HPSG dependency
backbone and CoNLL 2008 dependency in unla-
beled attachment score. DB(F): full parsing mode;
DB(P): partial parsing mode; Punctuations are ex-
cluded from the evaluation.

The PET parser, an efficient parser HPSG parser
is used in combination with ERG to parse the
test sets. Note that the training set is not used.
The grammar is not adapted for any of these spe-
cific domain. To pick the most probable read-
ing from HPSG parsing outputs, we used a dis-
criminative parse selection model as described
in (Toutanova et al., 2002) trained on the LOGON
Treebank (Oepen et al., 2004), which is signifi-
cantly different from any of the test domain. The
treebank contains about 9K sentences for which
HPSG analyses are manually disambiguated. The
difference in annotation make it difficult to sim-
ply merge this HPSG treebank into the training set
of the dependency parser. Also, as Gildea (2001)
suggests, adding such heterogeneous data to the
training set will not automatically lead to perfor-
mance improvement. It should be noted that do-
main adaptation also presents a challenge to the
disambiguation model of the HPSG parser. All
datasets we use in our should be considered out-
domain to the HPSG disambiguation model.

Table 3 shows the agreement between the HPSG
backbone and CoNLL dependency in unlabeled at-
tachment score (UAS). The parser is set in either
full parsing or partial parsing mode. Partial pars-
ing is used as a fallback when full parse is not
available. UAS are reported on all complete test
sets, as well as fully parsed subsets (suffixed with
“-p”).

It is not surprising to see that, without a de-
cent fallback strategy, the full parse HPSG back-
bone suffers from insufficient coverage. Since the
grammar coverage is statistically correlated to the
average sentence length, the worst performance is
observed for the PCHEMTB. Although sentences
in CHILDES* are significantly shorter than those

in BROWN, there is a fairly large amount of less
well-formed sentences (either as a nature of child
language, or due to the transcription from spoken
dialogs). This leads to the close performance be-
tween these two datasets. PCHEMTB appears to be
the most difficult one for the HPSG parser. The
partial parsing fallback sets up a good safe net for
sentences that fail to parse. Without resorting to
any external resource, the performance was sig-
nificantly improved on all complete test sets.

When we set the coverage of the HPSG gram-
mar aside and only compare performance on the
subsets of these datasets which are fully parsed
by the HPSG grammar, the unlabeled attachment
score jumps up significantly. Most notable is
that the dependency backbone achieved over 80%
UAS on BROWN, which is close to the perfor-
mance of state-of-the-art statistical dependency
parsing systems trained on WSJ (see Table 5 and
Table 4). The performance difference across data
sets correlates to varying levels of difficulties in
linguists’ view. Our error analysis does confirm
that frequent errors occur in WSJ test with finan-
cial terminology missing from the grammar lexi-
con. The relative performance difference between
the WSJ and BROWN test is contrary to the results
observed for statistical parsers trained on WSJ.

To further investigate the effect of HPSG parse
disambiguation model on the dependency back-
bone accuracy, we used a set of 222 sentences
from section of WSJ which have been parsed with
ERG and manually disambiguated. Comparing
to the WSJ-P result in Table 3, we improved the
agreement with CoNLL dependency by another
8% (an upper-bound in case of a perfect disam-
biguation model).

4.3 Statistical Dependency Parsing with
HPSG Features

Similar evaluations were carried out for the statis-
tical parsers using extra HPSG dependency back-
bone as features. It should be noted that the per-
formance comparison between MSTParser and
MaltParser is not the aim of this experiment,
and the difference might be introduced by the spe-
cific settings we use for each parser. Instead, per-
formance variance using different feature models
is the main subject. Also, performance drop on
out-domain tests shows how domain dependent
the feature models are.

For MaltParser, we use Arc-Eager algo-
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rithm, and polynomial kernel with d = 2. For
MSTParser, we use 1st order features and a pro-
jective decoder (Eisner, 1996).

When incorporating HPSG features, two set-
tings are used. The PARTIAL model is derived by
robust-parsing the entire training data set and ex-
tract features from every sentence to train a uni-
fied model. When testing, the PARTIAL model is
used alone to determine the dependency structures
of the input sentences. The FULL model, on the
other hand is only trained on the full parsed subset
of sentences, and only used to predict dependency
structures for sentences that the grammar parses.
For the unparsed sentences, the original models
without HPSG features are used.

Parser performances are measured using
both labeled and unlabeled attachment scores
(LAS/UAS). For unlabeled CHILDES* data, only
UAS numbers are reported. Table 4 and 5 summa-
rize results for MSTParser and MaltParser,
respectively.

With both parsers, we see slight performance
drops with both HPSG feature models on in-
domain tests (WSJ), compared with the original
models. However, on out-domain tests, full-parse
HPSG feature models consistently outperform the
original models for both parsers. The difference is
even larger when only the HPSG fully parsed sub-
sets of the test sets are concerned. When we look
at the performance difference between in-domain
and out-domain tests for each feature model, we
observe that the drop is significantly smaller for
the extended models with HPSG features.

We should note that we have not done any
feature selection for our HPSG feature models.
Nor have we used the best known configurations
of the existing parsers (e.g. second order fea-
tures in MSTParser). Admittedly the results on
PCHEMTB are lower than the best reported results
in CoNLL 2007 Shared Task, we shall note that we
are not using any in-domain unlabeled data. Also,
the poor performance of the HPSG parser on this
dataset indicates that the parser performance drop
is more related to domain-specific phenomena and
not general linguistic knowledge. Nevertheless,
the drops when compared to in-domain tests are
constantly decreased with the help of HPSG analy-
ses features. With the results on BROWN, the per-
formance of our HPSG feature models will rank
2nd on the out-domain test for the CoNLL 2008
Shared Task.

Unlike the observations in Section 4.2, the par-
tial parsing mode does not work well as a fall-
back in the feature models. In most cases, its
performances are between the original models and
the full-parse HPSG feature models. The partial
parsing features obscure the linguistic certainty of
grammatical structures produced in the full model.
When used as features, such uncertainty leads
to further confusion. Practically, falling back to
the original models works better when HPSG full
parse is not available.

4.4 Error Analyses

Qualitative error analysis is also performed. Since
our work focuses on the domain adaptation, we
manually compare the outputs of the original sta-
tistical models, the dependency backbone, and the
feature-based models on the out-domain data, i.e.
the BROWN data set (both labeled and unlabeled
results) and the CHILDES* data set (only unlabeled
results).

For the dependency attachment (i.e. unlabeled
dependency relation), fine-grained HPSG features
do help the parser to deal with colloquial sen-
tences, such as “What’s wrong with you?”. The
original parser wrongly takes “what” as the root of
the dependency tree and “’s” is attached to “what”.
The dependency backbone correctly finds out the
root, and thus guide the extended model to make
the right prediction. A correct structure of “...,
were now neither active nor really relaxed.” is also
predicted by our model, while the original model
wrongly attaches “really” to “nor” and “relaxed”
to “were”. The rich linguistic knowledge from
the HPSG outputs also shows its usefulness. For
example, in a sentence from the CHILDES* data,
“Did you put dolly’s shoes on?”, the verb phrase
“put on” can be captured by the HPSG backbone,
while the original model attaches “on” to the adja-
cent token “shoes”.

For the dependency labels, the most diffi-
culty comes from the prepositions. For example,
“Scotty drove home alone in the Plymouth”, all
the systems get the head of “in” correct, which
is “drove”. However, none of the dependency la-
bels is correct. The original model predicts the
“DIR” relation, the extended feature-based model
says “TMP”, but the gold standard annotation is
“LOC”. This is because the HPSG dependency
backbone knows that “in the Plymouth” is an ad-
junct of “drove”, but whether it is a temporal or
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Original PARTIAL FULL
LAS% UAS% LAS% UAS% LAS% UAS%

WSJ 87.38 90.35 87.06 90.03 86.87 89.91
BROWN 80.46 (-6.92) 86.26 (-4.09) 80.55 (-6.51) 86.17 (-3.86) 80.92 (-5.95) 86.58 (-3.33)
PCHEMTB 53.37 (-33.8) 62.11 (-28.24) 54.69 (-32.37) 64.09 (-25.94) 56.45 (-30.42) 65.77 (-24.14)
CHILDES* – 72.17 (-18.18) – 74.91 (-15.12) – 75.64 (-14.27)
WSJ-P 87.86 90.88 87.78 90.85 87.12 90.25
BROWN-P 81.58 (-6.28) 87.41 (-3.47) 81.92 (-5.86) 87.51 (-3.34) 82.14 (-4.98) 87.80 (-2.45)
PCHEMTB-P 56.32 (-31.54) 65.26 (-25.63) 59.36 (-28.42) 69.20 (-21.65) 60.69 (-26.43) 70.45 (-19.80)
CHILDES*-P – 72.88 (-18.00) – 76.02 (-14.83) – 76.76 (-13.49)

Table 4: Performance of the MSTParser with different feature models. Numbers in parentheses are
performance drops in out-domain tests, comparing to in-domain results. The upper part represents the
results on the complete data sets, and the lower part is on the fully parsed subsets, indicated by “-P”.

Original PARTIAL FULL
LAS% UAS% LAS% UAS% LAS% UAS%

WSJ 86.47 88.97 85.39 88.10 85.66 88.40
BROWN 79.41 (-7.06) 84.75 (-4.22) 79.10 (-6.29) 84.58 (-3.52) 79.56 (-6.10) 85.24 (-3.16)
PCHEMTB 61.05 (-25.42) 71.32 (-17.65) 61.01 (-24.38) 70.99 (-17.11) 60.93 (-24.73) 70.89 (-17.51)
CHILDES* – 74.97 (-14.00) – 75.64 (-12.46) – 76.18 (-12.22)
WSJ-P 86.99 89.58 86.09 88.83 85.82 88.76
BROWN-P 80.43 (-6.56) 85.78 (-3.80) 80.46 (-5.63) 85.94 (-2.89) 80.62 (-5.20) 86.38 (-2.38)
PCHEMTB-P 63.33 (-23.66) 73.54 (-16.04) 63.27 (-22.82) 73.31 (-15.52) 63.16 (-22.66) 73.06 (-15.70)
CHILDES*-P – 75.95 (-13.63) – 77.05 (-11.78) – 77.30 (-11.46)

Table 5: Performance of the MaltParser with different feature models.

locative expression cannot be easily predicted at
the pure syntactic level. This also suggests a joint
learning of syntactic and semantic dependencies,
as proposed in the CoNLL 2008 Shared Task.

Instances of wrong HPSG analyses have also
been observed as one source of errors. For most of
the cases, a correct reading exists, but not picked
by our parse selection model. This happens more
often with the WSJ test set, partially contributing
to the low performance.

5 Conclusion & Future Work

Similar to our work, Sagae et al. (2007) also con-
sidered the combination of dependency parsing
with an HPSG parser, although their work was to
use statistical dependency parser outputs as soft
constraints to improve the HPSG parsing. Nev-
ertheless, a similar backbone extraction algorithm
was used to map between different representa-
tions. Similar work also exists in the constituent-
based approaches, where CFG backbones were
used to improve the efficiency and robustness of
HPSG parsers (Matsuzaki et al., 2007; Zhang and
Kordoni, 2008).

In this paper, we restricted our investigation on
the syntactic evaluation using labeled/unlabeled
attachment scores. Recent discussions in the
parsing community about meaningful cross-

framework evaluation metrics have suggested to
use measures that are semantically informed. In
this spirit, Zhang et al. (2008) showed that the se-
mantic outputs of the same HPSG parser helps in
the semantic role labeling task. Consistent with
the results reported in this paper, more improve-
ment was achieved on the out-domain tests in their
work as well.

Although the experiments presented in this pa-
per were carried out on a HPSG grammar for En-
glish, the method can be easily adapted to work
with other grammar frameworks (e.g. LFG, CCG,
TAG, etc.), as well as on langugages other than
English. We chose to use a hand-crafted grammar,
so that the effect of training corpus on the deep
parser is minimized (with the exception of the lex-
ical coverage and disambiguation model).

As mentioned in Section 4.4, the performance
of our HPSG parse selection model varies across
different domains. This indicates that, although
the deep grammar embraces domain independent
linguistic knowledge, the lexical coverage and the
disambiguation process among permissible read-
ings is still domain dependent. With the map-
ping between HPSG analyses and their depen-
dency backbones, one can potentially use existing
dependency treebanks to help overcome the insuf-
ficient data problem for deep parse selection mod-
els.
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Abstract 

In this paper, we propose a novel system for 

translating organization names from Chinese 

to English with the assistance of web 

resources. Firstly, we adopt a chunking-

based segmentation method to improve the 

segmentation of Chinese organization names 

which is plagued by the OOV problem. 

Then a heuristic query construction method 

is employed to construct an efficient query 

which can be used to search the bilingual 

Web pages containing translation 

equivalents. Finally, we align the Chinese 

organization name with English sentences 

using the asymmetric alignment method to 

find the best English fragment as the 

translation equivalent. The experimental 

results show that the proposed method 

outperforms the baseline statistical machine 

translation system by 30.42%. 

1 Introduction 

The task of Named Entity (NE) translation is to 

translate a named entity from the source language 

to the target language, which plays an important 

role in machine translation and cross-language 

information retrieval (CLIR). The organization 

name (ON) translation is the most difficult 

subtask in NE translation. The structure of ON is 

complex and usually nested, including person 

name, location name and sub-ON etc. For 

example, the organization name “北京诺基亚通信有限公司 (Beijing Nokia Communication 

Ltd.)” contains a company name (诺基亚/Nokia) 

and a location name (北京/Beijing). Therefore, 

the translation of organization names should 

combine transliteration and translation together.  

Many previous researchers have tried to solve 

ON translation problem by building a statistical 

model or with the assistance of web resources. 

The performance of ON translation using web 

knowledge is determined by the solution of the 

following two problems:  

� The efficiency of web page searching: how 

can we find the web pages which contain the 

translation equivalent when the amount of the 

returned web pages is limited? 

� The reliability of the extraction method: how 

reliably can we extract the translation equivalent 

from the web pages that we obtained in the 

searching phase?  

For solving these two problems, we propose a 

Chinese-English organization name translation 

system using heuristic web mining and 

asymmetric alignment, which has three 

innovations.  

1) Chunking-based segmentation: A Chinese 

ON is a character sequences, we need to segment 

it before translation. But the OOV words always 

make the ON segmentation much more difficult. 

We adopt a new two-phase method here. First, 

the Chinese ON is chunked and each chunk is 

classified into four types. Then, different types of 

chunks are segmented separately using different 

strategies. Through chunking the Chinese ON 

first, the OOVs can be partitioned into one chunk 

which will not be segmented in the next phase. In 

this way, the performance of segmentation is 

improved.  

2) Heuristic Query construction: We need to 

obtain the bilingual web pages that contain both 

the input Chinese ON and its translation 

equivalent. But in most cases, if we just send the 

Chinese ON to the search engine, we will always 

get the Chinese monolingual web pages which 

don’t contain any English word sequences, let 

alone the English translation equivalent. So we 

propose a heuristic query construction method to 

generate an efficient bilingual query. Some 

words in the Chinese ON are selected and their 

translations are added into the query. These 

English words will act as clues for searching 

387



bilingual web pages. The selection of the Chinese 

words to be translated will take into 

consideration both the translation confidence of 

the words and the information contents that they 

contain for the whole ON.  

3) Asymmetric alignment: When we extract the 

translation equivalent from the web pages, the 

traditional method should recognize the named 

entities in the target language sentence first, and 

then the extracted NEs will be aligned with the 

source ON. However, the named entity 

recognition (NER) will always introduce some 

mistakes. In order to avoid NER mistakes, we 

propose an asymmetric alignment method which 

align the Chinese ON with an English sentence 

directly and then extract the English fragment 

with the largest alignment score as the equivalent. 

The asymmetric alignment method can avoid the 

influence of improper results of NER and 

generate an explicit matching between the source 

and the target phrases which can guarantee the 

precision of alignment.  

In order to illustrate the above ideas clearly,  

we give an example of translating the Chinese 

ON “中国华融资产管理公司 (China Huarong 

Asset Management Corporation)”.  

Step1: We first chunk the ON, where “LC”, 

“NC”, “MC” and “KC” are the four types of 

chunks defined in Section 4.2. 中国(China)/LC  华融(Huarong)/NC  资产管理
(asset management)/MC  公司(corporation)/KC 

Step2: We segment the ON based on the 

chunking results.  中国(china)  华融(Huarong)  资产(asset)     管理(management)  公司(corporation) 

If we do not chunk the ON first, the OOV 

word “华融(Huarong)” may be segmented as “华   融”. This result will certainly lead to translation 

errors. 

Step 3: Query construction:  

We select the words “资产” and “管理” to 

translate and a bilingual query is constructed as: 

“ 中 国 华 融 资 产 管 理 公 司 ” + asset + 

management 

If we don’t add some English words into the 

query, we may not obtain the web pages which 

contain the English phrase “China Huarong Asset 

Management Corporation”. In that case, we can 

not extract the translation equivalent. 

Step 4: Asymmetric Alignment: We extract a 

sentence “…President of China Huarong Asset 

Management Corporation…” from the returned 

snippets. Then the best fragment of the sentence 

“China Huarong Asset Management 

Corporation” will be extracted as the translation 

equivalent. We don’t need to implement English 

NER process which may make mistakes. 

The remainder of the paper is structured as 

follows. Section 2 reviews the related works. In 

Section 3, we present the framework of our 

system. We discuss the details of the ON 

chunking in Section 4. In Section 5, we introduce 

the approach of heuristic query construction. In 

section 6, we will analyze the asymmetric 

alignment method. The experiments are reported 

in Section 7. The last section gives the 

conclusion and future work. 

2 Related Work 

In the past few years, researchers have proposed 

many approaches for organization translation. 

There are three main types of methods. The first 

type of methods translates ONs by building a 

statistical translation model. The model can be 

built on the granularity of word [Stalls et al., 

1998], phrase [Min Zhang et al., 2005] or 

structure [Yufeng Chen et al., 2007]. The second 

type of methods finds the translation equivalent 

based on the results of alignment from the source 

ON to the target ON [Huang et al., 2003; Feng et 

al., 2004; Lee et al., 2006]. The ONs are 

extracted from two corpora. The corpora can be 

parallel corpora [Moore et al., 2003] or content-

aligned corpora [Kumano et al., 2004]. The third 

type of methods introduces the web resources 

into ON translation. [Al-Onaizan et al., 2002] 

uses the web knowledge to assist NE translation 

and [Huang et al., 2004; Zhang et al., 2005; Chen 

et al., 2006] extracts the translation equivalents 

from web pages directly.  

The above three types of methods have their 

advantages and shortcomings. The statistical 

translation model can give an output for any 

input. But the performance is not good enough on 

complex ONs. The method of extracting 

translation equivalents from bilingual corpora 

can obtain high-quality translation equivalents. 

But the quantity of the results depends heavily on 

the amount and coverage of the corpora. So this 

kind of method is fit for building a reliable ON 

dictionary. In the third type of method, with the 

assistance of web pages, the task of ON 

translation can be viewed as a two-stage process. 

Firstly, the web pages that may contain the target 

translation are found through a search engine. 

Then the translation equivalent will be extracted 

from the web pages based on the alignment score 

with the original ON. This method will not 
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depend on the quantity and quality of the corpora 

and can be used for translating complex ONs. 

3 The Framework of Our System 

The Framework of our ON translation system 

shown in Figure 1 has four modules.  

 
Figure 1. System framework 

1) Chunking-based ON Segmentation Module: 

The input of this module is a Chinese ON. The 

Chunking model will partition the ON into 

chunks, and label each chunk using one of four 

classes. Then, different segmentation strategies 

will be executed for different types of chunks. 

2) Statistical Organization Translation Module: 

The input of the module is a word set in which 

the words are selected from the Chinese ON. The 

module will output the translation of these words.  

3) Web Retrieval Module: When input a 

Chinese ON, this module generates a query 

which contains both the ON and some words’ 

translation output from the translation module. 

Then we can obtain the snippets that may contain 

the translation of the ON from the search engine. 

The English sentences will be extracted from 

these snippets.  

4) NE Alignment Module: In this module, the 

asymmetric alignment method is employed to 

align the Chinese ON with these English 

sentences obtained in Web retrieval module. The 

best part of the English sentences will be 

extracted as the translation equivalent. 

4 The Chunking-based Segmentation 

for Chinese ONs  

In this section, we will illustrate a chunking-

based Chinese ON segmentation method, which 

can efficiently deal with the ONs containing 

OOVs. 

4.1 The Problems in ON Segmentation 

The performance of the statistical ON translation 

model is dependent on the precision of the 

Chinese ON segmentation to some extent. When 

Chinese words are aligned with English words, 

the mistakes made in Chinese segmentation may 

result in wrong alignment results. We also need 

correct segmentation results when decoding. But 

Chinese ONs usually contain some OOVs that 

are hard to segment, especially the ONs 

containing names of people or brand names. To 

solve this problem, we try to chunk Chinese ONs 

firstly and the OOVs will be partitioned into one 

chunk. Then the segmentation will be executed 

for every chunk except the chunks containing 

OOVs. 

4.2 Four Types of Chunks  

We define the following four types of chunks for 

Chinese ONs: 

� Location Chunk (LC): LC contains the 

location information of an ON. 

� Name Chunk (NC): NC contains the name   

or brand information of an ON. In most 

cases, Name chunks should be 

transliterated. 

� Modification Chunk (MC): MC contains 

the modification information of an ON. 

� Key word Chunk (KC): KC contains the 

type information of an ON. 

The following is an example of an ON 

containing these four types of chunks. 北京(Beijing)/LC 百 富 勤 (Peregrine)/NC投资咨询(investment consulting)/MC  有限公司
(co.)/KC  

In the above example, the OOV “百富勤
(Peregrine)” is partitioned into name chunk. Then 

the name chunk will not be segmented.  

4.3 The CRFs Model for Chunking 

Considered as a discriminative probabilistic 

model for sequence joint labeling and with the 

advantage of flexible feature fusion ability, 

Conditional Random Fields (CRFs) [J.Lafferty et 

al., 2001] is believed to be one of the best 

probabilistic models for sequence labeling tasks. 

So the CRFs model is employed for chunking. 

We select 6 types of features which are proved 

to be efficient for chunking through experiments. 

The templates of features are shown in Table 1,  

389



Description Features 
current/previous/success 

character 
C0、C-1、C1 

whether the characters is 

a word 

W(C-2C-1C0)、W(C0C1C2)、
W(C-1C0C1) 

whether the characters is 

a location name 
L(C-2C-1C0)、L(C0C1C2)、    

L(C-1C0C1) 

whether the characters is 

an ON suffix 
SK(C-2C-1C0)、SK(C0C1C2)、 

SK(C-1C0C1) 

whether the characters is 

a location suffix 
SL(C-2C-1C0)、SL(C0C1C2)、

SL(C-1C0C1) 

relative position in the 

sentence 
POS(C0) 

Table 1. Features used in CRFs model 

where Ci denotes a Chinese character, i denotes 

the position relative to the current character. We 

also use bigram and unigram features but only 

show trigram templates in Table 1. 

5 Heuristic Query Construction 

In order to use the web information to assist 

Chinese-English ON translation, we must firstly 

retrieve the bilingual web pages effectively. So 

we should develop a method to construct 

efficient queries which are used to obtain web 

pages through the search engine. 

5.1 The Limitation of Monolingual Query 

We expect to find the web pages where the 

Chinese ON and its translation equivalent co-

occur. If we just use a Chinese ON as the query, 

we will always obtain the monolingual web 

pages only containing the Chinese ON. In order 

to solve the problem, some words in the Chinese 

ON can be translated into English, and the 

English words will be added into the query as the 

clues to search the bilingual web pages. 

5.2 The Strategy of Query Construction  

We use the metric of precision here to evaluate 

the possibility in which the translation equivalent 

is contained in the snippets returned by the search 

engine. That means, on the condition that we 

obtain a fixed number of snippets, the more the 

snippets which contain the translation equivalent 

are obtained, the higher the precision is. There 

are two factors to be considered. The first is how 

efficient the added English words can improve 

the precision. The second is how to avoid adding 

wrong translations which may bring down the 

precision. The first factor means that we should 

select the most informative words in the Chinese 

ON. The second factor means that we should 

consider the confidence of the SMT model at the 

same time. For example: 天津/LC  本田/NC 车摩托 /MC 有限公司/KC 

(Tianjin   Honda     motor           co. ltd.) 

There are three strategies of constructing 

queries as follows: 

Q1.“天津本田摩托车有限公司”  Honda 

Q2.“天津本田摩托车有限公司”  Ltd. 

Q3.“天津本田摩托车有限公司 ” Motor 

Tianjin 

In the first strategy, we translate the word “本田(Honda)” which is the most informative word 

in the ON. But its translation confidence is very 

low, which means that the statistical model gives 

wrong results usually. The mistakes in translation 

will mislead the search engine. In the second 

strategy, we translate the word which has the 

largest translation confidence. Unfortunately the 

word is so common that it can’t give any help in 

filtering out useless web pages. In the third 

strategy, the words which have sufficient 

translation confidence and information content 

are selected.  

5.3 Heuristically Selecting the Words to be 

Translated 

The mutual information is used to evaluate the 

importance of the words in a Chinese ON. We 

calculate the mutual information on the 

granularity of words in formula 1 and chunks in 

formula 2. The integration of the two kinds of 

mutual information is in formula 3. 

y Y

p ( x ,y )
( , ) = lo g

p ( x ) p ( y )
M I W x Y

∈

∑      (1) 

Y

p ( y , c )
( , ) = lo g

p ( y ) p ( c )y

M I C c Y
∈

∑       (2) 

( , )= ( , )+(1- ) ( , )
x

IC x Y MIW x Y MIC c Yα α     (3) 

Here, MIW(x,Y) denotes the mutual 

information of word x with ON Y. That is the 

summation of the mutual information of x with 

every word in Y. MIC(c,Y) is similar. cx denotes 

the label of the chunk containing x. 

We should also consider the risk of obtaining 

wrong translation results. We can see that the 

name chunk usually has the largest mutual 

information. However, the name chunk always 

needs to be transliterated, and transliteration is 

often more difficult than translation by lexicon. 

So we set a threshold Tc for translation 

confidence. We only select the words whose 

translation confidences are higher than Tc, with 

their mutual information from high to low. 
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6 Asymmetric Alignment Method for 

Equivalent Extraction 

After we have obtained the web pages with the 

assistant of search engine, we extract the 

equivalent candidates from the bilingual web 

pages. So we first extract the pure English 

sentences and then an asymmetric alignment 

method is executed to find the best fragment of 

the English sentences as the equivalent candidate. 

6.1 Traditional Alignment Method 

To find the translation candidates, the traditional 

method has three main steps.  

1) The NEs in the source and the target 

language sentences are extracted separately. The 

NE collections are Sne and Tne. 

2) For each NE in Sne, calculate the alignment 

probability with every NE in Tne. 

3) For each NE in Sne, the NE in Tne which has 

the highest alignment probability will be selected 

as its translation equivalent. 

This method has two main shortcomings: 

1) Traditional alignment method needs the 

NER process in both sides, but the NER process 

may often bring in some mistakes. 

2) Traditional alignment method evaluates the 

alignment probability coarsely. In other words, 

we don’t know exactly which target word(s) 

should be aligned to for the source word. A 

coarse alignment method may have negative 

effect on translation equivalent extraction.                                                                                                                                                    

6.2 The Asymmetric Alignment Method 

To solve the above two problems, we propose an 

asymmetric alignment method. The alignment 

method is so called “asymmetric” for that it 

aligns a phrase with a sentence, in other words, 

the alignment is conducted between two objects 

with different granularities. The NER process is 

not necessary for that we align the Chinese ON 

with English sentences directly.  

[Wai Lam et al., 2007] proposed a method 

which uses the KM algorithm to find the optimal 

explicit matching between a Chinese ON and a 

given English ON. KM algorithm [Kuhn, 1955] 

is a traditional graphic algorithm for finding the 

maximum matching in bipartite weighted graph. 

In this paper, the KM algorithm is extended to be 

an asymmetric alignment method. So we can 

obtain an explicit matching between a Chinese 

ON and a fragment of English sentence. 

A Chinese NE CO={CW1, CW2, …, CWn} is a 

sequence of Chinese words CWi and the English 

sentence ES={EW1, EW2, …, EWm} is a sequence 

of English words EWi. Our goal is to find a 

fragment EWi,i+n={EWi, …, EWi+n} in ES, which 

has the highest alignment score with CO. 

Through executing the extended KM algorithm, 

we can obtain an explicit matching L. For any 

CWi, we can get its corresponding English word 

EWj, written as L(CWi)=EWj and vice versa. We 

find the optimal matching L between two phrases, 

and calculate the alignment score based on L. An 

example of the asymmetric alignment will be 

given in Fig2. 

 
Fig2. An example of asymmetric alignment 

In Fig2, the Chinese ON “中国农业银行” is 

aligned to an English sentence “… the 

Agriculture Bank of China is the four…”. The 

stop words in parentheses are deleted for they 

have no meaning in Chinese. In step 1, the 

English fragment contained in the square 

brackets is aligned with the Chinese ON. We can 

obtain an explicit matching L1, shown by arrows, 

and an alignment score. In step 2, the square 

brackets move right by one word, we can obtain a 

new matching L2 and its corresponding alignment 

score, and so on. When we have calculated every 

consequent fragment in English sentence, we can 

find the best fragment “the Agriculture Bank of 

China” according to the alignment score as the 

translation equivalent.  

The algorithm is shown in Fig3. Where, m is 

the number of words in an English sentence and 

n is the number of words in a Chinese ON. KM 

algorithm will generate an equivalent sub-graph 

by setting a value to each vertex. The edge whose 

weight is equal to the summation of the values of 

its two vertexes will be added into the sub-graph. 

Then the Hungary algorithm will be executed in 

the equivalent sub-graph to find the optimal 

matching. We find the optimal matching between 

CW1,n and EW1,n first. Then we move the window 

right and find the optimal matching between 

CW1,n and EW2,n+1. The process will continue 

until the window arrives at the right most of the 

… [(The) Agriculture Bank (of) China] (is) (the) four 中国    农业      银行 

 (The) Agriculture [Bank (of) China] (is) (the) four]… 中国    农业      银行 

Step 1: 

Step 2: 
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English sentence. When the window moves right, 

we only need to find a new matching for the new 

added English vertex EWend and the Chinese 

vertex Cdrop which has been matched with EWstart 

in the last step. In the Hungary algorithm, the 

matching is added through finding an augmenting 

path. So we only need to find one augmenting 

path each time. The time complexity of finding 

an augmenting path is O(n
3
). So the whole 

complexity of asymmetric alignment is O(m*n
3
). 

Algorithm: Asymmetric Alignment Algorithm 

Input: A segmented Chinese ON CO and an 

English sentence ES. 

Output: an English fragment EWk,k+n 

1. Let start=1, end=n, L0=null 

2. Using KM algorithm to find the optimal 

matching between two phrases CW1,n and 

EWstart,end based on the previous matching Lstart-

1. We obtain a matching Lstart and calculate the 

alignment score Sstart based on Lstart. 

3. CWdrop = L(EWstart)  L(CWdrop)=null. 

4. If (end==m) go to 7, else start=start+1, 

end=end+1. 

5. Calculate the feasible vertex labeling for the 

vertexes CWdrop and EWend 

6. Go to 2. 

7. The fragment EWk,k+n-1 which has the highest 

alignment score will be returned. 

Fig3. The asymmetric alignment algorithm 

6.3 Obtain the Translation Equivalent 

For each English sentence, we can obtain a 

fragment ESi,i+n which has the highest alignment 

score. We will also take into consideration the 

frequency information of the fragment and its 

distance away from the Chinese ON. We use 

formula (4) to obtain a final score for each 

translation candidate ETi and select the largest 

one as translation result.  

( )= + log( +1)+ log(1 / +1)
i i i i

S ET SA C Dα β γ  (4) 

Where Ci denotes the frequency of ETi, and Di 

denotes the nearest distance between ETi and the 

Chinese ON. 

7 Experiments 

We carried out experiments to investigate the 

performance improvement of ON translation 

under the assistance of web knowledge.  

7.1 Experimental Data 

Our experiment data are extracted from 

LDC2005T34. There are two corpora, 

ldc_propernames_org_ce_v1.beta (Indus_corpus 

for short) and ldc_propernames_indu 

stry_ce_v1.beta (Org_corpus for short). Some 

pre-process will be executed to filter out some 

noisy translation pairs. For example, the 

translation pairs involving other languages such 

as Japanese and Korean will be filtered out. 

There are 65,835 translation pairs that we used as 

the training corpus and the chunk labels are 

added manually. 

We randomly select 250 translation pairs from  

the Org_corpus and 253 translation pairs from 

the Indus_corpus. Altogether, there are 503 

translation pairs as the testing set. 

7.2 The Effect of Chunking-based 

Segmentation upon ON Translation  

In order to evaluate the influence of segmentation 

results upon the statistical ON translation system, 

we compare the results of two translation models. 

One model uses chunking-based segmentation 

results as input, while the other uses traditional 

segmentation results. 

To train the CRFs-chunking model, we 

randomly selected 59,200 pairs of equivalent 

translations from Indus_corpus and org_corpus. 

We tested the performance on the set which 

contains 6,635 Chinese ONs and the results are 

shown as Table-2. 

For constructing a statistical ON translation 

model, we use GIZA++
1
 to align the Chinese NEs 

and the English NEs in the training set. Then the 

phrase-based machine translation system 

MOSES
2
 is adopted to translate the 503 Chinese 

NEs in testing set into English. 

 Precision Recall F-measure 

LC 0.8083 0.7973 0.8028 

NC 0.8962 0.8747 0.8853 

MC 0.9104 0.9073 0.9088 

KC 0.9844 0.9821 0.9833 

All 0.9437 0.9372 0.9404 
Table 2. The test results of CRFs-chunking model 

We have two metrics to evaluate the 

translation results. The first metric L1 is used to 

evaluate whether the translation result is exactly 

the same as the answer. The second metric L2 is 

used to evaluate whether the translation result 

contains almost the same words as the answer, 

                                                           
1 http://www.fjoch.com/GIZA++.html 
2 http://www.statmt.org/moses/ 
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without considering the order of words. The 

results are shown in Table-3: 

 chunking-based 

segmentation  

traditional 

segmentation 

L1 21.47% 18.29% 

L2 40.76% 36.78% 
Table 3. Comparison of segmentation influence 

From the above experimental data, we can see 

that the chunking-based segmentation improves 

L1 precision from 18.29% to 21.47% and L2 

precision from 36.78% to 40.76% in comparison 

with the traditional segmentation method. 

Because the segmentation results will be used in 

alignment, the errors will affect the computation 

of alignment probability. The chunking based 

segmentation can generate better segmentation 

results; therefore better alignment probabilities 

can be obtained.  

7.3 The Efficiency of Query Construction 

The heuristic query construction method aims to 

improve the efficiency of Web searching. The 

performance of searching for translation 

equivalents mostly depends on how to construct 

the query. To test its validity, we design four 

kinds of queries and evaluate their ability using 

the metric of average precision in formula 5 and 

macro average precision (MAP) in formula 6, 

1
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P r
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i i
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A vera g e ec is io n

N S=

= ∑             (5) 

where Hi is the count of snippets that contain at 

least one equivalent for the ith query. And Si is 

the total number of snippets we got for the ith 

query, 
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j j
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= ∑∑               (6) 

where R(i) is the order of snippet where the ith 

equivalent occurs. We construct four kinds of 

queries for the 503 Chinese ONs in testing set as 

follows: 

Q1: only the Chinese ON.  

Q2: the Chinese ON and the results of the 

statistical translation model.  

Q3: the Chinese ON and some parts’ 

translation selected by the heuristic query 

construction method.  

Q4: the Chinese ON and its correct English 

translation equivalent.  

We obtain at most 100 snippets from Google 

for every query. Sometimes there are not enough 

snippets as we expect. We set α in formula 4 at 

0.7，and the threshold of translation confidence 

at 0.05. The results are shown as Table 4.  

 Average 

precision 

MAP 

Q1 0.031 0.0527 

Q2 0.187 0.2061 

Q3 0.265 0.3129 

Q4 1.000 1.0000 
Table 4. Comparison of four types query 

Here we can see that, the result of Q4 is the 

upper bound of the performance, and the Q1 is 

the lower bound of the performance. We 

concentrate on the comparison between Q2 and 

Q3. Q2 contains the translations of every word in 

a Chinese ON, while Q3 just contains the 

translations of the words we select using the 

heuristic method. Q2 may give more information 

to search engine about which web pages we 

expect to obtain, but it also brings in translation 

mistakes that may mislead the search engine. The 

results show that Q3 is better than Q2, which 

proves that a careful clue selection is needed. 

7.4 The Effect of Asymmetric Alignment 

Algorithm 

The asymmetric alignment method can avoid the 

mistakes made in the NER process and give an 

explicit alignment matching. We will compare 

the asymmetric alignment algorithm with the 

traditional alignment method on performance. 

We adopt two methods to align the Chinese NE 

with the English sentences. The first method has 

two phases, the English ONs are extracted from 

English sentences firstly, and then the English 

ONs are aligned with the Chinese ON. Lastly, the 

English ON with the highest alignment score will 

be selected as the translation equivalent. We use 

the software Lingpipe
3
 to recognize NEs in the 

English sentences. The alignment probability can 

be calculated as formula 7: 

( , ) ( | )i j

i j

Score C E p e c= ∑∑       (7) 

The second method is our asymmetric 

alignment algorithm. Our method is different 

from the one in [Wai Lam et al., 2007] which 

segmented a Chinese ON using an English ON as 

suggestion. We segment the Chinese ON using 

the chunking-based segmentation method. The 

English sentences extracted from snippets will be 

preprocessed. Some stop words will be deleted, 

such as “the”, “of”, “on” etc. To execute the 

extended KM algorithm for finding the best 

alignment matching, we must assure that the 

vertex number in each side of the bipartite is the 

                                                           
3 http://www.alias-i.com/lingpipe/ 
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same. So we will execute a phrase combination 

process before alignment, which combines some 

frequently occurring consequent English words 

into single vertex, such as “limited company” etc. 

The combination is based on the phrase pair table 

which is generated from phrase-based SMT 

system. The results are shown in Table 5: 

 Asymmetric 

Alignment 

Traditional 

method 

Statistical 

model 

Top1 48.71% 36.18% 18.29% 

Top5 53.68% 46.12% -- 
Table 5. Comparison the precision of alignment 

method 

From the results (column 1 and column 2) we 

can see that, the Asymmetric alignment method 

outperforms the traditional alignment method. 

Our method can overcome the mistakes 

introduced in the NER process. On the other 

hand, in our asymmetric alignment method, there 

are two main reasons which may result in 

mistakes, one is that the correct equivalent 

doesn’t occur in the snippet; the other is that 

some English ONs can’t be aligned to the 

Chinese ON word by word.  

7.5 Comparison between Statistical ON 

Translation Model and Our Method 

Compared with the statistical ON translation 

model, we can see that the performance is 

improved from 18.29% to 48.71% (the bold data 

shown in column 1 and column 3 of Table 5) by 

using our Chinese-English ON translation system. 

Transforming the translation problem into the 

problem of searching for the correct translation 

equivalent in web pages has three advantages. 

First, word order determination is difficult in 

statistical machine translation (SMT), while 

search engines are insensitive to this problem. 

Second, SMT often loses some function word 

such as “the”, “a”, “of”, etc, while our method 

can avoid this problem because such words are 

stop words in search engines. Third, SMT often 

makes mistakes in the selection of synonyms. 

This problem can be solved by the fuzzy 

matching of search engines. In summary, web 

assistant method makes Chinese ON translation 

easier than traditional SMT method.  

8 Conclusion 

In this paper, we present a new approach which 

translates the Chinese ON into English with the 

assistance of web resources. We first adopt the 

chunking-based segmentation method to improve 

the ON segmentation. Then a heuristic query 

construction method is employed to construct a 

query which can search translation equivalent 

more efficiently. At last, the asymmetric 

alignment method aligns the Chinese ON with 

English sentences directly. The performance of 

ON translation is improved from 18.29% to 

48.71%. It proves that our system can work well 

on the Chinese-English ON translation task. In 

the future, we will try to apply this method in 

mining the NE translation equivalents from 

monolingual web pages. In addition, the 

asymmetric alignment algorithm also has some 

space to be improved. 
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Abstract

Iterative bootstrapping algorithms are typ-
ically compared using a single set of hand-
picked seeds. However, we demonstrate
that performance varies greatly depend-
ing on these seeds, and favourable seeds
for one algorithm can perform very poorly
with others, making comparisons unreli-
able. We exploit this wide variation with
bagging, sampling from automatically ex-
tracted seeds to reduce semantic drift.

However, semantic drift still occurs in
later iterations. We propose an integrated
distributional similarity filter to identify
and censor potential semantic drifts, en-
suring over 10% higher precision when ex-
tracting large semantic lexicons.

1 Introduction

Iterative bootstrapping algorithms have been pro-
posed to extract semantic lexicons forNLP tasks
with limited linguistic resources. Bootstrapping
was initially proposed by Riloff and Jones (1999),
and has since been successfully applied to extract-
ing general semantic lexicons (Riloff and Jones,
1999; Thelen and Riloff, 2002), biomedical enti-
ties (Yu and Agichtein, 2003), facts (Paşca et al.,
2006), and coreference data (Yang and Su, 2007).

Bootstrapping approaches are attractive because
they are domain and language independent, re-
quire minimal linguistic pre-processing and can be
applied to raw text, and are efficient enough for
tera-scale extraction (Paşca et al., 2006).

Bootstrapping is minimally supervised, as it is
initialised with a small number of seed instances
of the information to extract. For semantic lexi-
cons, these seeds are terms from the category of in-
terest. The seeds identify contextual patterns that
express a particular semantic category, which in
turn recognise new terms (Riloff and Jones, 1999).

Unfortunately,semantic driftoften occurs when
ambiguous or erroneous terms and/or patterns are
introduced into and then dominate the iterative
process (Curran et al., 2007).

Bootstrapping algorithms are typically com-
pared using only a single set of hand-picked seeds.
We first show that different seeds cause these al-
gorithms to generate diverse lexicons which vary
greatly in precision. This makes evaluation un-
reliable – seeds which perform well on one algo-
rithm can perform surprisingly poorly on another.
In fact, random gold-standard seeds often outper-
form seeds carefully chosen by domain experts.

Our second contribution exploits this diversity
we have identified. We present an unsupervised
bagging algorithm which samples from the ex-
tracted lexicon rather than relying on existing
gazetteers or hand-selected seeds. Each sample is
then fed back as seeds to the bootstrapper and the
results combined using voting. This both improves
the precision of the lexicon and the robustness of
the algorithms to the choice of initial seeds.

Unfortunately, semantic drift still dominates in
later iterations, since erroneous extracted terms
and/or patterns eventually shift the category’s di-
rection. Our third contribution focuses on detect-
ing and censoring the terms introduced by seman-
tic drift. We integrate a distributional similarity
filter directly into WMEB (McIntosh and Curran,
2008). This filter judges whether a new term is
more similar to the earlier or most recently ex-
tracted terms, a sign of potential semantic drift.

We demonstrate these methods for extracting
biomedical semantic lexicons using two bootstrap-
ping algorithms. Our unsupervised bagging ap-
proach outperforms carefully hand-picked seeds
by ∼ 10% in later iterations. Our distributional
similarity filter gives a similar performance im-
provement. This allows us to produce large lexi-
cons accurately and efficiently for domain-specific
language processing.
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2 Background

Hearst (1992) exploited patterns for information
extraction, to acquireis-arelations using manually
devised patterns likesuch Z as X and/or YwhereX
andY are hyponyms ofZ. Riloff and Jones (1999)
extended this with an automated bootstrapping al-
gorithm,Multi-level Bootstrapping(MLB ), which
iteratively extracts semantic lexicons from text.

In MLB , bootstrapping alternates between two
stages: pattern extraction and selection, and term
extraction and selection.MB is seeded with a small
set of user selectedseedterms. These seeds are
used to identify contextual patterns they appear in,
which in turn identify new lexicon entries. This
process is repeated with the new lexicon terms
identifying new patterns. In each iteration, the top-
n candidates are selected, based on a metric scor-
ing their membership in the category and suitabil-
ity for extracting additional terms and patterns.

Bootstrapping eventually extracts polysemous
terms and patterns which weakly constrain the
semantic class, causing the lexicon’s meaning to
shift, calledsemantic driftby Curran et al. (2007).
For example, female firstnames may drift into
flowers whenIris andRoseare extracted. Many
variations on bootstrapping have been developed
to reduce semantic drift.1

One approach is to extract multiple semantic
categories simultaneously, where the individual
bootstrapping instances compete with one another
in an attempt to actively direct the categories away
from each other. Multi-category algorithms out-
perform MLB (Thelen and Riloff, 2002), and we
focus on these algorithms in our experiments.

In BASILISK, MEB, and WMEB, each compet-
ing category iterates simultaneously between the
term and pattern extraction and selection stages.
These algorithms differ in how terms and patterns
selected by multiple categories are handled, and
their scoring metrics. InBASILISK (Thelen and
Riloff, 2002), candidate terms are ranked highly if
they have strong evidence for a category and little
or no evidence for other categories. This typically
favours less frequent terms, as they will match far
fewer patterns and are thus more likely to belong
to one category. Patterns are selected similarly,
however patterns may also be selected by differ-
ent categories in later iterations.

Curran et al. (2007) introducedMutual Exclu-

1Komachi et al. (2008) used graph-based algorithms to
reduce semantic drift for Word Sense Disambiguation.

sion Bootstrapping(MEB) which forces stricter
boundaries between the competing categories than
BASILISK. In MEB, the key assumptions are that
terms only belong to a category and that patterns
only extract terms of a single category. Semantic
drift is reduced by eliminating patterns that collide
with multiple categories in an iteration and by ig-
noring colliding candidate terms (for the current
iteration). This excludes generic patterns that can
occur frequently with multiple categories, and re-
duces the chance of assigning ambiguous terms to
their less dominant sense.

2.1 Weighted MEB

The scoring of candidate terms and patterns in
MEB is näıve. Candidates which 1) match the most
input instances; and 2) have the potential to gen-
erate the most new candidates, are preferred (Cur-
ran et al., 2007). This second criterion aims to in-
crease recall. However, the selected instances are
highly likely to introduce drift.

Our WeightedMEB algorithm (McIntosh and
Curran, 2008), extendsMEB by incorporating term
and pattern weighting, and a cumulative pattern
pool. WMEB uses theχ2 statistic to identify pat-
terns and terms that are strongly associated with
the growing lexicon terms and their patterns re-
spectively. The terms and patterns are then ranked
first by the number of input instances they match
(as inMEB), but then by their weighted score.

In MEB and BASILISK2, the top-k patterns for
each iteration are used to extract new candidate
terms. As the lexicons grow, general patterns can
drift into the top-k and as a result the earlier pre-
cise patterns lose their extracting influence. In
WMEB, the pattern pool accumulates all top-k pat-
terns from previous iterations, to ensure previous
patterns can contribute.

2.2 Distributional Similarity

Distributional similarity has been used to ex-
tract semantic lexicons (Grefenstette, 1994), based
on thedistributional hypothesisthat semantically
similar words appear in similar contexts (Harris,
1954). Words are represented by context vectors,
and words are considered similar if their context
vectors are similar.

Patterns and distributional methods have been
combined previously. Pantel and Ravichandran

2In BASILISK, k is increased by one in each iteration, to
ensure at least one new pattern is introduced.
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TYPE (#) MEDLINE

Terms 1 347 002
Contexts 4 090 412
5-grams 72 796 760
Unfiltered tokens 6 642 802 776

Table 1: Filtered 5-gram dataset statistics.

(2004) used lexical-syntactic patterns to label
clusters of distributionally similar terms. Mirkin et
al. (2006) used 11 patterns, and the distributional
similarity score of each pair of terms, to construct
features for lexical entailment. Paşca et al. (2006)
used distributional similarity to find similar terms
for verifying the names in date-of-birth facts for
their tera-scale bootstrapping system.

2.3 Selecting seeds

For the majority of bootstrapping tasks, there is
little or no guidance on how to select seeds which
will generate the most accurate lexicons. Most
previous works used seeds selected based on a
user’s or domain expert’s intuition (Curran et al.,
2007), which may then have to meet a frequency
criterion (Riloff et al., 2003).

Eisner and Karakos (2005) focus on this issue
by considering an approach calledstrapping for
word sense disambiguation. In strapping, semi-
supervised bootstrapping instances are used to
train a meta-classifier, which given a bootstrap-
ping instance can predict the usefulness (fertility)
of its seeds. The most fertile seeds can then be
used in place of hand-picked seeds.

The design of a strapping algorithm is more
complex than that of a supervised learner (Eisner
and Karakos, 2005), and it is unclear how well
strapping will generalise to other bootstrapping
tasks. In our work, we build upon bootstrapping
using unsupervised approaches.

3 Experimental setup

In our experiments we consider the task of extract-
ing biomedical semantic lexicons from raw text
usingBASILISK andWMEB.

3.1 Data

We compared the performance ofBASILISK and
WMEB using 5-grams (t1, t2, t3, t4, t5) from raw
MEDLINE abstracts3. In our experiments, the can-
didate terms are the middle tokens (t3), and the
patterns are a tuple of the surrounding tokens (t1,

3The set contains allMEDLINE abstracts available up to
Oct 2007 (16 140 000 abstracts).

CAT DESCRIPTION

ANTI Antibodies: Immunoglobulin molecules that react
with a specific antigen that induced its synthesis
MAb IgG IgM rituximab infliximab(κ1:0.89,κ2:1.0)

CELL Cells: A morphological or functional form of a cell
RBC HUVEC BAEC VSMC SMC(κ1:0.91,κ2:1.0)

CLNE Cell lines: A population of cells that are totally de-
rived from a single common ancestor cell
PC12 CHO HeLa Jurkat COS(κ1:0.93,κ2: 1.0)

DISE Diseases: A definite pathological process that affects
humans, animals and or plants
asthma hepatitis tuberculosis HIV malaria
(κ1:0.98,κ2:1.0)

DRUG Drugs: A pharmaceutical preparation
acetylcholine carbachol heparin penicillin tetracy-
clin (κ1:0.86,κ2:0.99)

FUNC Molecular functions and processes
kinase ligase acetyltransferase helicase binding
(κ1:0.87,κ2:0.99)

MUTN Mutations: Gene and protein mutations, and mutants
Leiden C677T C282Y 35delG null(κ1:0.89,κ2:1.0)

PROT Proteins and genes
p53 actin collagen albumin IL-6(κ1:0.99,κ2:1.0)

SIGN Signs and symptoms of diseases
anemia hypertension hyperglycemia fever cough
(κ1:0.96,κ2:0.99)

TUMR Tumors: Types of tumors
lymphoma sarcoma melanoma neuroblastoma
osteosarcoma(κ1:0.89,κ2:0.95)

Table 2: TheMEDLINE semantic categories.

t2, t4, t5). Unlike Riloff and Jones (1999) and
Yangarber (2003), we do not use syntactic knowl-
edge, as we aim to take a language independent
approach.

The 5-grams were extracted from theMEDLINE

abstracts following McIntosh and Curran (2008).
The abstracts were tokenised and split into sen-
tences using bio-specificNLP tools (Grover et al.,
2006). The 5-grams were filtered to remove pat-
terns appearing with less than 7 terms4. The statis-
tics of the resulting dataset are shown in Table 1.

3.2 Semantic Categories

The semantic categories we extract fromMED-
LINE are shown in Table 2. These are a subset
of theTREC Genomics 2007 entities (Hersh et al.,
2007). Categories which are predominately multi-
term entities, e.g.Pathwaysand Toxicities, were
excluded.5 GenesandProteinswere merged into
PROT as they have a high degree of metonymy,
particularly out of context. TheCell or Tissue Type
category was split into two fine grained classes,
CELL andCLNE (cell line).

4This frequency was selected as it resulted in the largest
number of patterns and terms loadable byBASILISK

5Note that polysemous terms in these categories may be
correctly extracted by another category. For example, all
Pathwaysalso belong toFUNC.
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The five hand-picked seeds used for each cat-
egory are shown in italics in Table 2. These were
carefully chosen based on the evaluators’ intuition,
and are as unambiguous as possible with respect to
the other categories.

We also utilised terms instop categorieswhich
are known to cause semantic drift in specific
classes. These extra categories bound the lexi-
cal space and reduce ambiguity (Yangarber, 2003;
Curran et al., 2007). We used four stop cate-
gories introduced in McIntosh and Curran (2008):
AMINO ACID , ANIMAL , BODY andORGANISM.

3.3 Lexicon evaluation

The evaluation involves manually inspecting each
extracted term and judging whether it was a mem-
ber of the semantic class. This manual evaluation
is extremely time consuming and is necessary due
to the limited coverage of biomedical resources.
To make later evaluations more efficient, all eval-
uators’ decisions for each category are cached.

Unfamiliar terms were checked using online
resources includingMEDLINE, Medical Subject
Headings (MeSH), Wikipedia. Each ambiguous
term was counted as correct if it was classified into
one of its correct categories, such aslymphoma
which is a TUMR and DISE. If a term was un-
ambiguously part of a multi-word term we consid-
ered it correct. Abbreviations, acronyms and typo-
graphical variations were included. We also con-
sidered obvious spelling mistakes to be correct,
such asnuetrophilsinstead ofneutrophils(a type
of CELL). Non-specific modifiers are marked as
incorrect, for example,gastrointestinalmay be in-
correctly extracted forTUMR, as part of the entity
gastrointestinal carcinoma. However, the modi-
fier may also be used forDISE (gastrointestinal
infection) andCELL.

The terms were evaluated by two domain ex-
perts. Inter-annotator agreement was measured
on the top-100 terms extracted byBASILISK and
WMEB with the hand-picked seeds for each cat-
egory. All disagreements were discussed, and the
kappa scores, before (κ1) and after (κ2) the discus-
sions, are shown in Table 2. Each score is above
0.8 which reflects an agreement strength of “al-
most perfect” (Landis and Koch, 1977).

For comparing the accuracy of the systems we
evaluated the precision of samples of the lexicons
extracted for each category. We report average
precision over the 10 semantic categories on the

1-200, 401-600 and 801-1000 term samples, and
over the first 1000 terms. In each algorithm, each
category is initialised with 5 seed terms, and the
number of patterns,k, is set to 5. In each itera-
tion, 5 lexicon terms are extracted by each cate-
gory. Each algorithm is run for 200 iterations.

4 Seed diversity

The first step in bootstrapping is to select a set of
seeds by hand. Thesehand-pickedseeds are typi-
cally chosen by a domain expert who selects a rea-
sonably unambiguous representative sample of the
category with high coverage by introspection.

To improve the seeds, the frequency of the po-
tential seeds in the corpora is often considered, on
the assumption that highly frequent seeds are bet-
ter (Thelen and Riloff, 2002). Unfortunately, these
seeds may be too general and extract many non-
specific patterns. Another approach is to identify
seeds using hyponym patterns like,* is a [NAMED

ENTITY] (Meij and Katrenko, 2007).
This leads us to our first investigation of seed

variability and the methodology used to compare
bootstrapping algorithms. Typically algorithms
are compared using one set of hand-picked seeds
for each category (Pennacchiotti and Pantel, 2006;
McIntosh and Curran, 2008). This approach does
not provide a fair comparison or any detailed anal-
ysis of the algorithms under investigation. As
we shall see, it is possible that the seeds achieve
the maximum precision for one algorithm and the
minimum for another, and thus the single compar-
ison is inappropriate. Even evaluating on multiple
categories does not ensure the robustness of the
evaluation. Secondly, it provides no insight into
the sensitivity of an algorithm to different seeds.

4.1 Analysis with random gold seeds

Our initial analysis investigated the sensitivity and
variability of the lexicons generated using differ-
ent seeds. We instantiated each algorithm 10 times
with different random gold seeds (Sgold) for each
category. We randomly sample Sgold from two
sets of correct terms extracted from the evalua-
tion cache.UNION: the correct terms extracted by
BASILISK and WMEB; and UNIQUE: the correct
terms uniquely identified by only one algorithm.
The degree of ambiguity of each seed is unknown
and term frequency is not considered during the
random selection.

Firstly, we investigated the variability of the
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Figure 1: Performance relationship between
WMEB andBASILISK on Sgold UNION

extracted lexicons usingUNION. Each extracted
lexicon was compared with the other 9 lexicons
for each category and the term overlap calcu-
lated. For the top 100 terms,BASILISK had an
overlap of 18% andWMEB 44%. For the top
500 terms,BASILISK had an overlap of 39% and
WMEB 47%. ClearlyBASILISK is far more sensi-
tive to the choice of seeds – this also makes the
cache a lot less valuable for the manual evaluation
of BASILISK. These results match our annotators’
intuition that BASILISK retrieved far more of the
esoteric, rare and misspelt results. The overlap be-
tween algorithms was even worse: 6.3% for the
top 100 terms and 9.1% for the top 500 terms.

The plot in Figure 1 shows the variation in pre-
cision betweenWMEB andBASILISK with the 10
seed sets fromUNION. Precision is measured on
the first 100 terms and averaged over the 10 cate-
gories. The Shand is marked with a square, as well
as each algorithms’ average precision with 1 stan-
dard deviation (S.D.) error bars. The axes start
at 50% precision. Visually, the scatter is quite
obvious and theS.D. quite large. Note that on
our Shand evaluation,BASILISK performed signif-
icantly better than average.

We applied a linear regression analysis to iden-
tify any correlation between the algorithm’s per-
formances. The resulting regression line is shown
in Figure 1. The regression analysis identified no
correlation betweenWMEB andBASILISK (R2 =
0.13). It is almost impossible to predict the per-
formance of an algorithm with a given set of seeds
from another’s performance, and thus compar-
isons using only one seed set are unreliable.

Table 3 summarises the results on Sgold, in-
cluding the minimum and maximum averages over
the 10 categories. At only 100 terms, lexicon

Sgold Shand Avg. Min. Max. S.D.
UNION

BASILISK 80.5 68.3 58.3 78.8 7.31
WMEB 88.1 87.1 79.3 93.5 5.97
UNIQUE

BASILISK 80.5 67.1 56.7 83.5 9.75
WMEB 88.1 91.6 82.4 95.4 3.71

Table 3: Variation in precision with random gold
seed sets

variations are already obvious. As noted above,
Shand onBASILISK performed better than average,
whereasWMEB Sgold UNIQUE performed signifi-
cantly better on average than Shand. This clearly
indicates the difficulty of picking the best seeds
for an algorithm, and that comparing algorithms
with only one set has the potential to penalise an
algorithm. These results do show thatWMEB is
significantly better thanBASILISK.

In the UNIQUE experiments, we hypothesized
that each algorithm would perform well on its
own set, but BASILISK performs significantly
worse thanWMEB, with a S.D. greater than 9.7.
BASILISK ’s poor performance may be a direct re-
sult of it preferring low frequency terms, which are
unlikely to be good seeds.

These experiments have identified previously
unreported performance variations of these sys-
tems and their sensitivity to different seeds. The
standard evaluation paradigm, using one set of
hand-picked seeds over a few categories, does not
provide a robust and informative basis for compar-
ing bootstrapping algorithms.

5 Supervised Bagging

While the wide variation we reported in the pre-
vious section is an impediment to reliable evalua-
tion, it presents an opportunity to improve the per-
formance of bootstrapping algorithms. In the next
section, we present a novel unsupervised bagging
approach to reducing semantic drift. In this sec-
tion, we consider the standard bagging approach
introduced by Breiman (1996). Bagging was used
by Ng and Cardie (2003) to create committees of
classifiers for labelling unseen data for retraining.

Here, a bootstrapping algorithm is instantiated
n = 50 times with random seed sets selected from
theUNION evaluation cache. This generatesn new
lexiconsL1, L2, . . . , Ln for each category. The
next phase involves aggregating the predictions in
L1−n to form the final lexicon for each category,
using a weighted voting function.
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1-200 401-600 801-1000 1-1000
Shand

BASILISK 76.3 67.8 58.3 66.7
WMEB 90.3 82.3 62.0 78.6
Sgold BAG
BASILISK 84.2 80.2 58.2 78.2
WMEB 95.1 79.7 65.0 78.6

Table 4: Bagging with 50 gold seed sets

Our weighting function is based on two related
hypotheses of terms in highly accurate lexicons: 1)
the more category lexicons inL1−n a term appears
in, the more likely the term is a member of the
category; 2) terms ranked higher in lexicons are
more reliable category members. Firstly, we rank
the aggregated terms by the number of lexicons
they appear in, and to break ties, we take the term
that was extracted in the earliest iteration across
the lexicons.

5.1 Supervised results

Table 4 compares the average precisions of the
lexicons forBASILISK and WMEB using just the
hand-picked seeds (Shand) and 50 sample super-
vised bagging (Sgold BAG).

Bagging with samples from Sgold successfully
increased the performance of bothBASILISK and
WMEB in the top 200 terms. While the improve-
ment continued forBASILISK in later sections, it
had a more variable effect forWMEB. Overall,
BASILISK gets the greater improvement in perfor-
mance (a 12% gain), almost reaching the perfor-
mance ofWMEB across the top 1000 terms, while
WMEB’s performance is the same for both Shand

and Sgold BAG. We believe the greater variability
in BASILISK meant it benefited from bagging with
gold seeds.

6 Unsupervised bagging

A significant problem for supervised bagging ap-
proaches is that they require a larger set of gold-
standard seed terms to sample from – either an
existing gazetteer or a large hand-picked set. In
our case, we used the evaluation cache which took
considerable time to accumulate. This saddles
the major application of bootstrapping, the quick
construction of accurate semantic lexicons, with a
chicken-and-egg problem.

However, we propose a novel solution – sam-
pling from the terms extracted with the hand-
picked seeds (Lhand). WMEB already has very
high precision for the top extracted terms (88.1%

BAGGING 1-200 401-600 801-1000 1-1000
Top-100
BASILISK 72.3 63.5 58.8 65.1
WMEB 90.2 78.5 66.3 78.5
Top-200
BASILISK 70.7 60.7 45.5 59.8
WMEB 91.0 78.4 62.2 77.0
Top-500
BASILISK 63.5 60.5 45.4 56.3
WMEB 92.5 80.9 59.1 77.2
PDF-500
BASILISK 69.6 68.3 49.6 62.3
WMEB 92.9 80.7 72.1 81.0

Table 5: Bagging with 50 unsupervised seed sets

for the top 100 terms) and may provide an accept-
able source of seed terms. This approach now
only requires the original 50 hand-picked seed
terms across the 10 categories, rather than the
2100 terms used above. The process now uses two
rounds of bootstrapping: first to create Lhand to
sample from and then another round with the 50
sets of randomly unsupervised seeds, Srand.

The next decision is how to sample Srand from
Lhand. One approach is to use uniform random
sampling from restricted sections of Lhand. We
performed random sampling from the top 100,
200 and 500 terms of Lhand. The seeds from the
smaller samples will have higher precision, but
less diversity.

In a truly unsupervised approach, it is impossi-
ble to know if and when semantic drift occurs and
thus using arbitrary cut-offs can reduce the diver-
sity of the selected seeds. To increase diversity we
also sampled from the topn=500 using a proba-
bility density function (PDF) using rejection sam-
pling, wherer is the rank of the term in Lhand:

PDF(r) =

∑n
i=r i−1

∑n
i=1

∑n
j=i j

−1
(1)

6.1 Unsupervised results

Table 5 shows the average precision of the lex-
icons after bagging on the unsupervised seeds,
sampled from the top 100 – 500 terms from Lhand.
Using the top 100 seed sample is much less effec-
tive than Sgold BAG for BASILISK but nearly as ef-
fective for WMEB. As the sample size increases,
WMEB steadily improves with the increasing vari-
ability, howeverBASILISK is more effective when
the more precise seeds are sampled from higher
ranking terms in the lexicons.

Sampling withPDF-500 results in more accurate
lexicons over the first 1000 terms than the other
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Figure 2: Semantic drift inCELL (n=20, m=20)

sampling methods forWMEB. In particular,WMEB

is more accurate with the unsupervised seeds than
the Sgold and Shand (81.0% vs 78.6% and 78.6%).
WMEB benefits from the larger variability intro-
duced by the more diverse sets of seeds, and the
greater variability available out-weighs the poten-
tial noise from incorrect seeds. ThePDF-500 dis-
tribution allows some variability whilst still prefer-
ring the most reliable unsupervised seeds. In the
critical later iterations,WMEB PDF-500 improves
over supervised bagging (Sgold BAG) by 7% and
the original hand-picked seeds (Shand) by 10%.

7 Detecting semantic drift

As shown above, semantic drift still dominates the
later iterations of bootstrapping even after bag-
ging. In this section, we propose distributional
similarity measurements over the extracted lexi-
con to detect semantic drift during the bootstrap-
ping process. Our hypothesis is that semantic drift
has occurred when a candidate term is more sim-
ilar to recently added terms than to the seed and
high precision terms added in the earlier iterations.
We experiment with a range of values of both.

Given a growing lexicon of sizeN , LN , let
L1...n correspond to the firstn terms extracted into
L, andL(N−m)...N correspond to the lastm terms
added toLN . In an iteration, lett be the next can-
didate term to be added to the lexicon.

We calculate the average distributional similar-
ity (sim) of t with all terms inL1...n and those in
L(N−m)...N and call the ratio thedrift for termt:

drift(t, n, m) =
sim(L1...n, t)

sim(L(N−m)...N , t)
(2)

Smaller values ofdrift(t, n, m) correspond to
the current term moving further away from the

first terms. Adrift(t, n, m) of 0.2 corresponds
to a 20% difference in average similarity between
L1...n andL(N−m)...N for termt.

Drift can be used as a post-processing step to fil-
ter terms that are a possible consequence of drift.
However, our main proposal is to incorporate the
drift measure directly within theWMEB bootstrap-
ping algorithm, to detect and then prevent drift oc-
curing. In each iteration, the set of candidate terms
to be added to the lexicon are scored and ranked
for their suitability. We now additionally deter-
mine the drift of each candidate term before it is
added to the lexicon. If the term’s drift is below a
specified threshold, it is discarded from the extrac-
tion process. If the term has zero similarity with
the lastm terms, but is similar to at least one of
the firstn terms, the term is selected. Preventing
the drifted term from entering the lexicon during
the bootstrapping process, has a flow on effect as
it will not be able to extract additional divergent
patterns which would lead to accelerated drift.

For calculating drift we use the distributional
similarity approach described in Curran (2004).
We extracted window-based features from the
filtered 5-grams to form context vectors for
each term. We used the standard t-test weight
and weighted Jaccard measure functions (Curran,
2004). This system produces a distributional score
for each pair of terms presented by the bootstrap-
ping system.

7.1 Drift detection results

To evaluate our semantic drift detection we incor-
porate our process inWMEB. Candidate terms are
still weighted inWMEB using theχ2 statistic as de-
scribed in (McIntosh and Curran, 2008). Many of
theMEDLINE categories suffer from semantic drift
in WMEB in the later stages. Figure 2 shows the
distribution of correct and incorrect terms appear-
ing in theCELL lexicon extracted using Shand with
the term’s ranks plotted against their drift scores.
Firstly, it is evident that incorrect terms begin to
dominate in later iterations. Encouragingly, there
is a trend where low values of drift correspond to
incorrect terms being added. Drift also occurs in
ANTI andMUTN, with an average precision at 801-
1000 terms of 41.5% and 33.0% respectively.

We utilise drift in two ways with WMEB;
as a post-processing filter (WMEB+POST) and
internally during the term selection phase
(WMEB+DIST). Table 6 shows the performance
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1-200 401-600 801-1000 1000
WMEB 90.3 82.3 62.0 78.6
WMEB+POST
n:20 m:5 90.3 82.3 62.1 78.6
n:20 m:20 90.3 81.5 62.0 76.9
n:100 m:5 90.2 82.3 62.1 78.6
n:100 m:20 90.3 82.1 62.1 78.1
WMEB+DIST
n:20 m:5 90.8 79.7 72.1 80.2
n:20 m:20 90.6 80.1 76.3 81.4
n:100 m:5 90.5 82.0 79.3 82.8
n:100 m:20 90.5 81.5 77.5 81.9

Table 6: Semantic drift detection results

of drift detection withWMEB, using Shand. We
use a drift threshold of 0.2 which was selected
empirically. A higher value substantially reduced
the lexicons’ size, while a lower value resulted
in little improvements. We experimented with
various sizes of initial termsL1...n (n=20,n=100)
andL(N−m)...N (m=5,m=20).

There is little performance variation observed
in the variousWMEB+POST experiments. Over-
all, WMEB+POST was outperformed slightly by
WMEB. The post-filtering removed many incor-
rect terms, but did not address the underlying drift
problem. This only allowed additional incorrect
terms to enter the top 1000, resulting in no appre-
ciable difference.

Slight variations in precision are obtained using
WMEB+DIST in the first 600 terms, but noticeable
gains are achieved in the 801-1000 range. This is
not surprising as drift in many categories does not
start until later (cf. Figure 2).

With respect to the drift parametersn andm, we
found values ofn below 20 to be inadequate. We
experimented initially withn=5 terms, but this is
equivalent to comparing the new candidate terms
to the initial seeds. Settingm to 5 was also less
useful than a larger sample, unlessn was also
large. The best performance gain of 4.2% over-
all for 1000 terms and 17.3% at 801-1000 terms
was obtained usingn=100 andm=5. In different
phases ofWMEB+DIST we reduce semantic drift
significantly. In particular, at 801-1000,ANTI in-
crease by 46% to 87.5% andMUTN by 59% to
92.0%.

For our final experiments, we report the perfor-
mance of our best performingWMEB+DIST sys-
tem (n=100m=5) using the 10 randomGOLD seed
sets from section 4.1, in Table 7. On average
WMEB+DIST performs aboveWMEB, especially in
the later iterations where the difference is 6.3%.

Shand Avg. Min. Max. S.D.
1-200
WMEB 90.3 82.2 73.3 91.5 6.43
WMEB+DIST 90.7 84.8 78.0 91.0 4.61
401-600
WMEB 82.3 66.8 61.4 74.5 4.67
WMEB+DIST 82.0 73.1 65.2 79.3 4.52

Table 7: Final accuracy with drift detection

8 Conclusion

In this paper, we have proposed unsupervised
bagging and integrated distributional similarity to
minimise the problem of semantic drift in itera-
tive bootstrapping algorithms, particularly when
extracting large semantic lexicons.

There are a number of avenues that require fur-
ther examination. Firstly, we would like to take
our two-round unsupervised bagging further by
performing another iteration of sampling and then
bootstrapping, to see if we can get a further im-
provement. Secondly, we also intend to experi-
ment with machine learning methods for identify-
ing the correct cutoff for the drift score. Finally,
we intend to combine the bagging and distribu-
tional approaches to further improve the lexicons.

Our initial analysis demonstrated that the output
and accuracy of bootstrapping systems can be very
sensitive to the choice of seed terms and therefore
robust evaluation requires results averaged across
randomised seed sets. We exploited this variability
to create both supervised and unsupervised bag-
ging algorithms. The latter requires no more seeds
than the original algorithm but performs signifi-
cantly better and more reliably in later iterations.
Finally, we incorporated distributional similarity
measurements directly intoWMEB which detect
and censor terms which could lead to semantic
drift. This approach significantly outperformed
standardWMEB, with a 17.3% improvement over
the last 200 terms extracted (801-1000). The result
is an efficient, reliable and accurate system for ex-
tracting large-scale semantic lexicons.
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Abstract
Recent work on temporal relation iden-
tification has focused on three types of
relations between events: temporal rela-
tions between an event and a time expres-
sion, between a pair of events and between
an event and the document creation time.
These types of relations have mostly been
identified in isolation by event pairwise
comparison. However, this approach ne-
glects logical constraints between tempo-
ral relations of different types that we be-
lieve to be helpful. We therefore propose a
Markov Logic model that jointly identifies
relations of all three relation types simul-
taneously. By evaluating our model on the
TempEval data we show that this approach
leads to about 2% higher accuracy for all
three types of relations —and to the best
results for the task when compared to those
of other machine learning based systems.

1 Introduction

Temporal relation identification (or temporal or-
dering) involves the prediction of temporal order
between events and/or time expressions mentioned
in text, as well as the relation between events in a
document and the time at which the document was
created.

With the introduction of the TimeBank corpus
(Pustejovsky et al., 2003), a set of documents an-
notated with temporal information, it became pos-
sible to apply machine learning to temporal order-
ing (Boguraev and Ando, 2005; Mani et al., 2006).
These tasks have been regarded as essential for
complete document understanding and are useful
for a wide range of NLP applications such as ques-
tion answering and machine translation.

Most of these approaches follow a simple
schema: they learn classifiers that predict the tem-
poral order of a given event pair based on a set of

the pair’s of features. This approach is local in the
sense that only a single temporal relation is consid-
ered at a time.

Learning to predict temporal relations in this iso-
lated manner has at least two advantages over any
approach that considers several temporal relations
jointly. First, it allows us to use off-the-shelf ma-
chine learning software that, up until now, has been
mostly focused on the case of local classifiers. Sec-
ond, it is computationally very efficient both in
terms of training and testing.

However, the local approach has a inherent
drawback: it can lead to solutions that violate logi-
cal constraints we know to hold for any sets of tem-
poral relations. For example, by classifying tempo-
ral relations in isolation we may predict that event
A happened before, and event B after, the time
of document creation, but also that event A hap-
pened after event B—a clear contradiction in terms
of temporal logic.

In order to repair the contradictions that the local
classifier predicts, Chambers and Jurafsky (2008)
proposed a global framework based on Integer Lin-
ear Programming (ILP). They showed that large
improvements can be achieved by explicitly incor-
porating temporal constraints.

The approach we propose in this paper is similar
in spirit to that of Chambers and Jurafsky: we seek
to improve the accuracy of temporal relation iden-
tification by predicting relations in a more global
manner. However, while they focused only on the
temporal relations between events mentioned in a
document, we also jointly predict the temporal or-
der between events and time expressions, and be-
tween events and the document creation time.

Our work also differs in another important as-
pect from the approach of Chambers and Jurafsky.
Instead of combining the output of a set of local
classifiers using ILP, we approach the problem of
joint temporal relation identification using Markov
Logic (Richardson and Domingos, 2006). In this
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framework global correlations can be readily cap-
tured through the addition of weighted first order
logic formulae.

Using Markov Logic instead of an ILP-based ap-
proach has at least two advantages. First, it allows
us to easily capture non-deterministic (soft) rules
that tend to hold between temporal relations but do
not have to. 1 For example, if event A happens be-
fore B, and B overlaps with C, then there is a good
chance that A also happens before C, but this is not
guaranteed.

Second, the amount of engineering required to
build our system is similar to the efforts required
for using an off-the-shelf classifier: we only need
to define features (in terms of formulae) and pro-
vide input data in the correct format. 2 In particu-
lar, we do not need to manually construct ILPs for
each document we encounter. Moreover, we can
exploit and compare advanced methods of global
inference and learning, as long as they are imple-
mented in our Markov Logic interpreter of choice.
Hence, in our future work we can focus entirely
on temporal relations, as opposed to inference or
learning techniques for machine learning.

We evaluate our approach using the data of the
“TempEval” challenge held at the SemEval 2007
Workshop (Verhagen et al., 2007). This challenge
involved three tasks corresponding to three types
of temporal relations: between events and time ex-
pressions in a sentence (Task A), between events of
a document and the document creation time (Task
B), and between events in two consecutive sen-
tences (Task C).

Our findings show that by incorporating global
constraints that hold between temporal relations
predicted in Tasks A, B and C, the accuracy for
all three tasks can be improved significantly. In
comparison to other participants of the “TempE-
val” challenge our approach is very competitive:
for two out of the three tasks we achieve the best
results reported so far, by a margin of at least 2%. 3

Only for Task B we were unable to reach the perfor-
mance of a rule-based entry to the challenge. How-
ever, we do perform better than all pure machine

1It is clearly possible to incorporate weighted constraints
into ILPs, but how to learn the corresponding weights is not
obvious.

2This is not to say that picking the right formulae in
Markov Logic, or features for local classification, is always
easy.

3To be slightly more precise: for Task C we achieve this
margin only for “strict” scoring—see sections 5 and 6 for more
details.

learning-based entries.
The remainder of this paper is organized as fol-

lows: Section 2 describes temporal relation identi-
fication including TempEval; Section 3 introduces
Markov Logic; Section 4 explains our proposed
Markov Logic Network; Section 5 presents the set-
up of our experiments; Section 6 shows and dis-
cusses the results of our experiments; and in Sec-
tion 7 we conclude and present ideas for future re-
search.

2 Temporal Relation Identification

Temporal relation identification aims to predict
the temporal order of events and/or time expres-
sions in documents, as well as their relations to the
document creation time (DCT). For example, con-
sider the following (slightly simplified) sentence of
Section 1 in this paper.

With the introduction of the TimeBank cor-
pus (Pustejovsky et al., 2003), machine
learning approaches to temporal ordering
became possible.

Here we have to predict that the “Machine learn-
ing becoming possible” event happened AFTER
the “introduction of the TimeBank corpus” event,
and that it has a temporal OVERLAP with the year
2003. Moreover, we need to determine that both
events happened BEFORE the time this paper was
created.

Most previous work on temporal relation iden-
tification (Boguraev and Ando, 2005; Mani et al.,
2006; Chambers and Jurafsky, 2008) is based on
the TimeBank corpus. The temporal relations in
the Timebank corpus are divided into 11 classes;
10 of them are defined by the following 5 relations
and their inverse: BEFORE, IBEFORE (immedi-
ately before), BEGINS, ENDS, INCLUDES; the re-
maining one is SIMULTANEOUS.

In order to drive forward research on temporal
relation identification, the SemEval 2007 shared
task (Verhagen et al., 2007) (TempEval) included
the following three tasks.
TASK A Temporal relations between events and

time expressions that occur within the same
sentence.

TASK B Temporal relations between the Docu-
ment Creation Time (DCT) and events.

TASK C Temporal relations between the main
events of adjacent sentences.4

4The main event of a sentence is expressed by its syntacti-
cally dominant verb.
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To simplify matters, in the TempEval data, the
classes of temporal relations were reduced from
the original 11 to 6: BEFORE, OVERLAP, AFTER,
BEFORE-OR-OVERLAP, OVERLAP-OR-AFTER,
and VAGUE.

In this work we are focusing on the three tasks of
TempEval, and our running hypothesis is that they
should be tackled jointly. That is, instead of learn-
ing separate probabilistic models for each task, we
want to learn a single one for all three tasks. This
allows us to incorporate rules of temporal consis-
tency that should hold across tasks. For example, if
an event X happens before DCT, and another event
Y after DCT, then surely X should have happened
before Y. We illustrate this type of transition rule in
Figure 1.

Note that the correct temporal ordering of events
and time expressions can be controversial. For in-
stance, consider the example sentence again. Here
one could argue that “the introduction of the Time-
Bank” may OVERLAP with “Machine learning be-
coming possible” because “introduction” can be
understood as a process that is not finished with
the release of the data but also includes later adver-
tisements and announcements. This is reflected by
the low inter-annotator agreement score of 72% on
Tasks A and B, and 68% on Task C.

3 Markov Logic
It has long been clear that local classification

alone cannot adequately solve all prediction prob-
lems we encounter in practice.5 This observa-
tion motivated a field within machine learning,
often referred to as Statistical Relational Learn-
ing (SRL), which focuses on the incorporation
of global correlations that hold between statistical
variables (Getoor and Taskar, 2007).

One particular SRL framework that has recently
gained momentum as a platform for global learn-
ing and inference in AI is Markov Logic (Richard-
son and Domingos, 2006), a combination of first-
order logic and Markov Networks. It can be under-
stood as a formalism that extends first-order logic
to allow formulae that can be violated with some
penalty. From an alternative point of view, it is an
expressive template language that uses first order
logic formulae to instantiate Markov Networks of
repetitive structure.

From a wide range of SRL languages we chose
Markov Logic because it supports discriminative

5It can, however, solve a large number of problems surpris-
ingly well.

Figure 1: Example of Transition Rule 1

training (as opposed to generative SRL languages
such as PRM (Koller, 1999)). Moreover, sev-
eral Markov Logic software libraries exist and are
freely available (as opposed to other discrimina-
tive frameworks such as Relational Markov Net-
works (Taskar et al., 2002)).

In the following we will explain Markov Logic
by example. One usually starts out with a set
of predicates that model the decisions we need to
make. For simplicity, let us assume that we only
predict two types of decisions: whether an event e
happens before the document creation time (DCT),
and whether, for a pair of events e1 and e2, e1

happens before e2. Here the first type of deci-
sion can be modeled through a unary predicate
beforeDCT(e), while the latter type can be repre-
sented by a binary predicate before(e1, e2). Both
predicates will be referred to as hidden because we
do not know their extensions at test time. We also
introduce a set of observed predicates, representing
information that is available at test time. For ex-
ample, in our case we could introduce a predicate
futureTense(e) which indicates that e is an event
described in the future tense.

With our predicates defined, we can now go on
to incorporate our intuition about the task using
weighted first-order logic formulae. For example,
it seems reasonable to assume that

futureTense (e)⇒ ¬beforeDCT (e) (1)
often, but not always, holds. Our remaining un-
certainty with regard to this formula is captured
by a weight w we associate with it. Generally
we can say that the larger this weight is, the more
likely/often the formula holds in the solutions de-
scribed by our model. Note, however, that we do
not need to manually pick these weights; instead
they are learned from the given training corpus.

The intuition behind the previous formula can
also be captured using a local classifier.6 However,

6Consider a log-linear binary classifier with a “past-tense”
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Markov Logic also allows us to say more:
beforeDCT (e1) ∧ ¬beforeDCT (e2)

⇒ before (e1, e2) (2)
In this case, we made a statement about more
global properties of a temporal ordering that can-
not be captured with local classifiers. This formula
is also an example of the transition rules as seen in
Figure 2. This type of rule forms the core idea of
our joint approach.

A Markov Logic Network (MLN) M is a set of
pairs (φ,w) where φ is a first order formula and w
is a real number (the formula’s weight). It defines a
probability distribution over sets of ground atoms,
or so-called possible worlds, as follows:

p (y) =
1
Z

exp

 ∑
(φ,w)∈M

w
∑
c∈Cφ

fφ
c (y)

 (3)

Here each c is a binding of free variables in φ to
constants in our domain. Each fφ

c is a binary fea-
ture function that returns 1 if in the possible world
y the ground formula we get by replacing the free
variables in φ with the constants in c is true, and
0 otherwise. Cφ is the set of all bindings for the
free variables in φ. Z is a normalisation constant.
Note that this distribution corresponds to a Markov
Network (the so-called Ground Markov Network)
where nodes represent ground atoms and factors
represent ground formulae.

Designing formulae is only one part of the game.
In practice, we also need to choose a training
regime (in order to learn the weights of the formu-
lae we added to the MLN) and a search/inference
method that picks the most likely set of ground
atoms (temporal relations in our case) given our
trained MLN and a set of observations. How-
ever, implementations of these methods are often
already provided in existing Markov Logic inter-
preters such as Alchemy 7 and Markov thebeast. 8

4 Proposed Markov Logic Network

As stated before, our aim is to jointly tackle
Tasks A, B and C of the TempEval challenge. In
this section we introduce the Markov Logic Net-
work we designed for this goal.

We have three hidden predicates, corresponding
to Tasks A, B, and C: relE2T(e, t, r) represents the
temporal relation of class r between an event e

feature: here for every event e the decision “e happens be-
fore DCT” becomes more likely with a higher weight for this
feature.

7http://alchemy.cs.washington.edu/
8http://code.google.com/p/thebeast/

Figure 2: Example of Transition Rule 2

and a time expression t; relDCT(e, r) denotes the
temporal relation r between an event e and DCT;
relE2E(e1, e2, r) represents the relation r between
two events of the adjacent sentences, e1 and e2.

Our observed predicates reflect information we
were given (such as the words of a sentence), and
additional information we extracted from the cor-
pus (such as POS tags and parse trees). Note that
the TempEval data also contained temporal rela-
tions that were not supposed to be predicted. These
relations are represented using two observed pred-
icates: relT2T(t1, t2, r) for the relation r between
two time expressions t1 and t2; dctOrder(t, r) for
the relation r between a time expression t and a
fixed DCT.

An illustration of all “temporal” predicates, both
hidden and observed, can be seen in Figure 3.

4.1 Local Formula

Our MLN is composed of several weighted for-
mulae that we divide into two classes. The first
class contains local formulae for the Tasks A, B
and C. We say that a formula is local if it only
considers the hidden temporal relation of a single
event-event, event-time or event-DCT pair. The
formulae in the second class are global: they in-
volve two or more temporal relations at the same
time, and consider Tasks A, B and C simultane-
ously.

The local formulae are based on features em-
ployed in previous work (Cheng et al., 2007;
Bethard and Martin, 2007) and are listed in Table 1.
What follows is a simple example in order to illus-
trate how we implement each feature as a formula
(or set of formulae).

Consider the tense-feature for Task C. For this
feature we first introduce a predicate tense(e, t)
that denotes the tense t for an event e. Then we
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Figure 3: Predicates for Joint Formulae; observed
predicates are indicated with dashed lines.

Table 1: Local Features
Feature A B C
EVENT-word X X
EVENT-POS X X
EVENT-stem X X
EVENT-aspect X X X
EVENT-tense X X X
EVENT-class X X X
EVENT-polarity X X
TIMEX3-word X
TIMEX3-POS X
TIMEX3-value X
TIMEX3-type X
TIMEX3-DCT order X X
positional order X
in/outside X
unigram(word) X X
unigram(POS) X X
bigram(POS) X
trigram(POS) X X
Dependency-Word X X X
Dependency-POS X X

add a set of formulae such as

tense(e1, past) ∧ tense(e2, future)
⇒ relE2E(e1, e2, before) (4)

for all possible combinations of tenses and tempo-
ral relations.9

4.2 Global Formula

Our global formulae are designed to enforce con-
sistency between the three hidden predicates (and
the two observed temporal predicates we men-
tioned earlier). They are based on the transition

9This type of “template-based” formulae generation can be
performed automatically by the Markov Logic Engine.

rules we mentioned in Section 3.
Table 2 shows the set of formula templates we

use to generate the global formulae. Here each
template produces several instantiations, one for
each assignment of temporal relation classes to the
variables R1, R2, etc. One example of a template
instantiation is the following formula.

dctOrder(t1, before) ∧ relDCT(e1, after)
⇒ relE2T(e1, t1, after) (5a)

This formula is an expansion of the formula tem-
plate in the second row of Table 2. Note that it
utilizes the results of Task B to solve Task A.

Formula 5a should always hold,10 and hence we
could easily implement it as a hard constraint in
an ILP-based framework. However, some transi-
tion rules are less determinstic and should rather
be taken as “rules of thumb”. For example, for-
mula 5b is a rule which we expect to hold often,
but not always.

dctOrder(t1, before) ∧ relDCT(e1, overlap)
⇒ relE2T(e1, t1, after) (5b)

Fortunately, this type of soft rule poses no prob-
lem for Markov Logic: after training, Formula 5b
will simply have a lower weight than Formula 5a.
By contrast, in a “Local Classifier + ILP”-based
approach as followed by Chambers and Jurafsky
(2008) it is less clear how to proceed in the case
of soft rules. Surely it is possible to incorporate
weighted constraints into ILPs, but how to learn the
corresponding weights is not obvious.

5 Experimental Setup

With our experiments we want to answer two
questions: (1) does jointly tackling Tasks A, B,
and C help to increase overall accuracy of tempo-
ral relation identification? (2) How does our ap-
proach compare to state-of-the-art results? In the
following we will present the experimental set-up
we chose to answer these questions.

In our experiments we use the test and training
sets provided by the TempEval shared task. We
further split the original training data into a training
and a development set, used for optimizing param-
eters and formulae. For brevity we will refer to the
training, development and test set as TRAIN, DEV
and TEST, respectively. The numbers of temporal
relations in TRAIN, DEV, and TEST are summa-
rized in Table 3.

10However, due to inconsistent annotations one will find vi-
olations of this rule in the TempEval data.
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Table 2: Joint Formulae for Global Model
Task Formula
A→ B dctOrder(t, R1) ∧ relE2T(e, t, R2)⇒ relDCT(e, R3)
B → A dctOrder(t, R1) ∧ relDCT(e, R2)⇒ relE2T(e, t, R3)
B → C relDCT(e1, R1) ∧ relDCT(e2, R2)⇒ relE2E(e1, e2, R3)
C → B relDCT(e1, R1) ∧ relE2E(e1, e2, R2)⇒ relDCT(e2, R3)
A→ C relE2T(e1, t1, R1) ∧ relT2T(t1, t2, R2) ∧ relE2T(e2, t2, R3)⇒ relE2E(e1, e2, R4)
C → A relE2T(e2, t2, R1) ∧ relT2T(t1, t2, R2) ∧ relE2E(e1, e2, R3)⇒ relE2T(e1, t1, R4)

Table 3: Numbers of Labeled Relations for All
Tasks

TRAIN DEV TEST TOTAL
Task A 1359 131 169 1659
Task B 2330 227 331 2888
Task C 1597 147 258 2002

For feature generation we use the following
tools. 11 POS tagging is performed with TnT
ver2.2;12 for our dependency-based features we use
MaltParser 1.0.0.13 For inference in our models
we use Cutting Plane Inference (Riedel, 2008) with
ILP as a base solver. This type of inference is ex-
act and often very fast because it avoids instantia-
tion of the complete Markov Network. For learning
we apply one-best MIRA (Crammer and Singer,
2003) with Cutting Plane Inference to find the cur-
rent model guess. Both training and inference algo-
rithms are provided by Markov thebeast, a Markov
Logic interpreter tailored for NLP applications.

Note that there are several ways to manually op-
timize the set of formulae to use. One way is to
pick a task and then choose formulae that increase
the accuracy for this task on DEV. However, our
primary goal is to improve the performance of all
the tasks together. Hence we choose formulae with
respect to the total score over all three tasks. We
will refer to this type of optimization as “averaged
optimization”. The total scores of the all three tasks
are defined as follows:

Ca + Cb + Cc

Ga + Gb + Gc

where Ca, Cb, and Cc are the number of the cor-
rectly identified labels in each task, and Ga, Gb,
and Gc are the numbers of gold labels of each task.
Our system necessarily outputs one label to one re-
lational link to identify. Therefore, for all our re-

11Since the TempEval trial has no restriction on pre-
processing such as syntactic parsing, most participants used
some sort of parsers.

12http://www.coli.uni-saarland.de/
˜thorsten/tnt/

13http://w3.msi.vxu.se/˜nivre/research/
MaltParser.html

sults, precision, recall, and F-measure are the exact
same value.

For evaluation, TempEval proposed the two scor-
ing schemes: “strict” and “relaxed”. For strict scor-
ing we give full credit if the relations match, and no
credit if they do not match. On the other hand, re-
laxed scoring gives credit for a relation according
to Table 4. For example, if a system picks the re-
lation “AFTER” that should have been “BEFORE”
according to the gold label, it gets neither “strict”
nor “relaxed” credit. But if the system assigns
“B-O (BEFORE-OR-OVERLAP)” to the relation,
it gets a 0.5 “relaxed” score (and still no “strict”
score).

6 Results

In the following we will first present our com-
parison of the local and global model. We will then
go on to put our results into context and compare
them to the state-of-the-art.

6.1 Impact of Global Formulae

First, let us show the results on TEST in Ta-
ble 5. You will find two columns, “Global” and
“Local”, showing scores achieved with and with-
out joint formulae, respectively. Clearly, the global
models scores are higher than the local scores for
all three tasks. This is also reflected by the last row
of Table 5. Here we see that we have improved
the averaged performance across the three tasks by
approximately 2.5% (ρ < 0.01, McNemar’s test 2-
tailed). Note that with 3.5% the improvements are
particularly large for Task C.

The TempEval test set is relatively small (see Ta-
ble 3). Hence it is not clear how well our results
would generalize in practice. To overcome this is-
sue, we also evaluated the local and global model
using 10-fold cross validation on the training data
(TRAIN + DEV). The corresponding results can be
seen in Table 6. Note that the general picture re-
mains: performance for all tasks is improved, and
the averaged score is improved only slightly less
than for the TEST results. However, this time the
score increase for Task B is lower than before. We
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Table 4: Evaluation Weights for Relaxed Scoring

B O A B-O O-A V
B 1 0 0 0.5 0 0.33
O 0 1 0 0.5 0.5 0.33
A 0 0 1 0 0.5 0.33

B-O 0.5 0.5 0 1 0.5 0.67
O-A 0 0.5 0.5 0.5 1 0.67

V 0.33 0.33 0.33 0.67 0.67 1
B: BEFORE O: OVERLAP
A: AFTER B-O: BEFORE-OR-OVERLAP

O-A: OVERLAP-OR-AFTER V: VAGUE

Table 5: Results on TEST Set
Local Global

task strict relaxed strict relaxed
Task A 0.621 0.669 0.645 0.687
Task B 0.737 0.753 0.758 0.777
Task C 0.531 0.599 0.566 0.632
All 0.641 0.682 0.668 0.708

Table 6: Results with 10-fold Cross Validation

Local Global
task strict relaxed strict relaxed
Task A 0.613 0.645 0.662 0.691
Task B 0.789 0.810 0.799 0.819
Task C 0.533 0.608 0.552 0.623
All 0.667 0.707 0.689 0.727

see that this is compensated by much higher scores
for Task A and C. Again, the improvements for all
three tasks are statistically significant (ρ < 10−8,
McNemar’s test, 2-tailed).

To summarize, we have shown that by tightly
connecting tasks A, B and C, we can improve tem-
poral relation identification significantly. But are
we just improving a weak baseline, or can joint
modelling help to reach or improve the state-of-the-
art results? We will try to answer this question in
the next section.

6.2 Comparison to the State-of-the-art

In order to put our results into context, Table 7
shows them along those of other TempEval par-
ticipants. In the first row, TempEval Best gives
the best scores of TempEval for each task. Note
that all but the strict scores of Task C are achieved
by WVALI (Puscasu, 2007), a hybrid system that
combines machine learning and hand-coded rules.
In the second row we see the TempEval average
scores of all six participants in TempEval. The
third row shows the results of CU-TMP (Bethard

and Martin, 2007), an SVM-based system that
achieved the second highest scores in TempEval for
all three tasks. CU-TMP is of interest because it is
the best pure Machine-Learning-based approach so
far.

The scores of our local and global model come
in the fourth and fifth row, respectively. The last
row in the table shows task-adjusted scores. Here
we essentially designed and applied three global
MLNs, each one tailored and optimized for a dif-
ferent task. Note that the task-adjusted scores are
always about 1% higher than those of the single
global model.

Let us discuss the results of Table 7 in detail. We
see that for task A, our global model improves an
already strong local model to reach the best results
both for strict scores (with a 3% points margin) and
relaxed scores (with a 5% points margin).

For Task C we see a similar picture: here adding
global constraints helped to reach the best strict
scores, again by a wide margin. We also achieve
competitive relaxed scores which are in close range
to the TempEval best results.

Only for task B our results cannot reach the best
TempEval scores. While we perform slightly better
than the second-best system (CU-TMP), and hence
report the best scores among all pure Machine-
Learning based approaches, we cannot quite com-
pete with WVALI.

6.3 Discussion

Let us discuss some further characteristics and
advantages of our approach. First, notice that
global formulae not only improve strict but also re-
laxed scores for all tasks. This suggests that we
produce more ambiguous labels (such as BEFORE-
OR-OVERLAP) in cases where the local model has
been overconfident (and wrongly chose BEFORE
or OVERLAP), and hence make less “fatal errors”.
Intuitively this makes sense: global consistency is
easier to achieve if our labels remain ambiguous.
For example, a solution that labels every relation
as VAGUE is globally consistent (but not very in-
formative).

Secondly, one could argue that our solution to
joint temporal relation identification is too com-
plicated. Instead of performing global inference,
one could simply arrange local classifiers for the
tasks into a pipeline. In fact, this has been done by
Bethard and Martin (2007): they first solve task B
and then use this information as features for Tasks
A and C. While they do report improvements (0.7%
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Table 7: Comparison with Other Systems

Task A Task B Task C
strict relaxed strict relaxed strict relaxed

TempEval Best 0.62 0.64 0.80 0.81 0.55 0.64
TempEval Average 0.56 0.59 0.74 0.75 0.51 0.58
CU-TMP 0.61 0.63 0.75 0.76 0.54 0.58
Local Model 0.62 0.67 0.74 0.75 0.53 0.60
Global Model 0.65 0.69 0.76 0.78 0.57 0.63
Global Model (Task-Adjusted) (0.66) (0.70) (0.76) (0.79) (0.58) (0.64)

on Task A, and about 0.5% on Task C), generally
these improvements do not seem as significant as
ours. What is more, by design their approach can
not improve the first stage (Task B) of the pipeline.

On the same note, we also argue that our ap-
proach does not require more implementation ef-
forts than a pipeline. Essentially we only have to
provide features (in the form of formulae) to the
Markov Logic Engine, just as we have to provide
for a SVM or MaxEnt classifier.

Finally, it became more clear to us that there are
problems inherent to this task and dataset that we
cannot (or only partially) solve using global meth-
ods. First, there are inconsistencies in the training
data (as reflected by the low inter-annotator agree-
ment) that often mislead the learner—this prob-
lem applies to learning of local and global formu-
lae/features alike. Second, the training data is rela-
tively small. Obviously, this makes learning of re-
liable parameters more difficult, particularly when
data is as noisy as in our case. Third, the tempo-
ral relations in the TempEval dataset only directly
connect a small subset of events. This makes global
formulae less effective.14

7 Conclusion

In this paper we presented a novel approach to
temporal relation identification. Instead of using
local classifiers to predict temporal order in a pair-
wise fashion, our approach uses Markov Logic to
incorporate both local features and global transi-
tion rules between temporal relations.

We have focused on transition rules between
temporal relations of the three TempEval subtasks:
temporal ordering of events, of events and time ex-
pressions, and of events and the document creation
time. Our results have shown that global transition
rules lead to significantly higher accuracy for all
three tasks. Moreover, our global Markov Logic

14See (Chambers and Jurafsky, 2008) for a detailed discus-
sion of this problem, and a possible solution for it.

model achieves the highest scores reported so far
for two of three tasks, and very competitive results
for the remaining one.

While temporal transition rules can also be cap-
tured with an Integer Linear Programming ap-
proach (Chambers and Jurafsky, 2008), Markov
Logic has at least two advantages. First, handling
of “rules of thumb” between less specific tempo-
ral relations (such as OVERLAP or VAGUE) is
straightforward—we simply let the Markov Logic
Engine learn weights for these rules. Second, there
is less engineering overhead for us to perform, be-
cause we do not need to generate ILPs for each doc-
ument.

However, potential for further improvements
through global approaches seems to be limited by
the sparseness and inconsistency of the data. To
overcome this problem, we are planning to use ex-
ternal or untagged data along with methods for un-
supervised learning in Markov Logic (Poon and
Domingos, 2008).

Furthermore, TempEval-2 15 is planned for 2010
and it has challenging temporal ordering tasks in
five languages. So, we would like to investigate the
utility of global formulae for multilingual tempo-
ral ordering. Here we expect that while lexical and
syntax-based features may be quite language de-
pendent, global transition rules should hold across
languages.
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Abstract

Coreferencing entities across documents
in a large corpus enables advanced
document understanding tasks such as
question answering. This paper presents
a novel cross document coreference
approach that leverages the profiles
of entities which are constructed by
using information extraction tools and
reconciled by using a within-document
coreference module. We propose to
match the profiles by using a learned
ensemble distance function comprised
of a suite of similarity specialists. We
develop a kernelized soft relational
clustering algorithm that makes use of
the learned distance function to partition
the entities into fuzzy sets of identities.
We compare the kernelized clustering
method with a popular fuzzy relation
clustering algorithm (FRC) and show 5%
improvement in coreference performance.
Evaluation of our proposed methods
on a large benchmark disambiguation
collection shows that they compare
favorably with the top runs in the
SemEval evaluation.

1 Introduction

A named entity that represents a person, an or-
ganization or a geo-location may appear within
and across documents in different forms. Cross
document coreference (CDC) is the task of con-
solidating named entities that appear in multiple
documents according to their real referents. CDC
is a stepping stone for achieving intelligent in-
formation access to vast and heterogeneous text
corpora, which includes advanced NLP techniques
such as document summarization and question an-
swering. A related and well studied task is within

document coreference (WDC), which limits the
scope of disambiguation to within the boundary of
a document. When namesakes appear in an article,
the author can explicitly help to disambiguate, us-
ing titles and suffixes (as in the example, “George
Bush Sr. ... the younger Bush”) besides other
means. Cross document coreference, on the other
hand, is a more challenging task because these
linguistics cues and sentence structures no longer
apply, given the wide variety of context and styles
in different documents.

Cross document coreference research has re-
cently become more popular due to the increasing
interests in the web person search task (Artiles
et al., 2007). Here, a search query for a person
name is entered into a search engine and the
desired outputs are documents clustered according
to the identities of the entities in question. In
our work, we propose to drill down to the sub-
document mention level and construct an entity
profile with the support of information extraction
tools and reconciled with WDC methods. Hence
our IE based approach has access to accurate
information such as a person’s mentions and geo-
locations for disambiguation. Simple IR based
CDC approaches (e.g. (Gooi and Allan, 2004)), on
the other hand, may simply use all the terms and
this can be detrimental to accuracy. For example, a
biography of John F. Kennedy is likely to mention
members of his family with related positions,
besides references to other political figures. Even
with careful word selection, these textual features
can still confuse the disambiguation system about
the true identity of the person.

We propose to handle the CDC task using a
novel kernelized fuzzy relational clustering algo-
rithm, which allows probabilistic cluster mem-
bership assignment. This not only addresses the
intrinsic uncertainty nature of the CDC problem,
but also yields additional performance improve-
ment. We propose to use a specialist ensemble
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learning approach to aggregate the diverse set of
similarities in comparing attributes and relation-
ships in entity profiles. Our approach is first fully
described in Section 2. The effectiveness of the
proposed method is demonstrated using real world
benchmark test sets in Section 3. We review
related work in cross document coreference and
conclude in Section 5.

2 Methods

2.1 Document Level and Profile Based CDC

We make distinctions between document level and
profile based cross document coreference. Docu-
ment level CDC makes a simplifying assumption
that a named entity (and its variants) in a document
has one underlying real identity. The assump-
tion is generally acceptable but may be violated
when a document refers to namesakes at the same
time (e.g. George W. Bush and George H. W.
Bush referred to as George or President Bush).
Furthermore, the context surrounding the person
NE President Clinton can be counterproductive
for disambiguating the NE Senator Clinton, with
both entities likely to appear in a document at the
same time. The simplified document level CDC
has nevertheless been used in the WePS evaluation
(Artiles et al., 2007), called the web people task.

In this work, we advocate profile based disam-
biguation that aims to leverage the advances in
NLP techniques. Rather than treating a document
as simply a bag of words, an information extrac-
tion tool first extracts NE’s and their relationships.
For the NE’s of interest (i.e. persons in this work),
a within-document coreference (WDC) module
then links the entities deemed as referring to
the same underlying identity into a WDC chain.
This process includes both anaphora resolution
(resolving ‘He’ and its antecedent ‘President Clin-
ton’) and entity tracking (resolving ‘Bill’ and
‘President Clinton’). Let E = {e1, ..., eN} denote
the set of N chained entities (each corresponding
to a WDC chain), provided as input to the CDC
system. We intentionally do not distinguish which
document each ej belongs to, as profile based
CDC can potentially rectify WDC errors by lever-
aging information across document boundaries.
Each ei is represented as a profile which contains
the NE, its attributes and associated relationships,
i.e. ej =< ej,1, ..., ej,L > (ej,l can be a textual
attribute or a pointer to another entity). The profile
based CDC method generates a partition of E ,

represented by a partition matrix U (where uij

denotes the membership of an entity ej to the i-
th identity cluster). Therefore, the chained entities
placed in a name cluster are deemed as coreferent.

Profile based CDC addresses a finer grained
coreference problem in the mention level, enabled
by the recent advances in IE and WDC techniques.
In addition, profile based CDC facilitates user
information consumption with structured informa-
tion and short summary passages. Next, we focus
on the relational clustering algorithm that lies at
the core of the profile based CDC system. We then
turn our attention to the specialist learning algo-
rithm for the distance function used in clustering,
capable of leveraging the available training data.

2.2 CDC Using Fuzzy Relational Clustering
2.2.1 Preliminaries
Traditionally, hard clustering algorithms (where
uij ∈ {0, 1}) such as complete linkage hierarchi-
cal agglomerative clustering (Mann and Yarowsky,
2003) have been applied to the disambiguation
problem. In this work, we propose to use fuzzy
clustering methods (relaxing the membership con-
dition to uij ∈ [0, 1]) as a better way of handling
uncertainty in cross document coreference. First,
consider the following motivating example,
Example. The named entity President Bush is
extracted from the sentence “President Bush ad-
dressed the nation from the Oval Office Monday.”

• Without additional cues, a hard clustering
algorithm has to arbitrarily assign the
mention “President Bush” to either the NE
“George W. Bush” or “George H. W. Bush”.

• A soft clustering algorithm, on the other
hand, can assign equal probability to the two
identities, indicating low entropy or high
uncertainty in the solution. Additionally, the
soft clustering algorithm can assign lower
probability to the identity “Governor Jeb
Bush”, reflecting a less likely (though not
impossible) coreference decision.

We first formalize the cross document corefer-
ence problem as a soft clustering problem, which
minimizes the following objective function:

JC(E) =
C
∑

i=1

N
∑

j=1
um

ij d
2(ej ,vi) (1)

s.t.
C
∑

i=1
uij = 1 and

N
∑

j=1
uij > 0, uij ∈ [0, 1]
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where vi is a virtual (implicit) prototype of the i-th
cluster (ej ,vi ∈ D) and m controls the fuzziness
of the solution (m > 1; the solution approaches
hard clustering as m approaches 1). We will
further explain the generic distance function d :
D × D → R in the next subsection. The goal
of the optimization is to minimize the sum of
deviations of patterns to the cluster prototypes.
The clustering solution is a fuzzy partition Pθ =
{Ci}, where ej ∈ Ci if and only if uij > θ.

We note from the outset that the optimization
functional has the same form as the classical
Fuzzy C-Means (FCM) algorithm (Bezdek, 1981),
but major differences exist. FCM, as most ob-
ject clustering algorithms, deals with object data
represented in a vectorial form. In our case, the
data is purely relational and only the mutual rela-
tionships between entities can be determined. To
be exact, we can define the similarity/dissimilarity
between a pair of attributes or relationships of
the same type l between entities ej and ek as
s(l)(ej , ek). For instance, the similarity between
the occupations ‘President’ and ‘Commander in
Chief’ can be computed using the JC semantic
distance (Jiang and Conrath, 1997) with WordNet;
the similarity of co-occurrence with other people
can be measured by the Jaccard coefficient. In the
next section, we propose to compute the relation
strength r(·, ·) from the component similarities
using aggregation weights learned from training
data. Hence the N chained entities to be clustered
can be represented as relational data using an n×n
matrix R, where rj,k = r(ej , ek). The Any Rela-
tion Clustering Algorithm (ARCA) (Corsini et al.,
2005; Cimino et al., 2006) represents relational
data as object data using their mutual relation
strength and uses FCM for clustering. We adopt
this approach to transform (objectify) a relational
pattern ej into an N dimensional vector rj (i.e.
the j-th row in the matrix R) using a mapping
Θ : D → RN . In other words, each chained entity
is represented as a vector of its relation strengths
with all the entities. Fuzzy clusters can then
be obtained by grouping closely related patterns
using object clustering algorithm.

Furthermore, it is well known that FCM
is a spherical clustering algorithm and thus
is not generally applicable to relational data
which may yield relational clusters of arbitrary
and complicated shapes. Also, the distance in
the transformed space may be non-Euclidean,

rendering many clustering algorithms ineffective
(many FCM extensions theoretically require
the underlying distance to satisfy certain metric
properties). In this work, we propose kernelized
ARCA (called KARC) which uses a kernel-
induced metric to handle the objectified relational
data, as we introduce next.

2.2.2 Kernelized Fuzzy Clustering
Kernelization (Schölkopf and Smola, 2002) is a
machine learning technique to transform patterns
in the data space to a high-dimensional feature
space so that the structure of the data can be more
easily and adequately discovered. Specifically, a
nonlinear transformation Φ maps data in RN to
H of possibly infinite dimensions (Hilbert space).
The key idea is the kernel trick – without explicitly
specifying Φ and H, the inner product in H can
be computed by evaluating a kernel function K in
the data space, i.e. < Φ(ri), Φ(rj) >= K(ri, rj)
(one of the most frequently used kernel func-
tions is the Gaussian RBF kernel: K(rj , rk) =
exp(−λ‖rj − rk‖2)). This technique has been
successfully applied to SVMs to classify non-
linearly separable data (Vapnik, 1995). Kerneliza-
tion preserves the simplicity in the formalism of
the underlying clustering algorithm, meanwhile it
yields highly nonlinear boundaries so that spheri-
cal clustering algorithms can apply (e.g. (Zhang
and Chen, 2003) developed a kernelized object
clustering algorithm based on FCM).

Let wi denote the objectified virtual cluster vi,
i.e. wi = Θ(vi). Using the kernel trick, the
squared distance between Φ(rj) and Φ(wi) in the
feature space H can be computed as:

‖Φ(rj)− Φ(wi)‖2
H (2)

= < Φ(rj)− Φ(wi), Φ(rj)− Φ(wi) >

= < Φ(rj), Φ(rj) > −2 < Φ(rj), Φ(wi) >

+ < Φ(wi),Φ(wi) >

= 2− 2K(rj ,wi) (3)

assuming K(r, r) = 1. The KARC algorithm

defines the generic distance d as d2(ej ,vi)
def
=

‖Φ(rj)−Φ(wi)‖2
H = ‖Φ(Θ(ej))−Φ(Θ(vi))‖2

H

(we also use d2
ji as a notational shorthand).

Using Lagrange Multiplier as in FCM, the opti-
mal solution for Equation (1) is:

uij =











[

C
∑

h=1

(

d2
ji

d2
jh

)1/(m−1)
]−1

, (d2
ji 6= 0)

1 , (d2
ji = 0)

(4)
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Φ(wi) =

N
∑

k=1
um

ikΦ(rk)

N
∑

k=1
um

ik

(5)

Since Φ is an implicit mapping, Eq. (5) can
not be explicitly evaluated. On the other hand,
plugging Eq. (5) into Eq. (3), d2

ji can be explicitly
represented by using the kernel matrix,

d2
ji = 2− 2 ·

N
∑

k=1
um

ikK(rj , rk)

N
∑

k=1
um

ik

(6)

With the derivation, the kernelized fuzzy clus-
tering algorithm KARC works as follows. The
chained entities E are first objectified into the
relation strength matrix R using SEG, the details
of which are described in the following section.
The Gram matrix K is then computed based on
the relation strength vectors using the kernel func-
tion. For a given number of clusters C, the
initialization step is done by randomly picking C
patterns as cluster centers, equivalently, C indices
{n1, .., nC} are randomly picked from {1, .., N}.
D0 is initialized by setting d2

ji = 2− 2K(rj , rni).
KARC alternately updates the membership matrix
U and the kernel distance matrix D until conver-
gence or running more than maxIter iterations
(Algorithm 1). Finally, the soft partition is gen-
erated based on the membership matrix U , which
is the desired cross document coreference result.

Algorithm 1 KARC Alternating Optimization
Input: Gram matrix K; #Clusters C; threshold θ

initialize D0

t ← 0
repeat

t ← t + 1
// 1– Update membership matrix U t:

uij =
(d2

ji)
− 1

m−1

∑C

h=1
(d2

jh)
− 1

m−1

// 2– Update kernel distance matrix Dt:

d2
ji = 2− 2 ·

N
∑

k=1

um
ikKjk

N
∑

k=1

um
ik

until (t > maxIter) or
(t > 1 and |U t − U t−1| < ε)

Pθ ← Generate soft partition(U t, θ)
Output: Fuzzy partition Pθ

2.2.3 Cluster Validation
In the CDC setting, the number of true underlying
identities may vary depending on the entities’ level
of ambiguity (e.g. name frequency). Selecting the
optimal number of clusters is in general a hard
research question in clustering1. We adopt the
Xie-Beni Index (XBI) (Xie and Beni, 1991) as in
ARCA, which is one of the most popular cluster
validities for fuzzy clustering algorithms. Xie-
Beni Index (XBI) measures the goodness of clus-
tering using the ratio of the intra-cluster variation
and the inter-cluster separation. We measure the
kernelized XBI (KXBI) in the feature space as,

KXBI =

C
∑

i=1

N
∑

j=1
um

ij ‖Φ(rj)− Φ(wi)‖2
H

N · min
1≤i<j≤C

‖Φ(wi)− Φ(wj)‖2
H

where the nominator is readily computed using D
and the inter-cluster separation in the denominator
can be evaluated using the similar kernel trick
above (details omitted). Note that KXBI is only
defined for C > 1. Thus we pick the C that
corresponds to the first minimum of KXBI, and
then compare its objective function value JC with
the cluster variance (J1 for C = 1). The optimal
C is chosen from the minimum of the two2.

2.3 Specialist Ensemble Learning of Relation
Strengths between Entities

One remaining element in the overall CDC ap-
proach is how the relation strength rj,k between
two entities is computed. In (Cohen et al., 2003),
a binary SVM model is trained and its confidence
in predicting the non-coreferent class is used as
the distance metric. In our case of using in-
formation extraction results for disambiguation,
however, only some of the similarity features are
present based on the available relationships in two
profiles. In this work, we propose to treat each
similarity function as a specialist that specializes
in computing the similarity of a particular type
of relationship. Indeed, the similarity function
between a pair of attributes or relationships may in
itself be a sophisticated component algorithm. We
utilize the specialist ensemble learning framework
(Freund et al., 1997) to combine these component

1In particular, clustering algorithms that regularize the
optimization with cluster size are not applicable in our case.

2In practice, the entities to be disambiguated tend to be
dominated by several major identities. Hence performance
generally does not vary much in the range of large C values.
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similarities into the relation strength for clustering.
Here, a specialist is awakened for prediction only
when the same type of relationships are present in
both chained entities. A specialist can choose not
to make a prediction if it is not confident enough
for an instance. These aspects contrast with the
traditional insomniac ensemble learning methods,
where each component learner is always available
for prediction (Freund et al., 1997). Also, spe-
cialists have different weights (in addition to their
prediction) on the final relation strength, e.g. a
match in a family relationship is considered more
important than in a co-occurrence relationship.

Algorithm 2 SEG (Freund et al., 1997)
Input: Initial weight distribution p1;

learning rate η > 0; training set {< st, yt >}
1: for t=1 to T do
2: Predict using:

ỹt =

∑

i∈Et pt
is

t
i

∑

i∈Et pt
i

(7)

3: Observe the true label yt and incur square
loss L(ỹt, yt) = (ỹt − yt)2

4: Update weight distribution: for i ∈ Et

pt+1
i =

pt
ie
−2ηxt

i(ỹ
t−yt)

∑

j∈Et

pt
je
−2ηxt

i(ỹ
t−yt)

·
∑

j∈Et

pt
j (8)

Otherwise: pt+1
i = pt

i

5: end for
Output: Model p

The ensemble relation strength model is learned
as follows. Given training data, the set of chained
entities Etrain is extracted as described earlier. For
a pair of entities ej and ek, a similarity vector
s is computed using the component similarity
functions for the respective attributes and rela-
tionships, and the true label is defined as y =
I{ej and ek are coreferent}. The instances are
subsampled to yield a balanced pairwise train-
ing set {< st, yt >}. We adopt the Special-
ist Exponentiated Gradient (SEG) (Freund et al.,
1997) algorithm to learn the mixing weights of the
specialists’ prediction (Algorithm 2) in an online
manner. In each training iteration, an instance
< st, yt > is presented to the learner (with Et

denoting the set of indices of awake specialists in
st). The SEG algorithm first predicts the value ỹt

based on the awake specialists’ decisions. The true
value yt is then revealed and the learner incurs a
square loss between the predicted and the true val-
ues. The current weight distribution p is updated
to minimize square loss: awake specialists are
promoted or demoted in their weights according to
the difference between the predicted and the true
value. The learning iterations can run a few passes
till convergence, and the model is learned in linear
time with respect to T and is thus very efficient. In
prediction time, let E(jk) denote the set of active
specialists for the pair of entities ej and ek, and
s(jk) denote the computed similarity vector. The
predicted relation strength rj,k is,

rj,k =

∑

i∈E(jk) pis
(jk)
i

∑

i∈E(jk) pi
(9)

2.4 Remarks
Before we conclude this section, we make several
comments on using fuzzy clustering for cross
document coreference. First, instead of conduct-
ing CDC for all entities concurrently (which can
be computationally intensive with a large cor-
pus), chained entities are first distributed into non-
overlapping blocks. Clustering is performed for
each block which is a drastically smaller problem
space, while entities from different blocks are
unlikely to be coreferent. Our CDC system uses
phonetic blocking on the full name, so that name
variations arising from translation, transliteration
and abbreviation can be accommodated. Ad-
ditional link constraints checking is also imple-
mented to improve scalability though these are not
the main focus of the paper.

There are several additional benefits in using
a fuzzy clustering method besides the capabil-
ity of probabilistic membership assignments in
the CDC solution. In the clustered web search
context, splitting a true identity into two clusters
is perceived as a more severe error than putting
irrelevant records in a cluster, as it is more difficult
for the user to collect records in different clusters
(to reconstruct the real underlying identity) than
to prune away noisy records. While there is no
universal way to handle this with hard clustering,
soft clustering algorithms can more easily avoid
the false negatives by allowing records to prob-
abilistically appear in different clusters (subject
to the sum of 1) using a more lenient threshold.
Also, while there is no real prototypical elements
in relational clustering, soft relational clustering
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methods can naturally rank the profiles within
a cluster according to their membership levels,
which is an additional advantage for enhancing
user consumption of the disambiguation results.

3 Experiments

In this section, we first formally define the evalu-
ation metrics, followed by the introduction to the
benchmark test sets and the system’s performance.

3.1 Evaluation Metrics
We benchmarked our method using the standard
purity and inverse purity clustering metrics as in
the WePS evaluation. Let a set of clusters P =
{Ci} denote the system’s partition as aforemen-
tioned and a set of categories Q = {Dj} be the
gold standard. The precision of a cluster Ci with
respect to a category Dj is defined as,

Precision(Ci,Dj) =
|Ci ∩ Dj |
|Ci|

Purity is in turn defined as the weighted average
of the maximum precision achieved by the clusters
on one of the categories,

Purity(P,Q) =
C

∑

i=1

|Ci|
n

max
j

Precision(Ci,Dj)

where n =
∑ |Ci|. Hence purity penalizes putting

noise chained entities in a cluster. Trivially, the
maximum purity (i.e. 1) can be achieved by
making one cluster per chained entity (referred to
as the one-in-one baseline). Reversing the role of

clusters and categories, Inverse purity(P,Q)
def
=

Purity(Q,P). Inverse Purity penalizes splitting
chained entities belonging to the same category
into different clusters. The maximum inverse
purity can be similarly achieved by putting all
entities into one cluster (all-in-one baseline).

Purity and inverse purity are similar to the
precision and recall measures commonly used in
IR. The F score, F = 1/(α 1

Purity + (1 −
α) 1

InversePurity ), is used in performance evalua-
tion. α = 0.2 is used to give more weight to
inverse purity, with the justification for the web
person search mentioned earlier.

3.2 Dataset
We evaluate our methods using the benchmark
test collection from the ACL SemEval-2007 web
person search task (WePS) (Artiles et al., 2007).

The test collection consists of three sets of 10
different names, sampled from ambiguous names
from English Wikipedia (famous people), partici-
pants of the ACL 2006 conference (computer sci-
entists) and common names from the US Census
data, respectively. For each name, the top 100
documents retrieved from the Yahoo! Search API
were annotated, yielding on average 45 real world
identities per set and about 3k documents in total.

As we note in the beginning of Section 2, the
human markup for the entities corresponding to
the search queries is on the document level. The
profile-based CDC approach, however, is to merge
the mention-level entities. In our evaluation, we
adopt the document label (and the person search
query) to annotate the entity profiles that corre-
sponds to the person name search query. Despite
the difference, the results of the one-in-one and
all-in-one baselines are almost identical to those
reported in the WePS evaluation (F = 0.52, 0.58
respectively). Hence the performance reported
here is comparable to the official evaluation results
(Artiles et al., 2007).

3.3 Information Extraction and Similarities

We use an information extraction tool AeroText
(Taylor, 2004) to construct the entity profiles.
AeroText extracts two types of information for
an entity. First, the attribute information about
the person named entity includes first/middle/last
names, gender, mention, etc. In addition,
AeroText extracts relationship information
between named entities, such as Family, List,
Employment, Ownership, Citizen-Resident-
Religion-Ethnicity and so on, as specified in the
ACE evaluation. AeroText resolves the references
of entities within a document and produces the
entity profiles, used as input to the CDC system.
Note that alternative IE or WDC tools, as well
as additional attributes or relationships, can be
readily used in the CDC methods we proposed.

A suite of similarity functions is designed to
determine if the attributes relationships in a pair
of entity profiles match or not:
Text similarity. To decide whether two names
in the co-occurrence or family relationship match,
we use the SoftTFIDF measure (Cohen et al.,
2003), which is a hybrid matching scheme that
combines the token-based TFIDF with the Jaro-
Winkler string distance metric. This permits in-
exact matching of named entities due to name
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variations, typos, etc.
Semantic similarity. Text or syntactic similarity
is not always sufficient for matching relationships.
WordNet and the information theoretic semantic
distance (Jiang and Conrath, 1997) are used to
measure the semantic similarity between concepts
in relationships such as mention, employment,
ownership, etc.
Other rule-based similarity. Several other
cases require special treatment. For example,
the employment relationships of Senator and
D-N.Y. should match based on domain knowledge.
Also, we design dictionary-based similarity
functions to handle nicknames (Bill and William),
acronyms (COLING for International Conference
on Computational Linguistics), and geo-locations.

3.4 Evaluation Results

From the WePS training data, we generated a
training set of around 32k pairwise instances as
previously stated in Section 2.3. We then used
the SEG algorithm to learn the weight distribution
model. We tuned the parameters in the KARC
algorithm using the training set with discrete grid
search and chose m = 1.6 and θ = 0.3. The RBF
kernel (Gaussian) is used with γ = 0.015.

Table 1: Cross document coreference performance
(I. Purity denotes inverse purity).

Method Purity I. Purity F

KARC-S 0.657 0.795 0.740
KARC-H 0.662 0.762 0.710
FRC 0.484 0.840 0.697
One-in-one 1.000 0.482 0.524
All-in-one 0.279 1.000 0.571

The macro-averaged cross document corefer-
ence on the WePS test sets are reported in Table
1. The F score of our CDC system (KARC-
S) is 0.740, comparable to the test results of the
first tier systems in the official evaluation. The
two baselines are also included. Since different
feature sets, NLP tools, etc are used in different
benchmarked systems, we are also interested in
comparing the proposed algorithm with differ-
ent soft relational clustering variants. First, we
‘harden’ the fuzzy partition produced by KARC
by allowing an entity to appear in the cluster
with highest membership value (KARC-H). Purity
improves because of the removal of noise entities,
though at the sacrifice of inverse purity and the

Table 2: Cross document coreference performance
on subsets (I. Purity denotes inverse purity).

Test set Identity Purity I. Purity F

Wikipedia 56.5 0.666 0.752 0.717
ACL-06 31.0 0.783 0.771 0.773
US Census 50.3 0.554 0.889 0.754

F score deteriorates. We also implement a pop-
ular fuzzy relational clustering algorithm called
FRC (Dave and Sen, 2002), whose optimization
functional directly minimizes with respect to the
relation matrix. With the same feature sets and
distance function, KARC-S outperforms FRC in F
score by about 5%. Because the test set is very am-
biguous (on average only two documents per real
world entity), the baselines have relatively high F
score as observed in the WePS evaluation (Artiles
et al., 2007). Table 2 further analyzes KARC-
S’s result on the three subsets Wikipedia, ACL06
and US Census. The F score is higher in the
less ambiguous (the average number of identities)
dataset and lower in the more ambiguous one, with
a spread of 6%.

We study how the cross document coreference
performance changes as we vary the fuzziness in
the solution (controlled by m). In Figure 1, as
m increases from 1.4 to 1.9, purity improves by
10% to 0.67, which indicates that more correct
coreference decisions (true positives) can be made
in a softer configuration. The complimentary is
true for inverse purity, though to a lesser extent.
In this case, more false negatives, corresponding
to the entities of different coreferents incorrectly
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Figure 1: Purity, inverse purity and F score with
different fuzzifiers m.
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Figure 2: CDC performance with different θ.

linked, are made in a softer partition. The F
score peaks at 0.74 (m = 1.6) and then slightly
decreases, as the gain in purity is outweighed by
the loss in inverse purity.

Figure 2 evaluates the impact of the different
settings of θ (the threshold of including a chained
entity in the fuzzy cluster) on the coreference
performance. We observe that as we increase
θ, purity improves indicating less ‘noise’ entities
are included in the solution. On the other hand,
inverse purity decreases meaning more coreferent
entities are not linked due to the stricter threshold.
Overall, the changes in the two metrics offset each
other and the F score is relatively stable across a
broad range of θ settings.

4 Related Work

The original work in (Bagga and Baldwin, 1998)
proposed a CDC system by first performing WDC
and then disambiguating based on the summary
sentences of the chains. This is similar to ours in
that mentions rather than documents are clustered,
leveraging the advances in state-of-the-art WDC
methods developed in NLP, e.g. (Ng and Cardie,
2001; Yang et al., 2008). On the other hand, our
work goes beyond the simple bag-of-word features
and vector space model in (Bagga and Baldwin,
1998; Gooi and Allan, 2004) with IE results. (Wan
et al., 2005) describes a person resolution system
WebHawk that clusters web pages using some
extracted personal information including person
name, title, organization, email and phone number,
besides lexical features. (Mann and Yarowsky,
2003) extracts biographical information, which is
relatively scarce in web data, for disambiguation.

With the support of state-of-the-art information
extraction tools, the profiles of entities in this work
covers a broader range of relational information.
(Niu et al., 2004) also leveraged IE support, but
their approach was evaluated on a small artificial
corpus. Also, the pairwise distance model is
insomniac (i.e. all similarity specialists are awake
for prediction) and our work extends this with a
specialist learning framework.

Prior work has largely relied on using hier-
archical clustering methods for CDC, with the
threshold for stopping the merging set using the
training data, e.g. (Mann and Yarowsky, 2003;
Chen and Martin, 2007; Baron and Freedman,
2008). The fuzzy relational clustering method
proposed in this paper we believe better addresses
the uncertainty aspect of the CDC problem.

There are also orthogonal research directions
for the CDC problem. (Li et al., 2004) solved the
CDC problem by adopting a probabilistic view on
how documents are generated and how names are
sprinkled into them. (Bunescu and Pasca, 2006)
showed that external information from Wikipedia
can improve the disambiguation performance.

5 Conclusions

We have presented a profile-based Cross Docu-
ment Coreference (CDC) approach based on a
novel fuzzy relational clustering algorithm KARC.
In contrast to traditional hard clustering methods,
KARC produces fuzzy sets of identities which
better reflect the intrinsic uncertainty of the CDC
problem. Kernelization, as used in KARC, enables
the optimization of clustering that is spherical
in nature to apply to relational data that tend to
have complicated shapes. KARC partitions named
entities based on their profiles constructed by an
information extraction tool. To match the pro-
files, a specialist ensemble algorithm predicts the
pairwise distance by aggregating the similarities of
the attributes and relationships in the profiles. We
evaluated the proposed methods with experiments
on a large benchmark collection and demonstrate
that the proposed methods compare favorably with
the top runs in the SemEval evaluation.

The focus of this work is on the novel learning
and clustering methods for coreference. Future
research directions include developing rich feature
sets and using corpus level or external informa-
tion. We believe that such efforts can further im-
prove cross document coreference performance.
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Abstract 

Cross-lingual tasks are especially difficult 
due to the compounding effect of errors in 
language processing and errors in machine 
translation (MT). In this paper, we present an 
error analysis of a new cross-lingual task: the 
5W task, a sentence-level understanding task 
which seeks to return the English 5W's (Who, 
What, When, Where and Why) corresponding 
to a Chinese sentence. We analyze systems 
that we developed, identifying specific prob-
lems in language processing and MT that 
cause errors. The best cross-lingual 5W sys-
tem was still 19% worse than the best mono-
lingual 5W system, which shows that MT 
significantly degrades sentence-level under-
standing. Neither source-language nor target-
language analysis was able to circumvent 
problems in MT, although each approach had 
advantages relative to the other. A detailed 
error analysis across multiple systems sug-
gests directions for future research on the 
problem. 

1 Introduction 

In our increasingly global world, it is ever more 
likely for a mono-lingual speaker to require in-
formation that is only available in a foreign lan-
guage document. Cross-lingual applications ad-
dress this need by presenting information in the 
speaker’s language even when it originally ap-
peared in some other language, using machine 

translation (MT) in the process. In this paper, we 
present an evaluation and error analysis of a 
cross-lingual application that we developed for a 
government-sponsored evaluation, the 5W task. 

The 5W task seeks to summarize the informa-
tion in a natural language sentence by distilling it 
into the answers to the 5W questions: Who, 
What, When, Where and Why. To solve this 
problem, a number of different problems in NLP 
must be addressed: predicate identification, ar-
gument extraction, attachment disambiguation, 
location and time expression recognition, and 
(partial) semantic role labeling. In this paper, we 
address the cross-lingual 5W task: given a 
source-language sentence, return the 5W’s trans-
lated (comprehensibly) into the target language. 
Success in this task requires a synergy of suc-
cessful MT and answer selection.  

The questions we address in this paper are: 

• How much does machine translation (MT) 
degrade the performance of cross-lingual 
5W systems, as compared to monolingual 
performance? 

• Is it better to do source-language analysis 
and then translate, or do target-language 
analysis on MT? 

• Which specific problems in language 
processing and/or MT cause errors in 5W 
answers?  

In this evaluation, we compare several differ-
ent approaches to the cross-lingual 5W task, two 
that work on the target language (English) and 
one that works in the source language (Chinese). 
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A central question for many cross-lingual appli-
cations is whether to process in the source lan-
guage and then translate the result, or translate 
documents first and then process the translation. 
Depending on how errorful the translation is, 
results may be more accurate if models are de-
veloped for the source language. However, if 
there are more resources in the target language, 
then the translate-then-process approach may be 
more appropriate. We present a detailed analysis, 
both quantitative and qualitative, of how the ap-
proaches differ in performance.  

We also compare system performance on hu-
man translation (which we term reference trans-
lations) and MT of the same data in order to de-
termine how much MT degrades system per-
formance. Finally, we do an in-depth analysis of 
the errors in our 5W approaches, both on the 
NLP side and the MT side. Our results provide 
explanations for why different approaches suc-
ceed, along with indications of where future ef-
fort should be spent. 

2 Prior Work 

The cross-lingual 5W task is closely related to 
cross-lingual information retrieval and cross-
lingual question answering (Wang and Oard 
2006; Mitamura et al. 2008). In these tasks, a 
system is presented a query or question in the 
target language and asked to return documents or 
answers from a corpus in the source language. 
Although MT may be used in solving this task, it 
is only used by the algorithms – the final evalua-
tion is done in the source language. However, in 
many real-life situations, such as global business, 
international tourism, or intelligence work, users 
may not be able to read the source language. In 
these cases, users must rely on MT to understand 
the system response. (Parton et al. 2008) exam-
ine the case of “translingual” information re-
trieval, where evaluation is done on translated 
results in the target language. In cross-lingual 
information extraction (Sudo et al. 2004) the 
evaluation is also done on MT, but the goal is to 
learn knowledge from a large corpus, rather than 
analyzing individual sentences.  

The 5W task is also closely related to Seman-
tic Role Labeling (SRL), which aims to effi-
ciently and effectively derive semantic informa-
tion from text. SRL identifies predicates and 
their arguments in a sentence, and assigns roles 
to each argument. For example, in the sentence 
“I baked a cake yesterday.”, the predicate 
“baked” has three arguments. “I” is the subject of 

the predicate, “a cake” is the object and “yester-
day” is a temporal argument.  

Since the release of large data resources anno-
tated with relevant levels of semantic informa-
tion, such as the FrameNet (Baker et al., 1998) 
and PropBank corpora (Kingsbury and Palmer, 
2003), efficient approaches to SRL have been 
developed (Carreras and Marquez, 2005). Most 
approaches to the problem of SRL follow the 
Gildea and Jurafsky (2002) model. First, for a 
given predicate, the SRL system identifies its 
arguments' boundaries. Second, the Argument 
types are classified depending on an adopted 
lexical resource such as PropBank or FrameNet. 
Both steps are based on supervised learning over 
labeled gold standard data. A final step uses heu-
ristics to resolve inconsistencies when applying 
both steps simultaneously to the test data.  

Since many of the SRL resources are English, 
most of the SRL systems to date have been for 
English. There has been work in other languages 
such as German and Chinese (Erk 2006; Sun 
2004; Xue and Palmer 2005). The systems for 
the other languages follow the successful models 
devised for English, e.g. (Gildea and Palmer, 
2002; Chen and Rambow, 2003; Moschitti, 2004; 
Xue and Palmer, 2004; Haghighi et al., 2005). 

3 The Chinese-English 5W Task 

3.1 5W Task Description 

We participated in the 5W task as part of the 
DARPA GALE (Global Autonomous Language 
Exploitation) project. The goal is to identify the 
5W’s (Who, What, When, Where and Why) for a 
complete sentence. The motivation for the 5W 
task is that, as their origin in journalism suggests, 
the 5W’s cover the key information nuggets in a 
sentence. If a system can isolate these pieces of 
information successfully, then it can produce a 
précis of the basic meaning of the sentence. Note 
that this task differs from QA tasks, where 
“Who” and “What” usually refer to definition 
type questions. In this task, the 5W’s refer to se-
mantic roles within a sentence, as defined in Ta-
ble 1.  

In order to get all 5W’s for a sentence correct, 
a system must identify a top-level predicate, ex-
tract the correct arguments, and resolve attach-
ment ambiguity. In the case of multiple top-level 
predicates, any of the top-level predicates may be 
chosen. In the case of passive verbs, the Who is 
the agent (often expressed as a “by clause”, or 
not stated), and the What should include the syn-
tactic subject.  
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Answers are judged Correct1 if they identify a 
correct null argument or correctly extract an ar-
gument that is present in the sentence. Answers 
are not penalized for including extra text, such as 
prepositional phrases or subordinate clauses, 
unless the extra text includes text from another 
answer or text from another top-level predicate. 
In sentence 2a in Table 2, returning “bought and 
cooked” for the What would be Incorrect. Simi-
larly, returning “bought the fish at the market” 
for the What would also be Incorrect, since it 
contains the Where. Answers may also be judged 
Partial, meaning that only part of the answer was 
returned. For example, if the What contains the 
predicate but not the logical object, it is Partial.  

Since each sentence may have multiple correct 
sets of 5W’s, it is not straightforward to produce 
a gold-standard corpus for automatic evaluation. 
One would have to specify answers for each pos-
sible top-level predicate, as well as which parts 
of the sentence are optional and which are not 
allowed. This also makes creating training data 
for system development problematic. For exam-
ple, in Table 2, the sentence in 2a and 2b is the 
same, but there are two possible sets of correct 
answers. Since we could not rely on a gold-
standard corpus, we used manual annotation to 
judge our 5W system, described in section 5. 

3.2 The Cross-Lingual 5W Task 

In the cross-lingual 5W task, a system is given a 
sentence in the source language and asked to 
produce the 5W’s in the target language. In this 
task, both machine translation (MT) and 5W ex-
traction must succeed in order to produce correct 
answers. One motivation behind the cross-lingual 
5W task is MT evaluation. Unlike word- or 
phrase-overlap measures such as BLEU, the 5W 
evaluation takes into account “concept” or “nug-
get” translation. Of course, only the top-level 
predicate and arguments are evaluated, so it is 
not a complete evaluation. But it seeks to get at 
the understandability of the MT output, rather 
than just n-gram overlap. 

Translation exacerbates the problem of auto-
matically evaluating 5W systems. Since transla-
tion introduces paraphrase, rewording and sen-
tence restructuring, the 5W’s may change from 
one translation of a sentence to another transla-
tion of the same sentence. In some cases, roles 
may swap. For example, in Table 2, sentences 1a 
and 1b could be valid translations of the same 

                                                 
1 The specific guidelines for determining correctness 
were formulated by BAE.  

Chinese sentence. They contain the same infor-
mation, but the 5W answers are different. Also, 
translations may produce answers that are textu-
ally similar to correct answers, but actually differ 
in meaning. These differences complicate proc-
essing in the source followed by translation. 

 
Example: On Tuesday, President Obama met with 
French President Sarkozy in Paris to discuss the 
economic crisis. 
W Definition Example  

answer 
WHO Logical subject of the 

top-level predicate in 
WHAT, or null. 

President 
Obama 

WHAT One of the top-level 
predicates in the sen-
tence, and the predi-
cate’s logical object. 

met with 
French Presi-
dent Sarkozy 

WHEN ARGM-TMP of the 
top-level predicate in 
WHAT, or null. 

On Tuesday 

WHERE ARGM-LOC of the 
top-level predicate in 
WHAT, or null. 

in Paris 

WHY ARGM-CAU of the 
top-level predicate in 
WHAT, or null. 

to discuss the 
economic crisis 

Table 1. Definition of the 5W task, and 5W answers 
from the example sentence above. 

4 5W System 

We developed a 5W combination system that 
was based on five other 5W systems. We se-
lected four of these different systems for evalua-
tion: the final combined system (which was our 
submission for the official evaluation), two sys-
tems that did analysis in the target-language 
(English), and one system that did analysis in the 
source language (Chinese). In this section, we 
describe the individual systems that we evalu-
ated, the combination strategy, the parsers that 
we tuned for the task, and the MT systems.  
 Sentence WHO WHAT 
1a Mary bought a cake 

from Peter. 
Mary bought a 

cake 
1b Peter sold Mary a 

cake. 
Peter sold Mary 

2a I bought the fish at 
the market yesterday 
and cooked it today. 

I bought the 
fish 
[WHEN: 
yesterday] 

2b I bought the fish at 
the market yesterday 
and cooked it today. 

I cooked it 
[WHEN: 
today] 

Table 2. Example 5W answers. 
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4.1 Latent Annotation Parser 

For this work, we have re-implemented and en-
hanced the Berkeley parser (Petrov and Klein 
2007) in several ways: (1) developed a new 
method to handle rare words in English and Chi-
nese; (2) developed a new model of unknown 
Chinese words based on characters in the word; 
(3) increased robustness by adding adaptive 
modification of pruning thresholds and smooth-
ing of word emission probabilities. While the 
enhancements to the parser are important for ro-
bustness and accuracy, it is even more important 
to train grammars matched to the conditions of 
use. For example, parsing a Chinese sentence 
containing full-width punctuation with a parser 
trained on half-width punctuation reduces accu-
racy by over 9% absolute F. In English, parsing 
accuracy is seriously compromised by training a 
grammar with punctuation and case to process 
sentences without them.  

We developed grammars for English and Chi-
nese trained specifically for each genre by sub-
sampling from available treebanks (for English, 
WSJ, BN, Brown, Fisher, and Switchboard; for 
Chinese, CTB5) and transforming them for a 
particular genre (e.g., for informal speech, we 
replaced symbolic expressions with verbal forms 
and remove punctuation and case) and by utiliz-
ing a large amount of genre-matched self-labeled 
training parses. Given these genre-specific 
parses, we extracted chunks and POS tags by 
script. We also trained grammars with a subset of 
function tags annotated in the treebank that indi-
cate case role information (e.g., SBJ, OBJ, LOC, 
MNR) in order to produce function tags.   

4.2 Individual 5W Systems 

The English systems were developed for the 
monolingual 5W task and not modified to handle 
MT. They used hand-crafted rules on the output 
of the latent annotation parser to extract the 5Ws.  

English-function used the function tags from 
the parser to map parser constituents to the 5Ws. 
First the Who, When, Where and Why were ex-
tracted, and then the remaining pieces of the sen-
tence were returned as the What. The goal was to 
make sure to return a complete What answer and 
avoid missing the object. 

English-LF, on the other hand, used a system 
developed over a period of eight years (Meyers 
et al. 2001) to map from the parser’s syntactic 
constituents into logical grammatical relations 
(GLARF), and then extracted the 5Ws from the 
logical form. As a back-up, it also extracted 

GLARF relations from another English-treebank 
trained parser, the Charniak parser (Charniak 
2001). After the parses were both converted to 
the 5Ws, they were then merged, favoring the 
system that: recognized the passive, filled more 
5W slots or produced shorter 5W slots (provid-
ing that the WHAT slot consisted of more than 
just the verb). A third back-up method extracted 
5Ws from part-of-speech tag patterns. Unlike 
English-function, English-LF explicitly tried to 
extract the shortest What possible, provided there 
was a verb and a possible object, in order to 
avoid multiple predicates or other 5W answers.  

Chinese-align uses the latent annotation 
parser (trained for Chinese) to parse the Chinese 
sentences. A dependency tree converter (Johans-
son and Nuges 2007) was applied to the constitu-
ent-based parse trees to obtain the dependency 
relations and determine top-level predicates. A 
set of hand-crafted dependency rules based on 
observation of Chinese OntoNotes were used to 
map from the Chinese function tags into Chinese 
5Ws.  Finally, Chinese-align used the alignments 
of three separate MT systems to translate the 
5Ws: a phrase-based system, a hierarchical 
phrase-based system, and a syntax augmented 
hierarchical phrase-based system. Chinese-align 
faced a number of problems in using the align-
ments, including the fact that the best MT did not 
always have the best alignment. Since the predi-
cate is essential, it tried to detect when verbs 
were deleted in MT, and back-off to a different 
MT system. It also used strategies for finding 
and correcting noisy alignments, and for filtering 
When/Where answers from Who and What.  

4.3 Hybrid System 

A merging algorithm was learned based on a de-
velopment test set. The algorithm selected all 
5W’s from a single system, rather than trying to 
merge W’s from different systems, since the 
predicates may vary across systems. For each 
document genre (described in section 5.4), we 
ranked the systems by performance on the devel-
opment data. We also experimented with a vari-
ety of features (for instance, does “What” include 
a verb). The best-performing features were used 
in combination with the ranked list of priority 
systems to create a rule-based merger. 

4.4 MT Systems 

The MT Combination system used by both of the 
English 5W systems combined up to nine sepa-
rate MT systems. System weights for combina-
tion were optimized together with the language 
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model score and word penalty for a combination 
of BLEU and TER (2*(1-BLEU) + TER). Res-
coring was applied after system combination us-
ing large language models and lexical trigger 
models. Of the nine systems, six were phrased-
based systems (one of these used chunk-level 
reordering of the Chinese, one used word sense 
disambiguation, and one used unsupervised Chi-
nese word segmentation), two were hierarchical 
phrase-based systems, one was a string-to-
dependency system, one was syntax-augmented, 
and one was a combination of two other systems. 
Bleu scores on the government supplied test set 
in December 2008 were 35.2 for formal text, 
29.2 for informal text, 33.2 for formal speech, 
and 27.6 for informal speech. More details may 
be found in (Matusov et al. 2009). 

5 Methods 

5.1 5W Systems 

For the purposes of this evaluation2, we com-
pared the output of 4 systems: English-Function, 
English-LF, Chinese-align, and the combined 
system. Each English system was also run on 
reference translations of the Chinese sentence. 
So for each sentence in the evaluation corpus, 
there were 6 systems that each provided 5Ws. 

5.2 5W Answer Annotation 

For each 5W output, annotators were presented 
with the reference translation, the MT version, 
and the 5W answers. The 5W system names 
were hidden from the annotators. Annotators had 
to select “Correct”, “Partial” or “Incorrect” for 
each W. For answers that were Partial or Incor-
rect, annotators had to further specify the source 
of the error based on several categories (de-
scribed in section 6). All three annotators were 
native English speakers who were not system 
developers for any of the 5W systems that were 
being evaluated (to avoid biased grading, or as-
signing more blame to the MT system). None of 
the annotators knew Chinese, so all of the judg-
ments were based on the reference translations. 

After one round of annotation, we measured 
inter-annotator agreement on the Correct, Partial, 
or Incorrect judgment only. The kappa value was 
0.42, which was lower than we expected. An-
other surprise was that the agreement was lower 

                                                 
2 Note that an official evaluation was also performed by 
DARPA and BAE. This evaluation provides more fine-
grained detail on error types and gives results for the differ-
ent approaches. 

for When, Where and Why (κ=0.31) than for 
Who or What (κ=0.48). We found that, in cases 
where a system would get both Who and What 
wrong, it was often ambiguous how the remain-
ing W’s should be graded. Consider the sentence: 
“He went to the store yesterday and cooked lasa-
gna today.” A system might return erroneous 
Who and What answers, and return Where as “to 
the store” and When as “today.” Since Where 
and When apply to different predicates, they 
cannot both be correct. In order to be consistent, 
if a system returned erroneous Who and What 
answers, we decided to mark the When, Where 
and Why answers Incorrect by default. We added 
clarifications to the guidelines and discussed ar-
eas of confusion, and then the annotators re-
viewed and updated their judgments.  

After this round of annotating, κ=0.83 on the 
Correct, Partial, Incorrect judgments. The re-
maining disagreements were genuinely ambigu-
ous cases, where a sentence could be interpreted 
multiple ways, or the MT could be understood in 
various ways. There was higher agreement on 
5W’s answers from the reference text compared 
to MT text, since MT is inherently harder to 
judge and some annotators were more flexible 
than others in grading garbled MT. 

5.3 5W Error Annotation 

In addition to judging the system answers by the 
task guidelines, annotators were asked to provide 
reason(s) an answer was wrong by selecting from 
a list of predefined errors. Annotators were asked 
to use their best judgment to “assign blame” to 
the 5W system, the MT, or both. There were six 
types of system errors and four types of MT er-
rors, and the annotator could select any number 
of errors. (Errors are described further in section 
6.) For instance, if the translation was correct, 
but the 5W system still failed, the blame would 
be assigned to the system. If the 5W system 
picked an incorrectly translated argument (e.g., 
“baked a moon” instead of “baked a cake”), then 
the error would be assigned to the MT system. 
Annotators could also assign blame to both sys-
tems, to indicate that they both made mistakes.  

Since this annotation task was a 10-way selec-
tion, with multiple selections possible, there were 
some disagreements. However, if categorized 
broadly into 5W System errors only, MT errors 
only, and both 5W System and MT errors, then 
the annotators had a substantial level of agree-
ment (κ=0.75 for error type, on sentences where 
both annotators indicated an error).  
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5.4 5 W Corpus 

The full evaluation corpus is 350 documents, 
roughly evenly divided between four genres: 
formal text (newswire), informal text (blogs and 
newsgroups), formal speech (broadcast news) 
and informal speech (broadcast conversation). 
For this analysis, we randomly sampled docu-
ments to judge from each of the genres. There 
were 50 documents (249 sentences) that were 
judged by a single annotator. A subset of that set, 
with 22 documents and 103 sentences, was 
judged by two annotators. In comparing the re-
sults from one annotator to the results from both 
annotators, we found substantial agreement. 
Therefore, we present results from the single an-
notator so we can do a more in-depth analysis. 
Since each sentence had 5W’s, and there were 6 
systems that were compared, there were 7,500 
single-annotator judgments over 249 sentences. 

6 Results 

Figure 1 shows the cross-lingual performance 
(on MT) of all the systems for each 5W. The best 
monolingual performance (on human transla-
tions) is shown as a dashed line (% Correct 
only). If a system returned Incorrect answers for 
Who and What, then the other answers were 
marked Incorrect (as explained in section 5.2). 
For the last 3W’s, the majority of errors were due 
to this (details in Figure 1), so our error analysis 
focuses on the Who and What questions. 

6.1 Monolingual 5W Performance 

To establish a monolingual baseline, the Eng-
lish 5W system was run on reference (human) 
translations of the Chinese text. For each partial 

or incorrect answer, annotators could select one 
or more of these reasons: 

• Wrong predicate or multiple predicates. 
• Answer contained another 5W answer. 
• Passive handled wrong (WHO/WHAT). 
• Answer missed. 
• Argument attached to wrong predicate. 

Figure 1 shows the performance of the best 
monolingual system for each 5W as a dashed 
line. The What question was the hardest, since it 
requires two pieces of information (the predicate 
and object). The When, Where and Why ques-
tions were easier, since they were null most of 
the time. (In English OntoNotes 2.0, 38% of sen-
tences have a When, 15% of sentences have a 
Where, and only 2.6% of sentences have a Why.) 
The most common monolingual system error on 
these three questions was a missed answer, ac-
counting for all of the Where errors, all but one 
Why error and 71% of the When errors. The re-
maining When errors usually occurred when the 
system assumed the wrong sense for adverbs 
(such as “then” or “just”). 
 Missing Other 

5W 
Wrong/Multiple 
Predicates 

Wrong 

REF-func 37 29 22 7 

REF-LF 54 20 17 13 

MT-func 18 18 18 8 
MT-LF 26 19 10 11 

Chinese 23 17 14 8 
Hybrid 13 17 15 12 

Table 3. Percentages of Who/What errors attributed to 
each system error type. 

The top half of Table 3 shows the reasons at-
tributed to the Who/What errors for the reference 
corpus. Since English-LF preferred shorter an-
swers, it frequently missed answers or parts of 

Figure 1. System performance on each 5W. “Partial” indicates that part of the answer was missing. Dashed lines 
show the performance of the best monolingual system (% Correct on human translations). For the last 3W’s, the 
percent of answers that were Incorrect “by default” were: 30%, 24%, 27% and 22%, respectively, and 8% for the 
best monolingual system 
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answers. English-LF also had more Partial an-
swers on the What question: 66% Correct and 
12% Partial, versus 75% Correct and 1% Partial 
for English-function. On the other hand, English-
function was more likely to return answers that 
contained incorrect extra information, such as 
another 5W or a second predicate. 

6.2 Effect of MT on 5W Performance 

The cross-lingual 5W task requires that systems 
return intelligible responses that are semantically 
equivalent to the source sentence (or, in the case 
of this evaluation, equivalent to the reference).  

As can be seen in Figure 1, MT degrades the 
performance of the 5W systems significantly, for 
all question types, and for all systems. Averaged 
over all questions, the best monolingual system 
does 19% better than the best cross-lingual sys-
tem. Surprisingly, even though English-function 
outperformed English-LF on the reference data, 
English-LF does consistently better on MT. This 
is likely due to its use of multiple back-off meth-
ods when the parser failed.  

6.3 Source-Language vs. Target-Language 

The Chinese system did slightly worse than ei-
ther English system overall, but in the formal 
text genre, it outperformed both English systems.  

Although the accuracies for the Chinese and 
English systems are similar, the answers vary a 
lot. Nearly half (48%) of the answers can be an-
swered correctly by both the English system and 
the Chinese system. But 22% of the time, the 
English system returned the correct answer when 
the Chinese system did not. Conversely, 10% of 
the answers were returned correctly by the Chi-
nese system and not the English systems. The 
hybrid system described in section 4.2 attempts 
to exploit these complementary advantages. 

After running the hybrid system, 61% of the 
answers were from English-LF, 25% from Eng-
lish-function, 7% from Chinese-align, and the 
remaining 7% were from the other Chinese 
methods (not evaluated here). The hybrid did 
better than its parent systems on all 5Ws, and the 
numbers above indicate that further improvement 
is possible with a better combination strategy.  

6.4 Cross-Lingual 5W Error Analysis 

For each Partial or Incorrect answer, annotators 
were asked to select system errors, translation 
errors, or both. (Further analysis is necessary to 
distinguish between ASR errors and MT errors.) 
The translation errors considered were: 

• Word/phrase deleted. 
• Word/phrase mistranslated. 
• Word order mixed up. 
• MT unreadable. 

Table 4 shows the translation reasons attrib-
uted to the Who/What errors. For all systems, the 
errors were almost evenly divided between sys-
tem-only, MT-only and both, although the Chi-
nese system had a higher percentage of system-
only errors. The hybrid system was able to over-
come many system errors (for example, in Table 
2, only 13% of the errors are due to missing an-
swers), but still suffered from MT errors. 

Table 4. Percentages of Who/What errors by each 
system attributed to each translation error type. 

Mistranslation was the biggest translation 
problem for all the systems. Consider the first 
example in Figure 3. Both English systems cor-
rectly extracted the Who and the When, but for 

Mistrans-
lation 

Deletion Word 
Order 

Unreadable 

MT-func 34 18 24 18 
MT-LF 29 22 21 14 
Chinese 32 17 9 13 
Hybrid 35 19 27 18 

MT: After several rounds of reminded, I was a little bit 
Ref: After several hints, it began to come back to me. 
 经过几番提醒,我回忆起来了一点点。 
MT: The Guizhou province, within a certain bank robber, under the watchful eyes of a weak woman, and, with a 
knife stabbed the woman. 
Ref: I saw that in a bank in Guizhou Province, robbers seized a vulnerable young woman in front of a group of 
onlookers and stabbed the woman with a knife. 
 看到贵州省某银行内,劫匪在众目睽睽之下,抢夺一个弱女子,并且,用刀刺伤该女子。 
MT: Woke up after it was discovered that the property is not more than eleven people do not even said that the 
memory of the receipt of the country into the country. 
Ref: Well, after waking up, he found everything was completely changed. Apart from having additional eleven 
grandchildren, even the motherland as he recalled has changed from a socialist country to a capitalist country. 
 那么醒来之后却发现物是人非,多了十一个孙子不说,连祖国也从记忆当中的社会主义国家变成了资本主义国家 
Figure 3 Example sentences that presented problems for the 5W systems. 
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What they returned “was a little bit.” This is the 
correct predicate for the sentence, but it does not 
match the meaning of the reference. The Chinese 
5W system was able to select a better translation, 
and instead returned “remember a little bit.” 

Garbled word order was chosen for 21-24% of 
the target-language system Who/What errors, but 
only 9% of the source-language system 
Who/What errors. The source-language word 
order problems tended to be local, within-phrase 
errors (e.g., “the dispute over frozen funds” was 
translated as “the freezing of disputes”). The tar-
get-language system word order problems were 
often long-distance problems. For example, the 
second sentence in Figure 3 has many phrases in 
common with the reference translation, but the 
overall sentence makes no sense. The watchful 
eyes actually belong to a “group of onlookers” 
(deleted). Ideally, the robber would have 
“stabbed the woman” “with a knife,” rather than 
vice versa. Long-distance phrase movement is a 
common problem in Chinese-English MT, and 
many MT systems try to handle it (e.g., Wang et 
al. 2007). By doing analysis in the source lan-
guage, the Chinese 5W system is often able to 
avoid this problem – for example, it successfully 
returned “robbers” “grabbed a weak woman” for 
the Who/What of this sentence. 

Although we expected that the Chinese system 
would have fewer problems with MT deletion, 
since it could choose from three different MT 
versions, MT deletion was a problem for all sys-
tems. In looking more closely at the deletions, 
we noticed that over half of deletions were verbs 
that were completely missing from the translated 
sentence. Since MT systems are tuned for word-
based overlap measures (such as BLEU), verb 
deletion is penalized equally as, for example, 
determiner deletion. Intuitively, a verb deletion 
destroys the central meaning of a sentence, while 
a determiner is rarely necessary for comprehen-
sion. Other kinds of deletions included noun 
phrases, pronouns, named entities, negations and 
longer connecting phrases.  

Deletion also affected When and Where. De-
leting particles such as “in” and “when” that in-
dicate a location or temporal argument caused 
the English systems to miss the argument. Word 
order problems in MT also caused attachment 
ambiguity in When and Where. 

The “unreadable” category was an option of 
last resort for very difficult MT sentences. The 
third sentence in Figure 3 is an example where 
ASR and MT errors compounded to create an 
unparseable sentence.  

7 Conclusions 

In our evaluation of various 5W systems, we dis-
covered several characteristics of the task. The 
What answer was the hardest for all systems, 
since it is difficult to include enough information 
to cover the top-level predicate and object, with-
out getting penalized for including too much. 
The challenge in the When, Where and Why 
questions is due to sparsity – these responses 
occur in much fewer sentences than Who and 
What, so systems most often missed these an-
swers. Since this was a new task, this first 
evaluation showed clear issues on the language 
analysis side that can be improved in the future. 

The best cross-lingual 5W system was still 
19% worse than the best monolingual 5W sys-
tem, which shows that MT significantly degrades 
sentence-level understanding. A serious problem 
in MT for systems was deletion. Chinese con-
stituents that were never translated caused seri-
ous problems, even when individual systems had 
strategies to recover. When the verb was deleted, 
no top level predicate could be found and then all 
5Ws were wrong.  

One of our main research questions was 
whether to extract or translate first. We hypothe-
sized that doing source-language analysis would 
be more accurate, given the noise in Chinese 
MT, but the systems performed about the same. 
This is probably because the English tools (logi-
cal form extraction and parser) were more ma-
ture and accurate than the Chinese tools.  

Although neither source-language nor target-
language analysis was able to circumvent prob-
lems in MT, each approach had advantages rela-
tive to the other, since they did well on different 
sets of sentences. For example, Chinese-align 
had fewer problems with word order, and most 
of those were due to local word-order problems.  

Since the source-language and target-language 
systems made different kinds of mistakes, we 
were able to build a hybrid system that used the 
relative advantages of each system to outperform 
all systems. The different types of mistakes made 
by each system suggest features that can be used 
to improve the combination system in the future. 
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Abstract

This paper proposes a novel framework
called bilingual co-training for a large-
scale, accurate acquisition method for
monolingual semantic knowledge. In
this framework, we combine the indepen-
dent processes of monolingual semantic-
knowledge acquisition for two languages
using bilingual resources to boost perfor-
mance. We apply this framework to large-
scale hyponymy-relation acquisition from
Wikipedia. Experimental results show
that our approach improved the F-measure
by 3.6–10.3%. We also show that bilin-
gual co-training enables us to build classi-
fiers for two languages in tandem with the
same combined amount of data as required
for training a single classifier in isolation
while achieving superior performance.

1 Motivation

Acquiring and accumulating semantic knowledge
are crucial steps for developing high-level NLP
applications such as question answering, although
it remains difficult to acquire a large amount of
highly accurate semantic knowledge. This pa-
per proposes a novel framework for a large-scale,
accurate acquisition method for monolingual se-
mantic knowledge, especially for semantic rela-
tions between nominals such as hyponymy and
meronymy. We call the framework bilingual co-
training.

The acquisition of semantic relations between
nominals can be seen as a classification task of se-
mantic relations – to determine whether two nom-
inals hold a particular semantic relation (Girju et
al., 2007). Supervised learning methods, which
have often been applied to this classification task,
have shown promising results. In those methods,
however, a large amount of training data is usually

required to obtain high performance, and the high
costs of preparing training data have always been
a bottleneck.

Our research on bilingual co-training sprang
from a very simple idea: perhaps training data in a
language can be enlarged without much cost if we
translate training data in another language and add
the translation to the training data in the original
language. We also noticed that it may be possi-
ble to further enlarge the training data by trans-
lating the reliable part of the classification results
in another language. Since the learning settings
(feature sets, feature values, training data, corpora,
and so on) are usually different in two languages,
the reliable part in one language may be over-
lapped by an unreliable part in another language.
Adding the translated part of the classification re-
sults to the training data will improve the classifi-
cation results in the unreliable part. This process
can also be repeated by swapping the languages,
as illustrated in Figure 1. Actually, this is nothing
other than a bilingual version of co-training (Blum
and Mitchell, 1998).

Language 1 Language 2

Iteration

Manually Prepared 

Training Data

for Language 1

Classifier Classifier

Training Training

Enlarged 

Training Data

for Language 1

Enlarged 

Training Data

for Language 2

Manually Prepared 

Training Data

for Language 2

ClassifierClassifier

Further Enlarged 

Training Data

for Language 1

Further Enlarged 

Training Data

for Language 2

Translate

reliable parts of

classification 

results

Training

Training Training

Training

….. …..

Translate

reliable parts of

classification 

results

Figure 1: Concept of bilingual co-training

Let us show an example in our current task:
hyponymy-relation acquisition from Wikipedia.
Our original approach for this task was super-
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vised learning based on the approach proposed by
Sumida et al. (2008), which was only applied for
Japanese and achieved around 80% in F-measure.
In their approach, a common substring in a hyper-
nym and a hyponym is assumed to be one strong
clue for recognizing that the two words constitute
a hyponymy relation. For example, recognizing a
proper hyponymy relation between two Japanese
words,�� (kouso meaning enzyme) and���
��� (kasuibunkaikouso meaning hydrolase), is
relatively easy because they share a common suf-
fix: kouso. On the other hand, judging whether
their English translations (enzyme and hydrolase)
have a hyponymy relation is probably more dif-
ficult since they do not share any substrings. A
classifier for Japanese will regard the hyponymy
relation as valid with high confidence, while a
classifier for English may not be so positive. In
this case, we can compensate for the weak part of
the English classifier by adding the English trans-
lation of the Japanese hyponymy relation, which
was recognized with high confidence, to the En-
glish training data.

In addition, if we repeat this process by swap-
ping English and Japanese, further improvement
may be possible. Furthermore, the reliable parts
that are automatically produced by a classifier can
be larger than manually tailored training data. If
this is the case, the effect of adding the transla-
tion to the training data can be quite large, and the
same level of effect may not be achievable by a
reasonable amount of labor for preparing the train-
ing data. This is the whole idea.

Through a series of experiments, this paper
shows that the above idea is valid at least for one
task: large-scale monolingual hyponymy-relation
acquisition from English and Japanese Wikipedia.
Experimental results showed that our method
based on bilingual co-training improved the per-
formance of monolingual hyponymy-relation ac-
quisition about 3.6–10.3% in the F-measure.
Bilingual co-training also enables us to build clas-
sifiers for two languages in tandem with the same
combined amount of data as would be required
for training a single classifier in isolation while
achieving superior performance.

People probably expect that a key factor in the
success of this bilingual co-training is how to
translate the training data. We actually did transla-
tion by a simple look-up procedure in the existing
translation dictionaries without any machine trans-

lation systems or disambiguation processes. De-
spite this simple approach, we obtained consistent
improvement in our task using various translation
dictionaries.

This paper is organized as follows. Section 2
presents bilingual co-training, and Section 3 pre-
cisely describes our system. Section 4 describes
our experiments and presents results. Section 5
discusses related work. Conclusions are drawn
and future work is mentioned in Section 6.

2 Bilingual Co-Training

Let S and T be two different languages, and let
CL be a set of class labels to be obtained as a re-
sult of learning/classification. To simplify the dis-
cussion, we assume that a class label is binary; i.e.,
the classification results are “yes” or “no.” Thus,
CL = {yes, no}. Also, we denote the set of all
nonnegative real numbers by R+.

Assume X = XS ∪ XT is a set of instances in
languages S and T to be classified. In the con-
text of a hyponymy-relation acquisition task, the
instances are pairs of nominals. Then we assume
that classifier c assigns class label cl in CL and
confidence value r for assigning the label, i.e.,
c(x) = (x, cl, r), where x ∈ X , cl ∈ CL, and
r ∈ R+. Note that we used support vector ma-
chines (SVMs) in our experiments and (the abso-
lute value of) the distance between a sample and
the hyperplane determined by the SVMs was used
as confidence value r. The training data are de-
noted by L ⊂ X×CL, and we denote the learning
by function LEARN ; if classifier c is trained by
training data L, then c = LEARN(L). Particu-
larly, we denote the training sets for S and T that
are manually prepared by LS and LT , respectively.
Also, bilingual instance dictionary DBI is defined
as the translation pairs of instances in XS and XT .
Thus, DBI = {(s, t)} ⊂ XS × XT . In the case
of hyponymy-relation acquisition in English and
Japanese, (s, t) ∈ DBI could be (s=(enzyme, hy-
drolase), t=(�� (meaning enzyme),�����
� (meaning hydrolase))).

Our bilingual co-training is given in Figure 2. In
the initial stage, c0

S and c0
T are learned with manu-

ally labeled instances LS and LT (lines 2–5). Then
ci
S and ci

T are applied to classify instances in XS

and XT (lines 6–7). Denote CRi
S as a set of the

classification results of ci
S on instances XS that is

not in Li
S and is registered in DBI . Lines 10–18

describe a way of selecting from CRi
S newly la-
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1: i = 0
2: L0

S = LS ; L0
T = LT

3: repeat
4: ci

S := LEARN(Li
S)

5: ci
T := LEARN(Li

T )
6: CRi

S := {ci
S(xS)|xS ∈ XS ,

∀cl (xS , cl) /∈ Li
S , ∃xT (xS , xT ) ∈ DBI}

7: CRi
T := {ci

T (xT )|xT ∈ XT ,
∀cl (xT , cl) /∈ Li

T , ∃xS (xS , xT ) ∈ DBI}
8: L

(i+1)
S := Li

S

9: L
(i+1)
T := Li

T

10: for each (xS , clS , rS) ∈ TopN(CRi
S) do

11: for each xT such that (xS , xT ) ∈ DBI

and (xT , clT , rT ) ∈ CRi
T do

12: if rS > θ then
13: if rT < θ or clS = clT then
14: L

(i+1)
T := L

(i+1)
T ∪ {(xT , clS)}

15: end if
16: end if
17: end for
18: end for
19: for each (xT , clT , rT ) ∈ TopN(CRi

T ) do
20: for each xS such that (xS , xT ) ∈ DBI

and (xS , clS , rS) ∈ CRi
S do

21: if rT > θ then
22: if rS < θ or clS = clT then
23: L

(i+1)
S := L

(i+1)
S ∪ {(xS , clT )}

24: end if
25: end if
26: end for
27: end for
28: i = i + 1
29: until a fixed number of iterations is reached

Figure 2: Pseudo-code of bilingual co-training

beled instances to be added to a new training set
in T . TopN(CRi

S) is a set of ci
S(x), whose rS

is top-N highest in CRi
S . (In our experiments,

N = 900.) During the selection, ci
S acts as a

teacher and ci
T as a student. The teacher instructs

his student in the class label of xT , which is actu-
ally a translation of xS by bilingual instance dic-
tionary DBI , through clS only if he can do it with
a certain level of confidence, say rS > θ, and
if one of two other condition meets (rT < θ or
clS = clT ). clS = clT is a condition to avoid
problems, especially when the student also has a
certain level of confidence in his opinion on a class
label but disagrees with the teacher: rT > θ and
clS �= clT . In that case, the teacher does nothing

and ignores the instance. Condition rT < θ en-
ables the teacher to instruct his student in the class
label of xT in spite of their disagreement in a class
label. If every condition is satisfied, (xT , clS) is

added to existing labeled instances L
(i+1)
T . The

roles are reversed in lines 19–27 so that ci
T be-

comes a teacher and ci
S a student.

Similar to co-training (Blum and Mitchell,
1998), one classifier seeks another’s opinion to se-
lect new labeled instances. One main difference
between co-training and bilingual co-training is
the space of instances: co-training is based on dif-
ferent features of the same instances, and bilin-
gual co-training is based on different spaces of in-
stances divided by languages. Since some of the
instances in different spaces are connected by a
bilingual instance dictionary, they seem to be in
the same space. Another big difference lies in
the role of the two classifiers. The two classifiers
in co-training work on the same task, but those
in bilingual co-training do the same type of task
rather than the same task.

3 Acquisition of Hyponymy Relations
from Wikipedia

Our system, which acquires hyponymy relations
from Wikipedia based on bilingual co-training,
is described in Figure 3. The following three
main parts are described in this section: candidate
extraction, hyponymy-relation classification, and
bilingual instance dictionary construction.

Classifier in E Classifier in J

Labeled 
instances

Labeled 
instances 

Wikipedia
Articles in E

Wikipedia
Articles in J

Candidates
in J

Candidates
in E

Acquisition of 
translation dictionary

Bilingual Co-Training

Unlabeled 
instances in J

Unlabeled 
instances in E

Bilingual instance dictionary

Newly labeled 
instances for E 

Newly labeled 
instances for J

Translation 
dictionary 

Hyponymy-relation 
candidate extraction

Hyponymy-relation 
candidate extraction

Figure 3: System architecture

3.1 Candidate Extraction

We follow Sumida et al. (2008) to extract
hyponymy-relation candidates from English and
Japanese Wikipedia. A layout structure is chosen
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(a) Layout structure
of article TIGER

Range

Siberian tiger

Bengal tiger

Subspecies

Taxonomy

Tiger

Malayan tiger

(b) Tree structure of
Figure 4(a)

Figure 4: Wikipedia article and its layout structure

as a source of hyponymy relations because it can
provide a huge amount of them (Sumida et al.,
2008; Sumida and Torisawa, 2008)1, and recog-
nition of the layout structure is easy regardless of
languages. Every English and Japanese Wikipedia
article was transformed into a tree structure like
Figure 4, where layout items title, (sub)section
headings, and list items in an article were used
as nodes in a tree structure. Sumida et al. (2008)
found that some pairs consisting of a node and one
of its descendants constituted a proper hyponymy
relation (e.g., (TIGER, SIBERIAN TIGER)), and
this could be a knowledge source of hyponymy
relation acquisition. A hyponymy-relation candi-
date is then extracted from the tree structure by re-
garding a node as a hypernym candidate and all
its subordinate nodes as hyponym candidates of
the hypernym candidate (e.g., (TIGER, TAXON-
OMY) and (TIGER, SIBERIAN TIGER) from Fig-
ure 4). 39 M English hyponymy-relation candi-
dates and 10 M Japanese ones were extracted from
Wikipedia. These candidates are classified into
proper hyponymy relations and others by using the
classifiers described below.

3.2 Hyponymy-Relation Classification

We use SVMs (Vapnik, 1995) as classifiers for
the classification of the hyponymy relations on the
hyponymy-relation candidates. Let hyper be a hy-
pernym candidate, hypo be a hyper’s hyponym
candidate, and (hyper, hypo) be a hyponymy-
relation candidate. The lexical, structure-based,
and infobox-based features of (hyper, hypo) in Ta-
ble 1 are used for building English and Japanese
classifiers. Note that SF3–SF5 and IF were not

1Sumida et al. (2008) reported that they obtained 171 K,
420 K, and 1.48 M hyponymy relations from a definition sen-
tence, a category system, and a layout structure in Japanese
Wikipedia, respectively.

used in Sumida et al. (2008) but LF1–LF5 and
SF1–SF2 are the same as their feature set.

Let us provide an overview of the feature
sets used in Sumida et al. (2008). See Sum-
ida et al. (2008) for more details. Lexical fea-
tures LF1–LF5 are used to recognize the lexi-
cal evidence encoded in hyper and hypo for hy-
ponymy relations. For example, (hyper,hypo) is
often a proper hyponymy relation if hyper and
hypo share the same head morpheme or word.
In LF1 and LF2, such information is provided
along with the words/morphemes and the parts of
speech of hyper and hypo, which can be multi-
word/morpheme nouns. TagChunk (Daumé III et
al., 2005) for English and MeCab (MeCab, 2008)
for Japanese were used to provide the lexical fea-
tures. Several simple lexical patterns2 were also
applied to hyponymy-relation candidates. For ex-
ample, “List of artists” is converted into “artists”
by lexical pattern “list of X.” Hyponymy-relation
candidates whose hypernym candidate matches
such a lexical pattern are likely to be valid (e.g.,
(List of artists, Leonardo da Vinci)). We use LF4

for dealing with these cases. If a typical or fre-
quently used section heading in a Wikipedia arti-
cle, such as “History” or “References,” is used as
a hyponym candidate in a hyponymy-relation can-
didate, the hyponymy-relation candidate is usually
not a hyponymy relation. LF5 is used to recognize
these hyponymy-relation candidates.

Structure-based features are related to the
tree structure of Wikipedia articles from which
hyponymy-relation candidate (hyper,hypo) is ex-
tracted. SF1 provides the distance between hyper
and hypo in the tree structure. SF2 represents the
type of layout items from which hyper and hypo
are originated. These are the feature sets used in
Sumida et al. (2008).

We also added some new items to the above
feature sets. SF3 represents the types of tree
nodes including root, leaf, and others. For exam-
ple, (hyper,hypo) is seldom a hyponymy relation
if hyper is from a root node (or title) and hypo
is from a hyper’s child node (or section head-
ings). SF4 and SF5 represent the structural con-
texts of hyper and hypo in a tree structure. They
can provide evidence related to similar hyponymy-
relation candidates in the structural contexts.

An infobox-based feature, IF , is based on a

2We used the same Japanese lexical patterns in Sumida et
al. (2008) to build English lexical patterns with them.
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Type Description Example

LF1 Morphemes/words hyper: tiger∗, hypo: Siberian, hypo: tiger∗

LF2 POS of morphemes/words hyper: NN∗, hypo: NP, hypo: NN∗

LF3 hyper and hypo, themselves hyper: Tiger, hypo: Siberian tiger
LF4 Used lexical patterns hyper: “List of X”, hypo: “Notable X”
LF5 Typical section headings hyper: History, hypo: Reference
SF1 Distance between hyper and hypo 3
SF2 Type of layout items hyper: title, hypo: bulleted list
SF3 Type of tree nodes hyper: root node, hypo: leaf node
SF4 LF1 and LF3 of hypo’s parent node LF3:Subspecies
SF5 LF1 and LF3 of hyper’s child node LF3: Taxonomy
IF Semantic properties of hyper and hypo hyper: (taxobox,species), hypo: (taxobox,name)

Table 1: Feature type and its value. ∗ in LF1 and LF2 represent the head morpheme/word and its POS.
Except those in LF4 and LF5, examples are derived from (TIGER, SIBERIAN TIGER) in Figure 4.

Wikipedia infobox, a special kind of template, that
describes a tabular summary of an article subject
expressed by attribute-value pairs. An attribute
type coupled with the infobox name to which it
belongs provides the semantic properties of its
value that enable us to easily understand what
the attribute value means (Auer and Lehmann,
2007; Wu and Weld, 2007). For example, in-
fobox template City Japan in Wikipedia article
Kyoto contains several attribute-value pairs such
as “Mayor=Daisaku Kadokawa” as attribute=its
value. What Daisaku Kadokawa, the attribute
value of mayor in the example, represents is hard
to understand alone if we lack knowledge, but
its attribute type, mayor, gives a clue–Daisaku
Kadokawa is a mayor related to Kyoto. These
semantic properties enable us to discover seman-
tic evidence for hyponymy relations. We ex-
tract triples (infobox name, attribute type, attribute
value) from the Wikipedia infoboxes and encode
such information related to hyper and hypo in our
feature set IF .3

3.3 Bilingual Instance Dictionary
Construction

Multilingual versions of Wikipedia articles are
connected by cross-language links and usually
have titles that are bilinguals of each other (Erd-
mann et al., 2008). English and Japanese articles
connected by a cross-language link are extracted
from Wikipedia, and their titles are regarded as
translation pairs4. The translation pairs between

3We obtained 1.6 M object-attribute-value triples in
Japanese and 5.9 M in English.

4197 K translation pairs were extracted.

English and Japanese terms are used for building
bilingual instance dictionary DBI for hyponymy-
relation acquisition, where DBI is composed of
translation pairs between English and Japanese
hyponymy-relation candidates5.

4 Experiments

We used the MAY 2008 version of English
Wikipedia and the JUNE 2008 version of
Japanese Wikipedia for our experiments. 24,000
hyponymy-relation candidates, randomly selected
in both languages, were manually checked to build
training, development, and test sets6. Around
8,000 hyponymy relations were found in the man-
ually checked data for both languages7. 20,000 of
the manually checked data were used as a train-
ing set for training the initial classifier. The rest
were equally divided into development and test
sets. The development set was used to select the
optimal parameters in bilingual co-training and the
test set was used to evaluate our system.

We used TinySVM (TinySVM, 2002) with a
polynomial kernel of degree 2 as a classifier. The
maximum iteration number in the bilingual co-
training was set as 100. Two parameters, θ and
TopN , were selected through experiments on the
development set. θ = 1 and TopN=900 showed

5We also used redirection links in English and Japanese
Wikipedia for recognizing the variations of terms when we
built a bilingual instance dictionary with Wikipedia cross-
language links.

6It took about two or three months to check them in each
language.

7Regarding a hyponymy relation as a positive sample and
the others as a negative sample for training SVMs, “positive
sample:negative sample” was about 8,000:16,000=1:2
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the best performance and were used as the optimal
parameter in the following experiments.

We conducted three experiments to show ef-
fects of bilingual co-training, training data size,
and bilingual instance dictionaries. In the first two
experiments, we experimented with a bilingual in-
stance dictionary derived from Wikipedia cross-
language links. Comparison among systems based
on three different bilingual instance dictionaries is
shown in the third experiment.

Precision (P ), recall (R), and F1-measure (F1),
as in Eq (1), were used as the evaluation measures,
where Rel represents a set of manually checked
hyponymy relations and HRbyS represents a set
of hyponymy-relation candidates classified as hy-
ponymy relations by the system:

P = |Rel ∩HRbyS|/|HRbyS| (1)

R = |Rel ∩HRbyS|/|Rel|
F1 = 2× (P ×R)/(P + R)

4.1 Effect of Bilingual Co-Training

ENGLISH JAPANESE

P R F1 P R F1

SYT 78.5 63.8 70.4 75.0 77.4 76.1
INIT 77.9 67.4 72.2 74.5 78.5 76.6
TRAN 76.8 70.3 73.4 76.7 79.3 78.0
BICO 78.0 83.7 80.7 78.3 85.2 81.6

Table 2: Performance of different systems (%)

Table 2 shows the comparison results of the four
systems. SYT represents the Sumida et al. (2008)
system that we implemented and tested with the
same data as ours. INIT is a system based on ini-
tial classifier c0 in bilingual co-training. We trans-
lated training data in one language by using our
bilingual instance dictionary and added the trans-
lation to the existing training data in the other
language like bilingual co-training did. The size
of the English and Japanese training data reached
20,729 and 20,486. We trained initial classifier c0

with the new training data. TRAN is a system
based on the classifier. BICO is a system based
on bilingual co-training.

For Japanese, SYT showed worse performance
than that reported in Sumida et al. (2008), proba-
bly due to the difference in training data size (ours
is 20,000 and Sumida et al. (2008) was 29,900).
The size of the test data was also different – ours
is 2,000 and Sumida et al. (2008) was 1,000.

Comparison between INIT and SYT shows the
effect of SF3–SF5 and IF , newly introduced
feature types, in hyponymy-relation classification.
INIT consistently outperformed SYT, although the
difference was merely around 0.5–1.8% in F1.

BICO showed significant performance im-
provement (around 3.6–10.3% in F1) over SYT,
INIT, and TRAN regardless of the language. Com-
parison between TRAN and BICO showed that
bilingual co-training is useful for enlarging the
training data and that the performance gain by
bilingual co-training cannot be achieved by sim-
ply translating the existing training data.
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Figure 5: F1 curves based on the increase of train-
ing data size during bilingual co-training

Figure 5 shows F1 curves based on the size
of the training data including those manually tai-
lored and automatically obtained through bilin-
gual co-training. The curve starts from 20,000 and
ends around 55,000 in Japanese and 62,000 in En-
glish. As the training data size increases, the F1

curves tend to go upward in both languages. This
indicates that the two classifiers cooperate well
to boost their performance through bilingual co-
training.

We recognized 5.4 M English and 2.41 M
Japanese hyponymy relations from the classifi-
cation results of BICO on all hyponymy-relation
candidates in both languages.

4.2 Effect of Training Data Size

We performed two tests to investigate the effect of
the training data size on bilingual co-training. The
first test posed the following question: “If we build
2n training samples by hand and the building cost
is the same in both languages, which is better from
the monolingual aspects: 2n monolingual training
samples or n bilingual training samples?” Table 3
and Figure 6 show the results.
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In INIT-E and INIT-J, a classifier in each lan-
guage, which was trained with 2n monolingual
training samples, did not learn through bilingual
co-training. In BICO-E and BICO-J, bilingual co-
training was applied to the initial classifiers trained
with n training samples in both languages. As
shown in Table 3, BICO, with half the size of the
training samples used in INIT, always performed
better than INIT in both languages. This indicates
that bilingual co-training enables us to build clas-
sifiers for two languages in tandem with the same
combined amount of data as required for training
a single classifier in isolation while achieving su-
perior performance.
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Figure 6: F1 based on training data size:
with/without bilingual co-training

n
2n n

INIT-E INIT-J BICO-E BICO-J

2500 67.3 72.3 70.5 73.0
5000 69.2 74.3 74.6 76.9
10000 72.2 76.6 76.9 78.6

Table 3: F1 based on training data size:
with/without bilingual co-training (%)

The second test asked: “Can we always im-
prove performance through bilingual co-training
with one strong and one weak classifier?” If the
answer is yes, then we can apply our framework
to acquisition of hyponymy-relations in other lan-
guages, i.e., German and French, without much
effort for preparing a large amount of training
data, because our strong classifier in English or
Japanese can boost the performance of a weak
classifier in other languages.

To answer the question, we tested the perfor-
mance of classifiers by using all training data
(20,000) for a strong classifier and by changing the

training data size of the other from 1,000 to 15,000
({1,000, 5,000, 10,000, 15,000}) for a weak clas-
sifier.

INIT-E BICO-E INIT-J BICO-J

1,000 72.2 79.6 64.0 72.7
5,000 72.2 79.6 73.1 75.3
10,000 72.2 79.8 74.3 79.0
15,000 72.2 80.4 77.0 80.1

Table 4: F1 based on training data size: when En-
glish classifier is strong one

INIT-E BICO-E INIT-J BICO-J

1,000 60.3 69.7 76.6 79.3
5,000 67.3 74.6 76.6 79.6
10,000 69.2 77.7 76.6 80.1
15,000 71.0 79.3 76.6 80.6

Table 5: F1 based on training data size: when
Japanese classifier is strong one

Tables 4 and 5 show the results, where “INIT”
represents a system based on the initial classifier
in each language and “BICO” represents a sys-
tem based on bilingual co-training. The results
were encouraging because the classifiers showed
better performance than their initial ones in every
setting. In other words, a strong classifier always
taught a weak classifier well, and the strong one
also got help from the weak one, regardless of the
size of the training data with which the weaker one
learned. The test showed that bilingual co-training
can work well if we have one strong classifier.

4.3 Effect of Bilingual Instance Dictionaries

We tested our method with different bilingual in-
stance dictionaries to investigate their effect. We
built bilingual instance dictionaries based on dif-
ferent translation dictionaries whose translation
entries came from different domains (i.e., gen-
eral domain, technical domain, and Wikipedia)
and had a different degree of translation ambigu-
ity. In Table 6, D1 and D2 correspond to sys-
tems based on a bilingual instance dictionary de-
rived from two handcrafted translation dictionar-
ies, EDICT (Breen, 2008) (a general-domain dic-
tionary) and “The Japan Science and Technology
Agency Dictionary,” (a translation dictionary for
technical terms) respectively. D3, which is the
same as BICO in Table 2, is based on a bilingual
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instance dictionary derived from Wikipedia. EN-
TRY represents the number of translation dictio-
nary entries used for building a bilingual instance
dictionary. E2J (or J2E) represents the average
translation ambiguities of English (or Japanese)
terms in the entries. To show the effect of these
translation ambiguities, we used each dictionary
under two different conditions, α=5 and ALL. α=5
represents the condition where only translation en-
tries with less than five translation ambiguities are
used; ALL represents no restriction on translation
ambiguities.

DIC F1 DIC STATISTICS

TYPE E J ENTRY E2J J2E

D1 α=5 76.5 78.4 588K 1.80 1.77
D1 ALL 75.0 77.2 990K 7.17 2.52
D2 α=5 76.9 78.5 667K 1.89 1.55
D2 ALL 77.0 77.9 750K 3.05 1.71
D3 α=5 80.7 81.6 197K 1.03 1.02
D3 ALL 80.7 81.6 197K 1.03 1.02

Table 6: Effect of different bilingual instance dic-
tionaries

The results showed that D3 was the best and
that the performances of the others were sim-
ilar to each other. The differences in the F1

scores between α=5 and ALL were relatively small
within the same system triggered by translation
ambiguities. The performance gap between D3
and the other systems might explain the fact that
both hyponymy-relation candidates and the trans-
lation dictionary used in D3 were extracted from
the same dataset (i.e., Wikipedia), and thus the
bilingual instance dictionary built with the trans-
lation dictionary in D3 had better coverage of
the Wikipedia entries consisting of hyponymy-
relation candidates than the other bilingual in-
stance dictionaries. Although D1 and D2 showed
lower performance than D3, the experimental re-
sults showed that bilingual co-training was always
effective no matter which dictionary was used
(Note that F1 of INIT in Table 2 was 72.2 in En-
glish and 76.6 in Japanese.)

5 Related Work

Li and Li (2002) proposed bilingual bootstrapping
for word translation disambiguation. Similar to
bilingual co-training, classifiers for two languages
cooperated in learning with bilingual resources in

bilingual bootstrapping. However, the two clas-
sifiers in bilingual bootstrapping were for a bilin-
gual task but did different tasks from the monolin-
gual viewpoint. A classifier in each language is for
word sense disambiguation, where a class label (or
word sense) is different based on the languages.
On the contrary, classifiers in bilingual co-training
cooperate in doing the same type of tasks.

Bilingual resources have been used for mono-
lingual tasks including verb classification and
noun phrase semantic interpolation (Merlo et al.,
2002; Girju, 2006). However, unlike ours, their fo-
cus was limited to bilingual features for one mono-
lingual classifier based on supervised learning.

Recently, there has been increased interest in se-
mantic relation acquisition from corpora. Some
regarded Wikipedia as the corpora and applied
hand-crafted or machine-learned rules to acquire
semantic relations (Herbelot and Copestake, 2006;
Kazama and Torisawa, 2007; Ruiz-casado et al.,
2005; Nastase and Strube, 2008; Sumida et al.,
2008; Suchanek et al., 2007). Several researchers
who participated in SemEval-07 (Girju et al.,
2007) proposed methods for the classification of
semantic relations between simple nominals in
English sentences. However, the previous work
seldom considered the bilingual aspect of seman-
tic relations in the acquisition of monolingual se-
mantic relations.

6 Conclusion

We proposed a bilingual co-training approach and
applied it to hyponymy-relation acquisition from
Wikipedia. Experiments showed that bilingual
co-training is effective for improving the perfor-
mance of classifiers in both languages. We fur-
ther showed that bilingual co-training enables us
to build classifiers for two languages in tandem,
outperforming classifiers trained individually for
each language while requiring no more training
data in total than a single classifier trained in iso-
lation.

We showed that bilingual co-training is also
helpful for boosting the performance of a weak
classifier in one language with the help of a strong
classifier in the other language without lowering
the performance of either classifier. This indicates
that the framework can reduce the cost of prepar-
ing training data in new languages with the help of
our English and Japanese strong classifiers. Our
future work focuses on this issue.
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Abstract
An important and well-studied problem is
the production of semantic lexicons from
a large corpus. In this paper, we present
a system named ASIA (Automatic Set In-
stance Acquirer), which takes in the name
of a semantic class as input (e.g., “car
makers”) and automatically outputs its in-
stances (e.g., “ford”, “nissan”, “toyota”).
ASIA is based on recent advances in web-
based set expansion - the problem of find-
ing all instances of a set given a small
number of “seed” instances. This ap-
proach effectively exploits web resources
and can be easily adapted to different
languages. In brief, we use language-
dependent hyponym patterns to find a
noisy set of initial seeds, and then use a
state-of-the-art language-independent set
expansion system to expand these seeds.
The proposed approach matches or outper-
forms prior systems on several English-
language benchmarks. It also shows ex-
cellent performance on three dozen addi-
tional benchmark problems from English,
Chinese and Japanese, thus demonstrating
language-independence.

1 Introduction

An important and well-studied problem is the pro-
duction of semantic lexicons for classes of in-
terest; that is, the generation of all instances of
a set (e.g., “apple”, “orange”, “banana”) given
a name of that set (e.g., “fruits”). This task is
often addressed by linguistically analyzing very
large collections of text (Hearst, 1992; Kozareva
et al., 2008; Etzioni et al., 2005; Pantel and
Ravichandran, 2004; Pasca, 2004), often using
hand-constructed or machine-learned shallow lin-
guistic patterns to detect hyponym instances. A hy-
ponym is a word or phrase whose semantic range

Figure 1: Examples of SEAL’s input and output.
English entities are reality TV shows, Chinese en-
tities are popular Taiwanese foods, and Japanese
entities are famous cartoon characters.

is included within that of another word. For exam-
ple, x is a hyponym of y if x is a (kind of) y. The
opposite of hyponym is hypernym.

In this paper, we evaluate a novel approach to
this problem, embodied in a system called ASIA1

(Automatic Set Instance Acquirer). ASIA takes a
semantic class name as input (e.g., “car makers”)
and automatically outputs instances (e.g., “ford”,
“nissan”, “toyota”). Unlike prior methods, ASIA
makes heavy use of tools for web-based set ex-
pansion. Set expansion is the task of finding all
instances of a set given a small number of exam-
ple (seed) instances. ASIA uses SEAL (Wang and
Cohen, 2007), a language-independent web-based
system that performed extremely well on a large
number of benchmark sets – given three correct
seeds, SEAL obtained average MAP scores in the
high 90’s for 36 benchmark problems, including a
dozen test problems each for English, Chinese and
Japanese. SEAL works well in part because it can
efficiently find and process many semi-structured
web documents containing instances of the set be-
ing expanded. Figure 1 shows some examples of
SEAL’s input and output.

SEAL has been recently extended to be robust
to errors in its initial set of seeds (Wang et al.,

1http://rcwang.com/asia
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2008), and to use bootstrapping to iteratively im-
prove its performance (Wang and Cohen, 2008).
These extensions allow ASIA to extract instances
of sets from the Web, as follows. First, given a
semantic class name (e.g., “fruits”), ASIA uses a
small set of language-dependent hyponym patterns
(e.g., “fruits such as ”) to find a large but noisy
set of seed instances. Second, ASIA uses the ex-
tended version of SEAL to expand the noisy set of
seeds.

ASIA’s approach is motivated by the conjecture
that for many natural classes, the amount of infor-
mation available in semi-structured documents on
the Web is much larger than the amount of infor-
mation available in free-text documents; hence, it
is natural to attempt to augment search for set in-
stances in free-text with semi-structured document
analysis. We show that ASIA performs extremely
well experimentally. On the 36 benchmarks used
in (Wang and Cohen, 2007), which are relatively
small closed sets (e.g., countries, constellations,
NBA teams), ASIA has excellent performance
for both recall and precision. On four additional
English-language benchmark problems (US states,
countries, singers, and common fish), we com-
pare to recent work by Kozareva, Riloff, and Hovy
(Kozareva et al., 2008), and show comparable or
better performance on each of these benchmarks;
this is notable because ASIA requires less infor-
mation than the work of Kozareva et al (their sys-
tem requires a concept name and a seed). We also
compare ASIA on twelve additional benchmarks
to the extended Wordnet 2.1 produced by Snow
et al (Snow et al., 2006), and show that for these
twelve sets, ASIA produces more than five times
as many set instances with much higher precision
(98% versus 70%).

Another advantage of ASIA’s approach is that it
is nearly language-independent: since the underly-
ing set-expansion tools are language-independent,
all that is needed to support a new target language
is a new set of hyponym patterns for that lan-
guage. In this paper, we present experimental re-
sults for Chinese and Japanese, as well as English,
to demonstrate this language-independence.

We present related work in Section 2, and ex-
plain our proposed approach for ASIA in Sec-
tion 3. Section 4 presents the details of our ex-
periments, as well as the experimental results. A
comparison of results are illustrated in Section 5,
and the paper concludes in Section 6.

2 Related Work

There has been a significant amount of research
done in the area of semantic class learning (aka
lexical acquisition, lexicon induction, hyponym
extraction, or open-domain information extrac-
tion). However, to the best of our knowledge, there
is not a system that can perform set instance ex-
traction in multiple languages given only the name
of the set.

Hearst (Hearst, 1992) presented an approach
that utilizes hyponym patterns for extracting can-
didate instances given the name of a semantic set.
The approach presented in Section 3.1 is based on
this work, except that we extended it to two other
languages: Chinese and Japanese.

Pantel et al (Pantel and Ravichandran, 2004)
presented an algorithm for automatically inducing
names for semantic classes and for finding their
instances by using “concept signatures” (statistics
on co-occuring instances). Pasca (Pasca, 2004)
presented a method for acquiring named entities in
arbitrary categories using lexico-syntactic extrac-
tion patterns. Etzioni et al (Etzioni et al., 2005)
presented the KnowItAll system that also utilizes
hyponym patterns to extract class instances from
the Web. All the systems mentioned rely on either
a English part-of-speech tagger, a parser, or both,
and hence are language-dependent.

Kozareva et al (Kozareva et al., 2008) illustrated
an approach that uses a single hyponym pattern
combined with graph structures to learn semantic
class from the Web. Section 5.1 shows that our
approach is competitive experimentally; however,
their system requires more information, as it uses
the name of the semantic set and a seed instance.

Pasca (Paşca, 2007b; Paşca, 2007a) illustrated
a set expansion approach that extracts instances
from Web search queries given a set of input seed
instances. This approach is similar in flavor to
SEAL but, addresses a different task from that ad-
dressed here: for ASIA the user provides no seeds,
but instead provides the name of the set being ex-
panded. We compare to Pasca’s system in Sec-
tion 5.2.

Snow et al (Snow et al., 2006) use known hyper-
nym/hyponym pairs to generate training data for a
machine-learning system, which then learns many
lexico-syntactic patterns. The patterns learned are
based on English-language dependency parsing.
We compare to Snow et al’s results in Section 5.3.
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3 Proposed Approach

ASIA is composed of three main components: the
Noisy Instance Provider, the Noisy Instance Ex-
pander, and the Bootstrapper. Given a semantic
class name, the Provider extracts a initial set of
noisy candidate instances using hand-coded pat-
terns, and ranks the instances by using a sim-
ple ranking model. The Expander expands and
ranks the instances using evidence from semi-
structured web documents, such that irrelevant
ones are ranked lower in the list. The Bootstrap-
per enhances the quality and completeness of the
ranked list by using an unsupervised iterative tech-
nique. Note that the Expander and Bootstrap-
per rely on SEAL to accomplish their goals. In
this section, we first describe the Noisy Instance
Provider, then we briefly introduce SEAL, fol-
lowed by the Noisy Instance Expander, and finally,
the Bootstrapper.

3.1 Noisy Instance Provider

Noisy Instance Provider extracts candidate in-
stances from free text (i.e., web snippets) us-
ing the methods presented in Hearst’s early work
(Hearst, 1992). Hearst exploited several patterns
for identifying hyponymy relation (e.g., such au-
thor as Shakespeare) that many current state-of-
the-art systems (Kozareva et al., 2008; Pantel and
Ravichandran, 2004; Etzioni et al., 2005; Pasca,
2004) are using. However, unlike all of those sys-
tems, ASIA does not use any NLP tool (e.g., parts-
of-speech tagger, parser) or rely on capitalization
for extracting candidates (since we wanted ASIA
to be as language-independent as possible). This
leads to sets of instances that are noisy; however,
we will show that set expansion and re-ranking can
improve the initial sets dramatically. Below, we
will refer to the initial set of noisy instances ex-
tracted by the Provider as the initial set.

In more detail, the Provider first constructs a
few queries of hyponym phrase by using a se-
mantic class name and a set of pre-defined hy-
ponym patterns. For every query, the Provider re-
trieves a hundred snippets from Yahoo!, and splits
each snippet into multiple excerpts (a snippet of-
ten contains multiple continuous excerpts from its
web page). For each excerpt, the Provider extracts
all chunks of characters that would then be used
as candidate instances. Here, we define a chunk
as a sequence of characters bounded by punctua-
tion marks or the beginning and end of an excerpt.

Figure 2: Hyponym patterns in English, Chinese,
and Japanese. In each pattern, <C> is a place-
holder for the semantic class name and <I> is a
placeholder for its instances.

Lastly, the Provider ranks each candidate instance
x based on its weight assigned by the simple rank-
ing model presented below:

weight(x) =
sf (x,S)

|S|
× ef (x,E)

|E|
× wcf (x,E)

|C|

where S is the set of snippets, E is the set of ex-
cerpts, and C is the set of chunks. sf (x,S) is
the snippet frequency of x (i.e., the number of
snippets containing x) and ef (x,E) is the excerpt
frequency of x. Furthermore, wcf (x,E) is the
weighted chunk frequency of x, which is defined
as follows:

wcf (x,E) =
∑

e∈E

∑

x∈e

1

dist(x, e) + 1

where dist(x, e) is the number of characters be-
tween x and the hyponym phrase in excerpt e.
This model weights every occurrence of x based
on the assumption that chunks closer to a hyponym
phrase are usually more important than those fur-
ther away. It also heavily rewards frequency, as
our assumption is that the most common instances
will be more useful as seeds for SEAL.

Figure 2 shows the hyponym patterns we use
for English, Chinese, and Japanese. There are two
types of hyponym patterns: The first type are the
ones that require the class name C to precede its
instance I (e.g., C such as I), and the second type
are the opposite ones (e.g., I and other C). In
order to reduce irrelevant chunks, when excerpts
were extracted, the Provider drops all characters
preceding the hyponym phrase in excerpts that
contain the first type, and also drops all charac-
ters following the hyponym phrase in excerpts that
contain the second type. For some semantic class
names (e.g., “cmu buildings”), there are no web
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documents containing any of the hyponym-phrase
queries that were constructed using the name. In
this case, the Provider turns to a back-off strategy
which simply treats the semantic class name as the
hyponym phrase and extracts/ranks all chunks co-
occurring with the class name in the excerpts.

3.2 Set Expander - SEAL

In this paper, we rely on a set expansion system
named SEAL (Wang and Cohen, 2007), which
stands for Set Expander for Any Language. The
system accepts as input a few seeds of some target
set S (e.g., “fruits”) and automatically finds other
probable instances (e.g., “apple”, “banana”) of S
in web documents. As its name implies, SEAL
is independent of document languages: both the
written (e.g., English) and the markup language
(e.g., HTML). SEAL is a research system that
has shown good performance in published results
(Wang and Cohen, 2007; Wang et al., 2008; Wang
and Cohen, 2008). Figure 1 shows some examples
of SEAL’s input and output.

In more detail, SEAL contains three major com-
ponents: the Fetcher, Extractor, and Ranker. The
Fetcher is responsible for fetching web docu-
ments, and the URLs of the documents come from
top results retrieved from the search engine us-
ing the concatenation of all seeds as the query.
This ensures that every fetched web page contains
all seeds. The Extractor automatically constructs
“wrappers” (i.e. page-specific extraction rules) for
each page that contains the seeds. Every wrap-
per comprises two character strings that specify
the left and right contexts necessary for extract-
ing candidate instances. These contextual strings
are maximally-long contexts that bracket at least
one occurrence of every seed string on a page. All
other candidate instances bracketed by these con-
textual strings derived from a particular page are
extracted from the same page.

After the candidates are extracted, the Ranker
constructs a graph that models all the relations
between documents, wrappers, and candidate in-
stances. Figure 3 shows an example graph where
each node di represents a document, wi a wrapper,
and mi a candidate instance. The Ranker performs
Random Walk with Restart (Tong et al., 2006) on
this graph (where the initial “restart” set is the
set of seeds) until all node weights converge, and
then ranks nodes by their final score; thus nodes
are weighted higher if they are connected to many

Figure 3: An example graph constructed by
SEAL. Every edge from node x to y actually has
an inverse relation edge from node y to x that is
not shown here (e.g., m1 is extracted by w1).

seed nodes by many short, low fan-out paths. The
final expanded set contains all candidate instance
nodes, ranked by their weights in the graph.

3.3 Noisy Instance Expander

Wang (Wang et al., 2008) illustrated that it is feasi-
ble to perform set expansion on noisy input seeds.
The paper showed that the noisy output of any
Question Answering system for list questions can
be improved by using a noise-resistant version of
SEAL (An example of a list question is “Who
were the husbands of Heddy Lamar?”). Since the
initial set of candidate instances obtained using
Hearst’s method are noisy, the Expander expands
them by performing multiple iterations of set ex-
pansion using the noise-resistant SEAL.

For every iteration, the Expander performs set
expansion on a static collection of web pages. This
collection is pre-fetched by querying Google and
Yahoo! using the input class name and words such
as “list”, “names”, “famous”, and “common” for
discovering web pages that might contain lists of
the input class. In the first iteration, the Expander
expands instances with scores of at least k in the
initial set. In every upcoming iteration, it expands
instances obtained in the last iteration that have
scores of at least k and that also exist in the ini-
tial set. We have determined k to be 0.4 based on
our development set2. This process repeats until
the set of seeds for ith iteration is identical to that
of (i− 1)th iteration.

There are several differences between the origi-
nal SEAL and the noise-resistant SEAL. The most
important difference is the Extractor. In the origi-

2A collection of closed-set lists such as planets, Nobel
prizes, and continents in English, Chinese and Japanese
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nal SEAL, the Extractor requires the longest com-
mon contexts to bracket at least one instance of ev-
ery seed per web page. However, when seeds are
noisy, such common contexts usually do not ex-
ist. The Extractor in noise-resistant SEAL solves
this problem by requiring the contexts to bracket
at least one instance of a minimum of two seeds,
rather than every seed. This is implemented using
a trie-based method described briefly in the origi-
nal SEAL paper (Wang and Cohen, 2007). In this
paper, the Expander utilizes a slightly-modified
version of the Extractor, which requires the con-
texts to bracket as many seed instances as possible.
This idea is based on the assumption that irrelevant
instances usually do not have common contexts;
whereas relevant ones do.

3.4 Bootstrapper

Bootstrapping (Etzioni et al., 2005; Kozareva,
2006; Nadeau et al., 2006) is an unsupervised iter-
ative process in which a system continuously con-
sumes its own outputs to improve its own perfor-
mance. Wang (Wang and Cohen, 2008) showed
that it is feasible to bootstrap the results of set ex-
pansion to improve the quality of a list. The pa-
per introduces an iterative version of SEAL called
iSEAL, which expands a list in multiple iterations.
In each iteration, iSEAL expands a few candi-
dates extracted in previous iterations and aggre-
gates statistics. The Bootstrapper utilizes iSEAL
to further improve the quality of the list returned
by the Expander.

In every iteration, the Bootstrapper retrieves 25
web pages by using the concatenation of three
seeds as query to each of Google and Yahoo!.
In the first iteration, the Bootstrapper expands
randomly-selected instances returned by the Ex-
pander that exist in the initial set. In every upcom-
ing iteration, the Bootstrapper expands randomly-
selected unsupervised instances obtained in the
last iteration that also exist in the initial set. This
process terminates when all possible seed com-
binations have been consumed or five iterations3

have been reached, whichever comes first. No-
tice that from iteration to iteration, statistics are
aggregated by growing the graph described in Sec-
tion 3.2. We perform Random Walk with Restart
(Tong et al., 2006) on this graph to determine the
final ranking of the extracted instances.

3To keep the overall runtime minimal.

4 Experiments

4.1 Datasets

We evaluated our approach using the evaluation
set presented in (Wang and Cohen, 2007), which
contains 36 manually constructed lists across
three different languages: English, Chinese, and
Japanese (12 lists per language). Each list contains
all instances of a particular semantic class in a cer-
tain language, and each instance contains a set of
synonyms (e.g., USA, America). There are a total
of 2515 instances, with an average of 70 instances
per semantic class. Figure 4 shows the datasets
and their corresponding semantic class names that
we use in our experiments.

4.2 Evaluation Metric

Since the output of ASIA is a ranked list of ex-
tracted instances, we choose mean average pre-
cision (MAP) as our evaluation metric. MAP is
commonly used in the field of Information Re-
trieval for evaluating ranked lists because it is sen-
sitive to the entire ranking and it contains both re-
call and precision-oriented aspects. The MAP for
multiple ranked lists is simply the mean value of
average precisions calculated separately for each
ranked list. We define the average precision of a
single ranked list as:

AvgPrec(L) =

|L|
∑

r=1

Prec(r)× isFresh(r)

Total # of Correct Instances

where L is a ranked list of extracted instances, r
is the rank ranging from 1 to |L|, Prec(r) is the
precision at rank r. isFresh(r) is a binary function
for ensuring that, if a list contains multiple syn-
onyms of the same instance, we do not evaluate
that instance more than once. More specifically,
the function returns 1 if a) the synonym at r is cor-
rect, and b) it is the highest-ranked synonym of its
instance in the list; it returns 0 otherwise.

4.3 Experimental Results

For each semantic class in our dataset, the
Provider first produces a noisy list of candidate in-
stances, using its corresponding class name shown
in Figure 4. This list is then expanded by the Ex-
pander and further improved by the Bootstrapper.

We present our experimental results in Table 1.
As illustrated, although the Provider performs
badly, the Expander substantially improves the
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Figure 4: The 36 datasets and their semantic class names used as inputs to ASIA in our experiments.

English Dataset NP Chinese Dataset NP Japanese Dataset NP
NP NP +NE NP NP +NE NP NP +NE

# NP +BS +NE +BS # NP +BS +NE +BS # NP +BS +NE +BS
1. 0.22 0.83 0.82 0.87 13. 0.09 0.75 0.80 0.80 25. 0.20 0.63 0.71 0.76
2. 0.31 1.00 1.00 1.00 14. 0.08 0.99 0.80 0.89 26. 0.20 0.40 0.90 0.96
3. 0.54 0.99 0.99 0.98 15. 0.29 0.66 0.84 0.91 27. 0.16 0.96 0.97 0.96
4. 0.48 1.00 1.00 1.00 *16. 0.09 0.00 0.93 0.93 *28. 0.01 0.00 0.80 0.87
5. 0.54 1.00 1.00 1.00 17. 0.21 0.00 1.00 1.00 29. 0.09 0.00 0.95 0.95
6. 0.64 0.98 1.00 1.00 *18. 0.00 0.00 0.19 0.23 *30. 0.02 0.00 0.73 0.73
7. 0.32 0.82 0.98 0.97 19. 0.11 0.90 0.68 0.89 31. 0.20 0.49 0.83 0.89
8. 0.41 1.00 1.00 1.00 20. 0.18 0.00 0.94 0.97 32. 0.09 0.00 0.88 0.88
9. 0.81 1.00 1.00 1.00 21. 0.64 1.00 1.00 1.00 33. 0.07 0.00 0.95 1.00

*10. 0.00 0.00 0.00 0.00 22. 0.08 0.00 0.67 0.80 34. 0.04 0.32 0.98 0.97
11. 0.11 0.62 0.51 0.76 23. 0.47 1.00 1.00 1.00 35. 0.15 1.00 1.00 1.00
12. 0.01 0.00 0.30 0.30 24. 0.60 1.00 1.00 1.00 36. 0.20 0.90 1.00 1.00

Avg. 0.37 0.77 0.80 0.82 Avg. 0.24 0.52 0.82 0.87 Avg. 0.12 0.39 0.89 0.91

Table 1: Performance of set instance extraction for each dataset measured in MAP. NP is the Noisy
Instance Provider, NE is the Noisy Instance Expander, and BS is the Bootstrapper.

quality of the initial list, and the Bootstrapper then
enhances it further more. On average, the Ex-
pander improves the performance of the Provider
from 37% to 80% for English, 24% to 82% for
Chinese, and 12% to 89% for Japanese. The Boot-
strapper then further improves the performance of
the Expander to 82%, 87% and 91% respectively.
In addition, the results illustrate that the Bootstrap-
per is also effective even without the Expander; it
directly improves the performance of the Provider
from 37% to 77% for English, 24% to 52% for
Chinese, and 12% to 39% for Japanese.

The simple back-off strategy seems to be effec-
tive as well. There are five datasets (marked with *
in Table 1) of which their hyponym phrases return
zero web documents. For those datasets, ASIA au-
tomatically uses the back-off strategy described in
Section 3.1. Considering only those five datasets,
the Expander, on average, improves the perfor-
mance of the Provider from 2% to 53% and the
Bootstrapper then improves it to 55%.

5 Comparison to Prior Work

We compare ASIA’s performance to the results
of three previously published work. We use the
best-configured ASIA (NP+NE+BS) for all com-
parisons, and we present the comparison results in
this section.

5.1 (Kozareva et al., 2008)

Table 2 shows a comparison of our extraction per-
formance to that of Kozareva (Kozareva et al.,
2008). They report results on four tasks: US
states, countries, singers, and common fish. We
evaluated our results manually. The results in-
dicate that ASIA outperforms theirs for all four
datasets that they reported. Note that the input
to their system is a semantic class name plus one
seed instance; whereas, the input to ASIA is only
the class name. In terms of system runtime, for
each semantic class, Kozareva et al reported that
their extraction process usually finished overnight;
however, ASIA usually finished within a minute.
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N Kozareva ASIA N Kozareva ASIA
US States Countries

25 1.00 1.00 50 1.00 1.00
50 1.00 1.00 100 1.00 1.00
64 0.78 0.78 150 1.00 1.00

200 0.90 0.93
300 0.61 0.67
323 0.57 0.62

Singers Common Fish
10 1.00 1.00 10 1.00 1.00
25 1.00 1.00 25 1.00 1.00
50 0.97 1.00 50 1.00 1.00
75 0.96 1.00 75 0.93 1.00
100 0.96 1.00 100 0.84 1.00
150 0.95 0.97 116 0.80 1.00
180 0.91 0.96

Table 2: Set instance extraction performance com-
pared to Kozareva et al. We report our precision
for all semantic classes and at the same ranks re-
ported in their work.

5.2 (Paşca, 2007b)

We compare ASIA to Pasca (Paşca, 2007b) and
present comparison results in Table 3. There are
ten semantic classes in his evaluation dataset, and
the input to his system for each class is a set of
seed entities rather than a class name. We evaluate
every instance manually for each class. The results
show that, on average, ASIA performs better.

However, we should emphasize that for the
three classes: movie, person, and video game,
ASIA did not initially converge to the correct in-
stance list given the most natural concept name.
Given “movies”, ASIA returns as instances strings
like “comedy”, “action”, “drama”, and other kinds
of movies. Given “video games”, it returns “PSP”,
“Xbox”, “Wii”, etc. Given “people”, it returns
“musicians”, “artists”, “politicians”, etc. We ad-
dressed this problem by simply re-running ASIA
with a more specific class name (i.e., the first one
returned); however, the result suggests that future
work is needed to support automatic construction
of hypernym hierarchy using semi-structured web
documents.

5.3 (Snow et al., 2006)

Snow (Snow et al., 2006) has extended the Word-
Net 2.1 by adding thousands of entries (synsets)
at a relatively high precision. They have made
several versions of extended WordNet available4.
For comparison purposes, we selected the version
(+30K) that achieved the best F-score in their ex-
periments.

4http://ai.stanford.edu/˜rion/swn/

Precision @
Target Class System 25 50 100 150 250

Cities Pasca 1.00 0.96 0.88 0.84 0.75
ASIA 1.00 1.00 0.97 0.98 0.96

Countries Pasca 1.00 0.98 0.95 0.82 0.60
ASIA 1.00 1.00 1.00 1.00 0.79

Drugs Pasca 1.00 1.00 0.96 0.92 0.75
ASIA 1.00 1.00 1.00 1.00 0.98

Food Pasca 0.88 0.86 0.82 0.78 0.62
ASIA 1.00 1.00 0.93 0.95 0.90

Locations Pasca 1.00 1.00 1.00 1.00 1.00
ASIA 1.00 1.00 1.00 1.00 1.00

Newspapers Pasca 0.96 0.98 0.93 0.86 0.54
ASIA 1.00 1.00 0.98 0.99 0.85

Universities Pasca 1.00 1.00 1.00 1.00 0.99
ASIA 1.00 1.00 1.00 1.00 1.00

Movies Pasca 0.92 0.90 0.88 0.84 0.79
Comedy Movies ASIA 1.00 1.00 1.00 1.00 1.00

People Pasca 1.00 1.00 1.00 1.00 1.00
Jazz Musicians ASIA 1.00 1.00 1.00 0.94 0.88

Video Games Pasca 1.00 1.00 0.99 0.98 0.98
PSP Games ASIA 1.00 1.00 1.00 0.99 0.97

Pasca 0.98 0.97 0.94 0.90 0.80
Average ASIA 1.00 1.00 0.99 0.98 0.93

Table 3: Set instance extraction performance com-
pared to Pasca. We report our precision for all se-
mantic classes and at the same ranks reported in
his work.

For the experimental comparison, we focused
on leaf semantic classes from the extended Word-
Net that have many hypernyms, so that a mean-
ingful comparison could be made: specifically, we
selected nouns that have at least three hypernyms,
such that the hypernyms are the leaf nodes in the
hypernym hierarchy of WordNet. Of these, 210
were extended by Snow. Preliminary experiments
showed that (as in the experiments with Pasca’s
classes above) ASIA did not always converge to
the intended meaning; to avoid this problem, we
instituted a second filter, and discarded ASIA’s re-
sults if the intersection of hypernyms from ASIA
and WordNet constituted less than 50% of those
in WordNet. About 50 of the 210 nouns passed
this filter. Finally, we manually evaluated preci-
sion and recall of a randomly selected set of twelve
of these 50 nouns.

We present the results in Table 4. We used a
fixed cut-off score5 of 0.3 to truncate the ranked
list produced by ASIA, so that we can compute
precision. Since only a few of these twelve nouns
are closed sets, we cannot generally compute re-
call; instead, we define relative recall to be the
ratio of correct instances to the union of correct
instances from both systems. As shown in the re-
sults, ASIA has much higher precision, and much
higher relative recall. When we evaluated Snow’s
extended WordNet, we assumed all instances that

5Determined from our development set.
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Snow’s Wordnet (+30k) Relative ASIA Relative
Class Name # Right # Wrong Prec. Recall # Right # Wrong Prec. Recall

Film Directors 4 4 0.50 0.01 457 0 1.00 1.00
Manias 11 0 1.00 0.09 120 0 1.00 1.00

Canadian Provinces 10 82 0.11 1.00 10 3 0.77 1.00
Signs of the Zodiac 12 10 0.55 1.00 12 0 1.00 1.00

Roman Emperors 44 4 0.92 0.47 90 0 1.00 0.96
Academic Departments 20 0 1.00 0.67 27 0 1.00 0.90

Choreographers 23 10 0.70 0.14 156 0 1.00 0.94
Elected Officials 5 102 0.05 0.31 12 0 1.00 0.75

Double Stars 11 1 0.92 0.46 20 0 1.00 0.83
South American Countries 12 1 0.92 1.00 12 0 1.00 1.00

Prizefighters 16 4 0.80 0.23 63 1 0.98 0.89
Newspapers 20 0 1.00 0.23 71 0 1.00 0.81

Average 15.7 18.2 0.70 0.47 87.5 0.3 0.98 0.92

Table 4: Set instance extraction performance compared to Snow et al.

Figure 5: Examples of ASIA’s input and out-
put. Input class for Chinese is “holidays” and for
Japanese is “dramas”.

were in the original WordNet are correct. The
three incorrect instances of Canadian provinces
from ASIA are actually the three Canadian terri-
tories.

6 Conclusions

In this paper, we have shown that ASIA, a SEAL-
based system, extracts set instances with high pre-
cision and recall in multiple languages given only
the set name. It obtains a high MAP score (87%)
averaged over 36 benchmark problems in three
languages (Chinese, Japanese, and English). Fig-
ure 5 shows some real examples of ASIA’s in-
put and output in those three languages. ASIA’s
approach is based on web-based set expansion
using semi-structured documents, and is moti-
vated by the conjecture that for many natural
classes, the amount of information available in
semi-structured documents on the Web is much
larger than the amount of information available
in free-text documents. This conjecture is given
some support by our experiments: for instance,

ASIA finds 457 instances of the set “film direc-
tor” with perfect precision, whereas Snow et al’s
state-of-the-art methods for extraction from free
text extract only four correct instances, with only
50% precision.

ASIA’s approach is also quite language-
independent. By adding a few simple hyponym
patterns, we can easily extend the system to sup-
port other languages. We have also shown that
Hearst’s method works not only for English, but
also for other languages such as Chinese and
Japanese. We note that the ability to construct
semantic lexicons in diverse languages has obvi-
ous applications in machine translation. We have
also illustrated that ASIA outperforms three other
English systems (Kozareva et al., 2008; Paşca,
2007b; Snow et al., 2006), even though many of
these use more input than just a semantic class
name. In addition, ASIA is also quite efficient,
requiring only a few minutes of computation and
couple hundreds of web pages per problem.

In the future, we plan to investigate the pos-
sibility of constructing hypernym hierarchy auto-
matically using semi-structured documents. We
also plan to explore whether lexicons can be con-
structed using only the back-off method for hy-
ponym extraction, to make ASIA completely lan-
guage independent. We also wish to explore
whether performance can be improved by simul-
taneously finding class instances in multiple lan-
guages (e.g., Chinese and English) while learning
translations between the extracted instances.
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Abstract

This paper describes the extraction from
Wikipedia of lexical referencerules, iden-
tifying references to term meanings trig-
gered by other terms. We present extrac-
tion methods geared to cover the broad
range of the lexical reference relation and
analyze them extensively. Most extrac-
tion methods yield high precision levels,
and our rule-base is shown to perform bet-
ter than other automatically constructed
baselines in a couple of lexical expan-
sion and matching tasks. Our rule-base
yields comparable performance to Word-
Net while providing largely complemen-
tary information.

1 Introduction

A most common need in applied semantic infer-
ence is to infer the meaning of a target term from
other terms in a text. For example, a Question An-
swering system may infer the answer to a ques-
tion regardingluxury carsfrom a text mentioning
Bentley, which provides a concrete reference to the
sought meaning.

Aiming to capture such lexical inferences we
followed (Glickman et al., 2006), which coined
the term lexical reference(LR) to denote refer-
ences in text to the specific meaning of a target
term. They further analyzed the dataset of the First
Recognizing Textual Entailment Challenge (Da-
gan et al., 2006), which includes examples drawn
from seven different application scenarios. It was
found that an entailing text indeed includes a con-
crete reference to practically every term in the en-
tailed (inferred) sentence.

The lexical reference relation between two
terms may be viewed as a lexical inference rule,
denotedLHS⇒ RHS. Such rule indicates that the
left-hand-side term would generate a reference, in

some texts, to a possible meaning of the right hand
side term, as theBentley⇒ luxury carexample.

In the above example the LHS is a hyponym of
the RHS. Indeed, the commonly used hyponymy,
synonymy and some cases of the meronymy rela-
tions are special cases of lexical reference. How-
ever, lexical reference is a broader relation. For
instance, the LR rulephysician⇒ medicinemay
be useful to infer the topicmedicinein a text cate-
gorization setting, while an information extraction
system may utilize the ruleMargaret Thatcher
⇒ United Kingdomto infer a UK announcement
from the text “Margaret Thatcher announced”.

To perform such inferences, systems need large
scale knowledge bases of LR rules. A prominent
available resource is WordNet (Fellbaum, 1998),
from which classical relations such as synonyms,
hyponyms and some cases of meronyms may be
used as LR rules. An extension to WordNet was
presented by (Snow et al., 2006). Yet, available
resources do not cover the full scope of lexical ref-
erence.

This paper presents the extraction of a large-
scale rule base from Wikipedia designed to cover
a wide scope of the lexical reference relation. As
a starting point we examine the potential of defi-
nition sentences as a source for LR rules (Ide and
Jean, 1993; Chodorow et al., 1985; Moldovan and
Rus, 2001). When writing a concept definition,
one aims to formulate a concise text that includes
the most characteristic aspects of the defined con-
cept. Therefore, a definition is a promising source
for LR relations between the defined concept and
the definition terms.

In addition, we extract LR rules from Wikipedia
redirect and hyperlink relations. As a guide-
line, we focused on developing simple extrac-
tion methods that may be applicable for other
Web knowledge resources, rather than focusing
on Wikipedia-specific attributes. Overall, our rule
base contains about 8 million candidate lexical ref-
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erence rules.1

Extensive analysis estimated that 66% of our
rules are correct, while different portions of the
rule base provide varying recall-precision trade-
offs. Following further error analysis we intro-
duce rule filtering which improves inference per-
formance. The rule base utility was evaluated
within two lexical expansion applications, yield-
ing better results than other automatically con-
structed baselines and comparable results to Word-
Net. A combination with WordNet achieved the
best performance, indicating the significant mar-
ginal contribution of our rule base.

2 Background

Many works on machine readable dictionaries uti-
lized definitions to identify semantic relations be-
tween words (Ide and Jean, 1993). Chodorow et
al. (1985) observed that the head of the defining
phrase is a genus term that describes the defined
concept and suggested simple heuristics to find it.
Other methods use a specialized parser or a set of
regular expressions tuned to a particular dictionary
(Wilks et al., 1996).

Some works utilized Wikipedia to build an on-
tology. Ponzetto and Strube (2007) identified
the subsumption (IS-A) relation from Wikipedia’s
category tags, while in Yago (Suchanek et al.,
2007) these tags, redirect links and WordNet were
used to identify instances of 14 predefined spe-
cific semantic relations. These methods depend
on Wikipedia’s category system. The lexical refer-
ence relation we address subsumes most relations
found in these works, while our extractions are not
limited to a fixed set of predefined relations.

Several works examined Wikipedia texts, rather
than just its structured features. Kazama and Tori-
sawa (2007) explores the first sentence of an ar-
ticle and identifies the first noun phrase following
the verbbeas a label for the article title. We repro-
duce this part of their work as one of our baselines.
Toral and Mũnoz (2007) uses all nouns in the first
sentence. Gabrilovich and Markovitch (2007) uti-
lized Wikipedia-based concepts as the basis for a
high-dimensional meaning representation space.

Hearst (1992) utilized a list of patterns indica-
tive for the hyponym relation in general texts.
Snow et al. (2006) use syntactic path patterns as
features for supervised hyponymy and synonymy

1For download seeTextual Entailment Resource Poolat
the ACL-wiki (http://aclweb.org/aclwiki)

classifiers, whose training examples are derived
automatically from WordNet. They use these clas-
sifiers to suggest extensions to the WordNet hierar-
chy, the largest one consisting of 400K new links.
Their automatically created resource is regarded in
our paper as a primary baseline for comparison.

Many works addressed the more general notion
of lexical associations, or association rules (e.g.
(Ruge, 1992; Rapp, 2002)). For example,The
Beatles, Abbey Roadand Sgt. Pepperwould all
be considered lexically associated. However this
is a rather loose notion, which only indicates that
terms are semantically “related” and are likely to
co-occur with each other. On the other hand, lex-
ical reference is a special case of lexical associa-
tion, which specifies concretely that a reference to
the meaning of one term may be inferred from the
other. For example,Abbey Roadprovides a con-
crete reference toThe Beatles, enabling to infer a
sentence like “I listened to The Beatles” from “ I
listened to Abbey Road”, while it does not refer
specifically toSgt. Pepper.

3 Extracting Rules from Wikipedia

Our goal is to utilize the broad knowledge of
Wikipedia to extract a knowledge base of lexical
reference rules. Each Wikipedia article provides
a definition for the concept denoted by thetitle
of the article. As the most concise definition we
take the first sentence of each article, following
(Kazama and Torisawa, 2007). Our preliminary
evaluations showed that taking the entire first para-
graph as the definition rarely introduces new valid
rules while harming extraction precision signifi-
cantly.

Since a concept definition usually employs
more general terms than the defined concept (Ide
and Jean, 1993), the concept title is more likely
to refer to terms in its definition rather than vice
versa. Therefore the title is taken as the LHS of
the constructed rule while the extracted definition
term is taken as its RHS. As Wikipedia’s titles are
mostly noun phrases, the terms we extract as RHSs
are the nouns and noun phrases in the definition.
The remainder of this section describes our meth-
ods for extracting rules from the definition sen-
tence and from additional Wikipedia information.

Be-Comp Following the general idea in
(Kazama and Torisawa, 2007), we identify theIS-
A pattern in the definition sentence by extract-
ing nominal complements of the verb ‘be’, taking
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No. Extraction Rule

James Eugene ”Jim” Carrey is a Canadian-American actor

and comedian

1 Be-Comp Jim Carrey⇒ Canadian-American actor

2 Be-Comp Jim Carrey⇒ actor

3 Be-Comp Jim Carrey⇒ comedian

Abbey Road is an album released by The Beatles

4 All-N Abbey Road⇒ The Beatles

5 Parenthesis Graph⇒ mathematics

6 Parenthesis Graph⇒ data structure

7 Redirect CPU⇔ Central processing unit

8 Redirect Receptors IgG⇔ Antibody

9 Redirect Hypertension⇔ Elevated blood-pressure

10 Link pet⇒ Domesticated Animal

11 Link Gestaltist⇒ Gestalt psychology

Table 1:Examples of rule extraction methods

them as the RHS of a rule whose LHS is the article
title. While Kazama and Torisawa used a chun-
ker, we parsed the definition sentence using Mini-
par (Lin, 1998b). Our initial experiments showed
that parse-based extraction is more accurate than
chunk-based extraction. It also enables us extract-
ing additional rules by splitting conjoined noun
phrases and by taking both the head noun and the
complete base noun phrase as the RHS for sepa-
rate rules (examples 1–3 in Table 1).

All-N The Be-Compextraction method yields
mostly hypernym relations, which do not exploit
the full range of lexical references within the con-
cept definition. Therefore, we further create rules
for all head nouns and base noun phrases within
the definition (example 4). An unsupervised reli-
ability score for rules extracted by this method is
investigated in Section 4.3.

Title Parenthesis A common convention in
Wikipedia to disambiguate ambiguous titles is
adding a descriptive term in parenthesis at the end
of the title, as inThe Siren (Musical), The Siren
(sculpture)andSiren (amphibian). From such ti-
tles we extract rules in which the descriptive term
inside the parenthesis is the RHS and the rest of
the title is the LHS (examples 5–6).

Redirect As any dictionary and encyclopedia,
Wikipedia containsRedirectlinks that direct dif-
ferent search queries to the same article, which has
a canonical title. For instance, there are 86 differ-
ent queries that redirect the user toUnited States
(e.g. U.S.A., America, Yankee land). Redirect
links are hand coded, specifying that both terms

refer to the same concept. We therefore generate a
bidirectional entailment rule for each redirect link
(examples 7–9).

Link Wikipedia texts contain hyper links to ar-
ticles. For each link we generate a rule whose LHS
is the linking text and RHS is the title of the linked
article (examples 10–11). In this case we gener-
ate a directional rule since links do not necessarily
connect semantically equivalent entities.

We note that the last three extraction methods
should not be considered as Wikipedia specific,
since many Web-like knowledge bases contain
redirects, hyper-links and disambiguation means.
Wikipedia has additional structural features such
as category tags, structured summary tablets for
specific semantic classes, and articles containing
lists which were exploited in prior work as re-
viewed in Section 2.

As shown next, the different extraction meth-
ods yield different precision levels. This may al-
low an application to utilize only a portion of the
rule base whose precision is above a desired level,
and thus choose between several possible recall-
precision tradeoffs.

4 Extraction Methods Analysis

We applied our rule extraction methods over a
version of Wikipedia available in a database con-
structed by (Zesch et al., 2007)2. The extraction
yielded about 8 million rules altogether, with over
2.4 million distinct RHSs and 2.8 million distinct
LHSs. As expected, the extracted rules involve
mostly named entities and specific concepts, typi-
cally covered in encyclopedias.

4.1 Judging Rule Correctness

Following the spirit of the fine-grained human
evaluation in (Snow et al., 2006), we randomly
sampled 800 rules from our rule-base and pre-
sented them to an annotator who judged them for
correctness, according to the lexical reference no-
tion specified above. In cases which were too dif-
ficult to judge the annotator was allowed to ab-
stain, which happened for 20 rules. 66% of the re-
maining rules were annotated as correct. 200 rules
from the sample were judged by another annotator
for agreement measurement. The resulting Kappa
score was 0.7 (substantial agreement (Landis and

2English version from February 2007, containing 1.6 mil-
lion articles. www.ukp.tu-darmstadt.de/software/JWPL
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Extraction Per Method Accumulated

Method P Est. #Rules P %obtained

Redirect 0.87 1,851,384 0.87 31

Be-Comp 0.78 1,618,913 0.82 60

Parenthesis 0.71 94,155 0.82 60

Link 0.7 485,528 0.80 68

All-N 0.49 1,580,574 0.66 100

Table 2:Manual analysis: precision and estimated number
of correct rules per extraction method, and precision and %
of correct rules obtained of rule-sets accumulated by method.

Koch, 1997)), either when considering all the ab-
stained rules as correct or as incorrect.

The middle columns of Table 2 present, for each
extraction method, the obtained percentage of cor-
rect rules (precision) and their estimated absolute
number. This number is estimated by multiplying
the number of annotated correct rules for the ex-
traction method by the sampling proportion. In to-
tal, we estimate that our resource contains 5.6 mil-
lion correct rules. For comparison, Snow’s pub-
lished extension to WordNet3, which covers simi-
lar types of terms but is restricted to synonyms and
hyponyms, includes 400,000 relations.

The right part of Table 2 shows the perfor-
mance figures for accumulated rule bases, created
by adding the extraction methods one at a time in
order of their precision.% obtainedis the per-
centage of correct rules in each rule base out of
the total number of correct rules extracted jointly
by all methods (the union set).

We can see that excluding theAll-N method
all extraction methods reach quite high precision
levels of 0.7-0.87, with accumulated precision of
0.84. By selecting only a subset of the extrac-
tion methods, according to their precision, one can
choose different recall-precision tradeoff points
that suit application preferences.

The less accurateAll-N method may be used
when high recall is important, accounting for 32%
of the correct rules. An examination of the paths
in All-N reveals, beyond standard hyponymy and
synonymy, various semantic relations that satisfy
lexical reference, such asLocation, Occupation
andCreation, as illustrated in Table 3. Typical re-
lations covered byRedirectandLink rules include

3http://ai.stanford.edu/∼rion/swn/
4As a non-comparable reference, Snow’s fine-grained

evaluation showed a precision of 0.84 on 10K rules and 0.68
on 20K rules; however, they were interested only in the hy-
ponym relation while we evaluate our rules according to the
broader LR relation.

synonyms (NY State Trooper⇒ New York State
Police), morphological derivations (irritate ⇒ ir-
ritation), different spellings or naming (Pytagoras
⇒ Pythagoras) and acronyms (AIS⇒ Alarm Indi-
cation Signal).

4.2 Error Analysis

We sampled 100 rules which were annotated as in-
correct and examined the causes of errors. Figure
1 shows the distribution of error types.

Wrong NP part - The most common error
(35% of the errors) is taking an inappropriate part
of a noun phrase (NP) as the rule right hand side
(RHS). As described in Section 3, we create two
rules from each extracted NP, by taking both the
head noun and the complete base NP as RHSs.
While both rules are usually correct, there are
cases in which the left hand side (LHS) refers to
the NP as a whole but not to part of it. For ex-
ample,Margaret Thatcherrefers toUnited King-
dombut not toKingdom. In Section 5 we suggest
a filtering method which addresses some of these
errors. Future research may exploit methods for
detecting multi-words expressions.

All-N pattern errors

13%

Transparent head

11%

Wrong NP part

35%

Technical errors

10%
Dates and Places

5%

Link errors

5%

Redirect errors

5%

Related but not 

Referring

16%

Figure 1:Error analysis: type of incorrect rules

Related but not Referring - Although all terms
in a definition are highly related to the defined con-
cept, not all are referred by it. For example the
origin of a person (*The Beatles⇒ Liverpool5) or
family ties such as ‘daughter of’ or ‘sire of’.

All-N errors - Some of the articles start with a
long sentence which may include information that
is not directly referred by the title of the article.
For instance, consider*Interstate 80⇒ Califor-
nia from “Interstate 80 runs from California to
New Jersey”. In Section 4.3 we further analyze
this type of error and point at a possible direction
for addressing it.

Transparent head- This is the phenomenon in
which the syntactic head of a noun phrase does

5The asterisk denotes an incorrect rule
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Relation Rule Path Pattern

Location Lovek⇒ Cambodia Lovekcity in Cambodia

Occupation Thomas H. Cormen⇒ computer science Thomas H. Cormenprofessor ofcomputer science

Creation Genocidal Healer⇒ James White Genocidal Healernovel byJames White

Origin Willem van Aelst⇒ Dutch Willem van Aelst Dutchartist

Alias Dean Moriarty⇒ Benjamin Linus Dean Moriartyis an alias ofBenjamin Linuson Lost.

Spelling Egushawa⇒ Agushaway Egushawa, also spelledAgushaway...

Table 3:All-N rules exemplifying various types of LR relations

not bear its primary meaning, while it has a mod-
ifier which serves as the semantic head (Fillmore
et al., 2002; Grishman et al., 1986). Since parsers
identify the syntactic head, we extract an incorrect
rule in such cases. For instance, deriving*Prince
William⇒ memberinstead ofPrince William⇒
British Royal Familyfrom “Prince William is a
member of the British Royal Family”. Even though
we implemented the common solution of using a
list of typical transparent heads, this solution is
partial since there is no closed set of such phrases.

Technical errors - Technical extraction errors
were mainly due to erroneous identification of the
title in the definition sentence or mishandling non-
English texts.

Dates and Places- Dates and places where a
certain person was born at, lived in or worked at
often appear in definitions but do not comply to
the lexical reference notion (*Galileo Galilei ⇒
15 February 1564).

Link errors - These are usually the result of
wrong assignment of the reference direction. Such
errors mostly occur when a general term, e.g.rev-
olution, links to a more specific albeit typical con-
cept, e.g.French Revolution.

Redirect errors - These may occur in some
cases in which the extracted rule is not bidirec-
tional. E.g. *Anti-globalization⇒ Movement of
Movementsis wrong but the opposite entailment
direction is correct, asMovement of Movementsis
a popular term in Italy forAnti-globalization.

4.3 Scoring All-N Rules

We observed that the likelihood of nouns men-
tioned in a definition to be referred by the con-
cept title depends greatly on the syntactic path
connecting them (which was exploited also in
(Snow et al., 2006)). For instance, the path pro-
duced by Minipar for example 4 in Table 1 istitle
subj←−albumvrel−→released

by−subj−→ by
pcomp−n−→ noun.

In order to estimate the likelihood that a syn-

tactic path indicates lexical reference we collected
from Wikipedia all paths connecting a title to a
noun phrase in the definition sentence. We note
that since there is no available resource which cov-
ers the full breadth of lexical reference we could
not obtain sufficiently broad supervised training
data for learning which paths correspond to cor-
rect references. This is in contrast to (Snow et al.,
2005) which focused only on hyponymy and syn-
onymy relations and could therefore extract posi-
tive and negative examples from WordNet.

We therefore propose the following unsuper-
vised reference likelihood score for a syntactic
path p within a definition, based on two counts:
the number of timesp connects an articletitle with
a nounin its definition, denoted byCt(p), and the
total number ofp’s occurrences in Wikipedia de-
finitions, C(p). The score of a path is then de-
fined asCt(p)

C(p) . The rational for this score is that
C(p)− Ct(p) corresponds to the number of times
in which the path connects two nouns within the
definition, none of which is the title. These in-
stances are likely to be non-referring, since a con-
cise definition typically does not contain terms that
can be inferred from each other. Thus our score
may be seen as an approximation for the probabil-
ity that the two nouns connected by an arbitrary
occurrence of the path would satisfy the reference
relation. For instance, the path of example 4 ob-
tained a score of 0.98.

We used this score to sort the set of rules ex-
tracted by theAll-N method and split the sorted list
into 3 thirds:top, middleandbottom. As shown in
Table 4, this obtained reasonably high precision
for the top third of these rules, relative to the other
two thirds. This precision difference indicates that
our unsupervised path score provides useful infor-
mation about rule reliability.

It is worth noting that in our sample 57% ofAll-
N errors, 62% ofRelated but not Referringincor-
rect rules and all incorrect rules of typeDates and
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Extraction Per Method Accumulated

Method P Est. #Rules P %obtained

All-Ntop 0.60 684,238 0.76 83

All-Nmiddle 0.46 380,572 0.72 90

All-Nbottom 0.41 515,764 0.66 100

Table 4:SplittingAll-N extraction method into 3 sub-types.
These three rows replace the last row of Table 2

Placeswere extracted by theAll-Nbottom method
and thus may be identified as less reliable. How-
ever, this split was not observed to improve per-
formance in the application oriented evaluations
of Section 6. Further research is thus needed to
fully exploit the potential of the syntactic path as
an indicator for rule correctness.

5 Filtering Rules

Following our error analysis, future research is
needed for addressing each specific type of error.
However, during the analysis we observed that all
types of erroneous rules tend to relate terms that
are rather unlikely to co-occur together. We there-
fore suggest, as an optional filter, to recognize
such rules by their co-occurrence statistics using
the common Dice coefficient:

2 · C(LHS, RHS)
C(LHS) + C(RHS)

whereC(x) is the number of articles in Wikipedia
in which all words ofx appear.

In order to partially overcome theWrong NP
part error, identified in Section 4.2 to be the most
common error, we adjust the Dice equation for
rules whose RHS is also part of a larger noun
phrase (NP):

2 · (C(LHS, RHS)− C(LHS, NPRHS))
C(LHS) + C(RHS)

where NPRHS is the complete NP whose part
is the RHS. This adjustment counts only co-
occurrences in which the LHS appears with the
RHS alone and not with the larger NP. This sub-
stantially reduces the Dice score for those cases in
which the LHS co-occurs mainly with the full NP.

Given the Dice score rules whose score does not
exceed a threshold may be filtered. For example,
the incorrect rule*aerial tramway⇒ car was fil-
tered, where the correct RHS for this LHS is the
complete NPcable car. Another filtered rule is

magic⇒ cryptographywhich is correct only for a
very idiosyncratic meaning.6

We also examined another filtering score, the
cosine similarity between the vectors representing
the two rule sides in LSA (Latent Semantic Analy-
sis) space (Deerwester et al., 1990). However, as
the results with this filter resemble those for Dice
we present results only for the simpler Dice filter.

6 Application Oriented Evaluations

Our primary application oriented evaluation is
within an unsupervised lexical expansion scenario
applied to a text categorization data set (Section
6.1). Additionally, we evaluate the utility of our
rule base as a lexical resource for recognizing tex-
tual entailment (Section 6.2).

6.1 Unsupervised Text Categorization

Our categorization setting resembles typical query
expansion in information retrieval (IR), where the
category name is considered as the query. The ad-
vantage of using a text categorization test set is
that it includes exhaustive annotation forall doc-
uments. Typical IR datasets, on the other hand,
are partially annotated through a pooling proce-
dure. Thus, some of our valid lexical expansions
might retrieve non-annotated documents that were
missed by the previously pooled systems.

6.1.1 Experimental Setting

Our categorization experiment follows a typical
keywords-based text categorization scheme (Mc-
Callum and Nigam, 1999; Liu et al., 2004). Tak-
ing a lexical reference perspective, we assume that
the characteristic expansion terms for a category
should refer to the term (or terms) denoting the
category name. Accordingly, we construct the cat-
egory’s feature vector by taking first the category
name itself, and then expanding it with all left-
hand sides of lexical reference rules whose right-
hand side is the category name. For example, the
category “Cars” is expanded by rules such asFer-
rari F50⇒ car. During classification cosine sim-
ilarity is measured between the feature vector of
the classified document and the expanded vectors
of all categories. The document is assigned to
the category which yields the highest similarity
score, following a single-class classification ap-
proach (Liu et al., 2004).

6Magic was the United States codename for intelligence
derived from cryptanalysis during World War II.
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Rule Base R P F1

Baselines:

No Expansion 0.19 0.54 0.28

WikiBL 0.19 0.53 0.28

Snow400K 0.19 0.54 0.28

Lin 0.25 0.39 0.30

WordNet 0.30 0.47 0.37

Extraction Methods from Wikipedia:

Redirect + Be-Comp 0.22 0.55 0.31

All rules 0.31 0.38 0.34

All rules + Dice filter 0.31 0.49 0.38

Union:

WordNet + WikiAll rules+Dice 0.35 0.47 0.40

Table 5:Results of different rule bases for 20 newsgroups
category name expansion

It should be noted that keyword-based text
categorization systems employ various additional
steps, such as bootstrapping, which generalize to
multi-class settings and further improve perfor-
mance. Our basic implementation suffices to eval-
uate comparatively the direct impact of different
expansion resources on the initial classification.

For evaluation we used the test set of the
“bydate” version of the 20-News Groups collec-
tion,7 which contains 18,846 documents parti-
tioned (nearly) evenly over the 20 categories8.

6.1.2 Baselines Results

We compare the quality of our rule base expan-
sions to 5 baselines (Table 5). The first avoids any
expansion, classifying documents based on cosine
similarity with category names only. As expected,
it yields relatively high precision but low recall,
indicating the need for lexical expansion.

The second baseline is our implementation of
the relevant part of the Wikipedia extraction in
(Kazama and Torisawa, 2007), taking the first
noun after abeverb in the definition sentence, de-
noted asWikiBL. This baseline does not improve
performance at all over no expansion.

The next two baselines employ state-of-the-art
lexical resources. One uses Snow’s extension to
WordNet which was mentioned earlier. This re-
source did not yield a noticeable improvement, ei-

7www.ai.mit.edu/people/jrennie/20Newsgroups.
8The keywords used as category names are: athe-

ism; graphic; microsoft windows; ibm,pc,hardware;
mac,hardware; x11,x-windows; sale; car; motorcycle;
baseball; hockey; cryptography; electronics; medicine; outer
space; christian(noun & adj); gun; mideast,middle east;
politics; religion

ther over theNo Expansionbaseline or overWord-
Net when joined with its expansions. The sec-
ond usesLin dependency similarity, a syntactic-
dependency based distributional word similarity
resource described in (Lin, 1998a)9. We used var-
ious thresholds on the length of the expansion list
derived from this resource. The best result, re-
ported here, provides only a minor F1 improve-
ment overNo Expansion, with modest recall in-
crease and significant precision drop, as can be ex-
pected from such distributional method.

The last baseline usesWordNetfor expansion.
First we expand all the senses of each category
name by their derivations and synonyms. Each ob-
tained term is then expanded by its hyponyms, or
by its meronyms if it has no hyponyms. Finally,
the results are further expanded by their deriva-
tions and synonyms.10 WordNetexpansions im-
prove substantially both Recall and F1 relative to
No Expansion, while decreasing precision.

6.1.3 Wikipedia Results

We then used for expansion different subsets
of our rule base, producing alternative recall-
precision tradeoffs. Table 5 presents the most in-
teresting results. Using any subset of the rules
yields better performance than any of the other
automatically constructed baselines (Lin, Snow
and WikiBL). Utilizing the most precise extrac-
tion methods ofRedirectandBe-Compyields the
highest precision, comparable toNo Expansion,
but just a small recall increase. Using the entire
rule base yields the highest recall, while filtering
rules by the Dice coefficient (with 0.1 threshold)
substantially increases precision without harming
recall. With this configuration our automatically-
constructed resource achieves comparable perfor-
mance to the manually builtWordNet.

Finally, since a dictionary and an encyclopedia
are complementary in nature, we applied the union
of WordNetand the filteredWikipediaexpansions.
This configuration yields the best results: it main-
tainsWordNet’s precision and adds nearly 50% to
the recall increase ofWordNetoverNo Expansion,
indicating the substantial marginal contribution of
Wikipedia. Furthermore, with the fast growth of
Wikipedia the recall of our resource is expected to
increase while maintaining its precision.

9Downloaded from www.cs.ualberta.ca/lindek/demos.htm
10We also tried expanding by the entire hyponym hierarchy

and considering only the first sense of each synset, but the
method described above achieved the best performance.
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Category Name Expanding Terms

Politics opposition, coalition, whip(a)

Cryptography adversary, cryptosystem, key

Mac PowerBook, Radius(b), Grab(c)

Religion heaven, creation, belief, missionary

Medicine doctor, physician, treatment, clinical

Computer Graphics radiosity(d), rendering, siggraph(e)

Table 6:SomeWikipediarules not inWordNet, which con-
tributed to text categorization. (a) a legislator who enforce
leadership desire (b) a hardware firm specializing in Macin-
tosh equipment (c) a Macintosh screen capture software (d)
an illumination algorithm (e) a computer graphics conference

Configuration Accuracy Accuracy Drop

WordNet + Wikipedia 60.0 % -

Without WordNet 57.7 % 2.3 %

Without Wikipedia 58.9 % 1.1 %

Table 7:RTE accuracy results for ablation tests.

Table 6 illustrates few examples of useful rules
that were found inWikipediabut not inWordNet.
We conjecture that in other application settings
the rules extracted from Wikipedia might show
even greater marginal contribution, particularly in
specialized domains not covered well by Word-
Net. Another advantage of a resource based on
Wikipedia is that it is available in many more lan-
guages than WordNet.

6.2 Recognizing Textual Entailment (RTE)

As a second application-oriented evaluation we
measured the contributions of our (filtered)
Wikipedia resource and WordNet to RTE infer-
ence (Giampiccolo et al., 2007). To that end, we
incorporated both resources within a typical basic
RTE system architecture (Bar-Haim et al., 2008).
This system determines whether a text entails an-
other sentence based on various matching crite-
ria that detect syntactic, logical and lexical cor-
respondences (or mismatches). Most relevant for
our evaluation, lexical matches are detected when
a Wikipedia rule’s LHS appears in the text and
its RHS in the hypothesis, or similarly when pairs
of WordNet synonyms, hyponyms-hypernyms and
derivations appear across the text and hypothesis.
The system’s weights were trained on the devel-
opment set of RTE-3 and tested on RTE-4 (which
included this year only a test set).

To measure the marginal contribution of the two
resources we performed ablation tests, comparing
the accuracy of the full system to that achieved

when removing either resource. Table 7 presents
the results, which are similar in nature to those ob-
tained for text categorization.Wikipediaobtained
a marginal contribution of 1.1%, about half of the
analogous contribution of WordNet’s manually-
constructed information. We note that for current
RTE technology it is very typical to gain just a
few percents in accuracy thanks to external knowl-
edge resources, while individual resources usually
contribute around 0.5–2% (Iftene and Balahur-
Dobrescu, 2007; Dinu and Wang, 2009). Some
Wikipediarules not in WordNet which contributed
to RTE inference areJurassic Park⇒ Michael
Crichton, GCC⇒ Gulf Cooperation Council.

7 Conclusions and Future Work

We presented construction of a large-scale re-
source of lexical reference rules, as useful in ap-
plied lexical inference. Extensive rule-level analy-
sis showed that different recall-precision tradeoffs
can be obtained by utilizing different extraction
methods. It also identified major reasons for er-
rors, pointing at potential future improvements.
We further suggested a filtering method which sig-
nificantly improved performance.

Even though the resource was constructed by
quite simple extraction methods, it was proven to
be beneficial within two different application set-
ting. While being an automatically built resource,
extracted from a knowledge-base created for hu-
man consumption, it showed comparable perfor-
mance to WordNet, which was manually created
for computational purposes. Most importantly, it
also provides complementary knowledge to Word-
Net, with unique lexical reference rules.

Future research is needed to improve resource’s
precision, especially for theAll-N method. As
a first step, we investigated a novel unsupervised
score for rules extracted from definition sentences.
We also intend to consider the rule base as a di-
rected graph and exploit the graph structure for
further rule extraction and validation.
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Abstract

 

 

A semantic class is a collection of items 
(words or phrases) which have semantically 

peer or sibling relationship. This paper studies 

the employment of topic models to automati-

cally construct semantic classes, taking as the 

source data a collection of raw semantic 

classes (RASCs), which were extracted by ap-

plying predefined patterns to web pages. The 

primary requirement (and challenge) here is 

dealing with multi-membership: An item may 

belong to multiple semantic classes; and we 

need to discover as many as possible the dif-
ferent semantic classes the item belongs to. To 

adopt topic models, we treat RASCs as “doc-

uments”, items as “words”, and the final se-

mantic classes as “topics”. Appropriate 

preprocessing and postprocessing are per-

formed to improve results quality, to reduce 

computation cost, and to tackle the fixed-k 

constraint of a typical topic model. Experi-

ments conducted on 40 million web pages 

show that our approach could yield better re-

sults than alternative approaches. 

1 Introduction 

Semantic class construction (Lin and Pantel, 

2001; Pantel and Lin, 2002; Pasca, 2004; Shinza-

to and Torisawa, 2005; Ohshima et al., 2006) 
tries to discover the peer or sibling relationship 

among terms or phrases by organizing them into 

semantic classes. For example, {red, white, 

black…} is a semantic class consisting of color 
instances. A popular way for semantic class dis-

covery is pattern-based approach, where prede-

fined patterns (Table 1) are applied to a 
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collection of web pages or an online web search 
engine to produce some raw semantic classes 

(abbreviated as RASCs, Table 2). RASCs cannot 

be treated as the ultimate semantic classes, be-
cause they are typically noisy and incomplete, as 

shown in Table 2. In addition, the information of 

one real semantic class may be distributed in lots 
of RASCs (R2 and R3 in Table 2). 

 
Type Pattern 
SENT NP {, NP}

*
{,} (and|or) {other} NP 

TAG <UL>  <LI>item</LI>  …  <LI>item</LI>  </UL> 

TAG <SELECT> <OPTION>item…<OPTION>item </SELECT> 

* SENT: Sentence structure patterns; TAG: HTML Tag patterns 

Table 1. Sample patterns 

 
R1: {gold, silver, copper, coal, iron, uranium} 

R2: {red, yellow, color, gold, silver, copper} 

R3: {red, green, blue, yellow} 

R4: {HTML, Text, PDF, MS Word, Any file type} 

R5: {Today, Tomorrow, Wednesday, Thursday, Friday, 
Saturday, Sunday} 

R6: {Bush, Iraq, Photos, USA, War} 

Table 2. Sample raw semantic classes (RASCs) 

 

This paper aims to discover high-quality se-

mantic classes from a large collection of noisy 
RASCs. The primary requirement (and chal-

lenge) here is to deal with multi-membership, i.e., 

one item may belong to multiple different seman-
tic classes. For example, the term “Lincoln” can 

simultaneously represent a person, a place, or a 

car brand name. Multi-membership is more pop-

ular than at a first glance, because quite a lot of 
English common words have also been borrowed 

as company names, places, or product names. 

For a given item (as a query) which belongs to 
multiple semantic classes, we intend to return the 

semantic classes separately, rather than mixing 

all their items together. 
Existing pattern-based approaches only pro-

vide very limited support to multi-membership. 

For example, RASCs with the same labels (or 

hypernyms) are merged in (Pasca, 2004) to gen-
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erate the ultimate semantic classes. This is prob-

lematic, because RASCs may not have (accurate) 
hypernyms with them. 

In this paper, we propose to use topic models 

to address the problem. In some topic models, a 
document is modeled as a mixture of hidden top-

ics. The words of a document are generated ac-

cording to the word distribution over the topics 

corresponding to the document (see Section 2 for 
details). Given a corpus, the latent topics can be 

obtained by a parameter estimation procedure. 

Topic modeling provides a formal and conve-
nient way of dealing with multi-membership, 

which is our primary motivation of adopting top-

ic models here. To employ topic models, we treat 

RASCs as “documents”, items as “words”, and 
the final semantic classes as “topics”. 

There are, however, several challenges in ap-

plying topic models to our problem. To begin 
with, the computation is intractable for 

processing a large collection of RASCs (our da-

taset for experiments contains 2.7 million unique 
RASCs extracted from 40 million web pages). 

Second, typical topic models require the number 

of topics (k) to be given. But it lacks an easy way 

of acquiring the ideal number of semantic classes 
from the source RASC collection. For the first 

challenge, we choose to apply topic models to 

the RASCs containing an item q, rather than the 
whole RASC collection. In addition, we also per-

form some preprocessing operations in which 

some items are discarded to further improve effi-
ciency. For the second challenge, considering 

that most items only belong to a small number of 

semantic classes, we fix (for all items q) a topic 

number which is slightly larger than the number 
of classes an item could belong to. And then a 

postprocessing operation is performed to merge 

the results of topic models to generate the ulti-
mate semantic classes. 

Experimental results show that, our topic 

model approach is able to generate higher-quality 

semantic classes than popular clustering algo-
rithms (e.g., K-Medoids and DBSCAN). 

We make two contributions in the paper: On 

one hand, we find an effective way of construct-
ing high-quality semantic classes in the pattern-

based category which deals with multi-

membership. On the other hand, we demonstrate, 
for the first time, that topic modeling can be uti-

lized to help mining the peer relationship among 

words. In contrast, the general related relation-

ship between words is extracted in existing topic 
modeling applications. Thus we expand the ap-

plication scope of topic modeling. 

2 Topic Models 

In this section we briefly introduce the two wide-
ly used topic models which are adopted in our 

paper. Both of them model a document as a mix-

ture of hidden topics. The words of every docu-

ment are assumed to be generated via a 
generative probability process. The parameters of 

the model are estimated from a training process 

over a given corpus, by maximizing the likelih-
ood of generating the corpus. Then the model can 

be utilized to inference a new document. 

pLSI: The probabilistic Latent Semantic In-

dexing Model (pLSI) was introduced in Hof-
mann (1999), arose from Latent Semantic 

Indexing (Deerwester et al., 1990). The follow-

ing process illustrates how to generate a docu-
ment d in pLSI: 

1. Pick a topic mixture distribution 𝑝(∙ |𝑑). 

2. For each word wi in d 
a. Pick a latent topic z with the probabil-

ity 𝑝(𝑧|𝑑) for wi 

b. Generate wi with probability 𝑝(𝑤𝑖 |𝑧) 

So with k latent topics, the likelihood of gene-
rating a document d is 

 𝑝(𝑑) =   𝑝 𝑤𝑖 𝑧 𝑝(𝑧|𝑑)

𝑧𝑖

 (2.1) 

LDA (Blei et al., 2003): In LDA, the topic 
mixture is drawn from a conjugate Dirichlet prior 

that remains the same for all documents (Figure 

1). The generative process for each document in 

the corpus is, 
1. Choose document length N from a Pois-

son distribution Poisson(𝜉). 

2. Choose 𝜃  from a Dirichlet distribution 

with parameter α. 

3. For each of the N words wi. 

a. Choose a topic z from a Multinomial 

distribution with parameter 𝜃. 

b. Pick a word wi from 𝑝 𝑤𝑖  𝑧,𝛽 . 
So the likelihood of generating a document is 

 𝑝(𝑑) =  𝑝(𝜃|𝛼)
𝜃

  𝑝(𝑧|𝜃)𝑝 𝑤𝑖 𝑧,𝛽 𝑑𝜃

𝑧𝑖

 (2.2) 

 

 
Figure 1. Graphical model representation of LDA, 

from Blei et al. (2003) 

 

wθ zα
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3 Our Approach 

The source data of our approach is a collection 
(denoted as CR) of RASCs extracted via applying 

patterns to a large collection of web pages. Given 

an item as an input query, the output of our ap-

proach is one or multiple semantic classes for the 
item. To be applicable in real-world dataset, our 

approach needs to be able to process at least mil-

lions of RASCs. 

3.1 Main Idea 

As reviewed in Section 2, topic modeling pro-

vides a formal and convenient way of grouping 

documents and words to topics. In order to apply 
topic models to our problem, we map RASCs to 

documents, items to words, and treat the output 

topics yielded from topic modeling as our seman-

tic classes (Table 3). The motivation of utilizing 
topic modeling to solve our problem and building 

the above mapping comes from the following 

observations. 
1) In our problem, one item may belong to 

multiple semantic classes; similarly in topic 

modeling, a word can appear in multiple top-
ics. 

2) We observe from our source data that 

some RASCs are comprised of items in mul-

tiple semantic classes. And at the same time, 
one document could be related to multiple 

topics in some topic models (e.g., pLSI and 

LDA). 
 

Topic modeling Semantic class construction 

word item (word or phrase) 

document RASC 

topic semantic class 

Table 3. The mapping from the concepts in topic 
modeling to those in semantic class construction 

 

Due to the above observations, we hope topic 

modeling can be employed to construct semantic 
classes from RASCs, just as it has been used in 

assigning documents and words to topics. 

There are some critical challenges and issues 

which should be properly addressed when topic 
models are adopted here. 

Efficiency: Our RASC collection CR contains 

about 2.7 million unique RASCs and 26 million 
(1 million unique) items. Building topic models 

directly for such a large dataset may be computa-

tionally intractable. To overcome this challenge, 

we choose to apply topic models to the RASCs 
containing a specific item rather than the whole 

RASC collection. Please keep in mind that our 

goal in this paper is to construct the semantic 

classes for an item when the item is given as a 
query. For one item q, we denote CR(q) to be all 

the RASCs in CR containing the item. We believe 

building a topic model over CR(q) is much more 
effective because it contains significantly fewer 

“documents”, “words”, and “topics”. To further 

improve efficiency, we also perform preprocess-

ing (refer to Section 3.4 for details) before build-
ing topic models for CR(q), where some low-

frequency items are removed. 

Determine the number of topics: Most topic 
models require the number of topics to be known 

beforehand
1
. However, it is not an easy task to 

automatically determine the exact number of se-

mantic classes an item q should belong to. Ac-
tually the number may vary for different q. Our 

solution is to set (for all items q) the topic num-

ber to be a fixed value (k=5 in our experiments) 
which is slightly larger than the number of se-

mantic classes most items could belong to. Then 

we perform postprocessing for the k topics to 
produce the final properly semantic classes. 

In summary, our approach contains three 

phases (Figure 2). We build topic models for 

every CR(q), rather than the whole collection CR. 
A preprocessing phase and a postprocessing 

phase are added before and after the topic model-

ing phase to improve efficiency and to overcome 
the fixed-k problem. The details of each phase 

are presented in the following subsections. 

 

 
Figure 2. Main phases of our approach 

 

3.2 Adopting Topic Models 

For an item q, topic modeling is adopted to 

process the RASCs in CR(q) to generate k seman-

tic classes. Here we use LDA as an example to 

                                                   
1 Although there is study of non-parametric Bayesian mod-
els (Li et al., 2007) which need no prior knowledge of topic 
number, the computational complexity seems to exceed our 
efficiency requirement and we shall leave this to future 
work. 
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illustrate the process. The case of other genera-

tive topic models (e.g., pLSI) is very similar. 
According to the assumption of LDA and our 

concept mapping in Table 3, a RASC (“docu-

ment”) is viewed as a mixture of hidden semantic 
classes (“topics”). The generative process for a 

RASC R in the “corpus” CR(q) is as follows, 

1) Choose a RASC size (i.e., the number of 

items in R): NR ~ Poisson(𝜉). 

2) Choose a k-dimensional vector 𝜃𝑅  from a 

Dirichlet distribution with parameter 𝛼. 

3) For each of the NR items an: 

a) Pick a semantic class 𝑧𝑛  from a mul-

tinomial distribution with parameter 

𝜃𝑅 . 

b) Pick an item an from 𝑝(𝑎𝑛 |𝑧𝑛 ,𝛽) , 
where the item probabilities are pa-

rameterized by the matrix 𝛽. 

There are three parameters in the model: 𝜉 (a 

scalar), 𝛼  (a k-dimensional vector), and 𝛽  (a 

𝑘 × 𝑉 matrix where V is the number of distinct 

items in CR(q)). The parameter values can be ob-

tained from a training (or called parameter esti-
mation) process over CR(q), by maximizing the 

likelihood of generating the corpus. Once 𝛽  is 

determined, we are able to compute 𝑝(𝑎|𝑧,𝛽), 

the probability of item a belonging to semantic 
class z. Therefore we can determine the members 

of a semantic class z by selecting those items 

with high 𝑝 𝑎 𝑧,𝛽  values. 
The number of topics k is assumed known and 

fixed in LDA. As has been discussed in Section 

3.1, we set a constant k value for all different 

CR(q). And we rely on the postprocessing phase 
to merge the semantic classes produced by the 

topic model to generate the ultimate semantic 

classes. 
When topic modeling is used in document 

classification, an inference procedure is required 

to determine the topics for a new document. 
Please note that inference is not needed in our 

problem. 

One natural question here is: Considering that 

in most topic modeling applications, the words 
within a resultant topic are typically semantically 

related but may not be in peer relationship, then 

what is the intuition that the resultant topics here 
are semantic classes rather than lists of generally 

related words? The magic lies in the “docu-

ments” we used in employing topic models. 

Words co-occurred in real documents tend to be 
semantically related; while items co-occurred in 

RASCs tend to be peers. Experimental results 

show that most items in the same output seman-
tic class have peer relationship. 

It might be noteworthy to mention the exchan-

geability or “bag-of-words” assumption in most 
topic models. Although the order of words in a 

document may be important, standard topic mod-

els neglect the order for simplicity and other rea-
sons

2
. The order of items in a RASC is clearly 

much weaker than the order of words in an ordi-

nary document. In some sense, topic models are 

more suitable to be used here than in processing 
an ordinary document corpus. 

3.3 Preprocessing and Postprocessing 

Preprocessing is applied to CR(q) before we build 

topic models for it. In this phase, we discard 
from all RASCs the items with frequency (i.e., 

the number of RASCs containing the item) less 

than a threshold h. A RASC itself is discarded 
from CR(q) if it contains less than two items after 

the item-removal operations. We choose to re-

move low-frequency items, because we found 

that low-frequency items are seldom important 
members of any semantic class for q. So the goal 

is to reduce the topic model training time (by 

reducing the training data) without sacrificing 
results quality too much. In the experiments sec-

tion, we compare the approaches with and with-

out preprocessing in terms of results quality and 
efficiency. Interestingly, experimental results 

show that, for some small threshold values, the 

results quality becomes higher after preprocess-

ing is performed. We will give more discussions 
in Section 4. 

In the postprocessing phase, the output seman-

tic classes (“topics”) of topic modeling are 
merged to generate the ultimate semantic classes. 

As indicated in Sections 3.1 and 3.2, we fix the 

number of topics (k=5) for different corpus CR(q) 

in employing topic models. For most items q, 
this is a larger value than the real number of se-

mantic classes the item belongs to. As a result, 

one real semantic class may be divided into mul-
tiple topics. Therefore one core operation in this 

phase is to merge those topics into one semantic 

class. In addition, the items in each semantic 
class need to be properly ordered. Thus main 

operations include, 

1) Merge semantic classes 

2) Sort the items in each semantic class 
Now we illustrate how to perform the opera-

tions. 

Merge semantic classes: The merge process 
is performed by repeatedly calculating the simi-

                                                   
2 There are topic model extensions considering word order 
in documents, such as Griffiths et al. (2005). 
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larity between two semantic classes and merging 

the two ones with the highest similarity until the 
similarity is under a threshold. One simple and 

straightforward similarity measure is the Jaccard 

coefficient, 

 𝑠𝑖𝑚 𝐶1 ,𝐶2 =
 𝐶1 ∩ 𝐶2 

 𝐶1 ∪ 𝐶2 
 (3.1) 

where 𝐶1 ∩ 𝐶2  and 𝐶1 ∪ 𝐶2  are respectively the 

intersection and union of semantic classes C1 and 

C2. This formula might be over-simple, because 

the similarity between two different items is not 

exploited. So we propose the following measure, 

 𝑠𝑖𝑚 𝐶1 ,𝐶2 =
  𝑠𝑖𝑚(𝑎, 𝑏)𝑏∈𝐶2𝑎∈𝐶1

 𝐶1 ∙  𝐶2 
 (3.2) 

where |C| is the number of items in semantic 
class C, and sim(a,b) is the similarity between 

items a and b, which will be discussed shortly. In 

Section 4, we compare the performance of the 
above two formulas by experiments. 

Sort items: We assign an importance score to 

every item in a semantic class and sort them ac-
cording to the importance scores. Intuitively, an 

item should get a high rank if the average simi-

larity between the item and the other items in the 

semantic class is high, and if it has high similari-
ty to the query item q. Thus we calculate the im-

portance of item a in a semantic class C as 

follows, 

 𝑔 𝑎|𝐶 = 𝜆 ∙sim(a,C)+(1-𝜆) ∙sim(a,q) (3.3) 

where 𝜆 is a parameter in [0,1], sim(a,q) is the 

similarity between a and the query item q, and 

sim(a,C) is the similarity between a and C, calcu-
lated as, 

 𝑠𝑖𝑚 𝑎,𝐶 =
 𝑠𝑖𝑚(𝑎, 𝑏)𝑏∈𝐶

 𝐶 
 (3.4) 

Item similarity calculation: Formulas 3.2, 
3.3, and 3.4 rely on the calculation of the similar-

ity between two items. 

One simple way of estimating item similarity 
is to count the number of RASCs containing both 

of them. We extend such an idea by distinguish-

ing the reliability of different patterns and pu-

nishing term similarity contributions from the 
same site. The resultant similarity formula is, 

 𝑠𝑖𝑚(𝑎,𝑏) =  log(1 +  𝑤(𝑃(𝐶𝑖 ,𝑗 ))

𝑘𝑖

𝑗=1

)

𝑚

𝑖=1

 (3.5) 

where Ci,j is a RASC containing both a and b, 

P(Ci,j) is the pattern via which the RASC is ex-

tracted, and w(P) is the weight of pattern P. As-
sume all these RASCs belong to m sites with Ci,j 

extracted from a page in site i, and ki being the 

number of RASCs corresponding to site i. To 

determine the weight of every type of pattern, we 

randomly selected 50 RASCs for each pattern 

and labeled their quality. The weight of each 
kind of pattern is then determined by the average 

quality of all labeled RASCs corresponding to it. 

The efficiency of postprocessing is not a prob-
lem, because the time cost of postprocessing is 

much less than that of the topic modeling phase. 

3.4 Discussion 

3.4.1 Efficiency of processing popular items 

Our approach receives a query item q from users 

and returns the semantic classes containing the 
query. The maximal query processing time 

should not be larger than several seconds, be-

cause users would not like to wait more time. 

Although the average query processing time of 
our approach is much shorter than 1 second (see 

Table 4 in Section 4), it takes several minutes to 

process a popular item such as “Washington”, 
because it is contained in a lot of RASCs. In or-

der to reduce the maximal online processing 

time, our solution is offline processing popular 
items and storing the resultant semantic classes 

on disk. The time cost of offline processing is 

feasible, because we spent about 15 hours on a 4-

core machine to complete the offline processing 
for all the items in our RASC collection. 

3.4.2 Alternative approaches 

One may be able to easily think of other ap-
proaches to address our problem. Here we dis-

cuss some alternative approaches which are 

treated as our baseline in experiments. 

RASC clustering: Given a query item q, run a 
clustering algorithm over CR(q) and merge all 

RASCs in the same cluster as one semantic class. 

Formula 3.1 or 3.2 can be used to compute the 
similarity between RASCs in performing cluster-

ing. We try two clustering algorithms in experi-

ments: K-Medoids and DBSCAN. Please note k-
means cannot be utilized here because coordi-

nates are not available for RASCs. One draw-

back of RASC clustering is that it cannot deal 

with the case of one RASC containing the items 
from multiple semantic classes. 

Item clustering: By Formula 3.5, we are able 

to construct an item graph GI to record the 
neighbors (in terms of similarity) of each item. 

Given a query item q, we first retrieve its neigh-

bors from GI, and then run a clustering algorithm 
over the neighbors. As in the case of RASC clus-

tering, we try two clustering algorithms in expe-

riments: K-Medoids and DBSCAN. The primary 

disadvantage of item clustering is that it cannot 
assign an item (except for the query item q) to 
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multiple semantic classes. As a result, when we 

input “gold” as the query, the item “silver” can 
only be assigned to one semantic class, although 

the term can simultaneously represents a color 

and a chemical element. 

4 Experiments 

4.1 Experimental Setup 

Datasets: By using the Open Directory Project 
(ODP

3
) URLs as seeds, we crawled about 40 mil-

lion English web pages in a breadth-first way. 

RASCs are extracted via applying a list of sen-
tence structure patterns and HTML tag patterns 

(see Table 1 for some examples). Our RASC col-

lection CR contains about 2.7 million unique 
RASCs and 1 million distinct items. 

Query set and labeling: We have volunteers 

to try Google Sets
4
, record their queries being 

used, and select overall 55 queries to form our 
query set. For each query, the results of all ap-

proaches are mixed together and labeled by fol-

lowing two steps. In the first step, the standard 
(or ideal) semantic classes (SSCs) for the query 

are manually determined. For example, the ideal 

semantic classes for item “Georgia” may include 

Countries, and U.S. states. In the second step, 
each item is assigned a label of “Good”, “Fair”, 

or “Bad” with respect to each SSC. For example, 

“silver” is labeled “Good” with respect to “col-
ors” and “chemical elements”. We adopt metric 

MnDCG (Section 4.2) as our evaluation metric. 

Approaches for comparison: We compare 
our approach with the alternative approaches dis-

cussed in Section 3.4.2. 

LDA: Our approach with LDA as the topic 

model. The implementation of LDA is based 
on Blei’s code of variational EM for LDA

5
. 

pLSI: Our approach with pLSI as the topic 

model. The implementation of pLSI is based 
on Schein, et al. (2002). 

KMedoids-RASC: The RASC clustering ap-

proach illustrated in Section 3.4.2, with the 
K-Medoids clustering algorithm utilized. 

DBSCAN-RASC: The RASC clustering ap-

proach with DBSCAN utilized. 

KMedoids-Item: The item clustering ap-
proach with the K-Medoids utilized. 

DBSCAN-Item: The item clustering ap-

proach with the DBSCAN clustering algo-
rithm utilized. 

                                                   
3 http://www.dmoz.org 
4 http://labs.google.com/sets 
5 http://www.cs.princeton.edu/~blei/lda-c/ 

K-Medoids clustering needs to predefine the 

cluster number k. We fix the k value for all dif-
ferent query item q, as has been done for the top-

ic model approach. For fair comparison, the same 

postprocessing is made for all the approaches. 
And the same preprocessing is made for all the 

approaches except for the item clustering ones 

(to which the preprocessing is not applicable). 

4.2 Evaluation Methodology 

Each produced semantic class is an ordered list 
of items. A couple of metrics in the information 

retrieval (IR) community like Precision@10, 

MAP (mean average precision), and nDCG 
(normalized discounted cumulative gain) are 

available for evaluating a single ranked list of 

items per query (Croft et al., 2009). Among the 
metrics, nDCG (Jarvelin and Kekalainen, 2000) 

can handle our three-level judgments (“Good”, 

“Fair”, and “Bad”, refer to Section 4.1), 

 𝑛𝐷𝐶𝐺@𝑘 =
 𝐺 𝑖 /log(𝑖 + 1)𝑘
𝑖=1

 𝐺∗ 𝑖 /log(𝑖 + 1)𝑘
𝑖=1

 (4.1) 

where G(i) is the gain value assigned to the i’th 

item, and G
*
(i) is the gain value assigned to the 

i’th item of an ideal (or perfect) ranking list. 

Here we extend the IR metrics to the evalua-

tion of multiple ordered lists per query. We use 
nDCG as the basic metric and extend it to 

MnDCG. 

Assume labelers have determined m SSCs 
(SSC1~SSCm, refer to Section 4.1) for query q 

and the weight (or importance) of SSCi is wi. As-

sume n semantic classes are generated by an ap-

proach and n1 of them have corresponding SSCs 
(i.e., no appropriate SSC can be found for the 

remaining n-n1 semantic classes). We define the 

MnDCG score of an approach (with respect to 
query q) as, 

 𝑀𝑛𝐷𝐶𝐺 𝑞 =
𝑛1

𝑛
∙
 𝑤𝑖 ∙ 𝑆𝑐𝑜𝑟𝑒(SSC𝑖)
𝑚
i=1

 𝑤𝑖
m
i=1

 (4.2) 

where 

 𝑆𝑐𝑜𝑟𝑒 𝑆𝑆𝐶𝑖 =  

0                                         𝑖𝑓 𝑘𝑖 = 0
1

𝑘𝑖
max
𝑗 ∈[1, 𝑘𝑖]

(𝑛𝐷𝐶𝐺 𝐺𝑖 ,𝑗  )  𝑖𝑓 𝑘𝑖 ≠ 0
  (4.3) 

In the above formula, nDCG(Gi,j) is the nDCG 

score of semantic class Gi,j; and ki denotes the 

number of semantic classes assigned to SSCi. For 
a list of queries, the MnDCG score of an algo-

rithm is the average of all scores for the queries. 

The metric is designed to properly deal with 

the following cases, 
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i). One semantic class is wrongly split into 

multiple ones: Punished by dividing 𝑘𝑖  in 
Formula 4.3; 

ii). A semantic class is too noisy to be as-

signed to any SSC: Processed by the 

“n1/n” in Formula 4.2; 
iii). Fewer semantic classes (than the number 

of SSCs) are produced: Punished in For-

mula 4.3 by assigning a zero value. 
iv). Wrongly merge multiple semantic 

classes into one: The nDCG score of the 

merged one will be small because it is 
computed with respect to only one single 

SSC. 

The gain values of nDCG for the three relev-

ance levels (“Bad”, “Fair”, and “Good”) are re-
spectively -1, 1, and 2 in experiments. 

4.3 Experimental  Results 

4.3.1 Overall performance comparison 

Figure 3 shows the performance comparison be-

tween the approaches listed in Section 4.1, using 
metrics MnDCG@n (n=1…10). Postprocessing 

is performed for all the approaches, where For-

mula 3.2 is adopted to compute the similarity 

between semantic classes. The results show that 
that the topic modeling approaches produce 

higher-quality semantic classes than the other 

approaches. It indicates that the topic mixture 
assumption of topic modeling can handle the 

multi-membership problem very well here. 

Among the alternative approaches, RASC clus-

tering behaves better than item clustering. The 
reason might be that an item cannot belong to 

multiple clusters in the two item clustering ap-

proaches, while RASC clustering allows this. For 
the RASC clustering approaches, although one 

item has the chance to belong to different seman-

tic classes, one RASC can only belong to one 
semantic class. 

 

 
Figure 3. Quality comparison (MnDCG@n) among 

approaches (frequency threshold h = 4 in preprocess-

ing; k = 5 in topic models) 

4.3.2 Preprocessing experiments 

Table 4 shows the average query processing time 

and results quality of the LDA approach, by va-

rying frequency threshold h. Similar results are 
observed for the pLSI approach. In the table, h=1 

means no preprocessing is performed. The aver-

age query processing time is calculated over all 
items in our dataset. As the threshold h increases, 

the processing time decreases as expected, be-

cause the input of topic modeling gets smaller. 
The second column lists the results quality 

(measured by MnDCG@10). Interestingly, we 

get the best results quality when h=4 (i.e., the 

items with frequency less than 4 are discarded). 
The reason may be that most low-frequency 

items are noisy ones. As a result, preprocessing 

can improve both results quality and processing 
efficiency; and h=4 seems a good choice in pre-

processing for our dataset. 

 

h 
Avg. Query Proc. 

Time (seconds) 
Quality 

(MnDCG@10) 
1 0.414 0.281 

2 0.375 0.294 

3 0.320 0.322 

4 0.268 0.331 

5 0.232 0.328 

6 0.210 0.315 

7 0.197 0.315 

8 0.184 0.313 

9 0.173 0.288 

Table 4. Time complexity and quality comparison 

among LDA approaches of different thresholds 

 

4.3.3 Postprocessing experiments 

 

Figure 4. Results quality comparison among topic 

modeling approaches with and without postprocessing 

(metric: MnDCG@10) 

 

The effect of postprocessing is shown in Figure 
4. In the figure, NP means no postprocessing is 

performed. Sim1 and Sim2 respectively mean 

Formula 3.1 and Formula 3.2 are used in post-

processing as the similarity measure between 
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semantic classes. The same preprocessing (h=4) 

is performed in generating the data. It can be 
seen that postprocessing improves results quality. 

Sim2 achieves more performance improvement 

than Sim1, which demonstrates the effectiveness 
of the similarity measure in Formula 3.2. 

4.3.4 Sample results 

Table 5 shows the semantic classes generated by 

our LDA approach for some sample queries in 
which the bad classes or bad members are hig-

hlighted (to save space, 10 items are listed here, 

and the query itself is omitted in the resultant 
semantic classes).  

 
Query Semantic Classes 

apple 

C1: ibm, microsoft, sony, dell, toshiba,  sam-

sung, panasonic, canon, nec, sharp … 

C2: peach, strawberry, cherry, orange, bana-

na, lemon, pineapple, raspberry, pear, grape 

… 

gold 

C1: silver, copper, platinum, zinc, lead, iron, 

nickel, tin, aluminum, manganese … 

C2: silver, red, black, white, blue, purple, 

orange, pink, brown, navy … 

C3: silver, platinum, earrings, diamonds, 

rings, bracelets, necklaces, pendants, jewelry, 

watches … 

C4: silver, home, money, business, metal, 

furniture, shoes, gypsum, hematite, fluorite 

…  

lincoln 

C1: ford, mazda, toyota, dodge, nissan, hon-

da, bmw, chrysler, mitsubishi, audi … 

C2: bristol, manchester, birmingham, leeds, 

london, cardiff, nottingham, newcastle, shef-

field, southampton … 

C3: jefferson, jackson, washington, madison, 

franklin, sacramento, new york city, monroe, 

Louisville, marion … 

computer 

science 

C1: chemistry, mathematics, physics, biolo-

gy, psychology, education, history, music, 

business, economics … 

Table 5. Semantic classes generated by our approach 
for some sample queries (topic model = LDA) 

 

5 Related Work 

Several categories of work are related to ours. 

The first category is about set expansion (i.e., 

retrieving one semantic class given one term or a 

couple of terms). Syntactic context information is 
used (Hindle, 1990; Ruge, 1992; Lin, 1998) to 

compute term similarities, based on which simi-

lar words to a particular word can directly be 
returned. Google sets is an online service which, 

given one to five items, predicts other items in 

the set. Ghahramani and Heller (2005) introduce 
a Bayesian Sets algorithm for set expansion. Set 

expansion is performed by feeding queries to 

web search engines in Wang and Cohen (2007) 

and Kozareva (2008). All of the above work only 

yields one semantic class for a given query. 

Second, there are pattern-based approaches in the 
literature which only do limited integration of 

RASCs (Shinzato and Torisawa, 2004; Shinzato 

and Torisawa, 2005; Pasca, 2004), as discussed 
in the introduction section. In Shi et al. (2008), 

an ad-hoc approach was proposed to discover the 

multiple semantic classes for one item. The third 

category is distributional similarity approaches 
which provide multi-membership support (Har-

ris, 1985; Lin  and Pantel, 2001; Pantel and Lin, 

2002). Among them, the CBC algorithm (Pantel 
and Lin, 2002) addresses the multi-membership 

problem. But it relies on term vectors and centro-

ids which are not available in pattern-based ap-

proaches. It is therefore not clear whether it can 
be borrowed to deal with multi-membership here. 

Among the various applications of topic 

modeling, maybe the efforts of using topic model 
for Word Sense Disambiguation (WSD) are most 

relevant to our work. In Cai et al (2007), LDA is 

utilized to capture the global context information 
as the topic features for better performing the 

WSD task. In Boyd-Graber et al. (2007), Latent 

Dirichlet with WordNet (LDAWN) is developed 

for simultaneously disambiguating a corpus and 
learning the domains in which to consider each 

word. They do not generate semantic classes. 

6 Conclusions 

We presented an approach that employs topic 

modeling for semantic class construction. Given 

an item q, we first retrieve all RASCs containing 
the item to form a collection CR(q). Then we per-

form some preprocessing to CR(q) and build a 

topic model for it. Finally, the output semantic 
classes of topic modeling are post-processed to 

generate the final semantic classes. For the CR(q) 

which contains a lot of RASCs, we perform of-
fline processing according to the above process 

and store the results on disk, in order to reduce 

the online query processing time. 

We also proposed an evaluation methodology 
for measuring the quality of semantic classes. 

We show by experiments that our topic modeling 

approach outperforms the item clustering and 
RASC clustering approaches. 
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Abstract

We present a novel approach to decid-
ing whether two sentences hold a para-
phrase relationship. We employ a gen-
erative model that generates a paraphrase
of a given sentence, and we use proba-
bilistic inference to reason about whether
two sentences share the paraphrase rela-
tionship. The model cleanly incorporates
both syntax and lexical semantics using
quasi-synchronous dependency grammars
(Smith and Eisner, 2006). Furthermore,
using a product of experts (Hinton, 2002),
we combine the model with a comple-
mentary logistic regression model based
on state-of-the-art lexical overlap features.
We evaluate our models on the task of
distinguishing true paraphrase pairs from
false ones on a standard corpus, giving
competitive state-of-the-art performance.

1 Introduction

The problem of modeling paraphrase relation-
ships between natural language utterances (McK-
eown, 1979) has recently attracted interest. For
computational linguists, solving this problem may
shed light on how best to model the semantics
of sentences. For natural language engineers, the
problem bears on information management sys-
tems like abstractive summarizers that must mea-
sure semantic overlap between sentences (Barzi-
lay and Lee, 2003), question answering modules
(Marsi and Krahmer, 2005) and machine transla-
tion (Callison-Burch et al., 2006).

The paraphrase identification problem asks
whether two sentences have essentially the same
meaning. Although paraphrase identification is
defined in semantic terms, it is usually solved us-
ing statistical classifiers based on shallow lexical,
n-gram, and syntactic “overlap” features. Such
overlap features give the best-published classifi-
cation accuracy for the paraphrase identification

task (Zhang and Patrick, 2005; Finch et al., 2005;
Wan et al., 2006; Corley and Mihalcea, 2005, in-
ter alia), but do not explicitly model correspon-
dence structure (or “alignment”) between the parts
of two sentences. In this paper, we adopt a model
that posits correspondence between the words in
the two sentences, defining it in loose syntactic
terms: if two sentences are paraphrases, we expect
their dependency trees to align closely, though
some divergences are also expected, with some
more likely than others. Following Smith and Eis-
ner (2006), we adopt the view that the syntactic
structure of sentences paraphrasing some sentence
s should be “inspired” by the structure of s.

Because dependency syntax is still only a crude
approximation to semantic structure, we augment
the model with a lexical semantics component,
based on WordNet (Miller, 1995), that models how
words are probabilistically altered in generating
a paraphrase. This combination of loose syntax
and lexical semantics is similar to the “Jeopardy”
model of Wang et al. (2007).

This syntactic framework represents a major de-
parture from useful and popular surface similarity
features, and the latter are difficult to incorporate
into our probabilistic model. We use a product of
experts (Hinton, 2002) to bring together a logis-
tic regression classifier built from n-gram overlap
features and our syntactic model. This combined
model leverages complementary strengths of the
two approaches, outperforming a strong state-of-
the-art baseline (Wan et al., 2006).

This paper is organized as follows. We intro-
duce our probabilistic model in §2. The model
makes use of three quasi-synchronous grammar
models (Smith and Eisner, 2006, QG, hereafter) as
components (one modeling paraphrase, one mod-
eling not-paraphrase, and one a base grammar);
these are detailed, along with latent-variable in-
ference and discriminative training algorithms, in
§3. We discuss the Microsoft Research Paraphrase
Corpus, upon which we conduct experiments, in
§4. In §5, we present experiments on paraphrase

468



identification with our model and make compar-
isons with the existing state-of-the-art. We de-
scribe the product of experts and our lexical over-
lap model, and discuss the results achieved in §6.
We relate our approach to prior work (§7) and con-
clude (§8).

2 Probabilistic Model

Since our task is a classification problem, we re-
quire our model to provide an estimate of the pos-
terior probability of the relationship (i.e., “para-
phrase,” denoted p, or “not paraphrase,” denoted
n), given the pair of sentences.1 Here, pQ denotes
model probabilities, c is a relationship class (p or
n), and s1 and s2 are the two sentences. We choose
the class according to:

ĉ = argmax
c∈{p,n}

pQ(c | s1, s2)

= argmax
c∈{p,n}

pQ(c)× pQ(s1, s2 | c) (1)

We define the class-conditional probabilities of
the two sentences using the following generative
story. First, grammar G0 generates a sentence s.
Then a class c is chosen, corresponding to a class-
specific probabilistic quasi-synchronous grammar
Gc. (We will discuss QG in detail in §3. For the
present, consider it a specially-defined probabilis-
tic model that generates sentences with a specific
property, like “paraphrases s,” when c = p.) Given
s, Gc generates the other sentence in the pair, s′.

When we observe a pair of sentences s1 and s2

we do not presume to know which came first (i.e.,
which was s and which was s′). Both orderings
are assumed to be equally probable. For class c,

pQ(s1, s2 | c) =

0.5× pQ(s1 | G0)× pQ(s2 | Gc(s1))

+ 0.5× pQ(s2 | G0)× pQ(s1 | Gc(s2))(2)

where c can be p or n; Gp(s) is the QG that gen-
erates paraphrases for sentence s, while Gn(s) is
the QG that generates sentences that are not para-
phrases of sentence s. This latter model may seem
counter-intuitive: since the vast majority of pos-
sible sentences are not paraphrases of s, why is a
special grammar required? Our use of a Gn fol-
lows from the properties of the corpus currently
used for learning, in which the negative examples

1Although we do not explore the idea here, the model
could be adapted for other sentence-pair relationships like en-
tailment or contradiction.

were selected to have high lexical overlap. We re-
turn to this point in §4.

3 QG for Paraphrase Modeling

Here, we turn to the models Gp and Gn in detail.

3.1 Background
Smith and Eisner (2006) introduced the quasi-
synchronous grammar formalism. Here, we de-
scribe some of its salient aspects. The model
arose out of the empirical observation that trans-
lated sentences have some isomorphic syntactic
structure, but divergences are possible. Therefore,
rather than an isomorphic structure over a pair of
source and target sentences, the syntactic tree over
a target sentence is modeled by a source sentence-
specific grammar “inspired” by the source sen-
tence’s tree. This is implemented by associating
with each node in the target tree a subset of the
nodes in the source tree. Since it loosely links
the two sentences’ syntactic structures, QG is well
suited for problems like word alignment for MT
(Smith and Eisner, 2006) and question answering
(Wang et al., 2007).

Consider a very simple quasi-synchronous
context-free dependency grammar that generates
one dependent per production rule.2 Let s =
〈s1, ..., sm〉 be the source sentence. The grammar
rules will take one of the two forms:

〈t, l〉 → 〈t, l〉〈t′, k〉 or 〈t, l〉 → 〈t′, k〉〈t, l〉

where t and t′ range over the vocabulary of the
target language, and l and k ∈ {0, ...,m} are in-
dices in the source sentence, with 0 denoting null.3

Hard or soft constraints can be applied between l
and k in a rule. These constraints imply permissi-
ble “configurations.” For example, requiring l 6= 0
and, if k 6= 0 then sk must be a child of sl in the
source tree, we can implement a synchronous de-
pendency grammar similar to (Melamed, 2004).

Smith and Eisner (2006) used a quasi-
synchronous grammar to discover the correspon-
dence between words implied by the correspon-
dence between the trees. We follow Wang et al.
(2007) in treating the correspondences as latent
variables, and in using a WordNet-based lexical
semantics model to generate the target words.

2Our actual model is more complicated; see §3.2.
3A more general QG could allow one-to-many align-

ments, replacing l and k with sets of indices.
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3.2 Detailed Model
We describe how we model pQ(t | Gp(s)) and
pQ(t | Gn(s)) for source and target sentences s
and t (appearing in Eq. 2 alternately as s1 and s2).

A dependency tree on a sequence w =
〈w1, ..., wk〉 is a mapping of indices of words to
indices of syntactic parents, τp : {1, ..., k} →
{0, ..., k}, and a mapping of indices of words to
dependency relation types in L, τ` : {1, ..., k} →
L. The set of indices children of wi to its left,
{j : τw(j) = i, j < i}, is denoted λw(i), and
ρw(i) is used for right children. wi has a single
parent, denoted by wτp(i). Cycles are not allowed,
and w0 is taken to be the dummy “wall” symbol,
$, whose only child is the root word of the sen-
tence (normally the main verb). The label for wi
is denoted by τ`(i). We denote the whole tree of
a sentence w by τw, the subtree rooted at the ith
word by τw,i.

Consider two sentences: let the source sen-
tence s contain m words and the target sentence
t contain n words. Let the correspondence x :
{1, ..., n} → {0, ...,m} be a mapping from in-
dices of words in t to indices of words in s. (We
require each target word to map to at most one
source word, though multiple target words can
map to the same source word, i.e., x(i) = x(j)
while i 6= j.) When x(i) = 0, the ith target word
maps to the wall symbol, equivalently a “null”
word. Each of our QGs Gp and Gn generates the
alignments x, the target tree τ t, and the sentence
t. Both Gp and Gn are structured in the same way,
differing only in their parameters; henceforth we
discuss Gp; Gn is similar.

We assume that the parse trees of s and t are
known.4 Therefore our model defines:

pQ(t | Gp(s)) = p(τ t | Gp(τ s))

=
∑

x p(τ
t, x | Gp(τ s)) (3)

Because the QG is essentially a context-free de-
pendency grammar, we can factor it into recur-
sive steps as follows (let i be an arbitrary index
in {1, ..., n}):

P (τ t,i | ti, x(i), τ s) = pval (|λt(i)|, |ρt(i)| | ti)
4In our experiments, we use the parser described by Mc-

Donald et al. (2005), trained on sections 2–21 of the WSJ
Penn Treebank, transformed to dependency trees following
Yamada and Matsumoto (2003). (The same treebank data
were also to estimate many of the parameters of our model, as
discussed in the text.) Though it leads to a partial “pipeline”
approximation of the posterior probability p(c | s, t), we be-
lieve that the relatively high quality of English dependency
parsing makes this approximation reasonable.

×
∏

j∈λt(i)∪ρt(i)

m
∑

x(j)=0

P (τ t,j | tj , x(j), τ s)

×pkid (tj , τ
t
` (j), x(j) | ti, x(i), τ s) (4)

where pval and pkid are valence and child-
production probabilities parameterized as dis-
cussed in §3.4. Note the recursion in the second-
to-last line.

We next describe a dynamic programming so-
lution for calculating p(τ t | Gp(τ s)). In §3.4 we
discuss the parameterization of the model.

3.3 Dynamic Programming
Let C(i, l) refer to the probability of τ t,i, assum-
ing that the parent of ti, tτtp(i), is aligned to sl. For
leaves of τ t, the base case is:

C(i, l) = pval (0, 0 | ti)× (5)
∑m
k=0 pkid (ti, τ

t
` (i), k | tτtp(i), l, τ

s)

where k ranges over possible values of x(i), the
source-tree node to which ti is aligned. The recur-
sive case is:

C(i, l) = pval (|λt(i)|, |ρt(i)| | ti) (6)

×
∑m
k=0 pkid (ti, τ

t
` (i), k | tτtp(i), l, τ

s)

×
∏

j∈λt(i)∪ρt(i)C(j, k)

We assume that the wall symbols t0 and s0 are
aligned, so p(τ t | Gp(τ s)) = C(r, 0), where r is
the index of the root word of the target tree τ t. It
is straightforward to show that this algorithm re-
quires O(m2n) runtime and O(mn) space.

3.4 Parameterization
The valency distribution pval in Eq. 4 is estimated
in our model using the transformed treebank (see
footnote 4). For unobserved cases, the conditional
probability is estimated by backing off to the par-
ent POS tag and child direction.

We discuss next how to parameterize the prob-
ability pkid that appears in Equations 4, 5, and 6.
This conditional distribution forms the core of our
QGs, and we deviate from earlier research using
QGs in defining pkid in a fully generative way.

In addition to assuming that dependency parse
trees for s and t are observable, we also assume
each word wi comes with POS and named entity
tags. In our experiments these were obtained au-
tomatically using MXPOST (Ratnaparkhi, 1996)
and BBN’s Identifinder (Bikel et al., 1999).
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For clarity, let j = τ t
p(i) and let l = x(j).

pkid(ti, τ
t
` (i), x(i) | tj , l, τ s) =

pconfig(config(ti, tj , sx(i), sl) | tj , l, τ s) (7)

×punif (x(i) | config(ti, tj , sx(i), sl)) (8)

×plab(τ t
` (i) | config(ti, tj , sx(i), sl)) (9)

×ppos(pos(ti) | pos(sx(i))) (10)

×pne(ne(ti) | ne(sx(i))) (11)

×plsrel (lsrel(ti) | sx(i)) (12)

×pword (ti | lsrel(ti), sx(i)) (13)

We consider each of the factors above in turn.
Configuration In QG, “configurations” refer to
the tree relationship among source-tree nodes
(above, sl and sx(i)) aligned to a pair of parent-
child target-tree nodes (above, tj and ti). In deriv-
ing τ t,j , the model first chooses the configuration
that will hold among ti, tj , sx(i) (which has yet
to be chosen), and sl (line 7). This is defined for
configuration c log-linearly by:5

pconfig(c | tj , l, τ s) =
αc

∑

c′:∃sk,config(ti,tj ,sk,sl)=c′

αc′

(14)
Permissible configurations in our model are shown
in Table 1. These are identical to prior work
(Smith and Eisner, 2006; Wang et al., 2007),
except that we add a “root” configuration that
aligns the target parent-child pair to null and the
head word of the source sentence, respectively.
Using many permissible configurations helps re-
move negative effects from noisy parses, which
our learner treats as evidence. Fig. 1 shows some
examples of major configurations that Gp discov-
ers in the data.
Source tree alignment After choosing the config-
uration, the specific node in τ s that ti will align
to, sx(i) is drawn uniformly (line 8) from among
those in the configuration selected.
Dependency label, POS, and named entity class
The newly generated target word’s dependency
label, POS, and named entity class drawn from
multinomial distributions plab , ppos , and pne that
condition, respectively, on the configuration and
the POS and named entity class of the aligned
source-tree word sx(i) (lines 9–11).

5We use log-linear models three times: for the configura-
tion, the lexical semantics class, and the word. Each time,
we are essentially assigning one weight per outcome and
renormalizing among the subset of outcomes that are possible
given what has been derived so far.

Configuration Description
parent-child τ s

p(x(i)) = x(j), appended with τ s
` (x(i))

child-parent x(i) = τ s
p(x(j)), appended with τ s

` (x(j))
grandparent-
grandchild

τ s
p(τ s

p(x(i))) = x(j), appended with
τ s

` (x(i))
siblings τ s

p(x(i)) = τ s
p(x(j)), x(i) 6= x(j)

same-node x(i) = x(j)
c-command the parent of one source-side word is an

ancestor of the other source-side word
root x(j) = 0, x(i) is the root of s
child-null x(i) = 0
parent-null x(j) = 0, x(i) is something other than

root of s
other catch-all for all other types of configura-

tions, which are permitted

Table 1: Permissible configurations. i is an index in t whose
configuration is to be chosen; j = τ t

p(i) is i’s parent.

WordNet relation(s) The model next chooses a
lexical semantics relation between sx(i) and the
yet-to-be-chosen word ti (line 12). Following
Wang et al. (2007),6 we employ a 14-feature log-
linear model over all logically possible combina-
tions of the 14 WordNet relations (Miller, 1995).7

Similarly to Eq. 14, we normalize this log-linear
model based on the set of relations that are non-
empty in WordNet for the word sx(i).
Word Finally, the target word is randomly chosen
from among the set of words that bear the lexical
semantic relationship just chosen (line 13). This
distribution is, again, defined log-linearly:

pword (ti | lsrel(ti) = R, sx(i)) =
αti

∑

w′:sx(i)Rw′
αw′

(15)
Here αw is the Good-Turing unigram probability
estimate of a word w from the Gigaword corpus
(Graff, 2003).

3.5 Base Grammar G0

In addition to the QG that generates a second sen-
tence bearing the desired relationship (paraphrase
or not) to the first sentence s, our model in §2 also
requires a base grammar G0 over s.

We view this grammar as a trivial special case
of the same QG model already described. G0 as-
sumes the empty source sentence consists only of

6Note that Wang et al. (2007) designed pkid as an inter-
polation between a log-linear lexical semantics model and a
word model. Our approach is more fully generative.

7These are: identical-word, synonym, antonym (includ-
ing extended and indirect antonym), hypernym, hyponym,
derived form, morphological variation (e.g., plural form),
verb group, entailment, entailed-by, see-also, causal relation,
whether the two words are same and is a number, and no re-
lation.

471



(a) parent-child

fill

questionnaire

complete

questionnaire

dozens

wounded

injured

dozens

(b) child-parent (c) grandparent-grandchild

will

chief

will

Secretary

Liscouski

quarter

first

first-quarter

(e) same-node

U.S

refunding
massive

(f) siblings

U.S
treasury

treasury

(g) root

null

fell

null

dropped

(d) c-command

signatures

necessary
signatures

needed

897,158

the

twice

approaching

collected

Figure 1: Some example configurations from Table 1 that Gp discovers in the dev. data. Directed arrows show head-modifier
relationships, while dotted arrows show alignments.

a single wall node. Thus every word generated un-
der G0 aligns to null, and we can simplify the dy-
namic programming algorithm that scores a tree
τ s under G0:

C ′(i) = pval (|λt(i)|, |ρt(i)| | si)
×plab(τ t

` (i))× ppos(pos(ti))× pne(ne(ti))

×pword(ti)×
∏

j:τt(j)=iC
′(j) (16)

where the final product is 1 when ti has no chil-
dren. It should be clear that p(s | G0) = C ′(0).

We estimate the distributions over dependency
labels, POS tags, and named entity classes using
the transformed treebank (footnote 4). The dis-
tribution over words is taken from the Gigaword
corpus (as in §3.4).

It is important to note thatG0 is designed to give
a smoothed estimate of the probability of a partic-
ular parsed, named entity-tagged sentence. It is
never used for parsing or for generation; it is only
used as a component in the generative probability
model presented in §2 (Eq. 2).

3.6 Discriminative Training

Given training data
〈

〈s(i)
1 , s(i)

2 , c(i)〉
〉N

i=1
, we train

the model discriminatively by maximizing regu-
larized conditional likelihood:

max
Θ

N
∑

i=1

log pQ(c(i) | s(i)
1 , s(i)

2 ,Θ)
︸ ︷︷ ︸

Eq. 2 relates this to G{0,p,n}

−C‖Θ‖22

(17)
The parameters Θ to be learned include the class
priors, the conditional distributions of the depen-
dency labels given the various configurations, the
POS tags given POS tags, the NE tags given NE

tags appearing in expressions 9–11, the configura-
tion weights appearing in Eq. 14, and the weights
of the various features in the log-linear model for
the lexical-semantics model. As noted, the distri-
butions pval , the word unigram weights in Eq. 15,
and the parameters of the base grammar are fixed
using the treebank (see footnote 4) and the Giga-
word corpus.

Since there is a hidden variable (x), the objec-
tive function is non-convex. We locally optimize
using the L-BFGS quasi-Newton method (Liu and
Nocedal, 1989). Because many of our parameters
are multinomial probabilities that are constrained
to sum to one and L-BFGS is not designed to han-
dle constraints, we treat these parameters as un-
normalized weights that get renormalized (using a
softmax function) before calculating the objective.

4 Data and Task

In all our experiments, we have used the Mi-
crosoft Research Paraphrase Corpus (Dolan et al.,
2004; Quirk et al., 2004). The corpus contains
5,801 pairs of sentences that have been marked
as “equivalent” or “not equivalent.” It was con-
structed from thousands of news sources on the
web. Dolan and Brockett (2005) remark that
this corpus was created semi-automatically by first
training an SVM classifier on a disjoint annotated
10,000 sentence pair dataset and then applying
the SVM on an unseen 49,375 sentence pair cor-
pus, with its output probabilities skewed towards
over-identification, i.e., towards generating some
false paraphrases. 5,801 out of these 49,375 pairs
were randomly selected and presented to human
judges for refinement into true and false para-
phrases. 3,900 of the pairs were marked as having
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About 120 potential jurors were being asked to complete a lengthy questionnaire . 

The jurors were taken into the courtroom in groups of 40 and asked to fill out a questionnaire .
Figure 2: Discovered alignment of Ex. 19 produced by Gp. Observe that the model aligns identical words and also “complete”
and “fill” in this specific case. This kind of alignment provides an edge over a simple lexical overlap model.

“mostly bidirectional entailment,” a standard def-
inition of the paraphrase relation. Each sentence
was labeled first by two judges, who averaged 83%
agreement, and a third judge resolved conflicts.

We use the standard data split into 4,076 (2,753
paraphrase, 1,323 not) training and 1,725 (1147
paraphrase, 578 not) test pairs. We reserved a ran-
domly selected 1,075 training pairs for tuning.We
cite some examples from the training set here:

(18) Revenue in the first quarter of the year dropped 15
percent from the same period a year earlier.
With the scandal hanging over Stewart’s company,
revenue in the first quarter of the year dropped 15
percent from the same period a year earlier.

(19) About 120 potential jurors were being asked to
complete a lengthy questionnaire.
The jurors were taken into the courtroom in groups of
40 and asked to fill out a questionnaire.

Ex. 18 is a true paraphrase pair. Notice the high
lexical overlap between the two sentences (uni-
gram overlap of 100% in one direction and 72%
in the other). Ex. 19 is another true paraphrase
pair with much lower lexical overlap (unigram
overlap of 50% in one direction and 30% in the
other). Notice the use of similar-meaning phrases
and irrelevant modifiers that retain the same mean-
ing in both sentences, which a lexical overlap
model cannot capture easily, but a model like a QG
might. Also, in both pairs, the relationship cannot
be called total bidirectional equivalence because
there is some extra information in one sentence
which cannot be inferred from the other.

Ex. 20 was labeled “not paraphrase”:

(20) “There were a number of bureaucratic and
administrative missed signals - there’s not one person
who’s responsible here,” Gehman said.
In turning down the NIMA offer, Gehman said, “there
were a number of bureaucratic and administrative
missed signals here.

There is significant content overlap, making a de-
cision difficult for a naı̈ve lexical overlap classifier.
(In fact, pQ labels this example n while the lexical
overlap models label it p.)

The fact that negative examples in this corpus
were selected because of their high lexical over-
lap is important. It means that any discrimina-
tive model is expected to learn to distinguish mere
overlap from paraphrase. This seems appropriate,

but it does mean that the “not paraphrase” relation
ought to be denoted “not paraphrase but decep-
tively similar on the surface.” It is for this reason
that we use a special QG for the n relation.

5 Experimental Evaluation

Here we present our experimental evaluation using
pQ. We trained on the training set (3,001 pairs)
and tuned model metaparameters (C in Eq. 17)
and the effect of different feature sets on the de-
velopment set (1,075 pairs). We report accuracy
on the official MSRPC test dataset. If the poste-
rior probability pQ(p | s1, s2) is greater than 0.5,
the pair is labeled “paraphrase” (as in Eq. 1).

5.1 Baseline
We replicated a state-of-the-art baseline model for
comparison. Wan et al. (2006) report the best pub-
lished accuracy, to our knowledge, on this task,
using a support vector machine. Our baseline is
a reimplementation of Wan et al. (2006), using
features calculated directly from s1 and s2 with-
out recourse to any hidden structure: proportion
of word unigram matches, proportion of lemma-
tized unigram matches, BLEU score (Papineni et
al., 2001), BLEU score on lemmatized tokens, F
measure (Turian et al., 2003), difference of sen-
tence length, and proportion of dependency rela-
tion overlap. The SVM was trained to classify
positive and negative examples of paraphrase us-
ing SVMlight (Joachims, 1999).8 Metaparameters,
tuned on the development data, were the regu-
larization constant and the degree of the polyno-
mial kernel (chosen in [10−5, 102] and 1–5 respec-
tively.).9

It is unsurprising that the SVM performs very
well on the MSRPC because of the corpus creation
process (see Sec. 4) where an SVM was applied
as well, with very similar features and a skewed
decision process (Dolan and Brockett, 2005).

8http://svmlight.joachims.org
9Our replication of the Wan et al. model is approxi-

mate, because we used different preprocessing tools: MX-
POST for POS tagging (Ratnaparkhi, 1996), MSTParser
for parsing (McDonald et al., 2005), and Dan Bikel’s
interface (http://www.cis.upenn.edu/˜dbikel/
software.html#wn) to WordNet (Miller, 1995) for
lemmatization information. Tuning led to C = 17 and poly-
nomial degree 4.
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Model Accuracy Precision Recall

baselines
all p 66.49 66.49 100.00
Wan et al. SVM (reported) 75.63 77.00 90.00
Wan et al. SVM (replication) 75.42 76.88 90.14

pQ

lexical semantics features removed 68.64 68.84 96.51
all features 73.33 74.48 91.10
c-command disallowed (best; see text) 73.86 74.89 91.28

§6 pL 75.36 78.12 87.44
product of experts 76.06 79.57 86.05

oracles
Wan et al. SVM and pL 80.17 100.00 92.07
Wan et al. SVM and pQ 83.42 100.00 96.60
pQ and pL 83.19 100.00 95.29

Table 2: Accuracy,
p-class precision, and
p-class recall on the test
set (N = 1,725). See
text for differences in
implementation
between Wan et al. and
our replication; their
reported score does not
include the full test set.

5.2 Results
Tab. 2 shows performance achieved by the base-
line SVM and variations on pQ on the test set. We
performed a few feature ablation studies, evaluat-
ing on the development data. We removed the lex-
ical semantics component of the QG,10 and disal-
lowed the syntactic configurations one by one, to
investigate which components of pQ contributes to
system performance. The lexical semantics com-
ponent is critical, as seen by the drop in accu-
racy from the table (without this component, pQ
behaves almost like the “all p” baseline). We
found that the most important configurations are
“parent-child,” and “child-parent” while damage
from ablating other configurations is relatively
small. Most interestingly, disallowing the “c-
command” configuration resulted in the best ab-
solute accuracy, giving us the best version of pQ.
The c-command configuration allows more distant
nodes in a source sentence to align to parent-child
pairs in a target (see Fig. 1d). Allowing this con-
figuration guides the model in the wrong direction,
thus reducing test accuracy. We tried disallowing
more than one configuration at a time, without get-
ting improvements on development data. We also
tried ablating the WordNet relations, and observed
that the “identical-word” feature hurt the model
the most. Ablating the rest of the features did not
produce considerable changes in accuracy.

The development data-selected pQ achieves
higher recall by 1 point than Wan et al.’s SVM,
but has precision 2 points worse.

5.3 Discussion
It is quite promising that a linguistically-motivated
probabilistic model comes so close to a string-
similarity baseline, without incorporating string-
local phrases. We see several reasons to prefer

10This is accomplished by eliminating lines 12 and 13 from
the definition of pkid and redefining pword to be the unigram
word distribution estimated from the Gigaword corpus, as in
G0, without the help of WordNet.

the more intricate QG to the straightforward SVM.
First, the QG discovers hidden alignments be-
tween words. Alignments have been leveraged in
related tasks such as textual entailment (Giampic-
colo et al., 2007); they make the model more inter-
pretable in analyzing system output (e.g., Fig. 2).
Second, the paraphrases of a sentence can be con-
sidered to be monolingual translations. We model
the paraphrase problem using a direct machine
translation model, thus providing a translation in-
terpretation of the problem. This framework could
be extended to permit paraphrase generation, or to
exploit other linguistic annotations, such as repre-
sentations of semantics (see, e.g., Qiu et al., 2006).

Nonetheless, the usefulness of surface overlap
features is difficult to ignore. We next provide an
efficient way to combine a surface model with pQ.

6 Product of Experts

Incorporating structural alignment and surface
overlap features inside a single model can make
exact inference infeasible. As an example, con-
sider features like n-gram overlap percentages that
provide cues of content overlap between two sen-
tences. One intuitive way of including these fea-
tures in a QG could be including these only at
the root of the target tree, i.e. while calculating
C(r, 0). These features have to be included in
estimating pkid, which has log-linear component
models (Eq. 7- 13). For these bigram or trigram
overlap features, a similar log-linear model has
to be normalized with a partition function, which
considers the (unnormalized) scores of all possible
target sentences, given the source sentence.

We therefore combine pQ with a lexical overlap
model that gives another posterior probability es-
timate pL(c | s1, s2) through a product of experts
(PoE; Hinton, 2002), pJ(c | s1, s2)

=
pQ(c | s1, s2)× pL(c | s1, s2)

∑

c′∈{p,n}
pQ(c′ | s1, s2)× pL(c′ | s1, s2)

(21)
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Eq. 21 takes the product of the two models’ poste-
rior probabilities, then normalizes it to sum to one.
PoE models are used to efficiently combine several
expert models that individually constrain different
dimensions in high-dimensional data, the product
therefore constraining all of the dimensions. Com-
bining models in this way grants to each expert
component model the ability to “veto” a class by
giving it low probability; the most probable class
is the one that is least objectionable to all experts.
Probabilistic Lexical Overlap Model We de-
vised a logistic regression (LR) model incorpo-
rating 18 simple features, computed directly from
s1 and s2, without modeling any hidden corre-
spondence. LR (like the QG) provides a proba-
bility distribution, but uses surface features (like
the SVM). The features are of the form precisionn
(number of n-gram matches divided by the num-
ber of n-grams in s1), recalln (number of n-gram
matches divided by the number of n-grams in s2)
and Fn (harmonic mean of the previous two fea-
tures), where 1 ≤ n ≤ 3. We also used lemma-
tized versions of these features. This model gives
the posterior probability pL(c | s1, s2), where
c ∈ {p, n}. We estimated the model parameters
analogously to Eq. 17. Performance is reported in
Tab. 2; this model is on par with the SVM, though
trading recall in favor of precision. We view it as a
probabilistic simulation of the SVM more suitable
for combination with the QG.
Training the PoE Various ways of training a PoE
exist. We first trained pQ and pL separately as
described, then initialized the PoE with those pa-
rameters. We then continued training, maximizing
(unregularized) conditional likelihood.
Experiment We used pQ with the “c-command”
configuration excluded, and the LR model in the
product of experts. Tab. 2 includes the final re-
sults achieved by the PoE. The PoE model outper-
forms all the other models, achieving an accuracy
of 76.06%.11 The PoE is conservative, labeling a
pair as p only if the LR and the QG give it strong
p probabilities. This leads to high precision, at the
expense of recall.
Oracle Ensembles Tab. 2 shows the results of
three different oracle ensemble systems that cor-
rectly classify a pair if either of the two individual
systems in the combination is correct. Note that
the combinations involving pQ achieve 83%, the

11This accuracy is significant over pQ under a paired t-test
(p < 0.04), but is not significant over the SVM.

human agreement level for the MSRPC. The LR
and SVM are highly similar, and their oracle com-
bination does not perform as well.

7 Related Work

There is a growing body of research that uses the
MSRPC (Dolan et al., 2004; Quirk et al., 2004)
to build models of paraphrase. As noted, the most
successful work has used edit distance (Zhang and
Patrick, 2005) or bag-of-words features to mea-
sure sentence similarity, along with shallow syn-
tactic features (Finch et al., 2005; Wan et al., 2006;
Corley and Mihalcea, 2005). Qiu et al. (2006)
used predicate-argument annotations.

Most related to our approach, Wu (2005) used
inversion transduction grammars—a synchronous
context-free formalism (Wu, 1997)—for this task.
Wu reported only positive-class (p) precision (not
accuracy) on the test set. He obtained 76.1%,
while our PoE model achieves 79.6% on that mea-
sure. Wu’s model can be understood as a strict
hierarchical maximum-alignment method. In con-
trast, our alignments are soft (we sum over them),
and we do not require strictly isomorphic syntac-
tic structures. Most importantly, our approach is
founded on a stochastic generating process and es-
timated discriminatively for this task, while Wu
did not estimate any parameters from data at all.

8 Conclusion

In this paper, we have presented a probabilistic
model of paraphrase incorporating syntax, lexi-
cal semantics, and hidden loose alignments be-
tween two sentences’ trees. Though it fully de-
fines a generative process for both sentences and
their relationship, the model is discriminatively
trained to maximize conditional likelihood. We
have shown that this model is competitive for de-
termining whether there exists a semantic rela-
tionship between them, and can be improved by
principled combination with more standard lexical
overlap approaches.
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Abstract

Stochastic gradient descent (SGD) uses
approximate gradients estimated from
subsets of the training data and updates
the parameters in an online fashion. This
learning framework is attractive because
it often requires much less training time
in practice than batch training algorithms.
However, L1-regularization, which is be-
coming popular in natural language pro-
cessing because of its ability to pro-
duce compact models, cannot be effi-
ciently applied in SGD training, due to
the large dimensions of feature vectors
and the fluctuations of approximate gra-
dients. We present a simple method to
solve these problems by penalizing the
weights according to cumulative values for
L1 penalty. We evaluate the effectiveness
of our method in three applications: text
chunking, named entity recognition, and
part-of-speech tagging. Experimental re-
sults demonstrate that our method can pro-
duce compact and accurate models much
more quickly than a state-of-the-art quasi-
Newton method for L1-regularized log-
linear models.

1 Introduction

Log-linear models (a.k.a maximum entropy mod-
els) are one of the most widely-used probabilistic
models in the field of natural language process-
ing (NLP). The applications range from simple
classification tasks such as text classification and
history-based tagging (Ratnaparkhi, 1996) to more
complex structured prediction tasks such as part-
of-speech (POS) tagging (Lafferty et al., 2001),
syntactic parsing (Clark and Curran, 2004) and se-
mantic role labeling (Toutanova et al., 2005). Log-
linear models have a major advantage over other

discriminative machine learning models such as
support vector machines—their probabilistic out-
put allows the information on the confidence of
the decision to be used by other components in the
text processing pipeline.

The training of log-liner models is typically per-
formed based on the maximum likelihood crite-
rion, which aims to obtain the weights of the fea-
tures that maximize the conditional likelihood of
the training data. In maximum likelihood training,
regularization is normally needed to prevent the
model from overfitting the training data,

The two most common regularization methods
are called L1 and L2 regularization. L1 regular-
ization penalizes the weight vector for its L1-norm
(i.e. the sum of the absolute values of the weights),
whereas L2 regularization uses its L2-norm. There
is usually not a considerable difference between
the two methods in terms of the accuracy of the
resulting model (Gao et al., 2007), but L1 regu-
larization has a significant advantage in practice.
Because many of the weights of the features be-
come zero as a result of L1-regularized training,
the size of the model can be much smaller than that
produced by L2-regularization. Compact models
require less space on memory and storage, and en-
able the application to start up quickly. These mer-
its can be of vital importance when the application
is deployed in resource-tight environments such as
cell-phones.

A common way to train a large-scale L1-
regularized model is to use a quasi-Newton
method. Kazama and Tsujii (2003) describe a
method for training a L1-regularized log-linear
model with a bound constrained version of the
BFGS algorithm (Nocedal, 1980). Andrew and
Gao (2007) present an algorithm called Orthant-
Wise Limited-memory Quasi-Newton (OWL-
QN), which can work on the BFGS algorithm
without bound constraints and achieve faster con-
vergence.
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An alternative approach to training a log-linear
model is to use stochastic gradient descent (SGD)
methods. SGD uses approximate gradients esti-
mated from subsets of the training data and up-
dates the weights of the features in an online
fashion—the weights are updated much more fre-
quently than batch training algorithms. This learn-
ing framework is attracting attention because it of-
ten requires much less training time in practice
than batch training algorithms, especially when
the training data is large and redundant. SGD was
recently used for NLP tasks including machine
translation (Tillmann and Zhang, 2006) and syn-
tactic parsing (Smith and Eisner, 2008; Finkel et
al., 2008). Also, SGD is very easy to implement
because it does not need to use the Hessian infor-
mation on the objective function. The implemen-
tation could be as simple as the perceptron algo-
rithm.

Although SGD is a very attractive learning
framework, the direct application of L1 regular-
ization in this learning framework does not result
in efficient training. The first problem is the inef-
ficiency of applying the L1 penalty to the weights
of all features. In NLP applications, the dimen-
sion of the feature space tends to be very large—it
can easily become several millions, so the appli-
cation of L1 penalty to all features significantly
slows down the weight updating process. The sec-
ond problem is that the naive application of L1
penalty in SGD does not always lead to compact
models, because the approximate gradient used at
each update is very noisy, so the weights of the
features can be easily moved away from zero by
those fluctuations.

In this paper, we present a simple method for
solving these two problems in SGD learning. The
main idea is to keep track of the total penalty and
the penalty that has been applied to each weight,
so that the L1 penalty is applied based on the dif-
ference between those cumulative values. That
way, the application of L1 penalty is needed only
for the features that are used in the current sample,
and also the effect of noisy gradient is smoothed
away.

We evaluate the effectiveness of our method
by using linear-chain conditional random fields
(CRFs) and three traditional NLP tasks, namely,
text chunking (shallow parsing), named entity
recognition, and POS tagging. We show that our
enhanced SGD learning method can produce com-

pact and accurate models much more quickly than
the OWL-QN algorithm.

This paper is organized as follows. Section 2
provides a general description of log-linear mod-
els used in NLP. Section 3 describes our stochastic
gradient descent method for L1-regularized log-
linear models. Experimental results are presented
in Section 4. Some related work is discussed in
Section 5. Section 6 gives some concluding re-
marks.

2 Log-Linear Models

In this section, we briefly describe log-linear mod-
els used in NLP tasks and L1 regularization.

A log-linear model defines the following prob-
abilistic distribution over possible structurey for
inputx:

p(y|x) =
1

Z(x)
exp

∑

i

wifi(y,x),

wherefi(y,x) is a function indicating the occur-
rence of featurei, wi is the weight of the feature,
andZ(x) is a partition (normalization) function:

Z(x) =
∑

y

exp
∑

i

wifi(y,x).

If the structure is a sequence, the model is called
a linear-chain CRF model, and the marginal prob-
abilities of the features and the partition function
can be efficiently computed by using the forward-
backward algorithm. The model is used for a va-
riety of sequence labeling tasks such as POS tag-
ging, chunking, and named entity recognition.

If the structure is a tree, the model is called a
tree CRF model, and the marginal probabilities
can be computed by using the inside-outside algo-
rithm. The model can be used for tasks like syn-
tactic parsing (Finkel et al., 2008) and semantic
role labeling (Cohn and Blunsom, 2005).

2.1 Training

The weights of the features in a log-linear model
are optimized in such a way that they maximize
the regularized conditional log-likelihood of the
training data:

Lw =
N

∑

j=1

log p(yj |xj ;w)−R(w), (1)

whereN is the number of training samples,yj is
the correct output for inputxj , andR(w) is the
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regularization term which prevents the model from
overfitting the training data. In the case of L1 reg-
ularization, the term is defined as:

R(w) = C
∑

i

|wi|,

whereC is the meta-parameter that controls the
degree of regularization, which is usually tuned by
cross-validation or using the heldout data.

In what follows, we denote byL(j,w)
the conditional log-likelihood of each sample
log p(yj |xj ;w). Equation 1 is rewritten as:

Lw =
N

∑

j=1

L(j,w)− C
∑

i

|wi|. (2)

3 Stochastic Gradient Descent

SGD uses a small randomly-selected subset of the
training samples to approximate the gradient of
the objective function given by Equation 2. The
number of training samples used for this approx-
imation is called thebatch size. When the batch
size isN , the SGD training simply translates into
gradient descent (hence is very slow to converge).
By using a small batch size, one can update the
parameters more frequently than gradient descent
and speed up the convergence. The extreme case
is a batch size of 1, and it gives the maximum
frequency of updates and leads to a very simple
perceptron-like algorithm, which we adopt in this
work.1

Apart from using a single training sample to
approximate the gradient, the optimization proce-
dure is the same as simple gradient descent,2 so
the weights of the features are updated at training
samplej as follows:

wk+1 = wk + ηk

∂

∂w
(L(j,w)−

C

N

∑

i

|wi|),

wherek is the iteration counter andηk is the learn-
ing rate, which is normally designed to decrease
as the iteration proceeds. The actual learning rate
scheduling methods used in our experiments are
described later in Section 3.3.

1In the actual implementation, we randomly shuffled the
training samples at the beginning of each pass, and then
picked them up sequentially.

2What we actually do here is gradient ascent, but we stick
to the term “gradient descent”.

3.1 L1 regularization

The update equation for the weight of each feature
i is as follows:

wi
k+1 = wi

k + ηk

∂

∂wi
(L(j,w)−

C

N
|wi|).

The difficulty with L1 regularization is that the
last term on the right-hand side of the above equa-
tion is not differentiable when the weight is zero.
One straightforward solution to this problem is to
consider a subgradient at zero and use the follow-
ing update equation:

wi
k+1 = wi

k + ηk

∂L(j,w)

∂wi
−

C

N
ηksign(wk

i ),

where sign(x) = 1 if x > 0, sign(x) = −1 if x <

0, and sign(x) = 0 if x = 0. In this paper, we call
this weight updating method “SGD-L1 (Naive)”.

This naive method has two serious problems.
The first problem is that, at each update, we need
to perform the application of L1 penalty to all fea-
tures, including the features that are not used in
the current training sample. Since the dimension
of the feature space can be very large, it can sig-
nificantly slow down the weight update process.

The second problem is that it does not produce
a compact model, i.e. most of the weights of the
features do not become zero as a result of train-
ing. Note that the weight of a feature does not be-
come zero unless it happens to fall on zero exactly,
which rarely happens in practice.

Carpenter (2008) describes an alternative ap-
proach. The weight updating process is divided
into two steps. First, the weight is updated with-
out considering the L1 penalty term. Then, the
L1 penalty is applied to the weight to the extent
that it does not change its sign. In other words,
the weight is clipped when it crosses zero. Their
weight update procedure is as follows:

w
k+ 1

2
i = wk

i + ηk

∂L(j,w)

∂wi

∣

∣

∣

∣

w=wk

,

if w
k+ 1

2
i > 0 then

wk+1
i = max(0, w

k+ 1
2

i −
C

N
ηk),

else if w
k+ 1

2
i < 0 then

wk+1
i = min(0, w

k+ 1
2

i +
C

N
ηk).

In this paper, we call this update method “SGD-
L1 (Clipping)”. It should be noted that this method
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Figure 1: An example of weight updates.

is actually a special case of the FOLOS algorithm
(Duchi and Singer, 2008) and the truncated gradi-
ent method (Langford et al., 2009).

The obvious advantage of using this method is
that we can expect many of the weights of the
features to become zero during training. Another
merit is that it allows us to perform the applica-
tion of L1 penalty in a lazy fashion, so that we
do not need to update the weights of the features
that are not used in the current sample, which leads
to much faster training when the dimension of the
feature space is large. See the aforementioned pa-
pers for the details. In this paper, we call this effi-
cient implementation “SGD-L1 (Clipping + Lazy-
Update)”.

3.2 L1 regularization with cumulative
penalty

Unfortunately, the clipping-at-zero approach does
not solve all problems. Still, we often end up with
many features whose weights are not zero. Re-
call that the gradient used in SGD is a crude ap-
proximation to the true gradient and is very noisy.
The weight of a feature is, therefore, easily moved
away from zero when the feature is used in the
current sample.

Figure 1 gives an illustrative example in which
the weight of a feature fails to become zero. The
figure shows how the weight of a feature changes
during training. The weight goes up sharply when
it is used in the sample and then is pulled back
toward zero gradually by the L1 penalty. There-
fore, the weight fails to become zero if the feature
is used toward the end of training, which is the
case in this example. Note that the weight would
become zero if the true (fluctuationless) gradient
were used—at each update the weight would go

up a little and be pulled back to zero straightaway.
Here, we present a different strategy for apply-

ing the L1 penalty to the weights of the features.
The key idea is to smooth out the effect of fluctu-
ating gradients by considering the cumulative ef-
fects from L1 penalty.

Let uk be the absolute value of the total L1-
penalty that each weight could have received up
to the point. Since the absolute value of the L1
penalty does not depend on the weight and we are
using the same regularization constantC for all
weights, it is simply accumulated as:

uk =
C

N

k
∑

t=1

ηt. (3)

At each training sample, we update the weights
of the features that are used in the sample as fol-
lows:

w
k+ 1

2
i = wk

i + ηk

∂L(j,w)

∂wi

∣

∣

∣

∣

w=wk

,

if w
k+ 1

2
i > 0 then

wk+1
i = max(0, w

k+ 1
2

i − (uk + qk−1
i )),

else if w
k+ 1

2
i < 0 then

wk+1
i = min(0, w

k+ 1
2

i + (uk − qk−1
i )),

whereqk
i is the total L1-penalty thatwi has actu-

ally received up to the point:

qk
i =

k
∑

t=1

(wt+1
i − w

t+ 1
2

i ). (4)

This weight updating method penalizes the
weight according to the difference betweenuk and
qk−1
i . In effect, it forces the weight to receive the

total L1 penalty that would have been applied if
the weight had been updated by the true gradients,
assuming that the current weight vector resides in
the same orthant as the true weight vector.

It should be noted that this method is basi-
cally equivalent to a “SGD-L1 (Clipping + Lazy-
Update)” method if we were able to use the true
gradients instead of the stochastic gradients.

In this paper, we call this weight updating
method “SGD-L1 (Cumulative)”. The implemen-
tation of this method is very simple. Figure 2
shows the whole SGD training algorithm with this
strategy in pseudo-code.
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1: procedure TRAIN(C)
2: u← 0
3: Initializewi andqi with zero for alli
4: for k = 0 to MaxIterations
5: η ← LEARNINGRATE(k)
6: u← u + ηC/N

7: Select samplej randomly
8: UPDATEWEIGHTS(j)
9:

10: procedure UPDATEWEIGHTS(j)
11: for i ∈ features used in samplej

12: wi ← wi + η
∂L(j,w)

∂wi

13: APPLYPENALTY (i)
14:
15: procedure APPLYPENALTY (i)
16: z ← wi

17: if wi > 0 then
18: wi ← max(0, wi − (u + qi))
19: else if wi < 0 then
20: wi ← min(0, wi + (u− qi))
21: qi ← qi + (wi − z)
22:

Figure 2: Stochastic gradient descent training with
cumulative L1 penalty.z is a temporary variable.

3.3 Learning Rate

The scheduling of learning rates often has a major
impact on the convergence speed in SGD training.

A typical choice of learning rate scheduling can
be found in (Collins et al., 2008):

ηk =
η0

1 + k/N
, (5)

whereη0 is a constant. Although this scheduling
guarantees ultimate convergence, the actual speed
of convergence can be poor in practice (Darken
and Moody, 1990).

In this work, we also tested simple exponential
decay:

ηk = η0α
−k/N , (6)

whereα is a constant. In our experiments, we
found this scheduling more practical than that
given in Equation 5. This is mainly because ex-
ponential decay sweeps the range of learning rates
more smoothly—the learning rate given in Equa-
tion 5 drops too fast at the beginning and too
slowly at the end.

It should be noted that exponential decay is not
a good choice from a theoretical point of view, be-
cause it does not satisfy one of the necessary con-

ditions for convergence—the sum of the learning
rates must diverge to infinity (Spall, 2005). How-
ever, this is probably not a big issue for practition-
ers because normally the training has to be termi-
nated at a certain number of iterations in practice.3

4 Experiments

We evaluate the effectiveness our training algo-
rithm using linear-chain CRF models and three
NLP tasks: text chunking, named entity recogni-
tion, and POS tagging.

To compare our algorithm with the state-of-the-
art, we present the performance of the OWL-QN
algorithm on the same data. We used the publicly
available OWL-QN optimizer developed by An-
drew and Gao.4 The meta-parameters for learning
were left unchanged from the default settings of
the software: the convergence tolerance was 1e-4;
and the L-BFGS memory parameter was 10.

4.1 Text Chunking

The first set of experiments used the text chunk-
ing data set provided for the CoNLL 2000 shared
task.5 The training data consists of 8,936 sen-
tences in which each token is annotated with the
“IOB” tags representing text chunks such as noun
and verb phrases. We separated 1,000 sentences
from the training data and used them as the held-
out data. The test data provided by the shared task
was used only for the final accuracy report.

The features used in this experiment were uni-
grams and bigrams of neighboring words, and un-
igrams, bigrams and trigrams of neighboring POS
tags.

To avoid giving any advantage to our SGD al-
gorithms over the OWL-QN algorithm in terms of
the accuracy of the resulting model, the OWL-QN
algorithm was used when tuning the regularization
parameterC. The tuning was performed in such a
way that it maximized the likelihood of the heldout
data. The learning rate parameters for SGD were
then tuned in such a way that they maximized the
value of the objective function in 30 passes. We
first determinedη0 by testing 1.0, 0.5, 0.2, and 0.1.
We then determinedα by testing 0.9, 0.85, and 0.8
with the fixedη0.

3This issue could also be sidestepped by, for example,
adding a smallO(1/k) term to the learning rate.

4Available from the original developers’ websites:
http://research.microsoft.com/en-us/people/galena/ or
http://research.microsoft.com/en-us/um/people/jfgao/

5http://www.cnts.ua.ac.be/conll2000/chunking/
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Passes Lw/N # Features Time (sec) F-score
OWL-QN 160 -1.583 18,109 598 93.62
SGD-L1 (Naive) 30 -1.671 455,651 1,117 93.64
SGD-L1 (Clipping + Lazy-Update) 30 -1.671 87,792 144 93.65
SGD-L1 (Cumulative) 30 -1.653 28,189 149 93.68
SGD-L1 (Cumulative + Exponential-Decay) 30 -1.622 23,584 148 93.66

Table 1: CoNLL-2000 Chunking task. Training time and accuracy of the trained model on the test data.
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Figure 3: CoNLL 2000 chunking task: Objective
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Figure 4: CoNLL 2000 chunking task: Number of
active features.

Figures 3 and 4 show the training process of
the model. Each figure contains four curves repre-
senting the results of the OWL-QN algorithm and
three SGD-based algorithms. “SGD-L1 (Cumu-
lative + ED)” represents the results of our cumu-
lative penalty-based method that uses exponential
decay (ED) for learning rate scheduling.

Figure 3 shows how the value of the objec-
tive function changed as the training proceeded.
SGD-based algorithms show much faster conver-
gence than the OWL-QN algorithm. Notice also

that “SGD-L1 (Cumulative)” improves the objec-
tive slightly faster than “SGD-L1 (Clipping)”. The
result of “SGD-L1 (Naive)” is not shown in this
figure, but the curve was almost identical to that
of “SGD-L1 (Clipping)”.

Figure 4 shows the numbers of active features
(the features whose weight are not zero). It is
clearly seen that the clipping-at-zero approach
fails to reduce the number of active features, while
our algorithms succeeded in reducing the number
of active features to the same level as OWL-QN.

We then trained the models using the whole
training data (including the heldout data) and eval-
uated the accuracy of the chunker on the test data.
The number of passes performed over the train-
ing data in SGD was set to 30. The results are
shown in Table 1. The second column shows the
number of passes performed in the training. The
third column shows the final value of the objective
function per sample. The fourth column shows
the number of resulting active features. The fifth
column show the training time. The last column
shows the f-score (harmonic mean of recall and
precision) of the chunking results. There was no
significant difference between the models in terms
of accuracy. The naive SGD training took much
longer than OWL-QN because of the overhead of
applying L1 penalty to all dimensions.

Our SGD algorithms finished training in 150
seconds on Xeon 2.13GHz processors. The
CRF++ version 0.50, a popular CRF library de-
veloped by Taku Kudo,6 is reported to take 4,021
seconds on Xeon 3.0GHz processors to train the
model using a richer feature set.7 CRFsuite ver-
sion 0.4, a much faster library for CRFs, is re-
ported to take 382 seconds on Xeon 3.0GHz, using
the same feature set as ours.8 Their library uses the
OWL-QN algorithm for optimization. Although
direct comparison of training times is not impor-

6http://crfpp.sourceforge.net/
7http://www.chokkan.org/software/crfsuite/benchmark.html
8ditto
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tant due to the differences in implementation and
hardware platforms, these results demonstrate that
our algorithm can actually result in a very fast im-
plementation of a CRF trainer.

4.2 Named Entity Recognition

The second set of experiments used the named
entity recognition data set provided for the
BioNLP/NLPBA 2004 shared task (Kim et al.,
2004).9 The training data consist of 18,546 sen-
tences in which each token is annotated with the
“IOB” tags representing biomedical named enti-
ties such as the names of proteins and RNAs.

The training and test data were preprocessed
by the GENIA tagger,10 which provided POS tags
and chunk tags. We did not use any information on
the named entity tags output by the GENIA tagger.
For the features, we used unigrams of neighboring
chunk tags, substrings (shorter than 10 characters)
of the current word, and the shape of the word (e.g.
“IL-2” is converted into “AA-#”), on top of the
features used in the text chunking experiments.

The results are shown in Figure 5 and Table
2. The trend in the results is the same as that of
the text chunking task: our SGD algorithms show
much faster convergence than the OWL-QN algo-
rithm and produce compact models.

Okanohara et al. (2006) report an f-score of
71.48 on the same data, using semi-Markov CRFs.

4.3 Part-Of-Speech Tagging

The third set of experiments used the POS tag-
ging data in the Penn Treebank (Marcus et al.,
1994). Following (Collins, 2002), we used sec-
tions 0-18 of the Wall Street Journal (WSJ) corpus
for training, sections 19-21 for development, and
sections 22-24 for final evaluation. The POS tags
were extracted from the parse trees in the corpus.
All experiments for this work, including the tun-
ing of features and parameters for regularization,
were carried out using the training and develop-
ment sets. The test set was used only for the final
accuracy report.

It should be noted that training a CRF-based
POS tagger using the whole WSJ corpus is not a
trivial task and was once even deemed impractical
in previous studies. For example, Wellner and Vi-
lain (2006) abandoned maximum likelihood train-

9The data is available for download at http://www-
tsujii.is.s.u-tokyo.ac.jp/GENIA/ERtask/report.html

10http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
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Figure 5: NLPBA 2004 named entity recognition
task: Objective.
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Figure 6: POS tagging task: Objective.

ing because it was “prohibitive” (7-8 days for sec-
tions 0-18 of the WSJ corpus).

For the features, we used unigrams and bigrams
of neighboring words, prefixes and suffixes of
the current word, and some characteristics of the
word. We also normalized the current word by
lowering capital letters and converting all the nu-
merals into ‘#’, and used the normalized word as a
feature.

The results are shown in Figure 6 and Table 3.
Again, the trend is the same. Our algorithms fin-
ished training in about 30 minutes, producing ac-
curate models that are as compact as that produced
by OWL-QN.

Shen et al., (2007) report an accuracy of 97.33%
on the same data set using a perceptron-based bidi-
rectional tagging model.

5 Discussion

An alternative approach to producing compact
models for log-linear models is to reformulate the
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Passes Lw/N # Features Time (sec) F-score
OWL-QN 161 -2.448 30,710 2,253 71.76
SGD-L1 (Naive) 30 -2.537 1,032,962 4,528 71.20
SGD-L1 (Clipping + Lazy-Update) 30 -2.538 279,886 585 71.20
SGD-L1 (Cumulative) 30 -2.479 31,986 631 71.40
SGD-L1 (Cumulative + Exponential-Decay) 30 -2.443 25,965 631 71.63

Table 2: NLPBA 2004 Named entity recognition task. Training time and accuracy of the trained model
on the test data.

Passes Lw/N # Features Time (sec) Accuracy
OWL-QN 124 -1.941 50,870 5,623 97.16%
SGD-L1 (Naive) 30 -2.013 2,142,130 18,471 97.18%
SGD-L1 (Clipping + Lazy-Update) 30 -2.013 323,199 1,680 97.18%
SGD-L1 (Cumulative) 30 -1.987 62,043 1,777 97.19%
SGD-L1 (Cumulative + Exponential-Decay) 30 -1.954 51,857 1,774 97.17%

Table 3: POS tagging on the WSJ corpus. Training time and accuracy of the trained model on the test
data.

problem as a L1-constrained problem (Lee et al.,
2006), where the conditional log-likelihood of the
training data is maximized under a fixed constraint
of the L1-norm of the weight vector. Duchi et
al. (2008) describe efficient algorithms for pro-
jecting a weight vector onto the L1-ball. Although
L1-regularized and L1-constrained learning algo-
rithms are not directly comparable because the ob-
jective functions are different, it would be inter-
esting to compare the two approaches in terms
of practicality. It should be noted, however, that
the efficient algorithm presented in (Duchi et al.,
2008) needs to employ a red-black tree and is
rather complex.

In SGD learning, the need for tuning the meta-
parameters for learning rate scheduling can be an-
noying. In the case of exponential decay, the set-
ting of α = 0.85 turned out to be a good rule
of thumb in our experiments—it always produced
near best results in 30 passes, but the other param-
eterη0 needed to be tuned. It would be very useful
if those meta-parameters could be tuned in a fully
automatic way.

There are some sophisticated algorithms for
adaptive learning rate scheduling in SGD learning
(Vishwanathan et al., 2006; Huang et al., 2007).
However, those algorithms use second-order infor-
mation (i.e. Hessian information) and thus need
access to the weights of the features that are not
used in the current sample, which should slow
down the weight updating process for the same

reason discussed earlier. It would be interesting
to investigate whether those sophisticated learning
scheduling algorithms can actually result in fast
training in large-scale NLP tasks.

6 Conclusion

We have presented a new variant of SGD that can
efficiently train L1-regularized log-linear models.
The algorithm is simple and extremely easy to im-
plement.

We have conducted experiments using CRFs
and three NLP tasks, and demonstrated empiri-
cally that our training algorithm can produce com-
pact and accurate models much more quickly than
a state-of-the-art quasi-Newton method for L1-
regularization.
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Abstract

We present a global joint model for
lemmatization and part-of-speech predic-
tion. Using only morphological lexicons
and unlabeled data, we learn a partially-
supervised part-of-speech tagger and a
lemmatizer which are combined using fea-
tures on a dynamically linked dependency
structure of words. We evaluate our
model on English, Bulgarian, Czech, and
Slovene, and demonstrate substantial im-
provements over both a direct transduction
approach to lemmatization and a pipelined
approach, which predicts part-of-speech
tags before lemmatization.

1 Introduction

The traditional problem of morphological analysis
is, given a word form, to predict the set of all of
its possible morphological analyses. A morpho-
logical analysis consists of a part-of-speech tag
(POS), possibly other morphological features, and
a lemma (basic form) corresponding to this tag and
features combination (see Table 1 for examples).
We address this problem in the setting where we
are given a morphological dictionary for training,
and can additionally make use of un-annotated text
in the language. We present a new machine learn-
ing model for this task setting.

In addition to the morphological analysis task
we are interested in performance on two subtasks:
tag-set prediction (predicting the set of possible
tags of words) and lemmatization (predicting the
set of possible lemmas). The result of these sub-
tasks is directly useful for some applications.1 If
we are interested in the results of each of these two

1Tag sets are useful, for example, as a basis of sparsity-
reducing features for text labeling tasks; lemmatization is
useful for information retrieval and machine translation from
a morphologically rich to a morphologically poor language,
where full analysis may not be important.

subtasks in isolation, we might build independent
solutions which ignore the other subtask.

In this paper, we show that there are strong de-
pendencies between the two subtasks and we can
improve performance on both by sharing infor-
mation between them. We present a joint model
for these two subtasks: it is joint not only in that
it performs both tasks simultaneously, sharing in-
formation, but also in that it reasons about multi-
ple words jointly. It uses component tag-set and
lemmatization models and combines their predic-
tions while incorporating joint features in a log-
linear model, defined on a dynamically linked de-
pendency structure of words.

The model is formalized in Section 5 and eval-
uated in Section 6. We report results on English,
Bulgarian, Slovene, and Czech and show that joint
modeling reduces the lemmatization error by up to
19%, the tag-prediction error by up to 26% and the
error on the complete morphological analysis task
by up to 22.6%.

2 Task formalization

The main task that we would like to solve is
as follows: given a lexicon L which contains
all morphological analyses for a set of words
{w1, . . . , wn}, learn to predict all morphological
analyses for other words which are outside of L.
In addition to the lexicon, we are allowed to make
use of unannotated text T in the language. We will
predict morphological analyses for words which
occur in T. Note that the task is defined on word
types and not on words in context.

A morphological analysis of a word w consists
of a (possibly structured) POS tag t, together with
one or several lemmas, which are the possible ba-
sic forms of w when it has tag t. As an exam-
ple, Table 1 illustrates the morphological analy-
ses of several words taken from the CELEX lexi-
cal database of English (Baayen et al., 1995) and
the Multext-East lexicon of Bulgarian (Erjavec,
2004). The Bulgarian words are transcribed in
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Word Forms Morphological Analyses Tags Lemmas
tell verb base (VB), tell VB tell
told verb past tense (VBD), tell VBD,VBN tell

verb past participle (VBN), tell
tells verb present 3rd person sing (VBZ), tell VBZ tell
telling verb present continuous (VBG), tell VBG,JJ tell

adjective (JJ), telling telling
izpravena adjective fem sing indef (A–FS-N), izpraven A–FS-N izpraven

verb main part past sing fem pass indef (VMPS-SFP-N), izpravia VMPS-SFP-N izpravia
izpraviha verb main indicative 3rd person plural (VMIA3P), izpravia VMIA3P izpravia

Table 1: Examples of morphological analyses of words in English and Bulgarian.

Latin characters. Here by “POS tags” we mean
both simple main pos-tags such as noun or verb,
and detailed tags which include grammatical fea-
tures, such as VBZ for English indicating present
tense third person singular verb and A–FS-N for
Bulgarian indicating a feminine singular adjective
in indefinite form. In this work we predict only
main POS tags for the Multext-East languages, as
detailed tags were less useful for lemmatization.

Since the predicted elements are sets, we use
precision, recall, and F-measure (F1) to evaluate
performance. The two subtasks, tag-set prediction
and lemmatization are also evaluated in this way.
Table 1 shows the correct tag-sets and lemmas for
each of the example words in separate columns.
Our task setting differs from most work on lemma-
tization which uses either no or a complete rootlist
(Wicentowski, 2002; Dreyer et al., 2008).2 We can
use all forms occurring in the unlabeled text T but
there are no guarantees about the coverage of the
target lemmas or the number of noise words which
may occur in T (see Table 2 for data statistics).
Our setting is thus more realistic since it is what
one would have in a real application scenario.

3 Related work

In work on morphological analysis using machine
learning, the task is rarely addressed in the form
described above. Some exceptions are the work
(Bosch and Daelemans, 1999) which presents a
model for segmenting, stemming, and tagging
words in Dutch, and requires the prediction of
all possible analyses, and (Antal van den Bosch
and Soudi, 2007) which similarly requires the pre-
diction of all morpho-syntactically annotated seg-
mentations of words for Arabic. As opposed to

2These settings refer to the availability of a set of word
forms which are possible lemmas; in the no rootlist setting,
no other word forms in the language are given in addition to
the forms in the training set; in the complete rootlist setting,
a set of word forms which consists of exactly all correct lem-
mas for the words in the test set is given.

our work, these approaches do not make use of un-
labeled data and make predictions for each word
type in isolation.

In machine learning work on lemmatization for
highly inflective languages, it is most often as-
sumed that a word form and a POS tag are given,
and the task is to predict the set of corresponding
lemma(s) (Mooney and Califf, 1995; Clark, 2002;
Wicentowski, 2002; Erjavec and Džeroski, 2004;
Dreyer et al., 2008). In our task setting, we do
not assume the availability of gold-standard POS
tags. As a component model, we use a lemmatiz-
ing string transducer which is related to these ap-
proaches and draws on previous work in this and
related string transduction areas. Our transducer is
described in detail in Section 4.1.

Another related line of work approaches the dis-
ambiguation problem directly, where the task is
to predict the correct analysis of word-forms in
context (in sentences), and not all possible anal-
yses. In such work it is often assumed that the cor-
rect POS tags can be predicted with high accuracy
using labeled POS-disambiguated sentences (Er-
javec and Džeroski, 2004; Habash and Rambow,
2005). A notable exception is the work of (Adler
et al., 2008), which uses unlabeled data and a
morphological analyzer to learn a semi-supervised
HMM model for disambiguation in context, and
also guesses analyses for unknown words using a
guesser of likely POS-tags. It is most closely re-
lated to our work, but does not attempt to predict
all possible analyses, and does not have to tackle
a complex string transduction problem for lemma-
tization since segmentation is mostly sufficient for
the focus language of that study (Hebrew).

The idea of solving two related tasks jointly to
improve performance on both has been success-
ful for other pairs of tasks (e.g., (Andrew et al.,
2004)). Doing joint inference instead of taking a
pipeline approach has also been shown useful for
other problems (e.g., (Finkel et al., 2006; Cohen
and Smith, 2007)).
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4 Component models

We use two component models as the basis of
addressing the task: one is a partially-supervised
POS tagger which is trained using L and the unla-
beled text T; the other is a lemmatizing transducer
which is trained from L and can use T. The trans-
ducer can optionally be given input POS tags in
training and testing, which can inform the lemma-
tization. The tagger is described in Section 4.2 and
the transducer is described in Section 4.1.

In a pipeline approach to combining the tagging
and lemmatization components, we first predict a
set of tags for each word using the tagger, and then
ask the lemmatizer to predict one lemma for each
of the possible tags. In a direct transduction ap-
proach to the lemmatization subtask, we train the
lemmatizer without access to tags and ask it to
predict a single lemma for each word in testing.
Our joint model, described in Section 5, is defined
in a re-ranking framework, and can choose from
among k-best predictions of tag-sets and lemmas
generated from the component tagger and lemma-
tizer models.

4.1 Morphological analyser

We employ a discriminative character transducer
as a component morphological analyzer. The input
to the transducer is an inflected word (the source)
and possibly an estimated part-of-speech; the out-
put is the lemma of the word (the target). The
transducer is similar to the one described by Ji-
ampojamarn et al. (2008) for letter-to-phoneme
conversion, but extended to allow for whole-word
features on both the input and the output. The core
of our engine is the dynamic programming algo-
rithm for monotone phrasal decoding (Zens and
Ney, 2004). The main feature of this algorithm is
its capability to transduce many consecutive char-
acters with a single operation; the same algorithm
is employed to tag subsequences in semi-Markov
CRFs (Sarawagi and Cohen, 2004).

We employ three main categories of features:
context, transition, and vocabulary (rootlist) fea-
tures. The first two are described in detail by Ji-
ampojamarn et al. (2008), while the final is novel
to this work. Context features are centered around
a transduction operation such as es → e , as em-
ployed in gives → give. Context features include
an indicator for the operation itself, conjoined with
indicators for all n-grams of source context within
a fixed window of the operation. We also employ a

copy feature that indicates if the operation simply
copies the source character, such as e → e. Tran-
sition features are our Markov, or n-gram features
on transduction operations. Vocabulary features
are defined on complete target words, according
to the frequency of said word in a provided unla-
beled text T. We have chosen to bin frequencies;
experiments on a development set suggested that
two indicators are sufficient: the first fires for any
word that occurred fewer than five times, while a
second also fires for those words that did not oc-
cur at all. By encoding our vocabulary in a trie and
adding the trie index to the target context tracked
by our dynamic programming chart, we can ef-
ficiently track these frequencies during transduc-
tion.

We incorporate the source part-of-speech tag by
appending it to each feature, thus the context fea-
ture es → e may become es → e, VBZ. To en-
able communication between the various parts-of-
speech, a universal set of unannotated features also
fires, regardless of the part-of-speech, acting as a
back-off model of how words in general behave
during stemming.

Linear weights are assigned to each of the trans-
ducer’s features using an averaged perceptron for
structure prediction (Collins, 2002). Note that
our features are defined in terms of the operations
employed during transduction, therefore to cre-
ate gold-standard feature vectors, we require not
only target outputs, but also derivations to pro-
duce those outputs. We employ a deterministic
heuristic to create these derivations; given a gold-
standard source-target pair, we construct a deriva-
tion that uses only trivial copy operations until
the first character mismatch. The remainder of
the transduction is performed with a single multi-
character replacement. For example, the deriva-
tion for living → live would be l → l , i → i ,
v → v , ing → e. For languages with morpholo-
gies affecting more than just the suffix, one can
either develop a more complex heuristic, or deter-
mine the derivations using a separate aligner such
as that of Ristad and Yianilos (1998).

4.2 Tag-set prediction model

The tag-set model uses a training lexicon L and
unlabeled text T to learn to predict sets of tags
for words. It is based on the semi-supervised tag-
ging model of (Toutanova and Johnson, 2008). It
has two sub-models: one is an ambiguity class
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or a tag-set model, which can assign probabili-
ties for possible sets of tags of words PTSM (ts|w)
and the other is a word context model, which can
assign probabilities PCM (contextsw|w, ts) to all
contexts of occurrence of word w in an unlabeled
text T. The word-context model is Bayesian and
utilizes a sparse Dirichlet prior on the distributions
of tags given words. In addition, it uses informa-
tion on a four word context of occurrences of w in
the unlabeled text.

Note that the (Toutanova and Johnson, 2008)
model is a tagger that assigns tags to occurrences
of words in the text, whereas we only need to pre-
dict sets of possible tags for word types, such as
the set {VBD, VBN} for the word told. Their com-
ponent sub-model PTSM predicts sets of tags and
it is possible to use it on its own, but by also us-
ing the context model we can take into account
information from the context of occurrence of
words and compute probabilities of tag-sets given
the observed occurrences in T. The two are com-
bined to make a prediction for a tag-set of a test
word w, given unlabeled text T, using Bayes rule:
p(ts|w) ∝ PTSM (ts|w)PCM (contextsw|w, ts).

We use a direct re-implementation of the word-
context model, using variational inference follow-
ing (Toutanova and Johnson, 2008). For the tag-
set sub-model, we employ a more sophisticated
approach. First, we learn a log-linear classifier in-
stead of a Naive Bayes model, and second, we use
features derived from related words appearing in
T. The possible classes predicted by the classifier
are as many as the observed tag-sets in L. The
sparsity is relieved by adding features for individ-
ual tags t which get shared across tag-sets contain-
ing t.

There are two types of features in the model:
(i) word-internal features: word suffixes, capital-
ization, existence of hyphen, and word prefixes
(such features were also used in (Toutanova and
Johnson, 2008)), and (ii) features based on re-
lated words. These latter features are inspired by
(Cucerzan and Yarowsky, 2000) and are defined as
follows: for a word w such as telling, there is an
indicator feature for every combination of two suf-
fixes α and β, such that there is a prefix p where
telling= pα and pβ exists in T. For example, if the
word tells is found in T, there would be a feature
for the suffixes α=ing,β=s that fires. The suffixes
are defined as all character suffixes up to length
three which occur with at least 100 words.

b o u n c e d
VBD     VBN JJ  VBD  VBN

b o u n c e r
JJR NN

bounce

bouncer bounce

…

bounc

bouncer

boucer

f
bounce bounce

bounced bounced b o u n c e
VB     NN VB

bounce bounce

… …

…

f

Figure 1: A small subset of the graphical model. The
tag-sets and lemmas active in the illustrated assignment are
shown in bold. The extent of joint features firing for the
lemma bounce is shown as a factor indicated by the blue cir-
cle and connected to the assignments of the three words.

5 A global joint model for morphological
analysis

The idea of this model is to jointly predict the set
of possible tags and lemmas of words. In addi-
tion to modeling dependencies between the tags
and lemmas of a single word, we incorporate de-
pendencies between the predictions for multiple
words. The dependencies among words are deter-
mined dynamically. Intuitively, if two words have
the same lemma, their tag-sets are dependent. For
example, imagine that we need to determine the
tag-set and lemmas of the word bouncer. The tag-
set model may guess that the word is an adjective
in comparative form, because of its suffix, and be-
cause its occurrences in T might not strongly in-
dicate that it is a noun. The lemmatizer can then
lemmatize the word like an adjective and come up
with bounce as a lemma. If the tag-set model is
fairly certain that bounce is not an adjective, but
is a verb or a noun, a joint model which looks si-
multaneously at the tags and lemmas of bouncer
and bounce will detect a problem with this assign-
ments and will be able to correct the tagging and
lemmatization error for bouncer.

The main source of information our joint model
uses is information about the assignments of all
words that have the same lemma l. If the tag-set
model is better able to predict the tags of some of
these words, the information can propagate to the
other words. If some of them are lemmatized cor-
rectly, the model can be pushed to lemmatize the
others correctly as well. Since the lemmas of test
words are not given, the dependencies between as-
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signments of words are determined dynamically
by the currently chosen set of lemmas.

As an example, Figure 1 shows three sample
English words and their possible tag-sets and lem-
mas determined by the component models. It also
illustrates the dependencies between the variables
induced by the features of our model active for the
current (incorrect) assignment.

5.1 Formal model description

Given a set of test words w1, . . . wn and additional
word forms occurring in unlabeled data T, we de-
rive an extended set of words w1, . . . , wm which
contains the original test words and additional re-
lated words, which can provide useful information
about the test words. For example, if bouncer is a
test word and bounce and bounced occur in T these
two words can be added to the set of test words
because they can contribute to the classification
of bouncer. The algorithm for selecting related
words is simple: we add any word for which the
pipelined model predicts a lemma which is also
predicted as one of the top k lemmas for a word
from the test set.

We define a joint model over tag-sets and lem-
mas for all words in the extended set, using fea-
tures defined on a dynamically linked structure
of words and their assigned analyses. It is a re-
ranking model because the tag-sets and possible
lemmas are limited to the top k options provided
by the pipelined model.3 Our model is defined
on a very large set of variables, each of which
can take a large set of values. For example, for
a test set of size about 4,000 words for Slovene an
additional about 9,000 words from T were added
to the extended set. Each of these words has a
corresponding variable which indicates its tag-set
and lemma assignment. The possible assignments
range over all combinations available from the tag-
ging and lemmatizer component models; using the
top three tag-sets per word and top three lemmas
per tag gives an average of around 11.2 possible
assignments per word. This is because the tag-
sets have about 1.2 tags on average and we need
to choose a lemma for each. While it is not the
case that all variables are connected to each other
by features, the connectivity structure can be com-
plex.

More formally, let tsj
i denote possible tag-sets

3We used top three tag-sets and top three lemmas for each
tag for training.

for word wi, for j = 1 . . . k. Also, let li(t)
j de-

note the top lemmas for word wi given tag t. An
assignment of a tag-set and lemmas to a word wi

consists of a choice of a tag-set, tsi (one of the
possible k tag-sets for the word) and, for each tag
t in the chosen tag-set, a choice of a lemma out
of the possible lemmas for that tag and word. For
brevity, we denote such joint assignment by tli.
As a concrete example, in Figure 1, we can see the
current assignments for three words: the assigned
tag-sets are shown underlined and in bolded boxes
(e.g., for bounced, the tag-set {VBD,VBN} is cho-
sen; for both tags, the lemma bounce is assigned).
Other possible tag-sets and other possible lemmas
for each chosen tag are shown in greyed boxes.

Our joint model defines a distribution over as-
signments to all words w1, . . . , wm. The form of
the model is as follows:

P (tl1, . . . , tlm) = eF (tl1,...,tlm)′θ
∑

tl′
1

,...,tl′m
e
F (tl′

1
,...,tl′m)′θ

Here F denotes the vector of features defined
over an assignment for all words in the set and θ
is a vector of parameters for the features. Next we
detail the types of features used.
Word-local features. The aim of such features is
to look at the set of all tags assigned to a word to-
gether with all lemmas and capture coarse-grained
dependencies at this level. These features intro-
duce joint dependencies between the tags and lem-
mas of a word, but they are still local to the as-
signment of single words. One such feature is the
number of distinct lemmas assigned across the dif-
ferent tags in the assigned tag-set. Another such
feature is the above joined with the identity of
the tag-set. For example, if a word’s tag-set is
{VBD,VBN}, it will likely have the same lemma
for both tags and the number of distinct lemmas
will be one (e.g., the word bounced), whereas if it
has the tags VBG, JJ the lemmas will be distinct for
the two tags (e.g. telling). In this class of features
are also the log-probabilities from the tag-set and
lemmatizer models.
Non-local features. Our non-local features look,
for every lemma l, at all words which have that
lemma as the lemma for at least one of their as-
signed tags, and derive several predicates on the
joint assignment to these words. For example,
using our word graph in the figure, the lemma
bounce is assigned to bounced for tags VBD and
VBN, to bounce for tags VB and NN, and to
bouncer for tag JJR. One feature looks at the
combination of tags corresponding to the differ-
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ent forms of the lemma. In this case this would
be [JJR,NN+VB-lem,VBD+VBN]. The feature also
indicates any word which is exactly equal to the
lemma with lem as shown for the NN and VB tags
corresponding to bounce. Our model learns a neg-
ative weight for this feature, because the lemma
of a word with tag JJR is most often a word with
at least one tag equal to JJ. A variant of this
feature also appends the final character of each
word, like this: [JJR+r,NN+VB+e-lem,VBD+VBN-
d]. This variant was helpful for the Slavic lan-
guages because when using only main POS tags,
the granularity of the feature is too coarse. An-
other feature simply counts the number of distinct
words having the same lemma, encouraging re-
using the same lemma for different words. An ad-
ditional feature fires for every distinct lemma, in
effect counting the number of assigned lemmas.

5.2 Training and inference

Since the model is defined to re-rank candidates
from other component models, we need two differ-
ent training sets: one for training the component
models, and another for training the joint model
features. This is because otherwise the accuracy
of the component models would be overestimated
by the joint model. Therefore, we train the com-
ponent models on the training lexicons LTrain and
select their hyperparameters on the LDev lexicons.
We then train the joint model on the LDev lexicons
and evaluate it on the LTest lexicons. When apply-
ing models to the LTest set, the component mod-
els are first retrained on the union of LTrain and
LDev so that all models can use the same amount
of training data, without giving unfair advantage
to the joint model. Such set-up is also used for
other re-ranking models (Collins, 2000).

For training the joint model, we maximize the
log-likelihood of the correct assignment to the
words in LDev, marginalizing over the assign-
ments of other related words added to the graph-
ical model. We compute the gradient approx-
imately by computing expectations of features
given the observed assignments and marginal ex-
pectations of features. For computing these ex-
pectations we use Gibbs sampling to sample com-
plete assignments to all words in the graph.4 We

4We start the Gibbs sampler by the assignments found by
the pipeline method and then use an annealing schedule to
find a neighborhood of high-likelihood assignments, before
taking about 10 complete samples from the graph to compute
expectations.

use gradient descent with a small learning rate, se-
lected to optimize the accuracy on the LDev set.
For finding a most likely assignment at test time,
we use the sampling procedure, this time using a
slower annealing schedule before taking a single
sample to output as a guessed answer.

For the Gibbs sampler, we need to sample an
assignment for each word in turn, given the current
assignments of all other words. Let us denote the
current assignment to all words except wi as tl−i.
The conditional probability of an assignment tli
for word wi is given by:

P (tli|tl−i) = eF (tli,tl−i)′θ
∑

tl′
i
e
F (tl′

i
,tl−i)′θ

The summation in the denominator is over all
possible assignments for word wi. To compute
these quantities we need to consider only the fea-
tures involving the current word. Because of the
nature of the features in our model, it is possible
to isolate separate connected components which
do not share features for any assignment. If two
words do not share lemmas for any of their possi-
ble assignments, they will be in separate compo-
nents. Block sampling within a component could
be used if the component is relatively small; how-
ever, for the common case where there are five or
more words in a fully connected component ap-
proximate inference is necessary.

6 Experiments

6.1 Data

We use datasets for four languages: English, Bul-
garian, Slovene, and Czech. For each of the lan-
guages, we need a lexicon with morphological
analyses L and unlabeled text.

For English we derive the lexicon from CELEX
(Baayen et al., 1995), and for the other lan-
guages we use the Multext-East resources (Er-
javec, 2004). For English we use only open-class
words (nouns, verbs, adjectives, and adverbs), and
for the other languages we use words of all classes.
The unlabeled data for English we use is the union
of the Penn Treebank tagged WSJ data (Marcus et
al., 1993) and the BLLIP corpus.5 For the rest of
the languages we use only the text of George Or-
well’s novel 1984, which is provided in morpho-
logically disambiguated form as part of Multext-
East (but we don’t use the annotations). Table 2

5The BLLIP corpus contains approximately 30 million
words of automatically parsed WSJ data. We used these cor-
pora as plain text, without the annotations.
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Lang LTrain LDev LTest Text
ws tl nf ws tl nf ws tl nf

Eng 5.2 1.5 0.3 7.4 1.4 0.8 7.4 1.4 0.8 320
Bgr 6.9 1.2 40.8 3.8 1.1 53.6 3.8 1.1 52.8 16.3
Slv 7.5 1.2 38.3 4.2 1.2 49.1 4.2 1.2 49.8 17.8
Cz 7.9 1.1 32.8 4.5 1.1 43.2 4.5 1.1 43.0 19.1

Table 2: Data sets used in experiments. The number of
word types (ws) is shown approximately in thousands. Also
shown are average number of complete analyses (tl) and per-
cent target lemmas not found in the unlabeled text (nf).

details statistics about the data set sizes for differ-
ent languages.

We use three different lexicons for each lan-
guage: one for training (LTrain), one for devel-
opment (LDev), and one for testing (LTest). The
global model weights are trained on the develop-
ment set as described in section 5.2. The lex-
icons are derived such that very frequent words
are likely to be in the training lexicon and less
frequent words in the dev and test lexicons, to
simulate a natural process of lexicon construction.
The English lexicons were constructed as follows:
starting with the full CELEX dictionary and the
text of the Penn Treebank corpus, take all word
forms appearing in the first 2000 sentences (and
are found in CELEX) to form the training lexi-
con, and then take all other words occurring in
the corpus and split them equally between the de-
velopment and test lexicons (every second word
is placed in the test set, in the order of first oc-
currence in the corpus). For the rest of the lan-
guages, the same procedure is applied, starting
with the full Multext-East lexicons and the text of
the novel 1984. Note that while it is not possi-
ble for training words to be included in the other
lexicons, it is possible for different forms of the
same lemma to be in different lexicons. The size
of the training lexicons is relatively small and we
believe this is a realistic scenario for application of
such models. In Table 2 we can see the number of
words in each lexicon and the unlabeled corpora
(by type), the average number of tag-lemma com-
binations per word,6 as well as the percentage of
word lemmas which do not occur in the unlabeled
text. For English, the large majority of target lem-
mas are available in T (with only 0.8% missing),
whereas for the Multext-East languages around 40
to 50% of the target lemmas are not found in T;
this partly explains the lower performance on these
languages.

6The tags are main tags for the Multext-East languages
and detailed tags for English.

Language Tag Model Tag Lem T+L
English none – 94.0 –

full 89.9 95.3 88.9
no unlab data 80.0 94.1 78.3

Bulgarian none – 73.2 –
full 87.9 79.9 75.3
no unlab data 80.2 76.3 70.4

Table 3: Development set results using different tag-set
models and pipelined prediction.

6.2 Evaluation of direct and pipelined models
for lemmatization

As a first experiment which motivates our joint
modeling approach, we present a comparison on
lemmatization performance in two settings: (i)
when no tags are used in training or testing by the
transducer, and (ii) when correct tags are used in
training and tags predicted by the tagging model
are used in testing. In this section, we report per-
formance on English and Bulgarian only. Compa-
rable performance on the other Multext-East lan-
guages is shown in Section 6.

Results are presented in Table 3. The experi-
ments are performed using LTrain for training and
LDev for testing. We evaluate the models on tag-
set F-measure (Tag), lemma-set F-measure(Lem)
and complete analysis F-measure (T+L). We show
the performance on lemmatization when tags are
not predicted (Tag Model is none), and when tags
are predicted by the tag-set model. We can see that
on both languages lemmatization is significantly
improved when a latent tag-set variable is used as
a basis for prediction: the relative error reduction
in Lem F-measure is 21.7% for English and 25%
for Bulgarian. For Bulgarian and the other Slavic
languages we predicted only main POS tags, be-
cause this resulted in better lemmatization perfor-
mance.

It is also interesting to evaluate the contribution
of the unlabeled data T to the performance of the
tag-set model. This can be achieved by remov-
ing the word-context sub-model of the tagger and
also removing related word features. The results
achieved in this setting for English and Bulgarian
are shown in the rows labeled “no unlab data”. We
can see that the tag-set F-measure of such models
is reduced by 8 to 9 points and the lemmatization
F-measure is similarly reduced. Thus a large por-
tion of the positive impact tagging has on lemma-
tization is due to the ability of tagging models to
exploit unlabeled data.

The results of this experiment show there are
strong dependencies between the tagging and
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lemmatization subtasks, which a joint model could
exploit.

6.3 Evaluation of joint models
Since our joint model re-ranks candidates pro-
duced by the component tagger and lemmatizer,
there is an upper bound on the achievable perfor-
mance. We report these upper bounds for the four
languages in Table 4, at the rows which list m-best
oracle under Model. The oracle is computed using
five-best tag-set predictions and three-best lemma
predictions per tag. We can see that the oracle per-
formance on tag F-measure is quite high for all
languages, but the performance on lemmatization
and the complete task is close to only 90 percent
for the Slavic languages. As a second oracle we
also report the perfect tag oracle, which selects
the lemmas determined by the transducer using the
correct part-of-speech tags. This shows how well
we could do if we made the tagging model perfect
without changing the lemmatizer. For the Slavic
languages this is quite a bit lower than the m-best
oracles, showing that the majority of errors of the
pipelined approach cannot be fixed by simply im-
proving the tagging model. Our global model has
the potential to improve lemma assignments even
given correct tags, by sharing information among
multiple words.

The actual achieved performance for three dif-
ferent models is also shown. For comparison,
the lemmatization performance of the direct trans-
duction approach which makes no use of tags is
also shown. The pipelined models select one-
best tag-set predictions from the tagging model,
and the 1-best lemmas for each tag, like the mod-
els used in Section 6.2. The model name lo-
cal FS denotes a joint log-linear model which
has only word-internal features. Even with only
word-internal features, performance is improved
for most languages. The the highest improvement
is for Slovene and represents a 7.8% relative re-
duction in F-measure error on the complete task.

When features looking at the joint assignments
of multiple words are added, the model achieves
much larger improvements (models joint FS in the
Table) across all languages.7 The highest overall
improvement compared to the pipelined approach
is again for Slovene and represents 22.6% reduc-
tion in error for the full task; the reduction is 40%

7Since the optimization is stochastic, the results are av-
eraged over four runs. The standard deviations are between
0.02 and 0.11.

Language Model Tag Lem T+L
English tag oracle 100 98.9 98.7
English m-best oracle 97.9 99.0 97.5
English no tags – 94.3 –
English pipelined 90.9 95.9 90.0
English local FS 90.8 95.9 90.0
English joint FS 91.7 96.1 91.0
Bulgarian tag oracle 100 84.3 84.3
Bulgarian m-best oracle 98.4 90.7 89.9
Bulgarian no tags – 73.2 –
Bulgarian pipelined 87.9 78.5 74.6
Bulgarian local FS 88.9 79.2 75.8
Bulgarian joint FS 89.5 81.0 77.8
Slovene tag oracle 100 85.9 85.9
Slovene m-best oracle 98.7 91.2 90.5
Slovene no tags – 78.4 –
Slovene pipelined 89.7 82.1 78.3
Slovene local FS 90.8 82.7 80.0
Slovene joint FS 92.4 85.5 83.2
Czech tag oracle 100 83.2 83.2
Czech m-best oracle 98.1 88.7 87.4
Czech no tags – 78.7 –
Czech pipelined 92.3 80.7 77.5
Czech local FS 92.3 80.9 78.0
Czech joint FS 93.7 83.0 80.5

Table 4: Results on the test set achieved by joint and
pipelined models and oracles. The numbers represent tag-set
prediction F-measure (Tag), lemma-set prediction F-measure
(Lem) and F-measure on predicting complete tag, lemma
analysis sets (T+L).

relative to the upper bound achieved by the m-best
oracle. The smallest overall improvement is for
English, representing a 10% error reduction over-
all, which is still respectable. The larger improve-
ment for Slavic languages might be due to the fact
that there are many more forms of a single lemma
and joint reasoning allows us to pool information
across the forms.

7 Conclusion

In this paper we concentrated on the task of mor-
phological analysis, given a lexicon and unanno-
tated data. We showed that the tasks of tag pre-
diction and lemmatization are strongly dependent
and that by building state-of-the art models for
the two subtasks and performing joint inference
we can improve performance on both tasks. The
main contribution of our work was that we intro-
duced a joint model for the two subtasks which in-
corporates dependencies between predictions for
multiple word types. We described a set of fea-
tures and an approximate inference procedure for a
global log-linear model capturing such dependen-
cies, and demonstrated its effectiveness on English
and three Slavic languages.
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Abstract

Supervised sequence-labeling systems in
natural language processing often suffer
from data sparsity because they use word
types as features in their prediction tasks.
Consequently, they have difficulty estimat-
ing parameters for types which appear in
the test set, but seldom (or never) ap-
pear in the training set. We demonstrate
that distributional representations of word
types, trained on unannotated text, can
be used to improve performance on rare
words. We incorporate aspects of these
representations into the feature space of
our sequence-labeling systems. In an ex-
periment on a standard chunking dataset,
our best technique improves a chunker
from 0.76 F1 to 0.86 F1 on chunks begin-
ning with rare words. On the same dataset,
it improves our part-of-speech tagger from
74% to 80% accuracy on rare words. Fur-
thermore, our system improves signifi-
cantly over a baseline system when ap-
plied to text from a different domain, and
it reduces the sample complexity of se-
quence labeling.

1 Introduction

Data sparsity and high dimensionality are the twin
curses of statistical natural language processing
(NLP). In many traditional supervised NLP sys-
tems, the feature space includes dimensions for
each word type in the data, or perhaps even combi-
nations of word types. Since vocabularies can be
extremely large, this leads to an explosion in the
number of parameters. To make matters worse,
language is Zipf-distributed, so that a large frac-
tion of any training data set will behapax legom-
ena, very many word types will appear only a few
times, and many word types will be left out of
the training set altogether. As a consequence, for

many word types supervised NLP systems have
very few, or even zero, labeled examples from
which to estimate parameters.

The negative effects of data sparsity have been
well-documented in the NLP literature. The per-
formance of state-of-the-art, supervised NLP sys-
tems like part-of-speech (POS) taggers degrades
significantly on words that do not appear in the
training data, or out-of-vocabulary (OOV) words
(Lafferty et al., 2001). Performance also degrades
when the domain of the test set differs from the do-
main of the training set, in part because the test set
includes more OOV words and words that appear
only a few times in the training set (henceforth,
rare words) (Blitzer et al., 2006; Dauḿe III and
Marcu, 2006; Chelba and Acero, 2004).

We investigate the use of distributional repre-
sentations, which model the probability distribu-
tion of a word’s context, as techniques for find-
ing smoothedrepresentations of word sequences.
That is, we use the distributional representations
to share information across unannotated examples
of the same word type. We then compute features
of the distributional representations, and provide
them as input to our supervised sequence label-
ers. Our technique is particularly well-suited to
handling data sparsity because it is possible to im-
prove performance on rare words by supplement-
ing the training data with additional unannotated
text containing more examples of the rare words.
We provide empirical evidence that shows how
distributional representations improve sequence-
labeling in the face of data sparsity.

Specifically, we investigate empirically the
effects of our smoothing techniques on two
sequence-labeling tasks, POS tagging and chunk-
ing, to answer the following:
1. What is the effect of smoothing on sequence-
labeling accuracy for rare word types?Our best
smoothing technique improves a POS tagger by
11% on OOV words, and a chunker by an impres-
sive 21% on OOV words.
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2. Can smoothing improve adaptability to new do-
mains? After training our chunker on newswire
text, we apply it to biomedical texts. Remark-
ably, we find that the smoothed chunker achieves
a higher F1 on the new domain than the baseline
chunker achieves on a test set from the original
newswire domain.
3. How does our smoothing technique affect sam-
ple complexity?We show that smoothing drasti-
cally reduces sample complexity: our smoothed
chunker requires under 100 labeled samples to
reach 85% accuracy, whereas the unsmoothed
chunker requires 3500 samples to reach the same
level of performance.

The remainder of this paper is organized as fol-
lows. Section 2 discusses the smoothing problem
for word sequences, and introduces three smooth-
ing techniques. Section 3 presents our empirical
study of the effects of smoothing on two sequence-
labeling tasks. Section 4 describes related work,
and Section 5 concludes and suggests items for fu-
ture work.

2 Smoothing Natural Language
Sequences

To smootha dataset is to find an approximation of
it that retains the important patterns of the origi-
nal data while hiding the noise or other compli-
cating factors. Formally, we define the smoothing
task as follows: letD = {(x, z)|x is a word se-
quence,z is a label sequence} be a labeled dataset
of word sequences, and letM be a machine learn-
ing algorithm that will learn a functionf to pre-
dict the correct labels. The smoothing task is to
find a functiong such that whenM is applied to
D′ = {(g(x), z)|(x, z) ∈ D}, it produces a func-
tion f ′ that is more accurate thanf .

For supervised sequence-labeling problems in
NLP, the most important “complicating factor”
that we seek to avoid through smoothing is the
data sparsity associated with word-based represen-
tations. Thus, the task is to findg such that for
every wordx, g(x) is much less sparse, but still
retains the essential features ofx that are useful
for predicting its label.

As an example, consider the string “Researchers
test reformulated gasolines on newer engines.” In
a common dataset for NP chunking, the word “re-
formulated” never appears in the training data, but
appears four times in the test set as part of the
NP “reformulated gasolines.” Thus, a learning al-
gorithm supplied with word-level features would

have a difficult time determining that “reformu-
lated” is the start of a NP. Character-level features
are of little help as well, since the “-ed” suffix is
more commonly associated with verb phrases. Fi-
nally, context may be of some help, but “test” is
ambiguous between a noun and verb, and “gaso-
lines” is only seen once in the training data, so
there is no guarantee that context is sufficient to
make a correct judgment.

On the other hand, some of the other contexts
in which “reformulated” appears in the test set,
such as “testing of reformulated gasolines,” pro-
vide strong evidence that it can start a NP, since
“of” is a highly reliable indicator that a NP is to
follow. This example provides the intuition for our
approach to smoothing: we seek to share informa-
tion about the contexts of a word across multiple
instances of the word, in order to provide more in-
formation about words that are rarely or never seen
in training. In particular, we seek to represent each
word by a distribution over its contexts, and then
provide the learning algorithm with features com-
puted from this distribution. Importantly, we seek
distributional representations that will provide fea-
tures that are common in both training and test
data, to avoid data sparsity. In the next three sec-
tions, we develop three techniques for smoothing
text using distributional representations.

2.1 Multinomial Representation

In its simplest form, the context of a word may be
represented as a multinomial distribution over the
terms that appear on either side of the word. IfV is
the vocabulary, or the set of word types, andX is a
sequence of random variables overV, the left and
right context ofXi = v may each be represented
as a probability distribution overV: P (Xi−1|Xi =
v) andP (Xi+1|X = v) respectively.

We learn these distributions from unlabeled
texts in two different ways. The first method com-
putes word count vectors for the left and right con-
texts of each word type in the vocabulary of the
training and test texts. We also use a large col-
lection of additional text to determine the vectors.
We then normalize each vector to form a proba-
bility distribution. The second technique first ap-
plies TF-IDF weighting to each vector, where the
context words of each word type constitute a doc-
ument, before applying normalization. This gives
greater weight to words with more idiosyncratic
distributions and may improve the informativeness
of a distributional representation. We refer to these
techniques as TF and TF-IDF.
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To supply a sequence-labeling algorithm with
information from these distributional representa-
tions, we compute real-valued features of the con-
text distributions. In particular, for every word
xi in a sequence, we provide the sequence labeler
with a set of features of the left and right contexts
indexed byv ∈ V: F

left
v (xi) = P (Xi−1 = v|xi)

andF
right
v (xi) = P (Xi+1 = v|xi). For exam-

ple, the left context for “reformulated” in our ex-
ample above would contain a nonzero probability
for the word “of.” Using the featuresF(xi), a se-
quence labeler can learn patterns such as, ifxi has
a high probability of following “of,” it is a good
candidate for the start of a noun phrase. These
features provide smoothing by aggregating infor-
mation across multiple unannotated examples of
the same word.

2.2 LSA Model

One drawback of the multinomial representation
is that it does not handle sparsity well enough,
because the multinomial distributions themselves
are so high-dimensional. For example, the two
phrases “red lamp” and “magenta tablecloth”
share no words in common. If “magenta” is never
observed in training, the fact that “tablecloth” ap-
pears in its right context is of no help in connecting
it with the phrase “red lamp.” But if we can group
similar context words together, putting “lamp” and
“tablecloth” into a category for household items,
say, then these two adjectives will share that cat-
egory in their context distributions. Any pat-
terns learned for the more common “red lamp”
will then also apply to the less common “magenta
tablecloth.” Our second distributional represen-
tation aggregates information from multiple con-
text words by grouping together the distributions
P (xi−1 = v|xi = w) andP (xi−1 = v′|xi = w)
if v andv′ appear together with many of the same
wordsw. Aggregating counts in this way smooths
our representations even further, by supplying bet-
ter estimates when the data is too sparse to esti-
mateP (xi−1|xi) accurately.

Latent Semantic Analysis (LSA) (Deerwester et
al., 1990) is a widely-used technique for comput-
ing dimensionality-reduced representations from a
bag-of-words model. We apply LSA to the set of
right context vectors and the set of left context vec-
tors separately, to find compact versions of each
vector, where each dimension represents a com-
bination of several context word types. We nor-
malize each vector, and then calculate features as

above. After experimenting with different choices
for the number of dimensions to reduce our vec-
tors to, we choose a value of 10 dimensions as the
one that maximizes the performance of our super-
vised sequence labelers on held-out data.

2.3 Latent Variable Language Model
Representation

To take smoothing one step further, we present
a technique that aggregates context distributions
both for similar context wordsxi−1 = v andv′,
and for similar wordsxi = w and w′. Latent
variable language models (LVLMs) can be used to
produce just such a distributional representation.
We use Hidden Markov Models (HMMs) as the
main example in the discussion and as the LVLMs
in our experiments, but the smoothing technique
can be generalized to other forms of LVLMs, such
as factorial HMMs and latent variable maximum
entropy models (Ghahramani and Jordan, 1997;
Smith and Eisner, 2005).

An HMM is a generative probabilistic model
that generates each wordxi in the corpus con-
ditioned on a latent variableYi. EachYi in the
model takes on integral values from1 to S, and
each one is generated by the latent variable for the
preceding word,Yi−1. The distribution for a cor-
pusx = (x1, . . . , xN ) given a set of state vectors
y = (y1, . . . , yN ) is given by:

P (x|y) =
∏

i

P (xi|yi)P (yi|yi−1)

Using Expectation-Maximization (Dempster et
al., 1977), it is possible to estimate the distribu-
tions forP (xi|yi) andP (yi|yi−1) from unlabeled
data. We use a trained HMM to determine the op-
timal sequence of latent statesŷi using the well-
known Viterbi algorithm (Rabiner, 1989). The
output of this process is an integer (ranging from1
to S) for every wordxi in the corpus; we include a
new boolean feature for each possible value ofyi

in our sequence labelers.
To compare our models, note that in the multi-

nomial representation we directly model the prob-
ability that a wordv appears before a wordw:
P (xi−1 = v|xi = w)). In our LSA model, we find
latent categories of context wordsz, and model the
probability that a category appears before the cur-
rent wordw: P (xi−1 = z|xi = w). The HMM
finds (probabilistic) categoriesY for both the cur-
rent wordxi and the context wordxi−1, and mod-
els the probability that one category follows the
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other: P (Yi|Yi−1). Thus the HMM is our most
extreme smoothing model, as it aggregates infor-
mation over the greatest number of examples: for
a given consecutive pair of wordsxi−1, xi in the
test set, it aggregates over all pairs of consecutive
wordsx′i−1, x

′
i wherex′i−1 is similar toxi−1 and

x′i is similar toxi.

3 Experiments

We tested the following hypotheses in our experi-
ments:
1. Smoothing can improve the performance of
a supervised sequence labeling system on words
that arerare or nonexistentin the training data.
2. A supervised sequence labeler achieves greater
accuracy onnew domainswith smoothing.
3. A supervised sequence labeler has a bettersam-
ple complexitywith smoothing.

3.1 Experimental Setup

We investigate the use of smoothing in two test
systems, conditional random field (CRF) models
for POS tagging and chunking. To incorporate
smoothing into our models, we follow the follow-
ing general procedure: first, we collect a set of
unannotated text from the same domain as the test
data set. Second, we train a smoothing model on
the text of the training data, the test data, and the
additional collection. We then automatically an-
notate both the training and test data with features
calculated from the distributional representation.
Finally, we train the CRF model on the annotated
training set and apply it to the test set.

We use an open source CRF software package
designed by Sunita Sajarwal and William W. Co-
hen to implement our CRF models.1 We use a set
of boolean features listed in Table 1.

Our baseline CRF system for POS tagging fol-
lows the model described by Laffertyet al.(2001).
We include transition features between pairs of
consecutive tag variables, features between tag
variables and words, and a set of orthographic fea-
tures that Laffertyet al. found helpful for perfor-
mance on OOV words. Our smoothed models add
features computed from the distributional repre-
sentations, as discussed above.

Our chunker follows the system described by
Sha and Pereira (2003). In addition to the tran-
sition, word-level, and orthographic features, we
include features relating automatically-generated
POS tags and the chunk labels. Unlike Sha and

1Available from http://sourceforge.net/projects/crf/

CRF Feature Set

Transition zi=z

zi=z andzi−1=z′

Word xi=w andzi=z

POS ti=t andzi=z

Orthography for everys ∈ {-ing, -ogy, -
ed, -s, -ly, -ion, -tion, -ity},
suffix(xi)= s andzi=z

xi is capitalized andzi = z

xi has a digit andzi = z

TF, TF-IDF, and
LSA features

for every context typev,
F

left
v (xi) andF

right
v (xi)

HMM features yi=y andzi = z

Table 1: Features used in our CRF systems. zi vari-

ables represent labels to be predicted,ti represent tags (for

the chunker), andxi represent word tokens. All features are

boolean except for the TF, TF-IDF, and LSA features.

Pereira, we exclude features relating consecutive
pairs of words and a chunk label, or features re-
lating consecutive tag labels and a chunk label,
in order to expedite our experiments. We found
that including such features does improve chunk-
ing F1 by approximately 2%, but it also signifi-
cantly slows down CRF training.

3.2 Rare Word Accuracy

For these experiments, we use the Wall Street
Journal portion of the Penn Treebank (Marcus et
al., 1993). Following the CoNLL shared task from
2000, we use sections 15-18 of the Penn Treebank
for our labeled training data for the supervised
sequence labeler in all experiments (Tjong et al.,
2000). For the tagging experiments, we train and
test using the gold standard POS tags contained in
the Penn Treebank. For the chunking experiments,
we train and test with POS tags that are automati-
cally generated by a standard tagger (Brill, 1994).
We tested the accuracy of our models for chunking
and POS tagging on section 20 of the Penn Tree-
bank, which corresponds to the test set from the
CoNLL 2000 task.

Our distributional representations are trained on
sections 2-22 of the Penn Treebank. Because we
include the text from the train and test sets in our
training data for the distributional representations,
we do not need to worry about smoothing them
— when they are decoded on the test set, they
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Freq: 0 1 2 0-2 all
#Samples 438 508 588 1534 46661

Baseline .62 .77 .81 .74 .93
TF .76 .72 .77 .75 .92
TF-IDF .82 .75 .76 .78 .94
LSA .78 .80 .77 .78 .94
HMM .73 .81 .86 .80 .94

Table 2: POS tagging accuracy: our HMM-smoothed

tagger outperforms the baseline tagger by 6% on rare

words. Differences between the baseline and the HMM are

statistically significant atp < 0.01 for the OOV, 0-2, and all

cases using the two-tailed Chi-squared test with 1 degree of

freedom.

will not encounter any previously unseen words.
However, to speed up training during our exper-
iments and, in some cases, to avoid running out
of memory, we replaced words appearing twice or
fewer times in the data with the special symbol
*UNKNOWN*. In addition, all numbers were re-
placed with another special symbol. For the LSA
model, we had to use a more drastic cutoff to fit
the singular value decomposition computation into
memory: we replaced words appearing 10 times or
fewer with the*UNKNOWN* symbol. We initial-
ize our HMMs randomly. We run EM ten times
and take the model with the best cross-entropy on
a held-out set. After experimenting with differ-
ent variations of HMM models, we settled on a
model with 80 latent states as a good compromise
between accuracy and efficiency.

For our POS tagging experiments, we measured
the accuracy of the tagger on “rare” words, or
words that appear at most twice in the training
data. For our chunking experiments, we focus on
chunks that begin with rare words, as we found
that those were the most difficult for the chunker
to identify correctly. So we define “rare” chunks
as those that begin with words appearing at most
twice in training data. To ensure that our smooth-
ing models have enough training data for our test
set, we further narrow our focus to those words
that appear rarely in the labeled training data, but
appear at least ten times in sections 2-22. Tables 2
and 3 show the accuracy of our smoothed models
and the baseline model on tagging and chunking,
respectively. The line for “all” in both tables indi-
cates results on the complete test set.

Both our baseline tagger and chunker achieve
respectable results on their respective tasks for
all words, and the results were good enough for

Freq: 0 1 2 0-2 all
#Samples 133 199 231 563 21900

Baseline .69 .75 .81 .76 .90
TF .70 .82 .79 .77 .89
TF-IDF .77 .77 .80 .78 .90
LSA .84 .82 .83 .84 .90
HMM .90 .85 .85 .86 .93

Table 3: Chunking F1: our HMM-smoothed chunker

outperforms the baseline CRF chunker by 0.21 on chunks

that begin with OOV words, and 0.10 on chunks that be-

gin with rare words.

us to be satisfied that performance on rare words
closely follows how a state-of-the-art supervised
sequence-labeler behaves. The chunker’s accuracy
is roughly in the middle of the range of results for
the original CoNLL 2000 shared task (Tjong et
al., 2000) . While several systems have achieved
slightly higher accuracy on supervised POS tag-
ging, they are usually trained on larger training
sets.

As expected, the drop-off in the baseline sys-
tem’s performance from all words to rare words
is impressive for both tasks. Comparing perfor-
mance on all terms and OOV terms, the baseline
tagger’s accuracy drops by 0.31, and the baseline
chunker’s F1 drops by 0.21. Comparing perfor-
mance on all terms and rare terms, the drop is less
severe but still dramatic: 0.19 for tagging and 0.15
for chunking.

Our hypothesis that smoothing would improve
performance on rare terms is validated by these ex-
periments. In fact, the more aggregation a smooth-
ing model performs, the better it appears to be at
smoothing. The HMM-smoothed system outper-
forms all other systems in all categories except
tagging on OOV words, where TF-IDF performs
best. And in most cases, the clear trend is for
HMM smoothing to outperform LSA, which in
turn outperforms TF and TF-IDF. HMM tagging
performance on OOV terms improves by 11%, and
chunking performance by 21%. Tagging perfor-
mance on all of the rare terms improves by 6%,
and chunking by 10%. In chunking, there is a
clear trend toward larger increases in performance
as words become rarer in the labeled data set, from
a 0.02 improvement on words of frequency 2, to an
improvement of 0.21 on OOV words.

Because the test data for this experiment is
drawn from the same domain (newswire) as the
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training data, the rare terms make up a relatively
small portion of the overall dataset (approximately
4% of both the tagged words and the chunks).
Still, the increased performance by the HMM-
smoothed model on the rare-word subset con-
tributes in part to an increase in performance on
the overall dataset of 1% for tagging and 3% for
chunking. In our next experiment, we consider
a common scenario where rare terms make up a
much larger fraction of the test data.

3.3 Domain Adaptation

For our experiment on domain adaptation, we fo-
cus on NP chunking and POS tagging, and we
use the labeled training data from the CoNLL
2000 shared task as before. For NP chunking, we
use 198 sentences from the biochemistry domain
in the Open American National Corpus (OANC)
(Reppen et al., 2005) as or our test set. We man-
ually tagged the test set with POS tags and NP
chunk boundaries. The test set contains 5330
words and a total of 1258 NP chunks. We used
sections 15-18 of the Penn Treebank as our labeled
training set, including the gold standard POS tags.
We use our best-performing smoothing model, the
HMM, and train it on sections 13 through 19 of
the Penn Treebank, plus the written portion of
the OANC that contains journal articles from bio-
chemistry (40,727 sentences). We focus on chunks
that begin with words appearing 0-2 times in the
labeled training data, and appearing at least ten
times in the HMM’s training data. Table 4 con-
tains our results. For our POS tagging experi-
ments, we use 561 MEDLINE sentences (9576
words) from the Penn BioIE project (PennBioIE,
2005), a test set previously used by Blitzeret
al.(2006). We use the same experimental setup as
Blitzer et al.: 40,000 manually tagged sentences
from the Penn Treebank for our labeled training
data, and all of the unlabeled text from the Penn
Treebank plus their MEDLINE corpus of 71,306
sentences to train our HMM. We report on tagging
accuracy for all words and OOV words in Table
5. This table also includes results for two previous
systems as reported by Blitzeret al. (2006): the
semi-supervised Alternating Structural Optimiza-
tion (ASO) technique and the Structural Corre-
spondence Learning (SCL) technique for domain
adaptation.

Note that this test set for NP chunking con-
tains a much higher proportion of rare and OOV
words: 23% of chunks begin with an OOV word,
and 29% begin with a rare word, as compared with

Baseline HMM
Freq. # R P F1 R P F1

0 284 .74 .70 .72 .80 .89 .84
1 39 .85 .87 .86 .92 .88 .90
2 39 .79 .86 .83 .92 .90 .91

0-2 362 .75 .73 .74 .82 .89 .85
all 1258 .86 .87 .86 .91 .90 .91

Table 4:On biochemistry journal data from the OANC,

our HMM-smoothed NP chunker outperforms the base-

line CRF chunker by 0.12 (F1) on chunks that begin with

OOV words, and by 0.05 (F1) on all chunks. Results in

bold are statistically significantly different from the baseline

results atp < 0.05 using the two-tailed Fisher’s exact test.

We did not perform significance tests for F1.

All Unknown
Model words words

Baseline 88.3 67.3
ASO 88.4 70.9
SCL 88.9 72.0
HMM 90.5 75.2

Table 5: On biomedical data from the Penn BioIE

project, our HMM-smoothed tagger outperforms the

SCL tagger by 3% (accuracy) on OOV words, and by

1.6% (accuracy) on all words. Differences between the

smoothed tagger and the SCL tagger are significant atp <

.001 for all words and for OOV words, using the Chi-squared

test with 1 degree of freedom.

1% and 4%, respectively, for NP chunks in the test
set from the original domain. The test set for tag-
ging also contains a much higher proportion: 23%
OOV words, as compared with 1% in the original
domain. Because of the increase in the number of
rare words, the baseline chunker’s overall perfor-
mance drops by 4% compared with performance
on WSJ data, and the baseline tagger’s overall per-
formance drops by 5% in the new domain.

The performance improvements for both the
smoothed NP chunker and tagger are again im-
pressive: there is a 12% improvement on OOV
words, and a 10% overall improvement on rare
words for chunking; the tagger shows an 8% im-
provement on OOV words compared to out base-
line and a 3% improvement on OOV words com-
pared to the SCL model. The resulting perfor-
mance of the smoothed NP chunker is almost iden-
tical to its performance on the WSJ data. Through
smoothing, the chunker not only improves by 5%
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in F1 over the baseline system on all words, it in
fact outperforms our baseline NP chunker on the
WSJ data. 60% of this improvement comes from
improved accuracy on rare words.

The performance of our HMM-smoothed chun-
ker caused us to wonder how well the chunker
could work without some of its other features. We
removed all tag features and all features for word
types that appear fewer than 20 times in training.
This chunker achieves 0.91 F1 on OANC data, and
0.93 F1 on WSJ data, outperforming the baseline
system in both cases. It has only 20% as many fea-
tures as the baseline chunker, greatly improving
its training time. Thus our smoothing features are
more valuable to the chunker than features from
POS tags and features for all but the most common
words. Our results point to the exciting possibil-
ity that with smoothing, we may be able to train a
sequence-labeling system on a small labeled sam-
ple, and have it apply generally to other domains.
Exactly what size training set we need is a ques-
tion that we address next.

3.4 Sample Complexity

Our complete system consists of two learned com-
ponents, a supervised CRF system and an unsu-
pervised smoothing model. We measure the sam-
ple complexity of each component separately. To
measure the sample complexity of the supervised
CRF, we use the same experimental setup as in
the chunking experiment on WSJ text, but we vary
the amount of labeled data available to the CRF.
We take ten random samples of a fixed size from
the labeled training set, train a chunking model on
each subset, and graph the F1 on the labeled test
set, averaged over the ten runs, in Figure 1. To
measure the sample complexity of our HMM with
respect to unlabeled text, we use the full labeled
training set and vary the amount of unlabeled text
available to the HMM. At minimum, we use the
text available in the labeled training and test sets,
and then add random subsets of the Penn Tree-
bank, sections 2-22. For each subset size, we take
ten random samples of the unlabeled text, train an
HMM and then a chunking model, and graph the
F1 on the labeled test set averaged over the ten
runs in Figure 2.

The results from our labeled sample complex-
ity experiment indicate that sample complexity is
drastically reduced by HMM smoothing. On rare
chunks, the smoothed system reaches 0.78 F1 us-
ing only 87 labeled training sentences, a level that
the baseline system never reaches, even with 6933
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Figure 1:The smoothed NP chunker requires less than

10% of the samples needed by the baseline chunker to

achieve .83 F1, and the same for .88 F1.
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Figure 2: By leveraging plentiful unannotated text, the

smoothed chunker soon outperforms the baseline.

labeled sentences. On the overall data set, the
smoothed system reaches 0.83 F1 with 50 labeled
sentences, which the baseline does not reach un-
til it has 867 labeled sentences. With 434 labeled
sentences, the smoothed system reaches 0.88 F1,
which the baseline system does not reach until it
has 5200 labeled samples.

Our unlabeled sample complexity results show
that even with access to a small amount of unla-
beled text, 6000 sentences more than what appears
in the training and test sets, smoothing using the
HMM yields 0.78 F1 on rare chunks. However, the
smoothed system requires 25,000 more sentences
before it outperforms the baseline system on all
chunks. No peak in performance is reached, so
further improvements are possible with more unla-
beled data. Thus smoothing is optimizing perfor-
mance for the case where unlabeled data is plenti-
ful and labeled data is scarce, as we would hope.

4 Related Work

To our knowledge, only one previous system —
the REALM system for sparse information extrac-
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tion — has used HMMs as a feature represen-
tation for other applications. REALM uses an
HMM trained on a large corpus to help determine
whether the arguments of a candidate relation are
of the appropriate type (Downey et al., 2007). We
extend and generalize this smoothing technique
and apply it to common NLP applications involv-
ing supervised sequence-labeling, and we provide
an in-depth empirical analysis of its performance.

Several researchers have previously studied
methods for using unlabeled data for tagging and
chunking, either alone or as a supplement to la-
beled data. Ando and Zhang develop a semi-
supervised chunker that outperforms purely su-
pervised approaches on the CoNLL 2000 dataset
(Ando and Zhang, 2005). Recent projects in semi-
supervised (Toutanova and Johnson, 2007) and un-
supervised (Biemann et al., 2007; Smith and Eis-
ner, 2005) tagging also show significant progress.
Unlike these systems, our efforts are aimed at us-
ing unlabeled data to find distributional represen-
tations that work well on rare terms, making the
supervised systems more applicable to other do-
mains and decreasing their sample complexity.

HMMs have been used many times for POS
tagging and chunking, in supervised, semi-
supervised, and in unsupervised settings (Banko
and Moore, 2004; Goldwater and Griffiths, 2007;
Johnson, 2007; Zhou, 2004). We take a novel per-
spective on the use of HMMs by using them to
compute features of each token in the data that
represent the distribution over that token’s con-
texts. Our technique lets the HMM find param-
eters that maximize cross-entropy, and then uses
labeled data to learn the best mapping from the
HMM categories to the POS categories.

Smoothing in NLP usually refers to the prob-
lem of smoothingn-gram models. Sophisticated
smoothing techniques like modified Kneser-Ney
and Katz smoothing (Chen and Goodman, 1996)
smooth together the predictions of unigram, bi-
gram, trigram, and potentially highern-gram se-
quences to obtain accurate probability estimates in
the face of data sparsity. Our task differs in that we
are primarily concerned with the case where even
the unigram model (single word) is rarely or never
observed in the labeled training data.

Sparsity for low-order contexts has recently
spurred interest in using latent variables to repre-
sent distributions over contexts in language mod-
els. Whilen-gram models have traditionally dom-
inated in language modeling, two recent efforts de-

velop latent-variable probabilistic models that ri-
val and even surpassn-gram models in accuracy
(Blitzer et al., 2005; Mnih and Hinton, 2007).
Several authors investigate neural network mod-
els that learn not just one latent state, but rather a
vector of latent variables, to represent each word
in a language model (Bengio et al., 2003; Emami
et al., 2003; Morin and Bengio, 2005).

One of the benefits of our smoothing technique
is that it allows for domain adaptation, a topic
that has received a great deal of attention from
the NLP community recently. Unlike our tech-
nique, in most cases researchers have focused on
the scenario where labeled training data is avail-
able in both the source and the target domain
(e.g., (Dauḿe III, 2007; Chelba and Acero, 2004;
Dauḿe III and Marcu, 2006)). Our technique uses
unlabeled training data from the target domain,
and is thus applicable more generally, including
in web processing, where the domain and vocab-
ulary is highly variable, and it is extremely diffi-
cult to obtain labeled data that is representative of
the test distribution. When labeled target-domain
data is available, instance weighting and similar
techniques can be used in combination with our
smoothing technique to improve our results fur-
ther, although this has not yet been demonstrated
empirically. HMM-smoothing improves on the
most closely related work, the Structural Corre-
spondence Learning technique for domain adap-
tation (Blitzer et al., 2006), in experiments.

5 Conclusion and Future Work

Our study of smoothing techniques demonstrates
that by aggregating information across many
unannotated examples, it is possible to find ac-
curate distributional representations that can pro-
vide highly informative features to supervised se-
quence labelers. These features help improve se-
quence labeling performance on rare word types,
on domains that differ from the training set, and
on smaller training sets.

Further experiments are of course necessary
to investigate distributional representations as
smoothing techniques. One particularly promis-
ing area for further study is the combination of
smoothing and instance weighting techniques for
domain adaptation. Whether the current tech-
niques are applicable to structured prediction
tasks, like parsing and relation extraction, also de-
serves future attention.
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Yoshua Bengio, Ŕejean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search, 3:1137–1155.

C. Biemann, C. Giuliano, and A. Gliozzo. 2007. Un-
supervised pos tagging supporting supervised meth-
ods.Proceeding of RANLP-07.

J. Blitzer, A. Globerson, and F. Pereira. 2005. Dis-
tributed latent variable models of lexical cooccur-
rences. InProceedings of the Tenth International
Workshop on Artificial Intelligence and Statistics.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. InEMNLP.

E. Brill. 1994. Some Advances in Rule-Based Part of
Speech Tagging. InAAAI, pages 722–727, Seattle,
Washington.

Ciprian Chelba and Alex Acero. 2004. Adaptation of
maximum entropy classifier: Little data can help a
lot. In EMNLP.

Stanley F. Chen and Joshua Goodman. 1996. An em-
pirical study of smoothing techniques for language
modeling. InProceedings of the 34th annual meet-
ing on Association for Computational Linguistics,
pages 310–318, Morristown, NJ, USA. Association
for Computational Linguistics.
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Abstract

We describe a novel method for the task
of unsupervised POS tagging with a dic-
tionary, one that uses integer programming
to explicitly search for the smallest model
that explains the data, and then uses EM
to set parameter values. We evaluate our
method on a standard test corpus using
different standard tagsets (a 45-tagset as
well as a smaller 17-tagset), and show that
our approach performs better than existing
state-of-the-art systems in both settings.

1 Introduction

In recent years, we have seen increased interest in
using unsupervised methods for attacking differ-
ent NLP tasks like part-of-speech (POS) tagging.
The classic Expectation Maximization (EM) algo-
rithm has been shown to perform poorly on POS
tagging, when compared to other techniques, such
as Bayesian methods.

In this paper, we develop new methods for un-
supervised part-of-speech tagging. We adopt the
problem formulation of Merialdo (1994), in which
we are given a raw word sequence and a dictio-
nary of legal tags for each word type. The goal is
to tag each word token so as to maximize accuracy
against a gold tag sequence. Whether this is a real-
istic problem set-up is arguable, but an interesting
collection of methods and results has accumulated
around it, and these can be clearly compared with
one another.

We use the standard test set for this task, a
24,115-word subset of the Penn Treebank, for
which a gold tag sequence is available. There
are 5,878 word types in this test set. We use
the standard tag dictionary, consisting of 57,388

word/tag pairs derived from the entire Penn Tree-
bank.1 8,910 dictionary entries are relevant to the
5,878 word types in the test set. Per-token ambigu-
ity is about 1.5 tags/token, yielding approximately
106425 possible ways to tag the data. There are 45
distinct grammatical tags. In this set-up, there are
no unknown words.

Figure 1 shows prior results for this prob-
lem. While the methods are quite different,
they all make use of two common model ele-
ments. One is a probabilistic n-gram tag model
P(ti|ti−n+1...ti−1), which we call the grammar.
The other is a probabilistic word-given-tag model
P(wi|ti), which we call the dictionary.

The classic approach (Merialdo, 1994) is
expectation-maximization (EM), where we esti-
mate grammar and dictionary probabilities in or-
der to maximize the probability of the observed
word sequence:

P (w1...wn) =
∑

t1...tn

P (t1...tn) · P (w1...wn|t1...tn)

≈
∑

t1...tn

n
∏

i=1

P (ti|ti−2 ti−1) · P (wi|ti)

Goldwater and Griffiths (2007) report 74.5%
accuracy for EM with a 3-gram tag model, which
we confirm by replication. They improve this to
83.9% by employing a fully Bayesian approach
which integrates over all possible parameter val-
ues, rather than estimating a single distribution.
They further improve this to 86.8% by using pri-
ors that favor sparse distributions. Smith and Eis-
ner (2005) employ a contrastive estimation tech-

1As (Banko and Moore, 2004) point out, unsupervised
tagging accuracy varies wildly depending on the dictionary
employed. We follow others in using a fat dictionary (with
49,206 distinct word types), rather than a thin one derived
only from the test set.

504



System Tagging accuracy (%)
on 24,115-word corpus

1. Random baseline (for each word, pick a random tag from the alternatives given by
the word/tag dictionary)

64.6

2. EM with 2-gram tag model 81.7
3. EM with 3-gram tag model 74.5
4a. Bayesian method (Goldwater and Griffiths, 2007) 83.9
4b. Bayesian method with sparse priors (Goldwater and Griffiths, 2007) 86.8
5. CRF model trained using contrastive estimation (Smith and Eisner, 2005) 88.6
6. EM-HMM tagger provided with good initial conditions (Goldberg et al., 2008) 91.4*

(*uses linguistic constraints and manual adjustments to the dictionary)

Figure 1: Previous results on unsupervised POS tagging using a dictionary (Merialdo, 1994) on the full
45-tag set. All other results reported in this paper (unless specified otherwise) are on the 45-tag set as
well.

nique, in which they automatically generate nega-
tive examples and use CRF training.

In more recent work, Toutanova and John-
son (2008) propose a Bayesian LDA-based gener-
ative model that in addition to using sparse priors,
explicitly groups words into ambiguity classes.
They show considerable improvements in tagging
accuracy when using a coarser-grained version
(with 17-tags) of the tag set from the Penn Tree-
bank.

Goldberg et al. (2008) depart from the Bayesian
framework and show how EM can be used to learn
good POS taggers for Hebrew and English, when
provided with good initial conditions. They use
language specific information (like word contexts,
syntax and morphology) for learning initial P(t|w)
distributions and also use linguistic knowledge to
apply constraints on the tag sequences allowed by
their models (e.g., the tag sequence “V V” is dis-
allowed). Also, they make other manual adjust-
ments to reduce noise from the word/tag dictio-
nary (e.g., reducing the number of tags for “the”
from six to just one). In contrast, we keep all the
original dictionary entries derived from the Penn
Treebank data for our experiments.

The literature omits one other baseline, which
is EM with a 2-gram tag model. Here we obtain
81.7% accuracy, which is better than the 3-gram
model. It seems that EM with a 3-gram tag model
runs amok with its freedom. For the rest of this pa-
per, we will limit ourselves to a 2-gram tag model.

2 What goes wrong with EM?

We analyze the tag sequence output produced by
EM and try to see where EM goes wrong. The
overall POS tag distribution learnt by EM is rel-
atively uniform, as noted by Johnson (2007), and
it tends to assign equal number of tokens to each

tag label whereas the real tag distribution is highly
skewed. The Bayesian methods overcome this ef-
fect by using priors which favor sparser distribu-
tions. But it is not easy to model such priors into
EM learning. As a result, EM exploits a lot of rare
tags (like FW = foreign word, or SYM = symbol)
and assigns them to common word types (in, of,
etc.).

We can compare the tag assignments from the
gold tagging and the EM tagging (Viterbi tag se-
quence). The table below shows tag assignments
(and their counts in parentheses) for a few word
types which occur frequently in the test corpus.

word/tag dictionary Gold tagging EM tagging
in→ {IN, RP, RB, NN, FW, RBR} IN (355) IN (0)

RP (3) RP (0)
FW (0) FW (358)

of→ {IN, RP, RB} IN (567) IN (0)
RP (0) RP (567)

on→ {IN,RP, RB} RP (5) RP (127)
IN (129) IN (0)
RB (0) RB (7)

a→ {DT, JJ, IN, LS, FW, SYM, NNP} DT (517) DT (0)
SYM (0) SYM (517)

We see how the rare tag labels (like FW, SYM,
etc.) are abused by EM. As a result, many word to-
kens which occur very frequently in the corpus are
incorrectly tagged with rare tags in the EM tagging
output.

We also look at things more globally. We inves-
tigate the Viterbi tag sequence generated by EM
training and count how many distinct tag bigrams
there are in that sequence. We call this the ob-
served grammar size, and it is 915. That is, in
tagging the 24,115 test tokens, EM uses 915 of the
available 45 × 45 = 2025 tag bigrams.2 The ad-
vantage of the observed grammar size is that we

2We contrast observed size with the model size for the
grammar, which we define as the number of P(t2|t1) entries
in EM’s trained tag model that exceed 0.0001 probability.
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dictionary & grammar)

e.g., L0 ≤ d1

L1 ≤ g1

IP formulation

training text

link 

variables

Figure 2: Integer Programming formulation for finding the smallest grammar that explains a given word
sequence. Here, we show a sample word sequence and the corresponding IP network generated for that
sequence.

can compare it with the gold tagging’s observed
grammar size, which is 760. So we can safely say
that EM is learning a grammar that is too big, still
abusing its freedom.

3 Small Models

Bayesian sparse priors aim to create small mod-
els. We take a different tack in the paper and
directly ask: What is the smallest model that ex-
plains the text? Our approach is related to mini-
mum description length (MDL). We formulate our
question precisely by asking which tag sequence
(of the 106425 available) has the smallest observed
grammar size. The answer is 459. That is, there
exists a tag sequence that contains 459 distinct tag
bigrams, and no other tag sequence contains fewer.

We obtain this answer by formulating the prob-
lem in an integer programming (IP) framework.
Figure 2 illustrates this with a small sample word
sequence. We create a network of possible tag-
gings, and we assign a binary variable to each link
in the network. We create constraints to ensure
that those link variables receiving a value of 1
form a left-to-right path through the tagging net-
work, and that all other link variables receive a

value of 0. We accomplish this by requiring the
sum of the links entering each node to equal to
the sum of the links leaving each node. We also
create variables for every possible tag bigram and
word/tag dictionary entry. We constrain link vari-
able assignments to respect those grammar and
dictionary variables. For example, we do not allow
a link variable to “activate” unless the correspond-
ing grammar variable is also “activated”. Finally,
we add an objective function that minimizes the
number of grammar variables that are assigned a
value of 1.

Figure 3 shows the IP solution for the example
word sequence from Figure 2. Of course, a small
grammar size does not necessarily correlate with
higher tagging accuracy. For the small toy exam-
ple shown in Figure 3, the correct tagging is “PRO
AUX V . PRO V” (with 5 tag pairs), whereas the
IP tries to minimize the grammar size and picks
another solution instead.

For solving the integer program, we use CPLEX
software (a commercial IP solver package). Alter-
natively, there are other programs such as lp solve,
which are free and publicly available for use. Once
we create an integer program for the full test cor-
pus, and pass it to CPLEX, the solver returns an
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word sequence: they can fish . I fish

Tagging Grammar Size
PRO AUX N . PRO N 5
PRO AUX V . PRO N 5
PRO AUX N . PRO V 5
PRO AUX V . PRO V 5
PRO V N . PRO N 5
PRO V V . PRO N 5
PRO V N . PRO V 4
PRO V V . PRO V 4

Figure 3: Possible tagging solutions and corre-
sponding grammar sizes for the sample word se-
quence from Figure 2 using the given dictionary
and grammar. The IP solver finds the smallest
grammar set that can explain the given word se-
quence. In this example, there exist two solutions
that each contain only 4 tag pair entries, and IP
returns one of them.

objective function value of 459.3

CPLEX also returns a tag sequence via assign-
ments to the link variables. However, there are
actually 104378 tag sequences compatible with the
459-sized grammar, and our IP solver just selects
one at random. We find that of all those tag se-
quences, the worst gives an accuracy of 50.8%,
and the best gives an accuracy of 90.3%. We
also note that CPLEX takes 320 seconds to return
the optimal solution for the integer program corre-
sponding to this particular test data (24,115 tokens
with the 45-tag set). It might be interesting to see
how the performance of the IP method (in terms
of time complexity) is affected when scaling up to
larger data and bigger tagsets. We leave this as
part of future work. But we do note that it is pos-
sible to obtain less than optimal solutions faster by
interrupting the CPLEX solver.

4 Fitting the Model

Our IP formulation can find us a small model, but
it does not attempt to fit the model to the data. For-
tunately, we can use EM for that. We still give
EM the full word/tag dictionary, but now we con-
strain its initial grammar model to the 459 tag bi-
grams identified by IP. Starting with uniform prob-
abilities, EM finds a tagging that is 84.5% accu-
rate, substantially better than the 81.7% originally
obtained with the fully-connected grammar. So
we see a benefit to our explicit small-model ap-
proach. While EM does not find the most accurate

3Note that the grammar identified by IP is not uniquely
minimal. For the same word sequence, there exist other min-
imal grammars having the same size (459 entries). In our ex-
periments, we choose the first solution returned by CPLEX.

in on
IN IN
RP RP

word/tag dictionary RB RB
NN
FW
RBR

observed EM dictionary FW (358) RP (127)
RB (7)

observed IP+EM dictionary IN (349) IN (126)
RB (9) RB (8)

observed gold dictionary IN (355) IN (129)
RB (3) RP (5)

Figure 4: Examples of tagging obtained from dif-
ferent systems for prepositions in and on.

sequence consistent with the IP grammar (90.3%),
it finds a relatively good one.

The IP+EM tagging (with 84.5% accuracy) has
some interesting properties. First, the dictionary
we observe from the tagging is of higher qual-
ity (with fewer spurious tagging assignments) than
the one we observe from the original EM tagging.
Figure 4 shows some examples.

We also measure the quality of the two observed
grammars/dictionaries by computing their preci-
sion and recall against the grammar/dictionary we
observe in the gold tagging.4 We find that preci-
sion of the observed grammar increases from 0.73
(EM) to 0.94 (IP+EM). In addition to removing
many bad tag bigrams from the grammar, IP min-
imization also removes some of the good ones,
leading to lower recall (EM = 0.87, IP+EM =
0.57). In the case of the observed dictionary, using
a smaller grammar model does not affect the pre-
cision (EM = 0.91, IP+EM = 0.89) or recall (EM
= 0.89, IP+EM = 0.89).

During EM training, the smaller grammar with
fewer bad tag bigrams helps to restrict the dictio-
nary model from making too many bad choices
that EM made earlier. Here are a few examples
of bad dictionary entries that get removed when
we use the minimized grammar for EM training:

in → FW

a → SYM

of → RP

In → RBR

During EM training, the minimized grammar
4For any observed grammar or dictionary X,

Precision (X) = |{X}∩{observedgold}|
|{X}|

Recall (X) = |{X}∩{observedgold}|
|{observedgold}|
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Model Tagging accuracy Observed size Model size
on 24,115-word
corpus

grammar(G), dictionary(D) grammar(G), dictionary(D)

1. EM baseline with full grammar + full dictio-
nary

81.7 G=915, D=6295 G=935, D=6430

2. EM constrained with minimized IP-grammar
+ full dictionary

84.5 G=459, D=6318 G=459, D=6414

3. EM constrained with full grammar + dictio-
nary from (2)

91.3 G=606, D=6245 G=612, D=6298

4. EM constrained with grammar from (3) + full
dictionary

91.5 G=593, D=6285 G=600, D=6373

5. EM constrained with full grammar + dictio-
nary from (4)

91.6 G=603, D=6280 G=618, D=6337

Figure 5: Percentage of word tokens tagged correctly by different models. The observed sizes and model
sizes of grammar (G) and dictionary (D) produced by these models are shown in the last two columns.

helps to eliminate many incorrect entries (i.e.,
zero out model parameters) from the dictionary,
thereby yielding an improved dictionary model.
So using the minimized grammar (which has
higher precision) helps to improve the quality of
the chosen dictionary (examples shown in Fig-
ure 4). This in turn helps improve the tagging ac-
curacy from 81.7% to 84.5%. It is clear that the
IP-constrained grammar is a better choice to run
EM on than the full grammar.

Note that we used a very small IP-grammar
(containing only 459 tag bigrams) during EM
training. In the process of minimizing the gram-
mar size, IP ends up removing many good tag bi-
grams from our grammar set (as seen from the low
measured recall of 0.57 for the observed gram-
mar). Next, we proceed to recover some good tag
bigrams and expand the grammar in a restricted
fashion by making use of the higher-quality dic-
tionary produced by the IP+EM method. We now
run EM again on the full grammar (all possible
tag bigrams) in combination with this good dictio-
nary (containing fewer entries than the full dictio-
nary). Unlike the original training with full gram-
mar, where EM could choose any tag bigram, now
the choice of grammar entries is constrained by
the good dictionary model that we provide EM
with. This allows EM to recover some of the
good tag pairs, and results in a good grammar-
dictionary combination that yields better tagging
performance.

With these improvements in mind, we embark
on an alternating scheme to find better models and
taggings. We run EM for multiple passes, and in
each pass we alternately constrain either the gram-
mar model or the dictionary model. The procedure
is simple and proceeds as follows:

1. Run EM constrained to the last trained dictio-

nary, but provided with a full grammar.5

2. Run EM constrained to the last trained gram-
mar, but provided with a full dictionary.

3. Repeat steps 1 and 2.

We notice significant gains in tagging perfor-
mance when applying this technique. The tagging
accuracy increases at each step and finally settles
at a high of 91.6%, which outperforms the exist-
ing state-of-the-art systems for the 45-tag set. The
system achieves a better accuracy than the 88.6%
from Smith and Eisner (2005), and even surpasses
the 91.4% achieved by Goldberg et al. (2008)
without using any additional linguistic constraints
or manual cleaning of the dictionary. Figure 5
shows the tagging performance achieved at each
step. We found that it is the elimination of incor-
rect entries from the dictionary (and grammar) and
not necessarily the initialization weights from pre-
vious EM training, that results in the tagging im-
provements. Initializing the last trained dictionary
or grammar at each step with uniform weights also
yields the same tagging improvements as shown in
Figure 5.

We find that the observed grammar also im-
proves, growing from 459 entries to 603 entries,
with precision increasing from 0.94 to 0.96, and
recall increasing from 0.57 to 0.76. The figure
also shows the model’s internal grammar and dic-
tionary sizes.

Figure 6 and 7 show how the precision/recall
of the observed grammar and dictionary varies for
different models from Figure 5. In the case of the
observed grammar (Figure 6), precision increases

5For all experiments, EM training is allowed to run for
40 iterations or until the likelihood ratios between two subse-
quent iterations reaches a value of 0.99999, whichever occurs
earlier.
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Figure 6: Comparison of observed grammars from
the model tagging vs. gold tagging in terms of pre-
cision and recall measures.
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Figure 7: Comparison of observed dictionaries from
the model tagging vs. gold tagging in terms of pre-
cision and recall measures.

Model Tagging accuracy on
24,115-word corpus
no-restarts with 100 restarts

1. Model 1 (EM baseline) 81.7 83.8
2. Model 2 84.5 84.5
3. Model 3 91.3 91.8
4. Model 4 91.5 91.8
5. Model 5 91.6 91.8

Figure 8: Effect of random restarts (during EM
training) on tagging accuracy.

at each step, whereas recall drops initially (owing
to the grammar minimization) but then picks up
again. The precision/recall of the observed dictio-
nary on the other hand, is not affected by much.

5 Restarts and More Data

Multiple random restarts for EM, while not often
emphasized in the literature, are key in this do-
main. Recall that our original EM tagging with a
fully-connected 2-gram tag model was 81.7% ac-
curate. When we execute 100 random restarts and
select the model with the highest data likelihood,
we get 83.8% accuracy. Likewise, when we ex-
tend our alternating EM scheme to 100 random
restarts at each step, we improve our tagging ac-
curacy from 91.6% to 91.8% (Figure 8).

As noted by Toutanova and Johnson (2008),
there is no reason to limit the amount of unlabeled
data used for training the models. Their models
are trained on the entire Penn Treebank data (in-
stead of using only the 24,115-token test data),
and so are the tagging models used by Goldberg
et al. (2008). But previous results from Smith and
Eisner (2005) and Goldwater and Griffiths (2007)
show that their models do not benefit from using
more unlabeled training data. Because EM is ef-
ficient, we can extend our word-sequence train-

ing data from the 24,115-token set to the entire
Penn Treebank (973k tokens). We run EM training
again for Model 5 (the best model from Figure 5)
but this time using 973k word tokens, and further
increase our accuracy to 92.3%. This is our final
result on the 45-tagset, and we note that it is higher
than previously reported results.

6 Smaller Tagset and Incomplete
Dictionaries

Previously, researchers working on this task have
also reported results for unsupervised tagging with
a smaller tagset (Smith and Eisner, 2005; Gold-
water and Griffiths, 2007; Toutanova and John-
son, 2008; Goldberg et al., 2008). Their systems
were shown to obtain considerable improvements
in accuracy when using a 17-tagset (a coarser-
grained version of the tag labels from the Penn
Treebank) instead of the 45-tagset. When tag-
ging the same standard test corpus with the smaller
17-tagset, our method is able to achieve a sub-
stantially high accuracy of 96.8%, which is the
best result reported so far on this task. The ta-
ble in Figure 9 shows a comparison of different
systems for which tagging accuracies have been
reported previously for the 17-tagset case (Gold-
berg et al., 2008). The first row in the table
compares tagging results when using a full dictio-
nary (i.e., a lexicon containing entries for 49,206
word types). The InitEM-HMM system from
Goldberg et al. (2008) reports an accuracy of
93.8%, followed by the LDA+AC model (Latent
Dirichlet Allocation model with a strong Ambigu-
ity Class component) from Toutanova and John-
son (2008). In comparison, the Bayesian HMM
(BHMM) model from Goldwater et al. (2007) and
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Dict IP+EM (24k) InitEM-HMM LDA+AC CE+spl BHMM
Full (49206 words) 96.8 (96.8) 93.8 93.4 88.7 87.3
≥ 2 (2141 words) 90.6 (90.0) 89.4 91.2 79.5 79.6
≥ 3 (1249 words) 88.0 (86.1) 87.4 89.7 78.4 71

Figure 9: Comparison of different systems for English unsupervised POS tagging with 17 tags.

the CE+spl model (Contrastive Estimation with a
spelling model) from Smith and Eisner (2005) re-
port lower accuracies (87.3% and 88.7%, respec-
tively). Our system (IP+EM) which uses inte-
ger programming and EM, gets the highest accu-
racy (96.8%). The accuracy numbers reported for
Init-HMM and LDA+AC are for models that are
trained on all the available unlabeled data from
the Penn Treebank. The IP+EM models used in
the 17-tagset experiments reported here were not
trained on the entire Penn Treebank, but instead
used a smaller section containing 77,963 tokens
for estimating model parameters. We also include
the accuracies for our IP+EM model when using
only the 24,115 token test corpus for EM estima-
tion (shown within parenthesis in second column
of the table in Figure 9). We find that our perfor-
mance does not degrade when the parameter esti-
mation is done using less data, and our model still
achieves a high accuracy of 96.8%.

6.1 Incomplete Dictionaries and Unknown
Words

The literature also includes results reported in a
different setting for the tagging problem. In some
scenarios, a complete dictionary with entries for
all word types may not be readily available to us
and instead, we might be provided with an incom-
plete dictionary that contains entries for only fre-
quent word types. In such cases, any word not
appearing in the dictionary will be treated as an
unknown word, and can be labeled with any of
the tags from given tagset (i.e., for every unknown
word, there are 17 tag possibilities). Some pre-
vious approaches (Toutanova and Johnson, 2008;
Goldberg et al., 2008) handle unknown words ex-
plicitly using ambiguity class components condi-
tioned on various morphological features, and this
has shown to produce good tagging results, espe-
cially when dealing with incomplete dictionaries.

We follow a simple approach using just one
of the features used in (Toutanova and Johnson,
2008) for assigning tag possibilities to every un-
known word. We first identify the top-100 suffixes
(up to 3 characters) for words in the dictionary.
Using the word/tag pairs from the dictionary, we
train a simple probabilistic model that predicts the

tag given a particular suffix (e.g., P(VBG | ing) =
0.97, P(N | ing) = 0.0001, ...). Next, for every un-
known word “w”, the trained P(tag | suffix) model
is used to predict the top 3 tag possibilities for
“w” (using only its suffix information), and subse-
quently this word along with its 3 tags are added as
a new entry to the lexicon. We do this for every un-
known word, and eventually we have a dictionary
containing entries for all the words. Once the com-
pleted lexicon (containing both correct entries for
words in the lexicon and the predicted entries for
unknown words) is available, we follow the same
methodology from Sections 3 and 4 using integer
programming to minimize the size of the grammar
and then applying EM to estimate parameter val-
ues.

Figure 9 shows comparative results for the 17-
tagset case when the dictionary is incomplete. The
second and third rows in the table shows tagging
accuracies for different systems when a cutoff of
2 (i.e., all word types that occur with frequency
counts < 2 in the test corpus are removed) and
a cutoff of 3 (i.e., all word types occurring with
frequency counts < 3 in the test corpus are re-
moved) is applied to the dictionary. This yields
lexicons containing 2,141 and 1,249 words respec-
tively, which are much smaller compared to the
original 49,206 word dictionary. As the results
in Figure 9 illustrate, the IP+EM method clearly
does better than all the other systems except for
the LDA+AC model. The LDA+AC model from
Toutanova and Johnson (2008) has a strong ambi-
guity class component and uses more features to
handle the unknown words better, and this con-
tributes to the slightly higher performance in the
incomplete dictionary cases, when compared to
the IP+EM model.

7 Discussion

The method proposed in this paper is simple—
once an integer program is produced, there are
solvers available which directly give us the so-
lution. In addition, we do not require any com-
plex parameter estimation techniques; we train our
models using simple EM, which proves to be effi-
cient for this task. While some previous methods
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word type Gold tag Automatic tag # of tokens tagged incorrectly
’s POS VBZ 173
be VB VBP 67

that IN WDT 54
New NNP NNPS 33
U.S. NNP JJ 31
up RP RB 28

more RBR JJR 27
and CC IN 23
have VB VBP 20
first JJ JJS 20
to TO IN 19

out RP RB 17
there EX RB 15
stock NN JJ 15
what WP WDT 14
one CD NN 14

’ POS : 14
as RB IN 14
all DT RB 14

that IN RB 13

Figure 10: Most frequent mistakes observed in the model tagging (using the best model, which gives
92.3% accuracy) when compared to the gold tagging.

introduced for the same task have achieved big
tagging improvements using additional linguistic
knowledge or manual supervision, our models are
not provided with any additional information.

Figure 10 illustrates for the 45-tag set some of
the common mistakes that our best tagging model
(92.3%) makes. In some cases, the model actually
gets a reasonable tagging but is penalized perhaps
unfairly. For example, “to” is tagged as IN by our
model sometimes when it occurs in the context of
a preposition, whereas in the gold tagging it is al-
ways tagged as TO. The model also gets penalized
for tagging the word “U.S.” as an adjective (JJ),
which might be considered valid in some cases
such as “the U.S. State Department”. In other
cases, the model clearly produces incorrect tags
(e.g., “New” gets tagged incorrectly as NNPS).

Our method resembles the classic Minimum
Description Length (MDL) approach for model
selection (Barron et al., 1998). In MDL, there
is a single objective function to (1) maximize the
likelihood of observing the data, and at the same
time (2) minimize the length of the model descrip-
tion (which depends on the model size). How-
ever, the search procedure for MDL is usually
non-trivial, and for our task of unsupervised tag-
ging, we have not found a direct objective function
which we can optimize and produce good tagging
results. In the past, only a few approaches uti-
lizing MDL have been shown to work for natural
language applications. These approaches employ
heuristic search methods with MDL for the task
of unsupervised learning of morphology of natu-
ral languages (Goldsmith, 2001; Creutz and La-
gus, 2002; Creutz and Lagus, 2005). The method
proposed in this paper is the first application of
the MDL idea to POS tagging, and the first to

use an integer programming formulation rather
than heuristic search techniques. We also note
that it might be possible to replicate our models
in a Bayesian framework similar to that proposed
in (Goldwater and Griffiths, 2007).

8 Conclusion

We presented a novel method for attacking
dictionary-based unsupervised part-of-speech tag-
ging. Our method achieves a very high accuracy
(92.3%) on the 45-tagset and a higher (96.8%) ac-
curacy on a smaller 17-tagset. The method works
by explicitly minimizing the grammar size using
integer programming, and then using EM to esti-
mate parameter values. The entire process is fully
automated and yields better performance than any
existing state-of-the-art system, even though our
models were not provided with any additional lin-
guistic knowledge (for example, explicit syntactic
constraints to avoid certain tag combinations such
as “V V”, etc.). However, it is easy to model some
of these linguistic constraints (both at the local and
global levels) directly using integer programming,
and this may result in further improvements and
lead to new possibilities for future research. For
direct comparison to previous works, we also pre-
sented results for the case when the dictionaries
are incomplete and find the performance of our
system to be comparable with current best results
reported for the same task.
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Abstract

In this paper, we present a discriminative
word-character hybrid model for joint Chi-
nese word segmentation and POS tagging.
Our word-character hybrid model offers
high performance since it can handle both
known and unknown words. We describe
our strategies that yield good balance for
learning the characteristics of known and
unknown words and propose an error-
driven policy that delivers such balance
by acquiring examples of unknown words
from particular errors in a training cor-
pus. We describe an efficient framework
for training our model based on the Mar-
gin Infused Relaxed Algorithm (MIRA),
evaluate our approach on the Penn Chinese
Treebank, and show that it achieves supe-
rior performance compared to the state-of-
the-art approaches reported in the litera-
ture.

1 Introduction

In Chinese, word segmentation and part-of-speech
(POS) tagging are indispensable steps for higher-
level NLP tasks. Word segmentation and POS tag-
ging results are required as inputs to other NLP
tasks, such as phrase chunking, dependency pars-
ing, and machine translation. Word segmenta-
tion and POS tagging in a joint process have re-
ceived much attention in recent research and have
shown improvements over a pipelined fashion (Ng
and Low, 2004; Nakagawa and Uchimoto, 2007;
Zhang and Clark, 2008; Jiang et al., 2008a; Jiang
et al., 2008b).

In joint word segmentation and the POS tag-
ging process, one serious problem is caused by
unknown words, which are defined as words that
are not found in a training corpus or in a sys-

tem’s word dictionary1. The word boundaries and
the POS tags of unknown words, which are very
difficult to identify, cause numerous errors. The
word-character hybrid model proposed by Naka-
gawa and Uchimoto (Nakagawa, 2004; Nakagawa
and Uchimoto, 2007) shows promising properties
for solving this problem. However, it suffers from
structural complexity. Nakagawa (2004) described
a training method based on a word-based Markov
model and a character-based maximum entropy
model that can be completed in a reasonable time.
However, this training method is limited by the
generatively-trained Markov model in which in-
formative features are hard to exploit.

In this paper, we overcome such limitations
concerning both efficiency and effectiveness. We
propose a new framework for training the word-
character hybrid model based on the Margin
Infused Relaxed Algorithm (MIRA) (Crammer,
2004; Crammer et al., 2005; McDonald, 2006).
We describe k-best decoding for our hybrid model
and design its loss function and the features appro-
priate for our task.

In our word-character hybrid model, allowing
the model to learn the characteristics of both
known and unknown words is crucial to achieve
optimal performance. Here, we describe our
strategies that yield good balance for learning
these two characteristics. We propose an error-
driven policy that delivers this balance by acquir-
ing examples of unknown words from particular
errors in a training corpus. We conducted our ex-
periments on Penn Chinese Treebank (Xia et al.,
2000) and compared our approach with the best
previous approaches reported in the literature. Ex-
perimental results indicate that our approach can
achieve state-of-the-art performance.

1A system’s word dictionary usually consists of a word
list, and each word in the list has its own POS category. In
this paper, we constructed the system’s word dictionary from
a training corpus.
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Figure 1: Lattice used in word-character hybrid model.

Tag Description
B Beginning character in a multi-character word
I Intermediate character in a multi-character word
E End character in a multi-character word
S Single-character word

Table 1: Position-of-character (POC) tags.

The paper proceeds as follows: Section 2 gives
background on the word-character hybrid model,
Section 3 describes our policies for correct path
selection, Section 4 presents our training method
based on MIRA, Section 5 shows our experimen-
tal results, Section 6 discusses related work, and
Section 7 concludes the paper.

2 Background

2.1 Problem formation
In joint word segmentation and the POS tag-
ging process, the task is to predict a path
of word hypotheses y = (y1, . . . , y#y) =
(〈w1, p1〉, . . . , 〈w#y, p#y〉) for a given character
sequence x = (c1, . . . , c#x), where w is a word,
p is its POS tag, and a “#” symbol denotes the
number of elements in each variable. The goal of
our learning algorithm is to learn a mapping from
inputs (unsegmented sentences) x ∈ X to outputs
(segmented paths) y ∈ Y based on training sam-
ples of input-output pairs S = {(xt, yt)}Tt=1.

2.2 Search space representation
We represent the search space with a lattice based
on the word-character hybrid model (Nakagawa
and Uchimoto, 2007). In the hybrid model,
given an input sentence, a lattice that consists
of word-level and character-level nodes is con-
structed. Word-level nodes, which correspond to

words found in the system’s word dictionary, have
regular POS tags. Character-level nodes have spe-
cial tags where position-of-character (POC) and
POS tags are combined (Asahara, 2003; Naka-
gawa, 2004). POC tags indicate the word-internal
positions of the characters, as described in Table 1.

Figure 1 shows an example of a lattice for a Chi-
nese sentence: “ ” (Chongming is
China’s third largest island). Note that some nodes
and state transitions are not allowed. For example,
I and E nodes cannot occur at the beginning of the
lattice (marked with dashed boxes), and the transi-
tions from I to B nodes are also forbidden. These
nodes and transitions are ignored during the lattice
construction processing.

In the training phase, since several paths
(marked in bold) can correspond to the correct
analysis in the annotated corpus, we need to se-
lect one correct path yt as a reference for training.2

The next section describes our strategies for deal-
ing with this issue.

With this search space representation, we
can consistently handle unknown words with
character-level nodes. In other words, we use
word-level nodes to identify known words and
character-level nodes to identify unknown words.
In the testing phase, we can use a dynamic pro-
gramming algorithm to search for the most likely
path out of all candidate paths.

2A machine learning problem exists called structured
multi-label classification that allows training from multiple
correct paths. However, in this paper we limit our considera-
tion to structured single-label classification, which is simple
yet provides great performance.
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3 Policies for correct path selection

In this section, we describe our strategies for se-
lecting the correct path yt in the training phase.
As shown in Figure 1, the paths marked in bold
can represent the correct annotation of the seg-
mented sentence. Ideally, we need to build a word-
character hybrid model that effectively learns the
characteristics of unknown words (with character-
level nodes) as well as those of known words (with
word-level nodes).

We can directly estimate the statistics of known
words from an annotated corpus where a sentence
is already segmented into words and assigned POS
tags. If we select the correct path yt that corre-
sponds to the annotated sentence, it will only con-
sist of word-level nodes that do not allow learning
for unknown words. We therefore need to choose
character-level nodes as correct nodes instead of
word-level nodes for some words. We expect that
those words could reflect unknown words in the
future.

Baayen and Sproat (1996) proposed that the
characteristics of infrequent words in a training
corpus resemble those of unknown words. Their
idea has proven effective for estimating the statis-
tics of unknown words in previous studies (Ratna-
parkhi, 1996; Nagata, 1999; Nakagawa, 2004).

We adopt Baayen and Sproat’s approach as
the baseline policy in our word-character hybrid
model. In the baseline policy, we first count the
frequencies of words3 in the training corpus. We
then collect infrequent words that appear less than
or equal to r times.4 If these infrequent words are
in the correct path, we use character-level nodes
to represent them, and hence the characteristics of
unknown words can be learned. For example, in
Figure 1 we select the character-level nodes of the
word “ ” (Chongming) as the correct nodes. As
a result, the correct path yt can contain both word-
level and character-level nodes (marked with as-
terisks (*)).

To discover more statistics of unknown words,
one might consider just increasing the threshold
value r to obtain more artificial unknown words.
However, our experimental results indicate that
our word-character hybrid model requires an ap-
propriate balance between known and artificial un-

3We consider a word and its POS tag a single entry.
4In our experiments, the optimal threshold value r is se-

lected by evaluating the performance of joint word segmen-
tation and POS tagging on the development set.

known words to achieve optimal performance.
We now describe our new approach to lever-

age additional examples of unknown words. In-
tuition suggests that even though the system can
handle some unknown words, many unidentified
unknown words remain that cannot be recovered
by the system; we wish to learn the characteristics
of such unidentified unknown words. We propose
the following simple scheme:

• Divide the training corpus into ten equal sets
and perform 10-fold cross validation to find
the errors.

• For each trial, train the word-character hybrid
model with the baseline policy (r = 1) us-
ing nine sets and estimate errors using the re-
maining validation set.

• Collect unidentified unknown words from
each validation set.

Several types of errors are produced by the
baseline model, but we only focus on those caused
by unidentified unknown words, which can be eas-
ily collected in the evaluation process. As de-
scribed later in Section 5.2, we measure the recall
on out-of-vocabulary (OOV) words. Here, we de-
fine unidentified unknown words as OOV words
in each validation set that cannot be recovered by
the system. After ten cross validation runs, we
get a list of the unidentified unknown words de-
rived from the whole training corpus. Note that
the unidentified unknown words in the cross val-
idation are not necessary to be infrequent words,
but some overlap may exist. Finally, we obtain the
artificial unknown words that combine the uniden-
tified unknown words in cross validation and in-
frequent words for learning unknown words. We
refer to this approach as the error-driven policy.

4 Training method

4.1 Discriminative online learning
Let Yt = {y1

t , . . . , yKt } be a lattice consisting of
candidate paths for a given sentence xt. In the
word-character hybrid model, the lattice Yt can
contain more than 1000 nodes, depending on the
length of the sentence xt and the number of POS
tags in the corpus. Therefore, we require a learn-
ing algorithm that can efficiently handle large and
complex lattice structures.

Online learning is an attractive method for
the hybrid model since it quickly converges
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Algorithm 1 Generic Online Learning Algorithm
Input: Training set S = {(xt, yt)}Tt=1

Output: Model weight vector w

1: w(0) = 0; v = 0; i = 0
2: for iter = 1 to N do
3: for t = 1 to T do
4: w(i+1) = update w(i) according to (xt, yt)
5: v = v + w(i+1)

6: i = i+ 1
7: end for
8: end for
9: w = v/(N × T )

within a few iterations (McDonald, 2006). Algo-
rithm 1 outlines the generic online learning algo-
rithm (McDonald, 2006) used in our framework.

4.2 k-best MIRA
We focus on an online learning algorithm called
MIRA (Crammer, 2004), which has the de-
sired accuracy and scalability properties. MIRA
combines the advantages of margin-based and
perceptron-style learning with an optimization
scheme. In particular, we use a generalized ver-
sion of MIRA (Crammer et al., 2005; McDonald,
2006) that can incorporate k-best decoding in the
update procedure. To understand the concept of k-
best MIRA, we begin with a linear score function:

s(x, y; w) = 〈w, f(x, y)〉 , (1)

where w is a weight vector and f is a feature rep-
resentation of an input x and an output y.

Learning a mapping between an input-output
pair corresponds to finding a weight vector w such
that the best scoring path of a given sentence is
the same as (or close to) the correct path. Given
a training example (xt, yt), MIRA tries to estab-
lish a margin between the score of the correct path
s(xt, yt; w) and the score of the best candidate
path s(xt, ŷ; w) based on the current weight vector
w that is proportional to a loss function L(yt, ŷ).

In each iteration, MIRA updates the weight vec-
tor w by keeping the norm of the change in the
weight vector as small as possible. With this
framework, we can formulate the optimization
problem as follows (McDonald, 2006):

w(i+1) = argminw‖w −w(i)‖ (2)

s.t. ∀ŷ ∈ bestk(xt; w(i)) :

s(xt, yt; w)− s(xt, ŷ; w) ≥ L(yt, ŷ) ,

where bestk(xt; w(i)) ∈ Yt represents a set of top
k-best paths given the weight vector w(i). The

above quadratic programming (QP) problem can
be solved using Hildreth’s algorithm (Yair Cen-
sor, 1997). Replacing Eq. (2) into line 4 of Al-
gorithm 1, we obtain k-best MIRA.

The next question is how to efficiently gener-
ate bestk(xt; w(i)). In this paper, we apply a dy-
namic programming search (Nagata, 1994) to k-
best MIRA. The algorithm has two main search
steps: forward and backward. For the forward
search, we use Viterbi-style decoding to find the
best partial path and its score up to each node in
the lattice. For the backward search, we use A∗-
style decoding to generate the top k-best paths. A
complete path is found when the backward search
reaches the beginning node of the lattice, and the
algorithm terminates when the number of gener-
ated paths equals k.

In summary, we use k-best MIRA to iteratively
update w(i). The final weight vector w is the av-
erage of the weight vectors after each iteration.
As reported in (Collins, 2002; McDonald et al.,
2005), parameter averaging can effectively avoid
overfitting. For inference, we can use Viterbi-style
decoding to search for the most likely path y∗ for
a given sentence x where:

y∗ = argmax
y∈Y

s(x, y; w) . (3)

4.3 Loss function

In conventional sequence labeling where the ob-
servation sequence (word) boundaries are fixed,
one can use the 0/1 loss to measure the errors of
a predicted path with respect to the correct path.
However, in our model, word boundaries vary
based on the considered path, resulting in a dif-
ferent numbers of output tokens. As a result, we
cannot directly use the 0/1 loss.

We instead compute the loss function through
false positives (FP ) and false negatives (FN ).
Here, FP means the number of output nodes that
are not in the correct path, and FN means the
number of nodes in the correct path that cannot
be recognized by the system. We define the loss
function by:

L(yt, ŷ) = FP + FN . (4)

This loss function can reflect how bad the pre-
dicted path ŷ is compared to the correct path yt.
A weighted loss function based on FP and FN
can be found in (Ganchev et al., 2007).
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ID Template Condition
W0 〈w0〉 for word-level
W1 〈p0〉 nodes
W2 〈w0, p0〉
W3 〈Length(w0), p0〉
A0 〈AS(w0)〉 if w0 is a single-
A1 〈AS(w0), p0〉 character word
A2 〈AB(w0)〉 for word-level
A3 〈AB(w0), p0〉 nodes
A4 〈AE(w0)〉
A5 〈AE(w0), p0〉
A6 〈AB(w0), AE(w0)〉
A7 〈AB(w0), AE(w0), p0〉
T0 〈TS(w0)〉 if w0 is a single-
T1 〈TS(w0), p0〉 character word
T2 〈TB(w0)〉 for word-level
T3 〈TB(w0), p0〉 nodes
T4 〈TE(w0)〉
T5 〈TE(w0), p0〉
T6 〈TB(w0), TE(w0)〉
T7 〈TB(w0), TE(w0), p0〉
C0 〈cj〉, j ∈ [−2, 2] × p0 for character-
C1 〈cj , cj+1〉, j ∈ [−2, 1] × p0 level nodes
C2 〈c−1, c1〉 × p0

C3 〈T (cj)〉, j ∈ [−2, 2] × p0

C4 〈T (cj), T (cj+1)〉, j ∈ [−2, 1] × p0

C5 〈T (c−1), T (c1)〉 × p0

C6 〈c0, T (c0)〉 × p0

Table 2: Unigram features.

4.4 Features

This section discusses the structure of f(x, y). We
broadly classify features into two categories: uni-
gram and bigram features. We design our feature
templates to capture various levels of information
about words and POS tags. Let us introduce some
notation. We write w−1 and w0 for the surface
forms of words, where subscripts −1 and 0 in-
dicate the previous and current positions, respec-
tively. POS tags p−1 and p0 can be interpreted in
the same way. We denote the characters by cj .

Unigram features: Table 2 shows our unigram
features. Templates W0–W3 are basic word-level
unigram features, where Length(w0) denotes the
length of the word w0. Using just the surface
forms can overfit the training data and lead to poor
predictions on the test data. To alleviate this prob-
lem, we use two generalized features of the sur-
face forms. The first is the beginning and end
characters of the surface (A0–A7). For example,
〈AB(w0)〉 denotes the beginning character of the
current word w0, and 〈AB(w0), AE(w0)〉 denotes
the beginning and end characters in the word. The
second is the types of beginning and end charac-
ters of the surface (T0–T7). We define a set of
general character types, as shown in Table 4.

Templates C0–C6 are basic character-level un-

ID Template Condition
B0 〈w−1, w0〉 if w−1 and w0

B1 〈p−1, p0〉 are word-level
B2 〈w−1, p0〉 nodes
B3 〈p−1, w0〉
B4 〈w−1, w0, p0〉
B5 〈p−1, w0, p0〉
B6 〈w−1, p−1, w0〉
B7 〈w−1, p−1, p0〉
B8 〈w−1, p−1, w0, p0〉
B9 〈Length(w−1), p0〉
TB0 〈TE(w−1)〉
TB1 〈TE(w−1), p0〉
TB2 〈TE(w−1), p−1, p0〉
TB3 〈TE(w−1), TB(w0)〉
TB4 〈TE(w−1), TB(w0), p0〉
TB5 〈TE(w−1), p−1, TB(w0)〉
TB6 〈TE(w−1), p−1, TB(w0), p0〉
CB0 〈p−1, p0〉 otherwise

Table 3: Bigram features.

Character type Description
Space Space
Numeral Arabic and Chinese numerals
Symbol Symbols
Alphabet Alphabets
Chinese Chinese characters
Other Others

Table 4: Character types.

igram features taken from (Nakagawa, 2004).
These templates operate over a window of ±2
characters. The features include characters (C0),
pairs of characters (C1–C2), character types (C3),
and pairs of character types (C4–C5). In addi-
tion, we add pairs of characters and character types
(C6).

Bigram features: Table 3 shows our bigram
features. Templates B0-B9 are basic word-
level bigram features. These features aim to
capture all the possible combinations of word
and POS bigrams. Templates TB0-TB6 are the
types of characters for bigrams. For example,
〈TE(w−1), TB(w0)〉 captures the change of char-
acter types from the end character in the previ-
ous word to the beginning character in the current
word.

Note that if one of the adjacent nodes is a
character-level node, we use the template CB0 that
represents POS bigrams. In our preliminary ex-
periments, we found that if we add more features
to non-word-level bigrams, the number of features
grows rapidly due to the dense connections be-
tween non-word-level nodes. However, these fea-
tures only slightly improve performance over us-
ing simple POS bigrams.
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(a) Experiments on small training corpus
Data set CTB chap. IDs # of sent. # of words
Training 1-270 3,046 75,169
Development 301-325 350 6,821
Test 271-300 348 8,008
# of POS tags 32
OOV (word) 0.0987 (790/8,008)
OOV (word & POS) 0.1140 (913/8,008)

(b) Experiments on large training corpus
Data set CTB chap. IDs # of sent. # of words
Training 1-270, 18,089 493,939

400-931,
1001-1151

Development 301-325 350 6,821
Test 271-300 348 8,008
# of POS tags 35
OOV (word) 0.0347 (278/8,008)
OOV (word & POS) 0.0420 (336/8,008)

Table 5: Training, development, and test data
statistics on CTB 5.0 used in our experiments.

5 Experiments

5.1 Data sets

Previous studies on joint Chinese word segmen-
tation and POS tagging have used Penn Chinese
Treebank (CTB) (Xia et al., 2000) in experiments.
However, versions of CTB and experimental set-
tings vary across different studies.

In this paper, we used CTB 5.0 (LDC2005T01)
as our main corpus, defined the training, develop-
ment and test sets according to (Jiang et al., 2008a;
Jiang et al., 2008b), and designed our experiments
to explore the impact of the training corpus size on
our approach. Table 5 provides the statistics of our
experimental settings on the small and large train-
ing data. The out-of-vocabulary (OOV) is defined
as tokens in the test set that are not in the train-
ing set (Sproat and Emerson, 2003). Note that the
development set was only used for evaluating the
trained model to obtain the optimal values of tun-
able parameters.

5.2 Evaluation

We evaluated both word segmentation (Seg) and
joint word segmentation and POS tagging (Seg
& Tag). We used recall (R), precision (P ), and
F1 as evaluation metrics. Following (Sproat and
Emerson, 2003), we also measured the recall on
OOV (ROOV) tokens and in-vocabulary (RIV) to-
kens. These performance measures can be calcu-
lated as follows:

Recall (R) =
# of correct tokens

# of tokens in test data

Precision (P ) =
# of correct tokens

# of tokens in system output

F1 =
2 ·R · P
R+ P

ROOV =
# of correct OOV tokens

# of OOV tokens in test data

RIV =
# of correct IV tokens

# of IV tokens in test data

For Seg, a token is considered to be a cor-
rect one if the word boundary is correctly iden-
tified. For Seg & Tag, both the word boundary and
its POS tag have to be correctly identified to be
counted as a correct token.

5.3 Parameter estimation

Our model has three tunable parameters: the num-
ber of training iterations N ; the number of top
k-best paths; and the threshold r for infrequent
words. Since we were interested in finding an
optimal combination of word-level and character-
level nodes for training, we focused on tuning r.
We fixed N = 10 and k = 5 for all experiments.
For the baseline policy, we varied r in the range
of [1, 5] and found that setting r = 3 yielded the
best performance on the development set for both
the small and large training corpus experiments.
For the error-driven policy, we collected unidenti-
fied unknown words using 10-fold cross validation
on the training set, as previously described in Sec-
tion 3.

5.4 Impact of policies for correct path
selection

Table 6 shows the results of our word-character
hybrid model using the error-driven and baseline
policies. The third and fourth columns indicate the
numbers of known and artificial unknown words
in the training phase. The total number of words
is the same, but the different policies yield differ-
ent balances between the known and artificial un-
known words for learning the hybrid model. Op-
timal balances were selected using the develop-
ment set. The error-driven policy provides addi-
tional artificial unknown words in the training set.
The error-driven policy can improveROOV as well
as maintain good RIV, resulting in overall F1 im-
provements.
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(a) Experiments on small training corpus
# of words in training (75,169)

Eval type Policy kwn. art. unk. R P F1 ROOV RIV

Seg error-driven 63,997 11,172 0.9587 0.9509 0.9548 0.7557 0.9809
baseline 64,999 10,170 0.9572 0.9489 0.9530 0.7304 0.9820

Seg & Tag error-driven 63,997 11,172 0.8929 0.8857 0.8892 0.5444 0.9377
baseline 64,999 10,170 0.8897 0.8820 0.8859 0.5246 0.9367

(b) Experiments on large training corpus
# of words in training (493,939)

Eval Type Policy kwn. art. unk. R P F1 ROOV RIV

Seg error-driven 442,423 51,516 0.9829 0.9746 0.9787 0.7698 0.9906
baseline 449,679 44,260 0.9821 0.9736 0.9779 0.7590 0.9902

Seg & Tag error-driven 442,423 51,516 0.9407 0.9328 0.9367 0.5982 0.9557
baseline 449,679 44,260 0.9401 0.9319 0.9360 0.5952 0.9552

Table 6: Results of our word-character hybrid model using error-driven and baseline policies.

Method Seg Seg & Tag
Ours (error-driven) 0.9787 0.9367
Ours (baseline) 0.9779 0.9360
Jiang08a 0.9785 0.9341
Jiang08b 0.9774 0.9337
N&U07 0.9783 0.9332

Table 7: Comparison of F1 results with previous
studies on CTB 5.0.

Seg Seg & Tag
N&U07 Z&C08 Ours N&U07 Z&C08 Ours

Trial (base.) (base.)

1 0.9701 0.9721 0.9732 0.9262 0.9346 0.9358
2 0.9738 0.9762 0.9752 0.9318 0.9385 0.9380
3 0.9571 0.9594 0.9578 0.9023 0.9086 0.9067
4 0.9629 0.9592 0.9655 0.9132 0.9160 0.9223
5 0.9597 0.9606 0.9617 0.9132 0.9172 0.9187
6 0.9473 0.9456 0.9460 0.8823 0.8883 0.8885
7 0.9528 0.9500 0.9562 0.9003 0.9051 0.9076
8 0.9519 0.9512 0.9528 0.9002 0.9030 0.9062
9 0.9566 0.9479 0.9575 0.8996 0.9033 0.9052
10 0.9631 0.9645 0.9659 0.9154 0.9196 0.9225

Avg. 0.9595 0.9590 0.9611 0.9085 0.9134 0.9152

Table 8: Comparison of F1 results of our baseline
model with Nakagawa and Uchimoto (2007) and
Zhang and Clark (2008) on CTB 3.0.

Method Seg Seg & Tag
Ours (baseline) 0.9611 0.9152
Z&C08 0.9590 0.9134
N&U07 0.9595 0.9085
N&L04 0.9520 -

Table 9: Comparison of averaged F1 results (by
10-fold cross validation) with previous studies on
CTB 3.0.

5.5 Comparison with best prior approaches

In this section, we attempt to make meaning-
ful comparison with the best prior approaches re-
ported in the literature. Although most previous
studies used CTB, their versions of CTB and ex-

perimental settings are different, which compli-
cates comparison.

Ng and Low (2004) (N&L04) used CTB 3.0.
However, they just showed POS tagging results
on a per character basis, not on a per word basis.
Zhang and Clark (2008) (Z&C08) generated CTB
3.0 from CTB 4.0. Jiang et al. (2008a; 2008b)
(Jiang08a, Jiang08b) used CTB 5.0. Shi and
Wang (2007) used CTB that was distributed in the
SIGHAN Bakeoff. Besides CTB, they also used
HowNet (Dong and Dong, 2006) to obtain seman-
tic class features. Zhang and Clark (2008) indi-
cated that their results cannot directly compare to
the results of Shi and Wang (2007) due to different
experimental settings.

We decided to follow the experimental settings
of Jiang et al. (2008a; 2008b) on CTB 5.0 and
Zhang and Clark (2008) on CTB 4.0 since they
reported the best performances on joint word seg-
mentation and POS tagging using the training ma-
terials only derived from the corpora. The perfor-
mance scores of previous studies are directly taken
from their papers. We also conducted experiments
using the system implemented by Nakagawa and
Uchimoto (2007) (N&U07) for comparison.

Our experiment on the large training corpus is
identical to that of Jiang et al. (Jiang et al., 2008a;
Jiang et al., 2008b). Table 7 compares the F1 re-
sults with previous studies on CTB 5.0. The result
of our error-driven model is superior to previous
reported results for both Seg and Seg & Tag, and
the result of our baseline model compares favor-
ably to the others.

Following Zhang and Clark (2008), we first
generated CTB 3.0 from CTB 4.0 using sentence
IDs 1–10364. We then divided CTB 3.0 into
ten equal sets and conducted 10-fold cross vali-
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dation. Unfortunately, Zhang and Clark’s exper-
imental setting did not allow us to use our error-
driven policy since performing 10-fold cross val-
idation again on each main cross validation trial
is computationally too expensive. Therefore, we
used our baseline policy in this setting and fixed
r = 3 for all cross validation runs. Table 8 com-
pares the F1 results of our baseline model with
Nakagawa and Uchimoto (2007) and Zhang and
Clark (2008) on CTB 3.0. Table 9 shows a sum-
mary of averaged F1 results on CTB 3.0. Our
baseline model outperforms all prior approaches
for both Seg and Seg & Tag, and we hope that
our error-driven model can further improve perfor-
mance.

6 Related work

In this section, we discuss related approaches
based on several aspects of learning algorithms
and search space representation methods. Max-
imum entropy models are widely used for word
segmentation and POS tagging tasks (Uchimoto
et al., 2001; Ng and Low, 2004; Nakagawa,
2004; Nakagawa and Uchimoto, 2007) since they
only need moderate training times while they pro-
vide reasonable performance. Conditional random
fields (CRFs) (Lafferty et al., 2001) further im-
prove the performance (Kudo et al., 2004; Shi
and Wang, 2007) by performing whole-sequence
normalization to avoid label-bias and length-bias
problems. However, CRF-based algorithms typ-
ically require longer training times, and we ob-
served an infeasible convergence time for our hy-
brid model.

Online learning has recently gained popularity
for many NLP tasks since it performs comparably
or better than batch learning using shorter train-
ing times (McDonald, 2006). For example, a per-
ceptron algorithm is used for joint Chinese word
segmentation and POS tagging (Zhang and Clark,
2008; Jiang et al., 2008a; Jiang et al., 2008b).
Another potential algorithm is MIRA, which in-
tegrates the notion of the large-margin classifier
(Crammer, 2004). In this paper, we first intro-
duce MIRA to joint word segmentation and POS
tagging and show very encouraging results. With
regard to error-driven learning, Brill (1995) pro-
posed a transformation-based approach that ac-
quires a set of error-correcting rules by comparing
the outputs of an initial tagger with the correct an-
notations on a training corpus. Our approach does

not learn the error-correcting rules. We only aim to
capture the characteristics of unknown words and
augment their representatives.

As for search space representation, Ng and
Low (2004) found that for Chinese, the character-
based model yields better results than the word-
based model. Nakagawa and Uchimoto (2007)
provided empirical evidence that the character-
based model is not always better than the word-
based model. They proposed a hybrid approach
that exploits both the word-based and character-
based models. Our approach overcomes the limi-
tation of the original hybrid model by a discrimi-
native online learning algorithm for training.

7 Conclusion

In this paper, we presented a discriminative word-
character hybrid model for joint Chinese word
segmentation and POS tagging. Our approach
has two important advantages. The first is ro-
bust search space representation based on a hy-
brid model in which word-level and character-
level nodes are used to identify known and un-
known words, respectively. We introduced a sim-
ple scheme based on the error-driven concept to
effectively learn the characteristics of known and
unknown words from the training corpus. The sec-
ond is a discriminative online learning algorithm
based on MIRA that enables us to incorporate ar-
bitrary features to our hybrid model. Based on ex-
tensive comparisons, we showed that our approach
is superior to the existing approaches reported in
the literature. In future work, we plan to apply
our framework to other Asian languages, includ-
ing Thai and Japanese.
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Abstract

Manually annotated corpora are valuable
but scarce resources, yet for many anno-
tation tasks such as treebanking and se-
quence labeling there exist multiple cor-
pora withdifferentandincompatibleanno-
tation guidelines or standards. This seems
to be a great waste of human efforts, and
it would be nice to automatically adapt
one annotation standard to another. We
present a simple yet effective strategy that
transfers knowledge from a differently an-
notated corpus to the corpus with desired
annotation. We test the efficacy of this
method in the context of Chinese word
segmentation and part-of-speech tagging,
where no segmentation and POS tagging
standards are widely accepted due to the
lack of morphology in Chinese. Experi-
ments show that adaptation from the much
larger People’s Daily corpus to the smaller
but more popular Penn Chinese Treebank
results in significant improvements in both
segmentation and tagging accuracies (with
error reductions of 30.2% and 14%, re-
spectively), which in turn helps improve
Chinese parsing accuracy.

1 Introduction

Much of statistical NLP research relies on some
sort of manually annotated corpora to train their
models, but these resources are extremely expen-
sive to build, especially at a large scale, for ex-
ample in treebanking (Marcus et al., 1993). How-
ever the linguistic theories underlying these anno-
tation efforts are often heavily debated, and as a re-
sult there often exist multiple corpora for the same
task with vastly different and incompatible anno-
tation philosophies. For example just for English
treebanking there have been the Chomskian-style

{1 B2 o3 Ú4 �5 u6

NR NN VV NR

U.S. Vice-President visited China

{1 B2 o3 Ú4 �5 u6

ns b n v

U.S. Vice Presidentvisited-China

Figure 1: Incompatible word segmentation and
POS tagging standards between CTB (upper) and
People’s Daily (below).

Penn Treebank (Marcus et al., 1993) the HPSG
LinGo Redwoods Treebank (Oepen et al., 2002),
and a smaller dependency treebank (Buchholz and
Marsi, 2006). A second, related problem is that
the raw texts are also drawn from different do-
mains, which for the above example range from
financial news (PTB/WSJ) to transcribed dialog
(LinGo). These two problems seem be a great
waste in human efforts, and it would be nice if
one could automatically adapt from one annota-
tion standard and/or domain to another in order
to exploit much larger datasets for better train-
ing. The second problem, domain adaptation, is
very well-studied, e.g. by Blitzer et al. (2006)
and Dauḿe III (2007) (and see below for discus-
sions), so in this paper we focus on the less stud-
ied, but equally important problem ofannotation-
style adaptation.

We present a very simple yet effective strategy
that enables us to utilize knowledge from a differ-
ently annotated corpora for the training of a model
on a corpus with desired annotation. The basic
idea is very simple: we first train on a source cor-
pus, resulting in a source classifier, which is used
to label the target corpus and results in a “source-
style” annotation of the target corpus. We then
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train a second model on the target corpus with the
first classifier’s prediction as additional features
for guided learning.

This method is very similar to some ideas in
domain adaptation (Dauḿe III and Marcu, 2006;
Dauḿe III, 2007), but we argue that the underly-
ing problems are quite different. Domain adapta-
tion assumes the labeling guidelines are preserved
between the two domains, e.g., an adjective is al-
ways labeled as JJ regardless of from Wall Street
Journal (WSJ) or Biomedical texts, and only the
distributionsare different, e.g., the word “control”
is most likely a verb in WSJ but often a noun
in Biomedical texts (as in “control experiment”).
Annotation-style adaptation, however, tackles the
problem where the guideline itself is changed, for
example, one treebank might distinguish between
transitive and intransitive verbs, while merging the
different noun types (NN, NNS, etc.), and for ex-
ample one treebank (PTB) might be much flatter
than the other (LinGo), not to mention the fun-
damental disparities between their underlying lin-
guistic representations (CFG vs. HPSG). In this
sense, the problem we study in this paper seems
much harder and more motivated from a linguistic
(rather than statistical) point of view. More inter-
estingly, our method, without any assumption on
the distributions, can be simultaneously applied to
both domainand annotation standards adaptation
problems, which is very appealing in practice be-
cause the latter problem often implies the former,
as in our case study.

To test the efficacy of our method we choose
Chinese word segmentation and part-of-speech
tagging, where the problem of incompatible an-
notation standards is one of the most evident: so
far no segmentation standard is widely accepted
due to the lack of a clear definition of Chinese
words, and the (almost complete) lack of mor-
phology results in much bigger ambiguities and
heavy debates in tagging philosophies for Chi-
nese parts-of-speech. The two corpora used in
this study are the much larger People’s Daily (PD)
(5.86M words) corpus (Yu et al., 2001) and the
smaller but more popular Penn Chinese Treebank
(CTB) (0.47M words) (Xue et al., 2005). They
used very different segmentation standards as well
as different POS tagsets and tagging guidelines.
For example, in Figure 1, People’s Daily breaks
“Vice-President” into two words while combines
the phrase “visited-China” as a compound. Also

CTB has four verbal categories (VV for normal
verbs, and VC for copulas, etc.) while PD has only
one verbal tag (v) (Xia, 2000). It is preferable to
transfer knowledge from PD to CTB because the
latter also annotates tree structures which is very
useful for downstream applications like parsing,
summarization, and machine translation, yet it is
much smaller in size. Indeed, many recent efforts
on Chinese-English translation and Chinese pars-
ing use the CTB as thede factosegmentation and
tagging standards, but suffers from the limited size
of training data (Chiang, 2007; Bikel and Chiang,
2000). We believe this is also a reason why state-
of-the-art accuracy for Chinese parsing is much
lower than that of English (CTB is only half the
size of PTB).

Our experiments show that adaptation from PD
to CTB results in a significant improvement in seg-
mentation and POS tagging, with error reductions
of 30.2% and 14%, respectively. In addition, the
improved accuracies from segmentation and tag-
ging also lead to an improved parsing accuracy on
CTB, reducing38% of the error propagation from
word segmentation to parsing. We envision this
technique to be general and widely applicable to
many other sequence labeling tasks.

In the rest of the paper we first briefly review
the popular classification-based method for word
segmentation and tagging (Section 2), and then
describe our idea of annotation adaptation (Sec-
tion 3). We then discuss other relevant previous
work including co-training and classifier combina-
tion (Section 4) before presenting our experimen-
tal results (Section 5).

2 Segmentation and Tagging as
Character Classification

Before describing the adaptation algorithm, we
give a brief introduction of the baseline character
classification strategy for segmentation, as well as
joint segmenation and tagging (henceforth “Joint
S&T”). following our previous work (Jiang et al.,
2008). Given a Chinese sentence as sequence ofn

characters:

C1 C2 .. Cn

whereCi is a character, word segmentation aims
to split the sequence intom(≤ n) words:

C1:e1 Ce1+1:e2 .. Cem−1+1:em

where each subsequenceCi:j indicates a Chinese
word spanning from charactersCi to Cj (both in-
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Algorithm 1 Perceptron training algorithm.
1: Input : Training examples(xi, yi)
2: ~α← 0
3: for t← 1 .. T do
4: for i← 1 .. N do
5: zi ← argmaxz∈GEN(xi)

Φ(xi, z) · ~α
6: if zi 6= yi then
7: ~α← ~α + Φ(xi, yi)−Φ(xi, zi)
8: Output: Parameters~α

clusive). While in Joint S&T, each word is further
annotated with a POS tag:

C1:e1/t1 Ce1+1:e2/t2 .. Cem−1+1:em/tm

wheretk(k = 1..m) denotes the POS tag for the
wordCek−1+1:ek

.

2.1 Character Classification Method

Xue and Shen (2003) describe for the first time
the character classification approach for Chinese
word segmentation, where each character is given
a boundary tag denoting its relative position in a
word. In Ng and Low (2004), Joint S&T can also
be treated as a character classification problem,
where a boundary tag is combined with a POS tag
in order to give the POS information of the word
containing these characters. In addition, Ng and
Low (2004) find that, compared with POS tagging
after word segmentation, Joint S&T can achieve
higher accuracy on both segmentation and POS
tagging. This paper adopts the tag representation
of Ng and Low (2004). For word segmentation
only, there are four boundary tags:

• b: the begin of the word

• m: the middle of the word

• e: the end of the word

• s: a single-character word

while for Joint S&T, a POS tag is attached to the
tail of a boundary tag, to incorporate the word
boundary information and POS information to-
gether. For example,b-NN indicates that the char-
acter is the begin of a noun. After all charac-
ters of a sentence are assigned boundary tags (or
with POS postfix) by a classifier, the correspond-
ing word sequence (or with POS) can be directly
derived. Take segmentation for example, a char-
acter assigned a tags or a subsequence of words
assigned a tag sequencebm∗e indicates a word.

2.2 Training Algorithm and Features

Now we will show the training algorithm of the
classifier and the features used. Several classi-
fication models can be adopted here, however,
we choose the averaged perceptron algorithm
(Collins, 2002) because of its simplicity and high
accuracy. It is an online training algorithm and
has been successfully used in many NLP tasks,
such as POS tagging (Collins, 2002), parsing
(Collins and Roark, 2004), Chinese word segmen-
tation (Zhang and Clark, 2007; Jiang et al., 2008),
and so on.

Similar to the situation in other sequence label-
ing problems, the training procedure is to learn a
discriminative model mapping from inputsx ∈ X

to outputsy ∈ Y , whereX is the set of sentences
in the training corpus andY is the set of corre-
sponding labelled results. Following Collins, we
use a functionGEN(x) enumerating the candi-
date results of an inputx , a representationΦ map-
ping each training example(x, y) ∈ X × Y to a
feature vectorΦ(x, y) ∈ Rd, and a parameter vec-
tor ~α ∈ Rd corresponding to the feature vector.
For an input character sequencex, we aim to find
an outputF (x) that satisfies:

F (x) = argmax
y∈GEN(x)

Φ(x, y) · ~α (1)

whereΦ(x, y) ·~α denotes the inner product of fea-
ture vectorΦ(x, y) and the parameter vector~α.

Algorithm 1 depicts the pseudo code to tune the
parameter vector~α. In addition, the “averaged pa-
rameters” technology (Collins, 2002) is used to al-
leviate overfitting and achieve stable performance.
Table 1 lists the feature template and correspond-
ing instances. Following Ng and Low (2004),
the current considering character is denoted asC0,
while the ith character to the left ofC0 asC−i,
and to the right asCi. There are additional two
functions of which each returns some property of a
character.Pu(·) is a boolean function that checks
whether a character is a punctuation symbol (re-
turns 1 for a punctuation, 0 for not).T (·) is a
multi-valued function, it classifies a character into
four classifications:number, date, English letter
andothers(returns 1, 2, 3 and 4, respectively).

3 Automatic Annotation Adaptation

From this section, several shortened forms are
adopted for representation inconvenience. We use
source corpusto denote the corpus with the anno-
tation standard that we don’t require, which is of
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Feature Template Instances
Ci (i = −2..2) C

−2 =Ê, C
−1 =�, C0 =c, C1 =�, C2 = R

CiCi+1 (i = −2..1) C
−2C−1 =Ê�, C

−1C0 =�c, C0C1 =c�, C1C2 =�R
C
−1C1 C

−1C1 =��
Pu(C0) Pu(C0) = 0
T (C

−2)T (C
−1)T (C0)T (C1)T (C2) T (C

−2)T (C
−1)T (C0)T (C1)T (C2) = 11243

Table 1: Feature templates and instances from Ng and Low (Ng and Low, 2004). Suppose we are
considering the third character “c” in “Ê� c �R”.

course the source of the adaptation, whiletarget
corpusdenoting the corpus with the desired stan-
dard. And correspondingly, the two annotation
standards are naturally denoted assource standard
and target standard, while the classifiers follow-
ing the two annotation standards are respectively
named assource classifierandtarget classifier, if
needed.

Considering that word segmentation and Joint
S&T can be conducted in the same character clas-
sification manner, we can design an unified stan-
dard adaptation framework for the two tasks, by
taking the source classifier’s classification result
as the guide information for the target classifier’s
classification decision. The following section de-
picts this adaptation strategy in detail.

3.1 General Adaptation Strategy

In detail, in order to adapt knowledge from the
source corpus, first, a source classifier is trained
on it and therefore captures the knowledge it con-
tains; then, the source classifier is used to clas-
sify the characters in the target corpus, although
the classification result follows a standard that we
don’t desire; finally, a target classifier is trained
on the target corpus, with the source classifier’s
classification result as additional guide informa-
tion. The training procedure of the target clas-
sifier automatically learns the regularity to trans-
fer the source classifier’s predication result from
source standard to target standard. This regular-
ity is incorporated together with the knowledge
learnt from the target corpus itself, so as to ob-
tain enhanced predication accuracy. For a given
un-classified character sequence, the decoding is
analogous to the training. First, the character se-
quence is input into the source classifier to ob-
tain an source standard annotated classification
result, then it is input into the target classifier
with this classification result as additional infor-
mation to get the final result. This coincides with
the stacking method for combining dependency
parsers (Martins et al., 2008; Nivre and McDon-

source corpus

train with
normal features

source classifier

train with
additional features

target classifier

target corpus source annotation
classification result

Figure 2: The pipeline for training.

raw sentence source classifier source annotation
classification result

target classifier

target annotation
classification result

Figure 3: The pipeline for decoding.

ald, 2008), and is also similar to the Pred baseline
for domain adaptation in (Dauḿe III and Marcu,
2006; Dauḿe III, 2007). Figures 2 and 3 show
the flow charts for training and decoding.

The utilization of the source classifier’s classi-
fication result as additional guide information re-
sorts to the introduction of new features. For the
current considering character waiting for classi-
fication, the most intuitive guide features is the
source classifier’s classification result itself. How-
ever, our effort isn’t limited to this, and more spe-
cial features are introduced: the source classifier’s
classification result is attached to every feature
listed in Table 1 to get combined guide features.
This is similar to feature design in discriminative
dependency parsing (McDonald et al., 2005; Mc-
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Donald and Pereira, 2006), where the basic fea-
tures, composed of words and POSs in the context,
are also conjoined with link direction and distance
in order to obtain more special features. Table 2
shows an example of guide features and basic fea-
tures, where “α = b ” represents that the source
classifier classifies the current character asb, the
beginning of a word.

Such combination method derives a series of
specific features, which helps the target classifier
to make more precise classifications. The parame-
ter tuning procedure of the target classifier will au-
tomatically learn the regularity of using the source
classifier’s classification result to guide its deci-
sion making. For example, if a current consid-
ering character shares some basic features in Ta-
ble 2 and it is classified asb, then the target clas-
sifier will probably classify it asm. In addition,
the training procedure of the target classifier also
learns the relative weights between the guide fea-
tures and the basic features, so that the knowledge
from both the source corpus and the target corpus
are automatically integrated together.

In fact, more complicated features can be
adopted as guide information. For error tolerance,
guide features can be extracted fromn-best re-
sults or compacted lattices of the source classifier;
while for the best use of the source classifier’s out-
put, guide features can also be the classification
results of several successive characters. We leave
them as future research.

4 Related Works

Co-training (Sarkar, 2001) and classifier com-
bination (Nivre and McDonald, 2008) are two
technologies for training improved dependency
parsers. The co-training technology lets two dif-
ferent parsing models learn from each other dur-
ing parsing an unlabelled corpus: one model
selects some unlabelled sentences it can confi-
dently parse, and provide them to the other model
as additional training corpus in order to train
more powerful parsers. The classifier combina-
tion lets graph-based and transition-based depen-
dency parsers to utilize the features extracted from
each other’s parsing results, to obtain combined,
enhanced parsers. The two technologies aim to
let two models learn from each other on the same
corpora with the same distribution and annota-
tion standard, while our strategy aims to integrate
the knowledge in multiple corpora with different

Baseline Features
C
−2 ={

C
−1 =B
C0 =o
C1 =Ú
C2 =�

C
−2C−1 ={B
C
−1C0 =Bo
C0C1 =oÚ
C1C2 =Ú�

C
−1C1 =BÚ
Pu(C0) = 0

T (C
−2)T (C

−1)T (C0)T (C1)T (C2) = 44444
Guide Features

α = b
C
−2 ={ ◦ α = b

C
−1 =B ◦ α = b
C0 =o ◦ α = b
C1 =Ú ◦ α = b
C2 =� ◦ α = b

C
−2C−1 ={B ◦ α = b
C
−1C0 =Bo ◦ α = b
C0C1 =oÚ ◦ α = b
C1C2 =Ú� ◦ α = b

C
−1C1 =BÚ ◦ α = b
Pu(C0) = 0 ◦ α = b

T (C
−2)T (C

−1)T (C0)T (C1)T (C2) = 44444 ◦ α = b

Table 2: An example of basic features and guide
features of standard-adaptation for word segmen-
tation. Suppose we are considering the third char-
acter “o” in “{B o Ú�u”.

annotation-styles.

Gao et al. (2004) described a transformation-
based converter to transfer a certain annotation-
style word segmentation result to another style.
They design some class-type transformation tem-
plates and use the transformation-based error-
driven learning method of Brill (1995) to learn
what word delimiters should be modified. How-
ever, this converter need human designed transfor-
mation templates, and is hard to be generalized to
POS tagging, not to mention other structure label-
ing tasks. Moreover, the processing procedure is
divided into two isolated steps, conversion after
segmentation, which suffers from error propaga-
tion and wastes the knowledge in the corpora. On
the contrary, our strategy is automatic, generaliz-
able and effective.

In addition, many efforts have been devoted
to manual treebank adaptation, where they adapt
PTB to other grammar formalisms, such as such
as CCG and LFG (Hockenmaier and Steedman,
2008; Cahill and Mccarthy, 2007). However, they
are heuristics-based and involve heavy human en-
gineering.
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5 Experiments

Our adaptation experiments are conducted from
People’s Daily (PD) to Penn Chinese Treebank 5.0
(CTB). These two corpora are segmented follow-
ing different segmentation standards and labeled
with different POS sets (see for example Figure 1).
PD is much bigger in size, with about100K sen-
tences, while CTB is much smaller, with only
about18K sentences. Thus a classifier trained on
CTB usually falls behind that trained on PD, but
CTB is preferable because it also annotates tree
structures, which is very useful for downstream
applications like parsing and translation. For ex-
ample, currently, most Chinese constituency and
dependency parsers are trained on some version
of CTB, using its segmentation and POS tagging
as thede factostandards. Therefore, we expect the
knowledge adapted from PD will lead to more pre-
cise CTB-style segmenter and POS tagger, which
would in turn reduce the error propagation to pars-
ing (and translation).

Experiments adapting from PD to CTB are con-
ducted for two tasks: word segmentation alone,
and joint segmentation and POS tagging (Joint
S&T). The performance measurement indicators
for word segmentation and Joint S&T arebal-
anced F-measure, F = 2PR/(P + R), a function
of PrecisionP andRecallR. For word segmen-
tation,P indicates the percentage of words in seg-
mentation result that are segmented correctly, and
R indicates the percentage of correctly segmented
words in gold standard words. For Joint S&T,P

andR mean nearly the same except that a word
is correctly segmented only if its POS is also cor-
rectly labelled.

5.1 Baseline Perceptron Classifier

We first report experimental results of the single
perceptron classifier on CTB 5.0. The original
corpus is split according to former works: chap-
ters271− 300 for testing, chapters301− 325 for
development, and others for training. Figure 4
shows the learning curves for segmentation only
and Joint S&T, we find all curves tend to moder-
ate after7 iterations. The data splitting conven-
tion of other two corpora, People’s Daily doesn’t
reserve the development sets, so in the following
experiments, we simply choose the model after7
iterations when training on this corpus.

The first 3 rows in each sub-table of Table 3
show the performance of the single perceptron
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Figure 4: Averaged perceptron learning curves for
segmentation and Joint S&T.

Train on Test on SegF1% JST F1%
Word Segmentation
PD PD 97.45 —
PD CTB 91.71 —
CTB CTB 97.35 —
PD→ CTB CTB 98.15 —
Joint S&T
PD PD 97.57 94.54
PD CTB 91.68 —
CTB CTB 97.58 93.06
PD→ CTB CTB 98.23 94.03

Table 3: Experimental results for both baseline
models and final systems with annotation adap-
tation. PD→ CTB means annotation adaptation
from PD to CTB. For the upper sub-table, items of
JST F1 are undefined since only segmentation is
performs. While in the sub-table below,JST F1

is also undefined since the model trained on PD
gives a POS set different from that of CTB.

models. Comparing row 1 and 3 in the sub-table
below with the corresponding rows in the upper
sub-table, we validate that when word segmenta-
tion and POS tagging are conducted jointly, the
performance for segmentation improves since the
POS tags provide additional information to word
segmentation (Ng and Low, 2004). We also see
that for both segmentation and Joint S&T, the per-
formance sharply declines when a model trained
on PD is tested on CTB (row 2 in each sub-table).
In each task, only about 92%F1 is achieved. This
obviously fall behind those of the models trained
on CTB itself (row 3 in each sub-table), about 97%
F1, which are used as the baselines of the follow-
ing annotation adaptation experiments.
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POS #Word #BaseErr #AdaErr ErrDec%
AD 305 30 19 36.67↓
AS 76 0 0
BA 4 1 1
CC 135 8 8
CD 356 21 14 33.33↓
CS 6 0 0
DEC 137 31 23 25.81↓
DEG 197 32 37 ↑
DEV 10 0 0
DT 94 3 1 66.67↓
ETC 12 0 0
FW 1 1 1
JJ 127 41 44 ↑
LB 2 1 1
LC 106 3 2 33.33↓
M 349 18 4 77.78↓
MSP 8 2 1 50.00↓
NN 1715 151 126 16.56↓
NR 713 59 50 15.25↓
NT 178 1 2 ↑
OD 84 0 0
P 251 10 6 40.00↓
PN 81 1 1
PU 997 0 1 ↑
SB 2 0 0
SP 2 2 2
VA 98 23 21 08.70↓
VC 61 0 0
VE 25 1 0 100.00↓
VV 689 64 40 37.50↓
SUM 6821 213 169 20.66↓

Table 4: Error analysis for Joint S&T on the devel-
oping set of CTB.#BaseErrand#AdaErr denote
the count of words that can’t be recalled by the
baseline model and adapted model, respectively.
ErrDec denotes the error reduction ofRecall.

5.2 Adaptation for Segmentation and
Tagging

Table 3 also lists the results of annotation adap-
tation experiments. For word segmentation, the
model after annotation adaptation (row 4 in upper
sub-table) achieves an F-measure increment of 0.8
points over the baseline model, corresponding to
an error reduction of 30.2%; while for Joint S&T,
the F-measure increment of the adapted model
(row 4 in sub-table below) is 1 point, which cor-
responds to an error reduction of 14%. In addi-
tion, the performance of the adapted model for
Joint S&T obviously surpass that of (Jiang et al.,
2008), which achieves anF1 of 93.41% for Joint
S&T, although with more complicated models and
features.

Due to the obvious improvement brought by an-
notation adaptation to both word segmentation and
Joint S&T, we can safely conclude that the knowl-
edge can be effectively transferred from on an-

Input Type ParsingF1%
gold-standard segmentation 82.35
baseline segmentation 80.28
adapted segmentation 81.07

Table 5: Chinese parsing results with different
word segmentation results as input.

notation standard to another, although using such
a simple strategy. To obtain further information
about what kind of errors be alleviated by annota-
tion adaptation, we conduct an initial error analy-
sis for Joint S&T on the developing set of CTB. It
is reasonable to investigate the error reduction of
Recallfor each word cluster grouped together ac-
cording to their POS tags. From Table 4 we find
that out of 30 word clusters appeared in the devel-
oping set of CTB, 13 clusters benefit from the an-
notation adaptation strategy, while 4 clusters suf-
fer from it. However, the compositive error rate of
Recallfor all word clusters is reduced by 20.66%,
such a fact invalidates the effectivity of annotation
adaptation.

5.3 Contribution to Chinese Parsing

We adopt the Chinese parser of Xiong et al.
(2005), and train it on the training set of CTB 5.0
as described before. To sketch the error propaga-
tion to parsing from word segmentation, we rede-
fine theconstituent spanas a constituent subtree
from a start character to a end character, rather
than from a start word to a end word. Note that if
we input the gold-standard segmented test set into
the parser, the F-measure under the two definitions
are the same.

Table 5 shows the parsing accuracies with dif-
ferent word segmentation results as the parser’s
input. The parsing F-measure corresponding to
the gold-standard segmentation,82.35, represents
the “oracle” accuracy (i.e., upperbound) of pars-
ing on top of automatic word segmention. After
integrating the knowledge from PD, the enhanced
word segmenter gains an F-measure increment of
0.8 points, which indicates that38% of the error
propagation from word segmentation to parsing is
reduced by our annotation adaptation strategy.

6 Conclusion and Future Works

This paper presents an automatic annotation adap-
tation strategy, and conducts experiments on a
classic problem: word segmentation and Joint
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S&T. To adapt knowledge from a corpus with an
annotation standard that we don’t require, a clas-
sifier trained on this corpus is used to pre-process
the corpus with the desired annotated standard, on
which a second classifier is trained with the first
classifier’s predication results as additional guide
information. Experiments of annotation adapta-
tion from PD to CTB 5.0 for word segmentation
and POS tagging show that, this strategy can make
effective use of the knowledge from the corpus
with different annotations. It obtains considerable
F-measure increment, about0.8 point for word
segmentation and1 point for Joint S&T, with cor-
responding error reductions of30.2% and 14%.
The final result outperforms the latest work on the
same corpus which uses more complicated tech-
nologies, and achieves the state-of-the-art. More-
over, such improvement further brings striking F-
measure increment for Chinese parsing, about0.8
points, corresponding to an error propagation re-
duction of38%.

In the future, we will continue to research on
annotation adaptation for other NLP tasks which
have different annotation-style corpora. Espe-
cially, we will pay efforts to the annotation stan-
dard adaptation between different treebanks, for
example, from HPSG LinGo Redwoods Treebank
to PTB, or even from a dependency treebank
to PTB, in order to obtain more powerful PTB
annotation-style parsers.
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