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Abstract

Table question answering (Table QA) remains
challenging due to the varied structures of ta-
bles and the complexity of queries, which often
require specialized reasoning. We introduce a
system that leverages large language models
(LLMs) to generate executable code as an inter-
mediate step for answering questions on tabular
data. The methodology uniformly represents
tables as dataframes and prompts an LLM to
translate natural-language questions into code
that can be executed on these tables. This ap-
proach addresses key challenges by handling di-
verse table formats, enhancing interpretability
through code execution. Experimental results
on the DataBench benchmarks demonstrate
that the proposed code-then-execute approach
achieves high accuracy. Moreover, by offload-
ing computation to code execution, the system
requires fewer LLM invocations, thereby im-
proving efficiency. These findings highlight
the effectiveness of an LLM-based coding ap-
proach for reliable, scalable, and interpretable
Table QA. 1

1 Introduction

As structured data becomes increasingly prevalent
across a wide range of domains—such as finance,
healthcare, scientific research, and business—the
task of answering questions over tabular data (Table
QA) has emerged as a critical challenge in natural
language processing (NLP) (Jin et al., 2022). De-
spite recent advancements in large language models
(LLMs) and retrieval-augmented generation (RAG)
(Liu et al., 2023), the inherent complexity of table
structures continues to pose significant difficulties.
Many tables contain nested headers, multi-row de-
pendencies, and implicit relationships, which col-
lectively complicate reasoning and information re-
trieval processes (Raja et al., 2021).

1Our code can be found here https://github.com/
NengWan/TabularQA2024

To address these challenges, the DataBench
benchmark provides a structured framework for
evaluating Table QA models (Osés Grijalba et al.,
2024). However, achieving high performance on
DataBench remains difficult, as existing models of-
ten struggle to reason over extensive tables, handle
intricate queries, and produce clear, interpretable
answers. In this study, we propose a system that
harnesses the coding capabilities of large language
models (LLMs) to autonomously generate, vali-
date, and execute code for extracting precise an-
swers from designated datasets (Ye et al., 2025).
By providing the LLM with a given question and an
initial preview of the dataset, we prompt it to gen-
erate code that retrieves the relevant information.
Furthermore, we implement both immediate and
post-execution verification mechanisms to enhance
the accuracy of the generated responses.

Our evaluation examines multiple models, in-
cluding LLAMA3-8b (Grattafiori et al., 2024),
GPT-4o-mini (OpenAI et al., 2024b), and
o1-mini (OpenAI et al., 2024a). Although
the transition to GPT-based models yields sub-
stantial improvements in test set accuracy, cer-
tain challenges persist—particularly the system’s
limited capacity for self-reflection and self-error-
identification. This paper provides an in-depth anal-
ysis of the system architecture, presents detailed
ablation studies, and evaluates model performance,
thereby highlighting both the strengths and limita-
tions of the proposed approach.

2 Background

2.1 Dataset: DataBench

For our experiments, we use DataBench, a bench-
mark for Question Answering over Tabular Data.
It consists of structured tables paired with natural
language questions and their answers. The dataset
covers diverse domains such as finance, health-
care, and sports, incorporating complex queries

2050

https://github.com/NengWan/TabularQA2024
https://github.com/NengWan/TabularQA2024


26

16

10 7

6

Business
Social
Travel
Health
Sports

Figure 1: Proportion of datasets across different do-
mains in the DataBench dataset.

that require aggregation, filtering, and multi-hop
reasoning. Gold-standard annotations ensure reli-
able evaluation.

During development, we were provided with
training and development sets, each containing
seven columns: question, answer, type, column
used, column type, sample answer, and dataset.
The test set, in contrast, includes only question
and dataset columns for answer generation. The
train-dev datasets comprise 65 source tables, rang-
ing from celebrity tweets, Forbes billionaire lists,
and Billboard lyrics. The distribution of different
dataset domains is illustrated in Figure 1

The test set consists of 15 datasets, each avail-
able in two versions: a full dataset and a lite version.
Task Test_All contains 1468 rows, whereas Task
Test_Lite is a significantly smaller subset with only
18 rows (approximately 1% of the full dataset).
This reduction in data volume significantly impacts
answer accuracy, as discussed in later sections. We
participated in both tracks.

2.2 Related Work

Extracting insights from complex tables is a grow-
ing challenge in data science and information re-
trieval. Table QA integrates structured data query-
ing with natural language understanding, address-
ing difficulties in retrieving precise answers from
large databases. Unlike traditional text-based QA,
table QA requires reasoning over diverse structures,
fine-grained cell information, and contextual depen-
dencies (Jin et al., 2022).

Early methods relied on SQL-based models like
SQLNet (Xu et al., 2017), which mapped natu-
ral language to SQL queries using sequence-to-
sequence architectures. While effective for sim-
ple databases, these models struggled with com-
plex multi-table schemas and schema dependencies.

Neural approaches have since improved table QA
by directly mapping questions to table semantics
without explicit schema encoding. Transformer-
based models such as TAPAS (Herzig et al., 2020)
and TaBERT (Yin and Neubig, 2020) jointly en-
code natural language and tabular data, leveraging
cell-aware and column-level embeddings.

Further advancements, including Tuta (Wang
et al., 2021) and TabFact (Chen et al., 2020), en-
hance table representation for fact verification and
comprehension, though they often require domain-
specific fine-tuning. Schema-linking and retrieval-
augmented generation (RAG) have also shown
promise: Zhu (Zhu et al., 2021) improved complex
query answering by integrating schema knowledge,
while Duncan (Duncan et al., 2022) demonstrated
that RAG clarifies ambiguous queries by retrieving
external context.

Despite progress, challenges persist, including
handling noisy data, adapting to unseen table
schemas, and efficiently processing large-scale ta-
bles. Our approach seeks to address these gaps by
improving generalizability, enhancing interpretabil-
ity through transparent execution, and preserving
data privacy via schema-based reasoning.

3 System Overview

We utilize the coding capabilities of large language
models (LLMs) to generate code to query the data.
Initially, we provide the model with the given ques-
tion along with the first five rows of the designated
dataset. In the initial prompt, we instruct the LLM
to generate code capable of extracting the necessary
information to produce the correct answer.

Once the code is generated, we employ two ver-
ification approaches. (i) immediate validation of
the generated code, allowing the LLM to make
corrections if necessary. (ii) correct the code af-
ter execution: if the execution fails, we provide
the LLM with the error message, prompting it to
generate a revised, executable version of the code.
Finally, we obtain and output the results derived
from the corrected code.

3.1 Challenges

Our objective is to develop a fully automated
pipeline capable of processing a given question,
comprehending its intent, generating the corre-
sponding code, executing it, and obtaining the re-
sults. Additionally, the system incorporates an au-
tomated verification mechanism to assess the cor-

2051



Figure 2: System overview

rectness of the generated code based on the given
question.

A fundamental limitation of the system is its
inability to engage in self-reflection, which has
impeded further model improvement.

As detailed in the following sections, we have
introduced two optional self-reflection mechanisms
for the model. The first approach involves prompt-
ing the model to enter a Contemplative mode after
code generation before the code execution, where it
is explicitly instructed to assess the feasibility and
correctness of the generated code. After that we
feed the code into the model to get the final results.

The second approach involves an iterative re-
finement process, wherein, if the generated code
fails to execute, the error message is fed back to
the LLM. This enables the model to systematically
diagnose and correct the errors until a fully exe-
cutable version of the code is produced.

3.2 Methodology

The overall configuration of our system is defined
by a system prompt that specifies the role and re-
sponsibilities of the LLM. In particular, the LLM
is tasked with understanding the dataset and gen-

Algorithm 1 Contemplator

Require: A question q, and a dataset preview D5

(the first five lines of the designated dataset)
Ensure: Final answer a

1: Input: Question q, Dataset preview D5

2: Output: Final answer a
3: for each q and D5:
4: LLM generate code → C1

5: LLM verify C1:
6: if error: Regenerate C2

7: else: C1

8: return C∗

9: Execute the final corrected code C∗:
10: Output the final answer a.

erate code that can extract answer to the question
from the dataset. The prompt also delineates the
required output style; for instance, the generated
code should output answers as ‘raw‘ strings.

In addition to the system prompt, a detailed user
prompt is provided. In our experiments, we eval-
uate two types of user prompts. In the first type,
the prompt instructs the LLM to generate code that,
given a specific question and the first five rows of
the corresponding dataset, is capable of extracting
the correct answer from the complete dataset. The
prompt also includes a starter code snippet, shown
in Appendix A. In the second experimental condi-
tion, the desired output format is explicitly defined
(shown in Appendix B. We expect that these mea-
sures will significantly enhance the accuracy of the
answers produced by the system.

Our initial approach entails returning the gener-
ated code to the LLM alongside the query:

“Given the question, can this code pro-
duce the correct answer?”

In essence, this procedure prompts the LLM to
engage in a form of self-assessment regarding its
own output. The details of this methodology are
presented in Algorithm 1 - the Contemplator .

Our second approach involves enabling the
model to assess and rectify its own errors. We
refer to this method as the Debugger approach. Es-
sentially, the debugger prompt provides the original
question along with the corresponding error mes-
sage, and instructs the LLM to regenerate code that
incorporates this feedback (Algorithm 2).
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Algorithm 2 Debugger

Require: A question q, and a dataset preview D5

(the first five lines of the designated dataset)
Ensure: Final answer a

1: Input: Question q, Dataset preview D5

2: Output: Final answer a
3: for each q and D5:
4: LLM generate code → C1

5: Execute C1:
6: while error:
7: error message → LLM
8: Regenerate C2

9: Execute C∗:
10: Output the final answer a.

3.3 Evaluation Metrics

We employed the evaluation metrics provided by
the organizers. For results in boolean or numeric
formats, the evaluation involves counting the num-
ber of exact matches. In the case of list-type
answers, the procedure first verifies whether the
lengths of the lists are identical; if so, it further
assesses whether the individual elements match
exactly. Ultimately, the overall accuracy score is
computed by dividing the number of correct an-
swers by the total number of answers.

3.4 Experimental Setup:

Initially, we evaluated the system using
LLAMA3-8b; however, due to a marked improve-
ment in performance, we promptly transitioned
to GPT-4o-mini. While the majority of our
experiments were executed with GPT-4o-mini,
we also conducted tests using o1-mini, which
yielded a significant enhancement in answer
accuracy on the test dataset. Nonetheless, given
that running o1-mini requires considerably
more time, the competition results were produced
exclusively with GPT-4o-mini.

4 Results

4.1 Ablation and Model Performance Analysis

We examine the effectiveness of specifying an-
swer format. Our findings indicate that, in most
cases, providing an explicit answer format results
in improved accuracy. Additionally, we compared
the model’s performance under the contemplative
mode versus the debugger mode. The results re-
veal that deferring code verification until an er-
ror occurs leads to better performance, whereas

a double-checking approach—where the model is
queried on whether it has produced the correct an-
swer—appears to obscure the model’s judgment
and substantially diminish performance. In the
most extreme case, this approach resulted in a 20%
reduction in the performance score on the devel-
opment set (from 0.909 to 0.706); see Table 2 for
further details.

We observed that transitioning from
GPT-4o-mini to o1-mini resulted in a
significant improvement in accuracy on both test
sets, with an increase of 0.09 on the full test set and
0.05 on the test lite set. Interestingly, this switch
was accompanied by a reduction in accuracy on
the development set.

As presented in Table 1, our models, config-
ured with the optimal settings discussed previously,
demonstrate a significant performance improve-
ment over the state-of-the-art model reported in
the original DataBench paper(Grijalba et al., 2024).
The average scores across all our models improved
by 13% to 28%. Notably, our model demonstrates
consistently high accuracy on Boolean questions
when provided with a substantial amount of table
data. The highest observed accuracy, 95.3%, was
achieved by GPT-4o-mini on Boolean questions
within the validation set. Furthermore, the accu-
racy for categorical answers approaches that of
boolean questions, indicating robust performance
across different answer types.

Conversely, numerical answer accuracy is com-
paratively lower, which may be attributed to dis-
crepancies arising from the model generating pre-
cise floating-point numbers, whereas the reference
answers are rounded to two decimal places. This
observation aligns with known issues related to
floating-point precision and rounding errors in com-
putational systems . Additionally, a reduction in ta-
ble size correlates with a marked decline in answer
accuracy, a reduction in table size is associated with
a significant decline in answer accuracy, particu-
larly affecting numerical responses, as evidenced
by the performance on the Test Lite dataset.

4.2 Study on different top_p values
Table 3 shows the effect of varying top_p. top_p
is a hyperparameter employed in nucleus sampling
(Holtzman et al., 2020), a technique used for text
generation in language models. It establishes a cu-
mulative probability threshold, ensuring that only
the minimal set of tokens whose combined prob-
ability is at least top_p is considered during sam-
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Table 1: Model Accuracy by Answer Type

Prompt Model Avg Boolean Category Number List[Category] List[Number]

Code Prompt 1 chatgpt3.5 63.0 52.7 73.3 75.9 56.7 56.5

Provided format Prompt
(Validation set)

GPT-4o-mini 91.3 95.3 95.3 89.1 92.2 84.4
o1-mini 88.1 92.2 93.8 92.2 76.6 85.9

Provided format Prompt
(Test set)

GPT-4o-mini 75.1 93.8 75.7 70.5 58.3 69.2
o1-mini 83.1 93.8 82.4 80.1 75.0 80.2

Provided format Prompt
(Test Lite set)

GPT-4o-mini 78.7 71.3 39.2 16.0 25.0 15.4
o1-mini 84.2 70.5 45.9 17.3 26.4 17.6

model Code Correction Prompts Val Test Test_lite
4o-mini before Naive 0.762 0.651 0.672
4o-mini before Provided format 0.706 0.661 0.695
4o-mini after Naive 0.9 0.718 0.764
4o-mini after Provided format 0.909 0.743 0.795
o1-mini after Provided format 0.881 0.831 0.843

Table 2: Activating debugger mode after an error, rather than before, significantly improved answer accuracy.
Providing answer formats for all datasets slightly boosted accuracy. (top_p = 0.7, temperature = 0.1)

Top_p Val Test Test_lite
0.1 0.906 0.751 0.782
0.4 0.913 0.741 0.780
0.7 0.906 0.743 0.795
0.9 0.897 0.747 0.789
1.0 0.9 0.745 0.787

Table 3: Comparison on different top_p values for all
datasets with temperature = 0.1 and with answer format
provided

pling. Our experiments, which varied the top_p
parameter, indicate that its impact on model perfor-
mance is minimal. In this section, all temperature
values are set to the empirically determined opti-
mum of 0.1.

4.3 Study on different temperature values

Table 4 shows the effect if varying temperature.
Temperature is a hyperparameter that adjusts the
randomness in the sampling process of language
models. It operates by scaling the model’s log-
its prior to applying the softmax function; conse-
quently, lower temperature values yield outputs
that are more deterministic and focused, whereas
higher temperature values engender increased vari-
ability and creativity in the generated responses.
Our empirical evaluations in Table 4 demonstrate
that the model exhibits optimal and stable perfor-
mance when the temperature is set to 0.5. Accord-

Temperature Val Test Test_lite
0.1 0.897 0.747 0.795
0.5 0.9 0.749 0.787
1.0 0.894 0.741 0.789

Table 4: Comparison on different temperature values
for all datasets with top_p = 0.9 and with answer format
provided

ingly, in this section, all top_p values have been
fixed at 0.9.

We can conclude that the temperature value does
impact the model performance. The best tempera-
ture should be set to 0.5.

4.4 Error Analysis
One frequently encountered error arises from the
inherent instability of OpenAI’s API, which can
result in no code being generated and an output of
“None/Error.” Another prevalent issue occurs when
the answer is numerical: while the correct value is
rounded to two decimal places, the code produced
by the LLM returns a float with full precision. For
instance, consider the query:

“What is the standard deviation of the
‘ISI’ column?”

The correct answer is 4.55, whereas the LLM-
generated answer is 4.5594771752160375

In addition, ambiguities in natural language can
lead to errors, especially when the LLMs process
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complex or lengthy sentences. For example, con-
sider the query:

“List the usernames of the authors who
provided a username and wrote more
than 4 reviews. If there are none, answer
with an empty list.”

The model might focus only on the initial instruc-
tion to "list the usernames" and overlook the con-
dition about authors who wrote more than four
reviews. As a result, it may generate code that lists
all usernames, ignoring the specified criteria.

To address such issues, we implemented a
rewriter function designed to clarify complex ques-
tions. This approach improved performance on
some intricate queries but negatively impacted sim-
pler Boolean questions, leading to an overall de-
crease in accuracy.

Moreover, upon reviewing the answer compar-
isons, it appears that the LLM’s response may
sometimes be correct, even if it doesn’t exactly
match the expected answer; for example:

Query: List the 2 players with the most
steals overall.
LLM Answer: {‘Chris Paul’, ‘James
Harden’}
Ground Truth: {‘Chris Paul’, ‘Russell
Westbrook’, ‘James Harden’}

Nonetheless, certain discrepancies can be attributed
to model hallucinations.

5 Conclusion

In this study, we introduced a code-generation-
based approach to Table Question Answering (Ta-
ble QA) using large language models (LLMs). By
translating natural language questions into exe-
cutable code, our method improves interpretability,
reduces LLM invocations, and ensures high accu-
racy across diverse table formats. Evaluation on the
DataBench benchmark demonstrated its effective-
ness, with explicit answer formatting and deferred
code validation enhancing performance. While
o1-mini achieved the best test set accuracy, trade-
offs in computational efficiency were observed. De-
spite challenges like ambiguous queries and occa-
sional hallucinations. Our findings highlight the
promise of LLM-driven code execution for scalable
and interpretable Table QA.
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A Starter Code

The code should begin with:
import pandas as pd

def get_result(csv_file):
...
return result

B Result Output Format

The acceptable outputs include:

• Boolean values (e.g., True, False);
• A categorical value (e.g., Flat);
• An integer or a floating-point number (e.g.,
77 or 198.7995642701525);

• A list of categories (e.g., [Central,
Northern, Mission, Southern]);

• A list of numbers (e.g., [2018, 2019,
2022, 2021]).

2058

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2111.07129
https://arxiv.org/abs/2111.07129
https://arxiv.org/abs/2111.07129

