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Abstract

Fact-checkers are often hampered by the sheer
amount of online content that needs to be
fact-checked. NLP can help them by retriev-
ing already existing fact-checks relevant to
the content being investigated. This paper
presents a systematic approach for the retrieval
of top-k relevant fact-checks for a given post
in a monolingual and cross-lingual setup us-
ing transformer-based pre-trained models fine-
tuned with a dual encoder architecture. By
training and evaluating the shared task test
dataset, our proposed best-performing frame-
work achieved an average success@10 score
of 0.79 and 0.62 for the retrieval of 10 fact-
checks from the fact-check corpus against a
post in monolingual and crosslingual track re-
spectively.

1 Introduction

The rapid proliferation of misinformation across
social media platforms has made manual fact-
checking an increasingly daunting task. Auto-
mated retrieval systems, powered by Natural Lan-
guage Processing (NLP) techniques, offer a scal-
able solution by identifying and presenting previ-
ously verified fact-checks relevant to new claims.
In this work, we present a robust fact-check re-
trieval framework that leverages transformer-based
dual encoder architectures, fine-tuned separately
for monolingual and cross-lingual settings.

Our framework involves three state-of-the-art
pre-trained models: GTR-T5 (Ni et al., 2021a)
for both monolingual and coss-lingual fact-check
retrieval, E5-Large-v2 (Wang et al., 2022) and
MiniLM (Wang et al., 2020) for cross-lingual re-
trieval. Evaluated on the SemEval 2025 Shared
Task 7: Multilingual and Crosslingual Fact-
Checked Claim Retrieval dataset, our proposed
system achieves a Success@10 score of 0.79 on
the test set with GTR-T5 in the monolingual
track. For the cross-lingual track, GTR-T5 and

E5-Large-v2 achieved Success@10 scores of 0.62
and 0.58 on the test set, respectively. In addition,
a MiniLM-based framework was also developed
as a lightweight alternative that converts posts and
fact-checks into normalized vector embeddings us-
ing MiniLM-L12-v2, which are then indexed with
FAISS for rapid retrieval.

The proposed retrieval system not only addresses
the challenge of the vast online misinformation
but also provides a scalable solution that can be
adapted to diverse multilingual environments.

2 Related Work

Early fact-checking retrieval systems relied on
keyword-based and traditional IR methods, which
lacked semantic understanding and multilingual
support. Neural IR models like DRMM (Guo et al.,
2016) and MatchPyramid (Pang et al., 2016) im-
proved performance but struggled with scalability
and cross-lingual generalization.

Transformer-based models such as BERT (De-
vlin et al., 2019) and Sentence-BERT (Reimers
and Gurevych, 2019) enabled dense vector repre-
sentations and improved semantic retrieval. Dual
encoder models like GTR-T5 (Ni et al., 2021b)
and E5 (Wang et al., 2022) further enhanced effi-
ciency by allowing independent query-document
encoding, making them suitable for large-scale ap-
plications.

Earlier approaches such as DSSM (Huang et al.,
2013) and KNRM (Xiong et al., 2017) demon-
strated the potential of deep learning for retrieval
tasks but were often limited by shallow interaction
architectures and difficulties in handling long input
sequences. These models, while offering initial
improvements over traditional IR, did not fully cap-
ture the complex semantic relationships necessary
for effective claim retrieval, especially in multilin-
gual contexts.

Multilingual models like LaBSE further pushed
the boundaries of multilingual semantic retrieval.
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3 Data

All textual analysis and experiments were per-
formed using data from the SemEval 2025 Shared
Task 7: Multilingual and Crosslingual Fact-
Checked Claim Retrieval (Peng et al., 2025). Dur-
ing the training and development phase, the dataset
consisted of approximately 24,431 social media
posts in multiple languages, 153,743 fact-checked
claims, and 25,743 post-to-fact-check pairs where
each post was linked to at least one fact-check
claim. The 24,431 posts were further divided into
cross-lingual and monolingual tracks where 18,907
posts were used for monolingual evaluation and
5,524 posts were used for cross-lingual evaluation.

Furthermore, in the monolingual track, the
18,907 posts and 153,743 fact checks were dis-
tributed into eight different languages: French (fra),
Spanish (spa), English (eng), Portuguese (por),
Thai (that), Deutsch (due), Modern Standard Ara-
bic (msa) and Arabic (ara). The distribution of
monolingual and crosslingual data are provided in
Figure 1 for both training and development sets.

For the testing dataset, there was a total of
272,447 fact checks distributed over 10 languages
(8 languages were the same as training and devel-
opment sets, 2 extra languages were added: Pol-
ish or pol and Turkish or tur) and 8,276 posts.
Among 8,276 posts, 4000 posts were for cross-
lingual tracks and the remaining posts were for
monolingual tracks. The overall data distribution
for test data is provided in Figure 2

Figure 1: Distribution of training and development data

Figure 2: Distribution of test data

4 Methodology

This section briefly discusses the methodologies
used to develop our proposed frameworks.

4.1 Text Preprocessing

Before diving into the actual system development
and training, a few post-processing steps were ap-
plied such as 1) Removal of escape characters (e.g.,
\n, \t), 2) Decoding of Unicode characters, 3)
OCR and post text were concatenated, 4) Tokeniza-
tion of texts into tokens etc.

4.2 Framework Development

This section outlines the development of the pro-
posed framework for the cross-lingual and mono-
lingual relevant fact-check retrieval system.

We selected GTR-T5, E5-Large-v2, and
MiniLM based on extensive evaluation across mul-
tilingual retrieval benchmarks. GTR-T5 is pre-
trained on large-scale multilingual corpora and fine-
tuned for dense retrieval using contrastive learning,
resulting in strong performance in zero-shot and
multilingual retrieval tasks. E5-Large-v2, on the
other hand, is optimized for retrieval-specific ob-
jectives such as passage ranking, supports multi-
ple languages with task-specific embeddings, and
remains efficient and scalable for large datasets.
MiniLM was chosen for its lightweight and fast
architecture, making it ideal for real-time appli-
cations while providing a good trade-off between
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speed and retrieval performance.
The benchmark dataset allowed us to evaluate all

models under controlled and consistent conditions,
ensuring fair comparison across multilingual pairs.
GTR-T5, E5-Large-v2, and MiniLM emerged as
top performers based on retrieval accuracy, latency,
and generalization to low-resource settings. These
models demonstrated robustness across diverse lan-
guage directions, including low-resource to high-
resource queries and vice versa. In contrast, models
that were not selected showed inferior performance
on key metrics such as MRR, Recall@k, and pre-
cision, further justifying their exclusion from final
deployment.

4.2.1 Dual Encoder with E5-Large-v2 and
GTR-T5

The framework leverages a dual-encoder archi-
tecture used for independent fine-tuning of two
transformer-based pre-trained models: E5-Large-
v2 and GTR-T5. E5-Large-v2 was pre-trained
on large-scale retrieval tasks and fine-tuned on
datasets such as MS MARCO (Craswell et al.,
2021) and various multilingual benchmarks, render-
ing them highly suitable for cross-lingual retrieval.
In contrast, GTR-T5 is specifically designed for
dense retrieval tasks and has been pre-trained on
extensive monolingual datasets, making it highly
effective for monolingual fact-check retrieval. Ac-
cordingly, E5-Large-v2 was employed for the cross-
lingual track while GTR-T5 was employed for both
the monolingual and cross-lingual tracks.

In this dual-encoder framework, separate en-
coders process both the query (i.e. posts) and pas-
sage (i.e. fact-check) and then yield dense vector
representations. The dot product similarity scores
matrix between these representations quantifies the
relevance of the passage to the query. The overall
model flow diagram is provided in Figure 3

Framework Description: The dual encoder ar-
chitecture for the mentioned two models consists of
two independent encoders—one for the query (i.e.,
post) and one for the passage (i.e., fact-check). For
the E5-Large-v2, the encoders are implemented us-
ing TFBertModel to tokenize input queries and pas-
sages. GTR-T5 uses TFT5EncoderModel for both
encoders, enabling it to process input sequences
efficiently.

Let the input query/post be Q (e.g., "Is climate
change real?") and passage/fact-check be P (e.g.,
"Scientific consensus states climate change is hap-
pening."), which are tokenized into input IDs using

Figure 3: Flow diagram of E5-Large and GTR-T5 based
frameworks

the common tokenizer. Input IDs of each input
Q and P are passed through the query encoder
and passage encoder to generate Query Embed-
ding (EQ) and Passage Embedding (EP ), which
are dense vector representations. The embeddings
are then normalized:

EQ =
EQ

∥EQ∥
, EP =

EP

∥EP ∥
(1)

The model computes the cosine similarity to find
similarity scores between all query and passage
embeddings in the batch:

Sij = EQi · EPj (2)

where Sij is the similarity score between the
ith query and the jth passage. This results in a
similarity score matrix S ∈ Rn×n for a batch of
size n.

4.2.2 A lightweight framework using MiniLM
This approach was built around three key com-
ponents: how we represent the data, how we re-
trieve relevant fact-checks, and how we fine-tune
our model to improve accuracy. The overall flow-
diagram for the MiniLM-based framework is pro-
vided in Figure 4.

Data Representation: To compare social me-
dia posts with fact-checked claims, we first con-
verted them into vector embeddings using the all-
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Figure 4: Flow diagram MiniLM-based framework.

MiniLM-L12-v2 (Wang et al., 2020) model. This
helped us to capture similarities in meaning, even
across different languages, so that we can match
posts with the most relevant fact-checks.

Framework Description: To find the right fact-
check efficiently, we used FAISS (Facebook AI
Similarity Search) (Douze et al., 2024) a fast and
scalable tool for searching through large datasets.
The retrieval process works as follows: We gen-
erated MiniLM embeddings for both social media
posts and fact-check claims. To improve accuracy,
we normalized these embeddings, ensuring that
they have the same scale before comparison. We
then used the FAISS indexing system to quickly
find and retrieve the most relevant fact checks based
on similarity.

4.3 Training
During training, the contrastive loss ensured that
the model maximized the similarity for positive
pairs and minimized it for negative pairs. For each
query-passage pair in the batch:

yi =

{
1, if positive pair
0, if negative pair

(3)

A margin m is used to separate positive and
negative pairs (e.g., m = 0.2):

L = yi(1−Si)
2+(1− yi)max(0, Si−m)2 (4)

The contrastive accuracy measured how well the
model classified positive and negative pairs using a

threshold τ (e.g., τ = 0.5):

ŷi =

{
1, if Si ≥ τ

0, otherwise
(5)

4.4 Retrieval of Top-K Relevant Fact-Checks
For a given query or post Q, the similarity scores
were computed for all passages (or fact-checks) in
the corpus:

ScoresP = [S1, S2, . . . , Sn] (6)

The passages were then ranked by their simi-
larity scores, and the top-K fact-checks with the
highest scores were retrieved for the given post:

Top-K = argsort(−ScoresP )[: K] (7)

In our experiments, we chose K = 10. This means
we retrieved the top 10 fact-checks with the highest
scores.

4.5 Fine Tuning
The proposed GTR-T5 framework was fine-tuned
with a batch size of 16 and a learning rate of 3e-5
with PyTorch as the deep learning framework. The
model was trained for 5 epochs, and early stopping
was applied to prevent overfitting. The contrastive
loss function with a margin of 0.2 was used to
optimize the model and the Adam (Kingma and Ba,
2017) optimizer was used for gradient updates.

The proposed E5-Large-v2 framework was
trained with TensorFlow as the deep learning frame-
work and fine-tuned for 1 epoch with a learning rate
of 1e-5. No layer of the model was frozen during
training. The optimizer was chosen as Adam and
the batch size was taken as 2. The loss function
used was contrastive loss with a margin of 0.2 and
the optimizer was chosen as Adam. The accuracy
was calculated during fine-tuning of the model with
the help of the contrastive accuracy function.

E5-Large-v2 showed early saturation in valida-
tion metrics, and training beyond one epoch led to
performance degradation due to overfitting; hence,
it was fine-tuned for only one epoch. In contrast,
GTR-T5-Large, with its larger architecture and
slower learning dynamics, required fine-tuning for
five epochs to achieve convergence.

The miniLM model was trained with a batch size
of 32 and a learning rate of 2e-5 with PyTorch as
the deep learning framework and the ‘MultipleNeg-
ativesRankingLoss’ loss function was used. To
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test the impact of extended fine-tuning, we experi-
mented with varying training times, using runs that
lasted 3 and 10 epochs. However, the best result
was produced at epoch 10 and reported in Table
1 in Section 5. To prevent overfitting, we applied
dropout layers and weight decay in the respective
model.

All the above models were trained and evaluated
on the Kaggle platform using the NVIDIA Tesla
T4 GPU.

5 Result

All the proposed frameworks were evaluated on
the development and testing datasets using the Suc-
cess@10 metric by retrieving the top 10 fact-checks
from the corpus. The success@10 metric can be
defined as:

Success@10 =

{
1, at least one fact-chek in top 10,

0, otherwise.

The overall results are provided in Table 1 where
we can see the GTR-T5-based framework provides
the best performance in both monolingual and
cross-lingual tracks for both development and test
datasets. The E5-Large-v2 and MiniLM models
didn’t perform well and we can see a performance
downgrade of 6.45% and 22.58% in the test data
for the mentioned models respectively compared
to the GTR-T5 model.

Track Model Dev Test

Monolingual GTR-T5 0.77 0.79

Crosslingual
GTR-T5 0.59 0.62

E5-Large-v2 0.58 0.58
MiniLM 0.51 0.48

Table 1: Success@10 results for monolingual and
crosslingual retrieval in development and test phases

6 Conclusion

In this article, we proposed GTR-T5-based mono-
lingual and cross-lingual frameworks and E5-
Large-v2 and MiniLM-based cross-lingual frame-
works only for fact-checked claim retrieval from
social media posts. Our experiments show that the
GTR-T5 model works well for both monolingual
and cross-lingual settings with success@10 scores
of 0.79 and 0.62 respectively in the test dataset.
These results underscore the robustness of the pro-
posed models in their respective tasks. However,

further optimization is needed to improve recall
for lower-ranked fact-checks and enhance cross-
lingual retrieval performance. Future work will ex-
plore incorporating language mapping using mul-
tilingual transformer-based embeddings (TEMs)
and employing advanced fine-tuning techniques to
further improve performance. Also, we will experi-
ment with the E5-large-v2 and MiniLM models for
monolingual settings in our future work.

7 Limitations

Although the models perform well in retrieving
relevant fact-checks, several limitations remain for
monolingual and cross-lingual frameworks.

In the monolingual setting, while the proposed
framework achieved a Success@10 of 0.79 in the
test phase, there is still room for improvement
in retrieving lower-ranked fact-checks. Addition-
ally, the model’s performance on low-resource lan-
guages within the same language family remains
suboptimal.

In the case of the cross-lingual framework, a
Success@10 of 0.62 was achieved in the test phase
using GTR-T5, but the result was not impressive
in the E5-Large-v2 and MiniLM-based models.
One possible reason behind the batch size being re-
stricted to 2 in the E5-Large-v2 model is that it may
downgrade performance. In our future work, we
will use higher batch sizes to determine whether the
performance improves. Also, there is some scope
for more hyperparameter tuning in the MiniLM
model to improve performance, which we’ll try in
our future work.

References
Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel

Campos, and Jimmy Lin. 2021. Ms marco: Bench-
marking ranking models in the large-data regime. In
Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’21, page 1566–1576, New
York, NY, USA. Association for Computing Machin-
ery.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré,
Maria Lomeli, Lucas Hosseini, and Hervé Jégou.
2024. The faiss library.

2088

https://doi.org/10.1145/3404835.3462804
https://doi.org/10.1145/3404835.3462804
http://arxiv.org/abs/2401.08281


Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce
Croft. 2016. A deep relevance matching model for
ad-hoc retrieval. In Proceedings of the 25th ACM In-
ternational on Conference on Information and Knowl-
edge Management, pages 55–64. ACM.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alejandro Acero, and Larry Heck. 2013. Learning
deep structured semantic models for web search us-
ing clickthrough data. In Proceedings of the 22nd
ACM International Conference on Information &
Knowledge Management, pages 2333–2338.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A
method for stochastic optimization.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus-
tavo Hernández Ábrego, Ji Ma, Vincent Y. Zhao,
Yi Luan, Keith B. Hall, Ming-Wei Chang, and Yinfei
Yang. 2021a. Large dual encoders are generalizable
retrievers.

Jianmo Ni, Wen-tau Yih, and Nick Craswell. 2021b.
Large dual encoders are generalizable retrievers.
arXiv preprint arXiv:2112.07899.

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Jingfang
Xu, and Xueqi Cheng. 2016. Text matching as image
recognition. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, pages 2793–
2799.

Qiwei Peng, Robert Moro, Michal Gregor, Ivan Srba,
Simon Ostermann, Marian Simko, Juraj Podroužek,
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