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Abstract

SemEval-2025 Task 1 focuses on ranking im-
ages based on their alignment with a given nom-
inal compound that may carry idiomatic mean-
ing in both English and Brazilian Portuguese.
To address this challenge, this work uses gener-
ative large language models (LLMs) and mul-
tilingual CLIP models to enhance idiomatic
compound representations. LLMs generate
idiomatic meanings for potentially idiomatic
compounds, enriching their semantic interpre-
tation. These meanings are then encoded using
multilingual CLIP models, serving as represen-
tations for image ranking. Contrastive learning
and data augmentation techniques are applied
to fine-tune these embeddings for improved
performance. Experimental results show that
multimodal representations extracted through
this method outperformed those based solely
on the original nominal compounds. The fine-
tuning approach shows promising outcomes but
is less effective than using embeddings without
fine-tuning.

1 Introduction

In Natural Language Processing (NLP), generating
representations for idiomatic expressions presents a
significant challenge due to their inherent complex-
ity and non-literal meanings (Phelps et al., 2024).
To address this challenge, SemEval-2025 Task 1:
Advancing Multimodal Idiomaticity Representa-
tion (AdMIRe) (Pickard et al., 2025) introduced
two subtasks: Subtask A and Subtask B. Sub-
task A involves ranking five images based on how
well they represent the meaning of a potentially
idiomatic nominal compound in a given context
sentence, in both English and Brazilian Portuguese.
This work focuses on Subtask A.

Existing NLP models, particularly those based
on transformer architectures such as GPT (Rad-
ford et al., 2018) and CLIP (Contrastive Lan-
guage—Image Pre-training) (Radford et al., 2021),
have made significant strides in language represen-

tation (Markchom et al., 2022; Phelps et al., 2024;
Xiong et al., 2024). However, they often struggle
with idiomatic expressions due to their reliance
on surface-level word associations and composi-
tional semantics (He et al., 2024). This problem
necessitates further exploration of methods that
can improve the models’ capacity to understand
and represent idioms effectively.

To address this issue, this paper uses generative
LLMs and multilingual CLIP models to tackle Sub-
task A in both English and Brazilian Portuguese.
Specifically, an LLM is used to produce idiomatic
meanings for potentially idiomatic compounds.
These generated meanings provide richer seman-
tic information about the idiom and may better
capture the compound’s intended meaning com-
pared to its original form. A multilingual CLIP
model is then used to extract embeddings of the
compounds (based on their generated meanings)
and corresponding images to compute similarities
and rank the images accordingly. Furthermore, to
improve the effectiveness of the CLIP embeddings,
the extracted embeddings are fine-tuned using a
contrastive learning method combined with various
data augmentation techniques (rotation, cropping,
flipping, brightness and contrast adjustments, and
Gaussian blur for images and back translation and
paraphrasing for image captions). By combining
generative LLMs and CLIP models, our approach
offers a robust framework for generating more ac-
curate idiomatic representations for this task.

2 Proposed Method

Figure 1 illustrates an overview of the proposed
method. It starts with the idiomatic meaning gen-
eration step, where a generative LLM produces
idiomatic meanings for potential idiomatic com-
pounds. Next, the embedding extraction and image
ranking step is described, where compound, im-
age, and caption embeddings are extracted using
the CLIP model and used to compute an image
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ranking score. Then, an ensemble method is intro-
duced to enhance the accuracy of image ranking.
Finally, a contrastive learning method to fine-tune
the extracted CLIP embeddings is described.

2.1 Idiomatic Meaning Generation

An LLM-based classification method is employed
to determine whether a given compound phrase
is used idiomatically or literally. The model is
queried with a structured prompt that incorporates
both the compound and its contextual sentence, as
shown in Figure 1. The LLM directly returns a clas-
sification label (“Idiomatic” or “Literal”) for each
compound. To enhance classification robustness,
this prompting process is repeated ' times, and the
majority answer is selected for the final prediction.
After obtaining the compound type, if it is classi-
fied as “idiomatic”, the meaning of the compound
is generated by prompting an LLM with the prompt
shown in Figure 1. This approach enables an auto-
mated method for generating idiomatic meanings.

2.2 Embedding Extraction and Image
Ranking

In this step, the embeddings of the compound, can-
didate images, and their corresponding captions are
extracted using a multilingual CLIP model. For the
compound embedding, if its predicted type is “lit-
eral”, the text embedding of the original compound,
obtained from the CLIP model, is used as the com-
pound embedding. If the type is “idiomatic”, the
text embedding of the generated idiomatic mean-
ing from the previous step is used as the compound
embedding. This ensures that, if the compound
is idiomatic, its embedding (representation) incor-
porates additional information that reflects its id-
iomatic meaning. The same CLIP model is used to
extract image embeddings for the candidate images.
For caption embeddings, each caption is truncated
at the end to the maximum input text length of the
CLIP model, keeping the first part, and its text em-
bedding is then extracted. Once all embeddings are
extracted, the ranking score 7. ; of the nominal com-
pound (c) and the candidate image 7 is computed
using the similarity between the compound embed-
ding (e.) and each candidate image embedding (e;)
along with its corresponding caption embedding
(ey) as follows: r.; = s(ec, €;) + s(ec, ;) where
s(+, -) denotes a similarity function. This work uses
cosine similarity to avoid magnitude invariance.

2.3 Ensemble Method

When generating idiomatic meanings for com-
pounds, multiple LLLMs can be utilized to capture
diverse interpretations. To further enhance image
ranking, an ensemble approach leveraging multiple
LLMs is proposed. For each input (a compound,
an image, and a caption), each LLM generates its
interpretation of the compound’s idiomatic mean-
ing. A ranking score for the images is then com-
puted based on these meanings. The individual
scores from the LLMs are averaged to produce a
final ranking score for each image. There is no
weighting, i.e., each LLM contributes equally to
the final ranking score. As for consistency, each
model may interpret idiomatic meanings slightly
differently and may not always be consistent with
others. However, it is assumed that the majority of
models will converge on the correct interpretation.
By averaging their scores, individual biases are
smoothed out, and commonly accurate interpreta-
tions are reinforced. Overall, this ensemble method
integrates insights from multiple LLMs, thereby
improving the overall ranking performance.

2.4 Fine-Tuning with Contrastive Learning

To enhance the CLIP embeddings and improve the
alignment between idiomatic compounds and their
corresponding images, fine-tuning is performed
using a contrastive learning model.

Data Augmentation Data augmentation is ap-
plied to improve the robustness of the fine-tuning
model. Images are randomly cropped to 450x450
pixels (50% probability), rotated within +45° (50%
probability), and flipped horizontally (50% proba-
bility) and vertically (50% probability). Brightness
and contrast are adjusted randomly (20% probabil-
ity), and Gaussian blur is applied (20% probabil-
ity) to simulate noise. For augmenting image cap-
tions, back translation and paraphrasing techniques
are used. Back translation is performed using the
Helsinki-NLP models—opus-mt-de-en and opus-
mt-en-de—which translate the text from English
to German and back to English (Tiedemann et al.,
2023). The google-t5/t5-base (Raffel et al., 2020)
model is used for paraphrasing.

Contrastive Learning Model To train the con-
trastive learning model, the dataset is prepared by
constructing anchor-positive-negative triplets from
the extracted embeddings. The compound embed-
ding of each sample is an anchor. The ground-truth
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Figure 1: Overview of the proposed method: An LLM determines whether a compound is idiomatic or literal
based on its context sentence. If idiomatic, the LLM generates its idiomatic meaning. A CLIP model then extracts
embeddings of the original compound (if literal) or the generated meaning (if idiomatic), along with image and
caption embeddings. Finally, cosine similarity is used to compute the ranking score.

top-ranked image and its associated augmented
image, caption, back-translated caption, and para-
phrased caption are positive samples. Hard neg-
atives are selected from the rest of the images
and their associated augmented images, captions,
back-translated captions, and paraphrased captions.
Moreover, to enhance the learning process, soft
negatives are randomly selected from other K sam-
ples (other compounds) within the dataset.

The contrastive learning model is designed to
project the embeddings into a shared latent space
to maximize the similarity between anchor-positive
pairs and minimize it for anchor-negative pairs.
The model consists of a two-layer fully connected
neural network with ReLU activation and dropout
regularization. The output is projected into a la-
tent space with a fixed dimensionality of 768. The
model is trained using the InfoNCE-based (Noise
Contrastive Estimation) loss function (Oord et al.,
2018) where the loss for each sample s is

M f(a,pm)
2im=1 [log P+, f(ammn)

M

L=

(1
where f(a,pm) exp (s(a,pm)/7) and
f(a,ny, ) =exp (s(a,ny,,)/7) where M is the
number of positive samples per anchor, N is the
number of negative samples per anchor, a is the

anchor embedding, p,, is the positive sample em-
bedding for modality m, n,, ,, is the n-th negative
sample embedding for modality m, 7 is the temper-
ature parameter, and s(-, -) is the cosine similarity.
The total loss is given by % Zle L, where S is
the total number of training samples.

3 Experimental Setup

Three generative LLMs—GPT-3.5, GPT-4, and
GPT-40—were used for idiomatic meaning gener-
ation, and three multilingual CLIP models (Carls-
son et al., 2022)—LABSE ViT-L/14 (LABSE),
XLM-R Large ViT-B/32 (XLM-32), and XLM-R
Large ViT-L/14 (XLM-14)—for embedding gen-
eration. All methods in the experiments, including
baselines and variations of the proposed method,
are categorized as follows: (1) Baselines: CLIP
models applied directly to compounds to compute
ranking scores without LLM-generated meanings;
(2) Compound and Image without Fine-Tuning
(CI): Ranking scores computed using only com-
pound and image embeddings. Combinations of
LLMs and CLIP models, including the ensemble
method, were considered; (3) Compound, Im-
age, and Caption without Fine-Tuning (CIC):
Ranking scores computed using compound, im-
age, and caption embeddings. Combinations of
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LLMs and CLIP models were the same as the pre-
vious approach; (4) Compound and Image with
Fine-Tuning (CI-F): Ranking scores computed
with fine-tuned compound and image embeddings
(see Section 2.4), using the best LLM and CLIP
model combination from the non-fine-tuning ap-
proaches; (5) Compound, Image, and Caption
with Fine-Tuning (CIC-F): Ranking scores com-
puted with fine-tuned compound, image, and cap-
tion embeddings, using the best LLM and CLIP
model combination as in the previous approach.

Datasets Two datasets, English and Brazilian
Portuguese, were provided for Subtask A of
SemEval-2025 Task 1. The English dataset con-
tains 70 training, 15 development, 15 test, and 100
extended test samples, while the Portuguese dataset
contains 32 training, 10 development, 13 test, and
55 extended test samples. Fine-tuning was per-
formed on the augmented training sets (see Section
2.4). Note that the fine-tuning datasets are based
on ground-truth compound types provided in the
training sets. This avoids misclassification errors
when using the proposed method for compound
type prediction. For each language, the augmented
data was split into training (70%), validation (10%),
and test (20%) sets. This resulted in 50 training,
6 validation, and 14 test samples for English and
23 training, 3 validation, and 6 test samples for
Brazilian Portuguese.

Hyperparameter Settings The number of rep-
etitions for prompting the LLM to determine the
compound type (7') was set to 5. For CI-F and
CIC-F, the hyperparameters for contrastive learn-
ing models were varied including batch size (16,
32), learning rate (le-3, le-4, 1e-5), number of soft
negatives K (10, 30, 49), temperature 7 (0.08, 0.09,
0.1), and dropout rate (0.1, 0.3, 0.5). The Adam
optimizer was used. Early stopping was applied
based on validation loss to prevent overfitting.

Evaluation Metrics For the compound-type pre-
diction task, accuracy was used for evaluation. For
the image ranking task, top-1 accuracy, Spearman’s
rank correlation and DCG score were used.

4 Results and Discussion

4.1 Compound Type Detection Results

Table 1 shows the accuracy of GPT-3.5, GPT-4,
and GPT-40 on the English and Portuguese training
sets. From this table, GPT-4 outperformed the other

Table 1: Accuracy of compound type detection using
different LLMs on English and Portuguese training sets

Model English Portuguese
GPT-3.5 0.7857  0.5938
GPT-4 0.8714  0.6563
GPT-40 0.8286  0.4688

models on both datasets. This highlights GPT-4’s
superior performance, which may be attributed to
its more advanced architecture and training. GPT-
40 also performed well on the English dataset but
performed the worst on Portuguese. This lower
performance of GPT-40 compared to GPT-4 could
be due to the new tokenizer in GPT-40. This to-
kenizer compresses tokens to reduce input length
and improve efficiency (OpenAl, 2024). Some
word sequences that were previously tokenized as
separate tokens in GPT-4 could be merged into a
single token in GPT-4o, affecting the model’s abil-
ity to understand a compound’s meaning.

4.2 Image Ranking Results

Due to the small size of the development sets, only
the results of the test and extended test sets are
discussed in this section for a comprehensive evalu-
ation. See Appendix B for development set results.

Table 2 shows the performance of baselines and
variations of the proposed method on the complete
test sets combining both the test and extended test
samples. In this table, all the baselines performed
worse than the proposed approach. This highlights
the effectiveness of the proposed approach in gen-
erating more effective idiomaticity representations
for the image ranking task.

As for CI, the results show that the ensemble
method with XLLM-32 achieved the best top-1 accu-
racy and DCG score for English. For Portuguese,
the method using GPT-3.5 with LABSE-14 per-
formed the best in top-1 accuracy and DCG score.
This suggests that these methods were particularly
effective at selecting the most similar images that
matched the compounds. In contrast, the ensemble
method using LABSE-14 outperformed the others
in terms of correlation for both languages. This
suggests its potential for capturing nuanced levels
of similarity between images and compounds.

Considering CIC, the methods in this approach
overall performed worse compared to CI. This sug-
gests that the addition of caption embeddings with-
out fine-tuning did not significantly enhance the
models’ ability to match compounds with images
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Table 2: Evaluation results on the complete test sets
(test and extended test sets combined) for both English
(EN) and Brazilian Portuguese (PT). The highest values
in each column are highlighted in bold.

Test EN Test PT
LM CLIP model Acc Corr DCG Acc Corr DCG
Baselines
- XLM-14 0.400 0.050 2.659 0351 0.130 2.584
- XLM-32 0.417 0.053 2.655 0398 0.118 2.649
- LABSE-14 0.409 0.126 2.648 0.445 0.161 2.666

Compound and Image without Fine-Tuning (CI)

GPT-3.5 XLM-14 0.478 0.165 2.831 0.430 0.095 2.732
GPT-4 XLM-14 0.504 0.126 2906 0418 0.157 2.749
GPT-40 XLM-14 0478 0.106 2.898 0.418 0.137 2.766
Ensemble XLM-14 0.513 0.143 2919 0.376 0.166 2.731
GPT-3.5 XLM-32 0.435 0.102 2.757 0.487 0.107 2.823
GPT-4 XLM-32 0.539 0.183 2.897 0.414 0.138 2.732
GPT-40 XLM-32 0.513 0.171 2.899 0.481 0.172 2.829
Ensemble XLM-32 0.557 0.122 2939 0450 0.175 2.798
GPT-3.5 LABSE-14 0.470 0.177 2.816 0.530 0.184 2.846
GPT-4 LABSE-14 0496 0.163 2.883 0471 0.178 2.778
GPT-40 LABSE-14 0.504 0.187 2.899 0.481 0.194 2.825
Ensemble LABSE-14 0.522 0195 2913 0487 0.198 2.831

Compound, Image, and Caption without Fine-Tuning (CIC)

GPT-3.5 XLM-14 0.287 0.043 2480 0315 0.005 2.503
GPT-4 XLM-14 0296 0.052 2491 0305 0.009 2.495
GPT-40 XLM-14 0296 0.063 2573 0315 0.023 2.530
Ensemble XLM-14 0.287 0.061 2509 0293 0.071 2.490
GPT-3.5 XLM-32 0.313 0.050 2.549 0384 0.132 2.632
GPT-4 XLM-32 0.357 0.074 2594 0368 0.107 2.623
GPT-40 XLM-32 0.365 0.107 2.650 0.384 0.067 2.651
Ensemble XLM-32 0.365 0.032 2.626 0.384 0.067 2.640
GPT-3.5 LABSE-14 0252 0.044 2465 0293 0.059 2515
GPT-4 LABSE-14 0.278 0.064 2.525 0277 0.088 2.477
GPT-40 LABSE-14 0.330 0.072 2.591 0.277 0.076 2.501
Ensemble LABSE-14 0.278 0.066 2.525 0.293 0.089 2.501

Compound and Image with Fine-Tuning (CI-F)

GPT-3.5 LABSE-14  0.391 0.027 2.709 - - -
GPT-4 LABSE-14 0400 0.079 2.778 - - -
GPT-40 LABSE-14 0365 0.056 2.707 - - -
Compound, Image, and Caption with Fine-Tuning (CIC-F)

GPT-3.5 LABSE-14  0.391 0.053 2.697 - - -
GPT-4 LABSE-14 0417 0.155 2813 - - -
GPT-40 LABSE-14 0374 0.084 2.722 - - -

effectively. One possible reason is that the cap-
tions are lengthy, making their embeddings from
the CLIP models less effective.

Based on the results of CI and CIC, LABSE-
14 demonstrated the highest effectiveness in rank-
ing. Consequently, the embeddings obtained using
LABSE-14 with different LLMs were fine-tuned
in CI-F and CIC-F. Multiple contrastive models
were trained on individual sets of embeddings from
various LLMs. The selected hyperparameters for
each model can be found in Appendix A. Overall,
the fine-tuned embeddings did not perform as well
as the non-fine-tuned embeddings. Figure 2 shows
the training and validation losses, as well as the
test accuracy, during the fine-tuning of embeddings
obtained using LABSE-14 with GPT-3.5, GPT-4,
and GPT-40. These figures suggest that the mod-
els effectively learned the fine-tuned embeddings,
as test accuracy gradually increased over training

9
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Figure 2: Training loss, validation loss, and test ac-
curacy, during the fine-tuning of embeddings obtained
using LABSE-14, with GPT-3.5, GPT-4, and GPT-40
used for idiomatic meaning generation.

epochs. However, the models began overfitting be-
fore the test accuracy could improve further. This
could be due to the amount of training data being
insufficient for the model to generalize well to un-
seen data. Extra data augmentation could improve
fine-tuning by introducing linguistic and visual di-
versity within existing, seen idioms. This may help
the model more accurately match images in differ-
ent styles to the generated meanings of seen idioms
expressed with varying wordings. However, this
may not be effective for unseen idioms if they share
no common meanings with those in the training set.
Similarly, the use of regularization may help gener-
alize the model’s ability to match images with seen
idioms in the training set, but it might not improve
generalization to unseen idioms. Due to the lack of
performance improvement on the English dataset
during fine-tuning, experiments on the Portuguese
dataset were not conducted.

More detailed results on the individual test and
extended test sets for both languages can be found
in Appendix B (Table 5).

4.3 Hyperparameter Analysis

This section explores the impact of key hyperpa-
rameters on model fine-tuning performance, includ-
ing the number of soft negatives (K), temperature
(1), and dropout rate. For each fine-tuned model,
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tuning of embeddings obtained using LABSE-14, with
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Figure 5: Top-1 accuracy on the test set during the fine-

tuning of embeddings obtained using LABSE-14, with
GPT-40 used for idiomatic meaning generation.

one hyperparameter was varied while the others re-
mained at their optimal values (as in Table 3). Top-

1 accuracy was evaluated across training epochs to
assess each hyperparameter. Figures 3, 4, and 5
illustrate the effect and sensitivity of three hyper-
parameters on the top-1 accuracy during the fine-
tuning of LABSE-14 embeddings, using different
GPT variants for idiomatic meaning generation.
Across all models, K exhibited moderate sensitiv-
ity, with higher K generally yielding better results
for GPT-3.5 and GPT-4. Meanwhile, for GPT-4o0,
lower K generally performed better. Temperature
7 showed high sensitivity, with small variations
(from 0.08 to 0.1) leading to notable shifts in accu-
racy. For GPT-3.5 and GPT-4, 7 = 0.1 yielded the
best results, whereas for GPT-4o0, a lower value of
7 = 0.08 was optimal. The dropout rate exhibited
model-specific effects. A rate of 0.1 worked best
for GPT-3.5. For GPT-4, lower rates of 0.1 and 0.3
yielded similar performance. For both GPT-3.5 and
GPT-4, higher dropout rates appeared to degrade
performance. In contrast, GPT-40 benefited from a
higher rate of 0.5.

5 Conclusions

This work explored the use of generative LLMs and
multilingual CLIP models to enhance idiomatic
compound representations for image ranking in
SemEval-2025 Task 1. By using LLMs to gener-
ate idiomatic meanings and leveraging multilingual
CLIP models to extract multimodal embeddings,
the proposed method improved representation qual-
ity compared to using original nominal compounds.
Experimental results demonstrated the effective-
ness of the proposed method. For English, the
ensemble method using GPT-3.5, GPT-4, and GPT-
40, with the XLM-R Large ViT-B/32 multilingual
CLIP model achieved superior performance com-
pared to the other selected LLMs and CLIP mod-
els. For Brazilian Portuguese, GPT-3.5 with the
LABSE ViT-L/14 multilingual CLIP model outper-
formed the others. Fine-tuning CLIP embeddings
performed worse than using embeddings extracted
from pretrained CLIP models. This is likely due
to limitations in fine-tuning data and the capacity
of the proposed contrastive learning model. How-
ever, it could still be a promising approach for fur-
ther improvement. Future work could focus on
improving caption utilization (e.g., through differ-
ent truncation methods and paraphrasing), refining
fine-tuning strategies and expanding training data
to further enhance idiomaticity representation.
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A Hyperparameters Settings

Table 3 shows the selected hyperparameters for
different contrastive learning models in the CI-F
and CIC-F approaches.

Table 3: The selected hyperparameters for different
contrastive learning models.

Model Batch Learning K 1 Dropout
Size Rate Rate
GPT-3.5+ LABSE-14 16 le-5 49 0.1 0.1
GPT-4 + LABSE-14 16 le-5 30 01 03
GPT-40 + LABSE-14 16 le-4 10 0.08 0.5

B Detailed Evaluation Results

Table 4 shows the results on English and Por-
tuguese development sets.

Table 4: Evaluation results for English (EN) and Por-
tuguese (PT) development sets, with the highest values
in bold and the second-highest underlined.

Dev EN Dev PT

DCG Acc Corr DCG

LLM CLIP model

Acc  Corr

Use only compound and image embeddings without fine-tuning

GPT-35  XLM-14 0600 0313 3.055 0400 0320 2.620
GPT4  XLM-14 0533 0193 2818 0400 0220 2.562
GPT-40  XLM-14 0.600 0233 2943 0.400 0220 2.582
Ensemble XLM-14 0.600 0353 3.005 0400 0260 2.582
GPT-35  XLM-32 0.733 0427 3219 0400 0160 2487
GPT4  XLM-32 0533 0273 2794 0300 0230 2.375
GPT-40  XLM-32 0.600 0293 2918 0300 0050 2.338
Ensemble  XLM-32 0.667 0260 3.005 0300 0.110 2375
GPT-35 LABSE-14 0600 0293 3.006 0200 0280 2.376
GPT-4  LABSE-14 0533 0153 2781 0300 0.280 2.469
GPT-40  LABSE-14  0.600 0.153 2993 0300 0280 2413

Ensemble LABSE-14 0.600 0.253 2919 0.300 0.240 2.450

Use compound image and caption embeddings without fine-tuning

GPT-3.5 XLM-14 0.400 0.013 2.682 0.300 -0.120 2.452
GPT-4 XLM-14 0.400 0.040 2.645 0.300 -0.030 2.452
GPT-40 XLM-14 0.467 0273 2719 0.300 -0.080 2452
Ensemble XLM-14 0.400 0.087 2.682 0.300 -0.100 2.452
GPT-3.5 XLM-32 0.533  0.240 2.970 0.300 -0.070 2.508
GPT-4 XLM-32 0.467 0.173 2.719 0.300 -0.030 2.508
GPT-40 XLM-32 0.533  0.267 2.857 0.200 -0.020 2.396
Ensemble XLM-32 0.533  0.260 2.794 0.300 -0.050 2.508
GPT-3.5 LABSE-14 0.400 -0.140 2.671 0.200 -0.210 2.378
GPT-4 LABSE-14 0.467 -0.020 2.707 0.200 -0.130 2.378
GPT-40 LABSE-14 0.467 -0.067 2.682 0.200 -0.190 2.378

Ensemble LABSE-14 0.400 -0.013 2.620 0.200 -0.170 2.378

Use only compound and image embeddings with fine-tuning

GPT-3.5 LABSE-14 0.600 0213 3.159
GPT-4 LABSE-14 0.600 0.107 3.019
GPT-40 LABSE-14 0.667  0.187 3.131

Use compound image and caption embeddings with fine-tuning

GPT-3.5 LABSE-14 0.600 0.127 3.158
GPT-4 LABSE-14 0.533 0.047 2.844
GPT-40 LABSE-14 0.600 0.113  3.005
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Table 5: Evaluation results on the English (EN), Portuguese (PT), Extended English (XE) and Extended Portuguese
(XP) test sets. The highest values in each column are in bold, and the second-highest values are underlined.

LLM CLIP model Test EN Test PT Test XE Test XP

Acc Corr DCG Acc Corr DCG Acc Corr DCG Acc Corr DCG
Baselines
- XLM-14 0.333 -0.027 2.579 0.385 0415 2.661 0410 0.062 2.671 0.345 0.087 2.573
- XLM-32 0.267 -0.173 2482 0.385 0.223 2.669 0440 0.087 2.681 0400 0.102 2.646

- LABSE-14 0467 0.120 2706 0.385 0.146 2578 0400 0.127 2.639 0455 0.164 2.680

Use only compound and image embeddings without fine-tuning

GPT-3.5 XLM-14 0.533 0.220 2943 0.385 0415 2.637 0470 0.157 2815 0436 0.047 2.746
GPT-4 XLM-14 0.533 0.133 2970 0.538 0.354 2951 0.500 0.125 2.897 0400 0.127 2.719
GPT-40 XLM-14 0467 0.193 2.867 0.538 0.285 3.045 0480 0.093 2903 0400 O0.115 2.724
Ensemble XLM-14 0.533 0.233 2921 0462 0.269 2792 0.510 0.130 2919 0364 0.151 2.722
GPT-3.5 XLM-32 0.333 -0.013 2.690 0462 0.131 2749 0450 0.119 2767 0491 0.104 2.834
GPT-4 XLM-32 0.533 0.167 2940 0.385 0.223 2747 0.540 0.186 2.891 0418 0.125 2.729
GPT-40 XLM-32 0.467 0.087 2.849 0.538 0.092 2953 0.520 0.184 2907 0473 0.184 2.810
Ensemble XLM-32 0.467 0.053 2.821 0.538 0.169 2.866 0.570 0.132 2957 0436 0.176 2.788

GPT-3.5 LABSE-14 0.667 0.360 3.102 0.308 0.123 2486 0.440 0.149 2773 0.564 0.193 2.900
GPT-4 LABSE-14  0.600 0.147 2993 0462 0.131 2771 0480 0.165 2867 0473 0.185 2.779
GPT-40 LABSE-14 0.533 0.267 2963 0.538 0.223 2947 0.500 0.175 2.889 0473 0.189 2.807
Ensemble LABSE-14  0.600 0.247 2985 0.462 0269 2.691 0510 0.187 2902 0491 0.187 2.852

Use compound image and caption embeddings without fine-tuning

GPT-3.5 XLM-14 0.333 0.087 2566 0.231 0.023 2337 0.280 0.037 2468 0.327 0.002 2.527
GPT-4 XLM-14 0.400 0.153 2.645 0.154 0.054 2278 0280 0.037 2468 0.327 0.002 2.527
GPT-40 XLM-14 0333 0.153 2.888 0.231 0.046 2378 0.290 0.050 2.525 0.327 0.020 2.553
Ensemble XLM-14 0.333 0.113 2566 0.308 0.092 2433 0.280 0.053 2.501 0291 0.067 2.498
GPT-3.5 XLM-32 0267 0.060 2456 0.154 0.223 2344 0320 0.049 2563 0418 0.118 2.675
GPT-4 XLM-32 0333 0.047 2527 0.154 0215 2344 0360 0.078 2.603 0.400 0.091 2.665
GPT-40 XLM-32 0267 0.127 2456 0.154 0.262 2354 0.380 0.104 2.680 0.418 0.038 2.695
Ensemble XLM-32 0267 0.020 2.448 0.154 0.223 2344 0380 0.034 2.653 0.418 0.044 2.685

GPT-3.5 LABSE-14 0.333 0.027 2569 0.308 -0.008 2.440 0.240 0.047 2450 0.291 0.069 2.526
GPT-4 LABSE-14 0.333 0.007 2562 0.308 0.023 2480 0.270 0.073 2.520 0.273 0.098 2.477
GPT-40 LABSE-14 0.333  0.027 2569 0.308 0.077 2530 0.330 0.079 2594 0273 0.076 2.497
Ensemble LABSE-14 0.333 -0.020 2.567 0.308 0.054 2496 0.270 0.079 2519 0291 0.095 2.502

Use only compound and image embeddings with fine-tuning

GPT-3.5 LABSE-14 0400 0.107 2.814 - - - 0390 0.015 2.694 - - -
GPT-4 LABSE-14  0.333 0.233 2.784 - - - 0410 0.056 2.777 - - -
GPT-40 LABSE-14 0267 -0.073 2.676 - - - 0380 0.075 2711 - - -
Use compound image and caption embeddings with fine-tuning

GPT-3.5 LABSE-14  0.333 0.051 2.719 - - - 0.400 0.053 2.694 - - -
GPT-4 LABSE-14 0267 0.133 2.724 - - - 0.440 0.158 2.826 - - -
GPT-40 LABSE-14 0267 0.040 2.607 - - - 0390 0.091 2740 - - -

Table 5 shows detailed evaluation results for the
baselines and variations of proposed method on the
English (EN), Portuguese (PT), Extended English
(XE), and Extended Portuguese (XP) test sets.
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