Exploration Lab IITK at SemEval-2025 Task 8: Multi-LLM Agent QA over
Tabular Data

Aditya Bangar

Ankur Kumar

Shlok Mishra Ashutosh Modi

Indian Institute of Technology Kanpur (II'T Kanpur)
Kanpur, India
{adityavb21, ankurk21l, shlokm21}@iitk.ac.in, ashutoshm@cse.iitk.ac.in

Abstract

This paper presents our Multi-LLM Agentic
System that helps solve the problem of tabular
question answering as posed in the SemEval
Task- 8:Question Answering over Tabular Data.
Our system incorporates a Agentic Workflow
where we assign each agent a role along with
the context from other agent to better help re-
solve the ambiguity. As the user poses their
question along with the dataframe, we firstly
try to infer the types of the columns from the
dataframe and also the expected answer type
given the question and the column types, then
the planner agent gives out a plan that tells us
about the steps that we have to take to get the
answer, each step is written such that it helps
us write one line of python code. Then we call
the cod- ing agent which attempts to write the
code given the information from the previous
agents. Then we do a debugging pass through
a debugging agent which tries to resolve the
issue given the previous context and finally de-
liver the answer if the code runs error free. Our
system achieved 14th place on the overall open
source models track.

1 Introduction

Question Answering (QA) over tabular data is a
Natural Language Processing (NLP) task that in-
volves extracting aanswers from structured tabular
formats. This task is crucial as many financial re-
ports, scientific data, and government records, exist
in tabular form. Automating QA over tables en-
hances information retrieval and decision-making
processes. The task covered in this work involves
evaluating the performance of language models on
tabular QA on Databench (full tables) benchmark,
following the benchmark and methodologies out-
lined in the task overview paper (Grijalba et al.,
2024).

The problem involves addressing challenges like
diverse query intents, table structures, and complex
answer types (Boolean, categorical, numerical, and

lists). Key sub-problems include query intent dis-
ambiguation, efficient data retrieval, and reason-
ing over large tables and multi-turn interactions.
The broader impact of this research lies in its po-
tential to scale across diverse data sources. Our
system utilizes OpenAl’s API, accessed via Python,
to interact with Deepseek’s R1 open-source model.

Through this competition, we gained valuable
insights into the strengths and limitations of tra-
ditional Transformer-based models in guestion
answering over tabular data. We ranked four-
teenth among all submissions, highlighting both
our achievements and areas for improvement. We
explored various reasoning-based approaches and
found that breaking the problem into smaller, more
manageable subtasks significantly enhanced per-
formance. By assigning each subtask—such as
interpreting the question, extracting relevant infor-
mation, searching and querying with code, and
debugging errors—to specialized models, we dis-
tributed the workload effectively and provided each
model with a focused area of operation. This multi-
agent approach not only streamlined the process
but also improved precision by reducing the cog-
nitive burden on any single model. We observed
that the model struggles with semantic meaning of
some tricky questions, which requires additional
reasoning before execution which suggests poten-
tial areas for improvement.

The implementation is publicly available at this
Github repository.

2 Background

2.1 Problem Definition

Tabular question answering (QA) involves gener-
ating accurate answers to natural language queries
based on structured tabular data. Formally, given
a table 7" and a natural language question (), the
goal is to produce an answer A:

(T,Q) — A

2165

Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 2165-2169
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

https://huggingface.co/datasets/cardiffnlp/databench
https://github.com/CS779-Research-Project/semeval-task-8
https://github.com/CS779-Research-Project/semeval-task-8

Example: Consider table 7"

Name | Age
Alice | 30
Bob | 25

Given question (): "What is Alice’s age?", the
expected answer A is "30".

2.1.1 Terminology and Definitions

e Table (T'): A structured tabular dataset where
each column Cj has a specific data type (e.g.,
numerical, categorical).

* Question (()): A natural language query for
extracting information from table 7T'.

¢ Answer (A): The response derived from table
T that satisfies question Q).

2.1.2 Our Approach

We propose a multi-agent, self-correcting frame-
work for Question Answering over Tabular Data,
addressing the limitations of direct table encoding
seen in models such as TAPAS (Herzig et al., 2020),
TaBERT (Yin et al., 2020), and StruBERT (Trabelsi
etal., 2022). Our approach leverages modern Large
Language Models (LLMs) (Fang et al., 2024) to
iteratively refine understanding, code generation,
and debugging.

Our methodology uses the Deepseek’s latest
Deepseek R1 model in a multi-agent setting. We
use OpenAl’s API to call the model at various sub-
steps of the Query task, mainly plan generation,
relevant column extraction, query code generation,
and debugging. First, we extract dataframe meta-
data, including column names, types, statistical
metrics, and expected answer types. This, along
with the question and dataframe, is sent to the Plan-
ner Agent, which formulates a solution strategy.
The plan is passed to the Relevant Column Agent,
which identifies essential columns and refines the
context for the Coder Agent. The Coder Agent then
generates and executes Python query code, veri-
fying success based on error-free execution and
correct answer type.

If execution fails due to errors or incorrect out-
put, the Debugger Agent modifies the code and
retries execution. This process is repeated up to
three times to enhance accuracy. If all attempts
fail, the system outputs NULL. This structured ap-
proach balances efficiency and reliability in query
resolution.

2.2 Related Works

The survey by Fang et al. (Fang et al., 2024) pro-
vides an in-depth review of tabular question an-
swering (QA) using large language models (LLMs).
This work not only summarizes existing methodolo-
gies but also categorizes the research into several
key areas that address the multifaceted challenges
of working with tabular data. It explains how differ-
ent approaches tackle issues such as clarifying am-
biguous user intents, retrieving relevant segments
from tables, managing sequential interactions, and
enabling autonomous query answering.

Specifically, the survey examines Query Intent
Disambiguation techniques, which focus on clari-
fying the user’s query (Zha et al., 2023; Deng et al.,
2022). It further reviews Search & Retrieval meth-
ods aimed at extracting the most pertinent portions
of a table (Zhao et al., 2024; Sundar and Heck,
2023) and discusses strategies for handling Multi-
Turn Settings in sequential interactions (Sui et al.,
2024; Ye et al., 2023; Liu et al., 2023). In addition,
the survey explores Autonomous Tabular Ques-
tion Answering through multi-agent approaches
(Zhu et al., 2024; Ye et al., 2024, 2023) and high-
lights the role of Few-shot and Zero-shot Learn-
ing in efficiently adapting models with minimal
labeled data (Ye et al., 2024). These distinct re-
search directions collectively underscore the evolv-
ing landscape of tabular QA using LLMs.

2.3 Corpus/Data Description

This project utilizes DataBench, a benchmark
dataset designed for evaluating question answer-
ing over tabular data in structured CSV-style files.

Dataset Overview: DataBench comprises 65
publicly available tabular datasets across five do-
mains: Health, Business, Social Networks and Sur-
veys, Sports and Entertainment, and Travel and Lo-
cations. The dataset includes a total of 3,269,975
rows and 1,615 columns.
* Domain Taxonomy: Table 1 shows a break-
down of DataBench by domain, including the
number of datasets, rows, and columns.

* Column Types: Table 2 illustrates the range
of column data types found in DataBench,
from simple numeric fields to more complex
list structures.

2.4 Questions and Answers Generation

DataBench includes 1,300 hand-crafted question-
answer pairs (20 per dataset) spanning five types:

2166

https://www.deepseek.com/

Table 1: DataBench Domain Taxonomy

Domain Datasets Rows Columns
Business 26 1,156,538 534
Health 7 98,032 123
Social 16 1,189,476 508
Sports 6 398,778 177
Travel 10 427,151 273
Total 65 3,269,975 1615

Table 2: Column Types in DataBench

Type Columns Example
Number 788 55
Category 548 Apple
Date 50 1970-01-01
Text 46 A red fox ran...
URL 31 google.com
Boolean 18 True
List[Number] 14 [1,2,3]

List[Category] 112
List{URL] 8

[sam, dee, lia]
[ggu.uk, abc.in]

Boolean, Category, Number, List[Category],
and List[Number].

Examples:
* Question: "What’s the oldest passenger’s
class?" Answer: First

* Question: "Who are the passengers under 307"
Answer: [Lil Lama, Cody Lama]

3 System Overview

We explored various approaches to Question An-
swering over Tabular Data, including transformer-
based models and LLM-based coding paradigms.
While models such as TAPAS (Herzig et al., 2020),
TaBERT (Yin et al., 2020), and StruBERT (Trabelsi
et al., 2022) showed promise, their direct encoding
of table context was insufficient for our analytical
needs.

To overcome these limitations, we developed a
multi-agent, self-correcting framework using mod-
ern LLMs (viz. DeepSeek-V3, DeepSeek-R1):

* Understand the table and Plan: We firstly
extract some relevant information about the
dataframe by writing functions that help in-
fer the column types and also have an LLM
call that determines the datatypes given the
dataframe head and the query. This provides

the LLM with a better understanding of both
the data and the query via in-context learn-
ing. Then, we call the Planner Agent to de-
vise an easy step-by-step plan that guides the
coding agent to better interpret the query and
dataframe for code generation.

* Plan then Code: Once the plan is ob-
tained, another LLM call identifies the rele-
vant columns required for answering the ques-
tion, thereby clarifying the objective for the
Coder Agent via in-context learning.

* Output Analysis and Code Correction: Af-
ter receiving the code output from the Coder
Agent, we execute the code and debug it us-
ing a Debugging Cycle involving the Debug-
ging Agent. This cycle runs for a maximum
of three attempts to optimize execution time.
Figure 1 illustrates the workflow of our multi-
agent code and output-based approach.

Planner Agent
[question, dataframe
stats and info,

plan to execute]

_/ Relevant Column

‘Agent get_expected

Ans_type()

"

Coder Agent

[Dataframe
k.) Question

i

Run Code

+1 Debugging attempt
modified code

Execution Successiul
OR

Atmost three debuagging
attempt

Figure 1: Workflow of the Multi-Turn Code and Output-
Based Approach. The first agent generates code based
on a plan, while the second agent evaluates and itera-
tively corrects the output.

Structured Outputs: We establish a defined
structure for communication between the LLMs
when certainty is required. For example, for infer-
ring column types, determining the answer type,
and generating code for extraction and execution,
we employ intermediate LLM passes that produce
outputs in a JSON structure.

2167

4 Experimental Setup and Results

In our experiments, we evaluated our multi-agent,
self-correcting framework for question answering
over tabular data on the full DataBench dataset.
The evaluation metric used was accuracy—the per-
centage of correctly answered queries based on the
official evaluation script. All experiments were per-
formed exclusively on the full dataset, in line with
our design decisions, and the reported results are
those obtained on the test set.

4.1 Baselines and Compared Systems

We compare our system against:

1. Baseline Model: The relevant baseline pre-
sented in the task paper (Grijalba et al., 2024)
achieves an accuracy of 26% on the test set.

2. Top Performer: As reported in the official
task ranking the best-performing system at-
tained an accuracy of 95.02% on the full
dataset.

3. Our System: Our multi-agent system, which
leverages a sequence of specialized agents
for planning, code generation, and debugging,
achieves an accuracy of 79.69%. Despite this
notable improvement over the baseline, our
submission was ranked 14th in the overall
task.

Table 3 summarizes the performance of these
three systems.

Method Accuracy (%) Rank
Baseline (Task Paper) 26.00 33rd
Top Performer (Team TeleAl) 95.02 Ist

Ours 79.69 14th

Table 3: Performance on the Full DataBench Dataset in
the Open Source Models Track

4.2 Evaluation Metrics

We assess performance using:
* Accuracy: Percentage of correctly answered
questions.
* Leaderboard Ranking: Our multi-turn
framework is ranked on the SemEval leader-
board.

5 Results

The experimental results highlight several key
points:

* Improved Accuracy: Our system outper-
forms the baseline by a substantial margin,
demonstrating the benefits of decomposing
the problem into distinct subtasks handled by
specialized agents.

* Iterative Refinement: The multi-agent
framework—with dedicated agents for plan-
ning, relevant column identification, code gen-
eration, and debugging—plays a crucial role
in handling complex queries over tabular data.
The iterative debugging cycle ensures that er-
rors in code generation are corrected promptly,
leading to a higher likelihood of accurate out-
puts.

* Ranking Implications: Although our system
achieves a high accuracy of 79.69%, the over-
all task ranking (14th) indicates that there re-
mains significant room for improvement. Fu-
ture works in this direction related to question
ambiguity removal and iterative refinement
through better understanding the semantics
of the table in relation to the query will help
improve the results.

These findings not only validate the effectiveness
of our multi-agent approach on the full dataset but
also provide a roadmap for future enhancements in
tabular question answering systems.

6 Conclusion

The proposed 2-LLM agent framework combines
intent-driven code generation with output-based
refinement. Our Multi-Agent Code and Output-
Based Approach outperforms baseline methods
and transformer-based models in handling complex
queries. Ranked third on the SemEval leaderboard,
our framework sets a strong foundation for further
work on prompt engineering, improved retrieval
mechanisms, and domain-specific extensions.

Acknowledgments

We conducted this research at the Exploration Lab,
IIT Kanpur, and the Department of Computer Sci-
ence and Engineering at IIT Kanpur. We extend
our heartfelt gratitude to all members for their in-
valuable support and guidance. We also thank the
organizers and all contributors to the DataBench
dataset for their contributions to the research com-
munity.

2168

References

Yang Deng, Wenqiang Lei, Wenxuan Zhang, Wai Lam,
and Tat-Seng Chua. 2022. PACIFIC: Towards proac-
tive conversational question answering over tabular
and textual data in finance. In Proceedings of the
2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6970-6984, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang,
Ziqing Hu, Yanjun Qi, Scott Nickleach, Diego Socol-
insky, Srinivasan Sengamedu, and Christos Faloutsos.
2024. Large language models(llms) on tabular data:
Prediction, generation, and understanding — a survey.
Preprint, arXiv:2402.17944.

Jorge Osés Grijalba, Luis Alfonso Urefia-Lépez, Euge-
nio Martinez Camara, and Jose Camacho-Collados.
2024. Question answering over tabular data with
databench: A large-scale empirical evaluation of llms.
In Proceedings of LREC-COLING 2024, Turin, Italy.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Miiller, Francesco Piccinno, and Julian Eisenschlos.
2020. Tapas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics.
Association for Computational Linguistics.

Tianyang Liu, Fei Wang, and Muhao Chen. 2023. Re-
thinking tabular data understanding with large lan-
guage models. Preprint, arXiv:2312.16702.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han,
and Dongmei Zhang. 2024. Table meets llm: Can
large language models understand structured table
data? a benchmark and empirical study. Preprint,
arXiv:2305.13062.

Anirudh S. Sundar and Larry Heck. 2023. ¢TBLS: Aug-
menting large language models with conversational
tables. In Proceedings of the 5th Workshop on NLP
for Conversational AI (NLP4ConvAI 2023), pages 59—
70, Toronto, Canada. Association for Computational
Linguistics.

Mohamed Trabelsi, Zhiyu Chen, Shuo Zhang, Brian D.
Davison, and Jeff Heflin. 2022. Strubert: Structure-
aware bert for table search and matching. In Proceed-
ings of the ACM Web Conference 2022, WWW 22,
page 442-451. ACM.

Junyi Ye, Mengnan Du, and Guiling Wang. 2024.
Dataframe qa: A universal llm framework on
dataframe question answering without data exposure.
Preprint, arXiv:2401.15463.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decomposing evi-
dence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’23, page 174-184, New

York, NY, USA. Association for Computing Machin-
ery.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8413-8426. As-
sociation for Computational Linguistics.

Liangyu Zha, Junlin Zhou, Liyao Li, Rui Wang, Qingyi
Huang, Saisai Yang, Jing Yuan, Changbao Su, Xi-
ang Li, Aofeng Su, Tao Zhang, Chen Zhou, Kaizhe
Shou, Miao Wang, Wufang Zhu, Guoshan Lu, Chao
Ye, Yali Ye, Wentao Ye, Yiming Zhang, Xinglong
Deng, Jie Xu, Haobo Wang, Gang Chen, and Junbo
Zhao. 2023. Tablegpt: Towards unifying tables, na-
ture language and commands into one gpt. Preprint,
arXiv:2307.08674.

Yilun Zhao, Yitao Long, Hongjun Liu, Ryo Kamoi,
Linyong Nan, Lyuhao Chen, Yixin Liu, Xiangru
Tang, Rui Zhang, and Arman Cohan. 2024. Docmath-
eval: Evaluating math reasoning capabilities of 1lms
in understanding long and specialized documents.
Preprint, arXiv:2311.09805.

Jun-Peng Zhu, Peng Cai, Kai Xu, Li Li, Yishen Sun,
Shuai Zhou, Haihuang Su, Liu Tang, and Qi Liu.
2024. Autotqa: Towards autonomous tabular ques-
tion answering through multi-agent large language
models. Proc. VLDB Endow., 17(12):3920-3933.

2169

https://doi.org/10.18653/v1/2022.emnlp-main.469
https://doi.org/10.18653/v1/2022.emnlp-main.469
https://doi.org/10.18653/v1/2022.emnlp-main.469
https://arxiv.org/abs/2402.17944
https://arxiv.org/abs/2402.17944
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://arxiv.org/abs/2312.16702
https://arxiv.org/abs/2312.16702
https://arxiv.org/abs/2312.16702
https://arxiv.org/abs/2305.13062
https://arxiv.org/abs/2305.13062
https://arxiv.org/abs/2305.13062
https://doi.org/10.18653/v1/2023.nlp4convai-1.6
https://doi.org/10.18653/v1/2023.nlp4convai-1.6
https://doi.org/10.18653/v1/2023.nlp4convai-1.6
https://doi.org/10.1145/3485447.3511972
https://doi.org/10.1145/3485447.3511972
https://arxiv.org/abs/2401.15463
https://arxiv.org/abs/2401.15463
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://arxiv.org/abs/2307.08674
https://arxiv.org/abs/2307.08674
https://arxiv.org/abs/2311.09805
https://arxiv.org/abs/2311.09805
https://arxiv.org/abs/2311.09805
https://doi.org/10.14778/3685800.3685816
https://doi.org/10.14778/3685800.3685816
https://doi.org/10.14778/3685800.3685816

