LATE-GIL-nlp at Semeval-2025 Task 10: Exploring LLMs and transformers for Characterization and extraction of narratives from online news

Ivan Diaz, Fredin Vázquez, Christian Luna, Aldair Conde, Gerardo Sierra, Helena Gómez - Adorno, Gemma Bel - Enguix


Abstract
This paper tackles SemEval~2025 Task~10, “Multilingual Characterization and Extraction of Narratives from Online News,” focusing on the Ukraine-Russia War and Climate Change domains. Our approach covers three subtasks: (1) {textbf{Entity Framing}}, assigning protagonist-antagonist-innocent roles with a prompt-based Llama~3.1~(8B) method; (2) {textbf{Narrative Classification}}, a multi-label classification using XLM-RoBERTa-base; and (3) {textbf{Narrative Extraction}}, generating concise, text-grounded explanations via FLAN-T5. Results show a unified multilingual transformer pipeline, combined with targeted preprocessing and fine-tuning, achieves substantial gains over baselines while effectively capturing complex narrative structures despite data imbalance and varied label distributions.
Anthology ID:
2025.semeval-1.92
Volume:
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
Venues:
SemEval | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
657–665
Language:
URL:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.92/
DOI:
Bibkey:
Cite (ACL):
Ivan Diaz, Fredin Vázquez, Christian Luna, Aldair Conde, Gerardo Sierra, Helena Gómez - Adorno, and Gemma Bel - Enguix. 2025. LATE-GIL-nlp at Semeval-2025 Task 10: Exploring LLMs and transformers for Characterization and extraction of narratives from online news. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 657–665, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
LATE-GIL-nlp at Semeval-2025 Task 10: Exploring LLMs and transformers for Characterization and extraction of narratives from online news (Diaz et al., SemEval 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.92.pdf