sonrobok4 Team at SemEval-2025 Task 8: Question Answering over
Tabular Data Using Pandas and Large Language Models

Nguyen Minh Son'? and Dang Van Thin'?
1University of Information Technology, Ho Chi Minh City, Vietnam
2Vietnam National University, Ho Chi Minh City, Vietnam
22521254 @gm.uit.edu.vn, thindv @uit.edu.vn

Abstract

This paper describes the system of the son-
robok4 team for the SemEval-2025 Task 8:
DataBench, Question-Answering over Tabu-
lar Data. The task requires answering ques-
tions based on the given question and dataset
ID, ensuring that the responses are derived
solely from the provided table. We address this
task by using large language models (LLMs)
to translate natural language questions into
executable Python code for querying Pandas
DataFrames. Furthermore, we employ tech-
niques such as a rerun mechanism for error
handling, structured metadata extraction, and
dataset preprocessing to enhance performance.
Our best-performing system achieved 89.46%
accuracy on Subtask 1 and placed in the top 4
on the private test set. Additionally, it achieved
85.25% accuracy on Subtask 2 and placed in
the top 9. We mainly focus on Subtask 1. We
analyze the effectiveness of different LLMs for
structured data reasoning and discuss key chal-
lenges in tabular question answering.

1 Introduction

The SemEval 2025 Task 8 (Osés-Grijalba et al.,
2025) focuses on developing systems for Question
Answering (QA) over tabular data, a critical sub-
field of natural language processing (NLP) with
applications in business intelligence, automated
data analytics, and financial reporting. Unlike tra-
ditional QA tasks that rely on retrieving informa-
tion from free-text documents, this challenge re-
quires models to derive answers solely from struc-
tured, tabular data. The DataBench benchmark
comprises 65 real-world datasets drawn from di-
verse domains, with each dataset accompanied by
20 human-generated questions and corresponding
answers. This setup demands that models not only
retrieve information accurately but also perform the
necessary computations and reasoning over multi-
ple table columns.

This paper introduces a system designed to ad-
dress the challenges of question answering over tab-
ular data (Tabular QA). Our approach translates nat-
ural language queries into executable Python code
for direct interaction with the provided data. To
improve reliability and performance, we incorpo-
rate a custom error recovery mechanism and lever-
age the power of several LLMs: gpt4o-mini,
DeepSeek, and an open-source model. We eval-
uated these models with our proposed approach
using various prompt configurations. Through ex-
tensive testing and comparison, we assessed each
model’s performance on our Tabular QA tasks, ul-
timately selecting the model that provided the best
overall accuracy and robustness for our final sys-
tem.

2 Related Work

Tabular question answering (QA) has evolved con-
siderably over the past few years, driven by the
creation of diverse datasets and innovative method-
ological approaches. In this section, we discuss
methodological advancements, emphasizing recent
paradigm shifts enabled by large language models
(LLMs).

Early methods translated natural language ques-
tions into logical forms (e.g., SQL queries) for
structured data retrieval. Systems such as Wik-
iSQL (Zhong et al., 2017) and Spider (Yu et al.,
2018) exemplify this paradigm, achieving high ac-
curacy under constrained conditions. However,
their reliance on predefined schemas limits appli-
cability to free-form questions and complex table
structures.

End-to-end neural models like TAPAS (Herzig
et al., 2020) advanced the field by jointly encoding
tables and questions using transformer architec-
tures. TAPAS incorporates specialized positional
embeddings to preserve table structure during pre-
training, enabling direct answer prediction without
intermediate SQL generation. Despite their effec-

357

Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 357-362
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

tiveness, such models require domain-specific fine-
tuning and struggle with numerical reasoning tasks
requiring explicit computation.

Recent approaches, notably (Liu et al., 2024b),
leverage large language models (LLMs) via
prompting strategies (e.g., in-context learning)
rather than task-specific fine-tuning. Tables are se-
rialized into text sequences and paired with demon-
strations (e.g., "Q: [question] A: [answer]"), en-
abling LLMs like GPT-3.5/4 to perform reasoning
across diverse schemas. Although LLMs show
strong generalization evidenced by DataBench’s
multi-domain evaluation they face challenges with
large tables, hallucination, and precise numerical
operations.

3 Method

Our system is designed to answer natural language
questions based solely on the information con-
tained in tabular datasets. The overall pipeline
consists of four main components: data preprocess-
ing, context provisioning, natural language-to-code
conversion, and error-aware execution. In the fol-
lowing, we detail each step of our approach.

3.1 Data Preprocessing

During our experiments with the development set,
we observed that certain datasets contained special
cases that led to incorrect answers. Addressing
these issues not only resolved errors but also im-
proved model performance. Our pre-processing
steps are described as below:

* Handling Missing Values: Empty lists ([]
in the dataset) are treated as missing values
and replaced with NaN to ensure consistency
in data representation.

* String Normalization: Extraneous whites-
pace is removed by stripping leading and trail-
ing spaces from string values.

* Datetime Standardization: Columns con-
taining date values are converted to the
datetime format to ensure uniformity
across datasets.

When evaluated on the test set, we identified spe-
cific datasets that frequently exhibited errors. We
applied additional preprocessing steps to mitigate
these issues:

* 067_TripAdvisor: Extracted individual
rating components (e.g., ‘service’:
5.0, ’'cleanliness’: 5.0,
"overall’: 5.0) and au-
thor details (e.g., "username’ :
"Pressgang’, ’‘num_cities’:

8, 'num_helpful_votes’: 7,
"num_reviews’: 9) into separate

columns.

074_Lift: Generated a Gender column by
classifying lifter names using an LLM-based
approach.

* 079_Coffee: Fixed currency formatting by
converting values such as 6,00 USS$ to
6.00.

3.2 Context Provisioning

To enable accurate code generation, our system
first extracts and compiles relevant context from
the provided dataset. During testing with the devel-
opment set, we observed that the context provided
to the language model (LLM) significantly impacts
its performance. For example, when the baseline
method only provided df . head (), we observed
errors with incorrect column names and data types.
This suggests that providing only a few sample
rows is insufficient for the LLM to understand the
dataset’s structure and data types. Based on these
insights, we tested several alternative methods of
providing context. The following components were
included to improve the LLM’s understanding of
the data:

* Dataset Preview: A snapshot of the dataset is
created using df . head (), which provides a
representative sample of rows.

* Column Data Types: The data types of each
column are retrieved via df . dtypes, and
the full list of column names is extracted using
df.columns.

* Enhanced Column Metadata: In some ex-
periments, we also provide a dictionary that
associates each column name with the type of
data in that column. The data types are deter-
mined by applying the type () function to
the first entry in each column.

This comprehensive context is embedded in the
prompt template, ensuring that the language model
has sufficient information to generate accurate Pan-
das expressions tailored to the structure of the table.

358

3.3 Natural Language-to-Code Conversion

The core of our approach employs a Pandas-
QueryEngine that translates a given natural lan-
guage question into an executable Python expres-
sion. The prompt provided to the model contains:

¢ The dataset context (as described above).

» Explicit instructions on generating a Pandas
code snippet that, when executed, produces
the answer.

* A directive to output only the final expression,
minimizing extraneous text.

This process is performed using multiple Large
Language Models (LLMs), we also configured with
distinct prompt variants to explore the impact of
prompt design on code accuracy.

3.4 Error-Aware Execution and Rerun
Mechanism

Recognizing that LLM-generated code may occa-
sionally result in errors, our system integrates an
error-detection module that monitors the execution
of the generated Pandas code. Upon encountering
an error, the system automatically regenerate and
execute the new Python code.

3.5 Algorithm

In this section, we present the algorithm for
Question-Answering over Tabular Data. The al-
gorithm takes as input a language question and a
dataset identifier, then retrieves the corresponding
dataframe to generate and execute code for answer-
ing the question. The overall workflow involves
LLM-based code generation, execution, error han-
dling, and final answer formulation.

Algorithm 1 describes the complete workflow
for question-answering over tabular data. Figure 1
illustrates the complete flow of our approach.

4 Experimental Setup

In this section, we describe the experimental setup,
including the models, datasets, and evaluation
methodology.

4.1 Models and Prompts
We experiment with different Large Language Mod-
els (LLMs):

* GPT-40-mini: A compact and efficient vari-
ant of GPT-40 (Achiam et al., 2023) that bal-
ances high-quality reasoning and dialogue

Algorithm 1 LLM-Driven Table Question Answer-
ing

1: Input: question, dataset_ID

2: Retrieve dataframe df using dataset_1ID.

3: 1. Code Generation: Prompt the LLM with
the question and df context to generate Python
code.

4: 2. Execution and Validation: Execute the
code on df.

5: if successful then

6: Return the result; proceed to Step 4.

7: else

8: Proceed to Step 3.

9: end if

10: 3. Error Correction:

11: for up to k retries do

12: Provide code and error to the LLM for cor-
rection.

13: Re-execute the updated code.

14: if successful then

15: Return the result; proceed to Step 4.

16: end if

17: end for

18: 4. Answer Generation: Use LLM to produce
the final answer under competition constraints.

with reduced computational cost, making it
accessible and affordable.

* DeepSeek-V3 (Liu et al., 2024a): A model
that reportedly outperforms other open-source
models and achieves performance comparable
to leading closed-source models.

* DeepSeek-R1 (Guo et al., 2025): A reasoning-
focused model that matches OpenAl-ol in
tackling complex mathematical, coding, and
logical tasks, while offering its capabilities
via API at a remarkably low cost.

* deepseek-rl-distill-qwen-14b: An open-
source model distilled from DeepSeek-R1
based on Qwen

GPT-40-mini is tested with three different
prompts:

* Prompt A: A baseline prompt from Llamaln-
dex with some adjustments to match the com-
petition output.

* Prompt B: An improved prompt with some
data information addition.

359

Data source

Large language
models

l

Information

Input lds }—> Extraction

:> Prompt

v Python Code

“ Code Code Prompt Answer

Engineering

Input

question —> Pre-processing

A

Integration

Fail
Extraction Error

during Execution

7 Execute
N -~ Pass

Output Engineering

Figure 1: Overview of the Methodology for Question Answering over Tabular Data via Large Language Models

* Prompt C: An improved prompt incorporat-
ing additional information, including column
names and data types, to enhance accuracy.

Each prompt was designed to assess how prompt
engineering affects the correctness and consistency
of the generated answers. The main differences
between the prompts are illustrated in Figure 2.

4.2 Dataset

We conduct experiments on two versions of the
dataset:

* Original Data: The raw dataset without mod-
ifications.

* Preprocessed Data: A cleaned version in
which we address inconsistencies such as con-
verting missing values, standardizing data for-
mats, and generating additional features.

Further details on the preprocessing steps can be
found in Section 3.1.

4.3 Evaluation Metrics and Procedure

We evaluate models based on accuracy, comparing
predicted answers to the ground truth.

5 Results and Discussion

In this study, we evaluated four models: GPT-4o-
mini, DeepSeek-V3, DeepSeek-R1, and deepseck-
ri-distill-qwen-14b. Initially, GPT-40-mini was
tested with three distinct prompts (A, B, and C) us-
ing the original dataset. Based on these preliminary
results, we identified the best-performing prompt
(Prompt C) and subsequently used it to compare
model performance on preprocessed datasets.

5.1 Results Overview

The results summarized in Table 3 present the ac-
curacy of each model under different prompt condi-
tions using the original dataset. As shown, Prompt
C consistently achieved the highest accuracy
across all models, making it the most effective
prompt for further experimentation. Based on this
finding, we conducted additional evaluations to an-
alyze the impact of data preprocessing while using
Prompt C. Table 4 shows the total errors in dif-
ferent question types of the best model which is
DeepSeek-R1.

To further compare our approach with the top-
performing teams, we report rankings separately
for Subtask 1 and Subtask 2. Table 1 lists the top
S teams in Subtask 1, where our method ranked
4th.

For Subtask 2, we used DeepSeek-V3 instead of
DeepSeek-R1 because the API for DeepSeek-R1
was unavailable at that time. Table 2 presents the
top 5 teams in Subtask 2, in which our approach
ranked 9th.

Table 1: Top 5 Teams in Subtask 1

Rank Accuracy (%)
Top 1 95.01
Top 2 89.85
Top 3 89.66
Top 5 88.12
Top 6 87.16
Top 4 (Our Team) 89.46

360

_ Prompt A
| "You are working with a pandas
dataframe “df".\n"

Thic ie He reor it AF
THis I1s the result of

dataframe “df.\n"

‘print{df head()) \n{df_strj\n\n"
"Follow these
instructions:\n{instruction_strjin"
"Query” {query_striinin"
"Expression"

"Follow these

instructions:\n{instruction_strjn"

Prompt B

"You are working with a pandas

"This is the result of
print(df.head()) \n{df_str})\n\n"
"This is the result of
“print(df. dtypes) \n{df_type}\mn"
"This is the result of
‘print(df columns)®:\n{df_columns}\n"

| "Query: {query_strjin\n"

“"Expression:"

_ Prompt C

"You are working with a pandas

dataframe “df" \n"

"This is the result of

rint(df. head()) \n{df_str}\n\n"

"This is the dictionary of columns name
and their types \n{column_infol\n\n"
"Follow these
instructions \n{instruction_str}in"
"Query: {query_strj\n\n"
"Expression™"

Figure 2: The key differences in how data and information are provided.

Table 2: Top 5 Teams in Subtask 2

Rank Accuracy (%)
Top 1 92.91
Top 2 88.89
Top 3 88.70
Top 4 86.59
Top 5 86.22
Top 9 (Our Team) 85.25

5.2 Discussion

The results presented in Tables 3 highlight several
important findings:

* Prompt Selection: The comparative analy-
sis across Prompts A, B, and C indicated that
Prompt C produced the best overall perfor-
mance across all models when using the origi-
nal dataset. This finding underscores the im-
portance of prompt engineering in obtaining
correct answers.

Impact of Data Preprocessing: The subse-
quent comparison using Prompt C demon-
strated that preprocessing the data substan-
tially improved model performance. For
instance, gpt4o-mini model showed in-
creased in accuracy when the preprocessed
dataset was used, thereby validating the bene-
fits of a robust data cleaning pipeline.

Model Comparison: After compar-
ing various models, it is clear that the
DeepSeek-R1 outperforms all other
models in terms of accuracy. The reasoning
capabilities of DeepSeek—-R1 play a signifi-
cant role in its superior results, allowing it to

361

process and understand complex data in ways
that other models cannot.

Practical Implications: The combined anal-
ysis of prompt selection and data preprocess-
ing highlights a clear pathway for optimizing
model performance. Experiment with multi-
ple prompt designs and invest in thorough data
preprocessing to maximize the effectiveness
of large language models.

6 Conclusion

In this paper, we explored the challenges and errors
encountered when using a large language model
to generate executable code for tabular question-
answering tasks. Our analysis categorized errors
into three key types: numerical precision errors,
logical errors, and insufficient information. By sys-
tematically evaluating the generated responses and
their correctness, we identified the primary causes
of errors, including incorrect filtering, precision
issues, and reasoning failures.

Our findings highlight the importance of ro-
bust error-handling mechanisms when integrating
LLMs with structured data processing. Future work
should focus on improving the consistency of gen-
erated codes, enhancing model understanding of
numerical reasoning, and utilizing multiple LLMs
to generate and validate answers, selecting the most
reliable response based on consensus or predefined
criteria.

Through this analysis, we provide valuable in-
sights for researchers and practitioners working on
LLM-based data processing systems. Our work
underscores the need for a hybrid approach that
combines LLLM reasoning and prompt engineering

Table 3: Comparison of model performance under different experimental conditions (Subtask 1).

Note: Due to time constraints, experiments for all three DeepSeek models across all prompt engineering configura-

tions were not completed.

Model Original Data Preprocessed Data (Prompt C)
Prompt A Prompt B Prompt C Prompt C
GPT-4o0-mini 76.25% 79.31% 81.61% 82.76%
DeepSeek-V3 - - - 84.67%
deepseek-rl-distill-gwen-14b - - - 71.84%
DeepSeek-R1 - - - 89.46%

Table 4: Error distribution across different question

types.
Question Type Error Count
List (category) 17
List (number) 13
Number-type 11
Boolean 7
Category 7

with structured query generation and validation to
enhance reliability in real-world applications.

Acknowledgements

This research was supported by The VNUHCM-
University of Information Technology’s Scientific
Research Support Fund.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

T. Herzig, M. Weissenborn, S. Ruder, D. Bahdanau, and
A. W. Black. 2020. Tapas: Weakly supervised table
parsing via pre-training. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 8253-8263. Association for
Computational Linguistics.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.

Deepseek-v3 technical report. arXiv preprint

arXiv:2412.19437.

Tianyang Liu, Fei Wang, and Muhao Chen. 2024b. Re-
thinking tabular data understanding with large lan-
guage models. In Proceedings of the 2024 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
450-482, Mexico City, Mexico. Association for Com-
putational Linguistics.

Jorge Osés-Grijalba, Luis Alfonso Urefia-L6pez, Euge-
nio Martinez Camara, and Jose Camacho-Collados.
2025. SemEval-2025 task 8: Question answering
over tabular data. In Proceedings of the 19th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2025), Vienna, Austria. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In EMNLP.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. In
ICLR.

362

https://doi.org/10.18653/v1/2020.acl-main.732
https://doi.org/10.18653/v1/2020.acl-main.732
https://doi.org/10.18653/v1/2024.naacl-long.26
https://doi.org/10.18653/v1/2024.naacl-long.26
https://doi.org/10.18653/v1/2024.naacl-long.26
https://aclanthology.org/D18-1425
https://aclanthology.org/D18-1425
https://aclanthology.org/D18-1425
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103

