
Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 2050–2058
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

UCSC at SemEval-2025 Task 8: Question Answering over Tabular Data

Neng Wan Sicong Huang Esha Ubale Ian Lane
University of California, Santa Cruz

{newan, shuan213, eubale, ialane}@ucsc.edu

Abstract

Table question answering (Table QA) remains
challenging due to the varied structures of ta-
bles and the complexity of queries, which often
require specialized reasoning. We introduce a
system that leverages large language models
(LLMs) to generate executable code as an inter-
mediate step for answering questions on tabular
data. The methodology uniformly represents
tables as dataframes and prompts an LLM to
translate natural-language questions into code
that can be executed on these tables. This ap-
proach addresses key challenges by handling di-
verse table formats, enhancing interpretability
through code execution. Experimental results
on the DataBench benchmarks demonstrate
that the proposed code-then-execute approach
achieves high accuracy. Moreover, by offload-
ing computation to code execution, the system
requires fewer LLM invocations, thereby im-
proving efficiency. These findings highlight
the effectiveness of an LLM-based coding ap-
proach for reliable, scalable, and interpretable
Table QA. 1

1 Introduction

As structured data becomes increasingly prevalent
across a wide range of domains—such as finance,
healthcare, scientific research, and business—the
task of answering questions over tabular data (Table
QA) has emerged as a critical challenge in natural
language processing (NLP) (Jin et al., 2022). De-
spite recent advancements in large language models
(LLMs) and retrieval-augmented generation (RAG)
(Liu et al., 2023), the inherent complexity of table
structures continues to pose significant difficulties.
Many tables contain nested headers, multi-row de-
pendencies, and implicit relationships, which col-
lectively complicate reasoning and information re-
trieval processes (Raja et al., 2021).

1Our code can be found here https://github.com/
NengWan/TabularQA2024

To address these challenges, the DataBench
benchmark provides a structured framework for
evaluating Table QA models (Osés Grijalba et al.,
2024). However, achieving high performance on
DataBench remains difficult, as existing models of-
ten struggle to reason over extensive tables, handle
intricate queries, and produce clear, interpretable
answers. In this study, we propose a system that
harnesses the coding capabilities of large language
models (LLMs) to autonomously generate, vali-
date, and execute code for extracting precise an-
swers from designated datasets (Ye et al., 2025).
By providing the LLM with a given question and an
initial preview of the dataset, we prompt it to gen-
erate code that retrieves the relevant information.
Furthermore, we implement both immediate and
post-execution verification mechanisms to enhance
the accuracy of the generated responses.

Our evaluation examines multiple models, in-
cluding LLAMA3-8b (Grattafiori et al., 2024),
GPT-4o-mini (OpenAI et al., 2024b), and
o1-mini (OpenAI et al., 2024a). Although
the transition to GPT-based models yields sub-
stantial improvements in test set accuracy, cer-
tain challenges persist—particularly the system’s
limited capacity for self-reflection and self-error-
identification. This paper provides an in-depth anal-
ysis of the system architecture, presents detailed
ablation studies, and evaluates model performance,
thereby highlighting both the strengths and limita-
tions of the proposed approach.

2 Background

2.1 Dataset: DataBench

For our experiments, we use DataBench, a bench-
mark for Question Answering over Tabular Data.
It consists of structured tables paired with natural
language questions and their answers. The dataset
covers diverse domains such as finance, health-
care, and sports, incorporating complex queries

2050

https://github.com/NengWan/TabularQA2024
https://github.com/NengWan/TabularQA2024


26

16

10 7

6

Business
Social
Travel
Health
Sports

Figure 1: Proportion of datasets across different do-
mains in the DataBench dataset.

that require aggregation, filtering, and multi-hop
reasoning. Gold-standard annotations ensure reli-
able evaluation.

During development, we were provided with
training and development sets, each containing
seven columns: question, answer, type, column
used, column type, sample answer, and dataset.
The test set, in contrast, includes only question
and dataset columns for answer generation. The
train-dev datasets comprise 65 source tables, rang-
ing from celebrity tweets, Forbes billionaire lists,
and Billboard lyrics. The distribution of different
dataset domains is illustrated in Figure 1

The test set consists of 15 datasets, each avail-
able in two versions: a full dataset and a lite version.
Task Test_All contains 1468 rows, whereas Task
Test_Lite is a significantly smaller subset with only
18 rows (approximately 1% of the full dataset).
This reduction in data volume significantly impacts
answer accuracy, as discussed in later sections. We
participated in both tracks.

2.2 Related Work

Extracting insights from complex tables is a grow-
ing challenge in data science and information re-
trieval. Table QA integrates structured data query-
ing with natural language understanding, address-
ing difficulties in retrieving precise answers from
large databases. Unlike traditional text-based QA,
table QA requires reasoning over diverse structures,
fine-grained cell information, and contextual depen-
dencies (Jin et al., 2022).

Early methods relied on SQL-based models like
SQLNet (Xu et al., 2017), which mapped natu-
ral language to SQL queries using sequence-to-
sequence architectures. While effective for sim-
ple databases, these models struggled with com-
plex multi-table schemas and schema dependencies.

Neural approaches have since improved table QA
by directly mapping questions to table semantics
without explicit schema encoding. Transformer-
based models such as TAPAS (Herzig et al., 2020)
and TaBERT (Yin and Neubig, 2020) jointly en-
code natural language and tabular data, leveraging
cell-aware and column-level embeddings.

Further advancements, including Tuta (Wang
et al., 2021) and TabFact (Chen et al., 2020), en-
hance table representation for fact verification and
comprehension, though they often require domain-
specific fine-tuning. Schema-linking and retrieval-
augmented generation (RAG) have also shown
promise: Zhu (Zhu et al., 2021) improved complex
query answering by integrating schema knowledge,
while Duncan (Duncan et al., 2022) demonstrated
that RAG clarifies ambiguous queries by retrieving
external context.

Despite progress, challenges persist, including
handling noisy data, adapting to unseen table
schemas, and efficiently processing large-scale ta-
bles. Our approach seeks to address these gaps by
improving generalizability, enhancing interpretabil-
ity through transparent execution, and preserving
data privacy via schema-based reasoning.

3 System Overview

We utilize the coding capabilities of large language
models (LLMs) to generate code to query the data.
Initially, we provide the model with the given ques-
tion along with the first five rows of the designated
dataset. In the initial prompt, we instruct the LLM
to generate code capable of extracting the necessary
information to produce the correct answer.

Once the code is generated, we employ two ver-
ification approaches. (i) immediate validation of
the generated code, allowing the LLM to make
corrections if necessary. (ii) correct the code af-
ter execution: if the execution fails, we provide
the LLM with the error message, prompting it to
generate a revised, executable version of the code.
Finally, we obtain and output the results derived
from the corrected code.

3.1 Challenges

Our objective is to develop a fully automated
pipeline capable of processing a given question,
comprehending its intent, generating the corre-
sponding code, executing it, and obtaining the re-
sults. Additionally, the system incorporates an au-
tomated verification mechanism to assess the cor-

2051



Figure 2: System overview

rectness of the generated code based on the given
question.

A fundamental limitation of the system is its
inability to engage in self-reflection, which has
impeded further model improvement.

As detailed in the following sections, we have
introduced two optional self-reflection mechanisms
for the model. The first approach involves prompt-
ing the model to enter a Contemplative mode after
code generation before the code execution, where it
is explicitly instructed to assess the feasibility and
correctness of the generated code. After that we
feed the code into the model to get the final results.

The second approach involves an iterative re-
finement process, wherein, if the generated code
fails to execute, the error message is fed back to
the LLM. This enables the model to systematically
diagnose and correct the errors until a fully exe-
cutable version of the code is produced.

3.2 Methodology

The overall configuration of our system is defined
by a system prompt that specifies the role and re-
sponsibilities of the LLM. In particular, the LLM
is tasked with understanding the dataset and gen-

Algorithm 1 Contemplator

Require: A question q, and a dataset preview D5

(the first five lines of the designated dataset)
Ensure: Final answer a

1: Input: Question q, Dataset preview D5

2: Output: Final answer a
3: for each q and D5:
4: LLM generate code → C1

5: LLM verify C1:
6: if error: Regenerate C2

7: else: C1

8: return C∗

9: Execute the final corrected code C∗:
10: Output the final answer a.

erate code that can extract answer to the question
from the dataset. The prompt also delineates the
required output style; for instance, the generated
code should output answers as ‘raw‘ strings.

In addition to the system prompt, a detailed user
prompt is provided. In our experiments, we eval-
uate two types of user prompts. In the first type,
the prompt instructs the LLM to generate code that,
given a specific question and the first five rows of
the corresponding dataset, is capable of extracting
the correct answer from the complete dataset. The
prompt also includes a starter code snippet, shown
in Appendix A. In the second experimental condi-
tion, the desired output format is explicitly defined
(shown in Appendix B. We expect that these mea-
sures will significantly enhance the accuracy of the
answers produced by the system.

Our initial approach entails returning the gener-
ated code to the LLM alongside the query:

“Given the question, can this code pro-
duce the correct answer?”

In essence, this procedure prompts the LLM to
engage in a form of self-assessment regarding its
own output. The details of this methodology are
presented in Algorithm 1 - the Contemplator .

Our second approach involves enabling the
model to assess and rectify its own errors. We
refer to this method as the Debugger approach. Es-
sentially, the debugger prompt provides the original
question along with the corresponding error mes-
sage, and instructs the LLM to regenerate code that
incorporates this feedback (Algorithm 2).

2052



Algorithm 2 Debugger

Require: A question q, and a dataset preview D5

(the first five lines of the designated dataset)
Ensure: Final answer a

1: Input: Question q, Dataset preview D5

2: Output: Final answer a
3: for each q and D5:
4: LLM generate code → C1

5: Execute C1:
6: while error:
7: error message → LLM
8: Regenerate C2

9: Execute C∗:
10: Output the final answer a.

3.3 Evaluation Metrics

We employed the evaluation metrics provided by
the organizers. For results in boolean or numeric
formats, the evaluation involves counting the num-
ber of exact matches. In the case of list-type
answers, the procedure first verifies whether the
lengths of the lists are identical; if so, it further
assesses whether the individual elements match
exactly. Ultimately, the overall accuracy score is
computed by dividing the number of correct an-
swers by the total number of answers.

3.4 Experimental Setup:

Initially, we evaluated the system using
LLAMA3-8b; however, due to a marked improve-
ment in performance, we promptly transitioned
to GPT-4o-mini. While the majority of our
experiments were executed with GPT-4o-mini,
we also conducted tests using o1-mini, which
yielded a significant enhancement in answer
accuracy on the test dataset. Nonetheless, given
that running o1-mini requires considerably
more time, the competition results were produced
exclusively with GPT-4o-mini.

4 Results

4.1 Ablation and Model Performance Analysis

We examine the effectiveness of specifying an-
swer format. Our findings indicate that, in most
cases, providing an explicit answer format results
in improved accuracy. Additionally, we compared
the model’s performance under the contemplative
mode versus the debugger mode. The results re-
veal that deferring code verification until an er-
ror occurs leads to better performance, whereas

a double-checking approach—where the model is
queried on whether it has produced the correct an-
swer—appears to obscure the model’s judgment
and substantially diminish performance. In the
most extreme case, this approach resulted in a 20%
reduction in the performance score on the devel-
opment set (from 0.909 to 0.706); see Table 2 for
further details.

We observed that transitioning from
GPT-4o-mini to o1-mini resulted in a
significant improvement in accuracy on both test
sets, with an increase of 0.09 on the full test set and
0.05 on the test lite set. Interestingly, this switch
was accompanied by a reduction in accuracy on
the development set.

As presented in Table 1, our models, config-
ured with the optimal settings discussed previously,
demonstrate a significant performance improve-
ment over the state-of-the-art model reported in
the original DataBench paper(Grijalba et al., 2024).
The average scores across all our models improved
by 13% to 28%. Notably, our model demonstrates
consistently high accuracy on Boolean questions
when provided with a substantial amount of table
data. The highest observed accuracy, 95.3%, was
achieved by GPT-4o-mini on Boolean questions
within the validation set. Furthermore, the accu-
racy for categorical answers approaches that of
boolean questions, indicating robust performance
across different answer types.

Conversely, numerical answer accuracy is com-
paratively lower, which may be attributed to dis-
crepancies arising from the model generating pre-
cise floating-point numbers, whereas the reference
answers are rounded to two decimal places. This
observation aligns with known issues related to
floating-point precision and rounding errors in com-
putational systems . Additionally, a reduction in ta-
ble size correlates with a marked decline in answer
accuracy, a reduction in table size is associated with
a significant decline in answer accuracy, particu-
larly affecting numerical responses, as evidenced
by the performance on the Test Lite dataset.

4.2 Study on different top_p values
Table 3 shows the effect of varying top_p. top_p
is a hyperparameter employed in nucleus sampling
(Holtzman et al., 2020), a technique used for text
generation in language models. It establishes a cu-
mulative probability threshold, ensuring that only
the minimal set of tokens whose combined prob-
ability is at least top_p is considered during sam-

2053



Table 1: Model Accuracy by Answer Type

Prompt Model Avg Boolean Category Number List[Category] List[Number]

Code Prompt 1 chatgpt3.5 63.0 52.7 73.3 75.9 56.7 56.5

Provided format Prompt
(Validation set)

GPT-4o-mini 91.3 95.3 95.3 89.1 92.2 84.4
o1-mini 88.1 92.2 93.8 92.2 76.6 85.9

Provided format Prompt
(Test set)

GPT-4o-mini 75.1 93.8 75.7 70.5 58.3 69.2
o1-mini 83.1 93.8 82.4 80.1 75.0 80.2

Provided format Prompt
(Test Lite set)

GPT-4o-mini 78.7 71.3 39.2 16.0 25.0 15.4
o1-mini 84.2 70.5 45.9 17.3 26.4 17.6

model Code Correction Prompts Val Test Test_lite
4o-mini before Naive 0.762 0.651 0.672
4o-mini before Provided format 0.706 0.661 0.695
4o-mini after Naive 0.9 0.718 0.764
4o-mini after Provided format 0.909 0.743 0.795
o1-mini after Provided format 0.881 0.831 0.843

Table 2: Activating debugger mode after an error, rather than before, significantly improved answer accuracy.
Providing answer formats for all datasets slightly boosted accuracy. (top_p = 0.7, temperature = 0.1)

Top_p Val Test Test_lite
0.1 0.906 0.751 0.782
0.4 0.913 0.741 0.780
0.7 0.906 0.743 0.795
0.9 0.897 0.747 0.789
1.0 0.9 0.745 0.787

Table 3: Comparison on different top_p values for all
datasets with temperature = 0.1 and with answer format
provided

pling. Our experiments, which varied the top_p
parameter, indicate that its impact on model perfor-
mance is minimal. In this section, all temperature
values are set to the empirically determined opti-
mum of 0.1.

4.3 Study on different temperature values

Table 4 shows the effect if varying temperature.
Temperature is a hyperparameter that adjusts the
randomness in the sampling process of language
models. It operates by scaling the model’s log-
its prior to applying the softmax function; conse-
quently, lower temperature values yield outputs
that are more deterministic and focused, whereas
higher temperature values engender increased vari-
ability and creativity in the generated responses.
Our empirical evaluations in Table 4 demonstrate
that the model exhibits optimal and stable perfor-
mance when the temperature is set to 0.5. Accord-

Temperature Val Test Test_lite
0.1 0.897 0.747 0.795
0.5 0.9 0.749 0.787
1.0 0.894 0.741 0.789

Table 4: Comparison on different temperature values
for all datasets with top_p = 0.9 and with answer format
provided

ingly, in this section, all top_p values have been
fixed at 0.9.

We can conclude that the temperature value does
impact the model performance. The best tempera-
ture should be set to 0.5.

4.4 Error Analysis
One frequently encountered error arises from the
inherent instability of OpenAI’s API, which can
result in no code being generated and an output of
“None/Error.” Another prevalent issue occurs when
the answer is numerical: while the correct value is
rounded to two decimal places, the code produced
by the LLM returns a float with full precision. For
instance, consider the query:

“What is the standard deviation of the
‘ISI’ column?”

The correct answer is 4.55, whereas the LLM-
generated answer is 4.5594771752160375

In addition, ambiguities in natural language can
lead to errors, especially when the LLMs process

2054



complex or lengthy sentences. For example, con-
sider the query:

“List the usernames of the authors who
provided a username and wrote more
than 4 reviews. If there are none, answer
with an empty list.”

The model might focus only on the initial instruc-
tion to "list the usernames" and overlook the con-
dition about authors who wrote more than four
reviews. As a result, it may generate code that lists
all usernames, ignoring the specified criteria.

To address such issues, we implemented a
rewriter function designed to clarify complex ques-
tions. This approach improved performance on
some intricate queries but negatively impacted sim-
pler Boolean questions, leading to an overall de-
crease in accuracy.

Moreover, upon reviewing the answer compar-
isons, it appears that the LLM’s response may
sometimes be correct, even if it doesn’t exactly
match the expected answer; for example:

Query: List the 2 players with the most
steals overall.
LLM Answer: {‘Chris Paul’, ‘James
Harden’}
Ground Truth: {‘Chris Paul’, ‘Russell
Westbrook’, ‘James Harden’}

Nonetheless, certain discrepancies can be attributed
to model hallucinations.

5 Conclusion

In this study, we introduced a code-generation-
based approach to Table Question Answering (Ta-
ble QA) using large language models (LLMs). By
translating natural language questions into exe-
cutable code, our method improves interpretability,
reduces LLM invocations, and ensures high accu-
racy across diverse table formats. Evaluation on the
DataBench benchmark demonstrated its effective-
ness, with explicit answer formatting and deferred
code validation enhancing performance. While
o1-mini achieved the best test set accuracy, trade-
offs in computational efficiency were observed. De-
spite challenges like ambiguous queries and occa-
sional hallucinations. Our findings highlight the
promise of LLM-driven code execution for scalable
and interpretable Table QA.

References

Danqi Chen, Pengcheng Xie, Shiyu Wang, et al. 2020.
Tabfact: A large-scale dataset for table-based fact
verification. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

Ethan Duncan, Luheng He, Michael A. Hellman, et al.
2022. Retrieval-augmented question answering over
tabular data. Stanford NLP Final Project Report.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-
driguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith,
Filip Radenovic, Francisco Guzmán, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-
derson, Govind Thattai, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is-
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad,
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer,
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal
Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins,
Louis Martin, Lovish Madaan, Lubo Malo, Lukas
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,
Mona Hassan, Naman Goyal, Narjes Torabi, Niko-
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji,
Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal,
Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral,
Robert Stojnic, Roberta Raileanu, Rohan Maheswari,

2055



Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron-
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo-
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha-
ran Narang, Sharath Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Van-
denhende, Soumya Batra, Spencer Whitman, Sten
Sootla, Stephane Collot, Suchin Gururangan, Syd-
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir-
ginie Do, Vish Vogeti, Vítor Albiero, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xi-
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin-
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri-
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld,
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit San-
gani, Amos Teo, Anam Yunus, Andrei Lupu, An-
dres Alvarado, Andrew Caples, Andrew Gu, Andrew
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan-
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Ce Liu, Changhan Wang,
Changkyu Kim, Chao Zhou, Chester Hu, Ching-
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe-
ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty,
Daniel Kreymer, Daniel Li, David Adkins, David
Xu, Davide Testuggine, Delia David, Devi Parikh,
Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn,
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este-
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun,
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz,
Gada Badeer, Georgia Swee, Gil Halpern, Grant
Herman, Grigory Sizov, Guangyi, Zhang, Guna
Lakshminarayanan, Hakan Inan, Hamid Shojanaz-
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun
Habeeb, Harrison Rudolph, Helen Suk, Henry As-
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,
Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher,
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe

Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang,
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Ki-
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A,
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst-
edt, Madian Khabsa, Manav Avalani, Manish Bhatt,
Martynas Mankus, Matan Hasson, Matthew Lennie,
Matthias Reso, Maxim Groshev, Maxim Naumov,
Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa-
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
Mike Macey, Mike Wang, Miquel Jubert Hermoso,
Mo Metanat, Mohammad Rastegari, Munish Bansal,
Nandhini Santhanam, Natascha Parks, Natasha
White, Navyata Bawa, Nayan Singhal, Nick Egebo,
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-
dro Rittner, Philip Bontrager, Pierre Roux, Piotr
Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Russ Howes, Ruty Rinott, Sachin Mehta,
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,
Satadru Pan, Saurabh Mahajan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar,
Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,
Stephanie Max, Stephen Chen, Steve Kehoe, Steve
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal
Remez, Tamar Glaser, Tamara Best, Thilo Koehler,
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad
Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen-
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng
Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang,
Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd
of models. Preprint, arXiv:2407.21783.

Jorge Osés Grijalba, Luis Alfonso Ureña-López, Euge-
nio Martínez Cámara, and Jose Camacho-Collados.
2024. Question answering over tabular data with
databench: A large-scale empirical evaluation of llms.
In Proceedings of LREC-COLING 2024, Turin, Italy.

2056

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783


Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, et al. 2020. Tapas: Weakly supervised ta-
ble parsing via pre-training. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics (ACL).

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Nengzheng Jin, Joanna Siebert, Dongfang Li, and
Qingcai Chen. 2022. A survey on table ques-
tion answering: Recent advances. arXiv preprint
arXiv:2207.05270.

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S. Yu.
2023. A comprehensive evaluation of ChatGPT’s
zero-shot text-to-SQL capability. arXiv preprint
arXiv:2303.13547.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer,
Adam Richardson, Ahmed El-Kishky, Aiden Low,
Alec Helyar, Aleksander Madry, Alex Beutel, Alex
Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
Passos, Alexander Neitz, Alexander Prokofiev,
Alexander Wei, Allison Tam, Ally Bennett, Ananya
Kumar, Andre Saraiva, Andrea Vallone, Andrew Du-
berstein, Andrew Kondrich, Andrey Mishchenko,
Andy Applebaum, Angela Jiang, Ashvin Nair, Bar-
ret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin
Sokolowsky, Boaz Barak, Bob McGrew, Borys Mi-
naiev, Botao Hao, Bowen Baker, Brandon Houghton,
Brandon McKinzie, Brydon Eastman, Camillo Lu-
garesi, Cary Bassin, Cary Hudson, Chak Ming Li,
Charles de Bourcy, Chelsea Voss, Chen Shen, Chong
Zhang, Chris Koch, Chris Orsinger, Christopher
Hesse, Claudia Fischer, Clive Chan, Dan Roberts,
Daniel Kappler, Daniel Levy, Daniel Selsam, David
Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Free-
man, Eddie Zhang, Edmund Wong, Elizabeth Proehl,
Enoch Cheung, Eric Mitchell, Eric Wallace, Erik
Ritter, Evan Mays, Fan Wang, Felipe Petroski Such,
Filippo Raso, Florencia Leoni, Foivos Tsimpourlas,
Francis Song, Fred von Lohmann, Freddie Sulit,
Geoff Salmon, Giambattista Parascandolo, Gildas
Chabot, Grace Zhao, Greg Brockman, Guillaume
Leclerc, Hadi Salman, Haiming Bao, Hao Sheng,
Hart Andrin, Hessam Bagherinezhad, Hongyu Ren,
Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte,
Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever, Irina
Kofman, Jakub Pachocki, James Lennon, Jason Wei,
Jean Harb, Jerry Twore, Jiacheng Feng, Jiahui Yu,
Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero
Candela, Joe Palermo, Joel Parish, Johannes Hei-
decke, John Hallman, John Rizzo, Jonathan Gordon,
Jonathan Uesato, Jonathan Ward, Joost Huizinga,
Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Ka-
rina Nguyen, Karl Cobbe, Katy Shi, Kayla Wood,
Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu,
Kevin Lu, Kevin Stone, Kevin Yu, Lama Ahmad,
Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho,

Liam Fedus, Lilian Weng, Linden Li, Lindsay Mc-
Callum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd,
Maja Trebacz, Manas Joglekar, Mark Chen, Marko
Tintor, Mason Meyer, Matt Jones, Matt Kaufer,
Max Schwarzer, Meghan Shah, Mehmet Yatbaz,
Melody Y. Guan, Mengyuan Xu, Mengyuan Yan,
Mia Glaese, Mianna Chen, Michael Lampe, Michael
Malek, Michele Wang, Michelle Fradin, Mike Mc-
Clay, Mikhail Pavlov, Miles Wang, Mingxuan Wang,
Mira Murati, Mo Bavarian, Mostafa Rohaninejad,
Nat McAleese, Neil Chowdhury, Neil Chowdhury,
Nick Ryder, Nikolas Tezak, Noam Brown, Ofir
Nachum, Oleg Boiko, Oleg Murk, Olivia Watkins,
Patrick Chao, Paul Ashbourne, Pavel Izmailov, Pe-
ter Zhokhov, Rachel Dias, Rahul Arora, Randall
Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Mi-
yara, Reimar Leike, Renny Hwang, Rhythm Garg,
Robin Brown, Roshan James, Rui Shu, Ryan Cheu,
Ryan Greene, Saachi Jain, Sam Altman, Sam Toizer,
Sam Toyer, Samuel Miserendino, Sandhini Agarwal,
Santiago Hernandez, Sasha Baker, Scott McKinney,
Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani
Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang,
Siyuan Fu, Spencer Papay, Steph Lin, Suchir Balaji,
Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan
Clark, Tao Wang, Taylor Gordon, Ted Sanders, Te-
jal Patwardhan, Thibault Sottiaux, Thomas Degry,
Thomas Dimson, Tianhao Zheng, Timur Garipov,
Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peter-
son, Tyna Eloundou, Valerie Qi, Vineet Kosaraju,
Vinnie Monaco, Vitchyr Pong, Vlad Fomenko,
Weiyi Zheng, Wenda Zhou, Wes McCabe, Wojciech
Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yun-
yun Wang, Zheng Shao, and Zhuohan Li. 2024a.
Openai o1 system card. Preprint, arXiv:2412.16720.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,

2057

https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://arxiv.org/abs/2412.16720


Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu,
Qiming Yuan, Wojciech Zaremba, Rowan Zellers,
Chong Zhang, Marvin Zhang, Shengjia Zhao, Tian-
hao Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024b. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Jorge Osés Grijalba, L. Alfonso Ureña-López, Euge-

nio Martínez Cámara, and Jose Camacho-Collados.
2024. Question answering over tabular data with
DataBench: A large-scale empirical evaluation of
LLMs. In Proceedings of the 2024 Joint In-
ternational Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 13471–13488, Torino, Italy.
ELRA and ICCL.

Sachin Raja, Ajoy Mondal, and C V Jawahar. 2021. Vi-
sual understanding of complex table structures from
document images. Preprint, arXiv:2111.07129.

Bin Wang, Zhen Zhang, Lujun Hou, et al. 2021. Tuta:
Tree-based transformers for generally structured ta-
ble pre-training. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

Xinyi Xu, Chang Liu, and Dawn Song. 2017. Sqlnet:
Generating structured queries from natural language
without reinforcement learning. In 2017 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP).

Junyi Ye, Mengnan Du, and Guiling Wang. 2025.
DataFrame QA: A universal llm framework on
dataframe question answering without data exposure.
In Proceedings of the 16th Asian Conference on Ma-
chine Learning (ACML), pages 575–590. PMLR.

Pengcheng Yin and Graham Neubig. 2020. Tabert: Pre-
training for joint understanding of textual and tabular
data. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics (ACL).

Chenguang Zhu, Michael Zeng, and Xuedong Huang.
2021. Multilingual semantic parsing with language-
dependent schema linking. In Proceedings of the
2021 ACM SIGMOD International Conference on
Management of Data (SIGMOD).

A Starter Code

The code should begin with:
import pandas as pd

def get_result(csv_file):
...
return result

B Result Output Format

The acceptable outputs include:

• Boolean values (e.g., True, False);
• A categorical value (e.g., Flat);
• An integer or a floating-point number (e.g.,
77 or 198.7995642701525);

• A list of categories (e.g., [Central,
Northern, Mission, Southern]);

• A list of numbers (e.g., [2018, 2019,
2022, 2021]).

2058

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2111.07129
https://arxiv.org/abs/2111.07129
https://arxiv.org/abs/2111.07129

