Cyber for AI at SemEval-2025 Task 4: Forgotten but Not Lost: The
Balancing Act of Selective Unlearning in Large Language Models

Dinesh Srivasthav P
TCS Research
dineshsrivasthav.p@tcs.com

Abstract

Large Language Models (LLMs) face signifi-
cant challenges in maintaining privacy, ethics,
and compliance, when sensitive or obsolete
data must be selectively removed. Retraining
these models from scratch is computationally
infeasible, necessitating efficient alternatives.
As part of the SemEval 2025 Task 4, this work
focuses on the application of selective unlearn-
ing in LLMs to address this challenge. In this
paper, we present our experiments and findings,
primarily leveraging global weight modifica-
tion to achieve an equilibrium between effec-
tiveness of unlearning, knowledge retention,
and target model’s post-unlearning utility. We
also detail the task-specific evaluation mecha-
nism, results, and challenges. Our algorithms
have achieved an aggregate score of 0.409 and
0.389 on the test set for 7B and 1B target mod-
els, respectively, demonstrating promising re-
sults in verifiable LLM unlearning.

1 Introduction

Large Language Models (LLMs) have revolution-
ized the way artificial intelligence can be used,
adapted, and integrated, demonstrating unprece-
dented capabilities across various domains and use
cases (Brown et al., 2020). In order for LLMs to
provide optimal and factual responses, they often
require to be trained on vast amount of diverse in-
formation which not only includes the world data,
but could also contain sensitive application-, task-,
or entity-specific data (Bender et al., 2021). Train-
ing on such massive datasets typically introduces
critical challenges related to bias, ethics, and pri-
vacy concerns (Neel and Chang, 2024; Zhang et al.,
2025). Further, at times, the data providers might
also want to have no traces of their data at a later
point due to reasons such as confidentiality, legal
issues, change in terms, etc (Yao et al., 2024). Re-
training LLMs to exclude specific data is compu-
tationally expensive and impractical (Cottier et al.,

Bala Mallikarjunarao Garlapati
TCS Research
balamallikarjuna.g@tcs.com

=5 @ %
B Ff:it %ta% ﬁf ggé %

set set data Retain
set

/=)
Unlearned model

] =)

data

Pretrained

on =
=) [
" algorithm
=)

Original model

Evaluation Final

—=—— aggregate

X
Task MMLU
aggregate avg acc SCOre)

Figure 1: Block diagram of selective unlearning in
LLMs, with task’s evaluation mechanism

2025; Xia et al., 2024), especially given the po-
tential for numerous subsequent removal requests
from various data providers, clients, or end-users.
Selective unlearning in LLMs (Liu et al., 2024a)
helps to achieve this exact objective. It is a mecha-
nism through which the requested information can
be precisely removed from the model’s parametric
memory along with preserving the model’s knowl-
edge integrity and utility for downstream tasks,
without retraining it from scratch. The requested
information can be a specific knowledge, model’s
certain behavior, a feature, or its ability to perform
a particular task, or a combination of two or more
of these and more. Figure 1 depicts the crux of se-
lective unlearning along with the task’s evaluation
mechanism which is discussed in Section 3.3.
Unlearning in LLMs is a niche yet increasingly
critical area that offers key advantages such as
cost-effectiveness, computational efficiency, and
precise intervention. It plays a crucial role in elim-
inating embedded biases (Yu et al., 2023; Dige
et al., 2024), erasing toxic or harmful responses
(Liu et al., 2024b), and reinforcing Al guardrails
(Hine et al., 2024) in safety-critical fields such as
healthcare, finance, and enterprise settings. How-
ever, ensuring effective and verifiable unlearning is
challenging, as many approaches risk leaving resid-
ual traces of removed knowledge or inadvertently
impairing broader model capabilities. Achieving

407

Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 407-417
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

the right balance between unlearning effectiveness,
knowledge retention, and model generalization is
a delicate optimization problem that continues to
drive research in this field (Qu et al., 2024).

2 Related works

The approaches to unlearning in LLMs can be
broadly classified into four categories: global
weight modification, local weight modification, ar-
chitecture modification, input/output modification
(Blanco-Justicia et al., 2025).

Global weight modification involves updating all
the model parameters while unlearning, thus, ensur-
ing better guarantee of forgetting the requested in-
formation. It includes approaches such as gradient
ascent (Feng et al., 2024; Gundavarapu et al., 2024),
gradient difference (Bu et al., 2024), knowledge
distillation (Zhao et al., 2024), KL minimization
(Yao et al., 2024), weight perturbation (Yuan et al.,
2024), and so on. These approaches are well suited
for smaller models and provide strong unlearning,
however, are resource intensive for larger models,
as the training costs greatly increase with increase
in the number of parameters. Global weight modi-
fication for larger models also strengthens the prob-
lem of optimizing effective unlearning, and pre-
serving model’s capabilities.

Local weight modification identifies a subset of
parameters that are required to be modified and
accordingly updates only those model parameters
(Ashuach et al., 2024; Wu et al., 2023; Jia et al.,
2024; Pochinkov and Schoots, 2024), thereby, min-
imizing the computational efforts needed. Never-
theless, the right set of parameters that are required
to be modified might vary based on the diversity
of the requested information. Identifying the same
is thus, challenging which therefore, has chances
of leaving traces of unlearning, or in other words,
influence of the requested information could still
be observed in the model’s behavior (Hong et al.,
2024).

Architecture modification based approaches in-
volve tweaking the model’s architecture such as
by adding additional layers (Chen and Yang, 2023),
or by using external modules (Ji et al., 2024; Zhang
et al., 2023) in addition to the target model, etc.
These approaches, while advantageous in other con-
texts, were not suitable for this specific task’s setup.
Finally, the input/output modification, as the name
suggests, involves approaches that do not achieve
true unlearning but modifies the model’s input, and

Split Train Validation
Forget 1112 254
Retain 1136 278

Table 1: Train and validation splits of the datasets

sometimes the output, in such a way that the final
response is as desired, by leveraging techniques
such as soft prompting (Bhaila et al., 2024), pref-
erence optimization (Zhang et al., 2024; Fan et al.,
2024), in-context learning (Pawelczyk et al., 2023;
Thaker et al., 2024).

3 Task artifacts

This section describes the artifacts given by the
task organizers (Ramakrishna et al., 2025b) namely:
dataset, models, and MIA dataset, which have been
used for this task of unlearning.

3.1 Dataset

There are two disjoint components of the dataset:
forget dataset and retain dataset. As their names
suggest, forget dataset constitutes of samples that
have to be forgotten or unlearned by the model, and
the retain dataset constitutes of samples that still
have to be retained by the model post its unlearning.
The dataset has predefined splits between train and
validation sets. The sample distribution between
the train and validation sets of forget and retain sets
is respectively presented in Table 1. Each of the for-
get and retain datasets in their json format have five
fields as described in Table 2. Further as described
in Table 2, there are three tasks to which a sample
in forget dataset and retain dataset could belong
to as follows: (1) Long-form synthetic creative
documents across genres; (2) Short-form synthetic
biographies with PII (fake names, phone numbers,
SSNs, emails, addresses); (3) Real documents sam-
pled from the target model’s training dataset.

The forget and retain data samples were designed to
be evaluated on sentence completion, and question-
answering. Therefore, the input field in the retain
and forget datasets is either an excerpt from some
document, or is a question. While the output field
is the continuation of the corresponding input if the
input is a document excerpt (sentence completion),
or is an answer if the input is a question (question-
answering). This categorization is indicated with a
string — ’sc’ or "qa’ as part of the sample’s id field.
(Ramakrishna et al., 2025a) further discusses the
process of dataset curation.

408

Field | Description

id Document id

input Document snippet (input to the model)

output Output for the corresponding input based on the
concerned task mapped

task The respective unlearning task to which the sam-
ple is assigned from the three tasks

split If the sample belongs to retain or forget set

Table 2: Field description of forget and retain datasets

3.2 Models

Two models were given as the target models that
need to unlearn the forget dataset. One is a 7-billion
parameter model, and the other is a 1-billion model,
both finetuned to memorize the forget and the retain
datasets, with their base architectures being OLMo-
7B-0724-Instruct-hf' model and OLMo-1B-0724-
hf? model respectively.

The base models OLMo-7B-0724-Instruct-hf and
OLMo-1B-0724-hf are transformer style autore-
gressive language models from the family of Open
language Models (OLMo) by Allen Institute for
Al and were trained on Dolma dataset®, with the
Instruct version trained on UltraFeedback dataset?.
Dolma is a large dataset curated from a combina-
tion of diverse materials sourced from the internet,
academic journals, published literature, software
repositories, books, and so on. The UltraFeedback
dataset is a large collection of human feedback in-
cluding human preferences and ratings for different
LLM outputs.

3.3 Evaluation

The target model’s unlearning is evaluated as an
average of three different scores namely task ag-
gregate, MIA score, and MMLU average accuracy,
which are explained as follows.
Task aggregate: All the samples in the forget and
retain datasets are respectively grouped according
to one-of-the-three task mapping. For all the sam-
ples in these six sets, Regurgitation score is com-
puted as RougeL score for samples in sentence
completion format, and Knowledge score is a bi-
nary indicator computed as the exact match rate for
the samples in question-answer format. The scores
are inverted (1 — score) if the sample is part of the
"https://huggingface.co/allenai/OLMo-7B-072

4-Instruct-hf
thtps://huggingface.co/allenai/OLMo—1B—072

4-hf
3https://huggingface.co/datasets/allenai/dolma
4https://huggingface.co/datasets/allenai/ultr

afeedback_binarized_cleaned

forget dataset. The respective scores for each of
the six sets are aggregated and a harmonic mean of
these 12 scores is considered as the task aggregate.
A higher score represents better performance.
MIA score: Membership Inference Attack (MIA)
is typically used to know if a sample is part of
trained model’s training data or not. In the con-
text of unlearning, it is therefore, used to identify
whether the samples in the forget dataset were for-
gotten by the model or not.

The task organizers have given an MIA dataset for
this purpose which constitutes of two sets: Mem-
ber set and Non-member set, each with 150 sam-
ples. Member set is a subset of the train split of
the forget dataset. Non-member set constitutes
of samples collected from elsewhere which the
model has not seen prior. Both the member and
non-member sets are given in jsonl format. Each
sample in the member set has an id field, a docu-
ment field, a question_answering_task field consti-
tuting of a question and the corresponding answer,
a sentence_completion_task field constituting of an
input and the corresponding output. Each sample
in the non-member set has certain meta fields, and
a document excerpt.

The final MIA score is computed as 1 —
abs(mia_auc) — 0.5) * 2 where mia_auc is the
area under the receiver operating characteristic
curve with the negative log likelihoods computed
for member and non-member sets. The MIA score
is expected to be around 0.5. The closer it is to
zero denotes under-unlearning, and the closer it is
to one denotes over-unlearning.

MMLU average accuracy: Massive Multitask
Language Understanding (MMLU) (Hendrycks
et al., 2021) is a benchmark dataset consisting of
15,908 multiple-choice questions spanning 57 di-
verse subjects used for evaluating various capabil-
ities of language models such as language under-
standing, general knowledge, reasoning abilities,
domain knowledge, generalization, and so on. The
average accuracy of the target model across all the
57 subjects is used as one of the metrics to evaluate
the post-unlearning utility of the target model. A
higher score represents better utility. A threshold
of 0.371 is set by the organizers for the 7B model.

4 Experiments and Results

A variety of experiments have been tried to under-
stand the patterns in the given datasets, and figure
out the suitable approaches that would balance the

409

https://huggingface.co/allenai/OLMo-7B-0724-Instruct-hf
https://huggingface.co/allenai/OLMo-7B-0724-Instruct-hf
https://huggingface.co/allenai/OLMo-1B-0724-hf
https://huggingface.co/allenai/OLMo-1B-0724-hf
https://huggingface.co/datasets/allenai/dolma
https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned
https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned

Method Aggregate Task MIA MMLU
Agg. score Avg
Acc.
Gradient Ascent 0.345 0 0.807 0.229
Controlled GA 0.370° 0 0.855 0.255
Gradient Difference 0.360* 0 0.825 0.255
KL Minimization 0.174 0.219 0.032 0.272
Xavier init (1B) 0.402° 0 0.944 0.261
Original model (1B) 0.0913 0 0 0.274
Gradient descent 0.410° 0 0.982 0.247
Test set score 0.389 0 0914 0.251

Table 3: Performance of 1B model
(Higher than submission® ; Submission*)

tradeoff between target model’s unlearning with
its utility post unlearning. Some of them have
been discussed in Appendix A. We used a Nvidia
GeForce RTX A6000 (48GB) GPU to run the ex-
periments.

Method Aggregate :{agsgk ;\c/[(}lee xg/g‘c(i
Gradient Ascent 0.383 0 0.865 0.284
Gradient Difference ~ 0.171 0 0 0.512
Gradient Difference 0.377* 0 0.670 0.461
-> Gradient Ascent 0.447* 0 0.998 0.343
Gradient Difference
-> Gradient 0171 0 0 0.513
Difference
Xavier init (7B) 0.397 0 0.936 0.255
Original model (7B) 0.170 0 0 0.512
Gradient Descent 0.170 0.005 0 0.504
Gradient Descent-> (365 o 0847 0247
Gradient Ascent
Test set score 0.409 0 0.999 0.229

Table 4: Performance of 7B model (Submissions™)

Gradient-based methods:

Due to computational constraints, we have consid-
ered two configurations of the models for executing
these methods: 1B model is trained as is, and 7B
model is trained in a 4-bit PEFT configuration, de-
scribed in Table 7 of Appendix B. Due to this, some
of the experiments have been performed on either
of these models, and some of them on both the mod-
els. The study investigates how various gradient
modifications influence performance, with a focus
on balancing retention, unlearning, and model util-
ity. The key results of the same are briefly reported
in Tables 3, 4 for 1B and 7B models respectively.
A detailed comparison of all the variants of these
experiments along with the corresponding training
configurations is presented in Tables 8, 9 of Ap-
pendix B for 1B and 7B models respectively.

Gradient ascent: In this method, the target model
was trained on the forget set with an inverted loss,
thereby, making it to unlearning the training set
rather than learning it. By maximizing the loss
on the forget set, this method forces the model to
unlearn. It was observed that learning rate (LR)
and weight decay (WD) variations have a strong
impact on the unlearning intensity. In particular,
aggressive configurations led to stronger unlearn-
ing, achieving a MIA score of 0.807 by the 1B
model, when LR and WD were increased despite
halving the number of epochs (E). On the other
hand, with a steady training for 10 epochs, with rel-
atively lesser LR, achieved even more unlearning
in the 7B model, however, costing its utility — the
model’s MMLU average accuracy (MMLUAA) al-
most got halved compared to the original 7B model.
Nonetheless, it was noted that the MMLUAA has
not dropped much in the case of 1B model, despite
reaching a similar MIA score. This indicates that
gradient ascent though achieves a good balance
between model’s utility and the level of unlearn-
ing in smaller models, it tends to easily destabilize
large models. Quantization in the 7B model may
have also enhanced unlearning, potentially due to
increased numerical instability aiding divergence
from the learned state.

Gradient descent: In this method, the target model
was trained on the retain set, thereby, optimizing it
to the training set. The intuition is that, the strong
adaption of the model only to the retain set can
naturally make it tend to forget the other informa-
tion (forget set) it was previously trained on, like
catastrophic forgetting. A few interesting observa-
tions were made by the model performances with
this method. Firstly, with 1B model, when it was
trained for 6 epochs, it has reached the optimal
level of unlearning required (~ 0.5), and also got a
slight boost in the MMLUAA, even more than the
original 1B model by 0.001. However, the overall
score (aggregate) is not high. It is even significantly
less than one of the gradient ascent scores. To fur-
ther study if the model’s performance would be
increased if trained more aggressively, the epochs
were increased to 20, besides increasing LR and
WD. This has achieved near perfect unlearning,
and also is the highest MIA score amongst all the
experiments on the 1B model. The MMLUAA has
also not dropped much from the original 1B model,
and therefore has got the highest aggregate score of
0.410 on the 1B model. However, a similar setup
did not go well with the 7B model.

410

KL minimization: This method adds an additional
term of Kullback—Leibler (KL) divergence as reg-
ularization to the loss function. This was used
in gradient ascent with the objective of maximiz-
ing the loss on the forget set, yet not deviate too
drastically from the original model, preserving its
performance. However, we observed that KL mini-
mization was not much different from the gradient
ascent when executed with same parameters.
Controlled gradient ascent: We tried with a vari-
ant of gradient ascent where gradients were modi-
fied in a controlled manner instead of completely
getting updated based on change with loss. A pa-
rameter alpha was used to control the scale of
updation. Setting alpha to 0.1 helped regulate the
magnitude of updates, allowing the 1B model to
reach a MIA score of 0.855, outperforming stan-
dard gradient ascent, despite training aggressively
for more than triple the epochs. This approach was
particularly effective in preventing the complete
collapse of model utility, making it a viable strat-
egy when unlearning must be balanced against task
performance.

Gradient difference: To reinforce the model util-
ity degraded by gradient ascent, in this method, the
target model was further trained on the retain set,
thereby, optimizing it to the training set. Therefore,
the target model goes through gradient ascent fol-
lowed by gradient descent. While this method has
shown a steady increase in the aggregate score of
the 1B model, with a tradeoff between MIA score
and MMLUAA, it has not shown any impact on
the 7B model. It is important to note that the 10
epochs of gradient ascent has brought down the
MMLUAA to 0.284 from 0.512, and a single sub-
sequent gradient descent epoch with LR as low as
2e-6 brought it back to 0.511, emphasizing the vital
role and impact of gradient descent in mitigating
utility loss in larger models.

Gradient difference followed by Gradient as-
cent: To further study the behavior of 7B model,
given its drastic and static responses to the above
methods, we made a few experiments specifically
on the 7B model such as this, and the subsequent
ones. It was observed that one epoch of gradient
ascent with a slightly higher LR has shown drastic
change in model’s performance. Multiple experi-
ments with this method demonstrate its strategic
impact striking a good balance between unlearn-
ing and utility. Nevertheless, reducing the learning
rate has not reversed the impact of gradient de-
scent, while increasing it further has deteriorated

the model’s performance with excessive unlearning
like that of gradient ascent alone. Overall, with
optimal parameter settings, this method excelled
on the 7B model, achieving the highest aggregate
score while maintaining a balance across utility and
unlearning metrics.

Gradient difference followed by Gradient dif-
ference: Further gradient descent on the afore-
mentioned state reemphasizes the impact of even
a single round of gradient descent with LR as low
as 2e-8, on a strongly unlearned model with MIA
score of 0.982 which reinstated it alike the original.
Gradient descent followed by Gradient ascent:
It was observed that gradient ascent with smaller
learning rate like 2e-6 could not counter the impact
of prior gradient descent training, while making
it a little aggressive has over dominated the prior
training, leading to reduced MMLUAA.

Xavier Initialization: Though, not an unlearning
method originally, it is interesting to observe that
by erasing all the parametric values of the original
models and by only initializing them with Xavier
initialization has still given one of the best aggre-
gate scores, without any training, outperforming
many other methods, stressing setup-dependent
variability.

5 Conclusion

This work explores the use of targeted unlearning
in LLMs where we have experimented with several
unlearning methods with different configurational
settings to make the target models forget the re-
quested dataset, and preserve the specified retain
set, also, preserving its overall multifaceted capabil-
ities. From our experiments, for 7B model: Gradi-
ent difference followed by Gradient ascent worked
well with appropriate parameters tuning; and for
1B model: Gradient descent alone on the retain set
worked well. Xavier initialization on the 1B model
has got near equivalent score on all the metrics
as the former. Followed by similar performance
between Controlled gradient ascent, and Gradient
difference, with respective appropriate parameters
tuning. This work reemphasizes the fact that selec-
tive unlearning comes with the delicate problem of
optimizing effective unlearning with knowledge re-
tention of the remaining data and model’s integrity,
utility for downstream tasks. Further, it demon-
strates that performance of a method significantly
depends on the scale of the target model, and the
kind of data it is presented with.

411

Acknowledgments

We would like to thank our colleagues, Ashok
Urlana and Charaka Vinayak Kumar, for their valu-
able feedback and insightful discussions, which
have notably improved this work.

References

Tomer Ashuach, Martin Tutek, and Yonatan Belinkov.
2024. Revs: Unlearning sensitive information in
language models via rank editing in the vocabulary
space. Preprint, arXiv:2406.09325.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT 21, page 610-623, New York, NY,
USA. Association for Computing Machinery.

Karuna Bhaila, Minh-Hao Van, and Xintao Wu. 2024.
Soft prompting for unlearning in large language mod-
els. Preprint, arXiv:2406.12038.

Alberto Blanco-Justicia, Najeeb Jebreel, Benet
Manzanares-Salor, David Sanchez, Josep Domingo-
Ferrer, Guillem Collell, and Kuan Eeik Tan. 2025.
Digital forgetting in large language models: a survey
of unlearning methods. Artificial Intelligence Review,
58(3).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Zhiqi Bu, Xiaomeng Jin, Bhanukiran Vinzamuri, Anil
Ramakrishna, Kai-Wei Chang, Volkan Cevher, and
Mingyi Hong. 2024. Unlearning as multi-task op-
timization: A normalized gradient difference ap-
proach with an adaptive learning rate. Preprint,
arXiv:2410.22086.

Jiaao Chen and Diyi Yang. 2023. Unlearn what you
want to forget: Efficient unlearning for LLMs. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 12041—
12052, Singapore. Association for Computational
Linguistics.

Ben Cottier, Robi Rahman, Loredana Fattorini, Nestor
Maslej, Tamay Besiroglu, and David Owen. 2025.

The rising costs of training frontier ai models.
Preprint, arXiv:2405.21015.

Omkar Dige, Diljot Arneja, Tsz Fung Yau, Qixuan
Zhang, Mohammad Bolandraftar, Xiaodan Zhu, and
Faiza Khan Khattak. 2024. Can machine unlearning
reduce social bias in language models? In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing: Industry Track, pages
954-969, Miami, Florida, US. Association for Com-
putational Linguistics.

Chongyu Fan, Jiancheng Liu, Licong Lin, Jinghan Jia,
Ruiqi Zhang, Song Mei, and Sijia Liu. 2024. Simplic-
ity prevails: Rethinking negative preference optimiza-
tion for llm unlearning. Preprint, arXiv:2410.07163.

XiaoHua Feng, Chaochao Chen, Yuyuan Li, and Zibin
Lin. 2024. Fine-grained pluggable gradient ascent for
knowledge unlearning in language models. In Pro-
ceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pages 10141—
10155, Miami, Florida, USA. Association for Com-
putational Linguistics.

Saaketh Koundinya Gundavarapu, Shreya Agarwal,
Arushi Arora, and Chandana Thimmalapura Jagadee-
shaiah. 2024. Machine unlearning in large language
models. Preprint, arXiv:2405.15152.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. Preprint, arXiv:2009.03300.

Emmie Hine, Claudio Novelli, Mariarosaria Taddeo,
and Luciano Floridi. 2024. Supporting trustworthy ai
through machine unlearning. Science and Engineer-
ing Ethics, 30(5).

Yihuai Hong, Lei Yu, Haiqin Yang, Shauli Ravfogel,
and Mor Geva. 2024. Intrinsic evaluation of unlearn-
ing using parametric knowledge traces. Preprint,
arXiv:2406.11614.

Jiabao Ji, Yujian Liu, Yang Zhang, Gaowen Liu, Ra-
mana Rao Kompella, Sijia Liu, and Shiyu Chang.
2024. Reversing the forget-retain objectives: An effi-
cient llm unlearning framework from logit difference.
Preprint, arXiv:2406.08607.

Jinghan Jia, Jiancheng Liu, Yihua Zhang, Parikshit Ram,
Nathalie Baracaldo, and Sijia Liu. 2024. Wagle:
Strategic weight attribution for effective and mod-
ular unlearning in large language models. Preprint,
arXiv:2410.17509.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper,
Nathalie Baracaldo, Peter Hase, Yuguang Yao,
Chris Yuhao Liu, Xiaojun Xu, Hang Li, Kush R.
Varshney, Mohit Bansal, Sanmi Koyejo, and Yang
Liu. 2024a. Rethinking machine unlearning for large
language models. Preprint, arXiv:2402.08787.

412

https://arxiv.org/abs/2406.09325
https://arxiv.org/abs/2406.09325
https://arxiv.org/abs/2406.09325
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://arxiv.org/abs/2406.12038
https://arxiv.org/abs/2406.12038
https://doi.org/10.1007/s10462-024-11078-6
https://doi.org/10.1007/s10462-024-11078-6
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2410.22086
https://arxiv.org/abs/2410.22086
https://arxiv.org/abs/2410.22086
https://doi.org/10.18653/v1/2023.emnlp-main.738
https://doi.org/10.18653/v1/2023.emnlp-main.738
https://arxiv.org/abs/2405.21015
https://doi.org/10.18653/v1/2024.emnlp-industry.71
https://doi.org/10.18653/v1/2024.emnlp-industry.71
https://arxiv.org/abs/2410.07163
https://arxiv.org/abs/2410.07163
https://arxiv.org/abs/2410.07163
https://doi.org/10.18653/v1/2024.emnlp-main.566
https://doi.org/10.18653/v1/2024.emnlp-main.566
https://arxiv.org/abs/2405.15152
https://arxiv.org/abs/2405.15152
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://doi.org/10.1007/s11948-024-00500-5
https://doi.org/10.1007/s11948-024-00500-5
https://arxiv.org/abs/2406.11614
https://arxiv.org/abs/2406.11614
https://arxiv.org/abs/2406.08607
https://arxiv.org/abs/2406.08607
https://arxiv.org/abs/2410.17509
https://arxiv.org/abs/2410.17509
https://arxiv.org/abs/2410.17509
https://arxiv.org/abs/2402.08787
https://arxiv.org/abs/2402.08787

Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun
Tian, and Meng Jiang. 2024b. Towards safer large
language models through machine unlearning. In
Findings of the Association for Computational Lin-
guistics: ACL 2024, pages 1817-1829, Bangkok,
Thailand. Association for Computational Linguistics.

Seth Neel and Peter Chang. 2024. Privacy issues
in large language models: A survey. Preprint,
arXiv:2312.06717.

Martin Pawelczyk, Seth Neel, and Himabindu
Lakkaraju. 2023. In-context unlearning: Language

models as few shot unlearners. arXiv preprint
arXiv:2310.07579.

Nicholas Pochinkov and Nandi Schoots. 2024. Dis-
secting language models: Machine unlearning via
selective pruning. Preprint, arXiv:2403.01267.

Youyang Qu, Ming Ding, Nan Sun, Kanchana Thi-
lakarathna, Tianqing Zhu, and Dusit Niyato. 2024.
The frontier of data erasure: Machine unlearning for
large language models. Preprint, arXiv:2403.15779.

Anil Ramakrishna, Yixin Wan, Xiaomeng Jin, Kai-Wei
Chang, Zhiqi Bu, Bhanukiran Vinzamuri, Volkan
Cevher, Mingyi Hong, and Rahul Gupta. 2025a.
Lume: Llm unlearning with multitask evaluations.
Preprint, arXiv:2502.15097.

Anil Ramakrishna, Yixin Wan, Xiaomeng Jin, Kai-Wei
Chang, Zhiqi Bu, Bhanukiran Vinzamuri, Volkan
Cevher, Mingyi Hong, and Rahul Gupta. 2025b.
Semeval-2025 task 4: Unlearning sensitive content
from large language models. arXiv preprint.

Pratiksha Thaker, Yash Maurya, Shengyuan Hu,
Zhiwei Steven Wu, and Virginia Smith. 2024.
Guardrail baselines for unlearning in llms. Preprint,
arXiv:2403.03329.

Xinwei Wu, Junzhuo Li, Minghui Xu, Weilong Dong,
Shuangzhi Wu, Chao Bian, and Deyi Xiong. 2023.
DEPN: Detecting and editing privacy neurons in pre-
trained language models. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2875-2886, Singapore. As-
sociation for Computational Linguistics.

Yuchen Xia, Jiho Kim, Yuhan Chen, Haojie Ye, Souvik
Kundu, Cong Hao, and Nishil Talati. 2024. Under-
standing the performance and estimating the cost of
llm fine-tuning. Preprint, arXiv:2408.04693.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. 2024.
Large language model unlearning. Preprint,
arXiv:2310.10683.

Charles Yu, Sullam Jeoung, Anish Kasi, Pengfei Yu, and
Heng Ji. 2023. Unlearning bias in language models
by partitioning gradients. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2023,
pages 6032-6048, Toronto, Canada. Association for
Computational Linguistics.

Hongbang Yuan, Zhuoran Jin, Pengfei Cao, Yubo Chen,
Kang Liu, and Jun Zhao. 2024. Towards robust
knowledge unlearning: An adversarial framework
for assessing and improving unlearning robustness in
large language models. Preprint, arXiv:2408.10682.

Jinghan Zhang, Shiqi Chen, Junteng Liu, and Junx-
ian He. 2023. Composing parameter-efficient
modules with arithmetic operations. Preprint,
arXiv:2306.14870.

Ran Zhang, Hong-Wei Li, Xin-Yuan Qian, Wen-Bo
Jiang, and Han-Xiao Chen. 2025. On large lan-
guage models safety, security, and privacy: A survey.

Journal of Electronic Science and Technology, page
100301.

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. 2024.
Negative preference optimization: From catastrophic
collapse to effective unlearning. arXiv preprint
arXiv:2404.05868.

Shuai Zhao, Xiaobao Wu, Cong-Duy Nguyen, Meihuizi
Jia, Yichao Feng, and Luu Anh Tuan. 2024. Unlearn-
ing backdoor attacks for llms with weak-to-strong
knowledge distillation. Preprint, arXiv:2410.14425.

A Other experiments conducted

* Prompt routing

If there are any distinguishable patterns be-
tween the samples of forget and retain sets,
they can be used to train the target model re-
spond in a certain way when a sample is iden-
tified to be from the forget set distribution and
vice versa. These patterns might be identifi-
able through sample clustering by grouping
similar ones. Additionally, as the labels are
available for the forget and retain samples, a
binary classifier can be trained to classify the
samples. If the samples are effectively classi-
fiable, it therefore, can be used to classify the
input, and accordingly make the target model
respond.

— Clustering
Two distinct clustering algorithms were
used: Agglomerative clustering, Density-
Based Spatial Clustering of Applications
with Noise (DBSCAN). In agglomera-
tive clustering, which is a hierarchical

Split Train Test

Forget_train 890 222
Retain_train 909 227

Table 5: Distribution of train and test set samples used
for classifier training

413

https://doi.org/10.18653/v1/2024.findings-acl.107
https://doi.org/10.18653/v1/2024.findings-acl.107
https://arxiv.org/abs/2312.06717
https://arxiv.org/abs/2312.06717
https://arxiv.org/abs/2403.01267
https://arxiv.org/abs/2403.01267
https://arxiv.org/abs/2403.01267
https://arxiv.org/abs/2403.15779
https://arxiv.org/abs/2403.15779
https://arxiv.org/abs/2502.15097
https://arxiv.org/abs/2403.03329
https://doi.org/10.18653/v1/2023.emnlp-main.174
https://doi.org/10.18653/v1/2023.emnlp-main.174
https://arxiv.org/abs/2408.04693
https://arxiv.org/abs/2408.04693
https://arxiv.org/abs/2408.04693
https://arxiv.org/abs/2310.10683
https://doi.org/10.18653/v1/2023.findings-acl.375
https://doi.org/10.18653/v1/2023.findings-acl.375
https://arxiv.org/abs/2408.10682
https://arxiv.org/abs/2408.10682
https://arxiv.org/abs/2408.10682
https://arxiv.org/abs/2408.10682
https://arxiv.org/abs/2306.14870
https://arxiv.org/abs/2306.14870
https://doi.org/10.1016/j.jnlest.2025.100301
https://doi.org/10.1016/j.jnlest.2025.100301
https://arxiv.org/abs/2410.14425
https://arxiv.org/abs/2410.14425
https://arxiv.org/abs/2410.14425

UMAP Visualization with Agglomerative Clusters

.
.

20

-20 -10 0 10 20

(a) Agglomerative cluster distribution

UMAP Visualization with DBScan Clusters

30
N 25

. .ﬂ.,
’ . - 20
{ . 15
'ﬁ 10

(c) DBSCAN cluster distribution

Distribution of Forget and Retain Samples Across Clusters

Label
= Forget
600 Wl Retain

500

400

300

Number of Samples

200

100

0 1
agglomerative_cluster

(b) Forget and Retain samples distribution across ag-
glomerative clusters

Distribution of Forget and Retain Samples Across DBScan Clusters

Label
. Forget
. fetain

250

200

150

Number of Samples

0 ‘I Ill'l,.|II.lIIII-I'I!I]I-I‘-"--II.J]

101234567 8 910111213141516171819202122232425262 72829303132 33343536 37 3839
dbscan_cluster

(d) Forget and Retain samples distribution across DB-
SCAN clusters

Figure 2: Clusters visualization, and distribution of forget and retain samples across respective clusters

approach, it is required to specify the
desired number of clusters, which was
set to two here, denoting the forget and
retain sets. Unlike agglomerative, DB-
SCAN is a density-based clustering ap-
proach, where epsilon was set to 0.3,
and minimum_samples was set to 10.

— Classification
Six machine learning algorithms and
an ensemble soft voting classifier were
trained on the combined forget and retain
datasets, with an 80:20 train-test split.
The denomination of samples in the train
and the test sets are reported in Table 5.

Observations: The features used to repre-
sent the samples result in significant overlap
in the feature space, failing to provide suf-
ficient separation between the two disjoint
classes. This is evident in both clustering
and classification results. Clustering, using
both predefined and non-predefined groups,
showed that each resulting cluster contained
a proportionate number of samples from both

414

classes. Furthermore, classification demon-
strated that no tested classifier achieved sig-
nificant performance metrics. These results
are illustrated in Figures 2 and 3. Although
these results were obtained using the OLMo-
1B-0724-hf tokenizer (the default for the 1B
model), the observations remain consistent
across other tested tokenizers: deberta-v3-
large and all_Mini_LM.

Logits difference: Drawing from (Ji et al.,
2024), to use an assistant model which is
trained to remember the forget set, whose log-
its when subtracted from that of the target
model will result in effective unlearning of
the forget set for the queries inferred upon, we
experimented with the following directions.
For all the experiments, a temperature of zero
was set, and a scaling factor of 0.2 was used
for subtracting logits.

— Reinitializing the weights of pre-
trained model, and tuning on the for-
get set: An assistant model was prepared
with a copy of the target model’s con-

Score

0.8

0.6

0.4 1

0.2

0.0

Model Comparison on Different Metrics

Model
Logistic Regression
Decision Tree
Random Forest
SVM
KNN
XGBoost
voting Classifier

.\00

&
X
&

&

Metric

C@//

Figure 3: Binary classifier’s performance across metrics

&@c\ RS

&
Layer Modify ratio
self_attn.q_proj O
self_attn.k_proj 0.00001
self_attn.v_proj 0.0001
self_attn.o_proj 0.01
mlp.gate_proj 0.03

mlp.up_proj 0

mlp.down_proj 0.07

First 12 layers 0 (freezed)

Table 6: Layer-wise perturbation configuration

figuration (1B). This model was initial-
ized with Xavier initialization, and was
trained on the forget set. As the forget
set is very small with very limited sam-
ples to train a model, the assistant model
resulted in generating garbage charac-
ters, sometimes, repeated words without
a complete meaning. Therefore, this did
not result in effective unlearning, as the
assistant model could not pick up the for-
get set due to its small quantity. This ex-
periment emphasizes that, in cases, the
size of the forget set plays an important
role to understand the information to be
forgotten effectively, and availability or

415

5https:

hatbot-t5

6https:

provision of only limited forget samples
could lead to ineffective unlearning of
the target model.

Using another domain-irrelevant lan-
guage model as the assistant: Based on
the above observation, a hypothesis was
formulated as — instead of using an assis-
tant model with no prior knowledge, if
it has certain level of language under-
standing, it might be able to pick up
the forget set despite its limited quan-
tity. Thus, fintech-chatbot-t5°, a small
domain-irrelevant model was considered
for the assistant model. This model
is based on T5-small architecture and
was trained on the retail banking chat-
bot dataset® for only 3 epochs. We have
finetuned this model on the forget dataset.
However, it was observed that the logits
difference did not give any meaningful
output when decoded. Apparently, due
to different tokenizers used by the assis-
tant and the target models, the encoded
vectors were not aligned to be subtracted.

Knowledge truncation in the pre-
trained model being used as the as-

//huggingface.co/cuneytkaya/fintech-c

//huggingface.co/datasets/bitext/Bitex

t-retail-banking-1lm-chatbot-training-dataset/

https://huggingface.co/cuneytkaya/fintech-chatbot-t5
https://huggingface.co/cuneytkaya/fintech-chatbot-t5
https://huggingface.co/datasets/bitext/Bitext-retail-banking-llm-chatbot-training-dataset/
https://huggingface.co/datasets/bitext/Bitext-retail-banking-llm-chatbot-training-dataset/

sistant: Considering the discussed re-
sults, a copy of the target model was
used as the assistant model, truncating
its knowledge, such that it preserves the
language understanding capabilities, and
other general abilities, but not the spe-
cific subject matter expertise, or any par-
ticular details. The target model has 16
layers in total, and each layer has 7 com-
ponents: 4 for self-attention and 3 for
feed-forward network. A brute-force ap-
proach was followed to identify the best
(better) combination of layers that are
required to be retained as is, and the
layers that are required to be perturbed.
The perturbation method followed was
to add a factor of noise determined
by torch.randn_like(param.data)
modi fy_ratio where param.data is
the corresponding parametric value for
a parameter in a layer, and the combina-
tion of modi fy_ratios that worked de-
cently are reported in Table 6. Although
this experiment worked fairly based on
the limited combinations tested with, the
responses still required significant refine-
ment, demanding rigorous testing.

B Training configuration & results

1B model training configs 7B model training configs

batch_size = 8

AdamW optimizer * Quantization (BitsAndBytesConfig):

. — load_in_4bit = True

Linear scheduler — bnb_4bit_quant_type = "nf4"
num'_warm.up’_steps =3 — bnb_4bit_compute_dtype = "float16"
gradle?nt_pllp s max_norm = 1 « PEFT (LORA) config:

tokenization: — lora_alpha = 16

— max_length = 512 - lora_dropout = 0.1
— truncation = True =64

— padding = max_length’ _
* For GA: Loss = -outputs.loss

— target_modules = {’q_proj’, ’k_proj’, *v_proj’, ’o_proj’,
’gate_proj’, "upd_proj’, ’down_proj’}
— bias = "none"
— task_type = "CAUSAL_LM"
¢ Training config:
— per_device_train_batch_size =4
— SFTTrainer
formatting_func returns list of input, output pairs
— For GA: Loss = -outputs.loss

Table 7: Training configurations of 1B and 7B models

416

Method Aggregate Task MIA score MMLU Configuration

Agg. Avg Acc.
Gradient 0.181 0.222 0.049 0.271 LR=2e-7, WD=2e-6, E = 6;
Ascent (GA) 0.345 0 0.807 0.229 LR =2e-5, WD =2e-4,E=3
Controlled GA 0.370 0 0.855 0.255 LR=2e-5, E=10, No WD, alpha=0.1
Gradient 0.231 0 0.417 0.275 LR =2e-6; WD =2e-5;E=6;
Descent (GD) 0.410 0 0.982 0.247 LR=2e-5; WD=2e-4; LR_Scheduler =
Cosine schedule; E=20
0.323 0 0.701 (6 GD epochs) 0.269
0.325 0 0.711 (9 GD epochs) 0.263
0.290 0 0.621 (12 GD epochs) 0.248
0.316 0 0.687 (15 GD epochs) 0.260
Gradient 0.302 0 0.670 (18 GD epochs) 0.237 GA(LR=2e-7, WD=2¢-6, E = 6) -> GD
Difference 0.331 0 0.742 (21 GD epochs) 0.251 (First 6 GD epochs: LR = 2e-7, WD =
0.336 0 0.753 (24 GD epochs) 0.254 2e-6; After that: LR = 2e-5, WD = 2e-4)
0.345 0 0.800 (27 GD epochs) 0.235
0.360 0 0.825 (30 GD epochs) 0.255
KL Minimization 0.174 0.219 0.032 0.272 LR=2¢-7, WD=2e-6, E=6
Xavier init (1B) 0.402 0 0.944 0.261 Original model weights are erased and
initialized with Xavier initialization
method
Original 0.0913 0 0 0.274 -

model (1B)

Table 8: Performance of 1B model — A comprehensive view (LR: Learning rate; WD: Weight decay; E: Epoch)

Method Aggregate Task MIA MMLU Configuration
Agg. score Avg Acc.
Gradient 0.383 0 0.865 0.284 LR=2e-6, E=10
Ascent (GA)
Gradient 0.170 0.005 0 0.504 LR=2e-5, E=20
Descent (GD)
GA: LR=2e-6, E=10
0.170 0 0 0.504 GD: LR=2e-4, E=25
Gradient 0.169 0 0 0.502 GD: LR=2e-4, E=5
Differmce 0.168 0 0 0.505 GD: LR= 2e-4, E=3
(GDf) 0.171 0 0 0.512 GD: LR=2¢-6, E=3
0.170 0 0 0.511 GD: LR= 2e-6, E=1
GA (LR= 2e-6, E=10) -> GD (E=3: LR= 2e-6)
0.377 0 0.67 0.461 > GA (E=1: LR= 2¢-5)
0442 0 0.982 0345 GA (LR= le-4, E=3) -> GD (E=3: LR= 2e-6)
GDf -> GA -> GA (E=1: LR=2e-5)
) 0447 0 0.998 0343 GA (LR= le-5, E=3) -> GD (E=3: LR= 2e-6)
’ : ’ -> GA (E=1: LR=2e-5)
GA (LR= le-5, E=3) -> GD (E=3: LR= 2e-6)
0.170 0 0 0.511 > GA (B=1: LR= 2¢-6)
GA (LR= le-4, E=3) -> GD (LR= 2e-6, E=3)
GDf - GDf 0171 0 0 0.513 -> GA (LR= 2e-5, E=1) -> GD (LR= 2e-6, E=1)
) 0.170 0 0 0511 GA (LR= le-4, E=3) -> GD (LR= 2e-6, E=3)
’ ’ -> GA (LR= 2e-5, E=1) -> GD (LR= 2e-8, E=1)
Xavier init (7B) 0.397 0 0.936 0.255 Original model weights are erased and initialized
with Xavier initialization method
Original model (7B) 0.170 0 0 0.512 -
GD -> GA 0.170 0 0 0.509 GD: LR=2e-5, E=20; GA: LR= 2¢-6, E=3
) 0.365 0 0.847 0.247 GD: LR=2e-5, E=20; GA: LR= 2e-4, E=3

Table 9: Performance of 7B model — A comprehensive view (LR: Learning rate; E: Epoch)

417

