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Abstract

Question Answering over Tabular Data (Ta-
ble QA) presents unique challenges due to
the diverse structure, size, and data types of
real-world tables. The SemEval 2025 Task
8 (DataBench) introduced a benchmark com-
posed of large-scale, domain-diverse datasets to
evaluate the ability of models to accurately an-
swer structured queries. We propose a Natural
Language to SQL (NL-to-SQL) approach lever-
aging large language models (LLMs) such as
GPT-4o, GPT-4o-mini, and DeepSeek v2:16b
to generate SQL queries dynamically. Our sys-
tem follows a multi-stage pipeline involving ex-
ample selection, SQL query generation, answer
extraction, verification, and iterative refinement.
Experiments demonstrate the effectiveness of
our approach, achieving 70.5% accuracy on
DataBench QA and 71.6% on DataBench Lite
QA, significantly surpassing baseline scores of
26% and 27% respectively. This paper details
our methodology, experimental results, and al-
ternative approaches, providing insights into
the strengths and limitations of LLM-driven
Table QA. The code is available at this GitHub
Repository.

1 Introduction

Question Answering over Tabular Data (Table QA)
is a fundamental problem in natural language pro-
cessing (NLP) that aims to retrieve structured infor-
mation from tables given natural language queries.
This task is crucial for making structured data
more accessible, enabling users to interact with
databases, spreadsheets, and structured documents
without requiring expertise in SQL or database
querying. However, Table QA presents unique
challenges compared to traditional open-domain
QA, as it requires models to understand schema
structures, perform logical reasoning over tabular
relationships, and generate precise queries that ex-
tract relevant data (Soliman and Gurevych).

*These authors contributed equally to this work.

Early approaches to Table QA relied on rule-
based systems (Khalid et al., 2007), manually de-
signed templates, and retrieval-augmented genera-
tion (RAG) (Pan et al., 2022). While effective for
constrained domains, these methods struggle with
scalability, particularly when handling large and
diverse tables with complex relationships. More
recent advances employ neural models for end-to-
end Table QA, including methods that directly gen-
erate SQL queries from natural language inputs.
Large language models (LLMs) have demonstrated
impressive capabilities in this space, enabling the
dynamic generation of SQL queries without requir-
ing predefined schemas or manually curated rules
(Baig et al., 2022).
Despite these advancements, several challenges re-
main. LLM-generated SQL queries often suffer
from structural errors, incorrect column selections,
and ambiguous reasoning over tabular data. Addi-
tionally, extracting precise answers from retrieved
SQL results requires careful post-processing, as
LLMs may misinterpret numerical values, cate-
gories, or required formats. To address these issues,
verification and refinement steps are necessary to
ensure query correctness and answer reliability.
In this work, we present an LLM-driven Natu-
ral Language to SQL (NL-to-SQL) pipeline that
dynamically translates user questions into SQL
queries, retrieves structured data, and refines the
final output to maximize answer accuracy. Our ap-
proach integrates multiple stages, including exam-
ple selection, query generation, answer extraction,
and verification. By leveraging LLMs for both SQL
generation and answer refinement, we aim to im-
prove robustness across diverse table structures and
query types. We apply our system to the SemEval
2025 Task 8 (DataBench), a benchmark designed
to evaluate Table QA over real-world datasets. By
refining query formulation and integrating a veri-
fication mechanism, our system significantly out-
performs baselines. In this paper, we detail our
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system architecture, performance evaluation, and
key insights derived from our experiments.

2 Related Work

The task of Question-Answering on Tabular Data
(Table QA) involves extracting precise, grounded
answers from structured data based on natural lan-
guage queries. Various methods have been ex-
plored to tackle this problem, yet challenges such
as data sparsity, feature heterogeneity, context-
based interconnections, and order invariance re-
main significant (Fang et al., 2024). Previous re-
search in Table QA has introduced generative, ex-
tractive, and retriever-reader-based methods, each
addressing different aspects of reasoning and infor-
mation retrieval (Jin et al., 2022).

Generative models, such as those introduced in
(Pasupat and Liang, 2015) generate answers di-
rectly instead of producing logical forms. Extrac-
tive methods, in contrast, select spans of text from
tables rather than generating them, relying on ef-
fective table cell representations to capture only
relevant information. Structure-aware approaches
like TAPAS (Herzig et al., 2020) incorporate row/-
column embeddings to encode positional informa-
tion, while models like TableFormer (Gupta et al.,
2022) introduce attention bias techniques to en-
hance table reasoning. While both generative and
extractive models excel at handling simple queries,
their performance deteriorates on reasoning-based
queries that require logical inference and multi-hop
reasoning. (Jin et al., 2022)

Among these, NL-to-SQL has emerged as a
powerful approach (Mohammadjafari et al., 2025),
translating natural language queries into structured
SQL statements for efficient information retrieval.
Traditional NL-to-SQL models followed encoder-
decoder-based architectures suited for structured
databases, but real-world applications often involve
semi-structured and free-form tables, necessitating
alternative techniques (Hong et al., 2025). The ad-
vent of large language models (LLMs) has brought
a paradigm shift to NL-to-SQL. Unlike traditional
chat-based completion models, reasoning-driven
LLMs excel at understanding complex question
intent, handling multi-step logical reasoning, and
adapting to diverse database schemas with mini-
mal training. Researchers have also experimented
with prompt engineering and fine-tuning to im-
prove SQL query generation efficiency. Chain-of-
Thought (CoT) prompting enables LLMs to break

down complex queries step by step, further enhanc-
ing reasoning capabilities.

LLM-based approaches have demonstrated supe-
rior evaluation metrics on benchmark datasets such
as SPIDER (Yu et al., 2019), surpassing traditional
models. As research progresses, improvements in
model size, reasoning capabilities, and dataset qual-
ity are expected to drive further performance gains,
solidifying LLMs as the dominant paradigm for
Table QA.

3 Task Description

The SemEval 2025 Task 8 (Grijalba et al., 2025),
known as DataBench, is designed to evaluate sys-
tems that answer questions using real-world tabular
datasets. The challenge comprises two subtasks:

1. DataBench QA: Participants are provided
with entire datasets and corresponding ques-
tions, requiring systems to extract answers
from potentially large and complex tables.

2. DataBench Lite QA: This subtask involves
answering questions using a sampled version
of each dataset, limited to a maximum of 20
rows, focusing on models’ ability to handle
smaller data contexts.

The DataBench benchmark encompasses 65 di-
verse real-world datasets, each accompanied by
multiple questions. These datasets span various
domains and exhibit a wide range of data types
and table sizes, challenging systems to adapt to
different structures and content. The questions as-
sociated with these datasets are designed to elicit
various response types, including numerical val-
ues, categorical data, boolean judgments, and lists.
This diversity necessitates that participating sys-
tems possess robust capabilities in understanding
and processing heterogeneous tabular data to gener-
ate accurate and contextually appropriate answers.

4 Methodology

Our approach leverages a Natural Language to SQL
(NL-to-SQL) agent to generate structured queries
that retrieve relevant information from tabular data.
The system follows a multi-stage pipeline consist-
ing of example selection, SQL query generation,
answer extraction, verification, and iterative refine-
ment. This framework ensures high accuracy and
adaptability across datasets with varying structures
and question complexities. Alternative methods
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such as rule-based retrieval and RAG were tested
but proved less effective, especially when handling
large-scale tabular reasoning tasks.
Additionally, we experimented with multiple mod-
els on the same pipeline to optimize performance,
including GPT-4o, GPT-4o-mini, and DeepSeek
v2:16b. Our system follows the following five-
stage pipeline.

4.1 Example Selection

To improve SQL query generation, we curated a
set of 25 example question-query pairs, where each
question is a natural language input and each query
is the corresponding SQL output, covering diverse
question patterns such as filtering, aggregation,
grouping, sorting, joins, subqueries, and condi-
tional retrievals (Nan et al., 2023). These examples
were designed to represent various structural and se-
mantic variations commonly found in tabular data
questions. Given an input question, we computed
cosine similarity with these pre-defined examples
and selected the two most relevant question-query
pairs to provide as context.
To determine the most relevant examples for a
given input question, we utilized an embedding-
based similarity approach. First, we generated
vector representations (embeddings) for all exam-
ple questions using text-embedding-ada-002 and
stored it in a ChromaDB vector database collection.
When a new question was received, we computed
its embedding using the same model and calcu-
lated the cosine similarity between the embedding
of the input question and those of the pre-defined
examples in the collection. The two most similar
examples were selected as context for SQL gen-
eration, ensuring that the model received relevant
references closely matching the structure and intent
of the input question. This approach helped guide
the model in producing more precise and contextu-
ally appropriate queries, improving the accuracy of
our system.

4.2 SQL Query Generation

To generate accurate SQL queries, we provided the
LLM with a structured prompt that included the
table schema, specifying column names and data
types, along with a few sample rows to offer con-
textual grounding (Wu et al., 2024). Additionally,
we incorporated the two most relevant example
natural language question-sql query pairs, selected
based on cosine similarity, to guide the model in
producing syntactically and semantically appro-

priate SQL statements. To enforce query validity,
explicit SQL syntax constraints were included in
the prompt, ensuring that the generated queries
adhered to the expected format. The primary ob-
jective of the initial retrieval step was to extract
relevant table rows rather than compute direct an-
swers, allowing for a structured query execution
process. These generated SQL queries were then
executed on the SQLite database containing the
DataBench datasets, retrieving the necessary rows,
which were subsequently processed in later stages
to derive the final answers.

4.3 Answer Extraction and Formatting

Once rows were retrieved via SQL, a secondary
prompt analyzed and extracted the data to derive
the final answer, ensuring compliance with ex-
pected data types (e.g., ordered lists, numerical
outputs). This step was crucial for refining the raw
SQL outputs into the structured response format
required by the task. To enhance the reasoning
capability of the model, we employed Chain-of-
Thought (CoT) prompting (Liu and Tan, 2023),
which allowed the LLM to break down the answer
derivation process into logical steps. The model
was instructed to analyze the retrieved rows, ex-
tract only the necessary values, and format them
correctly based on the expected answer type.
The prompt provided structured guidelines for dif-
ferent expected output types, including boolean
values, categorical selections, numerical computa-
tions, and list-based answers. By leveraging struc-
tured CoT reasoning, the LLM could systematically
evaluate the retrieved data, determine the most rel-
evant cell or computed value, and return a precise
answer aligned with the question intent.

4.4 Answer Verification

A verification step using an additional GPT-4o
prompt classified responses based on two key crite-
ria: format validity and relevance to the given ques-
tion (Wang et al., 2024). The system was designed
to assess whether an answer adhered to expected
formats—such as Boolean values, numerical val-
ues, dates, or categorical lists—without performing
fact-checking. If an answer deviated from these
predefined formats or was entirely unrelated to the
question, it was flagged for reprocessing. To en-
sure robustness, borderline cases were defaulted
to acceptance unless a clear and significant viola-
tion of format or relevance was detected. This step
minimized incorrect responses by identifying cases
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where the initial SQL query retrieved extraneous or
irrelevant information, ensuring that only properly
structured and contextually appropriate answers
progressed to the final stage.

4.5 Answer Reprocessing

If a response was flagged for reprocessing, the sys-
tem adapted its approach to improve answer preci-
sion. The examples used in SQL generation were
updated to prioritize queries that retrieved specific
values rather than entire rows, ensuring a more
targeted extraction of relevant information. Addi-
tionally, the SQL generation prompt was refined
to directly extract the exact answer values from
the dataset, minimizing unnecessary retrieval of
irrelevant data. A final formatting step enforced
consistency with the expected output type, whether
numerical, categorical, or list-based, aligning re-
sponses with the required structure. The entire
query generation and execution pipeline was re-
executed after these refinements were made on
queries that were flagged for reprocessing. This it-
erative refinement process enhanced overall answer
correctness and significantly reduced extraneous
outputs.
After reprocessing, the outputs from the newly re-
fined queries were combined with the outputs from
the original successful (approved) queries. If a
query was flagged and reprocessed, its new result
replaced the earlier one. If a query was not flagged,
its original output was retained. This way, the final
set of results included the best available answer for
each query—either from the initial run (if it was al-
ready correct) or from the reprocessed run (if it had
been improved). The system ensured there were
no duplicates and that each query had exactly one
final, verified result in the merged output.

5 Results

To evaluate the effectiveness of our Natural Lan-
guage to SQL (NL-to-SQL) query agent, we con-
ducted experiments on two benchmark datasets -
Databench and Databench-Lite, using three Large
Language Models (LLMs): GPT-4o, GPT-4o-mini,
and deepseek-v2:16b (DeepSeek-AI et al., 2024).
Additionally, we compared our results to the pro-
vided baseline model to establish a reference point
for performance (Sinha et al., 2024).
GPT-4o consistently demonstrated superior perfor-
mance compared to other models. Its ability to
accurately interpret and break down user queries

played a crucial role in generating results in the
expected format. This allowed for more precise
and contextually relevant outputs, particularly in
complex scenarios. GPT-4o-mini also exhibited
many of the advantages of GPT-4o, particularly in
question understanding and structured output gen-
eration, though to a lesser extent due to its smaller
model size and optimization for cost-effective ap-
plications. DeepSeek v2:16b showed some capabil-
ity in processing structured queries but lacked the
same level of precision, adaptability, and ability to
follow prompt instructions.
For evaluation, the organizers rank the system
based on accuracy of the answers on the question
answering task. Our approach ranked 10th on the
Databench task proprietary model leaderboard and
9th on the Databench-Lite task proprietary model
leaderboard, demonstrating the capabilities of our
system. Table 1 presents the accuracy of our mod-
els compared to the baseline.
Our NL-to-SQL pipeline, combined with LLM
capabilities, resulted in substantial improvements
over the baseline across all models. The enhance-
ments introduced in our approach directly con-
tributed to these improvements:

1. Embedding-based example selection im-
proved query contextualization and standard-
ization, leading to more accurate SQL gener-
ation and a higher success rate for complex
queries.

2. Chain-of-Thought (CoT) reasoning signifi-
cantly reduced errors in answer extraction,
particularly in handling numerical computa-
tions, categorical selections, and ordered lists.

3. Answer verification and iterative reprocessing
helped eliminate hallucinated SQL queries
and irrelevant outputs, ensuring greater re-
sponse reliability.

These methodological improvements enabled GPT-
4o to achieve the highest accuracy (70.50% on
Databench and 71.65% on Databench-Lite), clearly
outperforming the baseline performance. Even
deepseek-v2:16b, despite its lower overall accu-
racy, showed a significant improvement over the
baseline, demonstrating the effectiveness of our
multi-stage NL-to-SQL framework.

6 Conclusion

This study advances NL-to-SQL translation by
developing a multi-stage LLM-driven agentic
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Model Databench Databench-lite
Baseline 26.00 27.00

GPT-4o-mini 60.34 61.49
GPT-4o 70.50 71.65

deepseek-v2:16b 39.68 45.78

Table 1: Accuracy Score Comparison across mod-
els

pipeline that significantly improves query accuracy,
explanability and query consistency compared to
previous models. Our approach integrates exam-
ple selection, Chain-of-Thought (CoT) reasoning,
and answer verification, which collectively enhance
SQL generation by improving query structure con-
sistency, reducing ambiguity, and refining output
accuracy. GPT-4o achieved the highest accuracy
across both benchmark datasets, demonstrating the
effectiveness of this structured approach over base-
line methods.
By leveraging context-aware question selection and
structured reasoning, the system effectively miti-
gates common NL-to-SQL challenges, such as mis-
interpretation of input question intent and incorrect
SQL syntax. The incorporation of an iterative re-
finement process further ensures robust query gen-
eration, reducing errors, and enhancing the overall
accuracy.
The results on smaller datasets like Databench-Lite
illustrate the effectiveness of our pipeline in gener-
ating accurate and well-structured SQL queries for
constrained datasets. Furthermore, the consistent
performance observed on larger datasets demon-
strates the scalability of our framework, making it
well-suited for enterprise applications that require
high reliability and adaptability across diverse cor-
porate databases. This robustness ensures that or-
ganizations can leverage our approach for complex
query generation at scale, improving efficiency and
decision-making processes.
These findings reinforce the potential of LLM-
driven NL-to-SQL systems as a scalable and effi-
cient solution for automating database interactions.
The integration of structured reasoning and veri-
fication mechanisms represents a significant step
toward improving the accuracy and interpretabil-
ity of automated question answwering over tbaular
data.

7 Future Work

While the proposed NL-to-SQL pipeline demon-
strated significant improvements over baseline
methods, an analysis of system outputs revealed
several challenges affecting query accuracy and
reliability. These errors primarily fall into two cat-
egories:
1. Complex Numerical Reasoning Errors: The
system exhibited difficulties in handling queries
that required multi-step numerical reasoning, par-
ticularly those involving ranking, aggregation, and
filtering operations.
2. Categorical Misclassification: The system occa-
sionally misclassified categorical values, selecting
responses that were semantically related but incor-
rect.
Advances in LLM architectures with better contex-
tual understanding, improved token representations
for tabular data, and stronger reasoning capabil-
ities could enhance the accuracy of query gener-
ation. Additionally, developing more structured
NL-to-SQL frameworks that incorporate explicit
schema understanding, enhanced query verifica-
tion, and iterative refinement processes may further
improve performance. Combining these advance-
ments with more effective post-processing tech-
niques and adaptive learning strategies could lead
to a more reliable NL-to-SQL system.
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A Appendix

A.1 Prompt Templates

SQL Query Prompt Template

You are a PostgreSQL expert. Given an
input question, create a syntactically correct
PostgreSQL query to run. Unless otherwise
specified.
Here is the relevant table info: {table_info}
Most columns have intuitive names. Re-
turn the entire row(s) that contain the fi-
nal answer in context of the original ques-
tion based strictly on the SQL table you
are given (always use SELECT (*)). Ev-
ery question will be answered only from the
table provided, no other source of data.
Below are a number of examples of ques-
tions and their corresponding PostgreSQL
queries.

Final Response Prompt Template

Given the following user question and
row(s) containing the answer, infer and an-
swer the user question in exactly the for-
mat expected. You are also given columns
headers for the table from which the row
is extracted for context. Answer only the
user question directly with the information
from the SQL rows given to you. Answers
should strictly contain only the value ex-
pected, NOTHING ELSE. Ensure you re-
spond only with values directly from the
rows, do not write full sentences. The fol-
lowing answer formats are expected based
on the question asked: Boolean: Valid an-
swers include True/False. If a question
expects a yes/no answer, respond strictly
only with True or False. Category: A value
from a cell (or a substring of a cell) in the
dataset. Number: A numerical value from
a cell in the dataset, which may represent a
computed statistic (e.g., average, maximum,
minimum). List: A list containing a fixed
number of categories or numbers. The ex-
pected format is: "[’cat’, ’dog’]". Columns
available in the dataset: {column_headers}
Question: {inputs[’question’]} SQL Result:
{inputs[’result’]} Answer:
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