Angeliki Linardatou at SemEval-2025 Task 11: Multi-label Emotion Detection

Angeliki Linardatou, Paraskevi Platanou


Abstract
This study, competing in SemEval 2025 Task 11 - Track A, detects anger, surprise, joy, fear, and sadness. We propose a hybrid approach combining fine-tuned BERT transformers, TF-IDF for lexical analysis, and a Voting Classifier (Logistic Regression, Random Forest, SVM, KNN, XG-Boost, LightGBM, CatBoost), with grid search optimizing thresholds. Our model achieves a macro F1-score of0.6864. Challenges include irony, ambiguity, and label imbalance. Future work will explore larger transformers, data augmentation, and cross-lingual adaptation. This research underscores the benefits of hybrid models, showing that combining deep learning with traditional NLP improves multi-label emotion detection.
Anthology ID:
2025.semeval-1.70
Volume:
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
Venues:
SemEval | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
502–507
Language:
URL:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.70/
DOI:
Bibkey:
Cite (ACL):
Angeliki Linardatou and Paraskevi Platanou. 2025. Angeliki Linardatou at SemEval-2025 Task 11: Multi-label Emotion Detection. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 502–507, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
Angeliki Linardatou at SemEval-2025 Task 11: Multi-label Emotion Detection (Linardatou & Platanou, SemEval 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.70.pdf