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Abstract

We present STARK, a lightweight and flexible
Python toolkit for extracting and analyzing syn-
tactic (sub)trees from dependency-parsed cor-
pora. By systematically slicing each sentence
into interpretable syntactic units based on con-
figurable parameters, STARK enables bottom-
up, data-driven exploration of syntactic patterns
at multiple levels of abstraction—from fully
lexicalized constructions to general structural
templates. It supports any CoNLL-U-formatted
corpus and is available as a command-line tool,
Python library, and interactive online demo,
ensuring seamless integration into both ex-
ploratory and large-scale corpus workflows.
We illustrate its functionality through case stud-
ies in noun phrase analysis, multiword ex-
pression identification, and syntactic variation
across corpora, demonstrating its utility for a
wide range of corpus-driven syntactic investi-
gations.

1 Introduction

Syntactically annotated corpora, or treebanks, have
become indispensable in linguistic research, sup-
porting work on grammar description (Ferrer-i Can-
choetal., 2022), typological comparison (Levshina,
2022), genre analysis (Wang and Liu, 2017), as
well as language technology development and un-
derstanding (Zeman et al., 2018; Lin et al., 2012;
Hewitt and Manning, 2019). As their availability
grows, so too does the ecosystem of tools designed
to facilitate their exploration, most notably through
treebank browsing services such as Grew-match
(Guillaume, 2021), PML Tree Query (étepének
and Pajas, 2010), and INESS (Rosén et al., 2012).

Despite this growing infrastructure, most exist-
ing tools are inherently query-based. They re-
quire the user to formulate a specific hypothesis
or structural pattern of interest—typically by spec-
ifying the number of words involved, their mor-
phological properties, and their syntactic relation-
ships. Such top-down approaches are well-suited
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for targeted investigation, but they offer limited
support for inductive, bottom-up discovery of pat-
terns—particularly in cases where no prior expec-
tations about syntactic configurations are available
or desirable.

In practical terms, if a researcher is interested
in noun phrase structures, most existing tools will
allow them to search for examples of a specific pat-
tern — for example, a noun preceded by an adjecti-
val modifier. However, such tools do not typically
support asking what kinds of noun phrase structure
patterns actually occur in the corpus, how frequent
they are, or whether any rare or unexpected pat-
terns emerge — particularly in contrast to another
dataset.

To address this gap, we present STARK (Subtree
Analysis and Retrieval Kit), a toolkit for bottom-up,
treebank-driven syntactic analysis. Rather than re-
lying on predefined queries, STARK automatically
extracts all trees and subtrees that meet general
structural criteria specified by the user—effectively
slicing a parsed corpus into interpretable syntactic
patterns, which can then be counted and compared
within or across corpora.

The remainder of the paper introduces STARK’s
core functionality and configurable parameters
(§2), illustrates its analytic capabilities through fre-
quency, association, and comparison outputs (§3),
and then details its features for example retrieval
and visualization (§4), scalability and performance
optimization (§5), and accessibility via an interac-
tive online demo and open-source release (§6).

2 Core Functionality

STARK is an open-source Python toolkit for ex-
tracting and analyzing syntactic (sub)trees from
dependency-parsed corpora. It operates by sys-
tematically slicing each sentence into smaller, in-
terpretable syntactic units based on configurable
structural parameters, described below.
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2.1 Basic Design

STARK operates on input files in CoONLL-U format,
the standard tab-separated format for represent-
ing word-level syntactic and morphological annota-
tions in dependency-parsed corpora. Although the
tool was developed with the Universal Dependen-
cies (UD) annotation scheme (de Marneffe et al.,
2021) in mind, it is not limited to UD-compliant
data: it accepts any corpus in CoNLL-U format,
regardless of scheme-specific tagsets or label inven-
tories, and handles multi-root sentence structures
and other non-canonical phenomena.

To illustrate STARK’s core functionality, con-

sider the sentence in Figure 1:
f \
The cat sat 0 mat
NOUN

DET NOUN

the
DET

n

VERB ADP

Figure 1: Dependency tree for the sentence The cat sat
on the mat using the UD annotation scheme.

STARK treats every word in a sentence as a
potential syntactic head and extracts the subtree
rooted at that word—that is, the head and all its
dependents. This yields a collection of overlapping
(sub)trees,! each capturing a local syntactic con-
figuration. Table 1 shows the resulting structures
extracted using this procedure, if we were to extract
unlabeled trees with surface word forms only (but
see Section 2.2 for more options).

Head Subtree

The The

cat The < cat

sat (The < cat) < sat > (on < the < mat)
on on

the the

mat on < the < mat

Table 1: (Sub)trees extracted from the parsed sentence
in Figure 1.

Each unique tree is then counted and written
to a tab-separated output file, one per row. Trees
are represented using a simplified query-like syn-
tax inspired by dep_search tool (Luotolahti et al.,
2017),> with additional columns optionally show-

'In what follows, we use the term tree to refer to both full
trees and subtrees, unless otherwise specified.
2A > B means A governs B; A < B means A is governed
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ing frequency, statistical scores, or illustrative ex-
amples.

We now turn to the main parameters that control
how trees are represented, filtered, and extracted.

2.2 Tree Representation

STARK offers several options for determining how
trees are constructed and represented in the output.

* Node type (--node_type) determines what
information is used to represent each token.
Users can choose any CoNLL-U field, such
as surface form, lemma, or UPOS tag, or omit
node content entirely. For instance, the tree
the < mat could appear as DET < NOUN
(UPOS), or the < mat (lemma), depending
on the setting.

Dependency labels (--labeled) are typi-
cally included (e.g., the <det mat), but
can also be omitted to support more ab-
stract structure. Subtype retention is optional
(--label_subtypes), allowing users to dis-
tinguish between coarse and fine-grained la-
bels (e.g., nmod: poss vs. nmod).

Node order (--fixed) determines whether
linear word order is taken into account. When
enabled, token order contributes to the iden-
tity of the tree; otherwise, trees are treated as
equivalent regardless of surface order, which
is particularly useful for analyzing languages
with flexible constituent structure.

These settings allow users to extract trees at dif-
ferent levels of specificity, from fully lexicalized
constructions (e.g., Table 3) to more abstract syn-
tactic patterns (e.g., Table 2 and 4).

2.3 Tree Filtering

Users can further restrict extracted trees using a
range of filters:

* Tree size (--size) specifies the number of
nodes in each tree, either as a single value
(e.g., 3) or a range (e.g., 2-5). This setting
is optional—using a broad range like 1-1000
effectively extracts all trees, regardless of size.

by B; dependency labels follow the operator (e.g., A >obj
B); and parentheses (e.g., A > (B > C)) mark attachment
priority. Letters like A and B stand for tokens, which can be
constrained by form, lemma, UPOS, etc. The underscore (_)
represents any token.



¢ Head constraints (--head) limit tree extrac-
tion to structures rooted in tokens matching
a specified property, such as upos=NOUN or
lemma=want. This is useful for focusing on
specific construction types (e.g., noun-headed
phrases, as in Table 2), or for studying lexi-
cogrammatical behavior of individual words.

Label constraints combine two pa-
rameters (--allowed_labels and
--ignored_labels) to restrict which re-
lations can appear in a tree. Users can
specify a whitelist of allowed relations (e.g.,
nsubj|obj|iobj), or indicate relations to
ignore as irrelevant (e.g., punct), without

discarding the tree itself.

Custom queries (--query) provide fine-
grained control by allowing users to specify
an exact dependency pattern to match.? Cru-
cially, STARK applies all other representation
settings (see Section 2.2) when generating the
output, enabling hybrid workflows that com-
bine top-down targeting with bottom-up ex-
traction—e.g., listing all lexical realizations
or surface order permutations of a pattern (as
in Table 4, for example).

These flexible and combinable filters give users
precise control over the granularity and scope of
extraction, making STARK adaptable to a wide
range of research goals.

2.4 Optional Processing Mode

By default, STARK extracts full subtrees rooted at
each token—i.e., the head and all direct/indirect de-
pendents—producing syntactically coherent units.
The --complete parameter can be adjusted to in-
stead extract all connected subtrees anchored at a
token, including partial or nested fragments. While
this mode can reveal finer combinatorial detail, it is
computationally more demanding and best suited
for small datasets or targeted analyses.

3 Statistical Analysis

In addition to extracting and representing syntactic
structures, STARK provides a range of statistical
measures that support quantitative corpus-based

3Currently, queries are written in dep_search (e.g.
’upos=VERB >nsubj _ >obj _’ for verb-subject-object trees
retrieved in Table 4), but support for other query languages
like Grew (Guillaume, 2021) or Semgrex (Bauer et al., 2023)
could be added in future.
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syntactic analysis. These include basic frequency
counts, association scores, and keyness compar-
isons, all computed based on the extracted trees. In
this section, we illustrate each type of analysis on
different corpora and configurations to highlight
STARK s flexibility.*

3.1 Frequency

By default, STARK outputs absolute and relative
frequency counts for each extracted tree. Rela-
tive frequencies are normalized per million tokens,
enabling comparison across corpora of different
sizes. This information is useful for identifying
both dominant constructions and rare syntactic pat-
terns (including annotation mistakes), providing
insight into the overall distribution of specific struc-
tures in a corpus. For example, Table 2 in Appendix
A lists the ten most frequent noun-headed trees in
the English GUM UD Treebank (Zeldes, 2017), re-
vealing the most common types of nominal phrase
patterns in the language that can inform descriptive
grammar work and usage-based models, or serve
as a basis for comparative studies.

3.2 Association

In addition to frequency, STARK optionally com-
putes several statistical association measures via
the --association_measures parameter. These
quantify the strength of co-occurrence between
nodes within a tree (Evert, 2009) and include mu-
tual information (MI), MI3, Dice, logDice, t-score,
and log-likelihood (LL). The scores are particu-
larly useful for identifying collocationally strong
structures, especially in lexicalized output. This is
illustrated in Table 3 in Appendix A, which lists
the top ten noun phrases of size 3 or more in the
French GSD UD treebank (Guillaume et al., 2019)
ranked by logDice, revealing a range of nominal
multi-word expressions.

3.3 Keyness

STARK supports keyness analysis via the
--compare parameter, which compares extracted
trees against a reference corpus. It calculates the
relative frequency of each tree in both corpora
and computes several keyness scores (Gabrielatos,
2018), including log-likelihood (LL), BIC, log ra-
tio, odds ratio, and %DIFF. These help detect struc-

*Due to space constraints, more information on the
specific measures is available in the cited literature and
at: https://github.com/clarinsi/STARK/blob/master/
statistics.md.
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tures that are disproportionately frequent or un-
derrepresented in one corpus relative to another,
making this feature particularly useful for com-
paring syntactic or lexical behavior across genres,
domains, or languages.

Table 4 in Appendix A illustrates this by com-
paring subject—verb—object (SVO) patterns in the
spoken (SST) and written (SSJ) Slovenian UD tree-
banks (Dobrovoljc et al., 2017; Dobrovoljc and
Nivre, 2016), highlighting constructions that are
more or less prominent in speech in comparison to
writing.

4 Example Retrieval and Visualisation

STARK offers optional output enhancements
to support qualitative analysis and visualiza-
tion. Users can retrieve a sample sentence
per tree (--example), with marked nodes, or
add node-level (--node_info) and head-level
(-—head_info) details for further analysis.

STARK also supports integration with online
treebank browsing services. If the input is an offi-
cial UD treebank (i.e., follows the standard nam-
ing convention), enabling the --grew_match op-
tion generates clickable links to the corresponding
patterns in the Grew-match interface (Guillaume,
2021).> These links let users explore all instances
of a given tree in context within the latest UD re-
lease and leverage additional Grew-match function-
alities.

For compatibility with legacy tools, the
--depsearch option outputs trees in the
dep_search syntax used by earlier platforms such
as SETS (Luotolahti et al., 2015), dep_search
(Luotolahti et al., 2017) or Drevesnik (Stravs and
Dobrovoljc, 2024).°

5 Scalability

STARK has been tested on all official UD tree-
banks and can handle corpora of various sizes
and annotation styles, including multi-root sen-
tences and non-standard labels. Output vol-
ume can be managed via frequency thresholds
(--frequency_threshold) or by capping the
number of output trees (--max_lines), making it
easy to scale STARK to large datasets while main-
taining interpretability.

Several advanced settings have also been in-
troduced to further improve performance and

5https://universal.grew.fr
https://orodja.cjvt.si/drevesnik/
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scalability. These include multi-core sup-
port (--cpu_cores), internal caching for re-
peated experiments (--internal_saves), and
chunked processing of directory-based corpora
(--continuation_processing). Users can also
select between two extraction modes: the default
greedy_counter, optimized for bottom-up tree ex-
traction, and the query_counter, which performs
better when used with specific target patterns.

6 Availability and Online Demo

STARK is freely available as an open-source tool
under the Apache 2.0 license.” In addition to
the command-line interface, the tool is also re-
leased as a Python library via PyPI (pip install
stark-trees),® enabling seamless integration into
custom scripts and larger NLP workflows. Com-
prehensive documentation is available through the
GitHub and PyPI repositories where users can find
detailed explanations of all parameters, usage ex-
amples, and configuration tips.

To further support accessibility, STARK is also
available via an interactive online demo.’ The web
interface covers all core functionalities of the tool,
allowing users to select a treebank, configure ex-
traction settings (see Section 2), and explore the
output in an interactive table view. Unlike the
command-line version, the online interface also
provides visualisations for one or multiple example
instances of the tree.

As such, the online demo is particularly use-
ful for exploratory browsing, classroom use, and
first-time users unfamiliar with the command-line
interface. Screenshots of both the settings panel
and the output view are shown in Figures 2 and 3
in Appendix B.

7 Conclusion

We introduced STARK, a versatile toolkit for
bottom-up syntactic analysis of dependency-parsed
corpora. By extracting, ranking, and comparing
syntactic (sub)trees, it enables exploratory and
data-driven research without requiring predefined
queries. The tool supports a wide range of configu-
rations and outputs, and is available as a command-
line tool, Python library, and online demo.

Its practical value has already been demon-
strated through early adoption in a range of re-

7https://github.com/clarinsi/STARK
8https://pypi.org/project/stark—trees/
*https://orodja.cjvt.si/stark/
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search contexts, from integration into tools such as
the DELTA diversity pipeline (Esteve and Dobro-
voljc, 2025) and ComparaTree treebank compari-
son tool (Ter¢on and Dobrovoljc, 2025), to studies
on syntactic profiling of spoken data (Hiill and Do-
brovoljc, 2025; Dobrovoljc, 2025), learner essays
(Munda and Holdt, 2025), and parallel multilingual
corpora (Cibej, 2025).
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A Example STARK Outputs

Rank Tree Freq. Example

1 NOUN 4436  They’re bringing drugs.

2 DET <det NOUN 2331  Plant the cuttings.

3 ADP <case DET <det NOUN 1874  Remove from the oven.

4 ADP <case NOUN 1815  Prepare for impact.

5 CCONJ <cc NOUN 809 Distinguish concepts and prototypes.
6 PRON <nmod:poss NOUN 803 My house was empty and cold.

7 ADJ <amod NOUN 735 We have hard work ahead.

8 ADP <case ADJ <amod NOUN 602 They show it in many ways.

9 DET <det ADJ <amod NOUN 576 Yeah, or turn a deaf ear.

10 ADP <case PRON <nmod:poss NOUN 569 He was recognized for some of his books.

Table 2: Top 10 nominal phrase structures in the English GUM UD Treebank sorted by frequency. STARK settings
used: node_type = upos, labeled = yes, label_subtypes = yes, fixed = yes, size = 1-10000, head

= upos=NOUN, complete = yes.

Rank Tree Freq. No. of nodes logDice
1 qualité >/ < prix 5 3 9.35
2 pour < la < premiere < fois 35 4 7.50
3 une < nouvelle < fois 10 3 6.97
4 de < le < monde 92 3 6.78
5 pour < sa < part 7 3 6.70
6 par < la < suite 24 3 6.58
7 sur < des < prises 5 3 6.19
8 d’ < araignées > aranéomorphes 7 3 6.12
9 I’ < année > suivante 9 3 6.02
10 de <la<ville 48 3 6.00

Table 3: Top 10 nominal multi-word expressions in the French GSD UD Treebank ranked by logDice association
measure. STARK settings used: node_type = form, labeled = no, fixed = yes, size = 3-10@, head =
upos=NOUN, complete = yes, association_measures = yes, frequency_threshold = 5.

Rank Tree RFinSST RFinSSJ OR Example

1 _<nsubj _<obj _ 1768.4 1639.9 1.08 ce nasi moZje to naredijo.

2 _<obj_<nsubj _ 1321.2 1299.2 1.02 tega nihce ni razumel dolgo.

3 _>nsubj _>obj _ 3964 408.1 0.97 paimam jaz tudi svoje obveznosti.

4 _>obj _>nsubj _ 203.3 325.7 0.62 zanimala sta vas novinarstvo in filozofija
5 _<obj _>nsubj_ 1473.7 3159.9 0.47 kaj izraZa ta glagol ?

6 _<nsubj _>obj _ 33234 8225.5 0.40 katera crta razpolavija kot ?

Table 4: SVO patterns in the spoken Slovenian SST UD Treebank ranked by Odds Ratio (OR) keyness measure,
when compared to the written SSJ UD Treebank. RF = relative frequency. STARK settings used: labeled = yes,
fixed = yes, query = upos=VERB >nsubj _ >obj _, complete = no, compare = sl_ssj-ud.conllu.
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B STARK Web Interface

Input treebank

Tree specification
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+ Advanced settings

+ Compare treebanks

Figure 2: Screenshot of the STARK online demo interface, showing the interactive settings selection, from basic
tree specification to advanced tree filtering and treebank comparison options.

Results

<< Back to selected settings Download complete results ¥

Visualization

L

She thinks 1 spent the night in  my jeans  —
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Figure 3: Screenshot of the STARK online demo interface, showing the interactive results table, an example tree
visualisation, and links to explore all matched examples in both the demo and Grew-match.
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