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Abstract

This paper investigates multilingual emotion
classification across three tasks: binary classifi-
cation, intensity estimation, and cross-lingual
emotion detection. To address challenges posed
by linguistic diversity and limited annotated
data, we explore a range of deep learning ap-
proaches, including transformer-based embed-
dings and traditional classifiers. Following ex-
tensive experimentation, language-specific em-
bedding models were selected as the final ap-
proach due to their superior capability to cap-
ture linguistic and cultural nuances. Evalua-
tions on both high- and low-resource languages
demonstrate that this method yields strong
performance, achieving competitive macro-
average F1 scores across tasks. Notably, in the
cross-lingual detection task, our approach se-
cured first-place rankings in Oromo, Tigrinya,
and Kinyarwanda, driven by the integration of
advanced preprocessing techniques and tailored
language modeling. Despite these advances,
challenges persist due to data scarcity in under-
represented languages and the inherent com-
plexity of emotional expression. This study un-
derscores the importance of developing robust,
language-aware emotion recognition systems
and highlights future directions, including the
expansion of multilingual datasets and contin-
ued refinement of modeling techniques.

1 Introduction

The analysis and processing of emotions from tex-
tual data have become crucial in understanding hu-
man communication across different languages and
cultures. This study focuses on the detection and
classification of emotions across diverse linguistic
contexts, spanning regions from South America to
East Asia. Our objective is to categorize emotions
into key dimensions, namely sadness, anger, fear,
disgust, joy, and surprise, while considering cross-
lingual variations and linguistic complexities.

To address these challenges, we structure our
study into three distinct tracks: (1) Track A in-

volves binary emotion classification, determining
whether a given text expresses a particular emotion;
(2) Track B measures the intensity of emotions on
a scale from O to 3, enabling a more granular under-
standing of emotional expressions; and (3) Track C
explores cross-lingual emotion detection, facilitat-
ing insights into emotional patterns across different
languages.

Understanding emotions based on textual data
plays a pivotal role in various applications, includ-
ing social media analysis, behavioral research, and
the study of emotions’ influence on social interac-
tions. Our work contributes to the development
of robust emotion recognition systems, enabling
better comprehension of multilingual emotional ex-
pressions and their implications in computational
linguistics.

Despite the significant advancements in emotion
classification, several challenges persist. Some lan-
guages exhibit highly complex grammatical struc-
tures, making it difficult to train effective models.
Additionally, the classification of emotions in low-
resource languages is hindered by data scarcity and
syntactic intricacies. Furthermore, certain machine
learning models demonstrate suboptimal perfor-
mance when applied to multilingual emotion clas-
sification, necessitating the development of novel
techniques to enhance model adaptability and gen-
eralization.

To address these limitations, we present a com-
prehensive analysis of state-of-the-art methodolo-
gies and evaluate their effectiveness across multiple
languages. Our findings highlight the critical role
of innovative preprocessing techniques, domain
adaptation strategies, and transfer learning in im-
proving multilingual emotion classification.

All code implementations, including the models
and experimental setups employed in this study, are
publicly available on GitHub:'. This repository pro-
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vides full documentation of our methodologies, ex-
perimental results, and final model architectures.

2 Related Work

Multi-label emotion detection has emerged as a sig-
nificant task in NLP?, particularly for low-resource
languages. The task is structured in two main out-
put formats: (1) a binary format, which indicates
whether an emotion is present in the text, and (2)
an intensity scale ranging from 0 to 3, which repre-
sents the strength of the emotion in the text.

Given that this task follows a text classification
paradigm, various models have been explored to
identify the most effective architectures. A consid-
erable amount of research has focused on evalu-
ating different structures to determine the optimal
approach. In (Wang et al., 2016), a combination of
LSTM? networks and CNNs* was explored, where
various model configurations were compared based
on their F1-score performances. These insights
were leveraged to identify suitable model struc-
tures for developing a custom model tailored to the
specific requirements of this task.

For low-resource languages, text preprocessing
plays a crucial role in improving model perfor-
mance. The work presented in (Muhammad et al.,
2023) highlighted the effectiveness of multiple
preprocessing algorithms specifically designed for
African languages. The study demonstrated that
well-structured preprocessing pipelines lead to bet-
ter text representations, ultimately improving clas-
sification accuracy.

Moreover, datasets specifically curated for emo-
tion detection in underrepresented languages have
been explored. The datasets presented in (Muham-
mad et al., 2025a) and (Belay et al., 2025) serve
as essential resources for training models and eval-
uating performance in real-world settings. These
datasets enable the training of robust models capa-
ble of handling linguistic diversity.

To enhance model performance, modifications to
existing architectures have been proposed. Based
on the insights from (Wang et al., 2016), additional
layers were incorporated into custom models to im-
prove the representation of low-resource languages.
This ensures that the models can capture intricate
linguistic patterns that might otherwise be over-
looked.

“natural language processing
3Long Short-Term Memory
*Convolutional Neural Networks

3 System Overview

In this section, we present a comprehensive
overview of our system for multi-label text clas-
sification, which integrates various deep learning
architectures and machine learning classifiers. The
system follows a pipeline that includes text prepro-
cessing, feature extraction using neural network
models, and classification through different ma-
chine learning algorithms.

3.1 Preprocessing

The preprocessing pipeline involves several steps
to clean and standardize the text data. These in-
clude converting text to lowercase, removing un-
necessary whitespace, filtering out special charac-
ters, URLs, and emojis by replacing with their tex-
tual description, normalizing tokens, performing
language-specific tokenization, and removing stop-
words. These steps ensure the data is consistent
and suitable for NLP tasks.

3.2 Feature Extraction

To extract features, we employed a diverse range
of models, including LSTM networks, MLMs?,
and LLMs®. The LLMs were fine-tuned using
LoRA” (Hu et al., 2021), a parameter-efficient tun-
ing method that facilitates task-specific adaptation
while maintaining computational efficiency.

The extracted feature vectors were derived using
two distinct approaches. The first approach utilized
the output from the embedding layer of the models,
which captures contextual word representations in
a lower-dimensional vector space. The second ap-
proach involved extracting the final hidden state of
the neural network, which encapsulates high-level
semantic information of the text.

3.3 Classification Approach

Following feature extraction, we applied multi-
ple classification algorithms to perform the multi-
label classification task. One of the classifiers used
was the MLP®, a feedforward artificial neural net-
work capable of modeling complex relationships
between the extracted features and the target la-
bels. Additionally, the system employed XGBoost,
a gradient boosting framework renowned for its
effectiveness in structured data classification (Chen

>Multilingual Language Models
®Large Language Models
"Low-Rank Adaptation
$Multi-Layer Perceptron
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and Guestrin, 2016). Furthermore, SVMs were uti-
lized as a classification method due to their ability
to operate effectively in high-dimensional feature
spaces by identifying optimal hyperplanes for clas-
sification (Cortes and Vapnik, 1995).

For languages with sufficient pretrained mod-
els available using MTEB®(Muennighoff et al.,
2022), we identified the best-performing embed-
ding model and paired it mainly with SVM as the
classifier. This approach leverages the strengths
of the pretrained embedding models in capturing
language-specific nuances, while the SVM clas-
sifier ensures robust performance for multi-label
classification. On the other hand, for languages
with limited pretrained resources, we utilized the
multilingual embedding model “Multilingual ES
large instruct” (Wang et al., 2024) in combination
with XGBoost as the classifier. The model, de-
signed to generalize across diverse languages, en-
abled the system to maintain high performance
even in resource-constrained settings.

4 Experimental Setup

This section outlines the experimental setup, in-
cluding data splits, preprocessing, hyperparameter
tuning, computational resources, and the tools and
libraries used, aiming for reproducibility and trans-
parency. All experiments and evaluation protocols
in this work are conducted following the guidelines
specified in SemEval-2025 Task 11 (Muhammad
et al., 2025b), which establishes the framework for
text-based emotion detection.

4.1 Data Splits and Usage

The dataset(Muhammad et al., 2025a) was divided
into three subsets: training, development (valida-
tion), and testing. Specifically, 80% of the training
dataset was allocated for training, while the remain-
ing 20% was reserved for validation to facilitate
model selection. Once the best-performing model
was identified during the validation phase, the en-
tire training and development datasets were com-
bined to retrain the final model. This final model
was then evaluated on the test dataset, which was
held out during the entire training process to en-
sure an unbiased assessment of the model’s gener-
alization performance. This approach adheres to
standard practices in machine learning research to
prevent data leakage and ensure robust evaluation
(Goodfellow et al., 2016).

“Massive Text Embedding Benchmark

4.2 Preprocessing

Preprocessing of the dataset was performed us-
ing the clean-text library. The preprocessing
pipeline involved multiple steps to clean and stan-
dardize the text data. Initially, all text was con-
verted to lowercase, and unnecessary whitespace
was removed to eliminate redundancy. Special
characters, URLs, and emojis were filtered out us-
ing regular expressions. Emojis were replaced by
their corresponding textual descriptions (e.g., ©®—
“smiling face”). Punctuation was also removed,
and tokenization was performed using language-
specific tokenizers to ensure optimal segmentation,
and stopwords were removed to further reduce
noise. These steps ensured the data was clean and
consistent across all subsets. Preprocessing was
applied consistently to the training, validation, and
test datasets to avoid introducing biases or incon-
sistencies. Such preprocessing steps have been
shown to improve the performance of NLP mod-
els by reducing noise and simplifying the input
representations (Zhang and Wang, 2020).

4.3 Hyperparameter Tuning

Hyperparameter tuning used Optuna (Akiba et al.,
2019) to optimize SVM and XGBoost hyperparam-
eters. Bayesian optimization balanced exploration
and exploitation, with configurations assessed on
the validation set. The best configuration was se-
lected based on the performance metric.

4.4 Model Training and Optimization

The model fine-tuning with LoRA, and the train-
ing of the MLP and XGBoost models, utilized Bi-
nary Cross-Entropy (BCE) as the loss function for
Tracks A and C, and Cross-Entropy for Track B,
owing to its appropriateness for classification tasks.
Meanwhile, the training of the SVM model em-
ployed hinge loss.Using LoRA, we fine-tuned the
Q, K, and V matrices for feature extractor trans-
former models, as shown in Table 3. Given the un-
balanced dataset, a weighted loss approach was em-
ployed to ensure that the model adequately learned
from all classes. Optimization for fine-tuning deep
learning models was performed using the AdamW op-
timizer, which improves upon the standard Adam
optimizer by decoupling weight decay and learn-
ing rate updates (Loshchilov and Hutter, 2019).
To further enhance training stability and conver-
gence, a cosine annealing learning rate scheduler
with restarts(Loshchilov and Hutter, 2017) was em-

510



Table 1: Results across Track A, B, and C showing macro-average F1 scores of Our Model , Paraticipants Best

Model scores, Task Dataset Best Model with Baseline(Muhammad et al., 2025a) and rankings.

Track A Track B Track C
Language Our Model Ours BP* Base Rank | Ours BP* BDP** Base Rank | Ours BP* BDP** Base Rank
Afrikaans(afr) (Wang et al., 2024) + SVM 5401 69.86 37.14 13/32 — — — — — 54.01 70.50 6128 35.04 4/12
Ambharic(amh) (Benmounah et al., 2023) + SVM | 61.20 77.31 63.83 18/40 | 49.42 85.58 — 50.79 12/20 | 61.20 66.68 48.66  4/11
Algerian Arabic(arq) (Wang et al., 2024) + SVM 51.07 66.87 41.41 18/36 | 36.54 6497 36.37 1.64 15/23 | 51.07 5875 5575 3378 4/12
Moroccan Arabic(ary) (Wang et al., 2024) + SVM 51.88 6292 47.16 17/35 — — — — — 51.88 6322 5276 3546 4/10
Chinese(chn) (iampanda, 2024) + SVM 56.65 7094 53.08 25/36 | 48.47 72.24 5186 40.53 15/24 | 56.65 6889 5523 24.56 5/12
German(deu) (Wang et al., 2024) + SVM 60.60 7399 6423 21/44 | 54.10 76.57 5621 56.21 15/24 | 60.60 72.67 59.17 46.84 4/12
English(eng) (Zhang et al., 2025) + SVM 73.97 8230 70.83 28/74 | 68.81 84.04 64.15 64.15 20/36 | 73.97 79.69 6558 37.54 3/12
Spanish(esp) (Wang et al., 2024) + SVM 76.19 84.88 7744 24/44 | 66.70 80.80 72.59 7259 2026 | 76.19 83.11 7329 5737 3/13
Hausa(hau) (Dobler and de Melo, 2023) + SVM | 63.22 75.07 59.55 16/36 | 58.42 77.00 39.16 27.03 12/23 | 63.22 70.88 5191 31.98 2/11
Hindi(hin) (Wang et al., 2024) + SVM 80.32 9257 8551 30139 | — — — — — | 8032 9187 79.73 1375 4/14
Igbo(ibo) (Wang et al., 2024) + SVM 50.93 60.01 4790 11/30 — — — — — 50.93 60.47 3740 7.49 2/9
Indonesian(ind) (Wang et al., 2024) + XGB — — — — — — — — — 35.64 67.24 5729 37.64 13/15
Javanese(jav) (Wang et al., 2024) + XGB — — — — — — — — — | 25.62 4638 5047 4638 10/11
Kinyarwanda(kin) (Wang et al., 2024) + SVM 51.94 6574 4629 5/28 — — — — — 51.94 51.94 3436 1838 1/8
Marathi(mar) (Wang et al., 2024) + SVM 81.10 8843 8220 21/37 | — — — — — | 81.10 9029 77.24 77.24 4/11
Oromo(orm) (Wang et al., 2024) + SVM 5431 61.64 1263 9/31 — — — — — 54.31 54.31 2617 1/9
Nigerian-Pidgin(pcm) (Wang et al., 2024) + SVM 53.09 67.40 5550 19/30 — — — — — 53.09 6740 48.67 1.01 3/8
P Brazilian(ptbr) (Souza et al., 2020) + SVM 4799 6833 4257 23/37 | 3820 71.00 4672 2974 19/23 | 47.99 6291 51.60 41.84 5/11
Pt##* Mozambican(ptmz) (Wang et al., 2024) + SVM 50.08 54.77 4591 5/32 — — — — — 50.08 55.54 4044 29.67 2/11
Romanian(ron) (Wang et al., 2024) + SVM 73775 7943 7623 14/39 | 57.61 72.60 57.69 55.66 14/22 | 73.75 76770 7623 7623 4/13
Russian(rus) (Snegirev et al., 2025) + SVM 8242 90.08 83.77 28/44 | 7841 9254 87.66 87.66 18/25 | 8242 90.58 76.97 7043 4/14
Somali(som) (Wang et al., 2024) + SVM 48.26 57.65 4593 17/29 — — — — — 48.26 47.79 2727  3/10
Sundanese(sun) (Wang et al., 2024) + SVM 4248 5497 3731 1732 | — — — — — | 4248 46.66 4633 1943  3/9
Swahili(swa) (Wang et al., 2024) + SVM 29.52 3856 22.65 13/29 — — — — — 29.52 38.05 3327 1899 3/11
Swedish(swe) (Wang et al., 2024) + SVM 56.51 62.62 5198 12/34 | — — — — — | 5651 6453  51.18 5118 4/11
Tatar(tat) (Wang et al., 2024) + SVM 64.32 8459 5394 15/31 — — — — — 64.32 78.86 60.66 44.54  3/9
Tigrinya(tir) (Wang et al., 2024) + SVM 5237 59.05 4628 6/28 — — — — — 52.37 5237 33.93 1/8
Ukrainian(ukr) (Sturua et al., 2024) + SVM 48.62 7256 5345 26/36 | 4255 70.75 4354 39.94 13/21 | 4862 70.18 5476 49.56 9/15
Emakhuwa(vmw) (Sturua et al., 2024) + SVM 16.81 3250 12.14 11/20 — — — — — 16.80 21.04 20.41 522 4/7
isiXhosa(xho) (Wang et al., 2024) + XGB — — — — — — — — — 16.64 4426 30.79 12.73 4/8
Yoruba(yor) (Wang et al., 2024) + SVM 34.09 46.13 9.22  7/30 — — — — — 34.09 3595 2744 533 3/8
isiZulu(zul) (Wang et al., 2024) + XGB — — — — — 1635 39.69 2203 1526 6/9

BP*=result of rank 1

BDP**=pest result of dataset paper(Muhammad et al., 2025a)

The Best result of dataset paper for Track A is identical to that of Track C.
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ployed. This scheduling approach helped adap-
tively reduce the learning rate over time, facilitat-
ing better exploration of the loss landscape and
improving generalization. The model was trained
for a fixed number of epochs, and early stopping
was used to terminate training if the validation per-
formance plateaued, thus avoiding overfitting.

4.5 Tools and Libraries

The implementation of the experiments utilized sev-
eral state-of-the-art tools and libraries. The deep
learning models were implemented and trained us-
ing PyTorch (Paszke et al., 2019). For data ma-
nipulation and evaluation metrics, Scikit-Learn
was employed (Pedregosa et al., 2011). Gra-
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dient boosting models were benchmarked using
XGBoost (Chen and Guestrin, 2016). Pre-trained
transformer models were fine-tuned using Hugging
Face Transformers (Wolf et al., 2020). Ad-
ditionally, the Sentence Transformers library
was used to load embedding models (Reimers and
Gurevych, 2019)(Reimers and Gurevych, 2020a).
These tools and libraries are well-regarded in the
machine learning community and were chosen for
their reliability and performance.

4.6 Computational Resources

Experiments used a Kaggle Tesla P100 GPU for
efficient model training, evaluation, and hyperpa-
rameter tuning, ensuring reproducibility with com-



Text Type | Anger | Fear | Joy | Sadness | Surprise
I’'m just numb. Truth 0 0 0 ! 0
Pred 0 1 0 1 0
T Truth 0 0 0 1 0
At the time it didn’t seem to bother me. Pred 0 0 0 0 0
I found out six weeks before the wedding that my dad had only six weeks to Truth 1 1 0 1 1
live (he had cancer for two years... a fact she was fully aware of). Pred 0 1 0 1 0

Table 2: Error Analysis Table of language English for track A

parable hardware.

5 Results

Extensive experiments were conducted on multiple
models to determine the most effective approach
for multi-label emotion detection across various
languages. The selected model was trained on
datasets corresponding to each language, and its
performance was analyzed using the test dataset.
The evaluation results are presented in Table 1.
More detailed results and additional analysis can
be found in the Appendix A.

Notably, our approach achieved first rank in the
Oromo, Tigrinya, and Kinyarwanda languages in
Track-C of the competition. This strong perfor-
mance highlights the effectiveness of the use of
language-specific model embeddings tailored to
the linguistic characteristics of each language.

A comparison of our findings with reference
studies (Muhammad et al., 2025a) highlights the ef-
fectiveness of our approach. By leveraging domain-
specific model embeddings, our models were able
to bridge the gap in emotion classification for low-
resource languages.

Table 2 highlights key limitations in the model’s
contextual understanding. For instance, the model
misidentified fear with sadness in "I’'m just numb,"
due to an oversimplified link between numbness
and fear, showing lexical misinterpretation with-
out context. Another example shows the model’s
failure to recognize temporal contrast in "at the
time," missing the current sadness implied by past
indifference, indicating a need for deeper semantic
processing. In the third example, the model de-
tected sadness and fear in a father’s terminal illness
revelation but missed anger and surprise embed-
ded contextually, particularly the implicit anger
towards "she" who knew about the cancer and the
surprise of receiving life-altering news before a sig-
nificant event, revealing deficiencies in extracting
emotional implications from complex narratives.

Figure 1 presents the pooled confusion matrices
for Tracks A, B, and C, highlighting the classifi-

cation performance and misclassifications across
different intensity levels and languages.

6 Conclusion

This study presented a comprehensive examination
of multilingual multi-label emotion detection, ad-
dressing binary classification, intensity estimation,
and cross-lingual detection tasks. Our findings
indicate that language-specific embedding mod-
els, when paired with classifiers such as SVM
and XGBoost, offer a robust approach to capturing
the nuanced linguistic and cultural features inher-
ent in diverse textual data. The experimental re-
sults, measured in competitive macro-average F1
scores, underscore the potential of these tailored
models to bridge performance gaps, particularly
in low-resource languages where data scarcity and
complex grammatical structures present significant
challenges.

The significance of this research lies in its
demonstration that integrating innovative prepro-
cessing techniques with state-of-the-art embedding
models can lead to substantial improvements in
emotion recognition performance. This has broad
implications for applications in social media analy-
sis, behavioral research, and other domains where
understanding nuanced emotional expressions is
crucial.

Nonetheless, current limitations in multilingual
emotion analysis include the lack of annotated data
for underrepresented languages and challenges in
capturing nuanced emotional expressions, both of
which hinder model performance. Future research
should prioritize expanding multilingual datasets,
improving preprocessing techniques, and devel-
oping new architectures to boost model general-
ization and adaptability. Fine-tuning models for
low-resource languages could also enhance emo-
tion detection accuracy, advancing the field and
creating more effective, language-aware emotion
recognition systems.
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Table 3: Performance comparison of models for different languages

Language Model Metrics
Recall Precision F1-Score
(Radford et al., 2019) + MLP 28.42 71.37 39.98
(Al 2025) + MLP with LoRA 30.16 74.76 42.03
(Abdin et al., 2024) + MLP with LoRA  39.69 76.57 51.83
(Team, 2024b) + MLP with LoRA 33.02 73.59 44 .43
All (Team, 2024a) + MLP with LoRA 21.80 61.13 30.95
(Conneau et al., 2019) + MLP 64.51 50.24 56.38
(Lewis et al., 2019) + MLP 32.88 69.08 43.60
(Devlin et al., 2018) + MLP 35.63 71.75 46.82
(Dai et al., 2020) + MLP 16.79 69.00 25.09
(Clark et al., 2020) + MLP 26.58 69.27 37.40
(Feng et al., 2022) + SVM 24.09 38.89 29.12
(sentence transformers, 2024) + XGB 8.00 29.15 9.29
Afrikaans(afr) (Wang et al., 2024) + SVM 58.10 49.18 52.19
(Zhang et al., 2025) + XGB 12.55 27.55 15.15
(Lee et al., 2024) + XGB 11.31 36.40 15.19
(Yosef, 2025) + SVM 49.39 71.28 51.87
(Davlan, 2025) + SVM 40.62 40.14 39.24
(Wang et al., 2024) + SVM 64.80 56.98 59.97
. (Rasyosef, 2025a) + SVM 58.67 56.88 57.32
Amharic(amh) (Rasiosef, 2025b) + XGB 3533 45.68 39.67
(Rasyosef, 2025b) + SVM 46.13 56.56 47.97
(sentence transformers, 2024) + XGB 24.68 37.22 20.92
(Sturua et al., 2024) + XGB 59.07 49.90 53.34
(Benmounah et al., 2023) + SVM 46.68 55.78 50.33
(Abdaoui et al., 2021) + SVM 47.16 53.15 49.59
(Abdaoui et al., 2021) Sentiment + 49.29 5191 49.94
Algerian Arabic(arq) SVM
(Wang et al., 2024) + SVM 41.80 63.27 48.48
(Omer Nacar and Ghouti, 2025) + SVM  38.50 53.48 43.99
(sentence transformers, 2024) + XGB 34.97 23.65 28.13
(Sturua et al., 2024) + XGB 39.34 45.27 41.26
(Safaya et al., 2020) + SVM 52.82 53.64 51.81
(Gaanoun et al., 2023) + SVM 37.12 58.05 41.10
Moroccan Arabic(ary) (Wang et al., 2024) + SVM 55.37 49.25 51.17
(Omer Nacar and Ghouti, 2025) + SVM  33.34 52.32 39.49
(sentence transformers, 2024) + XGB 28.19 20.76 22.07
(Sturua et al., 2024) + XGB 36.60 50.29 40.24
(Lietal., 2024) + DT 52.12 33.51 39.82
(Li et al., 2024) + XGB 37.03 60.88 42.27
(Lietal., 2024) + SVM 57.89 46.56 51.19
(Wang et al., 2024) + SVM 54.94 43.62 48.25
(Zhang et al., 2024) + DT 33.84 20.33 23.58
(Zhang et al., 2024) + RF 7.22 24.03 9.44
(Zhang et al., 2024) + XGB 12.77 22.87 15.90

Chinese(chn)
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Language Model Metrics
Recall Precision F1-Score

(Zhang et al., 2024) + SVM 27.94 34.20 29.87
(lier007, 2023) + XGB 33.09 70.84 37.98
(lier007, 2023) + SVM 60.44 53.49 55.72
(iampanda, 2024) + XGB 36.48 73.26 41.85
(iampanda, 2024) + SVM 64.43 54.54 58.58
(sentence transformers, 2024) + XGB 23.42 29.65 22.95
(Sturua et al., 2024) + XGB 47.18 53.49 49.39
(sentence transformers, 2024) + XGB 16.77 45.99 23.26
(Heinz, 2023) + SVM 41.64 61.08 45.45
(Wang et al., 2024) + SVM 60.42 56.09 57.93
(Chan et al., 2020) + XGB 33.69 60.54 40.14
(Chibb, 2023) + SVM 56.87 57.48 56.25

German(deu) (Mohr et al., 2024) deu + XGB 36.24 58.28 42.87
(Mohr et al., 2024) deu + SVM 45.68 60.41 50.25
(Sturua et al., 2024) + XGB 35.78 55.25 42.43
(Sturua et al., 2024) + SVM 55.39 59.72 56.63
(Ni et al., 2021) + XGB 40.20 79.24 47.28
(Wang et al., 2023) + XGB 38.57 73.09 46.18
(sentence transformers, 2024) + XGB 43.71 65.10 50.51
(Devlin et al., 2018) embedding + XGB  30.60 50.23 35.01
(Devlin et al., 2018) last hidden state + 40.60 75.32 48.88
XGB
(Wang et al., 2024) + SVM 76.79 70.85 73.43
(Zhang et al., 2025) + XGB 60.58 80.60 68.30
(Zhang et al., 2025) + XGB without pre-  58.07 79.05 65.28

. rocess

English(eng) ?Zhang etal.,, 2025) + SVM 7176 73.13 72.40
(Liu et al., 2019) embedding + XGB 30.35 48.17 33.64
(Liu et al., 2019) last hidden state + 32.99 66.63 39.81
XGB
(Niet al., 2021) + XGB 59.06 74.62 64.62
(Conneau et al., 2019) embedding + 100 37.32 52.76
MLP
(Conneau et al., 2019) embedding + 55.96 25.96 34.93
ConvlD + MLP
(Conneau et al., 2019) embedding + 26.25 45.20 28.82
XGB
(Conneau et al., 2019) last hidden state ~ 25.36 52.99 28.90
+ XGB
(Conneau et al., 2019) last hidden state ~ 38.59 23.68 29.35
+ MLP
(Lee et al., 2024) + XGB 54.59 80.89 61.75
(Zhang et al., 2025) Stella + XGB 57.24 78.88 65.25
(Cafiete et al., 2020) + SVM 67.01 76.56 71.27
(Mohr et al., 2024) es + SVM 75.78 82.24 78.46

. (Sturua et al., 2024) + SVM 79.36 78.13 78.64
Spanish(esp)
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(Sturua et al., 2024) + XGB 73.29 72.48 72.64
(Romero, 2023) + SVM 74.98 79.15 76.68
(sentence transformers, 2024) + XGB 43.83 59.21 49.60
(Wang et al., 2024) + SVM 62.82 60.21 61.23
(Sturua et al., 2024) + SVM 53.64 53.51 53.31
Hausa(hau) (Sturua et al., 2024) + XGB 30.96 47.87 36.64
(Oketunji, 2024a) + SVM 28.36 48.10 34.48
(Dobler and de Melo, 2023) + SVM 65.98 60.71 62.79
(sentence transformers, 2024) + XGB 19.64 40.70 25.44
(Sukhlecha, 2024) + SVM 84.76 75.86 79.86
(Wang et al., 2024) + SVM 83.90 78.58 80.77
(Joshi et al., 2022) + SVM 74.14 80.15 76.83
Hindi(hin) (Nogueira et al., 2019) + SVM 76.24 65.05 70.09
(Feng et al., 2020) hin + SVM 72.03 81.16 76.02
(sentence transformers, 2024) + XGB 18.86 30.58 20.81
(Sturua et al., 2024) + XGB 74.66 73.77 73.96
(Feng et al., 2022) + SVM 42.41 51.86 44.88
(Wang et al., 2024) + SVM 51.43 53.26 51.81
Igbo(ibo) (Oketunji, 2024b) + SVM 13.48 38.71 15.08
(sentence transformers, 2024) + XGB 21.18 55.54 29.02
(Sturua et al., 2024) + XGB 21.54 42.28 27.76
(Feng et al., 2022) + SVM 39.35 51.88 42.27
(Adelani, 2023a) + SVM 46.88 45.94 46.13
Kinyarwanda(kin) (Wang et al., 2024) + SVM 50.97 45.98 48.09
(Adelani, 2023b) + SVM 21.04 34.33 21.14
(sentence transformers, 2024) + XGB 8.66 21.13 11.41
(Sturua et al., 2024) + XGB 13.97 30.33 16.57
(Wang et al., 2024) + SVM 79.03 80.20 79.38
(Feng et al., 2022) + XGB 62.87 73.01 66.69
Marathi(mar) (Feng et al., 2022) + SVM 76.97 76.80 76.81
(sentence transformers, 2024) + XGB 23.70 44.08 27.77
(Sturua et al., 2024) + XGB 71.47 68.67 69.62
(Wang et al., 2024) + SVM 54.73 48.44 50.85
(Feng et al., 2022) + XGB 20.67 26.50 20.60
Oromo(orm) (Feng et al., 2022) + SVM 29.11 35.40 28.33
(sentence transformers, 2024) + XGB 13.96 24.92 16.46
(Sturua et al., 2024) + XGB 17.80 37.37 21.53
(Wang et al., 2024) + SVM 52.03 49.58 50.24
(Feng et al., 2022) + XGB 32.95 48.75 38.46
Nigerian-Pidgin(pcm) (Feng et al., 2022) + SVM 42.93 49.03 44.81
(sentence transformers, 2024) + XGB 33.40 38.45 33.22
(Sturua et al., 2024) + XGB 39.59 45.08 41.18
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(Wang et al., 2024) + SVM 54.35 46.20 49.19
(Filho, 2023) + SVM 43.54 44.40 42.79
(Souza et al., 2020) + SVM 57.73 46.69 51.16
Pt* Brazilian(ptbr) (Melo, 2023) + SVM 36.33 56.90 38.76
(Sturua et al., 2024) + SVM 40.74 47.26 42.83
(Sturua et al., 2024) + XGB 49.22 45.96 42.94
(sentence transformers, 2024) + XGB 14.17 32.08 18.89
(Wang et al., 2024) + SVM 54.53 45.70 48.21
(Filho, 2023) + SVM 30.37 42.09 34.34
(Souza et al., 2020) + SVM 41.23 41.07 39.80
Pt* Mozambican(ptmz) (Melo, 2023) + SVM 26.90 65.68 33.87
(Sturua et al., 2024) + SVM 29.24 60.49 36.56
(Sturua et al., 2024) + XGB 28.39 35.93 31.02
(sentence transformers, 2024) + XGB 13.81 24.71 14.95
(Wang et al., 2024) + SVM 75.68 71.90 72.99
(Sturua et al., 2024) + SVM 70.59 68.50 69.43
Romanian(ron) (Sturua et al., 2024) + XGB 50.75 72.67 57.49
(Feng et al., 2022) + XGB 39.70 73.06 48.42
(Feng et al., 2022) + SVM 59.75 72.83 64.04
(sentence transformers, 2024) + XGB 37.86 51.06 41.81
(sentence transformers, 2024) + XGB 18.78 70.74 29.17
(Wang et al., 2024) + SVM 77.26 73.24 75.11
Russian(rus) (Snegirev et al., 2025) + XGB 65.38 88.64 74.54
(Snegirev et al., 2025) + SVM 79.32 84.12 81.57
(Sturua et al., 2024) + XGB 67.59 61.99 64.03
(Wang et al., 2024) + SVM 51.81 41.12 45.63
(Feng et al., 2022) + XGB 29.44 37.43 32.13
Somali(som) (Feng et al., 2022) + SVM 38.57 40.38 39.06
(sentence transformers, 2024) + XGB 10.78 31.56 14.29
(Sturua et al., 2024) + XGB 12.85 32.13 16.79
(Wang et al., 2024) + SVM 37.20 59.45 40.42
(Feng et al., 2022) + XGB 23.84 41.55 29.44
Sundanese(sun) (Feng et al., 2022) + SVM 30.34 48.67 35.38
(sentence transformers, 2024) + XGB 16.29 28.00 20.30
(Sturua et al., 2024) + XGB 24.29 37.98 28.29
(Wang et al., 2023) + XGB 24.90 26.12 25.30
(Wang et al., 2024) + SVM 33.20 30.28 31.46
Swahili(swa) (Feng et al., 2022) + XGB 21.21 22.85 21.21
(Feng et al., 2022) + SVM 25.37 23.58 24.12
(sentence transformers, 2024) + XGB 8.61 20.56 11.94
(Sturua et al., 2024) + XGB 15.04 25.42 18.12
(Wang et al., 2024) + XGB 32.53 43.31 35.73
(Wang et al., 2024) + SVM 61.50 58.58 57.09
Swedish(swe) (Kummervold et al., 2021) + XGB 30.61 48.66 35.00
(sentence transformers, 2024) + XGB 18.63 25.11 19.29
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(Sturua et al., 2024) + XGB 39.78 34.77 36.76
(Wang et al., 2024) + SVM 50.32 60.76 54.40
(Feng et al., 2022) + XGB 25.28 68.75 31.93
Tatar(tat) (Feng et al., 2022) + SVM 39.81 61.07 46.44
(sentence transformers, 2024) + XGB 4.44 27.17 7.26
(Sturua et al., 2024) + XGB 19.88 36.94 25.43
(Wang et al., 2024) + SVM 48.74 46.89 47.21
(Feng et al., 2022) + XGB 23.31 32.37 24.96
Tigrinya(tir) (Feng et al., 2022) + SVM 35.20 40.83 36.08
(sentence transformers, 2024) + XGB 23.64 29.33 16.32
(Sturua et al., 2024) + XGB 26.86 43.97 29.71
(Wang et al., 2024) + SVM 54.74 42.52 47.65
(Schweter, 2020) + SVM 24.75 25.45 24.38
(Snegirev et al., 2025) + SVM 39.01 74.30 45.40
.. (Sturua et al., 2024) + SVM 45.92 56.02 49.43
Ukrainian(ukr) (Sturua et al., 2024) + XGB 60.39  37.82 45.43
(Laba et al., 2023) + SVM 4145 45.97 42.80
(Minixhofer, 2023) + SVM 15.29 33.31 17.34
(sentence transformers, 2024) + XGB 4.70 12.22 6.74
(Wang et al., 2024) + SVM 14.43 22.04 15.46
(Feng et al., 2022) + XGB 1.78 10.55 2.98
Emakhuwa(vmw) (Feng et al., 2022) + SVM 5.81 21.38 8.79
(sentence transformers, 2024) + XGB 3.35 20.55 5.63
(Sturua et al., 2024) + XGB 1.35 7.56 2.27
(Feng et al., 2022) + SVM 20.88 38.07 2591
(Wang et al., 2024) + SVM 38.54 30.98 33.86
(Reimers and Gurevych, 2020b) + SVM  37.51 28.02 28.31
Yoruba(yor) (Feng et al., 2022) + XGB 14.96 35.93 17.98
(Feng et al., 2022) + SVM 19.34 37.22 22.82
(sentence transformers, 2024) + XGB 9.49 20.80 11.34
(Sturua et al., 2024) + XGB 9.58 22.61 9.81
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