DUTIR at SemEval-2025 Task 10: A Large Language Model-based Approach for Entity Framing in Online News
Tengxiao Lv, Juntao Li, Chao Liu, Yiyang Kang, Ling Luo, Yuanyuan Sun, Hongfei Lin
Abstract
We propose a multilingual text processing framework that combines multilingual translation with data augmentation, QLoRA-based multi-model fine-tuning, and GLM-4-Plus-based ensemble classification. By using GLM-4-Plus to translate multilingual texts into English, we enhance data diversity and quantity. Data augmentation effectively improves the model’s performance on imbalanced datasets. QLoRA fine-tuning optimizes the model and reduces classification loss. GLM-4-Plus, as a meta-classifier, further enhances system performance. Our system achieved first place in three languages (English, Portuguese and Russian).- Anthology ID:
- 2025.semeval-1.25
- Volume:
- Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
- Month:
- July
- Year:
- 2025
- Address:
- Vienna, Austria
- Editors:
- Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
- Venues:
- SemEval | WS
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 174–179
- Language:
- URL:
- https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.25/
- DOI:
- Cite (ACL):
- Tengxiao Lv, Juntao Li, Chao Liu, Yiyang Kang, Ling Luo, Yuanyuan Sun, and Hongfei Lin. 2025. DUTIR at SemEval-2025 Task 10: A Large Language Model-based Approach for Entity Framing in Online News. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 174–179, Vienna, Austria. Association for Computational Linguistics.
- Cite (Informal):
- DUTIR at SemEval-2025 Task 10: A Large Language Model-based Approach for Entity Framing in Online News (Lv et al., SemEval 2025)
- PDF:
- https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.25.pdf