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Abstract

SemEval-2025 Task 3 (Mu-SHROOM) fo-
cuses on detecting hallucinations in content
generated by various large language mod-
els (LLMs) across multiple languages. This
task involves not only identifying the pres-
ence of hallucinations but also pinpointing
their specific occurrences. To tackle this
challenge, this study introduces two methods:
Modified-RefChecker (MRC) and Modified-
SelfCheckGPT-H (MSCGH). MRC integrates
prompt-based factual verification into Refer-
ences, structuring them as claim-based tests
rather than single external knowledge sources.
MSCGH incorporates external knowledge to
overcome its reliance on internal knowledge.
In addition, both methods’ original prompt
designs are enhanced to identify hallucinated
words within LLM-generated texts. Experi-
mental results demonstrate the effectiveness
of the approach, achieving a high ranking
on the test dataset in detecting hallucina-
tions across various languages, with an av-
erage IoU of 0.5310 and an average COR
of 0.5669. The source code used in this pa-
per is available at https://github.com/
jianfeixu95/NCL-UoR.

1 Introduction

Large language models (LLMs) have significantly
advanced in producing human-like text across vari-
ous domains (Xiong et al., 2024; Zhao et al., 2024).
However, one critical challenge remains: hallucina-
tions—instances where the generated output con-
tains logical inconsistencies, factual inaccuracies,
or irrelevant information (Goodrich et al., 2019).
These issues are particularly prominent in multilin-
gual settings, where linguistic differences, cultural
context, and the availability of external resources
introduce additional complexities (Guerreiro et al.,
2023). To address this issue, SemEval-2025 Task-
3: the Multilingual Shared-task on Hallucinations
and Related Observable Overgeneration Mistakes

(Mu-SHROOM) (Vázquez et al., 2025) was intro-
duced. This task involves identifying hallucinated
text spans in LLM-generated outputs across multi-
ple languages and LLMs.

To tackle this task, this work modifies two state-
of-the-art methods: RefChecker (Hu et al., 2024)
and SelfCheckGPT (Manakul et al., 2023). Re-
fChecker detects fine-grained hallucinations by ex-
tracting claim triplets (subject, predicate, object)
from LLM outputs and comparing them with pre-
built reference data, using text classification and
aggregation rules. However, it cannot precisely
locate hallucination positions and relies on fixed
and incomplete references. The proposed modi-
fied RefChecker improves upon this by introducing
prompt-based fact verification, structuring refer-
ences as claim-based tests for greater flexibility,
and enhancing hallucination detection by calculat-
ing hallucination probabilities and providing soft
and hard labels for more precise analysis.

SelfCheckGPT detects hallucinations by prompt-
ing the same LLM for multiple responses and iden-
tifying inconsistencies. However, reliance on in-
ternal knowledge may fail when hallucinations are
consistent. To address this, we modify SelfCheck-
GPT by incorporating external knowledge and en-
hancing the prompt design to identify specific hal-
lucinated words rather than only their presence.

Overall, unlike the original RefChecker and Self-
CheckGPT, which rely on static references and in-
ternal prompt-based self-consistency, respectively,
our modified methods incorporate external knowl-
edge retrieval and prompt-driven span-level verifi-
cation to improve hallucination detection accuracy
and granularity.

2 Related Work

Most recent approaches to detecting hallucinations
in LLM outputs rely on prompting techniques,
where the models evaluate the likelihood of hal-
lucinations in their responses. For instance, Ka-
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davath et al. (2022) proposed prompting LLMs to
generate an answer and then predict the probabil-
ity of its correctness. Manakul et al. (2023) intro-
duced SelfCheckGPT, which compares an LLM-
generated sentence against multiple alternative gen-
erations, asking the model to assess whether the
original sentence is consistently supported. Friel
and Sanyal (2023) presented ChainPoll, using de-
tailed prompts to guide models in identifying hallu-
cinations. Hu et al. (2024) proposed RefChecker, a
retrieval-augmented evaluation method that checks
the consistency of model outputs against retrieved
external references, aiming to identify factual in-
consistencies and hallucinations without relying
solely on LLM self-judgment. However, most ex-
isting methods focus on detecting whether a text
contains hallucinations or not. Identifying the spe-
cific parts of a text that are hallucinations remains
an open research challenge. Therefore, in this work,
we modified RefChecker and SelfCheckGPT, two
state-of-the-art methods to handle this task.

3 Methodology

3.1 Modified-RefChecker (MRC)
MRC is an improved RefChecker, integrating
CLAUDE (Anthropic, 2022) for enhanced function-
ality. Note that any LLM, including open-source
ones, can be substituted. However, to ensure con-
sistent and scalable evaluation, we adopt CLAUDE
due to its multilingual support, API stability, and su-
perior performance compared to open-source mod-
els in the original RefChecker (Hu et al., 2024).
MRC consists of two key components: the Ex-
tractor for constructing references and the Checker
for identifying hallucinated words along with their
probabilities. Figure 1 shows the overview of MRC.
The details of each component are described below.

Extractor Component This component retrieves
external knowledge using keywords or keyphrases
through the Google CSE (Custom Search Engine)
API (Esraa Q. Naamha, 2023) (summarized search
websites) and extracts claims from LLM responses,
structured as triplets (subject, predicate, object), to
form factual references. The extraction of claims
utilizes the prompt design from RefChecker’s Ex-
tractor (Hu et al., 2024) and is implemented using
the Anthropic API (Anthropic, 2022). However,
the verification and refinement of claims are also
conducted through the CLAUDE API, with the
prompt design as in Appendix A (Figure 5).

Checker Component The Checker component
evaluates hallucinated words and their probabilities
in the model output by validating them against ref-
erences using prompts. The prompts guide the clas-
sification of hallucinations and define their prob-
abilities. The prompt design is as in Appendix
A (Figure 6). With the support of CLAUDE API
(Anthropic, 2022), the results from Checker are
mapped to the LLM output text, highlighting hallu-
cinated words and generating soft labels and hard
labels. Soft labels are based on the detected hallu-
cination probabilities, while hard labels are deter-
mined by a threshold of 0.5 (probabilities > 0.5 are
marked as hallucinations).

3.2 Modified-SelfCheckGPT-H (MSCGH)
MSCGH is based on the method proposed by
Markchom et al. (2024). It consists of 4 steps:
keywords/keyphrases extraction, context retrieval,
prompt construction and hallucination detection.
Figure 2 shows an overview of MSCGH. The de-
tails of each step are discussed in the following.

Keywords/Keyphrases Extraction To gener-
ate a context for each LLM output text, key-
words/keyphrases in the input text are first iden-
tified. In this work, YAKE (Yet Another Keyword
Extractor) (Campos et al., 2020) is adopted to ex-
tract keywords across multiple languages, as it
is domain- and language-independent. However,
some languages are not covered by this method.
Therefore, to improve keyword extraction in dif-
ferent languages, Hugging Face models are used
for specific languages to identify named entities,
while SpaCy facilitates tokenization and stop word
removal. A summary of the tools and models used
is shown in Appendix B (Table 1). Furthermore,
GPT-3.5 was also applied to directly extract key-
words/keyphrases from the LLM input text.

Context Retrieval To retrieve a context based
on each extracted keyword WikipediaAPI1 (Me-
diaWiki, 2024) and Google CSE API (Esraa Q.
Naamha, 2023) are considered. These resources
are chosen for their popularity and capability to
provide reliable context (Trokhymovych and Saez-
Trumper, 2021). Once contexts for individual key-
words are retrieved, they are concatenated to form
a complete context for the LLM output text.

Prompt Construction Two prompt designs
for identifying hallucinated words are explored.

1https://pypi.org/project/Wikipedia-API/
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Figure 1: Overview of MRC

Prompt 1, adapted from SelfCheckGPT, is a sim-
ple prompt that asks an LLM to identify halluci-
nated words without specific instructions. Prompt
2, designed to identify hallucinated words, catego-
rizes hallucination types and assigns probabilities
while defining detection scope and output condi-
tions. Compared to Prompt 1, it imposes stricter
constraints to reduce unnecessary results (Rashkin
et al., 2021). By directly classifying hallucinations
and modeling probability distributions, it mitigates
misalignment issues in LLM-generated text, im-
proving detection accuracy and consistency.

Hallucination Detection To detect hallucination
words, an LLM (this work considers GPT-3.5, GPT-
4 and GPT-4o following the original methodology
of using GPT models in SelfCheckGPT (Manakul
et al., 2023).) is used to answer the prompt created
in the previous step for each LLM output text. For
each response, the hallucination words are identi-
fied, and a list of index intervals indicating the posi-
tions of these words in the LLM output string, L =
{L1, L2, . . . , Ln}, is obtained. Then, all overlap-
ping and adjacent intervals across all N responses
are merged into a set of distinct, non-overlapping
intervals M = {(s1, e1), (s2, e2), . . . , (sm, em)}.

The soft probabilities for each merged interval
are computed differently depending on the prompt
used (Prompt 1 or Prompt 2). For Prompt 1, the
probability of each merged interval (si, ei) is com-
puted by p(si, ei) = 1

n

∑n
k=1

oi,k
ei−si

, where oi,k
is the total overlap between the merged interval

(si, ei) and the intervals in the list Lk and ei − si
is the length of the interval.

Prompt 2 detects the probabilities of halluci-
nated words. However, in the repeated N times
process, the probabilities need to be recalculated,
leading to the introduction of the following for-

mula: p(si, ei) =
(∑n

k=1 oi,k·pk∑n
k=1 oi,k

)1.2
, where pk is

the probability of hallucination for each interval
in the n responses, which is combined with the
overlap length oi,k to calculate the weighted aver-
age probability. The exponent 1.2 introduces non-
linearity, giving higher importance to intervals with
frequent overlaps and improving the accuracy of
hallucination detection. All merged intervals in M,
along with their probabilities, serve as soft labels.
Hard labels are obtained by selecting the intervals
in M with probabilities higher than a predefined
threshold, which is set to 0.5 in this work.

4 Datasets and Experimental Setup

Dataset The datasets used in this study are pro-
vided by the organizers of Mu-SHROOM. The val-
idation set, which contains annotated labels, was
used for model development and tuning. In the final
experiments, the test set was employed to compre-
hensively evaluate the performance of the models.
The validation set includes data in 10 languages,
along with LLM input texts, LLM-generated texts,
LLM tokens, corresponding logit values, and hal-
lucination annotations in the form of soft and hard
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Figure 2: Overview of MSCGH

labels, indicating both the locations and probabili-
ties of hallucinations. The test set contains data in
14 languages. The models were evaluated indepen-
dently for each language to ensure a comprehensive
assessment across multilingual data.

Method Selection Initially, evaluation was con-
ducted on MRC and five variations of MSCGH ,
each utilizing different keyword extractors, con-
text retrieval tools, prompt designs, and LLMs for
hallucination detection (as discussed in Section
3.2). This resulted in six different models, each
applied to 14 languages, for a total of 84 exper-
iments. The details of these methods and their
performance results can be found in Appendix
C. Each model is assigned a Submitted Identi-
fier, which corresponds to the Identifier submit-
ted on the official website2. Based on the perfor-
mance, the three best methods were selected for
discussion: (1) MRC_CLAUDE_CSE_A: MRC
using GPT-3.5 for keyword extraction, Google
CSE API (abstract only) for context retrieval,
and CLAUDE for hallucination detection. (2)
MSCGH_GPT_CSE_F: MSCGH using GPT-3.5
for keyword extraction, full Google CSE API
results, and GPT-4o for hallucination detection
(N = 5). (3) MSCGH_GPT_WIKI_A: MSCGH
using custom rules for keyword extraction, first 200
characters Wikipedia API results, and GPT-4o for
hallucination detection (N = 5).

Evaluation Metrics The metrics provided by the
organizers were used: Intersection-over-Union

2https://helsinki-nlp.github.io/shroom/

(IoU) of Characters: Measures the overlap be-
tween hallucinated characters marked in the gold
reference and those predicted by the system, and
Probability Correlation: Assesses how well the
probability assigned by the system for a character
being part of a hallucination correlates with the
probabilities observed in human annotations.

Baseline Three baselines were provided in the
task (Vázquez et al., 2025): (1) Baseline (neu-
ral): Fine-tuning of the neural network classi-
fier based on XLM-R, outputting binary (0/1)
probability predictions for each token, (2) Base-
line (mark-all): Predicting all characters as hal-
lucinations (probability = 1), and (3) Baseline
(mark-none): Predicting all characters as non-
hallucinations (probability = 0).

5 Results and Discussions

Overall comparison of the proposed methods
The comparative results of our methods and the
baselines are shown in Figures 3a and 3b. From
these figures, the neural and mark-none baselines
performed the worst across all languages, while the
mark-all baseline achieved slightly higher IoU but
nearly zero COR scores. In contrast, our method
outperformed these baselines in all languages, with
average improvements of approximately 0.30 in
IoU and 0.45 in COR. More importantly, according
to the 100,000 bootstrap resamplings mentioned
in (Vázquez et al., 2025), our submitted methods
achieved a Pr(rank) above 0.5 in every language.
This indicates a higher probability of outperform-
ing the next-best team in the majority of samples,
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(a) Performance Across Languages (IoU Score)

(b) Performance Across Languages (COR Score)

(c) Methods Performance and Stability Comparison

Figure 3: Performance Across Languages of Methods

and thus demonstrates robust and consistent cross-
lingual performance.

Across multiple languages, our models exhib-
ited distinct performance differences, as shown
in Figure 3. MSCGH_GPT_CSE_F consis-
tently led, benefiting from more effective key-
word extraction, comprehensive external knowl-
edge retrieval, and stronger hallucination detection.
Its broader retrieval strategy provided an advan-
tage in handling ambiguous or multi-step queries.
MSCGH_GPT_WIKI_A followed closely, partic-
ularly excelling in Chinese results, where complex
segmentation and word relationships were better
handled through its customized keyword extrac-
tion. MRC_CLAUDE_CSE_A, while still effec-
tive, showed greater variance across languages,
likely due to less optimized retrieval strategies or
weaker hallucination detection.

Figure 3c presents the average IoU and COR
scores across all languages, illustrating the

overall performance and stability of the three
methods. MSCGH_GPT_CSE_F achieved
the highest IoU and COR scores, while
MSCGH_GPT_WIKI_A performed simi-
larly to MRC_CLAUDE_CSE_A. However,
MSCGH methods exhibited larger error bars,
indicating greater variability and less stability. The
fluctuations in MSCGH may stem from differences
in knowledge retrieval and prompt design. In
contrast, MRC demonstrated more consistent
performance, suggesting its higher stability.

Comparison of knowledge retrieval methods
In Figure 3c, MSCGH_GPT_CSE_F outperformed
MSCGH_GPT_WIKI_A. This could be attributed
to differences in external knowledge resources and
the precision of keyword extraction. GPT-3.5, as
a keyword extraction tool, likely understood the
context of questions better and extracted more pre-
cise and relevant keywords for retrieval. In con-
trast, custom rules had limitations in generaliza-
tion and contextual understanding. They relied
on specific language resources, which were lim-
ited in scope. This could affect the accuracy of
keyword extraction and subsequently reduce the
relevance and coverage of retrieved information.
Besides keyword extraction, knowledge resources
also played a vital role. The Google CSE API
encompassed the Wikipedia API and extended be-
yond it, providing broader search coverage through
a customizable search engine (Esraa Q. Naamha,
2023). Additionally, retrieving full-page content
via the Google CSE API could yield better results
than retrieving only abstract content, as suggested
by MSCGH_GPT_CSE_F’s superior performance
over MRC_CLAUDE_CSE_A. Overall, both key-
word extraction accuracy and knowledge coverage
influenced model performance. This highlights the
importance of optimizing external knowledge ex-
traction methods to improve detection outcomes.

Comparison of prompted LLMs for halluci-
nation detection Figure 4 compares different
LLMs. In this figure, each model is represented
with bars showing the IoU and COR scores for
individual languages. The grey bar behind each
model’s score bars indicates the average IoU and
COR scores for that model. From this figure,
CLAUDE performed the worst, while GPT-4o
showed significant improvements. However, not all
GPT-4o-based methods outperformed CLAUDE,
indicating that LLM upgrades alone do not guaran-
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Figure 4: LLM Performance Across Languages and Overall

tee better results—effective knowledge retrieval
remained essential. Performance gaps between
LLMs were more pronounced in high-resource
languages (e.g., Italian), where GPT-4o signifi-
cantly outperformed CLAUDE. In contrast, for
low-resource languages (e.g., Arabic), GPT-4o’s
benefits were inconsistent—some methods showed
only marginal gains, while those using the Google
CSE API achieved substantial improvements. This
underscored the critical role of external knowledge
integration in maximizing LLM performance.

6 Conclusion

SemEval-2025 Mu-SHROOM introduced the task
of detecting hallucination spans in multilingual
LLM outputs. To tackle this task, this work
proposed two methods: Modified-RefChecker
(MRC) and Modified-SelfCheckGPT-H (MSCGH).
These methods incorporated external knowledge
integration and an improved prompt design, en-
abling the detection of text-span hallucinations
in LLM-generated texts. MRC and variations of
MSCGH (with different keyword extraction tech-
niques, external knowledge sources, and prompt
strategies) were evaluated across datasets in 14 lan-
guages. Three top-performing methods were cho-
sen for discussion in this paper. Among the evalu-
ated methods, MSCGH using GPT-3.5 for keyword
extraction, full Google CSE API results, and GPT-
4o for hallucination detection achieved the best
overall performance. Although MSCGH demon-
strated higher performance, it lacked stability when
applied across different languages. Meanwhile,
MRC was more stable but less optimized. One lim-
itation of the proposed approaches is the assump-
tion that external knowledge is accurate. However,

the retrieved information may not always be fully
factual due to the ever-growing volume of online
content. Such inaccuracies could reduce the ef-
fectiveness of the proposed approaches. Future
research could focus on refining the prompt design
and enhancing external knowledge integration and
faulty correction strategies. Additionally, adaptive
learning for low-resource languages and broader
language task expansion could be considered.
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(MSCGH). Figure 5 shows the Claims Correction
Prompt, used in MRC. Figure 6 shows the Checker
Component Prompt for MRC. Figure 7 shows
Prompt 1 for MSCGH. Figure 8 shows Prompt
2 for MSCGH.

B Custom Rules of Keywords/keyphrases
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Table 1 shows custom rules of key-
words/keyphrases extraction across various
languages in MSCGH.
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Table 2 shows the results of all the methods on the
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Table 1: Tools and Models Utilized for Keyword Extraction

Language Stop Word Removal Tool NER Model Additional Model/Approach

Chinese (zh) jieba and HIT_stopwords (Open-Source Toolkit) Hugging Face (‘xlm-roberta-large-finetuned-conll03-english‘) TF-IDF (jieba.analyse)
Arabic (ar) ‘stopwords-ar.txt‘ (Alrefaie, 2019) Hugging Face (‘asafaya/bert-base-arabic‘) Tokenization (Hugging Face, TF-IDF)
Hindi (hi) Indic NLP Library (‘indic_tokenize‘) (AI4Bharat) Hugging Face (‘xlm-roberta-large-finetuned-conll03-english‘) Tokenization (Indic Tokenizer)
Basque (eu) Stopwords-iso (‘stopwords-eu.txt‘) (ISO, 2016) Hugging Face (‘xlm-roberta-large-finetuned-conll03-english‘) TF-IDF (spaCy ‘xx_ent_wiki_sm‘)
Czech (cs) StopwordsISO (Stopwords ISO Contributors) Stanza (Stanford NLP Group) Tokenization (Stanza, TF-IDF)
Farsi (fa) Hazm (Fani) Hugging Face (‘bert-fa-base-uncased-ner-arman‘) Tokenization (Stanza, TF-IDF)
Catalan (ca) spaCy (ca_core_news_sm) Hugging Face (‘projecte-aina/roberta-base-ca-v2-cased-ner‘) TF-IDF (spaCy ‘ca_core_news_sm‘)
English (en) spaCy (en_core_web_sm) Hugging Face (‘xlm-roberta-large-finetuned-conll03-english‘) TF-IDF (spaCy ‘en_core_web_sm‘)
Spanish (es) spaCy (es_core_news_sm) Hugging Face (‘xlm-roberta-large-finetuned-conll03-english‘) TF-IDF (spaCy ‘es_core_news_sm‘)
French (fr) spaCy (fr_core_news_sm) Hugging Face (‘xlm-roberta-large-finetuned-conll03-english‘) TF-IDF (spaCy ‘fr_core_news_sm‘)
German (de) spaCy (de_core_news_sm) Hugging Face (‘xlm-roberta-large-finetuned-conll03-english‘) TF-IDF (spaCy ‘de_core_news_sm‘)
Italian (it) spaCy (it_core_news_sm) Hugging Face (‘xlm-roberta-large-finetuned-conll03-english‘) TF-IDF (spaCy ‘it_core_news_sm‘)
Finnish (fi) spaCy (fi_core_news_sm) Hugging Face (‘xlm-roberta-large-finetuned-conll03-english‘) TF-IDF (spaCy ‘fi_core_news_sm‘)
Swedish (sv) spaCy (sv_core_news_sm) Hugging Face (‘xlm-roberta-large-finetuned-conll03-english‘) TF-IDF (spaCy ‘sv_core_news_sm‘)

Prompt

System Task: Please expand, provide additional relevant factual infor-
mation and verify about the following claim
Claims: {claims}
- If the claim is accurate, not hallucination and complete, return the
original claim.
- If the claim is inaccurate, partial, or lacking detail, return a corrected,
more detailed, and comprehensive factual statement.

Figure 5: Claims Correction Prompt for the Extractor
Component of MRC

Prompt

System Task: Evaluate the model output text for hallucinations by com-
paring it to the provided references, existing fact, claims, and question
(model input). Identify any hallucinated or potentially inaccurate parts
in the entire model output text. Highlight the hallucinated word and as-
sign a probability of the hallucination word in the ‘model_output_text‘.
LLM input text: {LLM input text}
Claims: {claims}
References: {references}
LLM output text: {LLM output text}
Instructions
1. Compare each claim with the provided references, question and
existing fact (internal knowledge).
2. If a claim cannot be fully supported by the references, identify the
hallucinated words and mark it to ‘model output text‘.
3. Return character-level offsets and assign hallucination probabilities.
4. If the claim is fully supported, hallucination should not to be labeled.
5. Assign hallucination probabilities based on the following criteria:
- 0.7 - 1.0: Fully fabricated or highly speculative content with no sup-
porting evidence.
- 0.4 - 0.7: Partially incorrect or speculative content, but some evidence
supports parts of the claim.
- 0.1 - 0.4: Minor inaccuracies, such as spelling errors, wrong format-
ting, or small factual deviations.
6. Ensure that the hallucinated words do not overlap or repeat. If
overlapping occurs, merge them or separate them appropriately.
7. Ensure the words are shown in the ‘model output text‘.
8. Highlight text in ‘model output text‘ that could potentially be a
hallucination even if not explicitly listed in the claims.
9. Return all the hallucinated words or phrases and assign each a
hallucination probability (between 0 and 1).
10. Do not filter out hallucinations based on low probability. Return
results for any potential hallucination.
11. Do not include any explanations, summaries, or additional text.
Return the JSON list directly.
12. Ensure all potential hallucinations are listed, even those with prob-
abilities as low as 0.1.

Figure 6: Prompt for the Checker Component in MRC

Prompt 1

Context: {combined context}
Sentence: {LLM output text}
Which tokens in the sentence are not supported by the context above?
Provide the answer in the form of a list of hallucination tokens sepa-
rated by ’|’ without accompanying texts.

Figure 7: Prompt 1 for the Hallucinations Detection in
MSCGH

Prompt 2

Language: {language}
Question: {LLM input text}
Sentence: {LLM output text}
Context (if available): {context}
Task
You are an AI model output evaluation expert, responsible for detecting
hallucinated words in model output and assigning accurate probability
scores to each hallucination.
1. Identify hallucinated words or phrases in the model output based on
the question and background knowledge.
- A word or phrase is considered a hallucination if it:
- Contradicts the background knowledge.
- Is unverifiable or fabricated.
- Contains logical inconsistencies.
2. Assign a probability score to each hallucinated word or phrase
according to the following criteria:
- Probability > 0.7: Severe factual errors or contradictions.
- Probability 0.5 - 0.7: Unverifiable or speculative content.
- Probability 0.3 - 0.5: Minor inconsistencies or unverifiable details.
- Probability 0.1 - 0.3: Minor inaccuracies or vague ambiguities.
- Do not label words with probability ≤ 0.1 (i.e., verifiable facts).
Additional Instructions
- Do not mark redundant or overly generic words (e.g., "the", "a",
"and") as hallucinations unless they introduce factual errors.
- Pay special attention to:
- Numerical data (e.g., dates, quantities, percentages).
- Named entities (e.g., people, organizations, locations).
- Logical contradictions (e.g., self-contradictions within the text).
- If background knowledge is absent, base your judgment solely on
internal consistency.

Figure 8: Prompt 2 for the Hallucinations Detection in
MSCGH

278



Table 2: All Methods Test Results

Language Framework Submitted Identifier Keywords Extraction External Knowledge LLM N IoU COR

AR

MSCGH NCL-UoR_Self_GPT3.5_YAKE_Wiki YAKE Wikipedia API gpt-3.5-turbo 5.0 0.2485 0.2154
MRC NCL-UoR_CLAUDE-Modifier gpt-3.5-turbo Google CSE API (abstract) CLAUDE-3-5-haiku-20241022 - 0.4834 0.4881
MSCGH NCL-UoR_SelfModify-H custom rules (Table 1) Wikipedia API gpt-3.5-turbo 5.0 0.3752 0.3707
MSCGH NCL-UoR_SelfModify-H-plus custom rules (Table 1) Wikipedia API gpt-4o 5.0 0.5389 0.5710
MSCGH NCL-UoR_Self_GPT4o_Google_CSE gpt-3.5-turbo Google CSE API gpt-4o 5.0 0.5334 0.5350
MSCGH NCL-UoR_Self_GPT4_GPT3.5_Google_CSE gpt-3.5-turbo Google CSE API (abstract) gpt-4-turbo 5.0 0.4353 0.4539

CA

MSCGH NCL-UoR_Self_GPT3.5_YAKE_Wiki YAKE Wikipedia API gpt-3.5-turbo 5.0 0.0.3650 0.3778
MRC NCL-UoR_CLAUDE-Modifier gpt-3.5-turbo Google CSE API (abstract) CLAUDE-3-5-haiku-20241022 - 0.5135 0.5714
MSCGH NCL-UoR_SelfModify-H custom rules (Table 1) Wikipedia API gpt-3.5-turbo 5.0 0.4849 0.5423
MSCGH NCL-UoR_SelfModify-H-plus custom rules (Table 1) Wikipedia API gpt-4o 5.0 0.5984 0.6573
MSCGH NCL-UoR_Self_GPT4o_Google_CSE gpt-3.5-turbo Google CSE API gpt-4o 5.0 0.6602 0.7202
MSCGH NCL-UoR_Self_GPT4_GPT3.5_Google_CSE gpt-3.5-turbo Google CSE API (abstract) gpt-4-turbo 5.0 0.4621 0.6072

CS

MSCGH NCL-UoR_Self_GPT3.5_YAKE_Wiki YAKE Wikipedia API gpt-3.5-turbo 5.0 0.2121 0.2364
MRC NCL-UoR_CLAUDE-Modifier gpt-3.5-turbo Google CSE API (abstract) CLAUDE-3-5-haiku-20241022 - 0.4218 0.4061
MSCGH NCL-UoR_SelfModify-H custom rules (Table 1) Wikipedia API gpt-3.5-turbo 5.0 0.2513 0.3189
MSCGH NCL-UoR_SelfModify-H-plus custom rules (Table 1) Wikipedia API gpt-4o 5.0 0.4409 0.5285
MSCGH NCL-UoR_Self_GPT4o_Google_CSE gpt-3.5-turbo Google CSE API gpt-4o 5.0 0.4264 0.5110
MSCGH NCL-UoR_Self_GPT4_GPT3.5_Google_CSE gpt-3.5-turbo Google CSE API (abstract) gpt-4-turbo 5.0 0.3935 0.4816

DE

MSCGH NCL-UoR_Self_GPT3.5_YAKE_Wiki YAKE Wikipedia API gpt-3.5-turbo 5.0 0.3295 0.3713
MRC NCL-UoR_CLAUDE-Modifier gpt-3.5-turbo Google CSE API (abstract) CLAUDE-3-5-haiku-20241022 - 0.4617 0.5139
MSCGH NCL-UoR_SelfModify-H custom rules (Table 1) Wikipedia API gpt-3.5-turbo 5.0 0.4173 0.4601
MSCGH NCL-UoR_SelfModify-H-plus custom rules (Table 1) Wikipedia API gpt-4o 5.0 0.5259 0.5852
MSCGH NCL-UoR_Self_GPT4o_Google_CSE gpt-3.5-turbo Google CSE API gpt-4o 5.0 0.5472 0.5860
MSCGH NCL-UoR_Self_GPT4_GPT3.5_Google_CSE gpt-3.5-turbo Google CSE API (abstract) gpt-4-turbo 5.0 0.4467 0.5001

EN

MSCGH NCL-UoR_Self_GPT3.5_YAKE_Wiki YAKE Wikipedia API gpt-3.5-turbo 5.0 0.4245 0.4544
MRC NCL-UoR_CLAUDE-Modifier gpt-3.5-turbo Google CSE API (abstract) CLAUDE-3-5-haiku-20241022 - 0.4451 0.5035
MSCGH NCL-UoR_SelfModify-H custom rules (Table 1) Wikipedia API gpt-3.5-turbo 5.0 0.3690 0.3905
MSCGH NCL-UoR_SelfModify-H-plus custom rules (Table 1) Wikipedia API gpt-4o 5.0 0.4844 0.5333
MSCGH NCL-UoR_Self_GPT4o_Google_CSE gpt-3.5-turbo Google CSE API gpt-4o 5.0 0.5195 0.5476
MSCGH NCL-UoR_Self_GPT4_GPT3.5_Google_CSE gpt-3.5-turbo Google CSE API (abstract) gpt-4-turbo 5.0 0.4469 0.4690

ES

MSCGH NCL-UoR_Self_GPT3.5_YAKE_Wiki YAKE Wikipedia API gpt-3.5-turbo 5.0 0.3129 0.3122
MRC NCL-UoR_CLAUDE-Modifier gpt-3.5-turbo Google CSE API (abstract) CLAUDE-3-5-haiku-20241022 - 0.4206 0.4970
MSCGH NCL-UoR_SelfModify-H custom rules (Table 1) Wikipedia API gpt-3.5-turbo 5.0 0.3843 0.4104
MSCGH NCL-UoR_SelfModify-H-plus custom rules (Table 1) Wikipedia API gpt-4o 5.0 0.4964 0.5402
MSCGH NCL-UoR_Self_GPT4o_Google_CSE gpt-3.5-turbo Google CSE API gpt-4o 5.0 0.5146 0.5464
MSCGH NCL-UoR_Self_GPT4_GPT3.5_Google_CSE gpt-3.5-turbo Google CSE API (abstract) gpt-4-turbo 5.0 0.4240 0.4790

EU

MSCGH NCL-UoR_Self_GPT3.5_YAKE_Wiki YAKE Wikipedia API gpt-3.5-turbo 5.0 0.3111 0.2833
MRC NCL-UoR_CLAUDE-Modifier gpt-3.5-turbo Google CSE API (abstract) CLAUDE-3-5-haiku-20241022 - 0.4263 0.4123
MSCGH NCL-UoR_SelfModify-H custom rules (Table 1) Wikipedia API gpt-3.5-turbo 5.0 0.4340 0.4907
MSCGH NCL-UoR_SelfModify-H-plus custom rules (Table 1) Wikipedia API gpt-4o 5.0 0.5104 0.5974
MSCGH NCL-UoR_Self_GPT4o_Google_CSE gpt-3.5-turbo Google CSE API gpt-4o 5.0 0.4928 0.5802
MSCGH NCL-UoR_Self_GPT4_GPT3.5_Google_CSE gpt-3.5-turbo Google CSE API (abstract) gpt-4-turbo 5.0 0.3922 0.4932

FA

MSCGH NCL-UoR_Self_GPT3.5_YAKE_Wiki YAKE Wikipedia API gpt-3.5-turbo 5.0 0.3254 0.3421
MRC NCL-UoR_CLAUDE-Modifier gpt-3.5-turbo Google CSE API (abstract) CLAUDE-3-5-haiku-20241022 - 0.3672 0.3955
MSCGH NCL-UoR_SelfModify-H custom rules (Table 1) Wikipedia API gpt-3.5-turbo 5.0 0.5027 0.5653
MSCGH NCL-UoR_SelfModify-H-plus custom rules (Table 1) Wikipedia API gpt-4o 5.0 0.5509 0.6444
MSCGH NCL-UoR_Self_GPT4o_Google_CSE gpt-3.5-turbo Google CSE API gpt-4o 5.0 0.6585 0.6732
MSCGH NCL-UoR_Self_GPT4_GPT3.5_Google_CSE gpt-3.5-turbo Google CSE API (abstract) gpt-4-turbo 5.0 0.4034 0.5500

FI

MSCGH NCL-UoR_Self_GPT3.5_YAKE_Wiki YAKE Wikipedia API gpt-3.5-turbo 5.0 0.2983 0.3114
MRC NCL-UoR_CLAUDE-Modifier gpt-3.5-turbo Google CSE API (abstract) CLAUDE-3-5-haiku-20241022 - 0.5095 0.4964
MSCGH NCL-UoR_SelfModify-H custom rules (Table 1) Wikipedia API gpt-3.5-turbo 5.0 0.3187 0.3656
MSCGH NCL-UoR_SelfModify-H-plus custom rules (Table 1) Wikipedia API gpt-4o 5.0 0.3928 0.4982
MSCGH NCL-UoR_Self_GPT4o_Google_CSE gpt-3.5-turbo Google CSE API gpt-4o 5.0 0.4982 0.5523
MSCGH NCL-UoR_Self_GPT4_GPT3.5_Google_CSE gpt-3.5-turbo Google CSE API (abstract) gpt-4-turbo 5.0 0.3866 0.4906

FR

MSCGH NCL-UoR_Self_GPT3.5_YAKE_Wiki YAKE Wikipedia API gpt-3.5-turbo 5.0 0.2094 0.2065
MRC NCL-UoR_CLAUDE-Modifier gpt-3.5-turbo Google CSE API (abstract) CLAUDE-3-5-haiku-20241022 - 0.4058 0.4187
MSCGH NCL-UoR_SelfModify-H custom rules (Table 1) Wikipedia API gpt-3.5-turbo 5.0 0.3202 0.3685
MSCGH NCL-UoR_SelfModify-H-plus custom rules (Table 1) Wikipedia API gpt-4o 5.0 0.3571 0.4822
MSCGH NCL-UoR_Self_GPT4o_Google_CSE gpt-3.5-turbo Google CSE API gpt-4o 5.0 0.3466 0.4024
MSCGH NCL-UoR_Self_GPT4_GPT3.5_Google_CSE gpt-3.5-turbo Google CSE API (abstract) gpt-4-turbo 5.0 0.3386 0.4712

HI

MSCGH NCL-UoR_Self_GPT3.5_YAKE_Wiki YAKE Wikipedia API gpt-3.5-turbo 5.0 0.2251 0.1705
MRC NCL-UoR_CLAUDE-Modifier gpt-3.5-turbo Google CSE API (abstract) CLAUDE-3-5-haiku-20241022 - 0.4914 0.5958
MSCGH NCL-UoR_SelfModify-H custom rules (Table 1) Wikipedia API gpt-3.5-turbo 5.0 0.5606 0.6078
MSCGH NCL-UoR_SelfModify-H-plus custom rules (Table 1) Wikipedia API gpt-4o 5.0 0.5570 0.6433
MSCGH NCL-UoR_Self_GPT4o_Google_CSE gpt-3.5-turbo Google CSE API gpt-4o 5.0 0.6286 0.6830
MSCGH NCL-UoR_Self_GPT4_GPT3.5_Google_CSE gpt-3.5-turbo Google CSE API (abstract) gpt-4-turbo 5.0 0.5886 0.6664

IT

MSCGH NCL-UoR_Self_GPT3.5_YAKE_Wiki YAKE Wikipedia API gpt-3.5-turbo 5.0 0.4153 0.4123
MRC NCL-UoR_CLAUDE-Modifier gpt-3.5-turbo Google CSE API (abstract) CLAUDE-3-5-haiku-20241022 - 0.5265 0.5737
MSCGH NCL-UoR_SelfModify-H custom rules (Table 1) Wikipedia API gpt-3.5-turbo 5.0 0.6563 0.6941
MSCGH NCL-UoR_SelfModify-H-plus custom rules (Table 1) Wikipedia API gpt-4o 5.0 0.6547 0.7637
MSCGH NCL-UoR_Self_GPT4o_Google_CSE gpt-3.5-turbo Google CSE API gpt-4o 5.0 0.7122 0.7613
MSCGH NCL-UoR_Self_GPT4_GPT3.5_Google_CSE gpt-3.5-turbo Google CSE API (abstract) gpt-4-turbo 5.0 0.5950 0.7313

SV

MSCGH NCL-UoR_Self_GPT3.5_YAKE_Wiki YAKE Wikipedia API gpt-3.5-turbo 5.0 0.3763 0.2863
MRC NCL-UoR_CLAUDE-Modifier gpt-3.5-turbo Google CSE API (abstract) CLAUDE-3-5-haiku-20241022 - 0.5546 0.4587
MSCGH NCL-UoR_SelfModify-H custom rules (Table 1) Wikipedia API gpt-3.5-turbo 5.0 0.4047 0.4335
MSCGH NCL-UoR_SelfModify-H-plus custom rules (Table 1) Wikipedia API gpt-4o 5.0 0.5233 0.5224
MSCGH NCL-UoR_Self_GPT4o_Google_CSE gpt-3.5-turbo Google CSE API gpt-4o 5.0 0.5340 0.4836
MSCGH NCL-UoR_Self_GPT4_GPT3.5_Google_CSE gpt-3.5-turbo Google CSE API (abstract) gpt-4-turbo 5.0 0.4918 0.4907

ZH

MSCGH NCL-UoR_Self_GPT3.5_YAKE_Wiki YAKE Wikipedia API gpt-3.5-turbo 5.0 0.1683 0.2840
MRC NCL-UoR_CLAUDE-Modifier gpt-3.5-turbo Google CSE API (abstract) CLAUDE-3-5-haiku-20241022 - 0.2986 0.2849
MSCGH NCL-UoR_SelfModify-H custom rules (Table 1) Wikipedia API gpt-3.5-turbo 5.0 0.1849 0.2271
MSCGH NCL-UoR_SelfModify-H-plus custom rules (Table 1) Wikipedia API gpt-4o 5.0 0.3492 0.3830
MSCGH NCL-UoR_Self_GPT4o_Google_CSE gpt-3.5-turbo Google CSE API gpt-4o 5.0 0.3606 0.3539
MSCGH NCL-UoR_Self_GPT4_GPT3.5_Google_CSE gpt-3.5-turbo Google CSE API (abstract) gpt-4-turbo 5.0 0.2842 0.3073
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