
Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 2008–2013
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

IUST_Champs at SemEval-2025 Task 8: Structured Prompting and Retry
Policy for Tabular Question Answering

Arshia Hossein Zadeh1, Aysa Mayahinia1, Nafiseh Ahmadi1

1Iran University of Science and Technology
{arshia_hossein,aysa_mayahinia,nafiseh_ahmadi}@comp.iust.ac.ir

Abstract

This paper presents a novel approach to the
task of Question Answering over Tabular Data,
as part of SemEval-2025 Task 8. Our system
generates executable Python code to derive an-
swers directly from structured data, leveraging
open-source large language models. Key inno-
vations include structured prompting, semantic
column filtering, and a one-time retry mecha-
nism to enhance accuracy and robustness.
We evaluate our approach on the DataBench
and DataBench_Lite datasets, significantly out-
performing the baseline accuracy (26-27%)
with our best system achieving 70.49% ac-
curacy on the test set. Ablation studies con-
firm that few-shot prompting and rule-based
type classification are crucial for improved per-
formance. Despite these advancements, chal-
lenges remain in handling complex table struc-
tures and ambiguous queries. Our findings
highlight the effectiveness of code-generation-
based methods for tabular question answering
and provide insights for further research in this
area.

1 Introduction

Question answering is to generate precise answers
by efficiently interacting with unstructured, struc-
tured, or heterogeneous contexts, such as para-
graphs, knowledge bases, tables, images, and their
combinations. Among these, question answering
over tabular data or Tabular Question Answering
(TQA) is a challenging task that requireserstanding
of table semantics, as well as the ability to reason
and infer over relevant table cells (Jin et al., 2022;
Wang et al., 2024; Zhao et al., 2023). TQA has
been studied with a specific focus as it allows con-
veniently querying the table in natural language to
extract desired information (Patnaik et al., 2024).

Recently, Large Language Models (LLMs) have
demonstrated their effectiveness and versatility
across diverse tasks, leading to significant advances
in natural language processing. This success has

spurred researchers to investigate the application
of LLMs to table-related tasks (Lu et al., 2025).
Many text-related tasks, particularly in the domains
of science, technology, engineering and mathe-
matics (STEM), often require intricate reasoning
and the use of external tools. However, table pro-
cessing tasks differ in nature due to the inherent
structure of tables and the specific user intent of
extracting knowledge from them. For example,
LLMs must comprehend table schemas, navigate
data within two-dimensional tables, and execute
SQL queries to retrieve relevant information. The
distinct challenges associated with table process-
ing underscore the importance of adapting LLMs
to meet these specialized requirements. Early re-
search, such as TaBERT (Yin et al., 2020), TaPas
(Herzig et al., 2020), TURL (Deng et al., 2022), and
TaPEx (Liu et al., 2021), adheres to the paradigm of
pre-training or fine-tuning neural language models
for tables.

DataBench (Os’es Grijalba et al., 2025) is a com-
prehensive benchmark designed for TQA. Its pri-
mary objective is to provide a standardized frame-
work for evaluating and comparing LLMs as tabu-
lar reasoners, while also offering flexibility for the
comparison of other types of question answering
models.

The main strategy of our system for TQA is
executable Python code generation to compute
answers directly from the provided tabular data.
Instead of relying on in-context learning, which
struggles with long-table contexts, our approach en-
sures accurate execution by generating and running
Python functions over the dataset. Key techniques
include column filtering using semantic similarity
to reduce prompt length while retaining relevant
information, few-shot prompting to guide concise
function generation, and a one-time retry mecha-
nism to handle execution failures. The system em-
ploys Qwen2.5-Coder-32B as the primary model
for function generation, enhancing accuracy and

2008



robustness.
Additionally, we discovered that structured

prompting, column filtering, and a one-time retry
mechanism significantly enhance accuracy. Our
system outperformed the baseline accuracy re-
ported in the original DataBench paper (26% for
DataBench and 27% for DataBench_Lite). Empir-
ical analysis demonstrated that few-shot prompt-
ing improved response consistency, while the retry
mechanism reduced execution failures by enabling
the model to regenerate more robust code. Column
filtering effectively minimized ambiguity by re-
stricting input to the most relevant attributes. How-
ever, our system struggled with complex multi-
column reasoning, particularly when implicit re-
lationships between columns needed to be inferred.
These findings highlight both the strengths of our
approach and areas for future improvement in
handling more intricate tabular reasoning tasks.
Our code is publicly available at https://github.
com/Arshia-HZ/DataBench-TQA

2 Related Work

Tabular question answering task requires both the
ability to reason over structured data and to un-
derstand textual contents in the table. Traditional
methods utilize semantic parsing to convert the nat-
ural language question into executable commands,
which retrieve and process data in the table to ob-
tain answers (Liu et al., 2024). LLMs can learn
from a few samples as prompts through in-context
learning. This strategy is widely used to give mod-
els additional instructions to better solve down-
stream tasks (Wang et al., 2024)

• Table Tuning (Wang et al., 2024; Lei et al.,
2023) focuses on LLMs’ understanding of ta-
bles. This type of research utilizes general-
purpose foundation LLMs (e.g., Llama) and
a substantial volume of table-related data for
instruction tuning. Table tuning examples in-
clude Dater (Ye et al., 2023) is the only model
that modifies the tabular context while solving
table-based tasks. However, the table decom-
position in Dater is motivated by the idea that
tables could be too large for LLMs to conduct
reasoning. It is, therefore, more similar to an
LLM-aided data pre-processing than to a part
of the reasoning chain since the tabular opera-
tions are limited to column and row selections,
and fixed for all tables and questions.

• Code Tuning (Liu et al., 2024; Kweon et al.,
2023; Wang et al., 2025; He et al., 2024) To
better solve table-based tasks with LLMs, re-
searchers go beyond general text and resort to
using external tools. Propose solving reason-
ing tasks by generating Python programs and
executing them using the Python interpreter.
This approach greatly improves the perfor-
mance of arithmetic reasoning. To further
push the limits of programs, Binder (Cheng
et al., 2022) generates SQL or Python pro-
grams and extends their capabilities by calling
LLMs as APIs in the programs.

• Hybrid of table and code research reveals
that table instruction tuning based on code
LLMs is more effective, i.e., code LLMs are
tuned using table instruction datasets (Liu
et al., 2024).

In this study, we utilize DataBench, a benchmark
consisting of 65 real world datasets, with 3,269,975
and 1615 columns in total from different domains,
widely different numbers of rows and columns and
heterogeneous data types. Moreover, DataBench
has 20 hand-made questions per dataset, with a
total number of 1300 questions. Questions are
further split in different types depending on the
type of answer (i.e., true/false, categories from the
dataset, numbers or lists), and each question is
accompanied by their corresponding gold standard
answer. The dataset is entirely in English. The
benchmark consists of two subtasks:

• Subtask A: Utilizes the original DataBench
dataset.

• Subtask B: Employs a sample of 20 rows ex-
tracted from the original DataBench dataset,
referred to as DataBench_Lite.

3 System Overview

Our Tabular Question Answering (TQA) system
generates and executes concise Python functions
to answer natural language queries over structured
tables. By leveraging code execution, we guar-
antee both accuracy and interpretability, avoiding
common failures of pure language-model-based
approaches on long or wide tables.

3.1 Column Selection
To reduce prompt length and noise, we filter the
most relevant columns for each question:

2009

https://github.com/Arshia-HZ/DataBench-TQA
https://github.com/Arshia-HZ/DataBench-TQA


1. Semantic Similarity Scoring: We embed col-
umn names and the input question using a
pre-trained sentence embedding model (e.g.,
SBERT) and compute cosine similarity.

2. Top-k Selection: We select the top-k columns
with highest similarity scores, ensuring key at-
tributes are retained while minimizing context
size.

3.2 Answer Type Classifier

Inferring the expected output type guides structured
responses:

• Heuristic Analysis: We parse question tokens
(e.g., How many”, What is the average”) to
predict return types such as integer, float,
string, or list.

• Template Enforcement: The predicted type
constrains the generated function signature
and final return statement, reducing mal-
formed outputs.

3.3 Code Generation via Few-Shot Prompting

Our system uses a few-shot prompting strategy to
generate Python functions that return the final an-
swer in a single line. Each prompt includes a num-
ber of carefully selected demonstrations that cover
a range of typical operations. All examples follow
a consistent format, using minimal syntax and a
simple def answer(table): signature to guide
the model toward generating clean and executable
code.

To maintain output quality and reliability, we em-
ploy Qwen2.5-Coder-32B, a high-performance lan-
guage model optimized for code generation. Rather
than relying on rigid templates, we organize the ex-
amples in a coherent, narrative format that exposes
the model to diverse query styles and computa-
tional needs. This approach helps the model iden-
tify and apply the right patterns when faced with
new questions.

This strategy enhances the model’s ability to gen-
eralize across diverse queries and tabular structures.
Compared to a templated baseline, our method
achieves a noticeable improvement in robustness
and code quality (see Table 1).

A high-level overview of the code generation
workflow is shown in Figure 1.

3.4 Execution and Retry Mechanism

To handle occasional generation errors:

• Automatic Execution: We run each function
in an isolated Python environment with the
filtered DataFrame.

• One-Time Retry: If execution fails (e.g.,
KeyError, TypeError), we append the error
message to our prompt and request a corrected
function.

Figure 1: Tabular Question Answering Workflow Using
Few-Shot Prompting and Retry Mechanism for Robust
Code Generation.

4 Experimental Setup

All experiments utilize the official train/dev/test
splits provided in DataBench and DataBench_Lite.
DataBench_Lite consists of tables with a maximum
of 20 rows, while DataBench includes tables with
significantly larger numbers of rows. Accuracy is
used as the primary evaluation metric, computed
using the databench_eval package.
During development, we tested different few-shot
strategies, varying the number of examples be-
tween 1 and 5, and validated their effectiveness
on the dev set. The final configuration was deter-
mined through manual tuning, selecting the num-
ber of examples that maximized accuracy without
exceeding context limits. No additional text prepro-
cessing was applied beyond standard column filter-
ing, ensuring fair evaluations across datasets. The
following definitions differentiate between model
configurations:

2010



• Baseline: Standard prompting without column
filtering or retry mechanisms.

• Few-shot: Incorporates in-context examples
for improved generalization.

• Retry-enabled: Implements a one-time retry
policy for execution failures.

Experiments were conducted in two parts:

1. Code generation using Qwen2.5-Coder-32B
with structured few-shot prompting.

2. Error handling through execution retry strate-
gies.

Hyperparameter tuning focused on key parame-
ters such as temperature (0.7), max tokens (512),
and prompt format variations. These were manu-
ally adjusted based on dev set performance. Since
execution failures were a significant concern, our
retry mechanism involves resubmitting the prompt
with error details when execution fails, enabling
the model to generate more robust solutions.
The databench_eval package is used to compute
accuracy, ensuring automated comparison against
gold-standard answers. The original DataBench
paper reported a baseline accuracy of 26% for both
DataBench and 27% for DataBench_Lite. Our best-
performing system, which leverages open-source
models alongside structured prompting and retry
mechanisms, significantly improves upon this base-
line. Through systematic preprocessing, prompt
engineering, and controlled error handling, our sys-
tem achieves substantial accuracy gains over the
benchmark.

5 Results

Our system demonstrates substantial improvements
over the baseline accuracy reported in the origi-
nal DataBench paper. The baseline accuracy for
DataBench and DataBench_Lite was 26% and 27%,
respectively, whereas our best-performing config-
uration, utilizing structured prompting and a one-
time retry mechanism, achieves significantly higher
accuracy on both benchmarks (see Table 1).
To analyze the impact of different design choices,
we did some research. Few-shot prompting resulted
in a noticeable improvement over zero-shot prompt-
ing, as it provided structured examples that guided
the model toward more accurate predictions. The
retry mechanism contributed to further accuracy

gains by allowing the model to regenerate more
robust code when execution failures occurred. We
also evaluated the effect of column filtering, observ-
ing that restricting the input to the most relevant
columns reduced ambiguity and improved perfor-
mance.Figure 2.
Error analysis reveals that the system still struggles
with complex multi-column reasoning, especially
when implicit relationships between columns must
be inferred.

Figure 2: Accuracy of different model configurations
and prompting strategies on the development set.

6 Conclusion

In this work, we introduced a Tabular Ques-
tion Answering (TQA) system that generates exe-
cutable Python code to compute answers directly
from tabular data. Our approach incorporates
structured prompting, semantic column filtering,
and a retry mechanism to enhance robustness.
We evaluated our system on the DataBench and
DataBench_Lite datasets, achieving significant im-
provements over the reported baselines. Experi-
mental results demonstrate that few-shot prompt-
ing combined with a manual type classifier leads
to the highest accuracy, with Qwen2.5-Coder-32B
achieving 70.49% accuracy on the test set. Table 1.

Future work includes refining the column se-
lection process by incorporating adaptive filtering
strategies, integrating more advanced program syn-
thesis techniques to improve code reliability, and
expanding the system to handle more complex ta-
ble structures. Additionally, exploring alternative

2011



Experiment Model Databench Databench_lite

Zero-shot prompt
+ Type Classifier

CodeLlama-13b-Instruct 53.26 54.40

Few-shot prompt
+ Type Classifier

Qwen2.5-Coder-14B-Instruct 65.33 68.96

Few-shot prompt
+ Type Classifier
+ Retry mechanism

Qwen2.5-Coder-14B-Instruct 68.77 69.73

Few-shot prompt
+ Type Classifier
+ Retry mechanism

Qwen2.5-Coder-32B 70.49 69.73

Table 1: Accuracy results for different experiments and models on the test set.

models and optimizing inference efficiency will
further enhance the system’s practicality for real-
world applications.

References
Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu

Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
et al. 2022. Binding language models in symbolic
languages. arXiv preprint arXiv:2210.02875.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong
Yu. 2022. Turl: Table understanding through repre-
sentation learning. ACM SIGMOD Record, 51(1):33–
40.

Xinyi He, Mengyu Zhou, Xinrun Xu, Xiaojun Ma, Rui
Ding, Lun Du, Yan Gao, Ran Jia, Xu Chen, Shi Han,
et al. 2024. Text2analysis: A benchmark of table
question answering with advanced data analysis and
unclear queries. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
18206–18215.

Jonathan Herzig, Paweł Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Martin Eisen-
schlos. 2020. Tapas: Weakly supervised table parsing
via pre-training. arXiv preprint arXiv:2004.02349.

Nengzheng Jin, Joanna Siebert, Dongfang Li, and Qing-
cai Chen. 2022. A survey on table question answer-
ing: recent advances. In China Conference on Knowl-
edge Graph and Semantic Computing, pages 174–
186. Springer.

Sunjun Kweon, Yeonsu Kwon, Seonhee Cho, Yohan Jo,
and Edward Choi. 2023. Open-wikitable: Dataset for
open domain question answering with complex rea-
soning over table. arXiv preprint arXiv:2305.07288.

Fangyu Lei, Xiang Li, Yifan Wei, Shizhu He, Yim-
ing Huang, Jun Zhao, and Kang Liu. 2023. S

Θ3 hqa: A three-stage approach for multi-hop text-
table hybrid question answering. arXiv preprint
arXiv:2305.11725.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2021.
Tapex: Table pre-training via learning a neural sql
executor. arXiv preprint arXiv:2107.07653.

Yujian Liu, Jiabao Ji, Tong Yu, Ryan Rossi, Sungchul
Kim, Handong Zhao, Ritwik Sinha, Yang Zhang,
and Shiyu Chang. 2024. Augment before you try:
Knowledge-enhanced table question answering via
table expansion. arXiv preprint arXiv:2401.15555.

Weizheng Lu, Jing Zhang, Ju Fan, Zihao Fu, Yueguo
Chen, and Xiaoyong Du. 2025. Large language
model for table processing: A survey. Frontiers of
Computer Science, 19(2):192350.

Jorge Os’es Grijalba, Luis Alfonso Ure na-L’opez,
Eugenio Mart’inez C’amara, and Jose Camacho-
Collados. 2025. SemEval-2025 Task 8: Question
Answering over Tabular Data. In Proceedings of the
19th International Workshop on Semantic Evalua-
tion (SemEval-2025), Vienna, Austria. Association
for Computational Linguistics.

Sohan Patnaik, Heril Changwal, Milan Aggarwal, Sumit
Bhatia, Yaman Kumar, and Balaji Krishnamurthy.
2024. Cabinet: Content relevance based noise re-
duction for table question answering. arXiv preprint
arXiv:2402.01155.

Yuxiang Wang, Junhao Gan, and Jianzhong Qi. 2025.
Tabsd: Large free-form table question answering
with sql-based table decomposition. arXiv preprint
arXiv:2502.13422.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Mar-
tin Eisenschlos, Vincent Perot, Zifeng Wang, Lesly
Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu
Lee, et al. 2024. Chain-of-table: Evolving tables in
the reasoning chain for table understanding. arXiv
preprint arXiv:2401.04398.

2012



Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decomposing evi-
dence and questions for table-based reasoning. In
Proceedings of the 46th international ACM SIGIR
conference on research and development in informa-
tion retrieval, pages 174–184.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. arXiv
preprint arXiv:2005.08314.

Wenting Zhao, Ye Liu, Yao Wan, Yibo Wang, Zhongfen
Deng, and Philip S Yu. 2023. Localize, retrieve
and fuse: A generalized framework for free-form
question answering over tables. arXiv preprint
arXiv:2309.11049.

2013


