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Abstract

This study reports the YNU-HPCC team’s par-
ticipation in Subtask A of SemEval-2025 Task
1 on multimodal idiomatic representation. The
task requires ranking candidate images based
on their semantic relevance to a target idiom
within a given sentence, challenging models to
disambiguate idiomatic semantics, and align-
ing them with abstract visual concepts across
English and Portuguese. Using AltCLIP-m18
as the base model, our approach enhances its
zero-shot capabilities with LoRA fine-tuning
and combines ListMLE ranking optimization
with Focal Loss to handle hard samples. Ex-
perimental results on the primary test set show
significant improvements over the base model,
with Top-1 Accuracy/DCG scores of 0.53/2.94
for English and 0.77/3.31 for Portuguese. The
code is publicly available at https://github.
com/1579364808/Semeval_2025_task1.

1 Introduction

Idioms, as a class of multiword expressions
(MWEs), pose significant challenges for natu-
ral language understanding due to their non-
compositional nature—their meanings cannot be
derived from the literal interpretation of their con-
stituent words (Dankers et al., 2022; Villavicencio
et al., 2005). For instance, bad apple metaphori-
cally refers to a disruptive individual rather than a
decayed fruit. Despite the remarkable progress
of pre-trained language models (PLMs) in text
comprehension tasks, their ability to model id-
iomatic expressions remains limited. Key issues
include susceptibility to literal meaning interfer-
ence (Phelps et al., 2024; Chakrabarty et al., 2022;
Madabushi et al., 2022) and insufficient grounding
in multimodal experiences, such as visual percep-
tion (Lakoff and Johnson, 1980; Lu et al., 2023).

SemEval-2025 Task 1 introduces a multimodal
evaluation framework, i.e., Advancing Multimodal

∗Corresponding author.

Idiomaticity Representation (Pickard et al., 2025).
Subtask A ranks candidate images based on their
semantic relevance to a target idiom within a
given sentence. This task requires models to dis-
ambiguate idiomatic semantics from textual con-
texts and align them with abstract visual concepts,
presenting a significant challenge for current ap-
proaches. For example, in the kangaroo court case,
the model must distinguish between the literal de-
piction of a kangaroo and the metaphorical repre-
sentation of an unjust judicial process.

Given the task’s bilingual nature (English and
Portuguese), we propose a multilingual approach
based on AltCLIP-m18 (Chen et al., 2022), a multi-
lingual variant of the CLIP (Contrastive Language-
Image Pre-training) (Radford et al., 2021) model.
We employ Low-Rank Adaptation (LoRA) (Hu
et al., 2022), a parameter-efficient fine-tuning tech-
nique to efficiently adapt the model to the task.
Additionally, we introduce a combined loss func-
tion integrating ListMLE Loss (Xia et al., 2008)
and Focal Loss (Lin et al., 2017). ListMLE Loss
optimizes the global ranking of candidate images,
while Focal Loss addresses the challenge of distin-
guishing between literal and metaphorical mean-
ings by focusing on hard-to-classify samples.

The main works in this paper are as follows:

• AltCLIP-m18 for Idiomatic Expression
Ranking: We propose AltCLIP-m18 to rank
images based on semantic relevance to po-
tential idiomatic expressions in English and
Portuguese.

• LoRA for Efficient Adaptation: We apply
LoRA to AltCLIP-m18, reducing computa-
tional costs while maintaining performance.

• Hybrid Loss for Improved Performance:
By combining ListMLE Loss and Focal Loss,
our approach achieves Top-1 Accuracy/DCG
scores of 0.53/2.94 for English and 0.77/3.31
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for Portuguese on the primary test set, outper-
forming the base model.

2 Related Works

2.1 Multimodal Alignment Models

Recent advances in multimodal learning have been
driven by models like CLIP (Radford et al., 2021),
which maps images and text into a shared embed-
ding space through contrastive learning. CLIP’s ar-
chitecture consists of a vision encoder (e.g., ResNet
(He et al., 2016) or ViT (Dosovitskiy et al., 2021)
and a text encoder (Transformer (Vaswani et al.,
2017) ), enabling effective semantic alignment be-
tween visual and textual representations. Extending
CLIP to multilingual scenarios, AltCLIP-m18 in-
troduces multilingual contrastive pre-training, sup-
porting 18 languages and achieving state-of-the-art
performance in cross-modal tasks. This capability
is particularly relevant for SemEval-2025 Task 1
Subtask A, which involves both English and Por-
tuguese, providing a strong baseline for further
fine-tuning.

2.2 Parameter-Efficient Fine-Tuning

Fine-tuning large pre-trained models requires sig-
nificant computational resources. LoRA has
emerged as an efficient alternative to address this
(Zhang et al., 2024b). LoRA reduces the number
of trainable parameters by decomposing the weight
update matrix into low-rank components (Hu et al.,
2022). This approach allows for efficient adapta-
tion while preserving the model’s performance and
has been successfully applied in various domains,
including natural language processing (Zhang et al.,
2024a) and multimodal learning (Shen et al., 2024;
Lu et al., 2023).

2.3 Learning-to-Rank Methods

Learning-to-rank (LTR) methods have been exten-
sively studied in information retrieval (Liu et al.,
2009), with applications ranging from document
ranking to recommendation systems. SemEval-
2025 Task 1 Subtask A aims to rank candidate im-
ages based on their semantic relevance to a nominal
compound (NC) in a given sentence.

Traditional classification or regression losses are
ill-suited for this task because they do not directly
optimize ranking metrics such as Discounted Cu-
mulative Gain (DCG). Generally, LTR methods can
be categorized into the following three paradigms
(Liu et al., 2009) :

• Pointwise Methods: Treat ranking as a clas-
sification or regression problem, focusing on
individual samples but ignoring relative order.

• Pairwise Methods: Model the relative prefer-
ences between pairs of items, capturing local
ordering relationships but lacking a global per-
spective.

• Listwise Methods: Optimize the entire rank-
ing list directly, aligning more closely with
ranking metrics like DCG.

Among these, Listwise methods, such as
ListMLE Loss (Xia et al., 2008), are particularly ef-
fective for tasks where global ranking consistency
is critical, making them a natural choice for Sub-
task A.

3 Datasets and Evaluation Metrics

The dataset for SemEval-2025 Task 1 Subtask A in-
cludes 70 English and 32 Portuguese training items.
Each item contains a context sentence containing a
potentially idiomatic NC and five candidate images.
The images are categorized into five types: a syn-
onym for the idiomatic meaning, a synonym for the
literal meaning, something related to the idiomatic
meaning (but not synonymous), something related
to the literal meaning (but not synonymous), and a
distractor unrelated to both meanings.

For each data item, the primary fields used are
compound (the idiomatic NC), sentence_type (in-
dicating whether the sentence uses the idiomatic
or literal sense), sentence (the context sentence),
expected_order (the ground-truth ranking of im-
ages), and image{n}_name (the filenames of the
five candidate images, where n ranges from 1 to
5). In the training data, sentence_type and ex-
pected_order are provided for supervised learning.
In the development and test data, these fields are
empty, and the model is required to predict ex-
pected_order based on the context sentence and
compound.

The model is evaluated using two key met-
rics: Top 1 Accuracy and Discounted Cumula-
tive Gain (DCG). Top 1 Accuracy measures the
model’s ability to correctly identify the most repre-
sentative image for the given context. DCG evalu-
ates the overall ranking quality by assigning higher
weights to images ranked closer to the ground-truth
top positions. The DCG score is calculated as fol-
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lows:

DCG =
k∑

i=1

reli
log2(i+ 1)

(1)

where reli represents the relevance score of the
i-th result, and i is the rank position of the result,
starting from 1. The term log2 (i+ 1) acts as a
discount factor, reducing the influence of results
that appear later in the ranking.

4 Methodology

Our approach for SemEval-2025 Task 1 Subtask
A consists of four key components: (1) the base
multimodal model (AltCLIP-m18), (2) parameter-
efficient fine-tuning using LoRA, (3) a combined
loss function integrating ListMLE Loss and Focal
Loss, and (4) a data augmentation strategy to en-
hance the diversity and robustness of the training
data.

4.1 Base Model: AltCLIP-m18
We adopt AltCLIP-m18, a multilingual extension
of CLIP, as the base model. AltCLIP-m18 consists
of a Transformer-based text encoder and a Vision
Transformer (ViT) image encoder, which maps text
and images into a shared embedding space. Given
a sentence s and an image I , the model computes
their similarity score as:

sim(s, I) = cos(Etext(s), Eimage(I)) (2)

where Etext and Eimage denote the text and im-
age encoders, respectively, and cos is the cosine
similarity function (see Figure 1).

4.2 Parameter-Efficient Fine-Tuning with
LoRA

To adapt the pre-trained AltCLIP-m18 model to the
task, we employ LoRA, which reduces the number
of trainable parameters by decomposing the weight
update matrix into low-rank components:

∆W = A ·B (3)

where A and B are low-rank matrices with rank r ,
and ∆W is the weight update. The updated weight
matrix is then:

W ′ = W + α ·∆W (4)

where α is a scaling factor that controls the strength
of the update.

Text Encoder Image Encoder

Context 
Sentence

Five 
Images

1I 2I 3I 4I 5I

1T 1T 1I 1T 2I 1T 3I 1T 4I 1T 5I

Text-Image
Similarity Score

Figure 1: Architecture of AltCLIP-m18 for Text-Image
Similarity Computation

In our implementation, LoRA is applied to the
query and value projection matrices in the Trans-
former layers of the text and image encoders (see
Figure 2). Research shows that adapting these
two projection layers enables effective parameter-
efficient tuning (Hu et al., 2022). Detailed hyper-
parameter configurations are discussed in the Ex-
periments section.

4.3 Combined Loss Function
To optimize the ranking of candidate images,
we propose a combined loss function integrating
ListMLE Loss and Focal Loss.

ListMLE Loss maximizes the likelihood of the
correct ranking by considering the entire list of
candidate images. Given a ground-truth ranking y
and a predicted ranking f(x), the loss is defined
as:

LListMLE = − logP (y|x)

= − log

n∏

i=1

exp(f(xyi))∑n
k=i exp(f(xyk))

(5)

where yi denotes the i-th item in the ground-truth
ranking, f(xyi) is the predicted score for the i-th
item, and x is the input to the model.

Focal Loss dynamically adjusts the weight of
each sample to emphasize hard-to-classify cases
(Lin et al., 2017), i.e., those for which the predicted
probabilities are close to 0.5. In our approach, im-
ages of NCs with idiomatic and literal interpre-
tations are regarded as hard-to-classify instances.
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Figure 2: Application of LoRA to Query and Value
Projection Matrices.

Misclassification of these cases can significantly
impact the Top-1 Accuracy. The loss function is
defined as:

LFocal = −αt(1− pt)
γ log(pt) (6)

where pt = p for positive samples and 1−p for neg-
ative samples, with p being the model’s confidence
in the positive class. γ is the focusing parameter,
and αt is a weighting factor for class balancing. In
the expected_order, the first image is treated as the
positive sample, while the remaining images are
considered negative. This setup allows the model
to focus on distinguishing the most representative
image from the candidates, thereby improving Top
1 Accuracy.

By combining Focal Loss with ListMLE Loss,
our approach optimizes both the overall ranking dis-
tribution and the model’s ability to handle ambigu-
ous samples. The final loss function is a weighted
combination of ListMLE Loss and Focal Loss:

L = λ · LFocal + (1− λ) · LListMLE (7)

where λ is a balancing factor.

4.4 Data Augmentation
To enhance the diversity and robustness of the train-
ing data, we employ a data augmentation strategy

using the DeepSeek-V3 1 model. For each data
point, we generate two sentence variants using
carefully designed prompts (see Figure 3): one
preserving the original sentence_type and another
inverting sentence_type. When sentence_type is
inverted, we also invert the top four images in ex-
pected_order, ensuring the model learns to distin-
guish between idiomatic and literal meanings more
effectively.

5 Experiments

5.1 Experimental Setup
We trained our model on the augmented dataset
with a learning rate of 1 × 10−4, batch size of 8,
and 2 epochs. For Focal Loss, we set γ = 2 and
αt = [0.35, 0.1, 0.15, 0.3, 0.1] through empirical
experiments. For LoRA, we used rank r = 6, scal-
ing factor α = 48, and dropout rate 0.5 to balance
performance and computational efficiency. Table 2
compares the trainable parameters of AltCLIP-m18
between full fine-tuning and the LoRA setup used
in our experiments.

5.2 Comparison with Baseline
We compared our approach to the baseline model
(AltCLIP-m18) in zero-shot performance. Table 1
presents the baseline results alongside our model’s
performance with Focal Loss weight λ = 0.15,
while Figure 4 illustrates the impact of different
Focal Loss weights on the primary test set.

On the development set, with λ = 0.15, our
method achieved identical Top 1 Accuracy (0.60)
and comparable DCG scores to the baseline in both
English and Portuguese.

On the primary test set, with λ = 0.15, our model
achieved a Top 1 Accuracy of 0.53 and DCG
of 2.94 for English, outperforming the baseline’s
Top 1 Accuracy (0.40) and DCG (2.98). For Por-
tuguese, our model achieved a Top 1 Accuracy of
0.77 and DCG of 3.31, surpassing the baseline’s
Top 1 Accuracy (0.55) and DCG (2.98).

On the extended test set, with λ = 0.15, our
model achieved a Top 1 Accuracy of 0.59 and
DCG of 2.97 for extended English, outperforming
the baseline’s Top 1 Accuracy (0.57) and DCG
(2.95), and for extended Portuguese, it matched the
baseline’s score of 0.53 while maintaining a DCG
of 2.98.

The improvements over the baseline model stem
from Focal Loss and LoRA Fine-Tuning. Focal

1https://www.deepseek.com/
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type_adverb = "idiomatically" if sentence_type == "idiomatic" else "literally"

opposite_adverb = "literally" if sentence_type == "idiomatic" else "idiomatically"

prompt = f"Generate a new sentence that includes '{compound}' and is used {type_adverb}, 
similar to: {sentence}. Provide only the new sentence without any additional text or explanation."

prompt = f"Generate a new sentence that includes '{compound}' but is used {opposite_adverb}, 
opposite to: {sentence}. Provide only the new sentence without any additional text or explanation."

For same type variant:

For opposite type variant:

Figure 3: Prompts used for data augmentation.

Table 1: Performance Comparison of Our Approach with Zero-Shot Baseline Across Language Settings

Method Dev Set Test Set Extended Set

EN PT EN PT EN PT

Top 1 Acc DCG Top 1 Acc DCG Top 1 Acc DCG Top 1 Acc DCG Top 1 Acc DCG Top 1 Acc DCG

Baseline 0.60 2.89 0.60 3.08 0.40 2.83 0.69 3.22 0.57 2.95 0.53 2.98
Ours(λ = 0.15) 0.60 2.87 0.60 3.00 0.53 2.94 0.77 3.31 0.59 2.97 0.53 2.98

Table 2: Comparison of trainable parameters between
full fine-tuning and LoRA for AltCLIP-m18

Trainable Params Percentage

Full Fine-tuning 1,194,000,897 100%
LoRA 983,040 0.0823%

Loss improves Top 1 Accuracy by focusing on
hard-to-classify samples, while LoRA Fine-Tuning
ensures efficient adaptation with minimal compu-
tational overhead. Together, they enhance multi-
modal idiomaticity representation.

5.3 Ablation Study: Focal Loss Weight λ

We conducted an ablation study to analyze the im-
pact of different Focal Loss weights λ in the com-
bined loss function across development, primary
test, and extended test sets. The results are summa-
rized in Table 3.

On the development set, English (EN) showed
consistent Top 1 Accuracy (0.60) across all λ val-
ues, while Portuguese (PT) exhibited more varia-
tion, peaking at λ = 0.65 with Top 1 Accuracy
Top 1 (0.77) and DCG of 3.13. This stability in
development suggests our model’s robustness dur-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Focal Loss Weight (λ)
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Top-1 Accuracy (PT)
DCG (EN)
DCG (PT)
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Baseline Top-1 Accuracy (PT)
Baseline DCG (EN)
Baseline DCG (PT)

Figure 4: Comparison of Model Performance with Base-
line on the Primary Test Set Across Different λ Values

ing initial parameter tuning. For the English (EN)
primary test set, the best Top 1 Accuracy (0.53)
was achieved in the vicinity of λ = 0.1 and λ = 0.5,
while the highest DCG (3.01) was observed at λ
= 0.55. In the Portuguese (PT) primary test set,
the Top 1 Accuracy remained stable at 0.77 for
most values of λ, with the DCG peaking at 3.32
when λ = 0.45. For the extended test set, the best
Top 1 Accuracy (0.59) in the extended English
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Table 3: Performance comparison across different λ values. Red highlights indicate the maximum values, while
green highlights indicate the minimum values for each metric.

λ
Dev Set Test Set Extended Set

EN PT EN PT EN PT

Top 1 Acc DCG Top 1 Acc DCG Top 1 Acc DCG Top 1 Acc DCG Top 1 Acc DCG Top 1 Acc DCG

0.00 0.60 2.87 0.60 3.06 0.40 2.81 0.77 3.31 0.58 2.95 0.55 3.00
0.05 0.60 2.87 0.60 3.05 0.40 2.81 0.77 3.31 0.58 2.96 0.55 3.00
0.10 0.60 2.87 0.60 3.02 0.53 2.94 0.77 3.31 0.59 2.97 0.51 2.97
0.15 0.60 2.87 0.60 3.00 0.53 2.94 0.77 3.31 0.59 2.97 0.53 2.98
0.20 0.60 2.87 0.50 2.98 0.47 2.90 0.77 3.31 0.59 2.96 0.51 2.96
0.25 0.60 2.87 0.50 2.98 0.47 2.90 0.77 3.31 0.59 2.97 0.51 2.96
0.30 0.60 2.88 0.50 2.98 0.47 2.90 0.77 3.31 0.58 2.96 0.51 2.96
0.35 0.60 2.89 0.50 2.98 0.47 2.91 0.77 3.31 0.58 2.96 0.51 2.96
0.40 0.60 2.89 0.50 2.98 0.47 2.91 0.77 3.32 0.57 2.95 0.53 2.98
0.45 0.60 2.90 0.50 2.96 0.47 2.95 0.77 3.32 0.57 2.95 0.53 3.00
0.50 0.60 2.91 0.50 2.97 0.53 3.00 0.69 3.24 0.55 2.93 0.53 2.98
0.55 0.60 2.93 0.50 2.93 0.53 3.01 0.69 3.24 0.55 2.93 0.53 2.98
0.60 0.60 2.92 0.60 3.00 0.47 2.94 0.69 3.23 0.56 2.94 0.55 2.99
0.65 0.60 2.89 0.70 3.13 0.47 2.94 0.69 3.22 0.57 2.95 0.55 2.99
0.70 0.60 2.88 0.70 3.09 0.47 2.94 0.69 3.22 0.57 2.94 0.51 2.99
0.75 0.60 2.88 0.70 3.09 0.47 2.96 0.69 3.22 0.57 2.93 0.53 2.98
0.80 0.60 2.88 0.70 3.09 0.47 2.93 0.77 3.28 0.57 2.93 0.55 2.98
0.85 0.60 2.88 0.70 3.10 0.47 2.91 0.77 3.29 0.57 2.93 0.55 2.98
0.90 0.60 2.86 0.70 3.11 0.47 2.90 0.77 3.25 0.57 2.94 0.56 2.99
0.95 0.60 2.87 0.60 3.03 0.47 2.91 0.77 3.23 0.57 2.94 0.58 3.01
1.00 0.60 2.87 0.60 3.02 0.47 2.87 0.69 3.17 0.57 2.93 0.62 3.04

Average 0.60 2.88 0.59 3.03 0.47 2.92 0.74 3.27 0.57 2.95 0.54 2.98
Std 0.00 0.02 0.08 0.06 0.03 0.05 0.04 0.05 0.01 0.01 0.03 0.02

test set was achieved around λ = 0.1 and λ = 0.2.
Notably, in the extended Portuguese test set, the
highest Top 1 Accuracy (0.62) and DCG (3.04)
were observed at λ = 1. These results indicate that
the optimal value of λ varies across languages and
test sets, with a moderate range (e.g., λ = 0.1 to
0.5) generally balancing ranking performance and
classification accuracy.

6 Conclusion

This study proposes a multilingual and parameter-
efficient approach for SemEval-2025 Task 1 Sub-
task A, leveraging AltCLIP-m18, LoRA fine-
tuning, and a combined loss function of ListMLE
Loss and Focal Loss. The experiments demon-
strate significant improvements over the baseline
model. However, it is important to acknowledge
the limitations of our study. One key limitation
is the relatively small size of the training dataset,
especially for Portuguese, which may affect the
generalizability of our results. Future work could
address this by expanding the dataset or explor-
ing transfer learning techniques to leverage larger,
related datasets.
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