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Abstract

The power and wide application of large lan-
guage models (LLMs) has brought the concerns
on its risk of leaking private or sensitive infor-
mation. However, retraining the modules is
expensive and impractical, which introduces
machine unlearning - removing specific infor-
mation from language models while preserv-
ing general utility. Task 4 at SemEval 2025
consists of a shared task with this exact objec-
tive. We present an approach which combines
gradient ascent-based forgetting with Kullback-
Leibler (KL) divergence-based retention, ap-
plied to a 1-billion-parameter causal language
model. Despite achieving effective forgetting,
the system struggles with maintaining model
utility. Our experiments reveal critical trade-off
between unlearning effectiveness and perfor-
mance preservation, highlighting challenges in
practical machine unlearning implementations.
Our code can be found on GitHub. !

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in generating
human-like text (Touvron et al., 2023), while there
are growing concerns about data privacy in the in-
teractions. Their ability to memorize vast amounts
of data may lead to significant ethical and security
issues (Liu et al., 2025; Xu et al., 2023), includ-
ing enhancing societal biases and stereotypes, gen-
erating sensitive or harmful content, private data
leakage, being vulnerable to jailbreaking or other
security attacks, or potential misuses for cyberat-
tacks (Hendrycks et al., 2023; Jang et al., 2022;
Marchant et al., 2022; Motoki et al., 2024; Singh
and Anand, 2017; Wen et al., 2023; Zou et al.,
2023). There is an urgent need for solutions that
maintain a balance between ensuring the safe use
of LLMs and preserving their utility to effectively
meet user needs (Chen and Yang, 2023).

1https ://github.com/devychen/SemEval2025_
Task4_NEKO

Given the substantial time and resources re-
quired to train LLMs, retraining them to elimi-
nate harmful influences is often impractical (Brown
et al., 2020). As an alternative, machine unlearning
has emerged as a method for selectively removing
the influence of undesirable data from pre-trained
models (Nguyen et al., 2022). Machine unlearning
(MU), defined as “forgetting undesirable misbe-
haviours on large language models (LLMs)" (Yao
et al., 2023), aims to eliminate the influence of
unwanted data, such as sensitive or illegal informa-
tion, while maintaining the integrity of essential
knowledge generation and not affecting causally
unrelated information(Bu et al., 2024).

The SemEval-2025 Task 4 on Machine Unlearn-
ing (Ramakrishna et al.) is a shared task focused
on machine unlearning for LLMs. Participants are
tasked with developing methods to remove specific
knowledge from a given trained model without re-
training it from scratch. The goal is to ensure the
model forgets the designated forget set while main-
taining accuracy on the retain set. This challenge
consists of three English-language subtasks:

* Subtask 1: Long-form synthetic creative doc-
uments spanning different genres.

* Subtask 2: Short-form synthetic biographies
containing personally identifiable information
(PII), including fake names, phone numbers,
social security numbers (SSNs), emails, and
home addresses.

* Subtask 3: Real documents sampled from the
target model’s training dataset.

Our system participated in all three subtasks with
the intention to implement and validate a widely
adopted unlearning strategy, namely gradient as-
cent (GA). We employed a dual-objective optimi-
sation strategy that combines gradient ascent and
Kullback-Leibler (KL) divergence. GA maximizes
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the loss on the forget set, driving the model to un-
learn specific information, while KL. minimisation
preserves general knowledge by minimizing diver-
gence from the pre-trained model. This iterative
process balances these objectives, ensuring targeted
forgetting without severe degradation of overall
performance. We implemented our approach on
a 1-billion-parameter model due to computational
constraints. The evaluation relied on sentence com-
pletion and Question and Answer (Q&A) tests to
measure both forgetting effectiveness and the re-
tention of general knowledge. The details will be
unfolded in the following sections.

2 Methods and experimental setup

Data sets

For each subtask, there are two data sets provided.
One forget set, one retain set. Each data set con-
tains disjoint retain and forget splits in parquet files.
Examples of full documents and test prompts for
the three tasks covered are available at figure 1 in
Ramakrishna et al. (2025), and a full copy of data
sets can be found on our Github.

After data preprocessing, depending on the
subtask, the data input was either structured as
question-answer (QA) pairs or free-form text for
generation:

Input Structure

Q&A Pairs ### Question:
### Answer:

Text Generation | ### Text:

Table 1: Structured input

Model

The base model released by the organisers is a
fine-tuned 7-billion-parameter (7B) model called
OLMo-7B-0724-Instruct-hf2, trained to memorise
documents from all three subtasks (Ramakrishna
et al., 2024). But we use the smaller 1-billion-
parameter (1B) model named OLMo-1B-0724-hf>
(Ramakrishna et al., 2024) which is also fine-tuned
to memorise the dataset in the unlearning bench-
mark similar to the 7B model due to computational
constraints.

2https://huggingface.co/allenai/
OLMo-7B-0724-Instruct-hf

3https://huggingface.co/allenai/
OLMo-1B-0724-hf

Objectives

Similar to the inspiring work of Yao et al. (2023),
our unlearning goal is effectiveness and utility.
First, effectiveness requires that the updated model
forget targeted samples such that its outputs for
inputs in the forget set diverge substantially from
the original responses. For example, if an input
originally produces sensitive content, then after
unlearning the model should yield a benign and
insensitive response. Second, utility ensures that
the model’s performance on standard tasks remains
intact. The expected outputs vary with the task:
for question-answering, the model must produce
correct answers for the retain set while successfully
omitting the forgotten information; for text genera-
tion, the system must maintain fluency and coher-
ence, avoiding the inclusion of any content that has
been designated for unlearning. This balance is cru-
cial, as the removal of harmful or unwanted content
should not come at the cost of overall performance.

Methods

Gradient-based methods are extensively employed
for tackling unlearning tasks (Eldan and Russi-
novich, 2023; Guo et al., 2019; Maini et al., 2024;
Neel et al., 2021; Trippa et al., 2024). Following
Yao et al. (2023), we opted for Gradient Ascent
(GA) in our unlearning framework due to its di-
rectness and efficiency. As there are only negative
example in our task, gradient ascent would provide
a more straightforward method to suppress sensi-
tive outputs without requiring positive reinforce-
ment signals, comparing to reinforcement learning
from human feedback (RLHF), which relies on
both positive and negative samples to adjust token
probabilities indirectly.

To mitigate unintended degradation in gen-
eral performance, we also incorporated Kullback-
Leibler (KL) divergence, which enforce a con-
straint deviations between the updated and original
models on non-targeted data. While the gradient
ascent loss pushes the model to “unlearn” targeted
knowledge, the KL term effectively “pulls” the
model back toward its original distribution on un-
affected inputs. This ensures the model retains
its competence on benign inputs while unlearning
harmful content. Without this constraint, aggres-
sive modifications may compromise overall utility.
By balancing GA-driven forgetting with KL-based
retention, we hope to achieve a controlled unlearn-
ing process that maintains fluency and accuracy.
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Our framework optimizes two objectives concur-
rently:

N

1 .
Lon = -¥ ; CrossEntropy(9;, i) (1)

N
1
ﬁKL — N Z KL (SOftmaX(Mref(mi))a

i=1
softmax(M (z;))) )
Lioa = @+ Loa +8- LxL (3)
~~ —~~
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where @ = 0.2 (BAD_WEIGHT) and 8 = 1

(NORMAL_WEIGHT). Here, L4 promotes forgetting
by maximizing prediction error on harmful data,
while Lk1. ensures stability by minimizing distribu-
tional shifts on benign inputs. This dual-objective
design enables effective suppression of harmful
content while preserving the model’s general util-
ity.

Additionally, we chose GA for its simplicity
and clarity as an initial step in our research. Al-
though we plan to explore more refined techniques
(e.g., gradient difference methods or Hessian-based
unlearning) later, GA provides a solid and inter-
pretable baseline for achieving our unlearning ob-
jectives.

Training process

Our training process followed a dual-objective opti-
misation framework, balancing targeted forgetting
with general knowledge retention. The dataset was
partitioned into a forget set and a retain set and
restructured. Proper preprocessing ensured correct
formatting before training.

A composite loss function was employed, com-
bining gradient ascent (GA) to increase loss on the
forget set and Kullback-Leibler (KL) divergence to
penalise deviations from general knowledge. The
loss weights for retention and forgetting, batch
size, and learning rate were systematically tuned
to achieve stable training dynamics. Based on em-
pirical evaluation, the optimal configuration was
determined as a forget loss weight of 0.2, a batch
size of 32, and a learning rate of 5e-5. This setup
effectively balanced unlearning and retention while
maintaining coherence in the retain set outputs.

Training was conducted with iterative updates
using this optimised loss function. An early stop-
ping mechanism with a patience of 4 was imple-
mented to prevent over-fitting, terminating training
after 500 steps. The sensitivity analysis of hyper-
parameters indicated that retention is more fragile
than forgetting, underscoring the importance of
careful tuning to maintain utility while achieving
effective unlearning.

3 Results
Metrics Scores
MMLU 0.229
MIA 0.824

Task Aggregare 0.0
Final Score 0.351

Table 2: Scores of our system

The evaluation framework provided by the organ-
isers consists of four key metrics: MMLU Score,
MIA Score, Task Aggregate Score, and Final Score.
Table 2 presents our scores.

The MMLU Score measures model accuracy on
a comprehensive STEM benchmark across 57 sub-
jects, with a minimum threshold of 0.371 set to
ensure sufficient model utility. Our model, how-
ever, achieved an MMLU Score of 0.229. Although
this is below the specified threshold, it is important
to note that the MMLU metric is included primar-
ily for completeness rather than as a strict filter for
performance.

The MIA Score evaluates the model’s resistance
to membership inference attacks via a loss-based
method. A high MIA score (close to 1) indicates
that the model is robust to MIA, meaning it does
not leak information about its training data. And
our dual-objective unlearning strategy resulted in
an MIA Score of 0.824, demonstrating that our
approach is highly effective at removing targeted
information and reducing the risk of sensitive data
leakage. This high score is a clear testament to the
success of the unlearning mechanism implemented
in our framework.

Additionally, the Task Aggregate Score is com-
puted as the harmonic mean of 12 individual task-
specific scores, which include metrics such as re-
gurgitation rates measured by ROUGE-L and exact
match rates for both the retain and forget sets (with
the forget set metrics inverted). For our model, the
Task Aggregate Score was recorded as 0.0, reflect-
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ing significant challenges in maintaining overall
task performance after unlearning. This low score
suggests that the model struggled to perform well
across multiple tasks. Further analysis of the forget
set metrics is required to determine whether the
model effectively unlearned the target information.
Finally, the Final Score, calculated as the arith-
metic mean of the MMLU, MIA, and Task Aggre-
gate Scores, was 0.351. Based on this composite
metric, our submission is ranked 15th out of 24
entries. These results collectively underscore a
critical trade-off in our dual-objective approach:
while our method might have excelled in elimi-
nating targeted content, it also results in a notable
degradation of overall task performance.

4 Conclusion

Our experiments faced several practical challenges
that influenced both training and model perfor-
mance. A key constraint was the selection of a
1B parameter model instead of a 7B variant due
to computational limitations. While necessary for
efficiency, this decision likely contributed to per-
formance degradation, as smaller models struggle
to balance knowledge retention and unlearning.

GPU limitations further restricted our approach.
Running both teacher and student models concur-
rently led to high memory consumption, reducing
batch sizes and limiting additional loss components
like random answer loss. This required careful
hyper-parameter tuning with minimal architectural
modifications to maintain a feasible balance be-
tween unlearning and retention.

Despite these challenges, our systematic ad-
justments provided valuable insights into opti-
mizing unlearning strategies under resource con-
straints. Future work should explore more effi-
cient parameter-sharing techniques or distillation-
based approaches to mitigate computational bur-
dens while maintaining effectiveness. Addressing
these limitations will be essential for advancing
unlearning methodologies in large-scale models.

Limitations

Our approach is constrained by computational re-
sources, using a 1B-parameter model instead of
a 7B variant, likely impacting performance. Gra-
dient ascent and KL divergence, while effective,
may not optimally balance forgetting and retention
compared to advanced unlearning techniques. GPU
memory limitations restricted batch sizes and archi-

tectural modifications, reducing flexibility. Addi-
tionally, limited hyper-parameter tuning may have
hindered performance optimization. Our evaluation
also did not assess potential adversarial vulnerabil-
ities post-unlearning. Future work should explore
more scalable methods and robustness analysis to
enhance unlearning effectiveness while maintain-
ing model utility.
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A Overview of Hyper-parameters

Table 3 presents an overview of our hyper-
parameters.

Hyper-paramers Values
MAX_UNLEARN_STEPS | 500
BAD_WEIGHT 0.2
NORMAL_WEIGHT 1
Learning Rate oe — 9
Batch Size 32

Table 3: Hyper-parameters
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