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Abstract
Emotion recognition is a crucial task in natural
language processing, particularly in the domain
of multi-label emotion classification, where a
single text can express multiple emotions with
varying intensities. In this work, we partici-
pated in Task 11, Track A and Track B of the
SemEval-2025 competition, focusing on emo-
tion detection in low-resource languages. Our
approach leverages transformer-based models
combined with parameter-efficient fine-tuning
(PEFT) techniques to effectively address the
challenges posed by data scarcity. We specifi-
cally applied our method to multiple languages
and achieved 9th place in the Arabic Algerian
track among 40 competing teams. Our results
demonstrate the effectiveness of PEFT in im-
proving emotion recognition performance for
low-resource languages. The implementation
code is publicly available in our GitHub reposi-
tory1.

1 Introduction

Sentiment analysis plays a crucial role in under-
standing human emotions in text, impacting various
applications such as customer feedback analysis,
social media monitoring, healthcare, and finance.
Assigning weights to emotions enhances the pre-
cision of sentiment classification, enabling more
nuanced decision-making (Jim et al., 2024). With
the advancement of deep learning and transformer-
based models, sentiment analysis has become more
efficient (Cañete et al., 2023; Baziotis et al., 2018;
Yu et al., 2018). However, achieving robust accu-
racy in emotion recognition remains a challenge,
especially for low-resource languages, where data
scarcity and linguistic diversity hinder model per-
formance.

We focus on categorical emotion classification,
where emotions are assigned to discrete categories.

*Authors contributed equally.
1https://github.com/AylinNaebzadeh/

Text-Based-Emotion-Detection-SemEval-2025

Early approaches to textual emotion classifica-
tion primarily relied on handcrafted features, such
as lexicons and rule-based methods (Stone et al.,
1966; Strapparava et al., 2004). While modern deep
learning models have significantly improved perfor-
mance (Xu et al., 2020), they are highly dependent
on large-scale datasets. When trained on limited
data, these models often struggle with overfitting
and poor generalization (Tian et al., 2024), mak-
ing emotion recognition in low-resource settings
particularly challenging (Yusuf et al., 2024).

Furthermore, we focus on weighted multi-label
text classification, a more complex task where mul-
tiple emotions are assigned with varying intensi-
ties. While weighting mechanisms enhance emo-
tion modeling, they also come with challenges such
as data sparsity, label imbalance, and the difficulty
of handling overlapping emotions effectively (Ke-
mentchedjhieva and Chalkidis, 2023).

We focus on low-resource languages by lever-
aging Transformer-based models, evaluating var-
ious architectures, including multilingual models.
To mitigate overfitting and enhance generalization,
we employ parameter-efficient fine-tuning (PEFT)
techniques such as LoRA (Low-Rank Adaptation)
(Hu et al., 2022), enabling efficient adaptation
while maintaining model robustness.

To summarize, we conducted the following ex-
periments on the SemEval 2024 Task 11 dataset:

• Utilizing Transformer-based models to en-
hance sentiment classification performance.

• Applying PEFT techniques, such as LoRA, to
improve efficiency and generalization.

• Assigning density values to each emotion for
better sentiment representation.

2 Related Work

Early text classification, including multi-label tasks,
relied on traditional machine learning methods
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such as Bag-of-Words (BoW) and TF-IDF for fea-
ture extraction, using classifiers like Naive Bayes,
Support Vector Machines (SVM), and Logistic Re-
gression (Joachims, 1998; Zhang and Zhou, 2005).
These approaches represented text as sparse vectors
and utilized statistical patterns for classification.

With the rise of deep learning, models like Con-
volutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) became popular for text
classification (Kim, 2019; Liu et al., 2016). CNNs
captured local patterns, while Long Short-Term
Memory (LSTM) networks in RNNs excelled in
modeling sequential dependencies. Although these
methods improved performance by learning dense
representations, they struggled with large datasets
and long-range dependencies.

The introduction of attention mechanisms and
Transformer architectures represented a major ad-
vancement (Vaswani et al., 2017; Devlin et al.,
2019). Models like BERT and GPT utilized self-
attention to capture contextual relationships across
documents, surpassing traditional methods in multi-
label classification. However, their high computa-
tional costs remain a challenge.

To mitigate these issues, Parameter-Efficient
Fine-Tuning (PEFT) techniques have emerged, al-
lowing large models to be fine-tuned with reduced
computational and memory overhead (Houlsby
et al., 2019). Techniques such as LoRA (Low-Rank
Adaptation) (Hu et al., 2022), adapters (Houlsby
et al., 2019), and prefix tuning (Li and Liang, 2021)
facilitate efficient adaptation of pre-trained models
to specific tasks, making them more feasible for
resource-constrained environments.

3 Task

This SemEval-2025 Task 11: Bridging the Gap in
Text-based Emotion Detection (Muhammad et al.,
2025a; Belay et al., 2025; Muhammad et al., 2025b)
comprises three distinct tracks: Multi-label Emo-
tion Detection (Track A), Emotion Intensity Pre-
diction (Track B), and Cross-lingual Emotion De-
tection (Track C). Our team participated in the first
two tracks. Figure 1 illustrates an overview of the
task description.

3.1 Track A

Given a text snippet, the goal is to identify the emo-
tions expressed by the speaker. Specifically, each
snippet must be labeled to indicate whether it con-
veys any of the following emotions: joy, sadness,

Figure 1: Task Overview for Track A and Track B

fear, anger, surprise, or disgust. That is, for each
emotion, the snippet is assigned either a positive la-
bel (1) if the emotion is present or a negative label
(0) if it is absent.

For certain languages, such as English, the set of
detectable emotions is limited to five—joy, sadness,
fear, anger, and surprise—excluding disgust. Table
1 is a sample of the English training data for the
first track.

3.2 Track B

For a given text snippet and a specified target emo-
tion, the objective is to predict the intensity level
of that emotion.

The possible emotions under consideration in-
clude: joy, sadness, fear, anger, surprise, and dis-
gust.

The emotion intensity levels are categorized into
the following ordinal classes:

• 0: No emotion present

• 1: Low intensity

• 2: Moderate intensity

• 3: High intensity

Table 2 is a sample of the English training data for
the second track.

4 Methodology

Our main focus in the first track was on Afrikaans
(AFR), Arabic Algerian (ARQ), Hindi (HIN), and
Swedish (SWE) languages. For the second track,
we worked on Russian (RUS) and Romanian
(RON). To tackle this task, we employ several
transformer-based architectures, which are detailed
in the Results section. In our experiments, we uti-
lized a consistent set of hyperparameters, including
a learning rate of 1e − 5, 100 training epochs, a
batch size of 8 for both training and evaluation, and
a weight decay of 0.01.
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id text Joy Fear Anger Sadness Surprise
eng_train_track1_001 None of us has mentioned the incident since. 0 1 0 1 1
eng_train_track1_002 I was 7 and woke up early, so I went to the basement to watch cartoons. 1 0 0 0 0
eng_train_track1_003 By that point I felt like someone was stabbing my head with a sharp object. 0 1 0 0 0
eng_train_track1_004 watching her leave with dudes drove me crazy. 0 1 1 1 0
eng_train_track1_005 “ My eyes widened. 0 1 0 0 1

Table 1: Sample of the English training data for Track A

id text Joy Fear Anger Sadness Surprise
eng_train_track2_001 None of us has mentioned the incident since. 0 1 0 2 1
eng_train_track2_002 I was 7 and woke up early, so I went to the basement to watch cartoons. 1 0 0 0 0
eng_train_track2_003 By that point I felt like someone was stabbing my head with a sharp object. 0 3 0 0 0
eng_train_track2_004 watching her leave with dudes drove me crazy. 0 1 3 1 0
eng_train_track2_005 “ My eyes widened. 0 1 0 0 2

Table 2: Sample of the English training data for Track B

Figure 2: Methodology Overview for Track A and Track B

Figure 2 represents the methodology of our
work.

We provide more information about the method-
ology for each task in separate subsections.

4.1 Track A

For the first track, our approach to multi-label
classification involved fine-tuning pretrained trans-
former models on the training datasets and assess-
ing their performance using the F1 score. During
training, we initially set the label threshold in the
sigmoid function to 0.3. However, after completing
the training process, we applied a threshold tun-

ing strategy to determine the optimal threshold that
maximized the F1 score.

4.2 Track B

Our approach to multi-label density prediction
(with labels ranging 0–3) combines transformer-
based architectures with parameter-efficient fine-
tuning strategies.

4.2.1 Parameter-Efficient Fine-Tuning
Since our focus is on low-resource languages, fine-
tuning all parameters of large transformer models
is computationally expensive and impractical. To
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mitigate this, we adopt LoRA (Low-Rank Adapta-
tion), a parameter-efficient fine-tuning method that
reduces the number of trainable parameters while
maintaining performance. LoRA injects trainable
low-rank matrices into transformer layers, enabling
efficient adaptation to new tasks without modify-
ing the entire model. This approach is particularly
beneficial in low-resource scenarios where full fine-
tuning would require extensive labeled data and
computational resources.

4.2.2 Training Strategy
Loss Function: To optimize our model for the den-
sity prediction task, we employ the Mean Squared
Error (MSE) loss:

L =
1

N

N∑

i=1

(yi − ŷi)
2

where yi represents the ground-truth density score
(0–3) and ŷi denotes the predicted value. MSE is
chosen for its sensitivity to large deviations, ensur-
ing precise calibration of predicted intensities.

Post-Processing: To enforce annotation guide-
lines, we apply floor clipping to all predictions:

ŷi = max (0,min (3, ŷi))

This guarantees outputs remain within the valid
range [0, 3].

Evaluation Metric: We measure performance
using Pearson Correlation for each label:

r =

∑
(yi − ȳ)(ŷi − ¯̂y)

√∑
(yi − ȳ)2

√∑
(ŷi − ¯̂y)2

This metric evaluates the linear alignment between
predictions and ground truth, prioritizing trend con-
sistency over absolute error.

5 Results

The output of confusion matrices and AUC curves
on the development datasets are in the appendix
section. Performance metrics in Tables 3,4 reveal
varying effectiveness of models across languages
for emotion detection. The XLM-RoBERTa-Base
model (Conneau et al., 2019) scored 0.53 in
Afrikaans, while T-XLM-RoBERTa (Barbieri et al.,
2022) achieved 0.54. In Hindi, XLM-RoBERTa-
Base excelled with 0.84, outperforming T-XLM-
RoBERTa (Barbieri et al., 2022) (0.83) and BERT-
Multilingual (Devlin et al., 2019) (0.69). For Ara-
bic (Algerian), DiziBERT-Sent. (Abdaoui et al.,

Table 3: Model Performance for Language Emotion on
Track A

Language Model Micro F1

Afrikaans XLM-RoBERTa-Base 0.53
T-XLM-RoBERTa 0.54

Hindi XLM-RoBERTa-Base 0.84
T-XLM-RoBERTa 0.83
BERT-Multilingual 0.69

Arabic (Algerian) BERT-Multilingual 0.57
DiziBERT-Sent. 0.58

Swedish XLM-RoBERTa-Base 0.71
T-XLM-RoBERTa 0.67
BERT-Base-Swedish-
Cased-Sent.

0.72

Table 4: Model Performance for Language Emotion on
Track B

Language Model Pearson Corr.

Russian BERT-Multilingual 0.45
XLM-RoBERTa 0.83
T-XLM-RoBERTa 0.74

Romanian BERT-Multilingual 0.34
XLM-RoBERTa 0.57
T-XLM-RoBERTa 0.57

2021) scored 0.58, slightly higher than BERT-
Multilingual (Devlin et al., 2019) (0.57). In
Swedish, BERT-Base-Swedish-Cased-Sent. (Wang
et al., 2020) led with 0.72, followed by XLM-
RoBERTa-Base (Conneau et al., 2019) (0.71) and
T-XLM-RoBERTa (Barbieri et al., 2022) (0.67).
Overall, models like XLM-RoBERTa and BERT
demonstrate strong performance in emotion detec-
tion across multiple languages.

6 Conclusion

Emotion detection and sentiment analysis remain
challenging tasks in NLP, particularly for low-
resource languages. In this paper, we presented
our work and the performance of our models on
six low-resource languages in a multi-label classi-
fication task using text-based data. Our approach,
which leveraged both multilingual and monolin-
gual transformer-based classifiers, demonstrated
that these models can achieve notable success. For
future work, we aim to explore various hyperpa-
rameter settings and investigate the potential of
generative models through prompting techniques.
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Limitations

Our experiments were constrained by limited hard-
ware resources, preventing us from utilizing models
with a higher number of parameters. Additionally,
the high cost of certain generative models restricted
our ability to explore them further. While some
no-cost generative models were available, they of-
ten produced outputs in incorrect formats, making
them time-consuming to work with for our team.
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(a) AFR - Train (b) ARQ - Train (c) HIN - Train (d) SWE - Train

(e) AFR - Dev (f) ARQ - Dev (g) HIN - Dev (h) SWE - Dev

Figure 3: Label Distribution for Train and Dev Datasets per Language in Track A

(a) RON - Train (b) RUS - Train

(c) RON - Dev (d) RUS - Dev

Figure 4: Label Distribution for Train and Dev Datasets per Language in Track B
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(a) AFR - Twitter XLM
RoBERTa Sentiment

(b) AFR - XLM
RoBERTa Base

(c) ARQ - AraBERT
Base Algerian

(d) ARQ - AraBERT
Large Algerian

(e) ARQ - AraBERT
Medium Algerian

(f) ARQ - AraBERT
Mini Algerian

(g) ARQ - Dziri BERT
Sentiment

(h) HIN - BERT Base
Multilingual Cased

(i) HIN - Multilingual
MiniLM L12 H384

(j) HIN - Twitter XLM
RoBERTa Sentiment

(k) HIN - XLM
RoBERTa Base

(l) SWE - BERT Base
Multilingual Cased

(m) SWE - BERT Base
Swedish Sentiment

(n) SWE - XLM
RoBERTa Base

(o) SWE - Twitter XLM
RoBERTa Sentiment

Figure 5: AUC Curves for Models in Different Languages on Dev Datasets
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(a) AFR - Twitter XLM
RoBERTa Sentiment

(b) AFR - XLM
RoBERTa Base

(c) ARQ - AraBERT
Base Algerian

(d) ARQ - AraBERT
Large Algerian

(e) ARQ - AraBERT
Medium Algerian

(f) ARQ - AraBERT
Mini Algerian

(g) ARQ - Dziri BERT
Sentiment

(h) HIN - BERT Base
Multilingual Cased

(i) HIN - Multilingual
MiniLM L12 H384

(j) HIN - Twitter XLM
RoBERTa Sentiment

(k) HIN - XLM
RoBERTa Base

(l) SWE - BERT Base
Multilingual Cased

(m) SWE - BERT Base
Swedish Sentiment

(n) SWE - XLM
RoBERTa Base

(o) SWE - Twitter XLM
RoBERTa Sentiment

Figure 6: Confusion Matrices for Models in Different Languages on Dev Datasets in Track A
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(a) RON - BERT Base Multilingual Cased (b) RUS - BERT Base Multilingual Cased

(c) RON - Twitter XLM RoBERTa Sentiment (d) RUS - Twitter XLM RoBERTa Sentiment

(e) RON - XLM RoBERTa Base (f) RUS - XLM RoBERTa Base

Figure 7: Confusion Matrices for Models in Different Languages on Dev Datasets in Track B
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