Team Unibuc - NLP at SemEval-2025 Task 11: Few-shot text-based emotion detection

Claudiu Creanga, Teodor - George Marchitan, Liviu Dinu


Abstract
This paper describes the approach of the Unibuc - NLP team in tackling the SemEval 2025 Workshop, Task 11: Bridging the Gap in Text-Based Emotion Detection. We mainly focused on experiments using large language models (Gemini, Qwen, DeepSeek) with either few-shot prompting or fine-tuning. Withour final system, for the multi-label emotion detection track (track A), we got an F1-macro of 0.7546 (26/96 teams) for the English subset, 0.1727 (35/36 teams) for the Portuguese (Mozambican) subset and 0.325 (1/31 teams) for the Emakhuwa subset.
Anthology ID:
2025.semeval-1.65
Volume:
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
Venues:
SemEval | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
468–475
Language:
URL:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.65/
DOI:
Bibkey:
Cite (ACL):
Claudiu Creanga, Teodor - George Marchitan, and Liviu Dinu. 2025. Team Unibuc - NLP at SemEval-2025 Task 11: Few-shot text-based emotion detection. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 468–475, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
Team Unibuc - NLP at SemEval-2025 Task 11: Few-shot text-based emotion detection (Creanga et al., SemEval 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.65.pdf