HausaNLP at SemEval-2025 Task 11: Advancing Hausa Text-based Emotion Detection
Sani Abdullahi Sani, Salim Abubakar, Falalu Ibrahim Lawan, Abdulhamid Abubakar, Maryam Bala
Abstract
This paper presents our approach to multi-label emotion detection in Hausa, a low-resource African language, as part of SemEval Track A. We fine-tuned AfriBERTa, a transformer-based model pre-trained on African languages, to classify Hausa text into six emotions: anger, disgust, fear, joy, sadness, and surprise. Our methodology involved data preprocessing, tokenization, and model fine-tuning using the Hugging Face Trainer API. The system achieved a validation accuracy of 74.00%, with an F1-score of 73.50%, demonstrating the effectiveness of transformer-based models for emotion detection in low-resource languages.- Anthology ID:
- 2025.semeval-1.261
- Volume:
- Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
- Month:
- July
- Year:
- 2025
- Address:
- Vienna, Austria
- Editors:
- Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
- Venues:
- SemEval | WS
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 2014–2019
- Language:
- URL:
- https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.261/
- DOI:
- Cite (ACL):
- Sani Abdullahi Sani, Salim Abubakar, Falalu Ibrahim Lawan, Abdulhamid Abubakar, and Maryam Bala. 2025. HausaNLP at SemEval-2025 Task 11: Advancing Hausa Text-based Emotion Detection. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 2014–2019, Vienna, Austria. Association for Computational Linguistics.
- Cite (Informal):
- HausaNLP at SemEval-2025 Task 11: Advancing Hausa Text-based Emotion Detection (Sani et al., SemEval 2025)
- PDF:
- https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.261.pdf