TableWise at SemEval-2025 Task 8: LLM Agents for TabQA

Harsh Bansal
IIIT Hyderabad
harsh.bansal@students.iiit.ac.in

Akshit Sharma
IIIT Hyderabad
akshit.sharma@students.iiit.ac.in

Abstract

In this study, we present our approach to Se-
mEval Task 8: Question Answering over Tab-
ular Data (Os’es Grijalba et al., 2025), where
we develop a Large Language Models(LLM)-
based agent capable of answering questions
over tabular data. Our agent leverages a set of
custom defined tools incorporating structured
table parsing and reasoning mechanisms to en-
hance semantic understanding of tabular data.
Extending our methodology, we apply chain-of-
thought prompting to further refine it’s under-
standing of the task. Our findings suggest that
LLM-based agents, when properly adapted, can
significantly improve their table-based question
answering capabilities.

1 Introduction

The task of Question Answering on Tabular Data
(TabQA) involves answering natural language
queries using structured tabular data. Given a natu-
ral language query, the goal is to generate accurate
responses based on the tabular data.

Conventional TabQA methods typically involve
providing large language models (LLMs) with the
entire table alongside the query, under the assump-
tion that full-table context enables models to reason
over any potentially relevant information. However,
this strategy faces significant challenges, including
limited scalability due to context length constraints,
poor generalization and high computational over-
head.

Retrieval-Augmented Generation (RAG) meth-
ods have partially tried to address these issues by
retrieving semantically similar chunks of the table.
However, they rely on embeddings that often fail
to capture relational structures and numerical pre-
cision, resulting in poor retrieval performance and
difficulty in handling diverse column types.

To overcome these limitations, we propose an
LLM-agent-based framework that abstracts tables

"The authors contributed equally to this work.

Aman Raj
IIIT Hyderabad
aman.r@students.iiit.ac.in

Parameswari Krishnamurthy
IIIT Hyderabad
param.krishna@iiit.ac.in

into SQL representations, enabling LLMs to lever-
age structured information more effectively. This
approach combines structured query execution with
natural language understanding, offering a scalable
and efficient solution for TabQA.

2 Related Work

Early approaches for TabQA primarily relied on se-
mantic parsing, translating queries into executable
programs such as SQL, as seen in models like
Neural Programmer (Neelakantan et al., 2017) and
SQLNet (Xu et al., 2017). While effective, these ap-
proaches required annotated SQL queries and strug-
gled to generalize across diverse table schemas.

Later on, models such as TAPAS (Herzig et al.,
2020) and TaBERT (Yin and Neubig, 2020) used
weakly supervised learning over table-text pairs,
removing the dependence on explicit SQL annota-
tions. While these models advanced the state of the
art, they exhibited limitations in numerical reason-
ing capabilities and scalability to long or complex
tables.

To further address these challenges, Retrieval-
Augmented Generation (RAG) techniques, exem-
plified by models like RASAT (Kim et al., 2022),
incorporated retrieval mechanisms to identify rel-
evant table segments before answer generation.
However, despite improved scalability, these meth-
ods often failed to capture the structured and rela-
tional aspects inherent to tables.

Recent developments in agentic LLMs, such as
Toolformer (Schick et al., 2023) and ReAct (Yao
et al., 2022), introduced frameworks where lan-
guage models interact with external tools (e.g.,
SQL engines, calculators) to perform more accu-
rate and interpretable reasoning.

Building upon these advancements, we propose
anovel framework that integrates agentic reasoning
with SQL-based execution. By abstracting tables
into SQL databases and enabling LL.Ms to interact

623

Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 623-626
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics



LLM

SQL Database

2\ |

SQL Query Checker
Tool

A

Info SQL Table Tool SQL Query Executor

AGENT

Final Response to
User's Question

Figure 1: Proposed Agentic Framework for TabQA

with them, our approach enhances generaliza-
tion across domains, and strengthens numerical
reasoning capabilities in TabQA tasks.

3 Dataset

Each table is provided in two formats:
all.parquet, containing the complete set
of rows, and sample.parquet, containing the first
20 rows of the corresponding all.parquet file.
The collection of all all.parquet files across
every table constitutes the Databench dataset,
while the set of all sample.parquet files forms
the Databench-lite dataset.

Additionally, for each table, a set of natural lan-
guage queries has been provided, which can be
answered using the table’s information.

4 System Overview

We introduce a novel pipeline for Question Answer-
ing over Tables that allows LLMs to interact with a
set of specialized tools to deliver precise, reliable
responses. The end-to-end architecture is depicted
in Figure 1 and comprises two primary stages:

4.1 Data Ingestion

All input tables, originally stored in . parquet for-
mat, are imported into an SQL database. This con-
version enables efficient, schema-driven querying
using SQL.

4.2 Query Processing

The core of our methodology is a framework that
allows an LLLM to interact with multiple tools for
query interpretation, SQL generation, validation,
and execution. The description of the tools is as
follows:

* SQL Query Checker: Ensures generated
SQL statements are syntactically correct, safe,
and restricted to read-only operations, thereby
preventing unintended modifications.

* Info SQL Table: Retrieves table metadata
(e.g., column names, data types) and sample
rows to inform accurate and context-aware
SQL formulation.

* SQL Query Executor: Executes validated
SQL statements against the database and re-
turns the results.

Throughout execution, the agent systemati-
cally records intermediate information—such as
table schemas, draft queries, and execution out-
puts—which are then used by the LLM to produce
the final, formatted answer.

S Experimental Setup

To evaluate the system’s performance, we integrate
multiple open-source LLMs into our framework.
Experiments are conducted using standardized eval-
uation scripts from external evaluators. Table 1

624



LLM Provider

No. of Parameters

Model

Meta 70B
Codestral 22B
Mistral 7B
Meta 3B

Llama-3.3-70B
Codestral-22B-v0.1
Mistral-7B-v0.3
Llama-3.2-3B

Table 1: Open-source LLMs used for Experiments

Model Databench-lite Databench
Llama-3.3-70B 67.43 62.07
Codestral-22B-v0.1 60.21 56.73
Mistral-7B-v0.3 49.42 44.29
Llama-3.2-3B 39.65 36.17

Table 2: LLM Performance Metrics

summarizes the LLLM variants tested, indicating
their provider, parameter count, and model used.
Each model interacts with the defined set of tools
to answer the natural language queries.

6 Results and Analysis

We integrated four open-source LLMs—ILlama-
3.3-70B, Codestral-22B-v0.1, Mistral-7B-v0.3,
and Llama-3.2-3B—into our agentic framework
and evaluated each on both the Databench and
Databench-lite datasets.

6.1 Effect of Dataset Scale

All models achieved higher accuracy on Databench-
lite than on Databench. The reduced row count in
Databench-lite simplifies multi-step SQL queries,
decreases execution times, and lowers the risk of ex-
ceeding tool-call limits or entering infinite reason-
ing loops. In contrast, Databench’s larger search
space for intermediate operations—such as retriev-
ing unique values before aggregation—Ileads to
longer query pipelines and a higher error rate in
query formulation and execution.

6.2 Comparative Model Performance

Llama-3.3-70B achieved the highest accuracy
(62.07% on Databench), followed by Codestral-
22B-v0.1, Mistral-7B-v0.3, and finally Llama-3.2-
3B. The larger parameter count of Llama-3.3-70B
enables more precise SQL generation and robust
reasoning over complex queries. Codestral-22B-
v0.1 and Mistral-7B-v0.3 performed competitively
but showed occasional failures on nested or multi-
step queries. Llama-3.2-3B’s lower accuracy indi-
cates that smaller models struggle with the reason-
ing depth required for intricate tabular QA tasks.

6.3 Error Analysis
6.3.1

In multi-step queries, the agent frequently mis-
aligns natural language predicates with correspond-
ing schema values, resulting in omitted filtering
clauses or syntactic errors. An example from the
066_IBM_HR table illustrates this behavior:

Multi-Step Query Failures

“Are there more employees who travel
frequently than those in the HR depart-
ment?”

The predicate “travel frequently” should trans-
late to:

WHERE BusinessTravel = 'Travel_Frequently'

However, the agent either omits the WHERE
clause entirely or generates invalid SQL, such as:

SELECT COUNT("travel frequently")
FROM 066_IBM_HR;

This misalignment prevents correct filtering and
yields an incorrect answer.

6.3.2 Infinite Tool-Call Loops

A Small fraction of the queries processed by Llama-
3.3-70B entered infinite refinement loops due to
overly strict or misspelled filters (e.g., EmployeID).
Smaller models like Llama-3.2-3B were found to
be more susceptible to infinite refinement loops
highlighting the trade-off between model capacity
and reasoning capabilities.

6.4 Summary

Our results indicate that dataset scale and model
size are critical determinants of TabQA perfor-
mance. Databench-lite facilitates efficient and ac-

625



curate querying, while larger LLMs produce su-
perior SQL formulation and complex reasoning.
Future work will explore methods to reduce query
complexity and improve the resilience of smaller
models.

7 Conclusion

Our research highlights the advantages of using an
agentic approach for QA on tabular data. It demon-
strates its ability to dynamically construct and re-
fine queries for precise information retrieval, which
is essential for QA performance. By outperforming
RAG-based and full-table context methods in han-
dling mixed data types and scalability challenges, it
proves more adaptable and efficient. Additionally,
its iterative reasoning surpasses direct SQL query-
ing and reinforces the potential of LLM-powered
agents in table-aware Al systems.

8 Limitations

Despite our progress, this work has several limi-
tations. The multi-step reasoning process necessi-
tates multiple tool calls, which increases response
latency—especially when the agent engages in ex-
cessive query refinement—and can occasionally
lead to infinite reasoning loops that exhaust the
tool-call budget and prevent valid answers. The
agent also sometimes deviates from the expected
answer format, undermining consistency. To ad-
dress these issues, we plan to incorporate termi-
nation conditions that detect repetitive tool calls
and enforce early exits, enforce stricter output val-
idation to guarantee format adherence, and opti-
mize query execution to reduce latency. Finally,
our reliance on off-the-shelf open-source LLMs
may limit performance; fine-tuning these models
on domain-specific training data could further im-
prove accuracy and robustness.

References

Jonathan Herzig, Pawel Nowak, Thomas Muller,
Francesco Piccinno, and Julian Eisenschlos. 2020.
Tapas: Weakly supervised table parsing via pre-
training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 4320-4333. Association for Computa-
tional Linguistics.

Jinhyuk Kim, Wonjin Park, and Jaewoo Lee. 2022.
Rasat: Integrating relational structures into pretrained
language models for table-based question answer-
ing. In Proceedings of the 60th Annual Meeting of

the Association for Computational Linguistics (ACL).
Association for Computational Linguistics.

Arvind Neelakantan, Quoc V Le, and Ilya Sutskever.
2017. Neural programmer: Inducing latent programs
with gradient descent. In Proceedings of the 5th In-
ternational Conference on Learning Representations
(ICLR). International Conference on Learning Repre-
sentations.

Jorge Os’es Grijalba, Luis Alfonso Ure na-L’opez,
Eugenio Mart’inez C’amara, and Jose Camacho-
Collados. 2025. SemEval-2025 task 8: Question
answering over tabular data. In Proceedings of the
19th International Workshop on Semantic Evalua-
tion (SemEval-2025), Vienna, Austria. Association
for Computational Linguistics.

Timo Schick, Arun Tejasvi Dwivedi-Yu, Jaap Jumelet,
Nafise Sadat Moosavi, and Iryna Gurevych. 2023.
Toolformer: Language models can teach themselves
to use tools. In arXiv preprint arXiv:2302.04761.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet:
Generating structured queries from natural language
without reinforcement learning. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 681-691.
Association for Computational Linguistics.

Shinn Yao, Jiong Zhao, Dian Yu, Kaixin Yang, Maarten
Bosma, and Denny Zhou. 2022. React: Synergiz-
ing reasoning and acting in language models. In

Advances in Neural Information Processing Systems
(NeurlPS).

Pengcheng Yin and Graham Neubig. 2020. Tabert: Pre-
training for joint understanding of textual and tabular
data. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 8413-8426. Association for Computational
Linguistics.

626



