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Abstract

This paper describes our system used in the
SemEval-2025 Task 9 The Food Hazard Detec-
tion Challenge. Through data processing that
removes elements and shared multi-task archi-
tecture improve the performance of detection.
Without complex architectural modifications
the proposed method achieves competitive per-
formance with 0.7835 Marco F1-score on sub-
task 1 and 0.4712 Marco F1-score on sub-task
2. Comparative experiments reveal that joint
prediction outperforms separate task training
by 1.3% F1-score, showing the effectiveness
of multi-task learning of this challenge.In sub-
task 1 and sub-task 2,our detection capabilities
are ranked 9/26 and 10/27.

1 Introduction

Food safety hazards pose persistent threats to pub-
lic health and economic security, driving societal
demand for real-time detection of emerging risks.
While early incident reports proliferate on social
media platforms, automated systems are urgently
needed to accurately parse vast unstructured data.
The development of efficient automated detection
algorithms thus emerges as a critical research focus,
directly addressing the pressing imperative for risk
mitigation.

The SemEval-2025 Task 9(Randl et al., 2025)
is a food hazard detection task which extract food
issues from web sources like social media, and we
participate in sub-task 1 and sub-task 2.Sub-task 1
focus on text classification for food hazard predic-
tion,predicting the type of hazard and product.Sub-
task 2 focus on food hazard and product “vector”
detection, predicting the exact hazard and product.

Though machine learning approaches have
demonstrated promise in food safety monitoring,
two challenges persist in real-world deployment
scenarios. First, social media texts exhibit inherent
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linguistic complexity through abbreviated syntax,
domain-specific jargon (e.g., "Salmonella spp."),
and implicit hazard references that resist traditional
keyword matching. Second, the long-tail distribu-
tion of both hazards and products creates class im-
balance - our analysis reveals that the top 3 hazard
categories account for nearly 70% of occurrences
in training set.

Our work addresses these challenges by system-
atically integrating transformer architectures with
multi-task learning paradigms. Unlike baseline
methods that process hazard and product detec-
tion sequentially, we perform joint optimization of
these closely related tasks using shared semantic
representations. This approach enables mutual re-
inforcement between hazard context understanding
and product-specific recognition. The choice of
RoBERTa(Liu et al., 2019) as the base architecture
stems from its proven capability in robust token-
level representation learning, which is particularly
crucial for detecting implicit hazard mentions in
short texts. In our training process, we treat the pre-
diction tasks for hazard and product labels equally.

2 Related Work

2.1 Multi-task Learning

In recent years, the multi-task learning (MTL) ap-
proach in the field of natural language processing
(NLP) has seen significant development and appli-
cation(Yu et al., 2024). By effectively utilizing task-
specific information and shared information to si-
multaneously solve multiple related tasks, MTL of-
fers a more efficient training process and inference
efficiency compared to single-task learning, and it
enhances the model’s generalization ability.Recent
advancements in MTL have revolutionized natural
language processing by enabling concurrent op-
timization of complementary tasks(Chung et al.,
2022; Lewis et al., 2019; Raffel et al., 2023). A
notable advancement is the work by Wang who
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introduced InstructionNER(Wang et al., 2022), a
unified neural architecture that establishes shared
latent representations for cross-task generalization
in named entity recognition (NER). Their frame-
work demonstrates how structured task instructions
and auxiliary objective integration can enhance
performance metrics by 12-15% across multiple
benchmarks.The efficacy of MTL becomes par-
ticularly evident in low-resource information ex-
traction scenarios. Chen addressed this through
their 2INER(Zhang et al., 2023) framework, imple-
menting hierarchical prompt tuning for few-shot
MTL. By jointly optimizing span recognition and
entity typing sub-tasks with task-specific prompt
layers, their approach achieves 8.2% F1-score im-
provement over single-task baselines under 100-
shot learning conditions, significantly enhancing
cross-domain adaptability.

2.2 Extreme Multilabel Classification

Although our task is relatively moderate in scale
compared to tasks involving millions of possible
labels — with only a little over a thousand product
labels in the sub-task with the most labels (sub-task
2) — characteristics such as long-tailed distribu-
tion and sparsity are also evident in our data, sim-
ilar to what is observed in Extreme Multi-Label
Classification (XMC) scenarios. The objective of
extreme multi-label classification is to learn feature
architectures and classifiers that can automatically
tag a data point with the most relevant subset of
labels from an extremely large label set.(Bhatia
et al., 2016) DeepXML(Dahiya et al., 2021) frame-
work addresses these challenges by decomposing
the deep extreme multi-label task into four simpler
sub-tasks each of which can be trained accurately
and efficiently. MatchXML(Ye et al., 2024) is an
efficient framework designed for the problem of
XMC. It generates dense label embeddings by com-
bining the Skip-gram model and utilizes BERT as
the text encoder, effectively handling large-scale
label spaces.

3 Data and Methodology

3.1 Data Description

The dataset from Task 9 of SemEval-2025 con-
tains 6,644 short texts with an average length of
88 characters. These texts primarily consist of En-
glish food recall titles sourced from official food
agency websites, such as the FDA. Each text has
been meticulously labeled across four categories:

hazard,product,hazard category and product cat-
egory. Hazards include 128 distinct hazard cat-
egories.Hazard Category can be understood as a
higher-level classification of different types of haz-
ards, totaling 10 categories. Products comprises
1,142 specific product categories.Product Category
with a total of 22 categories. The core objective
of the task is to identify the relevant hazard cat-
egory from the given texts. For instances in sub-
task1 and sub-task2 only both hazard and product
completely right will score 1.0,while hazard com-
pletely wrong will directly score 0.0.This evalua-
tion method shows the importance of the hazard
prediction.

3.2 Preprocessing

In this section, we will detail the preprocessing
steps applied to our data, which is then used
throughout all training processes. Initially, a space
normalization operation is performed: this step
aims to eliminate unnecessary consecutive whites-
pace characters in the text, retaining only single
whitespace characters to ensure textual tidiness and
consistency. Following that, there is a filtration
of numerical information: this process focuses on
removing irrelevant numeric details such as times,
location numbers, and sequential product and doc-
ument numbers. Furthermore, for isolated symbols
existing outside of numbers in product and docu-
ment numbers, these have also been cleaned up to
minimize noise data impact on subsequent analysis,
ensuring the quality and accuracy of the dataset.

3.3 Methodology

Our multi-task architecture leverages the ROBERTa
transformer to jointly model hazard classification
and product categorization. Given an input se-
quence X, the RoOBERTa encoder generates contex-
tualized representations through successive trans-
former layers:

H = RoBERTa(X) € RE*d (1)

where L denotes sequence length and d is the hid-
den dimension size. We extract the [CLS] token’s
embedding hicrg) € R from the final layer’s out-
put H as the aggregated text representation.

Two parallel classification heads process this
shared representation for their respective tasks. For
hazard prediction:

yn = Whrhicrs) + ba 2
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Figure 1: This image shows our frame of our method. CLS in RoBERTa represent the CLS token of the last hidden

state in the model.

and for product prediction:
Yp = Wphjcrs) + bp 3)

where W), € RMxd 1, € RN*dare task-
specific weight matrices, with denoting the num-
ber of hazard classes and product categories re-
spectively. For sub-task1l hazard category label is
10,product category label is 22. For sub-task 2
hazard label is 128,product label is 1142.

Despite the evaluation metrics focusing more
on correctly predicting hazards during the assess-
ment phase, we simplify the problem by treating
the predictions of both hazard and product equally.
Specifically,the unified loss combines both objec-
tives through balanced averaging:

1
L=3(Lu+Ly) )

where L}, and £, represent standard cross-entropy
losses of hazard and product,and L represent the
unified loss. This approach means that during the
training process, we do not directly account for
the complexity of calculating the accuracy of the
product part only when the hazard prediction is
correct. Instead, by treating the losses of both tasks
equally, we aim to simplify the training process.
We expect that this simplified strategy will provide
sufficient guidance in practice, enabling the model
to learn effective feature representations, thereby
indirectly improving performance under specific
evaluation criteria.

4 Experiments

In the experiments, we selected RoBERTa as the
base model, and we also conducted some prelimi-
nary experiments using BERT(Devlin et al., 2019).
We employed the official script to calculate the
macro F1 score for evaluating our experimental
results, and we will strive to present the results
of our direct submissions to the official platform,
even if these results may be incomplete. Detailed
hyperparameter settings are provided in Table 1.

All experiments were conducted on an NVIDIA

GeForce GTX 3090 GPU.
Parameter Sub-task1l Sub-task2
Epochs 10 10
Batch size 2 2
Learning rate le-5 le-5
Warmup steps 500 500

Loss function  CrossEntropy CrossEntropy

Table 1: Training configuration for sub-task1 and sub-
task2. The table lists the key parameters used during the
training phase for both tasks.

4.1 Results and Analysis

Model Sub-taskl Sub-task2
Baseline(Valid) 0.6381 /
Ours(Valid) 0.8004 /
Ours(Test) 0.7835 0.4712

Table 2: Main experimental results focusing on Macro
F1 scores for sub-task1 and sub-task2. All results were
uploaded to the official website for computation. The
validation set contains 565 unlabeled instances, while
the test set contains 997 instances. This table displays
the performance of the baseline and our model on both
validation and test sets.

Table 2 shows the capability of our system in
detecting food hazards. Compared to methods that
separately predict hazards and product labels, our
system demonstrates superior performance. This
achievement indicates that adopting a multi-task
learning strategy not only helps the model more
accurately determine categories but also further en-
hances the effectiveness of food hazard detection
by strengthening the learning of semantic features.
Specifically, multi-task learning allows the model
to share and utilize information across different
yet related tasks, thereby improving overall perfor-
mance.

Based on the results in Table 3, it is clear to
see the significant improvement brought by the
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Model Prediction Mode Result
Separate 0.6381

BERT Joint 0.6557
Separate 0.7317

ROBERTa Joint 0.7446

Table 3: Comparison of Macro F1 scores for predicting
hazard and product labels separately versus jointly using
BERT and RoBERTa as model backbones on sub-task1.
The joint prediction shows the improvement when both
labels are predicted simultaneously.

multi-task learning strategy in predicting food haz-
ards and product labels. Specifically, performance
improvements were observed in joint prediction
mode whether using BERT or RoBERTa as the
model backbone. For BERT, the Macro F1 score
in separate prediction mode was 0.6381, which
increased to 0.6557 in joint prediction mode. Simi-
larly, RoOBERTa saw an increase from 0.7317 in sep-
arate prediction to 0.7446 in joint prediction. These
results strongly indicate that simultaneously pre-
dicting two related tasks, namely food hazards and
product labels, can effectively enhance the overall
performance of the model.

5 Conclusion

In this paper, we present our solution for SemEval-
2025 Task 9:The Food Hazard Detection Chal-
lenge. The task objective focuses on simultane-
ously predicting hazard types and corresponding
food products from social media texts. To ad-
dress this challenge, we implemented a systematic
pipeline beginning with data preprocessing steps
that removed semantically irrelevant elements like
timestamps and document IDs. Subsequently, we
developed a multi-task learning framework based
on the ROBERTa architecture, which enables joint
prediction for both hazard and product classifica-
tion through parameter sharing. Our final system
achieved competitive performance with macro-F1
scores of 0.7835 on sub-task 1 and 0.4712 on sub-
task 2 in the official evaluation.

Limitations

In this section, we discuss several limitations of our
study and indicate potential directions for future
improvements.

Firstly, while the utilization of the [CLS] token
is effective for many classification tasks, it may
fall short in capturing task-relevant local informa-

tion. Particularly in scenarios involving long texts
or when specific sections of the text are crucial
for decision-making, relying on a token that aggre-
gates information from across the entire input se-
quence might overlook key local details. Secondly,
in multi-task learning settings, simply averaging
losses across different tasks could overlook the in-
tricate relationships and dependencies among these
tasks, such as conditional dependencies or differ-
ences in their relative importance. Certain tasks
may be more critical under specific conditions, or
their outcomes might depend on each other in sub-
tle ways that averaged loss functions fail to cap-
ture. Lastly, although our data processing strategy
proved effective within the scope of our experi-
ments, it largely depends on empirical observations
rather than a solid theoretical foundation. In sum-
mary, while we have achieved certain results in our
current research, there remain several limitations
as outlined above. We aim to address these issues
in future work, striving to propose more compre-
hensive and universally applicable approaches.
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