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Abstract

Large Language Models (LLMs) can answer
diverse questions but often generate factually
incorrect responses. SemEval-2025 Task 8 fo-
cuses on table-based question-answering, pro-
viding 65 real-world tabular datasets and 1,300
questions that require precise filtering and sum-
marization of underlying tables.

We approach this problem as a neuro-symbolic
code generation task, translating natural lan-
guage queries into executable Python code to
ensure contextually relevant and factually accu-
rate answers. We formulate LLM decoding as
a Markov Decision Process, enabling Monte
Carlo Tree Search (MCTS) as a lookahead-
based planning algorithm while decoding from
the underlying code-generating LLM, instead
of standard beam-search.

Execution success on synthetic tests and real
datasets serves as a reward signal, allowing
MCTS to explore multiple code-generation
paths, validate outcomes, assign value to par-
tial solutions, and refine code iteratively rather
than merely maximizing sequence likelihood in
a single step. Our approach improves accuracy
by 2.38x compared to standard decoding.1

1 Introduction

Transformer-based LLMs (Vaswani et al., 2023)
excel at question answering (QA) (OpenAI, 2024;
Aaron Grattafiori, 2024) but frequently generate
plausible yet factually incorrect responses (hallu-
cinations) (Ji et al., 2023). Mitigating these errors
is crucial for applications requiring precise, struc-
tured answers (Farquhar et al., 2024).

One domain where factual consistency is critical
is table-based QA, where answers must be derived
from structured tabular data. SemEval-2025 Task
8 (Osés Grijalba et al., 2024) provides a bench-
mark for evaluating LLMs in this setting, requir-

1Our code is available at: https://github.com/
HuixinYang/SemEval25-Task8-Adrianna-Aakarsh-Yang

2Full training dataset is available here.

Type Dataset ID Example Question

Boolean 072_Admissions Is there an applicant with a chance above 95 per cent
of getting into the university they applied to ?

Category 068_WorldBank_Awards Which region has the most contracts?
Number 075_Mortality What is the total sum of all death rate values ?
List[Category] 080_Books List the categories of the first five books.
List[Number] 078_Fires What are the 3 hottest temperatures recorded?

Table 1: Sample questions from the Semeval Task-8
training set along with their expected answer types.2

ing models to generate accurate answers from real-
world datasets. Table 1 lists sample questions from
the SemEval-2025 Task 8 training set of questions
along with their expected answer types.

While databases have long relied on structured
query languages (SQL) for precise data retrieval
(Codd, 1970), translating natural language ques-
tions into executable queries remains a challenging
task (Nan et al., 2022; Zhong et al., 2017).

In this task, we aim to leverage code-generating
Large Language Models (Rozière et al., 2024) to
query tabular data. That is, given a natural lan-
guage query and the underlying table schema, we
attempt to generate a concise Pandas Python code
(Wes McKinney, 2010) to answer questions re-
garding the given table dataframe. This allows
us to leverage existing code generation models like
CodeLlama-7b-Python 3 model, which are exten-
sively trained on Python code generation.

For reference, the organizers provide training
data consisting of 1.3k data points, each of which
includes a natural language question, the target
answer, its data type, and relevant columns in the
dataframe useful for answering the query. (Grijalba
et al., 2024). Queries are run in either lite mode us-
ing the first 20 rows of the table or full mode using
the entire table, with target answers for both modes
provided. The organizers additionally provide a
baseline decoder-only code LLM, based on Stable
Code 3b (Pinnaparaju et al., 2024), which tries to
generate Python-Pandas code to be run against the

3CodeLlama-7b-Python is openly available at: https://
huggingface.co/codellama/CodeLlama-7b-Python-hf
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underlying dataframe. Using a simple beam-search-
based decoder, the LLM can achieve an accuracy
of 27% in lite querying mode and 26% on full table
querying mode on the task’s test set.

Standard beam-search decoders maximize se-
quence likelihood but ignore program quality
for planning. We therefore propose an MCTS-
based planning decoder (Zhang et al., 2023) for
CodeLlama-7b-Python, grounding table-QA in the
runtime behavior of generated queries.

During the decoding process, the MCTS Planner
can take advantage of a reward signal from termi-
nal states to backpropagate and value intermediate
decodings of the underlying Transformer model.
The MCTS planner can balance exploration and
exploitation in the token decoding process to gener-
ate a higher-quality set of possible Python-Pandas
completions, running them against the dataframe
and automatically generated test-cases to weigh
possible next tokens through a look-ahead process,
while the transformer’s next token probabilities
serve as a good heuristic to constrain the plan-
ner’s search space. Moreover, the flexibility of
the reward function allows us to use a variety of
much larger models to inform our judgments of
the generated program solutions. For example, we
can use automatically generated test-cases from a
Qwen2.5-Coder-32B-Instruct (Hui et al., 2024)
model on synthetic data following the underlying
table schema to validate and generate a reward sig-
nal for our decoding process.

2 Related Work

Reinforcement Learning (RL) planning, particu-
larly Monte Carlo Tree Search (MCTS) (Sutton
et al., 1998; Silver et al., 2016), has shown success
in complex domains such as games and SQL gen-
eration from natural language (Zhong et al., 2017).

While LLMs exhibit inherent reasoning capabil-
ities (OpenAI, 2024), incorporating explicit plan-
ning into their generation process is an active re-
search area. Approaches range from prompting
strategies like Chain-of-Thought (Wei et al., 2023)
to models with dedicated search, reward, and rea-
soning components (Hao et al., 2024).

3 Our Approach

Our approach applies planning-based transformer
decoding (Zhang et al., 2023) to table-question
answering. Novel query program code synthesis
is formulated as a Markov Decision Process (Sut-

ton et al., 1998). A partial program along with its
prompting description is considered to be a state
s. The act of selecting a next-token from the un-
derlying Transformer vocabulary is considered an
action a. Thus transition function moves from one
partial program to another by concatenating a se-
lected token to one partial program to form another
until a terminal token is appended. The reward
for a program is a function of the validity of the
program, along with the number of synthetic test-
cases the generated program passes. The aim is to
use the LLM to search for a path which maximizes
expected future reward:

∑n
t=0 r(st, at).

3.1 Monte-Carlo Tree Search Decoding

A Monte-Carlo Tree Search (MCTS)-based planner
maximizes the accumulated reward of the gener-
ated program, replacing beam-search, which prior-
itizes similarity to reference solutions but cannot
explicitly optimize execution quality, making it
sample-inefficient.

MCTS (Silver et al., 2016) treats planning as a
look-ahead search through a tree of actions to find
a path to terminal nodes with the highest rewards.
Search proceeds from the root node, with child
nodes representing next-token actions selected by
the planning algorithm in phases meant to bal-
ance exploration and exploitation. The four phases
are: Selection: A process of selecting which of
the root’s child node to examine, Expansion: A
process of adding child nodes for the top-k most
likely next tokens for given node (as guided by
the Transformer model), Evaluation: Expanding
greedily using beam-search on Transformer model
to the terminal node to estimate program reward
and Backpropagation: Updating a node’s ances-
tor’s with visit counts and ground truth observed
rewards. Throughout its execution for each node,
the planning algorithm maintains a node-visit count
and Q(s, a), which is the average reward for the
algorithm taking action a when starting from state
s. A rollout consists of a one full generation of
a sample program and its final computed reward.
All four phases are run as part of every full rollout.
The algorithm maintains a search tree of tokens till
the required number of rollouts are processed.

Selection: This process starts at the root node and
recursively selects its child node until a leaf node is
reached. The root node consists of the full prompt
up until the slotted location for query generation.
Its children represent the possible next tokens in
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the generation. The selection phase recursively tra-
verses and selects actions a down till it reaches an
unexpanded node using a variant of the Predictive
Upper Confidence Bound(P-UCB) (Silver et al.,
2016; Zhang et al., 2023) action selection criterion,
which balances exploration with exploitation, when
selecting next token a to explore.

argmaxaP-UCB(s, a) = Q(s, a)+C ·PLLM(a|s)·
√

lnN(s)

1 +N(s′)

Where Q(s, a) is the reward of the best program
generated from this node, PLLM(a|s) is the trans-
former’s predicted probability that a is the next to-
ken and N(s) and N(s′) are the prior visit counts
of states s and the state s′ achieved when we tran-
sition from state s to state s′ by taking the token-
concatenation action a, C is a ucb-constant which
is used to control the scaling of the exploration
term.

Expansion: Once we reach an unex-
panded/unexplored node, we discover its
possible succeeding children by using the Code
LLM Top-k next tokens. Thus, the language model
constrains the search paths of next tokens, reducing
the probability that we will sample a syntactically
invalid next token. The k represents the maximum
child count of a node. It determines the fan-out
size of our tree. Nodes for each of the sampled
next tokens are created and added to the search
tree.

Evaluation/Simulation: As the node added to
the tree may be a partial program, LLM beam-
search is used to generate a possible full com-
pletion of the program till a terminal node. The
full-suite test-cases are run on this greedily gen-
erated program, if the program generated by this
default policy is executable, the observed reward is
recorded along with the rollout.

Success in compiling and executing the program
against the underlying dataframe and the number
of test-cases passed on a synthetic dataframe con-
tributes to the reward for this rollout.

Backpropagation: In the final phase, the ob-
served reward and visitation count are populated
up through the ancestors of the current node to
contribute to future look-ahead searches and the
ancestor’s P-UCB criterion, leading to refining the
tree exploration policy over each subsequent roll-
out.

Answer Selection: The final results of running
all rollouts are a dictionary of all programs gen-
erated and their corresponding observed rewards
from the evaluation phases. The chosen program
is one that achieves the maximum rewards, with
the majority computed answer used to break tied
rewards.

4 Experimental Setup

4.1 MCTS Decoder Configuration

We run the MCTS decoder (Zhang et al., 2023) for
the base model CodeLlama-7b-Python-hf (Roz-
ière et al., 2024), using a horizon of 32, which
controls the maximum number of steps taken or
tokens produced. 100 rollouts are performed, de-
termining the number of programs generated for
each question in the test set.

We use P-UCB as the node selection algorithm
during the selection phase, with an expansion width
of 5, which specifies the number of children each
node can expand into. No temporal discounting is
applied (γ = 1), meaning rewards are not penalized
based on the number of steps taken to achieve them.

The base model is sampled using topk = 3 and
topp = 0.9, with a temperature of 0.2 during the
simulation/evaluation phase. Extensive hyperpa-
rameter tuning will be considered in future work
on this task.

4.2 Enriched Prompting

We enrich the root prompt used by the base decoder
to contain contextually relevant information that
might be helpful during the MCTS decoding. Thus,
our root prompt contains: (1) Entire dataframe
schema for the table, we are generating our prompt,
including column names and types (2) A predicted
return type depending on the question we are an-
swering. We recognize 5 output categories for the
task. boolean, category, number, list[category]
(for lists of categories), and list[number] (for lists
of numbers). (3) predicted columns used, our pre-
diction of the columns most relevant for answering
the question.

We use the open source code LLM
Llama-3.1-Nemotron-70B-Instruct (Wang
et al., 2024), to predict the question category, and
Qwen2.5-Coder-32B-Instruct (Hui et al., 2024)
to predict the columns to be used for answering
user’s natural language query.
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4.3 Reward Function

The MCTS function is highly sensitive to the de-
sign of the reward function, as the presence or ab-
sence of rewards guides the tree search procedure.
As user questions are open-ended, it can often be
hard to verify whether the generated code and re-
sponses are indeed accurate.

We use a three-pronged approach to guessing at
the user’s intent. (1) First, we use a strictly larger
model to predict from the user’s query the most
probable output type. This probable output type
is used to inform both the prompt used during the
decoding process, as well as type-check the gen-
erated responses. (2) Additionally, the generated
code is evaluated using a Python interpreter with
the dataframe in question in the context of the inter-
preter. The executable section of the code is parsed
and extracted from the generated model response.
(3) Thirdly, the executable code fragment is run
against a synthetic test-suite to verify that it passes
multiple tests.

Sanity Type Checking and Malformed Code De-
tection We extract the completion’s Pandas query
as a single line following the prompt’s return state-
ment, truncating any additional extraneous tokens.
While currently no explicit token penalty is ap-
plied, the short horizon biases the model toward
concise outputs. The extracted code is then ex-
ecuted against the relevant dataframe, which is
added to the interpreter context, and if a runtime
error occurs or the resulting semantic data type
differs from the expected output type, a single er-
ror penalty of −1 is imposed. This combination
of execution-based feedback and type validation
ensures that completions align with each query’s
requirements.

Test Set Generation In the spirit of test-driven
development, we leverage large open-source
models (Llama-3.1-Nemotron-70B-Instruct,
Qwen2.5-Coder-32B-Instruct) to generate test-
cases for a given query. Specifically, we prompt
these models with the table schema and instruct
them to generate randomized data, parameterized
by a random seed, while ensuring compliance
with the dataframe schema. Since these models
have access to the table schema, sample data, and
the user’s query, they can produce meaningful
assertions for validating Python Pandas queries.

During the evaluation phase, we run the
MCTS- decoder’s generated Pandas on the dummy

Figure 1: Plot shows the reward calibration for rollouts
that passed at least one of the test-cases. We note that
boolean, category, and number show good calibration,
while list[category], list[number] show relatively poorer
calibration, indicating that further testing is required
during rollout computation to ensure their accuracy. A
maximum of 5 tests are run for each rollout with a
random seed. With a reward of 0.1 for each successfully
passed test.

dataframe and verify that all assertions hold. Us-
ing different random seeds allows us to execute
the query multiple times with varying dummy data,
increasing robustness. Additionally, leveraging a
diverse ensemble of models for test-case genera-
tion enhances confidence in the correctness of a
query that satisfies multiple test-cases, rather than
relying on any single test instance. A total of five
tests are run for each query, with each passing test
contributing 0.1 to the final reward value. 4

Reward Value We use a mixture of penalties for
faulty generation and rewards based on the number
of tests passed to evaluate MCTS rollouts.

r(Query) = −1 · Ierror + 0.1 · p · (1− Ierror)

Where p is the number of test-cases passed by
the completion, and Ierror is binary indicator func-
tion with values 0 or 1 where 1 indicates the pro-
gram encounters and error during execution.

5 Results

Table 2 shows the results of running the MCTS
decoder with our reward function; we also compare
these results by output type category. We note that
the use of a reward function leads to substantial

4Set of generated tests for training set
for competition are available at: https:
//huggingface.co/datasets/aakarsh-nair/
semeval-2025-task-8-test-cases-competition
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Approach / Output Type Detail Base
Accuracy (%)

Lite
Accuracy (%)

Stable Code-3b-GGUF + Beam Search (Baseline Overall) 26 % 27 %

CodeLlama-7b Python + MCTS Decoding (Our Approach)
Overall 61.68 64.36
Breakdown by Output Type:

Boolean 76.74 74.41
Category 64.86 67.57
Number 62.82 66.02
List [Category] 50.00 52.77
List [Number] 45.05 53.84

Table 2: Overall numerical accuracy comparison between our MCTS-based approach (CodeLlama-7b Python +
MCTS decoding) and the baseline (Stable Code-3b-GGUF + Beam Search). The table also provides a detailed
breakdown of the MCTS approach’s accuracy by output type. Our method significantly outperforms the baseline,
with boolean questions yielding the highest accuracy.

improvement over the baseline. Figure 1 shows that
for atomic return types such as boolean, category,
and number, rewards are well calibrated. That is,
passing a higher number of tests in the synthetic
test suite corresponds to higher observed accuracy
on the evaluation benchmark.

As the MCTS decoder does not rely on in-
context learning, accuracy for both lite and base
strategies is roughly equivalent. We note that the
results requiring list outputs tend to have the worst
performance. While boolean outputs have the high-
est accuracy level. Table 2 we note that MCTS
decoding has a baseline accuracy of 61.68% on
base tests and 64.36% on lite tests, compared to
the baseline provided by the host on the test set
which is 27% base and 26% on the lite dataset, cor-
responding to a relative improvement of 128.44%
on the base test set and 147.54% on the lite test set
compared to the baseline.

Output Type Category Prediction (%)

Boolean 100.00
Category 100.00
Number 96.79
List [Category] 98.61
List [Number] 82.41

Overall 95.78

Table 3: Category prediction accuracy by output type,
used in the reward signal. Boolean and Category types
showed 100% prediction accuracy.

6 Conclusion

We applied an MCTS-based decoder (Zhang et al.,
2023) for code generation in SemEval-2025 Task 8
table-QA.

Unlike conventional autoregressive methods that
rely on greedy decoding or single-step chain-of-
thought, our approach generates multiple candi-
date programs and refines them through look-ahead
planning. Experimental results show that MCTS
decoding achieves a substantial accuracy improve-
ment (61.68% vs. 26% baseline decoding), demon-
strating the effectiveness of search-based reasoning
for code generation tasks.

Our techniques leverage strong open-source
models to guide a smaller local model’s decoding,
enabling diverse solution generation. Tree search
with partial reward signals (e.g., passed tests, se-
mantic type checks) refined solutions by balancing
exploration and exploitation. Experiments also re-
vealed that list output types require more robust
checks than atomic types, where rewards were bet-
ter calibrated to accuracy.

This work highlights tree-based planning’s po-
tential in code generation for table-centric QA, sug-
gesting avenues for advanced reasoning techniques.

7 Limitation and Future Work

While our MCTS-based approach for table-centric
QA significantly boosts accuracy, several limita-
tions remain. First, we frequently observe semanti-
cally identical but syntactically distinct programs,
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resulting in unnecessary redundancy. This is com-
pounded by occasional extraneous tokens at the end
of generated completions, which we trim to prevent
run-time errors but consequently reduce program
diversity. Developing more robust code filters or
pruning heuristics could improve the uniqueness
and readability of generated solutions.

Second, although MCTS captures partial credit
via our reward function, reward design remains
imperfect. For example, incomplete or slightly
incorrect solutions may pass partial tests without
reflecting deeper logical errors. Future work could
explore more fine-grained reward signals, such as
dynamic coverage metrics or adversarial test gener-
ation, to improve the fidelity of feedback.

Third, we currently do not fine-tune the model
on the MCTS rollouts or incorporate reward sig-
nals into a specialized training loop. Integrating
Expert Iteration (Anthony et al., 2017) or itera-
tive feedback mechanisms could further refine the
policy beyond what standard prompting achieves.
Additionally, we have not conducted extensive hy-
perparameter searches for aspects such as number
of rollouts or maximum program length, potentially
leaving performance gains on the table. These ab-
lations and their performance tradeoffs will be ex-
plored in future works.

Lastly, our experiments focus on single-table
question answering. Many real-world tasks involve
multiple tables and heterogeneous data sources,
requiring more advanced data integration strategies.
Future iterations of our system could merge or join
multiple dataframes, broadening its applicability to
multi-step queries.
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