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Abstract
This paper presents the submissions of the
iai_MSU team for SemEval-2025 Task 3 – Mu-
SHROOM, where we achieved first place in
the English language. The task involves de-
tecting hallucinations in model-generated text,
which requires systems to verify claims against
reliable sources. In this paper, we present our
approach to hallucination detection, which em-
ploys a three-stage system. The first stage
uses a retrieval-based method (Lewis et al.,
2021) to verify claims against external knowl-
edge sources. The second stage applies the
Self-Refine Prompting approach (Madaan et al.,
2023) to improve detection accuracy by ana-
lyzing potential errors of the first stage. The
third stage combines predictions from the first
and second stages into an ensemble. Our sys-
tem achieves state-of-the-art performance on
the competition dataset, demonstrating the ef-
fectiveness of combining retrieval-augmented
verification with Self-Refine Prompting. The
code for the solutions is available on GitHub1

1 Introduction

Large language models (LLMs) have revolution-
ized natural language processing (NLP), demon-
strating strong capabilities in text generation, sum-
marization, and dialogue systems. However, LLMs
remain prone to hallucinations, where generated
content contains false, misleading, or unverifiable
information. Addressing this issue is crucial for
real-world applications, especially in domains re-
quiring high factual accuracy, such as journalism,
medicine, and law. The ability to detect and miti-
gate hallucinations is essential to improve the relia-
bility and trustworthiness of LLM-generated con-
tent.
SemEval-2025 Task 3 – Mu-SHROOM2(Vázquez
et al., 2025) introduces a multilingual hallucina-
tion detection challenge, requiring participants to

1https://github.com/pansershrek/IAI_MSU
2https://helsinki-nlp.github.io/shroom/

identify specific spans of hallucinated text within
model-generated output. Unlike traditional fact-
checking tasks, Mu-SHROOM provides LLM-
generated text alongside tokenized representations
and logit scores, and participants must compute
a probability score for each character, indicating
its likelihood of being a hallucination. The task
covers 14 languages, including English, Chinese,
Arabic and several European languages, present-
ing unique challenges such as linguistic diversity,
cross-lingual hallucination patterns, and variations
in model behavior. To tackle these challenges on
English language, we propose a three-stage hallu-
cination detection system:

Stage 1: We employ a Retrieval-Augmented
Generation (RAG) pipeline, using Wikipedia as an
external knowledge source to verify input claims.

Stage 2: We employ an Self-Refine Prompting
strategy, where an LLM re-evaluates the first-stage
output to identify potential errors and refine hallu-
cination predictions.

Stage 3: We use an Ensemble strategy that
merges three predictions from the first stage and
three from the second stage to create the final sub-
mission.

2 Related Works

Hallucination detection in large language models
(LLMs) is a critical area of research, focusing on
identifying and mitigating instances where models
generate content that is plausible but factually in-
correct. Various approaches have been proposed to
address this challenge, including methods utilizing
LLMs themselves, retrieval-augmented verification
techniques, and self-refinement prompting strate-
gies.

LLMs can be utilized to detect hallucinations
by analyzing their internal states and output. In
"Unsupervised Real-Time Hallucination Detection
based on the Internal States of Large Language
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Models," (Su et al., 2024) the authors propose
MIND, an unsupervised training framework that
leverages the internal states of LLMs for real-time
hallucination detection without requiring manual
annotations. This approach utilizes the model’s in-
ternal representations during inference to identify
incoherent or factually inaccurate responses. But
we face a more difficult task as soon as we have
only tokens’ logits.

Another study, "Hallucination Detection: Ro-
bustly Discerning Reliable Answers in Large Lan-
guage Models" (Chen et al., 2024) introduces a ro-
bust discriminator named RelD to effectively detect
hallucinations in LLM-generated answers. RelD
is trained on a bilingual question-answering dia-
logue dataset, enabling it to identify unfaithful or
inconsistent content generated by diverse LLMs.

Integrating external knowledge sources into the
generation process can enhance the factual accu-
racy of LLM output. In "Mitigating Hallucinations
in Large Language Models via Self-Refinement-
Enhanced Knowledge Graph Retrieval" (Niu et al.,
2024) the authors propose Re-KGR, a method that
augments the factuality of LLMs’ responses by
leveraging knowledge graph retrieval. This ap-
proach identifies tokens with a high potential for
hallucination and refines the associated knowledge
triples to reduce verification efforts.

Similarly, "Self-Alignment for Factuality:
Mitigating Hallucinations in LLMs via Self-
Alignment" (Zhang et al., 2024) introduces SK-
Tuning, a strategy that improves an LLM’s confi-
dence estimation and calibration, thereby enhanc-
ing its self-evaluation ability. This method aligns
the model’s output with external knowledge to mit-
igate hallucinations.

Self-refinement prompting strategies involve it-
erative processes where LLMs generate, evaluate,
and refine their output to improve factual accuracy.
The "Self-Refine" (Madaan et al., 2023) approach
allows LLMs to iteratively refine output and incor-
porate feedback along multiple dimensions to im-
prove performance on diverse tasks. This method
does not require supervised training data or rein-
forcement learning and works with a single LLM.

Additionally, "Towards Mitigating Hallucination
in Large Language Models via Self-Reflection" (Ji
et al., 2023) proposes an innovative self-reflection
method to mitigate hallucination in LLMs. The
iterative feedback loop process generates, scores,
and refines responses to reduce hallucinations, par-
ticularly in medical question-answering systems.

3 Task solutions

3.1 Dataset and Database for RAG

To enhance the accuracy of hallucination detec-
tion, our system utilizes a RAG pipeline that incor-
porates external knowledge sources. We use the
Wikipedia dataset (Foundation), only an English
subset with 6.41M articles, as our primary factual
reference. We also clean all articles by removing
references and repetitive newline characters.

For efficient retrieval, we employ Qdrant3 as a
vector database, which enables fast and scalable
similarity searches. We use the Multilingual-E5-
Large (Wang et al., 2024) embedding model to
generate dense vector representations of the text.
To optimize retrieval performance and storage effi-
ciency, we embed only the first 512 characters of
each Wikipedia article. Similarity between queries
and stored embeddings is computed using Cosine
distance and HNSW as a search algorithm.

3.2 Our Solution: Only LLM

In our approach, we evaluate hallucination
detection using standalone LLMs without re-
trieval augmentation only on validation dataset.
Specifically, we experiment with Llama-3.1-8B-
Instruct (Grattafiori et al., 2024) and Qwen2.5-
72B (Yang et al., 2024) using prompt mentioned
in Appendix A.1 and Appendix A.2. These experi-
ments achieve best result of 39.7% IoU and 38.4%
Corr.

3.3 Our Solution: RAG Pipeline

To enhance hallucination detection, we implement
a RAG pipeline, utilizing Qwen2.5-72B as the
LLM and a vector database, as detailed in the
“Dataset and Database for RAG” section. We run
all our experiments on the validation dataset.

3.3.1 Experiment 1: Initial Prompts with
Top-1 Document

We begin by testing prompt mentioned in Ap-
pendix A.3, retrieving only the Top-1 related docu-
ment from the database. This initial setup provides
results of 51% IoU and 53% Corr.

3.3.2 Experiment 2: One-Shot
To enhance the model’s ability to detect hallucina-
tions, we introduce one-shot prompting strategies,
using prompts mentioned in Appendix A.4. These

3https://qdrant.tech/
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modifications should improve performance by pro-
viding clear examples of hallucination detection.
The results on the validation is 52.9% IoU and
52.8% Corr.

3.3.3 Experiment 3: Expanding to Top-5
Documents RAG

Finally, we increase the number of retrieved doc-
uments to Top-5 related documents, allowing the
model to cross-check its output against a broader
knowledge base. We experiment with prompt in
Appendix A.4 by adding 4 more examples for this
setting, leading to further results of 48.1% IoU and
45.6% Corr. Among all tested methods, the One-
Shot Prompting with Top-1 Document Retrieval
delivers the best performance.

3.4 Our Solution: Self-Refine Prompting
To further improve hallucination detection, we ap-
ply a Self-Refine Prompting strategy, where the
model evaluates and refines its own generations.
We use Qwen2.5-72B as the LLM to refine out-
put produced by our RAG pipeline with One-Shot
Prompting and Top-1 Document Retrieval (see
“Our Solution: RAG Pipeline” section). For this
refinement step, we experiment with prompt in Ap-
pendix A.5 and get results 53.9% IoU and 52.1%
Corr. We ran this stage only one time for each
sample.

3.5 Our Solution: Final Submission
For our final submission, we adopt a two-stage
approach leveraging a RAG pipeline followed by
self-refinement. We use GPT-4o as the LLM to
generate and refine hallucination predictions.

3.5.1 Stage 1: RAG-Based Hallucination
Detection

In the first stage, we apply One-Shot Prompting
with Top-1 Document Retrieval from our RAG
pipeline (see “Our Solution: RAG Pipeline” stage).
This stage utilizes prompt from Appendix A.4 to
generate initial hallucination predictions. We also
want to create Reranking stage in RAG pipeline to
handle cases where the retrieved documents from
Wikipedia were ambiguous or conflicting, but we
haven’t enough time.

3.5.2 Stage 2: Self-Refinement
In the second stage, we refine the output from
Stage 1 using the approach from “Our Solution:
Self-Refine Promptingfrom” section with our RAG
pipeline, again using prompt from Appendix A.5.

This refinement step helps correct potential errors
and improves the final hallucination detection.

3.5.3 Stage 3: Ensemble Strategy
To further enhance robustness, we construct an en-
semble model by combining multiple runs of the
system with different temperature settings:
Stage 1 Only: We generate three independent out-

puts using the same prompt and temperatures 0.05,
0.1, 0.2 (we didn’t test different temperatures).
Stage 1 + Stage 2: We generate three additional

outputs using the full two-stage pipeline, with tem-
peratures 0.05, 0.1, 0.2 (we didn’t test different
temperatures).

3.5.4 Ensembling Technique
We receive hard labels from stages 1 and 2 (a list
of indices corresponding to hallucinated spans). To
ensemble multiple outputs, we convert these hard
labels into soft labels, representing hallucination
probabilities for each symbol. For each charac-
ter, its hallucination probability is computed as the
fraction of models that marked it as part of a hallu-
cinated fragment. The final answer is represented
using length-range encoding of these probabilities.
We additionally remove 1-symbol hallucinations
and all punctuation marks from hallucinations.

Example: Given the model-generated sentence:
"Petra van Stoveren won a silver medal in the 2008
Summer Olympics in Beijing, China." Three mod-
els return different hallucination fragments:
Model 1: "silver"
Model 2: "silver medal"
Model 3: "won a silver medal"

The final ensemble prediction assigns probabili-
ties:
"won a" → 0.33
"silver" → 1.00
"medal" → 0.66

For the evaluation system, this output is recorded
as a list of indices corresponding to hallucination
probabilities.

3.5.5 Result
This three-stage pipeline with ensembling signif-
icantly enhances hallucination detection perfor-
mance, balancing retrieval-based verification, self-
refinement, and ensemble robustness to improve
overall quality. Our final approach achieves 65.09%
IoU and 62.94% Corr, demonstrating the effective-
ness of our method in detecting hallucinations in
LLM-generated text.

195



4 Conclusion

In this paper, we presented the submissions of the
iai_MSU team for SemEval-2025 Task 3 — Mu-
SHROOM, where we achieved first place in the
English language track. Our approach combines
Retrieval-Augmented Generation (RAG) with Self-
Refine Prompting, demonstrating the effectiveness
of integrating external knowledge verification with
iterative model refinement. We introduced a three-
stage pipeline where the first stage uses a RAG-
based method to verify claims, followed by the
second stage where Self-Refine Prompting refines
hallucination detection output for improved accu-
racy. Additionally, the use of ensemble techniques
further enhanced robustness by aggregating out-
put from multiple runs and varying temperature
settings.

Our final submission achieves 65.09% IoU
and 62.94% Corr, confirming the strength of our
methodology in detecting hallucinations and im-
proving the factual accuracy of model-generated
text.
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A Appendix

This appendix shows the training and generation
parameters for the models described above in the
text.

A.1 First Zero-shot prompt without RAG

You are a fact - checking assistant.Your task is
to identify fragments of the response that are
hallucinations–parts of the text that are factually in-
correct or made up by model.Pay attention to facts,
dates, numbers, places. Detect only hallucination
words, without neighbour words. Give me only
a list of fragments - hallucinations you found in
model output. Write answer in JSON with the next
structure:
{ ”hallucinations”: [”h1”, ”h2”] },
where h1 and h2 are hallucination fragments from
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model output.
Model output:

A.2 Second Zero-shot prompt without RAG

You are assistant for analysing model hallucina-
tions. Your task is to extract fragments from model
output, containing factually incorrect answers. You
need to extract factually incorrect or inconsistent
with input fragments from model output. Write
answer in JSON with the next structure:
{ ”hallucinations”: [”h1”, ”h2”] },
where h1 and h2 are hallucination fragments from
model output. Write in answer only JSON structure
without other comments.
Model output:

A.3 Zero-shot prompt with RAG

You are a fact-checking assistant for analysing
model hallucinations. Your task is to identify frag-
ments in model output that are hallucinations - parts
of the text that are factually incorrect or made up
by model or inconsistent with model input. You
get a user query in model input and hallucinated
answer in model output. You also get a reliable
relevant document from Wikipedia, pay attention
to it while checking facts in hallucinated model
output. Detect only hallucination words, without
neighbour common, linking words. Write answer
in JSON with the next structure:
{ ’hallucinations’: [’h1’, ’h2’]},
where h1 and h2 are hallucinations from model out-
put. Write your answer exactly in JSON structure
without other symbols.
Relevant document: {doc 1}
Model input: {model input}
model output: {model output text}
Your answer:

A.4 One-shot prompt with RAG

You are a fact-checking assistant for analysing
model hallucinations. Your task is to identify frag-
ments in model output that are hallucinations - parts
of the text that are factually incorrect or made up
by model or inconsistent with model input. You
get a user query in model input and hallucinated
answer in model output. You also get a reliable rel-
evant document from Wikipedia, pay attention to
this document while checking facts in hallucinated
model output. Detect only hallucination fragments,
without neighbour common, linking words. Write
answer in JSON with the next structure:
{’hallucinations’: [’h1’, ’h2’]},

where h1 and h2 are hallucination fragments from
model output. Write in answer only JSON struc-
ture without other comments. Here is an example
of correct dialogue:
Relevant document example:
Model input example: {model input}
model output example: {model output text}
Your answer example:
{’hallucinations’: [...]}
Input:
Relevant document: {doc 1}
Model input: {model input}
model output: {model output text}
Your answer:

A.5 Self-refine prompt
You are an assistant to check the correctness of
detected hallucinations - hallucinations that were
detected in model output, model output was gen-
erated by model input (question, given by user).
Hallucinations are parts of the model input that are
factually incorrect or made up by model or incon-
sistent with model input. detected hallucinations
were detected by other model by given model input,
model output and reliable relevant document from
Wikipedia. You get the model input, model output,
relevant document (pay attention to it while fact
checking) and detected hallucinations (a Python
list of strings that are hallucinations from model
output). Your task is to fix errors in detected hal-
lucinations, improve it by adding all missed hal-
lucinations and removing all detections that are
not hallucinations. Detect only hallucination frag-
ments, without neighbour common, linking words.
Write the answer in the same JSON format. Write
in answer only JSON structure without any other
comments. Here is an example of correct dialogue:
Relevant document №1 example :
Model input example: {model input}
model output example: {model output text}
Detected hallucinations: {detected hallucinations }
Your answer example:
{’hallucinations’: [...]}
Input:
Relevant document №1: {doc 1}
...
Relevant document №5: {doc 5}
Model input: {model input}
model output: {model output text}
Detected hallucinations: {detected hallucinations }
Your answer:
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