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Abstract

Hallucinations pose a significant challenge
for large language models when answering
knowledge-intensive queries. As LLMs be-
come more widely adopted, it is crucial not
only to detect if hallucinations occur but also
to pinpoint exactly where in the LLM out-
put they occur. SemEval 2025 Task 3, Mu-
SHROOM: Multilingual Shared-task on Hallu-
cinations and Related Observable Overgener-
ation Mistakes, is a recent effort in this direc-
tion. This paper describes the UCSC system
submission to the shared Mu-SHROOM task.
We introduce a framework that first retrieves
relevant context, next identifies false content
from the answer, and finally maps them back
to spans in the LLM output. The process is
further enhanced by automatically optimizing
prompts. Our system achieves the highest over-
all performance, ranking #1 in average position
across all languages. We release our code and
experiment results.

1 Introduction

Hallucinations in Large Language Model (LLM)
outputs remain a significant concern (Sahoo et al.,
2024; Huang et al., 2025), undermining user trust in
knowledge-intensive tasks. In question answering,
hallucinations manifest when models generate false
or unverified information given world knowledge
while maintaining a coherent response structure
(Mishra et al., 2024).

While previous research has developed metrics
and benchmarks to detect the presence of halluci-
nations (Lin et al., 2022; Min et al., 2023), most
approaches provide only binary or scalar outputs.
These measurements, though valuable, offer lim-
ited insight into the specific locations of halluci-
nated content, despite precise localization being
crucial for fact-checking and model improvement.

"https://github.com/nlp-ucsc/semeval-2025-task3

The SemEval 2025 Task 3, Mu-SHROOM:
Multilingual Shared-task on Hallucinations and
Related Observable Overgeneration Mistakes
(Vazquez et al., 2025), addresses this gap by chal-
lenging participants to identify both the spans of
hallucinated text and the associated confidence.
The task encompasses 14 languages and evaluates
system performance on Intersection-over-Union
(IoU) and spearman correlation (Corr) on LLM
outputs with human-annotated ground truth labels.

The UCSC team approached this challenge using
a multi-step framework consisting of: (i) context
retrieval from external knowledge sources, (ii) de-
tection of false or unverifiable content, and (iii)
mapping error contents back to text spans. Addi-
tionally, we explored the use of automatic prompt
optimization in step (ii) and showed this further im-
proved system performance. The proposed pipeline
grounds LLM responses in the retrieved context
to distinguish true from fabricated content, while
prompt optimization enhances detection reliability
and span labeling accuracy.

Our systems rank highly among the submitted
systems, achieving a win in 5 languages and a top
two position in 11 of the 14 languages on IoU and
10 of the 14 languages on Corr. Our participation in
Mu-SHROOM revealed an important insight: when
paired with "good context,” a simple prompting-
based approach can reliably detect hallucinations
with better-than-human accuracy.

2 Background
2.1 Related work

Recent efforts aiming at span-level hallucina-
tion detection for question answering, such
as HaluQuestQA (Sachdeva et al., 2024) and
RAGTruth (Niu et al., 2024) provide fine-grained
annotations of hallucinated spans, enabling the
development of error informed refinement and
retrieval-augmented fact-checking systems. For
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Figure 1: The UCSC hallucination detection framework. We retrieve context from external sources, identify false
content in the answer, and then map these errors back to specific spans in the LLM output. In multilingual settings,
we explore retrieving context either in the original language or in English by translating the question. In all cases
the hallucinated content generated in the second step remains in the original language and is mapped to the answer.

summarization, Zhou et al. (2021) proposes a token-
level hallucinations prediction task and introduce a
method for learning to solve the task using models
fine-tuned on synthetic data. Marfurt and Hender-
son (2022) proposes to detect hallucinations in an
unsupervised fashion from the transformer’s self-
attentions. Min et al. (2023) proposes to break gen-
erations down to atomic facts and assign a binary
label to each fact, indicating its truthfulness. How-
ever, despite these advances, recent benchmarks,
e.g. FaithBench (Bao et al., 2024) highlight per-
sistent challenges, as even state-of-the-art systems
struggle at reliably detecting hallucinations. The
SemEval-2025 Task 3 (Mu-SHROOM) builds upon
these efforts by introducing a multilingual, span-
level hallucination detection benchmark, pushing
research toward more fine-grained, cross-lingual,
and context-aware hallucination localization.

2.2 Task Description

The Mu-SHROOM task aims to identify halluci-
nated spans in LLM-generated answers across 14
languages. Human annotators provide ground truth
labels: a span is a soft label if at least one an-
notator marks it as hallucinated and a hard label
if more than half do. Participants must predict
both soft and hard label spans. Hard labels are
evaluated using the character-level Intersection-of-
Union metric (IoU), while soft labels are evaluated
using Spearman correlation (Corr).

3 System Overview

Our main system adopts a three-stage pipeline (see
Figure 1), consisting of context retrieval, halluci-
nated content detection, and span mapping. On
top of the three-stage pipeline, we use prompt op-
timization to automatically search for an optimal
prompt to perform hallucinated content detection.
In addition, we also explored a system combina-
tion technique where we treated each system as
an individual labeler and aggregated the results
together to further increase system performance.

3.1 Context Retrieval

Retrieval augmented generation (RAG) (Lewis
et al., 2020) has been shown effective at reducing
hallucination at knowledge-intensive tasks (Jiang
etal., 2023; Gao et al., 2024). We argue it is equally
crucial to include relevant context when verifying
generated text. Step one in our pipeline is to gather
information that should be helpful at either answer-
ing the input question or at confirming or refuting
claims in the given answer.

Context from Questions Here we use the ques-
tion directly as the the search query which is passed
to an external search API. The returned content is
used as the context. We assume that the returned
content will contain all information required to
answer the input question and thus should be suffi-
cient to verify another answer to the same question.
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Context from Claims In this approach, we con-
struct a set of queries from the claims in the answer.
The resulting context can then be used to fact-check
all claims in the answer, not just those directly re-
lated to the question. This approach will help verify
claims in the answer that are missing from the con-
text obtained from querying a search API with just
the question.

3.2 Hallucinated Content Detection

In step two, we identify content in the answer unver-
ifiable by the retrieved context. Here we compare
three distinct implementations.

Direct Text Extraction We prompt the LLM to
analyze the answer text and identify specific seg-
ments not verifiable from the retrieved context. The
LLM compares text in the answer against the con-
text, extracting any text spans that contain informa-
tion absent from or contradicting the context.

Verification with Knowledge Graph In this ap-
proach the context is parsed into a knowledge graph
comprising entities and relations, while the answer
is decomposed into individual facts. The LLM is
then used to verify each fact by querying informa-
tion about entities, checking for accuracy against
the knowledge graph. This method ensures each
fact is cross-verified with structured data, with the
goal to enhance the reliability of the hallucination
detection process.

Minimal Cost Revision In this approach, we use
a reasoning LLLM to correct the provided answer by
making the fewest possible changes. This method
ensures that corrections are limited to only the
necessary parts of the text, with the differences
between the original and corrected answer being
deemed hallucinated.

3.3 Span Mapping

After identifying the hallucinated content in the
answer, we convert these broad segments into
character-level spans. This conversion uses three
specific methods, each corresponding to one of the
three hallucinated content detection techniques:

Substring Match Match the exact substring to lo-
cate the hallucinated spans within the answer. This
approach is used with direct text extraction in step
2, where specific segments of text are identified as
hallucinated.

Fact-to-Span Mapping We prompt an LLM to
map the identified false facts back to the specific
spans of the answer text that generated those facts.
This method is applied following verification with
knowledge graph in step 2, ensuring that each false
fact is accurately traced to its source text.

Mapping via Edit Distance Calculate the mini-
mum edit distance required to transform the origi-
nal answer into the corrected version. During this
process, all deletions and substitutions of words
are identified, with these words being labeled as
hallucinations. This method ensures the precise
identification of unnecessary or incorrect informa-
tion in the text.

3.4 Prompt Optimization with MiPROv2

To refine the hallucinated content detection step,
we employed MiPROv2 (Opsahl-Ong et al., 2024),
a systematic framework for optimizing prompts in
language model programs. MiPROV2 leverages
Bayesian search to explore candidate prompts to
optimize task metrics (e.g. IoU or Corr). In each
iteration, MiPROV2 proposes updates to both the
instructions and few-shot demonstrations, evaluates
them on a subset of data, and uses those results to
guide the next round of proposals. This process
systematically discovers prompts that yield strong
performance, improving the reliability of step 2.

3.5 Multilingual Systems

Our framework design was motivated by the as-
sumption that the pre-trained LLMs we employed
might perform better in English, given the abun-
dance of English-language training data that is
generally available. For hallucination detection of
non-English text use used exactly the same meth-
ods as described above. We did however explore
one specific variation: we compared the use of En-
glish context vs. target-language (i.e. non-English)
context for the 13 other languages within the Mu-
SHROOM task. The English-language context
is obtained by translating the given questions or
claims into English before retrieval. For the target-
language contexts we used the question or claims
in the original language to retreive the required con-
text. In both these cases, the unverifiable content is
labeled in the original language and then mapped
back to the answer.
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Model  |Opt. Trans.| ar ca cs de en e eu fa fi fr hi it sv zh
| ToU
gpt-4o-mini| X v ]0.61 0.63 047 0.59 0.55 0.43 0.55 0.50 0.62 0.54 0.67 0.71 0.60 0.44
gpt-4o-mini| X X 1059 0.64 048 0.60 0.56 0.43 0.57 0.58 0.60 0.57 0.68 0.74 0.63 0.44
DeepSeek-R1| X X 10.66 0.72 0.54 0.62 0.57 048 0.58 0.64 0.63 0.59 0.72 0.74 0.61 0.46
gpt-4o X X 10.60 0.66 0.50 0.58 0.55 0.41 0.55 0.62 0.62 0.89 0.69 0.72 0.64 0.45
gpt-4o0 v X 1059 0.71 0.53 0.59 0.61 0.40 0.59 0.69 0.62 0.56 0.74 0.79 0.62 0.47
Multi-System Combination | 0.65 0.69 0.53 0.63 0.58 0.44 0.59 0.63 0.65 0.57 0.71 0.76 0.65 0.46
| Corr
gpt-4o-mini| X v 1053 0.71 045 0.57 0.51 0.53 0.50 0.54 0.50 0.47 0.68 0.70 0.37 0.29
gpt-4o-mini| X X 1052 0.71 050 0.57 0.51 0.53 0.51 0.63 0.48 0.49 0.72 0.74 0.33 0.28
DeepSeek-R1| X X 10.63 0.78 0.58 0.65 0.59 0.60 0.55 0.68 0.57 0.56 0.76 0.77 0.50 0.37
gpt-4o0 X X 1052 0.73 047 0.56 0.50 0.53 0.47 0.64 0.43 0.44 0.69 0.70 0.32 0.25
gpt-4o0 v X 1059 0.76 0.56 0.62 0.55 047 0.58 0.70 0.58 0.52 0.76 0.79 0.42 0.40
Multi-System Combination‘0.65 0.79 0.58 0.66 0.65 0.63 0.62 0.67 0.65 0.60 0.76 0.79 0.53 0.43

Table 1: Multilingual test IoU and Corr results. Opt. indicates that prompt optimization was performed and Trans.
indicates if the input was translated into English before performing context retrieval. All contexts are sourced from
Perplexity Sonar Pro. IoU is used as the prompt optimization metric for all languages except English, where Corr
was applied. We underline the best-performing individual system, and bold the overall best.

3.6 Multi-System Combination

Our focus in this work has been to generate hard
labels for hallucinated segments with the goal to
maximize IoU score. We believe this approach is
best if the goal is to provide explicit feedback to
users of such systems. For example when we want
to highlight which segments in an LLM output
could be incorrect or non-factual. When consider-
ing the probability of a specific token in an LLM
output being a hallucination or not, prior methods
largely rely on the language model itself to gener-
ate a "likelihood of correctness score.” Such scores
are found to always be too high, as the models are
overly confident of their own output. Additionally,
the resulting scores do not align well with the defi-
nition of soft labels in the Mu-SHROOM task, i.e.,
labels based on the proportion of annotators who
agree on whether certain spans are hallucinated.

In the Mu-SHROOM challenge task, we at-
tempted to replicate the human labeling process
by having multiple different systems output hard-
labels. We then combined these sets of hard-labels
to generate the soft-labels based on label agreement.
The expectation is that like human annotators, sys-
tems will vary in which specific tokens they label
in the LLM output. For system combination in our
submission systems, we combined the output of
five different systems together. By treating each
system as an annotator, we calculate the proportion
of systems that labeled a specific span as halluci-
nated.

4 Experimental Setup
4.1 Models and Tools

For context retrieval, we use the sonar-pro model
via the Perplexity API? (more details can be found
in Appendix C). For the detection of hallucinated
content, we generally use OpenAI’s GPT-40 and
GPT-40-mini (OpenAl et al., 2024). For the task of
correcting answers with minimal changes, i.e. Min-
imal Cost Revision as described in section 3.2, we
found that the OpenAl o1 reasoning model (Ope-
nAl, 2024) out-performed the GPT-4 models. For
the multilingual systems, we also evaluated the
performance of DeepSeek-R1 (DeepSeek-Al et al.,
2025) and when performing system combination,
we also included Llama3.3-70B (Grattafiori et al.,
2024) as one of the 5 systems that was combined.

We used LangChain® to build the pipeline for
our submission system and to also construct the
knowledge graphs* used for the verification with
knowledge-graph + fact-to-span mapping approach.
DSPy (Khattab et al., 2024) was used to perform
prompt optimization. When performing prompt
optimization on the validation set we perform 2-
fold cross-validation to ensure reliability.

2https://sonar.perplexity.ai

3https://langchain.com

4https://python.langchain.com/docs/how_to/graph_
constructing/
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Lang | IoU | Corr || Lang | IoU | Corr

ar 2 2 fa 2 3
ca 1 1 fi 1 1
cs 2 1 fr 5 3
de 1 1 hi 2 2
en 2 2 it 1 2
es 6 1 SV 1 5
eu 2 1 zh 9 9

Avg IoU rank: 2.6; Avg Corr rank: 2.4

Table 2: System rankings across all languages.

4.2 Annotations and Alternative Metrics

To better understand the challenges of the halluci-
nation span-labeling task, we manually labeled the
English validation set ourselves. When we evalu-
ated our internal annotations against the hard and
soft annotations provided by the organizers, we
found that our average IoU was 0.43, and the av-
erage Corr was 0.40. The best annotator in the
group obtained an IoU of 0.48 and a Corr of 0.48
and the annotator with the lowest scores obtained
an IoU of 0.37 and a Corr or 0.34. We found that
even our best individual annotator performed sig-
nificantly worse than all of our LLM-based systems.
For comparison our best performing system on the
validation set obtained an IoU of 0.57 and a Corr
of 0.55. We hypothesize that two factors limited
our overlap with the ground truth: (i) lack of exact
reference contexts, leading to discrepancies in ver-
ification, and (i7) potential differences in labeling
guidelines.

Due to the low agreement among our internal
annotators, to better guide system development,
we introduced a new metric MaxloU, inspired by
the maximum average Jaccard index (Cronin et al.,
2017). MaxIoU mitigates human labeling inconsis-
tencies by identifying the loU with the single an-
notation that provides the highest IoU, rather than
aggregating results into soft or hard labels. The
details of the metric are provided in appendix A.

5 Results & Analyses

5.1 Main Results

Across 43 participant groups, the UCSC systems
consistently achieve strong performance across al-
most all languages. Table 2 shows our systems rank
in the top two positions in 11 of the 14 languages
on IoU and 10 of the 14 languages on Corr. Fur-
thermore, we rank the highest in average position
across all 14 languages. As our system develop-
ment was focused only on English, these results

Context | Method | val | Test

| | ToU Corr | IoU
None | Text Extr.+ Substr. Match | 0.41 0.45]0.44 0.43

0.55 0.46|0.56 0.52
0.23 0.2410.22 0.19
0.52 0.40|0.53 0.49

046 0.48|0.55 0.53
022 0.2410.20 0.14
0.55 0.46|0.53 0.49

Corr

Text Extr.+ Substr. Match
KG Verif.+ Fact-to-Span
Min-cost Revi.+ Edit Dist.

From Q

Text Extr.+ Substr. Match
KG Verif.+ Fact-to-Span
Min-cost Revi.+ Edit Dist.

From C

Table 3: English results of different system flows.
Text extraction and knowledge graph verification use
gpt-40-mini and minimum cost revision uses ol.

demonstrate the effectiveness and generalization of
our approach.

Our multilingual results are presented in Table 1.
Among single-system results with no prompt opti-
mization or translation, DeepSeek-R1 performs the
best in terms of both IoU (0.59) and Corr (0.60).
However, when prompt optimization is involved,
GPT-40 becomes the overall best model, although
not all languages benefit from prompt optimization.
Table 1 also compares the effect of translating the
question to English before retrieval, and the results
indicate it slightly lowers performance: from 0.58
to 0.56 IoU and from 0.54 to 0.53 Corr.

Table 1 further includes the best performing com-
bined system from a diverse set of individual sys-
tems. System combination improves Corr score,
by 5% on average (between 0% and 12% across
the 14 languages) but it generally also incurs a -5%
degradation (between 0% and -16% across the 14
languages) in IoU.

5.2 Analysis of Results

System Flow Table 3 compares the performance
for different system flows. We found that including
retrieved context boosts performance by a consid-
erable margin. Increasing IoU by 27% from 0.44
to 0.56 and Corr by 23% from 0.43 to 0.53. Cre-
ating context from questions works slightly better
than creating from claims in terms of loU for text
extraction and knowledge graph verification, but
for minimum-cost revision, creating context from
claims is more effective. We suspect that the rea-
son is that the o1 model can make better use of the
fact-checking information because of its reasoning
abilities. The knowledge graph-based method per-
forms significantly worse than other approaches,
with IoU and Corr scores approximately 1/2 that
of the other methods. Upon manual inspection,
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opt. Target‘ Valid. | Test
| IoU Corr|IoU Corr

X 0.44 0.51]0.55 0.51
IoU 0.57 0.55/0.60 0.55
Corr 0.54 0.54(0.61 0.55
MaxIoU |[0.55 0.57|0.60 0.55
IoU + Corr |0.53 0.56[0.57 0.53

Table 4: English results of GPT-40 on text extraction
pipeline with different prompt optimization targets.

we found the knowledge graph verification step
can reasonably identify false facts by querying the
knowledge graph, but fact-to-span mapping is ex-
tremely unreliable, resulting in a high amount of
noise in labeled spans. This results in significantly
lower overall system performance. Minimum cost
revision stands out as a competitive approach, al-
though it has a significantly higher computational
cost due to the reasoning required during inference.

Prompt Optimization Table 4 shows the perfor-
mance of GPT-40 with different prompt optimiza-
tion targets. The performance gains from prompt
optimization are evident. However, no single opti-
mization target consistently outperforms the others
across both the validation and test sets. This is
likely because we use the same prompting model
to propose prompts, despite optimizing different
targets.

System Combination As discussed in 3.6, we
explored combining predictions from multiple sys-
tems to improve correlation scores. We carefully
selected a group of high-performing models that
differ in architecture, context handling, and opti-
mization strategies. We found that system com-
bination improves Corr score, by 5% on average
(between 0% and 12% across the 14 languages) but
it generally also incurs a -5% degradation (between
0% and -16% across the 14 languages) in IoU. De-
tails of the multilingual combination systems, in-
cluding their configurations and methodologies, are
provided in Appendix B.

5.3 Error Analysis

Despite achieving remarkable performance, some
limitations exist. The system underperforms in
Chinese, likely due to the high complexity of Chi-
nese datasets and the models’ limited familiarity
with this knowledge in Chinese. Upon inspecting
the system, we find that it performs well in con-
text retrieval and hallucinated content detection,
particularly through the knowledge graph verifica-
tion approach. This aligns with the observations
of inconsistencies in human labeling. Moreover,
our system is heavily dependent on the context
and the generative labeling capabilities of the LM.
Obtaining the extremely high performance of the
best-performing system in this paper may not be
cost effective in a real-world use case.

6 Conclusion

In this paper we described our system architecture,
exploration and submission systems to SemEval
2025 Task 3 (Mu-SHROOM) for multilingual hal-
lucination span labeling in LLM output. Our multi-
stage framework, which combines context retrieval,
hallucination detection, and span mapping with
prompt optimization, achieves strong performance,
ranking in the top two positions in 11 of the 14
languages in the evaluation set. Through our work,
we discovered that (i) retrieving relevant context
is crucial for hallucination detection, (ii) simple
text-extraction often outperforms more complex
approaches, and (iii) prompt optimization improves
system performance. Moreover, we find significant
variations in annotated spans among human an-
notators, even when agreeing on underlying facts,
suggesting that a more well-defined framework for
annotation could benefit both automatic and human
labeling of hallucinated spans.
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A MaxloU

axloU = max ——
i ‘A U BZ‘

where A is the predicted annotation, B; repre-
sents individual human annotations.

B System Combination

e Llama + Substring Match: A system us-
ing Llama 3.3-70B with maximum substring
matching,

* 01 + Minimum Edit Distance: A system
based on a reasoning model, o1, utilizing min-
imum edit distance,

* Prompt Optimization Targeting IoU and
Corr: A system with prompt optimization
using MiPROV2 on gpt-4o targeting IoU and
correlation,

* Prompt Optimization Targeting MaxIoU:
A system utilizing prompt optimization with
MiPROV2 trained on MaxIoU in validation
dataset,

* gpt-40-mini Reasoning: A system using
gpt-40-mini to reason and map via edit dis-
tance.

System | IoU | Cor

L1lama + Substr. Match 0.54 | 0.51
o1 + Edit Dist. 0.53 | 0.49
Prompt Opt. (IoU & Corr) | 0.59 | 0.54
Prompt Opt. (MaxIoU) 0.60 | 0.55
gpt-40-mini Reasoning 0.54 | 0.51

Multi-System Combination | 0.61 | 0.65

Table 5: Performance of individual systems, and the sys-
tem combination. Among these systems, the combina-
tion achieves the highest IoU and significantly improves
the correlation.

C Performance Evaluation By Context

In Table 6, we present the performance of the text
extraction system across different context sources.
This evaluation is conducted on the validation
dataset, focusing on the English language. We
find context generated by perplexity-sonar-pro
provides the most performance boost on IoU,
thus we conduct all subsequent experiments using
perplexity-sonar-pro context.

D Prompts

The detail of the prompt used for hallucinated con-
tent detection can be also found in the code reposi-
tory.

D.1 Text Extraction System Prompt

Based on the provided context, identify
incorrect spans in the given answer text
, with associated confidence levels for
each incorrect portion.

You will be provided a context with a
question and its corresponding answer.
Your task is to identify any specific
parts of the answer that describes facts
that are not supported by the context.
If there are multiple incorrect segments
, report each one separately. Assign a
probability score (between @ and 1, with
1 meaning high confidence) to each
incorrect span, indicating your level of
certainty that the span is incorrect.

# Steps

1. **Read the Context*x*:
the provided context.

2. **Analyze the Answerx*x*: Carefully
evaluate the given answer for accuracy
regarding the question and the context.
3. x**xIdentify Incorrect Spans**: Mark
the sentences or parts of the text that

Carefully read

seem incorrect, incomplete, misleading,
or irrelevant.
4. xxAssign Probability**: Assign a

confidence score for each answerspan you
identify as incorrect:
- A higher score indicates greater
confidence that an identified segment
is incorrect.
- Provide a score for each span
between @ and 1.

# Output Format
The output should be in JSONL format as
shown below:

json
{{
"incorrect_spans”: [
"text": "[identified incorrect
spanl]”,
"probability"”: [confidence_score]
I3
{{
"text": "[another identified
incorrect spanl]”,
"probability"”: [confidence_score]
33
]
1}

If no incorrect spans are identified,
return an empty list: “"incorrect_spans
" L1

# Example
**Input*x%:
<context>
Paris, the capital city of France, is a
metropolis steeped in history, culture,
and global significance. This
comprehensive analysis will delve into
the city's current status, basic
information, and historical importance,
providing a thorough understanding of
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Model | Context Source

| Method | IoU | Corr

gpt-4o0-mini you.com

gpt-4o0-mini perplexity
gpt-40-mini | perplexity-Llama-3.1-sonar-small
gpt-4o0-mini perplexity-sonar-pro

Text Extraction + String Match | 0.5235 | 0.5270
Text Extraction + String Match | 0.5022 | 0.4774
Text Extraction + String Match | 0.5133 | 0.5058
Text Extraction + String Match | 0.5295 | 0.4554

Table 6: Performance evaluation by context in English in validation dataset.

why Paris is not just the capital of

France, but also one of the world's most
influential cities.

</context>

<question>
What is the capital of France?
</question>

<answer >
The capital of France is Berlin.
</answer>

**Qutput**:

json
{{
"incorrect_spans": [
{{
"text": "Berlin",
"probability"”: ©.99
3}
]
3
# Notes

- Ensure that the probability reflects

your confidence. If unsure about the

degree of incorrectness, use a lower

value.

- It is possible for multiple incorrect

spans to exist in the same answer; make

sure to capture each one.

- If the answer is fully correct, return
“"incorrect_spans”: []1°.

- Try to identify the spans as short as

possible.

- The spans should appear in the same

order as they appear in the original

answer.

D.2 Knowledge Graph Verification System
Prompt

Identify incorrect spans in the given
answer text, with associated confidence
levels for each incorrect portion.

You will be provided with a question and
its corresponding answer. Your task is
to identify any specific parts of the
answer that are factually incorrect,
incomplete, or misleading. If there are
multiple incorrect segments, report each
one separately. Assign a probability
score (between @ and 1, with 1 meaning
high confidence) to each incorrect span,
indicating your level of certainty that
the span is incorrect.

# Steps

1. x*Analyze the Answerx*x*: Carefully
evaluate the given answer for accuracy
regarding the question context.

2. xxIdentify Incorrect Spans*x: Mark
the sentences or parts of the text that

seem incorrect, incomplete, misleading,
or irrelevant.
3. **Assign Probability**: Assign a
confidence score for each span you
identify as incorrect:
- A higher score indicates greater
confidence that an identified segment
is incorrect.
- Provide a score for each span
between @ and 1.

# Output Format
The output should be in JSON format as
shown below:

T json
{{
"incorrect_spans": [
{{
"text": "[identified incorrect
spanl]”,
"probability"”: [confidence_score
]
I3
{{
"text": "[another identified
incorrect spanl]”,
"probability"”: [confidence_score
]
13}
]
1}

- If no incorrect spans are identified,
return an empty list: “"incorrect_spans
PN

# Example

**Input*x%:

Question: "What is the capital of France
7“

Answer: "The capital of France is Berlin

**Qutput*x:

json
{{
"incorrect_spans": [
{{
"text": "Berlin",
"probability"”: .99
33
1
13
# Notes

- Ensure that the probability reflects

your confidence. If unsure about the

degree of incorrectness, use a lower

value.

- It is possible for multiple incorrect

spans to exist in the same answer; make

sure to capture each one.

- If the answer is fully correct, return
“"incorrect_spans”: []°.
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- Try to identify the spans as short as
possible.

- The spans should appear in the same
order as they appear in the original
answer.

D.3 Minimum Cost Revision System Prompt

Use the given context, correct the
answer to the question with the minimum
number of changes.

You will be given a context, a question
and an answer to the question. The
answer may not be correct. You need to
make the minimum number of changes to
the answer to make it correct.

Return the corrected answer wrapped in <
corrected_answer> tags.

Note: Do not correct for spelling
mistakes.

<context>
{context}
</context>

<question>
{question}
</question>

<answer >
{answer}
</answer >
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Model

. ToU
Context Translation

ar de ‘ en ‘ es fi fr hi it Y zh
gpt-4o-mini No No 0.5248|0.4359 | 0.4144 | 0.3809 | 0.4500 | 0.3841 | 0.6376 | 0.5237 | 0.5216 | 0.2722
gpt-4o0-mini | Perplexity Sonar Pro No 0.5658 | 0.5731 | 0.5503 | 0.4501 | 0.5571 | 0.5148 | 0.6277 | 0.6463 | 0.6482 | 0.3831
gpt-4o-mini | Perplexity Sonar Pro Yes 0.5968 | 0.6054 | 0.5407 | 0.4564 | 0.5434 | 0.5092 | 0.6341 | 0.6149 | 0.5870 | 0.3910

DeepSeek-R1
DeepSeek-R1

Perplexity Sonar Pro No 0.7226 | 0.5683 | 0.4715| 0.4828 | 0.5712 | 0.5533 | 0.7072 | 0.6975 | 0.6663 | 0.4316
Perplexity Sonar Pro Yes 0.6849 | 0.5480 | 0.4970 | 0.4722 | 0.5336 | 0.5064 | 0.6844 | 0.6929 | 0.6138 | 0.3859

o3-mini | Perplexity SonarPro| ~ No [ 0.5329]0.5944 | 0.4542 | 0.3841 | 0.4629 | 0.5443 | 0.4787 | 0.5894 | 0.5932 | 0.3988
Multi-System Combination |0.5862 | 0.6184 | 0.5265 | 0.4396 | 0.5813 | 0.5577 | 0.6521 | 0.6368 | 0.6481 | 0.3882
Table 7: Multi-lingual validation IoU results without prompt optimization.
. TIoU
Model Prompt Opt Metric ar ‘ de ‘ en ‘ es ‘ fi ‘ fr ‘ hi ‘ it ‘ sV ‘ zh
gpt-40 IoU 0.5996 | 0.6612 | 0.5377 | 0.4197 | 0.5316 | 0.5504 | 0.6779 | 0.6701 | 0.6263 | 0.4171
gpt-4o-mini IoU 0.5579 [ 0.5710 | 0.5615 | 0.3974 | 0.4861 | 0.4930 | 0.6385 | 0.5812 | 0.5663 | 0.4271
gpt-4o-mini Corr 0.5101|0.5171|0.5314 | 0.4461 | 0.5239 | 0.5047 | 0.6208 | 0.6164 | 0.5952 | 0.3634

Table 8: Multi-lingual validation IoU results with prompt optimization.
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