
Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 1957–1963
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Deepwave at SemEval-2025 Task 11: Emotion Analysis in Low-Resource
Settings Using LLM and Data Augmentation

Shenpo Dong1, Zhilong Ji1,
1Tomorrow Advancing Life

Correspondence: dongshenpo@tal.com , jizhilong@tal.com

Abstract

This paper introduces a new emotion detec-
tion method designed for low-resource lan-
guages, specifically for the SemEval-2025
Task 11 challenge. The approach fine-tunes
Google’s Gemma 2 model using Chain-of-
Thought prompting augmentation data. The
methodology integrates supervised fine-tuning
and model ensembling, leading to substantial
improvements in multi-label emotion recogni-
tion, emotion intensity prediction, and cross-
lingual performance. The results demon-
strate robust performance across various low-
resource language scenarios. On task A, our
method achieves an average improvement of
6.96 F1. On task B, it yields an average in-
crease of 23.3 F1. For task c, the proposed
approach improves metrics for low-resource
language families by 50% to 70%.

1 Introduction

Text sentiment analysis, a cornerstone of natural
language processing (NLP), aims to computation-
ally identify and extract subjective information
from text, such as opinions, emotions, and atti-
tudes. Over the years, this field has evolved signif-
icantly, driven by the need to understand human
sentiment in various domains, including customer
feedback, social networks, and product reviews
(Liu and Chen, 2015). Traditional methods, such
as lexicon-based approaches and machine learn-
ing models, have laid the foundation for sentiment
analysis (Wiebe et al., 2005; Salam and Gupta,
2018). However, the advent of large language mod-
els (LLMs) has revolutionized this field, offering
new capabilities and challenges.

Early sentiment analysis methods relied heavily
on lexicon-based techniques, where predefined sen-
timent scores were assigned to words, and heuris-
tic rules were applied to aggregate these scores
for an overall sentiment judgment. While these
methods are computationally efficient, they often

struggle with complex linguistic phenomena such
as sarcasm, negation, and context-dependent senti-
ment. Machine learning models, like Naive Bayes,
Support Vector Machines (SVM) , introduced a
data-driven approach to sentiment analysis (Liu
et al., 2017; Islam et al., 2022). These models were
trained on labeled datasets to classify text into posi-
tive, negative, or neutral categories. However, their
performance was limited by the need for exten-
sive labeled data and their inability to capture deep
semantic relationships within the text.

Large Language Models (LLMs) like BERT (De-
vlin et al., 2019) and ChatGPT (Ouyang et al.,
2022) have revolutionized sentiment analysis, par-
ticularly in high-resource languages such as En-
glish. This advancement is largely attributed to
their ability to achieve superior contextual under-
standing and facilitate zero-shot and few-shot learn-
ing through fine-tuning (Ameer et al., 2023) and
prompt-based methods (Yu et al., 2022). Specif-
ically: (1) Zero-Shot and Few-Shot Learning:
LLMs’ pre-trained language understanding enables
them to perform sentiment analysis with minimal
or no labeled data (Kuila and Sarkar, 2024). (2)
Cross-Lingual Transfer: Multilingual pre-training
(Yang et al., 2025) allows LLMs to transfer knowl-
edge from high-resource to low-resource languages.
(3) Prompt Engineering: Well-designed prompts
guide LLMs to better interpret emotional expres-
sions, particularly in low-resource languages.

However, despite their success in high-resource
scenarios, LLMs face significant challenges when
applied to low-resource languages (Barnes, 2023),
particularly those in Africa and Southeast Asia.
These challenges include: (1) Data Scarcity: The
limited availability of labeled data in low-resource
languages hinders the training of traditional super-
vised learning methods (Belay et al., 2025). (2)
Linguistic Diversity: The complex syntax and di-
verse dialects present in these languages complicate
model understanding and generalization. (3) Cul-
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Figure 1: BRIGHTER languages distribution

tural Differences: The variations in emotional ex-
pression across cultures necessitate cross-cultural
understanding, which is often challenging for mod-
els trained primarily on high-resource language
data (Tafreshi et al., 2024).

In analogous event extraction tasks, the classical
pipeline approach is divided into two stages, event
argument extraction and event relation extraction,
to enhance end-to-end accuracy (Dong et al., 2022).
Consequently, for low-resource scenarios, we draw
upon this concept and propose a two-stage aug-
mented data-based sentiment extraction method.

The main contributions are summarized as:
1. We introduce a two-stage CoT-enhanced data
pipeline, which generates interpretable and di-
verse English augmented data for low-resource lan-
guages to assist in model training. 2. We employ
techniques such as supervised fine-tuning (SFT),
K-fold cross-validation, model ensembling, and
specialized LoRA adaptations. Across all three
tasks, our approach achieves substantially higher
performance compared to the baselines.

2 BRIGHTER Dataset

Understanding how emotions are expressed dif-
ferently across languages is crucial for building
inclusive digital tools. Muhammad et al. (2025a);
Belay et al. (2025) have developed BRIGHTER, a
comprehensive dataset encompassing 28 languages.
BRIGHTER consists of 28 distinct datasets , each
tailored to a specific language, designed to cap-
ture the nuanced expressions of emotions in text.
These datasets are derived from a variety of sources,
including social media posts, speeches, literary
works, and news articles, ensuring a diverse repre-
sentation of language usage. For some languages,
new datasets were created, while existing ones were

enhanced with automatically translated or gener-
ated data.

Each text instance within BRIGHTER is multi-
labeled, indicating the presence of one or more of
six core emotions, along with a neutral category.
Furthermore, each emotion label is accompanied
by an intensity rating on a 4-point scale, provid-
ing a more granular understanding of emotional
expression. Analysis of BRIGHTER revealed that
emotion recognition remains a significant challenge
for Large Language Models (LLMs), particularly
for languages with limited resources.

SemEval Task 11 contains three tasks for emo-
tion analysis (Muhammad et al., 2025b): Task A
focuses on multi-label emotion detection, classify-
ing text snippets into six emotions (joy, sadness,
fear, anger, surprise, disgust), with varying pres-
ence of the "disgust" label across languages. Task
B involves emotion intensity prediction, assigning
ordinal intensity levels (0-3) to given text and emo-
tion pairs. Task C tackles cross-lingual emotion
detection, requiring prediction of emotion labels in
a target language using training data from a differ-
ent language.

3 System Overview

In this study, we propose a novel approach for text
sentiment analysis using large language models
through Supervised Fine-Tuning (SFT), Chain-of-
Thought (CoT) prompting (Wei et al., 2022), data
augmentation and model ensemble techniques. Our
methodology integrates advanced LLM capabili-
ties with traditional sentiment analysis frameworks
to achieve higher accuracy and robustness in senti-
ment classification tasks.

3.1 Chain-of-Thought

To enhance the model’s capacity for sentiment anal-
ysis, particularly in cross-lingual settings, we em-
ployed Chain-of-Thought (CoT) prompting to gen-
erate explicit intermediate reasoning steps. This
approach facilitates a more nuanced understand-
ing of sentiment, especially in contexts where it is
implicitly conveyed.

Initial pilot experiments were conducted on high-
resource languages, specifically English and Chi-
nese, to validate the efficacy of CoT in this domain.
The Gemma 2 27B IT (Team, 2024) model was
utilized to implement the CoT framework, decom-
posing the sentiment analysis task into two distinct
sub-tasks:
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Speaker I can’t move, my hand is stuck, I’m
making weird noises and my mom is
screaming.

Keyword
Identifi-
cation

"can’t move": helplessness, fear,
panic, entrapment; "stuck": helpless-
ness, frustration, panic, entrapment;
"weird noises": fear (of the unknown,
of one’s own body), confusion, dis-
tress; "mom is screaming": fear, alarm,
panic, distress

Sentiment
Recogni-
tion

Let’s classify the emotions based on
the given categories, allowing for mul-
tiple options: "can’t move": Fear: A
very strong primary emotion here, due
to the physical inability and potential
danger. Surprise: The sudden inabil-
ity to move could certainly evoke sur-
prise...

(i) sentiment keyword identification. Prompt:
"What emotional keywords are included in this sen-
tence and output them in JSON format." Like en-
tity recognition, the LLM first analyzes sentence
to identify emotionally expressive words. Without
predefined category knowledge, the LLM generates
varied emotional expressions, like alarm, panic, re-
sulting in what we term coarse-grained data.

(ii) sentiment polarity recognition. Prompt:
"Summarize these emotions, with candidates in-
cluding ’anger’, ’fear’, ’joy’, ’sadness’,’ surprise’,
and’ disgust’. You can choose from multiple op-
tions." In this task, we utilize the LLM to map the
previously extracted emotional terms to five prede-
fined labels. The emotional labels in this data now
perfectly align with BRIGHTER’s label taxonomy,
where each emotion category has one and only one
standardized description. We therefore classify this
as fine-grained data.

This augmented data was designed to provide
the model with a granular understanding of the
intricate relationship between specific keywords
and their associated sentiments, thereby improving
the model’s overall sentiment analysis performance.
We performed the same procedure on low-resource
languages to generate augmented data. Notably, in
our augmented dataset, all responses were strictly
required to be in English except for the keywords.

We keep data matching ground truth after Task
i and ii. For mismatches, we raise sample temper-
ature and re-run the tasks iteratively until 80% of
data has both coarse- and fine-grained data. This

iterative process aimed to enhance the quality and
diversity of the augmented dataset. For subsequent
tasks, we consistently train the models using both
the augmented data and the original data in combi-
nation.

3.2 Fine-Tuning

To maintain computational efficiency during the
supervised fine-tuning (SFT) phase, we selected
the Gemma 2 9B IT model as our base model. This
decision was driven by the model’s balance of per-
formance and resource requirements, enabling us to
conduct extensive experimentation within feasible
time constraints.

Addressing the challenge of limited data avail-
ability, which is particularly prevalent in Tasks 1
and 2 and often leads to suboptimal model perfor-
mance, we implemented a K-fold cross-validation
training strategy. Specifically, we set K to 5, di-
viding our dataset into five equal partitions. This
dataset comprised a mixture of coarse-grained sen-
timent data from Task 1 and fine-grained sentiment
data from Task 2, effectively creating a unified
training corpus. We then iteratively trained five
distinct models, with each model trained on four
partitions and validated on the remaining partition.
This cross-validation approach allowed us to max-
imize the utilization of our limited data while si-
multaneously providing a robust estimate of model
performance and mitigating the risk of overfitting.

During the training process within each fold
of the cross-validation, we employed the macro-
averaged F1-score as the primary evaluation metric
for each language. This metric provided a com-
prehensive assessment of the model’s performance
across all classes within a given language.

F1macro(l) =
1

|C|
∑

c∈C

2 · pc · rc
pc + rc

where: |C| represents the number of classes in the
language. pc and rc are the precision and recall for
class c, respectively. To select the optimal check-
point for each fold, we calculated the average of
the macro-averaged F1-scores across all languages.
This average score served as the criterion for check-
point selection.

Score =
1

|L|
∑

l∈L
F1macro(l)
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Language afr arq ary chn deu eng esp hau hin ibo kin mar pcm ptbr ptmz rus sun swa swe tat ukr vmw yor AVG

XLM-R* 10.82 31.98 40.66 58.48 55.37 67.3 29.85 36.95 33.71 18.36 32.93 78.95 52.03 15.4 30.72 78.76 19.66 22.71 34.63 26.48 17.77 9.92 11.94 35.45
mBERT* 25.87 41.75 36.87 49.61 46.78 58.26 54.41 47.33 54.11 37.23 35.61 60.01 48.42 32.05 14.81 61.81 27.88 22.99 44.24 43.49 31.74 10.28 21.03 39.41
Qwen2.5-72B* 60.18 37.78 52.76 55.23 59.17 55.72 72.33 43.79 79.73 37.4 31.96 74.58 38.66 51.6 40.44 73.08 42.67 27.36 48.89 51.58 54.76 20.41 24.99 49.35
Mixtral-8x7B* 53.69 45.29 35.07 44.91 51.2 58.12 65.72 40.4 62.19 31.9 26.35 50.36 45.61 41.64 36.52 61.72 42.1 26.51 48.61 39.44 40.15 19 19.67 42.87
DeepSeek-R1-70B* 43.66 50.87 47.21 53.45 54.26 56.99 73.29 51.91 76.91 32.85 32.52 76.68 45 51.49 39.58 76.97 44.61 33.27 44.6 53.86 51.19 19.09 27.44 49.46

Ours† (5-models-merge) 51.46 53.37 51.93 61.46 61.97 72.41 78.47 54.96 88.73 41.75 34.46 83.11 54.84 51.75 41.2 86.43 29.49 17.59 49.13 64.17 55.46 9.34 13.44 51.47
Ours (5-models-merge) 52.34 58.2 52.45 62.01 65.55 75.11 79.43 59.4 90.13 48.07 37.97 87.81 59.45 53.86 45.09 87.25 37.94 22.72 56.9 68.21 61.89 12.14 23.96 56.42

Table 1: Average F1-Macro for Task A Multi-label Emotion Recognition. The data marked with * represents that
from (Muhammad et al., 2025a). The symbol † is used to denote models trained exclusively on the original dataset.

Lang arq chn deu eng esp ptbr rus ukr AVG

XLM-R* 0 36.92 38.3 37.36 55.72 18.24 68.96 36.16 36.45
mBERT* 0 21.96 17.35 25.74 27.94 8.36 37.63 4.32 17.91
Qwen2.5-72B* 29.54 46.17 43.3 55.99 51.11 38.2 58.25 37.74 45.03
Mixtral-8x7B* 31.05 46.52 47.6 55.26 55.54 39.17 56.01 38.74 46.23
DeepSeek-R1-70B* 36.37 48.57 54.78 48.08 60.74 46.72 62.28 43.54 50.13

Ours†(5-models-merge) 51.22 71.96 66.91 79.35 74.94 61.37 87.74 54.17 67.46
Ours (5-models-merge) 57.41 69.42 74.24 80.91 79.21 68.41 91.64 66.24 73.43

Table 2: Average F1-Macro for Task B Emotion Intensity. The data marked with * represents that from (Muhammad
et al., 2025a). The symbol † is used to denote models trained exclusively on the original dataset.

Lang afr arq ary chn deu eng esp hau hin ibo mar pcnr ptbr ptm ron rus sun swe tat ukr vmv yor zul AVG

mBERT* 16.95 31.38 24.83 21.61 28.6 18.8 30.09 15.59 36.94 9.94 42.32 22.55 23.86 13.54 61.5 37.15 25.29 28.86 35.81 25.69 12.11 9.62 13.04 20.93
mDeBERTa* 33.25 35.92 36.28 42.41 42.61 35.3 37.09 32.8 57.74 9.52 54.05 25.39 34.42 24.46 60.6 29.7 27.31 43.28 47.72 35.12 11.74 10.03 13.87 27.87
LaBSE* 35.12 35.93 42.83 45.28 42.45 36.71 54.56 38.46 69.78 18.13 74.65 33.29 41.51 31.44 69.79 61.32 34.79 44.24 60.66 44.37 9.65 11.64 18.16 34.09

Ours † (lora) 41.33 35.46 49.19 64.74 65.72 78.97 76.49 63.42 89.77 57.49 81.62 61.91 54.76 51.33 71.46 81.76 48.15 56.74 71.47 62.01 12.10 27.46 7.16 43.54
Ours (lora) 57.41 58.75 63.22 68.89 72.67 79.69 83.11 70.88 91.87 55.35 90.29 67.4 62.91 55.54 76.7 90.58 46.66 64.53 78.86 70.18 21.04 34.16 19.27 52.85

Table 3: Average F1-Macro for Task C Crosslingual Multi-Label Classification. The data marked with * represents
that from (Muhammad et al., 2025a). The symbol † is used to denote models trained exclusively on the original
dataset.

Romance Germanic Semitic Niger-Congo Slavic Sino-Tibetan

mBERT* 32.25 23.30 23.93 16.33 32.88 21.61
mDeBERTa* 39.14 38.61 35.00 20.58 37.51 42.41
LaBSE* 49.33 39.63 39.07 25.47 55.45 45.28

Ours † (lora) 63.51 60.69 49.36 38.80 71.75 64.74
Ours (lora) 69.57 68.58 64.28 44.34 79.87 68.89

Table 4: Average F1-Macro across Language Families in Task C.

3.3 Model Ensemble

To further enhance the performance of our senti-
ment analysis model, we employed a model en-
sembling technique. Specifically, we utilized LLM
merging (Goddard et al., 2024), a strategy that com-
bines the predictions of multiple LLM to achieve
improved generalization. Given that the five mod-
els generated through our K-fold cross-validation
were derived from the same base architecture and
exhibited comparable performance on their respec-
tive validation sets, we opted for a linear weighted

merging approach.

We perform a linear fusion of the five models
into a single unified model to achieve an optimal
tradeoff between inference speed and model perfor-
mance. As such, each model was assigned a merge
weight of 0.2, ensuring an equal contribution to
the final ensemble prediction. This straightforward
yet effective technique was chosen for its ability to
reduce variance and mitigate the risk of overfitting,
ultimately leading to a more robust and reliable
sentiment analysis system.
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3.4 Crosslingual Recognition
To achieve the objective of cross-lingual detection
in Task C, we employed a straightforward yet ef-
fective strategy involving the training of multiple
Low-Rank Adaptation (LoRA) modules. Specifi-
cally, for each target language li, a dedicated LoRA
(Hu et al., 2022) module was trained. The train-
ing dataset for this module comprised data from all
other languages within Task A, excluding the target
language li. This approach facilitated the model’s
ability to discern subtle linguistic nuances and pat-
terns characteristic of languages distinct from li.

Given the inherent time-intensive nature of train-
ing individual LoRA modules for each language,
we abstained from employing model fusion tech-
niques in Task C.

4 Experimental Setup

To maximize coverage for multilingual tasks, we
selected the Gemma 2 multilingual model (Team,
2024) as the base model for augmenting and train-
ing. We employed bfloat16 precision and Adam
optimizer was configured with beta values of 0.9
and 0.999, and an epsilon of 1e-8. To optimize the
training process, we set the learning rate to 7e-6.
The batch size was configured to 64, which allowed
for efficient utilization of computational resources
while maintaining reasonable training speed. To
ensure robust evaluation and mitigate overfitting,
we adopted a 5-fold cross-validation strategy. For
both Task A and Task B, we trained the models us-
ing the complete set of original data along with the
augmented data, and employed Mergekit (Goddard
et al., 2024) for linear model fusion. For Task C, we
continue to employ mixed data while training dedi-
cated LoRA heads for each individual language.

5 Results

Our proposed work demonstrates significant im-
provements across three tasks, leveraging Gemma’s
cross-lingual capabilities enhanced through chain-
of-thought reasoning, data augmentation, and
model-ensembling strategies.

In task A Multi-label Emotion Recognition (Ta-
ble 1), Deep achieves superior performance with an
average F1-macro score of 56.42, outperforming
all comparable systems by +6.96 points over the
strongest baseline (Deepseek R1-70B: 49.46). No-
tably, in certain low-resource language scenarios,
the performance metrics substantially surpass those
of the English context: +13.21 in Hindi (90.13 vs.

76.91), +11.13 in Marathi (87.81 vs. 76.68) and
+10.28 in Russian (87.25 vs. 76.97). However,
there are also some scenes that perform poorly like
Emakhuwa.

For Task B Emotion Intensity, which requires
simultaneous prediction of both emotion categories
and intensity levels, our method demonstrates supe-
rior performance in Table 2. Our method attaining
73.43 average F1-score +23.3 points higher than
DeepSeek-R1-70B (50.13). Our method demon-
strates superior performance over the baseline
across nearly all language scenarios, as exemplified
by the following cases: achieving 91.64 in Russian
and 79.21.

For task C, Crosslingual Multi-Label Classi-
fication (Table 3), we establishe a new state-of-
the-art performance with 52.85 average F1-score,
surpassing previous best results by +18.76 points
(LaBSE*: 34.09). As observed in Table 4, our
method achieves nearly 60-70% improvements for
low-resource language families (e.g., Niger-Congo
and Semitic), demonstrating remarkable effective-
ness in data-scarce scenarios.

As shown in Tables Table 1- 4, we conducted
an additional experiment using identical training
configurations to our final approach, with the sole
variation being the training data. Model marked
with † were trained exclusively on the original data,
while final model utilized both original and aug-
mented data. The results demonstrate that the hy-
brid data approach (original + augmented) con-
sistently outperforms the original-data-only by an
average margin of 6-10 percentage points. This
also indicates that our augmented data underwent
rigorous quality filtering, and its integration dur-
ing training did not excessively interfere with the
original data. On the contrary, by more explicitly
highlighting the relationships between sentiment
keywords and sentiment categories/intensities, it
contributed to improved final performance.

6 Limitations

Our cross-lingual sentiment detection approach
showed strong performance in Task 3, but its effec-
tiveness was notably reduced in Tasks 1 and 2. This
disparity is likely due to the training process in-
volving datasets with both coarse and fine-grained
sentiment annotations. The inherent differences in
annotation granularity introduced inconsistencies,
hindering the model’s ability to accurately capture
the subtle nuances of sentiment in these tasks.
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Furthermore, the model performance in certain
low-resource scenarios, particularly with Javanese,
fell significantly below acceptable levels. This un-
derscores the persistent challenge of adapting large
language models to languages with limited avail-
able data. Future research should prioritize strate-
gies for data augmentation in low-resource settings,
such as back-translation and synthetic data genera-
tion, as well as the integration of language-specific
linguistic resources. Additionally, exploring meth-
ods for efficient knowledge transfer and adaptation
from high-resource to low-resource languages is
crucial for bridging the performance gap.

7 Conclusion

This study investigated text-based emotion de-
tection in low-resource languages, utilizing the
Google Gemma 2 large language model. The
research employed data augmentation, Chain-of-
Thought (CoT) prompting, and model ensembling
techniques. The proposed approach achieved sub-
stantial performance gains across multilingual emo-
tion detection and emotion intensity prediction task,
outperforming state-of-the-art baselines. Further
research is needed to explore more effective knowl-
edge transfer methods from high-resource to low-
resource languages.

Overall, this work highlights the potential of
large language models to bridge the gap in text-
based emotion detection, particularly through data
augmentation for resource-scarce language fami-
lies.
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