SBU-NLP at SemEval-2025 Task 8: Self-Correction and Collaboration in
LLMs for Tabular Question Answering

Rashin Rahnamoun and Mehrnoush Shamsfard
Shahid Beheshti University, Tehran, Iran
rahnamounrashin@gmail.com and m-shams@sbu.ac.ir

Abstract

This paper explains the submission of the
SBU-NLP team at SemEval-2025 Task 8:
question-answering over tabular data. We
present a novel algorithm for this task, aimed
at systems capable of interpreting large ta-
bles and providing accurate answers to natu-
ral language queries. The evaluation uses the
DataBench dataset, which covers a wide range
of topics and reflects the complexity of real-
world tabular data. Our approach incorporates
a self-correction mechanism that iteratively re-
fines LLM-generated code to address errors
and prevent common mistakes. Additionally, a
multi-LLM collaborative strategy is employed
to generate answers, where responses from
multiple LLMs are compared, and the ma-
jority consensus or a valid alternative is se-
lected. The method relies exclusively on open-
source, open-weight models, avoiding costly
processes like training or fine-tuning. Ex-
perimental results demonstrate that combining
multiple LLMs with self-correction leads to
significant performance improvements. How-
ever, challenges arise with list-based answers
and responses involving multiple numerical,
string, or boolean values, where further refine-
ment is needed. The proposed simple system
was among the top performers in both Subtask
A and Subtask B among open-source, open-
weight models in the competition.

1 Introduction

Task 8(Osés-Grijalba et al., 2025) focuses on
question-answering over tabular data. The goal
is to evaluate systems that can effectively inter-
pret large tables and provide accurate answers
to natural language questions based on the data
within those tables. The evaluating dataset,
DataBench(Grijalba et al., 2024), is important be-
cause many real-world applications rely on tabu-
lar data, and everyday datasets can vary signifi-
cantly in both the subjects they cover and their size.

DataBench covers a wide range of topics, making
it essential to evaluate systems on diverse data to
ensure they can handle a variety of real-world sce-
narios.

Our system, which we used for this task, em-
ploys a novel, simple algorithm based on a self-
correction mechanism. In this approach, the large
language model (LLM)-generated code from the
prompt is iteratively fed back into the LLM to fix
errors and avoid common code mistakes. Addi-
tionally, we use a multi-LLM collaborative answer
generation strategy, where answers from multiple
LLMs are compared, and the majority consensus
is used. In cases where errors due to code issues
prevent the LLM from generating an appropriate
answer, alternative answers from other LLMs are
utilized. Furthermore, if the generated answers
are not in a valid format, a valid answer from an-
other LLM for the same question is adopted. This
method uses models that are either open-source or
open-weight, avoiding computationally costly pro-
cedures like training and fine-tuning.

Participating in this task has led to several key
discoveries. The results show that leveraging mul-
tiple LLMs and employing a self-correction mech-
anism significantly improved performance. Addi-
tionally, a well-structured Python code generation
prompt played a crucial role in obtaining better
answers from tables. However, we also discov-
ered that many of the errors in our system were
related to cases where the answers were in list for-
mat or involved more than one numerical, string,
or boolean value. If these specific errors could be
better handled, the system’s results could be fur-
ther improved. In terms of ranking, our model per-
formed well among open-source and open-weight
models, securing 3rd place out of 37 teams in Sub-
task B and 6th place out of 37 teams in Subtask
A.You can find the code for our system in the fol-

703

Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 703-711
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

lowing GitHub repository'.

2 Background

Question answering on tabular data is a critical
task in natural language processing. Over the
years, researchers have developed diverse method-
ologies to improve the accuracy and efficiency of
this process.

The task is about question answering from tab-
ular data. For this goal, a newly introduced bench-
mark, DataBench(Grijalba et al., 2024), has been
used for evaluation, which consists of different
large tables that vary in the topics they cover.
As input, like the example in Figure 1, a natu-
ral language-based question with a table name is
given, and the expectation is to find an appropriate
answer from the related tables. For the final com-
petition tests, 15 tables were provided. In Subtask
A, the tables can be of any size, while in Subtask B,
the row count is fewer than 20 due to the context-
length limitations for LLMs. We participated in
both subtasks with the same system.

2.1 Training and Fine-tuning the Models

To address the challenges of question answering
on tabular data, several models have been de-
veloped, each leveraging training and fine-tuning
strategies. Below, we highlight some of the most
notable approaches:

TAPEX: Built on the BART framework,
TAPEX(Liu et al.) is tailored for structured tables.
It employs a neural SQL executor, pretrained on a
synthetic corpus, to interpret and execute queries
effectively.

TaPas: TaPas(Herzig et al., 2020) takes a dif-
ferent approach by directly predicting answers
through selecting relevant table cells and applying
aggregation operations, bypassing the need for in-
termediate logical forms. Extending BERTS archi-
tecture, it encodes tabular structures and is trained
end-to-end for seamless performance.

OmniTab: OmniTab(Jiang et al., 2022) en-
hances table-based question answering by combin-
ing natural and synthetic data during pretraining.
It aligns questions with corresponding tables.

2.2 Prompting and In-Context Learning

Similar to the approaches used in this task’s pa-
per(Grijalba et al., 2024), two key methodologies

"https://github.com/rarahnamoun/TabularQA/

have been introduced for evaluating the perfor-
mance of LLMs on the proposed benchmark:

* In-Context Learning (ICL): In this ap-
proach, examples with corresponding an-
swers are provided to the model within the
prompt, enabling it to infer patterns and gen-
erate responses accordingly.

* Code Generation Prompting: In this
method, the model generates code based on
the given prompt, executes it, and derives the
final answer from the table.

Furthermore, another paper introduces the Seek-
and-Solve pipeline (Jiang et al., 2024) , a novel
framework for enhancing table-based question an-
swering. This approach instructs LLMs to first
seek relevant information before solving the given
question, integrating these reasoning steps into
a structured Seek-and-Solve Chain of Thought
(SS-CoT) to improve performance.

Additionally, two other papers propose specific
methodologies tailored to particular applications
that are worth mentioning. One approach employs
a relation graph as an encoder and a tree-based de-
coder to tackle numerical reasoning questions(Lei
et al., 2022). Another approach utilizes the Multi-
TabQA model, (Pal et al., 2023)which is designed
to answer questions based on information from
multiple tables and is capable of generalizing to
generate tabular answers.

3 System Overview

In the question-answering task on tabular data, sev-
eral challenges may arise. Due to limitations in
hardware infrastructure, we employed a prompt-
based approach 2.2 to achieve results while avoid-
ing strategies that rely on fine-tuning or training
procedures 2.1.

In our experiments, we exclusively used open-
source and open-weight models and avoided third-
party and commercial models due to their high
costs. To generate code, we utilized prompts in
LLMs. However, because of context-length limi-
tations, it was not feasible to include tables in the
prompt, particularly in Subtask A. Instead, a code-
generating prompt was provided to the LLM, and
the generated code was subsequently executed.

One of the main challenges encountered was
errors in the generated code. To address this,

704

https://github.com/rarahnamoun/TabularQA/

we implemented iterative prompts for code self-
correction. However, not all errors could be re-
solved through iterative prompting alone. In such
cases, we leveraged responses from alternative
LLMs to rectify mistakes. Since different LLMs
may not exhibit identical errors for a given ques-
tion, we used responses from other models.

After all, to avoid mistakes due to data types,
a post-processing algorithm was run to ensure the
correct format of the expected output data. Our
framework consists of three main components:

* Self-Correction: First, iterative prompts
were used to correct errors in the generated
code; if self-correction failed to resolve the
issue, the next step was to utilize alternative
LLM responses.

* LLM Collaboration: When self-correction
failed, responses from other LLMs were used
to improve the results, as not all LLMs gener-
ated incorrect code for the same question.

* Post-Processing: Finally, a post-processing
algorithm was applied to ensure correct for-
matting and type validation of the results,
aligning them with the expected outputs.

3.1 Problem Formulation

Given a dataset D and a natural language question
Q, our goal is to find the function f(D, Q) that
returns the correct answer A. Formally:

A= J(D,Q) = execute(M(P(D,Q))) (1)

where P is the prompt generator, M is the LLM
generating code, and execute runs the code to re-
trieve A.

3.2 Prompt

The task consists of two subtasks, both following
the same approach with one small difference.

For Subtask A, the dataset D can be of any size.
Given a natural language question (), the corre-
sponding dataset name D is also provided. The
competition includes 15 different datasets span-
ning multiple subjects and varying in size.

Examples of questions () and datasets D are
given in Figure 1.

Appendix A provides details on the prompt
used for code generation in both subtasks. The
primary difference between the two subtasks lies
in the table information included in the prompt:

Dataset: 066_IBM_HR
Question: Is our average employee older than 35?

Dataset: 077_Gestational
Question: Which number of pregnancies is most com-
mon?

Figure 1: Examples of question (@) and dataset (D).

- In Subtask A, due to context-length limita-
tions of LLMSs, only the columns and a few initial
rows from D are provided in P(D, Q).

- In Subtask B, since only datasets with fewer
than 20 rows are considered, the entire table from
D is included in P(D, Q).

This structured approach ensures that the
prompt P(D, Q) effectively guides M in gener-
ating executable code for obtaining A.

4 Self-Correction Mechanism

Let C; be the generated code at iteration ¢, and
FE; be the error encountered during execution. The
LLM refines C} iteratively:

Ct+1 - M(P(Da Q7 Ct7 Et)) (2)

until execution produces no errors.

The Self-Correction Mechanism involves iter-
ative refinement of a generated code to handle
errors encountered during execution. The pro-
cess starts with an initial code generation, fol-
lowed by error detection. If an error is de-
tected, the algorithm refines the code using an
error-handling prompt in Appendix B. The error-
handling prompt is added to the code generation
prompt, which is described in Appendix A. This
loop continues until the code executes successfully
or a specified maximum number of iterations (in
our experiments, 5 iterations) is reached. If errors
persist after the limit, the algorithm returns a fail-
ure. The detailed steps of this mechanism are out-
lined in Algorithm 1.

4.1 Multi-LLM Collaborative Answer
Generation

Our system integrates multiple LLMs, each pro-
viding independent responses to a given question
based on tabular data. Formally, given a dataset
D and a natural language question (), each LLM
M;, where i € {1,2,...,n}, receives a prompt
P;i(D, Q) containing relevant table rows, column
descriptions.The steps followed in the sections
above are carried out separately for each LLM
without any changes. The response A; is given by:

705

Algorithm 1 Self-Correcting Mechanism

Co + M(P(D,Q)) {Initial code generation}
fort =1to T do

Ay, By < execute(C) {Run code and check

errors}

if £; = () then

Return A; {Return final answer}

end if

Cin

code}
end for
Return Failure =0

— M(P(D,Q,Ct, Ey)) {Refine

cal/statistical values), List[category] (fixed-length
categorical lists), and List[number] (fixed-length
numerical lists). The format and constraints de-
pend on the question’s wording.

Since the expected answer type is unknown be-
forehand, the post-processing step ensures that A
belongs to one of these categories.

The full post-processing procedure is detailed in
Algorithm 2, which formalizes the steps for merg-
ing and filtering LLM outputs before selecting the
final answer.

A; = Mi(Pi(D, Q)) 3)

where A; represents the answer produced by
model M; for the given input. The system aggre-
gates these answers for further evaluation and re-
finement.

To derive the final answer A, a consensus func-
tion O is applied over the set of generated answers:

A= O({A17A27"'7An}) (4)

where O ensures that the generated output has a
valid format and does not contain any errors.

4.2 Post-Processing

For each subtask, the expected answer must ad-
here to a predefined format. Given a dataset D
and a natural language question @), each LLM M,
(where k € {1,2,...,n}) produces an answer Af
using the prompt Py (D, Q). The responses from
different LLMs are collected for further validation
and selection.

Since some LLM responses may be empty due
to iterative self-correction reaching its limit, we
prioritize selecting a valid response. The selection
process follows these steps:

1. If at least one answer has the correct expected
format and size, we choose the valid response with
the highest confidence. 2. If multiple LLMs pro-
vide valid answers, we apply a consensus function
O based on majority voting where A represents
the final selected answer. 3. If the number of valid
answers is tied and n is even, a default LLM M,
is chosen as the tiebreaker, as was done in our ex-
periments where n = 2.

Each answer must belong to a predefined cate-
gory, including Boolean (True/False, Y/N), Cate-
gory (values from dataset cells), Number (numeri-

Algorithm 2 Post-Processing: Handling n LLM
Outputs
Dr <+ Read file for model M, Vk €
{1,2,...,n} {Load model outputs}
for each (14, q;, A¥) € Dy, do

¢ + 9(q), Af — g(Af) {Pre-process
questions and answers }
end for

Merge all Dy, on r; { Align model outputs}
D « {e(r;) | ri € D1UD2U- - -UD,,} {Extract
relevant results}
for each (7, ¢, A1, Aa, ..., Ay) € Ddo
AF h(AF) VK € {1,2,...,n} {Apply
validation and filtering }
A — O({A1,Ay,...,Ay}) {Select best
valid answer}
end for=0

S Experimental Setup

For generating results, the Together API? was used
along with two models for experiments.

The models utilized were Llama 3.1 70B3
(Dubey et al., 2024) and DeepSeek—VS4 (Liu
et al., 2024), The settings for Llama 3.1 70B and
DeepSeek-V3 are: Max Tokens = 500 (both), Tem-
perature = 0.7 (both), Top-p = 0.9 (Llama 3.1 70B)
and 0.7 (DeepSeek-V3), Stream = False (both).

The evaluation was based on the
databench_eval Python package introduced
by the task organizer in the link®.

2https://www.together.ai/

3https://huggingface.co/meta-1lama/Llama-3.
1-70B

4https://huggingface.co/deepseek—ai/
DeepSeek-V3

5https://github.com/jorses/databench_eval/
blob/main/src/databench_eval/eval.py

706

https://www.together.ai/
https://huggingface.co/meta-llama/Llama-3.1-70B
https://huggingface.co/meta-llama/Llama-3.1-70B
https://huggingface.co/deepseek-ai/DeepSeek-V3
https://huggingface.co/deepseek-ai/DeepSeek-V3
https://github.com/jorses/databench_eval/blob/main/src/databench_eval/eval.py
https://github.com/jorses/databench_eval/blob/main/src/databench_eval/eval.py

Metric Subtask A

| Subtask B

DeepSeek-V3 Llama 3.1 70B | DeepSeek-V3 Llama 3.1 70B

84.9%
85.6%

F1-score
Databench_eval

80.3%
80.1%

85.7%
86.0%

80.7%
78.9%

Table 1: Performance comparison of DeepSeek-V3 and Llama 3.1 70B on Subtasks A and B.

6 Results

As shown in Table 2, due to higher code errors
in Llama 3.1 70B, the improvement percentage
after the Self-Correcting step is higher than that
of DeepSeek-V3. However, the self-error correc-
tion rate ability in DeepSeek-V3 is higher than
in Llama 3.1 70B. DeepSeek-V3 outperformed
Llama 3.1 70B in the Self-Correcting step across
both subtasks. DeepSeek-V3 achieved an error
correction rate of 86.67% in Subtask A and 100%
in Subtask B, while Llama 3.1 70B showed cor-
rection rates of 56.67% and 66.67%, respectively.
This demonstrates that DeepSeek-V3 is highly ef-
fective in resolving its own code errors. In the Col-
laborative step, where the outputs of both models
were merged to handle cases where one model did
not provide an answer, the improvement rates were
5.17% for Subtask A and 4.60% for Subtask B.

The final results in Table 1 also show that al-
though the improvement of each step for Llama
3.1 70B was higher, due to the lack of performance
in situations where the Llama 3.1 70B model’s an-
swer was accepted as the base model, it performs
weaker than DeepSeek-V3.

Step DeepSeek-V3 Llama 3.1 70B

Subtask A (Improvement %)
2.49% 3.25%
5.17%

Self-Correcting

Collaborative

Subtask B (Improvement %)
1.5%

Self-Correcting 1.9%

Collaborative 4.60%

Table 2: The improvement percentages for the Self-
Correcting step have been calculated based on the num-
ber of corrected code errors relative to the total ques-
tions. For the Collaborative step, the percentage repre-
sents the number of questions where at least one LLM
lacked an answer, and the other LLM’s response was
used instead, divided by the total number of questions.

As detailed in Appendix C, errors related to list-
type outputs (Lists of integers, Lists of strings, and
Lists of floats) are the most frequent errors for both
DeepSeek-V3 and Llama 3.1 70B across Subtasks

A and B. highlighting the difficulty LLMs face
when handling structured list-based outputs.

In cases where both LLMs produced error-free
answers that differed from each other, one of them
was preferred. Because our experiment includes
only two LLMs, we simply selected the response
from the other LLM. The results are presented
in Table 1. DeepSeek-V3 outperforms Llama
3.1 70B across all metrics for both Subtasks A
and B. The model achieves higher F1-score and
Databench_eval scores, indicating its superior per-
formance in both subtasks.

Table 3 in Appendix D presents the results for
open-source, open-weight models category rank-
ing, where TeleAl secured the highest score in
both tasks, followed by SRPOL AIS. The SBU-
NLP team® ranked 6th in Subtask A but improved
to 3rd place in Subtask B, demonstrating stronger
performance in the second task.’

7 Conclusion

This paper presents an innovative algorithm lever-
aging a self-correction mechanism and a multi-
LLM collaborative answer generation approach to
address the key challenges in question answering
from tabular data. By incorporating iterative error-
checking in code generation and utilizing collabo-
rative solutions to ensure valid expected answers,
our method significantly reduces errors and inap-
propriate responses. Our error analysis highlights
that most issues arise when the answer is a list
rather than a simple data type, such as a number,
string, or boolean. Future work will focus on refin-
ing the prompting strategies to minimize errors in
such scenarios.

References

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,

fCodabench ID: rashrah

7All rankings in this paper are based on the latest manual
review of the task at the time of writing, within the open-
source, open-weight models category.

707

Akhil Mathur, Alan Schelten, and ... Amy Yang.
2024. The llama 3 herd of models.

Jorge Osés Grijalba, Luis Alfonso Urefa-Lopez, Euge-
nio Martinez Camara, and Jose Camacho-Collados.
2024. Question answering over tabular data with
databench: A large-scale empirical evaluation of
Ilms. In Proceedings of LREC-COLING 2024,
Turin, Italy.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Miiller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4320-4333, Online. Association for
Computational Linguistics.

Ruya Jiang, Chun Wang, and Weihong Deng. 2024.
Seek and solve reasoning for table question answer-
ing. In arXiv preprint arXiv:2409.05286.

Zhengbao Jiang, Yi Mao, Pengcheng He, Graham Neu-
big, and Weizhu Chen. 2022. OmniTab: Pretraining
with natural and synthetic data for few-shot table-
based question answering. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 932-942, Seat-
tle, United States. Association for Computational
Linguistics.

Fangyu Lei, Shizhu He, Xiang Li, Jun Zhao, and Kang
Liu. 2022. Answering numerical reasoning ques-
tions in table-text hybrid contents with graph-based
encoder and tree-based decoder. In Proceedings
of the 29th International Conference on Computa-
tional Linguistics, pages 1379-1390, Gyeongju, Re-
public of Korea. International Committee on Com-
putational Linguistics.

A Liu, B Feng, B Xue, B Wang, B Wu, C Lu,
C Zhao, C Deng, C Zhang, C Ruan, and D Dai.
2024. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. Tapex: Ta-
ble pre-training via learning a neural sql executor.
In Proceedings of the International Conference on
Learning Representations.

Jorge Osés-Grijalba, Luis Alfonso Urefia-Lépez, Euge-
nio Martinez Camara, and Jose Camacho-Collados.
2025. SemEval-2025 task 8: Question answering
over tabular data. In Proceedings of the 19th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2025), Vienna, Austria. Association for Computa-
tional Linguistics.

Vaishali Pal, Andrew Yates, Evangelos Kanoulas, and
Maarten de Rijke. 2023. MultiTabQA: Generating
tabular answers for multi-table question answering.
In Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 6322-6334, Toronto, Canada.
Association for Computational Linguistics.

708

https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2022.naacl-main.68
https://doi.org/10.18653/v1/2022.naacl-main.68
https://doi.org/10.18653/v1/2022.naacl-main.68
https://aclanthology.org/2022.coling-1.118/
https://aclanthology.org/2022.coling-1.118/
https://aclanthology.org/2022.coling-1.118/
https://doi.org/10.18653/v1/2023.acl-long.348
https://doi.org/10.18653/v1/2023.acl-long.348

A Code Generation Prompt

Prompt for Code Generation

The following table is from the dataset
{{dataset_name}}. The first few rows are:
{{sample_rows}}

Your task is to write Python code that answers the
question: "{{question}}"

The code should:

* Load the dataset from the appropriate location.
The dataset is in the folder named ’competi-
tion’ which contains subfolders named after
the datasets (e.g., {{dataset_name}}).

¢ Load the dataset file (sample.parquet) and
perform the necessary operations on the
DataFrame.

Please do the following:

e Use pd.read_parquet to load the dataset
from the full data file (sample.parquet).

e Process the DataFrame named ’df’ accord-
ingly and print the final result.

Please return only the Python code, without any
explanation or extra text, and make sure it selects the
correct file using the dataset_name from the ’com-
petition’ folder.

The file path for the full dataset is:
competition/{{dataset_name}}/sample.parquet
Important Rules:

* Do not include explanations, comments, or
code block markers (e.g., python).

* If there are multiple answers, format the out-
put as: [’United Kingdom’, ’Germany’,
’France’].

* Each code print must be in a single line (no
line breaks).

* If the question answer is binary (True, False),
do not include the count.

Types of Answers Expected:
According to the expected answer types:

* Boolean: Valid answers include True/False,
Y/N, Yes/No (case insensitive).

» Category: A value from a cell (or a substring
of a cell) in the dataset.

* Number: A numerical value from a cell in
the dataset, which may represent a computed
statistic (e.g., average, maximum, minimum).

* List[category]: A list containing a fixed num-
ber of categories. The expected format is:
[’cat’, ’dog’]. Pay attention to the word-
ing of the question to determine if uniqueness
is required or if repeated values are allowed.

+ List[number]: Similar to List[category], but
with numbers as its elements.

Prompt for Code Generation

Additional Notes:

Also, import all needed packages.

You will not know the specific type of answer ex-
pected, but you can be assured that it will be one of
these types.

For the competition, the order of the elements within
the list answers will not be taken into account.

The printed output in the code must be one of the
above answer types.

B Error Correction Prompt

The code with errors, along with the error infor-
mation, is sent to the LLM to attempt generating a
corrected version. If a previous attempt resulted in
an error, the following additional prompt is used
to refine the code.

Error Handling Prompt

The previous attempt resulted in an error:

{{previous_error}}
The previous code was: {{previous_code}}

Instructions: Correct the error and return only the
fixed Python code.

C Error Analysis

As shown in Figures 2, 3, 4, and 5, errors related to
list-type outputs (Lists of integers, Lists of strings,
and Lists of floats) consistently account for the
largest proportion of mistakes across both models
and subtasks. . Additionally, numerical errors are
notably frequent.

E Numerical

B Boolean

W String

I Lists of integers
[Lists of strings
[Lists of floats

g

Figure 2: Error Breakdown for DeepSeek-V3 Subtask
A

709

[Numerical

26.67% B Boolean
[l Lists of integers
[Lists of strings
[Lists of floats

Figure 3: Error Breakdown for DeepSeek-V3 Subtask B

[Numerical
B Boolean
W String

23.81% .
[Lists of integers
‘ [Lists of strings
A Lists of floats

Figure 4: Error Breakdown for Llama 3.1 70B Subtask A

E Numerical

B Boolean

W String

[Lists of integers
[Lists of strings
HE Lists of floats

Figure 5: Error Breakdown for Llama 3.1 70B Subtask B

710

D SemkEval Databench 2025 ranking

Subtask A | Subtask B
Rank Team Score (%) \ Rank Team Score (%)
1 Tele Al 95.02 1 TeleAl 9291
2 SRPOL AIS 89.66 2 SRPOL AIS 86.59
6 SBU-NLP 85.63 3 SBU-NLP 86.02

Table 3: Performance comparison for Subtask A and
Subtask B. Among the 37 teams using only open-
source or open-weight models, the ranking is in a sep-
arate category. The table presents the top 2 rankings
along with the result and ranking of SBU-NLP in both
subtasks.

711

