DUTIR at SemEval-2025 Task 10: A Large Language Model-based Approach for Entity Framing in Online News

Tengxiao Lv, Juntao Li, Chao Liu, Yiyang Kang, Ling Luo, Yuanyuan Sun, Hongfei Lin


Abstract
We propose a multilingual text processing framework that combines multilingual translation with data augmentation, QLoRA-based multi-model fine-tuning, and GLM-4-Plus-based ensemble classification. By using GLM-4-Plus to translate multilingual texts into English, we enhance data diversity and quantity. Data augmentation effectively improves the model’s performance on imbalanced datasets. QLoRA fine-tuning optimizes the model and reduces classification loss. GLM-4-Plus, as a meta-classifier, further enhances system performance. Our system achieved first place in three languages (English, Portuguese and Russian).
Anthology ID:
2025.semeval-1.25
Volume:
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
Venues:
SemEval | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
174–179
Language:
URL:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.25/
DOI:
Bibkey:
Cite (ACL):
Tengxiao Lv, Juntao Li, Chao Liu, Yiyang Kang, Ling Luo, Yuanyuan Sun, and Hongfei Lin. 2025. DUTIR at SemEval-2025 Task 10: A Large Language Model-based Approach for Entity Framing in Online News. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 174–179, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
DUTIR at SemEval-2025 Task 10: A Large Language Model-based Approach for Entity Framing in Online News (Lv et al., SemEval 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.25.pdf