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Abstract

In this paper, we propose an approach to de-
tecting hallucinations based on a Named Entity
Recognition (NER) task. We train a model to
identify spans of text likely to contain hallu-
cinations, treating them as a form of named
entity. We focus on efficiency, aiming to de-
velop a model that can detect hallucinations
without relying on external data sources or
expensive computations that involve state-of-
the-art large language models with upwards of
tens of billions of parameters. We utilize the
SQuAD question answering dataset to generate
a synthetic version that contains both correct
and hallucinated responses and train encoder
language models of a moderate size (RoBERTa
and FLAN-T5) to predict spans of text that are
highly likely to contain a hallucination. We
test our models on a separate dataset of expert-
annotated question-answer pairs and find that
our approach achieves a Jaccard similarity of
up to 0.358 and 0.227 Spearman correlation,
which suggests that our models can serve as
moderately accurate hallucination detectors,
ideally as part of a detection pipeline involving
human supervision. We also observe that larger
models seem to develop an emergent ability to
leverage their background knowledge to make
more informed decisions, while smaller models
seem to take shortcuts that can lead to a higher
number of false positives. We make our data
and code publicly accessible, along with an
online visualizer. We also release our trained
models under an open license.

1 Introduction

Hallucinations in language models (LMs) are a
well-known issue that has been studied in the con-
text of text generation tasks (Ye et al., 2023; Huang
et al., 2024; Zhang et al., 2023; Rawte et al., 2023),
with some authors affirming they are inevitable (Xu
et al., 2024; Banerjee et al., 2024). However, de-
spite the open discussion on their avoidability, a
community of authors have worked on methods to

detect, prevent, or mitigate them (Tonmoy et al.,
2024; Miindler et al., 2023; Harrington et al., 2024;
Dhuliawala et al., 2023; Manakul et al., 2023, in-
ter alia). Our work contributes to this effort by
addressing hallucination detection in instruction-
tuned LMs, a shared task proposed in the SemEval
2025 Task 3, Mu-SHROOM (Viézquez et al., 2025).
We approach the chanllenge by framing halluci-
nation detection as a Named Entity Recognition
(NER) task, leveraging NER’s ability to identify
specific spans of text.

NER extracts structured information, such as
names, dates, or locations, from unstructured text
(Nadeau and Sekine, 2007). Traditionally, it has
been applied to sequence labeling tasks using rule-
based systems or machine learning models trained
on annotated datasets (Yang et al., 2024). However,
its versatility has led to applications beyond infor-
mation extraction, including social media analysis,
knowledge graph construction, reinforcement learn-
ing for entity augmentation, and more (Sufi et al.,
2022; Bunescu and Pagca, 2006; Wan et al., 2020;
Keraghel et al., 2024). In our approach, we adapt
NER to detect hallucinated spans by treating them
as a specialized type of named entity, allowing us
to efficiently identify incorrect or fabricated text
segments without relying on external data sources
or computationally expensive large-scale LMs.

The rest of this article is organized as follows:
in Section 2, we provide background information
on the task setup; in Section 3, we describe our sys-
tem’s approach; in Section 4, we detail our exper-
imental setup and present qualitative evaluations;
in Section 5, we report on the quantitative results
of our models and discuss their performance; and
in Section 6, we conclude our work and suggest
future directions. We also address ethical consid-
erations in Section 7 and discuss the limitations
of our approach in Section 8. We make our code,
dataset and models publicly available at https:
//github.com/ACMCMC/hallucinations-ner.
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2 Background

The shared task that our work is based on, Mu-
SHROOM, involves detecting spans of text that
correspond to hallucinations in the outputs of LMs,
with the goal of predicting where hallucinations
occur in a given text.

For example, given the following example from
the validation dataset of the task:

Question. What is the population of the
Spanish region of Galicia?

Tagged answer. As of 2021, the estimated
population in the region is around 1.5 mil-
lion people.”

“The opacity of the underlines represents the proba-
bility of the character being a hallucination.

The task consists of predicting the spans of text
that are more associated with hallucinations, which
in this case would be “2021” and “1.5 million”.

The authors of the task provide a dataset of
expert-annotated question-answer pairs in 14 lan-
guages, but we choose to focus on English due to
the complexity of generating a synthetic dataset of
faithful and hallucinated responses, which we use
to train our models (see Section 3).

Our approach is thus based on training a model
to predict spans of text that are likely to contain
hallucinations, which we model as a Named En-
tity Recognition (NER) task, under the assumption
that hallucinations can be seen as a form of named
entity that can be detected by a model trained to
recognize them. This assumption may not cover
all types of hallucinations, as we discuss in Sec-
tion &, but serves as a starting point that can be later
expanded upon.

We implement our NER strategy using an IOB
(Ramshaw and Marcus, 1995) tagging scheme,
which is a common approach in NER tasks that
assigns each token in a sequence a label indicating
whether it is inside (I), outside (O), or at the begin-
ning (B) of a named entity. In our case, however,
instead of named entities, we turn the task into pre-
dicting if we are outside or inside a hallucination.
Also, while IOB assigns an I label to single-token
entities, we slightly alter this approach by assigning
a B label to the first token of all entities, including
single-token entities, and an I label to all subse-
quent tokens, often referred to as IOB2 (Sang and
Veenstra, 1999).

It is important to note that NER is not limited

to IOB tagging; it can be performed using other
approaches that may leverage graphs (Muis and
Lu, 2017; Wang et al., 2021), neural networks
(Sohrab and Miwa, 2018; Wang and Lu, 2019),
constituency discriminators (Finkel and Manning,
2009), or translation to an augmented natural lan-
guage form that can be easily extracted (Paolini
et al., 2021), among others. Likewise, the IOB tag-
ging scheme is not exclusive to NER tasks, as it
can be applied to any sequence labeling task.

3 System overview

Our goal is to train an encoder model to predict
spans of text that are likely to contain hallucina-
tions, so we choose to model the task as a NER
problem. We do not employ any of the common
NER-specific labels, such as dates or verbs, but
rather focus on the general applicability of the IOB
tagging scheme to our task.

We first need to have a collection of correct
and hallucinated responses to train our model, for
which we use the SQuAD dataset (Rajpurkar et al.,
2016). SQuAD is primarily intended for question
answering based on a given context, but we repur-
pose it by discarding the context and using exclu-
sively the question and suggested answers to build
a synthetic dataset of correct and hallucinated re-
sponses.

The first model is tasked with the transformation
of the SQuAD answers, which are an extracted
span of text from the context, into a full sentence
that a human could understand. Then, we use the
second model to generate variations of that correct
response in a way that it becomes a hallucination.

We assemble a synthetic dataset of question-
answer pairs, where the answers are either correct
or hallucinated, and we use this dataset to train our
models. Figure 1 shows our approach.

4 Experimental Setup

For our training process, we abstain from using the
training set provided by the shared task authors,
exclusively training on our synthetic dataset, which
we split on a 80/10/10 ratio for training, validation,
and testing, respectively. We use the validation
set to decide when to stop training. We only use
the test set to evaluate our models internally; the
results shown in Section 5 are based on the test set
provided by the shared task authors.

We choose a smaller model,
SmolLM2-360M-Instruct (Allal et al., 2025)
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SQUAD dataset (Rajpurkar et al., 2016)

How often is Notre Dame’s the Juggler published?

— twice

“Write a
human-friendly
response.”

— Notre Dame’s the
Juggler is published
twice a year.

@) SmolLM2-360M-Instruct
(Allal et al., 2025)

- |
“Generate a wrong
version.”
— Notre Dame’s the

Juggler is published
once a year.

|

©@ Llama-3.2-1B-Instruct
(Dubey et al., 2024)

) ROBERTa/FLAN-T5 encoder
(Liu et al., 2019; Chung et al., 2024)

(train)
...is publishedonce a . ..

... Tescoisinthe US ...

...Adele won 16 Oscars . ..

Figure 1: Our approach. We employ two instruction-
tuned language models to generate synthetic question-
answer pairs from the SQuAD dataset, including correct
responses and hallucinated variants. These are used
to train an encoder model, utilizing a Named Entity
Recognition framework, to identify and tag spans of
text likely to contain hallucinations.

to generate the correct answers since we anticipate
that this is a simpler task — however, when
it comes to generating hallucinated responses,
we want a larger model to generate more di-
verse and creative hallucinations, so we select
Llama-3.2-1B-Instruct (Dubey et al., 2024).

Since we wish for the hallucinated responses to
be significantly different both from the correct re-
sponse and among themselves, so we select a gener-
ation configuration to encourage this. Specifically,
we set the number of beams and beam groups to 3,
the diversity penalty to 0.5, the repetition penalty
to 1.2, and the temperature to 1.3; all to force di-
versity in the generated hallucinations.

We take the generated result of the three beams
from the hallucination model and add those as
hallucinated responses to our dataset. To ensure
we have a balance of correct and hallucinated re-
sponses, we include the same number of correct
and hallucinated responses in our synthetic genera-
tion process by upsampling the correct responses
to match the number of hallucinated responses.

For our choice of encoders, we selected models
of the BERT and T5 families, RoBERTa-Base and
RoBERTa-Large (Liu et al., 2019) and FLAN-T5-XL
(Chung et al., 2024), respectively. We opted for the
FLAN variant of T5 as we hypothesize that its more
extensive training on a diverse set of tasks may help
it generalize better to our task.

It is important to highlight that we only run the
hallucination generation step once, which we ac-
knowledge may lead to a decrease in the represen-
tativeness of our synthetic dataset. The test dataset,
in fact, can contain more than one hallucination
per question-answer pair. This could be addressed
by running the hallucination generation step more
than once, which we leave for future work.

We only generate hard labels for evaluation (0.0
or 1.0) and do not use the probabilities assigned
by the models to each token, which could be a
potential improvement to our approach.

4.1 Qualitative evaluation

We conducted both quantitative (Section 5) and
qualitative evaluations, which we describe next.
We developed a visualizer that allows to explore
the test split of our synthetic dataset and the pre-
dictions we make for each data point, as well as
writing any text to explore the predictions of our
models. We utilized this tool to qualitatively in-
terpret whether and how our models learned to
identify hallucinations. We also make it publicly
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Question (only for RoOBERTa Large QA and Flan T5 QA)

What year did the French revolution take place in?

Try your own text

The French Revolution took place in 1984.

% Predicted Hallucinations (RoBERTa Base)

The French Revolution took place in  1984. YN

% Predicted Hallucinations (RoBERTa Large QA)

The French Revolution took place in  1984. [ETH

i Predicted Hallucinations (Flan T5 QA)

The French Revolution took place in  1984. 1§

(a) Hallucination. All models correctly tag “1984”.

Question (only for RoBERTa Large QA and Flan T5 QA)

What year did the French revolution take place in?

Try your own text

The French Revolution took place in 1789.

i Predicted Hallucinations (RoBERTa Base)

The French Revolution took place in17 89. [N

% Predicted Hallucinations (RoBERTa Large QA)

The French Revolution took place in 1789.

2 Predicted Hallucinations (Flan T5 QA)
The French Revolution took place in 1789.
(b) Correct answer. The smaller model, RoBERTa-Base, in-

correctly tags “89” (part of the year entity) as a hallucination.
The two larger models are correct in not finding any.

Figure 2: Emergent abilities. Qualitative analysis seems to indicate that larger models go beyond tagging spans of
text likely to contain hallucinations, a shortcut that the smaller model seems to take. These models may be learning
to extract their background pretrained knowledge to make more informed decisions.

available at https://huggingface.co/spaces/
shroom-semeval25/cogumelo-visualizer.

We observe that our models do not exclusively
tag spans of text that present a higher possibility
of having been hallucinated, such as figures and
names of named entities. For instance, when given
the question “What year did the French Revolution
take place in?”, the answer “The French Revolution
took place in 1984” gets the correct hallucination
tag “1984”, while a correct answer (1789) is not
tagged in the case of larger models (Figure 2).

This points to the intuition that smaller and larger
models are learning in different ways. It appears
that the smaller model learns to identify what spans
of text usually contain hallucinations (e.g., 1984
or 1789), which is a shortcut that serves to iden-
tify some hallucinations — but can also lead to a
higher number of false positives. On the other hand,
the larger models seem to avoid running into this
shortcut and instead seem to be learning to leverage
the knowledge that they acquired during their pre-
training to identify when a specific figure or claim
contradicts such background knowledge. Neverthe-
less, this observation cannot be generalized, and
further investigation is needed to understand the
underlying mechanisms that allow our models to
make these decisions.

Architecture IoU Sp. Corr.
Neural baseline 0.031 0.119
RoBERTa-Base 0.191 0.129
RoBERTa-Large (QA) 0.219 0.153
FLAN-T5-XL (QA) 0.358 0.227

Table 1: Scores obtained on the Mu-SHROOM English
test set for the three architectures considered. QA in-
dicates that the model was trained with the question
prepended to the answer. The neural baseline is based
on XLM-R (Conneau et al., 2020).

5 Results

Table 1 shows the scores for our three models,
along with a baseline based on XLM-R (Conneau
et al., 2020). We report on the two metrics official
to the Mu-SHROOM shared task: the Intersection
over Union (IoU) of characters marked as hallu-
cinations in the gold reference vs. predicted as
such, and the Spearman correlation (Sp. Corr.) of
the probability assigned by the system that a char-
acter is part of a hallucination with the empirical
probabilities observed in the annotations.

The results show that larger model sizes seem to
correlate with better performance. Model architec-
ture also seems to play a role, with the FLAN-T5-XL
model outperforming the RoBERTa models in both
metrics.
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In general, while above a baseline model, our
results tend to be lower than some other participants
in the shared task, which we attribute to the fact
that the models we utilize may not have enough
capacity to learn the task effectively; the synthetic
data we generate, which is not fully aligned with
the hallucinations found in the evaluation dataset;
and the fact that other techniques such as RAG
(Lewis et al., 2020) can retrieve ground truths that
greatly improve the performance of the models,
since the types of questions asked in the evaluation
dataset are at times very specific and we do not
expect that such niche knowledge is present in the
background knowledge of our models.

It should also be noted that the Spearman cor-
relation is generally lower than the IoU, which is
very dependent on the threshold used to determine
if a character is part of a hallucination or not. As
seen in Figure 2b, the models may sometimes tag
just subparts of a hallucination, which we expect
will particularly lower the Spearman correlation.
Additionally, since we make our models generate
hard labels exclusively, we expect that the Spear-
man correlation would also be lower than if we had
used soft labels.

6 Conclusion

In this article, we present an approach to detecting
hallucinations in the output of language models
based on a named entity recognition task. We
train moderate-size encoding models on a syn-
thetic dataset generated from the SQuAD question-
answering dataset, which we use to predict text
segments that are likely to contain hallucinations.
Our models achieve a Jaccard similarity of up to
0.358 and a Spearman correlation of up to 0.227,
suggesting that our models can serve as moder-
ately accurate hallucination detectors, although our
scores are lower than some other participants in the
shared task. We also observe an interesting pattern
in the behavior of our models, where larger models
seem to develop an emergent ability to use their
background knowledge to make more informed
decisions, while smaller models seem to take short-
cuts that can lead to a higher number of false posi-
tives. We publicly release a synthetic dataset, open-
source code and models, along with an interactive
visualizer to facilitate further research. Future work
could explore enhancing this NER-based approach
by incorporating diverse hallucination types and
multilingual data to improve detection accuracy.

7 Ethical considerations

Our work aims to contribute to the development
of better systems to detect hallucinations, which
has important implications for the development
of more reliable and trustworthy language models.
However, we acknowledge that our models are not
perfect and that they may make mistakes. We hope
that our approach can be used as part of a pipeline
involving human supervision to ensure that the de-
cisions made by the models are correct and that the
models do not make decisions which could have
negative consequences.

8 Limitations

English-centricness. Our models were trained
on English data only, which may limit their perfor-
mance on other languages. Further work is needed
to investigate how our models generalize to other
languages, and to develop localized versions of our
synthetic datasets to train models that can detect
hallucinations in other languages.

Alternative architectures. We only considered
models from the RoBERTa and T5 families, but it is
up for debate whether other encoder architectures
may be more suitable for the task. Further exper-
imentation should be conducted to determine the
best architecture for the task, which may involve
architectures of different families and sizes, not
necessarily transformer-based.

Hallucination types. In our approach, we pri-
marily generate factual hallucinations, but the eval-
uation datasets may contain other types of hallu-
cinations, such as logical, context or instruction
inconsistencies (Huang et al., 2023). For instance,
in the evaluation dataset, we may find question-
answer pairs like “What is the capital of France?”
with the answer “France is a country in Europe.”,
which is an instruction inconsistency. We expect
this to limit the generalization capabilities of our
models, since they have been trained on a narrower
set of hallucinations than those found in the evalua-
tion datasets.

Knowledge cutoff date. Our synthetic dataset is
derived from the SQuAD dataset, which dates back
to 2016 (Rajpurkar et al., 2016) and may not be rep-
resentative of the current state of knowledge. This
may deteriorate the performance of our models.
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