FiRC-NLP at SemEval-2025 Task 3: Exploring Prompting Approaches for
Detecting Hallucinations in LLMs

Wondimagegnhue Tufa’, Fadi Hassan'*,
Guillem Collell*, Kuan Eeik Tan*, Ni Sang *, Tu Yi *, and Tu Dandan *

°Faculty of Humanities, Vrije Universiteit Amsterdam
*Huawei Technologies Finland Research Center
{w.t.tufa}@vu.nl
{firstname.lastname}@huawei.com

Abstract

This paper presents a system description for
the SemEval Mu-SHROOM task, focusing on
detecting hallucination spans in the outputs
of instruction-tuned Large Language Models
(LLMs) across 14 languages. We compare
two distinct approaches: Prompt-Based Ap-
proach (PBA), which leverages the capability
of LLMs to detect hallucination spans using
different prompting strategies, and the Fine-
Tuning-Based Approach (FBA), which fine-
tunes pre-trained Language Models (LMs) to
extract hallucination spans in a supervised man-
ner. Our experiments reveal that PBA, espe-
cially when incorporating explicit references or
external knowledge, outperforms FBA. How-
ever, the effectiveness of PBA varies across lan-
guages, likely due to differences in language
representation within LLMs.

1 Introduction

Large Language Models (LLMs) have brought ad-
vancements to many areas of NLP, including natu-
ral language understanding, natural language gen-
eration, and reasoning tasks (Naveed et al., 2024;
Zhao et al., 2024; Minaee et al., 2024). Broadly
speaking, LLMs such as GPT-4 (OpenAl et al.,
2024) and LLaMA (Touvron et al., 2023) are based
on transformer models and are trained on vast
amounts of internet text to understand and gener-
ate human language in a coherent and contextually
relevant manner (Brown et al., 2020; Chowdhery
et al., 2022). The increasing scale of training data
and model capacity has enabled LLMs to exhibit
emergent capabilities such as chain-of-thought rea-
soning, instruction following, and in-context learn-
ing (Wei et al., 2023; Brown et al., 2020; Peng et al.,
2023).

Currently, Natural Language Generation (NLG)
faces a major challenge: Large Language Models
(LLMs) can produce text that is fluent and coherent
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but contains factual inaccuracies or statements un-
grounded in reality—a phenomenon known as hal-
lucination (Rawte et al., 2023; Huang et al., 2025).
These hallucinations are difficult to detect automat-
ically because existing evaluation methods primar-
ily measure fluency rather than accuracy. Detecting
hallucinations is often the first step in ensuring that
a model’s output is consistent with known facts and
in preventing the generation of misleading or false
information (Chang et al., 2023). In many NLG
applications, such as question-answering and trans-
lation tasks, the correctness of the model’s output
is crucial for its utility.

The SemEval Mu-SHROOM task focuses on
detecting hallucination spans in the outputs of
instruction-tuned LLMs across 14 languages
(Vazquez et al., 2025). The main goal of the task
is to determine which spans of a given text pro-
duced by an LLM are part of a hallucination. The
organizers provide the LLM output as a string of
characters, a list of tokens, and a list of logits. Par-
ticipants are required to compute the probability
of hallucination for each character in the LLM-
generated text. Submissions are evaluated using
two approaches: (1) the intersection-over-union
of characters marked as hallucinations in the gold
reference and the predicted output, and (2) the cor-
relation between the probability assigned by the
participants’ system that a character is part of a hal-
lucination and the empirical probabilities observed
from annotators.

We explore two distinct approaches to address
the Mu-SHROOM task: the Prompt-Based Ap-
proach (PBA) and the Fine-Tuning-Based Ap-
proach (FBA). In the Prompt-Based Approach, we
experiment with different strategies. First, we ex-
plore prompting an instruction-tuned model with-
out a reference by providing only the question and
the model’s answer. For this, we use GPT-4 (Ope-
nAl et al., 2024) to identify hallucination spans
by providing the input text and the model’s output
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| AR CA CS DE EN ES EU FA FI

FR HI IT SV ZH

Train | 0 0 0 0 808 492

0 0 1850 O 0 0 210

Valid | 50 0 0 50 50 50

0 50 50 0 50 49 50

Test | 150 100 100 150 154 152

100 150 150 150 150 147 150

Table 1: The distribution of training, validation, and test data for different languages. Only four of the fourteen
languages (English, Spanish, French, and Chinese) have both training and validation sets.

text. In this approach, since no reference context is
provided, the model is expected to rely implicitly
on its pre-trained knowledge to determine which
parts of the output constitute hallucinations. The
details of this approach are described in Section
3.1.

In the second strategy, which we refer to as the
dual-prompt approach, we break down the prompt
into two phases. In the first phase, we prompt
the model to answer the question explicitly. In the
second phase, we use the output from the first phase
as a reference answer and prompt the model to
identify hallucinations by comparing this reference
with the model’s original output.

In the third approach, we incorporate external
knowledge to create a reference context and prompt
the model to answer the question based on this
reference.

For the Fine-Tuning-Based Approach, we exper-
iment with an encoder model by framing the task as
a token classification task. We describe the details
in Section 3.1.

In summary, our experiment shows that:

* Prompting LLMs to identify hallucinations
without providing a reference or context re-
sults in more hallucinations. We hypothesize
that this may be caused by the limitations of
LLMs in implicitly recalling knowledge cor-
rectly without explicit prompting, which is
crucial since no additional context is provided.

* We test this hypothesis by using dual prompts
to make implicit knowledge recall explicit.
We observe that providing an explicit refer-
ence from the target LLM significantly im-
proves detection performance in most of our
target languages.

* We further experiment by providing a RAG
context in our prompt instead of prompting the
model for a reference. We observe that pro-
viding a RAG-like context with the prompt
further improves model performance in iden-
tifying hallucination spans.

2 Background

Hallucination is one of the main limitations of NLG
models, where the generated text sounds fluent and
coherent but contains factual inaccuracies or state-
ments ungrounded in reality (Rawte et al., 2023;
Huang et al., 2025). Hallucinations in NLG models
can take two forms: intrinsic hallucinations and
extrinsic hallucinations (Ji et al., 2023; Dziri et al.,
2021).

In the case of intrinsic hallucinations, there is
a contradiction between the source text and the
generated text. Since this contradiction appears in
one or more spans, it is possible to verify where
the hallucination occurred. In contrast, extrinsic
hallucinations do not exhibit an observable contra-
diction between the source and the generated text,
making it impossible to pinpoint the hallucination.
In the extrinsic case, there is no available evidence
in the input text to determine the correctness or
incorrectness of the generated text.

2.1 Hallucination Detection

Various approaches have been introduced to ad-
dress hallucination in NLG, with knowledge-based
methods being the most commonly used (Ji et al.,
2023).

In knowledge-based approaches, a domain-
specific knowledge base is used to fact-check the
model-generated text. This approach is effective
but is only applicable to domains where a relevant
knowledge base is available. In cases where the
LLM'’s hidden state is accessible, white-box and
grey-box analyses can be employed by training an
MLP classifier on the hidden state to predict truth-
fulness (Azaria and Mitchell, 2023).

In grey-box methods, the probability of the to-
kens generated by LLMs is used to detect halluci-
nations based on the assumption that correct text
consists of high-probability tokens. In the self-
evaluation approach, the LLM itself is prompted to
score the likelihood of the text it generated (Kada-
vath et al., 2022). Similarly, any public model can
be used as a proxy to assess the factuality of the
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Figure 1: Overview of the prompt-based approach. In the first approach (Prompt-1), we directly prompt the proxy
model to identify hallucination spans by providing the model input and output. In the second approach (Prompt-2),
we first prompt the model to generate an answer based on the model input, and then use this generated reference to
prompt the proxy model to identify hallucinations. In the third approach (Prompt-3), we use an external reference
text along with the model input and output to prompt the proxy model to identify hallucinations.

generated text by estimating the token probability
of a black-box model.

SelfCheckGPT (Manakul et al., 2023) is another
black-box, sampling-based approach. It relies on
the hypothesis that if an LLLM has correct knowl-
edge of a particular topic, sampled responses on
that topic will have high similarity, whereas hallu-
cinated text will diverge significantly.

2.2 Task Description

The SemEval Mu-SHROOM task focuses on the
detection of hallucination spans in the outputs of
instruction-tuned LLMs across 14 languages: Ara-
bic, Basque, Catalan, Chinese (Mandarin), Czech,
English, Farsi, Finnish, French, German, Hindi,
Italian, Spanish, and Swedish (Véazquez et al.,
2025). The data distribution across the splits is
provided in Table 1.

The following data points are provided as part
of the challenge:

e Model Input: A prompt provided to the
model to generate text.

¢ Model Id: The name of the models used
to produce each output. Two models
are used: TheBloke/Mistral-7B-Instruct-v0.2-
GGUF and TheBloke/SauerkrautLM-7B-v1-
GGUF.

* Model Output: A string of characters, a list
of tokens, and a list of logits.

* Hard Labels: A label of 1 is assigned when
the corresponding span contains a hallucina-
tion. We determine hard labels using majority
voting among the annotators.

* Soft Labels: The confidence-based judgments
of the annotators. Calculated as the proportion
of annotators who marked the span as part
of a hallucination out of the total number of
annotators.

» Evaluation: Submissions are evaluated using
intersection-over-union (IOU) of characters
marked as hallucinations in the gold reference
and predicted, and the probability assigned by
the participants’ system that a character is part
of a hallucination correlates with the empirical
probabilities observed in the annotation. For
hard labels, intersection-over-union (IoU) is
used and the Spearman correlation between
predicted and reference soft labels is used for
soft labels.

2.3 Models

We employ GPT-40-mini from OpenAl as a proxy
model for all prompt-based experiments. For fine-
tuning, we use XLM-R (Conneau et al., 2019) as
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the base model and fine-tune it by framing the task
as a token classification task. Additionally, we
utilize Perplexity Al with search capability to gen-
erate more accurate reference text.

3 System Description

In this section, we describe our proposed system.
We employ two distinct approaches: the Prompt-
Based Approach (PBA) and the Fine-Tuning-Based
Approach (FBA). In the prompt-based method, we
use an LLLM as a proxy model and apply a standard
prompt to identify hallucination spans by providing
pairs of input text and model output. In the fine-
tuning approach, we fine-tune an encoder model by
framing the task as a token classification problem.

3.1 Prompt-Based Approach

Figure 1 shows an overview of our PBA ap-
proach. We experiment with three prompt strate-
gies: prompting without a reference, dual prompt-
ing, and prompting with an external reference.

Prompt without Reference (PWR) In this ap-
proach, we design a simple prompt and request
a proxy model to identify hallucination spans by
providing the model input and output. Since no ref-
erence text is provided, the proxy model implicitly
relies on its pre-trained knowledge to answer the
question correctly and compare this answer with
the provided output to determine which parts of the
text contain hallucinations. We test the hypothesis
that a proxy model can reliably identify hallucina-
tions in text generated by another LLM.

Dual Prompting (DP) In this approach, we mod-
ify the first method by splitting the prompt into
two parts. In the first part, we prompt the proxy
model to generate an answer by providing the orig-
inal model input. In the second part, we prompt
the model to identify hallucinations by compar-
ing the generated answer with the model output.
By explicitly prompting for the answer, we can
assess whether the proxy model relies on correct
knowledge or introduces errors when comparing
the reference with the model output.

Prompting with External Reference (PEXT) In
this approach, we use external knowledge to create
a reference text. We utilize an API from Perplexity,
which has search capabilities, to generate the refer-

Perplexity Al integrates an LLM with internet search
capabilities to retrieve reference text from external sources.

ence text. We then use this reference to prompt the
proxy model to identify hallucination spans.

Fine-Tuning-Based Approach (FBA) For the
fine-tuning-based approach, we fine-tune a multilin-
gual encoder model by framing the task as a token
classification problem. Specifically, we use XLM-
R as the base model. We combine the training sets
for four languages—English, Spanish, French, and
German—and fine-tune the model on this multilin-
gual dataset. The input consists of tokenized model
outputs, and the objective is to predict, for each
token, whether it is part of a hallucination span.

4 Analysis and Conclusion

In this section, we compare the strengths and lim-
itations of the four proposed approaches. Table 2
presents the performance of these approaches in
detecting hallucinations across 14 languages, eval-
uated using two metrics: Intersection over Union
(IoU) and Correlation (Cor). We analyze the perfor-
mance differences between the approaches and ex-
amine variations across languages, providing pos-
sible explanations for these differences.

4.1 Prompting Approaches

PWR The PWR approach exhibits variable per-
formance across languages. In terms of IoU, it
achieves the highest scores in languages such as
French and Hindi but performs notably worse in
languages like Chinese. Similarly, the correlation
scores align with the IoU results, showing strong
performance in French and Hindi but weaker per-
formance in Chinese. Overall, while PWR demon-
strates strong performance with high correlation in
certain languages, its effectiveness remains incon-
sistent across languages.

Dual Prompting The DP method consistently
outperforms PWR across both metrics, achieving
high IoU scores in languages such as Hindi and
French. These improvements can be attributed to
explicitly prompting the model for a reference text,
which reduces ambiguity and minimizes potential
hallucinations. The correlation scores follow a sim-
ilar trend, demonstrating relatively stable perfor-
mance across languages.

PEXT The PEXT approach further improves
upon the DP approach. One possible explanation
for this improvement is that when the proxy model
lacks the correct answer, incorporating reliable ex-
ternal knowledge helps bridge the gap. This pre-
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Method Metric AR CA CS DE EN ES EU FA FI FR HI IT SV 7ZH
PWR IoU 38.58 49.61 2995 39.69 3877 34.15 47.06 5893 45.15 4094 6576 65.12 5145 27.82
Cor 3449 5418 31.75 4037 4097 4183 4401 5689 4424 4518 67.68 69.73 4320 19.38
DP ToU 49.07 57.74 38.83 51.14 49.15 39.61 5344 63.10 60.38 5506 67.58 7029 61.54 42.09
Cor 4229 64.09 4294 5134 51.73 5353 4971 6631 5390 5503 7145 71.00 3842 29.18
PEXT IoU 4892 63.67 45.58 53.26 49.24 43.11 55.66 65.87 61.71 60.88 69.97 74.11 62.38 4141
Cor 42.07 68.55 50.08 54.13 5237 5434 5434 6548 5430 60.22 74.79 75.80 44.19 28.27
FBA IoU 33.54 2051 2380 2998 4.06 9.88 21.13 19.62 3438 33.06 20.73 2647 4346 43.81
Cor 9.62 14.02 2344 2248 -0.08 358 375 585 1330 9.60 568 1293 6.73 23.89

Table 2: Performance of the four approaches for hallucination span detection on the test set across 14 languages.
PWR refers to prompting without a reference text, DP denotes dual prompting, PEXT indicates prompting with
external context, and FBA corresponds to the fine-tuning-based approach.

vents the model from relying on incorrect or hal-
lIucinated information when identifying hallucina-
tions. PEXT performs similarly to DP in most
target languages, with IoU and correlation scores
often comparable to those of DP. However, like DP,
it struggles with Chinese (41.41 IoU, 28.27 Cor).

FBA The FBA approach shows the lowest scores
across all languages in both IoU and correlation
metrics. IoU values are particularly low, especially
for English (4.06) and French (20.73). Similarly,
correlation scores are weak, with negative values
in languages such as English (-0.08), further indi-
cating that FBA is not well-suited for hallucination
detection. Despite being fine-tuned specifically
for this task, the poor performance suggests that
fine-tuning encoder models may not be the most ef-
fective strategy for hallucination detection, at least
within the current setup.

4.2 Cross-lingual Analysis

The performance variation of prompt-based meth-
ods across languages reflects differences in the
proxy LLM’s ability to analyze text in different lan-
guages. We hypothesize two possible explanations
for this variation. First, the type of questions used
in the prompt may vary across languages, leading
to discrepancies in generating accurate reference
texts. For instance, the distribution of simpler or
easier questions might favor certain languages. Sec-
ond, LLMs do not perform equally well across all
languages, favoring high-resource languages that
are better represented in the model’s training data.
For example, the PWR approach relies solely on
the prompt without additional context or external
references. The variation in hallucination detection
performance suggests that languages with higher
representation in the training data tend to achieve

better results, as the proxy LLM is more effective
at understanding the task even with a simplified
prompt.

5 Conclusion

In this work, we investigate the efficacy of prompt-
based and fine-tuning-based approaches for detect-
ing hallucinations in instruction-tuned LLMs, us-
ing the SemEval Mu-SHROOM task across 14
languages as a benchmark. Our findings indicate
that prompt-based approaches (PBAs), particularly
those leveraging explicit references or external
knowledge, outperform the fine-tuning-based ap-
proach (FBA). Providing explicit references en-
hances a model’s ability to pinpoint hallucination
spans, while prompting without references leads
to a higher incidence of hallucinations. Further-
more, incorporating external knowledge improves
the identification of hallucination spans.

As future work, exploring hybrid approaches
could be highly beneficial. Combining the
strengths of both prompt-based and fine-tuning-
based methods might lead to improved perfor-
mance. For instance, a fine-tuned model could be
integrated with a knowledge base system, where the
knowledge base generates reference answers and
the fine-tuned model uses both the LLM-generated
output and the reference to identify hallucinations.

Limitations

Our study has several limitations. First, the prompt-
based approaches heavily rely on a single proxy
model (GPT-40-mini), making the system’s effec-
tiveness dependent on the proxy’s multilingual ca-
pabilities and potential biases. Second, the fine-
tuning-based approach was implemented with a rel-
atively simple setup using XLM-R, without explor-
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ing more advanced strategies. Third, while external
references in the PEXT approach were retrieved
via Perplexity Al no rigorous filtering was applied,
introducing the possibility of noisy or irrelevant
knowledge negatively affecting performance. Addi-
tionally, our system exhibited variability across lan-
guages, particularly for lower-resource or typologi-
cally distinct languages like Chinese, highlighting
challenges in cross-lingual generalization. Finally,
our evaluation was limited to the Mu-SHROOM
dataset, and further validation on broader halluci-
nation detection benchmarks or real-world outputs
remains an important direction for future work.
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