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Abstract

We present the Mu-SHROOM shared task
which is focused on detecting hallucinations
and other overgeneration mistakes in the out-
put of instruction-tuned large language mod-
els (LLMs). Mu-SHROOM addresses general-
purpose LLMs in 14 languages, and frames
the hallucination detection problem as a span-
labeling task. We received 2,618 submissions
from 43 participating teams employing diverse
methodologies. The large number of submis-
sions underscores the interest of the community
in hallucination detection. We present the re-
sults of the participating systems and conduct
an empirical analysis to identify key factors
contributing to strong performance in this task.
We also emphasize relevant current challenges,
notably the varying degree of hallucinations
across languages and the high annotator dis-
agreement when labeling hallucination spans.

Helsinki-NLP/mu-shroom

Helsinki-NLP/mu-shroom

1 Lets a-go! Introduction

As generative AI systems become increasingly inte-
grated into real-world applications we expect them
to produce fluent and coherent text (e.g., Rohrbach
et al., 2018; Lee et al., 2018). However, a critical
issue undermines their reliability: these models fre-
quently generate outputs that are highly fluent but
factually incorrect, a phenomenon known as hal-
lucination. Hallucinations, as presently observed,

Figure 1: The Mu-SHROOM logo.

are characterized by a disregard of the truth value
of statements in favor of persuasive or plausible-
sounding language, carrying consequences such as
the spread of misinformation, and erosion of user
trust (Hicks et al., 2024). Compounding this is-
sue is the tendency of hallucinations to "snowball":
when models are prompted to provide evidence or
explanations for a false claim, they often gener-
ate coherent but false statements, further entrench-
ing misinformation (Zhang et al., 2023b; Hicks
et al., 2024). Addressing hallucinations is crucial
for building systems that the public can trust. De-
spite its significance, detecting hallucinations at
scale remains a major challenge, with no clear uni-
versally effective solution currently available.
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The Mu-SHROOM task1 aims to contribute
to advancing research in this direction. Mu-
SHROOM builds on the SHROOM shared task
(Mickus et al., 2024), expanding its scope and ad-
dressing key limitations. Unlike SHROOM which
focused solely on English, Mu-SHROOM incor-
porates multilingual data across 14 languages to
account for potential variations in hallucination
rates (Guerreiro et al., 2023). It also addresses
general-purpose LLMs, reflecting the dominance
of such models in current research, and introduces
token-level annotations for more precise halluci-
nation detection. By providing a richly annotated
multilingual dataset and evaluation metrics, Mu-
SHROOM aims to advance research on halluci-
nation patterns, improve detection methodologies,
and foster community collaboration in NLG and
factual consistency assessment.

The Mu-SHROOM dataset consists of a collec-
tion of prompts, model outputs, logits, and identi-
fiers for openly available LLMs. The dataset en-
compasses 10 languages with validation and test
data (Modern Standard Arabic, German, English,
Spanish, Finnish, French, Hindi, Italian, Swedish
and Mandarin Chinese), 4 test-only (“surprise”)
languages (Catalan, Czech, Basque and Farsi), as
well as unlabeled training data for English, Span-
ish, French, and Chinese. Supplementary metadata,
including raw annotations before post-processing
and the Wikipedia URLs used as references, as well
as the scripts used to generate model outputs for
all 14 languages and code for the annotation and
submission interfaces are all publicly available.2

The shared task attracted a total of 43 teams, re-
sulting in over 2,600 submissions during the three-
week evaluation phase. The strong participation
and diverse methodologies signal the task’s success.
Notably, many teams relied on a few key models,
often using synthetic data for fine-tuning or zero-
shot prompting. While 64–71% of the teams outper-
form our baseline, top-scoring systems perform at
random for the most challenging items. We present
the results and provide a thorough analysis of the
strengths and limitations of current hallucination
detection systems.

1https://helsinki-nlp.github.io/shroom/2025
2See https://github.com/Helsinki-NLP/mu-shroom

and https://huggingface.co/datasets/Helsinki-NLP/
mu-shroom

2 Down the warp pipe: Related works

Hallucination in NLG has been widely studied
since the shift to neural methods (Vinyals and Le,
2015; Raunak et al., 2021; Maynez et al., 2020; Au-
genstein et al., 2024). Despite significant progress,
there remains minimal consensus on the optimal
framework for detecting and mitigating hallucina-
tions, partly due to the diversity of tasks that NLG
encompasses (Ji et al., 2023; Huang et al., 2024).
Recent advances further highlight the urgency for
addressing this issue, as hallucinations can lead to
the propagation of incorrect or misleading infor-
mation, particularly in high-stakes domains such
as healthcare, legal systems, and education (Zhang
et al., 2023a,b). This has led to a recent but flour-
ishing body of work interested in detecting and
mitigating hallucinations (Farquhar et al., 2024;
Gu et al., 2024; Mishra et al., 2024), as well as
studies on how to best define and articulate this
phenomenon (Guerreiro et al., 2023; Rawte et al.,
2023; Huang et al., 2024; Liu et al., 2024).

More immediately relevant to our shared task
are pre-existing benchmarks and datasets. Li
et al. (2023) introduced HaluEval which is fo-
cused on dialogue systems but relies on closed,
non-transparent models, limiting reproducibility.
Other benchmarks, such as those by Liu et al.
(2022) and Zhou et al. (2021), use synthetic data for
token-level hallucination detection. The SHROOM
dataset (Mickus et al., 2024) provides 4k multi-
annotated datapoints for task-specific NLG sys-
tems. Recently, Niu et al. (2024) introduced
RAGTruth, a large-scale corpus with 18,000 an-
notated responses for analyzing word-level hallu-
cinations in RAG frameworks. Chen et al. (2024)
proposed FactCHD to specifically study hallucina-
tions due to fact conflation. Additionally, Rawte
et al. (2023) introduced a comprehensive dataset
and a vulnerability index to quantify LLMs’ sus-
ceptibility to hallucinations. Most of these datasets
focus on English (or Chinese, Cheng et al., 2023).

3 Collecting the coins: Data

We begin with a description of the general process,
and then note specific ad-hoc departures from this
process for each language. The dataset covers 38
LLMs over 14 languages, out of which 4 (CA, CS,
EU, FA) are test-only with about 100 datapoints.
The other 10 languages (AR, DE, EN, ES, FI, FR,
HI, IT, SV, ZH) include both a validation split of
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50 datapoints and a test split of 150 datapoints.3

The construction of the dataset started with an
automatic extraction of 400 Wikipedia pages, with
a focus on pages available in multiple languages of
interest. We eventually increased this extraction to
762 links to guarantee a large number of Wikipedia
pages for all languages. From this point, the pro-
cess we follow for creating the Mu-SHROOM
dataset is divided into two phases: datapoint cre-
ation and data annotation.

Data creation. The datapoint creation for each
language was spearheaded by one of our organizers
proficient in the language. Appendix B.3 (esp. Fig-
ure 7) describes the process in detail. In short, we
manually selected and read 200 Wikipedia pages
(100 for test-only languages), and wrote for each
page one question that could be answered with the
information it contained. Due to variations across
Wiki projects, the set of selected pages and the con-
structed questions vary across languages.4 Ques-
tions had to be factual (i.e., not a matter of opinion)
and closed (i.e., answerable with a closed set of
answers, such as numbers, places, names, etc).

For each question, we then generated multiple
LLM answers: We identified existing open-weight
instruction-tuned LLMs capable of handling the
languages of interest (cf. Table 8 in Appendix for
a list), and produce multiple outputs for each ques-
tion by varying generation hyperparameters (top p,
top k, temperature). We then manually selected one
output to annotate for each question which satisfied
a set of criteria: It was fluent and in the language
of interest; it was relevant to the input question; it
appeared to contain hallucinations or data worth
annotating. A subset of the remaining outputs was
set aside to serve as an unlabeled training set.

Data annotation. We frame the data annotation
task as a span-labeling task where human annota-
tors are asked to highlight text spans in the model
output that contain an overgeneration or hallucina-
tion. Within this task, we define hallucination as
“content that contains or describes facts that are
not supported by a provided reference”.

Annotation were collected using a custom plat-
form displaying the input question, the answer out-
put by the model, and the source the Wikipedia

3Due to technical and replicability issues, we manually
removed 1 datapoint from EU test, 1 from SV val and 3 from
SV test. A handful of languages contained extra test items.

4E.g., ≈ 75% of HI datapoints have no equivalent in other
languages.

AR CA CS DE EN ES EU

Val. 0.77 — — 0.75 0.45 0.58 —
Test 0.76 0.80 0.71 0.72 0.49 0.51 0.74

FA FI FR HI IT SV ZH

Val. — 0.74 0.73 0.80 0.85 0.74 0.57
Test 0.75 0.79 0.81 0.80 0.87 0.78 0.58

Table 1: Annotator agreement measured as Intersection
over Union (IoU, cf. eq. (1)).

page from which the question was derived. The
annotators’ task was to highlight all spans of text in
the answer that were not supported by information
present in the Wikipedia page, which corresponds
to an overgeneration or hallucination.

In order to accommodate the complete set of lan-
guages in the Mu-SHROOM task using a common
set of annotation guidelines, and to cover all even-
tualities, the annotators were instructed to highlight
the minimum number of characters that would
need to be edited or deleted in order to provide
a correct answer. The annotators were encouraged
to be conservative when highlighting spans, and to
focus on content words rather than function words.

With the aim of constraining the scope of the
task and ensuring the reliability of the source infor-
mation used, the annotators were restricted to con-
sulting Wikipedia in order to identify hallucinated
content. Whilst the reference Wikipedia page pro-
vided should ideally be sufficient for the task, an-
notators were permitted to browse other Wikipedia
articles in order to verify information the reference
might not contain, as long as they provided details
of any such pages. The complete set of annotation
guidelines given to the annotators is provided in
Appendix B.2. All selected outputs from the dat-
apoint creation phase were annotated by at least
three annotators, usually with the same three indi-
viduals handling all 200 datapoints; exceptions are
listed in Appendix B.4.

Annotator agreement. An overview of the
agreement rates obtained by our annotators is
shown in Table 1, computed as the intersection
over union (IoU) of the characters marked as hal-
lucinations by the annotators. To measure this,
assuming Cn is the set of character indices marked
as hallucination by our nth annotator, we compute

agg =
1

n · |Call|
∑

n

∑

ci∈Call

1 {ci ∈ Cn} (1)

where Call =
⋃
Cn. This is equivalent to a

multiset-based IoU, where we keep one copy of
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Figure 2: Effects of annotator pool size on inter-
annotator agreement (100 random samples, σ ≤ 0.01)

a character index for each annotator that marked it
as a hallucination.

Empirically, we observe that ES, EN and ZH
yield lower agreement rates, which we can partly
link to the higher number of annotators: Remark
that a character index marked by a single annota-
tor penalizes the agreement rate by n−1

n·|Call| , which
tends to 1

|Call| as n grows. In fact, if we subsample
a lower number of annotations per item for EN, ES
and ZH, we obtain the curve in Figure 2 which em-
pirically demonstrates this effect. It is still worth
highlighting that not all of the disagreement we
observe can be reduced to this effect, suggesting
that the different annotation conditions (see Ap-
pendix B.4) may also play a significant role, or that
there is something fundamentally distinct regarding
hallucinations in higher–resource languages.

Error type Language
AR CA CS ES EU FI FR IT ZH

Fluency 7 18 24 1 68 16 1 3 11
Factuality 97 79 82 66 46 87 57 70 96

Table 2: Number of factuality and fluency mistakes in
random samples of LLM productions (n = 100).

Fluency vs. factuality. One assumption we have
adopted thus far, but which needs further verifica-
tion, is the extent to which hallucinations are in-
deed a major problem for LLMs. To assess this, we
manually re-annotated 100 independently sampled
LLM outputs from different languages, distinguish-
ing between fluency and factuality errors. Results
in Table 2 show that factuality issues are more
pervasive than fluency mistakes, except in Basque.
This explains the shift in NLG evaluation priori-
ties, with factual accuracy now outweighing gram-
maticality as a primary challenge. Additionally,
the results reveal a coverage gap across languages:
while Spanish, French, Italian and perhaps also

Arabic outputs are nearly perfectly fluent, Czech,
Catalan, Basque and Finnish offer a more challeng-
ing picture, perhaps due to the fewer available re-
sources; with Basque standing out as an exception,
with 68 fluency errors compared to 46 factuality er-
rors. Notably, at least half of the outputs across all
languages in this small-scale study contain errors,
underscoring the unreliability of instruction-tuned
LLMs and the need for cautiousness when deploy-
ing them in real-world applications.

4 It’s a me, Wario: Metrics and baselines

Metrics. We compare the participants’ submis-
sions using two metrics: an intersection-over-union
metric (IoU) and a correlation metric (ρ). In order
to apply the IoU metric, we first binarize annota-
tions by considering whether a majority of annota-
tors (> 50%) marked a character as hallucinated,
and then compare the set of indices marked by the
system being rated to this binarized set of annota-
tions. Formally, for one datapoint:

Cbin =

{
ci

∣∣∣∣∣ 0.5 <
∑

n

1

n
1 {ci ∈ Cn}

}

IoU =
∣∣∣Ĉbin ∩ Cbin

∣∣∣ /
∣∣∣Ĉbin ∪ Cbin

∣∣∣ (2)

where Cbin is the set of binarized character-level
annotations derived from the n different sets of
annotations Cn, and Ĉbin is the set of characters
that the system predicts as hallucinated.

On the other hand, the ρ metric tries to factor
in the lack of thorough consensus we observed in
Section 3. A drawback of the binarized annotation
scheme is that it assumes a single ground truth,
which may prove inaccurate or overly simplistic
(Aroyo and Welty, 2015; Plank, 2022). To sidestep
this issue, we consider whether the empirical proba-
bility of a character being marked by our annotators
aligns with the probability derived from the partic-
ipants’ models. For a given datapoint of length k,
we formally measure:

Pr ci =
∑

n

1

n
1 {ci ∈ Cn}

c = ( Pr c1 , . . . , Pr ck)

ĉ = ( p(c1 | θ), . . . , p(ck | θ))
ρ = Spearman (c, ĉ) (3)

where p(ci | θ) stands for the probability that char-
acter ci is in a hallucinated span, as assigned by a
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given participating system, and Pr ci is our empir-
ical probability. The ρ metric assesses how well
the model captures the relative likelihood of hal-
lucination rather than just the binary decision. In
effect, we are measuring the human calibration of
the participants’ systems (Baan et al., 2022).5

The two metrics make different assumptions re-
garding our data. With the IoU metric, we assume
that annotators can reach a consensus as to what
counts as hallucination, whereas with the ρ metric,
we expect that models should be able to match hu-
man variation closely. In the interest of lowering
the barrier to entry for the shared task, we rank par-
ticipating systems according to their highest IoU
scores and break eventual ties depending on the ρ
scores.6 In the same vein, we also allowed partici-
pants to submit binary predictions (Ĉbin), contin-
uous predictions (ĉ), or both. If a submission was
missing either binary or continuous predictions, we
applied default heuristics to derive the missing pre-
diction from the other. We converted continuous
predictions ĉ into binary predictions by applying
a cutoff of 0.5, and binary predictions Ĉbin into
continuous predictions by assigning a probability
of 1 or 0 based on membership. Formally:

Ĉbin = { ci | p(ci | θ) > 0.5 }
ĉ =

(
1

{
c1 ∈ Ĉbin

}
, . . . ,1

{
ck ∈ Ĉbin

})

Baselines. To lower the barrier to entry to the
shared task, we provided participants with an XLM-
R-based baseline system neural fine-tuned on the
entire test set for token-level classification.7 This
classifier directly maps tokens in an LLM’s answer
to binary probabilities, without any intermediate
fact verification step. In addition to this neural base-
line, we consider two heuristics: mark-all where
all characters are marked as hallucinated with prob-
ability 1, and mark-none where no hallucination is
found, i.e., all characters get a probability of 0.

The neural baseline is meant first and foremost
as a tool for participants to build upon and demon-
strate how to map characters to tokens. Without
any means of verification of the facts underpinning
an LLM output, we have low expectations that this

5A handful of datapoints do not contain hallucinations. In
such cases, we assign an IoU of 1 if the system’s predicted set
is also empty, 0 otherwise, and a ρ of 1 if the model assigns
the same probability to all tokens, 0 otherwise.

6We also provide alternative rankings based on ρ scores in
Appendix C.2.

7We used FacebookAI/xlm-roberta-base. We fine-
tuned for 5 epochs with a learning rate of 2e-5.

baseline will perform well, especially in zero-shot
settings. The two heuristics assign probabilities of
0 or 1 uniformly to all characters, which entails that
every LLM output is mapped to a constant series
of probability. This corresponds to a correlation
score of ρ = 0 in most cases. As for IoU scores,
given our data selection protocol (cf. Section 3),
we expect our dataset to be biased towards samples
that contain hallucinations. Therefore, the mark-
none baseline should yield lower IoU scores than
the mark-all baseline.

5 It’s a me, Mario: Participants’ systems

43 teams submitted their systems during the eval-
uation phase, and 35 teams wrote a paper describ-
ing their system. In total, we received 2,618 sub-
missions across all languages. In average, 27.2
teams participated in each language. 41 teams
submitted systems for English (EN), followed by
32 for Spanish (ES) and 30 for French (FR). The
languages with the least number of participants
were our surprise languages: Catalan (CA) with 21
teams; Czech (CS), Basque (EU) and Farsi (FA),
with 23 teams each. Overall, we remark a wide
variety of approaches, ranging from QA– or NER–
based finetuning, to time series–based analyses of
logits (Aryal and Akomoize, 2025) and to zero-shot
RAG-based approaches. We present an overview
of the participating systems in Table 3 and spot-
light a few approaches below, noteworthy in that
they portray clearly different methodologies that
nonetheless performed reasonably well within the
shared task.

The UCSC system (Huang et al., 2025b) is de-
signed as a three-stage pipeline: (i) context re-
trieval, wherein they retrieve relevant pieces of
information to assess the factuality of the LLM out-
puts; (ii) hallucinated fact detection, wherein they
identify the incorrect facts based on the retrieved
contexts; and (iii) span mapping, wherein the incor-
rect facts are mapped onto specific segments of the
output. The approach furthermore employs prompt
optimization to maximize performances. Multi-
stage frameworks were also deployed by other
teams, for instance, iai_msu (Pukemo et al., 2025)
developed a three-step approach, with a retrieval-
based first step, a self-refine second step, and an
ensembling third step.

Another noteworthy entry is that of CCNU (Liu
and Chen, 2025) — whose report also incorporates
information about unsuccessful attempts and some
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Team & Paper Languages Overview

Advacheck (Voznyuk et al., 2025) EN NER-based keyword extraction, Wikipedia-based RAG, LLM edition-based prompting.
AILSNTUA (Karkani et al., 2025) All Translate-test (to EN and ZH) prompt-based approaches using synthetic few-shot examples.
ATLANTIS (Kobus et al., 2025) DE, EN, ES, FR RAG + LLM prompting; RAG-based approaches; token-level classifiers.
BlueToad (Pronk et al., 2025) AR, CS, DE, EN, ES, EU,

FA, FI, FR, HI, IT, SV, ZH
QA-finetuned base PLMs; fine-tuning on synthetic data

CCNU (Liu and Chen, 2025) All Prompting & RAG
COGUMELO (Creo et al., 2025) EN, ES NER-finetuning; perplexity-based assessments
CUET_SSTM AR NER-finetuning.
Deloitte (Chandler et al., 2025) All Binary token-level classifiers, trained using web-search results, task instruction and datapoint

as inputs.
DeepPavlov All White-box approaches
DUTJBD (Yin et al., 2025) EN —
FENJI (Alberts et al., 2025) All Dense passage retrieval for Flan-T5 prompting.
FiRC-NLP (Tufa et al., 2025) All Prompt-based approaches, incorporating external references.
FunghiFunghi (Ballout et al., 2025) EN, ES, FR, IT, SV Translate-train (to EN) and synthetic datasets.
GIL-IIMAS UNAM (Lopez-Ponce
et al., 2025)

EN, ES Wikipedia-based RAG.

HalluRAG-RUG (Abdi et al., 2025) EN Wikipedia-based RAG, followed by a summarization step and a zero-shot prompting to annotate
the items.

HalluSearch (Abdallah and El-
Beltagy, 2025)

All Factual statement decomposition and verification through real-world context retrieval.

HalluciSeekers AR, DE, EN, ES, FA, FR,
IT, SV

—

Hallucination Detectives (Elchafei
and Abu-Elkheir, 2025)

AR, EN Semantic role labeling, dependency parsing, and token-logit confidence scores to construct
spans

HausaNLP (Bala et al., 2025) EN Finetuning approaches.
Howard University - AI4PC (Aryal
and Akomoize, 2025)

All Time-series anomaly detection across the sequence of logits.

iai_MSU (Pukemo et al., 2025) EN RAG
keepitsimple (Vemula and Krishna-
murthy, 2025)

All Multiple LLM generated responses are compared with model output text by modeling informa-
tion entropy for detecting uncertainty.

LCTeam (Maldonado Rodríguez
et al., 2025)

All Label transfer via translate-train (to CA, CS, ES, FR, IT, ZH, & between phylogenetically
related languages); Wikipedia-based RAG and summarization approaches.

MALTO (Savelli et al., 2025) EN Logits of a larger model are used to assess the truthfulness of the sentence predicted by the
single smaller model.

MSA (Hikal et al., 2025) All Weak supervised fine-tuning approaches
NCL-UoR (Hong et al., 2025) All Keyword extraction and Wikipedia-based retrieval, detection using closed-source APIs, post-

processing with non-linear probability optimization or stochastic prompt-based labeling.
NLP_CIMAT (Stack-Sánchez et al.,
2025)

AR, CA, CS, EN, ES, EU,
FA, FI, FR, IT, SV

MLP-based classifiers probing the hidden layers of a Llama 3.1 model; few shot inference with
chatGPT3.5-turbo using Wikipedia contexts.

nsu-ai All prompt based approaches
RaggedyFive (Heerema et al., 2025) EN RAG + NLI across trigrams in LLM answers.
REFIND (Lee and Yu, 2025) AR, CS, DE, EN, ES, EU,

FI, FR, IT
Context sensitivity-based token-level identification matched against externally retrieved docu-
ments; FAVA-based pipeline.

S1mT5v-FMI DE, ES, FI, FR, SV, ZH —
SmurfCat (Rykov et al., 2025) All Qwen-based approach, deriving continuous annotation through repeated sampling.
Swushroomsia (Mitrović et al., 2025) AR, DE, EN, ES, FI, FR,

HI, IT, SV, ZH
Prompting-based approach

Team Cantharellus (Mo et al., 2025) AR, CA, CS, DE, EN, ES,
EU, FA, FI, FR, HI, IT, ZH

Prompting-based approach (GPT-4o-mini) to find hallucinated words/parts of text in each
datapoint; fine-tuning on synthetic data.

TrustAI AR, DE, EN, ES, FI, FR,
HI, IT, SV, ZH

Variations on the neural baseline

tsotsalab All GPT-4 finetuning; counterfactual comparisons with external references.
TU Munich AR, DE, EN, ES, FI, FR,

HI, IT, SV, ZH
Synthetic data generation (MKQA-based).

TUM-MiKaNi (Anschütz et al.,
2025)

All Wikipedia-based retrieval used as input for prompting-based approaches; BERT-based regres-
sion.

UCSC (Huang et al., 2025b) All Elaborate prompting approaches (CoT, few-shot reasoning); pre-translation (to EN) before
RAG-based prompting; token masking-based approaches.

uir-cis (Huang et al., 2025a) All Comparison of extracted triples to external references.
UMUTeam (Pan et al., 2025) All Classifier-based, compare outputs to be annotated with those from larger LLMs.
UZH (Wastl et al., 2025) All Prompting to generate a set of answers, using either an external model (GPT-4o-mini) or the

model that produced the datapoint, followed by a embedding similarity–based detection step to
mark counterfactual spans.

VerbaNexAI (Morillo et al., 2025) EN Retrieval-based approaches
YNU-HPCC (Chen et al., 2025) EN, ZH Prompting, RAG; MRC.

Table 3: Summary of 43 participating teams (listed in alphabetical order). First column contains the team handle,
second column contains languages the team participated in, and the last column briefly describes their respective
approaches.

discussion of the working definition of ‘hallucina-
tion’ we used within this shared task. The CCNU
system attempts to emulate a crowd-sourcing ap-
proach by utilizing multiple LLM-based agents
with different expertise and different knowledge

sources. Such crowd-emulation approaches turned
out fairly popular within the shared task and were
also deployed by a.o. UCSC (Huang et al., 2025b)
or Swushroomsia (Mitrović et al., 2025).

Lastly, the SmurfCat system (Rykov et al.,
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2025) offers an interesting perspective on external
knowledge incorporation: Rykov et al. constructed
a synthetic dataset derived from Wikipedia, viz.
PsiloQA, so as to finetune LLMs for hallucination
span detection. They further refine their models’
raw predictions using white-box techniques derived
from uncertainty quantification, a perspective also
explored, e.g., by MALTO (Savelli et al., 2025).

The variety of approaches deployed by the par-
ticipating teams is a clear indicator of the potential
for future improvements.

6 Rainbow Road Completed: Results

We include an overview of the highest scoring sys-
tems from each team per language in Figure 3. In
the interest of space, we defer tables of ranking to
Appendix C. Most teams outperformed the base-
lines. The mark-none and neural baselines rank
extremely low, both in terms of IoU and ρ. The
mark-all baseline performs better in terms IoU, but
remains far below the top teams, highlighting the
need for more sophisticated strategies.

The most consistent top performers coinciden-
tally made submissions to all 14 languages.8

UCSC (Huang et al., 2025b) appears in the top 3
teams for 11 languages, securing 5 wins (CA, DE,
FI, IT, SV) and 5 second-place finishes (CS, EN,
EU, FA, HI). Their systems demonstrate a stable
IoU-to-ρ ratio mean(IoU/ρ)= 1.01. MSA (Hikal
et al., 2025) ranks in the top 3 for 8 languages,
winning in 2 (AR, EU) and securing second place
in 3 others (DE, FI, SV) and mean(IoU/ρ)= 1.03.
AILS-NTUA (Karkani et al., 2025) performs well
across multiple languages, winning in 2 (CS, FA),
but showing a less balanced performance between
the two metrics: mean(IoU/ρ)= 0.93. CCNU (Liu
and Chen, 2025) ranks first in HI and appears in the
top-5 in 9 languages with mean(IoU/ρ)= 0.93. De-
loitte (Chandler et al., 2025) ranks first in FR and
places the top-5 in 3 languages. SmurfCat (Rykov
et al., 2025) consistently ranks in the top-5 across
7 languages and never falls out of the top-10. AT-
LANTIS (Kobus et al., 2025) participated in 4 lan-
guages and won the 1st place in ES. However, their
ρ scores are near zero in three of their languages,
including ES and EN, where they placed 1st and
3rd, respectively. Due to this imbalance, we report
the inverse ratio: mean(ρ/IoU)= 0.2. iai_MSU
(Pukemo et al., 2025) competed only in EN, where

8Note that we generally do not find evidence that rank
differences are statistically significant, cf. Appendix C.
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Figure 3: Overview of the performance by the best
systems from each team in each language.
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it secured the 1st place with a system that per-
forms well in both metrics: mean(IoU/ρ)= 1.03.
YNU-HPCC (Chen et al., 2025) participated in ZH
and EN, placing 1st and 15th, respectively. While
strong in IoU, its systems struggle in ρ, particularly
for ZH, resulting in a mean(IoU/ρ) = 1.38.

Table 4 presents the average performance of sys-
tems across languages, highlighting the difficulty
differences across languages. We compute the
mean IoU and ρ across all teams (excluding base-
lines) for each language and rank them accordingly
based on the average IoU. IT and HI emerge as the
highest-ranked languages, with both high IoU and
ρ, suggesting that systems perform well in both pre-
cision and ranking reliability. Conversely, ES, ZH,

Rank Lang IoU ρ̄
Top team

Name IoU ρ

1 IT 0.51 0.46 UCSC 0.78 0.78
2 HI 0.50 0.52 ccnu 0.74 0.78
3 CA 0.49 0.53 UCSC 0.72 0.77
4 FI 0.48 0.39 UCSC 0.64 0.64
5 DE 0.44 0.41 UCSC 0.62 0.65
6 FR 0.44 0.36 Deloitte 0.64 0.61
7 EU 0.44 0.40 MSA 0.61 0.62
8 SV 0.43 0.29 UCSC 0.64 0.52
9 FA 0.43 0.43 AILSNTUA 0.71 0.69
10 AR 0.42 0.40 MSA 0.66 0.64
11 EN 0.40 0.37 iai_MSU 0.65 0.62
12 ZH 0.37 0.27 YNU-HPCC 0.55 0.35
13 CS 0.37 0.37 AILSNTUA 0.54 0.55
14 ES 0.31 0.33 ATLANTIS 0.53 0.01

Table 4: Ranking of the languages based on the mean
IoU (IoU), presenting also the mean ρ (ρ̄) and the top
performing team with their scores.

and CS rank lowest, with ES standing out due to its
top-performing system achieving an almost zero ρ.
This suggests that certain languages pose greater
challenges for models, potentially due to dataset
properties, linguistic complexity, or limitations in
training data. However, as shown in Table 5, while
the most challenging languages tend to have lower
ρ̄ values, the overall rankings indicate that these
datasets are not unreliable.

Figure 4 further illustrates team performance by
scatter-plotting IoU against ρ for teams competing
in the top two and bottom two languages from Ta-
ble 4. Most high-performing teams (circled in red)
cluster in the top-right corner, exhibiting strong
results for both metrics, while lower-ranked teams
are spread towards the bottom-left. While only a
subset of languages is displayed for clarity, we ob-
serve similar trends across the full dataset. Notably,
IoU scores tend to be higher than ρ, as indicated by
the majority of points falling below the red dotted

0.0 0.2 0.4 0.6 0.8
IoU Score

0.2

0.0

0.2

0.4

0.6

0.8

 S
co

re

Team Performance: IoU vs. 

IT
HI
ZH
ES
Baselines
Top-3 teams
f(x) = x

Figure 4: Scatter plot of IoU versus ρ scores for all
participating teams in the top two and bottom two per-
forming languages, ranked by average IoU scores.

line. This highlights the importance of considering
ρ for evaluating ranking consistency.

Some teams show high ρ but low IoU, suggest-
ing they are good at ranking hallucinations but
struggle with binary classification. An example

Lang ρ̄ σρ Min (ρ) Max (ρ)

IT 0.47 0.28 −0.21 0.82
HI 0.53 0.21 0.00 0.78

ES 0.34 0.21 −0.10 0.60
CS 0.38 0.14 0.09 0.58
ZH 0.28 0.16 −0.02 0.52

Table 5: The mean (ρ̄), standard deviation (σρ), maxi-
mum and minimum ρ values for the top-2 (IT, HI) and
the worse 3 languages: ES, CS, ZH.

from the table is HausaNLP (Bala et al., 2025;
EN: ρ = 0.42, IoU= 0.03), with highly correlated
predictions but almost no correct identifications.
When the gap between IoU and ρ is small — for
teams like UCSC and AILSNTUA — shows the
reliability of both metrics not just in raw intersec-
tion but in their robustness in ranking, implying
that high IoU does not always correlate with high
ρ. A big gap in these two metrics when ρ ≪ IoU,
as we observe for ATLANTIS, indicates that the
models are good at making binary decisions but
poor at ranking how hallucinated a character is
compared to others. Conversely, we observed for
teams with IoU ≪ ρ that their models can rank
characters well in terms of hallucination but fail
in making the correct binary selections. For in-
stance, HausaNLP shows an extremely low IoU
despite a decent ρ, meaning its predictions are cor-
related but far from accurate. Other trends we ob-
serve from the general ranking are: TrustAI and
Swushroomsia (Mitrović et al., 2025) present con-
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sistent gaps between IoU and ρ in the same ball-
park as ρ = 0.54, IoU= 0.28; DeepPavlov per-
forms well in CA and EN (ρ = 0.67, IoU= 0.41;
ρ = 0.61, IoU= 0.44) but has significantly lower
IoU in ES (ρ = 0.42, IoU= 0.21), indicating
poor precision; and NLP_CIMAT (Stack-Sánchez
et al., 2025) show highly inconsistent performance
across languages (ES: ρ = 0.54, IoU= 0.47; FI:
ρ = 0.04, IoU= 0.37; AR: ρ = 0.09, IoU= 0.14).

7 1-UP! Discussion

In order to deepen our understanding of the factors
relevant to the success of participating teams within
our shared task, we now turn to an analysis of meta-
data collected during the shared task. Participants
were asked to fill in a form to describe how their
systems worked and what type of resources they
used.9 The trends we discuss below are therefore
based on self-reporting. We z-normalize perfor-
mance per language before analysis so as to factor
out the varying intrinsic difficulty of the different
language datasets.

A first obvious trend in our results is that 36.98%
of the submissions are reported as prompt-based.
The IoU scores of prompt-based submissions are
not statistically distinct from the IoU scores of
other submissions, but we do find a statistical
difference for ρ scores, which are usually lower
than in other submissions (Mann-Whitney U test:
p-value < 0.002, common language effect size:
f = 45.96%). This echoes findings in the pre-
vious iteration of the shared task (Mickus et al.,
2024), which pointed out that fine-tuning based
approaches were usually more successful on hallu-
cination detection.

Even more prominent is the use of RAG: 52.60%
of the submissions report using RAG, and are
assigned statistically higher IoU scores (Mann-
Whitney U, p-value < 10−59, f = 69.80%) and
ρ scores (p-value < 10−39, f = 66.16%). On a
related note, if we focus on the data used by partic-
ipants, we find that 34.88% of submissions which
primarily used the data we provided tend to have
lower IoU (Mann-Whitney U, p-value < 10−21,
f = 37.60%) and ρ scores (p-value < 10−22,
f = 37.28%). The preponderance of retrieval-
based approaches and their noteworthy success

9We manually excluded partially filled responses. Meta-
data was collected for each submission rather than for each
system, i.e., a system may correspond to multiple submissions
(e.g., when the system has multilingual capabilities, or when
participants tested multiple hyperparametrizations).

Model % subs IoU ρ
family p-val. f (%) p-val. f (%)

BERT 12.12 < 10−4 42.47 0.09 —
Claude 3.02 < 10−5 65.87 < 10−14 78.23
DeepSeek 2.32 < 10−11 77.87 < 10−13 80.15
Flan-T5 5.78 < 10−18 26.61 < 10−13 30.28
GPT 16.02 < 10−7 59.11 < 10−2 55.07
Llama 12.34 < 10−15 35.17 < 10−29 29.08
Qwen 18.03 < 10−16 63.06 < 10−21 65.27
XLM-R 10.33 0.01 44.96 < 10−2 44.35

Table 6: Overview of main PLM families used by par-
ticipating teams, proportion of relevant submissions,
and their effects on scores (Mann-Whitney U tests com-
paring the scores of submissions using PLMs of the
given model family vs. other submissions, along with
common-language effect size f where significant).

along with the limited performance of submissions
relying mainly on the provided data, both showcase
that one of the key challenges of the task is finding
appropriate references for assessing LLM outputs.

Another factor of interest is whether specific
PLMs stand out as more or less appropriate for the
task of detecting hallucinated spans. In Table 6, we
provide an overview of the PLMs most frequently
used by participants to tackle the shared task, along
with the results of U tests comparing scores as-
signed to submissions using this PLM vs. submis-
sions not relying on it. This allows us to get insights
regarding which PLMs tended to yield compara-
tively higher scores. Given the large number of
models, we group them by family, i.e., the GPT
family contains GPT-3, GPT-3.5, GPT-4 and other
variants, while some other families include multi-
lingual variants (e.g., Flan-T5 includes MT5). The
BERT family is used as a catch-all for large group
of language-specific models (e.g., CamemBERT),
and smaller encoder-based PLMs (e.g., ALBERT
or DeBERTa). Several submissions mentioned mul-
tiple PLMs and a handful mentioned using none.
For the sake of clarity, we do not include PLMs that
were only used in a small minority (<1%) of sub-
missions. Overall, we find that Llama-based, Flan-
T5 and BERT-based systems tended to perform less
well than other systems. The DeepSeek family ap-
pears to be highly competitive, as there is a 78%
chance that any DeepSeek-based submission will
outrank a randomly selected non-DeepSeek-based
submission. Here as well, ρ and IoU performances
appear roughly in line with one another.

The last factor we explore is related to our earlier
observations regarding inter-annotator agreement
(reported in Section 3, Table 1). We would expect
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Lang. IoU ρ
p-val. correl. p-val. correl.

AR < 10−323 0.24 < 10−323 0.24
CA < 10−207 0.26 < 10−60 0.14
CS < 10−156 0.22 < 10−56 0.13
DE < 10−323 0.25 < 10−131 0.15
EN < 10−323 0.26 < 10−138 0.10
ES < 10−323 0.35 < 10−323 0.27
EU < 10−281 0.30 < 10−92 0.17
FA < 10−115 0.20 < 10−99 0.18
FI < 10−323 0.26 < 10−141 0.16
FR < 10−296 0.21 < 10−16 0.05
HI < 10−246 0.23 < 10−77 0.13
IT < 10−168 0.16 < 10−167 0.16
SV < 10−179 0.19 < 10−8 0.04
ZH < 10−323 0.37 < 10−10 0.04

Table 7: Spearman correlation of inter-annotator agree-
ment (Equation (1)) vs. datapoint-level scores.

different levels of inter-annotator agreement across
languages to impact performance. This line of
thought should also apply at the datapoint level:
Items where annotations are less consensual, as
per Equation (1), might lead to lower scores. We
explicitly evaluate this by computing the Spearman
correlation between the inter-annotator agreement
metric and the scores assigned to a given datapoint.
The results are summarized in Table 7. We observe
low to moderate correlations across all setups. In
other words, while annotator agreement rates do
impact the success of a model, other factors of
variation still play an important role.

8 The Princess is in another article:
Conclusions

The Mu-SHROOM multilingual shared-task was
an overall success. We received 2,618 submis-
sions from 43 teams, including a handful of par-
ticipants from the first iteration of the SHROOM
shared task. Whilst the level of participation varied
by language, over 20 teams competed in each of
the 14 languages. Participating teams deployed a
vast array of methodologies, ranging from QA– or
NER–based pretraining to synthetic data generation
and RAG approaches, which will serve as starting
points for future research. We also observed a high
number of student-lead teams. One of the goals of
the shared task is to lower the barrier to entry to cur-
rent challenges in NLP, hence we take the interest
of students as a further indicator of success.

Beyond these participation numbers, the data col-
lected for Mu-SHROOM also allowed us to high-
light a number of often-overlooked points in the
literature. The prevalence and severity of halluci-

nated outputs varies across languages (see Table 2);
for some languages, we in fact observe fluency to
be a more pressing challenge for LLMs than fac-
tuality. The metadata collected from participants’
submissions (see Section 7) also allowed us to high-
light some of the challenges underpinning halluci-
nation detection. The ability to retrieve accurate
references matters, but so do the base pretrained
LM used by participants and (to a lesser extent) the
agreement rates of annotators. Regarding this lat-
ter point, it is worth stressing that we find genuine
disagreement among our annotators as to where a
hallucination begins and ends.

If Mu-SHROOM has allowed us to establish the
importance of multilingual data for hallucination
detection, much remains to be done in order to
fully assess LLM technologies’ tendency to pro-
duce non-factual information. One other aspect
we have left outside the scope of this shared task
is that of mitigating hallucinations, a step that is
however necessary and complementary to our en-
deavors. We have constructed the present shared
task as a means to draw the attention of the commu-
nity towards some challenges tied to hallucination
detection — and attention is indeed needed, given
that even top-scoring teams do not detect 20% or
more of the hallucination spans.

The Boo’s we avoid: Limitations and
Ethical considerations

We strive to uphold the principles outlined in the
ACL Code of Ethics.

Terminology. One important limitation of our
work is the terminology surrounding hallucinations
in AI-generated text. Hicks et al. (2024) argue that
this metaphor can be misleading, implying that AI
models perceive information incorrectly rather than
simply generating outputs based on probabilistic
patterns without any underlying understanding or
intent. This framing may contribute to misconcep-
tions among policymakers, investors, and the gen-
eral public, shaping unrealistic expectations about
AI systems’ capabilities and failures. While we use
the term hallucination in this work due to its estab-
lished presence in the literature, we acknowledge
its limitations and the broader implications of lan-
guage in shaping discussions around AI reliability.

Broader Impact. Hallucinated outputs from
large language models pose a significant risk, as
they can be exploited to propagate disinformation
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and reinforce misleading narratives. Detecting such
outputs is a critical step toward understanding the
underlying causes of this phenomenon and con-
tributing to ongoing efforts to mitigate hallucina-
tions. By addressing this challenge, we aim to
support the development of more reliable and trust-
worthy generative language models.

Data and Annotators. The dataset we release
may contain false or misleading statements, reflect-
ing the nature of the task. While annotated portions
of the data are explicitly labeled as such, unanno-
tated portions may include unverified or inaccurate
content. To ensure a respectful and safe annotation
process, we manually pre-filtered the data provided
to annotators, removing profanities and other ob-
jectionable material. However, the unannotated
portion of the dataset has not undergone the same
level of scrutiny and may include offensive, ob-
scene, or otherwise inappropriate content.
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A The super Mu-SHROOM party
jamboree: Organizers’ roles

Our long line of mushroom friendly people behind
this edition of the SHROOM Shared task are as
follows:
Raúl Vázquez: Grant application writing & ac-
counting, Spanish data creation & selection, dat-
apoint creation guidelines, annotation guidelines,
annotator recruitment & briefing sessions, anno-
tator training, advertisement, overall leadership,
paper writing, reviewing process.
Timothee Mickus: Websites development, French
validation data creation & selection, English data
creation & selection, German data creation, data-
point creation guidelines, annotation guidelines, an-
notator recruitment & briefing sessions, data analy-
sis, advertisement, overall leadership, paper writ-
ing, reviewing process.
Elaine Zosa: Baseline system development.
Teemu Vahtola: Finnish data creation & selection.
Jörg Tiedemann: German data selection, adver-
tisement.
Aman Sinha: Hindi data creation & selection, ad-
vertisement, annotator recruitment, reviewing pro-
cess.
Vincent Segonne: French test data creation & se-
lection.
Fernando Sánchez-Vega: Spanish data annotator
recruitment, advertisement.
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Alessandro Raganato: Italian & Farsi data cre-
ation & selection, annotation guidelines, annotator
recruitment, advertisement.
Jindřich Libovický: Czech data creation & selec-
tion, data analysis.
Jussi Karlgren: Swedish data creation & selection.
Shaoxiong Ji: Chinese data creation & selection,
advertisement, reviewing process.
Jindřich Helcl: Czech data creation & selection,
data analysis.
Liane Guillou: English data selection, lead role for
annotation guidelines development, paper writing.
Ona de Gibert: Catalan data creation & selection,
advertisement, reviewing process.
Jaione Bengoetxea: Basque data creation & selec-
tion, advertisement.
Joseph Attieh: Arabic data creation & selection,
advertisement.
Marianna Apidianaki: Annotator recruitment, pa-
per writing.

B The map of the Mu-SHROOM
kingdom: Supplementary information
on dataset creation

B.1 Dataset details

In Table 8, we provide an overview of the mod-
els used for every language in the shared task.
There are a total of 38 different LLMs, all available
through the HuggingFace platform.10 In practice, a
number of these models correspond to variants of
the same base model or family, including language-
specific fine-tuned versions, incremental releases,
or models with different parameter counts from the
same model family. It is worth stressing that the
models themselves are not balanced: for instance,
over 85% of the Hindi test set correspond to a sin-
gle model (viz. nickmalhotra/ProjectIndus).

B.2 Annotation guidelines

In Figures 5 and 6, we provide an exact copy of the
annotation guidelines and the illustrative example
given to the annotators. These guidelines are based
on five of the organizers’ experience of annotat-
ing the trial set, and were provided to annotators
recruited for the validation and test splits. For all
languages except EN and ZH, we also organized
a briefing session for annotators so as to ensure
the guidelines were properly understood and that
participants were aware of existing communication

10huggingface.co

channels through which they could ask for clarifi-
cations.

B.3 Datapoint creation guidelines
In Figure 7, we provide an exact copy of the anno-
tation guidelines given to the organizers in charge
of each language.

B.4 Departures from the general guidelines
In practice, some ad-hoc modifications to the data
creation process were adopted, depending on the
challenges intrinsic to individual languages. We
list the exceptions to these rules for each language
below, and the available means for annotation:

• CS: The Czech split was built from Wikipedia
pages with no equivalent in other languages.

• EN: The dataset was annotated with a large
pool of annotators that individually annotated
about 20 datapoints. In total, some datapoints
were annotated by up to 12 annotators.

• ES: The test split was annotated by 6 anno-
tators; the first release of the validation split
contained only 3 annotations, which was in-
creased to 6 in the final data released.

• SV: Due to replicability concerns, a handful
of datapoints were removed. One of the SV
models is not instruction-tuned.

• ZH: The dataset was annotated with a large
pool of annotators that individually annotated
about 20 datapoints. In total, some datapoints
were annotated by up to 6 annotators. A sub-
set of items correspond to the same questions,
with answers from different LLMs (or differ-
ent settings).
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Lang. HF identifier Publication N. val. N. test

AR
SeaLLMs/SeaLLM-7B-v2.5 Nguyen et al. (2023) 17 86
arcee-ai/Arcee-Spark — 12 13
openchat/openchat-3.5-0106-gemma Wang et al. (2023) 21 51

CA
meta-llama/Meta-Llama-3-8B-Instruct Grattafiori et al. (2024) — 27
mistralai/Mistral-7B-Instruct-v0.3 — — 34
occiglot/occiglot-7b-es-en-instruct — — 39

CS
meta-llama/Meta-Llama-3-8B-Instruct Grattafiori et al. (2024) — 56
mistralai/Mistral-7B-Instruct-v0.3 — — 44

DE
TheBloke/SauerkrautLM-7B-v1-GGUF — 7 28
malteos/bloom-6b4-clp-german-oasst-v0.1 Ostendorff and Rehm (2023) 27 75
occiglot/occiglot-7b-de-en-instruct — 16 47

EN
TheBloke/Mistral-7B-Instruct-v0.2-GGUF — 19 53
tiiuae/falcon-7b-instruct Almazrouei et al. (2023) 15 47
togethercomputer/Pythia-Chat-Base-7B — 16 54

ES
Iker/Llama-3-Instruct-Neurona-8b-v2 — 12 45
Qwen/Qwen2-7B-Instruct Yang et al. (2024) 18 62
meta-llama/Meta-Llama-3-8B-Instruct Grattafiori et al. (2024) 20 45

EU
google/gemma-7b-it — — 23
meta-llama/Meta-Llama-3-8B-Instruct Grattafiori et al. (2024) — 76

FA

CohereForAI/aya-23-35B Aryabumi et al. (2024) — 10
CohereForAI/aya-23-8B Aryabumi et al. (2024) — 7
Qwen/Qwen2.5-7B-Instruct Yang et al. (2024) — 1
meta-llama/Llama-3.2-3B-Instruct — — 20
meta-llama/Meta-Llama-3.1-8B-Instruct Grattafiori et al. (2024) — 24
universitytehran/PersianMind-v1.0 Rostami et al. (2024) — 38

FI
Finnish-NLP/llama-7b-finnish-instruct-v0.2 — 25 84
LumiOpen/Poro-34B-chat Luukkonen et al. (2024) 25 66

FR

bofenghuang/vigogne-2-13b-chat — 15 35
croissantllm/CroissantLLMChat-v0.1 Faysse et al. (2024) 8 49
meta-llama/Meta-Llama-3.1-8B-Instruct Grattafiori et al. (2024) 8 10
mistralai/Mistral-Nemo-Instruct-2407 — 10 26
occiglot/occiglot-7b-eu5-instruct — 9 30

HI
meta-llama/Meta-Llama-3-8B-Instruct Grattafiori et al. (2024) 4 7
nickmalhotra/ProjectIndus (Malhotra et al., 2024) 44 128
sarvamai/OpenHathi-7B-Hi-v0.1-Base — 2 15

IT

Qwen/Qwen2-7B-Instruct Yang et al. (2024) 14 35
meta-llama/Meta-Llama-3.1-8B-Instruct Grattafiori et al. (2024) 6 11
rstless-research/DanteLLM-7B-Instruct-Italian-v0.1 — 2 14
sapienzanlp/modello-italia-9b — 28 90

SV
AI-Sweden-Models/gpt-sw3-6.7b-v2-instruct-gguf — 29 112
LumiOpen/Poro-34B-chat Luukkonen et al. (2024) 16 28
LumiOpen/Viking-33B — 4 7

ZH

01-ai/Yi-1.5-9B-Chat 01. AI et al. (2024) 8 24
Qwen/Qwen1.5-14B-Chat Bai et al. (2023) 10 27
THUDM/chatglm3-6b Team GLM et al. (2024) 0 1
baichuan-inc/Baichuan2-13B-Chat — 25 68
internlm/internlm2-chat-7b Cai et al. (2024) 7 30

Table 8: LLMs considered for each language. N. val.: corresponding number of datapoints in val; N. test:
corresponding number of datapoints in test.
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Mu-SHROOM Annotation Guidelines

Introduction
In this annotation project you will be shown a series of question-answer pairs plus a relevant Wikipedia article. The answer will
be a passage of text produced by a Large Language Model (LLM) in response to the question. You will be asked to identify,
with respect to the Wikipedia article: which tokens in the answer constitute the overgeneration or “hallucination”.

Annotation Guidelines

1. Carefully read the answer text.
2. Highlight each span of text in the answer text that is not supported by the information present in the Wikipedia article (i.e.

contains an overgeneration or hallucination). Your annotations should include only the minimum number of characters*
in the text that should be edited/deleted in order to provide a correct answer (*in the case of Chinese, these will be
“character components”). As a general “rule of thumb” you are encouraged to annotate conservatively and to focus on
content words rather than function words. Please note that this is not a strict guideline, and you should rely on your best
judgements when annotating examples.

• In the annotation platform: To highlight a span of one or more characters in the text, click on the first character and
drag the mouse to the last character - it will change to red text. To remove highlighting, click anywhere on the
highlighted red span - it will revert to black text.

3. If the answer text does not contain a hallucination, write “NO HALLUCINATION” in the comment box.
4. If you are unsure about how to annotate an example, write “UNSURE” in the comment box. Please only use this option

as a last resort.
5. Ensure that you double-check your annotations prior to moving to the next example. From the “See previous annotations”

link you can edit or delete previous annotations.

Note:

• You should not consult any other sources of information, e.g. web searches, other web pages, or your own knowledge.
Use only Wikipedia as your source.

• Ideally, the wikipedia entry provided should suffice for the annotation, however, you are allowed/encouraged to browse
other Wikipedia articles to verify information that is not contained in the provided article.

• If you do consult other Wikipedia articles, please add a comment to this effect and include links to the articles that
include information that informed your annotation.

• You are encouraged to leave comments where relevant e.g. if the annotation of an example is not straightforward, or if
there is anything else you wish to bring to our attention

• You are encouraged to review your annotations prior to finishing the task

Hallucination Definition
Hallucination: content that contains or describes facts that are not supported by the provided reference. In other words:
hallucinations are cases where the answer text is more specific than it should be, given the information available in the
Wikipedia page.

Content/Function Word Definition
Content words contribute to the meaning of the sentence in which they occur. Nouns (Barack Obama, cake, cat etc.), main
verbs (eat, run, think etc.), adjectives (small, red, angry etc.) and adverbs (quickly, loudly etc.) are usually content words.

Function words are structural and typically have very little substantive meaning. Auxiliary verbs (could, must, need, will etc.),
articles (a, an, the etc.), prepositions (in, out, under etc.), and conjunctions (and, but, till, as etc.) are usually function words.

Figure 5: Annotation guidelines: Instructions.
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Example

Question: During which centuries did William II of Angoulême live?
Answer: William II, also known as Guillaume II or "William the Good," was a French nobleman who lived from around 1099
to 1137. He was Count of Angoulême and Poitou from 1104 until his death in 1137. Therefore, William II lived during the
11th and 12th centuries.

Annotated Example
In the William II of Angoulême example, we find that the answer text contains information that is not present in the Wikipedia
article.

Question: During which centuries did William II of Angoulême live?
Answer: William II, also known as Guillaume II or "William the Good," was a French nobleman who lived from around 1099
to 1137. He was Count of Angoulême and Poitou from 1104 until his death in 1137. Therefore, William II lived during the
11th and 12th centuries.

We therefore annotate the example as follows:

William II , also known as Guillaume II or “ William the Good , ” was a French nobleman who lived from around 1099 to
1137 . He was Count of Angoulême and Poitou from 1104 until his death in 1137 . Therefore , William II lived during the
11th and 12th centuries .

(Explanation: in the text above, spans highlighted in bolded red text are overgenerations / hallucinations as the information that
they contain is not supported by the Wikipedia article)

Figure 6: Annotation guidelines: Illustrative example.
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Figure 7: Datapoint creation guidelines.
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C The Lost Levels: detailed rankings

C.1 Official IoU-based rankings
In Table 9, we provide detailed rankings across
all languages. We also include the probability
Pr(rank) of any given submission outranking the
submission one rank below, which we compute
through random permutation: We re-sample with
replacement the datapoints in both submissions
100 000 times, and then compute the proportion of
samples where the higher-ranking submission still
outperforms the lower-ranking submission, based
on IoU scores. For instance, team MSA (ranked
1st on Arabic) outranks team UCSC (ranked 2nd

on Arabic) in 65.24% of the random samples we
perform, suggesting that the advantage of team
MSA’s approach is in part contingent on the test
data. More broadly, this bootstrapping approach
reveals that the rankings are not stable — in most
case, we find the probability of a lower-ranking
submission outranking the next best submission
under resampling to be greater than 1−Pr > 0.05,
i.e., we find limited statistical evidence that per-
formances are significantly better within higher
ranked submissions.

Lang Team IoU ρ Pr(rank)

AR MSA 0.6700 0.6488 0.6524
AR UCSC 0.6594 0.6328 0.8339
AR SmurfCat 0.6274 0.5864 0.7528
AR Deloitte 0.6043 0.6046 0.5605
AR CCNU 0.5995 0.6583 0.7493
AR Team Cantharellus 0.5804 0.5886 0.6839
AR DeepPavlov 0.5628 0.5754 0.6908
AR BlueToad 0.5470 0.5058 0.5848
AR NCL-UoR 0.5390 0.5710 0.5292
AR HalluSearch 0.5362 0.5258 0.5341
AR LCTeam 0.5335 0.5537 0.6058
AR UZH 0.5253 0.4871 0.6804
AR AILS-NTUA 0.5140 0.5751 0.9473
AR TUM-MiKaNi 0.4778 0.5114 0.5395
AR nsu-ai 0.4756 0.4236 0.6333
AR tsotsalab 0.4673 0.4765 1.0000
AR REFIND 0.3743 0.1818 0.7772
AR keepitsimple 0.3631 0.2499 0.5420
AR Baseline (mark all) 0.3614 0.0067 0.7736
AR UMUTeam 0.3436 0.4211 0.5191
AR TrustAI 0.3428 0.2380 0.5724
AR CUET_SSTM 0.3413 0.2242 0.8613
AR Swushroomsia 0.3097 0.2874 0.8740
AR uir-cis 0.2722 0.4477 0.7168
AR TU Munich 0.2527 0.3200 0.9389
AR Howard University - AI4PC 0.2138 0.3844 0.6589
AR NLP_CIMAT 0.2044 0.0775 1.0000
AR HalluciSeekers 0.1180 0.0572 0.9504
AR Hallucination Detectives 0.0760 0.0275 0.9604
AR FENJI 0.0467 0.0067 0.0000
AR Baseline (mark none) 0.0467 0.0067 0.6335
AR Baseline (neural) 0.0418 0.1190

CA UCSC 0.7211 0.7779 0.9763
CA CCNU 0.6694 0.7479 0.5158
CA SmurfCat 0.6681 0.7127 0.5246
CA AILS-NTUA 0.6664 0.6986 0.5662
CA NCL-UoR 0.6602 0.7203 0.5531

(Continued from previous column)

Lang Team IoU ρ Pr(rank)

CA MSA 0.6545 0.7126 0.9598
CA TUM-MiKaNi 0.5971 0.5551 0.6188
CA UZH 0.5857 0.6420 0.9131
CA Deloitte 0.5295 0.5571 0.5684
CA Team Cantharellus 0.5231 0.5727 0.5149
CA HalluSearch 0.5215 0.5704 0.7249
CA LCTeam 0.4924 0.4917 0.6992
CA nsu-ai 0.4682 0.5346 0.5327
CA uir-cis 0.4644 0.5432 0.5359
CA tsotsalab 0.4607 0.5187 0.7431
CA UMUTeam 0.4301 0.4295 0.6018
CA DeepPavlov 0.4179 0.6742 1.0000
CA keepitsimple 0.3161 0.3377 0.9524
CA Howard University - AI4PC 0.2731 0.3749 0.9220
CA Baseline (mark all) 0.2423 0.0600 0.9385
CA FENJI 0.1796 0.0600 0.8567
CA NLP_CIMAT 0.1410 0.0690 0.9614
CA Baseline (mark none) 0.0800 0.0600 0.9523
CA Baseline (neural) 0.0524 0.0645

CS AILS-NTUA 0.5429 0.5560 0.5468
CS UCSC 0.5393 0.5763 0.9177
CS MSA 0.5073 0.5516 0.6934
CS HalluSearch 0.4911 0.4942 0.5633
CS CCNU 0.4852 0.5541 0.7415
CS SmurfCat 0.4608 0.4676 0.7554
CS Deloitte 0.4428 0.4808 0.5248
CS NCL-UoR 0.4409 0.5285 0.8016
CS LCTeam 0.4051 0.4357 0.6666
CS Team Cantharellus 0.3936 0.4239 0.5111
CS UZH 0.3931 0.4098 0.5595
CS TUM-MiKaNi 0.3874 0.3738 0.7537
CS tsotsalab 0.3613 0.3668 0.6218
CS BlueToad 0.3514 0.3628 0.6707
CS DeepPavlov 0.3422 0.3192 0.5628
CS UMUTeam 0.3380 0.3600 0.7693
CS uir-cis 0.3060 0.2695 0.5014
CS nsu-ai 0.3051 0.2948 0.6184
CS Howard University - AI4PC 0.2978 0.3066 0.6098
CS keepitsimple 0.2895 0.2423 0.9132
CS REFIND 0.2761 0.0924 0.9998
CS Baseline (mark all) 0.2632 0.1000 0.9056
CS NLP_CIMAT 0.2201 0.1450 0.9962
CS Baseline (mark none) 0.1300 0.1000 0.7318
CS FENJI 0.1073 0.1000 0.6631
CS Baseline (neural) 0.0957 0.0533

DE UCSC 0.6236 0.6507 0.6539
DE MSA 0.6133 0.6107 0.7561
DE CCNU 0.5917 0.6089 0.6607
DE AILS-NTUA 0.5820 0.6367 0.5643
DE ATLANTIS 0.5774 0.0133 0.6602
DE Deloitte 0.5655 0.5493 0.5232
DE Team Cantharellus 0.5639 0.5361 0.5091
DE LCTeam 0.5634 0.5031 0.5355
DE SmurfCat 0.5608 0.5721 0.5489
DE TUM-MiKaNi 0.5569 0.5088 0.6174
DE NCL-UoR 0.5473 0.5860 0.5351
DE BlueToad 0.5439 0.5243 0.7899
DE HalluSearch 0.5187 0.5056 0.5959
DE UZH 0.5123 0.5028 0.5426
DE Swushroomsia 0.5093 0.4914 0.5644
DE DeepPavlov 0.5040 0.6126 0.8116
DE nsu-ai 0.4841 0.4584 0.9939
DE UMUTeam 0.4093 0.4403 0.6649
DE tsotsalab 0.3969 0.3614 0.6207
DE REFIND 0.3862 0.3530 0.7106
DE keepitsimple 0.3651 0.2199 0.8853
DE TU Munich 0.3476 -0.0059 0.9854
DE Baseline (mark all) 0.3451 0.0133 0.5550
DE uir-cis 0.3400 0.4066 0.5767
DE TrustAI 0.3323 0.5121 0.9964
DE Howard University - AI4PC 0.2522 0.2764 0.9986
DE FENJI 0.1624 0.0133 1.0000
DE HalluciSeekers 0.0573 0.0440 0.9901
DE Baseline (neural) 0.0318 0.1073 1.0000
DE Baseline (mark none) 0.0267 0.0133 0.0000
DE S1mT5v-FMI 0.0267 0.0109

EN iai_MSU 0.6509 0.6294 0.9665
EN UCSC 0.6146 0.5461 0.9625
EN ATLANTIS 0.5698 0.0000 0.5621
EN HalluSearch 0.5656 0.5360 0.8407
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(Continued from previous column)

Lang Team IoU ρ Pr(rank)

EN CCNU 0.5394 0.5509 0.6083
EN MSA 0.5314 0.5200 0.5070
EN AILS-NTUA 0.5308 0.6381 0.5924
EN TUM-MiKaNi 0.5249 0.5363 0.5124
EN SmurfCat 0.5241 0.5963 0.5104
EN Deloitte 0.5234 0.5608 0.5569
EN NCL-UoR 0.5195 0.5477 0.7152
EN Swushroomsia 0.5030 0.4632 0.5547
EN DeepPavlov 0.4989 0.6021 0.6875
EN UZH 0.4850 0.4824 0.5656
EN YNU-HPCC 0.4807 0.4075 0.6000
EN LCTeam 0.4725 0.5538 0.5108
EN Team Cantharellus 0.4721 0.4613 0.5451
EN BlueToad 0.4688 0.4509 0.6230
EN GIL-IIMAS UNAM 0.4607 0.5015 0.5468
EN NLP_CIMAT 0.4577 0.3707 0.6814
EN tsotsalab 0.4454 0.3946 0.5206
EN advacheck 0.4443 0.3432 0.5063
EN nsu-ai 0.4436 0.4578 0.8966
EN uir-cis 0.4025 0.4781 0.7260
EN VerbaNexAI 0.3810 0.3643 0.6902
EN UMUTeam 0.3667 0.4966 0.5090
EN keepitsimple 0.3660 0.2104 0.5712
EN TU Munich 0.3646 0.2164 0.9208
EN REFIND 0.3525 0.1082 0.9991
EN Baseline (mark all) 0.3489 0.0000 0.7490
EN MALTO 0.3269 0.3104 0.6742
EN RaggedyFive 0.3151 0.3038 0.5591
EN COGUMELO 0.3107 0.2277 0.5233
EN HalluRAG-RUG 0.3093 0.0833 0.6466
EN TrustAI 0.2980 0.5642 0.5582
EN FunghiFunghi 0.2943 0.0116 0.9975
EN Hallucination Detectives 0.2142 0.1682 0.8576
EN FENJI 0.1856 0.0000 0.9790
EN Howard University - AI4PC 0.1325 0.2752 1.0000
EN DUTJBD 0.0571 -0.1883 0.5740
EN HalluciSeekers 0.0542 0.1530 1.0000
EN HausaNLP 0.0325 0.4226 0.0000
EN Baseline (mark none) 0.0325 0.0000 0.5153
EN Baseline (neural) 0.0310 0.1190

ES ATLANTIS 0.5311 0.0132 0.6503
ES NLP_CIMAT 0.5209 0.5237 0.5948
ES NCL-UoR 0.5146 0.5464 0.5271
ES CCNU 0.5125 0.5415 0.6663
ES AILS-NTUA 0.5004 0.5648 0.7948
ES UCSC 0.4794 0.6023 0.8980
ES LCTeam 0.4434 0.4335 0.6173
ES SmurfCat 0.4342 0.4406 0.7016
ES MSA 0.4162 0.5450 0.6848
ES Deloitte 0.4065 0.5853 0.5258
ES UZH 0.4051 0.5085 0.7683
ES HalluSearch 0.3883 0.4456 0.5202
ES Team Cantharellus 0.3869 0.4236 0.6723
ES TUM-MiKaNi 0.3739 0.5027 0.8242
ES uir-cis 0.3447 0.3104 0.9255
ES UMUTeam 0.2980 0.4152 0.6798
ES nsu-ai 0.2854 0.3966 0.6198
ES GIL-IIMAS UNAM 0.2807 0.3243 0.5467
ES BlueToad 0.2787 0.4267 0.6647
ES TrustAI 0.2683 0.4983 0.6320
ES DeepPavlov 0.2614 0.3989 0.5866
ES TU Munich 0.2578 0.3229 0.6731
ES Swushroomsia 0.2466 0.2480 0.6459
ES REFIND 0.2348 0.1308 0.7627
ES keepitsimple 0.2131 0.2335 1.0000
ES Baseline (mark all) 0.1853 0.0132 0.0000
ES tsotsalab 0.1853 0.0132 0.9626
ES FunghiFunghi 0.1616 -0.0986 0.9017
ES Howard University - AI4PC 0.1341 0.3643 0.5256
ES FENJI 0.1325 0.0132 0.5085
ES COGUMELO 0.1321 0.1013 0.9591
ES Baseline (mark none) 0.0855 0.0132 0.0000
ES S1mT5v-FMI 0.0855 0.0132 0.8743
ES Baseline (neural) 0.0724 0.0359 0.8347
ES HalluciSeekers 0.0519 0.0266

EU MSA 0.6129 0.6202 0.8451
EU UCSC 0.5894 0.5826 0.6768
EU CCNU 0.5784 0.6121 0.8086
EU AILS-NTUA 0.5550 0.5805 0.7108
EU Team Cantharellus 0.5339 0.5038 0.5998

(Continued from previous column)

Lang Team IoU ρ Pr(rank)

EU HalluSearch 0.5251 0.4789 0.5244
EU TUM-MiKaNi 0.5237 0.4709 0.5369
EU Deloitte 0.5218 0.5157 0.5307
EU SmurfCat 0.5195 0.4697 0.5919
EU NCL-UoR 0.5105 0.5974 0.5382
EU UZH 0.5071 0.5108 0.5180
EU BlueToad 0.5061 0.4571 0.7607
EU LCTeam 0.4804 0.5499 0.8401
EU nsu-ai 0.4368 0.4210 0.6977
EU keepitsimple 0.4193 0.3525 0.7503
EU REFIND 0.4074 0.2713 0.7908
EU DeepPavlov 0.3872 0.3214 0.7855
EU Baseline (mark all) 0.3671 0.0000 0.8667
EU tsotsalab 0.3524 0.0000 0.8191
EU UMUTeam 0.3272 0.3925 0.8306
EU uir-cis 0.2916 0.3989 0.8698
EU Howard University - AI4PC 0.2461 0.1707 0.9953
EU NLP_CIMAT 0.1755 0.0522 0.9316
EU FENJI 0.1326 0.0000 1.0000
EU Baseline (neural) 0.0208 0.1004 1.0000
EU Baseline (mark none) 0.0101 0.0000

FA AILS-NTUA 0.7110 0.6989 0.7241
FA UCSC 0.6949 0.6955 0.7695
FA MSA 0.6693 0.6795 0.5967
FA CCNU 0.6600 0.6710 0.5171
FA NCL-UoR 0.6586 0.6732 0.5360
FA Team Cantharellus 0.6551 0.6864 0.6600
FA SmurfCat 0.6375 0.6281 0.8067
FA LCTeam 0.6018 0.4559 0.7733
FA Deloitte 0.5754 0.5191 0.5473
FA BlueToad 0.5711 0.5788 0.7372
FA TUM-MiKaNi 0.5465 0.4238 0.8633
FA UZH 0.5108 0.4990 0.8789
FA UMUTeam 0.4677 0.3939 0.6963
FA HalluSearch 0.4443 0.4734 0.9583
FA nsu-ai 0.3729 0.3875 0.9510
FA keepitsimple 0.3132 0.3570 0.9975
FA DeepPavlov 0.2405 0.1859 0.9674
FA Baseline (mark all) 0.2028 0.0100 0.0000
FA tsotsalab 0.2028 0.0100 0.8532
FA uir-cis 0.1661 0.3946 0.9212
FA Howard University - AI4PC 0.1190 0.0661 0.6139
FA HalluciSeekers 0.1126 0.0744 1.0000
FA NLP_CIMAT 0.0316 0.3949 0.9998
FA FENJI 0.0028 0.0100 0.8569
FA Baseline (neural) 0.0001 0.1078 0.6366
FA Baseline (mark none) 0.0000 0.0100

FI UCSC 0.6483 0.6498 0.6351
FI MSA 0.6422 0.5467 0.7680
FI SmurfCat 0.6310 0.5535 0.5095
FI Deloitte 0.6307 0.6356 0.6110
FI TUM-MiKaNi 0.6267 0.5751 0.5588
FI AILS-NTUA 0.6235 0.6204 0.8142
FI UZH 0.6014 0.4736 0.7918
FI nsu-ai 0.5874 0.4922 0.5663
FI DeepPavlov 0.5845 0.4821 0.7057
FI Team Cantharellus 0.5714 0.5646 0.5360
FI BlueToad 0.5694 0.4906 0.5195
FI HalluSearch 0.5681 0.5297 0.9810
FI CCNU 0.5117 0.5631 0.5345
FI NCL-UoR 0.5096 0.4965 0.5489
FI REFIND 0.5061 0.1965 0.6705
FI Swushroomsia 0.4955 0.4298 0.6538
FI Baseline (mark all) 0.4857 0.0000 0.0000
FI tsotsalab 0.4857 0.0000 0.4983
FI TU Munich 0.4857 0.0032 0.9342
FI UMUTeam 0.4563 0.5126 0.5228
FI keepitsimple 0.4554 0.3323 0.9026
FI LCTeam 0.4221 0.5300 0.7620
FI Howard University - AI4PC 0.3996 0.3433 0.9081
FI NLP_CIMAT 0.3742 0.0310 1.0000
FI TrustAI 0.2955 0.1777 0.9709
FI uir-cis 0.2459 0.3366 1.0000
FI FENJI 0.0941 0.0000 1.0000
FI Baseline (neural) 0.0042 0.0924 1.0000
FI S1mT5v-FMI 0.0000 0.0014 0.0000
FI Baseline (mark none) 0.0000 0.0000

FR Deloitte 0.6469 0.6187 0.8473
FR TUM-MiKaNi 0.6314 0.5157 0.7031
FR MSA 0.6195 0.5553 0.8684
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(Continued from previous column)

Lang Team IoU ρ Pr(rank)

FR Swushroomsia 0.5937 0.5429 0.6097
FR UCSC 0.5868 0.5592 0.5470
FR SmurfCat 0.5838 0.5155 0.5186
FR DeepPavlov 0.5831 0.5440 0.5269
FR AILS-NTUA 0.5812 0.6103 0.5598
FR UZH 0.5765 0.4411 0.6858
FR LCTeam 0.5634 0.4883 0.9769
FR ATLANTIS 0.5190 0.4117 0.5157
FR nsu-ai 0.5181 0.4339 0.5555
FR Team Cantharellus 0.5147 0.5317 0.8106
FR tsotsalab 0.4896 0.4575 0.5975
FR CCNU 0.4823 0.5724 0.5911
FR REFIND 0.4734 0.0752 0.8088
FR keepitsimple 0.4651 0.2756 0.8789
FR TU Munich 0.4547 0.0096 1.0000
FR Baseline (mark all) 0.4543 0.0000 0.6780
FR BlueToad 0.4385 0.3797 0.5235
FR HalluSearch 0.4366 0.3365 0.8049
FR Howard University - AI4PC 0.4164 0.3990 0.6451
FR NCL-UoR 0.4058 0.4187 0.7890
FR TrustAI 0.3799 0.4992 0.9097
FR NLP_CIMAT 0.3533 0.0711 0.9046
FR UMUTeam 0.3200 0.4117 0.6506
FR FunghiFunghi 0.3095 -0.1521 0.9882
FR uir-cis 0.2286 0.2873 1.0000
FR FENJI 0.0844 0.0000 0.9765
FR HalluciSeekers 0.0500 0.0447 1.0000
FR Baseline (neural) 0.0022 0.0208 1.0000
FR Baseline (mark none) 0.0000 0.0000 0.0000
FR S1mT5v-FMI 0.0000 0.0000

HI CCNU 0.7466 0.7847 0.5416
HI UCSC 0.7441 0.7625 0.7904
HI AILS-NTUA 0.7259 0.7602 0.6522
HI SmurfCat 0.7164 0.5964 0.8993
HI MSA 0.6842 0.7252 0.7717
HI LCTeam 0.6601 0.5122 0.5380
HI Team Cantharellus 0.6572 0.6909 0.6528
HI BlueToad 0.6447 0.6844 0.5870
HI UZH 0.6377 0.6687 0.5820
HI Deloitte 0.6322 0.6391 0.5441
HI NCL-UoR 0.6286 0.6830 0.9337
HI TUM-MiKaNi 0.5835 0.4964 0.9574
HI HalluSearch 0.5265 0.5195 0.6682
HI DeepPavlov 0.5117 0.7320 0.9032
HI nsu-ai 0.4771 0.4438 0.7440
HI Swushroomsia 0.4534 0.4789 0.5208
HI UMUTeam 0.4510 0.4386 0.9989
HI keepitsimple 0.3598 0.3508 0.9376
HI TrustAI 0.3144 0.5050 0.9049
HI TU Munich 0.2807 0.3297 0.7051
HI Baseline (mark all) 0.2711 0.0000 0.0000
HI tsotsalab 0.2711 0.0000 0.7323
HI Howard University - AI4PC 0.2586 0.3217 1.0000
HI uir-cis 0.0613 0.5586 1.0000
HI Baseline (neural) 0.0029 0.1429 0.9999
HI FENJI 0.0000 0.0000 0.0000
HI Baseline (mark none) 0.0000 0.0000

IT UCSC 0.7872 0.7873 0.8312
IT AILS-NTUA 0.7660 0.8195 0.8213
IT SmurfCat 0.7478 0.6231 0.6926
IT MSA 0.7369 0.7568 0.6386
IT Swushroomsia 0.7274 0.7292 0.7451
IT NCL-UoR 0.7123 0.7614 0.6025
IT CCNU 0.7060 0.7441 0.5030
IT Deloitte 0.7059 0.6144 0.5933
IT LCTeam 0.7013 0.5487 0.6953
IT Team Cantharellus 0.6907 0.7118 0.5958
IT UZH 0.6833 0.7016 0.5643
IT TUM-MiKaNi 0.6787 0.5388 0.9468
IT BlueToad 0.6388 0.6675 0.9977
IT HalluSearch 0.5484 0.5604 0.7456
IT DeepPavlov 0.5280 0.5529 0.9992
IT UMUTeam 0.4413 0.4601 0.5250
IT nsu-ai 0.4396 0.4402 0.9502
IT keepitsimple 0.4009 0.3860 0.5463
IT uir-cis 0.3967 0.4991 0.9130
IT TrustAI 0.3441 0.2827 0.6926
IT TU Munich 0.3319 0.4210 0.5730
IT REFIND 0.3255 0.2423 0.8826
IT Baseline (mark all) 0.2826 0.0000 0.0000

(Continued from previous column)

Lang Team IoU ρ Pr(rank)

IT tsotsalab 0.2826 0.0000 0.5678
IT FENJI 0.2765 0.0000 0.6012
IT Howard University - AI4PC 0.2675 0.4021 0.9983
IT FunghiFunghi 0.2111 -0.2116 0.9084
IT NLP_CIMAT 0.1899 0.0456 1.0000
IT HalluciSeekers 0.0350 0.0242 0.9991
IT Baseline (neural) 0.0104 0.0800 1.0000
IT Baseline (mark none) 0.0000 0.0000

SV UCSC 0.6423 0.5204 0.6115
SV MSA 0.6364 0.4224 0.7683
SV Deloitte 0.6220 0.5374 0.5804
SV SmurfCat 0.6174 0.5007 0.7523
SV AILS-NTUA 0.6009 0.5622 0.6801
SV TUM-MiKaNi 0.5886 0.3930 0.5600
SV BlueToad 0.5854 0.4267 0.8365
SV HalluSearch 0.5622 0.4290 0.5161
SV UZH 0.5612 0.4125 0.6110
SV NCL-UoR 0.5547 0.4587 0.6021
SV nsu-ai 0.5478 0.3442 0.6642
SV DeepPavlov 0.5380 0.4147 0.5194
SV Baseline (mark all) 0.5373 0.0136 0.6366
SV TU Munich 0.5372 0.0054 0.8667
SV tsotsalab 0.5349 0.0136 0.7915
SV CCNU 0.5045 0.5058 0.9847
SV UMUTeam 0.4393 0.3936 0.7617
SV LCTeam 0.4183 0.3700 0.5270
SV FunghiFunghi 0.4156 -0.1177 0.7785
SV keepitsimple 0.3967 0.2170 0.9123
SV Swushroomsia 0.3549 0.2265 0.9004
SV uir-cis 0.3080 0.3655 0.9391
SV TrustAI 0.2484 0.2551 0.6641
SV NLP_CIMAT 0.2388 0.0547 1.0000
SV FENJI 0.1154 0.0136 0.5666
SV Howard University - AI4PC 0.1110 0.0669 0.9929
SV HalluciSeekers 0.0575 0.0856 0.9999
SV Baseline (neural) 0.0308 0.0968 1.0000
SV Baseline (mark none) 0.0204 0.0136 0.0000
SV S1mT5v-FMI 0.0204 0.0136

ZH YNU-HPCC 0.5540 0.3518 0.8353
ZH LCTeam 0.5232 0.5171 0.9948
ZH nsu-ai 0.4937 0.3813 0.6401
ZH DeepPavlov 0.4900 0.2529 0.9998
ZH SmurfCat 0.4842 0.2529 0.7478
ZH UZH 0.4790 0.1783 0.6436
ZH Baseline (mark all) 0.4772 0.0000 0.0000
ZH tsotsalab 0.4772 0.0000 0.5986
ZH TUM-MiKaNi 0.4735 0.4095 0.5653
ZH UCSC 0.4707 0.3966 0.5092
ZH keepitsimple 0.4703 0.1601 0.6149
ZH MSA 0.4631 0.4363 0.5659
ZH Deloitte 0.4600 0.2986 0.6281
ZH HalluSearch 0.4534 0.4232 0.8504
ZH TrustAI 0.4304 0.2503 0.8820
ZH Team Cantharellus 0.4011 0.4063 0.7328
ZH UMUTeam 0.3875 0.4916 0.5145
ZH AILS-NTUA 0.3866 0.4564 0.5588
ZH CCNU 0.3834 0.4042 0.8326
ZH NCL-UoR 0.3606 0.3540 0.9996
ZH BlueToad 0.2783 0.2262 0.9996
ZH TU Munich 0.2160 0.0769 0.5104
ZH Howard University - AI4PC 0.2152 0.1119 0.6256
ZH Swushroomsia 0.2054 0.0966 0.7185
ZH uir-cis 0.1913 0.3047 1.0000
ZH S1mT5v-FMI 0.0619 -0.0209 0.9913
ZH FENJI 0.0371 0.0000 0.9991
ZH Baseline (neural) 0.0236 0.0884 1.0000
ZH Baseline (mark none) 0.0200 0.0000

Table 9: Official rankings, all languages, all teams.
Column Pr(rank) tracks a bootstrapped probability of
a given team outranking the team one rank below.

C.2 Alternative ρ-based rankings

In Table 10, we provide alternative rankings of par-
ticipating teams based on their best ρ submission.
We also include the probability Pr(rank) of a ρ-
based ranking being stable, which as previously we

2494



compute through bootstrapping. Here again, we
find that stable rankings (where Pr(rank) > 0.95)
are the exception and not the norm.

One key observation to be stressed is that the
rankings are significantly impacted by the metric
we use.

Lang Team IoU ρ Pr(rank)

AR CCNU 0.6583 0.5995 0.5659
AR UCSC 0.6543 0.6059 0.5739
AR MSA 0.6488 0.6700 0.6721
AR Deloitte 0.6371 0.5870 0.9823
AR Team Cantharellus 0.5886 0.5804 0.5211
AR SmurfCat 0.5869 0.5545 0.5079
AR AILS-NTUA 0.5865 0.4967 0.6484
AR DeepPavlov 0.5754 0.5628 0.5620
AR NCL-UoR 0.5710 0.5390 0.7234
AR LCTeam 0.5537 0.5335 0.8243
AR TrustAI 0.5385 0.2843 0.6550
AR HalluSearch 0.5258 0.5362 0.6807
AR TUM-MiKaNi 0.5114 0.4778 0.5722
AR BlueToad 0.5058 0.5470 0.5395
AR UZH 0.5023 0.5029 0.7901
AR tsotsalab 0.4765 0.4673 0.8317
AR uir-cis 0.4477 0.2722 0.5060
AR CUET_SSTM 0.4472 0.0978 0.9110
AR nsu-ai 0.4236 0.4756 0.5476
AR UMUTEAM 0.4211 0.3436 0.8914
AR TU Munich 0.3973 0.1480 0.7806
AR Howard University - AI4PC 0.3844 0.2138 0.9984
AR Swushroomsia 0.2874 0.3097 0.8264
AR keepitsimple 0.2499 0.3631 0.9920
AR REFIND 0.1818 0.3737 0.9943
AR Baseline (neural) 0.1190 0.0418 0.7890
AR NLP_CIMAT 0.0969 0.1447 0.9276
AR HalluciSeekers 0.0572 0.1180 0.8036
AR Hallucination Detectives 0.0358 0.0755 0.9706
AR Baseline (mark all) 0.0067 0.3614 0.0000
AR FENJI 0.0067 0.0467 0.0000
AR Baseline (mark none) 0.0067 0.0467

CA UCSC 0.7844 0.6711 0.9340
CA CCNU 0.7479 0.6694 0.8359
CA NCL-UoR 0.7203 0.6602 0.5959
CA SmurfCat 0.7127 0.6681 0.4948
CA MSA 0.7126 0.6545 0.6662
CA AILS-NTUA 0.6986 0.6664 0.7767
CA DeepPavlov 0.6742 0.4179 0.8452
CA UZH 0.6420 0.5857 0.6978
CA Deloitte 0.6219 0.5032 0.9472
CA Team Cantharellus 0.5727 0.5231 0.5206
CA HalluSearch 0.5704 0.5215 0.6358
CA TUM-MiKaNi 0.5551 0.5971 0.6483
CA uir-cis 0.5432 0.4644 0.5808
CA nsu-ai 0.5346 0.4682 0.6384
CA tsotsalab 0.5187 0.4607 0.7913
CA LCTeam 0.4937 0.4441 1.0000
CA UMUTEAM 0.4295 0.4301 0.9859
CA Howard University - AI4PC 0.3749 0.2731 0.8240
CA keepitsimple 0.3377 0.3161 1.0000
CA NLP_CIMAT 0.0690 0.1410 0.5481
CA Baseline (neural) 0.0645 0.0524 0.5686
CA Baseline (mark all) 0.0600 0.2423 0.0000
CA FENJI 0.0600 0.1796 0.0000
CA Baseline (mark none) 0.0600 0.0800

CS UCSC 0.5993 0.5072 0.9486
CS AILS-NTUA 0.5560 0.5429 0.5223
CS CCNU 0.5541 0.4852 0.5290
CS MSA 0.5516 0.5073 0.6836
CS SmurfCat 0.5334 0.4510 0.5601
CS NCL-UoR 0.5285 0.4409 0.7306
CS Deloitte 0.5034 0.3740 0.5971
CS HalluSearch 0.4942 0.4911 0.8126
CS TUM-MiKaNi 0.4580 0.3853 0.8116
CS Team Cantharellus 0.4373 0.3823 0.5393
CS LCTeam 0.4357 0.4051 0.7623
CS UZH 0.4098 0.3931 0.8792
CS tsotsalab 0.3668 0.3613 0.5444

(Continued from previous column)

Lang Team IoU ρ Pr(rank)

CS BlueToad 0.3628 0.3514 0.5323
CS UMUTEAM 0.3600 0.3380 0.9570
CS DeepPavlov 0.3215 0.3405 0.7995
CS Howard University - AI4PC 0.3066 0.2978 0.7143
CS nsu-ai 0.2948 0.3051 0.8137
CS uir-cis 0.2695 0.3060 0.7710
CS keepitsimple 0.2423 0.2895 0.8684
CS REFIND 0.1861 0.2353 0.7297
CS NLP_CIMAT 0.1563 0.1821 0.9164
CS Baseline (mark all) 0.1000 0.2632 0.0000
CS Baseline (mark none) 0.1000 0.1300 0.0000
CS FENJI 0.1000 0.1073 0.9208
CS Baseline (neural) 0.0533 0.0957

DE UCSC 0.6588 0.6221 0.8679
DE AILS-NTUA 0.6367 0.5820 0.8566
DE Swushroomsia 0.6160 0.2911 0.5549
DE DeepPavlov 0.6126 0.5040 0.5318
DE MSA 0.6107 0.6133 0.5303
DE CCNU 0.6089 0.5917 0.5777
DE SmurfCat 0.6042 0.5050 0.7648
DE NCL-UoR 0.5860 0.5473 0.8942
DE Deloitte 0.5493 0.5655 0.7009
DE Team Cantharellus 0.5361 0.5639 0.6559
DE BlueToad 0.5243 0.5439 0.6927
DE TrustAI 0.5121 0.3323 0.5664
DE TUM-MiKaNi 0.5088 0.5569 0.5450
DE HalluSearch 0.5056 0.5187 0.5405
DE LCTeam 0.5031 0.5634 0.5028
DE UZH 0.5028 0.5123 0.9320
DE ATLANTIS 0.4607 0.5204 0.5533
DE nsu-ai 0.4584 0.4841 0.8390
DE UMUTEAM 0.4403 0.4093 0.8853
DE uir-cis 0.4066 0.3400 0.9112
DE tsotsalab 0.3614 0.3969 0.5914
DE REFIND 0.3530 0.3862 0.8035
DE TU Munich 0.3195 0.2704 0.9557
DE Howard University - AI4PC 0.2764 0.2522 0.9473
DE keepitsimple 0.2199 0.3651 0.9997
DE Baseline (neural) 0.1073 0.0318 0.9999
DE HalluciSeekers 0.0440 0.0573 0.9406
DE Baseline (mark all) 0.0133 0.3451 0.0000
DE FENJI 0.0133 0.1624 0.0000
DE Baseline (mark none) 0.0133 0.0267 0.8657
DE S1mT5v-FMI 0.0109 0.0267

EN Swushroomsia 0.6486 0.4769 0.5207
EN UCSC 0.6479 0.5686 0.6915
EN AILS-NTUA 0.6381 0.5308 0.6903
EN iai_MSU 0.6294 0.6509 0.8010
EN DeepPavlov 0.6116 0.4391 0.5101
EN SmurfCat 0.6116 0.5050 0.9324
EN Deloitte 0.5833 0.5114 0.7063
EN CCNU 0.5713 0.5177 0.6222
EN TrustAI 0.5642 0.2980 0.5822
EN LCTeam 0.5604 0.4590 0.8283
EN TUM-MiKaNi 0.5506 0.3385 0.5496
EN NCL-UoR 0.5477 0.5195 0.5497
EN HalluSearch 0.5444 0.5315 0.5956
EN MSA 0.5380 0.5066 0.6428
EN ATLANTIS 0.5287 0.5159 0.6456
EN UZH 0.5193 0.4699 0.7892
EN GIL-IIMAS UNAM 0.5015 0.4607 0.5927
EN UMUTEAM 0.4966 0.3667 0.7933
EN uir-cis 0.4781 0.4025 0.6825
EN Team Cantharellus 0.4668 0.4289 0.6325
EN nsu-ai 0.4578 0.4436 0.5961
EN BlueToad 0.4509 0.4688 0.7907
EN NLP_CIMAT 0.4255 0.4270 0.5462
EN HausaNLP 0.4226 0.0325 0.6726
EN tsotsalab 0.4109 0.3793 0.5395
EN YNU-HPCC 0.4075 0.4807 0.8106
EN TU Munich 0.3760 0.2089 0.6524
EN VerbaNexAI 0.3657 0.3634 0.7146
EN advacheck 0.3498 0.4440 0.9196
EN MALTO 0.3117 0.2993 0.6146
EN RaggedyFive 0.3038 0.3151 0.8209
EN Howard University - AI4PC 0.2752 0.1325 0.9526
EN COGUMELO 0.2277 0.3107 0.7029
EN keepitsimple 0.2104 0.3660 0.5525
EN REFIND 0.2058 0.2812 0.8422
EN Hallucination Detectives 0.1682 0.2142 0.6660
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(Continued from previous column)

Lang Team IoU ρ Pr(rank)

EN HalluciSeekers 0.1530 0.0542 0.9815
EN Baseline (neural) 0.1190 0.0310 0.9739
EN HalluRAG-RUG 0.0833 0.3093 0.9999
EN FunghiFunghi 0.0116 0.2943 0.7477
EN Baseline (mark all) 0.0000 0.3489 0.0000
EN FENJI 0.0000 0.1856 0.0000
EN Baseline (mark none) 0.0000 0.0325 1.0000
EN DUTJBD -0.1883 0.0571

ES UCSC 0.6193 0.4339 0.7162
ES AILS-NTUA 0.6068 0.4396 0.8777
ES Deloitte 0.5853 0.4065 0.8558
ES SmurfCat 0.5662 0.4308 0.6621
ES CCNU 0.5575 0.5111 0.6910
ES MSA 0.5477 0.4022 0.5257
ES NCL-UoR 0.5464 0.5146 0.5140
ES NLP_CIMAT 0.5458 0.4727 0.9241
ES UZH 0.5085 0.4051 0.5888
ES TUM-MiKaNi 0.5027 0.3739 0.5979
ES TrustAI 0.4983 0.2683 0.9633
ES Team Cantharellus 0.4489 0.3667 0.5371
ES LCTeam 0.4471 0.4188 0.5186
ES HalluSearch 0.4456 0.3883 0.7135
ES BlueToad 0.4267 0.2787 0.5961
ES DeepPavlov 0.4207 0.2098 0.6028
ES UMUTEAM 0.4152 0.2980 0.8696
ES nsu-ai 0.3966 0.2854 0.7848
ES ATLANTIS 0.3793 0.3606 0.7197
ES Howard University - AI4PC 0.3643 0.1341 0.9340
ES GIL-IIMAS UNAM 0.3243 0.2807 0.5278
ES TU Munich 0.3229 0.2578 0.6952
ES uir-cis 0.3104 0.3447 0.9604
ES Swushroomsia 0.2480 0.2466 0.6419
ES keepitsimple 0.2335 0.2131 0.9943
ES REFIND 0.1699 0.2152 0.9940
ES COGUMELO 0.1013 0.1321 0.9965
ES Baseline (neural) 0.0359 0.0724 0.7277
ES HalluciSeekers 0.0266 0.0519 0.7879
ES Baseline (mark all) 0.0132 0.1853 0.0000
ES tsotsalab 0.0132 0.1853 0.0000
ES FENJI 0.0132 0.1325 0.0000
ES Baseline (mark none) 0.0132 0.0855 0.0000
ES S1mT5v-FMI 0.0132 0.0855 1.0000
ES FunghiFunghi -0.0986 0.1616

EU UCSC 0.6265 0.5830 0.5927
EU MSA 0.6202 0.6129 0.6186
EU CCNU 0.6121 0.5784 0.6618
EU NCL-UoR 0.5974 0.5105 0.6974
EU AILS-NTUA 0.5805 0.5550 0.7788
EU LCTeam 0.5560 0.4589 0.8008
EU SmurfCat 0.5234 0.5106 0.5951
EU Deloitte 0.5157 0.5218 0.5572
EU UZH 0.5108 0.5071 0.5550
EU Team Cantharellus 0.5038 0.5339 0.5503
EU TUM-MiKaNi 0.4996 0.4289 0.6969
EU HalluSearch 0.4789 0.5251 0.6792
EU BlueToad 0.4571 0.5061 0.7887
EU nsu-ai 0.4210 0.4368 0.6682
EU uir-cis 0.3989 0.2916 0.5576
EU UMUTEAM 0.3925 0.3272 0.7759
EU REFIND 0.3552 0.3869 0.5244
EU keepitsimple 0.3525 0.4193 0.7812
EU DeepPavlov 0.3214 0.3872 1.0000
EU Howard University - AI4PC 0.1707 0.2461 0.9669
EU Baseline (neural) 0.1004 0.0208 0.8183
EU NLP_CIMAT 0.0712 0.1372 0.9993
EU Baseline (mark all) 0.0000 0.3671 0.0000
EU tsotsalab 0.0000 0.3524 0.0000
EU FENJI 0.0000 0.1326 0.0000
EU Baseline (mark none) 0.0000 0.0101

FA MSA 0.7009 0.6392 0.5296
FA AILS-NTUA 0.6989 0.7110 0.5455
FA UCSC 0.6955 0.6949 0.5848
FA CCNU 0.6886 0.6569 0.5365
FA Team Cantharellus 0.6864 0.6551 0.6594
FA NCL-UoR 0.6732 0.6586 0.6557
FA SmurfCat 0.6584 0.6062 0.9823
FA BlueToad 0.5788 0.5711 0.8743
FA Deloitte 0.5379 0.5139 0.8779
FA UZH 0.4990 0.5108 0.7325
FA TUM-MiKaNi 0.4762 0.5315 0.5275

(Continued from previous column)

Lang Team IoU ρ Pr(rank)

FA HalluSearch 0.4734 0.4443 0.6904
FA LCTeam 0.4559 0.6018 0.8420
FA NLP_CIMAT 0.4297 0.0248 0.7733
FA uir-cis 0.3946 0.1661 0.5078
FA UMUTEAM 0.3939 0.4677 0.5645
FA nsu-ai 0.3875 0.3729 0.7316
FA keepitsimple 0.3570 0.3132 0.9999
FA DeepPavlov 0.1859 0.2405 0.9600
FA Baseline (neural) 0.1078 0.0001 0.8757
FA HalluciSeekers 0.0744 0.1126 0.5677
FA Howard University - AI4PC 0.0661 0.1190 0.9199
FA Baseline (mark all) 0.0100 0.2028 0.0000
FA tsotsalab 0.0100 0.2028 0.0000
FA FENJI 0.0100 0.0028 0.0000
FA Baseline (mark none) 0.0100 0.0000

FI UCSC 0.6498 0.6483 0.6407
FI Deloitte 0.6424 0.6284 0.8912
FI AILS-NTUA 0.6204 0.6235 0.9876
FI TUM-MiKaNi 0.5751 0.6267 0.6593
FI SmurfCat 0.5650 0.5536 0.5089
FI Team Cantharellus 0.5646 0.5714 0.5218
FI CCNU 0.5631 0.5117 0.5371
FI LCTeam 0.5611 0.3933 0.6611
FI NCL-UoR 0.5524 0.4983 0.5927
FI MSA 0.5467 0.6422 0.7053
FI HalluSearch 0.5297 0.5681 0.5222
FI TrustAI 0.5281 0.1072 0.8982
FI UMUTEAM 0.5126 0.4563 0.7632
FI UZH 0.4934 0.5383 0.5250
FI nsu-ai 0.4922 0.5874 0.5312
FI BlueToad 0.4906 0.5694 0.6377
FI DeepPavlov 0.4821 0.5845 0.9782
FI Swushroomsia 0.4298 0.4955 0.7400
FI TU Munich 0.4121 0.4042 0.9986
FI Howard University - AI4PC 0.3433 0.3996 0.5857
FI uir-cis 0.3366 0.2459 0.5635
FI keepitsimple 0.3323 0.4554 1.0000
FI REFIND 0.1986 0.5025 1.0000
FI Baseline (neural) 0.0924 0.0042 0.9879
FI NLP_CIMAT 0.0418 0.3673 0.9928
FI S1mT5v-FMI 0.0014 0.0000 0.6301
FI Baseline (mark all) 0.0000 0.4857 0.0000
FI tsotsalab 0.0000 0.4857 0.0000
FI FENJI 0.0000 0.0941 0.0000
FI Baseline (mark none) 0.0000 0.0000

FR Deloitte 0.6187 0.6469 0.6744
FR AILS-NTUA 0.6103 0.5812 0.6102
FR UCSC 0.6041 0.5812 0.7467
FR Swushroomsia 0.5908 0.4422 0.8283
FR CCNU 0.5724 0.4823 0.6038
FR SmurfCat 0.5661 0.5269 0.6639
FR MSA 0.5553 0.6195 0.6668
FR DeepPavlov 0.5440 0.5831 0.6721
FR Team Cantharellus 0.5317 0.5147 0.7363
FR TUM-MiKaNi 0.5157 0.6314 0.8100
FR TrustAI 0.4992 0.3799 0.6345
FR tsotsalab 0.4910 0.4836 0.5531
FR LCTeam 0.4883 0.5634 0.5960
FR NCL-UoR 0.4823 0.3571 0.6846
FR UZH 0.4669 0.4860 0.8853
FR nsu-ai 0.4339 0.5181 0.9411
FR UMUTEAM 0.4117 0.3200 0.4951
FR ATLANTIS 0.4117 0.5190 0.6909
FR Howard University - AI4PC 0.3990 0.4164 0.7127
FR BlueToad 0.3797 0.4385 0.8446
FR TU Munich 0.3484 0.4152 0.6629
FR HalluSearch 0.3365 0.4366 0.9264
FR uir-cis 0.2873 0.2286 0.6152
FR keepitsimple 0.2756 0.4651 0.9996
FR REFIND 0.1530 0.2120 0.9623
FR NLP_CIMAT 0.0898 0.3310 0.9759
FR HalluciSeekers 0.0447 0.0500 0.9658
FR Baseline (neural) 0.0208 0.0022 0.9444
FR Baseline (mark all) 0.0000 0.4543 0.0000
FR FENJI 0.0000 0.0844 0.0000
FR Baseline (mark none) 0.0000 0.0000 0.0000
FR S1mT5v-FMI 0.0000 0.0000 1.0000
FR FunghiFunghi -0.1521 0.3095

HI CCNU 0.7847 0.7466 0.7038
HI UCSC 0.7746 0.6732 0.7657

2496



(Continued from previous column)

Lang Team IoU ρ Pr(rank)

HI AILS-NTUA 0.7602 0.7259 0.6763
HI SmurfCat 0.7502 0.7064 0.8911
HI DeepPavlov 0.7320 0.5117 0.6111
HI MSA 0.7252 0.6842 0.8703
HI Team Cantharellus 0.6945 0.6270 0.6329
HI BlueToad 0.6844 0.6447 0.5168
HI NCL-UoR 0.6830 0.6286 0.6870
HI UZH 0.6687 0.6377 0.8632
HI Deloitte 0.6391 0.6322 0.9935
HI uir-cis 0.5586 0.0613 0.7124
HI TUM-MiKaNi 0.5409 0.5737 0.7515
HI HalluSearch 0.5195 0.5265 0.5977
HI LCTeam 0.5122 0.6601 0.6684
HI TrustAI 0.5050 0.3144 0.7519
HI Swushroomsia 0.4789 0.4534 0.7191
HI nsu-ai 0.4497 0.4315 0.6228
HI UMUTEAM 0.4386 0.4510 0.9992
HI keepitsimple 0.3508 0.3598 0.7688
HI TU Munich 0.3297 0.2807 0.6292
HI Howard University - AI4PC 0.3217 0.2586 1.0000
HI Baseline (neural) 0.1429 0.0029 1.0000
HI Baseline (mark all) 0.0000 0.2711 0.0000
HI tsotsalab 0.0000 0.2711 0.0000
HI FENJI 0.0000 0.0000 0.0000
HI Baseline (mark none) 0.0000 0.0000

IT AILS-NTUA 0.8195 0.7660 0.9316
IT UCSC 0.7944 0.7509 0.9338
IT NCL-UoR 0.7637 0.6547 0.5213
IT SmurfCat 0.7628 0.7255 0.5826
IT MSA 0.7587 0.7289 0.7341
IT CCNU 0.7458 0.6944 0.6055
IT Swushroomsia 0.7394 0.7149 0.8699
IT Team Cantharellus 0.7118 0.6907 0.6501
IT UZH 0.7016 0.6833 0.9027
IT BlueToad 0.6675 0.6388 0.6914
IT Deloitte 0.6547 0.6253 0.9981
IT TUM-MiKaNi 0.6233 0.6781 0.9968
IT HalluSearch 0.5604 0.5484 0.6117
IT DeepPavlov 0.5529 0.5280 0.5982
IT LCTeam 0.5487 0.7013 0.9406
IT uir-cis 0.4991 0.3967 0.7422
IT TrustAI 0.4760 0.2077 0.8149
IT UMUTEAM 0.4601 0.4413 0.8251
IT nsu-ai 0.4402 0.4396 0.8460
IT TU Munich 0.4210 0.3319 0.8165
IT Howard University - AI4PC 0.4021 0.2675 0.6950
IT keepitsimple 0.3860 0.4009 0.9994
IT REFIND 0.2423 0.3255 1.0000
IT NLP_CIMAT 0.0894 0.1696 0.6335
IT Baseline (neural) 0.0800 0.0104 0.9995
IT HalluciSeekers 0.0242 0.0350 0.9263
IT Baseline (mark all) 0.0000 0.2826 0.0000
IT tsotsalab 0.0000 0.2826 0.0000
IT FENJI 0.0000 0.2765 0.0000
IT Baseline (mark none) 0.0000 0.0000 1.0000
IT FunghiFunghi -0.2116 0.2111

SV AILS-NTUA 0.5622 0.6009 0.7148
SV MSA 0.5486 0.6071 0.6811
SV Deloitte 0.5374 0.6220 0.7116
SV NCL-UoR 0.5225 0.5234 0.5271
SV UCSC 0.5204 0.6423 0.6072
SV CCNU 0.5129 0.4961 0.6709
SV SmurfCat 0.5007 0.6174 0.9144
SV LCTeam 0.4631 0.3016 0.8654
SV UZH 0.4346 0.5263 0.5727
SV HalluSearch 0.4290 0.5622 0.5251
SV BlueToad 0.4267 0.5854 0.5685
SV TrustAI 0.4219 0.1582 0.6044
SV DeepPavlov 0.4147 0.5380 0.6592
SV TUM-MiKaNi 0.4028 0.5614 0.6616
SV UMUTEAM 0.3936 0.4393 0.8202
SV uir-cis 0.3655 0.3080 0.7707
SV nsu-ai 0.3442 0.5478 1.0000
SV TU Munich 0.2403 0.2755 0.6705
SV Swushroomsia 0.2265 0.3549 0.6015
SV keepitsimple 0.2170 0.3967 0.9998
SV Baseline (neural) 0.0968 0.0308 0.6999
SV HalluciSeekers 0.0856 0.0575 0.5466
SV NLP_CIMAT 0.0823 0.1772 0.7176
SV Howard University - AI4PC 0.0669 0.1110 0.9976

(Continued from previous column)

Lang Team IoU ρ Pr(rank)

SV Baseline (mark all) 0.0136 0.5373 0.0000
SV tsotsalab 0.0136 0.5349 0.0000
SV FENJI 0.0136 0.1154 0.0000
SV Baseline (mark none) 0.0136 0.0204 0.0000
SV S1mT5v-FMI 0.0136 0.0204 1.0000
SV FunghiFunghi -0.1177 0.4156

ZH LCTeam 0.5171 0.5232 0.9837
ZH UMUTEAM 0.4916 0.3875 0.7342
ZH AILS-NTUA 0.4791 0.3083 0.6070
ZH TrustAI 0.4735 0.3423 0.7057
ZH TUM-MiKaNi 0.4676 0.4490 0.9411
ZH MSA 0.4363 0.4631 0.5568
ZH CCNU 0.4335 0.3718 0.6708
ZH HalluSearch 0.4232 0.4534 0.5759
ZH UCSC 0.4187 0.4633 0.7076
ZH Team Cantharellus 0.4063 0.4011 0.8344
ZH NCL-UoR 0.3830 0.3493 0.5335
ZH nsu-ai 0.3813 0.4937 0.9025
ZH UZH 0.3520 0.3993 0.5027
ZH YNU-HPCC 0.3518 0.5540 0.5600
ZH SmurfCat 0.3457 0.4017 0.7567
ZH uir-cis 0.3278 0.1786 0.5413
ZH DeepPavlov 0.3251 0.4849 0.5801
ZH Deloitte 0.3203 0.4479 0.9978
ZH TU Munich 0.2771 0.1750 0.9958
ZH BlueToad 0.2262 0.2783 0.9924
ZH keepitsimple 0.1601 0.4703 0.9817
ZH Howard University - AI4PC 0.1119 0.2152 0.7297
ZH Swushroomsia 0.0966 0.2054 0.6454
ZH Baseline (neural) 0.0884 0.0236 1.0000
ZH Baseline (mark all) 0.0000 0.4772 0.0000
ZH tsotsalab 0.0000 0.4772 0.0000
ZH FENJI 0.0000 0.0371 0.0000
ZH Baseline (mark none) 0.0000 0.0200 0.9995
ZH S1mT5v-FMI -0.0209 0.0619

Table 10: Alternative rankings based on highest cor
score across all team submission. Column Pr(rank)
tracks a bootstrapped probability of a given team out-
ranking the team one rank below.
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