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Abstract
In this paper, we present a similarity-based
method for explainable classification in the con-
text of the SemEval 2025 Task 9: The Food
Hazard Detection Challenge. Our proposed
system is essentially unsupervised, leveraging
the semantic properties of the labels. This ap-
proach brings some key advantages over typical
classification systems. First, similarity metrics
offer a more intuitive interpretation. Next, this
technique allows for inference on novel labels.
Finally, there is a non-negligible amount of am-
biguous labels, so learning a direct mapping
does not lead to meaningful representations.

Our team ranks 14th for the second sub-task.
Our method is generic and can be applied to
any classification task.

1 Introduction

As people become more aware of the health risks
associated with the global food industry, there is
a growing interest to ensure the safety and quality
of these products. The complexity of modern food
supply chains, which involve multiple stages of
production, processing, and distribution, has made
it increasingly difficult to monitor and control food
safety hazards. In this context, natural language
processing (NLP) tools lend themselves invaluable
to identifying patterns and extracting information
from heterogeneous data sources.

The main goal of the Food Hazard Detection
Challenge is to explore the explainability of clas-
sification systems on texts associated with food
safety risks. The dataset consists of food-incident
reports collected from various sources written in
English, representing a subset of a larger dataset
created by the organizers that also includes texts in
German and a few instances in four other languages
(Randl et al., 2024). The first task requires systems
to predict coarse-grained categories for hazards and
products, while the second task is focused on deter-
mining the exact hazard and product (Randl et al.,

2025). We participated only in the second sub-task
to explore the viability of similarity methods.

The dataset reports contain a title, the full re-
port text and other details such as date and country.
Since the title does not always contain adequate
information about products or hazards, we also add
the full text as input to our system, ignoring the
other features. Next, we use a large language model
(LLM) to clean up this text. For classification, we
employ cosine similarity between each clean text
and every label (Schütze et al., 2008, p. 121) with-
out any training step. In the case of hazards, we
also apply lemmatization on each word and reorder
the labels by importance and specificity (detailed
in Section 3).

Beside data cleaning, our biggest challenge was
to decide how to handle ambiguous labels. Even
though this dataset design choice appears to be in-
tentional (Randl et al., 2024), we believe that the
addition of almost identical classes could have been
avoided, at least to some extent. We settled for a
similarity-based approach because this should aid
the explainability of the system and it also elimi-
nates the challenge of heavily imbalanced data.

We note that many of our wrong predictions
were affected by label overlap. Our team ranked
14th out of 26 teams. Our system is unsupervised,
employing small models and needing modest re-
sources, while also allowing for easy interpretation.
Our code is publicly available1.

2 Related work

Document similarity Information retrieval re-
lies extensively on cosine similarity for document
classification (Chen et al., 2009). More recently,
Schopf et al. (2023) propose baselines for unsuper-
vised text classification and show that similarity-
based approaches using sentence Transformers are

1https://github.com/mcmarius/
SemEval-2025-Task-9
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suitable for text classification of unseen classes and
outperform zero-shot methods.

Label semantics Another line of work intended
to overcome issues related to noisy data is label
refinement, a process that aims to reduce ambigu-
ity and uncertainty of labels. Song et al. (2023)
provide an overview of the challenges associated
with learning from noisy labels, underlining that
robust learning methods used to overcome label
noise are not designed to deal with extreme cases
of data imbalance.

Chu et al. (2021) use k-means clustering of la-
bels for dataless classification, showing improve-
ments on unbalanced datasets and robustness in
terms of label description choice. In their experi-
ments, the datasets used have at most 20 classes.
Huang et al. (2024) re-rank the predictions of hard
samples based on similarity, while Dong et al.
(2024) perform re-ranking with a separate model
that receives refined labels.

To the best of our knowledge, our approach is
different from existing techniques in the literature,
as these previous efforts typically rely on a training
step. They also either do not require fixed labels or
do not perform label reordering.

3 System overview

Our system consists of two independent pipelines
for hazard and product classification. Each pipeline
has a data cleaning step, a pre-processing step and
a classification step, optionally followed by a post-
processing step, as shown in Figures 1 and 2. There
is no training or fine-tuning involved.

3.1 Data cleaning

Since the title does not always specify the hazard
or the product, we need to look up this information
in the full article. This raw text may contain dupli-
cate lines, HTML markup and a lot of instructions
for consumers that are irrelevant for us. We want
to remove as much noise as possible to provide
downstream steps with useful data and to reduce
the context size of LLM prompts.

First, we remove duplicate lines. For hazards,
we apply custom-made regex rules, with a catch-
all match that only keeps longer lines. Then, we
remove HTML tags if present. Finally, we keep
only the first 3000 characters. The resulting text
preceded by the title is fed to a LLM that is tasked
to extract the hazard or the product, including a

short description of that entity. See Appendix A
for the prompts used.

3.2 Pre-processing

In this stage, we remove task-specific stop-words
by analyzing the classification mistakes, such as
“product”, “category”, and “food”. These words are
not specific to a particular class, while others are
artifacts of LLM extraction.

In the case of hazards, we also perform lemma-
tization on texts and labels, a common approach
in information retrieval. Perhaps surprisingly, this
did not lead to improved results for products. One
possible explanation is due to the nature of prod-
uct names (e.g. brand names) that might be less
amenable to lemmatization, though this needs fur-
ther investigation, since we also include product
descriptions specifically to mitigate such issues.

3.3 Similarity classification

We model the classification task as a similarity
search problem, assigning the label with the highest
cosine similarity between the embedded text and
the embedded label. The reason for also asking the
LLM in Section 3.1 to include a description is to
aid this search by including more common terms
along commercial or highly specific names.

3.4 Post-processing

There are several instances where an incident report
contains multiple distinct problems. We need to
decide which hazard should be prioritized, since
the task is modeled as single-label classification.
The following example (training set, ID 120) can be
characterized by both “allergens” (“walnut”) and
“fraud” (“mislabelled” – gold label) categories:

Has been mislabelled and may contain
walnuts which may pose a health risk to
people allergic to walnuts.

In such a case, we first prioritize the category
that poses a greater risk (allergens), since this is
the most critical facet. Next, if there are multiple
issues within the same category, we pick the most
specific hazard (“walnut” instead of “allergens”),
thus prioritizing risk over specificity. To determine
this priority, we pre-compute these lists by sorting
by importance and specificity using a LLM. This
process is detailed in Appendix B.
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Figure 1: Hazard classification pipeline. Data cleaning and label sorting is performed using the same LLM. For
similarity, texts and labels are encoded with the same model, different from the LLM.

Duplicate removal LLM data cleaning Stopword removal Similarity classification

Figure 2: Product classification pipeline. Some components from the hazard pipeline are omitted here as they do
not improve the predictions.

4 Experimental setup

Data cleaning and label sorting is achieved with
a Llama 3.2-3B-Instruct model (Grattafiori et al.,
2024), with 4-bit quantization (Q4_K_M) using
ollama, restricting output to 50 tokens. The data
cleaning process is the most time-consuming, re-
quiring at least 4 hours for the training set. Ideally,
this should be a one time effort. This is necessary
regardless of how we decide to implement the clas-
sification, so we have to verify that the hazards and
products are extracted appropriately.

Similarities are computed by embedding the
texts and the labels with the help of Sentence Trans-
formers models (Reimers and Gurevych, 2019; Li
et al., 2023). We choose different embeddings for
hazards2 and products3, observing that larger mod-
els do not always lead to improved scores. For
lemmatization we use simplemma4.

The classification step is efficient, taking less
than a minute for the entire training set of 5082
examples, which enabled us to conduct several ex-
periments. Comparatively, a single call to a LLM
takes a few seconds.

5 Results

The task organizers propose a custom scoring func-
tion based on F1-score that favors predicting haz-
ards, taking into account product predictions only
for examples with correct hazard detection. Our

2sentence-transformers/paraphrase-MiniLM-L6-v2
3thenlper/gte-large
4https://github.com/adbar/simplemma

Component Train Validation Test
Data cleaning 42.68 38.55 41.22
+ 1) lemma 41.23 43.32 41.90
+ 2) stop words 43.22 37.79 40.88
+ 3) sort w/ cat 41.82 33.86 40.39
+ 4) sort w/o cat 42.08 34.17 40.52
+ 5) predict cat 42.68 38.55 24.08
+ 1), 2) ∗ 41.81 42.95 42.57
+ 1), 2), 3) 45.17 41.27 41.93
+ 1), 2), 4) 44.72 41.27 42.07
+ 2), 3) 46.33 36.69 40.32

Table 1: Hazard classification F1-scores. Best result
in bold, second-best result underlined. The asterisk
indicates the final submission.

team5 obtained a score of 0.3453 for the second
sub-task, having 0.4257 F1-score for 128 hazards
and 0.2528 F1-score for 1142 products. With these
results, we are the 14th team out of 26 contestants.

5.1 Hazard classification
We concentrate most of our efforts on hazard classi-
fication since this is the main goal of the task. Our
system is designed to aid with the interpretability
of results. We show the impact of each component,
summarized in Table 1.

Lemmatization This pre-processing step aims
to reduce word variation, which should increase
similarities with related words. This improves pre-
dictions, although it usually has to be combined
with other techniques.

5CodaLab username: marius.micluta-campeanu
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Stop word removal The motivation for remov-
ing stop words is that we are only interested in
comparing content words for relatedness. This is
also a feature that is helpful most of the time.

Label sorting This post-processing step gives us
mixed results. We use this step in two settings, by
sorting with or without taking category informa-
tion into account. Despite obtaining slightly lower
scores when we include the category, we believe
this to be better suited for real-world applications,
allowing experts to focus on the highest risks.

Category prediction We attempt to lower the
number of candidate classes by first determining
the appropriate category, also through similarities.
Since the category names are semantically more
distant from concrete instances of hazards, we risk
to exclude the true category. This hypothesis is con-
firmed empirically as results either stay the same
or worsen.

While category prediction could be delegated
to a trainable classifier (for example, a conformal
base classifier as suggested by the task organizers
Randl et al., 2024), we are not sure whether this
is the right approach in a high stakes environment,
especially when the dataset contains noisy data, as
we risk to eliminate exactly what we are searching
for. One example has been mentioned earlier in
Section 3.4, with more to follow in the Discussion
section below.

5.2 Product classification
Product classification is affected by significant la-
bel overlap and ambiguity. For instance, there are
at least two labels with identical meaning: “ham
slices” and “sliced ham”. They are both equally
valid, but the proposed scoring function treats them
as distinct classes. With a semantic approach, such
labels could be clustered in order to derive a new
set of labels with less semantic overlap.

Due to these ambiguities, we were unable to
improve product prediction accuracy. Several com-
binations of the components presented for hazard
classification in the previous section resulted in
more or less the same low F1-scores for products.
Nevertheless, if we take into account the top pre-
dictions, we are able to detect the right product in
the majority of cases, meaning that this approach
could be viable with better defined classes.

In Figure 3a, we consider the prediction to be
correct if the gold label is among the first k most
similar labels, using only labels from the train set

for predictions. The high difference between k = 1
and k = 3 suggests that the first three predictions
are the most ambiguous. This is even more visible
in Figure 3b where we restrict the label set to the
447 classes present in the test data. Moreover, even
though there are 4 times more product classes than
the 110 hazard classes, products achieve a higher
F1-score. The implication is that informative labels
provide a significant boost for similarity methods.

In a real-world scenario, we should be able to
have access to the label list, since that is exactly
what we intend to extract. Therefore, our proposed
method is suitable in low-resource environments
and it can be transferred to other languages without
any training or supervision.

6 Discussion

To better understand the types of mistakes in our
system, we analyze the errors in the most optimistic
situation (see Figure 3b), focusing on predictions
that are wrong even if we know the label set before-
hand and assume correct answers if found in the
first 10 predicted labels. The idea is that we cannot
attribute these inaccuracies to semantic overlap, at
least in the case of hazards.

6.1 Quantitative analysis

In the hypothetical scenario described above, there
are 115 hazard errors and 160 product errors. We
further eliminate samples that contain “other” in
their ground truth because our system tends to pre-
dict more specific categories. We manually analyze
the remaining 83 hazard errors and 142 product er-
rors, showing the types of errors in Tables 2 and 3.

We note that 31 of the hazard predictions have a
low confidence, with a cosine similarity below 0.5.
This is not the case for products, where the similar-
ity score is over 0.8 in most situations, confirming
once again the issue of duplicate classes.

6.2 Qualitative analysis

In this section, we discuss some error categories
from Tables 2 and 3, providing additional insights.
More discussions can be found in Appendix C.

Wrong summary Given that many titles are un-
informative (“Archives”, “Alba Gelati”), some form
of cleaning the raw text is needed. Despite dedicat-
ing a significant amount of time to design prompts
and heuristics for summarizing the reports, we are
far from a reliable solution. Since this is one of the
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Figure 3: These figures show how far are predictions from the ground truth. They also show the importance of
having access to exact labels.

Error type Count
Wrong summary 29
Bad embeddings 21
Wrong gold label 13
Multiple labels 11
Wrong real cause 4
Impossible 3
Bad similarity 2

Table 2: Hazard error types if gold label is not in top 10
predictions, excluding samples containing “other”.

Error type Count
Multiple products 33
Ambiguity 32
Wrong summary 20
Wrong gold label 20
Bad embeddings 14
Ingredient 10
Bad similarity 8
Impossible 5

Table 3: Product error types if gold label is not in top
10 predictions, excluding samples containing “other”.

most significant sources of errors, it demonstrates
the importance of having quality data.

Bad embeddings We use off-the-shelf models
without any fine-tuning, so some words are en-
coded poorly. The issue is more prevalent for haz-
ards, where specialized terms are more frequent.
Examples of pairs which should be related, but
are not: “glutamate” – “gluten”, “heavy metals” –
“arsenic”. This also affects higher-level concepts.

Multiple labels or products, ambiguity One
report can include multiple hazards (milk, eggs,
plastic and metal fragments) or it can reference
multiple products (text contains “pork” and “beef”,
we predict “pork”, true label is “beef”). Ambiguous
examples have too much semantic overlap.

Wrong gold label We attribute these mistakes to
human error. For instance: gold label is “cashew”,
while text and title provide “E. coli” as hazard.

7 Conclusions and future work

We presented our approach in the SemEval 2025
Task 9 (Randl et al., 2025), where the objective is
to extract hazards and products from food-incident
reports. We propose a similarity-based system that
aims to tackle issues related to imbalanced classes
and noisy labels in an unsupervised manner. Our
analysis highlights the value of quality data and
the benefits of exploiting label semantics. This can
prevent shortcut learning and discourage halluci-
nations that would result from learning to predict
information absent from the input text.

Our approach offers explainable interpretations
of the results and provides a possible solution to
prioritize higher-risk hazard labels.

Due to time constraints and unsatisfactory re-
sults in preliminary experiments, we leave fine-
tuning embedding models for future work. We
intend to leverage training data labels to enhance
the embeddings, improve the data cleaning pipeline
and develop techniques to mitigate the limitations
of similarity methods. While the food detection
could be enhanced by leveraging specialized cor-
pora such as the FoodBase corpus (Popovski et al.,
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2019), we believe the task could benefit from a
redesign altogether due to significant label overlap.
This endeavor is left for future studies, as we also
need to research reliable methods to leverage noisy
labels.

8 Limitations

We present some limitations of our unsupervised
system. As any cascading system, there is error ac-
cumulation from previous components. If the data
cleaning stage fails to extract relevant details or
hallucinates, the rest of the pipeline cannot recover.

For similarities, negations seem to be ignored,
leading to false positives. They fail to capture high-
level concepts like finding the underlying cause or
discerning brands or ingredients from products.

Regarding models, most experiments were con-
ducted using one LLM and two embedding models
without training. The viability of our method using
other models has not been determined.
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Despite our efforts to have a deterministic imple-
mentation by setting fixed seeds and zero temper-
ature, several runs can produce slightly different
summaries for some examples, leading to differ-
ences of almost one point in the final score. Due to
time constraints, we did not systematically study
this behavior and the amount of variation. The rest
of the system should be deterministic.

We also tried using a single prompt to extract
both the hazard and the product, but the output
structure was unreliable.

A.1 Hazard extraction
We use the following prompt for hazard extraction:

Article about food-incident reports: {ti-
tle}
{example}.
Your task is to extract the problem(s)
with the product as briefly as possible,
preserving the words in the article. Keep
scientific terms. Respond in the follow-
ing format and do not respond with any-
thing else:
<problem>. <problem description in
{max_words} words>.<end of your re-
sponse>

The parameter “max_words” is a number from
3 to 8, depending on the length of the text. For
extremely short texts (one word products), we do
not want to allow the model to add a lot of extra
words because it will alter the text meaning.

A.2 Product extraction
We use the following prompt for product extraction:

Article: {title}
{example}.
You are given an article about food-
incident reports. Your task is to find what
product is described and extract it as it
is found in the text, followed by a brief
description. Do not include any numbers.
Respond in the following format and do
not respond with anything else:
<product>. <product description>.<end
of your response>

In this case, we did not find a reliable way to
limit the number of words in the description or to
prevent the model from hallucinating. For example,
when the product was simply “chicken”, the LLM
would sometimes “marinate” it.

B Label reordering

We achieve reordering the hazard labels by impor-
tance and specificity in two parts. First, we sort
the labels using a LLM and save the result to a file.
Next, after computing the most similar 10 classes,
we decide whether we want to switch the current
label to a better one.

B.1 Label sorting

To order the categories, we use the following
prompt with temperature 0 and seed 42:

Order the following hazard categories by
importance and health risks, from most
important to less important: ‘chemical’,
‘food additives and flavourings’, ‘biolog-
ical’, ‘organoleptic aspects’, ‘migration’,
‘foreign bodies’, ‘other hazard’, ‘aller-
gens’, ‘packaging defect’, ‘fraud’. Re-
spond only with a Python list, no expla-
nations.

We then slightly change the answer by moving
“other hazard” on the last position because we con-
sider it the least informative.

For the exact “vector” hazards, we resort to a
different strategy due to model censoring6 and due
to the limited capacity of the LLM to remember
verbatim all 128 labels.

Since Python does not provide the means to sort
a list with a comparison function that receives two
arguments, we implement a merge sort algorithm,
asking the LLM to compare two arbitrary elements.

The comparison prompt is the following:

Which label is more specific or detailed
and does not refer only to an umbrella
category? Respond only with the label
that is more specific or ’same’ if both are
equally specific, do not include anything
else in your answer and do not change
the label. A label might contain com-
mas, keep the commas and the label as
is. First label: {label1}.
Second label: {label2}. Your response
(the most specific label - keep the same
punctuation, but do not add extra punctu-
ation):

6Some responses that we got: “I cannot provide a list
that may promote or facilitate harmful or illegal activities,
including the sale of contaminated food.”, “I cannot provide a
list that includes sildenafil, as it is a prescription medication.”

286



Even with these detailed instructions, the LLM
sometimes improvises and changes the labels. To
solve this issue, we use the label with the smallest
edit distance7 from the answer. We short-circuit
the comparison by placing elements containing the
word “other” last. In this way, we have a more
neutral definition of “importance” and “specificity”
than we would have had if we manually sorted the
list of labels.

B.2 Label switching

Since we do not want to risk switching to a worse
label, we perform this step only if the cosine sim-
ilarity between the initial label and the new label
is within some threshold. We use a bag-of-words
method to count the number of words in the label
that appear in the raw text. If the new label appears
more times than the initial label or if it appears
at least once and is more important/specific, we
switch. We also switch if there are no words from
the initial label within an even smaller threshold if
there are word matches for the new label.

C Additional qualitative analysis

Ingredient instead of product One example is
matching “sunflower seed” instead of “bars”. A
more interesting example contains “ginger organic
herbal infusion”, with the predicted label “ginger
powder”. While the true label “tea” was present in
the original text, it was discarded by data cleaning
as it was part of the brand name (“Nerada Tea Pty
Ltd”) and as details in parentheses (“40 tea cup
bags”). Our system fails to match “herbal infusion”
with “tea”.

Bad similarity This is slightly different from
the “Bad embeddings” shown above. Here, the
text contains the exact label words, yet the model
fails to capture any similarity, for instance by
matching “cereal” instead of “plastic” or by erro-
neously matching vegan food (“Vegan Rella Ched-
dar Block”) with the original non-vegan product,
predicting “cheddar cheese”.

Wrong real cause Determining the real cause of
a recall highlights issues both with similarity limi-
tations and LLM reasoning capabilities. We detect
“spoilage”, but the fault is due to “processing”. This
situation also affects gold labels: for some recalls
due to “inspection issues”, the true label is selected
from the additional hazards related to “allergens”.

7https://github.com/roy-ht/editdistance

Impossible to predict The information is not
present in title or text. In these cases, our system
predicts the right label given the available data.
One such report mentions a recall of “meat and
potato products” due to issues with ingredients,
but there are no further details regarding specific
products. With this limited information we pre-
dict “cooked meat products”, while the true label is
“frozen burgers”, impossible to infer from the text.
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