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Abstract

This paper introduces the system developed
by the HITSZ-HLT team for SemEval-2025
Task 8: DataBench, Question-Answering over
Tabular Data. The primary objective of Table
Question Answering (TableQA) is to provide
accurate answers to user queries by interpreting
and understanding tabular data. To address this,
we propose the Multi-turn Interactive Code
GeneratiOn (MICO) framework. Specifically,
MICO employs code generation as proxy task
for TableQA and integrates feedback from the
execution of the generated code via multi-turn
dialogue process, thereby guiding the model
towards self-correction. Experimental results
demonstrate the effectiveness of our frame-
work, achieving notable performance with a
rank of 4/38 on the DataBench and 5/38 on the
DataBench lite.

1 Introduction

Table Question Answering (TableQA) (Pal et al.,
2023; Hu et al., 2024; Zhao et al., 2024; Osés-
Grijalba et al., 2025) has gained significant atten-
tion due to the extensive use of tabular data in vari-
ous domains (Jin et al., 2022; Nan et al., 2022). The
primary objective of TableQA is to accurately inter-
pret and process tabular data, enabling autonomous
generation of answers to user queries. As shown in
Fig. 1, the goal of the model to leverage the infor-
mation provided within the table to identify the au-
thor of the shortest post. By empowering machines
to reason over structured data in tables, TableQA
systems seek to offer a more effective and efficient
approach to interacting with large datasets (Giang
et al., 2024). While this task holds great potential,
it is also accompanied by several challenges (Wu
et al., 2024). The inherent complexity of tabular
data, which includes large datasets (Su et al., 2024),
unordered structures, and high-precision numerical
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Table: Post Info
Name Post_length Date

userl 105 2019-08-27 22:06:41

user2 203 2019-08-22 21:13:58

Sv ; )} userl

user3 155 2019-08-23 20:00:42

Q: Who is the author of the shortest posts (based on the
number of words)?

Figure 1: An example of TableQA system.

values, presents significant obstacles in generating
accurate and efficient responses to queries.

In this paper, we propose Multi-turn Interactive
Code GeneratiOn (MICO). Specifically, we lever-
age code generation tasks as a surrogate for
TableQA to reduce the model’s complexity in pro-
cessing long-context inputs and performing precise
numerical computations. Initially, we integrate the
table’s metadata along with a few sample instances
into the prompt, thereby directing the model to gen-
erate code. The generated code is then executed
within a sandboxed environment' to acquire feed-
back. In subsequent rounds of interaction, if the
model determines the code has been successfully
executed, it will regenerate the structured output
and deliver the final result. Conversely, if the execu-
tion is deemed unsuccessful, the model will engage
in self-correction and restart the process.

Additionally, we conducted a thorough evalu-
ation of our approach using the DataBench and
DataBench Lite datasets, which provided strong
evidence of its effectiveness. This extensive vali-
dation process resulted in impressive performance,
securing a ranking of 4th out of 38 participants
on the DataBench leaderboard and 5th out of 38
on the DataBench Lite leaderboard, as reported on
the official rankings. Moreover, additional exper-
iments further confirm the effectiveness of each
component.

"https://github.com/vndee/llm-sandbox
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2 Related Work

Existing TableQA research primarily focuses on
two main directions: semantic parsing and query
generation. Research in the semantic parsing di-
rection involves joint training of natural language
questions and tabular text data, followed by fine-
tuning for specific tabular tasks, enabling the model
to understand the semantic information in the table
and provide accurate answers (Mueller et al., 2019;
Eisenschlos et al., 2020; Zhou et al., 2022; Hu
et al., 2024). Another approach is query generation,
where natural language questions are transformed
into formal query languages to retrieve relevant
data from the table for answering (Zhong et al.,
2017; Jin et al., 2022; Wang et al., 2020; Min et al.,
2019). These approaches assumes that the table
has a known, well-structured format suitable for
query translation, but its effectiveness may be chal-
lenged when dealing with complex or unstructured
tables. However, current researches still lack ex-
ploration of multi-turn dialogue. Our work is the
first to explore the use of multi-turn dialogue for
self-correction in the code generation process for
TableQA.

3 Method

In this section, we introduce the system used, which
addresses the Question Answering on Tabular Data
task through an multi-turn interactive code genera-
tion approach, as shown in Fig. 2.

3.1 Information Retrieval and Prompt
Construction

In this step, we construct suitable prompts based
on the column names and example values of the
table. Specifically, we retrieve the set of values for
each column from the table and randomly select
three values from this set as examples. The column
names partially reflect the meaning of the columns,
while the example values assist the model in better
understanding the data types and content. For a
given question, the model is required to first give
the steps to solve the problem, then read the table
data and perform calculations and analysis by writ-
ing Python code, and finally give the answer to the
question in the form of a JSON dictionary. The
prompt template is shown in Fig 3.

3.2 Data Augmentation

The original dataset provides only the final answers
to the questions, lacking the reasoning process and

code. To address this, we use GPT-40 to generate
multi-turn dialogue data with chain-of-thought rea-
soning and code based on the constructed prompts,
which is then used for subsequent model training.

Notably, the generated code may contain errors,
such as accessing non-existent columns in the table
or producing outputs that do not conform to the
required format. To obtain as many correct code
samples as possible while also equipping the model
with error correction capabilities, we introduce a
code executor and adopt a multi-turn interaction
strategy. Specifically, upon receiving a model re-
sponse, we check whether it contains Python code.
If code is present, it is extracted and executed us-
ing the code executor. The execution results or
traceback messages are then fed back to the model
as dialogue messages, prompting it to modify the
code accordingly or summarize the final answer. If
no Python code is detected, the response is consid-
ered the final answer, and the dialogue terminates.
The pseudo-code for this process is shown in Algo-
rithm 1.

After obtaining the multi-turn interactive dia-
logue data, the model’s answers are compared with
the ground truth, and only the data with correct
answers are retained for subsequent model training
to avoid interference from low-quality data.

Algorithm 1: Multi-turn Interaction Strategy

Input: Question Q; Maximum Number of
Interactions NV

Output: Dialogue Messages List M.

M + [(User, Q)];

forne {1,--- ,N}do

> Obtain the response R from LLM .;

R« LLM(M);

M.append((Assistant, R));

> Extract the code from R;

C < GetCode(R);

if C is not None then
> Execute C and obtains output O
O + Ezecutor(C);
M.append((User, O));

else

| break;
end

end

3.3 Model Training

In this step, we fine-tune Qwen2.5-Coder-7B-
Instruct (Qwen et al., 2025) using the augmented
multi-turn dialogue data. Unlike single-turn dia-
logue data, multi-turn dialogue data contains multi-
ple messages from the user or code executor. We
use language modeling loss as the training loss

2319



Table: .NET Role Personality Traits Analysis

®

ID Profession Openness Extraversion
Rationale
0 Net Architect 0.68398 0.16300
1 NET Developer 0.72406 0.12404
2 NET Programmer 0.67834 0.19369
Code

Q: What are the top 2 professions with highest Openness?

Execute in sandbox

The output of the code execution is:
KeyError: 'Open-mindedness'
Write code for further analysis.

Error !

Success!

The output of the code execution is:
[".NET Developer", ".Net Architect"]
Only output a JSON-formatted dictionary
{"Answer": <final answer>}

to give the final answer.

Qwen2.5-Coder

=

To determine the top 2 professions with the highest Openness, we will

follow these steps:

1. Load data from the “table_data.parquet’ file into a pandas DataFrame.

2. Sort the DataFrame by the 'Openness' column in descending order.

3. Select the top 2 rows based on the sorted 'Openness' values.

4. Extract the 'Profession' column from top 2 rows to get corresponding
professions.

(a) Training Process

Table: Post Info

Name Post_length

Code-Interactive ® Accept
set R © Reject
]
1
1
|
| ®

1
1
1
Date :
1

userl 324 2019-08-26 22:06:41

user2 125 2019-08-26 21:13:58

user3 231 2019-08-26 20:00:42

Q: Who are the authors of the 2 shortest posts (based on the
number of words)

(b) Inference Process

Figure 2: Illustration of our proposed MICO.

function, calculating the loss only for the tokens
generated by the model.

3.4 Model Inference

Similar to the data augmentation phase, during in-
ference, the model interacts continuously with the
code executor until the code analysis is complete
and an answer is provided, or the maximum num-
ber of interactions is reached. If the maximum
number of interactions is reached, the answer for
the corresponding question will be set to null. For
the decoding strategy, we first use greedy decoding
for inference. For samples where the maximum
interaction count is reached or the answer format is
incorrect, we employ self-consistency (Wang et al.,

2023) strategy. This involves sampling k responses
and performing majority vote on the results to ob-
tain final answer.

4 Experiments

4.1 Experimental Settings

We follow the exact dataset split as the competition
organizers. The training set consists of 988 sam-
ples from 49 datasets, the validation set includes
320 samples from 16 datasets, and the test set con-
tains 522 samples from 15 datasets. We use the
databench_eval toolkit? to compute answer accu-
racy for evaluating different methods. For train-
ing, we fine-tune the model using LoRA (Hu et al.,

Zhttps://github.com/jorses/databench_eval
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Task Description

Answer the question based on the data in the table.
When you need to obtain the table data or perform
operations such as filtering and calculations, please
write Python code and wrap it with " “python and "
numpy and pandas are already installed and can be used.
You can use pandas to read table_data.parquet to obtain
table data. It is important to note that the code
should use print to return the result. Return value
must be a string and must be returned by print at the
end of the code. An example of the code is as follows.
**“python

import numpy as np

import pandas as pd

import json

df = pd.read_parquet('table_data.parquet')

tgt_df = df.head(3)

result = tgt_df.to_json(orient="records",
force_ascii=False)

print(result)

Please think step by step, give your thought process
and then write the code to ensure correctness.

Table Description

The table data is stored in table_data.parquet. The
column names and example values are as follows.
{table_info}

Answer Format Requirements

You may write Python code or perform analysis multiple
times. When you get the code execution results and are
sure that you can get the final answer from the results
without writing code to perform analysis again, only
output a JSON-formatted dictionary

"t json

{"Answer": <final_answer>}

to provide the final answer <final_answer>. The type of
<final_answer> must be one of the following: boolean,
category, number, list[categoryl, or list[number].

Question
{question}

\_

Figure 3: The prompt template.

2022). For LoRA parameters, we set the rank to 8,
alpha to 16, and dropout to 0.1. The learning rate is
set to 1e-4, with a batch size of 8. The model check-
point with the lowest validation loss is selected for
testing. During testing, the sampling temperature
is set to 0.8, with a total of 10 sampled outputs per

query.

4.2 Comparison Methods

For evaluating the effectiveness of our proposed
system, we compare several methods: Qwen-
Single utilizes Qwen2.5-Coder-7B-Instruct (Qwen
et al., 2025) with greedy decoding, requiring the
model to generate code that directly answers the
question in a single response. Qwen-Multi fol-
lows a similar approach but uses the multi-turn
interaction strategy to refine the response. FullFT
builds on Qwen-Multi by fine-tuning the model
with all generated multi-turn dialogue data. Fil-
terFT further improves this by filtering the training
data based on answer correctness, using only the
filtered dataset for fine-tuning.

Method # Score Databench
baseline 26.00
Qwen-Single 30.65
Qwen-Multi 52.30
FullFT 77.20
FilterFT 81.03
MICO 82.18

Table 1: The accuracy (%) of different methods. The
results are presented such that the highest performance
is denoted in bold, and the second highest performance
is underlined.

5 Results

5.1 Comparison Results

Table 1 presents the comparison results of different
models. Compared to Qwen-Multi, Qwen-Single
shows a significant performance drop, indicating
that providing both correctly formatted and accu-
rate answers in a single-turn interaction is challeng-
ing. Introducing a multi-turn interaction strategy
enables the system to refine code or organize an-
swers based on execution feedback, significantly
improving overall performance. After fine-tuning
with enhanced multi-turn dialogue data, FullFT
achieved a 24.9% accuracy improvement. This
demonstrates the crucial role of multi-turn inter-
action data in enhancing the model’s capabilities.
Furthermore, by filtering data based on answer cor-
rectness, FilterFT achieved better training results
with fewer data, increasing accuracy from 77.20%
to 81.03%, demonstrating the crucial role of high-
quality data in model training. By ensuring that
only accurate responses contribute to learning, the
model avoids the negative impact of low-quality
samples, leading to more efficient training and im-
proved overall performance. Building upon Fil-
terFT, MICO optimized the decoding strategy by
exploring the answer in a larger space through self-
consistency for samples that reached the interac-
tion limit or had formatting errors during greedy
decoding, correcting these cases and achieving an
additional 1.15% performance improvement.

5.2 Leaderboard Results

Table 2 and Table 3 present the performance of the
top 10 teams in Databench dataset and Databench
Lite dataset, respectively.
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Rank Team # Score

1 TeleAl 95.02
2 SRPOL AIS 89.66
3 AILS-NTUA 87.16
4 HITSZ-HLT 86.97
5 null33 86.02
6 SBU-NLP 85.63
7 Oseibrefo-Liang 84.67
8 ITU-NLP 84.10
9 grazh 83.72
10  Howard University-AI4PC ~ 81.42

Table 2: Top-10 score on Databench for Open Leader-
board.

Rank Team # Score
1 TeleAl 9291
2 SRPOL AIS 86.59
3 SBU-NLP 86.02
4 Oseibrefo-Liang 86.02
5 HITSZ-HLT 85.82
6 ITU-NLP 85.06
7 tabaqa_team 84.87
8 null33 84.48
9 Howard University-AI4PC  80.46
10 QleverAnswering-PUCRS  80.27

Table 3: Top-10 score on Databench Lite for Open
Leaderboard.

6 Conclusion

In this paper, we introduced the MICO framework
for TableQA, aiming to enhance the accuracy and
efficiency of answering queries over tabular data.
By utilizing code generation as a proxy task for
TableQA and incorporating multi-turn dialogue for
feedback and self-correction, MICO effectively ad-
dresses the challenges of processing large, complex
datasets and performing precise numerical compu-
tations. Our experimental results, conducted on the
DataBench and DataBench Lite datasets, demon-
strated the effectiveness of the MICO framework,
with our system achieving a commendable rank of
4th out of 38 participants on the DataBench leader-
board and 5th out of 38 on the DataBench Lite
leaderboard.

Limitations

Despite the promising results, our MICO frame-
work has some limitations. The multi-turn interac-
tive process, while enhancing self-correction, in-
creases computational complexity and inference
time, especially for more complex queries or larger

datasets. Additionally, the model’s performance is
sensitive to the quality of training data, and noisy
or incorrect data can impact its ability to generate
accurate responses. Lastly, the framework relies on
the structure and format of tabular data, which may
limit its generalization across different domains or
datasets. Further evaluation on diverse datasets is
needed to assess its scalability.
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(## Task Description
Answer the question based on the data in the table. When you need to
obtain the table data or perform operations such as filtering and

ensure correctness.

## Table Description

The table data is stored in table_data.parquet. The column names and
example values are as follows.

119, 18, 28

‘female', 'male’

bmi: 27.9, 33.77, 33.0

children: 0, 1, 3

smoker: 'yes', 'no’

region: 'southwest', 'southeast', 'northwest’
charges: 16884.924, 1725.5523, 4449.462

## Answer Format Requirements

output a JSON-formatted dictionary
" json
{"Answer": <final_answer>}

or list[number].

## Question
\what is the gender of the person with the highest body mass index?

calculations, please write Python code and wrap it with **“python and """
numpy and pandas are already installed and can be used. You can use pandas
to read table_data.parquet to obtain table data. It is important to note
that the code should use print to return the result. Return value must be
a string and must be returned by print at the end of the code. Please
think step by step, give your thought process and then write the code to

You may write Python code or perform analysis multiple times. When you get
the code execution results and are sure that you can get the final answer
from the results without writing code to perform analysis again, only

to provide the final answer <final_answer>. The type of <final_answer>
must be one of the following: boolean, category, number, list[categoryl,

The output of the code execution is:
Traceback (most recent call last):

File "/tmp/code.py"”, line 7, in <module>
max_bmi_row = df.loc[df['bmi'].idxmax()]

line 1191, in __getitem__
return self._getitem_axis(maybe_callable, axis=axis)

line 1431, in _getitem_axis
return self._get_label(key, axis=axis)

line 1381, in _get_label
return self.obj.xs(label, axis=axis)

line 4321, in xs

new_mgr = self._mgr.fast_xs(loc)

File "/usr/local/lib/python3.10/site-
packages/pandas/core/internals/managers.py", line 1002, in fast_xs
result[rl] = blk.iget((i, loc))

ValueError: could not convert string to float: 'male’

Only output a JSON-formatted dictionary

“json

{"Answer"

: <final_answer>}

To determine the gender of the person with the highest body mass index (BMI),
we will follow these steps:

1. Load the data from the 'table_data.parquet’ file into a pandas DataFrame.
2. Identify the row with the maximum BMI value.
3. Extract the gender of the person associated with this maximum BMI value.

Let's proceed with the implementation:

*python
import pandas as pd

# Load the data from the parquet file
df pd. ('table_data.parquet')

# Find the row with the maximum BMI
ax_bmi_row df.loc[df['bmi']. 01

# Extract the gender of the person with the maximum BMI
gender_of_max_bmi max_bmi_row['sex']

# Print the result

der_of_m

This code will load the data, find the row with the highest BMI, and then
extract and print the gender of that individual. Let's execute this code to
get the answer.

J

File "/usr/local/lib/python3.10/site-packages/pandas/core/indexing.py",
File "/usr/local/lib/python3.10/site-packages/pandas/core/indexing.py",
File "/usr/local/lib/python3.10/site-packages/pandas/core/indexing.py",

File "/usr/local/lib/python3.10/site-packages/pandas/core/generic.py",

\to give the final answer, or write code for further analysis if necessary.

The output of the code execution is:
{"Answer": "male"}

Only output a JSON-formatted dictionary
“Tjson

{"Answer"

: <final_answer>}

~

The error indicates that there might be non-numeric values in the 'bmi'
column, which could cause issues when trying to find the maximum value. To
resolve this, we need to ensure that all entries in the 'bmi' column are
numeric before attempting to find the maximum value.

Let's modify the code to handle this situation:

*python

import pandas as pd

# Load the data from the parquet file
d pd. ('table_data.parquet')

# Ensure 'bmi' column is numeric, replacing any non-numeric values with NaN
if["bmi'] pd. (df['bmi'], errors='coerce')

# Drop rows where 'bmi' is NaN

d df. (subset=["bmi'])

# Find the row with the maximum BMI
max_bmi_row = df.loc[df['bmi']. 01

# Extract the gender of the person with the maximum BMI
gender_of_max_bmi = max_bmi_row['sex"']
# Print the result

({"Answer": gender_of_max_bmi})

This code ensures that any non-numeric values in the 'bmi' column are
treated as NaN and removed before finding the maximum BMI. Then, it extracts
and prints the gender of the person with the highest BMI. Let's execute this
updated code to get the final answer.

J

to give the final answer, or write code for further analysis if necessary.

N
*Yjson

Answer": “"male"}

Figure 4: Case study.
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