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Abstract

This paper describes our systems for SemEval
2025 Task8, Question Answering over Tabu-
lar Data. This task encourages us to develop
a system that answers questions of the kind
present in DataBench over day-to-day datasets,
where the answer is either a number, a categor-
ical value, a boolean value, or lists of several
types. Participating in Task 8, we engage in
all subtasks. The challenge lies in the multi-
step reasoning process of converting natural
language queries into executable code. This
challenge is exacerbated by the limitations of
current methods, such as chaining reasoning,
which have difficulty handling complex multi-
step reasoning paths due to difficulty evaluating
intermediate steps. On the final competition
test set, our DataBench accuracy is 65.64%,
and DataBench Lite accuracy is 66.22%. Both
exceed the baseline. The competitive results in
two subtasks demonstrate the effectiveness of
our system. !

1 Introduction

The rise of large language models (LLMs) has
transformed research in natural language process-
ing (NLP). Their ability to learn from little data
has made them useful for tasks like summarization
(Zhang et al., 2024a) , machine translation, and
text sentiment analysis (Zhang et al., 2024b). This
progress has been driven by the development of
general-purpose LLMs and the discovery of their
unexpected abilities. However, the rapid growth of
these models hasn’t been matched by high-quality
benchmarks for comparing their performance.
Question answering (QA) has been a key NLP
task focused on finding the best answer from un-
structured text. The issue of structured knowledge
grounding has been widely researched for years.
Furthermore, tables, a common form of (semi)-
structured data that stores world knowledge, have

'The code of the paper is available at https://github.
com/ywh5/semeval2025-task8

garnered considerable attention from the natural
language processing (NLP) community. Tradition-
ally, accessing the information inside the structured
data (like tables) has depended on synthesizing
executable languages like SQL or SPARQL. Still,
these methods don’t understand the meaning of text
in the fields or allow natural language questions.
Such challenges have led to interest in using LLMs
to answer questions from structured or tabular data.
Recently, the ability of LLMs to perform table ques-
tion answering (Chen, 2023; Chen et al., 2020; Nan
etal., 2021; Zhu et al., 2021) has emerged as a valu-
able skill. This highlights the need for a reliable
benchmark to evaluate LLM performance.

Our contributions can be summarized as fol-
lows: We propose an approach exploring using
the TableGPT2-7B (Su et al., 2024) model to solve
the corresponding subtasks. The model develops
a tabular encoder that processes the entire table,
generating compact embeddings for each column.

The rest of this paper is structured as follows:
Section 2 covers related work, Section 3 presents
an overview of the model and our system, and Sec-
tions 4, 5, and 6 detail the experiments, key results,
and conclusions, respectively.

2 Related Work

2.1 Semantic Parsing

In table question answering (QA) context, seman-
tic parsing refers to converting a natural language
question into a formal, structured representation
that can be understood and processed by a ma-
chine. This structured representation often takes
the form of a query (like SQL) that can be executed
to retrieve the relevant data from the table like Wik-
iTableQuestions (Pasupat and Liang, 2015), Wik-
iSQL (Zhong et al., 2017), and Spider (Yu et al.,
2018). For example, for the question What is the
total sales for Product X in January?, the seman-
tic parser would convert it into a query: SELECT
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SUM(sales) FROM table WHERE product = ’Prod-
uct X’ AND month = "January’;. Semantic parsing
in table QA aims to accurately interpret the intent
behind the natural language question and maps it
to the appropriate data manipulation or retrieval
query that can be executed on the structured table.
In short, it’s about bridging the gap between the
natural language used by the user and the structured
data format needed for querying.

2.2 Table question answering

Table question answering or question answering
on tabular data aims to provide answers to natural
language questions from data in tables (Jin et al.,
2022), which is a spin-off task of QA. The user’s
question involves table-based question answering,
which focuses on delivering accurate responses by
comprehending and reasoning through tables.
Table QA tasks generally originate from query-
ing relational databases using natural language,
where the tables are well-structured. This approach
addresses the table QA task by employing a se-
mantic parser to convert natural language into a
structured query (such as SQL), which is then exe-
cuted to retrieve the answers (Zhong et al., 2017).

3 System Overview

Our system is designed to generate Python code
using the Pandas library to extract information from
these datasets.

3.1 Prompt Generator

The prompt generator creates prompts for the LLM,
which include three components: (1) a general task
description (creating a query to answer a question),
(2) examples of questions, table summaries, and
expected answers, and (3) the actual question and
table summary for the LLM to process. We show a
summarized prompt in the follow Listing.

Listing 1: Example of a prompt used in our experiments.

Your task is to generate pandas code to
answer a specific question based on
a provided table of data.

You will receive a list of column names,
a DataFrame in JSON format, and the
question itself.

Select the relevant columns and complete
the ’answer’ function accordingly.

Ensure proper type compatibility in

aggregate operations, and always

close expressions before applying
further operations.

Use ’empty’ to check if any columns are
missing data.

Provide the answer to the last question.

Keep the output straightforward and
focused on solving the problem.

TODO: complete the following function in
one line.

Question: How many rows are there in
this dataframe?

Function:

def example(df: pd.DataFrame) -> int:
df.columns=["A"]
return df.shapel[0@]

TODO: complete the following function in
one line.

Question: {question}

Function:

def answer(df: pd.DataFrame) -> {row["
type"1}:
df.columns = {list(df.columns)}
return

3.2 Model Selection

We conducted empirical experiments to find the
best model for code generation. TableGPT2’s lan-
guage framework is built on the Qwen2.5 (Yang
et al., 2024) architecture. It undergoes continual
pretraining (CPT), supervised fine-tuning (SFT),
and an agent framework for production-level abil-
ity. These steps set it apart from traditional LLMs,
as the pretraining and fine-tuning focus more on
coding, multi-turn reasoning, and tool utilization.
This approach ensures the model excels in natural
language processing and addressing the complex
demands of table-related tasks.

TableGPT?2 introduces a unique modality mod-
ule designed specifically for reading and interpret-
ing tabular data. Similar to vision-language models
(VLMy), it features a tabular data reading module
that generates specialized embeddings, which are
then combined with token embeddings from textual
input. This module enhances TableGPT2’s ability
to understand the structure and semantics of tab-
ular data, improving its performance in complex
business intelligence scenarios.

The conceptual diagram of the TableGPT2
model revolves around continuous pretraining
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(CPT) and supervised fine tuning (SFT).
Continual Pretraining (CPT). CPT focuses on en-
hancing coding and reasoning abilities. 80% of the
CPT (Ke et al., 2023) data was well-commented
code, aligned with DeepSeek-v2 (DeepSeek-Al
et al., 2024), ensuring strong coding capabili-
ties. The remaining data included domain-specific
knowledge to improve reasoning. A two-level fil-
tering strategy was used: categorizing documents
with 54 labels for diverse coverage and fine-tuning
token selection with the RHO-1 (Lin et al., 2024)
technique. Additionally, strategies for code length
and context windows were introduced (Kim and
Lee, 2024), optimizing model performance for han-
dling different code segments. After filtering, the
CPT data comprised 86 billion tokens, boosting
the model’s coding and reasoning for complex BI
tasks.

Supervised Fine-Tuning (SFT). This stage fo-
cuses on adapting the model for Bl-specific tasks
and addressing its prior limitations. The dataset
coveres multi-turn conversations, complex reason-
ing, tool usage, and business-specific queries. It in-
cludes 2.36 million samples and billions of tokens.
Key areas of specialization includes table-based
tasks such as code generation (Wang et al., 2021;
Ahmad et al., 2021) (Python, SQL), table query-
ing, data visualization, and predictive modeling.
The dataset ensures variety by incorporating differ-
ent input formats and table metadata combinations.
A multi-step filtering pipeline is employed, with
rule-based checks for code correctness, anomaly
detection, and scoring using models like GPT-4o.
Only high-quality samples pass, with manual cali-
bration and validation against a fixed validation set
of 94.9K cases.

The overall system framework is shown in Fig-
ure 1, which also demonstrates how QA works over
tables from a particular industry and how the LLM
encodes the tabular data. As shown in the figure,
the table encoder takes the entire table as input and
generates compact embeddings for each column.
This architecture is optimized for the unique proper-
ties of tabular data, which differs significantly from
text, images, or other data types. The semantics of
the table are represented in four key dimensions:
cells, rows, columns, and the entire table structure,
all of which exhibit permutation invariance. To
address this, a bi-dimensional attention mechanism
is used without positional embeddings, along with
a hierarchical feature extraction process to capture
both row-wise and column-wise relationships ef-

fectively. Additionally, a column-wise contrastive
learning approach is employed to encourage the
model to learn meaningful, structure-aware seman-
tic representations of the table.

3.3 Automatic code execution

Our system automatically extracts the Python func-
tion from the LLM’s response and runs it on the
validation and test dataset. The output from the
function serves as the system’s answer to the query.
If an error occurs during execution, the system cap-
tures it and sends an updated prompt to the model,
including the erroneous code and details about the
error.

The overall workflow of the system is as follows:

 Input: Our system retrieves the question and
loads the relevant DataFrame.

* Prompt: The prompt is produced through
the utilization of the question and the dataset
header.

* LLM: Utilize the generated prompt to make a
call to the LLM and extract the corresponding
answer out of the response.

* Execution: The answer function is operated
on the DataFrame so as to acquire the answer.

* Error Handling: In case the execution fails,
the error is caught, and the LLM is prompted
once more with the inclusion of the error de-
tails.

* Output: The final output is to answer the
initial question.

The above approach enhances our system’s abil-
ity to reduce errors and improve entire accuracy.

4 Experimental Settings

4.1 Dataset

There are 65 publicly available datasets summa-
rized in Table 1 and Table 2. Each dataset for
this task includes natural language questions, rel-
evant column information, and corresponding an-
swers. Moreover, it has 20 hand-made questions
per dataset, with a total number of 1300 questions.
Questions are further split in different types depend-
ing on the type of answer (i.e., true/false, categories
from the dataset, numbers or lists), and their corre-
sponding gold standard answer accompanies each
question.
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Figure 1: An illustration example of table QA system. The number (2) is the target answer.

Domain Datasets Rows Columns
Business 26 1,156,538 534
Health 7 98,032 123
Social 16 1,189,476 508
Sports 6 389778 177
Travel 10 427,151 273
Total 65 3,269,975 1615

Table 1: DataBench domain taxonomy.

Type Columns Example
number 788 583600
category 548 Flat

date 50 1934-02-09

text 46 Sucha...

url 31 apple.com
boolean 18 False
list[number] 14 [21, 14,13, 11]
list[category] 112 [sales, technical]
list[url] 8 [apple.com, ...]

Table 2: Column types present in DataBench.

4.2 Baselines

In these experiments, we mainly consider the fol-
lowing baseline models.

Stable-Code. Stable-Code-3B (Pinnaparaju et al.)
is a 2.7B billion parameter decoder-only language

model pre-trained on 1.3 trillion tokens of di-
verse textual and code datasets. It is trained on
18 programming languages (selected based on
the 2023 StackOverflow Developer Survey) and
demonstrates state-of-the-art performance (com-
pared to models of similar size) on the MultiPL-E
metrics across multiple programming languages
tested using BigCode’s Evaluation Harness.

CodeLlama. CodeLlama, a specialized version of
Llama?2 designed for coding tasks (Roziere et al.,
2023), excels in coding benchmarks and benefits
from a 16K token window. We utilized its instruc-
tion models with 7B parameter sizes, emphasizing
its ability to generate and understand code.

Deepseek-Coder. Deepseek Coder comprises a
series of code language models, each trained from
scratch on 2T tokens, with a composition of 87%
code and 13% natural language in both English
and Chinese. It provides various sizes of the code
model, ranging from 1B to 33B versions. Each
model is pre-trained on project-level code corpus
by employing a window size of 16K and an extra
fill-in-the-blank task to support project-level code
completion and infilling. For coding capabilities,
Deepseek Coder achieves state-of-the-art perfor-
mance among open-source code models on mul-
tiple programming languages and various bench-
marks.
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4.3 Implementation Details

The deployment of Stable-Code, Codellama,
Deepseek-Coder, and TableGPT?2 used the official
checkpoints provided by HuggingFace. The exper-
iments were run on a machine equipped with a sin-
gle NVIDIA Tesla P100 GPU with 16GB VRAM,
only suitable to run these models.

4.4 Evaluation Metrics

The evaluation focuses on accuracy and is further
split by question types and other factors. The accu-
racy is obtained by comparing predicted answers
with the correct answers across various domains
(such as booleans, categories, numbers, etc.). How-
ever, one issue with LLMs is that their responses
often lack a consistent formatting pattern. Relax-
ing the criteria for a correct answer to allow small
format variations is an effective solution to address
this. For example, answers like "true,” "True," or
"Yes" will all be considered correct for a boolean
question that is meant to be true. This flexibility
has a minimal impact on code-based models. Fur-
thermore, for lists, the order of elements is not
considered in contrast to the ground truth, which
may be important in some cases.

5 [Experimental Results

Results on Dev Set. When processing input
prompts in batches and generating text, we adjust
some parameters to change the diversity and length
of the generated text. For example, the parameter
temperature controls the randomness or creativity
of the generated text. When the temperature is
low, the text generated by the model is more de-
terministic and tends to choose words with higher
probability; when the temperature is high, the gen-
erated text is more diverse and random. We use two
temperatures of 0.1 and 0.2. As shown in Table 3,
the model performs better when the temperature is
lower, especially on DataBench Lite. If do_sample
is set to True, the sampling strategy is enabled.
The model will generate the next token based on
probability distribution sampling. This method will
increase the diversity of generated text. If set to
False, the model will use a greedy strategy to select
the next token with the highest probability.

Competition Results. Our experimental results on
the test set for the task competition are summarized
in Figure 2. It can be observed that the TableGPT2-
7B model achieves the highest performance scores
in all subtasks. Also, we observe a large perfor-

mance gap between these models, although their
number of parameters is similar.

Analysis. As indicated in Figure 2, TableGPT2-7B
achieves 0.65% accuracy on the DataBench bench-
mark and 0.66% accuracy on the DataBench Lite
benchmark. The consistency across both bench-
marks (DataBench and DataBench Lite) further
validates its robustness and generalizability.

When comparing it with other models like the
Deepspeek-Coder-6.7B-Base, which shows an ac-
curacy of 0.51% on DataBench and 0.50% on
DataBench Lite, the TableGPT2-7B outperforms
them by a notable margin, indicating that it bene-
fits from more refined training or a more effective
architecture for this type of task. In contrast, the
Stable-Code-3B and CodeLlama-7B-hf models ex-
hibit comparatively lower accuracy rates, highlight-
ing the potential advantages of using larger or more
specialized models like TableGPT2-7B for similar
tasks. The result suggests that further fine-tuning
or enhancement of such models could lead to even
more significant improvements in performance.

Meanwhile, the results of Deepseek-Coder’s
three different parameter models (Deepspeek-
Coder-1.3B-Base, Deepseek-Coder-5.7Bmqa-Base
and Deepspeek-Coder-6.7B-Base) show that the
accuracy improves as the model size increases.

The accuracy of Deepspeek-Coder-1.3B-Base
on DataBench is 0.40%, and slightly lower
on DataBench Lite, 0.39%. The accuracy of
Deepspeek-Coder-6.7B-Base is 0.51% and 0.50%,
respectively, which is more than 27% higher than
the 1.3B-version. Increasing the number of model
parameters (from 1.3B to 6.7B) impacts model per-
formance. Generally speaking, larger models can
capture more data features and subtle patterns and
thus perform better in complex tasks. This suggests
that the 6.7B version of Deepseek-Coder may have
obtained more contextual information during train-
ing and can better cope with the challenges in the
task.

However, an important point can also be drawn
from this, that is, simply increasing the parameters
of the model does not always guarantee unlimited
improvement. Taking the Deepspeek-Coder model
as an example, when the number of parameters
increased from 5.7B to 6.7B, the results do not im-
prove much. After a certain scale, the performance
improvement of the model gradually stabilizes; in
other words, other factors such as data quality and
training strategy are equally important in affecting
the model’s performance.
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Model Temperature | Do_sample Accuracy
DataBench | DataBench Lite
0.1 True 0.48 0.47
Stable-Code-3B 0.2 True 0.47 0.44
0.1 False 0.48 0.48
TableGPT-7B 0.2 True 0.72 0.68

Table 3: Comparison on different parameters.Evaluation is based on accuracy(%).
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Figure 2: Comparison of model accuracy on DataBench and DataBench Lite.

In general, the increase in parameter scale brings
about performance improvement, but this improve-
ment is not endless, so optimizing other factors is
also the key to improving model performance.

6 Conclusions

During Task 8 in SemEval 2025, we made predic-
tion for each question provided by final competi-
tion. Conducting preliminary exploration on the
training set and validation set, we finally decided
to use the TableGPT2 model to complete the com-
petition. Due to the powerful table understanding
ability of this model, it has an inherent advantage
in handling Task 8. Our approach proved to be
highly effective by outstanding performance in this
task. In future work, we may adjust some basic pa-
rameters or explore models with larger parameters
to optimize the experimental results (which have
been proven to be effective in above work). Thus,
our goal is to continue progressing in this area.
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